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Résumé 

Le virus Herpès Simplex de type 1 (HSV -1) est un membre de la famille des Herpesviridae et 

cause une variété de maladies chez les humains et les animaux (Roizman and Knipe, 2001). HSV-l peut 

demeurer latent dans les neurones sensoriels et occasionnellement se réactiver et causer une maladie 

récurrente. Lorsqu'il est réactivé, HSV-l cause des feux sauvages ainsi que de sérieuses maladies telles 

que la kératoconjonctivite et l'encéphalite. Les traitements antiviraux tels que les vaccins n'ont toutefois 

pas réussi à éradiquer HSV -1. 

La meilleure méthode cepedant pour empêcher HSV-l de causer des maladies est d'utiliser des 

v~ccins qui bloquent l'infection initiale. Au niveau cellulaire, une méthode pour bloquer la propagation 

virale aux cellules voisines serait la plus utile. En vue de trouver une méthode préventive, les détails du 

cycle viral doivent être explorés, y compris la manière dont le virus entre et infecte les cellules. Nous 

espérons qu'une meilleure compréhension du transport de HSV-l dans les cellules infectées nous aidera 

dans le traitement des maladies causées par HSV -1. Une fois dans la cellule, HSV -1 produit de nouvelles 

capsides dans le noyau des cellules infectées. 

En 2007, parmi de nombreuses autres études,. Rémillard-Labrosse et aI. suggèrent que les capsides 

nouvellement assemblées, trop grosses pour sortir par les pores nucléaires, bourgeonnent dans l'espace 

périnucléaire et fusionnent ensuite avec la membrane nucléaire externe. Par la suite, les capsides 

cytoplasmiques nues migrent au site de ré-enveloppement, présumé être le TGN ou les endosomes 

(Turcotte at al., 2005). Plusieurs laboratoires, dont Turcotte et al. en 2005, ont démontré le rôle du TGN 

dans le cycle viral de HSV -1. Ils ont constaté que, dans les membranes du TGN, les capsides 

cytoplasmiques acquièrent leur enveloppe finale pour devenir des particules infectieuses dans le milieu 

extracellulaire. Le TGN est le lieu de triage des protéines avant d'être délivrées à la surface de la cellule 

et dans diverses organelles; toutefois, le processus par lequel les capsides de HSV -1 quittent ce 

compartiment n'est· pas encore clair. J 

Dans cette étude, nous suggérons l'implication de la protéine kinase D (PKD) dans le transport du 

virus du TGN à la membrane plasmique. Dans l'étude du transport intracellulaire des protéines, PKD est 

présenté comme un important médiateur pour le transport de cargos du TGN à la surface des cellules. Son 

activité est dépendante du DAG et la réduction de la synthèse de DAG inhibe le transport de molécules du 

TGN à la membrane plasmique. De plus, une mutation dans le domaine kinase de PKD entraîne la 

formation de tubules au TGN et la rétention de cargos dans ces tubules. Nos résultats montrent que les 

virions de HSV-l sont également pris au piège dans les tubules du TGN formés lors de l'expression de 
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PKD sous sa forme mutante. Ces résultats proposent l'utilisation par HSV-l de cette même voie de 

sécrétion dans son transport à la surface des cellules. 

Mots-clés: HSV-l, capsides, TGN, PKD, membrane plasmique. 
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Su ITl ITla ry 

Herpes Simplex Virus Type 1 (HSV -1) is a member of the Herpesviridae, which causes a variety 

of diseases in humans and animaIs (Roizman and Knipe, 2001). HSV-l can remain latent in sensory 

neurons and occasionally reactivates to cause recurrent disease. When it is reactivated, HSV cause cold 

sores as weIl as other serious diseases such as, kerato-conjunctivitis and encephalitis. Anti-viral drugs as 

well as vaccines have been unsuccessful in eradicating HSV-l. 

The best way to prevent HSV -1 from causing diseases,however, is still to utilize vaccine~ which 

prevent of the initial infection. At the cellular level a method to stop viral spread to neighboring cells 

would be most useful. In order to search for a viral prevention method, the details of the virus lifecycle 

must be explored, including how it enters and infects cells. We hope that a better understanding of the 

HSV egress from the infected cells will help in the treatment ofHSV-l diseases. Once HSV-l is in a cell, 

it produces new capsids within the infected cell nucleus. 

Rémillard - Labrosse et al., 2007, among many other studies, suggest that newly HSV-l 

assembled capsids which are to big to escape via nuclear pores bud into the lumen of the nuclear envelope 

and then fuse with the outer nuclear membrane. The subsequent cytoplastp.ic naked .capsids travel to the 

re-envelopment site, presumed to be the TGN or endosomes (Turcotte at al., 2005). Many laboratories 

among with Turcotte at al., 2005, demonstrated the TGN role in the HSV-l life cycle. They found that in 

TGN membranes, cytoplasmic capsids acquire their mature envelope to become infectious particles 

within the extracellular medium. TON represents the station from where the proteins are sorted and 

delivered to the cell surface and other various organelles; but it is not clear by which pathway HSV-l 

capsids leave this compartment. 

In this study, we suggest the implication ofProtein Kinase D (PKD) in the viral egress from the 

TGN to the plasma membrane. In intracellular protein transport studies, PKD is presented as an important 

mediator of cargo transport from the TGN to the cell surface. Its activity is DAO dependent and reduction 

in DAO synthesis inhibits the transport of molecules from the TGN to the plasma membrane. Also, a 

mutation in the PKD kinase domain produces TGN tubule formation and cargo retention in these tubules. 

Our results show that the HSV -1 virions are also trapped in the TGN tubules formed by the expression of 

PKD mutant. These results propose that HSV -1 utilizes the same pathway as secretory molecules in their 

transport to the cell surface. 

Keywords: HSV -1, capsids, TGN, PKD, plasma membrane. 
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CHAPTER 1: Literature Review 

1. Introduction 

Viruses are the smallest infectious particles, with diameters ranging between 18 and 300 nm. Like 

all viruses, these particles cannot be seen with a light microscope and are unable to reproduce by 

themselves because they lack certain functions. The Latin word virus means poison. Viruses establish an 

obligate intracellular parasitism into many different biological organisms in order to produce new virions 

(infecti ve viral particles). 

1.1 Brief history of herpesviruses 

Evidences for herpesviruses have been signaled in the 5th century RC. when the ancient Greek 

physician and father of medicine Hippocrates mentioned for the first time about skin les ions (Roizman and 

Whitley 200 1, Smith and Cyr 1988). The family name is derived from the Greek word herpein "to creep" 

which refers to the latent, re-occurring infections typical of this group of viruses. Herpesviridae can cause 

latent or lytic infections (Wikipedia definition). Herodotus, in the Roman civilization period, described the 

presence of the fever associated with these lesions, and he named it "herpes febrilis" (Thomas Bateman, 

1814). Other references for herpes virus infection are dated from the Shakespeare' sera in England, and 

much 1ater in the king's court of France (Astruc, 1736). The advanced methods of herpesvirus studies 

began in the late 19th century when researchers started to test scientific hypothesises about how the viruses 

interact with the host. In the early 20th century, Lowenstein and Gruter demonstrated that human HSV 

could also produce lesions on the rabbit's cornea (Gruter, 1924). In 1920 and 1930, it was found that 

many lab animaIs were susceptible to HSV infections. In 1939, Bumett and Williams published an article 

describing the nature of latency, noting that HSV seemed to persist for life and could be reactivated under 

stressful conditions to produce visible lesions (Bumet and Williams, 1939). The work with the cell culture 

allowed for the discovery of the other human herpesviruses, including cytomegalovirus (CMV) and 

Varicela zoster virus (VZV) (Craig et al., 1957). Until now, there were about 100 Herpesviruses isolated 

from many animal species and 9 from humans. 

After the 1960s the new technologies such as electron microscopy (EM), DNA sequencing, and 

DNA cloning made it possible to determine the structure of herpesvirus particles, the sequence of their 

genomes, the viral gene expression pattern, and the identification of many individual gene products. 



Moreover, advanced studies over the last 40 years have resulted in new treatments and vaccines for 

herpesvirus infections (e.g. VZV) (Epstein, Achong, and Barr, 1964). Recently, herpesviruses have been 

re-examined for use as viral vectors for certain treatments of human diseases. The modem experimental 

period has facilitated a better understanding of herpesvirus diseases and made it possible to utilize 

herpesviruses to potential human health benefit. 

1.2 Proprieties and classification of herpesviruses 

Herpesviridae find hosts in amphibians, reptiles, fish, birds, and marnmals and consist of a wide 

variety of viruses. The International Committee on the Taxonomy of Viruses defined Herpesviridae for 

the first time as being capable of establishing a latent infection in their natural hosts in a specific set of 

cells, which varies from one virus to another. There are also other biological properties, such as the length 

of the reproductive cycle. These were used as the basis of classification, before DNA sequences of the 

viruses were known. Members of the family Herpesviridae were classified by the Herpesvirus Study 

Group into three subfamilies: the Alphaherpesvirinae, the Betaherpesvirinae, and the 

Gammaherpesvirinae. This classification is based on host range, length of replication cycle and cell 

tropism (Roizman, Bartha, and Biggs, 1973; Roizman et al., 1992; Van Regenmortel et al., 2000). 

Alphaherpesviruses (a) is represented by Herpes simplex virus type 1 (HSV-l), Herpes simplex 

virus type 2 (HSV -2), Pseudorabies virus (PRV), VZV and Marek's diseases virus (MDV). They are 

characterized by a short replication cycle, a rapid multiplication in cell culture, and a large host variety in 

vitro and in vivo, and could be latent within neuronal cells (Van Regenmortel et al., 2000). 

In contrast, betaherpesviridae (8) replicate slower than a; they have a limited host range, and 

establish latency in numerous tissues, such as secretory glands and lymphoreticular cells. During infection 

with herpesviruses of this subfamily, host cells frequently become enlarged (cytomegalia) leading to the 

name of the cytomegaloviruses, the representative members of the ~-herpesvirus subfamily (Van 

Regenmortel et al., 2000). 

Although y-herpesviruses have a limited host range similar to the j3--herpesviruses, the length of 

the replication cycle of these viruses varies between species. The y-herpesviruses infect cells of the 

lymphatic system, like B or T lymphocytes, and the latent virus is frequently demonstrated in lymphoid 
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tissue. The Epstein-Barr virus (EBV) is the principal member of this subfamily (Van Regenmortel et al., 

2000; Roizman, 1996; Roizman and Sears 1996; Mettenleiter 1994). 

There are eight species of human herpesviruses. (HSV -1) and (HSV -2) are etiological agents for 

oral and genitallesions, keratoconjuctivitis and encephalitis. Varicela zoster virus is the primary cause for 

chickenpox and shingles, while HCMV causes cytomegalic inclusion disease. EBV causes mononucleosis 

and tonsillitis. African Burkitt Lymphoma causes B- and T - cell carcinomas. Human Herpes virus 6 

(HHV6) and Human Herpes virus 7 (HHV 7) are known to cause T-cell lymphomas. The newly 

discovered human Herpes virus 8 (HHV 8) is a causative agent of Kaposi's sarcoma and has been 

renamed as Kaposi Sarcoma Associated Herpes Virus (KSHV). 

1.3 The HSV-1 virion structure and genome organization 

HSV -1 produces spherical particles that range in size from 120-200 nm (Wildy P. et al., 1963). 

They contain more than 35 different virally-encoded gene products that assemble into three major 

structures: the nuc\eocapsid, tegument and envelope (Mettenleiter, T.C. 2004). 

HSV -1 Virion Structure 
Upld t;av,elOov 

--
-2iMhra Core 

GlycoproteiM 
--.. 

Figure Il: Herpesvirus virion structure (Roizman and Furlong, 1974). 
HSV -1 virion consists of: an electrondense core containing the viral genome, an icosadeltahedral 
caps id around the core, an amorphous tegument around the caps id, and an enveJope derived from 
cellular membranes containing glycoprotein spikes (Roizman and Furlong, 1974; Travis J. Taylor et 
al.,2002). 
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The linear, 152 kbp DNA genome consists of two unique segments (unique long (UL) and unique 

short (Us) flanked by inverted repeats (fig.2) (McGeoch, D.J. et al., 1988, McGeoch, D.J. et al., 1986, 

McGeoch, D.J., et al., 1985). 

Ra. Ra Ra Ra. 
[CJr-------­
a b 

UL,---------1=II ]:1 :::::It- Ua-c:D 
b' a' c' c a 

Figure 1 2: The HSV-l virion genome organization. 
The HSV genome consists of a long (L) and short (S) compone nt. Each component includes a unique 
sequence (UL and US) tlanked by inverted repeats (RL and RS). The repeat sequence of the long 
compone nt is designated. 

Within infected cells, the "a" repeats that flank both unique segments help to promote the 

inversion of UL and Us resulting in the production of four genomic isomers (Hayward G.S. et al., 1975). 

At present, the viral genome is thought to contain over 80 genes that occasionally overlap with one 

another and have very few introns (Hardy W.R. et al., 1994, Roizman Band AE. Sears. 2001). 

The icosahedral capsid is composed of four predominant virion proteins (VP5, VPI9c, VP23, and 

VP26) and severalless abundant species (Gibson W. and B. Roizman, 1972). The VP5 protein is part of 

162 capsomers (150 hexons and 12 pentons) which are linked together by triplex complexes composed of 

the VP19c and VP23 pro teins (Newcomb W.W., et al., 1993, Trus B.L. et al., 1992, Zhou Z.H., et al. 

1994). The VP26 protein is bound to the distal tips of each hexon-associated VP5 protein (Booy F. P. et 

al., 1994, Trus B.L. et al., 1995). The tegument contains more than 20 different virally-encoded proteins, 

which lie between the nuc1eocapsid and envelope. This makes the tegument very difficult for study, being 

the least defined virion substructure (Roizman Band AE. Sears. 1996). However, recent data suggestthat 

it is a flexible network structure containing extensive protein-protein interactions. The tegument pro teins 

perform several essential functions for the virus, such as host gene expression shut-off, viral gene 

transactivation and assembly. Surrounding the tegument is the lipid envelope that is derived from host 

TGN/endosome membranes (Epstein M.A and S.J. Holt. 1963, Watson D.H. and P. Wildy, 1963, Wildy 

P. and Watson 1963). The envelope has embedded at least 14 different virally-encoded integral membrane 

proteins, 12 glycosylated and 2 non-glycosylated with a role in the processes of entry and immune evasion 

(Campadelli- Fiume G. et al., 2000, Spear P.A. et al., 1970). Cellular components are also present in the 
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HSV -1 capsids. For example, HSV -1 packages large quantities of polyamines, spermine and spermidine 

(Gibson W and Roizman 1971). The role of these molecules is to neutralize the negative charges present 

on the viral DNA, and allow the large genome to fold into preasembeld capsids (Pohjanpelto P. et al., 

1988, Raina A. et al. 1988). In addition to cationic molecules, growing evidence indicates that HSV-l 

packages both viral and cellular mRNA molecules into virions (Sciortino M.T., et al., 2001). Sorne 

hypotheses assume this RNA plays a role in "priming" newly infected cells by delivering transcripts 

which encode proteins that work early in the replication cycle (Bresnahan W.A. and T. Shenk. 2000). 

AIso, it is possible that packaged RNA serves no function and is only a result of becoming trapped during 

assembly. 

1.4 Pathogenesis 

Infections caused by HSV occur worldwide in both developed couritries and underdeveloped 

countries (Black, 1975). Virus transmission, from an infected to a susceptible individual, occurs during 

close personal contact (Whitley, 2001). Due to HSV infection, more than half of the world's population 

probably has recurrent HSV infections, enabling the transmission of HSV. The mouth area is the most 

common location of infection (Whitley, 2001). After primary infection, usually in oral or genital mucosal 

tissue, the viral replication results in the infection of sensory nerve endings; and the virus is then 

transported to the dorsal root ganglia (Baringer and Swoveland, 1973; Bastian et al., 1972). In HSV-l 

infection, the trigeminal ganglia become the site of the latent virus; whereas in HSV-2 infection, the sacral 

ganglia is the site of latency (Whitley, 2001). After the establishment of latency, certain stimuli can cause 

reactivation to occur, and the virus becomes evident at mucocutaneous sites as vesicles or u1cers. Cellular 

changes, induced by viral infection, include enlargement of infected cells and the appearance of 

condensed chromatin within the nuclei, followed by degradation of the nuclei. Cells lose intact plasma 

membranes and form multinucleated giant cells. In infected dermal regions, there is an intense 

inflammatory response whose intensity decreases substantially with recurrent disease (Whitley, 2001). 

Primary HSV-l infection can be either totally asymptomatic or can result in symptoms including fever, 

sore throat, vesicular or ulcerative lesions. However, asymptomatic infection is generally the rule rather 

than the exception (Whitley, 2001). Neonatal HSV infections occur at a rate of about 1 in 3000 per year 

(Nahmias, Keyserling, and Kerrick, 1983; Nahmias, Keyserling, and Lee, 1989), and the highest mortality 
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rate occurs in babies with disseminated infection (Whitley et al., 1991). Keratoconjunctivitis can also 

occur in either a single eye or both eyes, and if not treated, causes comeal blindness (Binder, 1977). HSV 

is one of the most common causes of sporadic, fatal encephalitis (OIson et al., 1967). Sorne studies 

estimate a rate as high as 1250 cases per year in the United States (Whitley, 2001). Encephalitis is caused 

when the virus spreads past the dorsal root ganglia, in which latency is usually established, to the CNS. 

The mechanisms responsible for this aberrant event in the virus life cycle are unclear. The manifestations 

of HSV encephalitis include primarily focal encephalitis along with fever, altered behavior, and localized 

neurological findings. There is usually evidence of localized temporal lobe disease (Whitley et al., 1977; 

Whitley et al., 1981). In untreated patients, mortality exceeds 70% and only 2.5% of patients retum to 

normal neurological function (Whitley, 2001). 

1.5 Treatment 

The two methods for control ofHSV infections are antiviral therapy and prevention. In theory, any 

step in the viral cycle, such as attachment, entry, DNA replication, gene expression, virion assembly and 

egress could be a potential target for antiviral therapy (Coen and Schaffer, 2003). Practically all 

antiherpesvirus drugs used are nucleoside analogs that target the viral DNA polymerase. Acyclovir, 

pencyclovir, valacyclovir and famciclovir are members of this class (Wagst ff, Faulds, Goa, 1994). 

Vaccination would be the ideal method of HSV prevention; however to date no HSV vaccine has been 

completely successful. AIso, patient education can prevent many potential fetus exposures. To date, only 

one vaccine with 70-90% effectiveness against VZV disease has been accepted for use in humans. The 

serum was originally isolated from a culture taken in 1970, from a three year old boy named K.Oka in 

Japan (Asano Y et al., 1977; Takahashi M. 1986; Takahashi M. et al., 1974; Takahashi M. et al., 1985). 

Moreover, LUPIDON H is an anti-HSV-l heat inactivated vaccine. Its subcutaneous administration 

produces cell-mediated immunity in patients (De Maria A., et al., 1995). In order to induce both the 

cellular and humoral immunity, a disabled infectious single cycle HSV -1 virus (DISC) vaccine was 

developed. This virus lacks glycoprotein H in the progeny virus and is therefore not infectious (Farrell J.E 

et al., 1994; McLean C.S, M.Erturk and R. Jennings, 1994). 
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1.6 HSV-1 LlFE CYCLE 

1.6.1 HSV-1 entry 

Knowledge about the molecular details of the HSV -1 life cycle has come mostly from the tissue 

culture systems. The HSV-l enve10pe glycoproteins play a central role in virus entry. The initial 

interaction between the virus and its host begins with the attachment of the viral enve10pe glycoproteins C 

and B, to heparin sulphate proteoglycan on the cell surface (Andreas Jacobs et al., 1999; Herold BC et al., 

1994; Laquerre S et al., 1998). This binding is followed by the fuzion of the viral enve10pe glycoproteins 

gB, gD and the heterodimer H (gH) and L (gL) with their cell surface receptors on the cell membrane, 

name1y Herpes Entry Mediator (HVEM), a member of the tumor necrosis factor receptor family, or 

nectin-l, a member of the immunoglobulin superfamily, (Montgomery et al., 1996; Nicola et al., 1998 ; 

Forrester et al., 1992; Sarmiento et al., 1979, Fuller et al., 1989, and Johnson & Ligas, 1988; Manservigi et 

al., 1977; Roop et al., 1993). De1etion of any one of these glycoproteins results in viruses that are able to 

bind to cells, but can not penetrate them (Cai W.H. et al., 1988). AIso, neutralizing antibodies that target 

each of these four essential glycoproteins has been isolated, which prove the requirements for each of 

them in the entry process (Gompe1s U. and A. Minson 1986). gD binding to its receptor induces a 

conformational change in gD, that allows gB and the gH:gL heterodimer to complete the fusion process. 

The gD receptor interaction is extreme1y important for HSV -1 entry (Montgomery et al., 1996, Whitbeck 

et al., 1997). It takes between 15 and 30 minutes for HSV-l to enter into Vero cells (Adi Reske et al., 

2007). Originally, HSV was be1ieved to enter into cells by fusion at the cell surface. However, several 

studies that have been pub li shed showed that HSV entry can occur by endocytosis. Nicola et al. 

demonstrated that HSV entry into CHO and HeLa cells can be inhibited by energy depletion or hypertonic 

medium, which inhibits endocytosis. Aiso using lysosomotropic drugs (e.g. bafilomycin Al) the 

endosome acidification is prevented; thereby the fusion of the virus with endocytic compartment is 

blocked. These studies suggest that HSV infection of CHO cells occurs through a pH-dependent endocytic 

pathway by showing that lysosomotropic drugs inhibit productive infection, while entry into Vero cells, in 

which the original HSV entry pathway studies were conducted, was not affected O~iCola A. et al., 2003, 

Nicola A. et al., 2004). 
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1.6.2 Uncoating and genome release 

HSV-1 

plasma membrane 

microtubules 
nuclear 
membrane 

nucleus 

Figure 1 3: Transport of the capsid to the nuclear pores with release of the virion DNA into the 
nucleus (Sodeik et al., 1997). 

Once the viral and cellular membranes fuse, the capsids still surrounded by tegument enter into the 

cell. Unenveloped capsids travel inside the cytoplasm to the nucleus along microtubules and dock to the 

nuclear pore. At this point, the viral DNA is ejected from the capsid and is released into the nucleoplasm 

(Sodeik et al., 1997). At the same time, the tegumentprotein vhs (ho st shutoff) escapes from the naked 

capsids and degrades the cellular mRNA, which allows ribosomes to preferentially synthesize viral 

proteins (Read and Frenkel. 1983). In addition, viral tegument proteins down-regulate cellular proteins 

that interfere with virus detection by the host's immune system (Triezenberg et aL, 1988; Baarr & 

Skulstad, 1994). 

1.6.3 Gene expression 

Inside the nucleus of infected cells, HSV -1 synthesis involves a synchronized cascade of three 

phases of gene expression: immediate early (lE or a), early (E or ~), and late (L or y) (Honess and 

Roizman, 1975). 
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The cellular RNA polymerase II is responsible for aIl viral gene transcription. The lE genes are 

transcribed in the absence of any previous prote in synthesis and their products act to mediate the 

expression of the early and late genes. a genes expression occurs when VPl6 (aTIF) is released from the 

tegument and forms a complex with the two host cell proteins: the POU domain protein, Oct-l and a host 

cell factor HCF (Thomas S et al., 1998). This complex activates the TATA GARAT elements and initiates 

the transcription of viral lE genes into the ceIl nucleus (Goding and O'Hare, 1988, Hagmann et al., 1995; 

Preston et al., 1988). Expression of early gene products occurs at 4-5 hours postinfection and they are 

mostly enzymes necessary for the replication of the viral genome. The L genes expression starts at 6-7 

hours postinfection and encodes mostly structural elements, such as capsid, tegument and glycoproteins 

that will be assembled into the progeny virions (Godowski P.J., and Knipe D. M.1986). 

1.6.4 Viral DNA replication 

Studies in vivo have demonstrated that once ~ genes have been expressed and translated, there are 

several proteins that are localized into the nucleus, where they assemble on the parental viral DNA in 

punctuate "prereplicative sites" near nuclear ND 1 0 structures (Ishov and Maul, 1996; Uprichard and 

Knipe, 1996). The viral DNA replication initiates on the circular viral DNA, which creates a "theta" 

structure, and then changes to a rolling circle mechanism producing head-to-tail concatemers of viral 

DNA (Jacob, Morse, and Roizman, 1979). At this point, replication takes place in "replication 

compartments" that consist of accumulating DNA molecules and replication complexes (Quinlan, Chen, 

and Knipe, 1984). 

There are seven viral proteins absolutely required for viral DNA replication into cells. These are 

the viral DNA polymerase (UL30) (Purifoy, Lewis, and Powell, 1977), its accessory protein (UL42) 

(Conley et al., 1981), an origin-binding protein (UL9), the single stranded DNA binding protein (ICP8), 

and the helicase-primase complex that consists ofthree proteins: UL5, UL8, and UL52 (Challberg, 1986). 

Host cell factors may also be involved in DNA synthesis, and host enzymes that include the DNA 

polymerase a- primase, DNA ligase, and topoisomerase II are also required. The viral genome contains 

also the origins of replication, named oriS, and oriL (Mocarski and Roizman, 1982; Vlazny, K wong, and 

Frenkel, 1982; Weller et al., 1985). The basic model for the replication of HSV viral DNA proceeds as 

follows. First, the parental viral DNA is circularized in the nucleus of the infected cell. After the 

expression of a and ~ gene, UL9 binds to either oriL or oriS and begins to unwind the viral DNA. Then, 
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UL9 recruits the ssDNA binding prote in ICP8 to the unwound portion of the viral DNA. At this point, 

UL9 and ICP8 recruit the remaining five proteins to the replication forks. The helicase-primase and viral 

DNA polymerase complexes assemble at each replication fork and initiate the the ta replication. Through 

an unknown mechanism, replication switches from the theta form to the rolling circle form. The rolling 

circle replication results in long head-to-tail concatamers of viral DNA, which become cleaved into 

individual units during packaging of viral DNA into empty capsids (Roizman and Knipe, 2001) 

ori 
=====tlll===::!=' ===411F=== 

+ 

Hellcase-Primase Complex • Polymerase Holoenzyme 

Theta Replication 

o 
Roiling-Circie Replication 
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Figure 1 4: Mechanism of "SV DNA replication (adapted from Travis J. Taylor et al., 2002) 

AIso, viral genome is able to stay latently in neuronal cells. Unlike a persistent infection where the 

virus is constantly replicating, the viral genome is not replicated during the latent infection, with the 

exception of a subset of HSV genes termed latency associated transcript (LAT) which is abundantly 

expressed. The role of LAT is still unclear; however recent studies have shown the importance of LATin 

limiting viral gene expression, and for the maintenance of the latent state. The major site of HSV latent 

infection is sensory neurons in ganglion tissue such as trigeminal ganglia for HSV -1 or sacral ganglia for 

HSV-2. During the latent state, the viral genome remains in the nucleus of the neuron as circular, extra-
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chromosomal DNA. After its reactivation by various stimuli, latently infected cells enter into a Iytic phase 

with the production of infectious virus particles (Whitley, 2001). The reactivation from latency occurs 

upon UV irradiation as a result of excessive sun exposure, stress, fever, damage or perturbation of the 

ganglia, or menstruation. 

Reactivation by 
anterograde w.,"::JIIII~~1III! 

transport 

Figure 1 5: HSV-llatent infection (adapted from Protein Lounge Presentation). 

1.6.5 Capsid assembly and maturation 

As structural proteins accumulate, capsid assembly begins. The viral capsid assembly requires the 

expression of late genes, the synthesis of the viral structural proteins such as: VP5, VP26, VP23 , VP19c 

and two other polypeptides, UL26 and UL26.5 (lCP35) (Liu and Roizman, 1993). The UL26.5 (ICP35) 

product is the major scaffold prote in for capsid formation, and UL26 encodes a protease (Pra) that cleaves 

the scaffold. Both products form complexes with VP5 and triplex proteins, consisting of VP23 and VP 19. 

This immature capsid, called procapsid, is characterized as being fragile, thin waled, porous, and easily 

disassembled at 4°C (Newcomb et al. , 1996; Rixon et al., 1996; Trus et al., 1996). 
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So as to mature the procapsid into the stable rigid angularized capsid, scaffolds are cleaved by Pra 

and ejected from procapsid. Subsequent capsid angularization is coupled to packaging of the viral 

genome. The mature nucleocapsid is known as a C capsid, and is supposed to be capable of becoming an 

infectious particle. Beside the formation of the C capsid, maturing procapsids may also result in formation 

of A capsids and B capsids (Gibson and Roizman, 1972; Gibson and Roizman, 1974). The lightest A 

capsids are composed only of an empty shell, whereas B capsids (intermediate) have sorne additional 

internaI scaffold proteins Pra and ICP35. Capsid A does not package DNA and is thought to result from an 

abortive process ofDNA packaging (Gibson & Roizman, 1972, Perdue et aL, 1975). 
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Maturation of the HSV-~ capsid 

Figure 1 6: Maturation of herpes simplex capsids (adapted from D. R. Harper) 

Procapsids are observed in cells infected with HSV mutants such as the ts1201 (Preston et al. 1983), tsProt 

A (Gao et aL, 1994), or V701 (Register et aL, 1996). In these strains, the UL26-encoded Pra has point 

mutations that inhibit its protease activity in a temperature dependent manner. 

The phenotype of these mutant strains has been well used in the study of herpes virus life cycle. 

Cells infected with these mutants accumulate procapsids in the nucleus at the non-permissive temperature 

of 39°C (Preston et aL, 1983). A significant feature of this mutation is the fact that the mutation is 

reversible. As the protease function is restored upon retum to the permissive temperature of 31°C, 

subsequent procapsid maturation, angularization and DNA packaging occur in a single synchronized wave 

(Church and Wilson, 1997). This is a very well used tool in the study of complex biological phenomena as 
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diverse as protein trafficking through the secretory pathway, endocytosis, control of the cell cycle because 

of the ability to monitor the accumulation of a protein at a certain stage in its biogenesis, and then to 

release it as a synchronous wave. 

1.6.6 Nuclear egress 

After their assembly, the nucleocapsids have to leave the nucleus going into the extracelular space 

and initiate a new round of infection. The first step is to bud through the inner nuclear membrane. Row 

this is achieved is not well understood, and the literature proposes three concurrent models of egress 

(Enquist et al., 1998; Mettenleiter 2002, Johnson and Juber, 2002). 

The luminal model, also known as the single envelopment model, was described by Johnson and 

Spear in 1982. This model involves virus envelopment at the inner nuclear membrane, which already 

contains viral glycoproteins. The enveloped capsids leave the perinuclear space and enter into the ER and 

Golgi vesicles. Following the exocytic partway, the viral envelope interacts with the membrane of the 

surrounding vesicle where the final maturation of viral glycoproteins can take place, and the viral particle 

is released from the cell. 

The second model of egress is named de-envelopment re-envelopment (Skepper et al., 2001). The 

model proposes that the primary envelopment of RSV capsids at the inner nuclear membrane is followed 

by a fusion with the outer nuclear membrane, resulting in its de-envelopment, and release of naked capsids 

into the cytoplasm. The nucleocapsid surrounded by sorne tegument proteins, further accumulates other 

tegument proteins, buds into the TGN/endosome membranes where it undergoes a secondary envelopment 

(re-envelopment), and is released into the extracellular environment (Cheung et al., 1991). This model is 

supported by studies in which the cellular retention signaIs of viral glycoproteins were mutated. For 

example, the construction of a mutant gR protein with an ER retention signal failed to package gR into the 

virus (Browne et al., 1996), and a gD mutant constructed with an ER localization signal produced 

significantly less of the virus, than a mutant with a Golgi retention signal (Whiteley et al., 1999). In 

addition, the extracellular viral envelope is more similar to plasma membrane composition than to that of 

the nuclear membrane (vanGenderen et al., 1994). 

The third model of egress, proposed by Wild et al. 2005, and Leuzinger et al, 2005 implies a 

disassembly and dilatation of the nucleare pores, resulting in a direct passage of the capsid from the 

nucleus to the cytoplasm. 
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Figure 1 7: Models of herpes simpex virus egress. 
1- the luminal model ; 2- the de-envelopment re-envelopment model; 3- the nuclear pore 
exit model , NM- the nuclear membrane; TGN - trans-Golgi network.; PS, perinuclear 
space (Campadelli-Fiume G. and Gianni T. 2006). 

The correct pathway of HSV -1 nuclear egress is still controversial and much examination is still 

needed to elucidate it. There are molecular studies that involve a crucial role of two virally encoded 

proteins, UL31 and UL34 in primary envelopment (Chang et al., 1997; RoBer et al., 2000). UL31 and UL34 

interact with each other, co-Iocalizing at the nuclear membrane in infected ceUs (Bjerke et al., 2003; Fuchs 

et al., 2002; Reynolds et al., 2001). In the absence of either protein, primary envelopment is inhibited and 

capsids accumulate in the nucleus (Chang et al., 1997; Fuchs et al., 2002; RoBer et al., 2000; Klupp et aIl., 

2000). Both the UL 31 and UL 34 proteins have been found associated with newly enveloped virions in the 

perinuclear space, but not with cytoplasmic or extracellular virions (Reynolds et al., 2001; Reynolds et al., 

2002). UL34 is a substrate for the Us3 who is itselfphosphorylated by UL I3. The interaction among these 

proteins has been demonstrated to depolymerize the nuclear lamina through the cellular protein kinase C 

(PKC) pathway (Bjerke, S. L., and R. J. RoUer. 2006). This locallarpina depolymerization (Reynolds et 
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al., 2004; Simpson Holley et al., 2004) presumably allows the capsids to reach the mner nuclear 

membrane (Muranyi et al., 2002, Reynolds et al., 2004). 

Sorne evidence which supports the de-envelopment re-envelopment model considers that naked 

capsids are necessarily present in the infected cell cytoplasm. Others evidence considers them a result of 

the enveloped virus's disassembly found in a non-productive state (Roizman and Sears, 1993). In addition, 

glycoproteins with an ER retention motif are not incorporated into extracellular virions (Browne et al., 

1996; Whiteley et al., 1999). For example, Browne and coworkers have constructed a recombinant HSV in 

which the glycoprotein gH has been modified to contain a KKXX endoplasmic reticulum (ER) retenti on 

motif. When cells are infected with this recombinant, the amount of viruses released into the medium is 

the same as that in cells infected with the wild-type virus. However, these viruses are completely devoid 

of gH and have a 100-fold-lower infectivity than cells infected with the wild-type virus. This result 

suggests that the ER nuclear membrane is not a donor of viral envelope, and virions acquire their final 

envelope in a post-ER compartment, from which the modified gH is absent because of the ER retention 

motif. The work of van Gederen and coworkers have shown that the lipid composition of isolated HSV 

envelopes is very different from that of nuclear membranes. This means the viral envelope formed at the 

nuclear membrane is lost and the naked capsids in the cytoplasm will acquire a different lipid bilayer from 

the other intracellular compartment, which is post ER (van Genderen et al., 1994). 

The validity of the two models of envelopment was, also studied using a fungal metabolite known 

to block the anterograde transport of cargo through the secretory pathway, named brefeldin A (BF A) 

(Klausner et al., 1992; Lippincott-Schwartz et al., 1989). In the case of single envelopment model, the 

virus in cells treated with BF A accumulates inside the perinuclear space and does not pass through the 

secretory pathway because of the block of export from ER by BF A (Anindya Dasgupta and Duncan W. 

Wilson, 2001). In contrast, in the de-envelopment re-envelopment model, the enveloped virus in the 

perinuclear space fuses with the external nuclear membrane and leads to an accumulation~of naked capsids 

in the cytoplasm. BF A blocked its traffic through Golgi and naked capsids accumulated in the cytoplasm. 

These experiments support the second model where the Golgi complex, the most sensitive BF A-organelle, 

is the major envelopment site of HSV -1 nucleocapsids leading to the formation of the infectious progeny 

virus (Chatterjee and Sarkar, 1992; Cheung et al. 1991; Anindya Dasgupta and Duncan W. Wilson, 2001; 

Koyama and Uchida, 1994). 
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1.6.7 Cytoplasmic capsid assembly and secondary envelopment 

The mechanism of secondary envelopment is not well understood. The final envelopment requires 

a combination of capsid, tegument, and the final envelope at the site of re-envelopment, i.e. the TON or 

endosomes. After nuclear egress, intracytoplasmic capsids were found to contain pUL36 and pUL37 

proteins which mediate transport of nucleocapsids to the envelopment site. That indicates that UL36 is 

necesary for the attachment of tegument components to the capsids (Desai, 2000). Its gene deletion results 

in accumulation of unenveloped capsids in the cytoplasm of infected cells. The same effect was observed 

by deletion of the UL37 gene, but in this case nucleocapsids were shown to accumulate also in the nucleus, 

which suggests UL37 prote in may be involved in both stages of viral egress, at the nucleus and in the 

cytoplasm (Desai et al., 2001). In principle, all components of the mature viral envelope need to be present 

in the correct compartment for the virion incorporation. From Il glycoproteins encoded by HSV -1, most 

ofthem have been reported to be present at the TON including gB, gD, gE/gI, gK, gM, and gH. gB and gL 

do not completely colocalise with the TON as the other cited glycoproteins that implies they play another 

role in other compartiments (Turcotte et al., 2005). However, other envelope glycoproteins such as the 

gH/L complex and gD do not contain any TON signal and it is thought they localize to the plasma 

membrane (Hutchinson et al., 1992; McMillan & Johnson, 2001) even that Turcotte et al., 2005 found a 

partial presence of gL in the TON at 20°C. The mechanisms by which the envelope glycoproteins could 

be targeted to the final envelopment compartment are unclear. Many studies have shown that gM forms a 

complex with gN and together have important roles in viral assembly and egress. gMIN colocalize with 

the TON marker TON46, and cause a relocalization of several membrane proteins from the plasma 

membrane such as gD and gH/L to the TON (Crump et al., 2004). The ability of gMIN to cause 

localization of the herpesvirus envelope pro teins gD and gH/L to the TON, could be part of the mechanism 

by which herpes viruses maintain sufficient concentrations of envelope proteins in the secondary 

envelopment compartment, thus allowing efficient assembly and viral egress. Even if the entire process 

still remains poorly understood, these results provide clues about how HSV -1 virion components are 

driven to the site of envelopment. 
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1.6.8 TGN to plasma membrane viral egress 

Another step in HSV -1 envelopment that is po orly understood is the process by which virion 

initiate budding at TGN membranes. The budding process comprises an aggregation of virion proteins on 

the inner surface of a membrane followed by induction of membrane curvature and subsequent "pinching 

off' of the particle. Unlike for the cellular proteins, the HSV -1 machinery to initiate the membrane 

curvature and the pinching-off has not been identified. The discovery of this machinery is important 

because it provides an indication about how the virion components are selectively packaged during 

assembly. For example, which proteins are packaged by forming interactions with components of this 

machinery and which are packaged in the correct compartment during envelopment? 

l' 

li 1.6.9 Host transport from the TGN to the plasma membrane 
1 

Various intracellular transport studies have revealed the complex formation of vesicles at the TGN 

membranes and they consider the TGN as a major prote in exit station towards various destinations inside 

the cell. After their maturation in the Golgi, proteins are sorted in the TGN, and transported to different 

locations inside the cell, with respect to biochemical sorting signaIs that are found on the individual 

proteins (Balch W. E., and B. A. Bernard. 1999). In this sense, the TGN is considered a critical gateway 

for protein transit. In the lumen of TGN, proteins interact with specific receptor molecules. It is 

considered that after proteins find their specific receptors, they accumulate within TGN subdomains, then 

bud off in order to form diverse secretory vesicles (Mark A. McNiven and Heather M. Thompson. 2006). 

In addition, sorne proteins are retained within the TGN due to the presence of a phosphosorting acidic 

cluster motif adaptor (McNiven M. A. and Thompson H. M. 2006). The decision of sorting and 

transporting for a given protein from the TGN, is taken in association with resident adaptor molecules, 

such as ARF and Golgi-iocalized gamma-ear which contains ADP ribosylation factor (ARF)-binding 

proteins (GGAs) (Boman A. L. 2001). 

Sorne proteins exit inside COPI-coated vesicles in the retro grade direction back to the ER 

(Fernandez-Ulibarri D.V. 1. et al., 2007). Finally, TGN vesicles that travel to endosomes, or plasma 

membrane, depend of the presence of GGAs and/or PKD (Kirchhausen, 2000; Brodsky et al., 2001; 

Robinson and Bonifacino, 2001). 
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Coat proteins induce the membrane curvature or regulate the association of motor proteins with 

membranes. This prevents the vesicles detachment from the organelle before the protein sorting has been 

completed (Kirchhausen 2000; Boehm and Bonifacino 2001; Bonifacino and Lippincott-Schwartz 2003). 

Clathrin coats found on the cytosolic face of the membranes mediate the releasing of transmembrane 

proteins at the plasma membrane, TGN or endosomes (Kirchhausen, 2000; Brodsky et al., 2001). At each 

location, clathrin coats contain adaptor protein (AP) complexes that mediate both the attachment of the 

clathrin to membranes and the concentration of specific transmembrane proteins. While AP-2 complex 

functions at the plasma membrane, AP-l complex is present at the TGN and/or endosomes (Kirchhausen, 

2000; Brodsky et al., 2001; Robinson and Bonifacino, 2001). A protein family, named, GGAs (GGA1, 

GGA2, and GGA3 in humans) was presented to promote the recruitment of clathrin and the releasing of 

transmembrane proteins at the TGN (Robinson and Bonifacino, 2001; Boman, 2001). The ARP family 

(for ADP-Ribosylation Factor), of small GTPases plays an important role in vesicle formation. They 

recruit the Golgi-associated adaptor AP-l and GGAs to the Golgi membranes, and interfere in the 

releasing of proteins in endocytic pathways (Taylor et al., 1994). De Matteis and collegues further 

reported a new family of coat proteins, called F APPs (the four-phosphate adaptor proteins), that function 

at the TGN. Like clathrin, F APPs are coat proteins that bind to the vesicles or tubules which extend from 

the TGN and contain cargo. FAPPI and 2 are recruited in TGN by phosphatidylinositol-4-phosphate (PI, 

IPI4P), and they are considered as mediator of the apical protein transport (Go di et al. 2004, Vieira et al. 

2005). Overexpression ofa dominant-negative ofFAPPs or depleting FAPPIIeveis with small-interfering 

RNAs inhibits protein transport from the TGN to the plasma membrane (Godi et al. 2004). Although 

FAPPs control the formation of transport carriers at the TGN, they are not present on transport 

intermediates that detach from the TGN, which means they disassemble from transport vesicles after 

budding. 

While GGA proteins play a role in regulating the TGN vesicular egress to endosomes, PKD has 

been identified as a molecule which regulates TGN vesicular transport to the plasma membrane (Liljedahl 

et al., 2001). PKD is a family of serine/threonine protein kinases that belongs to the Ca2+/calmodulin­

dependent kinase superfamily. Three members of the PKD family have been identified so far in humans: 

PKD1, PKD2, and PKD3. They share homology in their catalytic do main and distinct sequences located . 

between the conserved motifs in the regulatory region confer isoform specific functions (Rykxa A., et al. 

2003). 
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The three PKD isofonns are implicated in basolateral protein transport from TGN to the plasma 

membrane (Yeaman et al. 2004). They bind to DAG from the TGN membranes via their cysteine rich 

(Cl) domain (Maeda et al. 2001). DAG depletion inhibits their binding to the TGN and consequently, 

their activation (Baron and Malhotra 2002). The kinase-inactive fonn of PKD, the lysine to asparagine 

PKD-K618N mutant, has been shown to accumulate at the TGN and cause tubulation of the TGN. PKD­

K618N tubules contain cargo, but do not detach from the TGN. The mutant also produces an inhibition of 

cargo transport between the TGN and plasma membrane. In contrast, PKD overactivation by 

ilimaquinone induces fragmentation of the Golgi apparatus (Keller et al. 200 1, Liljedahl et al. 200 1, and 

Polishchuk et al. 2003. 

PKD-K618N ·····1 "f" • 
:. 
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Golgi 

Figure: 1 8. Kinase dead PKD block HSV-l transport from the TGN to the plasma 

membrane. 

The activity of PKD depends on its recruitment from the cytosol to the TGN membranes by DAG 

(Prestle et al., 1996; Liljedahl et al., 2001; Baron and Malhotra, 2002). At the same time, DAG 
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production in the Golgi depends on the conversion of phosphatidic acid (PA) mediated by phosphatidic 

acid phosphohydrolases (PAPs). Finally, PA could be a result of phosphatidylcholine (PC)-specific 

phospholipase D enzymes (PLD) activity (Siddhanta and Shields, 1998). Therefore, PLD and PAP are 

important in DAG production in Golgi membranes. Another source of DAG is represented by 

sphingomyelin synthase (SMS) activity, which generates sphingomyelin (SM) and DAG (Ichikawa and 

Hirabayashi, 1998). Moreover, phosphoinositides such as (PI, PI4P) or phosphatidylinositol 4, 5-

biphosphate (PI4, 5P2) are converted to DAG and inositol bis- or tris-phosphate through 

phosphoinositide-specific phospholipase C (PI-PLC) (Claro et al., 1993; Rhee, 2001). 

Intracellular VSV -G post-Golgi transport has been studied in the presence of sorne drugs, such as 

fumonisin BI (FB-l), l-cycloserin (L-CS) and propranolol (Liebisch G. Schmitz G. Hoekstra D. 2004). 

Those drugs all cause an inhibition in the TGN-derived transport carriers as a result of Golgi-associated 

DAG level reduction (Baron and Malhotra, 2002; Brindley & Waggoner 1998, Pyne et al. 2004). These 

results show the DAG is a lipid involved in neck formation of the Golgi-derived vesicles or tubules. 

Consequently, DAG creates membrane insertion sites that allow peripheral membrane proteins to gain 

access to the hydrophobic portion of the bilayer, where they induce the generation of membrane curvature 

(Nie and Randazzo, 2006). Moreover, a reduction in DAG levels of Golgi membranes cause the 

inactivation of the molecular machinery necessary to induce membrane fission (Bard and Malhotra, 

2006). 
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Figure 1 9: Recruitment and activation of protein kinase D (PKD) at the TGN (adopted from V. Malhotra and 
modified by CM). 
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CHAPTER II: Objectives of research 

Unlike the cellular proteins, nothing is known about the machinery that HSV -1 virions utilize to 

initiate the TGN to plasma membrane egress. The present work tries to identify whether HSV-l virions 

utilise the same machinery as the cellular proteins in their exit from TGN to the plasma membrane. In the 

cellular biosynthetic pathway it is known that the serine-threonine protein kinase D (PKD) plays a central 

role in vesicle formation at the TGN. As discussed above, PKD function itself depends on the pool of 

DAG in the TGN membranes. We have investigated the role of PKD in virus cargo exit from TGN. To 

verify this hypothesis we made use of the synchronized infection with HSV -1 termosensitive mutant virus 

V701 previously used (Turcotte et al. 2005). Since pharmacological inhibitors could acts at multiple 

stages of the viral life cycle, a mutant form of PKD to and RNA interference were also used to determine 

the real implication of this machinery in the HSV -1 virion egress. 
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3.1 Abstract 

The conventional biosynthetic pathway has been extensively studied for small cargo. Interestingly, 

large partic1es such as procollagen, chylomicron and various virions reach the TGN by alternative routes. 

Given this dichotomy, we probed which machinery large cargo uses downstream of the TGN. Using 

Herpes simplex virus type 1 virions as a model, a collection of specific inhibitors and a synchronized 

infection protocol, the data surprisingly revealed a role in HSV -1 egress for the cellular serine-threonine 

protein kinase D. This established mediator of TGN to cell surface transport for small cargo unexpectedly 

highlights the trafficking of entities as large as virions by the common machinery used by small cargo. 

This substantially alters the range of cargo that the conventional biosynthetic pathway can accommodate. 

Given the apical release of HSV -1 in neurons, it also raises the possibility that PKD might regulate 

basolateral sorting. Lastly, it addresses for the time the molecular basis of egress of any viral partic1e 

transiting at the TGN. 

24 



3.2 Introduction 

The biosynthetic pathway is a well studied route by which membrane bound and secreted proteins 

sequentially travel in the ER, the Golgi apparatus and the TGN before being sorted to their final 

destination. Along this route, the serine-threonine protein kinase D (PKD) is a key player at the TGN, 

since it regulates the fission of cargo filled carriers destined for the cell surface (Liljedahl et al., 2001). 

Three PKD isoforms exist in humans and differentially modulate cargo transport to the basolateral surface 

(Sanchez- Ruiloba et al., 2006; Yeaman et al., 2004). Interestingly, recruitment of PKD from cytosol 

requires its interaction with diacyl glycerol (DAG), a lipid critical to PKD function and whose presence at 

the TGN is determining (Baron and Malhotra, 2002). Procollagen, chylomicron and virions are large 

particles reaching several hundred nanometers (Canty and Kadler, 2005; Fromme and Schekman, 2005). 

Their substantial size poses major challenges for their intracellular transport (Fromme and Schekman, 

2005; Mettenleiter, 2004). For instance, it has been reported that both procollagen and chylomicron bypass 

the classical COPII coated vesicles to escape the ER (Siddiqi et al., 2003; Starkuviene and Pepperkok, 

2007; Stephens and Pepperkok, 2002). Similarly, Herpes simplex virus type 1 (HSV-l) is a large particle 

assembled in the nucleus that also reaches the TGN by an alternative route. Too large to leave the nucleus 

via the pores, the 125 nm capsids sequentially bud across the inner nuclear membrane and fuse with the 

second nuclear envelope to be released in the cytoplasm (Mettenleiter, 2004; Remillard- Labrosse et al., 

2006). They then bypass the Golgi apparatus and acquire an envelope from the TGN to form mature 200-

300 nm virions (Harley et al., 2001; Turcotte et al., 2005). The virions finally leave this last compartment 

by a completely unknown mechanism. 

Given the unconventional transport pathways employed by large cargo to arrive at the TGN, we 

sought to examine ifthey use the conventional transport machinery further downstream. Using HSV-I as 

a model and a collection of inhibitors, the egress of virions from the TGN to the plasma membrane was 1 

monitored using a recently developed protocol (Turcotte et al., 2005). The data surprisingly revealed a 1 

critical contribution of PKD in HSV -1 virion egress, a unique finding for any of the known viruses 

transiting at the TGN. These results clearly indicate that large particles can share the same route as small 

cargo to escape the TGN, in sharp contrast to earlier steps of transport. Given the exceptional size of 

HSV -1 virions, this also substantially broadens the range of cargo the classical transport machinery can 

accommodate. Finally, given the apical release of HSV - 1 in neurons, it raises the possibility that PKD 

may not uniquely be devoted to basolateral sorting. 

25 



3.3 Results 

Synchronization 0/ HSV-l intracellular transport/rom the TGN to the cell surface. 

There is little information regarding the mechanism by which HSV -1 leaves the TGN. 

Unfortunately, the rapid life cycle of HSV-l makes it difficult to characterize tbis viral transport step. 

Nonetheless, others and we have showed that viral egress can be synchronized using mutants of the viral i 

protease UL26, a protein required for encapsidation of the herpes DNA and capsid maturation (Church , 

and Wilson, 1997). 

Hence, thermosensitive UL26 viral mutants such as ts1201 (Preston et al., 1983), tsProt.A (Gao et 

al., 1994) and V701 (Register and Shafer, 1996) accumulate immature viral capsids in the nucleus at the 

non permissive temperature of 39.5°C but release mature extracellular virus at 31°C. To ensure a tight 

wave ofviral egress, cycloheximide - an inhibitor of prote in synthesis - is typically added after the 39.5°C 

incubation to prevent the assembly of new capsids (Church and Wilson, 1997; Turcotte et al., 2005). Viral 

egress can further be dissected as HSV -1 capsid transport is reversibly arrested at the TGN at 20°C, much 

like host proteins along the biosynthetic pathway (Turcotte et al., 2005). This reversible 20°C block 

represents an ideal mean to define the molecular requirements of HSV -1 transport from the TGN to the 

plasma membrane. It is also optimal to probe the potential role of PKD in the transport of cargo as 

massive as fully assembled virus. To first confirm the efficacy ofthis block, 143B cells were infected with 

the thermosensitive HSV -1 stain V701 and the virus was monitored at 39.s°C, 20°C and 31°C (fig. 1). To 

detect the virus, the samples were stained with an ICP5 antiserum, which recognizes the major viral capsid 

protein. As previously reported, the virus was retained in the nucleus at 39.5°C, was efficiently retained in 

the TGN at 20°C and could reach the cell surface at 31°C (fig. 1; Turcotte et al., 2005). Most important, 

the 20°C block was reversible as the virus could escape the TGN when followed by a chase at 31°C. It was 

therefore possible to synchronize the transport of the large HSV -1 virus from the TGN to the cell surface. 

PKD inhibitors arrest TGN to plasma membrane transport. 

Recruitment of cytosolic PKD to the TGN is essential for cargo release from that compartment. 

This requires an interaction between PKD and the TGN bound pool of DAG (Baron and Malhotra, 2002). 

Fumonisin BI (FB-l) and L-cycloserine (L-CS) block DAG production by preventing at two distinct steps 

the synthesis of ceramide, which is ultimately converted into DAG and sphingomyelin (Baron and 

Malhotra, 2002; van Ooij et al., 2000). In contrast, propranonol blocks DAG synthesis by inhibiting the 
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conversion of phosphatidic acid into DAG. Importantly, aIl three inhibitors strongly perturb PKD 

mediated transport of cargo from the TGN to the surface in HeLa cells (Baron and Malhotra, 2002; van 

Ooij et al., 2000). To insure that the inhibitors also worked in the 143B cell line used in this study and 

examine the role of PKD on HSV -1 transport from the TGN to the plasma membrane, their impact of 

VSV G ts045 transport was evaluated. This prote in is a long established thermosensitive marker of the 

biosynthetic pathway relying on PKD for its transport to the cell surface (Griffiths et al., 1985; Liljedahl et 

al., 2001). It accumulates at the ER at 39°C, travels to the TGNat 20°C and is exported to the cell surface 

at 310C. 143B cells were thus transfected with GFP labelled VSV G ts045 and incubated at various 

temperatures. As expected, VSV G accumulated in the TGN of 143B at 20°C and was chased to the cell 

surface when the tempe rature was switched to 31°C (fig. 2). In contrast, VSV G only occasionally reached 

the cell ~urface and strongly remained TGN associated in the presence of 25 ~g/ml FB-l, 1.5 mM L-CS or 

50 ~M propranolol added during the 2000C incubation and the subsequent 31°C chase. Manual counting 

of transfected ce Ils positive for VSV G at their plasma membrane indicated that the inhibition was 72%, 

70% and 67% for the three drugs respectively and complete at 20°C, i.e. with 100% inhibition (n=118 to 

260). Note that aIl transfected cells were positive for VSV Gat the plasma membrane when incubated at 

31°C in the absence of drug. Albeit not absolute, the relatively efficient block of transport confirmed the 

ability of the drugs to hamper TGN to plasma membrane transport in 143B ceIls, as observed for other cell 

lines (Baron and Malhotra, 2002). 

Block of viral egress by PKD inhibitors. 

Having confirmed that inhibitors of DAG synthe sis function as expected, their impact on HSV-l 

egress was examined. The virus released in the extracellular medium was first quantified by plaque assay. 

As above, the infection was first synchronized at the nucleus with a 7 hour pre-incubation at 39.5°C, 

followed with a chase at 31°C in the presence of cycloheximide. Control infections without the drugs 

typically yielded 1-2 x 105 total plaque forming units (Pfu) when chased for 30 hours at 31°C (fig. 3). In 

contrast, the extracellular viral yield was reduced by 99% at 20°C, consistent with figure 1 and previous 

results (Turcotte et al., 2005). This 20°C block was reversible and rescued to 60-65% of normal levels 

when followed by a chase of24 hours at 31°C. Importantly, when 25 ~g/ml FB-l, 1.5 mM L-CS or 50 ~M 

propranolol was added during the 20°C block and the subsequent 24 hour 31°C chase, hardly any virus 

escaped the cells (fig. 3; 5.7% for FB-I, 8.0% for L-CS and 8.2% for propranolol). Collectively, the 
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inhibition of HSV -1 egress by the three independent inhibitors of DAG synthesis pointed at a role for 

PKD during HSV -1 egress. 

PKD inhibitors act downstream 01 nuclear egress. 

PKD has multiple roles in ceUs and is found in various compartments, including the nucleus, 

cytoplasm, plasma membrane, mitochondria and TGN (Rozengurt et al., 2005). It was thus possible that 

FB-l, L-CS and propranolol blocked viral transport at any moment during egress. To examine at which 

step the drugs acted, the transport to the cytoplasm of capsids newly assembled in the nucleus was first 

evaluated. To this end, a recently established in vitro nuclear egress assay was used to quantify viral 

transport (Remillard-Labrosse et al., 2006). The assay reconstitutes in the test tube the exit of capsids from 

the nucleus into the cytoplasm. It is based on the isolation of nuclei from infected cells and their 

incubation with buffer, energy and cytosol. The specific release of capsids by the nuclei is then quantified 

by scintillation counting, as the viral genome is preloaded with 3H thymidine during the initial infection 

(Remillard-Labrosse et al., 2006). Using this assay, viral egress from the nucleus to the cytoplasm was 

evaluated. Controls included nuclei incubated with energy and cytosol (basallevel of egress normalized to 

100% for easier comparison) and nuclei incubated without energy and cytosol (negative control). Figure 4 

shows that none of the PKD inhibitors had any impact on viral egress from the nucleus, indicating that the 

block of viral egress occurred further downstream. 

PKD inhibitors trap HSV-l in the TGN. 

Given the reduced viral yield in the extracellular medium and the normal transport of HSV-l 

across the two nuclear membranes in the presence of the PKD inhibitors (fig. 3-4), the ceUs were 

examined by immunofluorescence to determine where the virus might be trapped. 143B cells were 

infected with V701, the infection synchronized at the TGN and the virus released at 31°C in the presence 

or absence of the PKD inhibitors. As before, HSV -1 strongly associated with the TGN at 20°C and 

reached the celI surface at 31°C (fig. 5). Once again, the block of transport at 20°C was fully reversible 

when followed by a chase at 31°C. In the presence of FB-l, L-CS or propranolol during the 31°C chase, 

the virus could not escape the TGN (fig. 5). Thus HSV -1 seemingly leaves the TGN by a PKD regulated 

host transport route. 
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Kinase dead PKn hampers HSV-l transport/rom the TGN to the plasma membrane. 

The inhibition of HSV -1 egress by three independent inhibitors of PKD argued in favour of its 

involvement in the transport of the virus. To ensure this was the case, cells were transfected with PKD or 

the PKD K618N inactive form of the kinase. This mutant causes cargo retention in the TGN and blocks 

transport to the cell surface, as the inactive PKD fails to fission the transport carriers (Liljedahl et al., 

2001). Consequently, long TGN46 positive tubules are formed at the TGN. Malhotra and colleagues have 

shown that these PKD induced tubules tend to resorb at higher temperatures and are more easily observed 

below 2SoC (Liljedahl et al., 2001). 143B cells were therefore initially transfected for 24 hours with either 

GST tagged wild type or mutant PKD and incubated 6 hours at 20°C. The samples were then fixed and 

stained for the TGN or PKD using a polyc1onal antibody against GST. PKD labelling was c1early specific 

as no signal was detected in the absence oftransfected plasmid (fig. 6A, panels a-c). Furthermore, a strong 

recruitment of wild type PKD to the TGN was observed (fig. 6A, panels d-t). As anticipated, long tubules 

labelled with TGN46 were seen in the presence of mutant PKD (fig. 6A, panels gi). 

To examine whether HSV-l co-Iocalized with such structures, cells were transfected for 24 ho urs 

with wild type or PKD K618N and subsequently infected with HSV-l. Following 7 hour incubation at 

39.SoC to synchronize the infection, the cells were chased 6 hours at 20°C in the presence of 

cyc10heximide and stained for PKD, TGN and capsids. To ensure that fully mature capsids were observed, 

the confoIll1ation dependent 8FS antibody known to solely detect such capsids was used (Trus et al., 

1992). The results indicate that tubules were absent in wild type PKD transfected cells and control cells 

only treated with transfection reagent (fig. 6B, panels a-h). In contrast, long PKD and TGN46 positive 

tubules were once again found in K618N transfected cells (fig. 6B, panels i-l), indicating the virus didn't 

alter the K618N phenotype. Under those conditions, the virus strongly co-Iocalized with the PKD K618 / 

TGN positive tubules (fig. 6B, panels i-l). Oddly, in cells transfected with wild type PKD, the virus 

occasionally reached the cell surface, suggesting that over expression of PKD could rescue the 20°C block 

(fig. 6B, panels e-h). Since the virus cannot normally escape the TGN at 20°C, it was difficult to 

determine the true impact of PKD on viral egress. The experiment was therefore repeated with a 9 hour 

chase at 31°C instead of 6 hours at 20°C as above. Despite the leaky nature of the PKD induced tubules at 

that temperature (Liljedahl et al., 2001), the virus co-Iocalized to a large extent with PKD K618N induced 

tubules (fig. 6B, panels q-t) and reached the cell surface in wt PKD transfected cells (fig. 6B, panels m-p), 

suggesting PKD indeed modulated viral egress at the TGN . 

29 



To ensure that the co-localisation between the virus and PKD induced tubules was meaningful and 

not merely fortuitous; the impact of the kinase dead PKD mutant on the extracellular release of the virus 

was evaluated. Unfortunately, it is not possible to reliably monitor viral release in transiently transfected 

cells, as a mix of transfected and untransfected cells co-exist. However, the stable cellline HeLa OFl7 

constitutively expresses PKD K618N (Liljedahl et ,al., 2001). Thus to confirm the role of PKD in HSV - 1 

egress, control HeLa and HeLa OF 17 cells were infected with V701 under similar conditions used for 

143B cells and viral released was quantified by plaque assay. Hence, the cells were incubated 7 hours at 

39.5°C, then 6 ho urs at 20°C to accumulate the virus at the TON and finally 4 ho urs at 31°C to release the 

virus. As control, the cells were incubated 7 hours at 39.5°C, then 10 hours at 31°C. Surprisingly, there 

was no significant difference in viral output between HeLa and HeLa OF 17 cells under these conditions 

(data not shown). Since PKD K618N is somewhat leaky at higher temperatures (Liljedahl et al., 2001), it 

was possible the virus had sufficient time to escape even if slowed down by the inactive PKD. To 

ascertain this, the experiment was repeated with shorter kinetics. 

HeLa OF17 and control HeLa cells were then infected with thermosensitive HSV-1 and incubated 

6 hours at 39.5°C. The virus was subsequently chased for 2 hours at 20°C to the TON and released for 2 

hours at 31°C. Figure 7 reiterates the efficiency of the 20°C block to hamper viral egress. As previously 

reported for 143B cells (Turcotte et al., 2005), viral egress was fully restored in HeLa cells when 

subsequently incubated at 31°C. In HeLa OF17 cells, sorne viruses did manage to reach the extracellular 

milieu under those conditions, but viral output was strongly reduced (by 60.6% + 2.7). These results 

confirm the role ofPKD in HSV-1 transport from the TON. 

PKn specifie siRNA inhibit viral egress. 

To independently confirm the role ofPKD in HSV-1 egress and evaluate whether any of the three 

known human isoforms (Hausser et al., 2005; Yeaman et al., 2004) specifically regulate capsid transport, 

PKD expression was first verified at both the mRNA and protein levels. As positive controls, 143B cells 

were transfected for 24 hours with OST-PKD1, 2 or 3 constructs prior to analysis. To distinguish the 

various PKD isoforms, we resorted to commercial PKD antibodies that readily detected the exogenous 

PKD by Western blotting (fig. 8A) and immunofluorescence (fig. 8B). Interestingly, analysis of 

endogenous PKD only revealed PKD3 expression by both Western blotting and immunofluorescence, 

with no detectable levels of PKD1 or PKD2. To determine if the other isoforms were transcribed and 

perhaps expressed at levels too low to be detected, a RT-PCR was performed using both total (data not 
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shown) and mRNA extracts (fig. 8C). The data corroborated the above results with a positive band for 

PKD3 but no signal for PKD 1 and PKD2, despite up to 50 cycles of amplification with isoform specific 

oligos. Thus, 143B cells solely express PKD3. 

The unique expression of PKD3 in 143B cells greatly simplified further analysis, as no functional 

redundancy between the PKD isoforms was possible in these cells. siRNA targeting PKD3 were thus 

tested for their ability to block PKD3 expression. It is noteworthy that transfection experiments revealed a 

strong penetrance of a control fluorescent siOLO siRNA (85.7% of cells positive by 

immunofluorescence). Similarly, siRNA duplexes against PKD1, PKD2 or PKD3 were highly efficient to 

down regulate their respective exogenous OST-PKD expression (fig. 9). Most important, while PKD3 

siRNA very efficiently inhibited endogenous PKD3 protein expression as early as 24 hours post 

transfection, siRNA against PKD l, PKD2 or the commercial "On-Target" control (Dharmacon) had no 

major impact on the endogenous level of PKD3. The occasional On-Target or PKD1 siRNA partial 

reduction of PKD3 expression was not reproducible (compare panels A and B) and never reached the 

extent seen with PKD3 siRNA. It was thus possible to efficiently and specifically block PKD3 expression 

with siRNA. 

To finally evaluate if inhibition of PKD3 protein expression halted HSV -1 transport from the TON 

to the cell surface, 143B cells were transfected for 24 ho urs with the above siRNA and subsequently 

infected with V701 for 7 hours at the non permissive temperature of 39.5°C to accumulate the virus in the 

nucleus. The virus was then chased at 31°C for 9 hours and viral egress monitored by immunofluorescence 

using the capsid dependent 8F5 antibody. Staining ofPKD3 with isoform specific antibodies confirmed its 

down regulation (fig. 10, panels A, B). In the absence of siRNA, the virus readily reached the cell surface 

(fig. 10, panel D). Similarly, siRNA against PKD1 or PKD2 as well as the On-Target control did not 

prevent viral egress (fig. 10, panels E-G). In sharp contrast, PKD3 specific RNAi duplexes strongly 

inhibited HSV-1 egress (fig. 10, panel H). 

Though sorne of the virus remained associated with the nucleus, much of it co-localized with the 

TGN marker, indicating the virus was trapped in that compartment as expected. The diffuse TGN in sorne 

experiments is caused by the infection despite the use of 143B cells, which are more resilient to TGN 

disruption by the virus (Turcotte et al., 2005). Altogether, these results were fully consistent with our 

previous observations and confirmed the implication of PKD3 in viral egress. 
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3.4 Discussion 

PKD plays a key role in the transport of cargo from the TGN to the ceU surface (Liljedahl et al., 

2001). Given that the large HSV-l capsids transit through the TGN during their egress, it was of interest 

to examine if PKD could mediate the transport of such large cargo to the plasma membrane or whether the 

virus employs an alternative transport pathway. To address this issue, we used a synchronized infection 

protocol that reversibly accumulates the virus at the TGN «Turcotte et al., 2005); fig. 1). The results show 

that HSV -1 indeed relies on PKD for its release from the TGN. This was initiaUy demonstrated with three 

independent inhibitors of DAG synthesis, each of which efficiently blocked the transport of VSV G from 

the TGN to the plasma membrane (fig. 2). Thus, FB-l, L-CS and propranolol all strongly prevented the 

release of HSV -1 to the extracellular milieu (fig. 3, 5). This block occurred downstream of the nucleus, 

since the chemical inhibitors had no impact on the release of capsids from the nucleus into the cytoplasm 

(fig. 4). Instead, the PKD inhibitors clearly trapped nearly all the virions at the TGN (fig. 5). 

While the results with DAG inhibitors only indirectly pointed out PKD, several pieces of evidence 

confirmed it. First, the transfection of 143B ceUs with kinase dead PKD trapped the virus at the TGN, 

whereas HSV -1 readily travelled to the cell surface in the presence of wild type PKD (fig. 6). Second, 

upon infection of HeLa GF 17 ceUs, which constitutively express PKD K618N, a strongly reduced viral 

yield was measured compared to control HeLa cens (fig. 7). Third, the virus co-Iocalized with PKD 

K618N induced tubules at the TGN (fig. 6). Finally, siRNA against PKD3, the only isoform expressed in 

143B cens (fig. 8), strongly down regulated HSV-l egress and retained the virus at the TGN (fig. 10). The 

involvement of PKD in HSV -1 egress in at least two independent ceU types is worth noting, indicating 

that the phenotype is not cell line specific. Moreover, the residual viral egress observed in HeLa GF17 

cens is expected, as these cells only moderately express PKD K618N (Liljedahl et al., 2001) and data not 

shown) and the PKD induced tubules tend to resorb at higher temperature (Liljedahl et al., 2001). In fact, a 

high dose of inactive PKD would presumably be fatal, as transport of several proteins to the celI surface 

would be hampered. Though 143B ceUs don't express PKD1, the block of capsid transport in these ceUs 

by the PKD 1 kinase dead mutant most likely reflects a functional redundancy between the different PKD 

isoforms (Hausser et al., 2005; Maier et al., 2007). Taken together, the results show compelling evidence 

that HSV -1 egress from the TGN to the ceU surface is PKD dependent. 

The requirement for PKD during HSV -1 egress has a number of implications. The first obvious 

one is that HSV -1 uses the host transport machinery during that part of its life cycle. This was not 
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necessarily obvious, as many viruses including HSV -1 typically shut down host protein synthesis. 

Furthermore, sorne cargo can leave the TGN by unconventional means (Kinseth et al., 2007). This is also 

in sharp contrast with the non classical route used by HSV-1 during its first steps of egress (see 

introduction). So, as it is often the case with viruses, HSV -1 is clearly ambivalent, using host transport 

machinery when possible and elaborating its own transport machinery when necessary. Importantly, this 

detines for the tirst time the molecular basis of egress from the TGN for any of the several viruses 

transiting in that compartment, including the Herpesvirus, Rotavirus, Coronavirus, Bunyavirus and 

Poxvirus families (Griffiths and Rottier, 1992). 

Given this novel involvement of PKD in HSV -1 egress, it would be of interest to determine 

whether PKD also regulates the transport of these other viruses. The second implication concems to the 

ability of PKD to regulate the transport of various proteins from the TGN to the plasma membrane. HSV-

1 virions are large 200- 300 nm wide enveloped complexes composed of over three thousands protein 

subunits for a total mass in the 100 million Dalton range (Baines and Duffy, 2006). It is clear from the 

present data that PKD not only promotes the transport of îndividual proteins but also of large structures as 

massive as HSV -1 virions. This is the tirst report on the trafticking of a large particle, a virion, which 

requîres the same machinery from the TGN as shown thus far for small molecules. This is of particular 

relevance to other large host cargos such as the 300-400 nm procollagen and chylomicrons, which may 

use a similar pathway (Canty and Kadler, 2005; Fromme and Schekman, 2005). For instance, while 

procollagen accumulates in PKD and VSV G positive tubular carriers (Polishchuk et al., 2003), the 

chylomicrons transit through the Golgi before being secreted (Sabesin and Frase, 1977). However, a direct 

requirement for PKD for the surface transport ofthese molecuies remains to be established. Conceptually, 

the incorporation of large cargos in PKD transport carriers may be possible owing to the heterogeneity and 

large size of the tubules (Polishchuk et al., 2000), in comparison with the small 60-70 nm COPI! vesic1es 

leaving the ER that cannot accommodate such large particles (Barlowe et al., 1994; Fromme and 

Schekman, 2005). This point to the TGN as an important station where conventional and unconventional 

pathways may meel. It will be of interest to examine more dynamically HSV -1 transport out of the TGN 

to determine if it travels within the same structures as other cargos or if the virus monopolizes the 

transport machinery to travel in solo. The TGN is an important sorting station. While cargo incorporated 

in clathrin coated vesic1es are typically destined for endosomes (Robinson, 1994), COPI coated vesicles 

deliver their content back to the Golgi stacks and ER (Duden, 2003). In contrast, PKD regulates transport 

from the TGN to the basolateral surface (Yeaman et al., 2004). This preferential transport of cargo to the 
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basolateral membrane by PKD is in apparent contradiction with the release of HSV -1 along the axons of 

neuronal cells, which are believed to be the counterpart of the apical membrane (Dotti et al., 1991). Unless 

this neuronal asymmetry is not preserved among different neurons, our results suggest that PKD may 

mediate apical membrane targeting of sorne cargo. This raises several key questions. The tirst one is 

whether PKD regulates axonal transport of HSV -1. Does PKD only regulate the release of HSV -1 at the 

cell body of neuronal ceIls, i.e. at their basolateral membrane? Do the three known PKD isoforms 

(Hausser et al., 2005; Yeaman et al., 2004) participate in HSV-l transport in neurons? Finally, could one 

of the se isoforms regulate apical transport of certain cargos? Experiments to address these issues are now 

underway. 

In conclusion, we have shown by complementary means that PKD mediates the transport of HSV-l 

from the TGN to the cell surface. This indicates that PKD regulated transport carriers can carry immense 

cargos as large as HSV -1 virions and that both small and big cargo likely compete for the same transport 

machinery at the TGN. 
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3.5 Materials and Methods 

Cells and viruses 

HeLa, HeLa GF17 constitutively expressing PKD K618N (kindly provided by Vivek Malhotra), 

BHK, 143B TK-, and Vero cells were grown at 37°C in Dulbecco's modified Eagle's medium (DMEM; 

Sigma) supplemented with 10% fetal bovine serum (FBS; Medicorp), 2 mM L-glutamine (lnvitrogen), and 

antibiotics (100 U/ml penicillin and 100 Jlg/ml streptomycin). Except when infected, 143B cells were 

further supplemented with 15 Jlg/ml of 5-bromo-2'-deoxyuridine (BUdR, Sigma) and HeLa GF17 cells 

were grown in the presence of 500 Jlg/ml G418 (Invitrogen),. The HSV- 1 V701 ts80-lC2 mutant (strain 

17) encodes a thermosensitive UL26 protease and was provided by Bruce Register and Jules A. Shafer. It 

was propagated on BHK cells and titrated on Vero cells. 

Infections 

143B cells cultured without BUdR were grown on glass coverslips in 24-well plates for 24 hours. 

The cells were then mock treated or infected with HSV -1 V701 at a multiplicity of infection of 5 for 1 

hour at 37°C. The infection was then synchronized at 39.5°C for 7 hours to arrest the virus in the nucleus 

(Church and Wilson, 1997; Turcotte et al., 2005). Cells were shifted to 20°C for 6 hours in the presence of 

20Jlg/ml cycloheximide (Sigma) to accumulate the virus at the TGN (Turcotte et al., 2005). To reverse the 

20°C block, the samples were finally shifted to 31°C for 6 hours, in the continuous presence of 

cycloheximide. When indicated the 31°C chase was performed in the presence of 25 Jlg/ml FB-l (Sigma 

Aldrich), 1.5mM L-CS (Sigma Aldrich) or 50JlM propranolol (Calbiochem). The samples were treated for 

immunofluorescence or analyzed by plaque assays as indicated below. 

Inhibition of VSV G transport 

143B cells were plated on glass coverslips in DMEM with 10% FBS and antibiotics but without 

BUdR until60 to 70% confluence was reached. Twenty four hours later, they were transfected with a GFP 

tagged thermosensitive vesicular stomatitis virus G glycoprotein mutant (GFP VSV G ts045; obtained 

from Patrick Keller) using Lipofectamine 2000 as per manufacturer instructions (Invitrogen). This 

construct accumulates VSV G in the ER at the non permissive temperature (39.5°C), the TGN at 20°C and 

the plasma membrane at 31°C (Griffiths et al., 1985). Following an initial incubation of 4 hours in 
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transfection medium (i.e. without serum or antibiotics), the ceUs were incubated for a further 20 hours at 

39.5°C in medium containing 10% FBS, 2 mM L-glutamine, and 10 mM sodium butyrate (Research 

Chemicals, Ltd.). The ceUs were then switched to 20°C for 2 h in C02-independent medium and 20Ilg/ml 

cycloheximide to allow the egress of VSV G ts045 to the TGN (Turcotte et al., 2005). VSV G was then 

chased for 6h to the ceU surface at 31°C in the presence or absence of 251lg/ml FB-I, 1.5mM L-CS or 

50JlM propranolol. CeUs were then fixed, permeabilized and analyzed by immunofluorescence (see 

below). To quantify VSV G transport, the ceUs were examined by immunofluorescence and phase 

contrast. CeUs positive for VSV G at the plasma membrane were manuaUy counted and compared to aU 

transfected ceUs irrespective ofVSV G localization (n varies between 118 and 260). 

Transfection with GST-tagged PKD constructs 

143B ceUs plated one day earlier on glass coverslips were transfected with 5 Jlg/weU (24-weU 

plate) of pME-Py-GST PKDI wt, pME-Py-GST PKDI K618N, pME-Py-GST PKD2 or pME-Py-GST 

PKD3 (aU generously provided by Vivek Malhotra) using Lipofectamine 2000. CeUs were cultured 24 h at 

37°C. When indicated, they were then mock treated or infected with V701 as above and incubated an 

additional 7 hours at 39.5°C to accumulate the virus in the nucleus. The cells were fixed and 

permeabilized immediately or after an additional incubation of 8 hours at 31°C or 6 hours at 20°C. The 

samples were finally examined by immunofluorescence as detailed below. 

Immunojluorescence 

Samples were fixed in 3% paraformaldehyde for 30 min at 4°C, washed with PBS, and neutralized 

with 50 mM NH4CI in PBS for 30 min at room temperature (RT). After a permeabilization of 4 minutes 

with 0.1% TritonX-100, they were blocked 30 min at RT with 10% FBS in PBS and further incubated for 

30 min at RT with primary antibodies diluted in 10% FBS-PBS. The coverslips were washed, incubated 

with secondary antibodies for 20 min, washed again and mounted on glass slides in Mowiol (Calbiochem). 

TGN46 antibody (Serotec) was used to label the TGN, while two distinct VP5 antibodies were used to 

label the viral capsids. The first one (ICP5; Virusys Corporation) detects total VP5 (both mature and 

immature capsids), while the second (MAb 8F5; kindly provided by Jay Brown) is specific for VP5 

present in mature capsids (Trus et al., 1992). In experiments involving pME-Py-GST tagged PKD 

constructs, staining was performed with a goat polyclonal against GST (Amersham) or PKD specific 

antibodies for PKDI (Santa Cruz), PKD2 (Upstate Cell Signalling) and PKD3 (Bethyl Laboratories). 
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Alexa 350, 488, or 568 secondary antibodies were used as appropriate (Molecular Probes). When 

indicated, the cell surface was labelled by incubating live cells (i.e. unfixed and not penneabilized) with 

the Sulfo-NHS-LC-Biotin reagent (Pierce) and streptavidine conjugated Alexa 568 (Molecular Probes). 

Finally, 0.1 !lg/ml Hoechst 33342 (Sigma) was used to stain nuclei. Fluorescence microscopy was 

perfonned with an Axiophot wide-field fluorescence microscope (Zeiss) equipped with filters and a Retiga 

1300 Camera (Q Imaging). The images were acquired and analyzed with Northem Eclipse imaging 

software (Empix Imaging). They were processed and assembled with Photoshop 6.0 (Adobe). 

Nuclear egress assay 

The impact ofDAG synthesis inhibitors on HSV-l egress was measured with a recently developed 

nuclear egress assay (Remillard-Labrosse et al., 2006). Succinctly, HeLa cells grown in suspension were 

infected with HSV -1 17+ at 37°C for 8 hours at a multiplicity of infection of 3 and radiolabelled with 25 

!lCi/ml of 3H thymidine (PerkinElmer). Cells were then harvested and the nuclei isolated. These HSV-l 

containing nuclei were incubated 6 hours at 37°C in duplicates with cytosol, an energy regenerating 

system and nuclear buffer (20 mM Tris-Cl pH 7.4, 5 mM MgCI2, 100 mM KCI, and 1 mM dithiothreitol; 

Remillard-Labrosse et al., 2006). The negative control consisted of the same reaction without energy and 

cytosol. When indicated, 25 !lg/ml of FB-l, 1.5 mM L-CS or 50 !lM propranolol were directly added to 

the assay. At the end of the incubation period, the capsids released by the nuclei were quantified by liquid 

scintillation on an LKB Beta rack 1211 counter (Remillard-Labrosse et al., 2006). 

Extracellular release of HSV-l 

143B, HeLa or HeLa GF17 cells grown in 60-mm dishes were infected with V701 at a MOI of 5 

and incubated at 39.5°C for 6-7 hours to accumulate the capsids in the nucleus. When indicated, they were 

incubated 0, 2 or 6 hours at 20°C and chased at 31°C up to 30 hours (see figure legends). The extracellular 

medium was collected and centrifuged for 1 hour at 39,000g. The viral pellet was resuspended in MNT 

(30 mM morpholine ethanesulfonic acid, 100 mM NaCI and 20 mM Tris pH 7.4) before being titrated on 

Vero cells. For experiments involving siRNA, see additional details below. 
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Reverse transcriptase PCR (RT-PCR) 

To evaluate PKD expression, untransfected or 143B cells transfected with the GST-PKD 1,2 or 3 

constructs (see above) were grown in 6-well plates and the mRNA extracted using a PolyATtract System 

1000 kit as per manufacturer's instructions (Promega). In sorne experiments, total RNA extracted with a 

SV Total RNA kit (Promega) was used with identical results. Reverse transcription and PCR amplification 

was performed with 50 to 100 ng of RNA, PKD isoform specifie primers and an Access Quick RT-PCR 

kit as per manufacturer's instructions (Promega). Primers were GATGTGGCCAGGA TGTGGGAG 

(forward) and GGGGGTACCCACCACTGACCT (reverse) for PKD1, TCATTGACAAACTGCGCTTC 

(forward) and GCGTTCTGGATCTGGTCATT (reverse) for PKD2, CAGAGCTGGGAAAAAGCA 

(forward) and TGCCACTGAGGCTCACATA (reverse) for PKD3. Half the PCR reaction was analyzed 

on a 2% agarose gel. To insure the survival of the polymerase when long cycling was used (up to 50 

cycles), fresh TAQ was added at the 30th cycle. Note that the PKD -primers were specifie for their 

respective isoform (data not shown). Furthermore, each PCR yielded a distinct amplification product 

which could readily be distinguished based on its size (see fig. 8). 

siRNA transfection 

All siRNA reagents were purchased from Dharmacon, including PKD1, PKD2 and PKD3 siRNA. 

Dharmacon's "On-Target" non-targeting siRNA and siGLO Green transfection indicator were used as 

transfection controls. siRNA transfection for all of the experiments was performed as suggested by the 

manufacturer. 

Briefly, 143B cells in 24-well plates (immunofluorescence) or 6-well plates (Western blotting) 

were grown to 60-75% confluence and transfected with 20 nM siGLO or 100nM siRNA and 

Lipofectamine 2000 (lnvitrogen) in serum free medium. Four to five hours later at 37°C, complete 

medium was added to each well. Twenty-four hours posttransfection, the cells were either harvested 

immediately, mock infected or infected with HSV-l V701 at a MOI of 5 for 7h at 39.5°C fo1l9wed by a 

chase of 9h at 31°C. The same kinetics was used for the immunofluorescence and to evaluate the 

extracellular release of HSV -1 by plaque assay in presence or absence of siRNA. When indicated, the 

cells were harvested after 24h, 48h and 72h post-transfection prior to Western blot analysis. 
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Western Blottin 

To verify which PKD isoform was expressed in 143B cells, they were mock transfected or 

transfected with 5 Jlg/well (6-well plate) of pME-Py-GST PKDl, pME-Py-GST PKD2 or pME-Py-GST 

PKD3. The cells were harvested 24 hours later, washed in PBS, counted and subjected to gel 

electrophoresis. The same number of cells was loaded in a 8% gel, corresponding to approximately 40 Jlg 

of proteins. The samples were transferred to a PVDF membrane (Millipore), blocked with 5% non-fat 

milk in PBS and probed with 1:500 dilution of rabbit polyc1onal antibody against PKDl (Santa Cruz 

Biotechnology), PKD2 (Upstate) and PKD3 (Bethyl Laboratories). Their detection was with a 1 :5000 

dilution ofperoxidase-labeled anti-rabbit immunoglobulin G (Jackson Immuno-Research). An anti gamma 

actin antibody was used as loading control (Chemicon). 
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Abbreviation list 

BUdr: 5-bromo-2' -deoxyuridine 

DAG: Diacyl glycerol 

FB-l: Furnonisin B-l 

HSV -1: Herpes simplex virus type 1 

L-CS: L cyc10serine 

Pfu: Plaque forming units 

PKD: Prote in kinase D 

VSV: Vesicular stomatitis virus 
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Fig. 1: Synchronization of HSV-I egress to the TGN. 143B cells were mock treated (panel a) or infected 

with V701 at a MOI of 5 (panels b-e) on coverslips in 24-well plates and incubated for 7 hours at 39.5°C 

to accumulate the capsids in the nucleus. The cells were either fixed immediately (panel b), after a further 

incubation of 6 hours at 20°C (panel c), an incubation of 12 hours at 31°C (panel d) or an incubation of 6 

hours at 20°C followed by another incubation of 6 hours at 31°C (panel e). Ail samples were stained with 

Hoechst to label the nuclei (in blue) and ICP5 to label aIl viral capsids (in green). In panels a-cand e, the 

TON was revealed with TON46 (in red). In panel d, TON staining was omitted and replaced by 

biotinylation of the plasma membrane prior to permeabilization and incubation with Alexa 568-

streptavidin (in red). Note the effectiveness of the 20°C to retain the virus at the TON, while the virus 

readily reaches the ceIl surface at 31°C (see arrows). 
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Mlhal et al (fig. 1) 
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Fig. 2: Inhibition 0/ TGN to cell sUlface transport by PKD inhibitors. 143B cells were mock treated 

(panel a) or transfected with GFP tagged VSV G ts045 (panels b-g) for 24 ho urs at 39.5°C to accumulate 

the protein in the reticulum endoplasmic. They were either fixed immediately (panel b), after a further 

incubation at 20°C for 2 hours to chase VSV G to the TGN (panel c) or after both the 20°C incubation and 

a subsequent 6 hour chase at 31°C to let the protein reach the cell surface (panels d-g). To test the impact 

ofPKD inhibitors on TGN to cell surface transport in 143B cells, 25 J.lg/ml FB-l (panel e), 1.5 mM L-CS 

(panel f) or 50 J.lM propranolol (panel g) was added during both the 20°C incubation and the subsequent 

31°C chase. Following their fixation, the cells were stained with TGN46 (red) and Hoechst (blue), while 

GFP VSV G could be seen in green. The drugs clearly all perturbed VSV G transport from the TGN to the 

plasma membrane in this cellline. 
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Fig. 3: Viral egress is hampered by PKD inhibitors. 143B cells seeded in 6-well plates were infected with 

V701 at a MOI of 5 and incubated at the temperatures indicated in the histogram. As above, 25 !lglml FB-

1, 1.5 mM L-CS or 50 .!lM propranolol was added to the cells when they were switched to 20°C and 

throughout the chase at 31°C. At the end of the incubation periods, the extracellular medium was titrated 

on Vero cells. The data represent 3 different experiments, each done in duplicates. The bars indicate the 

standard deviation of the means. Note that all three PKD inhibitors strongly inhibited viral egress. 
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Fig. 4: pxn inhibitors act downstream of nuclear egress. Suspension HeLa cells were infected with wild 

type HSV -1 in the presence of 3H thymidine to label the viral genomes. Eight hours post-infection, the 

infected nuclei were harvested as previously reported (Remillard-Labrosse et al., 2006). The isolated 

nuclei were then incubated with cytosol and energy in the absence or presence of 25 ~g/ml FB-1, 1.5 mM 

L-CS or 1 00 ~M propranolol for 6 hours in vitro. The capsids released by the nuclei were isolated and 

quantified by liquid scintillation. Viral egress was normalized to the counts obtained without drug (100%). 

In contrast, the sample devoid of energy and cytosol represents the background signaL The errors bars 

depict the standard deviation of the mean (2 experiments, each done in duplicates). None of the drug 

altered the release of HSV -1 by the nuclei. 

150°/0 

CI) 
CI) 

~ 
Cl 

1000k 
~ 
"-ca 
~ - 50% u 
:::s 
Z 

Mihai et al (fig. 4) 

48 



Fig. 5: PKn inhibitors trap HSV-l in the TGN. Mock treated (panel a) or 143B cells infected with V701 

at a MOI of 5 (panels b-f) were incubated for 7 hours at 39.5°C then hours at 20°C to synchronize the 

virus in the TON. They were either fixed immediately (panel b) or after an additional chase of 6 hours at 

31°C in the absence (panel c) or presence of25 J.lglml FB-I (panel d), 1.5 mM L-CS (panel e) or 50 J.lM 

propranolol (panel f). The cells were finally stained with Hoechst (nuclei in blue), TON46 (TON in red) or 

ICP5 (total capsids in green). Note the strong retention of the virus at the TON by all drugs, under 

conditions that' notmally allow the virus to travel beyond the TON to the cell surface (panel c). 

49 



Mlhai et al (fig. 5) 

50 



, 
.~ 

Fig. 6: HSV-l co-Iocalizes w;th PKD K618N induced tubules at the TGN 143B ceIls were transfected 

without plasmid, with wild type PKD (wt PKD) or kinase dead PKD (PKD K618N) for 24 ho urs at 37°C 

as indicated to the left of the panels. In part "A) Transfection", aIl the ceIls where shifted to 20°C for 6 

hours before being mounted for immunofluorescence (see below). In part liB) Transfectionllnfection", the 

ceIls were subsequently mock treated (panels a-d) or infected with V701 at an MOI of 5 (panels e-t) for 7 

hours at 39.5°C to synchronize the infection. They were then shifted to 20°C for 6 hours (panels a-l) or 

31°C for 9 ho urs (panels m-t) before fixation. AIl samples were finaIly mounted for immunofluorescence 

(TON labelling with TON46 in red; mature capsids labeIled with 8F5 in green; OST PKD labeIled in blue 

with antibody against OST). Note that the nuclei were not stained with Hoechst to avoid confusion with 

the OST labelling. Note the specificity of the viral and PKD antibodies, the presence of long tubules 

induced by the kinase dead PKD and the strong association of virus with these tubules. 
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Fig. 7: Cellline ex pressing kinase dead PKD mutant bas reduced viral output. HeLa and HeLa GF17 

cells were infected with V701 at a MOI of 5. They were incubated 6 ho urs at 39.5°C to synchronize the 

infection. Three subsequent scenarios were tested and indicated below each bar, including a 4 hour 

incubation at 31°C to release the virus (total viral release), a 2 hour incubation at 20°C (TGN block) or 2 

hours at 20°C with a subsequent chase of 2 hours at 31°C. The extracellular medium was collected, the 

virus concentrated and titered by plaque as say on Vero cells (see Experimental Procedures). The data 

represents a typical experiment performed in duplicates. On average, HeLa GF17 cells released 60.6% + 

2.7 less virus in the medium compared to control HeLa cells (two independent experiments). 
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Fig. 8: 143B cells solely express PKD3. To determine the presence of the different PKD isoforms, 143B 

ceUs were analyzed by Western blotting and immunofluorescence using PKD specific antibodies or RT­

PCR with PKD specific primers (see Materials and Methods). Controls included 143B cells transfected 

with pME-Py-OST-PKD1, 2 or 3 constructs to insure that an reagents worked as anticipated. A) Western 

blbts using equal number of cens in each lane (~ 40 Ilg) were performed with anti PKD 1, 2, 3 antibodies 

as indicated below each blot. An actin immunoblot served as loading control. Lanes labeled with OST­

PKD 1, 2 or 3 represent cens transfected for 24 hours with the respective construct. B) 

Immunofluorescence using the above PKD antibodies as indicated to the right of the panels. In panels a, c 

and e, the ceUs were transfected for 24 hours with pMEPy- OST -PKD plasmids as indicated. In panels b, d 

and f, untransfected ceUs were analyzed to determine the endogenous expression of PKD. The staining 

obtained with the OST antibody perfectly co-Iocalized with the anti PKD labelling in transfected ceUs, 

confirming the specificity of the antibodies (data not showil). C) RT-PCR performed with mRNA isolated 

from mock treated or OST-PKD transfected cells. Lane 1: OST-PKDI transfected ceUs probed with PKDI 

primers, lane 2: OST-PKD2 transfected ceUs probed with PKD2 primers, lane 3: OST-PKD3 transfected 

ceUs probed with PKD3 primers, lanes 4-6: Untransfected ce Us respectively probed with PKDI, 2 and 3 

primers. Each primer set amplifies the respective PKD sequence (data not shown). Note the detection of 

endogenous PKD3 in the three assays, but the absence of endogenous PKDI and PKD2. 
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Fig. 9: Inhibition of PKD3 protein expression by siRNA. A) To determine the efficacy of siRNA against 

their respective targets, 143B cells were co-transfected for 48 hours with pME-Py-GST -PKD 1, 2 or 3 in 

the presence or absence of siRNA, as indicated. Equal numbers of cells (approximately 40 Ilg) were 

analyzed by Western blotting with PKD specifie antibodies or actin as a loading control (as indicated 

below each blot). Note the efficient down expression of each PKD isoform by its respective siRNA and 

the very strong down regulation of PKD3 by its siRNA but not PKDl, PKD2 or the control On- Target 

siRNA. B) The endogenous levels of PKD3 were examined in the presence or absence of various siRNA. 

For the controls (mock transfected, On-Target, PKDl and PKD2 siRNA) , the cells were analyzed 48 

hours post transfection. Cells transfected with the PKD3 siRNA were analyzed 24, 48 or 72 hours post 

transfection. 
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Fig. 10: Trapping HSV-l at the TGN by siRNA targeted against PKD3. 143B cells were transfected with 

PKD3 si RNA (panels b, h), control siRNA (panels e-g) or lipofectamine only (panels a, c, d) as indicated 

in each paneL Panels a-b were analyzed by immunofluorescence 24 hours post transfection for 

endogenous PKD3 expression using a PKD3 antibody to evaluate the efficacy of the siRNA. The 

remaining panels were either mock treated (panel c) or infected with V701 (panels d-h) and further 

incubated 7 ho urs at 39.5°C, then 9 hours at 31°C. Panels c-h were stained with TGN46 , 8F5 (mature 

HSV- 1 capsids) and Hoechst (nucleus). 
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• Chapter IV Discussion 

PKD regulates TGN to plasma membrane HSV-l transport 

As shown in the HSV -1 literature, viral glycoproteins travel though the biosynthetic pathway and 

join HSV-l capsids at the TGN. The main objective ofthis research is to determine the mechanism ofhow 

the mature re-enveloped capsids bud at the TGN membranes, before reaching the plasma membrane. In 

order to achieve this goal, we used a HSV -1 mutant as weIl as knowledge gathered along the time, about 

different pathways used by cellular proteins in their travel from TGN to the plasma membrane. Given the 

very fast HSV -1 life cycle our approach was to synchronize the HSV -1 life cycle with the thermosensitive 

HSV mutant V701 (Register et al., 1996). This mutant encodes a thermosensitive UL26 protease which is 

essential for capsid maturation, and DNA encapsidation (Church and Wilson, 1997). When cells are 

infected with such mutant at the nonpermissive temperature of 39.5°C, they accumulate immature 

procapsids in the nucleus (Church and Wilson, 1997). At the permissive temperature of 31°C, mature 

capsids form and are released from the nucleus in a synchronized wave (Church and Wilson, 1997; 

Turcotte et al. 1995). Similarly, the intracellular transport is temperature-dependent and it can be 

reversibly stopped at the TGN by incubation at 20°C (Griffiths, et all., 1985, Turcotte et al., 2005). At this 

temperature capsids leave the nucleus and accumulate at the TGN at 20°C. 

The above tools allow a better monitoring of viral transport. An additional tool is the 143B cell 

li ne , which presents a Golgi apparatus and TGN structure more resistant to the HSV -1 infection 

(Campadelli-Fiume et al., 1993, Turcotte et al., 2005). It is with such cells that Turcotte et al (2005) 

demonstrated that the TGN is the site ofHSV-l capsid reenvelopment, as confirmed in this study (fig. 1). 

An important component of the fission machinery that acts at the TGN is PKD (J amora et al. 1997, 

1999, Baron & Malhotra 2002, Liljedahl et al. 200 1, Maeda et al. 200 1, Yeaman et al. 2004). As described 

in the introduction, this is inactive in cytosol and, after its recruitment to the TGN membrane, participates 

in the formation of distinct vesicular cargos (Baron and Malhotra, 2002; Maeda et al., 2001). The PKD 

recruited at the TGN operates in a feed-back process by increasing the DAG level and by modifying the 

TGN membrane organization (Goni & Alonso 1999, Burger 2000, Shemesh et al. 2003). Also, it was 

demonstrated that if DAG synthesis is reduced, PKD recruitment to the TGN is hampered and cargo 

transport to the cell surface is inhibited (Baron & Malhotra 2002). Several approaches were therefore used 

in this study to block the PKD function, including pharmacological reagents that block DAG synthesis, a 

) dominant negative PKD mutant (PKD-K618N) and RNAi targeting PKD. 
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• Phannacological reagents to study HSV -1 egress include Fumonisin B 1 (FB-1), l-cycloserine (L­

CS), and propranolol. They are known as interfering in different stages of sphingolipids synthesis (Baron 

and Malhotra, 2002; van Ooij et al., 2000). Figure l 10 shows their mechanism of action. For example, 

FB 1 produced by Fusarium moniliforme is a mycotoxin whose structure resembles sphingosine (Solomon 

J. C., et al., 2003). Studies indicate that FB1 inhibits sphingolipid biosynthesis by inhibiting ceramide 

synthase, the final step in ceramide synthesis (Wang et al., 1991). FB1 also interacts with the binding sites 

for sphinganine and fatty acyl-coenzyme A (CoA) in a competitive manner (Merrill et al. 1993). In this 

way, FB1 decreases DAG production in Golgi membranes and blocks PKD recruitment to the TGN. The 

second reagent, l-cyc1oserine is an inhibitor that blocks serine palmitoyltransferase activity, and decreases 

both sphingosine and ceramide levels (Hinkovska-Galcheva V. et al. 2003). The third reagent, 

propranolol, inhibits PC conversion into phosphatidic acid (PA) and affects the DAG production at the 

TGN (Brindley & Waggoner 1998, Pyne et al. 2004, Baron & Malhotra 2002). 
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• An essential step was to confirm the effect of FB 1, l-cycloserine, and propranolol against the PKD function in 

143B cellline. To this end, we used the well studied VSV G ts045 marker. This is a transmembrane mutant 

viral protein that accumulates in the ER at 39.5°C and reaches the cell surface when the temperature is shifted 

to 31°C. Moreover, it is blocked at the TGN at 20°C (Griffiths, G., et al. 1985; Turcotte et al. 2005). Finally, 

this protein is dependent on PKD to exit the TGN (fig. 2). Using this tool, our results indicated the inhibitors 

indeed b10ck the VSV G inside the TGN as expected (). The next step was to determine if PKD is also 

involved in HSV -1 capsids transport to the plasma membrane or whether the virus utilises an alternative 

transport pathway. The results show FB-1, L-CS and propranolol do not have any impact on the egress of 

intranuclear capsids into the cytoplasm (fig. 4). In contrast, the three independent inhibitors of DAG synthesis 

all prevented the release ofHSV-1 from the TGN to the extracellular environment (fig. 3, 5); indicating PKD 

is involved in HSV -1 capsid transport at a late step. Nonethe1ess, since DAG inhibitors may not specifically 

target PKD, other evidences were necessary to confirm the implication of PKD in cargo virus transport from 

the TGN. 

( 

1 

The kinase dead PKD (PKD K618N) transfected in 143B cells for 24 ho urs prior to infection with V701 

prevents HSV -1 capsids to arrive at the cell surface (fig. 6). These results were further confirmed in the 

established HeLa GF17 cellline, which constitutively expresses PKD K618N. As shown in fig. 7, the kinase 

dead PKD present in HeLa GF17 cells decreased the viral output in the extracellular environment. Finally, 

the same effects on HSV -1 egress were observed when PKD expression was inhibited with synthetic siRNA 

in 143B cells (fig. 10). The results present strong evidence of PKD implication in capsid exit from the TGN 

to the cell surface. Our studies have further proved that these effects were due to PKD3, the only isoform 

expressed in 143B cells (fig. 8). Hence, RNAi against the other PKD isoforms, respectively, PKD1 and 

PKD2 or in the presence of "On-Target" control did not have any effect on viral egress (fig 10). As we know 

from the literature, the PKD mutation in the HeLa GF17 cells is leaky (Liljedahl et al., 2001) and the PKD 

K618N tubules are able to detach from the TGN membranes at higher temperature (Liljedahl et al., 2001). 

Furthermore, HeLa cells express both PKD 2 and 3 (Yeaman C. et al., 2004). Consequently, we cannot 

formally exclude the possibility that the other two isoforms exist might also participate in HSV -1 egress in 

other cell types (Yeaman C. et al., 2004; Hausser et al., 2005; Maier et al., 2007). 
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8. Model for HSV -1 egress pathway 

ln conclusion, it is possible to imagine a working model of HSV -1 egress from TON to plasma 

membrane (figure 1 12). In this model, the envelope of the perinuclear virus fuses with the outer nuclear 

membrane releasing de-enveloped capsids in the cytoplasm, which then traffic to a cytoplasmic 

compartment, likely the TON/endosome. In parallel, the viral tegument proteins and glycoproteins 

synthesized in the ER arrive independently at the TON/endosome. There, they associate with naked 

capsids fonning the mature enveloped infectious particles. As a result of the budding mechanism, a 

tubulo-reticular domain in the TON is fonned. PKD is then recruited by DAO at the TON and regulates 
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• SCISSIOn of the se tubular structures, resulting in VIruS containing vesic1es that travel to the plasma 

membrane. Finally, these vesic1es fuse with the cell plasma membrane and infectious enveloped virus is 

released in the extracelular medium. More analyses are now necessary to determine if the virus travels in 

the same vesic1es as cellular proteins or whether it monopolizes this machinery. 
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~T Capsid 

Tegument 
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Figure 1 Il: Model for HSV -1 egress (Adapted from Sophie Turcotte, modified by CM) 
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• Conclusions 

The literature mentions a vesicular egress of HSV -1 from the site of re-envelopment to the cell 

surface. However, there was no evidence regarding the mechanism by which HSV-1 reached the cell 

surface from the TGN. In the host secretory protein transport, PKD is an important mediator for the 

formation and detachment ofvesicles from the TGN membranes. In this study, we demonstrate that HSV-

1 virions utilise the same PKD machinery used by host proteins in their transport from the TGN to the 

plasma membrane. For instance, three independent DAG inhibitors block viral egress from the TGN to the 

plasma membrane. Furthermore, the inactive PKD (PKD K618N) also hampered viral transport to the cell 

surface despite of a temperature dependent mutation. Finally, the same effects have been obtained with 

siRNA specifie for PKD3. Summing up, the presented data are pointing to one conclusion; the PKD3 

plays a central role in HSV -1 egress. 

It will be very interesting to determine if the virus travels in exactly the same tubules as cellular 

cargo or if it monopolizes this machinery. Video-microscopy and EM might bring useful information 

about it. Given a clear modulation by PKD of small cargos such as VSV G and very large cargos such 

fully assembled virions, it will be interestirig to monitor additional small and large cargos by these 

techniques. Another challenge will be to examine the impact of the various PKD substrates in viral 

egress. Finally, PKD is meant to specifically regulate the exit of basolateral cargos. It will thus be 

interesting to determine if it can modulate apical transport as well. In the long run, the hope is to use this 

knowledge about the life cycle of HSV -1 to ultimately prevent the spread of the virus among the 

neighbouring cells. 

In summary, this study suggests new ways to block the intracellular transport of HSV -1 virions 

and their spread reduction. 
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