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Abstract

We take a capital asset pricing approach to the determination of the price of a non-
renewable natural resource in the case where the resource is durable, in the sense that
once extracted it becomes a productive asset held above ground. The portfolio choice
is then made up of the following assets: a stock of nonrenewable resource held in the
ground that yields no dividend, a stock of resources held above ground that yields a
dividend in the form of a flow of productive services, and a stock of composite good
that can be held either in the form of productive capital or of a bond whose return is
given. There is a stochastic element to the rate of change of productivity in both the
production of the composite good and in the extraction of the resource. It is shown
that the resulting prediction for the price path of the resource differs considerably from
the one that follows from the elementary Hotelling model and that no unambiguous
prediction can be drawn analytically about the pattern of behavior of that price path.

Résumé

On étudie l’évolution du prix d’une ressource naturelle non renouvelable dans le cas
où cette ressource est durable, c’est-à-dire qu’une fois extraite elle devient un actif
productif détenu hors terre. On emprunte à la théorie de la détermination du prix des
actifs pour ce faire. Le choix de portefeuille porte alors sur les actifs suivant : un stock
de ressource non renouvelable détenu en terre, qui ne procure aucun service productif ;
un stock de ressource détenu hors terre, qui procure un flux de services productifs ; un
stock d’un bien composite, qui peut être détenu soit sous forme de capital productif,
soit sous forme d’une obligation dont le rendement est donné. Les productivités du
secteur de production du bien composite et du secteur de l’extraction de la ressource
évoluent de façon stochastique. On montre que la prédiction que l’on peut tirer quant
au sentier de prix de la ressource diffère considérablement de celle qui découle de la règle
d’Hotelling élémentaire et qu’aucune prédiction non ambiguë quant au comportement
du sentier de prix ne peut être obtenue de façon analytique.



1 Introduction

The basic Hotelling model of the exploitation of a nonrenewable natural resource (Hotelling,

1931) predicts that the in situ price of the resource (its flow price minus the marginal cost of

extracting it, often called the Hotelling rent) will, in equilibrium, grow at the rate of interest.

This means that the rate of growth of the flow price will be a weighted average of the rate of

interest and the rate of change of the cost of extraction, with the weights being respectively

the share of rent and of cost in the price. Therefore, although the price may at first decline

if the cost of extraction is decreasing, it must eventually follow an increasing path since

the share of rent in the price is increasing with time and that of cost is decreasing. This

basic model, known as the Hotelling rule, has been the source of much theoretical insights

into the behavior of natural resource markets. There is however very little evidence that

resource prices do indeed behave as predicted.1 This should not be too surprising, since

this parsimonious basic model neglects a number of important factors which will also play

a role in determining the real world behavior of resource prices.2 Among those factors are

uncertainty about future prospects and the fact that many nonrenewable natural resources

are durable, contrary to what is most often assumed in theoretical modeling. The purpose

of this paper is to explore the impact on the equilibrium pricing of natural resources of

simultaneously taking into account those two factors.

There is an extensive literature on the presence of uncertainty in various forms in natural

resource markets.3 This paper follows closely the modeling of stochastic future prospects

proposed in Gaudet and Khadr (1991), which studied the case of non durable natural re-

sources. What distinguishes Gaudet and Khadr (1991) from the previous literature is that

it takes an intertemporal asset pricing approach to the problem. Thus the Hotelling rule is

interpreted as an equilibrium asset pricing condition, the asset being of course the stock of

the resource held in the ground. This asset, contrary to a reproducible asset such as conven-

1See Slade and Thille (2009) and Livernois (2009) for excellent recent surveys of empirical analyses of the
Hotelling rule.

2Gaudet (2007) discusses in more details some of those factors.
3See Gaudet and Khadr (1991) and the references cited therein.
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tional physical capital, has the particularity that it cannot be increased, with the result that

disinvestment decisions are irreversible. The question then becomes: what is the appropriate

rate of return on holding a unit of the resource in the ground. In the basic deterministic

framework assumed by Hotelling the answer is simply the capital gains that can be obtained

from holding it in situ. When investment opportunities are stochastic, it is shown in Gaudet

and Khadr (1991) that its equilibrium expected return will depend also on the degree of

risk aversion and on how its return happens to be correlated with the performance of the

economy in terms of consumption.

Nonrenewable resources most often bring to mind fossil fuels, such as petroleum, natural

gas and coal. Although those natural resources are storable, they are not durable, since

they are consumed in a single usage. But many nonrenewable resources, such as metals, are

durable: once extracted they become above ground assets capable of yielding a continuous

flow of services used as input into various production processes. We are then in presence of

two resource assets: a stock held below ground that yields no flow of services, and a stock

held above ground that does. Those assets have the particularity that the one held above

ground can only be increased by depleting the one below ground. Levhari and Pindyck

(1981) is the most important reference on the behavior of markets for durable resources,

a topic on which there is surprisingly very little literature even though many important

nonrenewable resources are in fact durable. It considered the pricing of durable resources

in a partial equilibrium context. In this paper we combine an approach similar to that of

Levhari and Pindyck (1981) for modeling the durability of the resource with the two-goods

multi-assets stochastic pricing framework of Gaudet and Khadr (1991).

The next section will present the model; it follows closely that of Gaudet and Khadr

(1991), into which we integrate the durability of the resource à la Levhari-Pindyck. We

then characterize in succession the efficient extraction of the resource in Section 3 and, in

Section 4, the efficient production of a composite good that uses the services of the above

ground stock of the resource as an input and that can be either consumed or accumulated.

The efficiency conditions thus derived serve to determine the consumer’s opportunity set
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subject to which he makes his consumption and portfolio decisions, solved for in Section 5.

This enables us to characterize in Section 6 the expected equilibrium behavior of both the

asset price and the flow price of the resource, and to highlight the effect of durability on

the expected price path as compared to non durable resources, as well as to a deterministic

context. Brief concluding remarks follow in Section 7.

2 The model

Consider an economy in which there are two goods: a composite good and a durable non-

renewable natural resource. The composite good can be either consumed or accumulated.

Its accumulated stock is held either in the form of physical capital, the stock of which at

time t is denoted K(t), or in the form of a “bond”, the stock of which is B(t). This bond is

assumed to reproduce itself at the given exogenous and riskless rate r, which will represent

the force of interest in the economy.4 The accumulated stock of capital is used as an input

both in the production of the composite good and in the extraction of the nonrenewable

resource.

The ultimate stock of the resource available is assumed given and known. The reserves

left in the ground at time t will be denoted X(t). Being durable, the resource, once extracted,

accumulates above ground in the form of a stock which depreciates at the constant rate δ ≥ 0.

This durable above ground stock, Q(t), yields a flow of services which enters the production

of the composite good along with the services of physical capital. There are therefore four

assets in which the wealth of this economy can be held, at any given time: bonds, capital,

reserves of the natural resource, and the above ground resource stock. The latter two assets

have the particularity that the above ground stock can only be increased by reducing the

in ground reserves. The resource being nonrenewable, its reserves cannot be increased and

the decision to extract is irreversible. As for the stock of the composite good, it will be

assumed costlessly transferable between its three uses. For simplicity, the stock of capital

4For notational convenience we will treat r as time-invariant. Doing so does not affect our results. It will
become clear that it can just as well be thought of as an exogenous time path, which could also be stochastic.
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will be assumed not to depreciate.

The production process and the extraction process are both assumed to have a stochastic

element. More precisely, if y(t) denotes the production of the composite good and x(t) the

extraction of the resource, then:

y(t) = F (Ky(t), Q(t), θ1(t)) (1)

x(t) = G(Kx(t), θ2(t)), (2)

where Ky(t) +Kx(t) = K(t). The state variables θ1(t) and θ2(t) can be viewed as stochastic

productivity indices. They will be assumed to evolve exogenously according to the following

Itô processes:

dθi(t)

θi(t)
= µidt+ σidZi(t), i = 1, 2; ∀t, (3)

with dZi(t) = ξi
√
dt, ξi ∼ N(0, 1), cov(dθ1, dθ2) = σ12dt + o(dt) and σ12 = σ1σ2cov(ξ1, ξ2).

The drifts µi and the variance σi could depend on time t and the state variables.

We will assume F1 > 0, F1Q and F1K > 0, where the subscript 1 denotes the partial

derivative of F (·) with respect to θ1. We will also assume FK > 0, FQ > 0, FKK < 0,

FQQ < 0, FQK > 0, and limK→0 FK(K,Q) = ∞, limQ→0 FK(K,Q) = ∞. Under those

conditions it will take an infinite time to exhaust the reserves.

As for the extraction process, it will be assumed, for simplicity, to be given by:

G(Kx, θ2) =
Kx

γ(θ2)
. (4)

The function γ(θ2) tells us how many units of capital is required to extract a unit of the

resource. Hence the cost of extraction will be rγ(θ2)x(t), r being the opportunity cost of

capital, and γ(θ2)x(t) the quantity of capital in use as input. It is assumed that γ′(θ2) < 0,

limθ2→0 γ(θ2) =∞, and limθ2→+∞ γ(θ2) = 0.

The representative consumer derives utility U(c(t)) from consuming the composite good

at the rate c(t). This utility function satisfies U(c) > 0, U ′(c) > 0, U ′′(c) < 0, and
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limc→0 U
′(c) =∞. The consumer discounts the utility flows at the constant rate α.

It will be assumed that all agents in this economy behave as price takers, both in the

goods and in the assets markets. Consumers are assumed to be the owners of the assets

in the economy. In deciding on their consumption and on their portfolio, they transmit

demand prices to the composite good producers and the resource extractors, who take them

as given in making their decisions. Their production and extraction decisions then enter

the determination of the rates of return on the assets, which the consumers take as given in

making their own decisions. These prices and returns are taken to be those that equilibrate

the markets when production, extraction and consumption take place simultaneously.

In the next two sections we derive necessary efficiency conditions for the extraction of

the resource and for the production of the composite good. These will generate the rates

of return on assets that will enter the wealth constraint to the consumer’s intertemporal

optimization problem.

3 Efficient resource extraction

The typical price-taking resource extraction firm chooses its rate of extraction so as to

maximize the expected present value of the flow of profits over time. Those profits are

measured in monetary units (we will call them “utils”) and are discounted at the constant

rate α. Let p(t) denote the market flow price of a unit of the resource, measured in units

of the composite good, and let q(t) denote the demand price (in utils) of the composite

good. The extraction firm takes those prices as given in making its extraction decision.

We will assume for now that those prices evolve as Itô processes of the same form as the

productivity indices. It will be shown in the Appendix that this is indeed the case of the

equilibrium outcomes for p(t) and q(t). Therefore:

dp(t)

p(t)
= µp(t)dt+ σp(t)dZp(t) (5)

dq(t)

q(t)
= µq(t)dt+ σq(t)dZq(t), (6)
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where again dZi(t) = ξi
√
dt and ξi ∼ N(0, si), i = p, q.

The current value function for this problem is:

V (X(t), p(t), q(t), θ2(t)) = max
{x(s)|s∈[t,∞)}

Et

∫ ∞
t

e−α(s−t)q(s) [p(s)− rγ(θ2(s))]x(s)ds, (7)

where the maximization is subject to X(t), (3), (5) and (6), as well as to the resource

constraint

dX(t) = −x(t)dt, X(0) = X0.

Notice that since the demand price q(t) is taken to be the marginal utility of consumption

(U ′(c)), and the discount rate α is taken to be that of the representative consumer, this value

function can be interpreted as measuring the present value of the dividend stream accruing

to the representative consumer as the ultimate owner of the reserves (see Duffie, 1988, chap.

25). In maximizing this present value, the extraction firm therefore takes into account the

preferences of the consumer-owner, including his attitude towards risk.5 It is therefore as if

the resource firm (i.e. the manager) were acting on behalf of the consumer (i.e. the owner) to

maximize the present value of the dividend stream, thus resulting in a consumption-efficient

outcome.

Let Vi denote the derivative with respect to argument i, for i, j = p, q, θ2, and let ∆i = i.

Then the Bellman equation associated to this time-autonomous problem is:

αV = max
x

[
q[p− rγ]x− VXx+

∑
i

∆iµiVi +
1

2

∑
i,j

∆i∆jσiσjVij

]
. (8)

An interior solution for x will satisfy the following necessary condition:

VX = q(p− rγ). (9)

5Notice that if consumers were risk neutral, then q(t) would be independent of c(t) and whether the
dividend stream is valued in terms of utils or in terms of the composite good would be irrelevant. That is
not the case however if the consumer is risk averse, as it will be generally assumed here.
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Making use of (9) in differentiating both sides of (8) with respect to X, we get

αVX = −VXXx+
∑
i

∆iµiVXi +
1

2

∑
i,j

∆i∆jσiσjVXij

=
1

dt
Et(dVX), (10)

where the second line is obtained using Itô’s lemma, (1/dt)Et(·) being Itô’s differential op-

erator. From (9) and (10) we therefore derive the following condition for efficient extraction

of the natural resource:

1

π

1

dt
Et(dπ) = α, (11)

where

π = q[p− rγ] (12)

is the marginal profit, or net price of the resource in the ground (also called the in situ

price, the asset price, or the resource rent). It is expressed in utils, as is condition (11). The

condition therefore says that the discounted marginal profit from extraction, expressed in

utils, must be constant over time, thus assuring indifference between extracting the marginal

unit of the resource and leaving it in the ground. It can be viewed as a partial equilibrium

stochastic version of Hotelling’s rule.

This partial equilibrium stochastic arbitrage condition is the same as that found by

Gaudet and Khadr (1991) in the case of a non durable resource. The durability property

of the resource will however intervene, since, in the “general” equilibrium, p(t) and q(t)

will depend on Q(t), the above ground stock of the resource which is used as input in the

production of the composite good, to which we now turn.

4 Efficient production of the composite good

As already noted, the production of the composite good is a function of the services of capital

and the services of the above ground stock of the durable resource. We will assume that

there are no costs of adjustment. The stock of capital will therefore simply be adjusted
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instantaneously to its desired level. As for the above ground stock of the resource, it is

adjusted by purchasing the flow x(t) extracted by the resource sector, but it is subject to

depreciation at the rate δ. It therefore evolves over time according to

dQ(t) = [x(t)− δQ(t)]dt. (13)

The representative firm producing the composite good acts as a price-taker in choosing its

level of capital, Ky(t), and its rate of investment in the above stock of the resource, x(t).

The associated current value function, expressed in utils, is

Γ(Q(t), p(t), q(t), θ1(t)) =

max
{Ky(s),x(s)|s∈[t,∞)}

Et

∫ ∞
t

e−α(s−t)q(s) [F (Ky(s), Q(s), θ1(s))− rKy(s)− p(s)x(s)] ds, (14)

where the maximization is subject to (13), (5) and (6). For the reasons already mentioned in

the previous section in the case of the resource extraction firm, this representative firm can

be thought of as managing the production of the composite good on behalf of the consumer-

owner so as to maximize the present value of the resulting dividend stream, hence generating

a consumption-efficient outcome.

The Bellman equation associated to this optimization problem is

αΓ = max
Ky ,x

[
q[F − rKy − px] + ΓQ(x− δQ) +

∑
i

∆iµiΓi +
1

2

∑
i,j

∆i∆jσiσjΓij

]
, (15)

for i, j = p, q, θ1 and ∆i = i. The first-order necessary conditions for the maximization of

the right-hand side are

FK = r (16)

ΓQ = qp. (17)

Differentiating both sides of (15) with respect to Q, making use of (16) and (17) and of
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Itô’s lemma, we find that:

αΓQ = qFQ − ΓQδ + ΓQQ(x− δQ) +
∑
i

µi∆iΓQi +
1

2

∑
i,j

∆i∆jσiσjΓQij

= qFQ − ΓQδ +
1

dt
Et(dΓQ). (18)

From (17) and (18) it follows that the optimal holding of the resource stock as input in the

production of the composite good must satisfy

FQ
p
− δ +

1

qp

1

dt
Etd(qp) = α. (19)

Recall that qp is the gross market price of the resource expressed in utils. The left-hand side

of this arbitrage condition represents the marginal return at date t from holding the stock

of resource Q(t) above ground: its marginal product, corrected for the rate of depreciation

and for the expected capital gains to be made from holding it. Since the right-hand side

is constant, so must be the left-hand side: the marginal return must be the same at each

date, leaving the owner indifferent between adding another unit to the stock above ground or

leaving it in the ground to be exploited at a future date. This condition is of course specific

to the fact that the resource is durable.

The efficiency conditions derived in this section and the previous one serve to deter-

mine the rates of return on assets that will be used to define the intertemporal stochastic

opportunity set of the consumer. We now turn to the consumer’s optimization problem.

5 The consumer’s consumption and portfolio decisions

Consumers, as owners of the assets in the economy, decide both on how much to consume

at each date and how to allocate their wealth between capital, bonds, in situ resources, and

above ground resources. Those consumption and asset demands serve to generate the price

signals that the producers take into account in making their own decisions.

Except for the bond, whose instantaneous rate of return r is riskless, the asset returns
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can be expected to evolve as a stochastic process of the following form:

dRi(t) = µi(t)dt+ σi(t)dZi(t), i = K,X,Q. (20)

As in the case of the prices of the previous two sections, it will be shown in the Appendix

that those stochastic processes are indeed compatible with equilibrium. As for the riskless

asset, its return will be denoted

dRB(t) = rdt. (21)

We know however that µk = FK and that, from the efficiency condition (16) for the

production of the composite good, one of the equilibrium conditions will be FK = r. It

follows that in equilibrium we must have σK = 0. Therefore we may write

dRK(t) = dRB(t) = dR(t) = rdt. (22)

In other words, the return on the accumulated stock of the composite good must be the

same at all times in both of its uses.

Denote by λ(t) the asset price of a unit of reserves expressed in terms of the composite

good. The consumers total wealth at time t, W (t), will therefore be given by

W (t) = K(t) +B(t) + λ(t)X(t) + p(t)Q(t). (23)

The first three elements of wealth are the same as in Gaudet and Khadr (1991). Because of

the durability property of the resource, a fourth element now appears, namely Q(t), which

is valued at the gross market price of the resource in term of the composite good, p(t).

Differentiating (23) totally with respect to time we obtain the consumer’s stochastic

wealth constraint,

dW (t) = −c(t)dt+W (t) [ωX(t)dRX(t) + ωQ(t)dRQ(t) + (1− ωX(t)− ωQ(t))dR(t) ] , (24)
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where ωX(t) and ωQ(t) are respectively the share of the representative consumer’s wealth

invested in the stock of resource below ground and above ground, and c(t) is consumption.

The representative consumer’s current value function is then

J(W (t), θ1(t), θ2(t)) = max
{c(s),ωX(s),ωQ(s)|s∈[t,∞)}

∫ ∞
t

e−α(s−t)U(c(s))ds, (25)

where the maximization is subject to (24), (20), and (22), as well as to the state (W (t), θ1(t), θ2(t))

inherited at date t.

The corresponding Bellman equation is given by

αJ = max
c,ωX ,ωQ

[
U(c) + {W (ωXµX + ωQµQ + (1− ωX − ωQ)r)− c} JW (26)

+
1

2

∑
k,l

ωkωlσklW
2JWW +

1

2

∑
i

∑
l

ωl∆iσliWJWi +
∑
i

∆iµiJi +
1

2

∑
i,j

∆i∆jσijJij
]
,

for i, j = θ1, θ2, l, k = X,Q, and ∆i = i. Note that σXi = cov(dRX , dθi) and σQi =

cov(dRQ, dθi).

The following conditions must hold for an interior solution for c, ωX , and ωQ:

JW = U ′(c) (27)

JW (µX − r) + JWWW
(
ωXσ

2
X + ωQσXQ

)
+
∑
i

∆iσXiJWi = 0 (28)

JW (µQ − r) + JWWW
(
ωQσ

2
Q + ωXσXQ

)
+
∑
i

∆iσQiJWi = 0. (29)

Condition (27) is the usual envelope condition, while (28) and (29) jointly relate the

shares ωX and ωQ of the consumer’s wealth held in the risky assets X(t) and Q(t) to their

excess returns over the riskless rate, their variances and covariances.
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6 Evolution of the asset and the flow prices of the resource

In the case of a non-durable resource, the Hotelling rule is the sole condition that determines

the evolution of the in situ value of the resource and, as a result, of the market flow price of

the resource. As shown in Gaudet and Khadr (1991), this intertemporal arbitrage condition

can be viewed as an equilibrium asset-pricing condition. In the case of a durable resource,

the Hotelling rule must still hold, but it is not anymore the only assets market equilibrium

condition, since the resource can also be held above ground as a productive asset once ex-

tracted. Those two equilibrium conditions will now simultaneously play a role in determining

the evolution of the equilibrium resource price.

The two conditions have already been encountered in a partial equilibrium form as ef-

ficiency conditions (11) and (19). We will now use those two conditions along with the

consumer’s optimality conditions just derived to establish their interpretation as equilibrium

asset-pricing rules. To do this, first differentiate both sides of the Bellman equation (26)

with respect to W , to get

αJW =
[(
W
(
ωXµX + ωQµQ + (1− ωX − ωQ)r

)
− c
)
JWW (30)

+
1

2

∑
k,l

ωkωlσklW
2JWWW +

∑
i

∑
l

ωl∆iσliWJWWi

+
∑
i

∆iµiJWi +
1

2

∑
i,j

∆i∆jσijJWij

]
+

[(
ωXµX + ωQµQ + (1− ωX − ωQ)r

)
JW

+
∑
k,l

ωkωlσklWJWW +
∑
i

∑
l

ωl∆iσliJWi

]
,

for i, j = θ1, θ2; l, k = X,Q and ∆i = i. Using Itô’s lemma, we verify that the first three lines
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of the right-hand side are simply (1/dt)EtdJW . Condition (30) can therefore be rewritten

αJW =
1

dt
EtdJW

+
[(
ωXµX + ωQµQ + (1− ωX − ωQ)r

)
JW +

∑
k,l

ωkωlσklWJWW +
∑
i

∑
l

ωl∆iσliJWi

]
=

1

dt
EtdJW

+ rJW

+ ωXJW (µX − r) + JWWW
(
ω2
Xσ

2
X + ωXωQσXQ

)
+
∑
i

ωX∆iσXiJWi

+ ωQJW (µQ − r) + JWWW
(
ω2
Qσ

2
Q + ωQωXσXQ

)
+
∑
i

ωQ∆iσQiJWi (31)

Substituting for the necessary conditions (27), (28) and (29) for an optimal consumption-

portfolio choice, this reduces to

1

U ′
1

dt
EtdU

′ = α− r. (32)

Notice next that since q = U ′(c) and λ = p− rγ, (11) and (19) can be rewritten respectively

as

1

U ′λ

1

dt
Etd(U ′λ) = α (33)

and

FQ
p
− δ +

1

U ′p

1

dt
Etd(U ′p) = α. (34)

Using (32) to eliminate α, we find that the asset-pricing equilibrium requires that the fol-

lowing two conditions be satisfied simultaneously:

1

U ′λ

1

dt
Etd(U ′λ)− 1

U ′
1

dt
EtdU

′ = r (35)

and

FQ
p
− δ +

1

U ′p

1

dt
Etd(U ′p)− 1

U ′
1

dt
EtdU

′ = r. (36)
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Condition (35) is the equilibrium asset-pricing formulation of the stochastic Hotelling

rule. It is the same as that found in Gaudet and Khadr (1991) for a non durable resource; it

applies to durable as well as non-durable resources. The left-hand side measures the expected

rate of return on holding the marginal unit of the resource in the ground: the rate of growth

of the value of the marginal unit of in situ resource measured in utility terms, corrected for

the rate of change of the marginal utility of consumption. This expected rate of return must

equal the “rate of interest” r, which is the return that can be obtained by holding wealth

in the form of the composite good instead of in the form of resources in the ground. Notice

that if (and only if) the representative consumer were risk neutral, so that U ′ was constant,

then the condition reduces to simply equating the expected rate of growth of the in situ

price, (1/λ)(1/dt)Et(dλ), to the rate of interest. But in the case of risk averse consumers,

this is not sufficient: account must then be taken of the rate of change in the marginal

utility of consumption. Notice also that even with a non-linear utility function, if there is

no uncertainty in the investment prospects, then the condition reduces to (dλ/dt)/λ = r,

which is the usual formulation of the basic Hotelling rule in a deterministic context.

In the case of a durable resource, the Hotelling rule (35) is not sufficient to characterize

the evolution of the resource price. In that case, condition (36), which is specific to durable

resources, must hold simultaneously with the Hotelling rule. The condition expresses the

fact that the return on the stock of the resource accumulated above ground as a productive

asset must, at the margin, be equal to the return that can be obtained by accumulating the

composite good instead, either in the form of capital of bond, which in equilibrium both

yield the rate of return r. Indeed, the left-hand side of (36) is the return on the marginal

unit of the resource accumulated above ground: the marginal product of its services in the

production of the composite good, minus the rate of depreciation of the stock, plus the

expected rate of change in the resource price valued in utils, corrected for the rate of change

in the marginal utility of consumption.

Notice that since the right-hand sides of (35) and (36) are the same, both left-hand sides

must be equal: there must, in equilibrium, be indifference between holding the resource
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below ground or above ground.

It is useful to rewrite those conditions with the rate of change of the in situ price and

the flow price expressed directly in terms of the composite good rather than in utility terms.

To do this, we first use Itô’s lemma to obtain

1

U ′λ

1

dt
Etd(U ′λ) =

1

λ

1

dt
Etdλ+

U ′′

U ′
1

dt
Etdc+

1

2

U ′′′

U ′
1

dt
Et(dc)

2 +
U ′′

U ′λ

1

dt
Et(dλ, dc) (37)

1

U ′p

1

dt
Etd(U ′p) =

1

p

1

dt
Etdp+

U ′′′

U ′
1

dt
Etdc+

1

2

U ′′′

U ′
1

dt
Et(dc)

2 +
U ′′

U ′p

1

dt
Et(dp, dc) (38)

1

U ′
1

dt
EtdU

′ =
U ′′

U ′
1

dt
Etdc+

1

2

U ′′′

U ′
1

dt
Et(dc)

2. (39)

Substituting from (37), (38) and (39) into (35) and (36), we find that

1

λ

1

dt
Etdλ = r + A(c)σλc (40)

FQ
p
− δ +

1

p

1

dt
Etdp = r + A(c)σpc, (41)

whereA(c) = −U ′′c/U ′ is the measure of relative risk aversion and σλc = (1/dt)Et(dλ/λ, dc/c)

and σpc = (1/dt)Et(dp/p, dc/c) are respectively the covariances of the rate of growth of con-

sumption with the rate of growth of the in situ price and the rate of growth of the flow price

of the resource (measured in terms of the composite good). Thus the assets market equilib-

rium requires that the expected rate of change of the in situ price, which is the expected

return on the below ground reserves, X(t), must be equal to the rate of interest corrected

for the consumer’s degree of risk aversion multiplied by the covariance between the rate of

growth of the in situ price and the rate growth of consumption. Since the above ground

resource is durable, it also requires that the rate of return on its stock, Q(t), be equal to the

same rate of interest corrected for the measure of the consumer’s risk aversion multiplied by

the covariance between the rate of growth of the market flow price and the rate of growth

of consumption.

Notice that if U ′′ is negative, as is being assumed, the measure of relative risk aversion is
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positive, the consumer being risk averse. This means that the second term on the right-hand

side of each equation will take on the sign of the relevant covariance. For instance, if σλc

is positive, so that a high (low) return on holding the resource stocks in the ground tends

to be associated with a high (low) rate of growth in consumption, then holding reserves in

the ground is a relatively risky investment and requires a return that exceeds the riskless

rate r. The same can be said for holding resource stocks above ground if σpc is positive. On

the other hand, if σλc is negative, then holding resources in the ground constitutes a form of

insurance against adverse results concerning the growth of consumption. The rate of return

on those reserves will then be lower than the riskless rate r. It may in fact be negative if,

for any given degree of risk aversion, the covariance is sufficiently negative, or if, for any

given negative covariance, the consumer is sufficiently risk averse. The same can be said of

investment in above ground stocks of the resource when σpc is negative.

The covariances σpc and σλc are of course related. Indeed, since p = λ+ rγ, we will have

pσpc = λσλc + rγσγc (42)

or, written differently,

σpc =

(
1− rγ

p

)
σλc +

rγ

p
σγc. (43)

Hence σpc is the weighted sum of σλc and σγc, with the weights being respectively the share

in the price (p) of the rent (λ) and of marginal extraction cost (rγ). Thus σpc and σλc can

be of different signs only if σλc and σγc are of different signs. Furthermore, with positive

extraction cost, we will have σpc = σλc if and only if σλc = σγc, and hence σpc = σγc.

Eliminating A(c) from (40) and (41) and using (42) and the fact that

1

λ

1

dt
Etdλ =

p

λ

1

p

1

dt
Etdp−

rγ

λ

1

γ

1

dt
Etdγ,
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we find that

1

p

1

dt
Etdp =

λ

rγ

{(
σpc − σλc
σγc

)
r +

σλc
σγc

(
FQ
p
− δ
)}

+
σpc
σγc

1

γ

1

dt
Etdγ, (44)

which is the expression for the expected rate of change of the flow price of the resource. It is

interesting to compare this expression for the expected rate of price change to its equivalent

in the deterministic case, which is

1

p

dp

dt
=

λ

rγ

(
FQ
p
− δ
)

+
1

γ

dγ

dt
. (45)

If and only if σpc = σλc = σγc will (44) yield a somewhat similar result, with, however,

the important distinction that the deterministic rates of change of price and of cost being

replaced by their expected values, since the uncertainty remains. It is, however, highly

unlikely that all three covariances with consumption will take the exact same value.

In the general case, the behavior of the expected price path will therefore depend critically

on the relative values of the three covariances and will be highly unpredictable. To illustrate,

suppose that the rate of depreciation of the above ground stock is sufficiently small so that

FQ > δp, and that the expected rate of growth of cost is negative (through technological

progress).6 Assume also that σλc > 0, so that the return on holding reserves in the ground

is positively correlated with the rate of change of consumption, and that the reverse is true

of the rate of change of costs, so that σγc < 0. Note that the latter assumption implies

that positive technological change in resource extraction tends to occur when the economy

is performing well in terms of consumption, since σγc is negatively related to σ2c.
7 Under

those assumptions, it can be seen from (42) that σpc − σλc < 0, so that both terms on the

right-hand side of (44) are negative and so is the expected rate of change of the resource. If

we assume instead that σλc < 0, so that holding resources in the ground tends to be viewed

as insurance against unfavorable performances in consumption, and that σ2c < 0 and hence

6Note that the reverse assumption is also plausible if there is an important depletion effect on extraction
cost that dominates any effect of technological progress.

7In fact, σγc = γ′

γ θ2σ2c, and γ′ < 0.
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σγc > 0, then the sign of the first term is ambiguous and so is that of the second term (since

σpc may well be negative). In such a case, the sign of the expected rate of price change

cannot be determined analytically. Analytical indeterminacy will obviously persist if σλc

and σγc happen to be of the same sign, whether positive or negative.

The expression in (44) for the expected rate of price change is also quite different from the

one that arises when the resource is a non durable, analyzed in Gaudet and Khadr (1991),

namely

1

p

1

dt
Etdp =

(
1− rγ

p

)(
r + A(c)σλc

)
+
rγ

p

1

γ

1

dt
Etdγ. (46)

In that case the expected price change is simply a weighted average of the rate of interest

adjusted for the risk aversion factor and the rate of change of the cost of extraction, where

the weights are respectively the share of the rent in price and the share of costs in price. This

is to be compared to the well known basic pricing equation that arises from the Hotelling

rule in the deterministic case, namely

1

p

dp

dt
=

(
1− rγ

p

)
r +

rγ

p

1

γ

dγ

dt
(47)

Thus, even in the case of a non durable resource, stochasticity in the production processes

has an important impact on the equilibrium behavior of the resource price. Let us assume the

rate of change of the cost of extraction to be negative. Then, in the deterministic case, the

price may be declining at first since the second term may dominate the first one for low levels

of rent, but it must eventually be increasing as the share of the rent in the price increases and

that of cost decreases. Thus the resource price path will be either continuously increasing

or be U-shaped, and therefore will necessarily end up increasing. Things are different in

the stochastic case. Indeed, if σλc is negative, which means that favorable returns on the in

situ resource stock tend to be associated to unfavorable performances of the economy (as

captured by the growth in consumption), then the return expected from holding the resource

stock in the ground will be smaller than the rate of interest, since holding the resource stock

then appears as a form of insurance against bad prospects for consumption. In fact there is
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nothing to prevent the first term from being negative, since r+A(c)σλc may well be negative

if A(c)σλc is sufficiently large, in which case, if the expected rate of change of extraction

cost is also negative, the expected rate of change in the price will be negative independently

of the share of the rent in the price. As is clear from (44), the durability of the resource

further highlights the need to take into account uncertainty when attempting to characterize

empirically the evolution of resource prices.

Note finally that since, by definition, µX = (1/λ)(1/dt)Etdλ and µQ = (FQ/p) − δ +

(1/p)(1/dt)Etdp, respectively the expected rates of return on holding resource stocks respec-

tively below ground and above ground, then from (40) and (41) we have that the expected

instantaneous excess returns on holding those assets are written

µX − r = A(c)σλc (48)

and

µQ − r = A(c)σpc. (49)

Furthermore, if there exists a reference market portfolio (denote it M) with the property

that σMc 6= 0, then we will also have µM − r = A(c)σMc. By substitution into (48) and (49)

we then get

µX − r = βX
(
µM − r

)
(50)

and

µQ − r = βQ
(
µM − r

)
(51)

where βi = σic/σMc, i = λ, p are the well known “beta-coefficients”. A positive βi implies that

holding the resource in question constitutes a relatively risky investment, whereas the reverse

is true if it is negative. Such specifications suggest that an asset pricing formulation of the

nonrenewable resource exploitation problem can offer an interesting approach to estimating

the temporal behavior of resource prices.8

8There have been a few attempts, based at least in part on Gaudet and Khadr (1991), at using such
an approach to estimate the Hotelling rule for non durable resources or, if durable, by treating it implicitly
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7 Conclusion

The Hotelling rule is best viewed as an equilibrium condition in the assets market rather

than simply an equilibrium condition in the flow market, as it very often is. Assets market

equilibrium requires that holding a unit of the resource yield no more and no less than

extracting it in order to invest in some other asset, thus irreversibly depleting the resource

stock. Establishing the intertemporal assets market equilibrium in such a context requires

that careful thought be given to what enters the return on holding the resource stock. As

mentioned at the outset, there are a number of real world factors that make this task more

complicated than it appears from the seminal paper of Hotelling, where the return could

only be the capital gains it generates by holding it in the ground. As was shown in Gaudet

and Khadr (1991) for non durable resources, not the least of those factors is uncertainty

about future investment prospects. If in addition the resource is durable, depleting the in

situ resource stock creates an above ground asset which, contrary to the in situ stock, yields

a dividend in the form of productive services. This paper has shown that caution should

be used in drawing analytical predictions about resource pricing behavior in the context of

durable resources and stochastic investment opportunities. It is certainly too simplistic to

imply from the most basic formulation of the Hotelling rule that the net price of the resource

should be growing at the rate of interest, and it should be no surprise that observed resource

prices do not behave in such a fashion. Our results highlight the importance for empirical

studies of resource prices of taking account uncertainty about future investment prospects,

and especially so in the case of durable resources. Of course, other factors, such as depletion

effects on extraction costs and the structure of the resource markets are also very important

in explaining the departure of the observed price behavior from the simple r% rule.

as non durable. See in particular Slade and Thille (1997) and Young and Ryan (1996), and more recently
Kakeu (2010) who makes use of stock market data and financial econometric methods to estimate the beta
coefficient for oil and gas. Empirical studies of resource price behavior that explicitly take into account the
durability of the resource are to our knowledge still nonexistent.
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Appendix

Characterization of the equilibrium prices and returns

The demand prices and asset returns have been taken to be those that equilibrate the

markets when extraction, production and consumption take place simultaneously. They have

furthermore been assumed to evolve in equilibrium as stochastic processes, given that the

exogenous productivity indices evolve stochastically. In this Appendix we show that such

assumptions are indeed compatible with the equilibrium and illustrate how the respective

equilibrium drifts and variances can be calculated as functions of the primitives.

It has already been argued in the last section that we must have in equilibrium dRK(t) =

dRB(t) = rdt. There remains to characterize the prices p(t) and q(t), and the returns dRX(t)

and dRQ(t). Each of those prices and returns will at any given date be a function of the

state of the economy, which is given by the vector (K(t) +B(t), X(t), Q(t), θ1(t), θ2(t)).

Consider first the utility price of the composite good. It is given by q = U ′(c). If we

replace the decision variable c(t) by its equilibrium value, then q(t) can be expressed as

q(t) = Q(K(t) +B(t), X(t), Q(t), θ1(t), θ2(t)). (52)

Similarly, we know from condition (17) that q(t)p(t) = ΓQ(Q(t), p(t), q(t), θ1(t)). Substitut-

ing for the utility price q(t) from (52), we see that the implicit solution for p(t) will take the

form

p(t) = P(K(t) +B(t), X(t), Q(t), θ1(t), θ2(t)). (53)

As for the asset price (in situ price) of the resource, λ(t), it is given by λ(t) = p(t)− rγ(θ2),

namely the gross market price of a unit or the resource minus the cost of taking it out of the

ground, expressed in terms of the composite good. Hence, substituting for p(t) from (53),
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the equilibrium value of λ(t) can be written

λ(t) = Λ(K(t) +B(t), X(t), Q(t), θ1(t), θ2(t))

= P(K(t) +B(t), X(t), Q(t), θ1(t), θ2(t))− rγ(θ2(t)). (54)

Given that the productivity indices θ1 and θ2 evolve as Itô processes, then, as assumed

in (6), (5) and (20), so will the equilibrium values of p, q, dRX and dRQ. To verify this,

consider the case of the equilibrium gross price p. Denote by k and b the instantaneous

rates of change of K and B respectively, so that dK = kdt and dB = bdt, and recall that

dX = −xdt and dQ = x− δQ. Then, using Itô’s lemma, we get that

dp = PK+B(k + b)−PXx+ PQ(x− δQ)

+ Pθ1dθ1 + Pθ2dθ2 + Pθ1θ2 +
1

2
Pθ1θ1(dθ1)

2 +
1

2
Pθ2θ2(dθ2)

2 (55)

Substituting for dθ1 and dθ2 from (3), we get

dp

p
=

[
PK+B

P
− PX

P
x+

PQ

P
(x− δQ) +

Pθ1

P
µ1 +

Pθ2

P
µ2 +

Pθ1θ2

P
σ1σ2ξ1ξ2

+
1

2

(
Pθ1θ1

P
σ2
1ξ

2
1 +

Pθ2θ2

P
σ2
2ξ

2
2

)]
dt

+

[
Pθ1

P
σ1ξ1 +

Pθ2

P
σ2ξ2

]
√
dt, (56)

which yields (5) as assumed, where

µp =
PK+B

P
− PX

P
x+

PQ

P
(x− δQ) +

Pθ1

P
µ1 +

Pθ2

P
µ2 +

Pθ1θ2

P
σ1σ2ξ1ξ2

+
1

2

(
Pθ1θ1

P
σ2
1ξ

2
1 +

Pθ2θ2

P
σ2
2ξ

2
2

)
=

1

P(·)
1

dt
Et(dP(·))

σp =

[
Pθ1
P
σ1ξ1 +

Pθ2
P
σ2ξ2

]
ξ2

=

(
1

dt
var

(
dP(·)
P(·)

)) 1
2
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and

ξp = ξ2.

Using Itô’s lemma we can derive in the same way µq = (1/Q(·))(1/dt)Et(dQ(·)) and σq =

((1/dt)varEt(dQ(·)/Q(·)) 1
2 , as well as µλ = (1/Λ(·))(1/dt)Et(dΛ(·)) and σλ = ((1/dt)varEt(dΛ(·)/Λ(·)) 1

2 .

As for the rates of returns on X and on Q, given by

dRX =
dλ

λ
and dRQ =

(
FQ
p
− δ
)
dt+

dp

p

their equilibrium drifts, µX and µQ, and volatility, σX and σQ, can be obtained using the

above, hence verifying the appropriateness of the assumption made in (20).
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