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RÉSUMÉ 

 Le glaucome est la deuxième cause de cécité irréversible dans le monde. La perte 

de vision qui  se produit lors du glaucome s’explique par une dégénérescence du nerf 

optique et une mort progressive et sélective des cellules ganglionnaires de la rétine 

(CRG). L'hypertension oculaire est un facteur de risque majeur dans le glaucome, mais 

des défauts du champ visuel continuent à se développer chez un contingent de patients 

malgré l'administration de médicaments qui abaissent la pression intraoculaire (PIO). Par 

conséquent, bien que la PIO représente le seul facteur de risque modifiable dans le 

développement du glaucome, son contrôle ne suffit pas à protéger les CRGs et préserver 

la fonction visuelle chez de nombreux patients. Dans ce contexte, j'ai avancé l'hypothèse 

centrale voulant que les stratégies de traitement du glaucome visant à promouvoir la 

protection structurale et fonctionnelle des CRGs doivent agir sur les mécanismes 

moléculaires qui conduisent à la mort des ces neurones.  

 Dans la première partie de ma thèse, j'ai caractérisé l'effet neuroprotecteur de la 

galantamine, un inhibiteur de l'acétylcholinestérase qui est utilisé cliniquement dans le 

traitement de la maladie d'Alzheimer. Cette étude s’est basée sur l'hypothèse que la 

galantamine, en modulant l'activité du récepteur de l'acétylcholine, puisse améliorer la 

survie des CRGs lors du glaucome. Nous avons utilisé un modèle expérimental bien 

caractérisé d'hypertension oculaire induite par l’administration d'une solution saline 

hypertonique dans une veine épisclérale de rats Brown Norway. Les résultats de cette 

étude (Almasieh et al. Cell Death and Disease, 2010) ont démontré que l'administration 

quotidienne de galantamine améliore de manière significative la survie des corps 

cellulaires et des axones CRGs. La protection structurelle des CRGs s’accompagne d’une 

préservation remarquable de la fonction visuelle, évaluée par l'enregistrement des 

potentiels évoqués visuels (PEV) dans le collicule supérieur, la cible principale des CRGs 

chez le rongeur. Une autre constatation intéressante de cette étude est la perte 

substantielle de capillaires rétiniens et la réduction du débit sanguin associé à la perte des 

CRGs dans le glaucome expérimental. Il est très intéressant que la galantamine ait 

également favorisé la protection de la microvascularisation et amélioré le débit sanguin 

rétinien des animaux glaucomateux (Almasieh et al. en préparation). J'ai notamment 

démontré que les neuro-et vasoprotections médiées par la galantamine se produisent par 
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l'activation des récepteurs muscariniques de l'acétylcholine.  

  Dans la deuxième partie de ma thèse, j'ai étudié le rôle du stress oxydatif ainsi que 

l'utilisation de composés réducteurs pour tester l'hypothèse que le blocage d'une 

augmentation de superoxyde puisse retarder la mort des CRG lors du glaucome 

expérimental. J'ai profité d'un composé novateur, un  antioxydant  à base de phosphine-

borane (PB1), pour tester sur son effet neuroprotecteur et examiner son mécanisme 

d'action dans le glaucome expérimental. Les données démontrent que l'administration 

intraoculaire de PB1 entraîne une protection significative des corps cellulaire et axones 

des CRGs. Les voies moléculaires conduisant à la survie neuronale médiée par PB1 ont 

été explorées en déterminant la cascade de signalisation apoptotique en cause. Les 

résultats démontrent que la survie des CRGs médiée par PB1 ne dépend pas d’une 

inhibition de signalisation de protéines kinases activées par le stress, y compris ASK1, 

JNK ou p38. Par contre, PB1 induit une augmentation marquée des niveaux rétiniens de 

BDNF et une activation en aval de la voie de survie des ERK1 / 2 (Almasieh et al. 

Journal of Neurochemistry, 2011).  

 En conclusion, les résultats présentés dans cette thèse contribuent à une meilleure 

compréhension des mécanismes pathologiques qui conduisent à la perte de CRGs dans le 

glaucome et pourraient fournir des pistes pour la conception de nouvelles stratégies 

neuroprotectrices et vasoprotectrices pour le traitement et la gestion de cette maladie.  

 

Mots-clés: glaucome, cellule ganglionnaire de la rétine, neuroprotection, inhibiteur de 

l'acétylcholinestérase, muscarinique, superoxyde, facteur neurotrophique dérivé du 

cerveau, kinases 1 et 2 régulées par des signaux extracellulaires, microvascularisation 

rétinienne, débit sanguin rétinien. 
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SUMMARY 

Glaucoma is the second cause of irreversible blindness worldwide. Loss of vision 

in glaucoma is accompanied by progressive optic nerve degeneration and selective loss of 

retinal ganglion cells (RGCs). Ocular hypertension is a major risk factor in glaucoma, but 

visual field defects continue to progress in a large group of patients despite the use of 

drugs that lower intraocular pressure (IOP). Therefore, although IOP is the sole 

modifiable risk factor in the development of glaucoma, its regulation is not sufficient to 

protect RGCs and preserve visual function in many affected patients. To address this 

issue, I put forward the central hypothesis that effective therapeutic strategies for 

glaucoma must interfere with molecular mechanisms that lead to RGC death to 

successfully promote structural and functional protection of these neurons.  

In the first part of my thesis, I characterized the neuroprotective effect of 

galantamine, an acetylcholinesterase inhibitor that is clinically used for the treatment of 

Alzheimer’s disease. The specific hypothesis of this study was that galantamine, by 

modulating acetylcholine receptor activity, can improve the survival of injured RGCs in 

glaucoma. A well characterized experimental model of ocular hypertension induced by 

administration of a hypertonic saline into an episcleral vein of Brown Norway rats was 

used. The results of this study (Almasieh et al. Cell Death and Disease, 2010) 

demonstrated that daily administration of galantamine significantly improved the survival 

of RGC soma and axons in this model. Structural protection of RGCs correlated with 

substantial preservation of visual function, assessed by recording visual evoked potentials 

(VEPs) from the superior colliculus, the primary target of RGCs in the rodent brain. An 

interesting finding during the course of my thesis was that there is a substantial loss of 

retinal capillaries and a reduction in retinal blood that correlates with RGC loss in 

experimental glaucoma. Interestingly, galantamine also promoted the protection of the 

microvasculature and improved retinal blood flow in ocular hypertensive animals 

(Almasieh et al. in preparation). Importantly, I demonstrated that galantamine-mediated 

neuro- and vasoprotection occur through activation of muscarinic acetylcholine receptors.   

 In the second part of my thesis, I investigated the role of oxidative stress and the 

use of reducing compounds to test the hypothesis that blockade of a superoxide burst may 

delay RGC death in experimental glaucoma. I took advantage of a novel phosphine-
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borane based antioxidant compound available to us (PB1) to investigate its 

neuroprotective effect and mechanism of action in experimental glaucoma. The data 

demonstrate that intraocular administration of PB1 resulted in significant protection of 

RGC soma and axons. I also explored the molecular pathways leading to PB1-mediated 

neuronal survival by analyzing the components of survival and apoptotic signaling 

pathways involved in this response. My results show that PB1-mediated RGC survival 

did not correlate with inhibition of stress-activated protein kinase signaling, including 

ASK1, JNK or p38. Instead, PB1 led to a striking increase in retinal BDNF levels and 

downstream activation of the pro-survival ERK1/2 pathway (Almasieh et al. Journal of 

Neurochemistry, 2011).  

In conclusion, the findings presented in this thesis contribute to a better 

understanding of the pathological mechanisms underlying RGC loss in glaucoma and 

might provide insights into the design of novel neuroprotective and vasoprotective 

strategies for the treatment and management of this disease.  

Key words: glaucoma, retinal ganglion cell, neuroprotection, acetylcholinesterase 

inhibitor, muscarinic, superoxide, brain-derived neurotrophic factor, extracellular signal-

regulated kinase 1/2, retinal microvasculature, retinal blood flow. 
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I.1. GLAUCOMA: DEFINITION, PREVALENCE AND RISK FACTORS 

Glaucoma is a group of chronic optic neuropathies characterized by progressive 

visual field defects and optic disc damage which ultimately leads to irreversible blindness 

due to the loss of retinal ganglion cells (RGCs). It is estimated that more than 60 million 

people suffer from glaucoma worldwide (Quigley and Broman, 2006) and according to a 

report from the World Health Organization, glaucoma is the second cause of blindness 

globally accounting for 12.3% of total cases (Resnikoff et al., 2004).  

There are a number of risk factors that increase the incidence of glaucoma. 

Demographic factors including age and ethnic background are among the most 

recognized risk factors for glaucoma. For example people over the age of 60 have a much 

higher risk of developing glaucoma (Coleman and Miglior, 2008). Also, the rate of 

glaucoma progression is faster in individuals diagnosed with glaucoma within certain 

population subgroups (Sommer et al., 1991; Varma et al., 2004). Moreover, belonging to 

a certain ethnic background significantly lowers the age at which those individuals are at 

risk of developing glaucoma. For instance, individuals of African-descent 40 years and 

older are at higher risk of developing glaucoma and have the highest rate of blindness due 

to glaucoma (Congdon et al., 2004; Leske, 2007). Family history is another recognized 

risk factor for developing glaucoma as individuals with a family member with glaucoma 

have a four times higher risk of developing this disease (Wiggs, 2007).  

Elevated intraocular pressure (IOP) is an important risk factor for developing 

glaucoma. Considering that the normal value of IOP for adult individuals is usually 

around 15 mmHg, people with an IOP over 21 mmHg are known as ocular hypertensive 

(Quigley et al., 1994). Interestingly, there is a correlation between systemic blood 

pressure and IOP levels as an increase or a reduction of systemic blood pressure results in 

higher or lower IOP, respectively (Klein et al., 2005; McLeod et al., 1990). Indeed, high 

systemic blood pressure is considered a risk factor in glaucoma (Deokule and Weinreb, 

2008). Although IOP is regarded as an important risk factor, it is not an accurate 

predictor of glaucoma since more than 30% of the glaucoma patients have an IOP in the 

normal range (Nemesure et al., 2007).  

Corneal thickness is also considered another risk factor and thinner central 

corneas have been correlated with visual field loss in glaucoma (Medeiros et al., 2003). 
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High myopia is another risk factor correlating with glaucoma occurrence (Loyo-Berros 

and Blustein, 2007; Mastropasqua et al., 1992). An association between diabetes and 

glaucoma has also been suggested (Bonovas et al., 2004). Some cases of diabetes also 

have higher IOP levels compared to control individuals (Klein et al., 1984; Tielsch et al., 

1995). 

 
I.2. PATHOLOGICAL AND CLINICAL FEATURES OF GLAUCOMA 

I.2.1. Loss of RGCs, optic disc cupping and axonal damage  

Glaucoma is characterized by damage to the neural components of the visual 

pathway including the retina, the optic tract and the brain. The visual information in the 

retina travels vertically through photoreceptors, bipolar cells and finally RGCs. RGCs 

play an essential role in vision because they are the only neurons responsible for relaying 

the visual signal from the eye to the higher centers in the brain (Figure 1). One of the 

highlights of glaucoma pathology is the selective loss of RGCs, which is characteristic of 

all glaucoma patients (Kendell et al., 1995; Quigley, 1999).  

RGCs axons extend from their cell bodies over the inner surface of retina to reach 

the optic disc. They join to form axon bundles at the retinal nerve fiber layer supported 

by both the processes of Müller cells and astrocytes (Radius and Anderson, 1979). The 

optic disc or optic nerve head (ONH) is the region where RGC axons exit the eye to form 

the optic nerve. The ONH includes a prelaminar area formed by loose trabecular glial 

tissue and bundles of unmyelinated nerve fibers. The laminar area of the ONH is called 

the lamina cribrosa; it is composed of parallel collagen laminas located in a canal in the 

posterior part of the sclera (Jonas et al., 1991). The lamina cribrosa forms a sieve-like 

network and axons of RGCs exit the retina through its pores; it also allows passage of the 

central retinal vessels (Hernandez et al., 1986). 

The area of the ONH that contains the nerve fibers, called the neuroretinal rim, 

surrounds the central and slightly depressed part called the cup (Jonas et al., 1988). 

Increased depth of the optic cup is a well known clinical feature of glaucoma (Jonas et 

al., 1999). ONH cupping is one of the first detectable signs of glaucoma and often 

precedes  the loss of  visual  field (Pederson and Anderson, 1980). The optic disc cupping  
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FIGURE 1. 
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Figure 1. A schematic diagram of the retina demonstrating the principal cell types 

involved in retinal signaling. The photoreceptor cells (rods and cones) are the outermost 

neuronal layer of the retina. Photoreceptors are light-sensitive and transduce light stimuli 

into electrical signals. The signal is subsequently transferred from the photoreceptors to 

bipolar cells. The outer plexiform layer (OPL) contains the synaptic connections between 

photoreceptors to bipolar cells and horizontal cells. Bipolar cells make synaptic 

connections with RGCs in the inner plexiform layer (IPL). RGC axons travel toward the 

optic disc in the nerve fiber layer and exit the eye forming the optic nerve. Cellular 

components of the retina are supported by Müller cells and the interconnections provided 

by horizontal cells and amacrine cells participate in retinal processing and modifications 

of visual signal. Source of image: Mohammadali Almasieh. 
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correlates with changes in the organization of connective tissue bundles and thinning of 

laminar beams in the lamina cribrosa in experimental and human glaucoma (Fukuchi et 

al., 1992; Miller and Quigley, 1987; Morrison et al., 1990). ONH changes also include 

abnormal deposition of extracellular matrix components such as collagen, laminin and 

elastin (Hernandez et al., 1990; Johnson et al., 1996; Morrison et al., 1990).  ONH tissue 

remodeling occurs partly due to activation of resident glial cells since abnormal 

deposition of extracellular material correlates with increased expression of elastin mRNA 

in local astrocytes (Pena et al., 2001). Activated and proliferating astrocytes, 

characterized by hypertrophic soma and expression of glial fibrillary acidic protein 

(GFAP), are found in human and experimental glaucoma (Hernandez et al., 2008; 

Johnson et al., 2007a). Tissue remodeling can also result in biomechanical alterations at 

the ONH leading to stress-induced damage of RGC axons at this location (Burgoyne, 

2010).  

I.2.2. Loss of visual field 

Glaucoma is not the only optic neuropathy accompanied by visual loss; however, 

based on the characteristic changes of the optic disc and the typical patterns of visual 

field loss, glaucomatous visual defects can be distinguished from other optic 

neuropathies. Because damage to RGC axons happens mostly at the superior and inferior 

parts of the ONH and considering that nerve fibers make a superior or inferior arc around 

the horizontal raphe before entering the optic disc, typical arcuate scotomas are the 

characteristic visual field loss pattern in the glaucoma (Figure 2) (Hood and Kardon, 

2007; Spector, 1990). It is typical for glaucomatous vision loss to be peripherally located 

as occurrences of scotomas are usually paracentral; central vision will remain intact until 

very late in the course of the disease. Several methods are currently used for diagnosis of 

glaucomatous visual field abnormalities including standard achromatic automated 

perimetry (SAP) or selective perimetry (Sakata et al., 2007; Sample et al., 2000; Sharma 

et al., 2008). Due to considerable overlap in the receptive fields of different RGC types, 

SAP does not allow detection of visual defects unless 40-50% of RGCs are already lost. 

However, short-wavelength (blue-yellow color sensitive) automated perimetry (SWAP) 

that targets the small bistratified RGCs, enables physicians to detect functional  loss years 
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FIGURE 2. 

 

Figure 2. Grey scale plot of visual field derived from short-wavelength automated 

perimetry showing large arcuate scotoma in the superior visual field. Three panels 

indicate progressive loss of visual field. Different gray spectra show the level of visual 

loss and black indicates the blind spots. Source of image: adapted from Clement et, al., 

Br J Ophthalmol. 2009.  
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earlier because it is selective for a particular ganglion cell type (Johnson et al., 1993; Sit 

et al., 2004).   

Pathological changes in glaucoma are also detected in visual centers in the brain 

and could account for visual defects. The lateral geniculate nucleus (LGN), a major 

central target of RGC axons in primates, shows significant atrophy and neuronal loss in 

primate experimental glaucoma (Ito et al., 2009; Yücel et al., 2001). Activated glial cells 

play important roles in the degenerative changes in the LGN as astrocytosis and 

microglial activation have been reported in the LGN and visual cortex in experimental 

glaucoma (Lam et al., 2009). 

 
I.3. GLAUCOMA CLASSIFICATION AND EXPERIMENTAL MODELS 

Glaucoma has been divided into two major categories: primary angle-closure 

glaucoma (PACG) and primary open-angle glaucoma (POAG). However, other sub-

categories have been added to accommodate for the diversity of pathologies. The 

production, circulation and drainage of the aqueous humour (the clear fluid that fills the 

anterior and posterior chambers of the eye) are determining factors for the IOP level of 

the eye. Therefore, the anatomical structures of the eye involved in the production and 

circulation of the aqueous humour will be reviewed briefly.   

The aqueous humour is produced by the ciliary epithelium of the ciliary body, 

provides nutrition for the lens and removes metabolic waste as it flows through the pupil 

into the anterior chamber of the eye (Krupin et al., 1986). The aqueous humour fills the 

anterior chamber providing nutrition to the cornea as well. There is an area in the anterior 

chamber where the cornea and iris join, the angle, where the drainage of aqueous humour 

takes place (Figure 3). Aqueous fluid flows toward the angle where it enters the 

trabecular meshwork (TM) (Tamm, 2009), a sieve-like structure that filters and directs 

the aqueous fluid into the Schlemm's canal (Johnstone, 2004). A portion of the aqueous 

humour leaves the anterior chamber through an alternative route called the uveo-scleral 

pathway (Gabelt and Kaufman, 2005; Goel et al., 2010). Several models of inducible and 

spontaneous glaucoma rely on blockade of the aqueous humour drainage and will be 

discussed in subsequent sections. 
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FIGURE 3. 

 

 

 

Figure 3. A schematic presentation of the structures in the angle of the eye and 

aqueous humour circulation. The aqueous humour is produced by the ciliary body and 

enters the anterior chamber via the pupil. The trabecular meshwork (TM) is located in the 

angle between the cornea and iris and provides a circumferential outlet for drainage of 

aqueous. In PACG, access to the TM is limited or severed due to physical closure of the 

anterior chamber angle; whereas in POAG, the TM is accessible, however ultrastructural 

changes in the TM itself result in reduction of outflow. Aqueous humour enters 

Schlemm's canal and after being collected in a circumferential venous plexus, joins the 

blood circulation via episcleral veins. Source of image: Kwon et. al., N. Engl. J. Med. 

2009. 
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I.3.1. Primary angle-closure glaucoma 

PACG is characterized by the blockade of the aqueous humour drainage and/or its 

circulation. This results in increased IOP and consequent damage to the retina and optic 

nerve. If the IOP increase is sudden and acute, it is often accompanied by pain and 

redness of the eye, blurry vision, headache and nausea (Sihota, 2011). The name “angle-

closure” was originally used after the observation that the aqueous humour drainage is 

blocked in the angle of the eye resulting in IOP build up. PACG is primarily caused by an 

abnormal contact between anterior segment structures of the eye, including the cornea, 

iris, TM, ciliary body, and the lens. This could happen due to abnormal dilation of the 

pupil causing congestion of the iris in the angle of the eye. There is also a condition 

called plateau iris, characterized by an abnormal position of ciliary processes that push 

and hold the iris forward placing it too close to the TM (Kumar et al., 2008). Some 

PACG cases also involve pupillary blockade of the aqueous fluid. Pupillary blockade 

happens when the back of the iris adheres to the lens and blocks the passage of the 

aqueous humour to the anterior chamber. This not only increases the pressure in the 

posterior chamber but also pushes the periphery of the iris forward resulting in angle 

closure (Tarongoy et al., 2009). The extent of pupillary blockade and angle closure 

determines the magnitude and time-course of IOP increase, therefore PACG has been 

divided into acute (with sudden and severe IOP increase) and chronic (with a more 

gradual IOP increase) subcategories. When angle-closure happens as a result of other 

ocular diseases, it is referred to as secondary angle-closure glaucoma. For instance, 

secondary angle-closure glaucoma could happen due to an anterior-shift of the lens after 

ocular trauma (Sankar et al., 2001).  

People of Asian descent and individuals with small axial eye length, have a 

greater risk of developing PACG. The common procedure for the treatment of acute 

PACG is to lower the IOP by medications (Hoh et al., 2002). Surgical techniques such as 

peripheral iridotomy, the generation of small holes in the peripheral iris using a laser, 

might also be required (Lam et al., 2007; Tarongoy et al., 2009). Analysis of the eyes 

with acute PACG revealed that although IOP was lowered immediately after diagnosis, 

there was still a significant reduction in the thickness of the retinal nerve fiber layer 

(RNFL) weeks after the acute episode (Aung et al., 2004).  



11 
 

 
 

I.3.1.1. Experimental models of primary angle-closure glaucoma 

 Several breeds of dogs are prone to develop glaucoma (Reinstein et al., 2009) and 

the high prevalence of glaucoma in some pure-bred dogs suggests a genetic basis for this 

disease (Gelatt and MacKay, 2004). For instance, a canine model (Basset Hounds) of 

hereditary PACG shows gradual narrowing and collapse of iridocorneal angles leading to 

complete angle-closure by 20 months of age; angle-closure in these dogs is accompanied 

by IOP build up, cupping of ONH and loss of RGCs (Grozdanic et al., 2010). However, 

the high cost of purchasing and housing dogs, their requirements for special care and the 

inherent problem of handling dogs in large experimental groups, results in limited use of 

this model.   

Laser photocoagulation has been adapted for mice to induce the closure of the 

anterior chamber angle (Aihara et al., 2003). A diode laser is focused on the corneal 

limbus to create burn spots that directly attach the iris root to the peripheral cornea; 

consequently, obstruction of the aqueous outflow results in elevation of IOP (Aihara et 

al., 2003). Despite the differences in the structure of ONH between mice and humans, 

such as the lack of lamina cribrosa (May and Lütjen-Drecoll, 2002), the elevation of IOP 

in this model is accompanied by significant loss of RGC axons (Mabuchi et al., 2003). 

However, the small size of the mice eye demands a high level of expertise by the 

experimenter in using the laser as excessive or misplace laser burns could result in abrupt 

IOP increase, inflammatory response and retinal damage.  

I.3.2. Primary open-angle glaucoma  

Primary open-angle glaucoma (POAG) is the most common form of the glaucoma 

worldwide. POAG is characterized by changes in the optic disc, damage to RGC axons in 

the optic nerve, loss of RGCs in the retina and gradual visual field defects (Quigley, 

2005). POAG is not necessarily associated with IOP elevation, however, high IOP is a 

major risk factor for developing POAG and a significant percentage of POAG cases show 

a gradual increase of IOP over the years (Leske et al., 2003). The increase in IOP is not 

necessarily accompanied with severe changes in anterior angle structures as previously 

described for PACG. Since resistance to the aqueous humour outflow is a major 

determinant of IOP levels, age-related or pathologic changes in the TM or Schlemm's 
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canal might lead to the gradual increase of the outflow resistance and IOP build up 

(Gabelt and Kaufman, 2005; Wordinger and Clark, 1999). Although morphological 

changes in optic disc vary little between PACG and POAG (Boland et al., 2008; Nouri 

Mahdavi et al., 2011), functional evaluation demonstrated that PACG patients have a 

more diffuse pattern of visual field loss compared to POAG patients (Boland et al., 2008; 

Rhee et al., 2001).  

I.3.2.1. Experimental models of primary open-angle glaucoma   

Our understanding about the mechanism of aqueous humour outflow and its 

importance in regulating IOP has been used to develop a number of experimental 

glaucoma models. Several animal species are suitable for induction of experimental 

ocular hypertension (OHT) and have provided useful functional and structural 

information about glaucoma onset and progression.    

I.3.2.1.a. Primate model of POAG 

In this model, Rhesus or Cynomolgus monkeys are subjected to laser 

photocoagulation, that by creating burn spots on the circumference of the TM, results in 

moderate IOP increase (Wang et al., 1998).  A disadvantage is that multiple sessions of 

laser treatment are required to induce OHT. IOP elevation in this model is accompanied 

with ONH cupping and thinning of RNFL (Gaasterland and Kupfer, 1974). Loss of RGCs 

and functional defects are well documented in this model, indicating a close similarity to 

human POAG (Hare et al., 2001b; Hood et al., 1999; Morgan et al., 2000). Pathological 

changes in the visual centers in the brain such as loss of neurons in the magno and 

parvocellular layers of LGN are also detected (Yücel et al., 2003; Yücel et al., 2000). The 

high cost of monkeys, their limited availability and difficulty to work with are major 

disadvantages particularly for studies on neuroprotection since they require large number 

of animals.   

I.3.2.1.b. Rodent models of POAG  

The laser photocoagulation technique has also been used for induction of OHT in 

rodents (Levkovitch-Verbin et al., 2002b; Schori et al., 2001; Ueda et al., 1998; Wijono 

et al., 1999; WoldeMussie and Feldman, 1997). A beam of diode laser is concentrated on 
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the circumference of the TM to create burn spots; the peak IOP reaches 35-49 mmHg and 

it is sustained for at least 3 weeks (Levkovitch-Verbin et al., 2002b). A similar technique 

has been adapted for induction of OHT in mice (Gross et al., 2003; Ji et al., 2005). 

  The aqueous humour flows through the TM into the Schlemm's canal and then 

via collector channels into the limbal venous plexus and finally drains through the 

episcleral veins. This pathway has been used for retrograde transfusion of solutions 

towards the TM (Moore et al., 1993; Morrison et al., 1995).  In the Morrison model of rat 

OHT, hypertonic saline solution is injected into an episcleral vein of Brown Norway rat 

eyes. Hypertonic saline causes sclerotic damage to the TM cells, disrupts the structure of 

the TM and gradually reduces the aqueous outflow, resulting in IOP elevation (Morrison 

et al., 1997). Another method of reducing the aqueous outflow is by cauterizing the 

episcleral veins (Shareef et al., 1995).  In this model, two to three veins are isolated and 

blocked using an ophthalmic cautery (Shareef et al., 1995).  

Obstruction of the TM and elevation of IOP can also be achieved by injection of 

sterile latex microspheres (Urcola et al., 2006; Weber and Zelenak, 2001) or microbeads 

into the anterior chamber of rodents (Chen et al., 2011; Sappington et al., 2010). Finally, 

a hereditary mutation in the DBA/2J mice leads to iris pigment dispersion and anterior 

synechia (adhesion of the iris to the cornea) that results in significant elevation of IOP by 

6 months of age (John et al., 1998).  

To select a suitable rodent glaucoma model for research, the objectives of the 

study and the advantages/disadvantages of each model should be considered carefully. 

For instance, rat models are generally more appropriate for ONH studies because unlike 

mouse, the rat ONH has a well-defined lamina cribrosa. The structure of the lamina is 

similar to that in primates regarding protein content, connective tissue components and 

blood vessels (Morrison et al., 1995). Elevation of IOP in rat models results in cupping of 

ONH, loss of axons in the optic nerve and RGCs death. Mouse glaucoma models in the 

other hand, confer the advantage of using transgenic animals to study the role of specific 

genes in the development of glaucoma (Whitehouse et al., 1982).  

The major disadvantage of laser photocoagulation technique is the necessity of 

multiple treatments to achieve a steady IOP elevation. In addition, retinal oedema and 

haemorrhage often occur in this model. The cauterization model has a slow rate of 
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progress with considerable variability in the pattern and number of RGC death (Danias et 

al., 2006); there is also the possibility of necrosis of the eye if several episcleral trunks 

are blocked (Ahmed et al., 2001; Laquis et al., 1998).  The DBA/2J mouse model shows 

great variability in the onset and progression of glaucoma between individual animals 

which dramatically increases the number of animals required for each experiment. The 

microbeads injection model is a relatively simple and promising model but there is high 

variability in the levels of IOP achieved following injection of microbeads (Chen et al., 

2011; Sappington et al., 2010). The Morrison model is also a simple, reliable and 

reproducible model of experimental glaucoma in Brown Norway rats. IOP elevation in 

this model results in ONH cupping and gradual loss of axons in the optic nerve (Johnson 

et al., 1996; Morrison et al., 1997). Progressive loss of RGC in this model is also well 

documented (Guo et al., 2005; Johnson et al., 2007b). General anaesthetics are often used 

in rodents to allow IOP measurements, however, anaesthetics result in a substantial 

decrease of IOP (Jia et al., 2000). An advantage of the Morrison model is that Brown 

Norway rats are extremely docile allowing IOP measurements in unanaesthetized 

animals, thus providing the most accurate documentation of IOP history. Due to its 

advantages, particularly in regard to neuroprotection studies, the Morrison model was 

selected and used throughout this thesis. 

I.3.3. Normal tension glaucoma 

Many glaucoma patients display typical glaucomatous visual defects and RGC 

loss while their IOP is within the normal range (CNTGSG, 1998). These cases are 

classified as normal tension glaucoma (NTG). The visual field loss in NTG patient 

progresses with a similar rate as POAG patients, therefore diagnosis and treatment of 

NTG demands particular attention (Ahrlich et al., 2010). The exact cause of NTG is 

unknown; however, several mechanisms have been proposed. Among these are the 

association of visual field loss and decreased blood flow in the optic disc of NTG patients 

(Ciancaglini et al., 2001; Nicolela et al., 1996; Sato et al., 2006) and the higher rate of the 

hemorrhages in the fundus (Ishida et al., 2000; Tezel et al., 1996); suggesting a 

correlation between ocular blood flow and vascular dysfunction in NTG. There is also 

evidence of an autoimmune response, highlighted by elevated levels of antibodies against 
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heat shock proteins (HSPs) (Wax et al., 1998). Since glaucoma is now considered a 

neurodegenerative disease, oxidative damage and excitotoxicity may play a role in the 

pathology of NTG.  

 
I.4. MECHANISMS OF NEURONAL DAMAGE IN GLAUCOMA 

I.4.1. The role of vascular dysfunction in the pathology of glaucoma 

An increasing body of evidence suggests that retinal and ONH blood flow are 

among the risk factors for the development of glaucoma (Flammer et al., 2002; Osborne 

et al., 2001). There is a significant reduction of blood flow in the ONH of PAOG patients 

(Piltz-seymour et al., 2001). Elevated IOP and compression of the vessels at the level of 

the lamina cribrosa has been proposed to be the cause of blood flow reduction (Downs et 

al., 2008; Feher et al., 2005). However, loss of visual field in NTG patients is also 

associated with decreased optic disc blood flow (Ciancaglini et al., 2001; Nicolela et al., 

1996; Sato et al., 2006) and the severity of neuronal damage in NTG and POAG patients 

correlates with a reduction in retinal blood flow (Bjärnhall et al., 2007; Sato et al., 2006). 

When the IOP of healthy volunteers was temporarily increased, it resulted in a clear 

vasodilatory response. However, the same level of temporary IOP increase in POAG 

patients resulted in a much smaller vasodilatory response (Nagel et al., 2001). These 

observations suggest an underlying vascular deficiency contributing to the pathology of 

glaucoma.  

I.4.1.1. The retinal circulation 

In terms of blood supply, the retina is divided into two regions: i) the outer retina, 

including photoreceptors, outer nuclear and outer plexiform layers, is supplied by the 

choroid capillaries originating from the posterior ciliary arteries (Saint Geniez and 

D'Amore, 2004); ii) the inner retina, including the nerve fiber layer, RGC layer, inner 

plexiform and inner nuclear layer, is supplied by the central retinal artery (Figure 4). The 

branches of the central retinal artery expand to form two inner capillary networks, one 

superficial, at the level of nerve fiber layer and one deeper, between the inner nuclear and 

outer plexiform layers (Pournaras et al., 2008). The capillaries of the inner retinal 
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networks are in close interaction with RGCs and other neuronal-glial elements of the 

retina to meet the metabolic demands of this tissue. 

 Retinal capillaries are composed of a single layer of endothelial cells enclosed in 

a basement membrane shared with surrounding pericytes (Kniesel and Wolburg, 2000; 

Russ et al., 1998). Pericytes are specialized mural cells found in the CNS that play an 

integral role in vascular tone (Bandopadhyay et al., 2001). Retinal capillaries are smaller 

in diameter with thinner walls compare to non-neuronal capillaries and are 

morphologically very similar to cerebral capillaries; however, their endothelial cells have 

a higher density of vesicles and higher permeability compare to their counterparts in the 

brain (Stewart and Tuor, 1994). Retinal capillaries are also accompanied by a 

considerable higher number of pericytes (up to 4.5-fold) compared to cerebral capillaries 

and their pericyte processes cover more than 85% of the circumference of the retinal 

endothelial tube (Frank et al., 1987; Stewart and Tuor, 1994). Pericytes together with the 

glial cell’s end-foot processes, strengthen the blood-retinal barrier and play important 

roles in compensating for more permeable endothelial cells compared to brain capillaries 

(Kim et al., 2006a; Stewart and Tuor, 1994). 

I.4.1.2. Regulatory mechanisms of retinal circulation  

The proper regulation of ocular blood flow is vital for normal retinal function. 

The ocular vessels respond to the increased neuronal activity by increasing the blood 

flow, a phenomena known as neurovascular coupling (Garhöfer et al., 2004; Riva et al., 

2005). The choroidal vascular bed is innervated by autonomic vasoactive nerves that 

control the choroidal blood flow (Schrder et al., 1994). Unlike the choroid, the central 

retinal artery has limited sympathetic innervation that ends at the level of lamina cribrosa 

(Laties, 1967). Therefore, local vasodilatory and vasoconstrictor mediators play 

important roles in regulating the retinal blood flow (Metea and Newman, 2007). The 

production and release of vasoactive compounds by endothelial cells contribute to the 

regulation of retinal vascular tone. Nitric oxide (NO) and endothelins (ET) are among the 

most important endothelium-derived vasoactive factors (Chakravarthy et al., 1995; 

Loscalzo and Welch, 1995; Takagi et al., 1996). 
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FIGURE 4. 

 

 

Figure 4. Sources of blood supply for the retina and optic nerve. The central retinal 

artery and the posterior ciliary arteries are branches of the ophthalmic artery. Branches of 

posterior ciliary arteries enter the eye to form the choroid. The central retinal artery enters 

the optic nerve at 8–12mm behind the globe and after supplying the optic nerve with a 

few small branches, it divides into two major trunks before leaving the optic disc. The 

branches of the central retinal artery expand to form two inner capillary networks, one 

superficial, at the level of nerve fiber layer and one deeper, between the inner nuclear and 

outer plexiform layers. Source of image: Mohammadali Almasieh. 
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I.4.1.2.a. Nitric oxide   

NO is a potent neurotransmitter that regulates a wide variety of cellular functions. 

Three different isoforms of nitric oxide synthase (NOS) are involved in NO production: 

neuronal (nNOS or NOS1), inducible (iNOS or NOS2) and endothelial (eNOS or NOS3) 

(Alderton et al., 2001). In the retina, nNOS is expressed by RGCs, photoreceptors and 

amacrine cells; while eNOS is expressed by endothelial cells (Neufeld et al., 2000; 

Shareef et al., 1999). iNOS is activated in response to inflammation or tissue damage and 

is thought to contribute to cytotoxic NO signaling (Calabrese et al., 2007; Chiou, 2001). 

In physiological concentrations, NO signals through activation of guanylyl cyclase 

receptors and production of cGMP (Garthwaite, 2008). NO plays an important 

vasodilatory role in the retina. Experimental inhibition of retinal NOS by intravitreal 

injection of its inhibitors N-monomethyl-L-arginine (L-NMMA) or (L-NAME) resulted 

in significant vasoconstriction of retinal arterioles and venules indicating that NO 

production is necessary for maintaining a basal level of vascular relaxation (Donati et al., 

1995; Dorner et al., 2003). Hyperemia is the activity-induced increase in blood flow in a 

tissue and can be easily induced in the retina by light flicker (Maelicke, 2000). Inhibition 

of NOS significantly reduces the retinal hyperemic response to light flicker, indicating 

that NO also participates in the activity dependent modulation of the retinal blood flow 

(Dorner et al., 2003). In normal subjects, systemic inhibition of NOS significantly 

reduces ONH blood flow (Luksch et al., 2000). Dysfunctional NO signaling in 

glaucomatous eyes became evident by a much smaller response of POAG patients to 

NOS inhibition (Polak et al., 2007). NO levels also effect production and drainage of the 

aqueous humour (Whitehouse et al., 1982). Reduction of NO levels and eNOS activity 

has been reported in ocular tissues of POAG patients including the TM (Nathanson and 

McKee, 1995).   

I.4.1.2.b. Endothelins   

Endothelins are a family of vasoconstrictor peptides. They are released by 

endothelial cells and interact with their G-protein-coupled, ETA and ETB receptors 

(Davenport, 2002; Yanagisawa et al., 1988). ETA receptors are mainly expressed by the 

smooth muscle cells of blood vessels and mediate vasoconstriction upon binding of 
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endothelin-1 (ET-1) (Pierre and Davenport, 1998). ETB receptors have a broader pattern 

of expression and can be found on neuronal and glial components of the retina 

(MacCumber and D'Anna, 1994; Stitt et al., 1996). It appears that ETA and ETB subtypes 

can mediate opposing actions in a complex manner. Blockade of the ETB receptors 

significantly increases peripheral vasoconstriction (Strachan et al., 1999). Activation of 

ETB receptors alone has a net constrictor effect but simultaneous activation of both 

subtypes is vasodilatory (Just et al., 2004; Mickley et al., 1997). Endothelial cells express 

ETB and its activity results in the release of relaxing factors such as nitric oxide and 

prostanoids from endothelial cells (Hirata et al., 1993; Just et al., 2005).  

The level of endothelins and the expression of their receptors change in 

experimental and human glaucoma. For instance, levels of ET-1 in serum and aqueous 

humour of POAG patients is higher than in control individuals (Emre et al., 2005; 

Nicolela et al., 2003; Noske et al., 1997; Sugiyama et al., 1995; Tezel et al., 1997). In 

addition, ET-1 levels in the ONH of animals subjected to experimental glaucoma 

increases significantly compare to control groups (Howell et al., 2011; Prasanna et al., 

2005). Receptor dysfunction has been proposed to play central role in blood flow 

irregularities in glaucomatous eyes. While treatment of normal subjects with an 

antagonist of ETA resulted in a significant vasodilatory response, a similar treatment had 

a lesser effect on the vascular tone of NTG patients (Henry et al., 2006; Henry et al., 

1999). Recently, ETA gene polymorphisms have been considered to be a potential risk 

factor for developing NTG (Ishikawa et al., 2005; Kim et al., 2006b). Endothelins might 

also be involved in the induction of a glial response in the glaucomatous ONH. Reactive 

astrocytes in the ONH of experimental and human glaucoma are characterized by the 

expression of ETA and ETB (Wang et al., 2006; Wang et al., 2009). Incubation of isolated 

ONH astrocytes with ET-1 results in their activation and induces marked proliferation 

(Murphy et al., 2010; Prasanna et al., 2002). ETA is also expressed in structures of the 

anterior segment such as the iris, ciliary body, trabecular cells and endothelial lining of 

the Schlemm's canal (Fernández-Durango et al., 2003). Therefore endothelin signaling 

can also participate in the production of aqueous humour and the control of its outflow. A 

treatment strategy based on endothelin antagonism has been proposed to control IOP 
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increase and to improve retinal blood flow (Fernández-Durango et al., 2003; Rosenthal 

and Fromm, 2011). 

I.4.1.3. Vascular degeneration 

In addition to vasomodulatory abnormalities, there is also evidence of structural 

changes in the vasculature of glaucomatous eyes. In some POAG patients, the central 

retinal artery is characterized by arteriosclerotic changes such as the thickening of the 

basement membrane, proliferation of muscle cells into the intimae, fragmentation of the 

inner elastic membrane and arteriosclerotic plaques in the intimae (Gottanka et al., 2005). 

Narrowing of the lumen of smaller arterioles in the optic nerve and deposits of 

amorphous material in the basement membrane of endothelium are the other pathological 

findings in the POAG (Feher et al., 2005; Gottanka et al., 2005). A significant decrease in 

the density of capillaries has been observed in the optic nerve laminar region of POAG 

patients and in rat experimental glaucoma (Daz et al., 2010; Gottanka et al., 2005). These 

observation are in agreement with initial reports by Quigley and colleagues indicating a 

considerable loss of disc tissue and its capillaries (Quigley et al., 1984). Fluorescein 

angiograms show a high rate of capillary non-perfusion in the optic disc of NTG and 

POAG patients (Plange et al., 2006). Pathological changes in the vasculature also play 

important roles in the progression of other neurodegenerative diseases such as 

Alzheimer's disease (Budinger, 2003). In fact, pathological vascular changes like 

acellular capillaries have been found in both glaucomatous retinas and in the brains of 

Alzheimer's patients (Brown, 2010b). 

I.4.1.4. Neurotrophic factors and vascular reactivity  

In addition to neurons, neurotrophic factors also regulate survival and function of 

non-neuronal cells. In fact production of neurotrophic factors like BDNF and NGF is not 

limited to neuronal tissues as several non-neuronal tissues including the elements of 

cardiovascular system also express neurotrophins and their receptors (Scarisbrick et al., 

1993; Yamamoto et al., 1996). Interaction of neurons and vasculature through 

neurotrophic factors is in particular complex and plays important role in development and 

physiological functions of both systems. 
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Neurotrophins are involved in regulation of angiogenesis, for instance, activation 

of neurons by BDNF and NGF increases production and secretion of VEGF by neurons 

which in turn results in endothelial cells proliferation (Nakamura et al., 2011). Brain-

derived endothelial cells themselves shown to synthesis BDNF and express TrkB and 

p75NTR receptors (Kim et al., 2004b). They also produce NGF and express its receptor 

TrkA (Moser et al., 2004). Direct activation of TrkA receptors of endothelial cells by 

exogenous NGF results in proliferation of these cells and also increases the secretion of 

NGF by endothelial cells (Moser et al., 2004). In addition, NGF improves survival of 

endothelial cells under oxygen-glucose deprivation conditions (Lecht et al., 2010). Local 

production and release of major neurotrophin family members like BDNF and NGF by 

endothelial cells and the interaction of these trophic factors with TrkA, TrkB and p75NTR 

receptors provides an autocrine/paracrine regulatory system for cell proliferation in the 

vasculature (Kim et al., 2004b; Tanaka et al., 2004).  

Recent studies show that neurotrophic factors produced by brain endothelial cells 

could be important for survival of neurons as they significantly extend the survival of 

isolated cortical neurons (Dugas et al., 2008). Endothelial source of BDNF also provides 

significant support for neurons in a number of situations like oxidative stress-hypoxia and 

neurotoxicity (Guo et al., 2008). In addition, secration of BDNF by endothelial cells 

provides important support for migrating neuroblasts that originate from sub-ventricular 

zone or sub-ependymal zone and helps to guide them towards their targets in the brain 

(Leventhal et al., 1999; Snapyan et al., 2009).  

Currently, our knowledge about the effects of neurotrophins on retinal blood flow 

is limited; however, neurotrophins like BDNF stimulate the endothelial cells to generate 

more NO and shown to have vasodilatory effects in other systems (Meuchel et al., 2011). 

It has also been shown that using the viral vectors to overexpress BDNF in cerebral 

vessels results in upregulation of prostacyclin (PGl2) that leads to vascular relaxation 

(Santhanam et al., 2010);  however, no significant change in the expression or activity of 

the eNOS has been detected in these experiments (Santhanam et al., 2010). It is important 

to mention that early in the development of brain, PGI2 is the primary mediator of 

endothelium-dependent relaxations in cerebral circulation; however, in the adult and 

aging brain, nitric oxide takes over as the primary vascular vasodilator (Charpie et al., 
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1994; Willis and Leffler, 2001). Interestingly, intraocular application of BDNF results in 

a higher expression of vasoactive intestinal polypeptide by amacrine cells that by relaxing 

smooth muscle cells leads to vasodilation (Cellerino et al., 2003). 

Intraocular application of BDNF significantly increases survival of RGCs in the 

traumatic optic nerve damage models and also increases NOS activity as it has been 

evaluated by NADPH-diaphorase reactivity (Klcker et al., 1998). However, it is 

suspected that BDNF also results in activation of iNOS that considered to be a limiting 

factor for the survival of RGCs due to promotion of nitrosative stress through formation 

of peroxynitrite (Klcker et al., 1998; Klcker et al., 1999). Further studies in line with 

development of new experimental protocols are needed to evaluate the role of 

neurotrophic factors in the improvement of retinal blood flow and protection of RGCs in 

pathological conditions. 

I.4.2. Oxidative stress 

Oxidative stress, caused by the imbalance between the production of reactive 

oxygen species (ROS) and their elimination by antioxidants, has been recognized as a 

central contributor to neuronal injury and death. ROS are continuously produced by 

mitochondria through the electron transport chain, but can also be generated by 

enzymatic degradation of neurotransmitters, neuroinflammatory mediators, and redox 

reactions (Halliwell, 2006). Increased levels of ROS like superoxide anion (O2•) and 

hydroxyl radical (OH•), a common feature of neurodegenerative diseases, can originate 

from mitochondrial dysfunction, abnormal protein folding, and defective ubiquitination 

and proteasome degradation systems (Andersen, 2004).  

There is evidence that oxidative damage occurs in experimental models of optic 

nerve injury and in human glaucoma. For example, the presence of DNA damage and 

accumulation of protein and lipid peroxidation products have been documented in the TM 

and retinas from experimental ocular hypertension models and POAG patients 

(Babizhayev and Bunin, 1989; Izzotti et al., 2003; Ko et al., 2005; Moreno et al., 2004; 

Sacc et al., 2005; Tezel et al., 2005). Furthermore, an intracellular ROS superoxide burst 

has been proposed to be a critical death signal triggered by axonal injury leading to RGC 

apoptosis (Geiger et al., 2002; Kanamori et al., 2010; Lieven et al., 2006; Nguyen et al., 
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2003; Swanson et al., 2005). During hypoxia, the generation of mitochondrial ROS is 

necessary for activation of the hypoxia-inducible factor-1 alpha (HIF-1α), a 

transcriptional regulator required for the induction of a variety of genes (Chandel et al., 

2000; Duranteau et al., 1998). Expression of HIF-1α and HIF-1α target genes, including 

erythropoietin, heat-shock protein 27 (Hsp-27) and vascular endothelial growth factor, 

increase in experimental rat glaucoma (Ergorul et al., 2010), and high levels of HIF-1α 

are found in the retina and optic nerve head of glaucoma patients (Tezel and Wax, 2004). 

I.4.2.1. Neuronal antioxidant systems 

Cells are naturally equipped with an arsenal of protective antioxidant systems 

such as superoxide dismutase (SOD), catalase, and glutathione peroxidase and 

glutathione reductase (Vendemiale et al., 1999). The SOD family of enzymes catalyze the 

dismutation of superoxide into molecular oxygen (O2) and H2O2, decreasing the chance 

of OH• formation (Fridovich, 1995). The byproduct of this process, H2O2, is toxic and 

therefore is converted to water by catalases and glutathione peroxidases. Logic follows 

that an insufficiency in ROS neutralizing mechanisms in RGCs might play a role in the 

progression of glaucoma and, in fact, circumstantial evidence exists in favor of this idea. 

SOD activity decreases in the trabecular meshwork of patients with glaucoma (Behndig 

et al., 1998; De La Paz and Epstein, 1996) and in the retina in experimental ocular 

hypertension (Moreno et al., 2004). RGCs are particularly vulnerable to the lack of the 

copper- and zinc-containing cytoplasmic form of SOD (SOD-1), as SOD1 knock-out 

mice are characterized by loss of RGC function, accumulation of superoxide in RGC 

soma and age-dependent RGC loss (Hashizume et al., 2008; Yuki et al., 2011). 

Exogenous supplementation or overexpression of SOD-1, however, have yielded 

conflicting results: while some studies showed neuroprotection of axotomized RGCs 

following SOD-1 administration (Kanamori et al., 2010; Schlieve et al., 2006), others 

reported accelerated RGC death in transgenic mice overexpressing SOD-1 (Levkovitch-

Verbin et al., 2000).  

The regulation of cellular redox status is provided by the glutathione and the 

thioredoxin (TRX) systems. Glutathione is a tripeptide molecule composed of glutamate, 

cysteine and glycine; in its reduced form, reduced glutathione (GSH) is a necessary 
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cofactor for the glutathione peroxidase family of enzymes (Sarma and Mugesh, 2008). In 

the retina, glutathione is produced mainly by Müller cells but also in smaller quantities by 

horizontal cells (Pow and Crook, 1995). Glutathione is then transferred from Müller cells 

to RGCs and other neurons in the retina (Schtte and Werner, 1998). The TRX system is a 

key endogenous defense mechanism against oxidative damage that includes TRX 

proteins, TRX-interacting protein (TXNIP), TRX reductase (TRXR) and NADPH (Lillig 

and Holmgren, 2007). The major TRX protein isoforms, the cytoplasmic TRX1 and the 

mitochondrial TRX2, act as antioxidants by maintaining a reduced environment within 

cells through their dithiol/disulphide reducing activity and by inhibiting the oxidative 

aggregation of toxic proteins (Collet and Messens, 2010). TRX2 plays an important 

antioxidant role against mitochondrial oxidative stress (Yoshida et al., 2003): 

heterozygous (Trx2+/−) transgenic mice display reduced mitochondrial function and ATP 

production as well as increased oxidative damage (Pérez et al., 2008).     

Neurons also respond to redox imbalance by upregulating endogenous antioxidant 

machinery. Upon oxidative insult, expression of several antioxidant enzymes, controlled 

by the antioxidant response element (ARE) promoter, are upregulated. (Dringen et al., 

2005; Hayes and McLellan, 1999; Nguyen et al., 2009). NF-E2-related factor-2 (Nrf2) 

transcription factor plays a major role in activation of ARE-controlled genes in response 

to oxidative stress (de Vries et al., 2008; Kensler et al., 2007; Kobayashi and Yamamoto, 

2006). Activation and nuclear translocation of Nrf2 itself is controlled by cellular redox 

state; under normal conditions Nrf2 is bound to an inhibitor protein, Keap1, which retains 

Nrf2 in the cytoplasm and targets it for ubiquitination (Furukawa and Xiong, 2005; Sun 

et al., 2007). However Keap1 is a redox sensitive protein and its oxidation results in Nrf2 

and Keap1 dissociation, leading to nuclear translocation of Nrf2, where it promotes 

transcription of ARE-controlled genes (Kensler et al., 2007). 

I.4.2.2. Oxidative stress and activation of apoptotic pathways 

TRX proteins also regulate cell death by redox modification of pro-apoptotic 

kinases. The mitogen-activated protein kinases (MAPKs) are a large family of protein 

Ser/Thr kinases with central regulatory role in many cellular functions (Cargnello and 

Roux, 2011). Activation of pro-survival MAPKs like extracellular signal-regulated 
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kinases 1/2 (Erk1/2) promote RGCs survival (Zhou et al., 2005). In contrast, pro-

apoptotic MAPKs like p38 mitogen activated protein kinases and c-Jun N-terminal 

kinases (JNKs), also known as stress-activated protein kinases (SAPKs), are typically 

activated by a variety of stress signals and contribute to RGC death (Brecht et al., 2005; 

Cuadrado and Nebreda, 2010; Curran and Franza, 1988). 

Apoptosis signal regulating kinase 1 (ASK1), is a SAPK belonging to the 

mitogen-activated protein kinase kinase kinase (MAPKKK) family and plays key roles in 

human neurodegenerative diseases (Hattori et al., 2009); ASK1 activates JNK and p38 in 

response to diverse stress stimuli, particularly inflammatory cytokines and oxidative 

stress (Hatai et al., 2000; Ichijo et al., 1997; Min et al., 2008; Zhang et al., 2007a). 

Reduced TRX is normally bound to ASK1 thus preventing ASK1 autophosphorylation. 

Oxidation of cysteine thiols in TRX results in its dissociation from ASK1, triggering 

ASK1 autophosphorylation and downstream stimulation of JNK and p38 death signaling 

(Hatai et al., 2000; Ichijo et al., 1997; Saitoh et al., 1998). A significant decrease in 

TRX1 and TRX2 was reported in acute and chronic models of optic nerve damage, 

including ocular hypertension (Munemasa et al., 2008; Munemasa Y, 2009) while the 

levels of TXNIP, a negative regulator of TRX, increased (Caprioli et al., 2009). 

Furthermore, over-expression of TRX1 and TRX2 protected RGCs from 

pharmacologically-induced oxidative stress, optic nerve axotomy and ocular hypertension 

(Caprioli et al., 2009). 

A recent in vivo study using live imaging demonstrated that superoxide increases 

sharply in RGCs at the single-cell level, soon after optic nerve axotomy, and precedes 

RGC apoptosis (Kanamori et al., 2010). ROS can modulate protein function by altering 

redox states leading to cysteine sulfhydryl oxidation. Oxidative cross-linking creates new 

disulfide bonds causing protein conformational changes and subsequent activation of cell 

death signals (Carugo et al., 2003; Park and Raines, 2001). Consistent with this, RGC 

viability depends on the intracellular sulfhydryl redox state, with survival observed under 

mildly reducing conditions and increased death rates induced by sulfhydryl oxidation 

(Castagne and Clarke, 1996; Castagne et al., 1999; Geiger et al., 2002; Swanson et al., 

2005). An attractive hypothesis is that reduction of oxidized sulfhydryls on critical 

proteins might attenuate the activation of death pathways that influence the fate of RGCs 
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after injury. In this thesis, we will explore this hypothesis by using a reducing agent 

based on a borane-protected phosphine backbone. 

I.4.2.3. ROS and retinal vasculature  

Oxidative stress and ischemic retinopathies are often followed by activation of 

angiogenic cytokines leading to vascular inflammatory reactions and ocular 

neovascularization (Dong et al., 2009). It has been shown that exogenous ROS, in 

particular peroxynitrite, by nitrating the tyrosine residues of phosphatidylinositol 3-kinase 

results in inhibition of the Akt activity that blocks the pro-survival effect of VEGF on 

vasculature (El-Remessy et al., 2005). However, hypoxic conditions significantly 

increase the VEGF mRNA half-life; this post-transcriptional regulation is via 

modification of a 3′- region of the VEGF mRNA by ROS that results in the improved 

stability of the VEGF mRNA (Levy et al., 1996). Hypoxia also effects transcriptional 

regulation of an important gene encoding the VEGF receptor (Flt-1), resulting in 

upregulation in the expression of this receptor (Gerber et al., 1997). In addition, ROS like 

peroxynitrite, via activation of STAT3 pathway, increase expression of VEGF itself (Platt 

et al., 2005). Peroxynitrite also through a nitration-independent mechanism promotes 

angiogenesis as exogenous peroxynitrite was able to phosphorylate the VEGFR2 leading 

to endothelial cell growth and capillary formation (El Remessy et al., 2007). VEGF 

receptor activation is followed by intracellular generation of hydrogen peroxide that leads 

to activation of phosphatidylinositol 3-kinase and the small GTPase Rac-1and facilitates 

the angiogenesis, therefore, ROS could act as intracellular angiogenic mediators. 

(Colavitti et al., 2002). It is interesting to know that in the mice deficient for superoxide 

dismutase 1 (Sod1(-/-)), signs of oxidative stress are accompanied by severe ocular 

neovascularization, that is improved by antioxidants treatment (Dong et al., 2011). 

I.4.2.3.1. ROS and vascular tone 

ROS play important role in both physiologic and pathologic regulation of vascular 

tone. For instance, endothelium-dependent relaxation produced by vasodilator 

bradykinin, is mediated through hydroxyl radical (Rosenblum, 1987). Further studies 

showed that vasodilatory effects of bradykinin and arachidonic acid is mediated via SOD 

activity and is result of H2O2 production (Sobey et al., 1997). In the brain, exposure to 
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superoxide, hydrogen peroxide and peroxynitrite results in cerebral vasodilation (Wei et 

al., 1996). There are evidence that vascular regulatory systems are also under redox 

regulation, in particular, production of prostanoids is regulated by a nitric oxide-

superoxide system (Bachschmid et al., 2005; Schildknecht and Ullrich, 2009). Activity of 

vasoactive agent, ET-1, also has been linked to intracellular production of ROS as 

activation of ET(A) receptors in the retinal microvessles is followed by increased 

formation of superoxides anions (Matsuo et al., 2009).  

Hypoxic and ischemic conditions also result in release of ATP into the 

extracellular space that activates ATP-sensitive potassium channels of pericytes and leads 

to retinal vasodilation (Li and Puro, 2001). These ATP-sensitive potassium channels are 

predominantly located on capillaries of the retina (compare to arterioles) which boosts 

response of microvessels to hypoxic conditions (Jiang et al., 1998). ATP-sensitive 

potassium channels located on retinal microvasculature are redox sensitive and presence 

of ROS increases their activity (Ishizaki et al., 2009). Endothelial cells in this 

microvessels are also rich in polyamine-dependent potassium channels and their 

activation in hypoxic conditions is followed by endothelial cell death (Nakaizumi and 

Puro, 2011). 

I.4.3. Nitrosative stress 

 NO participates in the post-translational modification of proteins by nitrating 

specific cysteine amino acids, a process known as S-nitrosylation, which has a significant 

impact on the regulation of protein function (Choi et al., 2000; Jaffrey et al., 2001b). NO 

can also interact with other free radicals as it does with superoxide to form peroxynitrite, 

a potent oxidant and nitrating agent (Beckman and Koppenol, 1996). Unlike NO, which 

favors nitration of cysteine residues in proteins, peroxynitrite results in the nitration of 

tyrosine residues leading to the formation of nitrotyrosine which has been associated with 

neuronal damage (Beckman, 1996; Pacher et al., 2007). NO entry to the mitochondria can 

also increase superoxide production, therefore the risk of peroxynitrite formation 

increases in such cases (Brown, 1999). Several important cellular processes are regulated 

by S-nitrosylation including the transcriptional activity of NF-κB, CREB and HIF. S-

nitrosylation also modulates the Ca2+ influx through NMDAR and other Ca2+ channels 
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and nitrosylation of substrates such as caspase-3, TRX, Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) and X-linked inhibitor of apoptosis protein (XIAP) critically 

effect the balance of cell survival and death (Chung, 2010). The wide range of roles and 

interactions attributed to NO might explain its contribution to both pro-survival and pro-

apoptotic pathways in neurons (Brown, 2010a; Fiscus, 2002; Kim et al., 1999; Nicotera et 

al., 1997). 

The initial evidence for the involvement of NO in the pathophysiology of 

glaucoma came from studies showing increased iNOS expression in the astrocytes 

isolated from the ONH of glaucoma patients (Liu and Neufeld, 2000; Neufeld et al., 

1997). Although increased expression of iNOS has also been reported in the retina and 

ONH astrocytes from rats with ocular hypertension (Shareef et al., 1999; Vidal et al., 

2006), other groups failed to detect changes in iNOS levels in both inducible and genetic 

models of glaucoma or ocular tissues from POAG patients (Libby et al., 2007; Pang et 

al., 2005). The non-specific NOS inhibitors N-nitro-L-arginine (NOLA) N-nitro-l-

arginine methyl ester (l-NAME) delayed RGC death after optic nerve axotomy (Koeberle 

and Ball, 1999). The iNOS inhibitor aminoguanidine was neuroprotective in an episcleral 

vein cauterization rat glaucoma model (Neufeld, 2004), but the same compound did not 

promote RGC survival in rats with ocular hypertension induced by episcleral injection of 

hypertonic saline (Pang et al., 2005). Furthermore, genetic deficiency of iNOS or 

aminoguanidine treatment did not attenuate optic nerve damage in DBA/2J mice (Libby 

et al., 2007).  

An alternative approach to evaluate the potential role of NO in glaucoma is to 

examine the generation of nitrotyrosine in target proteins, a hallmark of peroxynitrite 

production. The retinal expression of nitrotyrosine has been recently shown to increase in 

models of optic nerve crush injury (Thaler et al., 2010) and excitotoxic damage (Al-

Gayyar et al., 2010). In POAG patients, nitrotyrosine formation was detected in 

astrocytes, endothelial cells and smooth muscle cells located in the pre-laminar area of 

the ONH (Feilchenfeld et al., 2008). Nitrotyrosine expression was also detected in the 

TM of POAG subjects with a noticeable increase in iNOS and reduction of eNOS in this 

tissue (Fernndez-Durango et al., 2008). Of interest, increased nitrotyrosine 

immunoreactivity was detected in the LGN of primates with experimental glaucoma 
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(Luthra et al., 2005). Though circumstantial, these studies point to an abnormal 

accumulation of nitrosylation products that extends from the TM to the brain suggesting a 

possible role of NO pathology, acting in separate visual system compartments in 

glaucoma. The use of techniques with higher sensitivity and specificity, including 

proteomics, might improve the detection of nitrotyrosine-modified proteins in glaucoma 

as well as provide information about the identity of the target proteins involved (Bigelow 

and Qian, 2008). 

I.4.4. The role of neurotrophic factors 

I.4.4.1. The neurotrophin family and their receptors 

Neurotrophins are diffusible trophic molecules that exert a potent survival effect 

on adult CNS neurons. They are a family of small, secreted peptides that include nerve 

growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) 

and neurotrophin-4/5 (NT-4/5) in mammals (Huang and Reichardt, 2001; Segal and 

Greenberg, 1996). In addition to cell survival, neurotrophins mediate several key cellular 

responses in the developing and mature CNS including proliferation, differentiation, axon 

growth, as well as dendrite and synapse formation. Among neurotrophins, BDNF has 

received particular attention because of its potent role on the survival of RGCs. The first 

evidence of the neuroprotective effect of BDNF emerged from studies showing that 

BDNF promoted the survival of developing, axotomized RGCs in culture (Johnson et al., 

1986). Since then, it has become clear that BDNF is a powerful neurotrophin for 

developing and adult RGCs following optic nerve injury (Ma et al., 1998; Mansour-

Robaey et al., 1994; Takano et al., 2002; Watanabe and Fukuda, 2002; Weibel et al., 

1995). Consistent with this, BDNF is strongly expressed in the superior colliculus (Hofer 

et al., 1990; Wetmore et al., 1990), the main target of RGCs in the rodent brain, and it is 

retrogradely transported by RGC axons to the retina (Herzog and von Bartheld, 1998; Ma 

et al., 1998). Within the retina, BDNF is produced by cells in the ganglion cell layer and 

inner nuclear layer (Cohen-Cory and Fraser, 1994; Pérez and Caminos, 1995; Vecino et 

al., 1998).  

The biological effects of neurotrophins are mediated by two classes of cell surface 

receptors: i) the tropomyosin related kinase (Trk) family of receptor tyrosine kinases 
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comprising TrkA, the receptor for NGF; TrkB, the receptor for BDNF and NT-4/5; and 

TrkC, the receptor for NT-3 (Kaplan et al., 1991; Klein et al., 1991; Lamballe et al., 

1991); and ii) the p75 receptor (p75NTR) which binds all neurotrophins with similar 

affinity (Huang and Reichardt, 2003; Teng and Hempstead, 2004). The Trk receptors 

share in common a large extracellular ligand binding domain, a single trans-membrane 

domain, and a cytoplasmic tyrosine kinase catalytic domain. Neurotrophins are 

homodimers, associated in a non-covalent fashion, that bind and dimerize Trk receptors 

thus triggering activation of the tyrosine kinase domain and intracellular signaling. Both 

Trk and p75NTR receptors can be present on the same cell population, however, activation 

of Trk receptors has been typically associated with cell survival, while p75NTR can 

stimulate both survival and apoptotic pathways (Chao, 1994; Miller and Kaplan, 2001).  

In the naïve retina, developing and adult RGCs have been shown to express high 

levels of TrkB (Jelsma et al., 1993; Pérez and Caminos, 1995; Rickman and Brecha, 

1995). The NGF receptor TrkA is also expressed by developing RGCs (Cui et al., 2002; 

Rickman and Brecha, 1995), but TrkA levels in adult RGCs are low (Lebrun-Julien et al., 

2009b; Rudzinski et al., 2004). The NT-3 receptor TrkC is expressed by RGCs during 

retinal development (Bovolenta et al., 1996; Das et al., 1997; Hallbook et al., 1996), and 

by a small population of adult RGCs (Cui et al., 2002; Lindqvist et al., 2002). 

Interestingly, although developing RGCs express p75NTR  (Frade et al., 1999; Frade et al., 

1996; Gonzalez-Hoyuela et al., 2001; Harada et al., 2006), this receptor is not expressed 

by adult RGCs (Hu et al., 1998; Hu et al., 1999; Lebrun-Julien et al., 2009b), and a 

structurally related receptor named TROY has been proposed to mediate some of the 

functions originally attributed to p75NTR (Park et al., 2005; Shao et al., 2005). Therefore, 

RGCs are endowed with the molecular machinery to differentially respond to 

neurotrophins depending on their developmental stage and on the injury modality as will 

be discussed in subsequent sections. 

I.4.4.2. The neurotrophic factor deprivation hypothesis  

The primary mechanism of RGC damage in glaucoma is not well understood, but 

there is evidence that neuronal loss in this disease occurs largely by apoptosis (Nickells, 

1999; Quigley, 1999). This self-destructive, genetically driven, death program can be 
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activated in all neurons. It is now widely accepted that neurotrophic factors promote 

neuronal survival by inhibiting default apoptotic pathways (Raff et al., 1993). During 

development of the nervous system, young neurons require trophic factors for their 

survival, differentiation and the establishment of synaptic connections. Neurotrophic 

factors are produced in limited amounts; therefore only neurons exposed to optimal levels 

of these molecules survive, whereas less fortunate neurons are eliminated by apoptosis 

(Lewin et al., 1998). In rodents, ~65% of RGCs die during retinal development (Crespo 

et al., 1985; Sefton and Lam, 1984; Tay et al., 1986). Excess RGCs are eliminated in two 

successive phases of cell death in the chick retina: the first phase peaks at embryonic day 

6 (E6), when RGCs differentiate; and the second phase coincides with the arrival of RGC 

axons to the brain, when these neurons become dependent on target-derived trophic 

support (Frade et al., 1997; Rager, 1980). RGC axon terminals uptake and retrogradely 

transport BDNF applied to the superior colliculus (Fournier et al., 1997; Herzog and von 

Bartheld, 1998). Moreover, intracollicular injection of BDNF in newborn hamsters 

reduces the rate of developmental RGC death (Ma et al., 1998) suggesting that target-

derived BDNF regulates the survival of developing RGCs (Figure 5A).  

The role of endogenous target-derived factors in the maintenance of adult RGCs 

is considerably less clear. Studies in which RGC target tissue was ablated in adult cats 

showed that RGC loss was not detected until six months after the lesion (Pearson and 

Stoffler, 1992; Pearson and Thompson, 1993). The observation that loss of target-derived 

neurotrophic factors does not affect RGC survival for several months is consistent with 

the protracted RGC death characteristic of glaucoma, which often occurs over several 

decades. It has been proposed that the retrograde transport of neurotrophins to the retina 

might initially be a redundant mechanism and that retina-derived neurotrophic factors 

may temporarily support the survival of RGCs that have been disconnected from their 

targets (Murphy and Clarke, 2006). Conversely, target-derived factors may act to 

compensate for deficits in local trophic support. Given that neurotrophic factors are 

produced locally in the retina and distally by target cells, it is logical to think that both 

sources are important for the survival and function of adult RGCs. At present, a full 

understanding of the contribution of target-derived neurotrophic factors for RGC survival 

in glaucoma is lacking. Target ablation experiments may result in terminal damage which 
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can potentially confound the interpretation of the results. Thus, experiments that 

selectively disrupt the production of neurotrophic factors by the target neurons using 

function blocking antibodies or genetic approaches that involve conditional deletion of 

neurotrophin genes might be useful in assessing the contribution of trophic factors 

derived from the target tissue in adult organisms. 

I.4.4.3. Axonal transport failure  

Although the requirement of target-derived neurotrophic factors in the survival of 

adult RGCs has been elusive, a current hypothesis is that blockade of axonal transport in 

glaucoma leads to deficits in the levels and availability of these factors and subsequent 

RGC death (Figure 5B). Evidence for this idea is provided by early observations that both 

anterograde and retrograde axonal transport in the optic nerve is blocked in experimental 

glaucoma in primates (Anderson and Hendrickson, 1974; Gaasterland et al., 1978; 

Hayreh et al., 1979; Minckler et al., 1977; Quigley and Anderson, 1976; Quigley and 

Addicks, 1980; Quigley and Anderson, 1977). More recently, deficits in retrograde 

axonal transport have been reported in rat and mouse glaucoma models (Kim et al., 

2004a; Salinas-Navarro et al., 2009; Salinas-Navarro et al., 2010) and in human high-

pressure secondary glaucoma (Knox et al., 2007). Moreover, retrograde transport of 

radiolabeled BDNF was impaired following intraocular pressure increase in rats, and 

accumulation of TrkB immunolabeling was found in the ONH in this model (Pease et al., 

2000; Quigley et al., 2000). Elevated  intraocular  pressure has  also been shown to 

correlate with the ONH and retinal accumulation of dynein, a motor protein required for 

axonal transport  (Martin et al., 2006). A recent study in DBA/2J mice, a strain that 

spontaneously develops glaucoma, demonstrated that axonal transport failure occurs early 

and progresses in a distal-to-proximal  pattern (Crish et al., 2010). Of interest, RGC  

axons  and  pre-synaptic terminals persisted in the superior colliculus well after axonal 

transport failed (Crish et al., 2010) suggesting that restoration of transport along RGC 

axons might be an early therapeutic target for glaucoma. Therefore, axonal transport 

blockade, whether it involves neurotrophic factor deprivation or insufficient levels of 

other essential molecules, continues to be an attractive posit for the loss of RGCs in 

glaucoma. 
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FIGURE 5. 

 

 

Figure 5. The neurotrophic factor deprivation hypothesis. Axonal transport failure 

leading to deficits in neurotrophic factor supply has been proposed to contribute to RGC 

death in glaucoma. (A) Neurons that successfully obtain optimal amounts of essential 

neurotrophic factors will survive. (B) Damaged RGCs that are disconnected from their 

targets and undergo obstruction of axonal transport will experience neurotrophic 

deprivation and die. Source of image: Almasieh et. al., Prog. Retin. Eye. Res., March 

2012. 
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I.4.4.4. Neurotrophin supplementation therapies 

Supplementation of neurotrophic factors has been extensively studied as a 

potential strategy to prevent the death of injured RGCs. Among neurotrophic factors, 

BDNF stands out because of its potent neuroprotective effect. Intraocular injection of 

exogenous BDNF protein or viral-mediated BDNF gene transfer using adenovirus or 

adeno-associated virus (AAV) promote robust RGC survival after optic nerve transection 

or crush (Chen and Weber, 2001; Di Polo et al., 1998; Klöcker et al., 2000; Leaver et al., 

2006; Mansour-Robaey et al., 1994; Mey and Thanos, 1993; Parrilla-Reverter et al., 

2009; Peinado-Ramon et al., 1996). For example, a single intraocular injection of 

recombinant BDNF confers 100% survival of axotomized RGCs at one week after lesion 

(compared to 50% in control eyes), and an average of 48% survival at two weeks post-

injury (compared to ~10% in control eyes), based on quantification of retrogradely 

labeled RGC soma (Berkelaar et al., 1994; Cheng et al., 2002; Mansour-Robaey et al., 

1994; Peinado-Ramon et al., 1996). The combination of BDNF gene transfer with 

additional therapies including free radical scavengers and cell-permeable cAMP further 

increase RGC neuroprotection (Hellström and Harvey, 2011; Isenmann et al., 1998). In 

experimental glaucoma induced by chronic eye pressure elevation, intraocular delivery of 

BDNF protein (Ko et al., 2001) or gene transfer using an AAV vector led to marked RGC 

neuroprotection (Martin et al., 2003). For example, at four weeks of ocular hypertension, 

68% of RGC survival was reported in eyes treated with AAV.BDNF compared to only 

48% in control eyes (20% protection) as assessed by  quantification of RGC axons 

(Martin et al., 2003). Therefore, exogenous BDNF confers RGC soma and axon 

protection in acute models of optic nerve injury and in experimental glaucoma. 

I.4.4.5. BDNF/TrkB signaling 

Several lines of evidence support a key role for BDNF/TrkB signaling on the 

survival of adult RGCs. Both exogenous BDNF administration and strategies that result 

in TrkB activation lead to enhanced RGC survival in acute and chronic models of optic 

nerve damage (Chen and Weber, 2001; Cheng et al., 2002; Di Polo et al., 1998; Hu et al., 

2010; Klöcker et al., 2000; Leaver et al., 2006; Mey and Thanos, 1993; Parrilla-Reverter 

et al., 2009). Paradoxically, the number of RGCs in BDNF or TrkB knockout mice have 
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been shown to be similar to those found in wild-type animals (Cellerino et al., 1997; 

Pollock et al., 2003; Rohrer et al., 2001), suggesting that other neurotrophic factors 

compensate for the lack of BDNF or that BDNF signaling through TrkB is not required 

for RGC survival during development. Of interest, however, RGCs from BDNF null mice 

displayed hypomyelinated axons (Cellerino et al., 1997) which correlated with marked 

functional deficits (Rothe et al., 1999), a phenotype that might increase the vulnerability 

of these neurons to die following glaucomatous optic nerve damage.  

Upon binding to the TrkB receptor, BDNF stimulates multiple signaling pathways in the retina, 

including the extracellular signal-regulated kinases 1/2 (Erk1/2) (Figure 6) and the 

phosphatidylinositol-3 kinase (PI3K)/Akt pathways. Erk1/2 and (PI3K)/Akt by activating 

transcription factors like cAMP response element binding protein (CREB) stimulate the 

transcription of pro-survival molecules such as Bcl-2 and Bcl-xL (Bonni et al., 1995; Du and 

Montminy, 1998; Finkbeiner et al., 1997; Wilson et al., 1996). Both the Erk1/2 and the PI3K 

pathways are stimulated in adult RGCs following TrkB activation in vivo (Cheng et al., 2002; Hu 

et al., 2010; Nakazawa et al., 2002). Furthermore, pharmacological inhibition of the obligate 

upstream activator of Erk1/2, the mitogen activated protein (MAP) kinase kinase 1 (MEK1), 

blocked the survival effect produced by AAV-mediated TrkB overexpression, while PI3K 

inhibition did not alter this neuroprotective  effect (Cheng et al., 2002). These  results  support  

the  hypothesis  that activation of the Erk1/2 pathway, but not the PI3K pathway, mediates TrkB-

induced RGC survival. Furthermore, in vivo stimulation of Erk1/2 by overexpression of a 

constitutively active MEK1 mutant potentiated RGC survival after optic nerve axotomy (Pernet et 

al., 2005)  and in a  rat model of ocular  hypertension (Zhou et al., 2005). These  data indicate 

that the Erk1/2 pathway plays a key role in the regulation of adult RGC survival after 

traumatic injury and in experimental glaucoma. 

I.4.4.6. Neurotrophins and neuronal redox homeostasis 

Under oxidative stress conditions, treatment with neurotrophins like NGF results 

in a rapid improvement in cell survival and reduction of ROS levels (Dugan et al., 1997). 

In the retina, BDNF application significantly increases survival of RGC in chemically 

induced hypoxia (Ikeda et al., 1999). Both BDNF and CNTF also demonstrat significant 

RGC protection in a model of NO-induced neuronal cell death in the retina (Takahata et 

al., 2003). Further study has shown that neurotrophins can alter the process of ROS 

synthesis  towards a less harmful  end-product,  for instance by  facilitating  production of 
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FIGURE 6. 

                                       

 

 

 

Figure 6. Activation of ERK1/2 survival pathway via BDNF and TrkB signaling. 

MAPK family members regulate the fate of injured RGCs and play anti- and pro-

apoptotic roles. BDNF-mediated activation of TrkB receptors stimulates the MEK1/2 and 

results in ERK1/2 activation leading to robust RGC survival after axotomy and in 

experimental glaucoma. Stress stimuli activate ASK1, and its downstream effectors JNK 

and p38, a pathway that contributes to RGC death and optic nerve degeneration. Source 

of image: Almasieh et. al., Prog. Retin. Eye. Res.,  March 2012. 

 

 



37 
 

 
 

H2O2 instead of superoxide anion (Satoh et al., 1999). Modulation in free radical 

formation mediated by neurotrophins has been linked to activation of MAPK pathway as 

application of PD98059, specific inhibitors of MEK, increases the ROS production 

(Dugan et al., 1997). However, in some conditions like mixed neuronal-glial culture, 

treatment with BDNF induces ROS production that is thought to be result of NADPH 

oxidase activation and leads to oxidative neuronal death (Kim et al., 2002). Other studies 

have suggested this ROS production could be result of increased activity of NADPH 

oxidase in glial cells (Abramov et al., 2005). 

Neurotrophins through activation of pathways like Ras/ERK, PI3K/Akt are 

involved in several important neuronal process like survival, growth and plasticity (Mayr 

and Montminy, 2001; Shaywitz and Greenberg, 1999). Many of downstream signaling 

pathways of neurotrophins lead to activation of CREB kinases that phosphorylate CREB. 

Interestingly, nNOS activity by regulating the redox homeostasis and protein S-

nitrosylation is also involved in neurotrophin control of transcriptional activity (Jaffrey et 

al., 2001a). It has been suggested that nuclear proteins that associate with CREB target 

genes are redox sensitive, BDNF by activation of nNOS initiates a NO-dependent 

signaling pathway that leads to S-nitrosylation of these proteins and therefore controls 

CREB-DNA binding and gene expression (Riccio et al., 2006). A recent study has shown 

that activity of nNOS is necessary for BDNF induced proteins synthesis and neuronal 

plasticity (Gallo and Iadecola, 2011). Similarly, inhibition of NOS by L-NAME abolishes 

S-nitrosylation of proteins associated with CRE sequences and although it does not affect 

BDNF stimulated CREB phosphorylation, however it blocks CREB-DNA binding and 

gene expression (Riccio et al., 2006). 

 I.4.5. Excitotoxic Damage 

Glutamate is the predominant excitatory amino acid in many regions of the CNS, 

including the retina. Glutamate-mediated neurotransmission plays a major role in the 

relay of visual information from photoreceptors to bipolar cells, then to RGCs and onto 

brain centers (Lukasiewicz, 2005). Retinal glutamate receptors are located in the outer 

plexiform layer where glutamatergic synapses connect photoreceptors to bipolar and 

horizontal cells; and also in the inner plexiform layer which contains the bulk of 
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glutamatergic synapses from bipolar cells to RGCs and amacrine cells (Gründer et al., 

2000; Lagrèze et al., 2000; Lukasiewicz, 2005; Peng et al., 1995). The central hypothesis 

of excitotoxic injury is that excess glutamate binds to cell surface ionotropic glutamate 

receptors, primarily N-Methyl-D-aspartic acid (NMDA) receptors (NMDAR), triggering 

massive Ca2+ influx and activation of pro-apoptotic signaling cascades in neurons. 

Elevation of endogenous glutamate and activation of glutamate receptors have been 

shown to contribute to a variety of acute and chronic neurological disorders, including 

stroke, trauma, seizures, and various forms of dementia and neurodegeneration (Kalia et 

al., 2008). In the retina, excess glutamate has been proposed to underlie common 

neurodegenerative disorders such as retinal artery occlusion and glaucoma (Casson, 

2006; Seki and Lipton, 2008). A number of studies have now demonstrated that adult 

RGCs are exquisitely sensitive to exogenously applied NMDA, which triggers rapid 

death of these neurons, and that inhibitors of NMDAR and/or downstream pathways are 

neuroprotective in experimental models of retinal ischemia and glaucoma (Hare et al., 

2004; Kido et al., 2000; Lam et al., 1999; Manabe and Lipton, 2003). 

I.4.5.1. Glutamate levels in glaucomatous retinas   

  Early reports indicated an increase in glutamate levels in the vitreous of dogs and 

monkeys with ocular hypertension and in glaucoma patients (Brooks et al., 1997; Dreyer 

et al., 1996). However, several studies thereafter were unable to reproduce these findings 

in vitreous humor samples from experimental animals with retinal ischemia or ocular 

hypertension, and in human glaucoma (Carter-Dawson et al., 2002; Honkanen et al., 

2003; Kwon et al., 2004; Levkovitch-Verbin et al., 2002a; Wamsley et al., 2005). 

Therefore, experimental data on this topic has been controversial and progress stalled 

after the field was marred by a major scientific fraud (Dalton, 2001). As a consequence, 

our understanding of the actual contribution of excitotoxic damage in glaucoma has 

advanced slowly. A misconception has been that, for excitotoxicity to occur, elevated 

glutamate levels must be detected in the retina/ocular fluids of experimental animals or 

humans with glaucoma (Lotery, 2005; Osborne et al., 2006). Massive glutamate release is 

a hallmark of acute brain injuries with fast and severe neural tissue damage (Choi and 

Rothman, 1990), but this is not necessarily characteristic of a slow, progressing 
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neurodegenerative disease like glaucoma. For instance, in retinal diseases with a clear 

ischemic component, such as retinal detachment, there is a detectable glutamate elevation 

in the vitreous and the subretinal space (Bertram et al., 2008; Diederen et al., 2006). 

However, the chronic, gradual nature of glaucoma defies any drastic elevation or 

accumulation of glutamate throughout the course of the disease. Glutamate increase is 

likely to occur only in localized areas of the retina or optic nerve at any one time during 

glaucomatous neurodegeneration and, together with glutamate clearance and diffusion 

mechanisms, is unlikely to result in a detectable increase in retinal or vitreal glutamate. 

On the other hand, small and consistent fluctuations in extracellular glutamate levels 

could play a role in glaucoma progression. For instance, the voltage-dependent activation 

of NMDAR is normally blocked by Mg2+ ions under resting membrane potential 

conditions (Mayer et al., 1984; Nowak et al., 1984). Glutamate-induced Ca2+ influx 

occurs through NMDAR activation in isolated post-natal RGCs, and extracellular Mg2+ 

inhibits the response of these neurons to glutamate (Hartwick et al., 2008). In principle, 

voltage-dependent Mg2+ blockade can be overcome when the neuronal membrane 

potential becomes more positive (depolarized) than the resting potential. This scenario 

may lead to NMDAR channel opening and excitotoxic damage even at physiological 

levels of glutamate. Of interest, motoneurons subjected to axonal injury displayed 

reduced voltage-dependent Mg2+ block of NMDAR currents in vivo which may increase 

neuronal susceptibility to excitotoxic damage (Furukawa et al., 2000). In summary, to 

rule out an excitotoxic component in RGC death in glaucoma based on the absence of 

glutamate accumulation in ocular tissues is far too simplistic. 

I.4.5.2. The role of glial cells: glutamate transporters 

A major limitation of the central tenet of excitotoxic injury is that it focuses only on the 

neuronal response, but growing evidence indicates that glial cells play critical roles in the 

regulation and response to glutamate. For example, Müller cells are responsible for the 

uptake of excess glutamate via glutamate/aspartate transporters (GLAST) or excitatory 

amino acid transporter 1 (EAAT1) (Derouiche and Rauen, 1995; Otori et al., 1994), 

which is essential to maintain physiological concentrations of glutamate. Even normal 

levels of glutamate in the retina can be potentially neurotoxic if this amino acid is not 
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removed in a timely manner. A number of other glutamate transporters are also expressed 

by both retinal glia and neurons including the glutamate transporter-1 (GLT-1 or 

EAAT2), the excitatory amino acid carrier 1 (EAAC1 in rats or EAAT3 in humans), 

EAAT4 and EAAT5 in rats (Danbolt, 2001; Kugler and Beyer, 2003). Most neuronal 

glutamate transporters in the retina are positioned at the synapse to rapidly remove the 

released glutamate and limit its spillover from the synaptic cleft (Diamond, 2001; 

Hasegawa et al., 2006; Scimemi et al., 2009). In contrast, glial glutamate transporters 

appear to remove the extrasynaptic portion of glutamate from the retina (Figure 7) 

(Rauen et al., 1998). Since most NMDAR on RGCs are believed to be distributed 

extrasynaptically (Chen and Diamond, 2002; Zhang and Diamond, 2006), the 

susceptibility of RGCs to glial glutamate transporter dysfunction is likely to contribute to 

excitotoxic damage. Consistent with this, decreased retinal GLAST and GLT-1 

expression has been correlated with optic nerve damage in experimental rat glaucoma 

(Martin et al., 2002)  and  in  DBA/2J  mice (Schuettauf et al., 2007).  Importantly, mice 

lacking the gene encoding GLAST displayed exacerbated loss of RGC soma and axons 

(Harada et al., 2007). However, the precise role of glutamate transporters in 

glaucomatous pathophysiology requires further evaluation. For instance, chronic and 

moderate elevation of intraocular pressure in rats did not disrupt retinal glutamate 

clearance mechanisms as shown by Ca2+ imaging experiments (Hartwick et al., 2005). 

Marked  increase  in the  GLAST (Woldemussie et al., 2004) and  GLT-1c  levels are also 

reported in experimental models and glaucoma patients (Sullivan et al., 2006). Since 

GLT-1c is not normally expressed by adult RGCs (Rauen et al., 2004), this finding 

suggests a compensatory response in neurons possibly triggered by dysregulation of 

glutamate clearance. Finally, single-nucleotide polymorphisms in the GLAST gene were 

not associated with the manifestation of normal tension glaucoma patients (Yasumura et 

al., 2011). Future work to establish the functional role of different subtypes of glutamate 

transporters after glaucomatous injury is warranted. 

I.4.5.3. The role of glial cells: cytokines 

Another mechanism by which glial cells may contribute to excitotoxic damage is 

the production of neurotoxic factors in response to excess glutamate. Along these lines, a 
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FIGURE 7. 

 

 

Figure 7. Neuronal and glial component of retina in the excitotoxicity. The classical 

model of excitotoxic damage is based on the premise that excess glutamate binds to 

ionotropic glutamate receptors (e.g. NMDA receptor) triggering calcium influx, organelle 

stress and activation of pro-apoptotic pathways. Excitotoxic damage overrides the pro-

survival effect of endogenous and exogenous neurotrophic factor supply. Glial cells are 

responsible for the uptake of excess glutamate via glutamate/aspartate transporters 

(GLAST) and deficits in transporter function have been shown to contribute to RGC 

damage. Source of image: Almasieh et. al., Prog. Retin. Eye. Res., March 2012. 
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recent study demonstrated that Müller cells are extraordinarily sensitive to NMDA and 

respond rapidly by upregulating NF-κB activity (Lebrun-Julien et al., 2009a). In this 

study, NF-κB activation induced by NMDA was detected in Müller cells, but not in 

retinal neurons. Furthermore, NMDA-dependent activation of NF-κB in Müller cells led 

to production of endogenous glia-derived TNFα which in turn rendered RGCs highly 

sensitive to excitotoxicity by increasing their surface levels of Ca2+-permeable type of 

AMPAR (Lebrun-Julien et al., 2009a). The observation that molecular events in Müller 

glia play a decisive role in RGC death shifts our understanding of excitotoxic damage and 

supports a novel model in which glial cells exacerbate RGC loss. A controversial study 

published in 2004 questioned the vulnerability of RGCs to excitotoxic damage because 

saturating concentrations of glutamate or NMDA did not promote RGC death in 

dissociated cultures or ex-vivo (Ullian et al., 2004). A simple explanation for this finding 

is that retinas were exposed to NMDA for 1 hr, which is a short time based on well-

controlled studies showing that RGC death only starts at 3-6 hrs after NMDA 

administration (Lebrun-Julien et al., 2009a; Manabe and Lipton, 2003; Pernet et al., 

2007). The slow onset of RGC death following excitotoxic damage was proposed to 

result from a loss of trophic support provided by amacrine cells which die rapidly in the 

presence of NMDA (Ullian et al., 2004). An alternative explanation is that NMDA affects 

Müller cells early, by a mechanism yet to be identified, and these glial cells then secrete 

neurotoxic TNFα that promotes RGC death (Lebrun-Julien et al., 2009a). In the case of 

chronic, neurodegenerative diseases where an excitotoxic component is thought to be 

involved, such as in glaucoma, blockade of glutamate receptors may not ameliorate 

disease progression unless other damaging factors (e.g. glia-derived TNFα) are also 

inhibited.  

I.4.5.4. AMPAR mediated excitotoxicity 

Another shortcoming of the traditional excitotoxicity model is that it focuses 

almost exclusively on the NMDAR. Antagonists of NMDAR have been intensely 

investigated as `agents that may confer neuroprotection, but these compounds have 

consistently failed to show neuroprotection in human clinical trials (Lipton, 2004; 

Osborne, 2008). Accumulating evidence supports that AMPA type of glutamate receptor, 
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are key contributors to neuronal injury. AMPAR mediate fast synaptic transmission and 

play crucial roles during development and synaptic plasticity (Dingledine et al., 1999). 

AMPAR channels are tetrameric complexes composed of various combinations of four 

subunits (GluR1-R4), each encoded by a different gene. The conductance of AMPAR 

varies depending on whether the GluR2 subunit is present and, if so, whether it has 

undergone mRNA editing. Editing of GluR2 mRNA changes the uncharged amino acid 

glutamine (Q) to positively-charged arginine (R) and, as a result, Ca2+ cannot be 

transported due to electrostatic repulsion by the arginine residues that line the AMPAR 

pore. Since most GluR2 subunits in the CNS are fully edited (e.g. GluR2(R) isoforms) it 

has been proposed that a role for this editing mechanism is to guard against excitotoxicity 

(Kim et al., 2001). Despite this, some cells express GluR2-lacking AMPARs and as a 

result are permeable to divalent ions in the external milieu such as Ca2+ and Zn2+ (Geiger 

et al., 1995; Hollmann et al., 1991; Verdoorn et al., 1991). Interestingly, the proportion of 

cells expressing Ca2+-permeable-AMPAR increases acutely during ischemia, 

excitotoxicity, epileptic seizures (Gorter et al., 1997; Grooms et al., 2000; Pellegrini-

Giampietro et al., 1992), and in neurodegenerative diseases such as Alzheimer’s disease 

and amyotrophic lateral sclerosis (Ikonomovic et al., 1997; Kawahara et al., 2004). 

Recent studies have demonstrated increased cell surface expression of Ca2+-permeable-

AMPAR in RGCs after excitotoxic damage (Lebrun-Julien et al., 2009a) and in 

experimental glaucoma (Cueva Vargas et al., 2011). An in-depth examination of non-

NMDA glutamate receptors is required to establish their role as mediators of RGC death 

in glaucoma. 

I.4.6. Common neurodegenerative pathways: glaucoma and Alzheimer’s disease 

It is increasingly being recognized that glaucoma shares a number of pathological 

features with other neurodegenerative diseases, most notably with Alzheimer’s disease 

(AD) (Jackson and Owsley, 2003; Kirby et al., 2010; McKinnon, 2003; Parisi, 2003). AD 

is the most common cognitive disorder worldwide (Sloane et al., 2002) and its progress is 

characterized by appearance of senile plaques and neurofibrillary tangles in brain tissues. 

Senile plaques are composed of amyloid beta (Aß) peptides whereas neurofibrillary 

tangles are composed of insoluble aggregated tau, a microtubule-associated protein 
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normally enriched in the axon (Lee et al., 2001; Mandell and Banker, 1996). AD patients 

are affected by visual deficits including difficulty reading, abnormal depth perception, 

color recognition and spatial contrast sensitivity (Cronin Golomb, 1995; Cronin Golomb 

et al., 1991; Gilmore and Whitehouse, 1995; Guo et al., 2010; Hinton et al., 1986; 

Jackson and Owsley, 2003; Katz and Rimmer, 1989; Lee and Martin, 2004; Mendez et 

al., 1996). A preferential loss of large diameter RGCs and axons has been documented in 

AD (Hinton et al., 1986), which may account for the impaired contrast sensitivity and 

motion perception in AD patients (Hinton et al., 1986; Jackson and Owsley, 2003; Katz 

and Rimmer, 1989; Lee and Martin, 2004). Likewise, there is a high occurrence of 

glaucoma amongst AD patients, and glaucoma shares a number of pathological and 

clinical features with AD such as the presence of retinal Aß and hyperphosphorylated tau 

(Guo et al., 2010; Gupta et al., 2008; Yoneda et al., 2005). Cognitive impairment, 

depression and anxiety have also been reported among glaucoma patients (Yochim et al., 

2011). AD and glaucoma are both age-related diseases, characterized by the loss of 

selective neuronal populations, mitochondrial dysfunction, and dendritic changes leading 

to loss of synaptic connectivity (Kong et al., 2009; Liu et al., 2011). 

Although several studies have suggested a clinical correlation between glaucoma 

and AD (Sugiyama et al., 2006; Tamura et al., 2006; Wostyn, 2006; Wostyn et al., 2009), 

a clear causal link between these two diseases has not been unequivocally established. 

Nonetheless, compelling evidence from laboratory work supports the idea that neuronal 

loss in AD and glaucoma share common neurodegenerative mechanisms. For example, 

abnormal processing of amyloid precursor protein (APP), a hallmark of AD, has been 

documented in an ocular hypertension rat glaucoma model (McKinnon et al., 2002). In 

this model, caspase-3 was activated in RGCs leading to cleavage of APP and neurotoxic 

accumulation of Aß (McKinnon, 2003). Intraocular injection of Aß, a major culprit in 

AD, has been shown to induce RGC apoptosis (Cordeiro et al., 2006). Furthermore, Aß 

deposition was associated with RGC apoptosis in experimental glaucoma, and blockade 

of the Aß pathway reduced glaucomatous RGC loss (Guo et al., 2007). A recent study 

demonstrated that curcumin, a biologically safe fluorochrome, can be used to visualize 

Aß plaques in the retina of a transgenic AD mouse model (Koronyo-Hamaoui et al., 

2011). These lesions appeared first in the retina and later in the brain, indicating that 
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early pathological changes in the retina could be used to predict onset and monitor 

progression of AD.  

I.4.6.1. Drug based neuroprotective strategies for treatment of glaucoma 

The observation that AD and glaucoma share common neurodegenerative 

pathways have raised the provocative idea that drugs currently used for the treatment of 

AD may also be used to treat glaucoma. An example of this is memantine, an NMDAR 

channel blocker (Parsons et al., 1999) approved by regulatory agencies for the treatment 

of AD (Reisberg et al., 2003). Several studies in rat and monkey OHT models 

demonstrated the efficacy of memantine to block RGC death (Hare et al., 2001a; Hare et 

al., 2004; Lagrèze et al., 1998). Subsequently, memantine was advanced for clinical 

testing in glaucoma but failed to meet its primary endpoint in Phase III trials 

(http://agn.client.shareholder.com/releasedetail.cfm?ReleaseID=290764). Although a 

neuroprotective strategy based entirely on the principle of blocking NMDAR function 

has intrinsic limitations (Danesh-Meyer and Levin, 2009; Osborne, 2008), nevertheless, 

the information stemming from this trial should serve as a baseline for the effective study 

design of future clinical testing for neuroprotection in glaucoma (Danesh-Meyer and 

Levin, 2009).  

Other drugs currently approved for the treatment of AD are acetylcholinesterase 

AChE inhibitors. AChE is the enzyme responsible for ACh breakdown, and its inhibition 

was introduced for AD treatment following the cholinergic hypothesis of AD. The 

cholinergic hypothesis argues that cognitive deficits in AD are partly due to the loss of 

cholinergic neurons and reduction of cholinergic transmission in the areas of the brain 

associated with learning, memory, and higher cognitive functions (Razay and Wilcock, 

2008; Whitehouse et al., 1982). Consequently, AChE inhibitors such as galantamine, 

donepezil and rivastigmine have been prescribed to boost the cholinergic signaling and 

provided modest cognitive improvements for the AD patients (Birks, 2006; Jann et al., 

2002). 

 Among the AChE inhibitors, galantamine conveys unique effects beyond those of 

AChE inhibition alone, since it is also an allosteric modulator of nicotinic ACh receptors 

(nAChRs) enhancing their sensitivity to ACh (Schrattenholz et al., 1996). An allosteric 
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potentiating ligand (APL) of nAChRs binds to a site on the receptor that differs from the 

agonist binding site (Schrder et al., 1994). APL binding to the postsynaptic nAChR 

results in conformational changes that amplifies the action of ACh, thereby increasing 

ionic conductance and neurotransmission (Maelicke, 2000). Binding of galantamine to 

nAChR also directly activates the PI3K and leads to phosphorylation of Akt; application 

of a specific antibody against the allosteric binding site on nAChR blocks the 

galantamine mediated PI3K activation (Kihara et al., 2004). In vitro, galantamine protects 

the cortical neurons from ß-amyloid toxicity and improves survival of the motoneurons in 

glutamate excitotoxicity (Kihara et al., 2004; Melo et al., 2009; Shimohama and Kihara, 

2001). In vivo, galantamine significantly improves the survival of hippocampal neurons 

in an ischemic model and also protects dopaminergic neurons against the neurotoxins 

(Lorrio et al., 2007; Yanagida et al., 2008). Pharmacological antagonists of nAChR have 

been shown to partially reduce the neuroprotective effect of galantamine against ß-

amyloid toxicity in culture (Arias et al., 2004; Kihara et al., 2004). These observations 

suggest that galantamine is a promising drug with potential for treatment of other 

neurodegenerative diseases. 

 
I.4.6.2. Retinal cholinergic system and glaucoma 

In the immature vertebrate retinas, cholinergic transmission is essential for the early 

development of retina. Inputs from the cholinergic amacrine cells produce synchronized 

bursts of action potentials in RGCs, known as retinal waves (Feller et al., 1996). These 

propagating waves driven by cholinergic transmission, together with other inputs to 

RGCs, define the pattern of connections between axonal terminals of RGCs and their 

central visual targets (Hahm et al., 1999; Wong, 1999). In the adult retina, inputs from the 

AChRs located on the RGCs no longer generate action potentials because glutamate-

mediated signaling pathway forms the major excitatory input for activation of RGCs 

(Lukasiewicz, 2005; Wong et al., 2000). However, RGCs continue to express both 

nicotinic and muscarinic AChRs and inputs from these receptors play important 

modulatory role on functional properties of the adult RGCs and the processing of the 

visual information (Baldridge, 1996; Beelke and Sannita, 2002; Fischer et al., 1998; 

Sastry, 1985a; Schmidt et al., 1987). Recent studies suggested a cholinergic dysfunction 
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might also contribute in the pathology of glaucoma. In DBA/2J mice, progression of 

glaucoma is accompanied by a significant reduction in the immunoreactivity of amacrine 

cells for choline acetyltransferase (ChAT), gamma-aminobutyric acid (GABA) and 

Protein kinase C (PKC) (Gunn et al., 2011; Hernandez et al., 2009; Moon et al., 2005). 

ChAT is the enzyme involved in the synthesis of ACh and it is mostly localized in the 

processes of the cholinergic amacrine cells in the inner plexiform layer (Ross et al., 

1985). These observations support the idea of a reduced cholinergic transmission in the 

glaucomatous retinas.  

I.4.6.3. AChRs and neuroprotection 

Nicotinic AChRs are a family of ligand-gated Na+ and Ca2+ permeable cation channels 

(Sargent, 1993). Nicotinic nAChRs receptors are pentameric and in the nervous system 

they are composed of different combinations of alpha (α2- α10) and beta (β2- β4) 

subunits (Gotti et al., 1997). Among the nAChRs subunits, the neuroprotective properties 

of the α4, α7 and β2 subunits have been well studied (Jonnala and Buccafusco, 2001; 

Thompson et al., 2006). Adult RGCs express several nAChRs subunits including the α7 

(Cox et al., 2008; Gilbert et al., 2009). The binding site for the APLs thought to be 

located on the α7 subunit (Schrattenholz et al., 1993). Activation of nAChRs promotes 

neuronal survival via stimulation of different pro-survival pathways (Figure 8) (Arias et 

al., 2004; Kihara et al., 2004). Signaling  through nAChRs also  modulates  the activity of 

the  pro-apoptotic pathways, as seen in a glutamate excitotoxicity model where nicotinic 

signaling protected neurons by reducing phospho-p38 MAPK levels (Asomugha et al., 

2010). p38 MAPK belongs to a major pro-apoptotic pathway and its activation leads to 

RGC death (Cuadrado and Nebreda, 2010; Kikuchi et al., 2000). Recently, it has been 

suggested that heteromeric nAChRs, such as α4 β2, have an anti-inflammatory effect. 

Non-receptor tyrosine kinases like janus kinase 2 (JAK2) suppress inflammation via 

down regulation of NF-kB at transcriptional level (Hosur and Loring, 2011). This anti-

inflammatory signaling pathway appears to be activated independently of calcium or 

cAMP (Hosur and Loring, 2011). 

Muscarinic AChRs (m AChRs) are G-protein coupled receptors consisting of five 

(M1-M5) subtypes (Caulfield and Birdsall, 1998). Signaling through mAChRs has been 
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FIGURE 8. 
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Figure 8. Activation of survival pathways via nAChRs signaling. Upon binding of 

ligands to the homomeric α7 and heteromeric nAChRs their channels are opened and 

allow Ca2+ entry. An increase in the intracellular concentration of Ca2+ promotes 

activation of protein kinase C (PKC) and Ras that in turn lead to phosphorylation of Raf 

and activation of MAPKs family. PI3K also is activated by increased Ca2+ levels and 

promotes phosphorylation of Akt and cell survival. cAMP-dependent activation of 

protein kinase A (PKA) results in activation of the transcription factor CREB and 

promotes cell survival. Activity of the low Ca2+ permeable heteromeric nAChRs also by 

inhibiting activation of NF-kB has an anti-inflammatory effect. Source of image: 

Mohammadali Almasieh. 
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linked to key transduction pathways including cell survival (Felder, 1995; Migeon and 

Nathanson, 1994). For example, M1/M3 subtypes mediate activation of the pro-survival 

ERK pathway (Berkeley et al., 2001) whereas M2/M4 subtypes via Gβγ enhance the 

activity of the PI3K/Akt pathway and neuronal viability (Wu and Wong, 2006). 

Intracellular Ca+2 homeostasis is another important example of the modulatory role of 

mAChRs. The interaction of M1/M3/M5 mAChRs with Gq/G11 complex stimulates 

phospholipase C (PLC) leading to the release of Ca+2 from intracellular stores (Felder, 

1995). Adenylate cyclase activity and intracellular levels of cAMP are also regulated by 

M2/M4 mAChRs through their interaction with Gi/o proteins (Felder, 1995; Migeon and 

Nathanson, 1994). The correlation of nicotinic and muscarinic AChRs activity with 

neuronal survival pathways provides a promising insight into novel neuroprotective 

strategies based on the modulation of these receptors for rescuing RGCs in glaucoma.  

 
I.5. OBJECTIVES OF THE THESIS, HYPOTHESES AND EXPERIMENTAL 

APPROACHES  

Problem and objectives: Glaucoma, a group of diseases characterized by 

progressive optic nerve degeneration, is the leading cause of irreversible blindness 

worldwide. Several risk factors have been proposed to contribute to glaucoma 

progression including elevated intraocular pressure, genetic background and age. The 

existence of any of these factors might determine an individual’s risk to develop 

glaucoma, but they are not necessarily the cause of this condition. For example, although 

high intraocular pressure is common among open-angle glaucoma patients, only a limited 

subset of individuals with ocular hypertension will develop this disease. Moreover, a 

significant number of patients presenting with glaucoma continue to lose vision despite 

responding well to therapies that lower eye pressure. Therefore, strategies that delay or 

halt RGC loss have been recognized as potentially beneficial to preserve vision in 

glaucoma. The success of these approaches, however, depends on an in-depth 

understanding of the mechanisms that lead to RGC dysfunction and death. The primary 

objectives of this thesis were: i) to test novel neuroprotective strategies for injured RGCs, 
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and ii) to elucidate the molecular pathways leading to neuronal survival using in vivo 

models of optic nerve injury. 

Hypotheses:  The central hypothesis of this thesis is that effective therapeutic 

strategies for glaucoma must take into account mechanisms that lead to RGC death to 

successfully promote structural and functional protection of these neurons. To test this, I 

used two different approaches that target distinct molecular pathways proposed to 

contribute to RGC death. First, I took advantage of an existing drug currently approved 

for the treatment of Alzheimer’s disease, the acetylcholinesterase inhibitor galantamine, 

to assess its neuro- and vasoprotective effects in experimental glaucoma and to elucidate 

its mechanism of action. The specific hypothesis for this project was that galantamine, by 

modulating acetylcholine receptor activity, can provide RGC and vascular protection in 

glaucoma. Second, I used a novel cell-permeable phosphine-borane compound (PB1) to 

investigate its effect on the survival of injured RGCs and to assess the role of reactive 

oxygen species superoxide in experimental glaucoma. The specific hypothesis for this 

project was that PB1 can promote RGC survival via inhibition of the negative effects of 

oxidative damage caused by axonal injury. 

  Experimental Approaches: I used a variety of experimental approaches to 

achieve our research objectives during my Ph.D. work including: 1) a rat model of 

experimental glaucoma in Brown Norway rats in which ocular hypertension is induced by 

injection of a hypertonic saline solution into an episcleral vein (Morrison model), 2) an 

acute paradigm of optic nerve injury in Sprague-Dawley rats based on complete 

transection (axotomy) of the optic nerve, 3) retrograde labeling of RGCs by application 

of fluorescent tracers to the superior colliculus, the main target region of these neurons in 

the brain, 4) intraocular and/or intraperitoneal administration of drugs, 5) quantification 

of RGC survival by counting fluorescently-labeled neurons in flat-mounted retinas, 6) 

western blot analysis of signaling components of survival and apoptotic intracellular 

pathways, 7) visual evoked potentials recorded from the superficial layers of the superior 

colliculus to assess the functional status of RGCs, and 8) quantification of retinal 

capillary density using isolectin staining and measurements of regional ocular blood flow 

assessed by quantitative autoradiography. 
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II.1. ABSTRACT   

Glaucoma is the leading cause of irreversible blindness worldwide. Loss of vision 

in glaucoma is caused by the selective death of retinal ganglion cells. Treatments for 

glaucoma, limited to drugs or surgery to lower intraocular pressure, are insufficient. 

Therefore, a pressing medical need exists for more effective therapies to prevent vision 

loss in glaucoma. In this in vivo study, we demonstrate that systemic administration of 

galantamine, an acetylcholinesterase inhibitor, promotes protection of retinal ganglion 

cell somata and axons in a rat glaucoma model. Functional deficits caused by high 

intraocular pressure, assessed by recording visual evoked potentials from the superior 

colliculus, were improved by galantamine. These effects were not related to a reduction 

in ocular pressure because galantamine did not change the pressure in glaucomatous eyes 

and it promoted neuronal survival after optic nerve axotomy, a pressure-independent 

model of retinal ganglion cell death. Importantly, we demonstrate that galantamine-

induced ganglion cell survival occurred via activation of types M1 and M4 muscarinic 

acetylcholine receptors, while nicotinic receptors were not involved. These data provide 

the first evidence of the clinical potential of galantamine as neuroprotectant for glaucoma 

and other optic neuropathies, and identify muscarinic receptors as potential therapeutic 

targets for preventing vision loss in these blinding diseases. 

Keywords: retinal ganglion cell, glaucoma, acetylcholinesterase, muscarinic. 
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II.2. INTRODUCTION   

Glaucoma is the leading cause of irreversible blindness worldwide. It has been 

estimated that >50 million people around the world are affected by this disease, with >7 

million presenting bilateral blindness (Quigley, 2005). Loss of vision in glaucoma is 

caused by the selective death of retinal ganglion cells (RGCs), the output neurons that 

relay visual information from the retina to the brain via their axons in the optic nerve. 

Although the precise cause of RGC death in glaucoma is unknown, high intraocular 

pressure (IOP) is a major risk factor for developing this disease. Current treatments for 

glaucoma are limited to lowering IOP by medication or surgery, but a significant number 

of patients continue to experience visual loss despite responding well to pressure 

lowering therapies (Georgopoulos et al., 1997). Moreover, >50% of patients have normal 

tension glaucoma characterized by optic nerve degeneration in the absence of high IOP 

(Anderson, 2003; Shields, 2008). Therefore, current therapies for glaucoma are 

insufficient and novel strategies to save RGCs and prevent vision loss would be valuable. 

Galantamine is a small molecule acetylcholinesterase (AChE) inhibitor and 

allosteric ligand of nicotinic ACh receptors (nAChR) currently used for the symptomatic 

treatment of Alzheimer’s disease (Razay and Wilcock, 2008). Galantamine was initially 

thought to ameliorate cognitive deficits in Alzheimer’s disease patients only due to its 

cholinergic boosting activity, but recent studies have demonstrated that it also has 

neuroprotective effects. In vitro, galantamine protects cortical neurons from ß-amyloid 

toxicity and motor neurons from excess glutamate (Kihara et al., 2004; Melo et al., 2009; 

Shimohama and Kihara, 2001). In vivo, galantamine improves the survival of 

hippocampal neurons following transient global ischemia and of dopamine neurons 

damaged by 6-OHDA (Lorrio et al., 2007; Yanagida et al., 2008). Pharmacological 

antagonists of nAChR have been shown to partially reduce the neuroprotective effect of 

galantamine against ß-amyloid toxicity in culture (Arias et al., 2004; Kihara et al., 2004), 

suggesting that nAChR may be involved in galantamine-induced cell survival. However, 

the precise mechanisms underlying neuroprotection mediated by galantamine in vivo 

remain poorly defined. 

In this study, we examined the role of galantamine in the visual system and asked 

whether it stimulates RGC survival in a rat glaucoma model. Our data demonstrate that 
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galantamine leads to structural protection of RGCs from ocular hypertension damage. We 

show that the profound functional impairments caused by high IOP are markedly 

attenuated in galantamine-treated eyes. Intriguingly, galantamine-induced RGC 

neuroprotection is mediated through activation of muscarinic ACh receptors (mAChR), 

and is independent of nAChR. Our study provides the first evidence of the therapeutic 

potential of galantamine in glaucoma and reveals mAChR as a potential clinical target for 

this neurodegenerative disease. 

 
II.3. MATERIALS AND METHODS 

II.3.1. Experimental animals 

 All procedures were carried out in accordance with the guidelines of the Society 

for Neuroscience, the Association for Research in Vision and Ophthalmology, and the 

Canadian Council on Animal Care for the use of experimental animals. Ocular 

hypertension (OHT) surgery was performed in aging, male Brown Norway rats (Charles 

River Canada), retired breeders between 10-12 months of age (300-400 g). Brown 

Norway rats were used because they have a larger eye suitable for the OHT surgical 

procedure, and this glaucoma model has been well characterized in these animals 

(Morrison et al., 1997). The optic nerve axotomy model, which is independent of OHT 

damage, was used as an acute paradigm of RGC death and was carried out in adult 

Sprague-Dawley rats (Charles River, 180-200 g). The number of animals used in each 

experiment is indicated above the bar in the corresponding graph. 

II.3.2. Retrograde labeling of RGCs 

For quantification of neuronal survival, RGCs were retrogradely labeled with DiI 

(1,1'-dioctadecyl-3,3,3’,3’-tetramethyl-indocarbocyanine perchlorate; Molecular Probes, 

Junction City, OR) for the glaucoma model, or with Fluorogold (2%, Fluorochrome, 

Englewood, CO) for the axotomy model. DiI crystals (3%) or Fluorogold (2%) were 

dissolved in 0.9% NaCl containing 10% dimethyl sulfoxide (DMSO) and 0.5% Triton X-

100. The superior colliculus was exposed and a small piece of gelfoam (Pharmacia and 

Upjohn Inc., Mississauga, ON) soaked in tracer was applied to the surface. Seven days 
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after tracer application, the time required for labeling the entire RGC population, animals 

were subjected to ocular hypertension surgery or axotomy. 

II.3.3. Ocular hypertension surgery and optic nerve axotomy 

Surgical procedures were performed under general anesthesia by intraperitoneal 

(i.p.) injection of 1 ml/kg standard rat cocktail consisting of ketamine (100 mg/ml, 

Bimeda-MTC Animal Health Inc., Cambridge, ON), xylazine (20 mg/ml, Bimeda-MTC 

Animal Health Inc., Cambridge, ON), and acepromazine (10 mg/ml, Ayerst Veterinary 

Laboratories, Guelph, ON). Unilateral elevation of IOP was induced as previously 

described (Morrison et al., 1997) by a single injection of a hypertonic saline solution into 

an episcleral vein. A plastic ring was applied to the ocular equator to confine the injection 

to the limbal plexus and a microneedle was then used to inject 50 µl of sterile 1.85 M 

NaCl solution through an episcleral vein. The plastic ring temporarily blocks off other 

episcleral veins forcing the saline solution into the Schlemm’s canal to create isolated 

scarring. Following injection, the plastic ring was removed and the eyes were examined 

to assess the extent to which the saline solution traversed the limbal vasculature. 

Polysporin ophthalmic ointment (Pfizer Canada Inc., Kirkland QC) was applied to the 

operated eye and the animal was allowed to recover from the surgery. Animals were kept 

in a room with constant low fluorescent light (40-100 lux) to stabilize circadian IOP 

variations. For optic nerve axotomies, animals were deeply anesthetized (2% Isoflurane, 

0.8 liter/min), the left optic nerve was exposed and carefully transected at 0.5-1 mm from 

the optic nerve head avoiding injury to the ophthalmic artery. Fundus examination was 

routinely performed immediately after axotomy and 3-5 days later to check the integrity 

of the retinal circulation after surgery. Animals showing signs of compromised blood 

supply were excluded from the study. 

II.3.4. Measurement of intraocular pressure (IOP) 

IOP from glaucomatous and normal eyes was measured in awake animals because 

general anesthetics cause a marked IOP reduction (Jia et al., 2000). A calibrated 

tonometer (TonoPen XL, Medtronic Solan, Jacksonville, FL) was used to measure IOP 

after application of one drop of proparacaine hydrochloride (0.5%, Alcon Laboratories, 

Inc., Fort Worth, TX) per eye. The tonometer was held exactly perpendicular to the 
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corneal surface and ~10 consecutive readings per eye were taken and averaged to obtain 

an accurate IOP measurement. IOP was measured daily for two weeks after ocular 

hypertension surgery, then every other day for the entire duration of the experiment. The 

mean and peak (maximum) IOP for each eye were calculated and these values were used 

to estimate the mean and peak IOP for experimental and control groups.    

II.3.5. Drug delivery   

Drug delivery in the glaucoma model was carried out by daily intraperitoneal 

(i.p.) injection to avoid multiple intraocular injections, which lead to IOP reduction in 

glaucomatous eyes. For this purpose, the following compounds that cross the blood-

brain/retinal barrier were administered alone or in combination: galantamine 

hydrobromide (3.5 mg/kg, Tocris Bioscience, Ellisville, MO), memantine hydrochloride 

(4 mg/kg, Sigma-Aldrich, St. Louis, MO), donepezil hydrochloride (4 mg/kg, Jubilant 

Organosys Inc., Stamford, CT), or scopolamine hydrobromide (1 mg/kg, Tocris 

Bioscience). Control animals received daily i.p. injections of sterile vehicle (phosphate-

buffered saline: PBS). In some experiments, animals were treated with the ß-adrenergic 

receptor blocker timolol maleate (0.5%, Sabex Inc., Boucherville, QC) applied daily on 

the cornea of the glaucomatous eye to control IOP increase.   

In the axotomy model, drug delivery was carried out by intravitreal injection of 

the following compounds in a total volume of 5 µl: galantamine hydrobromide (100 

mM), methyllycaconitine citrate (MLA, 10 µM, Sigma-Aldrich), dihydro-ß-erythroidine 

hydrobromide (DHß-E, 100 µM, Sigma-Aldrich), mecamylamine hydrochloride (MMA, 

10 mM, Sigma-Aldrich), scopolamine hydrobromide (10 mM, Tocris Bioscience), 

pirenzepine dihydrochloride (1 mM, Tocris Bioscience), 11-[[2-[(Diethylamino)methyl]-

1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one (DX116, 1 

mM, Tocris Bioscience), Diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, 1 

mM, Tocris Bioscience), or tropicamide (1 mM, Tocris Bioscience). Control eyes 

received an intravitreal injection of sterile vehicle (PBS). Drugs were injected into the 

vitreous chamber using a 10-µl Hamilton syringe adapted with a 32-gauge glass 

microneedle, the tip of which was inserted into the superior hemisphere of the eye, at a 

~45° angle, through the sclera into the vitreous body. This route of administration 
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avoided retinal detachment or injury to eye structures, including the iris and lens that 

release factors that may induce RGC survival. Surgical glue (Indermill, Tyco Health 

Care, Mansfield, MA) was used to seal the injection site.  

II.3.5. Quantification of RGC soma and axons  

Quantification of RGC bodies and axons was performed in duplicate by an 

observer masked to the treatment assignments. For RGC density counts, rats were deeply 

anesthetized and perfused transcardially with 4% paraformaldehyde (PFA) in 0.1 M 

phosphate buffer following which both eyes were immediately enucleated. Retinas were 

dissected and flat-mounted on a glass slide with the ganglion cell layer side up. RGCs 

were counted within three square areas at distances of 1, 2 and 3 mm from the optic disc 

in each of the four retinal quadrants (superior, inferior, nasal and temporal) for a total of 

12 retinal areas. Macrophages and microglia that may have incorporated fluorescent 

tracer after phagocytosis of dying RGCs were excluded from our quantitative analysis 

based on cell-specific markers and morphology (Lebrun-Julien et al., 2009). For axon 

counts, animals received a transcardial injection of heparin (1,000 u/kg) and sodium 

nitroprusside (10 mg/kg) followed by perfusion with 2% PFA and 2.5% glutaraldehyde in 

0.1 M phosphate buffer. Optic nerves were dissected, fixed in 2% osmium tetroxide, and 

embedded in epon resin. Semi-thin sections (0.7-µm-thick) were cut on a microtome 

(Reichert, Vienna, Austria) and stained with 1% toluidine blue. RGC axons were counted 

at 1 mm from the optic nerve head in five non-overlapping areas of each optic nerve 

section, encompassing a total area of 5,500 µm2 per nerve. The five optic nerve areas 

analyzed included: one in the center of the nerve, two peripheral dorsal and two 

peripheral ventral regions. The total area per optic nerve cross-section was measured 

using Northern Eclipse image analysis software (Empix Imaging, Toronto, ON), and this 

value was used to estimate the total number of axons per optic nerve.    

II.3.6. Visual evoked potential (VEP) and electroretinogram (ERG) recordings  

For VEP recordings, animals were anesthetized with isoflurane (3% for induction 

and 1.5% for maintenance) and placed in a stereotaxic head holder. The 

electrocardiogram was continuously monitored and the core body temperature was 

maintained at 37°C using a feedback controlled heating pad. Atropine sulfate eye drops 
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(1%, Allergan Canada, Markham, ON) were used to dilate the pupils and the corneas 

were protected by application of artificial tears (Allergan Canada). A bilateral craniotomy 

was performed anterior to the lambda, at bregma coordinates -6.8 and 1.5 mm lateral to 

the sagittal suture, to expose the cerebral cortex overlying the superior colliculus of each 

hemisphere. The dura was then incised and a tungsten multiunit recording microelectrode 

(impedance 0.8Ω Microprobe, Gaithersburg, MD, USA) was lowered under microscopic 

view until the tip touched the surface of the cortex. The skull opening was then filled 

with agar to protect the tissue from desiccation and, using a micromanipulator (Motorized 

Microdrive, FHC Inc., Bowdoinham ME), the microelectrode was advanced vertically to 

300 µm from the superficial layer of the superior colliculus into the stratum griseum 

superficiale. Visual stimulation was provided by a diffuse flash (f = 1 Hz, Grass 

photostimulator, Astro-Med Inc, Brossard, QC) placed 30 cm away from the contralateral 

eye. Triggered evoked potentials were averaged over 40 successive presentations. VEP 

signals were amplified and bandpass filtered between 10 and 1,000 Hz and acquired via 

an analogue/digital interface (CED 1401 plus) to a PC running acquisition software 

(Signal 2, CED, Cambridge, UK). At the end of the experiment, the final electrode 

location was marked by passing a direct current (D.C.) of 10 mA for 5 sec through the 

recording electrode. The animals were then perfused with 4% PFA, the brains were 

removed and processed for serial sectioning. Sections (50 µm) were stained with cresyl 

violet and the electrode location mark was visualized as an iron precipitate following 

incubation in a 2% K4Fe (CN)6 solution. The depth of recording was confirmed by the 

position of the mark and the depth reading of the micromanipulator.   

For ERG recordings, animals were dark adapted for a 12-hour period. Under dim 

red light illumination, the animals were anesthetized with a mixture of ketamine 

hydrochloride (80 mg/kg) and xylazine (6 mg/kg) and the pupils were dilated with 

cyclopentolate hydrochloride 1%. ERGs were recorded with a Dawson, Trick and 

Litzkow (DTL) fibre electrode (27/7X-Static, silver coated conductive nylon yarn, 

Sauquoit Industries, Scranton, PA) that was positioned and maintained on the cornea 

using a drop of 1% methylcellulose. The ERG (bandwidth: 1-1,000 Hz; x 10,000; Grass, 

P511 amplifier) and oscillatory potentials (bandwidth: 100-1000 Hz; x 50,000) were 
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recorded simultaneously with the Acknowledge data acquisition system (Biopac MP 100 

WS, BIOPAC System Inc., Goleta, CA, USA).    

II.3.7. Statistical analysis   

Data analysis and statistics were performed using the GraphPad Instat software 

(GraphPad Software Inc., San Diego, CA) by a one-way (two-way for IOP measurments) 

analysis of variance (ANOVA) test followed by Bonferroni's multiple comparison post-

test.  

II.4. RESULTS   

II.4.1. Galantamine protects RGC soma and axons from hypertension-induced 

death  

We tested the neuroprotective effect of galantamine in vivo in a rat ocular 

hypertension (OHT) model of glaucoma. Unilateral elevation of IOP was induced after a 

single injection of hypertonic solution into an episcleral vein, a procedure named OHT 

surgery. Gradual increase of eye pressure and progressive death of RGCs are observed in 

this model, with an excellent linear correlation between IOP increase and degree of RGC 

loss and optic nerve damage (Morrison et al., 1997). Inner retinal atrophy, optic nerve 

degeneration, and optic nerve head remodeling in this model are similar to those seen in 

human glaucoma, making this model one of the best experimental in vivo paradigms to 

study glaucoma.   

RGCs were visualized with the fluorescent tracer DiI, which was applied to the 

superior colliculus at least 1 week before OHT surgery to ensure retrograde labeling prior 

to any changes in optic nerve function caused by experimental glaucoma (Figure 1a). 

Unlike other retrograde markers that leak from the cell body after several weeks, DiI has 

been shown to persist in RGCs in vivo for periods of up to 9 months without fading or 

leakage (Vidal-Sanz et al., 1988). Consistent with previous studies, the average total 

RGC population detected by DiI in intact, non-injured Brown-Norway rat retinas was 

1841 ± 15 RGCs/mm2 (mean ± S.E.M., n = 9) (Figure 1b). Galantamine is a small 

molecule capable of crossing the blood-brain and blood-retinal barriers; therefore its 

neuroprotective effect was evaluated following daily intraperitoneal (i.p.) injection of 3.5 
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mg per kg of body weight (mg/kg), a dose selected based on previous studies showing 

efficacy in vivo (Lorrio et al., 2007; Yanagida et al., 2008). Galantamine treatment was 

initiated once IOP elevation was detected (~1 week after OHT surgery, Figure 1a) and 

continued thereafter for the entire duration of the experiment.   

Analysis of DiI-positive RGCs in retinal whole mounts showed that galantamine 

led to higher neuronal densities in glaucomatous eyes compared to control eyes treated 

with vehicle (PBS) (Figure 1b-d). Quantitative analysis confirmed that daily galantamine 

treatment led to a robust increase in survival of injured RGCs at 3 weeks after OHT 

surgery (90%: 1,627 ± 29 RGCs/mm2, mean ± S.E.M., n=11) compared to vehicle (55%: 

1,025 ± 22 RGCs/mm2, n=9) (ANOVA, p < 0.001). Although neuronal damage was more 

severe at 5 weeks after OHT surgery, galantamine still protected 70% of RGC soma 

(1,270 ± 74 RGCs/mm2, n=10) compared to only 37% with PBS (657 ± 52 RGCs/mm2, 

n=9) (ANOVA, p < 0.001) (Figure 1e). We carried out a comparative study on the 

neuroprotective effect of galantamine with respect to memantine, an N-Methyl-D-

Aspartic acid (NMDA) channel blocker, and donepezil, another acetylcholinesterase 

inhibitor, both currently used in Alzheimer’s disease. Our results show that galantamine 

was more effective than memantine or donepezil at preventing RGC loss in experimental 

glaucoma (Figure 2).  

Glaucoma is characterized by the degeneration of RGC axons in the optic nerve 

posterior to the lamina cribrosa; hence we also investigated the effect of galantamine on 

RGC axon protection. Analysis of optic nerve cross-sections demonstrated a larger 

number of RGC axon fibers with normal morphology in galantamine-treated eyes 

compared to PBS-treated control eyes (Figure 3a-c), the latter showing extensive axon 

degeneration including disarray of fascicular organization and degradation of myelin 

sheaths. Quantitative analysis confirmed that galantamine promoted substantial 

protection of RGC axons from glaucomatous damage (Figure 3d). Collectively, these 

results indicate that galantamine effectively protects both RGC soma and axons in 

experimental glaucoma.   
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II.4.2. Galantamine-mediated neuroprotection is not due to decreased IOP    

To investigate if daily treatment with galantamine led to IOP reduction, which 

could account for the observed neuroprotective effect, we measured eye pressure daily 

for two weeks after ocular hypertension surgery and then every other day for the entire 

duration of the experiment. Our results demonstrate that daily i.p. administration of 

galantamine did not reduce IOP over a period of several weeks (Figure 4a). The mean 

sustained pressure elevation among galantamine-treated and PBS-treated groups was 

similar: ~34 mm Hg at 3 weeks after OHT surgery and ~40 mm Hg at 5 weeks after OHT 

surgery (Table 1), well within the range of IOP increases observed in this model 

(Morrison et al., 1997). Given that the rate of RGC death is proportional to IOP, the 

similar elevation in IOP among groups allowed for reliable comparison of the 

neuroprotective effect of galantamine versus vehicle.  

To further test whether galantamine-mediated neuroprotection was independent of 

IOP-induced damage, we examined the effect of galantamine after axotomy of the optic 

nerve (Figure 4b-e), an acute insult that leads to rapid apoptotic death of RGCs 

(Berkelaar et al., 1994). RGCs were retrogradely labeled with Fluorogold and subjected 

to optic nerve transection with concomitant intraocular injection of galantamine. The 

average total RGC population detected with Fluorogold in intact, non-injured Sprague-

Dawley rat retinas was 2,223 ± 24 RGCs/mm2 (mean ± S.E.M., n=5), a slightly higher 

density than in Brown-Norway rats, consistent with previous studies (Mansour-Robaey et 

al., 1994; Pernet and Di Polo, 2006). After axotomy, all RGCs survive for 5 days and 

then die abruptly: the population of RGCs is reduced to approximately 50% by 1 week 

and to ~10% at 2 weeks post-axotomy. In galantamine-treated eyes, 75% of RGCs 

survived at 1 week after axotomy compared to 50% that survived in the PBS-treated 

group (1,611 ± 47 RGCs/mm2, n=6, and 920 ± 32 RGCs/mm2, n=5, respectively, 

ANOVA, P < 0.001). The effect of galantamine was still marked at 2 weeks after 

axotomy: 30% of all RGCs remained alive compared to only 10% survival in PBS-treated 

eyes (616 ± 30 RGCs/mm2, n=5, and 216 ± 15 RGCs/mm2, n=5, respectively, ANOVA, 

P < 0.01) (Figure 4E). Collectively, these results demonstrate that galantamine can delay 

RGC loss following chronic (glaucoma) or acute (axotomy) optic nerve injury.    
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II.4.3. RGC functional deficits in glaucoma are improved by galantamine  

Our results show structural protection of RGCs, both at the level of the cell bodies 

and axons, but are these neurons functional? To investigate whether galantamine 

preserved RGC function in glaucoma, we measured visual evoked potentials (VEPs) 

following flash stimulation. The main target of RGCs in the rat brain is the superior 

colliculus, thus VEPs recorded from this region provide a faithful representation of 

surviving RGC function and were used as the primary outcome to assess functional 

neuroprotection. The flash electroretinogram (ERG) provides information about the outer 

retina and was not used to assess RGC function. ERGs were routinely performed prior to 

VEPs to ensure that the outer retina was functioning properly and that RGCs received 

adequate input following visual stimulation. All the animals in this study had normal 

ERGs.  

First, we investigated whether galantamine daily treatment had any effect on the 

VEP response to flash stimulation in normal, non-glaucomatous eyes. Our data 

demonstrate that VEPs recorded from galantamine-treated normal brains were 

indistinguishable from those treated with PBS or without treatment (Figure 5a), 

indicating that galantamine by itself does not alter the response of normal RGCs or target 

neurons in the superior colliculus. At 3 weeks after OHT surgery, examination of VEP 

responses to flash stimulation showed substantial reduction in evoked currents recorded 

from PBS-treated eyes compared to intact, non-glaucomatous controls (Figure 5b). In 

contrast, galantamine administration led to marked preservation of the VEP. 

Quantification of peak-to-peak VEP amplitudes demonstrated that galantamine preserved 

66% of the intact VEP response compared to only 30% in PBS-treated controls 

(ANOVA, p < 0.001).   

At 5 weeks after OHT surgery, both PBS-treated and galantamine-treated 

glaucomatous eyes showed complete obliteration of the VEP (Figure 5c). This lack of 

response could not be solely attributed to RGC degeneration because galantamine 

protected almost 70% of RGC soma and axons at 5 weeks after OHT (Figures 1and 3). 

We then hypothesized that sustained high IOP impairs the visual function of the 

surviving RGCs. To test this idea, we evaluated the effect of galantamine on the VEP 

response using a protocol in which IOP in the glaucomatous eye was controlled by 
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topical (corneal) application of timolol, a commonly used ß-adrenergic receptor blocker. 

Treatment with timolol began at 3 weeks after OHT and continued for the entire duration 

of the experiment. Timolol limited the IOP increase in galantamine-treated glaucomatous 

eyes to a mean IOP of 35.6 mm Hg compared to 42.7 mm Hg in eyes without timolol 

(Table 1). Interestingly, this difference in IOP (7 mm Hg) was sufficient to restore 47% 

of the VEP response in galantamine-treated eyes, but not in PBS-treated eyes (Figure 5c), 

indicating that IOP reduction only rescued RGC function when combined with 

galantamine. The recovery of VEP was not due to a neuroprotective effect of timolol 

because animals treated with PBS and timolol did not show any functional improvement. 

Furthermore, VEP recovery was not due to increased survival because RGC densities in 

the presence of timolol and galantamine (1,387 ± 50 RGCs/mm2, mean ± S.E.M., n=8) 

were not statistically different from those in eyes treated with galantamine alone (1,270 ± 

85 RGCs/mm2, n=10, p > 0.05). The absence of VEP responses in eyes treated with PBS 

also confirmed that topical application of timolol, by itself, was not neuroprotective. 

Taken together, these results indicate that high IOP leads to dramatic deficits in retinal 

function that can be markedly attenuated by galantamine, and highlight the importance of 

combining galantamine with IOP lowering drugs to achieve long-term functional RGC 

protection.    

II.4.4. ACh muscarinic, but not nicotinic, receptors mediate the neuroprotective 

effect of galantamine in experimental glaucoma   

In the nervous system, there are two major types of ACh receptors: i) nicotinic 

receptors (nAChR) including the α7 and the α4ß2 nAChR, which are the most abundant 

subtypes in the brain, and metabotropic muscarinic receptors (mAChR), which are 

selectively activated by muscarine-like ligands and include five distinct isoforms (M1-

M5) corresponding to the products of five separate genes (Bonner et al., 1987). To gain 

mechanistic insight into how galantamine promotes RGC neuroprotection in vivo, we 

asked whether blockade of nAChR or mAChR would compromise galantamine-induced 

RGC survival. For this purpose, we first assessed the survival of axotomized RGCs 

following intraocular injection of galantamine in combination with selective 

pharmacological blockers of nAChR or mAChR. Co-injection of galantamine with 
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scopolamine, an inhibitor of all mAChR types, abrogated the pro-survival effect of 

galantamine. In contrast, co-administration of galantamine with either methyllycaconitine 

(MLA), a specific antagonist of α7 nAChR, dihydro-ß-erythroidine (DHß-E), a specific 

antagonist of α4ß2 nAChR, or mecamylamine (MMA), a blocker of all neuronal nAChR, 

did not reduce galantamine-induced RGC survival (Figure 6a). A range of concentrations 

of these nAChR inhibitors was tested (10 µM to 10 mM) with similar outcome, indicating 

that their lack of effect was not the result of suboptimal doses of these drugs. Consistent 

with these findings, daily i.p. injection of galantamine and scopolamine, which readily 

cross the blood-brain/retinal barrier, completely inhibited RGC neuroprotection in 

glaucomatous eyes at 5 weeks after OHT (Figure 6b). Administration of MLA, DHß-E, 

MMA or scopolamine, by themselves, did not cause RGC death or adverse effects in non-

injured retinas, nor did they promote survival in injured rat retinas at the doses used here 

(Figure 6c and d). 

To establish which mAChR were involved in RGC survival, the following 

selective antagonists of mAChR subtypes were co-administered with galantamine: 

pirenzepine (M1), DX116 (M2), 4-DAMP (M3) or tropicamide (M4). These mAChR 

antagonists do not cross the blood-brain/retinal barrier or exhibit extremely low barrier 

permeability (Mickala et al., 1996; Stein et al., 1995; van Waarde et al., 1994), thus their 

effect was tested on galantamine-induced protection of axotomized RGCs after 

intraocular injection. Figure 6e shows that while blockade of M2 by DX116 or M3 by 4-

DAMP did not have any effect on RGC survival mediated by galantamine, blockade of 

M1 with pirenzepine completely abrogated RGC neuroprotection. The M4 antagonist 

tropicamide also reduced RGC survival, albeit to a lesser extent than pirenzepine. 

Collectively, these data strongly suggest that M1 and M4 mAChR are mediators of 

galantamine-induced RGC neuroprotection.   

 
II.5. DISCUSSION  

This study supports four major findings. First, galantamine treatment leads to 

survival of RGC somata and axons in experimental glaucoma. Second, RGC structural 

protection is independent of IOP-induced damage, as evidenced by the neuroprotective 

action of this drug after optic nerve axotomy. Third, functional deficits caused by high 
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IOP are markedly improved by galantamine. Fourth, galantamine-mediated 

neuroprotection occurs primarily through activation of retinal mAChR M1, and is 

independent of nAChR.  

Several recent clinical studies have suggested a correlation between glaucoma and 

Alzheimer’s disease (Wostyn et al., 2009), but the most compelling evidence supporting 

such link stems from laboratory work. For example, neuronal loss in both glaucoma and 

Alzheimer’s disease occurs by apoptosis (Tatton et al., 2003), caspases are activated both 

in Alzheimer’s disease and in injured RGCs (McKinnon, 2003), and intraocular injection 

of ß-amyloid has been shown to induce RGC degeneration (Cordeiro et al., 2006). More 

recently, ß-amyloid deposition was associated with RGC death in experimental glaucoma 

and blockade of the ß-amyloid pathway reduced glaucomatous damage (Guo et al., 

2007). Although the etiology of glaucoma and Alzheimer’s disease may differ, their 

common features raise the provocative idea that drugs currently used to treat Alzheimer’s 

disease may also have utility in glaucoma. Here, we show that one such drug, 

galantamine, is a powerful neuroprotectant for injured RGCs. Daily galantamine 

treatment promoted the survival of RGC somata and axons in glaucoma. Importantly, 

administration of galantamine by intravitreal injection also led to robust RGC protection 

after axotomy of the optic nerve. These data highlight several important properties of 

galantamine: it is effective when administered systemically or by intraocular injection, it 

promotes structural protection of RGCs in an IOP-independent manner, and it delays 

RGC loss in different models, both acute and chronic, of optic nerve damage.   

The neuroprotective effect of galantamine was superior to that conferred by 

memantine or donepezil. Galantamine has been shown to be a weaker AChE inhibitor 

than donepezil (Geerts et al., 2005), therefore other factors likely account for this 

difference in neuroprotective efficacy. First, donepezil is a non-competitive inhibitor of 

AChE, which may result in the development of tolerance to donepezil and consequent 

downregulation of ACh receptors (Wilkinson, 1999). In contrast, galantamine is a 

competitive AChE inhibitor and the galantamine-AChE complex follows the typical 

kinetics of reversible inhibitors, dissociating readily in the presence of excess ACh, with 

a reduced potential for tolerance (Farlow, 2003). Second, galantamine acts more broadly 

on other neurotransmitter systems and has been shown to regulate the release of 
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glutamate, serotonin and α-aminobutyric acid (Albuquerque et al., 2000; Alkondon et al., 

2000), thus potentially modulating neural activity and delaying neurodegeneration. Third, 

mAChR are amenable to modulation at allosteric sites (Gregory et al., 2007) hence it is 

possible that galantamine may activate mAChR directly, although this possibility 

presently remains unknown.   

Patients with glaucoma experience diminished visual function and poor quality of 

life; therefore an ideal neuroprotective drug should preserve the structural viability of 

RGCs while retaining their ability to respond to visual stimulation. In this study, we 

aimed to provide a structure-function link based on the neuroprotective effect of 

galantamine. Our results demonstrate that there are major visual deficits in glaucomatous 

eyes treated with PBS, while galantamine treatment led to substantial preservation of the 

VEP amplitude at 3 weeks after OHT. Of interest, following longer periods of OHT (5 

weeks) galantamine-protected RGCs (70%) did not respond to light stimulation unless 

IOP was also reduced. An IOP decrease of just a few mm Hg was sufficient to restore 

almost 50% of the VEP response in galantamine-treated eyes, but not in PBS-treated 

controls. The observation that the majority of RGCs exposed to galantamine remained 

alive at 5 weeks of OHT but did not respond to light stimulation suggests that sustained 

high IOP has additional deleterious effects on RGC function. We conclude that, in the 

long-term, structural protection alone is not sufficient to restore visual function unless 

IOP is also controlled.    

Galantamine increases the availability of ACh through its inhibitory action on 

AChE, the enzyme responsible for ACh breakdown, and it is also an allosteric modulator 

of nAChR enhancing their sensitivity to ACh (Albuquerque et al., 1997; Schrattenholz et 

al., 1996). ACh in the retina is released by starburst cholinergic amacrine cells onto RGC 

dendrites and plays a crucial role in visual information processing (Beelke and Sannita, 

2002). Therefore, we postulated that galantamine-induced neuroprotection might result 

from stimulation of ACh receptors. Since galantamine is an allosteric modulator of 

nAChR, its neuroprotective effect has been compared to that of nicotine. In fact, nicotine 

has been shown to promote neuronal survival in different models of neurodegeneration 

via nAChR and downstream activation of survival pathways (Picciotto and Zoli, 2008; 

Shimohama, 2009 ). Previous in vitro studies showed that galantamine promoted the 
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survival of cortical neurons or neuroblastoma cells via α7nAChR and stimulation of 

phosphatidylinositol-3-kinase (Arias et al., 2004; Kihara et al., 2004). As RGCs express 

several nAChR subtypes including α7nAChR (Cox et al., 2008; Gilbert et al., 2009), we 

initially postulated that nAChR activation would contribute to galantamine-mediated 

neuroprotection. Surprisingly, our data show that blockade of nAChR had no effect 

whereas inhibition of mAChR completely curtailed the neuroprotective effect of 

galantamine in vivo. The total blockade of galantamine-induced neuroprotection in the 

presence of mAChR inhibitors indicates that these receptors are the primary locus of the 

specific action of galantamine in the retina.  

Immunocytochemical studies on the localization of mAChR subtypes in primate, 

rat and chick retinas showed that M2 and M4 are expressed by amacrine cells, and M3 is 

expressed primarily by bipolar cells (Fischer et al., 1998; Wassélius et al., 1998; Yamada 

et al., 2003). In addition, Müller cells, the most abundant glial cell type in the mammalian 

retina, express M1 and M4 mAChR types (Da Silva et al., 2008). Muscarine was shown 

to increase intracellular Ca+2 in rabbit RGCs (Baldridge, 1996), however, this effect was 

thought to be indirect because expression of mAChR has not been detected in isolated rat 

or cat RGCs, and muscarine did not elicit membrane currents measured in whole-cell 

patch clamp preparations (Kaneda et al., 1995; Lipton et al., 1987 ). Our results indicate 

that galantamine-mediated RGC neuroprotection in vivo occurs primarily via activation 

of M1, a mAChR subtype expressed by Müller cells. The M4 mAChR subtype, expressed 

by both Müller glia and amacrine cells, also contributes to this effect but to a lesser extent 

than M1 mAChR. Collectively, these data support a model in which non-cell-autonomous 

signaling events downstream of mAChR play a major role in galantamine-induced RGC 

neuroprotection. Activation of M1/M4 mAChR on neighboring Müller glia and amacrine 

cells may lead to stimulation of signaling pathways and production of pro-survival factors 

that protect injured RGCs. Other retinal cell types that express these mAChR subtypes, 

including endothelial cells (Sastry, 1985; Wu et al., 2003), may also participate in 

galantamine-mediated RGC survival.   

M1 and M4 mAChR are G-protein-coupled receptors linked to different signal 

transduction pathways. M1 mAChR are preferentially coupled to pertussis toxin (PTX)-

insensitive Gq/G11 proteins that stimulate phospholipase C (PLC) and 
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phosphatidylinositol hydrolysis with subsequent Ca+2 mobilization from intracellular 

stores (Felder, 1995). M4 mAChR, on the other hand, are preferentially coupled to PTX-

sensitive Gi/o proteins that inhibit adenylate cyclase and regulate intracellular cAMP 

levels (Felder, 1995; Migeon and Nathanson, 1994). It has become increasingly clear that 

mAChR downstream signaling pathways converge or intersect with mediators of cell 

survival. For example, M4 mAChR interacts with the nerve growth factor receptor, via 

Gβγ complexes, to enhance phosphatidylinositol 3-kinase (PI3K)/Akt activation and 

neuronal survival (Wu and Wong, 2006). Of interest, M1 mAChR via Gαq and PLC leads 

to activation of Nrf2, a transcription factor involved in redox homeostasis, which may 

increase the cellular anti-oxidant defenses and confer neuroprotection against oxidative 

stress (Espada et al., 2009). Moreover, M1 mAChR activation also regulates the activity 

of the hypoxia-inducible factor-1 (HIF-1), a transcription factor involved in the cellular 

response to hypoxia (Hirota et al., 2004). Oxidative stress and ischemia/hypoxia have 

been proposed to be major contributors to glaucomatous neurodegeneration. An 

important priority in future studies will be to determine the M1- and M4-coupled 

signaling pathways underlying galantamine-induced RGC neuroprotection. The precise 

delineation of these molecular events should be useful for the design of novel therapeutic 

interventions applicable to glaucoma.   

In summary, our study reveals the potent role of galantamine in the protection of 

RGC structure and function in glaucoma, which could be used in conjunction with 

standard pressure controlling drugs. Our data also identifies retinal mAChR as a novel 

therapeutic target for prevention of neuronal death and vision loss in optic neuropathies.   
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Figure 1. Galantamine protects RGC somata in glaucoma.  

(A) Outline of the experimental protocol used to test the effect of galantamine on RGC 

survival in experimental glaucoma. RGCs were retrogradely labeled with the fluorescent 

tracer DiI and ocular hypertension (OHT) surgery was performed a week later. 

Galantamine treatment (3.5 mg/kg, i.p.) was initiated at ~1 week after OHT surgery, and 

continued thereafter for the entire duration of the experiment. Retinas and optic nerves 

were examined at 3 and 5 weeks following OHT surgery. (B) DiI-labeled RGCs in a flat 

mount preparation from intact, uninjured Brown Norway rat retina. At 5 weeks after 

OHT surgery galantamine treatment (C) led to higher neuronal densities compared to 

eyes treated with PBS (D). (E) Quantitative analysis of RGC survival in experimental 

glaucoma following treatment with galantamine (solid bars) or vehicle (PBS, hatched 

bars) (n = 8-11 rats per group). The density of RGCs in intact, untreated Brown Norway 

rat retinas (open bars) is shown as reference. Galantamine markedly increased the 

number of RGCs that survived at 3 and 5 weeks after OHT surgery (ANOVA, ***: 

P<0.001). Data are expressed as the mean ± S.E.M. Scale bars (B-D): 100 µm. 
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Figure 2. Comparative analysis of RGC survival in experimental glaucoma.  

Mediated by galantamine (solid bars), memantine (crossed hatched bars), donepezil 

(vertical lines) or vehicle (PBS, hatched bars) at 3 and 5 weeks after OHT (n=7–11 rats 

per group) (ANOVA, ***P<0.001). Data are expressed as the mean±S.E.M. 
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Figure 3. Galantamine protects RGC axons in glaucoma.  

Cross-sections of optic nerve segments from intact (A) and glaucomatous eyes treated 

with galantamine (B) or PBS (C) at 5 weeks after ocular hypertension (OHT) surgery. 

Galantamine-treated eyes displayed a larger number of axonal fibers with normal 

morphology compared to PBS-treated control eyes, which showed extensive axon 

degeneration. Panel D shows the quantitative analysis of RGC axons in the optic nerve 

following daily i.p. injection of galantamine (solid bar), or PBS (hatched bar) (n = 8-9 

rats per group) (ANOVA, ***: P<0.001). The number of axons in the intact, uninjured 

Brown Norway rat optic nerve is shown as reference (open bar). Data are expressed as 

the mean ± S.E.M. Scale bars (A-C): 20 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 
 

 
 

Figure 4. Galantamine-mediated neuroprotection is not due to decreased 

intraocular pressure.  

(A) Daily i.p. administration of galantamine did not reduce intraocular pressure (IOP) 

over a period of several weeks. (B) Fluorogold-labeled RGCs in a flat mount preparation 

from intact, uninjured Sprague-Dawley rat retina. (C) Galantamine treatment led to 

marked survival of axotomized RGCs with respect to PBS-treated eyes (D). (E) 

Quantitative analysis of RGC survival following intraocular injection of galantamine 

(solid bars) or PBS (hatched bars) (n = 8-11 rats per group) (ANOVA, ***: P<0.001). 

The density of RGCs in intact, uninjured Sprague-Dawley rat retinas is shown as 

reference (open bar). Data are expressed as the mean ± S.E.M. Scale bars (A-C): 100 µm. 
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Figure 5. RGC functional deficits in glaucoma are improved by galantamine.  

(A) Visual evoked potentials (VEP) recorded from galantamine-treated normal brains 

were indistinguishable from those treated with PBS or without treatment. (B) At 3 weeks 

after OHT surgery, galantamine administration led to marked preservation of the VEP 

responses (ANOVA, *: p < 0.001). (C) At 5 weeks after OHT surgery, both PBS-treated 

and galantamine-treated glaucomatous eyes showed complete obliteration of the VEP 

response. Daily application of timolol drops on the cornea was sufficient to restore the 

VEP response in galantamine-treated eyes but not in PBS-treated eyes (ANOVA, *: p < 

0.001). 
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Figure 6. The neuroprotective effect of galantamine in glaucoma is mediated by 

activation of muscarinic ACh receptors.  

(a) Intraocular co-injection of galantamine with scopolamine, an inhibitor of all mAChR 

types, abrogated the prosurvival effect of galantamine. In contrast, the α7nAChR 

antagonist methyllycaconitine (MLA), the α4β2 nAChR antagonist dihydro-b-

erythroidine (DHβ-E) or the antagonist of all nAChR mecamylamine (MMA) did not 

reduce galantamine-induced survival of axotomized RGCs (ANOVA, *P<0.001). (b) 

Intraperitoneal co-administration of galantamine and scopolamine (SCO) completely 

inhibited galantamine-induced RGC neuroprotection in glaucomatous eyes at 5 weeks 

after OHT (ANOVA, *P<0.001). Intraocular administration of MLA, DHβ-E, MMA or 

SCO, by themselves, did not cause RGC death or adverse effects in non-injured retinas 

(c), nor did they promote survival in injured rat retinas (d) (n=3-6). (e) Intraocular 

injection of galantamine in combination with the M1 mAChR blocker pirenzepine (PRZ), 

the M2 mAChR antagonist DX116, the M3 mAChR blocker 4-DAMP or the M4 mAChR 

antagonist tropicamide (TRO), showed that galantamine-induced neuroprotection is 

mediated through activation of M1 and M4 mAChR (ANOVA, *P<0.001). 
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II.7. TABLES 
 

Table 1. Intraocular pressure (IOP) elevation in glaucomatous eyes. 
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III.1. ABSTRACT 

The relationship between neuronal and vasculature degeneration in glaucoma is 

not well understood. We previously demonstrated that the acetylcholinesterase inhibitor 

galantamine protects retinal ganglion cells (RGCs) in experimental glaucoma. Here, we 

asked whether galantamine-induced neuroprotection correlates with changes in the retinal 

microvasculature and blood flow. The retinal microvasculature density was quantified 

using isolectin, and the regional ocular blood flow was assessed by quantitative 

autoradiography using N-isopropyl-p-14C-iodoamphetamine ([14C]-IMP). Ex vivo 

experiments were carried out on isolated retinal arterioles. RGC death was accompanied 

by a dramatic reduction in the density of the retinal microvasculature and blood flow. 

Galantamine-mediated protection of RGCs correlated with the preservation of retinal 

capillaries at 5 weeks of OHT. Furthermore, vasculature protection correlated with 

marked restoration of blood flow in glaucomatous eyes compared to control eyes. 

Consistent with an increase in blood flow, galantamine induced vasodilation in isolated 

retinal arterioles pre-constricted with endothelin-1 in an endothelial cells dependent 

manner. Blockers of muscarinic ACh receptors (mAChRs) inhibited the neuro- and vaso-

protective effects of galantamine. Our study supports a tight relationship between 

neuronal and vascular preservation in experimental glaucoma. We also demonstrate a role 

for galantamine in RGC and vascular protection mediated by mAChRs activation. 

 

Keywords: glaucoma, retinal microvasculature, inner retinal capillaries, retinal blood 

flow, retinal ganglion cells, isolated retinal vessels, acetylcholinesterase, muscarinic. 
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III.2. INTRODUCTION 

 Glaucoma is the second cause of irreversible blindness worldwide (Resnikoff et 

al. 2004) and its incidence increases dramatically with age (Coleman & Miglior 2008). 

Loss of vision in glaucoma is caused by the selective death of retinal ganglion cells 

(RGCs) (Quigley 1999). The only modifiable risk factor in the development of glaucoma 

is high intraocular pressure (IOP), thus current standard therapies rely solely on lowering 

IOP by medication or surgery. A significant proportion of patients, however, continue to 

experience visual loss despite responding well to treatments that lower eye pressure. In 

addition, >30% of glaucoma patients show optic nerve degeneration in the absence of 

high intraocular pressure, also known as normal (or low) tension glaucoma (NTG)  

(Nemesure et al. 2007). Therefore, a pressing medical need exists to identify underlying 

molecular mechanisms contributing to RGC death and to develop effective 

neuroprotective therapies to prevent vision loss in glaucoma.   

It has been proposed that deregulations of the vascular system may contribute to 

glaucoma onset and progression (Tielsch et al. 1995). Insufficient retinal blood flow in 

NTG patients has been correlated with visual field loss suggesting a role for vascular 

dysfunction in glaucoma (Chung et al. 1999, Harris et al. 1994). Capillary deficits have 

been observed in glaucoma patients including slower arteriovenous passage time within 

the retinal vasculature (Kaiser et al. 1997, Duijm et al. 1997, Wolf et al. 1993). Both 

NTG and primary open angle glaucoma (POAG) individuals have high rates of capillary 

non-perfusion in the optic disc (Plange et al. 2006) suggesting that the microvasculature 

undergoes pathological changes during glaucomatous damage. RGCs are in close contact 

with capillaries and depend on the retinal microvasculature for metabolic support and 

nutrition. Conversely, RGCs provide growth factors including angiopoietins and vascular 

endothelial growth factor (VEGF) that stimulate vessel growth and endothelial cell 

survival (Sapieha et al. 2008, Hata et al. 1995). In spite of this, a clear correlation 

between vascular deficiency and RGC death in glaucoma has not been established.   

In this study, we asked whether there is a loss of retinal capillaries in 

experimental glaucoma and, if so, whether it occurs early in the disease. We also sought 

to determine whether capillary loss occurred prior, concomitantly or after RGC death. 
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Finally, we asked if neuroprotective strategies that promote RGC survival would also 

lead to vascular protection. 

 
III.3. MATERIAL AND METHODS 

III.3.1. Experimental animals 

Male Brown Norway rats, 10-12 months old (Charles River Canada, 300-400 g) 

were used for ocular hypertension (OHT) surgery, retinal microvasculature isolation and 

blood flow experiments. All procedures were performed in compliance with the Canadian 

Council on Animal Care for the use of experimental animals and the guidelines of the 

Association for Research in Vision and Ophthalmology. The number of animals used in 

each experiment is indicated above the bar in the corresponding graph. 

III.3.2. Retrograde labeling of RGCs 

 RGCs were retrogradely labeled with DiI (1,1'-dioctadecyl-3,3,3’,3’-tetramethyl-

indocarbocyanine perchlorate; Molecular Probes, Junction City, OR) or with Fluorogold 

(2%, Fluorochrome, Englewood, CO). DiI crystals (3%) or Fluorogold (2%) were 

dissolved in 0.9% NaCl containing 10% dimethyl sulfoxide (DMSO) and 0.5% Triton X-

100. The superior colliculus was exposed and a small piece of gelfoam (Pharmacia and 

Upjohn Inc., Mississauga, ON) soaked in tracer was applied to the surface as previously 

described (Almasieh et al. 2010). Seven days after tracer application, the time required 

for labeling the entire RGC population, animals were subjected to ocular hypertension 

surgery.  

III.3.3. Ocular hypertension surgery and measurement of intraocular pressure 

Unilateral elevation of IOP was induced as previously described (Morrison et al. 

1997) by a single injection of a hypertonic saline solution (1.85 M NaCl) into an 

episcleral vein. Animals were kept in a room with constant low fluorescent light (40-100 

lux) to stabilize circadian IOP variations. IOP from glaucomatous and normal eyes was 

measured in awake animals because general anesthetics lower IOP (Jia et al. 2000). A 

calibrated tonometer (TonoPen XL, Medtronic Solan, Jacksonville, FL) was used to 

measure IOP after application of one drop of proparacaine hydrochloride (0.5%, Alcon 
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Laboratories, Inc., Fort Worth, TX) per eye. The tonometer was held exactly 

perpendicular to the corneal surface and ~10 consecutive readings per eye were taken and 

averaged to obtain an accurate IOP measurement. IOP was measured daily for two weeks 

after ocular hypertension surgery, then every other day for the entire duration of the 

experiment. The mean and peak (maximum) IOP for each eye were calculated and these 

values were used to estimate the mean and peak IOP for experimental and control groups.  

III.3.4. In vivo drug delivery 

Galantamine hydrobromide (3.5 mg/kg, Tocris Bioscience, Ellisville, MO) and 

scopolamine hydrobromide (1 mg/kg, Tocris Bioscience, Ellisville, MO), both of which 

readily cross the blood-brain barrier, were delivered by daily intraperitoneal (i.p.) 

injection.  Drug delivery started immediately after IOP stabilization following ocular 

hypertension surgery and continued for the entire duration of the experiment. Control 

animals received daily i.p. injections of vehicle (PBS).  In some experiments, 

galantamine (100 mM), mecamylamine (10 mM, Sigma-Aldrich, St. Louis, MO) or 

scopolamine (10 mM, Tocris Bioscience, Ellisville, MO) were injected intraocularly in a 

total volume of 5 µl. For intraocular delivery, drugs were injected into the vitreous 

chamber using a 10-µl Hamilton syringe adapted with a 32-gauge glass microneedle, the 

tip of which was inserted into the superior hemisphere of the eye at a ~45° angle through 

the sclera into the vitreous body. This route of administration avoided retinal detachment 

or injury to eye structures, including the iris and lens. Surgical glue (Indermill, Tyco 

Health Care, Mansfield, MA) was used to seal the injection site. 

III.3.5. Quantification of RGC soma 

  For RGC density counts, rats were deeply anesthetized and perfused 

transcardially with 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer. Eyes were 

quickly enucleated and retinas were dissected out and flat-mounted on a glass slide with 

the ganglion cell layer side up. RGCs were counted in three square areas at distances of 1, 

2 and 3 mm from the optic disc in each of the four retinal quadrants (superior, inferior, 

nasal and temporal) for a total of 12 retinal areas encompassing a total area of 1 mm2. 

Macrophages and microglia that may have incorporated fluorescent tracer after 

phagocytosis of dying RGCs were excluded from our quantitative analysis based on cell-
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specific markers and morphology (Lebrun-Julien et al. 2009). Data analysis and statistics 

were performed using the GraphPad Instat software (GraphPad Software Inc., San Diego, 

CA) by a one-way analysis of variance (ANOVA) test followed by Bonferroni's multiple 

comparison post-test. 

III.3.6. Isolectin staining 

 Dissected retinas were placed in a 24-well plate, washed twice with PBS and then 

permeabilized with 100% ice cold methanol for 10 minutes. TRITC-labeled isolectin 

antibody (4µg/ml Sigma-Aldrich, St. Louis, MO) was prepared in PBS containing 1% 

Triton X-100 and incubated at room temperature overnight. Retinas were flat-mounted on 

a glass slide with the ganglion cell layer side up and visualized using a Zeiss Axiovert 

fluorescent microscope. The total length of the retinal microvasculature was measured 

per mm2 of retinal surface using Northern Eclipse image analysis software (Empix 

Imaging, Toronto, ON). 

III.3.7. Quantitative autoradiography 

Retinal blood flow measurements were performed by quantitative 

autoradiography using the diffusible blood flow tracer N-isopropyl-p-[14C]-

iodoamphetamine ([14C]-IMP) as previously described (Pouliot et al. 2009). Briefly, 

[14C]-IMP (100 μCi/kg; PerkinElmer, Boston, MA,) was dissolved in saline solution and 

infused through a femoral vein catheter over a 30 sec period at a constant rate of 

1.2 ml/min. Arterial blood samples were collected from the femoral artery catheter at a 

continuous rate until animal was sacrificed (2 min after  [14C]-IMP infusion onset). The 

eyes were quickly removed and post-fixed in 4% PFA for 1 hr. The retinas were dissected 

out, flat-mounted on a glass slide with the ganglion cell layer side up and exposed to X-

ray film for 4 days alongside [14C] standards (ARC, St. Louis, MO). Retinal blood flow 

was calculated by implementing the principle of indicator-fractionation technique using 

the equations F= [CIMP (T) × 10-1 / ׬ ሻ଴்ݐሺ ܽܥ  ] for autoradiographic analysis of flat-mount 

retinas as previously described (Pouliot et al. 2011, Pouliot et al. 2009, Lear et al. 1982). 

F represents the blood flow (ml/100 g/min), CIMP (T) is the radioactivity measured from 

the autoradiogram (μCi/g) at the time T (min) after sampling and Ca (t) is arterial blood 

sample radioactivity (μCi/ml). To obtain CIMP(T) values, a computerized image analysis 
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system (MCID Basic Software, v7.0, Interfocus Imaging, Linton, England) was used to 

collect readings from a 0.8 mm2 circular area acquired at 1, 2 and 3 mm (isopters) from 

the optic nerve in each eye quadrant (Pouliot et al. 2009). The Ca (t) value was obtained 

by measuring radioactivity in the collected blood samples using a scintillation counter 

(LS6500, Beckman Coulter, Mississauga, ON). 

III.3.8. Retinal arteriole isolation and vessel diameter measurements 

  Following transcardial perfusion with heparin (16 u/ml, Sigma-Aldrich, St. Louis, 

MO), the  retinas were dissected out and placed in a low Mg2+/low Ca2+ dissociation 

buffer. Each retina was cut into small pieces with surgical scissors and triturated gently 

with a fire-polished pipette. Dissociated retinal tissue containing retinal vessel segments 

were plated onto laminin-coated dishes and allowed to adhere for 15 min before 

superfusion with bath solution (145 NaCl, 5 KCl, 10 HEPES, 5 D-Glucose, 2 mM CaCl2, 

1 mM MgCl2, pH 7.3). Isolated retinal arterioles were identified under an inverted light 

microscope and vessel diameter was recorded at 120 Hz with a video edge detector 

(Crescent Electronics, Sandy, UT).  Human endothelin-1 (ET-1, 10 nM, Peptide Institute 

Inc., OSAKA, Japan), galantamine hydrobromide ( Gal, 50 µM, Tocris Bioscience, 

Ellisville, MO), scopolamine hydrobromide ( SCO, 10 µM, Tocris Bioscience, Ellisville, 

MO), mecamylamine hydrochloride (MMA, 10 µM, Sigma-Aldrich, St. Louis, MO ), 

pirenzepine dihydrochloride (PRZ, 1 µM, Tocris Bioscience, Ellisville, MO), 

diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, 1 µM, Tocris Bioscience, 

Ellisville, MO), tropicamide (1-10 µM, Tocris Bioscience, Ellisville, MO) or 11-[[2-

[(Diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido [2,3-b] [1,4] 

benzo-diazepin-6-one (DX116, 1-10 µM, Tocris Bioscience, Ellisville, MO) were applied 

to isolated retinal vessels using a rapid solution switcher device that allowed the 

application of drugs at 37oC. Vessels were superfused with bath solution for 10 min 

followed by application of 10 nM ET-1 until a stable contraction was obtained (1- 2 min) 

after which vessel diameter was recorded for an additional 10 min. Some experiments 

were conducted on vessels denuded of endothelium by application of CHAPS (0.3%, 

Sigma-Aldrich St. Louis, MO) at the time of perfusion Digital photomicrographs of 

vessels were captured with an Infinity 3-1C digital camera (Lumenera Corp.) mounted on 
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a Nikon Eclipse E800 microscope, and analyzed with Infinity Analyze (Lumenera Corp.) 

and Adobe Photoshop CS3 (Adobe Systems, Inc., San Jose, CA). Data were analyzed 

using two-tailed unpaired t-tests and one-way analyses of variance (ANOVA) with a 

Newman-Keuls post hoc test.  

 
III.4. RESULTS 

III.4.1. Loss of the retinal microvasculature occurs concomitantly with RGC death 

in experimental glaucoma 

Nerve fiber layer capillaries play crucial physiological roles by supplying oxygen 

and nutrients to RGCs and their axons. We sought to determine whether there is loss of 

inner retinal capillaries in experimental glaucoma and, if so, whether this damage occurs 

prior, concurrently or after RGC death. To achieve this, we carried out a detailed 

temporal analysis of glaucomatous retinas in which we simultaneously visualized retinal 

capillaries using TRITC-labeled isolectin, a marker of functional endothelial cells 

(Laitinen 1987; Goldstein et al., 1981), while identifying RGCs with the fluorescent 

retrograde tracer DiI (Figure 1).  

Quantification of the retinal microvascular density at three days after OHT 

surgery, a time when there is no detectable increase in IOP, revealed a small (~10%) but 

significant reduction in capillary density (17,837 ± 410 µm/mm2, n=6) compared to non-

injured retinas (19,710 ± 594 µm/mm2, n=6) (Figure 1A, 1B, 1M).  In these same retinas, 

a significant reduction in the density of RGC soma (1,646 ± 31 RGCs/mm2, n=6) 

compared to control retinas (1,803 ± 24 RGCs/mm2, n=6) was also found, confirming 

that degenerative changes occur in both neuronal and vascular compartments early after 

glaucomatous damage and prior to a detectable increase in IOP (Fig 1G, 1H, 1M). 

Weekly analysis of retinal capillary density throughout the entire duration of the study 

(up to 5 weeks after OHT) demonstrated a steady loss of the microvasculature that 

occurred concomitantly with RGC death (Fig. 1C-F, 1I-L, 1M). These data indicate a 

tight neurovascular relationship between RGCs and retinal capillaries, and demonstrate 

that both neurons and the microvasculature are similarly affected in experimental 

glaucoma.   
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III.4.2. Galantamine mediates vasoprotection in experimental glaucoma 

The observation that RGC death occurs concomitantly with microvasculature loss 

puts forward the idea that protective therapies for glaucoma should ideally target both the 

neuronal and the vascular compartments. We previously demonstrated that galantamine, a 

small molecule acetylcholinesterase (AChE) inhibitor, promotes robust structural and 

functional protection of RGC soma and axons (Almasieh et al., 2010). To establish 

whether galantamine had a vasoprotective effect, we examined capillary density in 

experimental animals subjected to OHT surgery followed by daily intraperitoneal 

injection of galantamine (treatment onset: ~1 week after OHT) (Fig. 2). Galantamine 

treatment resulted in robust preservation of capillary density at three weeks (~80%: 

15,423 ± 290 µm/mm2, n=4) and five weeks (~40%: 13,986 ± 602 µm/mm2, n=5) after 

OHT, compared to PBS-treated control groups (3 weeks: 13,421 ± 685 µm/mm2, n=5; 5 

weeks: 7,901 ± 618 µm/mm2, n=5). The vasoprotective effect of galantamine was most 

apparent at five weeks of OHT when considerable loss of retinal capillaries has already 

occurred in non-treated eyes. Importantly, galantamine treatment virtually prevented 

further retinal capillary degeneration between three and five weeks after OHT (Fig. 2E). 

These data demonstrate that in addition to neuroprotection, galantamine also confers 

robust vascular protection in experimental glaucoma.  

III.4.3. Retinal blood flow impairment in experimental glaucoma is partially 

restored by galantamine  

To assess the functional status of the microvascular network in glaucomatous 

versus control eyes and in the presence or absence of galantamine, we investigated 

regional blood flow using [14C]-IMP as previously described by us (Pouliot et al., 2009) 

(Fig. 3). A significant reduction of retinal blood flow was observed in glaucomatous eyes, 

visualized in pseudo-colored autoradiograms, at five weeks after OHT compared to non-

injured eyes (Figs. 3B, 3D). Galantamine treatment markedly restored retinal blood flow 

in experimental glaucoma (82% of intact) compared to PBS-treated control animals (50% 

of intact) (Figs 3C, 3D, 3E). To establish whether restoration of blood flow occurred 

locally or throughout the retina, regional blood flow was quantified in three consecutive 

isopters at 1, 2 and 3 mm from the optic nerve head (Fig. 3A, 3F, Table 1). In non-injured 
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retinas, higher blood perfusion was measured in central regions compared to the 

periphery (Fig. 3B, 3F). In experimental glaucoma, the central retina underwent the most 

dramatic reduction in blood flow at five week after OHT (Fig. 3D, 3F). Nonetheless, the 

galantamine-mediated restoration of blood flow was proportional in central and 

peripheral retinal regions (Fig. 3F, Table 1). Our data indicate that retinal blood flow is 

markedly reduced in experimental glaucoma, a response that is most prominent in the 

central retina. Treatment with galantamine not only significantly increased global retinal 

blood flow in hypertensive eyes, but it was particularly beneficial in central regions of the 

retina which undergo marked hypoperfusion during glaucomatous damage.  

III.4.4. Galantamine stimulates retinal arteriole relaxation  

To evaluate the mechanisms of galantamine-mediated vascular protection, we 

carried out studies on isolated retinal vessels pre-contracted with endothelin (ET-1).  ET-

1 treatment alone led to a stable reduction in vessel diameter (32% contraction), while 

application of galantamine promoted significant relaxation of pre-contracted vessels 

(Figure 4A-C). A concentration of galantamine as low as 5 µM was sufficient to promote 

vessel relaxation, however, the optimal relaxation-promoting dose of galantamine was 50 

µM leading to maximum relaxation and increased the diameter of vessels by 50% (17% 

contraction). In a second group of experiments, we used isolated retinal arterioles in 

which endothelial cells were removed by application of CHAPS at the time of perfusion. 

Application of ET-1 resulted in a higher pre-contraction level (45% contraction) 

compared to vessel preparations with intact endothelial cells (Fig. 4C). Furthermore, 

addition of galantamine (50 µM) to pre-contracted vessels devoid of endothelium failed 

to undergo relaxation (Fig. 4C). Collectively, these data demonstrate that a moderate dose 

of galantamine effectively leads to vasodilation of pre-contracted retinal vessels ex vivo, 

and that galantamine-mediated relaxation requires the presence of endothelial cells.  

III.4.5. Muscarinic acetylcholine receptors mediate the vasodilator and 

vasoprotective effects of galantamine in experimental glaucoma  

We previously demonstrated that galantamine-mediated RGC protection in 

experimental glaucoma requires activation of muscarinic acetylcholine receptors 

(mAChRs) (Almasieh et al., 2010). To establish whether this mechanism played a role in 
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vasoprotection, we carried out experiments using isolated pre-contracted vessels exposed 

to galantamine alone or in combination with pharmacological inhibitors of mAchR. 

Combined application of galantamine and scopolamine (SCO), a pan-inhibitor of all 

mAChR sub-types, arrested its vasodilator effect on pre-contracted vessels (Fig. 4D). In 

contrast, combined application of galantamine with mecamylamine (MMA), a blocker of 

all neuronal nicotinic acetylcholine receptors (nAChRs), did not significantly alter 

galantamine-induced vasodilation (Fig. 4D). These results indicate that galantamine 

mediates retinal arteriole relaxation through mAChRs activation. To further establish 

which mAChR sub-type was involved in this response; we used selective mAChR 

antagonists co-administered with galantamine. Application of pirenzepine, a selective 

blocker of the M1 mAChR subtype, or 4-DAMP, an inhibitor of the M3 mAChR subtype, 

abolished galantamine-mediated relaxation of pre-contracted vessels (Fig. 4E). In 

contrast, tropicamide or DX116, blockers of M4 or M2 mAChRs respectively, did not 

have a significant effect on galantamine-induced vasodilation (not shown). These data 

indicate that M1 and M3 mAChRs are molecular mediators of the relaxation effect of 

galantamine on retinal vessels. 

To assess whether mAChRs played a role in the microvasculature protection 

conferred by galantamine in experimental glaucoma in vivo, we tested the effect of 

galantamine in combination with MMA or SCO. Since these AChR antagonists do not 

cross the blood-brain/retinal barrier or exhibit extremely low barrier permeability 

(Mickala et al., 1996; Stein et al., 1995), they were administered by intravitreal injection 

at one week after OHT as previously described by us (Almasieh et al., 2010) and analysis 

of microvasculature density was performed two weeks later. Co-administration of 

galantamine and SCO completely inhibited the vasoprotective effect of galantamine. 

Although combination of galantamine and MMA led to a slight reduction in capillary 

density, this effect was not significantly different from that of galantamine alone (Fig. 

4F). Thus, we conclude that the vasoprotective effect of galantamine in vivo is mediated 

primarily through activation of mAChRs in experimental glaucoma. 
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III.5. DISCUSSION 

This study reports a number of important findings. First, we detected substantial 

loss of small capillaries in the inner retina early during glaucomatous degeneration. 

Second, we found that loss of retinal capillaries occurred concomitantly with the death of 

RGCs following OHT. The onset of microvasculature and RGC loss occurred at the same 

time and proceeded at the same rate for at least three weeks after the initial insult. Lastly, 

systemic administration of the neuroprotective drug galantamine increased 

microvasculature density and improved blood flow in experimental glaucoma. 

Galantamine-mediated protection of the retinal microvasculature occurred through 

activation of M1 and M3 mAChR subtypes. 

Although retinal and ONH blood flow defects have been suggested to play a role 

in glaucoma (Flammer et al., 2002; Osborne et al., 2001), a clear correlation between 

neuronal and vascular compartments in this disease has not been established. 

Quantification of retinal capillary density demonstrated that retinal microvasculature loss 

occurs as early as three days after OHT surgery and continues to progress thereafter. 

Intriguingly, we did not detect a significant increase in IOP at this early time point as 

measured using a calibrated TonoPen, consistent with the gradual increase in IOP that 

occurs over 7-10 days reported in this rat glaucoma model (Morrison et al., 1997). A 

likely explanation is that a subtle increase in IOP, not detectable using conventional 

tonometry, is sufficient to trigger a cascade of events leading to capillary and RGC loss. 

Furthermore, an IOP increase below a detectable threshold can lead to small but 

significant changes in endogenous factors that threaten the integrity of the retinal 

vasculature including reactive oxygen species, tumor necrosis factor alpha (TNFα) and 

glutamate, triggering endothelial cell apoptosis. The identification of the endogenous 

signals leading to loss of retinal capillaries early after glaucomatous damage should be a 

priority of future studies. 

Importantly, our data also demonstrate that the time-course of retinal capillary 

loss is indistinguishable from that of RGC death. Given the tight functional relationship 

between RGCs and the retinal microvasculature during disease onset and progression, we 

asked whether strategies that promote RGC neuroprotection can be used to sustain the 

retinal capillary bed and enhance blood flow. We previously demonstrated that 
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galantamine, an acetylcholinesterase inhibitor, promotes robust structural and functional 

RGC protection of RGCs in experimental glaucoma (Almasieh et al., 2010). In the 

present study, we show that galantamine treatment resulted in a substantial preservation 

of capillary density that correlated with increased retinal blood flow in the central and 

peripheral retina. Therefore, in addition to neuronal protection, galantamine has marked 

vasoprotective properties. 

Due to the tight relationship between RGC and capillary loss in glaucoma, it is 

not clear whether galantamine first promotes the neuroprotection which then leads to 

vasoprotection or vice versa. To address the mechanism of action of galantamine-induced 

vasoprotection, we first used an ex vivo preparation of isolated retinal vessels. Our data 

show that galantamine superfusion led to marked relaxation of pre-contracted vessels, a 

response that was lost after removal of their endothelium with CHAPS. This finding 

suggests a direct effect of galantamine on retinal arteries that is dependent on the 

presence of healthy endothelial cells. Moreover, our results demonstrate that 

galantamine-mediated vessel relaxation in vitro and vasoprotection in experimental 

glaucoma in vivo occur primarily through mAChRs activation. We previously 

demonstrated that galantamine-induced RGC protection in experimental glaucoma also 

occurs via mAChRs, primarily the M1 and M4 subtypes (Almasieh et al. 2010). Here, we 

show that vasoprotection following galantamine administration involves M1 and M3 

mAChR subtypes. Intriguingly, RGCs do not express mAChRs (Da Silva et al., 2008), 

whereas retinal and brain endothelial cells abundantly express M1 and M3 mAChR 

subtypes (Elhusseiny et al., 1999; Sastry, 1985). Both M1 and M3 mAChRs have been 

implicated in cholinergic mediated vasomodulation in the brain (Dauphin et al., 1994) 

and ACh-dependent vascular relaxation is lost in M3 mAChR knockout mice (Bény et 

al., 2008), thus supporting our finding that galantamine relaxes pre-contracted isolated 

retinal arterioles via M1 and M3 mAChRs. Since RGCs lack mAChR while endothelial 

cells can directly respond to galantamine, it is tempting to speculate that vasoprotection is 

a pre-requisite for galantamine-mediated neuroprotection in experimental glaucoma. 

However, we cannot rule out the contribution of other retinal cells expressing M1, M3 or 

M4 mAChRs, including Müller glia, bipolar and horizontal cells (Da Silva et al., 2008; 

Fischer et al., 1998; Yamada et al., 2003). Indeed, activation of retinal M1 and M3 
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mAChRs subtypes stimulates nNOS levels and activity leading to vasodilation (Borda et 

al., 2005), thus activation of mAChRs in retinal cells other than endothelial might help 

restore retinal blood flow in experimental glaucoma. 

In summary, in this study we demonstrate an early and significant loss of the 

retinal microvasculature intimately associated with RGC death in experimental glaucoma. 

We demonstrated that a clinically approved drug, galantamine, promotes effective 

vasoprotection and restores retinal blood flow following ocular hypertension damage. 

These findings are particularly important for the treatment of glaucomatous neuropathies 

because while RGC death is irreversible, the retinal microvasculature retains the capacity 

to regenerate. Therefore, therapeutic strategies based on vascular protection and vessel 

regeneration may provide essential, long-term support to neurons and improve visual 

outcome in glaucoma. 
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Figure 1. Loss of inner retinal capillaries along with RGCs in experimental 

glaucoma.  

Retinal flat-mounts show isolectin-labeled retinal capillaries from non-injured, non-

treated eye (A, Intact) and glaucomatous non-treated eyes (B-F) and DiI-labeled retinal 

ganglion cells from non-injured, non-treated eyes (G, Intact) and glaucomatous non-

treated eyes (H-L); Scale bars: 100 µm. (M) Quantitative analysis of capillary length in 

the nerve fiber layer of retinas from glaucomatous eyes; retinas were examined at 3 days, 

1, 2, 3, and 5 weeks after OHT surgery, the average total values for each group (hatched 

bars) is presented as percentage of capillary density value for non-injured, non-treated 

retinas from Brown-Norway rat retinas (19710 ± 594 µm/mm2, mean ± S.E.M., n = 6). 

Quantitative analysis of RGC survival also was examined in the same retinas (solid bars) 

and results are presented as percentage of the average total RGC population in non-

injured, non-treated retinas from Brown-Norway rat retinas (1830 ± 24 RGCs/mm2, mean 

± S.E.M., n = 6) (M). Number of animals in each group is indicated above the related bar. 
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Figure 2. Galantamine protects inner retinal capillaries in experimental glaucoma.  

Isolectin-labeled retinal vasculatures in flat-mount preparation of glaucomatous retinas 

demonstrating galantamine treated (3.5 mg/kg, i.p.) (A, 3 weeks and C, 5 weeks) and 

vehicle (PBS) treated groups (B, 3 weeks and D, 5 weeks). (E) Quantitative analysis of 

capillary length after OHT indicates significant preservation of inner retinal capillaries in 

galantamine treated groups (solid bars) compare to vehicle treated (hatched bars). Data 

are expressed as µm/mm2 ± S.E.M and number of animals in each group is indicated 

above the related bar (ANOVA, **p < 0.01). Scale bars (A-D): 100 µm. 
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Figure 3. Galantamine-mediated improvement of the retinal blood flow in 

glaucomatous retinas.  

(A) Schematic of a flat-mounted retina representing method of sampling; filled circles 

indicate standard sampling probe and light circular lines show same isopters of different 

retinal quadrants. (B) Pseudo-colored autoradiogram of a flat-mounted intact retina, (C) 

galantamine treated and (D) vehicle treated retinas 5 weeks after OHT surgery. (E) 

Measurements of blood flow values indicated a significant decline of global retinal blood 

flow in glaucomatous retinas 5 weeks after OHT (hatched bar), galantamine significantly 

improved global retinal blood flow in glaucomatous retinas (solid bar). (F) Reduction in 

the blood flow was also reflected in each isopter (hatched bars) and was significantly 

improved by galantamine treatment (solid bars) compare to vehicle treated. Data are 

expressed as ml/100 g/min ± S.E.M and number of animals in each group is indicated 

above the related bar (ANOVA, *p < 0.05). 
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Figure 4. Galantamine mediates vasodilation and vasoprotection via signaling 

through muscarinic acetylcholine receptors.  

(A) Contraction of isolated retinal vessels in response to incubation with Endothelin-1. 

(B) Application of galantamine to pre-contracted vessels resulted in relaxation and 

increase of their diameter. (C) Quantitative analysis indicated that presence of endothelial 

cells is necessary for vasodilatory effect of galantamine; as denudation of endothelium by 

CHAPS eliminates the galantamine-mediated relaxation. (D) Muscarinic ACh receptors 

blocker, scopolamine (SCO), abolished vasodilatory effect of galantamine whereas 

nicotinic blocker, Mecamylamine (MMA) did not have significant effect on inhibition of 

galantamine mediated relaxation. (E) Galantamine-mediated vasorelaxation was 

selectively inhibited by blockers of M1 (Pirenzepine, PRZ) and M3 (4-DAMP) subtypes 

of muscarinic receptors. (A-E) Data is presented as percentage of vessels diameter before 

application of Endothelin-1. (F) Intraocular application of muscarinic receptor inhibitor 

(SCO) abolished galantamine-mediated protection of inner retinal capillaries; data are 

expressed as µm/mm2 ± S.E.M and number of animals in each group is indicated above 

the related bar (ANOVA, *p < 0.05). 
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III.7. TABLES 

 

Table 1. Autoradiography values of the blood flow for each retinal isopter. 
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IV.1. ABSTRACT  

The reactive oxygen species superoxide has been recognized as a critical signal 

triggering retinal ganglion cell (RGC) death after axonal injury. Although the 

downstream targets of superoxide are unknown, chemical reduction of oxidized 

sulfhydryls has been shown to be neuroprotective for injured RGCs. Based on this; we 

developed novel phosphine-borane complex compounds that are cell permeable and 

highly stable. Here, we report that our lead compound, bis (3-propionic acid methyl ester) 

phenylphosphine borane complex 1 (PB1), promotes RGC survival in rat models of optic 

nerve axotomy and in experimental glaucoma. PB1-mediated RGC neuroprotection did 

not correlate with inhibition of stress-activated protein kinase signaling, including ASK1, 

JNK or p38. Instead, PB1 led to a striking increase in retinal BDNF levels and 

downstream activation of the ERK1/2 pathway. Pharmacological inhibition of ERK1/2 

entirely blocked RGC neuroprotection induced by PB1. We conclude that PB1 protects 

damaged RGCs through activation of pro-survival signals. These data support a potential 

cross-talk between redox homeostasis and neurotrophin-related pathways leading to RGC 

survival after axonal injury.   

Keywords: Superoxide, Redox Signaling, Retinal Ganglion Cell, Neuroprotection, 

Brain-Derived Neurotrophic Factor, Extracellular Signal-Regulated Kinase 1/2.   

 

Running title: Phosphine-Borane Complex-Induced Neuroprotection of Retinal Neurons.    
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IV.2. INTRODUCTION  

Axonal injury is a common cause of neuronal death in the central nervous system 

(CNS) of adult mammals and is the primary damaging event in most optic nerve diseases, 

including glaucoma. A crucial element in the pathophysiology of optic neuropathies is 

the death of retinal ganglion cells (RGCs), the neurons that convey visual information 

from the retina to the brain. The signals leading to RGC loss in glaucoma are not well 

understood (Nickells, 2007; Wax and Tezel, 2002), but several mechanisms have been 

proposed, including neurotrophic factor deprivation, mechanical compression, 

excitotoxicity, reactive astrocytosis and induction of pro-apoptotic pathways (Carpenter 

et al., 1986; Cui and Harvey, 1995; Kikuchi et al., 2000; Kiryu-Seo et al., 2000; 

Mansour-Robaey et al., 1994; Pearson and Thompson, 1993; Shen et al., 1999; Stys et al., 

1990; Yoles et al., 1997). The relationship between these processes is complex and it is 

likely that more than one signal leads to RGC death induced by axonal damage.   

The hypothesis that neurotrophin deprivation contributes to RGC death after 

axonal injury has received considerable attention because a lack of target-derived brain-

derived neurotrophic factor (BDNF) or nerve growth factor (NGF) leads to apoptotic 

death of developing RGCs (Chau et al., 1992; Nurcombe and Bennett, 1981; Rabacchi et 

al., 1994; Thoenen et al., 1987). Although the role of neurotrophins in the maintenance of 

adult RGCs is less clear, there is substantial evidence showing that administration of 

exogenous BDNF promotes robust RGC survival in a variety of optic nerve injury 

paradigms (Chen and Weber, 2001; Di Polo et al., 1998; Klöcker et al., 2000; Mansour-

Robaey et al., 1994; Mey and Thanos, 1993; Peinado-Ramon et al., 1996). Upon binding 

of BDNF to its cognate receptor TrkB, multiple signaling pathways are activated 

including the extracellular signal-regulated kinases 1/2 (ERK1/2) and the 

phosphatidylinositol-3 kinase (PI3K)/Akt pathways (Kaplan and Miller, 2000). 

Endogenous activation of ERK1/2 and PI3K has been reported in RGCs in response to 

BDNF and other protective agents, and pharmacological inhibition of these molecules 

effectively blocks their survival effect (Cheng et al., 2002; Diem et al., 2001; Kermer et 

al., 2000; Schallenberg et al., 2009). Furthermore, we previously showed that viral 

vector-mediated stimulation of ERK1/2 was sufficient to protect RGCs from death 

induced by axotomy or ocular hypertension (Pernet et al., 2005; Zhou et al., 2005).  



118 
 

 
 

Oxidative signaling, caused by the imbalance between the production of reactive 

oxygen species (ROS) and their elimination by antioxidants, has been recognized as 

another central contributor to neuronal injury and death. ROS can modulate protein 

function by altering redox states leading to cysteine sulfhydryl oxidation. Oxidative 

cross-linking creates new disulfide bonds causing protein conformational changes and 

subsequent activation of cell death signals (Carugo et al., 2003; Park and Raines, 2001). 

Consistent with this, RGC viability has been shown to depend on the intracellular 

sulfhydryl redox state, with survival observed under mildly reducing conditions and 

increased death rates induced by sulfhydryl oxidation (Castagne and Clarke, 1996; 

Castagne et al., 1999; Geiger et al., 2002; Swanson et al., 2005).   

We recently demonstrated that ROS superoxide is a key signal triggered by 

axonal injury leading to RGC apoptosis. Using live imaging, we showed that there is a 

marked elevation of superoxide in RGCs soon after optic nerve axotomy, and that a 

decrease in intracellular superoxide levels delays RGC death in vivo (Kanamori et al., 

2010). Based on this, we hypothesized that reduction of oxidized sulfhydryls on critical 

proteins might attenuate the activation of death pathways that influence the fate of RGCs 

after injury. To test this, we developed reducing agents using a borane-protected 

phosphine backbone (Schlieve et al., 2006). Here we characterize a leading compound, 

bis (3-propionic acid methyl ester) phenylphosphine borane reducing complex 1 (PB1), 

and show that PB1 promotes RGC protection in rat paradigms of optic nerve injury. We 

demonstrate that, rather than inhibiting cell death pathways, PB1 leads to increased 

retinal levels of BDNF and that PB1-mediated RGC neuroprotection requires activation 

of ERK 1/2 in vivo. Our data support the conclusion that the reducing agent PB1 protects 

injured RGCs through activation of pro-survival pathways, and suggest a potential cross-

talk between intracellular redox regulation and activation of neurotrophin-related 

neuroprotective signals in retinal neurons. 
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IV.3. MATERIALS AND METHODS  

IV.3.1. Experimental animals  

All procedures were carried out in accordance with the Animal Research: 

Reporting In Vivo Experiments (ARRIVE) and the Canadian Council on Animal Care 

guidelines. The optic nerve axotomy model, a paradigm of acute axonal damage and 

RGC death, was carried out in adult Sprague-Dawley rats (Charles River, 180-200 g). 

The experimental glaucoma model, induced by ocular hypertension (OHT) surgery, was 

performed in retired breeder Brown Norway rats (Charles River, Canada; 300-400 g). 

Brown Norway rats were used for the experimental glaucoma model because they have a 

larger eye suitable for the OHT surgical procedure (Johnson et al., 1996; Morrison et al., 

1997). The number of animals used in each experiment (n) is indicated above the bar in 

the corresponding graph.   

IV.3.2. RGC retrograde labeling    

For quantification of neuronal survival, RGCs were retrogradely labeled with 

Fluorogold (2%, Fluorochrome, Englewood, CO) or DiI (3%, 1,1'-dioctadecyl-3,3,3’,3’-

tetramethyl-indocarbocyanine perchlorate; Molecular Probes, Junction City, OR). Tracers 

were dissolved in 0.9% NaCl containing 10% dimethyl sulfoxide (DMSO) and 0.5% 

Triton X-100. The superior colliculus was exposed bilaterally and a small piece of 

gelfoam (Pharmacia and Upjohn Inc., Mississauga, ON) soaked in tracer was applied to 

the surface. Seven days is the earliest time for detection of the entire RGC population 

after application of retrograde tracers to the rat superior colliculus (Vidal-Sanz et al., 

1988). Thus, to ensure that all RGCs were fully labeled prior to axonal injury, axotomy or 

OHT surgery were performed at 7 days after tracer application.    

IV.3.3. Optic nerve injury paradigms   

IV.3.3.1. Optic nerve axotomy  

Animals were deeply anesthetized (2% isoflurane, 0.8 liter/min) and the left optic 

nerve was carefully exposed within the dura and transected ~1 mm posterior to the globe. 

This procedure avoided injury to the ophthalmic artery and its branches. Fundus 
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examination was performed immediately after axotomy and 3-5 days later to check the 

integrity of the retinal circulation after surgery. Animals showing signs of compromised 

blood supply were excluded from the study.  

IV.3.3.2 Ocular hypertension (morrison model)  

Animals were anesthetized by intraperitoneal injection of 1 ml/kg of standard rat 

cocktail (100 mg/ml ketamine, 20 mg/ml xylazine, 10 mg/ml acepromazine). Unilateral 

elevation of intraocular pressure (IOP) was induced by a single injection of hypertonic 

saline solution (1.85 M NaCl) into an episcleral vein as previously described (Morrison et 

al., 1997), a procedure called OHT surgery. A plastic ring was applied to the ocular 

equator to confine the injection to the limbal plexus. Animals were kept in a room with 

constant low fluorescent light (40-100 lux) to stabilize circadian IOP variations (Jia et al., 

2000b; Moore et al., 1996). IOP was measured using a calibrated tonometer (TonoPen 

XL, Medtronic Solan, Jacksonville, FL) in awake animals to avoid the anesthetic-induced 

reduction of IOP (Jia et al., 2000a).   

IV.3.4. Phosphine-borane complex synthesis   

Phosphine-borane complex 1 (PB1) was synthesized according to previously 

published methods (Schlieve et al., 2006). Briefly, the intermediate bis (3-propionic acid 

methyl ester) phenylphosphine (Phosphine 1) was produced by adding potassium 

hydroxide to phenylphosphine dissolved in acetonitrile, cooling to 0ºC, and then slowly 

adding methyl acrylate, maintaining the temperature below 35ºC. The reaction product 

was heated at 50ºC for 8 h, washed and dried over MgSO4, then concentrated and 

purified by distillation as a clear liquid. Phosphine 1 was dissolved in tetrahydrofuran 

(THF) and cooled to 0ºC. Borane-THF was slowly added and allowed to react. The 

solvent was then removed under reduced pressure and the residue purified by flash 

chromatography producing PB1.     

IV.3.5. In vivo drug delivery  

PB1 (150 µM) or the mitogen activated protein (MAP) kinase kinase 1 (MEK1) 

inhibitor PD98059 (200 µM, Sigma, Oakville, ON) were dissolved in phosphate buffered 

saline (PBS) containing 0.1% DMSO (vehicle).  PB1, PD98059 or vehicle were injected 
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into the vitreous chamber of the injured eye using a Hamilton syringe fitted with a 32-

gauge glass microneedle. We selected a PB1 concentration of 150 µM administered in a 4 

µl volume, which yields an estimated final intravitreal concentration of 10 µM 

(approximate vitreous volume in rats: 60 µl), based on our previous in vitro study 

showing that this amount is an effective neuroprotective dose (Schlieve et al., 2006). The 

sclera was exposed and the tip of the needle was inserted at a 45° angle through the sclera 

and retina into the vitreous space using a posterior approach. This route of administration 

avoided injury to the iris or lens, which can promote RGC survival (Leon et al., 2000; 

Mansour-Robaey et al., 1994). The injection was performed within ~30 sec, after which 

the needle was gently removed. Some animals received two consecutive injections of 

PB1 and PD98059 or vehicle, through the same injection site, with a delay of 20 min 

between each injection. Surgical glue (Indermill, Tyco Health Care, Mansfield, MA) was 

used to seal the injection site.    

IV.3.6. Quantification of RGC soma and axons  

Quantification of RGC bodies or axons was performed in duplicate by an observer 

masked to the treatment assignments. For RGC density counts, rats were deeply 

anesthetized and perfused transcardially with 4% paraformaldehyde (PFA) and both eyes 

were immediately enucleated. Retinas were dissected and flat-mounted on a glass slide 

with the ganglion cell layer side up. RGCs were counted in three square areas at distances 

of 1, 2 and 3 mm from the optic disc in each of the four retinal quadrants (superior, 

inferior, nasal and temporal) for a total of 12 retinal areas encompassing a total area of 1 

mm2. For axon counts, animals received a transcardial injection of heparin (1000 U/kg) 

and sodium nitroprusside (10 mg/kg), followed by perfusion with 2% PFA and 2.5% 

glutaraldehyde. Optic nerves were dissected, fixed in 2% osmium tetroxide, and 

embedded in Epon resin. Semi-thin sections (0.7-µm thick) were cut on a microtome 

(Reichert, Vienna, Austria) and stained with 1% toluidine blue. RGC axons were counted 

at 1 mm from the optic nerve head in five non-overlapping areas (center, peripheral 

dorsal and peripheral ventral) encompassing a total area of 5.5 mm2 per nerve. The total 

area per optic nerve cross-section was measured using Northern Eclipse image analysis 
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software (Empix Imaging, Toronto, ON), and this value was used to estimate the total 

number of axons per optic nerve.    

IV.3.7. Western blot analysis  

Whole fresh retinas (n=4 per condition) were rapidly dissected and homogenized 

with an electric pestle (Kontes, Vineland, NJ) in ice-cold lysis buffer: 50 mM Tris (pH 

7.4), 1 mM EDTA, 150 mM NaCl, 1% NP-40, 5 mM Na fluoride, 0.25% Na 

deoxycholate and 2 mM NaVO3 supplemented with protease and phosphatase inhibitors. 

Retinal extracts (60–150 µg) were resolved on 10-15% SDS polyacrylamide gels and 

transferred to nitrocellulose membranes (Bio-Rad Life Science, Hercules, CA, USA). 

Non-specific binding was blocked by incubation in 10 mM Tris (pH 8.0), 150 mM NaCl, 

0.2% Tween 20 (TBST), and 5% bovine serum albumin (Fisher Scientific, Fair Lawn, 

NJ) for 1 h at room temperature (20ºC). Membranes were then incubated with the 

following primary antibodies: BDNF (1 µg/ml, Promega, Madison, WI), phospho-

ERK1/2 (Thr185/Tyr187, 1 µg/ml, Invitrogen-BioSource, Carlsbad, CA), ERK1/2 (1 

µg/ml, Invitrogen-BioSource), phospho-Akt (Thr308, 0.14 µg/ml, Cell Signaling, 

Danvers, MA), Akt (0.2 µg/ml, Cell Signaling), phospho-ASK1 (Thr838, 0.5 µg/ml, Cell 

Signaling), ASK1 (0.5 µg/ml, Cell Signaling), phospho-JNK (Thr183/Tyr185, 0.8 µg/ml, 

Cell Signaling), JNK (0.4 µg/ml, Cell Signaling), phospho-p38 (Thr180/Tyr182, 0.3 

µg/ml, Cell Signaling), p38 (0.2 µg/ml, Cell Signaling), or ß-actin (0.5 µg/ml, Sigma). 

Blots were washed in TBST and incubated in the following peroxidase-linked secondary 

antibodies: anti-mouse or anti-rabbit (0.5 µg/ml, GE Healthcare, Little Chalfont Bucks, 

UK) or anti-chicken (0.5 µg/ml, Promega). Blots were developed using 

chemiluminescence reagents (ECL or Plus-ECL, Perkin Elmer Life and Analytical 

Sciences, Woodbridge, ON) and exposed to autoradiographic film (X-OMAT; Eastman 

Kodak, Rochester, NY). Densitometric analysis was performed using Scion Image 

software (Scion Corporation, Frederick, MD) on scanned autoradiographic films obtained 

from a series of 3 independent western blots each carried out using retinal samples from 

distinct experimental groups. The densitometric values obtained for BDNF were 

normalized with respect to their ß-actin loading controls in the same blot to obtain the 

final ratios. The densitometric values for phosphorylated (active) proteins were 
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normalized with respect to their loading (non-phosphorylated) controls in the same blot to 

obtain the final phosphorylated/total protein ratios.   

IV.3.8. Statistical analysis   

Data analysis and statistics were carried out using GraphPad InStat software 

(GraphPad Software Inc., San Diego, CA) by performing one-way analyses of variance 

(ANOVA) followed by Bonferroni multiple comparison post-hoc testing.         

 
IV.4. RESULTS 

IV.4.1. Intraocular delivery of the phosphine-borane compound PB1 protects RGCs 

from axotomy-induced death  

PB1, an analogue of tris (2-carboxyethyl) phosphine (TCEP), was designed to 

contain a borane-protected phosphine group to prevent oxidation, thus enhancing the 

stability of the molecule (Schlieve et al., 2006). The phenyl group in PB1 is non-polar 

and increases the cell permeability of this compound. Once inside the cell, the methyl 

esters are cleaved by intracellular esterases resulting in an anionic molecule that is less 

likely to exit the cytosol (Fig.1). We previously demonstrated that PB1-mediated 

inhibition of sulfhydryl oxidation protects early postnatal, acutely axotomized RGCs in 

vitro (Schlieve et al., 2006), but the role of PB1 on the survival of adult RGCs in vivo 

was not established.   

To investigate this, we first examined PB1-induced RGC survival following 

axotomy of the optic nerve, an injury modality that leads to rapid apoptotic RGC death 

(Berkelaar et al., 1994). Eyes that received an intraocular injection of PB1 showed robust 

RGC neuroprotection compared to control eyes injected with vehicle (Fig. 2A-C). 

Previous studies, including ours, have demonstrated that virtually all RGCs survive for 4 

to 5 days after axotomy and then die rapidly: the RGC population is reduced to ~50% by 

day 7 and to ~10% by day 14 post-lesion (Berkelaar et al., 1994; Cheng et al., 2002; 

Mansour-Robaey et al., 1994). Figure 2D shows that in PB1-treated eyes, 66% of RGCs 

survived at one week after axotomy (1,434 ± 37 RGCs/mm2, mean ± S.E.M., n=6) 

compared to only 47% remaining in vehicle-treated eyes (1,011 ± 37 RGCs/mm2, n=4) 
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(ANOVA, P < 0.001). This neuroprotective effect was still substantial at 2 weeks after 

axotomy following PB1 treatment at the time of axotomy and one week later, accounting 

for 25% of RGC survival (533 ± 90 RGCs/mm2, n=4)  compared to 11% survival 

afforded by vehicle (239 ± 25 RGCs/mm2, n=4) (ANOVA, P < 0.01). These data indicate 

that the reducing agent PB1 promotes adult RGC neuroprotection following acute optic 

nerve injury. Microglia and macrophages, which may have incorporated Fluorogold after 

phagocytosis of dying retinal ganglion cells, were excluded from our analysis based on 

well-established morphological criteria (Kacza and Seeger, 1997; Thanos, 1991). 

Microglia were identified by their invariably smaller cell size, visible process 

ramifications, and lack of axons  (Figs. 2E, 2F) as previously described by us (Lebrun-

Julien et al., 2009).    

IV.4.2. PB1 protects RGC soma and axons in experimental glaucoma   

To determine if PB1 was able to promote RGC survival in a paradigm of optic 

nerve injury resembling glaucomatous pathophysiology, we tested its neuroprotective 

effect in a rat ocular hypertension (OHT) model. Gradual increase of eye pressure and 

progressive death of RGCs are observed in this model, with an excellent linear 

correlation between IOP increase and RGC loss (Chauhan et al., 2002; Johnson et al., 

1996; Morrison et al., 1997). Inner retinal atrophy, optic nerve degeneration, and optic 

nerve head remodeling in this model are similar to those seen in human glaucoma, 

therefore this model is considered a premier in vivo paradigm of this optic neuropathy. 

PB1 was injected intravitreally two weeks after OHT surgery to allow for IOP 

stabilization and RGC survival was examined at 3 or 5 weeks after OHT. Analysis of DiI-

positive RGCs in retinal whole mounts showed that PB1 led to higher neuronal densities 

in glaucomatous eyes compared to control eyes at 3 weeks after OHT (Figure 3A-C). 

Quantitative analysis of RGC neuroprotection demonstrated that 82% of RGCs survived 

in the presence of PB1 (1,484 ± 36 RGCs/mm2, mean ± S.E.M., n=6) compared to 59% 

in control eyes treated with vehicle (1,072 ± 64 RGCs/mm2, n=6) (Fig. 3D, ANOVA, p < 

0.001). The mean sustained IOP elevation in PB1- and vehicle-treated eyes was similar, 

allowing for a reliable comparison between these groups.  
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Glaucoma is characterized by the degeneration of RGC axons in the optic nerve 

followed by the progressive loss of cell bodies (Quigley, 1999; Schwartz et al., 1999), 

hence we also investigated the effect of PB1 on RGC axonal protection following ocular 

hypertensive damage. Analysis of axons in optic nerves treated with PB1 at 3 weeks after 

OHT demonstrated a higher number of RGC axons with normal morphology compared to 

vehicle-treated optic nerves, which featured extensive disarray of fascicular organization 

and degradation of myelin sheaths (Figure 4A-C). Axonal quantification in optic nerve 

cross sections showed that PB1 protected a significant number of RGC axons from 

glaucomatous damage (69% = 70,058 ± 4,547 axons, n=10) compared to vehicle-treated 

controls (55%= 55,997 ± 4,531 axons, n=6) (Fig. 4D, ANOVA, p < 0.001). Although a 

slight trend in RGC soma and axon protection was observed at 5 weeks after OHT (Table 

1), this effect was not statistically significant suggesting that the biological activity of a 

single dose of PB1 has a limited duration in vivo. Collectively, these results indicate that 

PB1 attenuates the loss of both RGC soma and axons in experimental glaucoma.   

IV.4.3. PB1-mediated RGC neuroprotection requires activation of the extracellular 

signal-regulated kinases 1/2 pathway   

Oxidative stress has been linked to the activation of stress-activated protein kinase 

(SAPK) signaling and subsequent cell death (Cross and Templeton, 2004; Sumbayev and 

Yasinska, 2005). To gain mechanistic insight into how PB1 promoted RGC 

neuroprotection in vivo, we asked whether PB1 leads to inhibition of pro-apoptotic 

pathways. We chose the axotomy model for these experiments because the onset of RGC 

death in this injury paradigm is extremely consistent, starting at 4-5 days after optic nerve 

lesion (Berkelaar et al., 1994). This predictable time-course of RGC loss allowed us to 

examine protein changes prior to neuronal death (24 hrs), which are more likely to 

influence RGC fate. Furthermore, a well-defined burst of superoxide occurs within 24 hrs 

of optic nerve axotomy (Kanamori et al., 2010).  

We first examined the activation of retinal Apoptosis Stimulating Kinase 1 

(ASK1), a SAPK and mitogen-activated protein kinase kinase kinase (MAPKKK) family 

member, which is activated by ROS and has been shown to mediate RGC death (Harada 

et al., 2006; Harada et al., 2010). ASK1 is normally bound to reduced thioredoxin, a 
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protein disulfide oxidoreductase that prevents ASK1 autophosphorylation. Oxidation of 

cysteine thiols in thioredoxin results in its dissociation from ASK1, triggering ASK1 

autophosphorylation and downstream stimulation of c-Jun NH2-terminal kinase (JNK) 

and p38 death signaling (Hatai et al., 2000; Ichijo et al., 1997; Saitoh et al., 1998). If PB1 

exerted RGC neuroprotection via the regulation of ASK1, a decrease in phosphorylated 

ASK1 (P-ASK1) following PB1 treatment would be expected. Western blot analysis 

demonstrated low but detectable levels of phosphorylated ASK1 in intact (non-injured, 

non-treated) retinas (Fig. 5A). An increase in phospho-ASK1 was observed in control, 

axotomized eyes treated with vehicle, however, PB1 failed to significantly reduce the 

levels of activated ASK1. Consistent with this, the levels of ASK1 downstream effectors 

JNK (P-JNK, Fig. 5B) or p38 (P-p38, Fig. 5C) were not affected by PB1. These results 

suggest that PB1-mediated RGC neuroprotection does not involve the ASK1 pathway.  

An alternative possibility is that PB1 results in the stimulation of pro-survival 

signals required for RGC viability after injury. To test this hypothesis, we investigated 

the levels of BDNF and its downstream effectors ERK1/2, Akt and CREB in axotomized 

retinas exposed to PB1 or vehicle. In control axotomized eyes treated with vehicle there 

was a slight, but significant, increase in BDNF compared to intact eyes (Fig. 6A), which 

is consistent with previous reports showing a ~50% increase in retinal BDNF mRNA 

after axotomy (Gao et al., 1997; Hirsch et al., 2000). Surprisingly, PB1 led to a 4-fold 

increase (200%) in BDNF protein levels after axotomy compared to intact retinas. 

Consistent with this, PB1 produced a robust activation of the BDNF effector ERK1/2 (P-

ERK1/2, Fig. 6B) while Akt and the transcription factor CREB remained unchanged (P-

Akt and P-CREB, Figs. 6C, D). Intraocular administration of PB1 at 2 weeks after OHT 

also resulted in enhanced ERK1/2 activation (Fig. 6E) suggesting that PB1 promotes 

RGC survival through activation of this pathway after acute and chronic optic nerve 

injury.  

To establish whether ERK1/2 signaling was involved in PB1-mediated survival of 

axotomized RGCs, we co-injected PB1 with PD98059, a pharmacological inhibitor of 

MEK1, the obligate upstream activator of ERK1/2 (Dudley et al., 1995). We previously 

established that the optimal dose of PD98059 to selectively inhibit retinal Erk1/2 in vivo 

without affecting other pathways, including Akt, is 200 µM (16.7 µM intravitreal 
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concentration) (Cheng et al., 2002). Figure 7 shows that co-administration of PB1 and 

PD98059 resulted in complete inhibition of the survival effect produced by PB1, 

characterized by low RGC densities similar to those found in vehicle-treated retinas, at 1 

week after optic nerve transection. Together, these findings demonstrate that the ERK1/2 

pathway is essential for PB1-mediated survival of injured adult RGCs in vivo.                      

 
IV.5. DISCUSSION   

The generation of an intracellular superoxide burst is a critical molecular event 

underlying RGC death after axonal injury (Geiger et al., 2002; Kanamori et al., 2010; 

Lieven et al., 2006; Nguyen et al., 2003; Swanson et al., 2005). Superoxide increases 

dramatically in RGCs at the single-cell level, soon after optic nerve axotomy, and 

precedes RGC apoptosis (Kanamori et al., 2010). Human glaucomatous retinas contain 

high levels of the lipid peroxidation indicator 4-hydroxy-2-nonenal (HNE), which leads 

to protein modification induced by superoxide (Tezel et al., 2010). Administration of 

pegylated superoxide dismutase-1 (SOD), which catalyzes the dismutation of superoxide 

into oxygen and hydrogen peroxide (H2O2), attenuates RGC death (Kanamori et al., 

2010; Schlieve et al., 2006) supporting the idea that interfering with superoxide 

generation might be beneficial. However, the translation of a protein-based therapy that 

requires intracellular delivery is considerably more challenging than a small molecule 

approach. In this study, we characterized the neuroprotective role and mechanism of 

action of PB1, a small reducing compound with several advantages including good cell 

permeability, the ability to form a high intracellular concentration gradient, and stability.   

Our data demonstrate that intraocular delivery of PB1 promotes RGC survival in 

vivo following traumatic optic nerve injury (axotomy) and ocular hypertension damage 

(experimental glaucoma). The finding that PB1-mediated neuroprotection was observed 

in these distinct injury paradigms, despite the fact that the RGC response to different 

types of lesion may vary widely, suggests that PB1 regulates a conserved pathway and 

underlines its translational potential to human disease. Glaucoma has been defined as an 

axogenic disease, characterized first by the degeneration of RGC axons in the optic nerve 

followed by the progressive loss of cell bodies (Schwartz et al., 1999). In the 

experimental glaucoma model, we performed quantitative analysis of the neuroprotective 
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effect of PB1 on two major RGC compartments: soma and axons. Consistent with the 

idea that the primary site of degeneration in glaucoma is at the level of the axon, we 

found that all eyes had more pronounced axonal loss than cell body loss. However, 

intraocular injection of PB1 protected a similar proportion of RGC soma and axons 

within the optic nerve at 3 weeks after OHT. The ability to protect all RGC compartments 

following hypertension damage is paramount for the preservation of neuronal function 

and vision; hence it is an important attribute of PB1. Interestingly, functional studies in 

macaque monkeys subjected to experimental glaucoma demonstrated that only subtle 

visual field defects are detected despite massive loss (>50%) of RGCs, whereas vision 

loss increases dramatically with more advanced glaucoma (Harwerth et al., 1999). 

Therefore, structural protection of a proportion of RGC soma and axons, as afforded by 

PB1, might be sufficient to preserve functional vision. The lack of significant soma or 

axon protection at 5 weeks after OHT suggests that a single dose of PB1 confers limited 

biological activity in vivo. A priority of future studies will be to devise sustained delivery 

strategies, such as PB1 coupled to nanoparticles, to achieve long-term neuroprotection.    

What are the molecular mechanisms underlying PB1-mediated RGC survival? 

Evidence from studies on cell death inhibition induced by manipulation of the 

mitochondrial electron transport chain is consistent with PB1 acting externally to the 

mitochondrial matrix (Seidler et al., 2010). Phosphines might scavenge superoxide 

directly, but our studies with both borane-protected phosphines and deprotected PB1 have 

ruled out significant superoxide scavenging (Niemuth N.J., Lieven C.J., Thompson A.F., 

Levin L.A., unpublished data). The redox system can regulate the function of proteins 

involved in cell death and survival by modifying gene expression, posttranslational 

modifications (e.g. phosphorylation) and stability. In most cases, superoxide stimulates 

stress-activated protein kinase (SAPK) signaling and cell apoptosis (Sumbayev and 

Yasinska, 2005). Therefore, we hypothesized that PB1 might promote survival through 

inhibition of pro-apoptotic pathways. ASK1, a crucial redox sensor for initiation of the 

SAPK signaling cascade, leads to JNK and p38 stimulation and subsequent cell death 

(Kyriakis and Avruch, 2001). Contrary to our expectations, PB1 did not reduce the levels 

of phosphorylated (active) ASK1, JNK or p38 in axotomized retinas. Thus, we conclude 
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that the regulation of the SAPK cell death signaling pathway is not a target for PB1-

induced neuroprotection.   

We then considered an alternative scenario involving PB1-induced modification 

of RGC survival pathways. PB1 stimulated a robust increase of retinal BDNF levels that 

was several-fold higher than that observed in control axotomized eyes. Emerging data 

supports a tight redox regulation of transcription factors that encode cell survival proteins 

(Trachootham et al., 2008). The transcriptional regulation of BDNF is complex and often 

depends on activity-driven events that involve Ca+2-responsive elements and cAMP-

responsive elements (CRE) required for promoter transactivation (Shieh et al., 1998; Tao 

et al., 1998). CREB is an important transcription factor because it regulates BDNF gene 

expression, it also responds to BDNF by stimulating the transcription of pro-survival 

molecules such as Bcl-2 (Bonni et al., 1995; Finkbeiner et al., 1997; Wilson et al., 1996). 

Moreover, CREB plays a role in the regulation of ROS detoxification (Herzig et al., 

2001; Krönke et al., 2003; Lee et al., 2009) and it is susceptible to redox regulation 

(Bedogni et al., 2003). PB1 failed to increase CREB activation, suggesting that other 

mechanisms including CREB-independent transcription, stability, subcellular 

localization, and translational events may underlie PB1-induced BDNF upregulation.  

BDNF binds to its signaling receptor TrkB, which is abundantly expressed by 

adult RGCs (Jelsma et al., 1993; Pérez and Caminos, 1995; Rickman and Brecha, 1995), 

and activates the pro-survival ERK1/2 and Akt pathways. Our data demonstrate that 

ERK1/2, but not Akt, was activated following PB1 administration. This finding is 

consistent with our previous observation that combined BDNF and TrkB upregulation 

promoted RGC survival exclusively via ERK1/2, while Akt was not involved (Cheng et 

al., 2002). It is possible that endogenous BDNF leads to differential activation of 

downstream pathways depending on the redox status of the cell. In PB1-treated retinas, 

BDNF might selectively use the ERK1/2 pathway to promote RGC neuroprotection. In 

addition, PB1 might directly activate upstream molecules that converge on ERK1/2. This 

latter possibility is supported by the fact that autophosphorylation and activation of 

tyrosine kinase receptors, such as TrkB, can occur by direct thiol modification of the 

receptor (Chen et al., 1998). Similarly, the activity of Ras, an upstream activator of 

ERK1/2, is modulated by redox regulation (Lander et al., 1996; Mallis et al., 2001). 
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Nonetheless, the complete inhibition of RGC survival exerted by PB1 in the presence of 

PD98059 strongly supports our hypothesis that ERK1/2 activity is essential for PB1-

mediated RGC neuroprotection in vivo.   

In summary, we demonstrate that PB1, a novel phosphine-borane complex, 

promotes RGC neuroprotection in vivo through activation of the ERK1/2 pathway. 

BDNF is a potent anti-apoptotic factor for RGCs, but its clinical application has been 

hampered due to pleiotropic effects leading to non-specific signaling, potential toxicity 

and low diffusion rates (Barinaga, 1994; Verrall, 1994). The identification of small 

molecule compounds that mimic some of the beneficial effects of BDNF, such as PB1, is 

of clinical interest. Our study offers the interesting and unexpected possibility that redox 

homeostasis in RGCs can converge on neurotrophin-related pathways to promote survival 

after axonal injury.  
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Figure 1. Chemical structure of bis (3-propionic acid methyl ester) phenylphosphine 

borane reducing complex 1 (PB1).  

The borane group protects the phosphine from oxidation increasing chemical stability 

during storage and before administration. The non-polarity of the phosphine-borane and 

the phenyl group contribute to the ability of PB1 to readily cross cell membranes. The 

methyl esters are cleaved by extracellular amines and/or intracellular esterases, resulting 

in an anionic molecule that is unlikely to exit the cytosol and thus forms a strong 

intracellular concentration gradient. 
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Figure 2. The phosphine-borane compound PB1 protects RGCs from axotomy-

induced death.  

Retinal flat mounts show Fluorogold-labeled RGCs from non-injured, non-treated eyes 

(A, Intact) and axotomized PB1-treated (B) or vehicle-treated (C) eyes. Scale bars: 100 

µm. (D) Quantitative analysis of RGC survival following injection of PB1 (solid bars) or 

vehicle (hatched bars) at the time of axotomy (n=4-6 rats/group) (ANOVA, ***: 

P<0.001). Animals examined at two weeks received an injection at the time of axotomy 

and a week later. The density of RGCs in intact, non-injured Sprague-Dawley rat retinas 

is shown as reference (open bar, 100%, n=8). Data are expressed as RGCs/mm2 (mean ± 

S.E.M). (E, F) Microglia and macrophages (arrowheads) that may have incorporated 

Fluorogold after phagocytosis of dying retinal ganglion cells (arrows) were excluded 

from our analysis based on their distinct morphology. Scale bars: e, f = 10 μm. 
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Figure 3. PB1 protects RGC soma in experimental glaucoma.  

Retinal flat mounts show DiI-labeled RGCs from non-injured, non-treated eyes (A, 

Intact) and glaucomatous PB1-treated (B) or vehicle-treated (C) eyes. Scale bars: 100 

µm. (D) Quantitative analysis of RGC survival following injection of PB1 (solid bars) or 

vehicle (hatched bars) at three weeks after ocular hypertension surgery (OHT) (n=6 

rats/group) (ANOVA, ***: P<0.001). The density of RGCs in intact, non-injured Brown 

Norway rat retinas is shown as reference (open bar, 100%, n=6). Data are expressed as 

RGC densities (RGCs/mm2, mean ± S.E.M). 
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Figure 4. PB1 attenuates axonal loss in experimental glaucoma.  

Cross-sections of optic nerve segments from non-injured eyes (A, Intact) and 

glaucomatous eyes treated with PB1 (B) or vehicle (C) at 3 weeks after ocular 

hypertension surgery (OHT). PB1-treated eyes displayed a larger number of axonal fibers 

with normal morphology compared to vehicle-treated control eyes, which showed 

extensive axon degeneration. Scale bars: 20 µm. (D) Quantitative analysis of RGC axons 

in optic nerves after treatment with PB1 (solid bar), or vehicle (hatched bar) (n=6-10 

rats/group) (ANOVA, ***: P<0.001). The number of axons in the non-injured Brown 

Norway rat optic nerve is shown as reference (open bar, 100%, n=9). Data are expressed 

as the total number of RGC axons per optic nerve (mean ± S.E.M.). 
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Figure 5. The pro-apoptotic ASK1 signaling pathway is not regulated by PB1.  

Western blots of total retinal extracts probed with antibodies that selectively recognize 

phosphorylated (active) ASK1, JNK or p38. Protein samples were collected from non-

injured, non-treated eyes (Intact) or axotomized eyes treated with PB1 or vehicle and 

collected at 24 hrs post-lesion. (A) An injury-induced increase in phospho-ASK1 (P-

ASK1) was observed in control, axotomized eyes treated with vehicle. PB1 failed to 

significantly reduce the levels of active ASK1 after axotomy. The levels of ASK1 

downstream effectors P-JNK (B) or P-p38 (C) were not affected by PB1. The 

densitometric values are the ratio of phospho-proteins normalized to their loading (non-

phosphorylated) controls in the same blot for intact (open bars), PB1-treated (solid bars) 

or vehicle-treated (hatched bars) eyes (n=4/group) (ANOVA, ***: P<0.001). 
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Figure 6. PB1 increases retinal BDNF and activates ERK1/2.  

(A) PB1 led to a 4-fold increase in BDNF protein levels after axotomy compared to intact 

retinas. (B) Robust activation of the BDNF effector ERK1/2 was observed in PB1-treated 

axotomized eyes (P-ERK1/2), while Akt (P-Akt, C) and CREB (P-CREB, D) remained 

unchanged. The densitometric values are the ratio of phospho-proteins normalized to 

their loading (non-phosphorylated) controls in the same blot, or ß-action in the case of 

BDNF, for intact (open bars), PB1-treated (solid bars) or vehicle-treated (hatched bars) 

eyes (n=4/group) (ANOVA, ***: P<0.001, *: p < 0.05). 
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Figure 7. PB1-mediated RGC neuroprotection requires activation of ERK1/2.  

(A-C) Retinal flat mounts show that co-administration of PB1 and the MEK1 inhibitor 

PD98059, injected intravitreally at the time of optic nerve transection, resulted in 

inhibition of the survival effect produced by PB1 at 1 week after optic nerve transection. 

(D) Quantitative analysis of Fluorogold-labeled neurons in eyes treated with PB1 and 

PD98059 (gray bar) showed that RGC density at 1 week post-lesion was similar to that 

found in control retinas treated with vehicle (hatched bar) (n=4-6/group) (ANOVA, ***: 

P<0.001). Data are expressed as RGCs/mm2 (mean ± S.E.M). 
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IV.7. TABLES  

 

Table 1. PB1-induced RGC soma and axonal survival in axotomy and ocular 

hypertension models 
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V.1 STRUCTURAL PROTECTION IN GLAUCOMA  

V.1.1 Galantamine, an acetylcholinesterase inhibitor, protects RGCs soma against 

IOP induced cell death. 

In the first article presented in this thesis (Chapter 2), I explored the 

neuroprotective properties of galantamine in experimental glaucoma. For more than a 

decade, galantamine hydrobromide has been taken orally by Alzheimer's disease patient, 

resulting in optimum concentrations in the brain and providing significant improvements 

in their cognitive functions (Bores et al., 1996; Jann et al., 2002; Scott and Goa, 2000). 

Studies in human, dogs, mice and rats has shown that intraperitoneal, intravenous and 

oral administration of  radioactively labeled galantamine is followed by rapid absorption 

and presence of galantamine in the plasma and brain tissues of the subjects (Mannens et 

al., 2002; Sweeney et al., 1989). Our data showed that systemic administration of 

galantamine significantly improves the survival of RGC somata. Systemic treatment with 

galantamine did not reduce the IOP in glaucomatous eyes and was able to significantly 

delay RGC death in an IOP-independent model of traumatic optic nerve damage 

(axotomy).  

Unlike nicotinic or muscarinic agonists, galantamine has several advantages for 

the treatment of chronic neurodegenerative diseases like glaucoma. First, galantamine is a 

small molecule which easily crosses the blood-retinal-barrier. Second, the effect of 

galantamine is mediated by increasing the availability of ACh through inhibition of the 

AChE enzyme. Also, the allosteric potentiating properties of galantamine on nAChRs 

might enhance the sensitivity of these receptors and therefore improve the cholinergic 

signaling (Schrattenholz et al., 1996). We found that compared to other AChE inhibitors 

like donepezil, galantamine has a higher neuroprotective effect which this will translate 

into better long-term tolerability for galantamine. Unlike galantamine (a competitive 

AChE inhibitor), donepezil is a non-competitive AChE inhibitor and in the long-term can 

lead to downregulation of AChRs and development of resistance to the drug (Farlow, 

2003; Wilkinson, 1999). 
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V.1.2. Phenylphosphine borane reducing complex 1 (PB1), promotes RGC survival 

in different paradigms of optic nerve injury. 

In the third article presented here (Chapter 4), we described the neuroprotective 

properties of a small molecule free radical scavenger, PB1, in experimental glaucoma. 

The evidence gathered from glaucoma patients and experimental animals suggests that 

oxidative damage is a major contributor to the pathology of glaucoma (Izzotti et al., 

2006; Tezel, 2006). Recent studies demonstrated that production of superoxide precedes 

RGC apoptosis and its levels increase dramatically at the single-cell level (Kanamori et 

al., 2010). Therefore, neutralizing excessive intracellular superoxide could provide 

neuroprotection.  

To use a scavenging compound for therapeutic purposes, it must meet at least two 

requirements: high cellular permeability for easy delivery and high stability. PB1 is a 

phosphine based scavenger which contains a borane atom to protect the phosphine from 

oxidation and increase the chemical stability of the compound during storage and 

administration. In addition, having a non-polar phenyl group increases the ability of PB1 

to cross the cell membranes. PB1 has been designed to inhibit oxidation of sulfhydryl 

groups on critical cellular molecules. Our data demonstrate that intravitreal delivery of 

PB1 in glaucomatous eyes, significantly promotes RGC survival. PB1 was also 

neuroprotective in the traumatic optic nerve injury (axotomy) and improved survival of 

RGCs. PB1 was injected intravitreally two weeks after OHT and RGC survival was 

examined at three or five weeks after OHT. PB1 extended the survival of damaged RGCs 

for weeks after initial delivery, a fact that highlights the importance of ROS neutralizing 

early in the development of the glaucoma. 

Since labeling of RGCs with tracers like Fluorogold and DiI is one of the major 

techniques in our laboratory, we have established a protocol to identify the migratory 

phagocytic cells (that uptake the cell debris and the tracer) in order to exclude them from 

our RGC quantification. As showed in the Figure 2, E-F, Chapter 4, page 146; the 

phagocytic cells are detectable based on their intense Fluorogold content, thin and 

elongated cell body and their long processes. To reconfirm the identity of these cells, 

immunostaining with specific antibodies against the microglia and macrophage 

(isolectin-B4 and ED-1) has been used in our laboratory (Cheng et al., 2002). In general, 
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due to slower RGC death rate in glaucoma there are fewer phagocytic cells in the 

glaucomatous retinas at any given time compare to axotomy model. In the axotomy 

model, due to rapid rate and numerous concomitant RGCs death, the presence of 

phagocytic cells is more intense and demands trained eye to eliminate them from 

quantifications. However, an experienced researcher can easily distinguish phagocytic 

cells even in axotomy samples. We have recently adapted an immunostaining method for 

labeling RGCs that is based on detection of a protein called Brn3a, a transcription factor 

that is specifically expressed by RGCs; this technique allows easier and accurate 

quantification of RGCs in the retina (Nadal-Nicols et al., 2009).   

V.1.3. Protection of RGC axons in glaucoma 

One of the features of glaucomatous damage is the degenerative loss of RGC 

axons in the optic nerve. Loss of RGC axons becomes apparent as axonal bundles in the 

optic nerve develop irregularities and RGC axons become swollen and lose their myelin 

sheaths (Chauhan et al., 2002; Quigley et al., 1988). In our experimental glaucoma 

model, analysis of optic nerve cross-sections from glaucomatous eyes indicated a 

significant loss of axons at three and five weeks after induction of OHT. In the animals 

receiving daily treatment with galantamine, there was a significant increase in the number 

of healthy axons and integrity of the axonal bundles in the optic nerve. Therefore, RGC 

soma protection by galantamine is complemented by the RGC axonal protection.  

Despite mediating significant RGC soma survival, PB1 was only able to protect 

RGC axons up to three weeks after induction of OHT. The difference in the protective 

potentials of PB1 at the axonal and cell soma levels could be explained using two 

arguments. First, the promotion of RGC soma survival and axonal regeneration are 

mediated by different pathways. For instance, while AAV-mediated increase of FGF-2 

levels did not result in much RGC survival after axotomy, it significantly promoted 

regeneration of RGC axons (Sapieha et al., 2003). Conversely, Erk1/2 activation 

significantly improved RGCs survival after optic nerve injury but failed to induce RGC 

axon regeneration (Pernet et al., 2005). Galantamine, by activating different categories of 

ACh receptors, can simultaneously trigger several pathways and therefore mediate both 

RGC soma and axon protection. Since in our experiments PB1 treatment resulted in up-
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regulation of BDNF and activation of ERK1/2 pathway, it is expected that PB1 mainly 

promotes RGC soma protection. Secondly, the delivery rout might be an important factor 

affecting the capacity of PB1 and galantamine to achieve axonal protection. Galantamine 

was delivered systemically for the entire experimental period, ensuring its availability 

and facilitating access to the optic nerve via the blood circulation. PB1 however, was 

only delivered once and intravitreally, which greatly limited its availability and access to 

the optic nerve. In a view of the current limitations of PB1 treatment, future studies 

should take into consideration a time-release nanoparticle-based delivery system or eye 

drops to maximize neuroprotective effects of PB1. 

With regards to the timeline of the experiments, it might be argued that why our 

studies have not been extended beyond the 5 weeks after OHT surgery. In a previously 

published work in our laboratory, we have shown that RGC survival could be extended 

up to 7 weeks after OHT surgery (Zhou et al., 2005). However, in that case the 

neuroprotection was achieved by induction of a potent neuroprotective pathway through 

infecting the RGCs with a recombinant adeno-associated virus to transduce RGCs with 

genes encoding constitutively active MEK1. Compared to galantamine neuroprotection, 

the significant increase in the activation of Erk1/2 provides more robust protection of 

RGCs that could last for a longer period of time. I believe that galantamine represented 

significant neuroprotective ability in our experiments. However, as it is reflected in our 

functional experiments, rapid elevation of IOP and severity of the damage to the axons in 

this model, limits the prospects of the long term evaluation of galantamine 

neuroprotective profile. Therefore, to better evaluate the long-term neuroprotective 

potential of galantamine (beyond the 5 weeks), one might use an alternative glaucoma 

model like cauterization model with slower rate of IOP increase (Danias et al., 2006). 

V.1.4. Protection of retinal microvessels in glaucoma 

The findings presented in the second article of this thesis (Chapter 3) 

demonstrated that degenerative changes in glaucomatous retinas are not limited to RGCs 

but also affect retinal microvessels. Vascular atrophy and loss of microvasculature are 

characteristics of other neurodegenerative diseases like AD (Bailey et al., 2004; Weller et 

al., 2009). In AD, affected areas of the brain are marked by reduced capillary branching, 
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and loss of capillaries (Brown, 2010b; Challa et al., 2004). However, the current 

knowledge about the effect of glaucoma on the retinal microvasculature and their relation 

to RGCs death is limited. We initially detected a major capillary loss at five weeks after 

OHT; however, a more detailed analysis revealed that the loss of capillaries occurs as 

early as three days after OHT surgery. Our findings also indicated that galantamine 

administratation led to a higher density of retinal microvessels.  

Not only the vasoprotective effects of galantamine expand the therapeutic use of 

this drug, but it also opens the possibility of preventive treatment in glaucoma regarding 

vascular risk factors. The idea of a preventive strategy to minimize vascular damage is 

not new. For instance, loss of retinal capillaries is a major characteristics of diabetic 

retinopathy caused by leukocyte adhesion to the endothelium and loss of pericytes 

(Hammes et al., 2002; Joussen et al., 2001). Inhibition of leukostasis by drugs like 

captopril and losartan or application of NGF to prevent pericytes death significantly 

reduces the number of degenerating capillaries in experimental diabetes (Hammes et al., 

1995; Zhang et al., 2007b).  

Unlike RGCs that are irreversibly lost, the retinal capillaries are dynamic and 

their capacity to regenerate can provide important support for long-term neuronal 

protection. Such a strategy has been proposed for the treatment of diabetic retinas. In 

another approach, intravitreally injected endothelial precursor cells were able to migrate 

into damaged or empty basement membrane of string capillaries in the diabetic retinas, 

and repaired the injured vessels (Bhatwadekar et al., 2009; Caballero et al., 2007). Here 

we showed the retinal capillaries are indeed part of initial insult to the retina in glaucoma 

and that galantamine provides a novel, drug-based therapy for neuroprotection and 

vasoprotection in glaucoma. 

    
V.2. FUNCTIONAL PROTECTION IN GLAUCOMA 

V.2.1. Galantamine treatment results in the recovery of visual evoked potentials 

Visual information is converted to electrochemical signal by photoreceptors and 

relayed to the visual centers via RGC axons. The LGN is one of the main central targets 

of RGC axons in primates (Schiller and Malpeli, 1977). In the rodents, the majority of 
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RGC axons project to the superior colliculus (SC) and a smaller number to the dorsal 

lateral geniculate nucleus (dLGN) (Lund et al., 1976). Evidence shows that progression 

of glaucoma is often accompanied by visual deficits. Studies in primate glaucoma also 

indicate a significant reduction in light-stimulated responses in the visual cortex (Hare et 

al., 2001a). Cytochrome oxidase histochemistry also confirmed a significant reduction of 

functional inputs from RGCs to higher brain centers such as the LGN and visual cortex in 

primates with glaucoma (Crawford et al., 2001; Crawford et al., 2000).  

Pathological changes in the optic disk and damage to RGC axons are proposed to 

be the main cause of visual deficits. We found significant damage and loss of axons in 

the optic nerves at five weeks after induction of OHT. Therefore, it was not surprising 

that we failed to record any signal at the SC following flash stimulation of glaucomatous 

eyes. Galantamine treatment failed to recover the VEP signal despite the significant 

protection of RGC axons and soma. We hypothesized that sustained high IOP impairs the 

physiological function of surviving RGCs and therefore results in visual defects. To 

evaluate this hypothesis, we combined galantamine treatment with an IOP lowering 

strategy. In this protocol, the IOP in the glaucomatous eye was controlled by topical 

(corneal) application of timolol, a commonly used ß-adrenergic receptor blocker. This 

treatment resulted in partial the recovery of VEP in galantamine-treated animals. The 

recovery of VEP was not due to a neuroprotective effect of timolol because there was no 

functional recovery in the PBS treated animals and RGC survival did not significantly 

increase following timolol application. In conclusion, our functional studies highlight the 

importance of a combined therapeutic strategy for the treatment of glaucoma, one that 

incorporates both control of IOP regulation and neuroprotection of RGCs. 

With regards to an approach to have a better understanding about the health of 

RGCs at the end of experiments, two complementary methods could be used (besides 

VEP recordings). First, to use an immunostaining procedure like Brn3a, so we can 

exclusively label healthy and alive RGCs (Nadal-Nicols et al., 2009). Second, to apply 

the Fluorogold on the SC at the end of experiments instead of labeling the RGCs at the 

beginning; this method provides better information about the number of healthy RGCs 

that were able to pickup the fluorescent dye with their axonal terminals and transport it 
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back to their somata, therefore also represents the integrity of RGC connections to the 

brain centers. 

V.2.2. Galantamine improves retinal blood flow in glaucomatous eyes 

In the second article presented in this thesis (Chapter 3) we reported a significant 

recovery of retinal blood flow by galantamine. Neurovascular coupling is a well known 

activity-dependent phenomenon in the brain and retina. Stimulation of the retina by light 

flicker results in the dilation of retinal vessels leading to increase in retinal blood flow 

(Formaz et al., 1997; Ito et al., 2001; Scheiner et al., 1994).  

Insufficient retinal blood flow can affect the neuronal activity and consequently 

translate into an abnormal VEP response in glaucomatous eyes. One of the steps in our 

VEP recording protocol was first to ensure the animals have an ERGs within the normal 

range. ERG recordings provided important information about the integrity of the 

intraretinal signaling as we found significant reduction of the b-wave in a number of 

animals with high IOP. Reducing the retinal blood flow by application of Et-1 have 

shown to significantly decrease the magnitude of VEP response (Hara et al., 2005). 

Elevation of IOP can similarly affect the retinal blood flow, resulting in functional 

deficits (Chen and Budenz, 1998; Yaoeda et al., 2003). In fact one of our findings 

following the application of timolol was significant improvement of the ERGs (data not 

shown). This data indicates that survival and health of RGCs is only one of the factors 

necessary for functional recovery in glaucoma.  

The vasodilatory properties of galantamine, shown in our ex vivo experiments, is 

likely to lead the improved blood circulation in vivo. Nevertheless, the physical stress of 

high IOP in our experimental model demanded additional IOP lowering intervention for 

functional recovery. Visual deficits do not simply reflect IOP levels in glaucoma, as 

stepwise increases of IOP are better tolerated by healthy subjects than POAG patients 

(Pillunat et al., 1985). Therefore, it is likely that an underlying vasomodulatory problem 

in glaucomatous eyes plays a role in RGC death and disease progression in addition to a 

decline in normal retinal function.  
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V.3. MECHANISMS OF NEUROPROTECTION IN GLAUCOMA  

V.3.1. Acetylcholine receptors and galantamine-mediated neuronal and vascular 

protection 

Since galantamine is an allosteric potentiating ligand of nAChRs (Pereira et al., 2002; 

Samochocki et al., 2003), we initially hypothesized that its neuroprotective properties 

were mediated through nAChRs signaling. However, using both blockers of nAChRs and 

mAChRs, we found that mAChRs had a prominent role in galantamine-mediated 

neuroprotection. In our experiments with glaucoma model, the main method of drug 

delivery was daily i.p. injections of galantamine. However, intraocular application of 

galantamine was also used in the axotomy model. Intraocular injections of galantamine 

were in line with the intraocular injection of other drugs since systemic administration for 

a number of compounds (several muscarinic blockers) was not possible. Systemic 

application of muscarinic and nicotinic blockers used in our experiments had the risk of 

unwanted  side effects (like Pirenzepine) or was uneconomical; some of  them also did 

not cross the blood-retinal barrier. Scopolamine was the only muscarinic blocker capable 

of passing the blood-retinal barrier with minimum side effects and was used 

intraperitoneally along with galantamine in OHT experiments (Tang et al., 1997; Toide, 

1989; Wilson, 2001).  

Using subtype specific blockers of mAChRs, we found that M1 and M4 played a 

significant role in RGC survival, whereas galantamine-induced improvement of retinal 

blood flow and vascular protection depended on M1 and M3 subtypes. Studies on the 

retinal localization of mAChR subtypes in primate, rat and chick retinas showed that 

amacrine cells express M2 and M4 subtype, Müller cells express both M1 and M4 

subtypes and bipolar cells and horizontal cells express M3 subtype (Da Silva et al., 2008; 

Fischer et al., 1998; Yamada et al., 2003). G-protein-coupled mAChR regulate Ca2+ entry 

that is linked to several signal transduction pathways that mediate cellular survival 

(Figure V.1). On the same note, although expression of mAChRs has not been detected 

on RGCs; muscarine increases the intracellular Ca2+ in rabbit RGCs (Baldridge, 1996). 

Future studies on intracellular calcium levels after application of galantamine might 

provide a better understanding of the role of mAChRs on RGC survival.  
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Galantamine-mediated signaling through neighboring Müller glia or neurons may also 

lead to production of pro-survival factors that protect injured RGCs. For instance, 

increasing the antioxidant capacity of the retina could significantly improve RGC 

survival in a non-cell-autonomous manner. Oxidative stress has been proposed to be a 

major contributor in glaucomatous neurodegeneration. Müller cells and horizontal cells 

synthesize and release glutathione which protects the retina against oxidative damage 

(Pow and Crook, 1995). There are reports of reduction in retinal antioxidant capacity in 

experimental  glaucoma (Jann et al., 2002; Moreno et al., 2004). Muscarinic AChRs are 

involved in the activation of cellular antioxidant pathways, as shown in figure 1. 

Signaling through M1 subtype of mAChRs contributes to the regulation of Nrf2 activity 

(Espada et al., 2009). Nrf2 is a transcription factor that  controls  the expression of  genes 

containing AREs (Kensler et al., 2007). HIF-1 is another transcription factor linked to the 

cellular response in hypoxic conditions and M1 mAChR has been shown to be involved 

in HIF-1 regulation (Hirota et al., 2004). Therefore, galantamine treatment via activation 

of mAChRs on Müller and horizontal cells may increase the antioxidant capacity of the 

retina and improve RGC survival. These data support a model in which non-cell-

autonomous signaling events downstream of mAChR play a major role in galantamine-

induced RGC neuroprotection. Unlike RGCs, retinal and brain endothelial cells express 

the M1 and M3 subtypes of mAChRs (Elhusseiny et al., 1999; Sastry, 1985b), therefore, 

galantamine-mediated signaling through this receptors can directly activate pro-survival 

pathways in endothelial cells.  

Cholinergic signaling through mAChRs mediates vasodilation in the brain (Bény 

et al., 2008; Dauphin et al., 1994) and the presence of endothelial cells is necessary for 

this process (Schrattenholz et al., 1996). We similarly demonstrated that endothelial cells 

were necessary for galantamine-mediated relaxation of isolated retinal arterioles. 

Interestingly, endothelial cells are part of a non-neuronal cholinergic system due to 

expression of ChAT and possession of vesicular acetylcholine transporters (Kirkpatrick et 

al., 2001). This suggests that paracrine cholinergic signaling might contribute in 

endothelial cells vasodilatory functions. Muscarinic AChRs mediate release of Ca2+ from 

intracellular stores that triggers the production of endothelium-derived vasodilators like 

NO and prostacyclin (Fleming and Busse, 1999; Lückhoff et al., 1988). 
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FIGURE 1. 
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Figure 1. Muscarinic AChRs signaling and cell survival pathways. The M1, M3, and 

M5 mAChRs are selectively couple to the Gq/G11 type of G-proteins. Upon binding the 

ligand, these receptors undergo a conformational change exposing the binding site for the 

G-protein. The receptor then facilitates the exchange of G-protein-bound GDP for GTP 

that causes the dissociation of Gα from the Gβγ dimer. The GTP-bound Gα activates 

phospholipase C (PLC). Hydrolysis of phosphoinositol 4, 5-bisphosphate (PIP2) by PLC 

produces two intracellular messengers: 1,2-diacylglycerol (DAG) and inositol 1,4,5-

trisphosphate (IP3). Membrane bound DAG promotes the translocation of PKC from the 

cytoplasm to the membrane and its subsequent activation. PKC then activates the Ras and 

consequently MAPK survival pathway. IP3 by binding to IP3 receptors located on 

cytoplasmic calcium stores results in the opening of their Ca2+ channels and release of 

Ca2+ into the cytosol. Increase of cytoplasmic Ca2+ levels activates PKC and consequently 

through MAPK pathway or activation of transcription factors like Nrf2 promotes cell 

survival. The Gβγ remains anchored to the membrane and by facilitating the K+ influx 

result in membrane hyperpolarization. 

M2 and M4 receptors are coupled to Gi/o type of G-proteins. Upon binding the 

ligand receptor facilitates exchange of GDP for GTP on Gα resulting in dissociation of 

the heterotrimer G-protein components. Gα then interacts with adenylcyclase that 

decreases in cAMP levels.  The Gβγ activate the PI3K that promote cell survival via Akt 

or MAPK pathways. Interaction of Gβγ with calcium channel results in reduction of Ca2+ 

influx. Source of image: Mohammadali Almasieh. 
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Activation of M1/M3 receptors in the retina also results in the stimulation of 

nNOS activity and an increase in nNOS mRNA expression (Borda et al., 2005). 

Interestingly, in a eNOS deficient mice model,  retinal expression of nNOS was 

significantly up-regulated resulting in normal retinal vasculature development (Al 

Shabrawey et al., 2003). Therefore, galantamine-mediated signaling through neuronal 

mAChRs could activate nNOS and participate in the improvement of retinal blood flow. 

At the moment we are exploring several techniques to study the expression of 

muscarinic subtypes on RGCs and endothelial cells. Using the flow cytometry to separate 

RGCs and/or endothelial cells from retinal suspension and laser capture microdissection 

technique to separate RGCs from flat mounted retinas are currently in progress. 

Performing RT-PCR on this purified cell populations will help us to identify the specific 

muscarinic receptors expressed by these cells types. It is also important to remember 

allostric potentiating site of galantamine on nicotinic receptors is a different site from 

ligand binding site. Therefore it is not surprising if despite using nicotinic blockers, the 

allostric site still would be available for interaction with galantamine. The only way to 

study this interaction is to use an antibody called FK1, which selectively blocks the 

allosterically potentiating ligand site on nAChRs (Kihara et al., 2004). This antibody is 

not commercially available but we are in the process of a collaborative work to use this 

antibody in our future experiments. 

V.3.2. Molecular mechanisms of PB1-mediated RGC neuroprotection  

When the production of ROS overwhelms cellular antioxidant capacity, it results 

in disturbance of the redox system that in turn modifies activity of several cellular 

signaling pathways.  The redox state of key cellular proteins and enzymes controls the 

pattern of gene expression, posttranslational protein modifications and ion channels 

properties. Pro-apoptotic pathways like SAPK are activated as their redox sensor 

member, ASK1, initiates a signaling cascade that leads to JNK and p38 stimulation and 

subsequent cell death (Kyriakis and Avruch, 2001; Sumbayev and Yasinska, 2005). 

Based on the molecular characteristics of borane-protected phosphines, we expected that 

PB1, via scavenging superoxide, would block pro-apoptotic pathways. However, PB1 

treatment did not reduce the phosphorylated levels of ASK1 or p38 after axotomy.  



165 
 

 
 

Another possibility for PB1-induced RGC protection is through modification of 

survival pathways. The activity of a number of transcription factors like NF-κB, Nrf2 and 

HIF-1 is regulated by their redox state (Trachootham et al., 2008). Consequently, we 

found a significant increase of BDNF levels in the PB1-treated axotomized retinas. There 

are a number of studies suggesting that BDNF up-regulation is an early response in RGCs 

that undergo axonal injury. Retinal BDNF levels increase following both optic nerve 

axotomy (Gao et al., 1997) and experimental glaucoma (Guo et al., 2011; Rudzinski et 

al., 2004). A recent study used laser capture microdissection to produce RGC-enriched 

mRNA samples and was able to indicate a distinct increase in the BDNF mRNA levels 

early after ocular hypertension (Wang et al., 2011).  

PB1 might induce the BDNF up-regulation at the transcriptional level. The cAMP 

response element binding protein (CREB) is a transcription factor regulating BDNF gene 

expression and its activity is also subjected to redox modulation (Bedogni et al., 2003; 

Tao et al., 1998). CREB is involved in the regulation of ROS detoxification (Herzig et al., 

2001; Krönke et al., 2003; Lee et al., 2009) and in response to BDNF promotes 

transcription of pro-survival molecules such as Bcl-2 (Bonni et al., 1995; Finkbeiner et 

al., 1997; Wilson et al., 1996). CREB phosphorylation is triggered by  Ca2+ influx 

through receptors like NMDA and requires translocation of calmodulin from the 

cytoplasm to the nucleus (Deisseroth et al., 1998). NMDA receptors contain a redox 

modulatory site and oxidation or reduction state of this site modifies Ca2+  current through 

these receptors (Lei et al., 1992; Levy et al., 1990). In our experiments, PB1 treatment 

did not result in CREB activation, however, since CREB activity might be brief and the 

transcriptional control of BDNF is complex, this issue requires further study.  

The abundant expression of TrkB by RGCs translates BDNF stimulation into a 

strong pro-survival signaling through its downstream survival pathways ERK1/2 and Akt 

(Pérez and Caminos, 1995). In agreement with this hypothesis, we found significant 

increase in phospho-ERK1/2 levels in PB1 treated retinas.  PB1 treatment did not induce 

Akt activation, consistent with previous studies showing that combined BDNF and TrkB 

upregulation promoted RGC survival via ERK1/2 pathway but not Akt (Cheng et al., 

2002). Components of the ERK1/2 pathway are also regulated by their redox state. For 

instance, Ras, an upstream activator of ERK1/2 is under redox control (Lander et al., 
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1996; Mallis et al., 2001). In addition, the thiol site on the TrkB receptor itself can be 

subject of a modification that results in autophosphorylation and activation of the tyrosine 

kinase receptors (Chen et al., 1998 ).  

 
V.4. GENERAL CONCLUSIONS 

The work presented in this thesis introduces new approaches in the treatment of 

glaucoma and provides insight into novel molecular mechanisms involved in this disease. 

We characterized the neuroprotective effects of galantamine and PB1 in experimental 

glaucoma with the goals to extend RGC survival and to improve functional outcome. Our 

study revealed the potent role of galantamine in the protection of RGC somata and axons. 

Galantamine, by protecting the retinal capillaries and improving retinal blood flow, also 

targets potential vascular defects in glaucoma. We found that the neuroprotective effect 

of galantamine is mediated through activity of mAChRs. G-protein-coupled M1 and M4 

mAChR were involved in RGCs survival and axonal protection whereas vascular 

protection and blood flow improvement were mediated through M1 and M3 mAChRs. 

Galantamine has broad effect acting on other neurotransmitter systems, such as 

modulating the release of glutamate, serotonin and gamma-aminobutyric acid, thus 

expanding the possibility of RGC neuroprotection through other signaling pathways. The 

data from our functional studies suggest that an ideal therapy for glaucoma is to combine 

standard pressure controlling drugs and a neuroprotective treatment. 

Oxidative stress contributes to glaucoma pathology and an imbalance in the redox 

regulation of critical proteins might lead to RGC death. We showed that treatment with 

PB1, a phosphane-borane reducing compound, significantly promoted RGCs survival. 

Significant improvement in the survival of axotomized RGCs was also achieved with 

PB1. Survival was mediated through up-regulation of BDNF by PB1and activation of the 

pro-survival ERK1/2 pathway. Redox balance plays an important role in the regulation of 

BDNF production and ERK1/2 pathway activity; therefore our study offers the 

interesting possibility that redox homeostasis in RGCs can influence neurotrophin-related 

pathways that promote RGC survival after axonal injury. 
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ABSTRACT 

Paranodal axoglial junctions are essential for the segregation of myelinated axons 

into distinct domains and efficient conduction of action potentials. Here, we show that 

netrin-1 and deleted in colorectal cancer (DCC) are enriched at the paranode in CNS 

myelin. We then address whether netrin-1 signaling influences paranodal adhesion 

between oligodendrocytes and axons. In the absence of netrin-1 or DCC function, 

oligodendroglial paranodes initially develop and mature normally but later become 

disorganized. Lack of DCC or netrin-1 resulted in detachment of paranodal loops from 

the axonal surface and the disappearance of transverse bands. Furthermore, the domain 

organization of myelin is compromised in the absence of netrin-1 signaling: K+ channels 

inappropriately invade the paranodal region, and the normally restricted paranodal 

distribution of Caspr expands longitudinally along the axon. Our findings identify an 

essential role for netrin-1 and DCC regulating the maintenance of axoglial junctions. 

 

Key words: myelin; axoglial junction; paranode; septate-like junctions; Caspr; 
neurofascin 
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INTRODUCTION 

The functional division of myelinated axons into distinct domains is crucial for 

the establishment of saltatory conduction. Concentrated at nodes of Ranvier are high 

densities of voltage-gated sodium channels that depolarize the axonal membrane, 

generating and propagating the action potential (for review, see Poliak and Peles, 2003). 

Flanking the node are the paranodal axoglial junctions, where each layer of the myelin 

sheath terminates in a cytoplasm-filled membrane loop that tightly abuts the axon. The 

paranode separates the node from the juxtaparanodal domain, the outermost region of the 

internode (for review, see Poliak and Peles, 2003). Concentrated at the juxtaparanode are 

Shaker-type voltage-gated potassium channels, which maintain internodal resting 

potential by preventing hyperexcitation and action potential backpropagation after nodal 

Na+ influx (Wang et al., 1993; Chiu et al., 1999; Vabnick et al., 1999). The molecular 

mechanisms that regulate the formation and maintenance of paranodal junctions are not 

well understood.   

The tight association between paranodal axonal and glial membranes is thought to 

act as a barrier between the node and the juxtaparanode, isolating electrical activity at the 

node of Ranvier from the internode and preventing the lateral diffusion of axonal proteins 

among domains (Poliak and Peles, 2003). Ultrastructurally, the points of contact between 

oligodendrocyte and axolemmal membranes are characterized by the presence of 

electron-dense ridges called transverse bands (Tao-Cheng and Rosenbluth, 1983). The 

axonal protein Caspr, also called paranodin, or ncp1, is concentrated at the paranode 

during myelination (Einheber et al., 1997). Caspr forms a complex in cis with the GPI 

(glycosylphosphatidylinositol)-linked protein contactin (Rios et al., 2000), and this 

association is required for the localization of Caspr to the axonal membrane (Faivre-

Sarrailh et al., 2000). The recruitment of the Caspr–contactin complex to the paranodal 

domain is dependent on the presence of the 155 kDa isoform of neurofascin (nfc155). 

Nfc155 forms a complex with Caspr and contactin in trans, and all three are essential for 

the formation of normal paranodal axoglial junctions in both the CNS and PNS (Tait et 

al., 2000; Bhat et al., 2001; Boyle et al., 2001; Charles et al., 2002; Sherman et al., 2005; 

Bonnon et al., 2007). In the absence of either Caspr or contactin, transverse bands do not 

form, the close association between many paranodal loops and the axon is disrupted, and 
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potassium channels are mislocalized to the paranodal region (Bhat et al., 2001; Boyle et 

al., 2001). Similar phenotypes are generated by loss of either ceramide galactosyl 

transferase (CGT) or myelin and lymphocyte protein (MAL), which are required for the 

proper trafficking of nfc155 (Dupree et al., 1999; Schaeren-Wiemers et al., 2004; Schafer 

et al., 2004).   

In the adult rat spinal cord, oligodendrocytes express netrin-1 and its receptor, 

deleted in colorectal cancer (DCC) (Manitt et al., 2001, 2004). Netrins are a small family 

of ∼75 kDa proteins with homology to laminins. They are best known as secreted 

chemotropic guidance cues for migrating cells and axons. Signaling through DCC, they 

direct the reorganization of F-actin by regulating focal adhesion kinase (FAK), fyn, PI-3 

kinase, and the Rho-GTPases Cdc42 and Rac1 (Moore et al., 2007). Additionally, they 

contribute to tissue morphogenesis by regulating cell–cell and cell–matrix adhesion; 

however, this is best understood outside the CNS (for review, see Baker et al., 2006). 

Subcellular fractionation of adult rat spinal cord white matter indicated that netrin-1 is 

enriched in fractions containing noncompact myelin membranes (Manitt et al., 2001). 

These membrane preparations typically contain proteins present at points of axoglial 

contact, including the paranodal junction (Menon et al., 2003). We demonstrate that DCC 

and netrin-1 are enriched at oligodendroglial paranodes and that, in the absence of netrin-

1 or DCC function, CNS paranodes develop and mature normally, but this organization is 

subsequently lost. The essential contribution of netrin-1 and DCC to paranodal 

maintenance, but not formation, distinguishes the phenotypes reported here from those 

found previously in other mutants, and suggests that distinct mechanisms regulate the 

organization of the paranodal axoglial junction in the developing and mature CNS. In 

summary, our findings demonstrate that netrin-1 and its receptor DCC are required for 

the maintenance of paranodal axoglial contact and represent the first reported function for 

netrin-1 in the mature CNS. 

MATERIALS AND METHODS 

Animals  

Adult male Sprague Dawley rats (180–200 g) and newborn CD1 mouse pups were 

obtained from Charles River Canada. Mice heterozygous for netrin-1 or DCC function 
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were obtained from Marc Tessier-Lavigne (Genentech, San Francisco, CA) and Robert 

Weinberg (Whitehead Institute for Biomedical Research, Cambridge, MA), respectively, 

and bred into a CD-1 genetic background. All procedures with animals were performed in 

accordance with the Canadian Council on Animal Care guidelines for the use of animals 

in research. 

Antibodies 

The following primary antibodies were used in this study: mouse monoclonal 

anti-Caspr (University of California Davis NeuroMab; catalog #75-001), guinea pig 

polyclonal anti-Caspr, rabbit polyclonal anti-Caspr (gift from Dr. David Colman, McGill 

University, Montreal, Quebec, Canada) (Svenningsen et al., 2003), mouse monoclonal 

anti-DCC intracellular domain (DCCIN) (BD Biosciences Pharmingen; catalog 

#554223), rabbit polyclonal anti-Kv1.2 (Alomone Labs; catalog #APC-010), mouse 

monoclonal anti-myelin basic protein (MBP) (Millipore Bioscience Research Reagents; 

catalog #MAB382), rabbit polyclonal anti-MBP (Millipore Bioscience Research 

Reagents; catalog #AB9046), rat monoclonal anti-MBP (Millipore Bioscience Research 

Reagents; catalog #MAB386), rabbit polyclonal anti-netrin PN2 (Manitt et al., 2001), 

rabbit polyclonal anti-neurofascin NFC2 (gift from Prof. Peter Brophy, University of 

Edinburgh, Edinburgh, UK; recognizes both 155 and 186 kDa isoforms of neurofascin) 

(Tait et al., 2000), mouse monoclonal anti-neurofilament 145 kDa (NFM) (Millipore 

Bioscience Research Reagents; catalog #MAB1621), chicken polyclonal anti-NFM 

(EnCor Biotechnology; catalog #CPCA-NF-M), chicken polyclonal anti-neurofilament 

200 kDa (NFH) (EnCor; catalog #CPCA-NF-H), mouse anti-myelin proteolipid protein 

(PLP) (Millipore Bioscience Research Reagents; catalog #MAB388), mouse monoclonal 

anti-sodium channel (pan) (Na+ch) (Sigma-Aldrich; catalog #S8809). Secondary 

antibodies used were Alexa 488-conjugated donkey anti-mouse (catalog #A21202) and 

goat anti-rabbit (catalog #A11008), Alexa 546-conjugated goat anti-mouse (catalog 

#A11030) and goat anti-rabbit (catalog #A11010), Alexa 633-conjugated goat anti-

chicken (catalog #A21103) and goat anti-mouse (catalog #A21052), and Alexa 647-

conjugated donkey anti-rabbit (catalog #A21244) from Invitrogen, and rhodamine-

conjugated donkey anti-guinea pig (Jackson ImmunoResearch; catalog #706-295-148). 
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Immunocytochemistry and confocal analysis of adult rat spinal cord.   

Adult rats were anesthetized with sodium pentobarbital (Somnotol; 65 mg/kg, i.p.; 

MTC Pharmaceuticals) and perfused transcardially with PBS, followed by 4% 

paraformaldehyde (PFA) in PBS at pH 7.4. Spinal cords were then equilibrated in 30% 

sucrose in PBS for 48 h at 4°C, embedded in optimal cutting temperature compound 

(Sakura Finetek), 18 μm longitudinal and coronal cryosections cut, and processed for 

immunohistochemistry. Images were captured using a Zeiss LSM 510 confocal 

microscope. In all cases, single confocal slices were collected. 

Immunocytochemistry and confocal analysis of cerebellar slice cultures. 

Cerebellar slice cultures were prepared based on previously published methods 

(Notterpek et al., 1993). Briefly, after decapitation, brains were dissected into ice-cold 

HBSS and 250 μm sagittal slices of cerebellum and attached brainstem were cut using a 

McIlwain tissue chopper. The tissue slices were placed on Millipore Millicell-CM 

organotypic culture inserts (Thermo Fisher Scientific) in medium containing 50% MEM 

with Earle's salts, 25% Earle's balanced salt solution, 25% heat-inactivated horse serum 

(HIHS), glutamax-II supplement with penicillin–streptomycin, amphotericin B (all 

purchased from Invitrogen), and 6.5 mg/ml glucose (Sigma-Aldrich). Membranes were 

transferred into fresh medium every 2 d. Slices processed after 25 d in vitro (DIV) are 

referred to in the text as “short-term cultures,” and those processed at 7 weeks in vitro or 

later (49 DIV for netrin mutant litters processed for EM, 67 DIV for DCC mutant litters 

processed for EM, and 60 DIV for netrin-1 and DCC mutant litters processed for 

confocal analysis) are referred to as “long-term cultures.”  

Slices processed for immunolabeling were fixed while attached to membranes 

with 4% PFA in PBS for 1 h, rinsed in PBS for 10 min, and blocked with 3% HIHS, 2% 

BSA, 0.25% Triton X-100 in PBS for 2 h. Slices were then incubated in primary antibody 

36–48 h, washed once for 10 min and then thrice for 1 h, incubated in secondary antibody 

overnight, washed, and mounted.  

Confocal images were captured as described above. For analysis of sodium and 

potassium channel distribution, slices were labeled with mouse anti-Na+ch and rabbit 

anti-Kv1.2 antibodies. The plane chosen for imaging was that at which nodal Na+ch and 
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juxtaparanodal Kv1.2 immunoreactivity was closest. The distance between Na+ch and 

Kv1.2 channel expression, and the length of the Na+ch channel immunoreactivity were 

analyzed. For analysis of neurofascin localization, the distance between the outermost 

edges of the region of neurofascin immunoreactivity was measured. The plane chosen for 

imaging was that in which the node of Ranvier most evenly bisects the region of 

neurofascin immunolabeling. For analyses of Caspr immunoreactivity, the length of each 

Caspr expression domain was measured. For analyses of neurofascin and Caspr 

localization, slices were also labeled with chicken anti-NFH and mouse anti-MBP 

antibodies. Distances were measured using LSM 510 Image Browser software. 

Electron microscopy 

Slices and attached membrane were cut out from surrounding membrane and 

fixed overnight with 2.5% glutaraldehyde in 0.1 m sodium cacodylate buffer, osmicated 

with potassium ferrocyanide-reduced 1% osmium tetroxide solution for 1 h, and then 

dehydrated with successive 10 min rinses in 30, 50, 70, 80, 95, and 100% ethanol (three 

times). Tissue was then infiltrated with 1:1, 1:2, and 1:3 ethanol to Epon blends, and then 

in pure Epon, for 1 h each, and then embedded in Epon, tissue side down, in a plastic 

BEEM capsule (Structure Probe). The 70–100 nm sections were then cut onto 200 mesh 

copper grids and stained with 4% uranyl acetate for 5 min, followed by Reynolds's lead 

citrate for 3 min.  Images were observed using a transmission electron microscope at 80 

kV using a JEM-2000FX (JEOL; used for all analyses except for those of short-term 

netrin mutant cultures) or at 120 kV using a Tecnai 12 (FEI) Gatan Bioscan CCD camera. 

For each condition, at least two slices from each of two animals were analyzed. For 

analyses of compact myelin, the width of the periaxonal space at each axon was 

measured, and the periodicity of compact myelin was calculated. For analyses of 

paranodal myelin, because of technical limitations encountered during the embedding 

process, only single paranodes were analyzed at a time. Each paranode was examined for 

the presence of four “faults.” A paranode was credited with a fault if the majority of 

paranodal loops present lacked transverse bands; if neighboring paranodal glial 

membranes lacked electron density between apposed glial loops and these membranes 

were separated by two or more membrane widths (“interloop densities”); if at least one 
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paranodal loop had detached from the axonal surface by two or more membrane widths; 

or if at least one paranodal loop faced away from the axonal surface (depicted in Fig. 

5A). 

Oligodendrocyte precursor cell transplantation into retina and immunohisto-

chemical analysis in vivo. 

Oligodendrocyte precursor cells (OPCs) were purified by shake-off from a mixed 

glial culture derived from neonatal mouse cortices, as previously described (Jarjour et al., 

2003). DCC−/− mice (CD-1 genetic background) were identified behaviorally and their 

cortices were cultured separately from their wild-type and heterozygote littermates. 

Genotypes were subsequently confirmed by PCR. Isolated OPCs were concentrated to a 

density of 15,000 cells/μl in OLDEM (oligodendrocyte defined medium) as described by 

us (Jarjour et al., 2003). The OPC suspension (2 μl) was injected into the vitreous 

chamber of the left eye of wild-type 2-month-old male CD-1 mice using a 10 μl Hamilton 

syringe with a 32 gauge glass microneedle. The needle tip was inserted into the superior 

(dorsal) hemisphere of the eye, at the level of the pars plana, at a 45° angle through the 

sclera into the vitreous body as described previously (Sapieha et al., 2005). This route of 

administration avoided retinal detachment or injury to eye structures, including the lens 

and the iris. The injection was performed within 1 min to slowly deposit the OPCs onto 

the retinal fiber layer. The needle was then gently removed, and surgical glue (Indermill; 

Tyco Health Care) was used to seal the injection site. Eight weeks after the 

transplantation, animals were perfused transcardially with 4% PFA. Eyes were then 

enucleated and the retinas were removed, fixed for an additional 30 min, and flat-

mounted vitreal side up on a glass slide for examination of the ganglion cell layer. Retinal 

tissue was permeabilized in 2% Triton X-100, 0.5% DMSO in PBS for 4 d, and blocked 

for 2 h in 10% normal goat serum, 2% Triton X-100, and 0.5% DMSO in PBS. Retinas 

were then incubated in primary antibodies for 48 h and washed once for 5 min and thrice 

for 20 min. Secondary antibodies were applied for 2 h, and retinas were washed and 

mounted on slides. Images were collected and analyses performed as described for 

organotypic slices. 
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RESULTS 

Long-term, myelinating cerebellar organotypic cultures   

Netrin-1 and DCC are expressed by myelinating oligodendrocytes in the mature 

CNS (Manitt et al., 2001, 2004). To investigate possible roles of netrin-1 and DCC in 

myelination, we sought to examine CNS white matter in the absence of netrin-1 or dcc 

expression. However, mice lacking functional netrin-1 or DCC protein die within hours 

of birth (Serafini et al., 1996; Fazeli et al., 1997), weeks before the vast majority of CNS 

myelin forms in rodents. To circumvent this limitation, we established organotypic 

cerebellar slice cultures derived from either newborn [postnatal day 0 (P0)] netrin-1 or 

dcc knock-out mice and their wild-type littermates.  In the developing rat cerebellum, 

MBP-positive oligodendroglia are first observed at P2 and increase in number throughout 

the white matter by P7. Myelinated axon segments are first observed at P7, and increase 

in abundance by P12, with extensive myelination seen by P20 (Reynolds and Wilkin, 

1988). A similar time course is observed during cerebellar development in mice (Foran 

and Peterson, 1992). The time course of oligodendroglial development in cerebellar slice 

cultures derived from wild-type newborn mice was similar to that observed in vivo. 

MBP-positive oligodendrocytes were visible at 3 DIV and increased in number and 

process complexity between 3 and 7 DIV. Widespread MBP-positive myelin profiles 

were visible by 13 DIV, and myelination was extensive by 30 DIV (Fig. 1A–D). Using 

this method, we have maintained healthy myelinating cultures as long as 70 DIV. 

Myelin develops normally in DCC- and netrin-1-deficient cerebellar slice cultures   

To investigate whether netrin-1 and DCC are required for the proper organization 

of CNS myelin, cerebellar slice cultures were prepared from newborn netrin-1 and DCC 

mutant animals and their wild-type littermates and analyzed. Extensive MBP-positive 

myelin profiles were visible in long-term (>7 weeks of age) wild-type, DCC−/−, and 

netrin-1−/− cultures (Fig. 1E–H). Compact myelin ultrastructure appeared normal in both 

DCC−/− and netrin-1−/− cerebellar slices and those collected from their wild-type 

littermates (Fig. 2; supplemental Table 1, available at www.jneurosci.org as supplemental 

material). Major dense lines, intraperiod lines, and periaxonal spaces were clearly evident 

in electron micrographs of DCC−/− and netrin-1−/− myelin cross sections, with the number 
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of myelin layers routinely exceeding 10, similar to wild-type myelin. The width of the 

periaxonal space (PS) was unaffected in both DCC−/− and netrin-1−/− slices (Fig. 2). 

Myelin periodicity was unaffected in netrin-1−/− slices, although a slight increase was 

observed in DCC−/− slices (10.83 ± 0.25 nm/wrap in DCC+/+ internodes compared with 

12.04 ± 0.35 nm/wrap in DCC−/− internodes; p < 0.05). 

Netrin-1 and DCC are enriched at CNS paranodes   

The lack of any obvious abnormalities in compact myelin is consistent with our 

previous subcellular fractionation of adult CNS white matter. These findings indicated 

that netrin-1 protein is not enriched in fractions containing compact myelin membranes, 

but that it is predominantly associated with fractions that include periaxonal and 

paranodal myelin membranes (Manitt et al., 2001). To further characterize the 

distribution of netrin-1 and its receptors in CNS white matter, we performed 

immunohistochemical analyses to determine whether these proteins were enriched in 

these regions. In 30 DIV wild-type cerebellar slice cultures, netrin-1 and DCC 

immunoreactivity overlapped with the distribution of Caspr, which is concentrated at 

paranodes (Fig. 3A–L). The distributions of netrin-1 and DCC protein were then 

examined immunohistochemically in adult rat spinal cord. Netrin-1 immunoreactivity 

colocalized with Caspr at the paranode in longitudinal sections, and DCC 

immunoreactivity was found in close proximity to the paranode (Fig. 3M–X). In axonal 

cross sections, netrin-1 immunoreactivity is closely associated with, and partially 

overlaps, that of Caspr (Fig. 3D–F,P–R), consistent with an enrichment of netrin-1 in 

regions in which the oligodendroglial paranodal loops closely appose the axonal surface. 

DCC immunoreactivity surrounded the axon at the paranode, but unlike netrin-1, it 

extended beyond the area delimited by Caspr (Fig. 3J–L,V–X). This is consistent with 

DCC localization to the oligodendroglial paranodal membrane loops, but not restricted to 

the region of axoglial contact. 

Lack of DCC and netrin-1 leads to abnormalities in paranodal organization   

The enrichment of netrin-1 and DCC protein at the paranodal region, as well as 

previous reports describing roles for netrins mediating short-range cell–cell and cell–

matrix interactions (for review, see Baker et al., 2006), raises the possibility that netrin-1 
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may regulate axo-oligodendroglial interactions. To address this, paranodal regions in 

long-term cerebellar slice cultures derived from newborn netrin-1−/− and DCC−/− mice 

and their wild-type littermates were examined by transmission electron microscopy.  The 

paranodal axoglial junction is composed of sequences of cytoplasm-containing loops of 

myelin membrane that tightly associate with each other and the axonal surface. In 

electron micrographs of myelinated axons, electron-dense transverse bands mark points 

of contact between paranodal myelin loops and the axolemma (for review, see Pedraza et 

al., 2001). In electron micrographs of wild-type cerebellar slice cultures, paranodal loops 

were regularly spaced, and transverse bands were present in which each loop of glial 

membrane contacted the axon (Fig. 4A,E), consistent with the appearance of these 

structures in vivo. 

In long-term wild-type cerebellar slices, transverse bands and interloop densities 

were readily detected at the vast majority of paranodes (Fig. 4A,E). In contrast, 

paranodes in DCC−/− and netrin-1−/− slices were frequently disorganized (Fig. 4B–D,F–

H). Transverse bands were often absent and, when present, were frequently diffuse (Fig. 

4B,F, insets). Glial loops were abnormally separated from each other, resulting in a loss 

of interloop densities (Fig. 4B). Glial membranes without axonal contact were frequently 

observed (Fig. 4B,F), and everted glial loops, oriented away from the axon, were 

common (Fig. 4C,G). Occasionally, noncompact paranode-like myelin membranes were 

localized to internodal regions (Fig. 4D,H,I).   

To quantify the differences between wild-type and DCC- or netrin-1-deficient 

paranodes in long-term cultures, paranodes were scored for the presence of each of four 

faults (Fig. 5A): (1) absence of transverse bands, (2) absence of interloop densities and 

abnormal separation between glial loops, (3) detachment of paranodal loops from the 

axolemma, and (4) presence of everted loops. In both DCC (Fig. 5B)- and netrin-1 (Fig. 

5C)-deficient slices, all four faults were more frequent than in cultures obtained from 

wild-type littermates. On average, DCC−/− paranodes scored 1.78 ± 0.13 faults per 

paranode compared with 0.18 ± 0.05 for wild-type paranodes (p < 0.005), whereas netrin-

1−/− paranodes were more severely disorganized, scoring a mean of 2.43 ± 0.09 faults per 

paranode compared with 0.27 ± 0.05 for wild-type paranodes (p < 0.005) (Fig. 5D; 

supplemental Table 2, available at www.jneurosci.org as supplemental material). When 
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paranodes were binned according to the number of faults, >50% of netrin−/− paranodes 

and ∼30% of DCC−/− paranodes, were classified as “severely abnormal,” having three to 

four faults per paranode (Fig. 5E,F; supplemental Table 3, available at 

www.jneurosci.org as supplemental material). Consistent with these trends, quantification 

of the number of aberrant paranodal loops revealed a fourfold to sevenfold increase in 

everted loops and a 6- to 10-fold increase in detached loops in DCC−/− and netrin-1−/− 

compared with wild type (supplemental Table 4, available at www.jneurosci.org as 

supplemental material). 

The organization of paranodal and juxtaparanodal domains requires netrin-1 and 

DCC   

The paranodal axoglial apparatus has been described to act as a barrier, 

preventing the diffusion of potassium channels from the juxtaparanode into the paranode 

(for review, see Poliak and Peles, 2003). To investigate whether the ultrastructural 

abnormalities present in the netrin-1- or DCC-deficient slices result in a failure of the 

paranode to properly segregate nodal sodium channels (Na+ch) and juxtaparanodal 

potassium channels (Kv1.2), we measured the distance between the Na+ch and Kv1.2-

immunoreactive domains and the length of the Na+ch-immunoreactive band (Fig. 6; 

supplemental Table 5, available at www.jneurosci.org as supplemental material). In wild-

type cultures, a clear gap was visible between nodal Na+ch and juxtaparanodal Kv1.2 

immunoreactivity (Fig. 6A,B). In netrin-1−/− and DCC−/− cultures, however, Kv1.2 

immunoreactivity was often inappropriately localized to the paranode (Fig. 6C,D, 

arrowheads), and the mean distance between Na+ch and Kv1.2 immunoreactivity was 

reduced in netrin-1−/− and DCC−/− cultures relative to wild-type cultures (Fig. 6E). In 

addition, the Na+ch-immunoreactive domain was lengthened by ∼1.5-fold in netrin-1−/− 

nodes relative to netrin-1+/+ nodes (Fig. 6A,C, arrow;F), but no such increase was 

observed in DCC−/− nodes (Fig. 6B,D,F). These data indicate that the paranodal axoglial 

junction fails to appropriately constrain the localization of ion channels at nodes of 

Ranvier lacking netrin-1−/− or DCC−/−. Furthermore, as suggested by the increased 

severity of the netrin-1−/− ultrastructural phenotype, the failure of the paranodal barrier 
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appears to be more severe in the absence of netrin-1, because Na+ch localization is also 

affected. 

Localization of Caspr and neurofascin in DCC−/− and netrin-1−/− paranodes   

Nfc155 and Caspr are concentrated at paranodal oligodendroglial and neuronal 

membranes, respectively, and are essential components of a protein complex required for 

paranodal organization (Tait et al., 2000; Bhat et al., 2001; Charles et al., 2002; Sherman 

et al., 2005). In previous studies of mutant animals with disruption of paranodal 

organization, the distribution of nfc155 and Caspr is aberrantly diffuse along myelinated 

axons instead of concentrated at paranodes (Marcus et al., 2002). Using antibodies that 

recognize either neurofascin, both 155 and 186 kDa isoforms, or Caspr, we investigated 

whether loss of netrin-1 or DCC function affects the expression or localization of these 

proteins (Figs. 7, 8; supplemental Table 5, available at www.jneurosci.org as 

supplemental material). Neurofascin localization is not altered in DCC−/− (Fig. 7A–D) or 

netrin-1−/− slices (Fig. 8A–D), and the length of the neurofascin-immunoreactive domain 

is not affected in paranodal regions lacking DCC or netrin-1 (supplemental Table 5, 

available at www.jneurosci.org as supplemental material). In contrast, the region of Caspr 

immunoreactivity flanking DCC−/− and netrin-1−/− nodes of Ranvier is markedly 

lengthened relative to that observed in cultures derived from their wild-type littermates 

(supplemental Table 5, available at www.jneurosci.org as supplemental material). 

Specifically, the Caspr-immunopositive domain expands from 2.84 ± 0.14 μm in DCC+/+ 

paranodes to 4.99 ± 0.28 μm in DCC−/− paranodes (p < 0.05), and from 3.76 ± 0.16 μm to 

5.47 ± 0.29 μm in netrin-1+/+ and netrin-1−/− paranodes (p < 0.005), respectively. 

Netrin-1 and DCC are required for the maintenance of CNS paranodal junctions   

Descriptions of aberrant paranodal organization in mutant mouse strains have 

reported junctions that form normally, but later become disorganized (Marcus et al., 

2002; Schaeren-Wiemers et al., 2004; Rasband et al., 2005). To determine whether 

paranode formation occurs normally in netrin-1 and DCC mutants, we examined the 

organization of paranodal myelin in short-term (25 DIV) cerebellar slice cultures.  In 

wild-type cultures at 25 DIV, paranodal loops were regularly spaced and transverse bands 

were present, confirming that paranodal junctions had formed and matured fully by this 



218 
 

 
 

stage (Fig. 9A,F). In contrast to what we observed in long-term cultures, 25 DIV netrin-

1−/− and DCC−/− paranodes were indistinguishable from netrin+/+ and DCC+/+ paranodes 

(Fig. 9B,G), indicating that netrin-1 and DCC are not required for the development of 

paranodal axoglial contacts. Quantification of the faults observed in long-term cultures, 

revealed no significant increase in any one fault in the absence of either netrin-1 or DCC 

at 25 DIV (Fig. 9C,H; supplemental Table 2, available at www.jneurosci.org as 

supplemental material), and the mean number of faults per paranode did not significantly 

differ between netrin-1−/− or DCC−/− and wild-type cultures (Fig. 9D,I; supplemental 

Table 2, available at www.jneurosci.org as supplemental material). When the paranodes 

were binned as described above, the vast majority of both wild-type and mutant 

paranodes were classified as normal (Fig. 9E,J; supplemental Table 3, available at 

www.jneurosci.org as supplemental material). 

Consistent with the lack of an abnormal ultrastructural phenotype, sodium and 

potassium channels were appropriately segregated at wild-type and netrin-1 or DCC-null 

nodes of Ranvier in 25 DIV cultures (supplemental Fig. S1A–D, available at 

www.jneurosci.org as supplemental material). The distance separating Na+ch and Kv1.2-

immunoreactive domains was unaltered in netrin-1−/− or DCC−/− slices, and no increase in 

the length of the Na+ch-immunoreactive band was observed (supplemental Fig. S1E–H, 

supplemental Table 5, available at www.jneurosci.org as supplemental material).  

Neurofascin was present in both 25 DIV wild-type and mutant cultures, and its 

distribution was unaltered in the absence of netrin-1 or DCC (supplemental Figs. S2, 

S3A–D,I; supplemental Table 5, available at www.jneurosci.org as supplemental 

material). The distribution of Caspr at netrin-1−/− or DCC−/− paranodes in short-term 

cultures was indistinguishable from that observed in wild-type cultures (supplemental 

Figs. S2, S3E–H,J; supplemental Table 5, available at www.jneurosci.org as 

supplemental material), consistent with normal initial development of the paranodal 

region in the absence of netrin-1 or DCC.  The normal organization of paranodal axoglial 

junctions in short-term cultures and the disruption of the ultrastructure and domain 

organization in long-term cultures indicate that the defects observed in older netrin-1−/− 

and DCC−/− cultures are not a consequence of aberrant myelin formation, but of 

maintenance of the axoglial junction. 
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Disruption of paranodal domains formed by DCC−/− oligodendrocytes in vivo   

To determine whether netrin signaling is similarly required for the maintenance of 

oligodendroglial paranodal junctions in vivo, we assessed the capacity of OPCs derived 

from DCC−/− mice to myelinate retinal ganglion cell axons when transplanted into the 

eyes of wild-type mice. The axons of retinal ganglion cells are myelinated in the optic 

nerve; however, OPCs do not invade the retina during development and the proximal 

segment of the axon within the retina remains unmyelinated (Berliner, 1931). Thus, the 

intraretinal segment of the ganglion cell axons provides a unique opportunity to assess 

the capacity of OPCs transplanted into the retina to myelinate, in the absence of 

competition from endogenous OPCs (Laeng et al., 1996). OPCs were isolated from 

mixed glial cultures derived from newborn DCC−/− pups and their wild-type and 

heterozygote littermates. OPCs were then transplanted into the retina by intravitreal 

injection into the eyes of adult mice (Fig. 10A), and the retinas were isolated and 

analyzed 8 weeks later. None of the host retinas exhibited any signs of an immune 

response. Abundant MBP-immunopositive myelin segments were observed along retinal 

ganglion cell axons in eyes that received OPCs of all genotypes (Fig. 10B). Paranodal 

specializations, visualized using the paranodal marker Caspr, were readily detected in 

newly myelinated axons (Fig. 10C–H). Quantitative analysis revealed a significant 

extension of the Caspr-immunoreactive domain, characteristic of a disrupted paranode 

structure, along retinal ganglion cell axons myelinated by DCC−/− oligodendrocytes 

compared with control retinas myelinated by oligodendrocytes expressing DCC (Fig. 

10E–H). Specifically, the Caspr-immunopositive domain expanded from 2.47 ± 0.19 μm 

(n = 28) in paranodes expressing DCC to 3.14 ± 0.15 μm in DCC−/− paranodes (n = 40; p 

< 0.01). Consistent with the phenotype found in cerebellar slice cultures lacking DCC or 

netrin-1, these findings indicate that netrin signaling through DCC regulates paranodal 

organization in the mature CNS in vivo. Importantly, these findings also indicate that the 

paranodal deficiencies detected result from the loss of a cell-autonomous function of 

DCC in oligodendrocytes. 
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DISCUSSION 

Netrins function as long-range guidance cues that direct cell and axon migration, 

and also at short-range, regulating cell–cell and cell–matrix adhesion (Baker et al., 2006). 

Signaling through its receptor DCC, netrin-1 directs the reorganization of F-actin by 

regulating FAK, fyn, PI3-kinse, and the Rho-GTPases Cdc42 and Rac1 (Moore et al., 

2007). In the adult CNS, expression of netrin-1 and its receptors is widespread in 

neuronal and glial cells including oligodendrocytes (Manitt et al., 2001, 2004). Using 

subcellular fractionation of CNS white matter, we previously demonstrated an 

enrichment of netrin-1 protein in noncompact myelin membranes implicated in axoglial 

contact (Manitt et al., 2001). Here, we show that netrin-1 and DCC are enriched in the 

paranodal region both in the adult CNS in vivo and in organotypic cerebellar cultures. 

Paranodal myelin developed normally in the absence of netrin-1 or DCC function, but 

became disorganized in mature myelin. Furthermore, our transplantation studies 

demonstrate a cell-autonomous requirement for DCC signaling in oligodendrocytes in 

vivo. We conclude that netrin-1 and DCC are required for the maintenance, but not the 

development, of CNS paranodal axoglial junctions. 

The demonstration that paranodal loops form and mature normally but later 

became disordered in the absence of netrin-1 and DCC is consistent with a role for these 

proteins in the maintenance of axoglial junctions. Reports documenting CNS paranodal 

phenotypes in mice lacking CGT (Dupree et al., 1998, 1999; Marcus et al., 2002; 

Rasband et al., 2003), ceramide sulfotransferase (CST−/−) (Ishibashi et al., 2002), MAL 

(Schaeren-Wiemers et al., 2004), 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP−/−) 

(Rasband et al., 2005), or CGT–myelin-associated glycoprotein (MAG) double mutants 

(CGT−/−:MAG−/−) (Marcus et al., 2002), have described these gene products as being 

either directly or indirectly required for the maintenance of the paranodal region. In each 

case, the paranodes begin to develop normally and then become progressively disordered, 

but the age of onset and severity of disorganization of the paranodal region vary 

considerably among them. Significant differences exist, however, between previously 

reported maintenance phenotypes and those described here. Unlike in the absence of 

Caspr, contactin, neurofascin, CGT, or MAL, paranodes appear to mature completely in 

the absence of either netrin-1 or DCC. Caspr and neurofascin cluster, and well ordered 
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transverse bands appear in a manner indistinguishable from cultures derived from wild-

type cerebella. It is only after the paranodes have matured that the axoglial junction 

destabilizes. In all previous reports of paranodal maintenance phenotypes, transverse 

bands either do not form at all or develop abnormally. A second key distinction between 

the netrin-1−/− and DCC−/− phenotypes reported here and previous studies is that 

neurofascin remains localized to the paranodal region at longer time points, despite the 

ultrastructural defects and loss of domain segregation observed. 

Nfc155 present on the glial membrane is required for the recruitment of the 

axonal Caspr–contactin complex to the paranode (Sherman et al., 2005) and associates in 

trans with contactin in this complex (Bonnon et al., 2007). A plausible hypothesis is that, 

in the absence of netrin-1 or DCC, the disengagement of the oligodendroglial membrane 

from the axonal surface disrupts the interactions between nfc155 and the Caspr–contactin 

complex, freeing a proportion of these molecules to diffuse laterally along the axon and 

away from the paranode. This interpretation implies that, although the nfc155–Caspr–

contactin complex is necessary, it is not sufficient for the maintenance of paranodal 

organization. Alternatively, the absence of netrin-1 or DCC may influence the 

localization of nfc155 to the paranodal plasma membrane, resulting in decreased 

availability of nfc155 to bind the Caspr–contactin complex. In this case, netrin–DCC 

signaling would be required to maintain the integrity of the nfc155–Caspr–contactin 

complex at the paranode. A third possibility is that nfc155 and DCC may signal 

cooperatively through common downstream signaling effectors; however, because little is 

known regarding the intracellular signaling downstream of either DCC or nfc155 in 

oligodendrocytes, additional studies are necessary to elucidate the underlying 

mechanisms involved. 

Although the phenotypes observed in netrin-1−/− and DCC−/− cerebellar slice 

cultures are similar, they are not identical. Minor increases in the periodicity of compact 

myelin (Fig. 2; supplemental Table 1, available at www.jneurosci.org as supplemental 

material) are observed in DCC−/−, but not netrin-1−/−, slices. Meanwhile, the 

ultrastructural abnormalities observed in the netrin-1 mutant paranodes are more severe 

than those found in the DCC mutants, as evidenced by the significantly larger mean 

number of faults per paranode (Fig. 5D) and the greater number of paranodes scored to be 
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severely abnormal (Fig. 5, compare E, F). In addition, whereas potassium channel 

localization is aberrant in both DCC−/− and netrin-1−/− paranodes, the sodium channel 

domain is also lengthened in the absence of netrin-1 (Fig. 6, compare A, C with B, D). 

Spreading of the domain occupied by the sodium channels has been reported at CNS 

paranodes in Caspr−/− (Bhat et al., 2001) and CGT−/− (Dupree et al., 1999) mutant mice 

but not, for example, in MAL mutants (Schaeren-Wiemers et al., 2004). The increased 

severity of the netrin-1−/− phenotype suggests that netrin-1 function at the paranode may 

be mediated in part by a DCC-independent mechanism. Oligodendrocytes express UNC5 

netrin receptors in the mature CNS (Manitt et al., 2004), and it remains to be determined 

how they may additionally contribute to netrin-1 function at the paranode. 

How, then, do netrin-1 and DCC contribute to the maintenance of paranodal 

axoglial junctions? Netrin-1 is a secreted protein; however, consistent with the restricted 

distribution of netrin-1 found at paranodes, most netrin-1 in the CNS is not freely soluble 

but membrane-associated (Manitt et al., 2001). Furthermore, disrupting DCC function 

blocks cellular adherence to immobilized substrate-bound netrin-1, supporting roles for 

netrin-1 and DCC mediating cell–cell or cell–matrix adhesion (Shekarabi et al., 2005). 

These findings suggest that netrin-1 and DCC may directly contribute to adhesion 

between oligodendroglial paranodal loops and the axonal plasma membrane. Netrin-1 

binds heparin with high affinity, and heparin sulfate proteoglycans have been 

hypothesized to localize netrin-1 on cell surfaces (Serafini et al., 1994; Kappler et al., 

2000; Suzuki et al., 2006). Consistent with a potential role mediating adhesion at 

paranodes, recent findings have identified short-range roles for netrin-1 influencing tissue 

morphogenesis outside the CNS by regulating cell–cell interactions (for review, see 

Baker et al., 2006). 

In neurons, DCC influences cytoskeletal organization and axon guidance by 

regulating the src family kinase fyn and the Rho-GTPases Cdc42 and Rac1 (Shekarabi 

and Kennedy, 2002; Li et al., 2004; Meriane et al., 2004; Shekarabi et al., 2005). 

Interestingly, loss of Cdc42 or Rac1 in oligodendroctyes results in disorganization of 

both compact and noncompact myelin membranes (Thurnherr et al., 2006). Fyn is also 

required for myelination in vivo (Sperber et al., 2001) and fyn-null oligodendrocytes do 

not form myelin-like membrane sheets in vitro (Osterhout et al., 1999). A similar defect 
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in membrane sheet formation is detected when netrin-1 or DCC-null oligodendrocytes are 

allowed to mature in vitro, without neurons (S. Rajasekharan and T. E. Kennedy, 

unpublished data); however, the possibility that the regulation of Rho-GTPases and fyn 

by DCC and netrin-1 contributes to paranode maintenance remains to be investigated. 

In summary, we conclude that netrin-1 and DCC are required to maintain the 

appropriate organization of axoglial membranes at CNS paranodal junctions. Our data 

identify an essential cell-autonomous role for netrin-1 signaling through DCC during 

oligodendrocyte maturation and myelination, and support the hypothesis that DCC 

influences paranodal organization by regulating the local organization of the actin 

cytoskeleton and promoting axo-oligodendroglial adhesion. The novel phenotypes 

identified reveal a previously unknown mechanism required for axoglial adhesion and is 

the first identified function for netrin-1 and DCC in the mature CNS. 
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Figure 1.  Normal myelin formation in wild-type and netrin-1 and DCC mutant 

cerebellar organotypic cultures.  

Oligodendrocyte maturation and myelination in slices of newborn mouse cerebellum 

follows a similar time course to that in vivo and occurs normally in the absence of netrin 

and DCC. After 3 DIV, oligodendrocytes, immunolabeled with an antibody against MBP 

and visualized using Alexa 488-conjugated secondary antibodies (green), can be readily 

detected (A). They increase in number and complexity between 3 and 7 DIV (B). By 14 

DIV, many myelinated axons are visible (C), and by 30 DIV, extensive myelination is 

observed throughout the white matter (D). Abundant myelination is observed in long-

term slice cultures derived from both DCC−/− and netrin-1−/− mutant animals (F, H) and 

their wild-type littermates (E, G). Magnification: 20× objective. Scale bar, 100 μm. 
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Figure 2.  Compact myelin ultrastructure is normal in long-term netrin-1 and DCC 

mutant cerebellar slice cultures.  

Spacing between layers of the myelin sheath was analyzed by transmission electron 

microscopy in cross sections cut from cerebellar slice cultures derived from DCC−/− or 

netrin-1−/− animals (B, D, respectively) and their wild-type littermates (A, C, 

respectively). The width of the periaxonal space was unaffected in the mutant slices. 

Although the periodicity of netrin-1+/+ and netrin-1−/− myelin wraps was not significantly 

different, the absence of DCC expression resulted in a small (∼11%), but significant, 

increase in the spacing between layers of compact myelin (supplemental Table 1, 

available at www.jneurosci.org as supplemental material). Electron micrographs were 

imaged at 410,000×. Ax, Axon; PS, periaxonal space. Scale bar, 50 nm. 
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Figure 3.  Distribution of netrin-1 and DCC in myelinated cerebellar organotypic 

slice cultures and adult rat spinal cord.  

Triple-label immunohistochemical analysis of longitudinal (A–C, G–I, M–O, S–U) and 

cross-sectional (D–F, J–L, P–R, V–X) images of the paranode in mature (30 DIV) 

cerebellar slice cultures (A–L) and adult rat spinal cord (M–X). Caspr immunoreactivity 

was visualized using Alexa 546-conjugated secondary antibodies (red). PLP (C), MBP 

(I), and NFH (O, R, U, X) immunoreactivity was visualized using Alexa 633-conjugated 

secondary antibodies (blue). Netrin-1 and DCC proteins were visualized using Alexa 

488-conjugated secondary antibodies (green). Netrin-1 protein (A–F, M–R) is localized 

to the paranodal axoglial junction, where it is closely associated, and partially overlaps 

with Caspr. DCC protein (G–L, S–X) surrounds the axon at the paranode but does not 

colocalize with Caspr to the same extent as netrin-1. Magnification: A–C, G–I, M–O, S–

U, 100× objective; digital zoom, 4; D–F, J–L, P–R, V–X, 100× objective; digital zoom, 

10. Scale bars: A–C, G–I, M–O, S–U, 2 μm; D–F, J–L, P–R, V–X, 500 nm. 
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Figure 4.  Abnormal paranodal myelin in long-term DCC- and netrin-1-deficient 

organotypic slice cultures.  

The organization of both paranodal and internodal myelin was examined using 

transmission electron microscopy in long-term (A–D, 67 DIV; E–H, 49 DIV) organotypic 

slice cultures derived from newborn DCC or netrin-1 mutant mouse cerebellum (B–D, F–

H) or that of their wild-type littermates (A, E). In slices collected from wild-type animals, 

paranodal myelin was well organized, and electron-dense transverse bands between the 

axonal and oligodendrocyte membranes (A, E, black arrowheads) and interloop densities 

between paranodal loops (A, white arrowhead) were present. In contrast, in slices lacking 

DCC or netrin-1, transverse bands are frequently disordered (B, F, insets, black 

arrowheads) or absent (B, F, insets, white arrowheads), and paranodal loops were often 

disorganized. Myelin membranes were frequently separated from the axolemma (B, F, 

black arrows) and from each other (B, white arrow). Paranodal loops oriented away from 

the axon were also frequently observed in the mutants (C, G, arrows). Regions of myelin 

decompaction resembling paranodal loops were also present in mutant internodal myelin 

(D, H, I). Magnification: A–H, 68,000×; I, 25,000×. Scale bars: A–H, 200 nm; I, 500 nm; 

A, B, E, F, insets, 100 nm. 
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Figure 5.  Quantification of paranodal defects in the absence of netrin-1 or DCC.  

The integrity of paranodal myelin was analyzed in electron micrographs of transverse 

sections of long-term cerebellar slice cultures derived from DCC−/− (67 DIV) or netrin-

1−/− (49 DIV) mice and their wild-type littermates. A, Myelin paranodes were examined 

for four defects: lack of transverse bands (1), lack of interloop densities (2), separation of 

paranodal myelin loops from the axonal surface (3), and everted paranodal loops (4). 

Each observation was counted as one fault. B, C, In both netrin and DCC mutants, the 

incidence of each of the four defects was increased, as was the mean number of faults per 

paranode (D). DCC (E) and netrin-1 (F) wild-type and mutant paranodes were classified 

as normal (0 faults), mildly abnormal (1 fault), moderately abnormal (2 faults), and 

severely abnormal (3–4 faults). Notably, whereas 97% of DCC+/+ paranodes and 97% of 

netrin-1+/+ paranodes examined were classified as normal or mildly abnormal, not a 

single wild-type paranode was severely abnormal. OL, Oligodendroglial membrane; AX, 

axolemma; TB, transverse bands; ID, interloop densities. **p < 0.005. Error bars indicate 

SEM. 
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Figure 6.  Disruption of the domain organization of the node of Ranvier in long-

term netrin-1- and DCC-deficient slice cultures.  

Long-term (60 DIV) cerebellar slice cultures were double-labeled with antibodies against 

Na+ch and Kv1.2 (A–D). Kv1.2 protein was visualized using Alexa 488-conjugated 

secondary antibodies (green), and Na+ch proteins were visualized using Alexa 546-

conjugated secondary antibodies (red). In cultures lacking netrin-1 (C) or DCC (D), a 

reduced distance between Na+ channels localized within the node of Ranvier and K+ 

channels normally localized to the juxtaparanodal region was detected. This decrease was 

primarily attributable to the apparent “leaking” of K+ channels into the paranode, and 

occasionally the node itself (C, D, arrowheads; E). In netrin-1−/−, but not DCC−/− slices, 

the length of the Na+ch-positive domain was increased relative to control (C, arrow; F). 

Magnification: 100× objective; digital zoom, 4. Scale bar, 2 μm. *p < 0.05, **p < 0.005. 

Error bars indicate SEM. 
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Figure 7.  Caspr, but not neurofascin, distribution is altered in long-term DCC-

deficient cultures.  

Long-term (60 DIV) cerebellar slice cultures were triple-labeled with antibodies against 

NFH, MBP, and either nfc (A–D) or Caspr (E–H). MBP was visualized using Alexa 488-

conjugated secondary antibodies (green), NFH was visualized using Alexa 633-

conjugated secondary antibodies (blue), and nfc or Caspr were visualized using Alexa 

546-conjugated secondary antibodies (red). The length of nfc-immunoreactive bands 

were unchanged between DCC−/− and DCC+/+ nodal regions, whereas Caspr-

immunoreactive domains were lengthened at DCC−/− paranodes relative to wild-type 

slices (supplemental Table 5, available at www.jneurosci.org as supplemental material). 

Magnification: 100× objective; digital zoom, 4. Scale bar, 2 μm. 
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Figure 8.  Caspr, but not neurofascin, distribution is altered in long-term netrin-1-

deficient cultures.  

Long-term (60 DIV) cerebellar slice cultures were triple-labeled with antibodies against 

NFH, MBP, and either nfc (A–D) or Caspr (E–H). MBP was visualized using Alexa 488-

conjugated secondary antibodies (green), NFH was visualized using Alexa 633-

conjugated secondary antibodies (blue), and nfc or Caspr were visualized using Alexa 

546-conjugated secondary antibodies (red). The length of nfc-immunoreactive bands 

were unchanged between netrin-1−/− and netrin-1+/+ nodal regions, whereas Caspr-

immunoreactive domains were lengthened at netrin-1−/− paranodes relative to wild-type 

slices (supplemental Table 5, available at www.jneurosci.org as supplemental material). 

Magnification: 100× objective; digital zoom, 4. Scale bar, 2 μm. 
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Figure 9.  Normal ultrastructure of paranodal myelin in short-term netrin-1- and 

DCC-deficient cerebellar slice cultures.  

The organization of paranodal myelin was studied by transmission electron microscopy 

in short-term organotypic slice cultures derived from newborn netrin-1−/− or DCC−/− 

animals and their wild-type littermates (A, B; F, G, respectively). At this age, paranodal 

myelin was well organized in both wild-type and mutant cultures. In almost every 

paranode studied at this age, transverse bands linked the axonal and oligodendrocyte 

membranes, and paranodal loops were closely apposed to each other. Detached and 

everted loops were rarely observed in short-term cultures (C–E, H–J). Magnification: 

25,000×. Scale bars, 500 nm. Error bars indicate SEM. 
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Figure 10.  Altered paranodal Caspr distribution in retinal ganglion cell axons 

myelinated by DCC−/− oligodendrocytes in vivo.  

Injection of OPCs into the eyes of adult mice results in myelination (A). Flat-mounted 

retina (B) was double-labeled with antibodies against MBP to visualize myelin and Caspr 

to visualize paranodes (C–H). MBP was visualized using Alexa 488-conjugated 

antibodies (green). Caspr was visualized using Alexa 546-conjugated antibodies (red). 

The Caspr-immunoreactive domains were lengthened in the DCC−/− myelin group (G, H) 

compared with oligodendrocytes expressing DCC (E, F). The white arrowheads (H) 

illustrate the edges of the Caspr-immunoreactive domain measured. Magnification: B, 

10× objective; C, 100× objective; D, 100× objective; digital zoom, 2; E–H, 100× 

objective; digital zoom, 4. Scale bars: C, D, 5 μm; E–H, 2 μm. 
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APPENDIX B  

CONTRIBUTION TO THE ARTICLES 

For the article “Structural and functional neuroprotection in glaucoma: role of 
galantamine-mediated activation of muscarinic acetylcholine receptors” (Chapter 2 
in the thesis), I performed all of the experiments in this paper and Dr. Yu Zhou 
contributed in production of preliminary data. I have formulated the initial draft and 
figures of this manuscript for publication, which was then revised with assistance from 
my supervisors. 

For the article “Retinal microvasculature protection correlates with retinal ganglion 
cell survival and blood flow restoration in experimental glaucoma” (Chapter 3 in the 
thesis), I performed all the in vivo experiments. Alex Dong worked on the isolated 
arterioles and Mylène Pouliot helped me in retinal blood flow measurements. I have 
prepared the draft and figures of this manuscript, with assistance from my supervisor. 

For the article “A cell-permeable phosphine-borane complex delays retinal ganglion 
cell death after axonal injury through activation of the pro-survival extracellular 
signal-regulated kinases 1/2 pathway” (Chapter 4 in the thesis), I performed all of the 
experiments and generated all of the data presented in this paper. Christopher J. Lieven 
helped with synthesis of the PB1 compound. I have prepared the initial draft and figures 
of this manuscript for publication, which was then revised with assistance from my 
supervisors. 

For the article “Maintenance of axo-oligodendroglial paranodal junctions requires 
DCC and netrin-1” (Appendix A in the thesis), I performed the oligodendrocyte 
precursor cell transplantation into the retina of newborn mouse pups via intravitreal 
injections and also helped in perfusion of experimental animals. The result of my 
contribution is reflected in figure 10 of this article. 

 


