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L'abstrait

Ceci est un papier de recherche de maîtrise en science économiques sur le sujet d'estimation 
des préférences avec les modèles de choix discrets. Le travail du lauréat Nobel Daniel 
McFadden sur les modèles logit est adapté dans le model d'utilité aléatoire. Ce model permet 
une perspective intéressante sur la théorie des préférences et de la transitivité, tel que avancé 
par  Amos Tversky, parmi d'autres. La grande partie de ce papier de recherche s'inspire de 
l'article de Regenwetter et co-auteurs, "Transitivity of preferences" (2011). Les donnes d'un 
sondage mené en 2011 par Regenwetter et co-auteurs sont utilises ici afin de faire de 
l'inférence sur le model et estimer des utilités, qui sont ensuite ordonnés de manière de 
construire des relations de préférence. Une discussion sur les préférences, les modèles logit et 
ses estimations parait dans ce papier. Ce travail a été fait sous la supervision de professeur 
William McCausland, Université du Montréal, Quebec.

Abstract

This work is a masters research paper in economics on the topic of estimating preferences with 
discrete choice models. The work of Nobel laureate Daniel McFadden on logit models was 
adapted into a model on random utility. This model allows for an interesting perspective on the 
theory of preferences and transitivity as conjectured by Amos Tversky, among others. The bulk 
of this research paper draws from the article by Regenwetter and co-authors "Transitivity of 
preferences" (2011). His data from the 2011 survey was used to run inference on the model and 
estimate utilities, which then allowed to construct and analyze preference relations. A discussion 
on preferences, logit models and estimation is featured in this paper. The work was done under 
supervision of professor William McCausland, Universite du Montreal, Quebec. 



INTRODUCTION

This work is a masters research paper on the topic of estimating preferences with 

discrete choice models. The focus of this work is to motivate and build an empirical 

model capable of estimating preference relations in a stochastic environment. By using 

the assumptions of the logit model with respect to estimating discrete choice sets, the 

model will use the power of the logit model for the purpose of estimating utilities of 

individuals. The paper will feature discussion on both theory of preferences and 

inference work. 

The paper combines theory of preferences and random utility. The first section will 

review the theory on preferences and transitivities in dynamic and stochastic 

environment. Starting with Amos Tversky's seminal paper "Intransitivity of preferences", 

which has seriously shaken the axioms of rational choice and spurred a lot of research 

on the subject of choice, rationality and transitivity, this section will discuss the more 

recent developments in that area, such as the critique of Regenwetter and co-authors 

on the faults of existing models. 

The next sections will discuss choice modelling. The paper will explain the basics of 

discrete choice models, the logit model and the contribution of Nobel laureate Daniel 

McFadden to the theory. The paper will then use his econometrics work to build two 

empirical models; the first is a random utility model and the second is a logit model that 

supposes a context effect in the utility of individuals. The first model assumes utility is 

composed strictly of an error term that has a logit distribution. The second model 

assumes the utility is in part determined by the context, that is what choices the 

individual is asked to rank. 

Furthermore, the paper will present and analyze the results that have been obtained by 

carrying inference with the aid of the two logit models. All programming was done in R 

language and all the data was taken from the survey conducted by Regenwetter and co 

authors in 2011. This model will shed a little light on some conjunctures about cyclicities 

but unfortunately no definite conclusion can be reached.



Finally, this paper will suggest few ideas for future work. One of such ideas is improving 

estimation techniques through a better experimental design and surveying methods. 

One modest experimental design will be proposed but a thorough discussion on the 

topic is beyond the scope of this paper. 

THEORY

This section will briefly cover the theory of transitivity in choice preferences. Transitivity 

is a crucial axiom in rational choice. Increasingly, researchers challenge the notion of 

transitivity in preferences. The following section will explain what is transitivity and why 

transitivity is important, why researchers overestimate cases of transitivity and the 

difficulties related to uncovering transitivity in general. It will be important to understand 

the difference between preferences in a stochastic and deterministic environment. This 

section centers around the theory in Tversky's 1969 paper and the subsequent critique. 

The following section is a literature review; it introduces the concepts and the notions 

before dwelling into the somewhat more technical aspects of choice modelling. 

Rationality and transitivity

Rational choice is a very vast and complicated idea. Economists think of rational 

individuals as having a preference relation over choices. Every choice, for example the 

choice of a car, yields a utility to the chooser, which in turn can be ranked. The choice 

yielding the highest utility is said to be most preferred, the choice with the second 

highest utility is second most preferred and so on. Preference relations are crucial as 

much of the theory of micro economics rests on the idea that rational agents are looking 

to make the best possible decision. The theory of preference rests on four principal 

axioms : the preferences are 1) transitive, 2) complete, 3) continuous and 4) 

independent. The first axiom is also perhaps the most crucial and will be thoroughly 

discussed in this paper. 

Preferences are defined as relations over objects and the objects could be either 

tangible or decisions like "watching a movie". In a set of three possible objects {A,B,C}, 

we say an individual n can rank the three in order based on what he prefers most to 



what he prefers least, for example  (A>nB>nC), where A is preferred to B, B is preferred 

to C and A is preferred to C. The >n (or <n) is a preference operator and denotes an 

object being preferred to another object according to individual n. When obvious from 

the context, notation n will be dropped from the operator and preferences are denoted 

by simply > or < signs. 

Transitivity is a fundamental axiom of rational choice. Formally, we define transitivity as: 

if (A>B) and (B>C) then it must be that (A>C). If choices are not transitive then it is said 

that they are intransitive. For example, if an individual prefers A over B and B over C but 

then prefers C over A, we say she violates the transitivity axiom on preferences. This 

kind of violation contradicts the notion of rationality and it challenges the definition of 

preferences as we understand it.

Tversky has shown that given particular objects, individuals would, knowingly or not, 

exhibit preferences that violate this axiom of transitivity. These type of preferences are 

different from what is hypothesised under classic theory. Termed lexicographic 

semiorder preferences, they satisfy the definition of transitivity in theory; however in 

practice it is possible to manipulate the attributes of a choice set such that preferences 

contain intransitivities. His results spurred a lot of research on rationality, utility, 

preferences and transitivity. Today this is a very popular research topic in many 

disciplines and there even exist a number of research centers that study related 

questions, for example the Center for the Study of Rationality in Jerusalem, Israel and 

the Center for the Study of Choice in Sydney, Australia. In other fields like biology and 

neurology, animal brains are tested to determine if rats and birds are capable to 

calculate expected probability of an event (Glimcher and Rustichni 2004). 

Tversky model 

The model was originally conceived by psychologist Amos Tversky in 1969. The model 

was a major contribution to the study of rationality and choice, the understanding of 

preferences and the discipline of economics in general. The set up will be explained in 

this section because the rest of this paper will use the same concepts and definitions.  



Tversky conducted a survey among 18 Harvard undergraduate students. Each student 

was asked to answer a series of questions about his preferences. Every question would 

present the student with two alternatives and ask him to select one that he likes best. 

The alternatives are objects called a "lottery" because each object has a probability of 

realization (between 0 and 1) and an outcome (winnings of a lottery) in real U.S. dollars. 

Intuitively it is possible to calculate an expected value (e.g E(x)=probability of winning * 

value of prize x) of each lottery but this calculation was not provided nor encouraged. 

There are a total of 5 lotteries, {A,B,C,D,E} which is a global (or master) choice set. The 

lotteries will be also called alternatives, objects and items throughout the paper when 

obvious from the context. A set of alternatives from which an individual was asked to 

choose is called a "choice set". For the purpose of his survey, the choice set has two 

items because in each question the individual was tasked to choose one of two choices; 

effectively, the individual is making a series of pairwise comparisons over all the ten 

possible ways to construct two-choice object set when the master set contains 5 items. 

When an alternative has been chosen, it will be referred to as a "choice".

The purpose of the survey is to learn about each individual's preferences. Each question 

asks an individual to choose between two alternatives. Indifference and non-response 

are not allowed. Because there are ten possible choice sets with two elements, an 

individual is asked a total of ten questions and each of the ten questions is repeated 

twenty times to measure consistency. Plus there are also filler questions asked in the 

middle of the test to mitigate memory effects, statistical dependencies and otherwise to 

make sure the real questions are properly administered, but these filler questions are 

not recorded for the experiment. From observing an individual's answer, it will be 

possible to discover how she feels about each of the five items {A,B,C,D,E}. 

The nature of the test necessitates a stochastic environment so the first thing that was 

necessary is to introduce a new model to measure behaviour in probabilistic fashion. 

Formally, object i is said to be weakly stochastically preferred over object j if the 

probability of choosing i in a set {i,j} is equal to or greater than 1/2, or . In 

turn, transitivity is defined as weak stochastic transitivity where : if  and 

 then . A higher probability here is tied to the idea of 



constituency. Individuals that are very consistent in their choice will have a probability 

approaching 1 (e.g. they behave deterministically). 

By conducting the experiment, Tversky has shown that not only do individuals violate 

the idea of transitivity as we know it but in predictable ways. According to the results of 

the survey, the majority of individuals violated transitivity in their own preferences. 

These results were very surprising, including to the respondents themselves who denied 

at first acting intransitively. This kind of behaviour challenges the notion of preferences 

as we understand them. 

The major contribution of his paper is the introduction of a Lexicographic Semiordering 

type of preferences which he says individuals occasionally exhibit when faced with 

particular attributes. 

The Lexicographic Semiordering is formally defined as: A > B if and only if (a > b) or (a = 

b and a' ≥ b'), where (a,a') are respectively the first and second attributes of object A 

and (b,b') are respectively the first and second attributes of object B. In other words, the 

first attribute is the most important for an individual's choice. Only when an individual is 

indifferent or undecided between two alternatives based on the first attribute will she use 

the second attribute to judge between the objects A,B. An example of a lexicographic 

semiorder in practice is the system by which a dictionary is composed. 

Ranking based on LS preferences does not violate transitivity on its own. Rather, it is 

the perception of an individual that can be manipulated so to force transitivities in 

choices. If the difference between the first attribute of two objects (a and b) is minimal, 

the individual will make the decision based on the 2nd attribute (a',b'). When difference 

of (a,b) is large again, the individual will make the decision based on the first attribute. 

This type of decision making can generate intransitivities in preferences. 

Regenwetter et co crit ique

Regenwetter, Dana and Davis-Stober discussed at length the issues with literature on 

transitivity and the faults with Tversky's model and a number of others (Regenwetter and 

co 2011). The main component of their paper is that the literature overestimates cases 

of transitivity due to faulty statistical analysis and bad model specification. 



The central remark is how researchers are so far unable to reconcile a dynamic model 

with a static model. The classic theory on preferences is defined in a static environment 

whereas empirical testing is set in a stochastic environment. Unfortunately, most 

dynamic models are not adequate enough to estimate preferences in dynamic 

environments. Indeed, most of the models have one common shortcoming, namely the 

inability to distinguish between variability and consistency.   

It is impossible to know the difference between variability and consistency in individual's 

choices. When an individual answers a question 20 times, half of those times she might 

be in a state of mind where she prefers A and the other half he might be in a state of 

mind where she prefers B. This kind of variability is an observed phenomenon in real life 

and thus expected on the part of respondents as well. 

By using tricks to mitigate for memory effects, the researchers hope to control for 

different transitive states but this does not usually work. Therefore, when a respondent 

is repeated the same question and she answers it differently, she may in fact be 

expressing variability which is a result of being in a different mental state. This type of 

behaviour is both natural and anticipated. However, as the researcher cannot observe 

what transitive state she is, he considers it part of the same preference relation. He 

assumes that the difference in answers is due to a lack of consistency by the 

respondent, which is not necessarily true. The models on stochastic preferences is 

laden with these problems and more. Ignoring it leads to faulty estimation of 

preferences.  

Further criticism by Ragenwetter is how researchers do not focus on all cases of 

cyclicities. A single respondent has multiple preference relationships and thus multiple 

ways to break the cycle. Most researchers will assume there is but one preference 

relationship, so they do not focus on other cases of transitivity (or lack thereof) that 

might be happening. 

Furthermore, there s a problem with Type1 errors. Type1 error is defined as rejecting a 

hypothesis that should have not been rejected. The error happens when the sample 

estimate falls outside the confidence interval.  



Estimating a preference relation through a statistical test forces the existence of a type1 

error. When the researcher estimates multiple preference relations, he runs into multiple 

type1 errors. A series of pairwise relations extenuates the probability of a type1 error 

because all it takes is one pairwise relation to be rejected for an individual to be referred 

to as intransitive. When preferences are "weak" or when PrA(A,B)=½, it is more likely 

that an estimated cycle is in fact a Type1 error.  

In his overview of the literature on transitivities, Regenwetter et co reviewed over 20 

papers. Another common mistake researchers make is assume that transitivities are 

linear, that is they satisfy the triangle inequality. By forcing linearity, researchers force 

strong assumptions on preferences--linearity of preferences is a lot stronger than 

transitivity of preferences. By dropping the triangle inequality restriction, they discover 

that most instances of transitivity are over-reported.  

Finally, Regenwetter and co carried out a similar experiment with a few slight 

modifications. For one, the prizes of lotteries are now adjusted to 2011 price levels and 

the candidates are not pre-screened. In their experiment, they found that only 4 out of 

18 individuals violated transitivity and even that was within the margin of Type1 error. 

DISCRETE CHOICE MODEL 

It is said the rational individual makes a choice which she thinks will give her the highest 

utility among all available choices. In a choice set with two alternatives {i,j}, the 

individual will choose object i over object j if the utility of i is greater than utility of j, 

Ui>Uj. A discrete choice model is often used to describe this type of decision-making 

because of the discrete nature of the objects. Unlike regressions on continuous 

variables, a DCM is applicable here because the object set is finite and countable and 

because the outcomes are discrete (e.g. an individual chooses either object i or object j, 

she does not choose some fraction of the object).

A discrete choice model describes the relationship between the explained variables 

(e.g. some attributes) and the outcome. For a model to be effective, the three conditions 

have to be satisfied: the choice set has to be finite, the alternatives have to be 



exhaustive (e.g. all possible options have to be presented such that the individual can 

go through them and choose at least one) and the alternatives have to be mutually 

exclusive.  

Daniel McFadden was one of the main researchers to have made DCM's popular and is 

credited with much of the development of discrete choice models. In his original work on 

the San Francisco transit system (McFadden 1974) he used a discrete choice model to 

analyze individual's decisions to use various modes of transport such as car, train, 

carpooling and bus as well as the frequency of the transportation. His model would be 

able to predict the relationship between the observed variables and the outcomes. 

The utility accrued to an individual from choosing alternative i, Ui, is composed from an 

observed part (to the researcher) and an unobserved part. The former is some known 

attribute, for example the monetary cost of choosing an alternative. The unobserved part 

is everything else that isn't specified in the utility. Formally, utility is Ui = Vi + Ei where Vi 

is the observed part and Ei is the error term (unobserved) of object i. The decomposition 

is fully general in a sense that we say that Ui - Vi = Ei. 

The assumptions about the distribution of the error is crucial because it allows the 

researcher to specify a density function to estimate the otherwise hidden term. In the 

context of decision-making over discrete variables, the error in the utility, Ei, is assumed 

to follow an identically, independently, extreme value distribution if the assumptions 

above are satisfied.  

The difference between two error terms that have extreme value distribution, E*ij = Ei - 

Ej, is said to follow a logistic distribution. This has been proven by McFadden as part of 

his work on logit models. The assumption about the error term E*, also proven as part of 

his work, is the motivation for using a logit model such as the one that will be described 

in the next section. This paper will concentrate on the logit model which, according to 

Kenneth Train, is the most popular of the discrete choice models today (Train, 2009).

There exist other, more sophisticated, models in the family of logit models, such as 

nested-logit and the mixed logit models. As well, there are other models such as the 

multinomial and probit models--they are assumed to have a different error distribution, 



although the purpose thereof is essentially the same. These models are considered less 

rigid as they have slightly more relaxed assumptions on the errors, for example the 

absence of a correlation assumption among errors. Other class of models do not 

assume distribution of error at all; rather they estimate probability function with monte-

carlo simulation. They are usually employed in more sophisticated analysis which is 

beyond the scope of this paper.   

Logit

Originally developed and proved by McFadden in 1974, the logit model is the most 

popular of the family of discrete choice models. It is simple to understand and to use, 

has a known closed-form density and was referenced in the literature for decades.

Like all the class of discrete choice models, it deals with discrete outcomes. The 

purpose of the model is to relate some independent variables X to a discrete outcome Y. 

In a standard discrete choice model, the X would be the attributes of an object (1: the 

probability of winning a lottery and 2: the amount of the winning prize in dollars) and the 

Y would be the individual's choice from a two-choice set {i,j}. The coefficient on X is the 

likelihood (between 0,1) of impact by X on Y. 

The key component of the logit model is the hypothesis on the error distribution, which is 

said to be distributed logistically. Formally, Y = X + E* where E* is the error term. 

The density function of E*ij is :  

As been mentioned, it is possible to use this error distribution in the model when it 

assumed that the errors on alternatives (Ei, Ej) are identically, independently, 

distributed. That is, they are not correlated among themselves, corr(Ei,Ej)=0 for all i≠j, 

nor are they correlated with the independent variables X. 

Some researchers consider this assumption restrictive. After all, it is difficult to 

presuppose that the alternatives are not correlated. For example, some features about 

alternative A are also likely to appear in another alternative B. 



Kenneth Train explains that the assumption is not as restrictive as it seems at first. In 

fact, it follows directly from the construction of the discrete choice model itself. Recall 

the requirements of a discrete choice model is that the choice set is finite, the 

alternatives of the object set are exhaustive and mutually exclusive. If these conditions 

hold, then it is straightforward that there can be no correlation among errors. In other 

words, the errors are nothing but white noise. Thus, rather than a concern, it is actually a 

characteristic of a well-specified model. This paper will adopt Train's justification.

In a stochastic environment, the probability that object i is chosen in a set {i,j} is 

  ; or,

object i gets chosen if  = ½.

The probability function relating the probability that i is chosen among all alternatives j 

is:

  ; where Ui is the utility from alternative i and Uj is the utility from any 

alternative j in the choice set. 

The knowledge over probabilities can be used towards an empirical estimation, which 

the next section is going to discuss. The probabilities are going to be specified in a 

likelihood function. Then the negative of the likelihood function is going to be minimized 

by way of maximum likelihood estimation. Because the MLE is concerned with finding a 

maximum and because the point at which the maximum occurs does not change if the 

function is transformed monotonically, the likelihood function can be decomposed 

logarithmically into a log-likelihood. More of that in the next subsection. 

MODEL 1 & 2

Two discrete choice models were produced for the purpose of this paper. Both are 

based on the logit specification of the error terms. The first model is a true random utility 

model. The second model is a logit model with a context effect.



The models are constructed based on the theory of decision-making and the theory on 

probabilities. Then they are adapted so to be used for inference purposes in a stochastic 

environment. In other words, both Model 1 and Model 2 are empirical models: they are 

meant to analyze the data collected from the survey by Regenwetter and co-authors and 

produce estimates for the utilities of objects A,B,C,D, and E. Those estimates can then 

be used to answer some questions in the research on the theory of preference and 

transitivity. 

The models will examine the pairwise decisions of all the individuals. Recall an 

individual is asked to choose an alternative from 10 pairwise object sets. Each pairwise 

object set is asked 20 times, for a total of 200 questions per individual. Using the 

observations from all the pairwise relations, the empirical models will estimate the 

utilities for every object for every individual. 

The first model is a random utility model. A RUM assumes that the probability that an 

individual chooses an object i is completely random but has a known distribution. The 

second model assumes the probability of choosing an object is part random and partly 

depending on the choice set. The second model will test the hypothesis that an object 

set is important for individual decision. A discussion on both models will follow.

The models will be used to analyze a number of questions that were postulated in the 

research about choices and preferences. First, this paper will present some preference 

relations that were constructed based on the computed utilities. Second, the paper will 

analyze intransitivities given the constructed preference relations. Third, it will discuss 

several shortcomings of the models and possible improvements for future work. 

As well, there will be a discussion on what can be learned from the models and whether 

they explain the data very well and the forecasting capacity of the model. A section that 

deals with results will also talk about the likelihood score and the fit. The second model 

will answer questions regarding the context of the objects and the importance of the 

choice set; for example, whether introducing a variable that deals with the context 

improves the fit of the model.  



Model 1

This section will explain the motivation behind Model 1 and how it is applied empirically 

in order to estimate the utilities from data on individuals.  

Model 1 is random utility model. As the name implies, it assumes that utility from 

selecting an alternative i is random and depends on the distribution of the error term Ei, 

or Ui = Ei. In other words, an object i is chosen from a set {i,j} when Ei > Ej, or Ui > Uj. 

Now the probability that Ei > Ej is also an error term, E*ij. If the assumptions on E*ij, as 

outlined above hold, then it possible to use a logit model for estimation. 

The chief purpose behind Model 1 is to test the theory on preferences in a stochastic 

environment. That purpose is to run inference and to estimate the utility for all the 

objects in the master set {A,B,C,D,E}. Once the utilities are obtained, it follows that 

preferences can be constructed. Once preferences are constructed, there can be a 

discussion on cyclicities. 

The simplest and most obvious way is to rank the estimated utilities {UA,UB,UC,UD,UE) 

ordinally from lowest to highest. This method has its faults, as will be discussed in the 

section on Preferences, but it is a relevant exercise for the purpose of this paper. It is 

somewhat more sophisticated than simply looking at all the pairwise comparisons like 

Tversky did, and given the advances in random utility models, it is only appropriate that 

somebody finally did it. 

True to its name, the utility from the alternatives is assumed to depend on the error term. 

Some parametric assumptions are imposed on the error but otherwise there are no 

structural assumptions.  

Given the observations on the outcome (e.g. Nij), it is possible to use those 

observations to calculate what would be the estimated utility to individual possesses. 

We have seen that the probability that an object i is chosen in a pairwise comparison {i,j} 

is 

The probability that object j is chosen in a pairwise comparison {i,j} is



and Pi(i,j) + Pj(i,j) = 1 because non-choice or indifference is not allowed.

To run inference, it is necessary to combine all the possible pairwise comparisons and 

specify them in a likelihood function. There exists a total of ten pairwise comparisons, 

they are :(AB, AC, AD, AE, BC, BD, BE, CD, CE, DE) 

Putting them all together in a likelihood function would look like this:

where 

The exponent on top of each factor (e.g. Nab) denotes the amount of times that particular 

alternative has been chosen out of 20 times it was asked, and Nab + Nba = 20. The 

exponents are pulled directly from the results from the survey conducted by 

Regenwetter. 

The goal of this maximization is to find out the unknowns in the likelihood function, 

which are UA,UB,UC,UD and UE. The unknowns are found by solving for the maximum 

the likelihood function above. The procedure is known the Maximum likelihood 

estimation and it is a standard econometric procedure. 

The size of the coefficient UA (w.l.o.g) depends on two factors. First, it depends on 

whether A was chosen the majority of time when compared to the four alternatives 

B,C,D,E. Second, it depends on how frequently it was chosen in the four possible choice 

sets (A,B),(A,C),(A,D),(A,E). In other words, a high value of Nab, Nac, Nad, Nae will also 

imply a high value for coefficient UA, and the size of Nab, Nac, Nad, Nae reflects strong 

preferences towards alternative A.   

However, it is important to remember that the value of the coefficients is not important in 

itself, rather one has to compare it to other coefficients, including the normaliser which is 

set at 0. What's important is the difference between the coefficients and the normaliser. 



Model 2 

The second model is similar to the first in a sense that errors follow a logistic 

distribution. Its purpose is also to run inference on the data and estimate the coefficients 

for UA,UB,UC,UD,UE. However, Model 2 has the additional hypothesis that context 

matters in pairwise decisions so an inference exercise will also measure an additional 

variable alpha for significance.  

Context is said to matter if researchers suspect that the presence of an alternative j in a 

set {i,j} may influence an individual's decision making. The theory on LS preferences, for 

example, supposes that adjacent variables mislead an individual into choosing a less 

preferred alternative because of perception bias. 

Model 2 is not a true random utility model as there is another variable added to the utility 

of an object i, Ui = Ei + alphaij1X(j). The indicator function means that alpha equals some 

variable when j is in the choice set X={i,j} and 0 otherwise. Unlike Model 1, utility here 

does not solely depend on the error term, but also the object set X. 

The role of object set in decision making is an interesting topic and can be discussed 

with the additional hypothesis that context plays a role. To test the hypothesis, a 

variable alphaij is specified in the utility from object i, where alpha is some non-zero 

variable and j is the object in the choice set that said to matter (e.g. the presence of j is 

important). The motivation behind the hypothesis is the theory that adjacent objects may 

lead to perception bias and thus to cyclicities. This goes back to the theory of Tversky 

that individuals indifferent between the two objects based on the first attribute of the 

object will make the decision based on the second.  

If alphaij is significant then the hypothesis of context may be true. Furthermore, the new 

model will have a better fit to the data. So by including alphaij to control for the effect of 

context on decision making, it is possible to produce more powerful results and perhaps 

test some new ideas about the research. 

The first term of the Likelihood function, PA(A,B), now looks like this :



Of course, the variable alpha has to be normalized in terms of another variable for an 

interpretation to exist. So in the output, there will be information on 4 alphas and the 5th 

alpha is set to 0 by the researcher. The 4 alphas will be interpreted in terms of the 

normalized-alpha.

The only caveat with adding more variables to the model is that the likelihood score 

cannot decrease. In fact, it will increase even when the impact of the new variable is 

very small. The expanded model can appear like a better fit then the unadjusted model 

even though it is not necessary the case. In this situation, it is necessary to use caution 

and perform a fit test such as the Wald test. The difference in estimation between the 

two models is a good topic for discussion and will be dealt with in the section on results. 

Estimation

All values are computed with a program that was coded in R (see appendix D). The log-

likelihood function was entered once as seen above, then it was looped over for each of 

the 18 respondents. Using MLE estimation procedure as composed in one of the R 

packages, the negative of the LL function was minimized for each respondent.  The 

variables that came in the output are the utilities for A,B,C,D and E. For Model 2, the log 

likelihood function of the model was modified to allow for an expanded model. The 

expanded model would test whether the presence of certain alternatives was significant 

for an individual making his choice. More about that in the next section. 

Not least, the important thing about the model is a good fit. A model with a high LL score 

is said to fit the data well. 

ANALYSIS OF THE RESULTS

This section will analyze the results that were obtained from maximizing the log-

likelihood functions. The input is the data collected from the survey by Regenwetter and 

co-authors and the output are the estimated utilities for objects A,B,C,D and E. The 



results are tabulated in a 18*5 matrix where the rows are respondents and the columns 

are utilities for individual objects (Appendix A). The first column is the utility from 

choosing object A, it is normalized at 0 for all respondents. The next four columns are 

the calculated utility from choosing objects B, C, D, and E respectively. These utilities 

are interpreted relative to the normaliser which is set to equal 0; so an object with utility 

20 is a lot more favourable than an object with utility at 10 and both are more favourable 

than the normaliser which is 0. An object with a negative estimated utility is said to be 

less favourable than the normaliser. The last column is the log likelihood score, which is 

the indication of the fit of the likelihood function. 

Recall that the size of the computed utility reflects the choices of individuals from 

pairwise comparison. Both the choice frequency (e.g Nab) and the fact that A was 

chosen the majority of time in a set (A,B),(A,C),(A,D),(A,E) impact the coefficient. This 

section of analysis will not deal with the 4 individuals whose utility was impossible to 

calculate because they behaved in a deterministic manner, which lead to convergence 

problems. The interpretation will focus on the 14 individuals that remain. Convergence 

problems will be discussed in a section about convergence.

Preference relations

A preference relation can be constructed based on some observations of individual 

decision making. In this example, we have observations on pairwise decisions and the 

objects as calculated from the maximum likelihood function. The latter are ordinal 

numbers so it is possible to rank them from highest to lowest. Ranking the master set 

{A,B,C,D,E} based on estimated utilities {UA,UB,UC,UD,UE} is one way of constructing 

a preference relation. Theory says it is wrong to aggregate preference draws like that. 

Further criticism by Regenwetter exposes the faults with assuming all preference draws 

belong to one preference relationship.

Suppose however a researcher was aggregate preferences and rank the master set 

from the most preferred to the least. This paper will go ahead and do exactly that and 

then discuss some possible lessons from constructing such a preference relation, as 

well as comparing this preference relation to preferences observed from watching 

individual's choices in a two-object choice-set. 



Recall that each object A,B,C,D,E is a lottery with two attributes, 1) the probability of 

winning the lottery 2) and the prize of the lottery. The first attribute is lowest for object A 

and increases for B,C,D,E. The second attribute is lowest for object E and increases for 

objects D,C,B,A. Thus, it is expected that respondents' preferences would mimic the first 

of the second attribute. For example, an individual who is strictly concerned for the first 

attribute will probably have a preference relation (A>B>C>D>E) over the master set. 

Looking at the results (Appendix B), one can see a wide variation of tastes from 

respondent to respondent but there are a few patterns that stand out. Indeed, it appears 

most respondents base their preferences on one of the two attributes. The large majority 

seem to base their opinion on probability of winning attribute which is highest for object 

E and then gradually decreases for objects D,C,B and A. Of the 14 respondents that are 

relevant for the analysis, 11 claim E as their most preferred object. The most common 

preference relation over the master set is {E>D>C>B>A} but there exist other variations 

such as {E>C>D>B>A} and {E>D>B>C>A}. Only one respondent based her preferences 

on the value of prize attribute, which is highest for A and decreasing for B,C,D, and E. 

This respondent expressed  A>B>C>D>E as a preference relation. 

Theory, of course, says that this is not an accurate representation of an individual's 

tastes. Because each draw is random and can belong to any transitive state, it is 

incorrect to aggregate them as aggregation leads to cycles. The correct way would be to 

deal with each separately; or better yet, discover a way to unveil an individual's 

transitive state. Unfortunately, there is no known empirical model that can do that. 

Cyclicit ies

A cyclicity in preferences is said to occur when the axiom of transitivity is violated. 

Tversky assumed that every cyclicity is proof that transitivity is violated. However, it is 

possible that cyclicities occur without the axiom of transitivity being violated. This 

section will discuss why cases of cyclicities are overestimated in literature on 

preferences and transitivity. It will also point out "divergences" between preferences 

constructed over a master set and preferences observed in a pairwise comparison. 

These divergences can sometimes be mistaken for cyclicities but really this is a special 

case of difference in preferences.  



A lot of literature about preferences and transitivity, as reviewed by Regenwetter, finds 

cases of cyclicities. Many researchers like Tversky assume that observed cases of 

cyclicity in preferences imply a violation of the axiom of transitivity. Regenwetter argues 

that it is not necessarily the case. Here are a few remarks on why cases of observed in 

cyclicity do not necessarily violate the axiom of transitivity.  

First, most cases of transitivity are due to the inability of a model to reconcile stochastic 

transitivity with deterministic transitivity. Recall that the axiom on transitivity is defined in 

a deterministic context whereas observed cyclicity happens in a stochastic environment. 

Second, there is a problem with the assumptions that preferences are linear. If a three-

way preference relation is not required to satisfy a triangle inequality, the linearity 

assumption on preferences is forced. 

Third, the existence of Type1 errors. As there are multiple draws and thus multiple 

potential preference relations, accordingly there must be multiple Type1 errors. This 

increases the probability that a case of false transitivity fails to be rejected following a 

significance test. 

These errors are notorious in the literature on transitivity. The two last remarks are 

possible to deal with and Regenwetter instructs just how in his paper. The first problem, 

however, remains so far unresolved. 

A "divergence" (for lack of a better word) is said to occur when preferences over a 

master set do not correspond with one of the preferences expressed under a pairwise 

comparison. For example, if an individual is assumed to have a preference over a 

master set as (A>B>C>D>E) but then in a pairwise comparison, she chose B over A, 

thus B>A, it is said that pairwise preferences diverge from the preferences in the master 

set. As been pointed out in the previous subsection, the preferences constructed over 

the master set are not accurate for a host of reasons. Nevertheless, the paper will 

proceed with this exercise. The results are tabulated in Appendix B. 

As seen in the Appendix B, six out of fourteen respondents had the same preferences in 

the two-choice set as in the five-choice set. There would be a 7th if we counted weakly 

preferred objects. The remaining 7 out of 14 individuals were found to have divergences 



between the two-choice set and the five-choice set. The seven had as many as 2-4 

"divergences" each in the preferences.

Another possible cause for violating transitivity may be due to bad survey design. While 

the people responsible for surveying made sure that the questions are separated by 

filler questions to ensure statistical independency between relevant questions, the order 

of these questions is not investigated. If the way the questions are posed is not 

orthogonal, it may create some statistical dependencies or correlation among errors that 

will bias the estimated results. Furthermore, the order in which the objects are presented 

matters. Individuals may succumb to perception effects and to cognitive biases when 

choosing between two alternatives, they will commit errors that otherwise should not 

happen. These effects may create just enough of a problem to bias results.

As well, some respondents may not choose to reveal their true preferences for any 

unknown reason. The selections they are making can be in fact some bogus choices 

that do not reflect their true tastes. Some advanced methods in experimental design can 

control for or at least mitigate this type of behaviour. Yet the researchers on preferences 

and choice do not discuss employing any such techniques. More information about 

experimental design is discussed in the section about "Future work". 

Lastly, another potential cause for violation in transitivity is the role of context. It is 

hypothesised that the choice of the choice-set may be important for an individual's 

decision because some objects may stand out in the presence of another object. For 

example, given the presence of j, the respondent will be more likely to choose object i. 

This kind of preference relationship is not implausible and if it occurs, it could lead to an 

intransitive choice relation. Perhaps some of the violations of intransitivity are due to 

exactly this type of effect. To determine if this is indeed possible, a new model will be 

used to estimate exactly this type of relationship. This model will be called Model 2 and 

the results are covered in the next subsection. 



Model extensions

The random utility model, Model 1, is very flexible and easily adaptable to a number of 

situations. Due to time limitations, only one adaption was made possible and that is 

Model 2. However, here is but one idea that could be implemented for future work. 

It would be interesting to include an observed variable "expected-value" in the model. 

On one hand, a pure random utility model has a lot of flexibility in a sense that it can 

estimate preferences without any structural presupposition on the relations, which is 

always desirable. On the other hand, it is known by the researcher that the five objects 

are not equal. If the researcher has information on the objects, which are the two 

attributes, he should specify this information in the model. Perhaps if this information 

was embedded under and an observed variable E(i), where E(i) is the expectations 

operator (e.g. E(i) = expected value of lottery i), the explanatory power of the model 

would increase and it would reveal more interesting results. By including this kind of 

variable in the utility, the researcher can control for the observed factors. This kind of 

tinkering could improve the statistical power of the model and could produce different 

preference relations. Then it would be possible to compare the new preference relations 

to current one (as produced under Model 1) and see how the number of cyclicities 

changes. As the expected values are numeric and hence transitive, it would imply less 

transitivities.  

Results from model 2

The results from model 2 are tabulated in Appendix C. The results are by and large 

insignificant and irrelevant. In other words, Model 2 does not work. It is not clear why it is 

the case. The code appears to be okay and the alpha variable is well specified in the 

likelihood function. However, the results come off as bizarre. For one, there is a problem 

for each alternative j specified (j=B,C,D,E) and regardless of which default values the 

parameters are set. Two, the cause for the non-work appears to be a conversion 

problem. The optimizer is unable to converge for nearly every single respondent. It's 

bizarre because the only modification to the model is an added variable alpha. It's not 

like the likelihood function has gone from convex to concave. Therefore, it is not clear 



why the optimizer is not converging. Maybe multicollinearity is a problem or there exist 

some other problems not understood by the researcher.

If the model 2 had worked, the output would have been interpreted in the following way. 

The total utility Ti from the object i equals utility Ui plus the term alphaij when object j is 

present in the choice set or simply Ui when it is not present. Formally, Ti = Ui + alphaij 

when j is present or Ti = Ui when it is not present. If alpha is significant and different 

from zero, it is said that the presence of alternative j matters for a decision-making 

respondent. 

Unfortunately the results here are wholly insignificant so this type of output cannot be 

used nor interpreted. This paper cannot say very much about the role of context for a 

decision-making respondent. 

Convergence and problems

The only problem with the code is the issue of convergence. Four out of 18 respondents, 

they are respondent #3,8,11 and 14, exhibited absolute (or almost) consistence in their 

preference, which is to say they behaved deterministically (e.g. they made the same 

choice 20 out of 20 times they were presented the choice). Formally, the probability that 

the individual chooses i in a set of {i,j} equals 1 (or almost). Because of that, the 

optimizer is unable to converge to a good estimator of the utility. Therefore, these four 

cases were dropped from the previous portion of the analysis. Also, the log likelihood 

score is very low for each and one of these four respondents. This confirms that this 

type of model is unable to adequately measure a case of WST where choices are very 

consistent. 

FUTURE WORK

The following design can be incorporated in the research on preferences. A good design 

will strongly increase the statistical significance of the model and allow for better 

interpretation of the results. Unfortunately, applying the design to the model was 



impossible as it would require to conduct a new survey, which is beyond the scope of 

this work. 

Properties

The following design is embedded with three properties: column balance, adjacency 

property and maximum row difference. Each property satisfies a particular concern in 

surveying. A formal definition and explanation of the three properties here follow.  

Column balance. The elements A,B,C,D,E are said to be balanced when they each 

appear an equal number of times on the every column (except for column 5). 

This property is desirable because it protects against respondents who choose any 

column without concern for the element. These respondents only care about completing 

the survey and not giving any truthful information. For example, there may be 

respondents who always choose the first column. The column balance property ensures 

that this type of response does not bias the answers collected from other respondents. 

Adjacency property. A is said to be adjacent to B when the two appear together on the 

same row without space in between them (consider AB as a pair where A is adjacent to 

B).  A row of three elements has 2 adjacent pairs; a row of n elements has n-1 adjacent 

pairs. The adjacency property ensures that every element is adjacent to another an 

equal amount of times. 

This property addresses the concern that the position of A relative to other elements on 

the row may be important. For example, if A is a special choice then it might be more 

visually enticing if it appeared adjacent to B than if it appears adjacent to C (e.g  A 

belongs to ABC is preferred to A belongs to ACB).

In this 26 choice set, there are 49 pairs of elements of which 10 are unique. Thus, my 

design construction ensures that 9 unique pairs appear five times and 1 unique pair 

appears four times, which is the optimal construction with respect to adjacency property. 

Maximum row difference.  Two consecutive rows are said to have maximum difference 

between them when there is the least number of repeated elements. For example, row 

AB is said to have the most distance from row CD or row DE because no element is 



repeated twice. Any two rows of three elements each will have at least one repeat 

between them. What this property does is ensure there is the least number of repeats 

possible over the entire 26 row matrix. 

This property does not guarantee independence between all rows nor does it maximize 

distance between rows further apart like in a construction under modulo algebra. 

However, it does ensure no obvious pattern can be observed as far as the respondent 

can tell and this should be enough for most purposes. 

The reason row independence is desirable is so that we can say that a choice made by 

the respondent in one row does not influence a choice in another row. This is useful but 

it removes concerns that a sequence of rows where element A is repeated (e.g. AB, AC, 

AD) will have a particular effect on a choice due to the repeated presence of A. For 

example, if A>B>C>D but the three rows AB, AC, AD follow one another then it’s more 

likely that an intransitivity will happen, especially if the difference between the elements 

are not really large. This type of effect is undesirable and so making the rows different 

from one another is one way to avoid it. 



Design

26-SET ORDERED

CE
AB
CD
EA
BD
AC
DE
BC
DA
EB
DCA
EBD
CAE
CDB
BEA
DEC
BAD
ECB
ADE
ABC
DAEB
EBAC
ACBD
BDCE
CEDA
CDEAB

 

 

0 0 1 0 1
1 1 0 0 0
0 0 1 1 0
1 0 0 0 1
0 1 0 1 0
1 0 1 0 0
0 0 0 1 1
0 1 1 0 0
1 0 0 1 0
0 1 0 0 1
1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
0 1 1 1 0
1 1 0 0 1
0 0 1 1 1
1 1 0 1 0
0 1 1 0 1
1 0 0 1 1
1 1 1 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
0 1 1 1 1
1 0 1 1 1
1 1 1 1 1



CONCLUSION

This paper is both an overview of the theory on choices and transitivity and an applied 

exercise in choice modelling. I did my best to cover a bit of everything that relates to the 

topic in terms of conceptual framework and econometric theory alike, as well as build 

the model and then run inference on the data. However, as the subject is very 

expansive, an extensive overview was impossible. More research is required to further 

develop the original model which would allow to test additional hypothesis about role of 

context in preferences.  

In the section about Future work, I incorporated work on Experimental design that was 

done independently of the work about Preferences. The two are in fact related but this 

connection was not sought in this paper. In the future, the work on experimental design 

could improve statistical methods and increase the explicative power of a survey. 
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Appendix A

Results from Model 1 where defaults =0

U1 U2 U3 U4 U5 minusll

respondent 1 0 0.497227 1.226903 1.13594 2.17501
-

113.04
respondent 2 0 -1.28412 -1.49559 -3.00524 -2.88548 -92.51
respondent 3 0 2.991635 5.989139 16.78015 27.85805 -7.99

respondent 4 0 -0.23005 -0.27657 -0.04581 2.064633
-

108.59
respondent 5 0 1.693105 3.106339 6.374661 9.371804 -30.7
respondent 6 0 0.448292 0.867551 1.935436 3.22275 -91.52
respondent 7 0 1.16726 2.050719 3.160408 4.829418 -68.55
respondent 8 0 1.793591 4.904423 15.96364 27.30741 -12.59

respondent 9 0 0.293671 0.252259 0.500026 1.055907
-

131.36
respondent 10 0 2.469335 4.096593 5.472402 6.554283 -49.22
respondent 
11 0 3.107015 5.015965 7.383362 18.27072 -19.42

respondent 12 0 0.440738 0.311293 0.783581 1.570908
-

123.46

respondent 13 0 -0.13619 0.349286 1.186854 1.001603
-

123.44
respondent 
14 0 -2.94422 -14.4266 -25.8081 -28.7525 -7.94

respondent 15 0 0.865325 1.434535 1.861776 2.485558
-

106.76
respondent 16 0 0.757396 1.545379 2.353768 3.98601 -81.12
respondent 17 0 0.201585 0.080511 0.161142 -0.24334 -137.1
respondent 18 0 0.576829 1.234083 1.411349 1.593811 -120.5

in bold : convergence problem



Appendix B

Preference relation from model 1

1st most 
preferred

2nd 
preferred

3d 
preferred

4th 
preferred

5th 
preferred cyclicities

respondent1 E C D B A ab,bc
respondent2 A B C E D de
respondent3       NA
respondent4 E A B C D da,db
respondent5 E D C B A none
respondent6 E D C B A ab,cb,cd
respondent7 E D C B A none
respondent8       NA
respondent9 E D B C A none
respondent1
0 E D C B A none
respondent11     NA
respondent1
2 E D B C A ab,cd,de
respondent1
3 D E C A B ac,ce
respondent14     NA
respondent1
5 E D C B A none
respondent1
6 E D C B A none
respondent1
7 B D C A E

ab,ac,bd,c
d

respondent1
8 E D C B A ce,de

in bold: weak cyclicities



Appendix C

Results from Model 2 with alphaij set to 2,3,4

Model with alphaij (j=3) and default values=0 

u

1

u2 u3 u4 u5 alpha23 alpha43 alpha53 minus

ll

0 -

12.299675

1.3862

3

-

11.091

1

-

10.806499

25.7404

9

24.5026

6

24.4704

7

-10.01

0 -13.215245  -1.734595 -13.282807 -13.383981  25.069441  20.305387 

23.516747 

-8.46

0 -10.24108  13.66828  12.11286  14.20847  34.56924  16.12503  14.20847 0

0 -11.7880719  -0.6169764 -12.4097968 -10.8584259  23.9189634 

24.0867578  22.7690304

-12.95

0 -10.001858   2.197183  -8.953580   3.492629  24.106522  22.866268 

11.745003 

-6.5

0 -11.159763   1.098542  -9.790303  -8.702415  23.932194  22.417021 

21.749657 

-11.25

0 -10.709997   2.197223 -10.318629 -10.044813  24.904109  25.473991 

23.894816 

-6.5

0 -11.57530  12.54525  11.64357  13.48811  33.26037  15.03685  13.48811 0

0 -10.5497806   0.6190934 -12.2156831 -10.4817098  23.1035265 

25.8922417  23.1070040 

-12.95

0 -9.1330412 11.3700930  0.8179845 -9.0907837 31.9752838 24.1997544 0



33.7390290 

0 -8.533126 11.036553  1.570672 12.141128 30.046337 22.157540 

12.141128 

0

0 -12.0306243   0.4054924 -12.6669706 -12.0986266  25.9204204 

26.5460719  25.7469813 

-13.46

0 -11.8228115  -0.2006261 -10.8629975 -11.0544628  23.7053458 

22.7230658  24.0754534 

-13.76

0 -15.72543 -13.85589 -29.49816 -29.43398  28.40255  16.28202  13.55820 0

0 -10.707084   1.098575 -10.152428 -10.582912  23.677744  23.041651 

23.556548 

-11.25

0  -3.236855  13.075113 -18.845099 -14.141993  27.222089  48.282894 

48.550763 

0

0 -1.139719e+01  1.887526e-05 -1.675694e+01 -1.198909e+01 

3.223147e+01  3.152129e+01  2.436602e+01 

-13.86

0 -11.548390   1.386253 -11.389145 -10.369588  24.389658  24.892349 

23.866105 

-10.01

model with alphaij (j=3) and default values for 

alphas = 30

u1 u2 u3 u4 u5 alpha23 alpha43 alpha53 minusll

0 -14.13722   1.38630 -10.99621 -14.94810  30.00006  30.00034 

30.04096 

-10.01

0 -18.288939  -1.734541 -14.514986 -13.205331  30.000214  30.000048 

30.000080

-8.45

0 -12.762429  15.256480   1.259213   1.259208  41.218825  31.259207 

31.259178

0

0 -10.884745  -0.618506 -11.129172 -15.817951  30.000000  30.000000 

30.000039

-12.95

0 -14.210719566   2.197214332 -14.311197838  -0.002348369 -6.5



30.000194089 30.470052385  30.000000540

0 -10.372683   1.098744 -14.282358 -13.580995  30.000001  30.000015 

30.000010

-11.25

0 -14.693621   2.197209 -14.583562 -14.500355  30.000348  30.993196 

30.812805

-6.5

0 -16.392245  18.035884   3.499634   3.499682  50.752052  33.499546 

33.499506

0

0 -12.226076   0.619088 -11.386810 -10.692682  30.000002  30.000001 

30.000000

-12.95

0 -11.775998  14.139015  -1.116731 -11.614333  38.674542  30.908477 

40.534181

0

0 -13.0281325  15.9023707   0.3113298   1.5726806  43.3008191 

32.3913927 31.5726688

0

0 -10.5227853   0.4053481 -10.9034079 -16.1753537  30.0000006 

30.0000005 30.0000757

-13.46

0 -16.0433521  -0.2006654 -17.2069636 -17.0252322  30.0001547 

30.5579618 30.3313581

-13.76

0 -17.17462 -17.78830 -36.48953 -36.48957  33.27516  30.00001 

30.00000

0

0 -13.898017   1.098614 -12.279278 -14.351496  30.000035  30.001904 

30.020808

-11.25

0  -3.538448  14.114883 -13.564942 -13.681554  36.264602  42.297078 

42.590917

0

0 -1.154697e+01  4.752177e-05 -1.244494e+01 -1.180372e+01 

3.000000e+01 3.000000e+01  3.000000e+01

-13.86

0 -13.86636   1.38630 -11.64638 -12.69446  30.00004  30.00106 

30.00306

-10.01



Model with alphaij (j=2) and all default 

values=0

u1 u2 u3 u4 u4 alpha32 alpha42 alpha52 minusll

0  -0.2006768 -12.3545588 -11.4878631 -10.5661190  24.1120907 

23.5737003  22.1901692

-13.76

0 -1.734547 -12.982763 -13.699682 -14.333734  25.367850  22.685082 

24.571523

-8.45

0 2.944448 -10.170905   6.952230  10.224162  27.113320  10.355430 

10.224162 

-3.97

0  -2.197151 -14.442191 -13.943415 -12.315449  28.209720  27.932010 

25.922309 

-6.5

0  2.944329 -9.438684 -9.275966  7.149244 24.506333 25.800443 

16.372641

-3.97

0  -0.200675 -11.062810  -9.918823  -1.715243  23.172402  22.521371 

15.213558

-13.76

0   2.194198  -9.491577 -10.389325  -9.861736  24.362986  24.480343 

24.207493

-6.5

0  1.735157 -5.991030  5.770262  9.758268 20.650922  9.507326 

9.758268

-8.45

0   0.6191649 -11.1625175 -12.3678362 -11.4665702  23.9354299 

26.0049144 23.2083692 

-12.95

0  2.954177 -7.074463  2.760887 -8.980566 21.994452 13.089183 

24.399352 

-3.97

0  2.944696 -6.507094  4.274082  9.189304 22.824941 11.508597 

9.189304

-3.97

0 -3.070476e-05 -1.311004e+01 -1.236514e+01 -1.096421e+01 

2.870100e+01 2.613006e+01  2.524358e+01

-13.86

0  1.253683e-05 -1.087681e+01 -1.389536e+01 -1.331490e+01 

2.971582e+01 2.615087e+01  2.607002e+01

-13.86



0  -2.944403 -15.220222 -16.716072 -16.657971  12.718997  12.402543 

9.536919

-3.97

0   1.098608 -16.709579 -15.245740 -12.276680  32.311125  30.127119 

30.106929 

-11.25

0  13.7464602   0.6776522 -13.8657996 -13.4135123  28.9202046 

42.6402859 42.2208245

0

0  -0.6177744 -11.4963194 -10.8714402 -10.9592872  25.1496083 

26.3746230 20.3995736

-12.95

0   0.4054679 -14.0295017 -12.9723529 -13.6655091  29.9895495 

29.4485696 29.9388458

-13.46

Model with alphaij (j=4) and all default values = 

0

u1 u2 u3 u4 u5 alpha24 alpha34 alpha54 minusll

0 -11.368183 -10.320213   2.188574  -9.985138  25.065024  24.472988 

24.710586 

-6.5

0 -22.25237 -21.00032 -11.85512 -22.76949  33.60893  32.40999 

35.84745 

0

0 -11.727045  -0.997094  16.300626  16.177358  26.120137  16.740444 

16.177358 

0

0 -15.732542 -15.291607   1.386249 -12.915910  31.156325  30.401770 

29.012993

-10.01

0 -10.033194  -9.969554   2.948316  -6.431484  21.975624  22.077021 

21.512905 

-3.97

0 -11.820078 -11.002443   2.944327  -7.919132  24.928928  25.568097 

24.272571 

-3.97



0 -10.962487  -9.979390   1.734408  -9.502147  23.038214  22.767425 

22.916459

-8.46

0 -12.9582132  -0.6536567  15.6169238  15.7697749  27.3033795 

17.6604930  15.7697749

0

-11.2066884 -10.7778116   0.4054029 -11.6573427  23.3262700 

22.3657844  24.4759815

-13.46

0 -11.53241928  -0.03047561  12.70252708 -11.40338958 

26.95437448  26.31510933 36.86051351

0

0 -12.296382   1.034364  16.368410  16.795217  28.728693  29.100567 

16.795217

0

0 -13.953359 -19.633945   1.098592 -13.299253  31.342070  36.168503 

28.309578

-11.25

0 -12.170371 -11.886396   1.098529 -11.507440  25.173768  23.446626 

23.899186

-11.25

0 -12.90632 -12.90788 -13.30921 -24.97632  23.27467  13.70262 

22.38270

0

0 -12.022433 -10.477327   2.197286  -9.834735  25.453040  23.909246 

23.960211

-6.5

0 -10.495018 -10.533398   0.847419  -9.926949  22.452117  22.491239 

24.060394

-12.22

0 -16.2398094 -11.8746260   0.4054993 -11.7617446  31.2250079 

29.0780834  23.5798409

-13.46

0 -10.623554 -12.157278   1.098681 -10.805018  23.453706  26.068141 

24.642292

-11.25



Appendix D

R code for Model 1

library(bbmle)
llf <- function(u2=0,u3=0,u4=0,u5=0){

  u <- c(0,u2,u3,u4,u5)

  ll <- 0
  for (i in 1:5){
    for (j in 1:5){
      ll <- ll + respondentx[i,j] * (u[i]) - respondentx[i,j] * log(exp(u[i]) + exp(u[j]))
    }
  }
  -ll
}

for (k in 1:18){
  respondentx <- read.csv(paste("respondentx",k,".txt",sep=""), header=TRUE)
  results <- mle2(llf, method = "BFGS")
  print(results)
}



Appendix E

R code for Model 2

library(bbmle)
llf <- function(u2=0,u3=0,u4=0,u5=0,
                alpha23=0,alpha43=0,alpha53=0){

  alpha = matrix(0, nrow = 5, ncol = 5)

  alpha[, 3] <- c(0, alpha23, 0, alpha43, alpha53)

  u <- c(0,u2,u3,u4,u5)

  ll <- 0
  for (i in 1:5){
    for (j in 1:5){
      ll <- ll + respondentx[i,j] * (u[i]+(alpha[i,3])) - respondentx[i,j] * log(exp(u[i]+
(alpha[i,3])) + exp(u[j]))
    }
  }
  -ll
}

for (k in 1:18){
  respondentx <- read.csv(paste("respondentx",k,".txt",sep=""), header=TRUE)
  results <- mle2(llf, method = "BFGS")
  print(results)
}




