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SOMMAIRE 

Le carcinome hépatocellulaire (CHC) est parmi les tumeurs malignes le plus 

répandu au monde (Parkin et al., 2005). Une intoxication à l'aflatoxine (une hépatotoxine 

puissante) est parmi les causes majeures de cancer de foie dans le monde (Bennett and 

Klich, 2003; Camaghan, 1964). 

On a comparé la composition protéique du réticulum endoplasmique (RE) de foie 

de rats témoins avec la composition protéique du RE de nodules tumoraux disséqués de 

foie de rats traités avec l'aflatoxine B 1. La spectrométrie de masse, Je compte· de peptide 

et la validation. par immunobuvardage ont été utilisés pour identifier et· pour déterminer 

l'expression relative de protéines dans les fractions enrichies de RE. 

Le RE est une organelle clé pour la voie de sécrétion. II est impliqué dans la 

biosynthèse des protéines et des lipides (Shibata et al., 2006). Aussi, il est impliqué dans 

la dégradation des protéines et la détoxication des produits toxiques (Lavoie and 

Paiement, 2008).· Ces divers fonctions sont etfeètuées par de nombreuses protéines 

certaines sont identifiées dans ce mémoire et elles sont comparées avec les mêmes 

protéines dans le cancer. 

Beaucoup de protéines liées au cancer étaient surexprimées dans le RE dérivé des 

nodules tumoraux~ Parmi les protéines surexprimées on note l'annexine II, les produits 

des gènes activés par l'aflatoxine BI (exemple GST pi), les inhibiteurs de l'apoptose 

(exemples tripeptidyl peptidase II et nucleophosmine), des protéines impliquées dans la 

dégradation protéique ubiquitine-dépendante (sous-unités deprotéasome), des protéines 

impliquées dans le métabolisme de l'ARN méssager (exemples hnRNP K, hnRNP M et 

P ABP 1), des protéines impliquées dans la transcription (exemple Y box protéine 1), des 

protéines impliquées dans la traduction (exemples eIF 2n et eEF 2) et des protéines des 

filaments intermédiaires du cytosquelette (exemples vimentine et cytokératine 19). 
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, 
Plusieurs protéines impliquées dans la détoxication (exemple, protéines de la 

famille du cytochrome p450) étaient sousexprimées dans le RE de tumeurs. D'autres 

protéines impliquées dans la détoxication étaient surexprimées (protéines de la famille 

des aldo-keto réductases) .. 

Au contraire, les protéines chaperones (exemples, Bip et calreticuline) et les 

protéines du complexe MHC class 1 qui est impliqué dans la présentation antigénique 

étaient en quantité similaire dans le RE de tumeur et dans le RE de foie témoin. Des 

protéines phosphorylées à un résidu tyrosine incluant ATP citrate lyase qui est le substrat 

de la voie de signalisation Akt, étaient présentes en quantité significative dans le RE de 

tumeur. 

Les études d'immunobuvardage employant dix-huit anticorps différents ont 

conftnnés la distribution relative de protéines entre le RE de tumeurs et celui de foie 

contrôle. Donc ces résultats ont pennit de valider les résultats obtenu par spectrométrie de 

masse. 

En conclusion, la composition protéique du RE des hépatocytes tumorales est 

différente de celle du RE de hépatocytes nonnaux. Cette différence favorise 

probablement la survie des cellules cancérologique du foie. En plus, plusieurs protéines 

inconnues étaient présentes en concentration plus grande dans le RE de tumeur comparé à 

celle dans le RE de foie de· rats témoins. Certaines de ces protéines inconnues pourraient 

être devenir de nouveaux marqueurs de tumeurs. 

Mots I:lés: réticulum endoplasmique, carcinome hépatocellulaire, immunobuvardage, 

protéomique, spectrométrie de masse, protéines phosphorylées, protéines inconnues, 

biomarqueurs. 
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ABSTRACT 

Hepatocellular carcinoma (HCC) is one of the Most common malignancies 

worldwide (Parkin et al., 2005). Aflat,oxin (a potent hepatoxin) is one of the major causes 

of liver cancer in the world (Bennett and Klich, 2003; Carnaghan, 1964). 

We have compared the protein composition.of endoplasmic reticulum (ER) from 

control rat liver with the composition of ER from dissected liver tumor nodules from rats 

treated withaflatoxin BI. Mass spectrometry, peptide counts and immunoblot validation 

were used to identify and detennine the relative expression level of the proteins in highly 

enriched ER fractions 

Normally, the ER is a key organelle of the secretion pathway involved in the 

biosynthesis of both proteins and lipids (Shibata et al., 2006). AIso, it is involved in 

prote in degradation and toxic products detoxification. These diverse functions of the ER 

are carried out via multiple proteins (Lavoie and Paiement, 2008). 

Many proteins relevant to cancer were overexpressed in ER from dissected liver 

tumor nodules. These include examples as Annexin II, the classical aflatoxin BI gene 

targets (Le. GST pi), inhibitors of apoptosis (i.e. tripeptidyl peptidase II and 

nucleophosmin), proteins involved in proteasome metabolism (Le. proteasome subunits), 

proteins involved in mRNA metabolism (Le. hnRNP K, hnRNP M and PABP 1), in 

transcription (i.e. Y box protein 1) in translation (i.e. eIF 2« and eEF 2) and intermediate 

filaments cytoskeleton proteins (Le. vimentin and cytokertain 19). Many proteins 

implicated in the detoxification (examples include the cytochrome p450 proteins) were 

underexpressed whereas a mnnber of aldo-keto reducatases proteins were overexpressed 

in ER from tumors. In contrast, proteins of the folding machinery (Le. Bip and 

calreticulin) and proteins of the MHC class l peptide loading complex were almost 

expressed in equal amounts in ER from dissected tumor nodules compared to those in 
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control ER. Tyrosine phosphorylated proteins including ATP citrate lyase a substrate of 

the Akt signaling pathway were observed in a significant quantity in cancer ER 

preparations. Many proteins of unknown function were observed in either concentration 

in hepatic cancer ER membranes. 

Eighteen antibodies confirmed the relative distribution of immunoblotted proteins. 

These different antibodies confumed the relative distribution of proteins of ER from 

tumor and control liver. Therefore, the se results allowed the validation of the results 

obtained by mass spectrometry. 

Therefore, in conclusion the proteomic composition of the ER of cells in HCC is 

different from those of ER of normal hepatocytes. This difference is probably ao 

advantage for the surviVal of tumoral cells in liver cancer. Furthermore, many known 

proteins that were observed in greater concentration in cancer ER as compared to the ER 

from control liver, cao he as potential tumor markers in HCC (examples include eEF2, 

OST pi and vimentin). 

Key words: endoplasmic reticulum, hepatocellular carcinoma, immunoblot, proteomics, 

mass spectrometry, phosphorylated proteins, unknown proteins, biomarkers. 
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INTRODUCTION 

1 Liver cell tumor: Hepatocellular carcinoma (HCC) 

Hepatocellular carcinoma is the most common primary malignant disease of the 

liver (Kew, 2002). It signifies a tumor arising from the epithelial layer of the liver 

(Suriawinata and Thung, 2002). 

1.1 Epidemiology 

Hepatocellular carcinoma is the sixth most common cancer worldwide and is the 

third leading cause of cancer-related deaths worldwide (Parkin et al., 2005). Although the 

incidence of HCC increases with age, the age of peak incidence vary with population 

(Suriawinata and Thung, 2002). For example, it occurs at earlier ages in black African 

and ethnic Chinese populations. Men are more affected than women. Male to female ratio 

is 3: 1 in high incidence regions (Kew, 2002) and a lower ratio is found in low-incidence 

regions (Parkin et al., 2005). The highest incidences are found to be in Asia (eastem and 

southeastem), sorne of the sub-Saharan Africa and Melanesia and the lowest are found to 

be in developed areas (except for southem Europe), Latin America, and south-central 

Asia (Park in et al., 2005). 

1.2 Etiologieal fadors 

Hepatocellular carcinoma is assOciated with chronic liver disease, mainly cirrhosis 

(Borzio et al., 1998; Motola-Kuba et aL, 2006; Thorgeirsson and Grisham, 2002). 

Cirrhosis of the liver may derive from a variety of factors inc1uding, chronic hepatitis 

viral infections (hepatitis B virus and hepatitis C virus), alcoholism, AFB 1 intoxication 

and genetic diseases such as hemochromatosis (Mazzanti et aL, 2008), Wilson's disease, 

alpha-l antiprotease (antitrypsin) deficiency (Fattovich et al., 2004). Hence, cirrhosis can 

be considered as a premalignant condition (Fattovich et aL, 2004). 
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1.3 Clinical picture 

Clinical presentations can be right upper quadrant abdominal pain (where is the 

anatomie location of the liver organ), early satiety, and weight loss. Others can include 

spontaneous rupture of the tumor into the peritoneal cavity, obstructive jaundice, or bony 

pain from metastasis. Moreover, paraneoplastic syndromes may occur leading to 

erythrocytosis (due to production of erythropoietin), hypoglycaemia (due to production of 

an insulin-like growth factor), and hypercalcemia (due to production of parathyroid­

related protein). Physical findings may he enlarged liver upon palpation and a vascular 

bruit on auscultation, consistent with hypervascularity of the tumor (parikh and Hyman, 

2007). 

lA Diagnosis 

Although there is no definite evidence that screeningin liver cancer improves 

survival, many hepatologists screen patients in high-risk groups with either serum alpha­

fetoprotein and/or ultrasound of the liver (Parikh and Hyman, 2007). The biopsy of the 

tumor is an important tool to establish diagnosis as weil. However, the considerable false 

negative rate from biopsy of lesions lessthan 2 cm makes a negative biopsy does not. 

conclusively rule out the diagnosis of HCC. Also, among the most important downsides 

of the invasive biopsy of liver tumor includes risk of tumor seeding (1 %-2%) and its 

limitation by generaI contraindications (ascites, decreased coagulation factors, 

thrombocytopenia) due to a risk of bleeding (Durand et al., 2007; Parikh and Hyman, 

2007). A recommendation stated that an ultrasound of the liver every 6 months in high­

risk patients to screen for hepatocellular cancer would be helpful (parikh and Hyman, 

2007). Hence, markers are needed to correctly. diagnose HCC (Y oon et al., 2006). 

On the other hand, many staging and scoring systems are available for clinicians 

in their routine practice to determine the stage of the disease of their patients. Pons and 

colleagues (pons et al., 2005) grouped these different too]s ina relatively recent article. 

Examples of these tools include the Okuda and Tumor-Lymph Node-Metastasis (TNM) 

staging systems. The latter is the most commonly usèd staging system for solid tumorsin 
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general, but has severe limitations hecause it does not put in consideration the severity of 

underlying cirrhosis (Parikh and Hyman, 2007). 

Genetic analysis is thought to be a way to classify tumors. Since then there have 

been several studies of genetic analysis of HCC (Wong et al., 1999). Nevertheless, such 

genetic studies should he validated using other techniques examples include 

immunohistochemistry and immunoblot. 

Finally, another emerging method of classification of HCC can be according to 

phenotypic (differentiation) markers. Forthat, immunohistochemistry was used ·to study 

the expression of different differentiation markers that included hepatocytic 

differentiation marker (HEP-P AR-reactive antigen), biliary differentiation markers (AEl­

AE3, cytokeratin-19), proliferation markers (Ki-67, proliferating cell nuclear antigen), 

AFP, p53, and transfonning growth factor alpha in the tumor tissue (Wu et al., 1996). 

1.5 Prevention and treatment 

Prevention of cancer can be achieved by preventing the development of cirrhosis 

and proper management cirrhosis (Fattovich et al., 2004) in order to preserve the liver 

function. This can he achieved by the use of a vaccine against hepatitis B virus (Chang et 

al., 2005), treatment of chronic hepatitis C infection by combination of interferon alpha 

and ribavirin (patel et al., 2006), early detection of inherited liver diseases 'as weIl as 

better management of alcohol intake, examples incIude encouraging persons in alcoholics 

anonymous participation (Mann et al., 2005) and prevention of aflatoxin intoxication, 

examples include applying post-harvesting technologies to limit fungus growth and crop 

contamination (Lodato et al., 2006). 

Treatment can he divided into four categories: surgi cal interventions (tumor 

resection and liver transplantation), percutaneous interventions (ethanol injection, 

radiofrequency thermal ablation), transarterial interventions (embolization, 

chemoperfusion, or chemoembolization) and drugs incIuding gene and immune therapy. 

Curative treatment that can result in complete response and improved survival in many 
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-
cases can he tumor resection, liver transplantation, and percutaneous interventions. On 

the other hand, palliative treatment that can improve survival and patient' s quality of life 

in sorne cases may include transarterial interventions. Finally, drugs and conventional 

radiotherapy have no proven efficacy (Blum, 2005). However, in the long-tenn 

management for HCC patients the only definitive treatment option remains to be liver 

transplantation (Krige and Beckingham~ 2001a; Krige and Beckingham~ 2001b; Llovet et 

al., 2003; Parikh and Hyman, 2007). This is because in case of liver transplantation both 

the tumor and the liver dysfunction due to the underlying cancer-prone cirrhotic liver are 

definitively cured (Parikh and Hyman, 2007). However. this therapeutic approach has 

limitations because of the shortage of organ donations (Parikh and Hyman, 2007). 

1.6 Survival 

Survival rates are 3% - 5% in United States and developing countries (Parkin et 

al., 2005). In patients with preserved liver function and without portal hypertension, the 

five-year survival rate is more than 70 % after surgical resection of the tumor (Bruix et 

al., 1996; Mazzanti et al., 2008). On the other hand, patients with advanced liver disease, 

liver transplantation offers one year and five-year survival rates of 80% and 60% 

respectively(Krige and Beckingham, 2001a). 

2 Atlatoxin BI (AFBI) 

In 1967, Halver (Halver, 1967) mentioned the early role played by rainbow trout 

(a species from the salmon family) in the discovery of the carcinogenic action of AFB1. 

AFBl is now a well-known mycotoxin that affects largely the crop product (such as corn 

and rice) especially if improperly stored. It is produced by certain strains of fungi 

namely; Aspergillus flavus, Penicillium, Fusiarium, Claviceps· and Stachybotrys 

(Meissonnier et al., 2007; Smela et al., 2001). It is principally produced by Aspergillus 

flavus and Aspergillus parasiticus which are common in most soils and are usually 

involved in decay of plant materials (Grishin, 2005). 
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Mycotoxicoses would describe the group of disease that develops secondary to 

consumption of mycotoxins (Kiessling, 1986). The mechanism of mycotoxicity involves 

interference with various aspects of ceLI metabolism. The toxins vary in specificity and 

potency for their target cells, cell structures or cell processes by species and straÏn that 

produces them, producing neurotoxic, teratogenic or carcinogenic effects. The latter 

effect is the one of our interest here in this work. Aflatoxins BI, B2, G l, and G2 are 

produced in grains in both field and storage. The four compounds are distinguished based 

on their fluorescence colour under the effect of the long-wave ultraviolet illumination 

(hence B is for blue and G is for green), with the subscripts relating to their relative 

chromatographic mobility. AFBl is usually found in the highest concentrations, followed 

by AFG 1, AFB2, and· AFG2. The toxins pose a significant public health concem as 

diseases resulting from ingestion of aflatoxins, include acute liver disease to cancer 

development (McLean and Dutton, 1995). 

2.1 Aflatoxin BI (AFBl) metabolism 

AFB 1 is a specifically metabolized by the action of the mixed function mono­

oxygenase enzyme systems (cytochrome P450-dependent) in the tissues (particularly ttJ.e 

liver) of the affected animal into 8,9-epoxide form (activated and mutagenic form) and 

others (detoxication products) (McLean and Dutton, 1995). This epoxide form is highly 

reactive and interacts with severa! cellular macromolecules, such as DNA, RNA and 

protein (Grishin, 2005; McLean and Dutton, 1995). Consequently, AFBl can affect the 

liver and can cause serious adverse effects, hence known to be the most potent 

hepatotoxin and hepatocarcinogen (Carnaghan, 1964). 

Aldo-keto reductases (AKRs) are a superfamily of proteins that among its 

members are those that deal with aflatoxin detoxification: for example, AKR7A2/A3 

known as Aflatoxin aldehyde reductases. Tt is noted that A2 member is widely distributed 

in human tissues while the A3 member is expressed in the liver, colon, kidney, and 

pancreas. These. proteins can reduce the dialdehyde protein-binding form of aflatoxin BI 

(AFBI) to the non-binding AFBl dialcohol (Jin and Penning, 2007). 
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2.2 Atlatoxin BI (AFBI) as a chemical carcinogen 

AFB 1 is considered one of the chemicals that can induce carcinogenesis, hence 

known as a chemical carcinogen. It enhances cancer development and progression. In 

fact, carcinogenesis is considered as a multistep process. This includes three distinct 

(morphological and molecular) steps as follows: initiation (occult), promotion 

(reversible) and progression (increasing aggressivenes~ of the tumour and malignant 
, 

conversion) (Pitot, 2001) in which control of cell growth is progressively perturbed 

(Mazzanti et al., 2008). AFBl is a potent mutagen (Kobertz et al., 1997). Exposure to 

AFB 1 as the case· in high contamination of cereal food was found to be in close 

association with development of specifie mutant p53 gene that can consequently favor 

recurrent HCC. The carcinogenic potential of AFBl vary between individuals, as for the 

same exposition not aIl patients will develop HCC (Laurent-Puig and Zucman-Rossi, 

2006). Nonnally the p53 gene functions as a tumor suppressor (Hanahan and Weinberg, 

2000) and is expressed at a low level in the cell. Its up-regulation (in response to various 

stimuli as DNA damage, hypoxia, viral proteins, or telomere erosion and oncogene 

activation) will end in the induction of pathways that lead to either cell cycle arrest oi 

apoptosis (Vousden, 2000). One of the fmt measurable effects of AFBl, on cells and 

tissues is inhibition of DNA synthesis (McLean and Dutton, 1995). Practically speaking, 

any malignant growth is in need of six basic alteration in the cell physiology; namely 

self-sufficiency in growth signaIs, insensitivity to growth-inhibitory (antigrowth) signaIs, 

evasion of programmed cell death (apoptosis), limitless replicative potential, sustained 

angiogenesis, and tissue invasion and metastases (Hanahan and Weinberg, 2000). 

3 Endoplasmic reticulum (ER) 

The endoplasmic reticulum (ER) is widely present in aIl eukaryotic cells being an 

essential dynamic subcellular organelle for cell life. It plays an important role in the 

biosynthesis and modification of membrane and secretory proteins and the biosynthesis 

of lipids. It also plays a role in calcium homeostasis, and degradation of misfolded 

proteins (Baumann and Walz, 2001; Lavoie and Paiement, 2008; Shibata et al., 2006). 
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3.1 General structure of the ER_ 

The ER membrane is organized into a network of branching tubules and flattened 

sacs extending throughout the cytosol (8hibata et al., 2006; Voeltz et al., 2006). The 

tubules and sacs are continuous and enclose a single internal space called the ER lumen 

(ER cisternal space) (Baumann and Walz, 2001). 

3.2 Functions of ER 

3.2.1 Metabolism of proteins: Biosynthesis, transport and degradation 

The ER is involved in the metabolism of proteins; this includes protein 

biosynthesis, transport and degradation. The biosynthesis of proteins takes place inside 

the ER (lumen). This is completed by the insurance of proper folding of newly 

synthesised prote in (soluble proteins are folded within the lumen of the ER whereas 

membrane proteins are folded in three environments; the cytosol of the ceU, the lipid 

bilayer of the ER and the ER lumen), correct disulfide bonding and posttranslational 

modifications (such as the addition of oligosaccharides). After that, the secretory pathway 

will ensure the transport of a given newly synthesised protein from ER to the Golgi 

apparatus (where in the latter, the protein will undergo further posttranslational 

modifications) then to its final destination at the cell surface. 80 like that, the newly 

synthesized proteins that fold, assemble and assume a stable conformation are recognized 

and sorted into secretory vesicles by the activity of the cytosolic coat protein complex 

cOP 1 and II. The later are crucial for directing the sequential transfer of material 

between the ER and the Golgi complex. However, the newly synthesized proteins with 

unstable conformation are specifically targeted for degradation by an ER quality control 

process called ER associated degradation (BRAD). The ERAD will result in degradation 

of proteins by the cytosolic ubiquitin-proteasome system (Aridor, 2007; Brodsky and 

Fisher, 2008; Duden, 2003; Klumperman, 2000; Nickel et al., 1998; Pelham, 1996; 

y orimitsu and Klionsky, 2007) 
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3.2.2 Metabolism of lipids: Biosynthesis and transport 

The ER is also involved in the metabolism of lipids; this includes lipids' 

biosynthesis and transport. The lipogenic enzymes involved in the biosynthesis of lipids 

are bound to the cytosolic surface of the ER membrane. The secretory pathway will 

ensure the transport of a given newly synthesised lipid from ER to the Golgi apparatus 

then to its final destination as to the plasma membrane. In case of nascent cholesterol, it 

moves against a steep concentration gradient to reach the plasma membrane. Vesicular 

transport along the protein secretory pathway through the Golgi is one route from ER to 

plasma membrane (Bawnann and Walz, 2001; Davis, 1999; Maxfield and Wustner, 2002; 

Nickel et al., 1998; Riezman and van Meer, 2004; Soccio and Breslow, 2004). 

3.2.3 Metabolism of drugs 

The ER is also involved in the metabolism of drugs; this also includes 

detoxification of xenobiotics by the detoxification machinery present in the ER, namely 

detoxification enzymes as cytochrome p450 family members (Cribb et al., 2005). 

So disruption of the ER can lead to changes in protein synthesis and processing, 

dysregulation of lipid metabolism and accumulation of toxic compounds (Cribb et al., 

2005). Therefore, the crucial metabolic role played by the ER made it a key organelle in 

development of màny cellular pathological states, notably cancer events. Examples of 

other ER related diseases include cystic fibrosis, diabetes, neurodegenemtive conditions 

and polycystic liver disease (reviewed in (Aridor,2007). In addition the ER proteins are 

direct targets of hepatotoxic compounds (Cribb et al., 2005). Consequently, all the 

previously mentioned factors made the ER the most valid organelle target for our study. 
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3.3 Domains of the endoplasmie retieulum (ER) 

The ER is composed of four main subdomains namely, rough ER (RER), smooth 

ER (SER), transitional ER (tER) and nuclear envelope (NE) (Làvoie and Paiement, 

2008). 

3.3.1 Rough endoplasmic reticulum.(RER) 

The RER is the part of the ER where ribosomes are bound at its external surface 

hence given its narne as rough (Palade, 1975). Nonnally, there are two fonns of 

ribosomes in the cytosol. Membrane bound ribosomes (attached to the cytosolic side of 

the ER membrane), are engaged in the synthesis of proteins that are being concurrently 

translocated into the ER) and free unattached ribsomes involved in the synthesis of 

cytosolic proteins. Palade initially· described these two fonns of ribosomes (palade, 

1955). When a ribosome happens to he making a protein with a signal sequence, the 

signal directs the ribosome to the ER membrane via interaction with the signal 

recognition particle (Osborne et al., 2005). 

3.3.2 Smooth endoplasmic reticulum (SER) 

It is the part of the ER, which is ribosome-me and hence is given its narne as 

smooth (Shibata et al., 2006). In certain specialized cells (exarnples include livercells, 

neurons and muscle cells), the SER is abundant and has additional functions (Voeltz et 

al., 2002). For exarnple in case of liver cells, the SER contains the enzymes that are 

involved in the detoxification of various xenobiotics. Furthennore, there is an increase in 

the specific activity of cytochrome p450 farnily enzyme after treatment of the organism 

with phenobarbital (Kuriyarna et a'., 1969). 

3.3.3 Transitional endoplasmie retieulum (tER) 

This represents the part of the ER showing areas corif1uent between the RER and 

. the SER. The SER portion of the tER is often the origin of ER exit sites, which produce 



r 

10 

transport vesicles carrying newly synthesized proteins and lipids to the Golgi apparatus 

for distribution in and out of the cell (Fan et al., 2003). Other names for this compartment 

include ER-Golgi intermediate compartment, vesiculo-tubular clusters or pre-Golgi 

intennediates (Hauri et al., 2000; Schweizer et al., 1988). 

3.3.4 Nu~lear envelope (NE) 

This is a double. membrane envelope, which is composed of an outer nuclear 

membrane, a nuclear pore, and an inner nuclear membrane. The nuclear pore complex 

(NPC) is anchored in the nuc1ear pore by transmembrane proteins that extend into the 

lumen of the nuclear envelope (NE). Moreover, the NPC acts as a doorkeeper by 

regulating the access of integral membrane proteins to the inner nuclear membrane (Hsia 

et al., 2007; Lusk et al., 2007). Thus, the NPC mediates the selective exchange of 

macromolecules between the nucleus and cytoplasm (Melcak et al., 2007). Figure 1 

shows that the outer membrane of the NE is in continuity with RER and that both of them 

are covered with ribsosomes. 
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FIGURE 1: Diagram of the four subcompartments of the endoplasmic reticulum. 

(A) The nuclear envelope (NE) is shown with nuclear pores (NPs) and ribosomal 

particles attached to the outer membrane. (B) The rough ER (RER) is continuous with the 

NE and consists of stacked fattened saccules, whose limiting membranes have numerous 

attached ribosomal particles. (C) Transitional ER (tER) is composed of a RER 

subdomain continuous with a smooth ER (SER) subdomain consisting of buds and 

tubules devoid of associated ribosomes. (D) The smooth ER (SER) is devoid or almost 

free of ribosomal attachment and composed of a network of interconnecting tubules. The 

cistemal space forming the ER lumen is also shown (Modified from Lavoie and 

Paiement, 2008). 
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4 Proteomics 

Proteomics is the study of the complete protein complement or the proteome of 

the cell. The proteome is dynamic and is in constant flux depending on the physiological 

state of the cell or depending on its pathological state (Cui et al., 2004). Hence, proteomic 

study allows the identification of protein changes caused by the disease. Prote in changes 

occurring during neoplastic transfonnation affect cellular function and changes may 

include altered expression, differential protein modification, changes in specific activity, 

and unusual localization (Ai et al., 2006). Proteomics is currently considered as a 

powerful tool for studying protein expression and has been widely applied in field of 

cancer research (oncoproteomics) (K.olch et al., 2005; Sun et al., 2007). In addition, 

proteomics analysis can provide a profile of quantitative ,J'rotein expression; this requires 

methods that are able to provide efficiently accurate and reproducible differential 

expression values for proteins in two or more biological samples (Kolkman et al., 2005). 

Proteomics involves the analysis of protein mixtures in a cellular environment (Drahos et 

al., 2005) or in an organelle (Brunet et al., 2003). 

4.1 Organelle Proteomies 

Organelle protèomics involve the study of proteins of intracellular organelles. 

This can be achieved initially by subcellular fractionation, which is the essential step 

among enrichment techniques in proteomics research, especially for study of organelles. 

Thus, subcellular fractionation allows the separation of organelles based on their physical 
/ 

or biological properties. In fact, subcellular fractionation is based on two major steps, 

which include homogenization (disruption of the cellular organization) and fractionation 

of the homogenate to separate the different populations of organelles followed by 

purification techniques (Stasyk and Huber; 2004). 
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4.1.1 Advantages and disadvantages of organelle proteomics 

Organelle proteomics is a sensitive and more reliable way of studying proteins 

tban tissue or cellular proteornics, since it allows us to study proteomics of small volume 

of isolated organelles, which are enriched in high protein content (Au et al., 2007). 

Organelle proteomics allow for precise prote in localisation inside the ceU and is linked to 

organelle function. Thus, organelle proteomics provides a unique opportunity to Hnk: 

proteornics data with subcellular functional unit (Le. organelle) (Brunet et al., 2003). 

On the other hand, contamination of organelle samples is a main problem in 

organelle proteornics studies (Au et al., 2007). 
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OBJECTIVES 

Paiement and colleagues (Paiement et al., 1992) found that the microinjection of 

endoplasmic reticulum (ER) membranes from adult rat liver into blastomeres ofXenopus 

laevis embryos led to inhibition of cellular division in the blastomeres, while the 

microinjection of endoplasmic membranes from liver nodules of rats treated with 

aflatoxin BI or from liversundergoing regeneration after partial hepatectomy did not. 

These membrane transplantation studies suggested the presence of cell cycle specifie 

factors in association with ER membranes in adult rat liver. factors which were absent or 

modi:fied in ER membranes from liver turnors. These microinjections results led to the 

consideration that the protein composition of ER is different in normal non-dividing cells 

compared with that of ER from rapidly dividing tumor cells. We have now used mass 

spectrometry to examine the difference between these two types of ER and to try to 

explain why ER from rapidly dividing tumor cells are more compatible with cytoplasmic 

environment of frog blastomeres. 

For our study, we used a purified ER from control rat liver and dissected liver 

turnor nodules. Endoplasmic reticulum membrane fractions enriched in rough and smooth 

microsomes were isolated by differential centrifugation and sucrose gradient 

sedimentation from rat liver homogenates (Paiement et. al., 2006). First mass 

spectrometry was used in order to identify the proteome profile of the ER derived from 

control rat liver and nodular liver, then we used one-dimensional gel electrophoresis in 

order to separate different proteins foHowed by immunoblot (using primary ,and 

secondary antibodies) to identify and to determine the concentration of ER proteins from 

control rat liver and from dissected liver tumor nodules. Tables have been generated to 

compare differentially expressed ER proteins with differentially expressed proteins in 

nodular liver. Other Table has been generated to identify tyrosine-phosphorylated 

proteins. Tables were done by using Excel and SPSS software programs, in order to 

calculate and to identify the overexpressed. underexpressed and equally expressed 

proteins in turnor ER, means, s~dard deviat~on and P-values calculations. Graphs have 
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been generated to calculate the relative concentration of novel proteins, folding proteins, 

peptide loading complex and proteasome subunits. Densitometry was used to determine 

the relative concentration of protein bands in control and in tumor ER, those bands that 

were detected initially by immunoblot. 

Our final goal was to study the expression of proteins involved in the process of 

liver cancer. Consequently, we hope that our work can serve to select the interested 

proteins for further specific isolated experiments to study in details the related underlying 

signaling pathways and the corresponding cytosolic and/or nuclear interactions. 

The main objectives of this thesis were to perform the following: 

- Determine the protein composition of ER fractions from control and tumor liver as weil 

as to detetmine the identity of the overexpressed and underexpressed proteins in tumor 

ER Also, to detetmine the identity of proteins that did not change in expression in tumor 

ER relative to controlliver ER 

- Confirm by immunoblot and densitometry the relative expression of specific proteins in 

tumor ER and controlliver ER 

- Compare relative concentrations of specific proteins in both ER and cytosolic fractions 

from dissected liver tumor nodules with similar fractions from control rat liver. 

- Use bioinfonnatics tools to. determine the unknown proteins based on prote in domain . 

analysis. 
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MATERIALS AND METHODS 

1 Induction and characterization of rat liver tumors 

The animal model was obtained according to procedure previously described by 

Paiement and colleagues (Paiement et aI., 1992) as follows: 

1.1 Induction of rat Iiver tumors J 

- Male Fischer rats (F344, Charles River Canada Inc., St-Constant, Quebec, Canada) 

weighing 150 ± 10 g were maintained on rat chow (Prolab Agway, Charles River Canada 

Inc., St-Constant, Quebec, Canada) for 1 week before the start of the experiment. They 

were kept in a conventionaIly maintained animal facility (2 animaIs / cage) under 

conditions of controlled temperature (22 ± 2°C), humidity (50 ± 10%) and lighting (12-h­

light: 12-h-dark' daily cycle). Water and food were available ad libitum. Care of the 

animaIs conformed to guidelines established by the Canadian Council on AnimaI Care 

(Ottawa, Ontario). 

- Fifty rats were separated into two groups. Forty rats in group 1 were feed aflatoxin BI 

(AFB 1) (Sigma ChemicaI Co., St. Louis, Missouri, USA). The rats were treated with 

AFB 1 according to Butler and colleagues (Butler et al., 1969), but with the following 

modifications. Aflatoxin BI was first dissolved in dimethyl sulfoxide and then provided 

in a continuous supply in the drinking water at a concentration of 1 ~g!ml in darkened 

bottles. Group Il rats were provided with water containing the sanle amount of dimethyl 

sulfoxide as provided in group 1. Water containing AFB 1 or vehicle alone was prepared 

fresh each week and stored in a cold room (4°C) until needed; it was usually changed 3 

times / week, for a total of 55 weeks. This 55-week periodrepresented the total number 

of days during which rats were treated with AFB 1. 
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1.2 Charaderization of rat liver tumors 1 

- Rats were starved 48 h before they were killed (Eriksson et al., 1983). At different times 

after initiation of treatment, livers were recovered and placed immediately in ice-cold 

sodium immidazole butTer (pH 7.4) containing 0.25 M sucrose. Small fragments of tissue 

were dissected from the edge of the median lobe and placed in fixative and the remaining 

mass of liver (~ 15 g) was used for subcellular fractionation. 

- Light and electron microscope studies on the same tissues that were employed to 

prepare subcellular fractionations. Hence, tissue pieces were fixed by immersion and to 

maximize fixation efficiency, a fixation and embedding protocol estabHshed for use with 

developing embryos was used (Kalt and Tand1er, 1971). Histopathologieal diagnoses 

were based upon criteria described by the eommittee on histologie classification of 

laboratory animal turnors, Institute of Laboratory ~ma1 Resources (Resourees. 1980): 

- T 0 determine' the extent of cell proliferation oceurrÎng after various proliferative stimuli. 

a single injection of eH] thymidine (New England Nuclear, Canada; sp.aet., 70 Ci/mmol; 

1 Ci = 37 GBq) was given intrapertionea1ly (250 f.1Ci) 1 h before sacrifice. Pieces of liver 

(1-3 mm) were obtained ànd immersed in the fixative of (Kalt and Tandler, 1971). 

Following dehydration and embedding in paraffin,seetions (5 f.1m thick) were eut 

serially, put on slides and stained with hematoxylin and eosin. The sections wereeoated 

with Kodak NTB2 emuslion and processed for radioautographie analysis (Kopriwa and 

Leblond, 1962). 

- Light microscope radioautography was carried out to determine the eH] thymidine­

labeling index of hepatocytes in turnor-bearing rats. The labeling indices for cells in 

tumors were compared with those of surrounding liver tissue. Results from 2 different 

experiments showed higher labeling indices for cells within tumors (4.2- to lO-fold 

greater eH] thymidine incorporation). The higher labeling indices found in the nodules 

indicates the higher rate of cell proliferation within these, liver regions. 
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- Macroscopic analysis of liver from rats treated with AFB 1 for up to 45 weeks revealed 

the presence of multiple white foci « 5mm). At 51 weeks after initiation oftreatment, 2 
-' 

rats were sacrificed. The liver of 1 rat displayed small foci « 5mm) and the liver of the 

other rat revealed the presence of large nodules (> 20 mm). The livers of rats examined 

52 weeks or later after initiation of treatment with AFB 1 aU contained large nodules, 

several measuring > 20 mm in diameter. 

- Light microscopy was camed out on the livers of control and AFB 1 treated rats. Control 

rat liver and dissected liver tumor nodule's were fixed in Bouin's Fixative and embedded 

in paraffin. Ten microns serial sections were cut and stained with Haematoxylin and 

Eosin. Livers from control rats revealed a normal histology; hepatocytes were mainly 

arranged in single layers or cords. Livers from rats treated with carcinogen for periods 

from 21 to 51 weeks contained small foci measuring < 5mm in diameter and had a 

different histology from that of normal liver. The foci often contained ceIls with 

increased amounts of lipid and exhibited different tinctorial properties. The livers of rats 

examined after treatment with carcinogen for > 51 weeks all contained multiple large 

nodules measuring > 5mrn in diameter. These consisted of ceIl organizations classified as 

typical for trabecular hepatocellular carcinoma as weIl as for glandular hepatocellular 

carcinoma. Sorne nodules contained mixtures of the se 2 types of tissue organizations and 

sorne contained an undifferentiated tissue organization. 

In summary, the histological features of the livers of these experimental animaIs 

were essentially similar to those described previously for rat liver tumors induced by 

AFB 1 (Butler and Jones, 1978; Jones and Butler, 1978). 
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2 Preparation of subcellular fractions 1 

AH subcellular fractions used in the study were derived from adult rat control 

liver and dissected liver tumor nodules of adult rat AFB l-induced HCC as described 

before. The macroscopic appearance of a rat liver with associated tumor nodules is shown 

in Figure 2. The steps were summarized as shown in Figure 3. These fractions include 

microsomal (smooth and rough) and cytosolic fractions. 

Subcellular fractions isolation and characterization was done based on well-. 

estabHshed protocols (Paiement et al., 2006). The protocol used can be summarized as 

follows: 

- Briefly, minced rat liver tissue was homogenized. The homogenate was later on 

submitted to a series of differential centrifugations to allow separation of different 

cellular co~ponents and total microsomal fractions. 

- Total microsomes, containing membrane derivatives from different sources (RER and 

SER), were resuspended in 1.38 M sucrose and placed under 3 steps gradient of 1 M, 

0.86 M and 0.25 M sucrose, and centrifuged (usÎlig Beckman SW 60 rotor at 300 OOOg 

for 1 hour). 

- The rough microsomal faction was extracted from the residual pellet below the step 

gradient. It was then either washed with 4 mM imidazole buffer (pH 7.4) containing 0.25 

M sucrose. 

- The smooth microsomal fraction, which includes both ~smooth microsomes and low­

density rough micrososmes, was extracted from the upper half of the 1.38 M sucrose step 

gradient. This fraction was washed once and resuspended in sucrose. 
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- The cytosolic fractions were obtained from the supematants remammg after 

sedimentation of total microsomes at 100 000 g. Renee, the name SI 00 for the cytosolic 

fractions used in our study. 

- Protein concentrations were detennined using the Lowry method (Lowry et al., 1951) 

with the bovine serum albumin as the standard. 

1 Une Roy was respoJ)sible for treatment of rats with aflatoxin to induce rat liver tumors, was 

involved in the characterization of the liver tumors and did the subcellular fractionation. 
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FIGURE 2: Dissected liver tumor from rat treated with aflatoxin BI. 

Photomicrograph show isolated livers after aflatoxin treatment. The asterisk shows a 

large liver tumor nodule. Such nodules were later on subjected to dissection and 

extraction of the subcellular fractions used for the Mass spectrometry proteomic analysis 

and immunoblot experiments. 
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FIGURE 3: Flow diagram summarizing the fractionation protocol used to prepare 

ER subfractions from control rat liver and from dissected liver tumor nodules. 

Fractionation protocol used to purify ER derivatives is composed of two main steps 

where the liver homogenate was subjected to differential centrifugation followed by 

gradient centrifugation using a sucrose step gradient (Paiement et al., 2006). 

IN: Nucleus 

2 LSS: Low-speed supematant. 

3 ML: ML fraction, containing lysosomes and mitochondria. 

4ISS: Intermediate-speed supematant 

5 TM: Total microsomes. 

6 S: supematant 
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3 Mass speetrometry 

The identification of proteins based on mass spectrometry analysis has opened 

new opportunities for the study of proteins of organelles like ER (Yates .et al., 2005). 
, 

Massspectrometry can show the sequence of a peptide; this process passes by several 

steps starting with organelle sampling, purification analysis, gel separation and digestion 

gel cutting. This is followed by accumulation of mass spectrometry, peptide identification 

(by using Mascot software program that does the peptide and protein identification by 

comparing the mass spectrometry raw file results to all theoretica1 peptide spectra 

calculated to obtain a peptide sequence), scoring and clustering (protein list) and finally 

annotation and interpretation (proteome). Figure 4 briefly summarizes the steps involved. 

3.1 Protein separation, mass spectrometry and data analysis 

Samples (from 4 different subcellular fractionation experinients) were solubilized 

in Laemmli buffer and 75 J.lg proteins of each sample were 10aded on 5.2 cm ID SDS 1. 

PAGE with 7-15% gradient acrylamide. The gel was stained with Coomassie Brilliant 

blue G (Sigma, Oakville, Ontario, Canada). The full lane has then been subjected to 

automated band excision, to generate 28 bands per lane. Following transfer to a 96-well 

tray, proteins from gel bands were subjected to reduction; alkylation and in-gel tryptic 

digestion by automation in a MassPrep Workstation (Micromass, Manchester, UK) as 

previously described (Wasiak et al., 2002). Briefly, gel bands were cut into 1 mm3 gel 

pieces and put in separate wells of a 96-wel1 sample tray. Gel pieces were then prewashed 

by two 10 minute incubations in 100 J.lI HPLC 2 grade water. AIl steps up to trypsin 

addition were done at 37°C. After removal of water, gel pieces were destained by 

incubating 10 minutes in 50 J.ll of 100 mM ammonium bicarbonate followed by addition 

of 50 fli of 100% acetonitrile and incubating an additional 10 minutes. Pieces were then 

incubated for an additional 5 minute in 100% acetonitrile and liquid removed. Destained 

gel pieces were then sequentially reduced and alkylated by incubating 30 minutes in 50 

J.ll of 10 mM dithiothreitol, adding 50 J.lI of 55 mM iodoacetamide, incubatjng 20 

minutes, adding 100 J.ll of 100% acetonitrile and incubating 5 minutes. Liquid was 
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removed and gel pieces were washed by incubating 10 minutes in 50 III of 100 mM 

ammonium bicarbonate, adding 50 III of 100% acetonitrile, incubating 5 minutes and 

removing liquid. After dehydration, gel pieces were dried 30 minutes at 37°C. Proteins 

were in-gel digested by adding 25 III of trypsin (6 ng/Ill in 50 mM ammonium 

bicarbonate, Promega sequencing grade modified trypsin, cat number V511A) and 

incubating 30 minutes at room temperature followed by 4 hours 30 minutes at 37°C. To 

extract peptides, 30 III of a mix containing 1 % formic acid and 2% acetonitrile was 

added, incubated 30 minutes at room temperature, and 30 III of the liquid was transferred 

into a new cooled (10°C) tray. Two additional extractions are performed. 12 III of a mix 

of 1 % formic acid and 2% acetonitrile and 12 III of 100% acetonitrile were added, 

incubation continued 30 min and 15 III removed and pooled with the tirst extraction. This , 

step was repeated with the transfer of an additional 15 III of extract yielding a final 

volume of peptide extract of 60 III at 0.54% formic acid and 15.9% acetonitrile. 

Extracted peptides were then subjected t<;l mass spectrometry. The 96-well sample 

tray was kept in a Micro WeIl-plate Sampler (Agilent 1100 Series). Prior to injection, the 

precol~ (Zorbax 300SB-CI8, 5 mm X 0.3, 5 J.1m) installed on the 6 port Rheodyne 

valve of the Column Compartment Module, was conditioned with water containing 

acetonitrile (5%) and formic acid (0.1 %) supplied by a Isocratic pump (Agilent 1100 

series) set at a flowrate of 15 ilL/min. A volume of 20 ilL of the tryptic digest solution 

was injected on the precolumn at 15 J.1L1min and the sample was washed for 5 min while. 

the flow through was evacuated to waste. The valve was actuated and the pre-column was 

back-flushed to the 75 mm i.d PicoFrit column (New Objective, Wobum, MA) (filled 

with 10 cm of Bio Basic C18 packing, 5 mm, 300 A) by the acetonitrile gradient (5-70% 

acetonitrile/0.1 % formic acid) supplied by the Agilent series 1100 Nanopump at 200 

nL/min. Solvent A was water (formic acid 0.1 %) and solvent B was 

acetonitrile:water:formic acid (95:5:0.1). The linear gradient was started after the 

washing step. The mass spectrometer was a QTOF 3 Micro from Waters Micromass 

equipped with a Nanosource modified with a nanospray adapter (New Objective, 

Woburn, MA) to hold the PicoFrit column tip near the sarnpling cone. The capillary 

voltage was adjusted to get the best spraying plume at 35% B. MS survey scan was set to 
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1 s (0.1 s interscail) and recorded from 350 to 1600 mlz. In a given MS Survey scan, all 

doubly and triply charged ions with intensity higher that 25 counts were considered 

candidates to undergo MSIMS fragmentation. Fr<?m these, the strongest one was selected. 

MSIMS acquisition would stop as soon as the .total ion CUITent would reach 2800 

counts/second or after a maximum time of 4 s. MSIMS scan was acquired from 50 to 

1990 m/z, scan time was 1.35 sand interscan was 0.15 s. A second precursor ion would 

be selected from the following MS Survey scan. The doubly and triply charged selected 

ions were fragmented with the following preprogrammed collision energies: (i) For 

doubly charged ions, the collision energies are 25 eV for the range 400 to 653 mlz, 26 eV 
. . 

for the range 653 to 740 mlz, 28 eV for the range 740 to 820 mlz, 32 eV for the range 820 

to 1,200 mlz, and 55 eV for the range 1,200 to 1,600 mlz. (ii) For triply charged ions, the 

collision energies are 14 eV for the range 435 to 547 m/z, 19 eV for the range 547 to 605 

mJz, 24 eV for the range 605 to 950 m/z, and 35 eV for mJz higher than 950 mJz. 

Mass spectrometrie data were acquired by employing the Data Directed Analysis 

feature available on MassLynx (Micromass) operating software with a l, 1,4 dut y cycle 

(1 second in MS mode 1 peptide selected for fragmentation, maximum of 4 seconds in 

MSIMS acquisition mode). MSIMS raw data were transferred from the QTOF Micro 

cC)mputer to a 50 terabytes server and automatically manipulated for generation of 

peaklists by employing Distiller version 1.1 

(http://www.matrixscience.c~mldistiller.htmls) software with peak picking parameters set 

at 20 as for Signal Noise Ration (SNR) and at 0.7 for Correlation Threshold (CT). The 

peaklisted data was then searched against a copy of the National Center for 

Biotechnology Information (NCBI) non redundant 

(ftp:/lftp.ncbi.nih.gov/blastldb/FASTAlnr.gz) data base (NCBI nrdb January 05, 2007}by 

employing Mascot (http://www.matrixscience.com) version 2.1.04, and restricting the 

search to up to 1 missed (trypsin) cleavage, fixed carbamidomethyl alkylation of 

cysteines, variable oxidation of Methionine, 0.5 mass unit tolerance on parent and 

fragment ions, and monoisotopic. The resulting Iist of peptide identifications was then 

processed to eliminate those likely to have arised by chance. Thus, only peptide 

identifications with a probability of occurring by chance of < 0.05 were retained (i.e. only 
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those peptides for which the Mascot Peptide Score was > the Id Score were retained). 

Validation studies in which spectra were searched against a random data base, showed 

that a Mascot score at the 5% confidence level was quite conservative; the actual false 

. positive rate was estimated to - 1.5% estimated by searching a randomized copy of the 

database. The search was limited to the Rattus taxonomy. 

Mascot results from bands 1 to 28 (based on spectra assigned to tryptic peptide 

sequences at the 95% confidence level) generated peptide identifications were then linked 

to the proteins and sorted by protein to produce an initial list of protein identifications. 

However, this list was quite redundant since about 5% of the spectra match more than 

one . peptide and 40% of the peptides identified occur in more than one protein. 

Consequently, the protein lists were processed by a grouping algorithm (Kearney et al., 

2005) to generate a list of proteins defined by distinct sets of proteins i.e. the minimum 

nwnber of protein sequences needed to explain the peptides observed. 

Unique peptides were peptides that contained at least one or more amino acids 

that pointed to a single protein. Sorne proteins in protein families like the cytochrorile 

p450 family of proteins yielded peptides that were identical in amino acid sequence; 

these peptides were considered as shared peptides. The growing algorithm of Kearney 

and colleagues (Kearney et al., 2005) attributed shared peptides to specific proteins based 

on the proportion of unique peptides attributed to the proteins within a protein family that 

shared the same peptide, for example if protein A of a specific family had 2 unique 

peptides and protein B of this same family had 4 unique peptides and these proteins 

shared 6 peptides protein A would be attributed 2 of the shared peptides for a total of 4 

peptides for prote in A. Four of the shared peptides were attributed to protein B for a total 

of 8 peptides for prote in B. If there are no unique peptides for prote in A or protein B but 

only "shared peptides", they are identified by family name. 

The Oncomine (Rhodes et al., 2007) Database was' used to compare our rat ER 

protein expression data with protein expression data from hwnan cancer tissues and 

nonnal controls. 



1 SOS: Sodium dodecyl sulfate: 

2 HPLC: High-perfonnance liquid chromatography. 

3 QTOF: Quadrupole-time-of-flight. 

28 
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Database sE9"Ching 

Protein solution Peptides 

LC/LC-MSIMS 

FIGURE 4: Diagram for simplified process of proteomics. The tissue is first subjected 

to fractionation to obtain high purity subcellular fractions. This is followed by enzymatic 

digestion of the proteins into smaller units (peptides). The total amount of peptides is 

processed by the mass spectrometer and sorted according to different factors including 

the mass of the peptide and its charge. The sequence of the peptide is detennined by 

fragmentation. The MSIMS step involves first detennination of the mass of the peptide. 

The dominant ions in the MS spectrum are selected for the transmission through a first 

analyser, then fragmented in a collision cell and their fragments analysed in a second 

analyser to produce a MSIMS spectrum. The sequence (arnino acid backbone) is 

detennined and the data obtained are fed to a special computer software (Mascot) to 

obtain a distinct protein identity (From Yates et al., 2(05). 
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4 Gel electrophoresis experiments 

One-dimensional gel electrophoresis, mini-gel was run in a Bio-Rad Mini-Protean 

electrophoresis cell (Bio-Rad Laboratories Inc., Hercules, Califomia, USA). This mini­

gel was a gradient one composed of resolving gel (RGI 7-15%) at the bottom and 

superiorlstacking gel (SG/5%). Both types of gels are composed of 6 reagents with 

different amounts as follows: 

- Bidistilled water (5.35 ml (7%)~ 1.2 ml (15%) SG and 5.55 ml RG. 

- Acrylamide mixture (30%) (2.3 (7%) ml, 5 ml (15%) SG and 1.7 ml RG). 

- TRIS 1_ HCl 2 (pH (8.8 SG, 6.8 RG) (2.25 (7%, 15 %), ml SG, 2.5 ml RG). 

- SOS 3 (10%) (100 III SG, RG), TEMEO 4 (10 III SG, RG). 
, 

- Finally, a freshly prepared APS 5 (10%) (10 III (7 %, 15 %) SG and 100 III RG). 

The latter 2 reagents are catalysts of gel formation and so are added just before pouring in 

the gel. 

Proteins samples were loaded to a cOnstant quantity of 40 Ill/well, Laemmli 

sample buffer was added to each protein sample except the protein sample standards 

(since the Laemmli is already.included by the manufacturer). Then the prepared samples 

were boiled for about 5 min to break the disulphide bonds by the reducing agent (6-

mercaptoethanol) found in Laemmli sample buffer and to enhance the prote in samples to . 

be charged negatively upon being in contact with SOS dwing electrophoresis. Each 

protein sample was loaded in its appropriate gel weil. The Bio Rad protein standards used 

had a range from 250 to 10 kD. To separate the loaded prote in samples, electrophoresis 

(at a constant 200 Volts) was started until migration of proteins in their correspondent 

wells was completed. This was assured by observing the bromophenol front blue dye (a 
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component of Laemmli) to he approaching the lower end of glass plates. The 

bromophenol molecule is a small molecule that migrates rapidly towards the bottom of 

the 'gel. 

1 TRIS: Tishydroxymethylaminomethane, 

2 Hel: Hydrochloric acid. 

f SDS: Sodium dodecyl sulfate. 

4 TEMED: Tetramethylethylenediamine, 

S APS: Ammonium persulfate. 

5 Immunoblot <Western blotl experiments 

At the end of the gel electrophoresis, the separation of the proteins was achieved. 

The transfer of the gel proteins to nitrocellulose membrane was achieved by using a Bio-

, Rad Mini-Transblot cell (Bio-Rad Laboratories Inc., Hercules, California, USA). Blotting 

on the nitrocellulose membrane, 0.2 ~m (Bio-Rad Laboratories Inc., Hercules, Califomia, 

USA) was successful when we could observe the complete transfer of the Precision Plus 

Protein Standards, Dual Color (Bio-Rad Laboratories Inc., Hercules, California, USA) on 

the membrane. Hence, the membrane was placed in a blocking solution (containing 5% 

milk and 0.2% Tween-20 in PBS 1 IX pH 7.4) at room temperature for 1 hour. The milk 

proteins would saturate the free non-specifie binding sites on our studied proteins; this 

could prevent the non-specific antibody reaction and consequently the occurrence of 

background effect latter on. After this step of non-specific saturation of protein binding 

sites, the membrane was incubated with the primary antibody (previously diluted in the 

blocking solution) at 4°C over night. A variety of primary antibodies were used in our 

studies, these are summarized in Table 1. After 3 times ofwashings (each for 10 minutes) 

with the blocking solution, the membrane was incubated with the horseradish peroxidase-
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conjugated secondary antibody at room J'OC for i hour. After another set of 3 washings 

(each for 10 minutes) with the blocking solution then final wash with bidistilled water, 

the protein was revealed using a freshly prepared Western Lightning Chemihnninescence 

Reagent Plus Kit (Perkin-Elmer Life Sciences Inc., Boston, Massachusetts, USA). 

Localisation of the secondary antibodies on the blots was done by using Kodak Biomax 

ML scientific imaging film (Scientific Imaging Systems Eastman Kodak Company, New 

Haven, Connecticut, USA). 

1 PBS: Phosphate buffered saline. 
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TABLE 1: List of the primary antibodies used in the immunoblot experiments. 

Eighteen antibodies 1 were used. AIl of them are polyclonal except for the anti-CYP p450 

2Cll and the anti- phosphotyrosine which are monoclonal. They have been used to probe 

microsomal and/or cytosolic fractions derived from control rat liver and dissected liver 

tumor nodules. 

Antibody .lv/Mnnn Animal Company 
clonai 

Anti-rAF AR 1 Polyclonal Rabbit kindly provided by John Hayes, 
University of Dundee, Dundee, Scotland 

Anti-Bip/GRP 78 Polyclonal Rabbit ABCAM Inc., Cambridge, MA, USA 
Anti-A TP citrate Polycl"--' . 1 Rabbit New England Biolabs Ltd. Pickering, 
Iyase Ontario, Canada 
Anti-CYP 450 2C Il Monoclonal Mouse Tekniscience Inc.; Terrebonne, Quebec, 

Canada 
Anti-CYP 450 4A z Polyclonal Rabbit Tekniscience Inc., Terrebonne, Quebec, 

Canada 
Anti-NADPH .. CYP Polyclonal Sheep Chemicon International, Inc., Temecula 
p450 reductase California, U.S.A 
Anti-eEF 2 Polyclonal Rabbit New England Biolabs Ltd. Pickering, 

Ontario, Canada 
Anti-eIF 20. Polyclonal Rabbit New England Biolabs Ltd. Pickering, 

Ontario, Canada 
Anti-GAS 2 Polyclonal Rabbit kindly provided by Claudio Schneider 

Laboratorio Nazionale Consorzio 
Interuniversitario Biotecnologie, Trieste, 
Italy 

Anti-LRPIMVP Polyclonal Goat Santa Cruz Biotechnology, Inc., Santa 
Cruz, CA, USA 

Anti-P A2G4/EBP 1 Polyclonal Chicken Tekniscience Tnc., Terrebonne, Quebec, 
Canada 

Anti-PABP 1 Polyclonal Rabbit New England Biolabs Ltd. Pickering, 
Ontario, Canada 

Anti-phosphotyrosine Monoclonal Mouse New England Biolabs Ltd. Pickering, 
Ontario, Canada 

Anti-RER Polyclonal Rabbit (Paiement and Roy, 1988) 
Anti-phospho-S6 Polyclonal Rabbit New England Biolabs Ltd. Pickering, 
ribosomal protein 3 Ontario, Canada 

i Anti-hnRNP K Polyclonal Rabbit Santa Cruz Biotechnology, Inc., Santa 
Cruz, CA, USA 

Anti-VCP/P97 Polyclonal Rabbit Santa Cruz Biotechnology, Inc., Santa 
Cruz, CA, USA 

Anti-YB 1 Polyclonal Goat Santa Cruz Biotechnology, Ine., Santa 
Cruz, CA, USA 
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1 Anti~rAFAR 1 (anti-rat aflatoxin BI aldehyde reductase member 1), anti-Bip/GRP 78 (anti­

immunoglobulin heavy ehain-binding proteinl anti-78 kDa glueose-regulated protein preeursor), 

anti-A TP citrate Iyase (anti-denosine triphosphate), anti-CYP· 450 2C Il (anti-cytochrome p450 

family protein), anti-CYP 450 4A (anti-cytoehrome p4S0 family protein), anti-NADPH-CYP 

p450 reductase (anti-nicotinamide adenine dinucleotide phosphate",cytochrome p450 reductase), 

anti-eEF 2 (anti-eukaryotic translation elongation factor 2), anti-eIF 2a (anti-eukaryotie 

translation initiation factor 2, suburiit t alpha), anti-GAS 2 (anti-growth arrest-specifie protein 2), 

anti-LRP/MVP (anti-Iung resistanee related proteinlanti-major vautt prote in), anti-PA2G4/EBP 1 

(anti-proliferation-assoeiated prote in 2G4/anti-ErbB3 binding prote in 1), anti-PABP 1 (anti­

polyadenylate-binding prote in lIanti-poly(A)-binding protein 1), anti-phosphotyrosine, anti-RER 

(and-rough endoplasmic retieulum), anti-phospho-S6 ribosomal prote in, anti-hnRNP K (anti­

heterogeneous nuelear ribonueleoprotein eomplex K), anti-VCP1P97 (anti-valosine-containing 

proteinlanti-p97) and and-YB J (anti-Y box prote in 1). 

2 The primary antibody anti-CYP 450 4A reeognises CYP 450 4AJ, CYP 450 4A2 and CYP 450 

4A3. 

3 The primary antibodyanti-phospho-S6 ribosomal protein detects ribosomaJ S6 prote in when it is 

only phosphorylated. 

6 Densitometry calculations 

Densitometry was carried out to detennine the relative concentration of proteins in 

. control rat liver and dissected liver tumor nodules. Kodak. films from immunblots were 

scanned and analyzed using densitometric computer software namely Image J and Scion 

Image. The basic steps used are summarized as follows: 

6.1 ImageJ (National Institutes of Health, USA) 1 

- Immunoblot experiments werèdone on subcellular fractions as described before. 
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- The immunoblots obtained for different fractions were filmed using Kodak films then 

scanned. 

- NIH ImageJ version 1.38x densitometry software program was used to· obtain the 

density of the scanned immunolabeled bands. The software created tracings with peaks 

that has height and area information, which corresponded with relative stain intensity. 

Image J would calculate the amount for each tracing. This data was then transferred to 

Microsoft Office Excel for comparison in order to obtain at the end the relative quantity 

of each of these fractions. 

- Finally, the curves and the measurements obtained were saved for our own records on 

the computer. 

- Statistics was used to confmn different amounts of proteins determined by 

densitometry. 

6.2 Scion Image (Scion Corporation, Maryland, USA) 2 

Scion Image software program was also used. It is based on the same concept as 

ImageJ but the images must be initially in a «TIF» format, to work with this program. In 

addition, the background for thh ECL signal was calculated for each lane containing the 

selected band (s) and subtracted from each selected immunolabeled band in thislane in 

order to get the rea1 densitometric value for the studied band. 

. 1 http://rsbweb.nih.gov/ij/docs/pdfsllmageJ.pdf. 

2 http://www.scioncorp.com 
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7 Statistical data analysis: Ratio and P-value calculations 

We carried out statistical analysis to compare the number of peptides found in ER 

fractions from control rat liver with fractions from dissected liver tumor nodules. Ratios 

of peptide counts were done as described below. 

7.1 Calculanon of ranos of total peptides 

The equation summarizing the calculation process of ratio of total peptides for a 

selected protein: 

R SMNod = NI +N2+N3+N4 = 4N 

SMCtl NI +N2+N3+N4 4N 

R= Ratio of the sum of peptides of a selected protein in SMNod divided by the sum of 

peptides of the same protein in SMCtl. 

SMNod= Smooth microsomes from control rat liver. 

SMCtl= Smooth microsomes from dissected liver tumor nodules. 

NI = Number of total peptides in MS experiment number 1. 

N2= Number of total peptides in MS experiment number 2. 

N3= Number of total peptides in MS experiment number 3. 

N4= Number of total peptides in MS experlment number 4. 

4N= Number of total peptides in total of 4 MS experiments. 

7.2 Calculanon of P-value (test ofsignifieance for dift'erentially expressed proteins) 

P-value refers to difference between the means of the peptid~s between tumor and 

control ER fractions. Data sets obtained via Excel Microsoft office program were 

analyzed using SPSS (version 16.0, SPSS Science) 1. Paired-samples T-Test was used to 

determine P-va/ue. The means of the total peptides fora protein wereconsidered 
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significantly different between control and treated when they gave a P-value equal to or 

,less than 0.05 .. 

1 http:lÎwww.spss.comlscienceproducts.htm 
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RESULTS 

Most of the comparison of proteins was done usmg smooth nucrosomes. 

However, in certain cases data obtained using rough microsomes from dissected liver 

tumor nodules are also included for comparison with results obtained using smQoth 

microsomes of the same origin. 

PART A: Mass soectrometry (MS) analysis 

A.t Known proteins 

A.I.I Comparison of our results with the results reported in the cancer literature 

We compared differentially expressed proteins detected in our study with 

differentially expressed proteins that had been described in cancer literature. 

Differentially expressed proteins may be either proteins overexpressed in tumor· ER or 

proteins underexpressed in tumor ER. We have compared our mass spectrometry results 

with recent human liver cancer literature. The cancer literature has identified a number of 

proteins as being overexpressed or underexpressed in tumor tissues. We have detected the 

same proteins to he overexpressedor underexpressed in ER fractions from rat liver tumor 

nodules. Our results are comparable to those reported in the cancer literature based on the 

quantitative definition for differential expression. In our study, we indicate which , 

proteins are differentially expressed and point out which of these have already been 

reported as being difTerentially expressed in the human cancer literature. The exact 

amoun,ts of overexpression or underexpression cannot he compared because the 

quantitative procedures used by the cancer literature were considerably different from 

ours. The cancer lite rature used difTerent techniques; like two-dimensional gel 
, 

electrophoresis and mass spectrometry (Blanc et al., 2005; Takashima et al., 2006; 

Yokoyama et al., 2004), proteomics and serologic analysis of recombinant cDNA 
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expression libraries (Takashima et al., 2006). In addition, our data retlects a comparison 

of organelle proteomics versus cell and tissues proteomics as weIl as a comparison of 

proteomics versus DNA microarray (Simpson and Dorow, 2001). We first looked at 

overexpressed then underexpressed proteins. Key point to mention is that all literature 

studied cells and tissues, while our study was done at the level of an organelle, the ER. 

Overexpress~d and underxpressed data are shown in Table forms (Tables 2-A and 2-B 

respectively). We also described the main function of each protein shown in each Table. 

A.I.I.I Overexpressed proteins reported in cancer literature 

Overexpressed proteins can be defined in two ways. First, as regard our study, 

they are defined, as the proteins with total number of peptides in the tumor ER were more 

than the total number of peptides in control ER fractions. However in the literature used 

as reference in this Table the overexpressed proteins were defined for example by using 

two-dimensional gel electrophoresis maps, the ratio of spot intensities of HCC and non­

tumor tissues was used, a positive ratio indicated overexpression in the tumor (Blanc et 

al., 2005; Yokoyama et al., 2004). However, different study methods were used as 

follows: in one study, immunoblot was used to identify immunoreactive spots with 

stronger staining intensity in tumoral tissues than in corresponding normal liver tissues 

(Takashima et al., 2006) and in a second study reports of human proteomic analyses of 

tumor tissues and non-tumor tissues sampled from HCC were collected, in order to 

classify the proteins into different functional categories (Kuramitsu and Nakamura, 

2006). 

Our results were compared with four different studies on human HCC. Table 2-A 

shows the results of our comparison. 
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TABLE 2-A: Overexpressed proteins in ER of HCC: Comparison with other studies 

on HCC. The overexpression (ratio, R) 1 of the total peptides of specifie proteins of 

smooth microsomes (SM) from dissected liver turnor nodules (Nod) as regard from 

control rat liver (Cd) [SMNodlSMCtl] from 4 repeated mass spectrometry experiments 

(4N) were calculated. 

Protein Function L Total peptides Overexpression Reference (s) 
. SMNod/SMCtl SMNod/SMCtl 

G1utamate-cysteine Metabolism 9.5/0 - (Blanc et al., 2005) 
ligase 
Vimentin Cytoskeleton 1.5/0 - (Kuramitsu and 

Nakamura, 2006) 
N ucleophosmin Prote in 1.3/0 - (Blanc et al., 2005; 

synthesis Kuramitsu and 
Nakamura, 2006) 

Transaldolase Metabolism 10.3/1.3 8.2 (Blanc et al., 2005) 
Vesicle amine Traffic 2/0.25 8 (Blanc et al., 2005) 
transport protein 1 
Annexin II Lipid 7.5/1 7.5 (Kuramitsu and 

metabolism Nakamura, 2006) 
Apolipoprotein A-I Secretory 5.5/1 5.5 (Blanc et al., 2005) 

prote in 
Annexin V Lipid 7/2.3 3.1 (Kuramitsu and 

metabolism Nakamura, 2006) 
hnRNP K mRNA 14.5/6.3 2.3 (Blanc et al., 2005; 

metabolism Kuramitsu and 
Nakamura, 2006) 

Eukaryotic Protein 4.5/2.5 1.8 (Kuramitsu and 
translation initiation synthesis N akamu ra, 2006) 
factor 5A-l (eIF 
5A) 
Elongation factor 2 Prote in 34.3/19 1.8 (Kuramitsu and 

synthesis Nakamura, 2006) 
rAFAR2 Detoxification 2.5/1.5 1.7 (Kuramitsu and 

Nakamura, 2006) 
HSP60 Folding 5/3.3 1.5 (Blanc et al., 2005; 

protein Kuramitsu and 
Nakamura, 2006) 

G lyceraldehyde-3- Metabolism 25.5/19.5 1.3 (Takashima etaI., 
phosphate 2006) 
dehydrogenase 
Heat shock prote in Folding 28.2/23.6 1.2 (Takashima et al., 
8 (HSP 70) prote in 2006; Yokoyama 

et al., 2004) 
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1 R SMNod :::: NI +N2+N3+N4 :::: lli 
SMCtl NI +N2+N3+N4 4N 

2 Functional annotations were obtained primarily from Gilchrist and colleagues (2006). 

Table 2-A, shows proteins that we observed to be overexpressed in tumor ER and 

which were also reported to be.overexpressed in the cancer literature. Many of the se 

proteins are cytosolic proteins (Swiss-prot database, http://ca.expasy.org/sprotl). These 

results suggest that many studies reported in the literature detect very few ER proteins in 

tumor cells and tissues. We have chosen to discuss details of the following proteins for 

two reasons. One they are highly overexpressed in our study and two they have been 

reported by others either to play an important role in ER fraction or to be differentially 

expressed in cancer. Proteins· are statistically significant when l'-value is :s O.OS (this 

means that the total number of peptides for a given protein was determined to be 

statistically different when compared between tumor and control membranes. A statistical 

difference was considered significant when the· comparison of the means of the total 

peptides gave a P-value is ::; 0.05 by paired-samples T tests). Overexpressed proteins of 

note in cancer literature are as follows: 

- Transaldolase plays a role in metabolism. Itderives this from being a key enzyme in the 

pentose phosphate pathway (non-oxidative branch). This metabolic pathway enzyme 

plays a role in glucose metabolism at the level of the ER (Boren et al., 2006; Bublitz and 

Steavenson, 1988; Heinrich et al., 1976). In Table 2-A, it is the most overexpressed 

prote in in tumor ER (8-foid increase). 

- Annexin II is an immunohistochemical tumor marker studied in cancer, examples 

include high-grade prostate cancer (Banerjee et ai., 2003) and renaI cell carcinoma 

(Zimmermann et ai., 2004). It is statistically significant (P = 0.02). 
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- Heterogeneous nuclear nbonuCIeoprotein K (hnRNP K) belongs to the hnRNP family 

(Habelhah et al., 2001). The hnRNPs are rnRNA-binding proteins and are involved in 

rnRNA metilbolism in the cytoplasm and nucleus (Lavoie and Paiement, 2008). Hence, 

this family plays a role in many processes that compose gene expression (Palaniswamy et 

al., 2006). In our data, hnRNP K is found in ER. In colorectal adenocarcinoma hnRNP K 

had been studied as a potential new marker in cancer (Klimek-Tomczak et al., 2006). It is 

statistically significant (P = 0.04). 

- Rat aflatoxin BI aldehyde reductase member 2 (rAFAR 2) is a well-known cytosolic 

prote in. It belongs to the aldo-keto reductase superfamily and is involved in aflatoxin 

detoxification (Knight et al., 1999; Praml et al., 2003; Zeindl-Eberhart et al., 2001). It is 

normal for us to observe overexpression of rAF AR 2 in our study because rat was treated 

with aflatoxin BI. Why this protein was reported overexpressed in human HCC 

(Kuramitsu and Nakamura, 2006) is not known. 

- Vimentin is an intermediate filament cytoskeleton protein fOWld in the cytoplas~ 

(Lazarides, 1982). It is considered an immWlohistochemical marker for HCC metastases 

(Hu et al., 2004). 

- Nuc1eophosmin is involved in rnRNA metabolism (Palaniswamy et al., 2006). It acts as 

an inhibitor of apoptosis since it naturally inactivates p53 suppressor tumor protein 

leading to tumor progression (Mai et al., 2006; Maiguel et al., 2004). It is proposed as a 

new potential immWlohistochemical marker for human HCC (YWl et al., 2007). 

- Elongation factor 2 (EF 2) is involved in prote in synthesis (Riis, 1996) and RNA 

metabolism (Kaneda et al., 1984). Phosphorylation of EF 2 plays a role in the 

proliferation ofboth normal and malignant glia cells in rat (Bagaglio and Hait, 1994). 

In summary, we detected many overexpressed proteins. Sorne of the se proteins 

are expected like proteins that are involved in protein synthesis, but sorne of these are 
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unexpected like annexin and transaldolase. The unexpected proteins could be either 

contamination of ER fractions or they could be associated with ER for undefined reason. 

A.1.1.2 Underexpressed proteins reported in cancer literature 

Underexpressed proteins can be defined in different ways. In our study they are 

defined as the pro teins showing fewer peptides in the tumor ER compared with control 

ER. Other studies have quantified proteins using two-dimensional PAGE. In such studies 

prote in spot intensities were quantified and undérexpressed proteins defined as those 

proteins in tumor samples that had lower intensities compared with those from control 

samples (Blanc et al., 2005; Chignard et al., 2006; Takashima et al., 2006; Yokoyama et 

al., 2004). 

Our results were compared with four different studies on human HCC. Table 2-B 

shows the results of our comparison. 

TABLE 2-B: Underexpressed proteins in ER of HCC: Comparison with other 

studies on HCC. This Table is based on the same idea as (Table 2-A). The 

underexpression (ratio, R) 1 of the total peptides of smooth microsomes (SM) from 

control rat liver (Ct!) as· regard to those from dissected liver tumor nodules (Nod) 

[SMNodlSMCtI] from 4 repeated mass spectrometry experiments (4N) were calculated. 
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Protein Function l 
1 

Total Underexpressi Reference (s) 
peptides on 
SMNodJ SMNodJ 
SMCtl SMCtl 

Phosphoenol Pyruvate Carbohydrate 0/2.8 0 (Blanc et al., 
.carboxykinase metabolism • 2005) 

Glutathione peroxidase Detoxification 0.5/4.5 0.1 (Kuramitsu and 
Nakamura, 2006) 

Phenylalanine Metabolism 0.312.3 0.1 (Blanc et al., 
hydroxylase 2005) 
Ketohexokinase Carbohydrate 0.8/3.8 0.2 (Blanc et al., 

metabolism 2005; Kurarnitsu 
and Nakarnura, 
2006; Yokoyama 
et al., 2004) 

3-hydroxy-3- Lipid metabolism 0.5/2.3 0.2 (Blanc et al., 
methylglutaryl-coenzyme 2005) 
A synthase2 
Betaine homocysteine Metabolism 8.5/46.9 0.2 (Blanc et aL, 
methyltransfearse 2005) 
Argininosuccinate Metabolism 5/31 0.2 (Kurarnitsu and 
synthase Nakamura, 2006) 
3-hydroxyanthranilate Metabolism \ 1/3.3 0.3 (Blanc et al., 

-dioxygenase 2005) 
1,6- Carbohydrate 2.8/10 0.3 (Blanc et al., 
tase metabolism 2005) 

Fatty acid binding prote in Lipid metabolism 6/18.5 0.3 (Blanc et al., 
2005) 

F umary\acetoacetase MetaboUsm 6/\3.8 0.4 (Kuramitsu and 
Nakarnura, 2006) 

Arginase 1 Metabolism 16.3/40.3 0.4 (Chignard et al., 
2006; Kuramitsu 
and Nakamura, 
2006; Yokoyama 

! et al., 2004) . 
• Regucalcin Signalisation 6/11.5 0.5 (Blanc et al., 

2005) 
Formiminotransferase Metabolism 8/14.8 0.5 (Blanc et al., 
cyclodesaminase 2005) 
Annexin VI Lipid metabolism 6.3/\2.8 0.5 (Blanc et al., 

2005) 
Aldehyde dehydrogenase Metabolism 0.5/1 0.5 (Blanc et al., 
9 2005) 
Adenosyl Metabolism 3/5.5 0.5 (Blanc et aL, 
homocysteinase 2005; Kurarnitsu 

and Nakamura, 
2006) 

Aldolase B Carbohydrate 12.3/20.8 0.6 (Kuramitsu and 
metabolism Nakamura, 2006) 

Superoxide dismutase Metabolism 3.8/5.8 0.7 (Chignard et al., 
2006) 

Triosephosphate Carbohydrate 5.8/8.3 0.7 (Kuramitsu and 
isomerase metabolism Nakamura, 2006) • 
Protein disulfide Metabolism of 8.8/,l 1.8 0.7 (KuramÎtsu and 
Îsomerase disulfide bonds Nakarnura, 2006) 
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1 R SMNod :;:; N 1 +N2+N3+N4 ;:: 4N 

SMCtl N 1 +N2+N3+N4 ,4N 

2 Functional annotations were obtained primarily From Gilchrist and colleagues (2006). 

Table 2-B, shows proteins we observed to be underexpressed in tumor ER and 

which were aIso reported to he underexpressed in the cancer literature. Many of these 

proteins are cytosolic proteins (Swiss-prot database, http://ca.expasy.orglsprotl). These 

results suggest that many studies reported in the literature detect very few ER proteins in 

tumor cells and tissues. We have chosen to discuss details of the following proteins for 

two reasons. One they are highly underexpressed in our study and two they have been 

reported by others either to play an important role in ER fraction or to he differentially 

expressed in cancer. Proteins are statisticaIly significant when P-value is ::::: 0.05 (this 

means that the total number of peptides for a given protein was determined to he 

statisticaIly different when compared between tumor and control membranes. A statisticaI 

difference was considered significant when the comparison of the means of the total 

peptides gave a P-value is ::::: 0.05 by paired-samples T tests). Underexpressed proteins of 

note in cancer literature are as follows: 

- Ketohexokinase (fructokinase) is involved in carbohydrate metabolism. In the liver, it 

catalyses the phosphorylation of fructose to fructose-I-phosphate, the latter will follow 

the glycolytic pathway (Hwa et aI., 2006). In our data, it is detected as an underexpressed 

protein, this is also the case in a previous study for renaI tumor in human (Hwa et al., 

2006). It is statisticaIly significant (P = 0.02). 

- Fructose-l,6-biphosphatase is involved in carbohydrate metabolism. It is a key 

regulatory enzyme in gluconeogenesis. It catalyses the hydrolysis of fructose-l,6-

bisphosphate into fructose-6-phosphate and inorganic phosphate (Ke et al., 1989; Lomer 

et aI., 2001). In our data, it is detected as an underexpressed protein; this is in consistent 
.. , 
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with a previous study for Hee in hwnan (Taketa et al., 1988). It is statistically significant 

(P = 0.003). 

- Fatty acid binding protein is involved in lipid metabolism (Glatz et al., 2002; Storch and 

Thumser, 2000). It is a cytosolic protein (Mansbach and DowelI, 2000) which is 

important for intracellular binding and transport of fatty acids (Storch and Thumser, 

. 2000) from apical membrane of enterocyte to ER (Black, 2007). It has been proposed as 

an immunohistochemical marker for human Hee (Suzuki et al., 1990). It is statistically 

_ significant (P = 0.02). 

- Regucalcin is a calcium-binding protein (Yamaguchi and Yamamoto, 1975) and is 

found in the cytoplasm ofliver cells (Takahashi and Yamaguchi, 1999). It is involved in 

the regulation of calcium metabolism and liver cell functions related to calcium (Akhter 

et al., 2006; Murata and Yamaguchi, 1998). In Table 2-B, it is observed as 

underexpressed. Interestingly, it was detected in a previous study thai regucalcin gene 

expression was suppressed in rat Hee induced by a chemical carcinogen, 3'-methyl-4-

dimethylaminoazobenzene (Makino and Yamaguchi, 1996). It is statistically'significant 

(P = 0.008). 

- Protein disulfide isomerase (PDI) is present in ER of liver cells (Akagi et al., 1988a). 

AIso, it is found in the ER, Golgi, plasma membrane and secretory lumen of pancreatic 

exocrine cells (Akagi et al., 1988b). However, this association with the plasma membrane 

is due to a secretion of PDI in the case of pancreatic acinar cells. This is an exceptional 

situation and not the normal location for PDI. Under normal conditions it is associated 

only with the ER and is often used as a molecular marker for the ER (Khajavi et al., 

2005). Therefore, it is an interesting protein since it might he also secreted in tumor cells. 

It has been described in association with major histocompatibility complex class l chain­

related prote in A at the surface of multiple myeloma cells (Jinushi et al., 2008) as well as 

the surface of solid tumor cells (Kaiser et al., 2007). 

In conclusion, many of underexpressed proteins detected in tumor ER were 

proteins involved in general metabolism. As regard carbohydrate metabolism, there are 
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many related proteins, examples include, ketohexokinase (glycolysis) and fructose-l,6-

biphosphatase (gluconeogenesis). This is in concordance with previous studies that 

indicated an altered carbohydrate metabolism in HCC (Lee et al., 2005), and in 

hematological cancers (Boag et al., 2006): 

A.l.l.3 Summary of comparison of our results with the results reported in the 

cancer literature 

We observed many proteins that have been described as being differentially 

expressed in the cancer literature. Our results are different and new because we showed 

many of these proteins in a subcompartment of the ceIl, the ER and we have observed 

new proteins notpreviously described by the cancer literature in our study (described 

below). 

A.l.l.4 DifferentiaUy expressed phosphotyrosine protems reported in cancer 

literature 

The ER is a membrane·boWld dynamic compartment that functions by interacting 
, 

with cytoplasmic and luminal-soluble proteins. Among the proteins that interact with the 

ER membrane in a transient manner are tyrosine-phosphorylated proteins (Lavoie and 

Paiement, 2008). Table 3 shows examples of ER·associated proteins that bave been 

identified as tyrosine-phosphorylated proteins (Rush et al., 2005). We also descrihed the 

main function of each protein sbown in this Table. 

Overexpi'essed data are shown in a Table forro (Table 3). Many proteins that are . 

observed to he overexpressed in tumor ER have previously been described by Rush and 

colleagues (Rush et al., 2005). Some of these proteins are shown in Table 3. In the latter 

. study, phosphoproteins were identified :from human tumor celllines by the detection of 

tyrosine-phosphorylated peptides via phosphoproteomic approach using mass 

spectrometry and immunoaffinity profiling. 
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TABLE 3: DifferentiaUy expressed phosphotyrosine proteins reported in cancer 

literature (Rush et al., 2005). The overexpression (ratio, R) 1 of the total peptid~s of 

smooth microsomes (SM) from control rat liver (Ctl) as regard to those from dissected 

liver tumor nodules (Nod) [SMNod/SMCtl] from 4 repeated mass spectrometry 

experiments (4N) were calculated. 

Prote in Function 2 Total peptides Overexpression 
(Rush et al., 2005) SMNod/SMCtl SMNod/SMCtl 

Annexin II Metabolism 7.5/1 7.5 
Annexin l Metabolism 6/0 6/0 
Eukaryotic translation Protein synthe si s 3/0.5 6 
initiation factor 3, subunit 7 
(zeta) (eiF 3 subunit 7) 
Poly A binding protein 1 Protein synthesis/ 10.5/2.8 3.8 
(PABP 1) folding 
Lung resistance related Detoxification 34/10 3.4 
proteinlmajor vault protein 
(LRPIMVP) 
y box protein 1 (YB 1) Transcription 3/1 3 
ATP citrate lyase Lipid 16.8/8.5 2 

Metabolism 
eukaryotic translation Protein synthe sis 11.517.8 1.5 
elongation factor 1 alpha 1 
(eEF la) 
Receptor of activated Signaling 12.5/9.3 1.3 
protein kinase C, 1 (RACK 
1) 

1 R SMNod = NI +N2+N3+N4 = 4N 

SMCtl Nl+N2+N3+N4 4N 

2 Functional annotations were obtained primarily from Gilchrist and colleagues (2006). 
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Table 3, shows proteins we observed to he overexpressed and underexpressed in 

tumor ER in our mass spectrometry data. Many ofthese proteins are cytosolic (examples 

include annexin l, PABP 1, MVP, YB 1, ATP citrate lyase) (Gilchrist et al., 2006). 

Since the identified proteins are involved in RNA, DNA and lipid metabolism, the 

observations prompt interest for the identification of tyrosine kinases that are responsible 

for tyrosine phosphorylation of these molecules and proteins. The finding' of such 

tyrosine kinases might lead to potential drug targets for treatrnent of cancer. 

A.l.2 Differentially expressed proteins in ER from disseded liver tumor nodules: 

Our new fmdings 

We observed above many proteins to be differentially expressed in tumor ER and 

many of these have previously been described in human HCC literature. In this ,section, 

we describe differentially expressed proteins of tumor ER that have not attracted much 

attention in the cancer literature. Such proteins could have cancer relevance or they may 

,be relevant to carcinogenesis in general. Data for overexpressed and underxpressed 

proteinsare shown in Table forms (Tables 4-A and 4-B respectively). We also described 

the main function of each protein shown in each Table. 

A.I.2.1 Overexpressed proteins in ER from disseeted liver tnmor nodules 

Overexpressed proteins are defined in our study, as the proteins with total number 

of. peptides in the tumor ER were more than the total number of peptides in control ER 

fractions. Our results showed proteins that were overexpressed only in tumor· ER. Many 

overexpressed proteins (Table 4-A) are involved in metabolism. 

TABLE 4-A: Most overexpressed proteins in ER from disseded liver tumor 

nodules. The overexpression (ratio, R) 1 of the total peptides of smoothmicrosomes (SM) 

from control rat liver (Ctl) as regard to those from dissected liver tumor nodules (Nod) 

[SMNodlSMCtl] from 4 repeated mass spectrometry experiments (4N) were calculated. 
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Protein Function j Total Overexpression 
peptides SMNodi 
SMNodi SMCtl 
SMCtI 

Annexin 1 Lipid metabolism 6/0 -
Glucose-6-phosphate dehydrogenase Carbohydrate 3/0 -

metabolism 
UDP-glucose 6-dehydrogenase Metabolism 21/0 -
Cytokeratin 19 Cytoskeleton 6.8/0 -
Uridine 5'-diphospho (UDP) Detoxification 32.6/0.8 40 
glucuronosyltransferase 1 A6 
rAFAR 1 Detoxification 17.8/0.8 23.6 
Glutathione S-transferase pi Detoxification 54.3/2.5 21.7 
(GST pi) 
Carbonic anhydrase 2 Metabolism 13.5/0.8 18 
Mannose 6-phosphate receptor Transporter 3.8/0.3 15 
6-phosphogluconate dehydrogenase Metabolism 7.3/0.5 14.5 
Tripeptidyl peptidase II (TPP II) MHC Class 1 17.4/1.3 13.8 
15-0xoprostaglandin 13-reductase Metabolism 23/1.8 13.1 
PREDICTED: similar to deoxyribose-phosphate Carbohydrate 2.5/0.3 10 
aldo lase-Iike metabolism 
Transaldolase Detoxification 10.3/1.3 8.2 
Annexin 11 Lipid metabolism 7.5/1 7.5 
ATP-binding cassette sub-family C member 2 Drug resistance 6.3/1 6.3 
P55 Unknown 4.3/0.8 5.7 
hnRNP A2/Bl mRNA metabolism 9.7/1.7 5.5 
Ectonucleoside triphosphate Nucleotide 10.8/2 5.3 
diphosphohydrolase 5 (PC PH) metabolism 
Aldehyde dehydrogenase 1 A 1 Metabolism 10.5/2 5.3 
PREDICTED: similar to RNA helicase A RNA metabolism 6.3/1.5 -5 
Proteasome (Prosome, macropain) 26S subunit, Protein degradation 2/0.5 4 
non-ATPase, 3 Predicted 
Dynactin 1 Cytoskeleton 5.5/1.5 3.6 
Actin related prote in 2/3, subunit2 Cytoskeleton 5.2/1.5 3.5 
PREDICTED: similar to GCN 1 general control RNA metabolism 22.3/6.5 3.4 
of amino-acid synthesis l-Iike 1 
Glutathione S-transferase Va- 1 Detoxification 20/6 3.2 
Annexin III (Lipocortin III) Lipid metabolism 2.7/0.9 3 
Liver carboxylesterase 4 precursor Detoxification 49.8/18.3 2.7 
Transketolase Metabolism 29.5/12.2 2.4 
hnRNPK mRNA metabolism 14.5/6.3 2.3 
Microsomal epoxide hydrolase Detoxification 37.5/16.25 2.3 
A TP-citrate (Pro-S-)-Iyase Lipid metabol ism 21.8/9.7 2.2 
hnRNPM mRNA metabolism 1/0.5 2 
DEAD (Asp-Glu-Ala-Asp) mRNA metabolism 8.2/4.2 1.9 
box polypeptide 1 (DEAD box prote in 1) 
Sec31 Iike-l protein Membrane trafflc 31.3/19 1.6 
14-3-3 protein isofonn zeta rat (fragment) Signaling 7.4/5.1 1.4 
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1 R SMNod = NI +N2+N3+N4 = 4N 

SMCtl NI +N2+N3+N4 4N 

2 Functional annotations were obtained primarily from Gilchrist and colleagues (2006). 

Table 4-A, shows proteins we observed to he overexpressed in ER from dissected 

twnor nodules. We have chosen to discuss details of the following proteins for two 

reasons. One they are highly overexpressed in our study and two they have been reported 

by others either to play an important role in ER fraction or to be differentially expressed 

in cancer. Proteins are statistically significant when P-value is S 0.05 (this means that the 

total number of peptides for a given protein was determined to be statistically different 

when comparedbetween tumor and control membranes. A statistical difference was 

considered significant when the comparison of the means of the total peptides gave a P­

value is S 0.05 by paired-samples T tests). Overexpressed proteins of note are as follows: 

- Uridine 5'-diphospho (UDP) glucuronosyltransferase lA6 is an enzyme that is highly 

expressed in the liver and is involved in detoxification. It catalyses the glucuronidation of 

many toxic compounds forming glucuronide conjugates, the latter are more water-soluble 

than the initial compounds (Auyeung et al., 2003). It is highly overexpressed protein in 

this Table (40-fold increase) and it is statistica11y significant (P == 0.02). 

- Rat aflatoxin BI aldehyde reductase member 1 (rAF AR 1) is a well-known cytsolic 

protein. It belongs to the aldo-keto reductase superfamily and is involved in aflatoxin 

detoxification (Knight et al., 1999; Praml et al., 2003; Zeindl-Eberhart et al., 2001). Rat 

aflatoxin BI aldehyde reductase member 1 is among the most overexpressed proteins in 

Table 4-A (24-fold increase). This result is consistent with study of Ellis and colleague 
u 

(Ellis et al., 1993) that showed around 20-fold increase after xenobiotics treatment. It is 

statistically significant (P = 0.02). 
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- Olutathione S-transferase pi (OST pi) is one of the cytosolic proteins belonging to the 

OST family and is involved in detoxification (Aliya et al., 2003; Zeindl-Eberhart et al., 

2001). It was observed to be one of the most overexpressed proteins in tumor ER (22-fold 

increase) over controlliver ER. It is statistically significant (P = 0.007). 

- Ectonucleoside triphosphate diphosphohydrolase 5 (PCPH) is involved in nucleotide 

metabolism. The cancer process may be associated with alterations in the PCPH proteins 

(Rouzaut et al., 2001). It is a secretory protein in human testicular tumor (Regadera et al., 

2006). On the other band, its immunohistochemical expression was abolished in 

malignant evolution of precancerous lesions of the larynx in human, hence suggesting its 

use as a reliable marker for the malignant progress in larynx tumor (Blanquez et al., 

2002). It is statistically significant (P = 0.01). 

- Transketolase is involved in the non-oxidative branch of pentose phosphate pathway 

(Boren et al., 2006). It was overexpressed in our data, this was also observed in a 

previous proteomic study for pancreatic tumor in human (Oronborg et al., 2006). It is 

statistically significant (P = 0.007). 

-'Olucose-6-phosphate dehydrogenaSe is involved in carbohydrate (glucose) metabolism 

(Sturman, 1967). It is a regulatory enzyme of the pentose phosphate pathway (oxidative 

branch) (Wagner et al., 1978). In a study it was used as tool to help in diagnosis of 

pancreatic adenocarcinoma (Van Driel and Van Noorden, 1999). In addition, it was 

considered a potential ~nary marker for human bladder tumor (Lin et al., 2006). It is 

statistically significant (P = 0.04). 

- Cytokeratin 19 is a component of the intermediate filament cytoskeleton in the 

cytoplasm of epithelial ceUs (Hofler et al., 1984; Lazarides, 1982). It can be usedto 

evaluate pathologica1 progression in HCC and as a useful marker for predicting tumor 

metastases and a therapeutic target for the treatment of HeC patients with metastases 

(Ding et al., 2004). It is statistically significant (P = 0.04). 
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ln conclusion, many of overexpressed proteins detected in ER from dissected 

turnor nodules wereproteins involved in metabolism and detoxification. As regard 

carbohydrate metabolism, there are PPP-related proteins, examples include, transketolase 

(non-oxidative branch) and Glucose-6-phosphate dehydrogenase (oxidative branch). 

White for detoxification-related proteins, examples include rAF AR land GST pi. They 

are phase 1 (Jin and Penning, 2007) and phase II (Aliya et al., 2003) drug-metabolizing 

enzymes respectively. Aflatoxin detoxification involves targets aflatoxin gene activation. 

This result is expected because of aflatoxin poisoning. Other important proteins to 

mention are the Heterogeneous nuclear ribonucleoproteins A2/B 1, K and M are related to 

RNA metabolism. The RNP family protein members detected in ER may be associated 

with membrane-bound polysomes and modulate translation of specific proteins relevant 

to prote in synthesis, proteins· mediating targeting, co-translational translocation, and 

processing of nascent polypeptide chains (Lavoieand Paiement, 2008). 

A.I.2.1.1 Proteasome enzymes 

Many proteins related to the proteasomes were observed as being overexpressed 

In tumor ER. The proteolytic activity IS achieved by the action of 

proteasome/ubiquitination system. lnitially, multiple ubiquitin molecules ta~ the protein 

needed to be degraded; this is followed by degradation of the ubiquitinated proteins by 

the multicatalytic proteinase called. the 268 proteasome complex with releaseof free 

ubquitin to be recycled and short peptides products (Hochstrasser, 1996). Proteomics 

analysis of ER membranes revealed many of the proteasome subunits to be mostly 

localised in the smooth microsomes (high in SMNod and SMCtl but low in RMNod, 

Figure 5). This data is consistent with a previous report showing that proteasomes were 

associated with the smooth endoplasmic reticulum and that they were almost absent from 

the rough endoplasmic reticulum (Palmer et al., 1996). In addition, this data is consistent 

with the proteomic study of Gilchrist and colleagues (Gilchrist et al.; 2006) that showed 

proteasome subunits only in smooth ER. Other recent study on HBV -induced HCC in 

mice is in accordance with our data, indicating the possibility that the increased 
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proteasomes could enhance thealtered degradation of cellular regulators that control the 

proliferation and apoptosis ofnormal and tumor cells (Cui et al., 2006). 

- Tripeptidyl peptidase II (TPP II) which is observed as overexpressed in Table 4-A ,and 

Figure 5, is an enzyme involved in the proteolytic degradation of peptides provided by 

the proteasome (Tomkinson and Lindas, 2005). The latter is involved in the generation of 

MHC class 1 ligands (Marcilla et al., 2008) TPP II enzyme may act as a downstream of 

the proteasome, by processing most proteasomal degradation products before they enter 

the ER (Reits et al., 2004). The TPP II is expressed in our data as 14-fold increase and 

include data for TPP II because of its role in generation of MHC class 1 peptides. Figure 5 

shows ail subunits of the proteasome peptides for the various subunits were detected in 

our mass spectrometry data for SMCtl, SMNod and RMNod membranes. 
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FIGURE 5: Peptides of proteins of proteasome in ER of disseded Iiver tumor 

nodules and in ER of control rat liver. Different subunits 1 of the proteasome in three 

different ER subfractions smooth microsomes from control rat liver (smctl), smooth 

microsomes from dissected liver tumor nodules (smnod) and rough microsomes from 

dissected tumor nodules (rmnod) are shownon the X-axis. The percent of total peptides 

of each of them is shown on the Y-axis 2. Percent of total peptide was determined by 

adding the SUffi of peptides for each protein from three experimental fractions. The mean 

was then expressed as a percent of the total peptides of all the proteins detected in the 

same three experimental fractions. Mean number of peptides are shown with standard 

deviations. Mean nurnber of peptides ranged from 0 (example PSMB 8, smctl) to 14.5 

(example TPP II, smnod). 

1 TPP II (tripeptidyl-peptidase 2), RPN (proteasome 26S subunit, non-A TPase 1, 2, 3, 5, 6, 8, 9 

and 12 subunits); RPT (proteasome 26S subunit, ATPase 1, 2, 3, 5 and 6); alpha (proteasome 

subunit, alpha type 1,2,3,4,5,6 and 7), heta (proteasome subunit, heta type 1,3,4,5, 6 and 7), 

PA 28 (proteasome 28 subunit, alpha and beta) and PSMB (proteasome subunit, heta type 10, 9 

and 8). 

2 The values on the Y -axis represent the number of unique peptides found for a certain protein, 

divided by the number of an peptides detected in the ER subfraction. 
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Many of proteasome subunits were overexpressed in the SMNod. Proteasome 

subunits are statistically significant when P-value is ~ 0.05 (this means that the total 

number of peptides for a given prote in was determined to be statistically difTerent when 

compared between tumor and control membranes. A statistical difference was considered 

significant when the comparison of the means of the total peptides gave a P-value is .. S 

0.05 by paired-samples T tests). These include TPP II (statistically significant, P = 0.02), 

RPN 8 (statistically significant, P = 0.4), RPT 2 (statistically insignificant, P = 1), alpha 

7 (statistically insignificant, P = 0.2), heta 4 (statistically insignificant, P = O. 2) and PA 

28 alpha (statistically insignificant, P = 0.2). The latter together with PA 28 heta are 

subunits of proteasome involved in production of peptides specifically involved in MHC 

class 1 dependent immumosurveillance (Kloetzel, 2004; Kloetzel and Ossendorp, 2004). 

In conçlusion, newly synthesized unfolded and unassembled proteins become 

substrates for the ER-associated degradation process. This well-regulated process causes 

retention of defective proteins in the ER. Finally, these proteins become exported in the 

cytoplasm and targeted for polyubiquitination and degradation by the 26S proteasome 

complex (Meusser et al., 2005; Romisch, 2005). Moreover, difTerent subunits. of 

proteasomes with localisation mostly to SM membrane were detected; this probably 

reflects difTerences in the function of proteasomes in distinct cell compartments (Palmer 

et al., 1996). 

A.1.2.2 Underexpressed proteins in ER (rom disseded Iiver tumor nodules 

Underexpressed proteins are defined in our study, as the proteins with total 

number of peptides in the tumor ER wereJess than the total number of peptides in control 

ER fractions. Our results showed proteins that were underexpressed only in tumor ER. 

Many underexpressed proteins (Table 4-B) are involved in detoxification. 
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TABLE 4-B: Most underexpressed proteins in ER from disseded liver tumor 

nodules. This Table is based on the same ide a as (Table 4-A). The underexpression 

(ratio, R) 1 of the total peptides of smooth microsomes (SM) from control rat liver (Ctl) as 

regard to those from dissected liver tumor nodules (Nod) [SMNodlSMCtl] from 4 

repeated mass spectrometry experiments (4N) were calculated. 

Protein 

Solute carrier organic anion 
transporter family member 1A4 
Cytochrome p450 2C7 
Camitine palmitoyltransferase 
l, liver 

Choline dehydrogenase 
Glycogen synthase 2 
Aldehyde dehydrogenase 9A1 
Myosin heavy chain 
Estrone sulfotransferase 
Cytochrome p450 3A18 
Cytochrome p450 2A2 
Carbonic anhydrase III 
Adenosine kinase 
Cytochrome p450 2C6 
Cytochrome p450 2C11 
Argininosuccinate synthase 
Alpha-2u globulin 
Cytochrome p450 2D2 
Glucose 1-dehydrogenase, 
microsomal 
Furnarylacetoacetase 
Liverglycogenphosphorylase 

1 R SMNod ==Nl+N2+N3+N4 = 4N 

SMCtl N1+N2+N3+N4 4N 

Function 1. 

Transporter 

Detoxification 
Lipid Metabolism 

(Mito) 

Metabolism 
- Metabolism 

Metabolism 
Cytoskeleton 
Metabolism 

Detoxification 
Detoxification 

Metabolism 
Metabolism 

Detoxification 
Detoxification 

Metabolism 
. Secretory protein 

Detoxification 
Carbohydrate 
metabolism 
Metabolism 
Metabolism 

Total Underexpression 
peptides SMNodJ 
SMNodJ SMCtl 
SMCtl 
0/11.5 0 

0.5/15.4 0.03 
0.5/5 0.1 

0.8/3 0.3 
1/3.8 . 0.3 
0.5/4 0.1 

1.3/12.5 0.1 
0.5/9.2 0.1 
0.5/6.2 0.1 
1.8/12 0.1 
3.8/25 0.2 
0.8/4.5 0.2 
4.5/18.8 0.2 
10.3/52.4 0.2 

5/31 0.2 
6.5/33.7 0.2 
10.1/29.2 0.3 
4.8/l3.5 0.4 

6/l3.8 0.4 
22.3/28.8 0.8 

2 Functional annotations were obtained primarily from Gilchrist and colleagues (2006). 
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Table 4-B, shows proteins we observed to be underexpressed in ER from 

dissected tumor nodules. We have chosen to discuss details of the following proteins for 

two reasons. One they are highly underexpressed in our study and two they have been 

reported by others either to play an important role in ER fraction or to be differentiaUy 

expressed in cancer. Proteins are statistically significant when P-va/ue is :::; 0.05 (this 

means that the total number of peptides for a given prote in was detennined to be 

statistically different when compared between tumor and control membranes. A statistical 

difference was considered significant when the comparison of the means of the total 

peptides gave a P-va/ue is :::; 0.05 by paired-samples T tests). Underexpressed proteins of 
1 

note are as follows: 

- Six members of the cytochrome p450 (CYP 450) family have been detected in our 

quadriplet mass spectrometry data as underexpressed in the ER tumor over the ER 

control. The cytochrome p450 protein family is involved in detoxification (Guengerich et 

al., 1996). CYP 450 have also been reported in numerous cancer literature studies as 

underexpressed, example include CYP 450 2E 1 in human HCC (Kinoshita and Miyata, 

2002). According to our ~ass spectrometry data this CYP 450 sub-family (that is not 

shown in Table 4-B) was also underexpressed (total number of peptides in SMNod were 

32 and 62 in SMCtl). The downregulation of this detoxification enzyme system might 

increase the effects of aflatoxin poisoning. AU the six-cytochrome p450 family members 

are statistically significant as follows: 2C7 (P= 0.03), 3AI8 (P = 0.059), 2A2 (P = 

0.01), 2C6 (P = 0.03), 2Cl1 (P = 0.004) and 2D2 (P = 0.01). 

- Glycogen synthase 2 (Gys 2) is involved in metabolism being the rate-limiting enzyme 

for glycogen synthesis in liver and adipose tissue. Under normal conditions, glycogen 

storage is mainly in liver, muscle, and adipose tissue. Liver glycogen serves to maintain 

blood glucose leve~s between meals, while skeletal muscle glycogen· is used to fuel 

muscle contractions (Cheng et al., 2006; Mandard et al., 2007). On the other hand, 

adipose tissue glycogen serves as a soUrce of glycerol 3-phosphate, which is required for 

esterification of fatty acids into triglycerides (AntWi et al., 1988). In Table 4-B it is 

underpexressed. In one of the interesting studies, . Gys 2 gene was reported as 
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overexpressed in HCC associated with hepatitis C virus (Iizuka et al., 2002). On the other 

hand, the gene for Gys 2 was underexpressed in human cervical cancer associated with 

human papilloma virus serotype 16 (Wong et al., 2006). 

- Liver glycogen phosphorylase is involved in metabolism, as it serves in glycogen 

break.down leading to production of free glucose 1-phosphate to he used for glycolysis 

and various synthetic functions. The enzyme is found mainly in three forms, named liver, 

brain and muscle according to their corresponding predominant expression (Chang et al., 

1998; Cheng et al., 2006): In Table 4-A, the liver form was underexpressed and 

statistically significant (P = 0.05). 

- Estrone sulfotransferase (or estrogen sulfotransferase) is involved in steroid 

metabolism, heing a sex steroid hormone. It sulfates hydroxysteroids by transferring the 

sulphate group from phosphoadenosine-phosphosulfate (Demyan et al., 1992). Normally, 

estrogen is a sex steroid hormone; it is mainly a female hormone since it is synthesized in 

the ovary and plays a critical role in female reproduction. However, this hormone is also 

important in male reproduction organs and other tissues including bone, liver, the central 

nervous system, and the vascular system. Estrogen exerts its physiological role through 

oestrogen receptors. The latter are widely expressed in a variety of tissues (Miki et al., 

2002). This enzyme was underexpressed in Table 4-B, in a recent human bone cancer 

study it was overexpressed (Svoboda et al., 2007). It is statistically significant (P = 0.04). 

In conclusion, many of the underexpressed proteins in ER from dissected tumor 

nodules are involved in various metabolic pathways. Examples include enzymes involved 

in glycogen metabolism, glycogen synthase 2 and glycogen phosphorylase and proteins 

involved in steroid metabolism, estrone sulfotransferase. Also, we detected the 

underexpression ofmany protein members of the cytochrome p450 family. 
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A.l.3 Proteins showing no signifiant difference in concentration between control 

ER and tumor ER 

Many proteins were detected in significant amounts in control ER and tumor ER 

based on peptide counting. Here we draw attention to twocategories of proteins, proteins 

involved in folding and proteins involved in histocompatibility antigen presentation 

because these proteins were observed in equal amounts in control ER and in tumor ER. 

A..l.3.1 Proteins involved in folding 

The endoplasmic reticulum is the site where the majority of secreted proteins and 

membrane proteins are folded (Hendershot, 2004). Figure 6 shows the relative amounts 

of peptides of numerous folding proteins detected in control and tumor ER. 
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FIGURE 6: Peptides of folding proteins in ER of dissected liver tumor nodules and 

in ER of control rat Uver. Different proteins 1 belonging to the folding protein family in 

the three different ER subfractions which were described before 2 are shown on the X­

axis. The percent of total peptides of each of them is shown on the Y -axis. The percent of 

total peptide and mean number of peptides were detennined as described before 2. Mean 

number of peptides ranged from 0 (example DnaJ C memb 13, srnctl) to 18.3 (example 

PDI, nnnod). 

1 Bip/GRP 78 (immunoglobulin heavy chain-binding protein/78 kDa glucose-regulated prote in 

precursor), gp96, POl (prote in disulfide isomerase), POl A3 (prote in disulfide isornerase A3), 

Orp 150 (hypoxia up-regulated prote in 1 precursor (150 kDa oxygen-regulated prote in), POl A4'­

(prote in disulfide isornerase. A4), calreticulin, calnexin, cyclophilin A, regucalcin, POl A5 

(prote in disulfide isomerase A5), Hsp 90 (heat shock prote in 90), POl A6 (prote in disulfide 

isornerase A6), Hsp 85 (heat shock protein 85), tapasin, ERp 45 (endoplasrnic reticulurn protein 

45), ERp 20, Hsp 70 (heat shock protein 70), ERp 19 (endoplasmic reticulum prote in 19), ERp 44 

(endoplasrnic reticulum prote in 44), OnaJ C rnernb 13 (OnaJ (Hsp40) hornolog, subfamily C, 

member 13) and Hsp 47 (heat shock protein 47). 

2 As described before in Figure 5. 
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Figure 6 shows that the folding proteins with the highest number of peptides are 

Bip, gp 96, PDI and PDI A3. Bip also known as immunoglobulin heavy chain-binding 

prote in is shown in FigÙfe 6 with meannumber of peptides 18 in tumor ER (SMNod) and 

18.8 in control ER (SMCtl). Of particular interest, Figure 6 reveal equal numbers of 

peptides for the majority of the proteins in control ER and tumor ER. Folding proteins of 

note are as follows: 

- Immunoglobulin heavy chain-binding· protein/78 kDa glucose-regulated protein 

precursor (Bip/GRP 78) is an ER resident chaperone protein (Bertolotti et al., 2000) and 

it is a member of the HSP 70 family of heat shock proteins that act as chaperones (Awad 

et al., 2008). It interferes to correct misfolded proteins, whichare present in the lùmen of 

ER (Hendershot, 2004). It is equally expressed in control rat liver and dissected liver 

tumor nodules fractions. This is in contrast to previous studies in literature that stated that 

Bip is overexpressed in human HCC (Sun et al., 2007), and thls could be explained by the 

fact that their study was done on tissues whereas ours on ER-derived fractions. 

- Of note was the fact that calnexin was an exception amongst the folding proteins. 

Unlike other folding proteins, calnexin was underexpressed in tumor ER (Figure 6). 

A.1.3.2 Proteins involved in histocompatibility antigen presentation 

Certain proteins are part of the major histocompatibly class 1 (MHC class 1) 

peptide loading complex (PLC). This complex is made up of many proteins that include 

MHC class 1 molecules, beta 2 microglobulin, the chaperone calreticulin, the 

oxidoreductases ERpS7, and protein disulfide isomerase, the class I-specific accessory 

molecule tapasin and the peptide transporter T AP (Elliott, 2006). This complex is 

involved in the establishment. of proper conformation of MHC class 1 molecules for 

peptide loading in the ER and forms part of the antigen presenting machinery which is 

transported to the plasma membrane where antigenic peptides become available for· 

immune surveillance (Hammer et al., 2007). Most of proteins of the loading complex 
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were detected in control ER and tumor ER and the relative numbers of peptides for these 

proteins are shown in Figure 7. 
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FIGURE 7: Proteins in the major histocompatibility class 1 (MHC class 1) peptide 

loading complex (PLC). Different proteins 1 belonging to the PLe in the three different 

ER subfractions which were described before 2 are shown on the X-axis. The percent of 

total peptides of each of them is shown on the Y-axis. Percent of total peptide and Mean 

nUlllber of peptides were determined as described before 2. Mean number of peptides 

ranged fromO.3 (example RTIBI alpha chain, smnod) to 18.3 (example PDI, rmnod). 

1 ERp 57 (endoplasmic reticulum protein 57), calreticulin, PD] (prote in disulfide isomerase), 

ERAAP (endoplasmic reticulum aminopeptidaSe associated with antigen processing), p2 

micorglobulin (beta 2 microglobulin), tapasin (tap-binding prote in), TPP Il (tripeptidyl-peptidase 

2), TAP 2 (transporter associated with antigen processing 2), TAP l (transporter associated with 

antigen processing 1), rat MHC class 1 (rat major histocompatibly complex class 1) and RTIBI 

alpha chain. 

1 As described before in Figure 5. 
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Figure 7 shows that proteins of the PLC with the highest concentration of peptides 

are ERp 57, calreticulin, PDl and TPP II. Protein disulfide isomerase is shoWn in Figure 7 

with mean number of peptides 8.8 in tumor ER (SMNod) and 11.8 in control ER 

(SMCtl). With exception of TPP II, aU proteins were detected with similar amount of 

peptides in control ER and tumor ER. This is an interesting finding because in a previous 

report in literature has indicated underexpression of proteins of PLC in cancer 

(Dissemond et al., 2004) and because underexpression of these components has 

previously been implicated in escape of immune surveillance. We notice no significant 

expression change in the three experimental fractions (Figure 7). 

A.2 Unknown proteins 

A.2.1 Novel proteins detected in ER 

Both known and unknown proteins were· detected by our mass spectrometry 

study. We have chosen to cali the unknown proteins novel endoplasmic reticulum 

associated protein (NERA). We detected many novel proteins 20 of them are shown in 

Figure 8. 

\ 



69 

FIGURE 8: Novel endoplasmic reticulum associated proteins (NERA). The number 
1 

of peptides is shown for 20 novel proteins l in the three different ER subfractions, which 

were described before 2. The percent of total peptides of each of them is shown on the Y­

axis. Percent of total peptide and mean nurnber of peptides were detennined as described 

before 2. Mean number of peptides ranged from 3.8 (exarnple NERA 5, smctl) 16.8 

(exarnple NERA 3, rmnod). Each novel protein was also characterized according to T, P 

and A domains 3. 

1 Nera 3 (PREDICTED: similar to KlAA0372), Nera 16 (Leucine-rich repeat-containing protein 

59 Prote in p34), Nera 4 (PREDICTED: similar to mKIAA0183 protein), Nera 1 (PREDICTED: 

similar to 5730439EIORik prote in), Nera 15 (PREDICTED: similar to RIKEN cDNA 

C230096C10), Nera 2 (Prote in FAM98A), Nera 7 (Protein KIAA0152 homolog precursor), Nera 

6 (WD repeat protein 61), Nera 5 (LRRGTOOI64), Nera 14 (PREDICTED: similar to RIKEN 

eDNA 5730596K20), Nera 17 (PREDICTED: hypothetieal protein XP _217094), Nera 20 (Protein 

ClOorf58 homolog precursor), Nera 19 (Hypothetieal prote in MettI7b), Nera 8 (PREDICTED: 

similar to KIAAI033 protein), Nera 9 (PREDICTED: similar to Dendritie eeU prote in GA17), 

Nera 10 (PREDICTED: similar to Hypothetical protein MGC31278), Nera 13 (PREDICTED: 

similar to RIKEN eDNA 2310008MlO), Nera Il (PREDICTED: similar to proteiri. HT031 

homolog [Rattus norvegieus]), Ner:a 12 (Zinc finger prote in 294 (Zfp-294) [Mus museulus]) and 

Nera 18 (PREDICTED: similarto 2610030H06Rik protein). 

2 As described before in Figure 5. 

3 T (TMD, transmembrane dOlllain), P (signal peptide) and A (signal anchor) domains from 

database (TMD: http://www.cbs.dtu.dk/servicesffMHMM/. signal P and signal anchor: 

http://www.cbs.dtu.dklserviceslSignalP/). TI:::: 1 transmembrane domain, T 2 = 2 transmembrane 

domains, T 3 = 3 transmembrane domains and T 4 = 4 transmembrane domains. 
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Figure 8, shows novel proteins we observed with differential expression in tumor 

ER. Prediction algorithms identified 9 putative transmembrane proteins (Nera 16, l, 7, 

14, 17, 20, 19, 13 and 18), 4 putative secretory proteins (Nera 4, 15, 7 and 19) and 3 

proteins with signal anchor (Nera 17, 18 and 20). NERA proteins shown on the left of the 

Figure (Nera 3, 16, 4, l, 15, 2, 7, 6 and 5) are thought to be enriched in rough 

microsomes because they were observed in high concentrations in rough microsomes 

from tumor nodules (see peptide counts for RMNod). Nera proteins shown on the right of 

the Figure (Nera 14, 17,20, 19,8,9, 10, 13, Il, 120 and 18) are thought to be enriched in 

smooth microsomes (see peptide counts for SMCtl and SMNod). 

Other unknown proteins are detected, among them the homologue of KlAAO 196 

(strumpellin) that is observed on our data as overexpressed (with mean number of 

peptides 1 in tumor ER (SMNod) and 0.3 in control ER (SMCtl)). The prote in is involved 

in spinal cord disease and paraplegia in human 01 aldmanis et al., 2007). 

NERA 14 revealed a significant difference in expression when peptide nuinbers 

were compared between smooth microsomes from control and smooth microsomes from 

tumor nodules. Therefore, this protein is a potential tumor marker. 
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PART B: Validation of mass spectrometry (MS) results 

Mass spectrometry is a bioinformatic tool that yields probability data (Tibshirani 

et al., 2004). Such data should he validated using more direct techniques for detecting 

proteins. Therefore, in this study we used quantitative immunoblot analysis to confrrm 

the MS data (Qi et al., 2008). 

B.1 Known proteins 

lmmunoblot (Western blot) experiments were carried out in a way to provide a 

1 quantitative validation of cancer relevant proteins detected by mass spectrometry. 

B.l.l Endoplasmic reticulum (control and tumor) fractions 

B.l.1.1 Validation of mass spectrometry results using antibodies directed against 

cancer related proteins 

lmmunoblot experiments were performed using specifie antibodies relevant to 

cancer proteins. The choice of antibodies was based on the availability of high quality 

antibodies (with good specificity and high affinity) to proteins shown by the scientific 

literature to he important in human cancer. Figure 9 shows that 7 of 14 proteins (PA2G4, 

eEF 2, eIF 2a, YB 1, hnRNP K, A TP citrate lyase and P ABP 1) are overexpressed while 

only 4 of 14 proteins (CYP450 4A, CYP450 2CU, CYP450 reductase and GAS 2) are 

underexpressed in nodular fraction. However the rest of the proteins which are 3 of 14 

(VCP, Bip and Ribo S6) are almost equally expressed in both fractions (nodular and 

control). 
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FIGURE 9: Immunoblots for known proteins 1. Immunoblots of selected proteins 

found in smooth microsomes from control rat liver (Ctl) and in smooth microsomes from 

dissected liver tumor nodules (Nod). Equal protein aliquots (40 ).tg) were loaded onto 

mini gels for control and tumor microsomes. Following electrophoresis separation 

proteins were transferred onto nitrocellulose membranes (Bio Rad) and revealed by 

imnlunoblots with the indicated antibodies. Ali antibodies except those against Gas 2 

(home prepared) and rAFAR 1 (generous gift of Dr John Hayes, Dundee Scotland) were 

from commercial sources (identified in the Materials and Methods, Table 1). 
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B.l.l.l.l Overexpressed tumor ER proteins 

- Proliferation-associated protein 2G4/ErbB3 binding protein 1 (P A2G4IEBP 1) is a cell 

cycle protein (Y 00 et al., 2000). P A2G4 is .Iocalized to the cytoplasm and to the 

nucleolus. It is a part of ribonucleoprotein complexes. It plays a role in cell proliferation 

(Squatrito et al., 2004). 

- Eukaryotic translation elongation factor 2.<eEF 2) is involved in mRNA metabolism 

(Taylor et al., 2007). It is overexpressed in HeC (Li et al., 2008). Under hypoxic 

conditions, the enzymatic activity of this protein can be suppressed (Liu et al., 2006). 

- Eukaryotic translation initiation factor 2, subunit 1 alpha (eIF 2«) is involved in mRNA 

metabolism (Miya.moto et al., 1996) as eEF 2. Anoxic conditions, which characterise 

tumor, result in disruption of eIF 2« phosphorylation with subsequent eIF 2a dependent 

inhibition of overall mRNA translation, differential gene expression, hypoxia tolerance 

and tumor growth (Koritzinsky et al., 2007; Liu et al., 2006). 

- y box prote in 1 (YB 1) is a transcription factor and marker for breast cancer. It 

correlates with high aggressiveness of thetumor and with chemoresistance (Fujita et al., 

2005). 

- Poly A binding protein 1 (P ABP 1) is involved in RNA metabolism as eEF 2 and eIF 

2«. It binds the poly (A) tail of mRNA and is involved in activating the stability and 

translation of mRNAs by protecting poly (A) tail (penal va et al., 2004) from 

exon\lcleases (Bernstein et al., 1989; Gallie, 1998). So like that, P ABP 1 is involved in 

protein synthesis. In addition, it plays a role in cell cycle regulation (Penalva et al., 2004) 

and it is tyrosine phosphorylated (Table 4). 

- Heterogeneous nuclear ribonucleoprotein K (hnRNP K) was also observed as 

overexpressed by immunoblot analysis. This is a tumor marker and the significance of 

this protein bas already been discussed (see text for Table 2-A). 
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- Adenosine triphosphate (ATP) citrate lyase plays an important role in de nova 

lipogenesis pathways. It is an enzyme that is critical for the conversion of glucose to 

cytosolic acetyl CoA (the later is a basic unit for all endogenous fatty acid and sterol 

synthesis) and therefore for glucose-dependent lipogenesis in growing cells. It is also 

required to maintain rapid cell proliferation, suggesting that glucose-dependent 

·lipogenesis is an important component of cell growth (Bauer et al., 2005). 

B.l.l.l.2 Underexpressed tumor ER proteins 

- Cytochrome p450 (CYP 450) members CYP 4A and CYP 2Cll and reductase were 

underexpressed in the ER tumor membranes. The superfamily cytochrome p450 is 

involved in detoxification (Anzenbacher and Anzenbacherova, 2001). Antibody anti­

CYP450 4A recognizes both CYP450 4Al and 4A2. However, the mass spectrometry 

data used was that related to CYP450 4Al. The CYP 450 reductase, which is otherwise 

named as NADPH--cytochrome P450 reductase is not really a member of the CYP 450 

superfamily, however it works with CYPs members, being considered as a redox partner 

ofhuman Iiver CYPs (Petushkova et al., 2006). 

- Growth arrest-specific protein 2 (GAS 2) protein is a1so underexpressed in tumor ER. 

This prote in is involved in p53 dependent cellular apoptosis following DNA damage 

(Benetti e,t al., 2001). Therefore, it would be expected that this protein is reduced in 

rapidly proliferating cancer cells. Mass spectrometry data for GAS 2 (mean number of 

peptides 1 in SMNod and 7 in SMCtl) were not shown in Table 4-B. However, GAS 2 

immunoblot data are shown in Figure 9. 

B.1.1.1.3 Equally expressed ER proteins in both fractions (control and tumor) 

- Valosine-containing protein (VCPIP 97) protein is equivalent to P97. This protein is 

involved in multiple signaling events il1cluding membrane fusion (Lavoie et al., 2000). 
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- Immunoglobulin heavy chain-binding protein/78 kDa glucose-regulated protein 

precursor (Bip/GRP 78) a chaperone prote in was observed equally expressed between the 

control ER and tumor ER by immunoblot analysis. This confirms mass spectrometry 

results (described in details in Figure 6). 

- Ribosomal protein S6 (riho S6) is phosphorylated by a protein named ribosomal prote in 

S6 kinase alpha-l (Boylan et al., 2001). This protein is a key target of the Akt signaling 

pathway (Ruggero and Pandolfi, 2003). 

In conclusion, these experiments were used for qualitative validation of màss 

spectrometry results. We were able to validate mass speetrometry results obtained from 

14 different cancer related proteins. 

B.1.1.2 Validation of MS reluIts using densitometry 

Densitometric analysis was performed for hoth known and unknown proteins in 

four subcellular fractions, cytosol from controlliver (SI00Ctl), smooth microsomes from 

from controlliver (SMCtl), smooth microsomes from dissected tumor nodules (SMNod), 

and cytosol from dissected tumor nodules (S 100Nod). 

B.l.2 Endoplasmic reticulum and cytosol (control and tumor) fractions 

Densitometry was carried out on immunoblots of fractions after using antihodies 

to p450 reductase, ATP citrate lyase, LRP and rAF AR 1 (Figure 10). We have decided to 

compare the relative amounts of proteins in both ER and cytosolic fractions. This was 
. ' . 

done because there are reports in' the literature that confirm that cytosolic proteins can 

bind and interact with the ER (Rapoport, 2007). Therefore, we looked for change in the 

distribution of specifie proteins in cytosol and ER fractions under control and tumor 

conditions. 
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FIGURE 10: Proteins bands revealed by immunoblot. Compàrison of densitometric 

results of specific proteins in ER and cytosolic fut,ctions from control rat liver and from 

dissected rat liver tumor nodules. 40 fJ.g of fraction proteins were loaded on 7-15% 

(gradient) of SOS-PAGE. After protein separation, proteins were transferred onto 

nitrocellulose membranes (Bio-Rad). The protein blots were treated with primary 

antibody then with horseradish peroxidase enzyme tagged secondary antibody and 

revealed with enhanced chemiluminescence. The films were scanned and the density of 

the protein bands was determined using Scion Image densitometric software. Actual 

immunblots are shown from left to right for cytosol from control rat liver (81 OOCtl), 

smooth microsomes from control rat liver (SMCtl), smooth microsomes from dissected 

liver tumor nodules (8MNod), and cytosol from dissected liver tumor nodules 

(S 1 OONod). Oensitometric results are shown as bar values, which are aligned above the 

immunoblot results. Corresponding densities are expressed as arbitrary units, DA 1. 

J Arbitrary density (DA). This was calculated after subtracting the background arbitrary density 

from each selected band, using Scion Image computer software program. 
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_. Cytochrome p450 (CYP 450) reductase protein is strictly shown to be a membranous 

one (Figure 10-A). The CYP 450 reductase is a known. integral membrane protein 

(Borge se and Pietrini, 1986). It is underexpressed in the ER tumor fraction. This confirms 

previous immunoblot data using only ER microsomes. The small amount in the cytosolic 

fraction probably corresponds to membrane contaminants. The contaminants could have. 

arisen during cell fractionation or during proteins loading for electrophoresis. 

- ATP citrateilyase is considered a cytosolic enzymatic prote in (Elshourbagy et al., 1990). 

However, we have observed this prote in in ER membranes by mass spectrometry (Table 

4) and by immunoblot analysis (Figures 9 and 10-B). The amounts observed in the ER 

membranes were higher in tumor ER (Figures 9 and 10-B). Higher quantities of ATP 

citrate Iyase weré detected in the cyotsolic fractions (Figure 10-B) when amounts of this 

protein were compared in the. two types of cytosolic fractions, the amounts in cytosol 

from tumor ~odules was lower. This may be related to the physiological tumor state of 

the cells from which the cytosol originated. It is also tyrosine phosphorylated (Table 4). 

- Lung resistance related proteinJmajor vault protein (LRPIMVP) is considered a 

cytosolic protein (Sutovsky et al., 2005). However, we have detected it in ER fractions by 

mass spectrometry (Table 4) and by immunoblot analysis (Figure lO-C). We frnd 

LRPIMVP to be overexpressed in tumor ER (Figure 10-C). Here it IS probably 

overexpressed In tumor ER after toxic treatment (aflatoxin). Lower amounts of 

LRPIMVP were observed in cytosolic fractions (Figure 10-C). 

- Rat aflatoxin BI aldehyde reductase 1 (rAF AR 1) protein is found in SM membranes 

and is overexpressed in tumour ER and overexpressed in tumor cytosol (Figure 10-D). 

This enzyme is well known to be overexpressed in liver after aflatoxin treatment (Ellis et 

al., 1993). 

In conclusion, a variety of factors probably influences the amounts of specific 

proteins in cytosolic and ER fraction. These factors include whether the proteins are 

known to be integral membrane proteins (example CYP 450 reductase), whether the 
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proteins are known to be cytosolic (exarnple A TP citrate lyase) or whether the proteins 

are .known to be components of contaminating particles (exarnple LRPIMVP). 

B.1.3 Comparison of densitometry of known proteins with mass spectrometry data 

for smooth membrane fractions 

The arnounts of specifie p,roteins in smooth microsomes from control liver were 

compared quantitatively with the amounts of the sarne proteins in smooth microsomes 

from dissected tumor nodule using densitometry and using mass spectrometry. Figure Il 

compares the ratios of the values obtained using the two techniques. For most proteins 

studied, the quantitative results obtained by densitometry were similar to the quantitative 

results obtained by mass spectrometry (Figure Il). Thus, the immunoblot data 

representing specifie prote in identification confirmed mass spectrometry data 

representing probability identification of the sarne proteins. This Western blotting 

validates the quantitative proteomics approach. 
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FIGURE 11: Comparison of densitometry results with mass spectrometry results. 

Amounts of specifie proteins in using densitometry 1 and using mass spectrometry 2. 

Amounts of proteins are expressed as ratios (amounts of protein in (SMNod) divided by 

amounts of protein in SMCtl) immunoblot data was obtained using antibodies against 14 

specifie proteins identified on the X-axis. Densitomteric analysis was carried out on the 

immunoblots 3 results shown in Figure 9. Densitometry data was used to determine ratios 

(crimson column). Mass spectrometry data was used to determine ratios of amounts for 

the same proteins (green column). 

J Densitomteric analysis was done using Image J computer software program. 

2 Quadriplet mass spectrometry experiments. 

3 Densitometry result for eEF 2 represented the mean of triplet measurements that come from two 

different experimental samples for SMCtl and SMNod membranes. 
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B.2 Unknown proteins 

B.2.1 Studies with ann-ER aDtibodies 

We have carried out immunoblot using anti-ER antibodies. The objective here 

was to compare amounts of proteins in membrane and cytosolic fractions from control rat 

liver and from dissected liver tumor nodules usmg anitserum that was raised against a 

purified ER fraction (Paiement and Roy, 1988). Using the se antibodies in immunoblot 

·and densitometry, we found that sorne proteins were underexpressed in tumor ER (Figure 

11:1 band # 1) and other proteins were in higher concentration in tumor ER (Figure Il, 

band # 2). Sorne protems were in similar concentrations in ail fractions (Figure Il, band 

# 3) and sorne protems.were more concentrated in the ER fractions compared to those in 

the cytosolic fractions (Figure Il, band # 4). 
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FIGURE 12: Densitometric analysis of proteins in fractions from control rat liver . . . 
and from dissected liver tumor nodules using snti-ER sntibodies. (A) Primary 

polyclonal rabbit anti-ER was used to study unknown ER and cytosolic proteins in four 

experimental fractions, cytosolic proteins from control rat liver (8100Ctl), smooth 

microsomes from control rat liver (SMCtl), smooth microsomes from dissected liver 
1 

tumor nodules (8MNod) and cytosolic proteins from dissected liver tumor nodules 

(SlOONod). Bands number 1 to 4 (arrows) were chosen for densitornetric studies. 

lmmunoblot was prepared as in Figure 10. (D) Actual immunblots are shown from left to 
, 

right for cytosol from control rat liver (81 OOCtl), smooth microsomes frorn control rat 

liver (SMCtl), sm:Ooth microsomes from dissected liver tumor nodules (SMNod), and' 

cytosol from dissected liver tumor nodules (SlOONod). Densitornetric results are shown 

as bar values, which are aligned above the immunoblot results. Corresponding densities 

are expressed as arbitrary units, DA 1. 

l Arbitrary density (DA). This was calculated after subtracting the background arbitrary density 

from each selected band using Scion Image computer software program. 
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In conclusion, as was observed in immunoblot studies using specifie antibodies 

results obtained with anti-ER antibodies revealed differential expression of specifie 

proteins (Figure 12, bands # 1 and 2) and sorne proteins did not change in concentration 

(Figure 12; bands 3 and 4). Since mass spectrometry identified many unknown proteins 

(Figure 8), the anti-ER antiserum cou1d potentially he used to immunoprecipitate out· 

such unknown proteins. This is because the anti-ER antibody recognizes a variety of 

proteins that have not been defined. The anti-ER antibodies could be used to 

immunoprecipitate ER proteins. Unknown proteins defined by MS could potentially be 

proteins that are recognized by the anti-ER antibodies. Finally, the cytosolic proteins that 

were detected using anti-ER antibodies are probably proteins that bind to specifie ligands 

in the ER or they could be contaminating proteins of the ER fraction. 

B.2.2 Studies with 8nti-phosphotyrosine 8ntibodies 

We have carried out immunoblot usmg anti-phosphotyrosine antibodies. The 

objective here was to compare amounts of proteins in membrane and cytosolic fractions 

from control rat liver and from dissected liver tumor nodules using anitserum that was 

raised against phosphsotyrosine residues (materials and methods; Table 1). Using these 

antibodies in immunoblot and densitometry, we found that sorne proteins were in higher 

concentration in tumor ER (Figure 13, bands # 4, 5 and 6) and that proteins were almost 

equally expressed in ER (Figure 13, band # 1, 2 and 3). Sorne proteins were more 

concentrated in the ER fractions compared to those in the cytosolic fractions (Figure 13, 

band # 4, 5 and 6). 
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FIGURE 13: Densitometric analysis of pro teins in fractions from control rat liver 

and from dissected liver tumor. nodules using anti-phosphotyrosine (anti-PY) 

antibodies. (A) Primary monoclonal mouse anti-phosphotyrosine (as identified in 

materials and methods, Table 1) was used to study unkno'\W tyrosine phosphorylated ER 

and cytosolic proteins in four experimental fractions, cytosolic protèins from control rat 

liver (S 100Ctl), smooth microsomes from control. rat liver (SMCtl), smooth microsomes 

from dissected liver tumor nodules (SMNod) and cytosolic proteins from dissected liver 

tumor nodules (SlOONod). Bands number 1 to 6 (arrows) were chosen for densitometric 

studies. Immunoblot was prepared as in Figure 10. (B) Actual immunblots are sho'\W 

from left to right for cytosol from control ~t liver (S 100Ctl), smooth microsomes from 

control rat liver (SMCtl), smooth microSümes from dissected liver tumor nodules 

(SMNod), and cytosol from dissected liver tumor nodules (S 100Nod). Densitometric 

results are sho'\W in graphic form. Densitometric results are shown as bar values, which 

are aligned above he immunoblot results. Corresponding densities are expressed as 

arbitrary units, DA 1. 

1 Arbitrary density (DA). This was calculated after subtracting the background arbitrary density 

from each selected band using Scion Image computer software program . 

... The bands numbers 1 and 2 were resolved by using a thin cursor width in the selectiontool of 

Scion Image softw·are program for densitometry i 
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In conclusion, as was observed in immunoblot studies using specifie antibodies 

results obtained with anti.phosphotyrosine antibodies revealed differential expression of 

specifie proteins (Figure 13, bands # 4, 5 and 6) and sorne proteins did not change in 

concentration (Figure 13, bands 1, 2 and 3). Sinee rnass spectrornetry identified rnany 

unknown proteins (Figure 8), the anti·phosphotyrosine antiserurn could potentially be 

used to immunoprecipitate out such unknown proteins. 
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DISCUSSION 

The molecular machines of the ER in cancer are so complex and still vague. 

Proteomics analysis of ER and validation by other techniques such as the immunoblot" 

help partly in solving the mystery of the proteomic profile of ER in cancer 

(oncoproteome of ER). A key point to mention is that all cancer literature studied cells 

and tissues, whlle our study was done at the level, of an organelle, the ER. Organelle 

proteomics is more sensitive and more precise than cell and tissue J?roteomics because 

protein complexity is largely reduced and is done to a range where an entire organelle­

proteome can be displayed on a single 2D gel or even analyzed by mass spectrometry in 

gel-free procedures in one shot (Au et al~, 2007; Brunet et al., 2003). In addition, 

identified proteins can immediately be linked to a functional context, because they were 

purified together with an organelle or subcellular fraction. AIso, low abundant proteins 

and signaling complexes can be enriched. Analyzing subcellular fractions and organelles 

aIlows also tracking proteins that shuttle between different compartments, e.g. between 

the cytoplasm and nucleus (Au et al., 2007; Brunet et al., 2003). Importantly, subcellular 

fractionation is a flexible and adjustable approach that may be efficiently combined not 

only with tw~-dimensional gel electrophoresis but aIso with gel-independent techniques 

(Huber et al., 2003). 

A Differentially expressed proteins 

A.l Proteins involved in mRNA metabolism 

In our study, we were able to demonstrate many of pro teins involved in mRNA 

metabolism as differentially expressed. Here we would like to highlight an important 

remark as regard one of them as follows: 

- Heterogeneous nuclear ribonucleoprotein K (hnRNP K) as mentioned before belongs to 

hnRNPs family and is involved in mRNA metabolism (Habelhah et al., 2001). Since 

mRNAs are present in association with both free polysomes and membraneMbound 
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polysomes (Zambetti et al., 1987), therèfore it is possible that hnRNP K is also attached 
. \ 

to ER. In our study it was detected in the ER (Tables 2-A and 4-A as weil as in Figure 9). 

It is also a phosphoprotein that can he phosphorylated on both tyrosine and serine 

residues (Feliers et al., 2007). It is an overexpressed protein in litérature (Li et al., 2004). 

In addition, it has been reported as a potential new marker in colon cancer (Klimek­

Tomczak et al., 2006). 

A.2 Proteins involved in diverse metaboli~ pathways 

In our study, we were able to demonstrate that many differentially expressed 

proteins are involved in diverse metabolic processes. Moreover, many of these proteins 

are either overexpressed or underexpressed in tumor ER. We would like to highlight 

sorne relevant points as follows: 

- The pentose phosph~te pathway (PPP) is involved in carbohydrate metabolism and it is 

composed of oxidative and non-oxidative branches. In the oxidative branch the hexose, 

glucose 6-phosphate is converted to pentose phosphate and carbon dioxide with the 

reduction of two molecules of nicotinamide adenine dinucleotide phosphate (NADP). 

While in the non-oxidative branch, three molecules of pentose phosphate (15 carbon 

atoms) are reconverted to two and one-half molecules of hexose phosphate (15 carbon 

~toms) in a series of fully reversible reactions (Horecker, 2002). Ribose-5-phosphate 

which is one of the- major products of the PPP is important for the biosynthesis of 

nucleotides (Boren et al., 2006) and nucleic acids (Horecker, 2002). NADPH (NADP 

reduced form) is produced by the oxidative branch of the PPP and is used for 

detoxification processes and lipid biosynthesis (Boren et al., 2006). Enzymes involved in 

the non-oxidative branch;of ppp include transaldolase,transketolase, ribose 5-phosphate 

isomerase and ribulose 5-phosphate 3-epimerase. While enzymes involved in the 

oxidative branch . of ppp include glucose 6-phosphate dehydrogenase and 6-

phosphogluconate dehydrogenase (Boren et al., 2006; Wagner et al., 1978). As regard the 

non-oxidative branch of PPP, both transaldolase and the transketolase were 

overexpressed in our studies (see Tables 2-A and 4-A). Also, glucose 6-phosphate 
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dehydrogenase was uniquely expressed in tumor ER membrane in Table 4-A. Thus the 

ppp and glucose and glycogen metabolism are modified in cancer. These modified events 

in the context of the well-known Warburg effect in cancer cells include that cancer cells 

take up glucose at higher rates than normal tissue but use a smaller fraction of this 

glucose for oxidative phosphorylation. This effect is defined as aerobic glycolysis or the 

Warburg effect (Kim and Dang, 2006). This effect is thought to he caused by cancer 

leading to defects in oxidative phosphorylation, or "respiration" in the mitochondria, 

forcing the cancerous cell to revert to a more "primitive" form of energy generation (i.e. 

glycolysis). In his view, this switch caused such cells to become undifferentiated and 

cancerous (Garber, 2004). 

- ATP citrate lyase isa substrate for prote in kinase B (Akt) signaling pathway (Berwick 

et al., 2002). The Akt pathway has 7 distinct signaling pathways downstream and it 

promotes cell survival by inhibiting apoptosis. An important branch of the Akt pathway 

for cancer cell survival involves the kinase mTOR (mTOR is overexpressed in our mass 

spectrometry database with mean number of peptides is 2.5 in SMNod and 0.5 in SMCtl) 

(McCormick, 2004). Akt-transformed cells are dependent on A TP citrate lyase as a 

growth promoter through its role in de novo lipogenesis (Bauer et al., 2005). It is also 

tyrosine phosphorylated (Table 3) and previously shown in our data as overexpressed 

(Tables 4-A and 4, Figures 9 and 10-B). 

A.3 Proteins involved in aOatoxin BI metabolism 

Aflatoxin BI (AFBI) is a well-known hepatoxin and hepatocarcinogen (Bennett 

and Klich, 2003; Camaghan, 1964). F ollowing animal treatment with aflatoxin BI 

(AFB}), many detoxification systems will be implicated to protect the organism against 

adverse effects of AFB 1. Without such protection AFB} treatment ultimately leads to 

development of hepatocellular carcinoma. However, the metabolism of AFB} is 

complex. Drug metabolizing enzymes protect the body against harmful effects of 

different xenobiotics mole cules (XU et al., 2005). The enzymes involved 10 

biotransformation of AFB} belong to two main groups namely phase 1 and phase II 
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enzymes. Phase 1 (oxidation reactions) involves cytochrome p450 that catalyses 

monooxygenation reaction (Anzenbacher and Anzenbacherova, 2001) and aldo-keto­

reductases 7A (aflatoxin aldehyde reductases) (Jin and Penning, 2007). While phase II 

(conjugation reactions) involves glutathione S transferase (Aliya et al., 2003). Many sub­

family proteins that are implicated in AFB 1 metabolism were detected in our data as 

differentially expressed. The important points of note are as follows: 

1) Cytochrome p450 (CY,P 450) family protein: 

In eukaryotes, the members of this family are membranous proteins. Their basic 

function is in detoxification (Anzenbacher and Anzenbacherova, 2001). Howevet, the 

resultant AFB 1 metabolites are sometimes more dangerous than the original molecule 

(Itoh et al., 1997). This can he more explained by the fact that cytochrome p450 is able to 

transform AFB 1 into aflatoxin-8,9-epoxide molecule (activated form) which is highly 

mutagenic and carcinogenic (Hayes et al., 1993; Loe et al., 1997). This activated form 

can interact with DNA leading to formation of DNA adduct (Smela et al., 2001). Thus, 

DNA mutations can affect p53, ultimately leading to liver cancers (Mace et al., 1997). 

However, this toxic effect can he avoided if the activated metabolite is reduced with 

phase 2 enzyme glutathione S transferase (Hayes et al., 1993) . 

. As shown previously, many of p450 family proteins were underexpressed. These 

CYP 450 members include CYP 450 4A in Figures 9 and Il, CYP 450 2C Il in Table 4-­

B and Figure 9, CYP 450 reductase in Figures 9, 10-A and II and CYP 450 2C7, 3A18, 

2A2, 2C6 and 2D2 in Table 4-B. In conclusion~ many cytochrome p450 family members 

were underexpressed in tumor ER. This phenomenon may occur to prevent excessive 

formation of toxic metabolic intermediates. 

2) Glutathione S transferase 

Glutathione S transferase (GSn enzyme plays a protective role against AFBl­

DNA adduct formation in tissues, i.e. causes detoxification of AFB 1 (McLean and 
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Outton, ] 995). In our study we detected an important member of this family named 

glutathione S transferase, pi (GST pi) as one of the overexpressed proteins in tumor ER 

(Table 4-A). GST pi has been reported overexpressed in human HCC (Niu and Wang, 

2005). It is has been proposed as a tumor marker for HCC in rat (Aliya et al., 2003) and 

for serodiagnosis in human HCC (Niitsu et al., 1989). 

3) Aldo-keto reductases (aldehyde reductases) (AKR 7A) 

Aldo-keto reductases (AKRs) are a cytosolic superfamily of proteins (Zeindl­

Eberhart et al., 2001), which areNADPH oxiçloreductases. These enzymes are phase 1 

drug-metabolizing enzymes (Jin and Penning, 2007) that convert carbonyl groups to 

alcohols (Sawada et al., 1979). Hence, they can reduce the dialdehyde protein-binding 

form of aflatoxin BI (AFBl) to the non-binding AFBl dialcohol, this is contributed by 

'the action of aflatoxin aldehyde reductases (AKR 7 A) (Jin and Penning, 2007). 

Among the inembers of this superfamily is the rat aflatoxin BI aldehyde reductase 

(rAF AR 1) which was detected as an overexpressed protein as shown before in Table 4-A 

as well'as in Figure 10-D. Rat aflatoxin BI aldehyde reductase member 1 (rAFAR 1) is a 

well-known cytosolic protein and is involved in aflatoxin detoxification (Knight et al., 

1999; Praml et al., 2003; Zeindl-Eberhart et al., 2001). Nonnally, in the rat two aldehyde 

reductase (AFAR) isoenzymes exist, called rAF AR 1 and rAF AR 2. The latter bas been 

shown to be associated with Golgi membranes (Kelly et al., 2002). However, although 

rAF AR 1 is considered more a cytosolic protein, it may react with a specific ER substrate 

in cancer, indicating an affmity for ER membrane. 

On the other hand, treatment with AFB 1 will lead to overexpression of certain 

proteins, notably phase 2 enzymes (Yates et al., 2006), to protect the animal from serious 

adverse effects. Nrf2'short form for NF-E2 related factor 2 is a member ofa transcription 

factor family called nuclear transcription factor erythroid 2p45 (NF-E2) (Lee and Surh, 

2005). Nrf 2 is involved in the regulation of aldo-keto reductase enzyme (Nishinaka and 

Yabe-Nishimura, 2005). In the cytoplasm, Nrf 2 is normally bound to Kelch-like ECH-
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associated protein 1 (Keap 1) (Itoh et al., 1999; Itoh et al., 2003). Keap 1 fepresses Nrf 2 

transcription àctivity by targeting it for ubiquitination and proteosome-mediated 

degradation (Zhang and Hannink, 2003). However, under certain conditions as the case 

of oxidative stress (Zhang and Hannink, 2003) Nrf 2 will able to escape from Keap 1 

with subsequent nuclear translocation ofNrf 2 (Itoh et al., 1999; Itoh et al., 2(03). In the 

nucleus Nrf2 is recruited to antioxidant response element (Nioi et al., 2003) and thus 

hecomes able, to induce the expression of its target genes (Zhang and Hannink, 2003), 

which are, phase 2 enzyme genes (Itoh et aL, 1997). Nrf 2 exerts a physiological role in 

cytoproteètion due to toxic events (Kobayashi and Yamamoto, 2005). Downstream 

targets of Nrf 2 that were shown in our study to be overexpressed in tumor ER include 

GST pi (Table 4-A) (Ishii et al., 2000), glutamate-cysteine ligase (Table 2-A) (Yang et 

al., 2005); rAF AR 1 (Table 4-A and Figure lO-D) (Ellis et al., 2003), UDP-glucuronosyl 

transferase lA6 (Table 4-A) (Bock and Kohle, 2005), microsomal epoxide hydrolase 

(Table 4-A) (Ramos-Gomez et al., 2001), glucose-6-phosphate dehydrogenase (Table 4-

A), 6-phosphogluconate dehydrogenase (Table 4-A) (Thinimulappa et al., 2002). 

B Proteins that do Dot ehange in expression 

B.l Folding proteins 

The endoplasmic reticulum acts as a quality control system for newly synthesized 

proteins. Folding proteins are a group of specialised ER proteins whose main role is to 

monitor newly synthesised secretory. or membrane proteins, so that correctly folded 

proteins are exported from the ER, but misfolded proteins are retained and selectively 

degraded (Hendershot, 2004). Figure 6 showed the most folding proteins .were in equal 

concentration in control ER and tumor ER. This is fOWld to be in contrast to previous 

studies that mentioned upregulation of members of fol ding proteins; Bip was previously 

reported as upregulated in human HCC (Luk et al., 2006) and iri high grade human breast 

cancer (Fernandez et al., 2000). Why the presence of such remarkable disconcordance, is 

not known, but probable Wlderlying mechanisms might he related to the immWle escape 

mechanism (Luk et al., 2006) or the occurrence of metastaSes (Zhang et al., 2006), or the 
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development of drug resistance as the case in human breast cancer cells (Dong et al., 

2005). 

Another two important ER folding proteins we would like to discuss are the 

calnexin (an ER membrane protein) and calreticulin (an ER luminal protein) (Danilczyk 

et al., 2000). The calreticulinlcalnexin cycle is important for the quality control function 

of ER (Wu et al., 2006). This is achieved by the binding of unfolded glycoprotein to 

calreticulin or calnexin. lbis resuIt in retention of the unfolded glycoprotein in the ER, 

permitting foldases (include peptidylproline isomerases and disulfide isomerases) to 

catalyze the isomerization of polypeptide conformations or exchange of disulfide bonds 

to facilitate folding of the protein into the correct 3-D arrangement of protein structure 

(Schrag et al., 2003). The cancer literature reported the presence of anti-calreticulin 

autoantibodies in human HCC (Le Naour et al., 2002). On the other band calnexin was 

reported by (Dissemond et al., 2004) as underexpressed in human metastatic melanoma 

(based upon an immunohistochemistry study). This study c1aimed a tumor immune 

surveillance escape mechanism to be responsible for their result. Moreover, their result is 

in concordance with our results (that detected underexpression of this protein in tumor 

ER, Figure 6). 

B.2 Proteins in the major histocompatibility class 1 (MHC class 1) peptide loading 

complex (PLC) 

As regard the proteins which comprise the PLC, our results showed no significant 

change in expression between the tumor ER and the control ER. However, by reviewing 

the literature we found that our results are not consistent with other cancer studies. In 

cancer literature, many studies demonstrate underexpression of the PLC proteins. 

Examples inc1ude underexpression of (32-microglobulin due to genetic events in human 

lung and breast cancer (Chen et al., 1996). Other example is the underexpression of T AP 

1 and T AP 2 in human melanoma; moreover, the underexpression of T AP 1 and T AP 2 

markedly increased with progression of melanoma (Kageshita et al., 1999). This is due to 

suppressed function of related PLC proteins leading to underexpression of MHC class l 
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presentation of tumor-associated epitopes (Scholz and Tampe, 2005). This leads tumors 

to escape from T cell recognition with consequent escape cell death (Seliger et al., 2002). 

Nevertheless, underexpression of PLC components is not always evident in tumor cells 

since it is subjected to nwnerous intracellular factors (Park et al., 2006). Therefore, 

differential expression of PLC components may vary between tumor types or even during 

the stages of twnor development. 

Thus, we can observe many differences that are present between our results and 

those reported in the literature. This can he partly attributed to two main factors, use of 

rat aflatoxin tumor nodules versus human tissues and metastatic versus non-metastatic 

sampi es. The rat twnors used in our studies were primary twnors at the time of sacrifice 

and tumor extraction with no evidence ofmetastasis was found (data not shown). 

C Phosphotvrosine proteins 

In general, protein phosphorylation at tyrosine (Chang et al., 2008; Lewandr~wski 

et al., 2008)or serine (Hacker and Karin, 2006) or threonine residues (Jaffe et al., 1998) 

plays an important regulatory role in diverse cellular functions. In our study we were able 

. to observe several overexpressed proteins in twnor ER that were previously defmed as 
tyrosine- phosphorylated (Rush et al., 2005). Such proteins might undergo cycles of 

tyrosine phosphorylation and dephosphorylation promoting specifie ER related funetions 

in cells, which are yet to be hetter defmed (Lavoie and Paiement, 2008). On the other 

hand, phosphorylation cannot only he at tyrosine residues as shown in Table 4, but also at 

serine and/or threonine residues. Our data include examples of such overexpressed 

phosphoproteins: hnRNP K (Tables 2-A, 4 and Figure 9) that can be phosphorylated on 

both tyrosine and serine residues (Feliers et al., 2007), ATP citrate lyase (Tables 4-A and 

3, Figures 9 and 10-B) (Ramakrishna et al., 1981) and elongation factor 2 (Tables 4-A 

and 3) (Kim et al., 1991; Ovchinnikov et al., 1990) that can be phosphorylated on 

tyrosine as well as serine and threonine residues. 

On the other hand, phosphorylation is not just the simple addition of a phosphate 

group on specific prote in residue (s) (Collins et al., 2007). In practise, this process 
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influences the activity of the phosphorylated protein itself (Manping et al., 2002). In our 

present study, we were able to detect overexpression ofproteins related to diverse cellular 

functions (Table 3) and defmed previously as heing phosphorylated ones (Rush et al., 

2005). 

D Protein contaminants of the ER fractions 

The previously shown LRPIMVP in ourstudy (Table 4 and Figure 10-C) is a 

major constituent of a ribonuc1eoproteins partic1e called vault (Poderycki et al., 2006). 

Vaults were originally discovered as contaminants of rat liver vesicle preparations , 
(Kedersha and Rome, 1986). Therefore, we think that LRPIMVP is a constituent of vault 

particles that are purified coincidently with ER microsomes. Also, it is overexpressed in 

other types of cancer like colorectal one (Meijer et al., 1999) and under toxic conditions 

like drugs and toxic chemicals (Scheper et al., 1993). 

Many proteins detected in the ER were cytosolic. Sorne of these cytosolic proteins 

are proteins that bind specifica1ly to the ER (for example, ATP citrate lyase). However, 

sorne of the cytosolic proteins are likely ER contaminants produced during fractionation. 

This happens because there is ,a difficulty to obtain pure subcellular fractions (Huber et 

al., 2003). On the other hand, sorne cytosolic proteins could he associated with the ER 

because of yet detennined protein-protein interaction? 

E Proteins with clinical relevance 

In our studies, rnany of proteins were detected in our rnass spectrometry bank 

database., By reviewing the literature, we found that sorne of them were clinically 

significant. Clinical significant proteins of note are as follows: 
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E.l Liver tumor biomarkers 

In general, a tumour marker is a protein that can be detected in a solid tumor, in 

circulating tumour cells, in peripheral blood, in lymph nodes, in bone marrow, or in other 

body fluids (urine or stool). A tumour marker can be used for population screening and 

for detection, diagnosis, staging, prognosis, or follow up of cancer. Common laboratory 

methods for detection of a tumor marker include immunohistochemistry, fluorescent in 

situ hybridisation and reversed transcriptase and polymerase chain reaction (Lindblom 

and Liljegren, 2000). We now only talk about proteins that havebeen proposed as tumor 

markers by other scientists. Interestingly, we have observed many of these to be 

differentially expressed in our study. 

Actually, there are now few available markers for liver cancer. Among the 

conventional serum biomarkers used in HCC diagnosis is the oncofetal protein namely 

alpha fetoprotein (AFP) which is the most widely used screening test in HCC (Zhou et 

al., 2006). However, this marker is non-specific as being detected in other types of 

cancers, AFP .and testicular cancer (Airieta et al., 2007; Lindblom and Liljegren, 2000). 

Moreover, AFP is not considered as a reliable biomarker for liver cancer since it is not 

increased in around 30% of HCC patients (Zhao et al., 2004; Zhou et al., 2006). So, the 

defective reliability of present liver tumor biomarkers highlights the importance to find 

out a new and more accurate HCC marker (s). 

Our study revealed several overexpressed proteins considered in the literature to 

be potential biomarkers for HCC patients. These include eEF 2 (Figure 9) for early 

diagnosis (Li et al., 2008), nucleophosmin (Table 2-A) (Yun et al., 2007), GST pi (Table 

4-A) (Aliya et al., 2003), transgelin 2 (Shi et al., 2005). For HCC metastasis, poteqtial 

biomarkers include cytokeratin 19 (Table 4-A) (Ding et al., 2004; Marrero and Lok, 

2004) and vimentin (Table 2-A) (Hu et al., 2004). 

As regard transgelin 2, we found that it was overexpressed with mean number of 

peptides 2.75 in SMNod and 0.25 in SMCtl. 
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E·.2 Proteins related to tumor tberapy 

E.2.1 Dihydropyrimidine dehydrogenase deficiency 

Oihydropyrimidine dehydrogenase (OPO) is an enzymatic protein that was 

detected in our mass spectrometry studies and found to he an underexpressed protein in 

tumor ER (niean number of peptides were 1 in SMNod and 4 in SMCtl). This protein is a 

rate-limiting enzyme in the catabolism of the pyrimidine bases; it catalyses the reduction 

of thymine and uracil to 5,6-dihydrothymine and 5,6-dihydrouracil, respectively (Van 

Kuilenburg et al., 1998). A number of cancers are treated with 5-fluorouracil(Van 

Kuilenburg, 2006). This leads to inhibition of nucleotide metabolism and consequently 

affects cell division of tumor ce Us (Schuetz et al., 1986). Under normal condition OPO 

metabolizes 5-fluorracil (5-FU), but in patients that are deficient in OPO toxic amounts of 

5-FU accumulate and can kill patients. Since OPO has been reported underexpressed in 

cancer (confmned in our mass spectrometry studies) treatment of all cancers with, 5-FU 

should always be done with prior screening of OPO deficiency. 

E.2.2 Proteins involved in multiple drug resistance 

Multiple drug resistance (MOR) state reflects the presence of resistance to 

treatment with multiple chemotherapeutic agents in cancer patients. Several well known 

transmembrane proteins are involved in drug resistance (Tan et al., 2000). Lung 

resistance related proteinlmajor v841t protein (LRPIMVP) is an example. of a MDR 

prote in (Shi et al., 2008; Tan et al., 2000) that was initially discovered in a non-small-cell 

lung cancer (NSLC) (Scheper et al., 1993). In our results, it was observed as an 

overexpressed protein (Figure 10-C) and it has been shown to be . tyrosine­

phosphorylated (Table 4). Upregulation of MVP is a predictor of the MDR phenotype 

(Hemnann et al., 1999) and hence a prediction of resistance to anticancer drugs (Ikeda et 

al., 2008). 
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E.2.3 The Warburg effect and cancer therapy 

The cancer phenotype that was described initially by Warburg as an increased 

cellular glycolysis in a cancer envir<?nment provides an important biochemical basis for 

the design of multiple anticancer therapeutic agents. The glycolytic pathway is a series of 

metabolic reactions catalyzed by multiple eIlZymes, the latter represent possible targets 

for the development of glycolytic inhibitors. Many of these inhibitors are currently at 

various stages of pre-clinical and clinical studies. These inhibitors may be particularly 

useful for the treatment of cancer (Chen et al., 2007; Glaccone et al., 2004). 
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CONCLUSIONS AND FUTURE PERSPECTIVES 

Conclusions 

Cancer may be characterized as the occurrence of complex molecular events at the 

cellular level. This disease results in interference with multiple cellular functions and can 

lead to the inhibition of apoptosis, which is the immortalization of ceUs. 

The protein composition of the ER of hepatocellular carcinoma is different from 

that of the ER of a normalliver. These differences are summarized in the following three 

main points, which are: 

1) a molecular signature of the ER in hepatocellular carcinoma. 

- Metabolic profile alterations in cancer as evidenced by differentiaI expression of many 

metabolic proteins, these include: 

1) Overexpression of proteins involved in glucose metabolism (PPP), which 

include transaIdolase and transketolase; 

2) Underexpression of proteins involved in glycogen metabolism; and 

3) Underexpression of proteins involved in lipid metabolism. 

- Differentiai expression of proteins involved in detoxification of AFB 1 as evidenced by 

differentiaI expression of many proteins belonging to' different protein families involved 

in detoxification. These include: 

1) Underexpression members of cytochrome p450 protein family; and . 

2) Overexpression of glutathione-S-transferase and aldo-keto reducatses. 

- Overéxpression of anti-apoptotic proteins. These proteins may lead to Joss or alteration 

in the programmed ceU death in cancer. This will favor cancer growth and metastases. 
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- Overexpression of proteins involved in mRNA metabolism. These proteins may lead to 

altered effect on the expression of different normally functional genes in tumor. 

- Overexpression of proteins involved in ribosomes biogenesis. 

- Overexpression of tyrosine phosphoproteins. These proteins may be implicated In 

signaling of diverse metabolic pathways. 

II) DifferentiaI regulation of anti-apoptotic proteins (examples include tripeptidyl 

peptidase II and nucleophosmin) may in part explain why microinjection of ER 

membranes from adult rat liver into blastomeres of Xenopus embryos led to inhibition of 

cellular division in the blastomeres, whereas microinjection of ER membranes from liver 

nodules of rats treated with aflatoxin BI did not (Paiement et al., 1992). However, in . 

order to confirm this, injection of anti-apoptotic elements in blastomeres should he done. 

Ill) The study of ER proteomics has led us to disco ver a set of new molecular screening 

markers for HCC, many ofwhich need clinical validation. 

Finally, this proteomic difference between control and tumor liver may' be 

beneficial to the survival of the tumoral cells in liver. Moreover,the importance of the se 

results will help us to understand hetter the role of the ER in cases of hepatocellular 

carcinoma. 

Our results therefore suggest that many proteins reported in scientific literature 

detect very fewer ER proteins in tumor cells and tissues. This highlights the importance 

of our study and the contribution it could have in the field of cancer proteomics. 

Future perspectives and challenges 

From our study, an important argument can be derived. In reviewing pre-existing 

studies, it was found that the concept of immune surveillance escape mechanism is due to 
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the differential expression of proteins involved in folding and in PLC in HCC. However, 

our study argues that this concept is not weIl supported, as· we found no evidence of 

significant differential expression in the said proteins. 

The two most important promising prospective is to identify more and new serum 

markers for the better detection and diagnosis of HCC, as weIl as to better identify the 

process of phosphorylation of proteins in HCC. Our study found that the ER proteomic 

expression profile in HCC could help in the future selection of proteins as candidate 

markers for the diagnosis of HCC. Moreover, our list of the newly discovered ER 

proteins, which we have desi~ated as NERA, represents a panel for detecting potential 

new liver tumor biomarkers in the future. However, further study is needed to 

characterise these proteins. 

On the other hand, therole ofphosphorylation in binding cytosolic proteins to ER ,-
and the proper ER functions in HCC also bas to be studied and investigated in the future. 

This can be achieved by using ER phosphoproteomics. However, phQsphoproteomics has 

the advantage of reducing the amount of proteins that can be analyzed even though there 

is difficulty in the identification of phosphorylated proteins (Zhang et al., 2007). 

Moreover, the role of phosphorylation of proteins and ER membrane association should 

be considered in future studies. 

The final perspective of this work is that the comparative study of the protein 

expression iil HCC and the normalliver tissue may help us to fmd tumor-specific proteins 

that can be responsible for uncovering altered metabolic pathways. This study can help us 

to better understand the liver cancer process in rodents. 
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