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RESUME 

La mitochondrie du cardiomyocyte dont la fonction primaire est la production 

d'ATP, essentielle à la contraction cardiaque, est une source majeure d'espèces réactives de 

l'oxygène. Dans la chaîne respiratoire, les radicaux libres sont produits par différents sites 

et peuvent conduire à un stress oxydant lorsque le système de défense antioxydant est 

défaillant. L'évaluation de l'état rédox mitochondrial est un facteur important dans la 

détection de changements précoces dans des conditions pathologiques telles que l'ischémie, 

l'hypertension ou le diabète. 

Dans notre étude, nous avons suivi l'autofluorescence (AF) du nicotinamide adénine 

dinucléotide (phosphate), ou NAD(P)H, un co-facteur donneur d'électrons pour différentes 

réactions enzymatiques jouant un rôle crucial dans le métabolisme oxydatif cellulaire et une 

source majeure d'AF des cellules cardiaques suite à une excitation par la lumière UV. Le 

NAD(P)H a été utilisé ici comme marqueur fluorescent non invasif de la fonction 

mitochondriale. Nos objectifs étaient de (i) développer une approche de caractérisation de 

l'empreinte de l'état oxydatif métabolique mitochondrial des cardiomyocytes par la 

méthode spectrométrique du temps de vie de fluorescence induite par laser (STVF) et (ii) 

déterminer les changements dynamiques et spectrales de la fluorescence du NAD(P)H in 

vitro et dans des cardiomyocytes isolés de rat lors de modulations métaboliques ou 

oxydatives. La fluorescence du NAD(P)H a été enregistrée suite à une excitation par une 

diode à laser UV -pulsé et la détection par STVF avec une mesure simultanée de spectres et 

de temps de vie de fluorescence. La modulation de l' AF des cardiomyocytes suite à des 

changement de production et/ou de consommation de NAD(P)H a été étudiée. Nous avons 

également utilisé cette approche pour investiguer les modifications associées au 

remodelage oxydatif métabolique lors de la gestation normale et après traitement des 

animaux avec du canrénoate, un inhibiteur des récepteurs aux minéralocorticoides. 

Nos données montrent que la fluorescence du NADPH in vitro a un maximum spectral à 

450 nm, une décroissance avec au moins deux durées de vie et est sensible aux 
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changements d'environnement tels que le pH et la viscosité. Nous avons également montré 

qu'un modèle de décroissance à trois exponentielles est nécessaire pour décrire l' AF du 

NAD(P)H des cardiomyocytes. Des cellules cardiaques fraîchement isolées ont été traitées 

avec des agents mimant un stress oxydant: le peroxyde d'hydrogène (H20 2) et le 4-

hydroxynonénal (HNE). Nos résultats montrent qu'en présence de H20 2, et en accord avec 

sa capacité d'augmenter l'utilisation du NADPH par le système antioxydant du glutathion, 

les cardiomyocytes présentent une perte de la fluorescence qui est accompagnée par un 

élargissement spectral vers le rouge. L'analyse des composantes principales faite sur les 

données révèlent que cet effet résulte d'une diminution des amplitudes des composants 

résolues, sans modification de leur temps de vie. Parallèlement, le HNE, un produit issu de 

la peroxydation lipidique connu pour sa capacité de diminuer la production de NADPH par 

inhibition de l'enzyme mitochondriale l'isocitrate déshydrogénase NADP-dépendante, est 

également capable de diminuer la fluorescence du NAD(P)H avec un léger élargissement 

spectral vers le rouge. L'analyse des composantes principales révèle que contrairement aux 

effets du H20 2 sur la fluorescence du NAD(P)H, ceux du HNE s'exercent plutôt sur une 

diminution des temps de vie, suggérant une conséquence sur l'environnement moléculaire 

plutôt que sur sa quantité. De plus, en présence d'inhibiteurs de la glutathion réductase 

(BeNU) ou du complexe 1 et IV de la chaîne respiratoire, le H202 et le HNE ont des effets 

différents sur la fluorescence du NAD(P)H dans les cellules, suggérant des implications 

différentes sur les voies métaboliques. 

Nous avons ensuite choisi la gestation comme exemple pour investiguer la 

possibilité d'utiliser cette technique dans l'étude du métabolisme oxydatif dans des 

conditions physiopathologiques. Les caractéristiques de la fluorescence du NAD(P)H ont 

été étudiées dans les cardiomyocytes vivants, fraîchement isolés de rates gestantes 

normales ou traitées au canrénoate. Lors de la gestation normale, l'AF du NAD(P)H n'est 

pas différente de celle mesurée chez les rates nullipares montrant la capacité d'adaptation 

des cellules cardiaques à cette situation métabolique. Lors d'une gestation en présence de 

canrénoate, bloquant le récepteur aux minéralocorticoides, les réponses de l' AF du 
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NAD(P)H aux modulateurs de métabolisme oxydatif varient de celles des conditions 

normales. L'intensité de la fluorescence qui a tendance à être plus sensible aux 

changements du ratio lactate/pyruvate et la perte de fluorescence en présence de BCNU, 

plus prononcée que celle mesurée lors de la gestation normale, suggèrent de mauvaises 

adaptations cardiaques à cette condition. 

La technique STVF est un outil très prometteur pour l'analyse de la fluorescence du 

NAD(P)H dans les cardiomyocytes vivants. Cette approche devrait nous permettre de 

mieux comprendre le métabolisme oxydatif des cardiomyocytes et/ou son 

dysfonctionnement au niveau cellulaire. Elle pourrait également devenir un nouvel outil 

prometteur pour l'étude des mécanismes cellulaires impliqués dans le développement des 

maladies cardiaques. 

Mots-clés: NAD(P)H, autofluorescence, spectrométrique du temps de VIe de 

fluorescence induite par laser, mitochondrie, cardiomyocyte vivant, état métabolique 

oxydatif 
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ABSTRACT 

The primary function of cardiac mitochondria is the production of A TP to support 

the contractions of the heart. This process is considered a major source of reactive oxygen 

species formation (ROS) in the heart. During ATP generation, free oxygen radicals may 

arise at different points in the respiratory chain, leading to oxidative stress when the 

antioxidant system is compromised. Examination of the mitochondrial redox state is 

therefore crucially important to sensitively detect early signs of mitochondrial dysfunction 

in pathophysiological conditions, such as ischemia, hypertension, and diabetes. In this 

study, we monitor cellular auto fluorescence (AF) of nicotinamide adenine diIiuc1eotide 

(phosphate), or NAD(P)H, which plays a crucial role in the management of cellular 

oxidative metabolism as the principal e1ectron donors for several enzymatic reactions and 

which is a major source of AF induced in cardiac cells following excitation by UV light. 

Here, NAD(P)H is studied as a marker for non-invasive fluorescent probing of the 

mitochondrial function. Our objectives are to (i) develop an approach for fingerprinting of 

mitochondrial metabolic oxidative state in living cardiac myocytes by spectrally-resolved 

time-correlated single photon counting (TCSPC) and (ii) report dynamic changes of 

NAD(P)H fluorescence spectra and decays in vitro, and in living rat cardiomyocytes upon 

metabolic or oxidative modulation. NAD(P)H fluorescence is recorded following excitation 

by UV-pulsed laser diode and detected by spectrally-resolved TCSPC, allowing 

simultaneous measurement of the fluorescence spectra and fluorescence lifetimes. 

Modulation of cardiomyocyte AF following changes in NAD(P)H production and/or 

consumption is investigated. We also test the eventual application of this approach to 

examine remodeling of oxidative metabolism in cardiomyocyte during normal pregnancy 

or after treatment of animaIs with canrenoate, an inhibitor of mineralocorticoid receptors 

(MR). 

Our preliminary data have shown that NADPH fluorescence in vitro with spectral 

maximum at 450 nm and decay with at least two significant fluorescence lifetimes is 
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sensitive to changes in the environment, such as pH and viscosity. Also, we have 

demonstrated that a 3-exponential decay model is necessary to de scribe NAD(P)H-based 

cardiomyocyte AF. Freshly-isolated living cardiac cells were treated with oxidative stress 

mimicking agents: hydrogen peroxide (H20 2) or 4-hydroxynonenal (HNE), a by-product of 

lipid peroxidation. Our results showed that, in agreement with the capacity of H20 2 to 

stimulate the use of NADPH by glutathione system, living cardiac cells showed a loss of 

NAD(P)H fluorescence in the presence of H20 2, which was accompanied by a red spectral 

broadening. Advanced component analysis performed on gathered data revealed that this 

effect results from decrease in the amplitudes of the resolved components, without 

modifications in their lifetimes. In parallel, HNE, a by-product of lipid peroxidation, known 

for its ability to decrease NADPH production by inhibiting NADP-isocitrate dehydrogenase 

was also capable of decreasing N AD(P)H fluorescence with a slight red spectral 

broadening. In contrast to H20 2, component analysis revealed that HNE effect on 

NAD(P)H fluorescence reduction is primarily related. to lowering of fluorescence lifetimes, 

pointing to the effect of HNE on the environment rather than the quantity of NAD(P)H 

molecules. Furthermore, in the presence of glutathione reductase (GR) inhibitor (BeNU), 

or of the respiratory chain modulators, H20 2 and HNE induced different effects on 

NAD(P)H-fluorescence in cardiac cells, pointing to implication of separate metabolic 

pathways. 

Next, we have chosen the condition of pregnancy as an example to investigate 

possible application of the new technique to study cardiomyocyte oxidative metabolic state 

in pathophysiological situations. We examined characteristics ofNAD(P)H fluorescence in 

living cardiomyocytes isolated from normal pregnant rats and canrenoate-treated ones. In 

normal pregnancy, NAD(P)H AF response was not different from that of non-pregnant rats, 

pointing to capacity of adaptation of cardiac cells to this condition. Interestingly, during 

pregnancy where MR were blocked by canrenoate-treatment, responsiveness of NAD(P)H 

fluorescence of cardiac cells varied from that in normal conditions. The fluorescence 

intensity tended to be more sensitive to metabolic substrates lactate/pyruvate than in normal 
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condition, and in the presence of BCNU the loss of AF was more pronounced compared to 

nonnal pregnancy, indicating possible cardiac maladaptions in this condition. 

Spectrally-resolved fluorescence lifetime technique provides promising new tool for 

analysis of NAD(P)H fluorescence in living cardiomyocytes. In the future, this approach 

will improve our understanding of cardiomyocyte oxidative metabolic state and lor its 

dysfunction at a cellular level, and could become a promising tool for the study of cellular 

mechanisms of cardiovascular disease development. 

Keywords: NAD(P)H, autofluorescence (AF), spectrally-resolved fluorescence decays, 

mi~ochondria, living cardiomyocyte, oxidative metabolic state. 
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1. INTRODUCTION 

1.1. Oxidative stress and its impact on the heart function 

The heart is the major organ in the cardiovascular system which provides the body 

continuously with blood, delivering the oxygen and essential substrates needed for 

biological functions, and helping dispose of metabolic wastes. The left ventric1e, with 

thicker walls compared to the right ventric1e, serves as the main pumping chamber of the 

heart forcing blood through the aortic valve into the high resistance systemic circulation, 

providing oxygen to the en tire body. Depending on the workload, the heart can adaptively 

change its output to ensure adequate energy supplyl. In order to maintain the proper 

functioning of the heart it is required to have a sufficient amount of energy to sustain the 

myocardial contractile activity2-4. The heart uses a variety of substrates to meet its energy 

requirements from the oxidation of fatty acids, glucose, lactate and other oxidizable 

substrates4
. There are important mechanisms that exist to supply energy and keep the 

cellular pool of adenosine triphosphate (ATP). The three main pathways used to generate 

energy in eukaryotic organisms are glycolysis and the citric acid cyc1e/oxidative 

phosphorylation, both components of cellular respiration; and ~-oxidation. The majority of 

ATP production takes place in the mitochondria. The mitochondrion is well known for its 

ability to produce ATP and regulating cellular metabolism. However, the mitochondrion 

has many other functions in addition to the production of A TP, such as Ca2
+ homeostasis5

, 

signalling and programmed cell death6
. 

1.1.1. Energy production as the main function for the mitochondria 

A dominant role for mitochondria is the production of A TP, as reflected by the large 

number of pro teins in the inner membrane for this purpose. This is done by oxidizing the 
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major products of glycolysis, pyruvate, and NADH, which are produced in the cytosol. This 

process of cellular respiration, also known as aerobic respiration, is dependent on the 

presence of oxygen. When oxygen is limited, the glycolytic products will be metabolized 

by anaerobic respiration, a process that is independent of mitochondria3
• The production of 

ATP from glucose has an approximately 13-fold higber yield during aerobic respiration 

compared to anaerobic respiration7
. 

In the process of oxidative respiration, each pyruvate molecule formed by glycolysis 

is actively transported across the inner mitochondrial membrane, and into the matrix where 

it is oxidized and combined with coenzyme A to form CO2, acetyl-CoA, and NADH8
• Fatty 

acids can also be broken down to acetyl-CoA by p-oxidation. Each round of this cycle 

reduces the length of the acyl chain by two carbon atoms and produces one NADH and one 

F ADH2 molecule, which are used to generate ATP by oxidative phosphorylation. Because 

NADH and FADH2 are energy-rich molecules, dozens of ATP molecules can be generated 

by the p-oxidation of a single long acy 1 chain3
. 

The acetyl-CoA is the primary substrate to enter the citric acid cycle, also known as 

the tricarboxylic acid (TCA) cycle or Krebs cycle. The enzymes of the TCA cycle are 

located in the mitochondrial matrix, with the exception of succinate dehydrogenase, which 

is bound to the inner mitochondrial membrane as part of Complex IL The TCA cycle 

oxidizes acetyl-CoA to carbon dioxide, and, in the process, produces reduced cofactors 

(three molecules ofNADH and one molecule of FADH2) that are a source of electrons for 

the electron transport chain (ETC), and a molecule of guanosine triphosphate (GTP) that is 

readily converted into an ATP molecule8
• 9. The TCA cycle is regulated mainly by the 

availability of key substrates, particularly the ratio of NAD+ to NADH and the 

concentrations of calcium, inorganic phosphate, ATP, ADP, and AMP. Citrate, the 

molecule that gives its name to the cycle, is a feedback inhibitor of citrate synthase and also 

inhibits the phosphofructokinase (PFK), providing a direct link between the regulationof 

the citric acid cycle and glycolysis lO 
.. 



3 

The redox energy from NADH and F ADH2 is transferred via dehydrogenation by 

flavoprotein complexes to oxygen (Oz), which is reduced to water, in several steps via ETC. 

These energy-rich molecules are produced within the matrix via the citric acid cycle but are 

also produced in the cytoplasm by glycolysis8
. Reducing equivalents from the cytoplasm 

can be imported via the malate-asparate shuttle system of antiporter proteins or feed into 

the ETC using a glycerol phosphate shuttle11
• NADH is a substrate or a coenzyme for the 

enzymatic activity of dehydrogenases that form part of the respiratory chain and reside in 

the inner membrane of the mitochondria. Flavoprotein complexes in the inner 

mitochondrial membrane, more precisely Complex l (NADH dehydrogenase, cytochrome c 

reductase, and cytochrome c oxidase) perform the transfer and the incremental release of 

energy is used to pump protons (H+) into the intermembrane space8
. The enzymes that 

catalyze these reactions have the remarkable ability to simultaneously create a proton 

gradient across the membrane, producing a thermodynamically unlikely high-energy state 

with the potential to do work. This process is well-organized, but a small percentage of 

electrons may prematurely reduce oxygen, forming reactive oxygen species (ROS) such as 

superoxidel2. This can cause oxidative stress in the mitochondria and may contribute to the 

decline in mitochondrial function. 

In mitochondria, four membrane-bound multiprotein complexes have been 

identified. Each is an extremely complex transmembrane structure that is embedded in the 

inner membrane. Three of them are proton pumps, namely, NADH dehydrogenase 

complex, b-Cl complex and cytochrome oxidase complex. The structures are electrically 

connected by lipid-soluble electron carriers and water-soluble electron carriers. The four 

complexes of the ETC are described below. 

Complex 1 (NADH dehydrogenase), also referred to as NADH:ubiquinone 

oxidoreductase, removes two electrons from NADH and transfers them to a lipid-soluble 

carrier, ubiquinone (Q). The reduced product, ubiquinol (QH2) is free to diffuse within the 

membrane. At the same time, Complex l moves four protons (H+) across the membrane, 
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producing a proton gradient. ln depth, NADH is oxidized to NAD+, reducing Flavin 

mononucleotide to FMNH2 in one two-electron step. The next electron carrier is a Fe-S 

cluster, which can only accept one electron at a time to reduce the ferric ion into a ferrous 

ion. FMNH2 can be oxidized in only two one~electron steps, through a semiquinone 

intermediate. The electron thus moves from the FMNH2 to the Fe-S cluster, then from the 

Fe-S cluster to the oxidized Q to give the free-radical (semiquinone) form of Q. This . 
happens again to reduce the semiquinone form to the ubiquinol form, QH2. During this 

process, four protons are translocated across the inner mitochondrial membrane, from the 

matrix to the intermembrane space8
• This creates a proton gradient that will be subsequently 

used to generate ATP through oxidative phosphorylation. Complex l is one of the main 

sites at which premature electron leakage to oxygen occurs, thus being one of main sites of 

production of a harmful free radical called superoxidel2, 13. 

Several agents can affect Complex 1 functioning normally, one ofwhich is rotenone 

that acts by interfering with the ETC via inhibition of Complex 114. SpecificaJly, it restricts 

the transfer of electrons from iron-sulphur centers in Complex l to ubiquinone. This 

pre vents NADH from being converted into usable cellular energy ATP. It has been' 

suggested that rotenone is capable to induce apoptosis via promoting mitochondrial ROS 

productionl5. This was confirmed by DNA fragmentation, cytochrome c release, and 

caspase 3 activity. Also rotenone-induced apoptosis was quantitatively correlated with 

rotenone-induced mitochondrial ROS generation. This effect of rotenone was inhibited by 

the use of antioxidants (glutathione, N-acetylcysteine and vitamin C)15, 16. 

Complex II (succinate dehydrogenase) is not a proton pump. It serves to funne) 

additional electrons into the quinone pool (Q) by removing electrons from succinate and 

transferring them via F AD to Qg. Complex II consists of four protein subunits: subunit A 

(SDHA), B (SDHB), C (SDHC), and D (SDHD). Other electron donors (e.g., fatty acids 
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and glycerol 3-phosphate) also funnel electrons into Q (via FAD), again without producing 

a proton gradient. 

Complex III (cytochrome bCl complex) removes in a stepwise fashion two 

electrons from QH2 and transfers them to two molecules of cytochrome c, a water-soluble 

electron carrier located within the intermembrane space. Simultaneously, it moves two 

protons across the membrane, producing a proton gradient. More precisely, in total 4 

protons are moved: 2 protons are translocated and 2 protons are released trom ubiquinol 8. 

When electron transfer is hindered (by high membrane potential, point mutations or 

respiratory inhibitors such as antimycin A), Complex III may leak electrons to oxygen 

resulting in the formation of superoxide, a highly-toxic speciesl4, and other free radicals 

which are thought to contribute to the pathology of a number of diseases. 

Complex IV (cytochrome c oxidase) removes four electrons from four molecules of 

cytochrome c and transfers. them to molecular oxygen (02), producing two molecules of 

water (H20) 8. At the same time, it moves four protons across the membrane, producing a 

proton gradient. Cyanide acts as an inhibitor, completely blocking electron transport by 

irreversib 1 y binding to cytochrome c oxidase so as to prevent the binding of O2 17, 18. 

As the proton concentration increases in the intermembrane space, a strong 

electrochemical gradient is established across the inner membrane. The protons can retum 

to the matrix through the A TP synthase complex, and their potential energy is used to 

synthesize ATP trom ADP and inorganic phosphate (pl. Under certain conditions, protons 

can re-enter the mitochondrial matrix without contributing to ATP synthesis. This process 

is known as proton leak or mitochondrial uncoupling and is due to the facilitated diffusion 

of protons into the matrlx. The process results in the uncontrolled potential energy of the 

proton electrochemical gradient being released as heat. In living cells, the drug 2,4-

dinitrophenol (DNP) acts as a proton ionophore, an agent that can shuttle hydrogen ions 

across biological membranes19
• It uncouples oxidative phosphorylation by carrying protons 

across the mitochondrial membrane, collapsing the proton motive force that the cell uses to 
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produce most of its ATP chemical energy, and leading to a rapid consumption of energy 

without generation of ATP. CeUs counteract the lowered yields of ATP by oxidizing more 

stored reserves such as carbohydrates and fats. However, the importance of uncoupling is 

not restricted on thermoregulation only, but also can be favourable for the performance of 

the metabolic and energy-conversion functions of cellular respiration2o
• Furthermore, it is 

suggested to play a role in the anti-ROS defence system of the ceIl, such as prevention of 

oxygen radical formation by mitochondria in the resting state 20. 

A TP production in an aerobic eukaryotic cell is tightly regulated by feedback 

controIs, and by the substrate concentration dependence of individual enzymes within the 

glycolysis and oxidative phosphorylation pathways. Key control points occur in enzymatic 

reactions that are so energetically favorable that they are effectively irreversible under 

physiological conditions. In glycolysis, hexokinase is directly inhibited by its product, 

glucose-6-phosphate I0
, and pyruvate kinase is inhibited by ATP itself. The main control 

point for the glycolytic pathway is PFK which is allosterically inhibited by high 

concentrations of ATP and activated by high concentrations of AMP3
• The inhibition of 

PFK by A TP is unusual, since ATP is also a substrate in the reaction catalyzed by PFK; the 

biologically active form of the enzyme is a tetramer that exists in two possible 

conformations, only one of which binds the second substrate fructose-6-phosphate (F6P). 

The prote in has two binding sites for ATP - the active site is accessible in either protein 

conformation, but A TP binding to the inhibitor site stabilizes the conformation that binds 

F6P poorly. A number of other small molecules can compensate for the ATP-induced shift 

in equilibrium conformation and reactivate PFK, including cyc1ic AMP, ammonium ions, 

inorganic phosphate, and fructose 1,6 and 2,6 biphosphate3
• 

In the process of oxidative phosphorylation, the key control point is the reaction 

catalyzed by cytochrome c oxidase, which is regulated by the availability of its substrate­

the reduced form of cytochrome c. The amount of reduced cytochrome c available is 

directly related to the amounts of other substrates. Thus, a high ratio of [NADH]/[NAD+] or 
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a low ratio of [ADP][Pi]/[ ATP] imply a high amount of reduced cytochrome c and a high 

level of cytochrome c oxidase activitl l
, 22. An additional level of regulation is introduced 

by the transport rates of A TP and NADH between the mitochondrial matrix and the 

cytoplasm22. 

1.1.2. The generation of reactive oxygen species in the mitochondria 

In number of cells, including cardiac myocytes, oxygen free radicals can be 

produced by severalmechanisms including the enhanced activity of xanthine oxidase (XO), 

nicotinamide adenine dinucleotide phosphate (NAD PH) oxidase, and mitochondrial 

electron transport chain (Fig. 1). Mitochondria represent 30% of the total volume of 

cardiomyocytes4 and provide -90% of the cellular energy through the oxidative 

phosphorylation pathway2. As it was mentioned previously in (section 1.1.1.), the main 

function of the mitochondria is to convert the potential energy stored in various substrates, 

mainly fatty acids and glucose into A TP (but under certain conditions, proteins can also 

become sources of ATP). The inner membrane of the mitochondria contains 4 complexes of 

integral membrane flavoproteins, including NADH dehydrogenase (Complex I). Three of 

those proteins are involved in the respiratory chain activity. The main function of the 

respiratory chain is to produce A TP by gradually transferring electrons from NADH and 

FADH2 (originating from the TCA cycle) to O2. With the addition of protons (H+), H20 is 

generated in Complex IV. Because of an extreme abundance of mitochondria in cardiac 

myocytes, mitochondrial electron transport chain (ETC) is considered a major subcellular 

source of reactive oxygen species (ROS) in the heartl4
• It has been found that in rat 

cardiomyocytes increased contraction frequency results in formation of ROS23. 
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Figure 1: Generation of ROS and their control by antioxidants. Abbreviations: CA T, 

catalase; CI, CIl, CIII, CIV, and CV, respiratory chain complexes l, II, III, IV, and V; CO, 

cyclooxygenase; CuZnSOD, copper zinc superoxide dismutase; GSH, glutathione; GPx, 

glutathione peroxidase; GR, glutathione reductase; GST, glutathione S transferase; GSSG, 

glutathione disulfide; HNE, 4 hydroxynonenal; iNOS, inducible nitric oxide synthase; LO, 

lipoxygenase; MDA, malondialdehyde; MnSOD, manganese superoxide dismutase; 

mtNOS, mitochondrial niric oxide synthase; NO, nitric oxide; MPO, myeloperoxidase; P-

450-0xy, cytochrome P450-dependent oxygenas es; XO, xanthine oxidase; XDH, xanthine 

dehydrogenase; XOR, xanthine oxidoreductase; LPO, lipid peroxidation; Prx, 

peroxiredoxin; ROOH, alkyl hydroxides_ (Reproduced from Zacks et. al. 24 with permission 

from the publisher). 
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ROS are derivatives of molecular oxygen (02), e.g. superoxide amons (02'-), 

hydroxyl radical (HO'), and hydrogen peroxide (H202). They are unstable and react rapidly 

with other free radicals and macromolecules in chain reactions to generate increasingly 

harmful oxidants25. The toxic effects of ROS are believed to vary in proportion to the 

quantity and their oxidant strength e.g. HO, > > > 02' > H202. While H202 is not 

excessively reactive, it is highly diffusible and is a precursor of HO', which is highly 

reactive at its site of production. H20 2 readily crosses membranes and thus, is capable of 

affecting distant cellular targets in the same cell. The H202 production is relatively 

important and leads to a constant cellular concentration between 10-9 and 10-7 M. The 

effects of ROS on cell metabolism have been weIl documented in a variety of species. 

These include not only roles in programmed cell death and apoptosis and ischaemic in jury, 

specific examples include stroke and heart attack, but also positive effects such as the 

induction of host defense genes and mobilisation of ion transport systems. This is 

implicating them more frequently with roles in redox or oxidative signaling 26,27. 

Mitochondria are considered a major source of ROS production in the heart28. In 

mitochondria, the partial reduction of O2 occurs as a result of leakage of electrons from the 

ETC, contributing one, two or three electrons to form O2'-, H202, or HO" respectively. 

Electron leakage can occur at a number ofpoints in the ETC, producing 02.-29. As much as 

2--4% of the reducing equivalents escape the respiratory chain, leading to O2'- formation. 

ROS production and its effects are controlled by a very sophisticated and complementary 

cellular antioxidant system. O2'- can be converted by manganese superoxide dismutase 

(MnSOD) to H20 2 that may then be converted to highly reactive and harmful HO, radicals, 

the most destructive free radicals, via reaction with Fe2+: Fenton chemistry. For each 2 

superoxide radicals encountered by SOD, 1 H202 is formed. Catalase, which is 

concentrated in peroxisomes located next to mitochondria but formed in the rough 

endoplasmic reticulum and located everywhere in the cell, reacts with the H20 2 and forms 

water and oxygen. Glutathione peroxidase reduces H20 2 by transferring the energy of the 
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reactive peroxides to a small sulfur containing peptide called glutathione. The selenium 

contained in these enzymes acts as the reactive center, carrying reactive electrons from the 

peroxide to the glutathione. Due to the lower concentration of catalase in the heart, it was 

suggested that glutathione peroxidase to be more efficient in detoxifying H202. 

Peroxiredoxins also de grade H202, both within the mitochondria, cytosol and nucleus3o
• 

Generally, the leakage of electrons at Complex 1 flavoprotein generates O2 In 

mitochondrial matrix while complex III ubisemiquinones (UQ-.) generated at QI (UQ-I.) 

and Qo (UQ-o.) sites release O2 in the matrix and intermembrane space of the 

mitochondria, respectively31. However the main source of ROS production in the 

respiratory chain remains still controversial. 

It was revealed that 10ss of cytochrome c by mitochondria oxidizing NAD+-linked 

substrates causes a remarkable raise of ROS production and respiratory inhibition. This 

elevated ROS production can resemble to the effect of rotenone as weB as other chemical 

inhibitors of electron flow that act furtherdownstream in the ETC. Due to the fact that this 

effect of cytochrome c depletion on ROS production and respiration were reversible upon 

addition of exogenous cytochrome c, it was concluded that a main site of ROS generation 

in both brain and heart mitochondria is proximal to the rotenone inhibitory site, rather than 

in Complex III. As a result, it was suggested that the ROS-generating site of Complex 1 is 

the Fe-S centre N-IaI6
• Liu et. al. 12showed that ROS generation supported by the Complex 

II substrate succinate happens at the flavin mononucIeotide group (FMN) of Complex 1 

through reversed electron transfer, not at the ubiquinone of Complex III as commonly 

thought. Indirect indication points out that the unknown ROS-generating site within 

complex 1 is also likely to be the FMN group. It is therefore suggested that the major 

physiologically and pathologically relevant ROS-generating site in mitochondria is limited 

to the FMN group ofcomplex 112
• 

On the other hand, another study showed that restriction of electron transport by the 

inhibitor rotenone directly before ischemia decreased the production of ROS in cardiac 
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#' myocytes and reduced damage to mitochondria. It was found that in mitochondria oxidizing 

Complex 1 substrates, rotenone inhibition did not increase H202, while oxidation of 

Complex 1 or II substrates in the presence of antimycin A patently did. Rotenone prevented 

antimycin A-induced H202 production in mitochondria with Complex 1 but not with 

Complex Il substrates l4
. In contrast to intact mitochondria, blockade of Complex 1 with 

rotenone markedly amplified H202 production from submitochondrial partic1es oxidizing 

the Complex 1 substrate NADH. It was conc1uded that ROS are generated from Complex 1 

by the NADH dehydrogenase located in the matrix side of the inner membrane and are 

dissipated in mitochondria by matrix antioxidant defense. . It was also suggested that in 

mitochondria, Complex III is the principal site for ROS generation during the oxidation of 

complex 1 substrates, and rotenone protects by limiting electron flow into complex II114 .. 

It increasingly appears that the cardioprotective models of ischemic preconditioning 

and postconditioning use modulation of mitochondrial oxidative metabolism as a key 

effector mechanism. The initially unexpected approach to inhibit mitochondrial respiration 

provides a new cardioprotective paradigm to reduce cellular damage during both ischemia 

and reperfusion32. 

1.1.3. Antioxidant defence systems against ROS damage 

The overall level of cellular ROS is determined by the relative rate of its generation 

vs. the rate of its reduction by antioxidants or binding to biomolecules (peptides, proteins, 

DNA). In physiological conditions for instance during exercise, enzymatic antioxidants are 

expressed in response to ROS production and function as catalysts in reactions that convert 

specifie ROS to different and, presumably, less harmful species such as H202. The principal 

enzymatic antioxidants are superoxide dismutase (SOD), catalase (CAT), peroxiredoxin 

(Prx) and glutathione peroxidase (GPx)33. 34 (Fig. 1). GPx (isoforms GPxl GPx5), using 

reduced glutathione (GSH), reduces H202 or ROOH to H20 or alcohols (ROH), 
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respectively. GPxl.and GPx3 are the most abundant intracellular isoforms and GPx4 is a 

mitochondrial isoform. 

The role of one of the major non-enzymatic antioxidant GSH, is involved in the 

maintenance of cellular redox state. GSH cooperates with GPx in the detoxification of H20 2 

into 2 H20 (Fig. 1). Glutathione reductase (GR) is a flavoprotein, with nicotinamide 

adenine dinuc1eotide phosphate (NADPH) functions to regenerate antioxidant capacity, 

converting from glutathione disulfide (GSSG) to the sulfhydryl form GSH. For every mole 

ofGSSG one mole ofNADPH is required. 

GSSG + NADPH + H+ <=> 2 GSH + NADP+ (1) 

Accumulation of GSSG is toxic to the cell because it may trigger disulfide cross­

linkage of protein, enzymes, and DNA. This is why the cellular ratio [GSH]/[GSSG] is 

highly controlled and related to the maintenance of the redox status. When to high level, 

GSSG can be exported from the cell. 

Possible role for glutathione was suggested in the determination of functional 

damage induced by myocardial ischemia and reperfusion. In isolated and perfused rabbit 

heart, ischemia evoked a rapid dec1ine of contractility was associated with a reduction of 

the content of tissue GSH with no significant changes in GSSG. Reperfusion induced a 

small recovery of heart contractility, a substantial release of total glutathione and a further 

decrease in the content of tissue GSH with a significant increase of tissue GSSG. Ischemia 

and reperfusion had no effect on glutathione reductase and glutathione peroxidase 
\ 

activities35
. 

The activity of GR can be selectively inhibited by 1,3-bis(2-chloroethyl)-1-nitroso­

urea (BCNU); a chemotherapeutic drug that may mediate sorne toxic effects. It was 

reported that its inhibitory effect on GR was reversible but the GR activity remained below 

control. Although thiol containing agents such as reduced glutathione can be modulated by 
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BCNU, it can protect cells against BCNU and a change in glutathione concentrations could 

alter its effectiveness. BCNU also lowered creatine kinase, malate dehydrogenase, and 

lactate dehydrogenase activities. The inhibition of GR in vitro occurred only after 

biochemical reduction of the enzyme with NADPH. The oxidation state of GR may 

detennine its sensitivity to BCNU in the human erythrocyte. However, a specifie effect or 

an unusually high sensitivity of BCNU on GR could not be demonstrated36
. 

In rat heart mitochondria, BCNU was shown to enhance H20 2 fonnation. However, 

in submitoehondrial particIes, H20 2 fonnation and oxygen uptake were not affected in the 

presence of BCNU, indicating that this substance do not modify respiration. Mitoehondria 

were also able to rapidly metabolize added H20 2 in a process partially prevented by BCNU. 

Moreover, BCNU caused the release of cytochrome c that occurs also in the absence of 

mitochondrial swelling. Therefore BCNU is capable of shifting mitochondrial thiol-linked 

redox balance towards a more oxidized condition and causing depletion of GSH and result 

in oxidative stress37
, 38. 

As a result of above, the imbalance between free radical production (for example, 

the peroxidation of lipids) and antioxidant protection is defined as oxidative stress. When 

ROS are produced in excess or for sustained periods, or when the antioxidant system is 

compromised, cells are unable to efficiently scavenge free radicals, leading to ROS 

accumulation. ROS can rapidly oxidize proteins, lipids and DNA39, 40, thereby resuIting in 

dysfunction of physiological processes and cellular damage leading to cell/tissue death. 

Oxidative stress triggers the mitochondri~l death pathway thereby causing a variety of 

human diseases. ft plays a central role in the pathogenesis of a number of cardiovascular 

diseases, such as ischemic heart disease, heart failure, and atheroscIerosis. It has been 

shown that oxygen free radicals cause contractile failure and structural damage in the 

myocardium. 
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Results of a variety of studies in mammalian systems have shown that oxidative 

stress can be reliably measured by oxidative-damage biomarkers, such as lipid peroxides41 , 

protein carbonyls42, and oxidative DNA modifications43. 

1.1.4. Lipid peroxidation and the production of 4-hydroxy-2-nonenal 

Lipid peroxidation (LPO) is the major biochemical consequence of oxidative 

deterioration of polyunsaturated lipids in cell membranes and causes damage to membrane 

integrity and 10ss of membrane protein function44
. Peroxidation is in general initiated by 

oxidative attack-mediated removal of an H· atom. This results in carbon centered radical, 

that following exposure to 02 gives a peroxyl radical. peroxyl radicals can combine with 

each other, attack membrane proteins, or remove H· from adjacent fatty acids side chains in 

a membrane thereby propagating a chain reaction of LPO. The ETC and membrane 

phospholipids such as tliose in the mitochondrial membrane are particularly susceptible to 

LPO (Fig. 1). The oxidative degradation of lipids most often affects polyunsaturated fatty 

acids, because they contain multiple double bonds in between which lie methylene-CH2-

groups that possess especially reactive hydrogens, and also because of their abundance. 

As with any radical reaction, the reaction consists of three major steps: initiation, 

propagation and termination. Initiation is the step whereby a fatty acid radical is produced. 

The initiators in living cells are most notably ROS, such as OR, which combines with a 

hydrogen atom to make water and a fatty acid radical. The fatty acid radical is not a very 

stable molecule, so it reacts readily with molecular oxygen, thereby creating a peroxyl-fatty 

acid radical. This too is an unstable species that reacts with another fatty acid producing a 

different fatty acid radical and H20 2 or cyclic peroxide if it had reacted with itself. This 

cycle continues as the new fatty acid radical reacts in the same way. When a radical reacts, 

it always produces another radical, which is why the process is called a "chain reaction 

mechanism." The radical reaction stops when two radicalsreact and produce a non-radical 
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species. This happens only when the concentration of radical species is high enough for 

there to be a high probability of two radicals actually colliding. Living organisms have 

generated different molecules that speed up termination by catching free radicals and 

therefore protect the cell membrane. One important sucb lipophilic antioxidant is a­

tocopherol, also known as vitamin E. 

Among a wide range of aldehydic compounds, 4-hydroxy-2-nonenal (4-HNE or 

HNE) and malondialdehyde (MDAt5 are the most common reactive products of the 

peroxidation of membrane phospholipids46 (Fig. 1). These aldehydic products are relatively 

stable compounds compared to ROS, and are able to diffuse and attack targets in the near 

vicinity as weIl as those distant from their site of origin. HNE is the primary a,p­

unsaturated hydroxyalkenal which is formed in cells by LPO process. It is generated in the 

peroxidation of lipids containing polyunsaturated omega-6 acyl groups, such as arachidonic 

or linoleic groups, and of the corresponding fatty acids. HNE has 3 reactive groups: an 

aldehyde, a double-bond at carbon 2, and a hydroxy group at carbon 4. It is round 

throughout animal tissues, in micromolar range and in higher quantities during oxidative 

stress due to the increase in the LPO chain reaction, due to the increase in stress events. 

Several researchers hypothesize that HNE plays .a key role in cell signal transduction, in a 

variety of pathways from cell cycle events to cellular adhesion. Constitutive levels of HNE 

may be needed for normal cell functions - lowering of this constitutive HNE level in cells 

promotes proliferative machinery while an increase in this level promotes apoptotic 

signaling47
,48. On the other hand, in cardiomyocytes, HNE has been shown to be capable of 

affecting NADPH production, at least partially, by inactivating mitochondriai NADP+­

isocitrate dehydrogenase (NADP-ICDH) activity, an important enzyme that controis redox 

and energy status49
-
S1

• In isolated cardiac mitochondria, HNE inhibits a-KGDH and reduces 

NADH production initiated by addition of a-ketoglutarates2
• 
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1.2. The role of NADPH duriog oxidative stress 

NADPH, the reduced form of NADP+, is similar to the coenzyme abbreviated 

NADH. It consists of two nuc1eotides joined through their phosphate groups: with one 

nuc1eotide containing nicotinamide, and the other containing an adenosine ring with two 

phosphate groups (Fig. 2). In rat liver, the total amount of NAD+ and NADH is 

approximate1y 1 Jlmole per gram of wet weight, about 10 times the concentration of 

NADP+ and NADPH in the same cells53
. The NADP+/NADPH ratio is normally about 

0.005, around 200 times lower than the NAD+/NADH ratio which ranges from 3-10 

depending on the (patho)physiological condition 54,55, so NADPH is the dominant form of 

this coenzyme56
• The NADP+/NADPH ratio is kept very low because NADPH is needed to 

drive redox reactions as a strong reducing agent. So these different ratios are keys to the 

different metabolic roles ofNADH and NADPH. 

The fate of all aerobic organisms is dependent on the varymg intracellular 

concentrations ofNADH and NADPH. The former is the primary ingredient that fuels ATP 

production via oxidative phosphorylation, while the latter helps sustain the reductive 

environment necessary for this process and other cellular activities. Sorne NAD+ can be 

converted into NADP+ by NAD+ kinase (NADKase), which phosphorylates NAD+57
, 58. 

However, the oxidative branch of the pentose phosphate pathway is the major source of 

NADPH in cells. NADPH can also be produced by several enzymes such as malic enzyme 

and glutamate dehydrogenase, but also by the activity of NADP+-ICDH in the cytosol as 

well as the mitochondrion, and uses NADP+ as a cofactor instead of NAD+. Cardiac 

. mitochondria are equipped with both NAD+- and NADP+-dependent ICDH. However, the 

role of the NADP+-ICDH is still not perfectly understood59
. 

NADPH is used in anabolic reactions, such as lipid and nuc1eic acid synthesis, 

cholesterol synthesis and fatty acid chain elongation, which require NADPH as a reducing 

agent. In addition, NADPH provides the reducing equivalents for biosynthetic reactions and 



17 

for oxidation-reduction involved in protection against the toxicity of ROS. It has been 

demonstrated that a metabolic network enhancing NADPH production and limiting NADH 

synthesis is a consequence of an oxidative in jury. The activity and expression of glucose-6-

phosphate dehydrogenase, malic enzyme, and NADP+-isocitrate dehydrogenase, the major 

generators of NAD PH, were clearly modefied during oxidative challenge. Furthermore, 

numerous tricarboxylic acid cycle enzymes that provide intracellular NADH were 

significantly dowmegulated58
. It was found that NADKase and NADP+ phosphatase 

(NADPase), enzymes known to regulate the levels of NAD+ and NADP+, were capable of 

modulating these metabolic pathways even further. In oxidative stress condition, the 

NADKase was upregulated, whereas the phosphatase activity was markedly increased in 

control cells. Thus, NADKase and NADPase play a crucial role in controlling the cross talk 

between metabolic networks that produce NADH and NADPH and are integral components 

of the mechanism involved in preventing oxidative stress58
. 

AlI organisms that use oxygen as the terminal e- acceptor have evolved complex 

molecular strategies that allow them to fight the inherent dangers associated with living in 

an aerobic environment. Catalase, superoxide dismutase (SOD), and GPx are sorne of the 

enzymes that help decrease oxidative tension during aerobic respiration60
• However, the 

effectiveness of these proteins as the scavengers of ROS depends on the availability of 

NADPH. Production of NADPH required for the regeneration of glutathione in the 

mitochondria is critical for scavenging mitochondrial ROS through glutathione reductase 

and peroxidase systems. This nucleotide supplies the reductive power necessary to suppress 

the oxidative potential of ROS. Hence, the production of this reducing agent is an essential 

part of the oxidative energy-generating machinery of aIl aerobic organisms. Production of 

ATP via oxidative phosphorylation cannot proceed effectively in the absence of a continuaI 

supply of NADPH61
. The role of mitochondrial NADP-ICDH in controlling the 

mitochondrial redox balance and subsequent cellular defense against oxidative in jury was 
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Figure 2: NADPH, an important carrier of electrons. (A) NADPH is produced in 

reactions of the general type shown on the left, in which two hydrogen atoms are removed 

from a substrate. The oxidized fonn of the carrier molecule, NADP+, receives one hydrogen 

atom plus an electron (a hydride ion), and the proton (W) from the other H atom is released 

into solution. Because NADPH holds its hydride ion in a high-energy linkage, the added 

hydride ion can easily be transferred to other molecules, as shown on the right. (B) The 

structure of NADP+ and NADPH. The part of the NADP+ molecule known as the 

nicotinamide ring accepts two electrons together with a proton (the equivalent of a hydride 

ion, R), fonning NADPH. The molecules NAD+ and NADH are identical in structure to 

NADP+ and NADPH, respectively, except that the indicated phosphate group is absent 

from both. (From Alberts et. al. 1994)8. 
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demonstrated, as a major NADPH producer in the mitochondria61
, 62. Glucose-6 phosphate 

dehydrogenase (G6PDH), NADP-ICDH, malic enzyme (ME), 6-phosphogluconate 

dehydrogenase (6PGDH), and NADP+-glutamate dehydrogenase (NADP-GDH) are sorne 

of the important enzymes that enable aerobic cells to fulfill their requirement for NADPH. 

NADH, which is generated essentially during the catabolism of acetyl-coenzyme A via the 

TCA cycle, is considered as a powerful proxidant as its downstream metabolism mediated 

by complexes l, III, and IV produces the majority of the ROS generated in aerobic 

organisms63
. Hence, a fine balance has to be maintained between these two nicotinamide 

nucleotides if a cell is to function in an efficient manner. J:hus, a normal functioning cell 

has to have adequate levels of NADPH and ATP and a small amount ofNADH. On the 

other hand, a high concentration of NADH coupled with a low concentration of NADPH 

provokes an oxidative milieu, a condition that may lead to cellular dysfunction and 

diseases63
. 

1.3. Oxidative stress during normal and pathological pregnancy 

Pregnancy induces significant adaptations in the cardiovascular system, associated 

with hemodynamic and endocrine changes that contribute to maternaI volume expansion. 

and are necessary for fetal homeostasis, development and well-being64
• Systemic arterial 

vasodilatation represents one of the first detectable changes in hemodynamics that initiates 

a cascade of compensations in the circulation and volume homeostasis that also affect the 

heart: cardiac output rises in response to increase in the he art rate and achieves the greatest 

value in the final stages of de1ivery, placing an enhanced volume load on the heart. Blood 

volume expansion leads to adaptations of the myocardium that affects mainly left ventricle, 

more susceptible to increased load. In contrast to pathological conditions, these alterations 

are associated with physiological reduction of blood pressure (BP) and are reversible. The 

natural volume overload in pregnancy is frequently associated with increase in left 

ventricular size and mass, leading to left ventricular hypertrophl5
-
67

. In Sprague-Dawley 
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rats, an adaptive hypertrophic remodelling of the left ventricular in normal pregnancy has 

been demonstrated68
. Structural changes within the heart reflect the volume loading of 

pregnancy. Despite the fact that c1ear resemblance has been demonstrated between 

cardiovascular changes associated with pregnancy vs. training and/or exercise69
, 

mechanisms behind those changes are still not fully understood. 

Pregnancy is well known to be associated with significant changes in carbohydrate 

metabolism7o
, resulting from the primary dependence of the fetus on maternaI glucose for 

its fuel requirement. Glucose homeostasis is affected due to increased glucose uptake of 

fetus, drained by the fetoplacental unit. This leads in a more rapid conversion from 

predominantly carbohydrate to predominantly fat utilization because of earlier depletion of 

liver glycogen stores, associated with increased lactate and pyruvate levels. Su ch metabolic 

changes are also likely to affect heart function. In the heart, there is a crucial crosstalk 

betwcen prote in function and metabolism. The maintenance of energy homeostasis is 

highly dependant on a continuous supply of oxygen, ÀDP, inorganic phosphate and 

reducing equivalents. The heart is able to use a wide range of substrates for energy 

production, including fatty acids, glucose, lactate, pyruvate and ketone bodies. Acute 

changes in the relative concentration of energy substrates can induce important 

modifications in metabolic fluxes71
• Several cardiovascular diseases have been associated 

with metabolic switches in the fuel partitioning for energy production72
. These switches 

occur in response to various stimuli such as hormones, changes in substrate availability, 

oxygen supply and/or workload and can therefore also play an important role in pregnancy. 

Cardiovascular adaptations during pregnancy are also linked to hormonal changes. 

Plasma volume increases in response to estrogen, primarily by its stimulation of the renin­

angiotensin-aldosterone system (RAAS), leading to sodium ion and water retention73
. 

Recent studies indicate that aldosterone stimulates production of ROS74
, 75 by activation of 

NADPH oxidase in blood vessels76
. It is to be expected that the effect of hormones that 

stimulate ROS formation, such as aldosterone, to be depending on the pre-existing redox 
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status of the ceUs. Thus in situations with increased levels of oxidative stress, a further 

stimulation of ROS fonnation by aldosterone is more likely to lead to pathological 

damage77
• At low oxidative stress, aldosterone promotes NO production while in situations 

with increased oxidative stress (such as heart failure) the further production of superoxide 

initiated by aldosterone is likely to have unfavorable effects on vascular function. Inhibition 

ofMR was therefore proposed to be beneficial for cardiovascular function77
• In pregnancy, 

it has been found that concentrations of lipid peroxides in the placenta are higher than in 

blood, and increased levels of lipid peroxides has also been reported in blood in pregnant 

women when compared to non-pregnane8. During pregnancy, elevated levels are seen in 

the second trimester and these diminish later in gestation, decreasing further after 

delivery78. LPO levels in placental tissue follow a different pattern than in blood over 

period of gestation79. Both peroxidation and antioxidant reactions are enhanced during 

pregnancy. During uncomplicated gestation, ROS levels are elevated80
; however, they are 

counterba~anced by an increased activity of antioxidants81. Maternallevels ofvitamin E and 

lipid peroxides are both increased in pregnancy compared with non-pregnancy. Increased 

lipid peroxides during pregnancy may be related to increase in spontaneous auto-oxidation 

of serum lipids. Placenta lipid peroxides apparently contribute to maternaI circulating levels 

because plasma lipid peroxide levels decrease abruptly after delivery81. lt has been shown 

that normal pregnancy is associated with the formation of susceptible oxidizable partic1es 

and an increase in oxidative damage82
• In the third trimester of normal pregnant women, a 

significant increase in the levels of circulating MDA, a marker of LPO, was observed as 

compared to non pregnant controls83. However, this observation was accompanied by a 

decreasing trend for sorne non-enzymatic antioxidants like reduced glutathione, vitamin E, 

C and A. These findings were augmented in the case of pathological pregnancy such as 

pregnancy induced hypertension or diabetic pregnancy83, 84. 



22 

1.4. NAD(P)H fluorescence as a tool to investigate mitochondrial oxidative 

metabolism 

NADH and NADPH, collectively referred to as NAD(P)H, are endogenous 

fluorophores which become fluorescent when excited by UV light. Both of them are of 

sufficient concentration in cells to yield a detectable fluorescence signal85
, 86 and they 

belong to the principal endogenous indicators of cellular energetic metabolism87
, 88. 

Modifications of the amount and distribution of these intrinsic fluorophores or chemical­

physical properties of their microenvironment can be due to changes occurring in the cell 

and tissue state during physiological and/or pathological processes. Therefore, analytical 

techniques based on autofluorescence monitoring can be used in order to ob tain information 

about physiological state of cells and tissues89
, 90. 

Fluorescence is the property of sorne atoms and molecules to absorb light at a 

particular wavelength and to subsequently emit light of longer wavèlength after a brief 

intervae l
. The fluorescence process is govemed by three important events, aIl of which 

occur on timescales that are separated by several orders of magnitude. First, excitation of a 

molecule by an incoming photon happens in femtoseconds, while subsequent fast 

vibrational relaxation of the electron in excited states to the lowest excited energy level (Sd 

is much slower and can be measured in picoseconds. The final event - fluorescence, 

retuming the molecule to its ground state (So), occurs usually at the relatively longer time 

range of several nanoseconds91
• A photon emitted during fluorescence has energy that 

corresponds to the energy difference between SI and So state. A characteristic time when 

molecule remains in SI prior to retuming to So is called the fluorescence lifetime. The 

fluorescence lifetime is the characteristic time that a molecule remains in SI prior to 

retuming to So and is an indicator of the time available for information to be gathered from 

the emission profile. The decay of fluorescence intensity as a function of time in a uniform 

population of molecules excited with a brief pulse of light is described by an exponential 

function: 



1 - 1 • e(-tlr) 
(t) - 0 (2a) 
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where let) is the fluorescence intensity measured at time t, 10 is the intensity observed 

immediately after excitation, and T is the fluorescence lifetime. FormaUy, the fluorescence 

lifetime is defined as the time in which the fluorescence of a molecule decays to Ile of the 

initial intensity87. In the absence of any other deactivation processes, the radiative lifetime 

"Co is the reciprocal of the rate constant kF for transfer from SI to So state. However, in real 

system other rates of excited state decay can exist, such as quenching, energy transfer, 

internaI conversion or inter-system crossing. If the rate of any such non-radiative pathway 

changes, this will be reflected in the change of the observed excited state lifetime 1'. If we 

sum an non-radiative rates of excited state decay together into the term kNR, we can define 

fluorescence lifetime as 

T = 1 1 (kNR + kp) (2b) 

This quantity is the reciprocal of the rate constant for fluorescence decay from SI to 

So. 

Since the ratio between the concentrations of free and protein-bound NAD(P)H can 

glve an indication about the metabolic activity of cells, the development of 

auto fluorescence techniques which accurately measure the modifications to this ratio is 

particularly significant. Furthermore, it has been demonstrated that protein-NAD(P)H 

complexes are characterized by different fluorescence lifetimes and these are not uniformly 

distributed aIl over the ceU, but are concentrated in certain cellular regions. Changes in 

fluorescence lifetimes can indicate either modification in protein-NAD(P)H complexes or 

different bond strengths between NAD(P)H and the protein in these complexes92
• 

Moreover, auto fluorescence analysis can be performed in living cells or tissues in real time 

because it does not require any treatment of fixing or staining of the specimens. In the past 
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few years spectroscopic and imaging techniques have been developed for many different 

applications both in basic research and diagnostics89
,90. 

There are no known photophysical means of discriminating NADH and NADPH93
. 

lt is therefore necessary to consider the relative contributions of these two reduced pyridine 

nucleotides to the measured intracellular fluorescence. Previous biochemical studies have 

determined that the blue fluorescence observed in the heart originates predominantly from 

NAD(P)H in the mitochondria, but with a negligible contribution of cytoplasm94
-
96

• The 

concentrations of pyridine nucleotides have been measured by high performance liquid 

chromatography in mouse hippocampus. It was found that the total concentration ofNADH 

and NAD+ is greater than that ofNADPH and NADP+ by a factor of -10. The concentration 

of the reduced fluorescent species NADH was found to be -5 times greater than that of the 

fluorescent NADPH. ln isolated heart mitochondria, NADH has as much as a fourfold 

greater fluorescence yield than NAD PH, at least 80% of 'the AF can essentially be 

considered to be from NADH alone95
, 97-101. Furthermore, the enhancement of 

mitochondrial NADH quantum yield due to environmental effects has been estimated to be 

a factor of 1.25-2.5 greater than that of NAD PH. Overall, the given evidence impHes that 

while the contribution ofNADH is prevailing in the intrinsic ceIl fluorescence, the NADPH 

represents smaller but non-negligible fraction of the UV-excited autofluorescence. Like 

NADH, the ratio between the fluorescent NADPH and its non-fluorescent oxidized form 

NADP+ is dependent upon the relative rates of NADPH source/consumption reactions. 

However, NADH and NADPH are distinct in their biochemical roles: NADH being largely 

restricted to energy metabolism and NADPH largely to reductive biosynthesis. It has been 

reported that the chemical kinetics of NADH and NADPH differ in certain reactions. 

However, tissue analyses of pyridine nucleotide content in heart and liver have confirmed 

that the fluorescence changes during the normoxic-anoxic transition are dominated by 

changes in NADH with only a minor (-10%) contribution from NADPH. 
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The observed blue autofluorescence is dependent on the mitochondrial redox state, 

on the conformation of the fluorescing molecule, and on its environment85
. Fluorescence 

intensity is proportional to the concentration of mitochondrial NAD(P)H; an increase in the 

fluorescence intensity indicates a more reduced state of NAD(P)H and of the rest of the 

mitochondrial ETC. Fluorescence lifetime is insensitive to the concentration changes 

because it is specifie for different molecular conformations, thus reflecting possible 

interactions of the fluorescing molecule with its surroundings. Any change in molecular 

conformation, binding to surrounding molecules and/or chemical compartments the,refore 

results in modification of the relative amplitudes and/or lifetime of the fluorescing 

molecule. NAD(P)H binding to protein cofactors resulting in enhancement of fluorescence 

decay time and/or altering the wavelength of maximal emission85
, 102. The pronounced 

dependence of NAD(P)H fluorescence on microenvironment leads to a multi-exponential 

fluorescence decay kinetics in most solvents, due to the effect of dynamic quenching 

related to the formation of non-fluorescent transient species from the first excited state lO3
, 

104. In addition, NAD(P)H forms complexes, with several enzymes, which makes the 

interpretation of the NAD(P)H signaIs from intact tissues particularly difficult in living 

cells. Thus any change in molecular conformation, binding to surrounding molecules and/or 

chemical compartments results in modification of the relative amplitudes and/or lifetime of 

the fluorescing molecule. 

1.5. Objectives of present study 

NADPH, as an endogenous fluorophore, has an important role as a cofactor for 

several enzymatic reactions including those of the defense mechanism pathways against 

oxidative stress, such as GR. We propose a hypothesis that NADPH, modulated by changes 

in oxidative metabolic state, can be used as a non-invasive sensor of oxidative stress in 

living cardiac cells. We aimed to investigate changes in the oxidative redox state of the 

cardiac cells in response to oxidative stressors. To study NAD(P)H fluorescence, we have 
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adopted spectrally-resolved fluorescence lifetime detection to identify its parameters, 

namely changes in the amplitudes and also in fluorescence decay lifetimes of the molecule 

in vitro and in living cardiomyocytes in the aim to better understand its participation in the 

cellular metabolic activity in response to oxidative stress. To accomplish our goal, our 

partial objectives were to: 

1. test the sensitivity of NADPH fluorescence in vitro in intracellular media-mimicking 

solutions to changes in the NADPH concentration, pH, or viscosity. Fluorescence 

spectra, as weIl as fluorescence lifetimes will be investigated. Modulation of NADPH 

fluorescence in vitro by GR will be also studied to analyze whether NADPH binding to 

its enzymes affects its fluorescence kinetics. 

2. study the effect of oxidative stressors on NAD(P)H fluorescence in single living rat 

cardiomyocytes to determine its sensitivity to oxidative changes in the cell 

environment. Oxidative stress-mimicking agents: the non-specifie hydrogen peroxide 

(H20 2) and the by-product of lipid peroxidation, HNE, will be used in the presence or 

absence of the modulators of GR, 1,3-bis (2-chloroethyl)-1-nitrosurea (BCNU), or of 

respiratory chain, 2,4-dinitrophenol (DNP) (uncoupler of ATP synthesis), and rotenone 

and cyanide (inhibitors of the Complex 1 and IV of the respiratory chain respectively). 

3. explore the potential application of the tested method to study changes in metabolic 

oxidative status under pathophysiological conditions. Pregnancy is weIl known to 

provoke significant metabolic adaptations in the cardiovascular system, namely 

metabolic switch from the use of glucose to the use of lactate and pyruvate. NAD(P)H 

fluorescence of left ventricular cardiomyocytes will be examined in normal pregnancy 

rat mode!. Oxidative changes will be induced by inhibition of mineralcorticoid 

receptors (MR) by its antagonist potassium canrenoate, and verified by blood 

measurements of HNE-protein adducts. NAD(P)H fluorescence will be analyzed in the 

absence and in the presence of oxidative stressors H202 and HNE. 
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2. MATE RIAL AND METHODS 

2.1. Material 

2.1.1. Animal models 

In this study female Sprague-Dawley rats (13-14 week old, Charles River, Canada) 

were used. AlI procedures were performed in accordance with the Canadian Council on 

Animal Care (CC AC) guidelines and were evaluated by the local committee, "Comité 

Institutionnel des Bonnes Pratiques sur les Animaux en Recherche" (CIBPAR), accredited 

by the CCAC. One group of non pregnant (NP) rats was used as control for rats in normal 

pregnancy (P). Other groups of non pregnant and pregnant rats were treated with a 

mineralcorticoids receptors (MR) antagonist, potassium canrenoate also called canrenoic 

acid potassium salt (20 mglkg/day) in tap water ad libitum referred to (NPean) and (Pean) 

respectively. Rats were treated for seven days (last days in the case ofpregnancy), and were 

sacrificed by decapitation (21 st day in the case of pregnancy, i.e. one day prior to 

parturition). 

2.1.2. Isolation of left ventricular cardiomyo'cytes 

2.1.2.1. The heart isolation system 

Left ventricular myocytes were isolated following retrograde perfusion of the heart 

with proteolytic enzymes \05, 106. The system of perfusion comprises a Langendorff system 

connected to a pump to control the flow of perfused solutions as shown in (Fig. 3). AlI the 

bottles including the perfusion column have a double wall, and the space between both 

walls is filled with water heated to 36± 1 oC using a circulatory bath so that the solutions are 
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Figure 3: System of perfusion of the heart. A: columns of perfused solutions. B: column 

of Langendorff. C: place of attachment of the heart. 0: water bath adjusted to 36±1 oC. E: 

Electric pump to control the flow of perfused solutions. 



29 

maintained at this temperatufe when perfused. Three bottles contain the isolation solutions 

for perfusion, and the fourth one is put under the perfusion column to keep the heart warm, 

and to collect the enzyme solution for recirculation. The perfusion column is connected to a 

needle on which the heart is attached during aIl isolation. AIl solutions are oxygenated with 

air. To avoid any bacterial growth, the system is washed with deionized water three times 

before and after use, and the residual water is removed from the tubes. 

2.1.2.2. Perfusion of the heart 

The animaIs were euthanized in the moming ,by decapitation. The heart was rapidly 

removed, leaving sufficiently long aorta for attachment of the heart on the column, and then 

cleaned by the Tyrode solution to c1ear the heart from the excess of the blood. The heart is 

attached on the column with a clip, and tied securely with silk thread (about 0.22 mm in 

diameter) to ensure that the heart remains weIl fixed .during the experiment. The heart 

should be contracting at this moment. By bringing up the bottle located under the perfusion 

column, the heart will be warmed up in a space of which the temperature is 36±1 oC. The 

perfusion starts with tyrode solution containing CaCh 0.75 mM, to maintain the 

functioning heart and allow the contractions to eliminate the remaining blood. When the 

solution coming out from the heart is clear, without blood, isolation begins. To stop the 

contractions, the heart is perfused with Tyrode solution with the addition ofEGTA O.lmM, 

a chelating agent that is a suppressor of Ca2
+ ions. This solution is perfused for 5 minutes 

after the contractions stop completely. Finally the heart is perfused with Tyrode solution 

containing 0.05 mM of CaCh and the two proteolytic enzymes: collage nase type II (300-

350 U/mg) and the protease type XIV (4.9 U/mg). Once the enzymes reach the heart, the 

heart is perfused for about 7-10 minutes depending on its size. It is preferred to touch the 

heart tissue several times to feel whether it is soft or not. The collected enzyme is then 

supplemented with 5 ml ofBSA 10 %105,106. 
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2.1.2.3. Isolation ofliving cardiac cells 

The heart is cut crosswise so the atriums are avoided and placed in a glass Petri 

dish. The right ventric1e is exeised, and the left ventric1e, whieh represents the rest of the 

heart, is then eut in pieces which are placed in 5 ml of enzyme solution introduced with the 

addition of BSA to a final concentration of 1 %. The solution is oxygenated by a provision 

of air. After circular and manual agitation of 5 min in a bath at 36±1 oC, the cells are 

filtered through the nylon of pores of 250!lm, and the rest of the tissue replaced under the 

agitation in the same conditions. The filtrate containing myocytes is supplemented until 10 

ml with Tyrode solution containing CaCh 750 JlM to dilute the enzyme solution and stop 

its action, then centrifuge (at 100 x g for 2 min). The supematant is discarded and 5ml of 

750 !lM CaCh is added to the pellet. The last steps are repeated 3 or 4 times by using the 

cells in the water bath depending on the quality. Cel1s are washed twice with 750 JlM Ca2+ 

solution before storing in the refrigerator to rem ove the remaining enzyme which could 

harrn the cells. Then cells are put into refrigerator in labelled Petri dishes until use. Only 

cells that showed c1early defined striations and edges were used in up to 10 hrs following 

isolation\05,106. 

2.1.3. Solutions 

2.1.3.1. Solutions for study of free NADPH fluorescence in vitro 

Basic intracellular solution contained (in mM): NaCl, 10; KC1, 140; MgCh, 1; 4-(2-

hydroxyethyl)-l-piperazineethanesulfonic acid (HEPES), 10; adjusted to pH 5.4, 7.4 or 9.8 

with KOH. Solution was prepared using deionized water and kept frozen at -20 oC until 

use. NADPH fluorescence in vitro was measured in this solution at concentrations from 1 

to 20 JlM. This solution was also used for the production ofNADPH by NADP+-ICDH (3.9 

U/ml) from isocitrate (89 mM) and NADP+ (0.5 mM) with or without GSSG (50 nM) and 
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GR (0.5 U/ml). To perform the viscosity experiments, different amounts of glycerol were 

added vs. purified water. 

2.1.3.2. Solutions for study of cardiomyocyte auto fluorescence 

(1) The isolation solution: contained (in mM): NaCl, 130; KCl, 5.4; CaClz, 0.75; 

MgCh 1.5; NaH2P04, 0.4; creatine, 10; taurine, 20; glucose, 10; Hepes, 10; pH 7.3 with 

NaOH. CaCb, 0.75 and ethylene glycol tetraacetic acid (EGTA), 0.1. 

(2) Basic external solution: contained (in mM): NaCI, 140; KCl, 5.4; CaCh, 2; 

MgCb 1; glucose, 10; HEPES, 10; pH 7.35 with NaOH. This solution was used to study the 

NAD(P)H fluorescence in ceUs. AIl solutions were prepared with deionized water and 

stored at 4 oC prior to use. 

2.1.4. Reagents 

CeUs were treated (in basic external solution for 30 min at 35 oC before recording) 

with neutral solutions of different agents such as 1,3-bis(2-chloroethyl)-1-nitroso-urea 

(BCNU, 100 JlM); and/or hydrogen pyroxide (H202, 1 JlM); or 4-hydroxy-2-nonenal (HNE, 

25 or 50 JlM). Rotenone (1 JlM), Na-cyanide (4 M) and.9,1O-dinitrophenol (DNP, 50 JlM» 

were added for 5 min at 24 oC prior to ceU incubation;·The Na-3-~-hydroxybutyrate (BHB, 

3 mM) and Na-pyruvate (100 J.lM) were prepared freshly, while Na-acetoacetate (AcAc, 

150 JlM or 1.5 mM) was added from 250 mM stock solution. Lactate (1 mM) was added to 
) 

the basic external solution from the 100 mM stock-solution, where pH was carefully 

adjusted to 7.20 with HCL AIl chemicals were from Sigma-Aldrich (Canada), except 

cyanide which was from Fisher (Canada). 
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2.2. Methods 

2.2.1. Analyses of the blood 

Blood was collected from the body immediately after decapitation in the animal 

house. The samples from whole blood for substrates and lipids were processed immediately 

and determined by standard enzymatic methods107 by the clinical biomedical lab at Saint 

Justine Hospital. For pyruvate measurement, blood sample was treated with 5% 

trichloroacetic acid and immediately vortexed for 2 min. Each sample was then centrifuged 

for 4 min at 10,000 x g, the supernatant collected and rapidly frozen at -20 oC. Pyruvate 

was subsequently determined by standard enzymatic dosage. 

The blood samples for LPO markers were analyzed by Thierry Ntimbane (lab Dr. 

Comte). Quantification of HNE bound to proteins in whole blood samples (400 Ill, EDTA 

tubes) was perfonned upon the method described by Asselin et al108 as follows: after 

addition of 200 III ofNaB2H4 (1 M) reducing HNE to its corresponding alcohol chemically 

stable eH]DHJ~, proteins were precipitated with saturated sulfosalicylic acid (200 Ill). The 

prote in pellet was extracted twice with mixed methanol:chloroform (3 ml; 2: l, vol:vol), 

rinsed thrice with water (1 ml) before resuspension in guanidine buffer (0.5 ml; pH 7.2) and 

addition of internai standard eH ll]1,4-dihydroxynonene (DHN; 0.1 nmol). After treatment 

with Raney Nickel, extraction and evaporation, the residue was treated with N-methyl-N-(t­

butyldimethylsilyl)-trifluoroacetamide (75 Ill), heated (90 oC, 3 h) and left overnight (70 

OC) for derivatization. 

Two III aliquots were injected into a Hewlett Packard 6890 Series GC System 

version A.02.14 (Hewlett Packard, Paolo Alto, CA, USA) equipped with HP-5 capillary 

column (50 m x 0.2 mm x 0.33 Ilm) coupled to a Mass Spectrometer (Agilent Technologies 

Mass Selective Detector 5973 Network) operated in ammonia positive chemical ionization 

mode. Two ion sets were measured: m/z 389,390 and 400, corresponding to the molecular 

ion and 257, 258 and 268, resulting from fragmentation, for the analyses of DHN, 
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eH]DHN and internaI standard eH1 dDHN respectively. The MS source and quadrupole 

were set at 180°C-126°C and 300°C-176°C for the 2 ion sets respectively. The 

chromatograph temperature pro gram was: 170 oC for 1 min, increased by 10°C/min up to 

210 oC, increased by 5 oC/min up to 280 oC and by 20 oC/min up to 320 oC for 10 min. 

Levels ofHNE-proteins were calculated over a minimum of duplicate injections. 

2.2.2. Spectrally-Resolved Time-Correlated Single Photon Counting (TCSPC) 

In our study, we have used a combination of fluorescence microscopy and 

spectrally-resoived time-correlated single photon counting (TCSPC) (Fig. 4). Samples were 

mounted on an inverted microscope (Axiovert 200M, Zeiss, Canada) (Fig. 4B). Picosecond 

diode laser with emission line at 375 nm (BDL-375, Becker&Hickl, Boston Electronics, 

V.S.A) (Fig. 4A) was used as an excitation source for NAD(P)H (output power -1 mW, 

repetition rate 20 MHz, pulse widths typically < 100 ps). The laser beams were combined 

by dichroic filters and reflected to the sample through epifluorescence path ofAxiovert 200 

inverted microscope to create slightly defocused elliptical spot (20 x 10 Ilm). The size of 

the spot was chosen in regard to the average width (20-30 Ilm) of one cardiac myocyte68
• 

Emitted NAD(P)H autofluorescence was spectrally separated from excitation light using 

standard dichroic filter cubes (395 nm dichroic and 397 nm long-pass filter for excitation at 

375 nm) in the microscope filter turret. A polarizer in a "magic-angle" orientation was 

fitted in front of the detection system at the microscope output port to avoid distortioris of 

decay kinetics due to depolarization effects in the microscope optics. 

The spectral decomposition of fluorescence was obtained using a 16-channel 

photomultiplier array (PML-16, Becker-Hickl, Boston Electronics, V.S.A)(Fig. 4D), 

running in the photon-counting regime and feeding the time-correlated single photon 

counting interface card SPC 830 using SPCM software (both Becker-Hickl, Boston 

Electronics, V.S.A), attached to the imaging spectrograph (Solar 100, Proscan, Germany) 

(Fig. 4C). Fluorescence decays were measured for 30 s with 25 ns TAC time-base sampled 
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Figure 4: The spectrally-resolved time-correlated single photon counting (TCSPC) 

instrumentation. A: Picosecond laser diode with emission of 375 nm, B: Axiovert 200M 

inverted fluorescence microscope, C: imaging spectrograph, 0: 16-channel photomultiplier. 
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by 1024 points, leading to the temporal resolution of 24.4 ps/channel. Decay kinetics were 

measured for 30 s, with the number of counts at each channel reaching maximum intensity 

of about 500-5000 counts and the typical background noise of 10-100 counts per channel, 

present mostly due to ambient light We have opted for a 20 MHz repetition rate in order to 

ensure a sufficient time-window (50 ns) for observed fluorescence kinetics. Cells and in 

vitro samples were mounted on an inverted microscope (Axiovert 200M, Zeiss, Canada) 

and studied in 4-well chambers with uv -proof coverslip-based slides (LabTech, Canada). 

In living left ventricular cardiac myocytes bathed in basic external solutions, 

NAD(P)H autofluorescence was recorded simultaneously at all 16 channels. Steady-state 

emission spectra of the cardiomyocyte autofluorescence were determined from the total 

photon counts on each spectral channel. 

The half-width of instrument response function (IRF) of our setup was 0.2-0.25 ns, 

according to the measurement of the Raman scattering peak of water lO9
• The spectrometer' 

was èalibrated using the emission maxima ofknown reference dyes (such as DPA) and the 

water Raman peak109
; the spectral range of our system was estimated to -390-680 nm with 

16 equidistantly-spaced spectral intervals 18 nm-wide I09
• 

2.2.3. Analysis of NAD(P)H fluorescence 

Steady-state autofluorescence was evaluated as total photon counts for each spectral 

channel. Each lifetime component was assessed by examining its fluorescent lifetime (tù 

and relative amplitude (ai)' In our experiments we typically collected a photon-counting 

histogram of spectrally resolved autofluorescence decay P(Âj, tk). The histogram was 

measured simultaneously on 16 spectral channels denoted as Â.j , and on 1024 temporal 

channels denoted tk, equidistantly spaced by 24.4 ps. The steady-state autofluorescence 

spectra S(Âj) were calculated as a total photon count for each spectral channel: 
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(3) 

The flùorescence decay kinetics were analyzed using a sum of three exponential 

terms, according to the modell(Àj, t) with the functional form: 

3 

I(À j ,1) == IIJaseline + LGi,j x exp( -(t - to )/-ri,) (4) 
Î=I 

Where (to) is the variable zero-time shift, haselinc fits the background intensity, and 

the amplitude (ai) represent the fractional population of the molecules associated with each 

decay component i. Sum of these fractional populations for each selected wavelength 

equals to one hundred percent: 

3 "G . = 100 .i...J 'd 
i=1 

(5) 

In the fitting procedure (nonlinear least-squares minimization routine implemented 

in SPClmage by Becker&Hickl), the parameters of the model function I(Àj, t) were 

iteratively changed, while being convolved with the instrument response function to best fit 

the measured photon histogram P(Àj, tk). Thus, each lifetime component i was assessed by 

examining its estimated fluorescent lifetime tij and relative amplitude aiJ, both being 

dependent on the emission wavelength Àj. For simplicity, we provide the results either in 

the form where these parameters are plotted against wavelength coordinate, or we specity 

the particular emission wavelength used, omitting the second index (j). 

Once the fitting parameters have been obtained, the following derived quantities 

were calculated: 

1) the average fluorescence lifetime <t>; 
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3 
(6) 

= z)ai X rJI100 
;=1 

2) the relative intensity of each species afti ; 

3) the relative fraction ri of the fluorescence generated by each species i, with 

respect to the total fluorescence; 

(7) 

The time-resolved emission spectra (TRES)to9 were constructed by summing the 

photons registered over a chosen time interval ùt after a temporal delay At with respect to 

the channel kmax, where the maximal number of photon counts was detected (P max, Le. the 

peak of the excitation impulse): 

(8) 

where kmax corresponds to channel with maximal detected photon counts,i.e. the 

peak of the excitation impulse, Àj to emission wavelength, P(Àj, tk) to the photon-counting 

histogram of spectrally-resolved AF decay. We have used the TRES interval width ùt of 

lns (in regard to the instrument response width) leading to the time interval expressed in 

channel numbers as kE(At, At+ ùt), where 1 channel ~ 24 ps. 
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2.2.4. Data Analysis 

Data were analyzed using SPClmage software (Becker&Hickl, Boston Electronics, 

U.S.A), Origin 7.0 (OriginLab, USA) and custom-written procedures for data correction 

and analysis written in C++ with the help of NAG numerical libraries and visualization' 

system Iris Explorer (NAG, Oxford). Steady-state emission spectra measured 

simultaneously at 16 acquisition channels were determined as the total photon counts on 

each spectral channel. Three-exponential decay model was used to analyze measured 

fluorescence lifetime kinetics. Home-made database was used for appropriate data 

management. Data are shown as mean ± standard error (SEM). In aH presented data, 

comparison between me ans was made at spectral maximum of 450 nm, using one-way 

analysis of variance (ANOVA), foHowed by Tukey post-test, except for the measurements 

of the lipid peroxidation markers in the blood, which comparison between the means was 

done by unpaired t-test. In aH presented data P<~.05 was considered as significantly 

different; however, P<0.005 was considered as significantly different in the comparison of 

measurement of lipid peroxidation markers between NP and NP cano AH data are presented 

as mean ± SEM of n experiments or ceH analyses performed. 
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3. RESULTS 

3.1. Study of NADPH fluorescence in vitro 

Part of this study has been published in Aneba S., Cheng Y., Mateasik A., Comte 

B., Chorvat D. Jr, Chorvatova A., 2007: Probing of Cardiomyocyte Metabolism by 

Spectrally Resolved Lifetime Detection of NAD(P)H Fluorescence. The Computers in 

Cardiology. 39:349-352., see attached Appendix 1. 

3.1.1. Concentration-dependence of NADPH fluorescence 

It is weIl known that fluorescence ofNADH and/or NADPH is linearly dependent 

on its concentration99
. To confirm this relationship in our experimental conditions, we 

characterized changes in the kinetics of intrinsic NADPH fluorescence with rising 

concentration. Fluorescence spectra and fluorescence lifetimes of NADPH were studied in 

vitro in intracellular media-mimicking solutions (pH 7.25). Steady-state émission spectra 

measured simultaneously at 16 acquisition channels were determined as the total photon 

counts on each spectral channel. T 0 test the dose dependence of spectral and lifetime 

properties of the NADPH fluorescence in vitro, concentrations ranging from 1 to 20 JlM of 

NADPH in intracellular media-mimicking solutions were used. These experiments were 

performed to understand changes ofNADPH kinetics due to alteration in NADPHINADP+ 

ratio associated with pathophysiological conditions. Our results showed that NADPH had 

fluorescence with spectral maximum at 450 nm (Fig. 5A). The spectral intensity of 

NAD PH was linearly dependent on their concentration at the maximum emission 

wavelength of 450 nm, as illustrated at (Fig. 5C). Normalized spectra for NADPH 

concentrations from 1 to 20 JlM overlaid perfectly (Fig. 5B), confirming the same 

molecular origin. 

A 3-exponential model was used to analyse fluorescence lifetimes of NADPH 

fluorescence and their relative amplitudes, giving the best fit with chi-square values (;(2) 
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were <l.2. However, at the maximum wavelength of 450 nm we have resolved only two 

significant fluorescence lifetime pools (Table 1). Our data indicate that fluorescence decay 

kinetics were not dependent on NAOPH concentration in the studied range (Fig. 50). These 

findings suggest that there is a correlation between free NADPH fluorescence intensity and 

changes in its concentration, but not their fluorescence decays. 

"-

3.1.2. pH-sensitivity of NADPH fluorescence 

Several pathological conditions, namely ischemia are associated wÎth metabolic 

alkalosis or acidosis. To understand effects of changing of the pH on NADPH fluorescence 

kinetics, we therefore investigated the fluorescence ofNADPH (l0 IlM), measured in basic 

intracellular solution adjusted with 1.0 M NaOH to different pH (5.4, 7.25, 9.8). These 

values were chosen as close to cytoplasmic pH (7.25), and mitochondrial pH (5.4). We also 

tested highly alkalized solution of pH 9.8. Our results showed that when compared to pH 

7.25 there was a loss of NADPH fluorescence intensity in the presence of pH 5.4, while 

NADPH fluorescence recorded in the presence of pH 9.8 was not significantly affected 

(Fig. 6A). Normalized spectra revealed that pH modification caused no significant 

difference on the spectral shape of NADPH fluorescence (Fig. 6B). Also, the fluorescence 

decays were not significantly affected by changing pH (Fig. 6C). These data indicate that 

acidic environment can have sorne effect on the NADPH fluorescence intensity. 

3.1.3. Viscosity-dependence of NADPH fluorescence 

The fluorescence decays are known to be sensitive to molecular environment, 

namely its viscosityl03. We therefore investigated changes of fluorescence decay kinetics of 

NADPH (50 JlM) in solutions with different degrees of viscosity ranging from 0-100%. 

This was achieved by addition of glycerol (0%, 25%, 50%, 75%, and 100%) vs. purified 

H20. Our findings showed that NADPH fluorescence intensity is indeed dependent on the 

viscosity of the solution (Fig. 7A). The total photon counts, measured at maximum Àem (450 
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nm) revealed ri se of the peak of NADPH fluorescence intensity with the viscosity (Fig. 

7C). We also noted a slight 10 nm blue spectral shift when NAD PH fluorescence was 

recorded in more viscous environment (Fig. 7B). Furthermore, we have found that NADPH 

fluorescence Iifetime depend on the viscosity as weIl, as illustrated at Àern 450 nm (Fig. 7D) 

with clear prolongation of the fluorescence Iifetimes in highly viscous environment. We 

propose that this result can be related to the change in the molecular mobility and/or 

modification in the conformation of NADPH mole cules in more viscous medium. In 

agreement with previously observed findings for NADH 103
, gathered results point to the 

sensitivity of the kinetics of NADPH fluores'cence decays to the modification in the 

molecular environment. 

3.1.4. NADPH fluorescence produced by isocitrate dehydrogenase and its modulation 

by glutathione reductase 

NADP+-ICDH has been shown to play an important role in increasing NADPH pool 

in heart mitochondria, especially during oxidative stress61
, 62,110. We therefore utilized the 

activity of NADP+-ICDH to produce NADPH in vitro, and study its spectral and lifetime 

properties. Our data revealed that NADPH produced in vitro from NADP+-ICDH had 

comparable spectral and lifetime characteristics as NADPH in intracellular media­

mimicking solution, although some differences were noted for the 2nd and 3rd lifetime pools 

and their relative amplitudes (Table 1). We advance that these can be due to the fact that 

when NADPH Wl:lS produced in vitro the samples were not measured in intracellular media 

only. As expected, our observations indicated that ICDH-produced NADPH fluorescence 

has comparable characteristics to that of free NADPH (data not illustrated). 

Furthermore, we investigated whether binding ofNADPH to GR have repercussions 

on its spectral and lifetime fluorescence properties. NADPH is a cofactor that is essential 

for glutathione system, one of the defence mechanisms against oxidative stress. NADPH is 

used by GR to convert GSSG into GSH, which is needed to detoxify H202 and change it 
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into water35
. We have found that the addition of GR in the presence of GSSG lowered (at 

concentration 0.5 U/ml) or nearly completely abolished (at 1 U/ml) NADPH fluorescence 

produced by NADP+ -ICDH (Fig. 8A). This observation is in agreement with 

dehydrogenation of NADPH by GR. Normalized and blank-corrected spectra showed no 

difference of NADPH spectral properties in the presence or in the absence of GR with 

GSSG (Fig. 8B). Our data revealed no modifications of NADPH lifetime kinetic properties 

by GR (Fig. 8C) (Table 2). These results show that the 10ss in fluorescence intensity is 

correlated with the use ofNADPH by GR, converting it to the oxidized form NADP+. 
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Figure 5: Concentration-dependence of NADPH fluorescence in vitro. Emission spectra 

and lifetime properties ofNADPH fluorescence recorded in intracellular media-mimicking 

solutions (pH 7.25). A: Number of photon counts of NADPH fluorescence spectra at 

concentrations ranging from 1 to 20 ~M. B: Normalized, background-corrected spectra of 

NAD PH fluorescence for NAD PH concentrations between 5 to 20 ~M. C: Linear 

relationship between the number of photon counts and NADPH concentration at maximum 

fluorescel?ce intensity (Àcm 450 nm). D: Normalized fluorescence decays of NADPH 

concentrations of7 and 10 ~M (at Àcm 450nm). 
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Figure 6: pH-dependence of NADPH fluorescence in vitro. Emission spectra and 

fluorescence decay characteristics of NAD PH (10 !lM) recorded in intracellular solution 

with modified pH (5.40, 7.25, or 9.80). A: number of photon counts of NADPH 

fluorescence spectra. B: Normalized spectra of NADPH fluorescence. C: Fluorescence 

decays ofNADPH (at Àem =450nm). 
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Figure 7: Viscosity-dependence of NADPH fluorescence in vitro. Emission spectra and 

fluorescence decays of NADPH (50 J..lM) recorded in intracellular media-mimicking 

solution with the addition of glycerol (0%, 25%, 50%, 75% and 100%) vs. H20. A: 

Fluorescence spectra of NADPH with added amounts of glycerol. B: Nonnalized 

fluorescence spectra of NADPH with glycerol. C: Total photon counts of NADPH 

fluorescence at ('-cm 450 nm) in intracellular media with different viscosity. D: Nonnalized 

fluorescence decays ofNADPH fluorescence at (J''t:m = 450 nm). 
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Figure 8: NADP+-ICDH produced NADPH fluorescence and its modulation by GR in 

vitro. NADP+-ICDH produced NADPH fluorescence in the absence or presence of GR (0.5 

or 1.0 UI ml) in intracellular solution. A: steady state spectra. B: normalized emission 

spectra. C: Normalized fluorescence decays (at Àem = 450nm). 
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parameters Total photon counts a) T) az Tz a3 T3 

[a.u.] [ps] [ps] [ ps ] 

NADPH7J..1.M 
25890±190 74.4±3.67 313.3±1O.5 21.7±3.93 781.3±43.6 O.32±O.O4 27950±2050 

n=5 

NADPHI0J..l.M 
31576±426 74.5±1.33 31O.0±4.6 25.2±1.34 781.4±20.6 O.30±O.O4 

n=5 
22470±4020 

NADPH20J..l.M 
54068±251 74.6±2.42 310.6±9.7 25.3±2.93 753.7±29.5 O.14±O.O2 25940±2500 

n=5 

ICDH-Produced 
24104±647 75.6±1.67 31O.6±9.8 23.1±1.61 997.9±33.3 1.32±O.11 16100±141O 

NADPH (0.5 mM)n=lO 

ICDH-Produced 

NADPH (0.5mM) +GR 19767±210 73.9±5.72 308.2±1.8.9 24.6±5.53 981.8±93.4 1.60±O.24 16400±2100 

0.5 U/ml n=5 

Table 1: Fluorescence parameters of NADPH in intracellular media-mimicking solutions (î.-ex/Àem = 375 nm/450 nm). Total photon 

counts, fluorescence lifetimes (Tl to 't3) and their relative amplitudes (al to a3) of free NADPH, or ICDH- produced NADPH in the absence 

and in the presence of GR D.5U/mL. Data are shown as mean ± S.E.M. 
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3.2. Study of NAD(P)H fluorescence in living cardiac myocytes 

To investigate the endogenous fluorescence ofNAD(P)H in living left ventricular 

cardiac myocytes, spectrally and time-resolved AF decays were recorded in cells bathed in 

basic external solutions. Laser beam at 375 nm was used as an excitation source. 

Normalized steady-state emission spectra of the cardiomyocyte AF had spectral maximum 

at 450 nm (Fig. 9Bb) and were similar to those ofNADPH in vitro. However, NAD(P)H 

fluorescence of cardiomyocytes had three significant lifetime pools (Table 2). 

3.2.1. Respiratory chain modulation 

3.2.1.1. NAD(P)Hjluorescence in response to inhibitors of the respiratory chain 

We tested whether modulation of the respiratory chain activity is capable of 

. affecting fluorescence spectral and/or lifetime characteristics of cardiomyocyte AF. 

Treatment with rotenone (1 IlM) and Na-cyanide (4 mM), the inhibitors of the Complex 

1111
, 112 and Complex IV l13 of the respiratory chain respectively induced a significant 

increase in cardiomyocyte NAD(P)H fluorescence (Fig. 9Ba). This observation is in 

agreement with the rise in mitochondrial NADH content due to accumulation NADH 

following limitation of the respiratory chain to dehydrogenation. Normalized AF spectra 

in control conditions and in the presence of rotenone and cyanide were identical (Fig. 

9Bb), suggesting same molecular contributors: NAD(P)H molecules. AIso, no membrane 

damage was observed in the presence of the inhibitors as evidenced by transmission 

images (Fig. 9Ab). In addition, inhibitors ofthe respiratory chain induced no effect on the 

lifetimes and their relative amplitudes when compared to control ceUs (Table 2). 
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3.2.1.2. Cardiomyocyte auto fluorescence and uncoupling of ATP synthesis 

To enhance NADH dehydrogenation to NAD+ by complex 1 of the respiratory 

chain, we applied DNP, an uncoupling agent for ATP synthesis leading to a rapid energy 

consumption!!4, !l5. As expected, use of DNP resulted in a significant decrease in 

cardiomyocyte AF (Fig. 9Ba), in accordance with a markedly enhanced NADH 

dehydrogenation rate. Interestingly, after normalization, spectral broadening towards red 

spectral region of about 20 nm was found in the presence of the uncoupler (Fig. 9Bb). 

However, DNP did not modify the ceU shape as shown in Fig. 9Ac. 

3.2.2. Redox state changes 

3.2.2.1. Cytoplasmic NAD(P)H changes 

The concentration ratio of lactate/pyruvate in plasma was showed to be between 10 

and 20 in non-pregnant rats68 (see also Table 3). We have therefore used a similar 

concentration ratio to test the effect on NAD(P)H AF in cardiomyocytes. Because 

intracellular lactate and pyruvate concentration are very rapidly in equilibrium through the 

action of the cytosolic lactate dehydrogenase, adding fixed ratio of these substrates allow 

to clamp the NADINADH ratio to a fixed value and induce cytosolic NAD(P)H redox 

changes. To analyse the contribution of cytosolic NAD(P)H, lactate (1 mM) was added in 

the presence of pyruvate (100 J.LM). These substrates did not significantly affect the total 

photon count spectra of cardiomyocyte AF (Fig. lOBa and Bb), indicating that recorded 

AF signal is mainly resulting from mitochondrial NAD(P)H. 
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3.2.2.2. Mitochondrial NADH production 

To stimulate mitochondrial NADH production in cardiomyocytes, we have 

administered BHB (3 mM) in basic extracellular solution in the presence of different 

concentrations of AcAc: low 150 JlM (ratio 20:1) to favor NADH production and high 1.5 

mM (ratio 2: 1), closer to physiological conditions 1 
16. In fact, similar to the 

lactate/pyruvate ratio in the cytosol, mitochondrial BHB and AcAc concentrations are 

very rapidly in equilibrium through the action of the BHB dehydrogenase, reflecting the 

mitochondrial NADINADH ratio. The BHB/AcAc ratio of 20:1 induced no significant 

change in cardiomyocyte AF when compared to control conditions (Fig. 10Ca and Cb). 

However, decreasing the ratio to 2: lIed to loss in the ceU AF (Fig. lOCa), in agreement 

with expected lower NADH production, but without modification of the spectral shape 

(Fig. 1 OCb). These results suggest that our cells are at the level of high gradient for the 

NADH production. If the cardiomyocyte AF is simply set by mitochondrial NADH 

production, our ceUs are in condition favourable to NADH production. 

3.2.3. Inhibition of glutathione system 

The reduced form of NADPH is crucial as an electron donor, used by GR to 

maintain sufficient amount of GSH. To modulate the consumption of NADPH, BCNU 

(100 JlM) was used to inhibit GR. ln the presence of the inhibitor, we observed no 

significant changes in the cardiomyocyte AF although sorne decreasing tendency could be 

noted (Fig. 11Ba). We also found no modification of the spectral shape as observed from 

the normalized spectra (Fig. IlBb). Besides, the ceU shape was not affected by the 

presence ofBCNU (Fig. liA). 
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Figure 9: Response of NAD(P)H fluorescence to respiratory chain modulation in 

living cardiomyocytes. A: transmission images of living cardiac cells~ scaie ~ 33!lm 

(number of cellsl number of animaIs); a: control (91118)~ b: treated with rotenone and 

cyanide (l !lM and 4 mM respectively~ 30/6), c: treated with DNP (50 !lM, 15/3). B: 

Steady state and C: normalized NAD(P)H fluorescence spectra in cardiomyocytes in the 

absence and/or the presence of the modulators. *p< 0.05 vs. control. 
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Figure 10: Investigation of NAD(P)H-based cardiomyocyte AF response to change in 

NADH production. A: transmission images of living cardiac cells (number of cells/ 

number of animaIs) scale = 33 ~m; a: supplemented with pyruvate (100 ~M) and lactate (l 

mM) (15/3), b: or treated with BHB (3 mM) in the presence of c: AcAc (1.5 mM, ratio 

2:1) (16/3) or d: AcAc (150 flM, ratio 20:1) (15/3). Steady state and normalized NAD(P)H 

fluorescence spectra in the absence or presence of (Ba and Bb): lactate and pyruvate, (Ca 

and Cb): varied BHB/ AcAc ratio. 
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Figure 11: Response of NAD(P)H fluorescence in living cardiomyocytes to 

glutathione reductase inhibition. A: Transmission image of a living cardiac cell (number 

of cellsl number of animaIs) scale = 3~~m, treated with BCNU (100 ~M, 32/6). Ba: 

Steady state and Bb: Nonnalized NAD{P)H fluorescence spectra in the absence or 
~ 

presence ofBCNU. 
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Total photon al Tl a2 T2 a3 T3 
counts [a.u.] [ps] [ps] [ps] 

aIT, f, a2T2 f2 aJTJ fJ <T> 
[ a.u.[[*10J

[ r a.u.[[*10J1 [ a.u.J [*10J
[ [ ns 1 

Control 35 C 
40740±1470 62.8±1.3 524.4±18.2 33.2±1.2 1550±36.6 4.1±O.3 7805±295 (42/8) 

33.5±1.7 O.3±O.O 50.2±1.3 O.4±O.O 30.7±I.H O.3±O.O 1.I±O.1l 
H 20 2 18150±460* 53.8±1. 8 286.5±15.9* 41.9±1.2 1494±82.6 5.3±O.3 11278±792 
(28/3) 

15.5±1.1 * Il.I±O.Il* 62.4±3.6 O.5±O.fl 57.U±3.9 O.4±O.U* 1.4±O.1 
HNE 

23580±1070* 59.41±2.9 693.9±44.4* 36.4±2.88 2026±80.8 4.2±O.5 14730±2000* 
(10/3) 

41.7±3.8 O.3±O.O 71.5±4.4 O.4±O.O 4H.5±3.fl O.3±O.O I.6±O.1 
BCNU 

41320±2590 64.5±2.0 508.5±15.4 31.9±1.76 4105±2530 3.6±O.3 8013±785 
(17/3) 

33.1±1.7 fl.3±O.O 1117.6±57.5 O.5±O.O 26.6±2.5 fl.2±O.O 1.7±O.6 
BCNU+H20 2 23250±1530* 52.5±3.2 358.7±26.5* 42±2.7 1670±1.0 5.5±O.6 11280±1740 

(12/2) 
18.9±2.1* O.I±O.O* 6H.5±2.6 O.5±O.O 57.2±7.H U.4±O.O" 1.5±O.1 

BCNU+HNE 
17050±749* 49.7±5.9* 758.3±57.4* 42±6.1 2165±114 8.3±1.0*+ 21300±2200*+ 

(13/2) 
39.5±6.4 Il.2±O.O*+ 89.0±12.9 O.3±U.O;'+ 16H.7±25.2"+ O.5±O.O*+ 3.0±O.3*+ 

Rotenone+cyanide 
49280±1950* 61.0±1.9 536.8±17.8 35.5±1.7 1484±87.4 3.8±O.3 7427±402 

(20/4) 
33.1±1.8 O.3±O.O 50.7±2.9 O.5±O.O 26.9±1.1 O.3±fl.U 1.1 ±O.U 

Rotenone+cyanide 
+H20 2 19640±1690* 51.7±3.7 516.9±50.2& 43.3±3.2 1863±126 5.0±0.7 16400±2500* 
(10/2) 

27.6±4.2 O.2±O.O* 7H.H±6.5 O.4±O.O 75.0±11.8* Il.4±1l.0'' I.H±Il.2 
Rotenone+cyanide 

+HNE 54210±1660* + 64.5±3.0 477.9±23.2+ 31.8±2.7 1530±86.9 2.8±O.3 7037±326 
(5/1) 

31.1±2.9 O.3±O.O 47.7±1.5 U.3±11.0* 27.1l±II.H Il.3±O.O 1.1 ±fl.fl 
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Table 2: Fluorescence parameters of NAD(P)H cardiomyocyte AF O~x/~m = 375 nm/450 nm). Total photon counts, fluorescence lifetimes 

(Tl to t3) and their relative amplitudes (al to a3) of single cardiomyocytes in control conditions and in the presence of: 1 !lM H20 2 or HNE 25 

!lM, and/or BeNU 100 !lM, 1 !lM rotenone and 4 mM cyanide. In grey, calculated relative intensities and relative fractions for each component, 

as well as average lifetime. Data are shown as mean ± S.E.M (number of cells/number of animaIs); *p<0.05 vs. control, +p<0.05 vs. HNE, 

&p<0.05 vs. H20 2 . 
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3.3. Cardiomyocyte autofluorescence sensitivity to oxidative stress 

3.3.1. Study of hydrogen peroxide effeet 

3.3.1.1. Cardiomyocyte auto fluorescence in response to hydrogen peroxide 

To test cardiomyocyte AF sensitivity, we ftrst used conditions where oxidative 

stress was mimicked by H202, a weIl known oxidative stressorll7
. The addition of 

H202 (1 !lM) signiftcantly lowered the cardiomyocyte AF ofNAD(P)H excited at 375 

nm (Fig. 12Ba, Table 2.). Also, H202 induced membrane damage, as evidenced by a 

change in the cell membrane shape shown by transmission images (Fig. 12Aa). 

Normalized spectra revealed that H202 induced red spectral broadening of about 20 

nm of the NAD(P)H fluorescence (Fig. 12Bb) and reduced ftrst lifetime pool (Table 

2.). Higher concentrations of H202 (100 !lM) caused severe membrane damage and 

lead to cellular death of most ce Ils (data not shown). These results are in agreement 

with H202-induced lowering ofNAD(P)H levels due to stimulation of GR, following 

increased GSSG inside cardiomyocytes. 

3.3.1.2. Response to hydrogen peroxide lollowing respiratory chain inhibition 

To test whether cardiomyocyte response to H202 (l !lM) could be affected by 

the presence of the respiratory chain inhibitors, rote none (1 !lM) and cyanide (4 mM), 

inhibitors of the Complex 1 and IV of the respiratory chain respectivelylll, 113, were 

added. As reported previously (Section 3.2.1.1.), these inhibitors were capable of 

inducing a rise in NAD(P)H fluorescence due to accumulation of NADH. 

Interestingly, these inhibitors had no effect on the reduction of NAD(P)H 

fluorescence caused by H202 (Fig. 12Ba, Table 2.), but resuIted in further red spectral 

broadening induced by the addition of H202 (Fig. 12Bb). These observations suggest 

that H20 2 effect is independent on the respiratory chain. 
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3.3.1.3. Effect of hydrogen pùoxide after glutathione reductase inhibition 

To investigate the stimulation of glutathione cycle by the presence of H20 2 (1 

)lM), cells were pretreated withBCNU (100 )lM), the inhibitor of GR37
, 38. Our data 

showed that pretreatment with BCNU prevented sorne of the loss of cardiomyocyte 

AF that was reduced by H20 2 (Fig. 13Ba), in agreement with an accumulation of 

NADPH. Besides, the spectral shape was less affected in the presence of the inhibitor 

(Fig. 13Bb). The effect of H20 2 can therefore be attributed, at least partially, to the use 

ofNADPH by GR. 

3.3.2. Cardiomyocyte autofluorescence responsiveness to lipid peroxidation: 

investigation of 4-hydroxy-2-nonenal effects 

3.3.2.1. Concentration dependence of 4-hydroxy-2-nonenal effects 

Lipid peroxidation can be initiated by free radical attack and result in 

production of toxic molecules such as HNE46
, which are capable of modifying 

proteins. It has been found that HNE can inactivate NADP+-ICDH50
, 51 that has an 

important role during oxidative stress by producing NADPH. Oxidative stress induced 

by HNE (25 )lM) provoked a decrease in cardiomyocyte NAD(P)H fluorescence (Fig. 

14Ba, Table 2.). It also induced a slight red spectral broadening of about 10 nm (Fig. 

14Bb), and increase of the lifetime of the first lifetime pool (Table 2.). We also noted 

sorne deterioration of the cell membrane shape (Fig. 14Aa). This effect was 

augmented when HNE (50 )lM) was used (Fig. 14Ab, Ba and Bb), suggesting its 

effect is a concentration-dependent. Damage of cells caused by HNE was irreversible. 

3.3.2.2. Effect of 4-hydroxy-2-nonenal after modulation of the respiratory chain 

We have tested whether mediators of the respiratory chain modulate the 

effects of HNE. Interestingly, in cells pretreated with rotenone (1 )lM) and cyanide (4 

mM), HNE (25 )lM) failed to lower cardiomyocyte AF excited at 375 nm (Fig. 15Ba, 
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Table 2). The inhibitors of the respiratory chain prevented HNE-induced loss of 

cardiomyocyte AF as weIl as the spectral broadening induced by HNE (Fig. 15Bb). 

On the other hand, the uncoupler of ATP synthesis, DNP (50 /lM), was able to further 

decrease the fluorescence (Fig. 15Ba) and enlarge spectral broadening in the presence 

of HNE (Fig. 15Bb). HNE effect was comparable to the one induced by DNP alone 

(Fig. 9). These results suggest that oxidative phosphorylation modulates HNE action. 

3.3.2.3. The effect of 4-hydroxy-2-nonenal after glutathione reductase inhibition 

To investigate implication of GR in the HNE action, we have analyzed the 

effects of HNE on cardiomyocyte AF in the presence of GR inhibitor BCNU. We 

hypothesized that inhibition of GR could prevent 10ss of cell AF in the presence of 

HNE. Surprisingly, in cells pre-treated with BCNU (100 /lM), HNE (25 /lM) induced 

further lowering of the cell autofluorescence (Fig. 16Ba, Table 2.) accompanied by 

ev en broader red spectral broadening (Fig. 16Bb). This effect was even greater when 

concentration ofHNE was raised to 50 /lM (Fig. 16Ca and Cb). 

3.3.2.4. Effect of 4-hydroxy-2-nonenal after modification of mitochondrial NADH 

production 

To test whether setting the gradient for NADH production affect the HNE­

induced decrease of cell AF, we analyzed effect of HNE in ceUs pre-treated with 

different BHB/ AcAc gradients, as described in section 3.2.2.2. CeUs supplemented 

with BHB/ AcAc = 20: 1 prevented sorne 10ss of the cardiomyocyte AF that was 

quenched by HNE (25 !lM) (Fig. 17Ba) and the spectral shape was recovered 

completely (Fig. 17Bb). On the other hand, when the ratio was decreased: 

BHB/ AcAc = 2: l, it did not cause any significant change to the effect of HNE (Fig. 

17Ba and Bb). 
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Figure 12: Response to oxidative stress challenge by 1I20 2 following inhibition of 

respiratory chain. A: transmission images of living cardiac cells (number of cells/ 

number of animais) scale 33 Ilm; a: treated with H202 alone (1 IlM, 28/5), or b: 

H20 2 in the presence of rotenone and cyanide (1 !lM and 4 mM respectively, 15/3). 

Ba: steady state and Bb: norrnalized NAD(P)H fluorescence spectra in the absence or 

presence of H202 alone or after application of rotenone and cyanide. *p< 0.05 vs. 

control. 



Ba 

40000 

fil 
ë 
;:, 

8 20000 
c 

~ 
oC 
Q. 

~ 
400 

A 

-·-control 
-.-H

2
0

2 

-Â- BCNU+HP2 

500 600 

Emission wavelength [nm] 

Bb 
II/ -§ 1.0 
o 
u 
c 
o 
(5 
oC 
Q. 
C; 0.5 
(5 -" QI 
.!:! 
"ii 

60 

v 

/ 
E O.O.......,..----,--,.....--..,...---r-=:;;;;;a;;;;!Ij 
~ 400 500 600 

Emission wavelength [nm] 

Figure 13: Response to oxidative stress by H202 in the absence or presence of 

glutathione cycle inhibition. A: Transmission images of living cardiac cell (number 

of cells/ number of animaIs) scale 33 Jlm, treated with H202 in the presence of 

BCNU (100 J.tM, 17/3). Ba: Steady state and Bb: norrnalized NAD(P)H fluorescence 

spectra in the absence or presence of HZ02 alone or after treatment with BCNU. *p< 

0.05 vs. control; $ p< 0.05 vs. H20 2. (at Àcm ;.;; 450nm). 
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Figure 14: Cardiomyocyte autofluorescence response to concentration­

dependence of 4-hydroxynonenal. A: transmission images of living cardiac cells 

(number of cells/ number of animaIs) scale 33 llm, treated with HNE a: (25 /lM, 

65/13) or b: (50 /lM, 24/4). Ba: steady state and Bb: normalized NAD(P)H 

fluorescence spectra in the absence or presence of different concentration of HNE. 

*p< 0.05 vs. control. 
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Figure 15: Effect of 4-hydroxynonenal following m~dulation of the respiratory 

chain. A: trânsmission images of living cardiac eells (number ofeells/ number of 

animais) scale 3~llm, treated with HNE (25 IlM), a: after treatment with rotenone 

and cyanide (l IlM and 4 mM respectively, 25/5), or b: DNP (50 IlM, 15/3). Ba and: 

steady state and Bb: normalized NAD(P)H fluorescence spectra in cardiac ce Ils 

treated with HNE in the absence or presence of rotenone and cyanide or DNP. *p< 

0.05 vs. control. 
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Figure 16: Effect of HNE in the presence of the inhibitor of GR. A: transmission 

images of living cardiomyocytes (number of cellsl number of animaIs) scaie = 33 !lm, 

a: pre-treated with BCNU (100 !lM) and then treated with HNE (25 !lM) (15/3), or b: 

HNE (50 !lM) (18/3). (Ba and Bb) and/or (Ca and Cb): steady state and normalized 

NAD(P)H fluorescence spectra in cardiac cells treated with HNE 25 !lM or 50 !lM III 

the absence or presence of BCNU. *p< 0.05 vs. control. 



64 

A 
a BHB/ AcAc =2: 1 +HNE b BHB/ AcAc =20: 1 +HNE 

Ba 

';' 
.!. 
III -C 
::::1 

40000 

8 20000 
c .s o 
s: 
c. 

-.-control 
-e- HNE 25f1M 
-6- BHB/Acac (2:1)+ HNE 
-\7- BHB/Acac (20:1)+ HNE 

~ ~ 
~ 0~---,----~--~~~~9 

400 500 600 

Emission wavelength [nm] 

Bb 
III -§ 1.0 ("~ 
8 .J ~\ 

! l \. 
i O

.
5 jU \\ .s 

] 'J .~ 
œ ,~ 
E 0.0 -'-T-----r----~--..----' .~_-~"T ..... .!.!~ ..... -f'..;;,..-~. 
~ 400 500 600 

Emission wavelength [nm] 

Figure 17: Effect of HNE following modulation of NADH production. A: 

transmission images of living cardiomyocytes (number of cells/ number of animaIs) 

scale = 33 ).lm; a: control (91/18), b: HNE alone (25 !lM, 65/13), c: pre-treated with 

BHB/AcAc 2:1 (16/3), or d: pre-treated with BHB/AcAc 20:1 (16/3). Ba: steady state 

and Bb: normalized NAD(P)H fluorescenc~ spectra in cardiac cells treated with HNE 

25!lmol/L in the absence or presence of different BHB/AcAc gradient. *p< 0.05 vs. 

control. 
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3.4. Analysis of components of cardiomyocyte autofluorescence 

To improve our understanding of observed complex cell responses to oxidative 

stressors, we aimed to efficiently resolve distinct components of NAD(P)H AF in 

isolated cardiac myocytes. In the lab, new routines were developed for an extended 

analysis of the multispectral time-resolved data, as described by Chorvat and 

Chorvatova 2006 \09. 

3.4.1. Time Resolved Emission Spectra 

First, we have used the gathered 3-dimensional spectral and time-dependent 

recordings (Fig. 18A) to construct Time-Resolved Emission Spectra (TRES) of 

cardiomyocyte AF (Fig. I8C), applying approach described in the Method (Section 

2.2.2.). TRES were constructed by summing the photons registered over a chosen 

time interval I09
. TRES plot allows to complement the exponential decay analysis and 

to further explore time-resolved spectral changes of the uv -excited fluorescence in 

cardiac cells. 

3.4.2. Time~Resolved, Area Normalized, Emission Spectroscopy 

Second, to identify the number of components in complex cell sample, we 

have opted for a Time-Resolved, Area Normalized Emission Spectroscopy 

(TRANES), applied on NAD(P)H AF in cardiac cells (Fig. 18D). The TRANES 

allows analyzing the time-resolved decay data without a-prior knowledge of the 

excited-state kinetics of the sample and thus permits to quantitatively compare AF 

changes in the recorded experimental conditions. Therefore, it gives us quantitative 

information about the number and the localization of independent spectral 

components present in the recorded UV -stimulated autofluorescence. In our case, 

TRANES spectra revealed presence of at least 3 different components, based on the 

presence of two iso-emissive points (each indicating at least two different 

components, as described in Chorvat and Chorvatova 2006 109
). 
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3.4.3. Principal component analysis and Iinear unmixing 

Third, to detennine the spectral characteristics of individual components 

identified in complex cellular environment, in addition to previous approach, we have 

then applied the singular value decomposition technique followed by Principal 

Component Analysis (PCA)l18. To achieve this task, we have used cell responsiveness 

to modulators of oxidative metabolism and redox state, as described in Sections 3.2. 

and 3.3. We have confinned presence of at least three significant spectral components 

with spectral maximum of450, 470 and 510 nm (Fig. 19A). The fluorescence decays 

of individual components were then reconstructed by analyzing TRES of each 

resolved component with specific spectral characteristics. U sing monoexponential fit 

of these data, in control conditions, we have identified fluorescence lifetimes of 1.59 

± 0.20 ns (Fig. 19B), 1.0 ± 0.4 ns (Fig. 19C), and 1.26 ± 0.11 ns (Fig. 19D) for the 

component 1,2 and 3 respectively. Finally, to separate the individual components and 

identify changes in the amplitudes and fluorescence decays of the resolved spectral 

. components in single cells under different metabolic oxidative conditions, linear 
. . h dl09118 unmlxmg approac was use ' . 

3.4.4. Component analysb of gathered data 

Study of changes of components resolved by spectral unmixing with specific 

characteristics by individual modulators led to several findings. We have observed 

that the inhibition of the respira tory chain by rotenone (1 /lM) and cyanide (4 mM) 
~ ~ 

increased the amplitude of the 1 component; with similar tendency of the 2 
nd 

component. On the contrary, fluorescence lifetime of the 2 component was 
st 

shortened, while that of the 1 component remained unchanged in the presence of the 

inhibitors (Fig. 20). Modifications of the third component were difficult to analyze 

due to its very small amplitude under most of the studied conditions. For this reason, 

we have therefore decided that further study is necessary to precisely comprehend the 
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origins and the behavior of this component and we limited our analysis to 

characterization of cellular changes in only the component 1 and 2. 

Analysis of the individual components 1 and 2 revealed that modulation of 

cytosolic NAD(P)H redox states by lactate (1 mM) in the presence of pyruvate (100 
st nd 

t!M) induced the most noticeable effect on the amplitudes of the 1 and 2 
nd 

component, and on the fluorescence lifetime of the 2 component (Fig. 20), similarly 

to the effect of inhibitors of the respiratory chain. Modulation of the consumption of 

NADPH by GR inhibition using BCNU (100 IlM) affected the 2nd component only by 

increasing its amplitude and reducing its fluorescence lifetime. 

H202 (1 mM) and HNE (25 IlM) had differential effect on the amplitudes and 

the fluorescence lifetimes of the two resolved components. H202 mainly decreased 
st nd 

amplitudes of the 1 and 2 component, but no effect on their fluorescence lifetimes . 
st nd 

was observed. In contrast, HNE shortened the fluorescence lifetimes of the 1 and 2 

component, while their amplitudes remained unaffected (Fig. 20). This result point to 

differential mechanisms underlying decrease in the total photon counts, observed 

previously in sections 3.3.1.1 and 3.3.2.1. 

Furthermore, following inhibition of the respiratory chain by rotenone in the 

presence of cyanide, analysis of total photon counts (Section 3.3.1.2.) revealed no 

change in the amplitude of the H202 effect. Component analysis confirmed this 

observation, as we found no change in the amplitudes, or fluorescence lifetime of the 

1 st and 2nd component in the two conditions (Fig. 20). This result is therefore pointing 

to the capacity of H202 to act despite inhibition of respiratory chain. Interestingly, 

rotenone and cyanide prevented the decrease in the fluorescence lifetime of the 1 st but 

not the 2nd fluorescence component induced by HNE, action accompanied by 

increased fluorescence amplitudes ofboth components. 

Total photon counts pointed to partial recovery of the H202 effect in the 

presence of GR inhibitor BCNU (Section 3.3.1.3.). Component analysis brought 

better understanding why this effect seems only partial (Fig. 20). Indeed, this analysis 
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confinned sorne recovery of the H202-induced decrease in the fluorescence 

amplitudes of both components, but it also revealed that the capacity of BeNU to 

reduce fluorescence lifetime of the 2nd component, which can expIa in the lack of 

apparent recovery of the overall photon counts. In the case of HNE, inhibition of the 

GR pathway by BeNU was capable to prevent the decrease of the fluorescence 

lifetime of 1 st component by HNE, but was without effect on the 2nd one. Surprisingly, 

we also observed a decrease in the amplitude of the 1 st component by BNE in the 

presence of BeNU wh en compared to HNE or BCNU alone. HNE did not prevent the 

rise in the fluorescence amplitudes with higher gradient for NADH production, set by 

BHB and AcAc (Fig. 20). HNE, in the presence of BHB/AcAc (2:1), decreased the 

amplitudes of the ] st and 2nd component and the fluorescence lifetime of the 2nd one. 

Modifying the BHB/AcAc ratio to (20:1) resulted in an increase of the amplitude of 

the 2nd component. 

As presented in section 3.3.2.2., we also observed significantly smaller total 

photon counts when HNE was applied in the presence of DNP. Component analysis 

revealed that in this condition the amplitudes of the two components are significantly 

reduced, while HNE effect on fluorescence lifetimes is, at least partially, lost. 

Gathered results on the effect of oxidative stressors on NAD(P)H fluorescence 

ln single living rat cardiomyocytes showed that our technique has sufficient 

sensitivity to study the oxidative metabolic changes in living cell environment, thus 

providing.a highly-sensitive tool for optical fingerprinting of the metabolic state 

directly in these cells. 
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Figure 18: Analysis of NAD(P)H fluorescence in living cardiac cells. A: 3-

dimensional original recording of spectrally and time-resolved fluorescence decay. B: 

principle of the construction of time-resolved emission spectra (TRES) from 

representative original recording of cardiomyocyte NAD(P)H fluorescence. C: 

Example of TRES of cardiomyocyte AF resolved with 1 ns resolution in control 

conditions. D: Time-resolved, area-nonnalized emission spectra (TRANES) of 

NADPH-based cardiomyocyte AF. 
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Figure 19: Separation of spectral components of NAD(P)H fluorescence in living 

cardiac cells. A: Reference spectra of individual NAD(P)H fluorescence components, 

computed by principal component analysis (PCA). (B, C and D): Monoexponential fit 

for the component l, 2 and 3 respectively; Al and t1 correspond to amplitude and 

lifetime of each component, respectively. 
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Figure 20: Sensitivity of principal components of NAD(P)H fluorescence to 

different modulators in living cardiac cells. Component analyses of NAD(P)H 

fluorescence in control cells; following modulation of: lactate (1 mM) and pyruvate 

(100 mM); rotenone (1IlM) and cyanide (4 mM); BCNU (100 IlM) ; HNE (25 IlM) 

alone, or in the presence of BCNU, rotenone and cyanide, DNP (50 IlM), BHB/AcAc 

(2:1), or BHB/AcAc (20:1); H20 2 (1 IlM) alone, or after the addition of BCNU, or 

rotenone and cyanide. (Aa and Ab): Amplitudes of the component 1 and 2 

respectively. (Ba and Bb): Lifetimes of the component 1 and 2 respectively. Data are 

presented as mean ± SEM. 
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3.5. Application: investigation of responses to oxidative stress in pregnancy 

3.5.1. Response to oxidative stress in normally pregnant rats 

To study the condition of normal pregnancy, we have chosen to use the rat model 

due to close resemblances of pregnancies in rats 119, 120 and in humans 121 in multiple 

indicators, including hemodynamic, hormonal, lipidic as well as cardiovascular ones. 

3.5.1.1. Blood analysis in normal pregnancy 

Pregnancy was proposed to be astate where oxidative metabolic status is changing, 

as demonstrated by modification in the blood substrates and lipid contenë8
, as well as 

markers of LPO \22. Therefore, we analyzed the blood concentration of these markers in the 

studied experimental conditions (Fig. 21). Our lab previously has demonstrated that 

significant physiological changes occur during pre gnancy , necessary to ensure the 

availability of adequate amount of nutrients for the developing fetus, mainly dependent on 

glucose68
. These include modifications in triglycerides, but also in carbohydrate 

metabolism, including blood levels of lactate, pyruvate, and glucose. In P, compared to NP, 

we confirmed a significant increase in the levels of lactate about two folds, leading to a 

significant change in the lactate/pyruvate ratio (Table 3), indicating an important 

modification of the redox status. AIso, the level of triglycerides was significantly increased 

more than two folds in this condition, as reported in normal pregnant women in the third 

trimester123
. Glucose leve1s were significantly decreased in P in accordance with this. 

substrate being utilized by the fetus (Table 3). We also examined possible changes in the 

oxidative stress markers. Interestingly, in contrast to previously observed changes in 

MDA83
, analysis of blood concentration of HNE-protein adducts in our Prats showed no 

significant difference compared to NP (Fig. 21). 
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3.5.1.2. Investigation ofsensitivity to oxidative stress in normal pregnancy 

NAD(P)H fluorescence, detennined as the total photon counts, of cardiomyocytes 

from Prats was not significantly different from the ones isolated from NP (Fig. 22Ba and 

Bb). We then investigate responses to oxidative stressors H202 and HNE. NAD(P)H 

fluorescence in cardiac ceUs isolated from P rats and treated with H202 (l J,lM), measured 

as total photon counts, wassignificantly decreased (Fig. 22Ba). The effect was comparable 

to that recorded in NP rats, although nonnalized spectra revealed less spectral broadening 

(Fig. 22Bb). Interestingly, the ceUs from Prats treated with H20 2 (Fig. 22Ab) presented 

less membrane damage in comparison to those treated with the oxidative stressor in NP rats 

(Fig. 12Aa). Treatrnent with HNE (25 J,lM) induced a loss .of NAD(P)H fluorescence 

intensity of cardiomyocytes from P rats (Fig. 23Ba), without modifying the cell shape (Fig. 

23A). This response was identical to that observed in the NP group, measured as total 

photons counts (Fig. 23Ba), or nonnalized spectra (Fig. 23Bb). BCNU (l00 J,lM), which 

had no effect on NAD(P)H fluorescence in P rats (Fig. 24Ba) caused, in the presence of 

HNE (25 J,lM), further significant decrease in NAD(P)H fluorescence (Fig. 24Ba). This 

effect, accompanied by red spectral broadening pf nonnalized spectra (Fig. 24Bb), was 

more pronounced than in NP rats. 

In pregnancy, we confinned (Table 3) previously observed results of the rise in the 

levels of lactate leading to a significant alteration in the lactate/pyruvate rati068
. We 

therefore tested cardiomyocyte AF response to addition of lactate (1 mM) in the presence of 

pyruvate (100 !lM) and observed a tendency of NAD(P)H fluorescence to increase in 

cardiomyocytes obtained from P rats (Fig. 25Ba). Nonnalized spectra showed no difference 

in comparison to the control cells (Fig. 25Bb). Overall, our results point to the capacity of 

ce Us from Prats to adapt to this condition by showing no significant differences in the cell 

responsiveness to oxidative stressors. 
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3.5.2. Mineralcorticoid receptor blockage by canrenoate in non pregnant rats 

3.5.).1. Blood analysis in non pregnant rats treated with canrenoate 

We noted a significant decrease in the blood lactate concentration in NPcan rats, with 

a similar tendency for pyruvate, causing no significant change in the lactate/pyruvate ratio 

(Table 3). Neither glucose nor triglycerides levels were significantly different. In addition, 

in the blood of NP can rats, we observed a significant rise in the levels of HNE-protein 

adducts when compared to non-treated NP rats (Fig. 21). These results suggest that 

modulation of MR receptors affect oxidative metabolic state of cardiac ceUs by acting on 

both oxidative and metabolic status. 

3.5.2.2. Responsiveness to oxidative stressors in canrenoate-treated non pregnant rats 

We wanted to test whether observed changes in oxidative and metabolic state 

induced by inhibition of MR receptors by canrenoate has also repercussions on 

cardiomyocyte sensitivity to oxidative stressors. In control conditions (external solutions 

only containing glucose as substrate), our data revealed no significant difference in 

NAD(P)H fluorescence, measured as total photons counts (Fig. 26Ba), or normalized AF 

(Fig. 26Bb), between NPcan and NP rats (Fig. 9Ba and Bb). AIso, we noted no change in the 

quality of the ceU shape, as evidenced by the transmission image (Fig. 26Aa). We then 

investigated the response of cardiomyocyte AF to H20 2 (l!-lM). In cardiomyocytes isolated 

from NP can rats, H20 2 provoked cell membrane damage (Fig. 26Ab), and decrease in 

NAD(P)H fluorescence (Fig. 26Ba), comparably to non-treated ones. Nevertheless, we 

noted more important red spectral broadening in canrenoate-treated rats in comparison to 

non-treated ones (Fig. 26Bb). 

Application of HNE (25 !-lM) to NP can rats did not induce visible effects on the 

" shape of the cell membrane (Fig. 27 Aa), comparably to findings in NP at this 
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concentration. Cells from both groups responded identically to treatment with HNE, when 

measured as total photon counts (Fig. 27Ba) or as normalized NAD(P)H fluorescence (Fig. 

27Bb). AIso, BCNU - alone or in the presence of HNE (Fig. 27Ba) - induced same effects 

in, NPean vs. NP conditions. Finally, the addition of lactate (1 mM) in the presence of 

pyruvate (100 !lM) did not significantly affect NAD(P)H fluorescence in cardiomyocytes 

obtained from NPean rats (Fig. 28Ba). Normalized spectra showed no difference in 

comparison to the control (Fig. 28Bb). These results indicate that cardiomyocytes from NP 

rats can adapt to oxidative and metabolic changes induced by inhibition of MR receptors by 

canrenoate. 

3.5.3. Mineralocorticoid receptor blockage by canrenoate in pregnant rats 

3.5.3.1 Oxidative stress and substrate availability in canrenoate-treated pregnant rats 

HNE-protein adduct concentration increased significantly in the blood of Pean rats 

(Fig. 21), while it remained unchanged in comparison to P ones. On the other hand, this 

level of oxidative stress marker, significantly increased with the canrenoate treatment in NP 

rats, failed to rise in Pean. Furthermore, blood lactate levels were significantly decreased in 

Pean rats when compared to P ones (Table 3). This effect did not prevent the lactate 

concentration to rise significantly vs. NPean, as expected for pregnancy condition. However, 

pyruvate concentration, as well lactate/pyruvate ratio, were maintained in Pean, as no 

significant differences were observed when compared to P. Likewise, glucose or 

triglyceride levels were not significantly affected by the treatment with canrenoate when 

compared to non-treated pregnant rats. As a result, all the measured substrate levels were 

significantly increased in Pean when compared to NP ean' These results demonstrate that 

inhibitionofMRs induce important metabolic and oxidative changes in pregnancy. 
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3.5.3.2 Investigation ofsensitivity to oxidative stress in canrenoate-treated pregnant rats 

After identification of metabolic and oxidative changes in the blood following 

canrenoate-treatment in pregnancy, we aimed to test the responsiveness of cardiomyocytes 

to oxidative stressors in this condition. NAD(P)H fluorescence intensity, evaluated as total 

photon counts, tended to be higher in Pean than in P (Fig. 29Ba), with no modification in the 

spectral shape (Fig. 29Bb). H20 2 (1 /lM) significantly lowered NAD(P)H AF intensity of 

Pean but it was less effective in comparison to P (Fig. 29Ba) while causing comparable cell 

membrane damage as in P (Fig. 29Ab). H20 2 also resulted in similar s·pectral broadening 

Pean when compared to P (Fig. 29Bb). Cardiomyocytes from Pean, treated with HNE (25 

/lM) responded similarly as in P condition (Fig. 30Ba). Normalized spectra showed a slight 

broadening of the spectral shape, identical in both conditions (Fig. 29Bb). Interestingly, 

BCNU (100 /lM) caused significailt loss of AF intensity of cardiac cells from Pean (Fig. 

3lBa) without affecting spectral shape (Fig. 31Bb). This effect was in contrast to what 

observed in P where no change in the spectral intensity by BCNU was noted (Fig. 24Ba). In 

the presence of HNE (25 /lM), in Pean rats, BCNU was able to nearly completely extenuate 

AF intensity (Fig. 31Ba) to the same extent as in P (Fig. 24Ba), accompanied by red 

spectral broadening (Fig. 31 Bb). We observed no significant change in the AF intensity or 

spectral shape in Pean rats after application of lactate (1 mM) in the presence of pyruvate 

(100 /lM) (Fig. 32Ba and Bb). These results suggest that while NP rats were also able to 

adapt to MR inhibition by canrenoate, in P rats sorne maladaptive components were 

identified and need to be further studied in the future. Gathered data also demonstrate that 

the technique developed has the sensitivity to explore potential changes in metabolic 

oxidative changes under pathophysiological conditions. 
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Figure 21: Measurement of Iipid peroxidation markers in the blood. Protein-bound 

with HNE and/or its corresponding alcohol 1,4-dihydroxynonene (DHN), Data are 

presented as mean ± S.E.M. * p< 0.005 vs. NP; & p<0,05 vs. NPcan ; $ p< 0.05 vs. P. 

(number of animaIs). 
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Figure 22: Comparison of response to oxidative stress induced by H202 in P vs. NP. A: 

transmission images of living cardiac cells (number of cells/ number of animaIs) obtained 

from P rats; a: control (26/5), b: treated with H20 2 (1 IlM, 15/3) scale = 33 )..lm. Ba: steady 

state and Bb: normalized NAD(P)H fluorescence spectra in NP or P in the absence or 

presence ofH202. *p< 0.05 vs. NP control; $ p< 0.05 vs. P control. 
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Figure 23: Comparison of cardiomyocyte AF responses to HNE in P vs. NP. A: 

transmission images of living cardiomyocytes (number of cells/ number of animaIs) 

isolated from P, treated with HNE (25 /lM, 25/5) scale 33 /lm. Ba: steady state and Bb: 

normalized N AD(P)H fluorescence spectra in NP or P in the absence or presence of HNE. 

*p< 0.05 vs. NP control; $ p< 0.05 vs. P control. 
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Figure 24: Comparison of the response of cardiomyocyte AF to HNE in the absence or 

presence of GR inhibition in P. A: transmission images of living cardiomyocytes (number 

of cells/ number of animaIs) isolated from P; a: BCNU alone (100 JlM, 25/5), b: pre-treated 

with BCNU and then HNE (25 JlM) (25/5) scale 33 Jlm. Ba: steady state and Bb: 

normalized NAD(P)H fluorescence spectra in P in the absence or presence of HNE and/or 

BCNU. $ p< 0.05 vs. P control; & p< 0.05 vs. P HNE. 
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Figure 25: The effect of lactate/ pyruvate ratio in P. A: transmission image of living 

cardiomyocytes (number of cells/ number of animaIs) isolated from P, supplemented with 

pyruvate (100 !lM) and lactate (1 mM) (15/3) scale = 33 !lm. Ba: steady state and Bb: 

normalized NAD(P)H fluorescence spectra in P in the absence or presence of 

lactate/pyruvate. 
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Figure 26: The response to oxidative stress induced by H202 in NP cano A: transmission 

images of living cardiac cells (number of cells/ number of animaIs) obtained from NP can 

rats; a: control (20/4), b: treated with H202 (1 !lM, 15/3) scale = 10 !lm. Ba: steady state 

and Bb: normalized NAD(P)H fluorescence spectra in the absence or presence of H20 2. $ 

p< 0.05 vs. NPcan control. 
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Figure 27: The response to HNE in the absence or presence of GR inhibition in NPcao. 

A: transmission images of living càrdio~yocytes (number of cells/ number of animàls) 

isolated from NPcao ; a: HNE alone (25 !lM, 15/3), b: BeNU alone (100 !lM, 15/3), c: pre­

treated with BeNU (15/3) scale =10 /-lm. Ba: steady state and D: normalized NAD(P)H 

fluorescence spectra in NPcan in the absence or presence of HNE and/or BeNu. *p< 0.05 

vs. NP control; $ p< 0.05 vs. NP cao control. 
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Figure 28: The effect of lactate/ pyruvate ratio in NP can- A: transmission image of living 

cardiomyocyte (number of cells/ number of animaIs) isolated from NPcan supplemented 

with pyruvate (100 !lM) and lactate (1 mM) (15/3) scale = 10 Ilm. Ba: steady state and Bb: 

normalized NAD(P)H fluorescence spectra in the absence or presence of lactate/pyruvate. 
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Figure 29: Comparison of the response of cardiomyocyte AF to oxidative stress 

triggered by H202 in Pean vs. P. A: transmission images ofliving cardiac cells (number of 

cells/ number of animaIs) obtained from Pean rats; a: control (20/4), b: treated with H202 (1 

!lM, 20/4) scale = 33 /-lm. (Ba and Bb): steady state and normalized NAD(P)H fluorescence 

spectra in P or Pean in the absence or presence ofH202. *p< 0.05 vs. P control; $ p< 0.05 vs. 

Pean control. 
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Figure 30: Comparison of the response of cardiomyocyte AF to HNE in Pean vs. P. A: 

transmission image of living cardiomyocyte (number of cells/ number of animaIs) isolated 

from Pean treated with HNE (25 !lM, 20/4) scale 33 !lm. Ba: steady state and Bb: 

normalized NAD(P)H fluorescence spectra in Pean or P in the absence or presence ofHNE. 

*p< 0.05 vs. P control; $ p< 0.05 vs. Pean control 
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Figure 31: The response of cardiomyocyte AF to HNE in the absence or presence of 

GR inhibition in P tan- A: transmission images of living cardiomyocytes (number of cells/ 

number of animaIs) isolated from.Pean; a: BeNU al one (100 JlM, 20/4), b: pre-treated with 

BeNU and then HJ'lE (25 JlM) (20/4) scale = 33 Jlm. Ba: steady state and Bb: normalized 

NAD(P)H fluorescence spectra in Pean in the absence or presence of HNE and/or BeNU. 

$p< 0.05 vs. Pean control; #p< 0.05 vs. Pean HNE. 
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Figure 32: The effect of lactate! pyruvate ratio in Pean. A: transmission image of living 

cardiomyocyte (number of cells/ number of animaIs) isolated from Pcan supplemented with 

pyruvate (100 !lM) and lactate (1 mM) (20/4) scale = 33 !-lm. Ba: steady state and Bb: 

normalized NAD(P)H fluorescence spectra in Pcan in the absence or presence of 

Iactate/pyruvate 
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Parameters Unit NP NPean P Pean 

Pyruvate )lM 104.8±16.2 (9) 92±13.8 (6) 124.2±13.1 (8) 118.3±15.4 (10) 

Lactate mM 1.6±0.2 (9) 1±0.2 (6) • 2.8±0.2 (8)* 2.2±0.2 (12) &,# 

Lactate/Pyruvate 16.4±1.5 (9) 11.9±2.3 (6) 
23.8±1.8 (8)* 20.3±1.2 (8) & 

Glucose mM 14.3±0.8 (9) 14.8±0.7 (6) 
8.3±0.9 (8)* 6.9±0.4 (8) & 

• 3.5±0.4 (8) & 
Triglycerides mM 1.5±0.2 (9) 1.6±0.3 (6) 

3.5±0.5 (8) 

Table 3: Blood analyses of different metabolic substrates. Blood metabolites obtained from total blood collected in fed state from NP, 

NPean, P, and Pean rats. Data are presented as mean ± S.E.M. (number ofsamples), * p <0.005 vs. NP, & P <0.05 vs. NPean, # P <0.05 vs. P. 
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4. DISCUSSION 

4.1. NAD(P)H fluorescence as a non-invasive tool for study of oxidative 

metabolic changes in living cardiac myocytes 

Autofluorescence is one of the most versatile non-invasive tool for mapping the 

metabolic state in living tissues, su ch as eye l24 and skin l25
, 126. Today, AF spectroscopy is 

widely used in the early detection of different types of cancers 1 
27, 128. In the he art, despite 

attempts to use AF in inv'estigation of rejection of transplanted hearts l29
, 130 and in valve 

engineering 1 
31, 132, we still lack tools for its convenient use. Recent developments in 

fluorescence ,technologies, especially combination of microscopy and time-resolved 

methods (e.g. fluorescence lifetime imaging microscopy) brought new and unprecedented 

insight into understanding of cell metabolic state. The non-invasive optical detection 

techniques combined with digital data analysis, when applied to intrinsic cellular 

fluorescence, can therefore greatly improve our understanding of changes in cell 

metabolism, and thus the cell functioning, particularly in metabolically highly active organs 

such as the heart. 

Increasing interest in imaging and diagnostics of living cells and tissues based on 

their intrinsic fluorescence rather than fluorescence labeling is closely connected to latest 

developments in high-performance spectroscopic and microscopic techniques 125, 133. 

Enzymes involved in the mitochondrial metabolic chain are often sources of intrinsic cell 

fluorescence, thus possessing a potential for being suitable endogenous indicators of 

cellular metabolic state. Blue AF of cardiac myocytes was demonstrated to correlate with 

metabolic changes and was ascribed to mitochondrial NAD(P)H94
, 134, while the 

yellow/green fluorescence was rather assigned to oxidized flavoproteins in the respiratory 

complexes, following excitation by UV or visible light, respectivell5
, 115. 

In the present study we have investigated fluorescence characteristics of NADPH. 

We have demonstrated that NADPH fluorescence intensity is concentration and pH­

dependent, and that its fluorescence decays can be characterized by at least two exponential 
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decay. Our data also confirmed that fluorescence of NADPH and NADH molecules have 

close spectral characteristics135
, which makes it difficult to distinguish between the two 

molecules, as previously reported93
• Furthermore, quantum yield of NADPH fluorescence 

was found smaller than that ofNADH135
, as described beforelO2

• Our original findings point 

out towards possible differences in NADH and NADPH fluorescence lifetimes\35. 

However, this issue is still presently controversial and needs to be further investigated, as 

the observed differences can be reflection of different kinetics of the two molecules, but 

also the presence of impurities in the recorded samples. Therefore we suggest that the 

fluorescence characteristics need to be compared after further purification of the tested 

molecules in the future. 

In agreement with previous findings 103
, the results of our in vitro experiments . 

showed sensitivity of NADPH fluorescence intensity to changes in its microenvironment 

(concentration, pH or viscosity). However, as each molecular species and/or its 

conformational state having specific spectral and lifetime characteristics90
, spectral profile 

gathered from the total photon counts recorded in complex systems, such as in cells, results 

from a mixture of theses conformations. One should also take into consideration that the 

fluorescence intensity depends not only on the relative amplitudes, but also on their 

fluorescence lifetimes, as defined by equation (2) (Section 2.2.2.). lndeed, as each 

molecular species and/or its conformational state is having specific spectral and lifetime 

characteristics91
, spectral profile gathered from the total photon counts recorded in complex 

systems, such as in cells, resuIts from a mixture of specific conformations. Total photon 

counts therefore cannot, by itself, give full information about the fluorescing molecule, 

especially when several parameters are changing simuItaneously e.g. pH, viscosity, binding 

of molecules to specific enzymatic proteins and/or oxidation-reduction reactions which is 

an often situation in living cellular responses. Under such conditions, simple analysis of 

fluorescence intensity can thus result in misleading interpretations. Therefore, more 

profound analysis of fluorescence, such as recording time-resolved fluorescence spectra, 
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give more precise insight into the true behavior of the fluorescing molecule in the real 

environment. 

It is also noteworthy to precise that the photochemical destruction of a fluorophore, 

which is referred to as photobleaching, may complicate the observation of fluorescent 

molecules, since they will eventually be destroyed by the light exposure necessary to 

stimulate them into fluorescing species. We did not specifically study the changes of 

NAD(P)H fluorescence characteristics induced by photobleaching. However, the loss of 

activity caused by photobleaching can be controlled by several ways and in our 

experiments: this was achieved by reducing the time-span of light exposure and by each 

recording being taken from a separate cell. 

To date, AF of NAD(P)H has been particularly long used for non-invasive 

fluorescent probing of metabolic state134 and has been an extremely useful and powerful 

tool for monitoring energy metabolism99
. In previous work done in the laboratory, steady­

state fluorescence spectra of NAD(P)H I35
, 136 were characterized in living rat 

cardiomyocytes. Lifetime pools of NAD(P)H have been previously identified, 

corresponding to free and protein-bound NAD(P)H in the heart mitochondria l02
, as well as 

neuronal tissues85
• Nevertheless, th'eir separation is often complicated by strongly 

overlapping absorption, as weIl as fluorescence spectra. In this context, the fluorescence 

lifetimes are considered to provide additional tool for separation of different molecular 

conformations and/or complexes contributing to AF of biological samples. Monitoring 

NAD(P)H by multi-parametric AF assays could therefore provide rapid and non destructive 

measurement of metabolic state directly in living celIs. Such insight can become 

fundamental for understanding the dynamic changes of the cellular energy metabolism. 

Recent advances in fluorescence techniques, namely introduction of multispectral imaging 

and fluorescence lifetime detection brought the possibility to simultaneously measure and 

synchronously identify dynamic changes of several AF molecules in biological samples 137. 

Recently, a significant progress was achieved in the separation of different chromophores 
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combining spectral unmlxmg and lifetime analysis91
• Therefore, we applied a new 

technique and analyzed multi-dimensional time-resolved spectra in living cardiac cells by 

multi-wavelength TCSPC109
• Our lab was inspired by these methods and developed new 

algorithms for spectral analysis and linear unmixingl18
, which were tested for their ability 

to efficiently separate also contributions of individual components of flavin AF from the 

TCSPC data l38. We investigated its possible application to quantitatively assess changes of 

individually resolved NAD(P)H components to provide highly sensitive fundamental tool 

for optical fingerprinting ofmetabolic oxidative state directly in living cells. 

To resolve principal fluorescence components in the time-resolved NAD(P)H 

signaIs, an original PCA approach was used, already successfully attempted for free and 

bound flavin AF in cardiomyocytes l18
,138 accompanied by speètral unmixingl37

,139. First, to 

consolidate analysis of spectral and temporal distribution of AF intensity, we undertook a 

complementary approach to exponential decay analysis by applying semi-quantitative 

TRES representationl40
. This approach allowed us to resolve time-dependent changes in 

NAD(P)H spectra, see section 2.2.2, (equation 8). TRES analysis revealed 2 peaks at 456 

nm and 496 nm in control conditions. In contrast to the 2nd peak, the 1 st peak (456 nm) 

rapidly faded in the first couple of ns, suggesting the presence of the process with the 

corresponding lifetime of 1-2 ns or less. Next, we examined the reference fluorescence 

spectra and lifetimes of principal NAD(P)H components. In contrast to extemally-applied 

fluorescence probes, the reference spectra of AF components are dependent on the cell 

environment and its physiological state, and, thus, cannot be simply estimated from isolated 

fluorophores measured in solutions. As biochemical isolation of individual proteins from 

biological samples and subsequent determination of their spectral properties are both 

difficult and carry the risk of altering the kinetic spectral properties of specific protein 

conformations after prote in isolation in solution (vs. its membrane-bound state), a more 

appropriate method is necessary for reference spectra estimation in cells. We adopted an 

approach developed previously by our group for the spectral separation of flavin 

components in multispectral microscopy images 118, and reference spectra were identified 
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by analyzing cell responses to modulators of the cellular metabolic state. To separate the 

individual spectral components, PCA was performed (see section 3.4.3. and Chorvat and 

Chorvatova 2006109 for details). With this approach, we resolved 3 major components with 

distinct fluorescence spectra and fluorescence lifetimes: the 1 st component with 450 nm 

spectral maximum and 1.7 ns 1ifetime, the 2nd component with 470 nm spectral maximum 

and 1 ns lifetime, and the 3rd component with 510 nm spectral maximum and 1.2 ns 

lifetime. 

To asslgn molecular ongms to the resolved components, their regulation by 

metabolic modulators was examined by spectral unmixing of the recorded data. Time­

resolved data for each component were used to reconstitute the fluorescence decay of each 

component. Monoexponential fit was applied to gather information on the fluorescence 

lifetime and amplitude of each resolved component. In these conditions, as expected, the 

amplitudes of the 1 st and 2nd components were heightened by inhibition of the respiratory 
\ 

chain with rotenone and cyanide. The fluorescence lifetime of the 1 st component remained 

unchanged in the presence of applied regulators of mitochondrial metabo1ism, with the 

exception of response to LPO by-product HNE. In contrast, the lifetime of the 2nd 

component was sensitive to metabolic oxidative modulation: a number of the applied 

chemicals shortened the fluorescence lifetime of the 2nd component, with the most 

noticeable effect being induced by the application of modulators of the respiratory chain, 

changes in the cytosolic NAD(P)H redox status (addition of lactate and pyruvate), or 

mimicking intense oxidative stress by addition of HNE and/or GR inhibitor BCNU . 

Multiple efforts were made to distinguish the free vs. bound states of NAD(P)H 

molecules in living tissues. Free NADH in water was proposed to exist in 2 conformations: 

a folded (NADH with stacked dinucleotide and adenine moieties) with a lifetime of 350 ps 

and an extended (opened form) with a lifetime of 760 ps. When existing as a mix in water 

solution, the average lifetime of free NADH was described to be in the range of 400-500 

ps85, 100, which was in ·agreement with the lifetime resolved for the 2nd component in our 
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experimental conditions in the presence of lactate/pyruvate, or BCNU suggesting that it can 

be attributable to such free forms. On the other hand, the long lifetime pool covering the 

lifetimes of 2-5 ns was attributed to the bound state of NAD(P)H85
. NAD(P)H binding to 

enzymes mostly involves non-covalent electrostatic interactions between the prote in and 

NAD(P)H, adopting rotationally immobile (at the ns scale), "opened" conformation85
. 

Thus, one could expect that the fluorescence kinetics of such astate would be similar to 

NAD(P)H in very viscous environments. Indeed, we found rise in the fluorescence lifetime 

of this component with increased viscosity (data not shown). AIso, the sensitivity of the 

component lifetime to HNE may suggest possible alteration of bound conformational 

states. We therefore propose that the 1 st lifetime component with 1.7 ns lifetime and 450 

mn spectral maximum most likely corresponds to such an enzyme-bound (unfolded) 

NAD(P)H conformation, whereas the 2nd lifetime component with 0.4-1 ns lifetime and 470 

nm spectral maximum correlates with free (likely folded and extended) conformation(s). 

Furthermore, significantly shorter lifetime of the 2nd component after the addition of 

lactate/pyruvate, inducing cytosolic NAD(P)H redox changes, points to the faster kinetics 

of molecules in the cytoplasmic, vs. mitochondrial compartments. Thus, this result also 

explains the apparent lack of cytosolic NAD(P)H fluorescence in confocal images95
, and 

the observed preferential mitochondrial AF distribution. On the other hand, the absence of 

changes in the 1 st fluorescence lifetime by the metabolic regulators supports its origin in the 

bound form of the molecules. We also resolved 3rd component; however the amplitude of 

this component was rather small and the component responded poorly to metabolic 

modulation (data not shown). Further studies are therefore needed to better understand this 

issue in the future. 

Our results are in agreement with existing models that have proposed a 2-stage 

kinetics scheme for the excited-state reaction of NAD(P)H103
, 104, consisting of free and 

bound-state conformations of the molecules. At low temperatures, NADH fluorescence 

decay in most solutions has been reported to be 2-exponentialI03
, dependent on solvent 

polarity and viscosity. Decay behavior has been proposed to have its origins in a reversible 
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excited-state reaction transforming fluorescent, reduced NADH, possibly to a non­

fluorescent NAD+ product. Our findings are therefore. in agreement with the use of 

NAD(P)H fluorescence as a sensitive non-invasive tools for monitoring metabolic oxidative 

state changes in living cardiac ceUs. 

In the heart, A TP , produced In the process of mitochondrial oxidative 

phosphorylation, is the primary molecular energy source for the contraction of cardiac 

myocytes. This process is coupled to oxidation of reduced NADH, the principal electron 

donor for the electrochemical gradient indispensable for oxidative energy metabolism. The 

first step in this process, which accounts for 95% of A TP generation needed for 

cardiomyocyte contraction, is the dehydrogenation of NADH by the flavoproteins of the 

Complex 1 of the mitochondrial respiratory chain. Simultaneously, NADPH is an important 

cofactor for enzymes involved in antioxidant pro cesses put in place to counteract the 

generation of ROS by oxidative respiration and/or oxidative stress50
. As only bound forms 

of these molecules can have functional responses, it is crucial to be able to distinguish the 

bound from the free form; which is exactly the feature of fluorescence lifetime analysis. 

During normal cellular metabolism, mitochondrial electron transport results in the 

formation of superoxide anion O2. and subsequently H202. At low concentrations, ROS are 

important cellular signalling molecules, while at higher levels of oxidative stress the sa me 

molecules contribute to oxidative damage 77. Because H202 concentration increases under 

certain (patho )physiological conditions and can oxidatively modify cellular components, it 

is critical to understand the response of mitochondria to H202 141
• H202 is degraded into 

Water via the GR pathway powered by NADPH. 

Our data gathered in vitro demonstrated that NADPH fluorescence intensity is 

sensitive to dehydrogenation by GR. This result, accompanied with no change in the 

NADPH lifetime kinetic properties, demonstrated the sensitivity of NADPH fluorescence 

to changes in the NADPH dehydrogenation. On the other hand, when NADPH 

dehydrogenation by GR was tested in single cells, BCNU, an inhibitor of GR induced no 
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visible change in the total counts ofNAD(P)H fluorescence intensity. BCNU, an agent that 

is widely used' in the chemotherapy for cancer brain tumours, has been shown to inhibit 

GR, the enzyme that catalyzes recycling of GSH from oxidized glutathione disulfide 

(GSSG)142. This action was proposed to contribute to both the therapeutic and toxic effects 

of BCNU. Inhibition of GR results in the depletion of GSH and the accumulation of 

GSSG143, 144, which is likely to compromise cellular oxidative defences which highly rely 

on antioxidant actions of glutathione l45. Indeed, BCNU-treated cells have been reported to 

be more vulnerable to oxidative stress l44. Decreased levels of cellular GSH have been 

linked to the increased production of ROS, calcium dysregulation and cell deathI46-148. We 

expected an increase in the fluorescence due to an accumulation ofNADPH molecules after 

GR inhibition by the drug, but we rather noted no change or a decreasing tendency of the 

signal. This finding is in agreement with observations of the BCNU effect on NAD(P)H 

fluorescence in synaptosomes ll7
. These authors proposed that such result can be due to 

non-specificity of BCNU, possibly affectingother cellular enzymes. At the same time, the 

component analysis revealed that while characteristics of the first component were 

unchanged in the presence of BCNU, the amplitude of the second component was 

increased, and this effect was accompanied by shorter fluorescence lifetime. This 

observation suggests possible accumulation of NADPH molecules after GR inhibition, but 

associated with the change in the fluorescence kinetics, possibly due to change in its 

, environment. Such result can explain no modification, or ev en decrease in the overall 

photon counts, despite the fact that NADPH accumulation is taking place. 

Application of H20 2 in living cells induced a decrease in the total photon counts of 

NAD(P)H fluorescence. This result is also in agreement with observations in 

synaptosomesIl 7
, that showed a significantly lower NAD(P)H fluorescence and was 

explained, at least partially, by H20 2-induced effect via BCNU-sensitive GR pathway. 

Previous observations23 showed a correlation between a rise in the ROS generation and the 

decrease in the NAD(P)H fluorescence under physiological conditions, namely cell 

contraction. The decrease in the fluorescence amplitude was correlated with higher 
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consumption ofNADPH via GR cyclel49
• This is also in agreement with our observation of 

partial recovery of the H20z-induced decrease by BCNV. Our result therefore confirms that 

H20 2 effect implicates a stimulation of GR-related consumption of NAD PH. In the future, 

higher concentration of BCNV should be tested to improve the observed recovery. 

Component analysis performed on NAD(P)H fluorescence signal in the presence of H202 

revealed that observed decrease in the fluorescence is primarily due to change in the 

amplitudes ofNAD(P)H fluorescence, pointing to change in the amount ofthese molecules. 

Surprisingly, at the concentration of IJlM of H202, and despite visible modifications in the 

cell membrane quality, this analysis revealed no significant change in the fluorescence 

lifetime characteristics that can be attributable to modification in the molecular 

environment. Our data demonstrated that H202 decreased the amount of NADH 

accumulated after inhibition of the respiratory chain by rotenone. The results present in this 

thesis concur with those previously reported by Tretter and Adam-Visi 117 in the presence 

of this inhibitor, which indicated that when NAD(P)H levels are diminished and maximal 

inhibition of respiration was observed, specific Krebs cycle enzymes exhibit decline in 

activity in response to treatment with H202. Vpon consumption of H202, NAD(P)H levels 

and the enzyme activities retum to control levels, suggesting that this inactivation is 

reversible and is not via direct interaction of H20 2 with a-ketoglutarate dehydrogenase and 

succinate dehydrogenasel41
. 

Next we investigated change in oxidative metabolic state by a different approach, 

us mg HNE, a lipid peroxidation by-product capable of protein modification49
. Our 

observations showed a significant decrease in the fluorescence intensity in the presence of 

HNE accompanied by slight red spectral shift. This result was not correlated with changes 

in the amplitudes of the component 1 or 2, but with decreased fluorescence lifetimes of the 

component 1, as well as the component 2. Surprisingly, amplitudes ofresolved components 

were not modified. Our in vitro data point to an increase in the fluorescence lifetimes 

together with blue spectral shift in the environment with higher viscosity. In this regard the 

effects of HNE can be interpreted as a possible lowering of the viscosity in cardiac cells by 
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the compound. Taking into consideration our findings of the sensitivity of NAD(P)H 

lifetimes to change in the environment viscosity by glycerol (Section 3.1.3.), these resuIts 

suggest that Hl~E can affect NAD(P)H environment, possibly the viscosity of the 

compartments where the molecules are present, rather than the amount of the present 

molecules. We can speculate that as HNE can bind to various biomolecules (phospholipids, 

proteins and DNA), a modification of the phospholipid structure induced by addition of 

HNE can affect the viscosity of the medium. However that important issue remains to be 

. investigated. 

HNE was showed to activate NADPH-oxidase and thus increasing ROS production 

in left ventricular myocytes l50
• Being situated on the cell membrane, this action should 

induce a decrease in the cytosolic NAD(P)H concentration. Our data using lactate and 

pyruvate to clamp the cytosolic NADINADH redox ratio, point to a significant modulation 

of the 2nd component characteristics: a rise in the amplitude and a decrease in the lifetime 

of the component. This result indicates that the effect or HNE on cytosolic NAD(P)H via 

this pathway can account, at least in part, for the observed HNE action on the 2nd 

component. However it cannot explain the whole effect and it can not explain the lack of 

amplitude change in this condition. 

Previous studies49
, based on the measurement of the enzyme protein expression, 

demonstrated that HNE is capable of decreasing NADP-ICDH activity in mitochondria via 

an enzyme inactivation. In this work, HNE was suggested to lead a decrease in the amount 

of available NADPH molecules. Furthermore, in isolated cardiac mitochondria, it has been 

reported that HNE inhibited a-ketoglutarate dehydrogenase and reduced the production of 

NADH 151, However, component analysis failed to demonstrate modification in the 

amplitude ofNAD(P)H fluorescence that could indicate change in the amount ofNAD(P)H 

molecules at the studied HNE concentration (25 !lM) and exposition time of (30-45) min. 

In the future, different concentrations and exposure time of HNE should be studied49 to 
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properly answer the question wh ether HNE can affect the production of the NAD(P)H 

molecules at higher concentrations. 

It has also been proposed that HNE can activate cellular uncoupling through an 

effect on endogenous uncoupling proteins (UCPS)44, 152. A possible role of the UCPs is to 

cause mild uncoupling in response to matrix superoxide and other oxidants, leading to 

lowered proton motive force and decreased superoxide production. This simple feedback 

loop would constitute a self-limiting cycle to protect against excessive superoxide 

production63
, 153-156. Indeed, in our conditions, we have observed a particular relationship 

between the effects of HNE and the uncoupler DNP. Other students in our laboratory 

demonstrated a decrease in the first, as weIl as in the second component amplitude by DNP. 

This is in contra st with the action of HNE, which is rather pointing to a decrease in the 

fluorescence lifetimes. At the same time, application of DNP in the presence of HNE had a 

surprising additive effect, suggesting possible cooperation between the two actions. 

However, neither of the effects described above can explain lack of change in the 

component amplitudes. Our results therefore indicate that in addition to already described 

effect of HNE, it also seems to induce other processes in the cells, resulting in a 

maintenance of the amount of NAD(P)H molecules, in cells, as evidenced by no change in 

the amplitudes of the fluorescing component. 

Gathered data demonstrate that NAD(P)H fluorescence is a sensitive tool that can 

be applied to uncover the behaviour of living cardiac cells with oxidative metabolic 

changes. It is therefore interesting to determine whether this is also the case of oxidative 

metabolic changes in (patho )physiologicai conditions. 



101 

4.2. Application of NAD(P)H fluorescence for study of pathophysiological 

conditions 

Several he art pathologies in particular, ischemic conditions, but also adaptations to 

enhanced workload under physiological situations such as exercise or pregnancy, are 

usually accompanied by changes in myocardial metabolic state68, 157. Its monitoring is 

therefore crucial for understanding of cardiac functioning. The heart is a pump converting 

chemical energy into mechanical work and the power for this work is gathered almost 

entirely from oxidation of carbon fuels, and to a great extent these fuels are provided by 

coronary (myocardial) blood flow l58. Such oxidative metabolism is primarily the function 

of mitochondria in the process of oxidative phosphorylation. When deprived of oxygen 

(anoxia), cardiac cells can maintain ATP levels by glycolytic ATP production, and can then 

revert smoothly to oxidative metabolism on reperfusionl59. However, if blood flow is 

restricted, as in the case of myocardial infarct, or when cardiac work demand is increased 

and not fulfilled, the cells accumulate glycolytic by-products (lactate, Hl in addition to 

suffering from oxygen deprivationl60. This condition known as ischemia and depending on 

the degree of the insult can damage cardiac cells irreversibly. Paradoxically, however, the 

major damage to ischemic cells cornes on the re-introduction of oxygen (reperfusion). 

During reperfusion, the cells typically undergo further contraction (hypercontracture) and 

membrane damage, followed by cell deathl61 , 162. It is widely acknowledged that ischemia 

and reperfusion lead to mitochondrial, as well as cellular damage in cardiac cellsI63-165. 

Because of the high oxidative metabolism, heart cells have a high oxidative capacity, 

demonstrated by their ultrastructure: 25-35% of total cardiomyocyte volume is occupied by 

mitochondria68, 166. During hypoxia or ischemia, O2 supply to the respiratory chain fails, 

leading to blocking of the TCA cycle and no energy being available from oxidative 

phosphorylation. This results in an increase of cytoplasmic NADH, which is accompanied, 

in ischemia, by accumulation of lactate and a decrease in cytoplasmic pH (5.5-6)167, 168. 

Many researchers have identified Complex 1 as a major site of damage to the respiratory 
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chain in ischemia l69, 170. They observed reduction in oxidation rate for NADH-1ink~d 

substrates by up to 60%. Typically, oxidation rates with succinate as a substrate were 

unchanged, suggesting that damage was restricted to the Comp1ex 1. 

Metabo1ic state a1so changes in certain physio10gica1 conditions such as heart 

adaptation to new workload in pregnancy68 or physical exercise I57.This was our reason 

behind choosing a pregnant rat model to test the sensitivity of th~ new1y deve10ped 

fluorescence method to metabolic oxidative changes in vivo. As described in our 

Introduction (Section 1.3.), pregnancy is a particular physiological condition, which 

induces major haemodynamic adaptations necessary for foetal homeostasis and well­

being64. This is associated with significant changes in carbohydrate metabo1ism70 to allow 

continuous nutrients availability to the deve10ping foetus, depending primarily on glucose. 

This leads to a rapid conversion from predominantly carbohydrate to predominantly fat 

utilization by the mother, correlating with increased lactate and pyruvate levels. Metabolic 

remodeling during pregnancy therefore also affects the heart function. Accordingly to 

previous studies performed in our laboratory by other students68, our results confirmed a 

significant decrease in glycemia during normal pregnancy, in agreement with glucose being 

used by the foetus. There was a1so a significant increase in the 1evels of blood trig1ycerides 

and lactate with a similar trend on pyruvate, which 1eads to a significant change in the 

lactate/pyruvate ratio, indicating an important modification of the redox status. It was 

suggested that the increase in lactate 1evels, correlating with increased work10ad, is 

consistent with elevated glycolysis2
. 

ln pregnancy, oxidative stress was proposed to rise, culminating in the la st trimester, 

in parallel with increase in total antioxidant capacityl7l. Nevertheless, in normal pregnancy, 

our resultsshowed no significant change in the blood levels of HNE-protein adducts, 

indicating a lack of significant change in oxidative stress conditions eva1uated with this 

marker. If confirmed by other oxidative stress indicators, this result is interesting, as 

pregnancy was proposed to be an "oxidative condition,,78, 83. Consistent with this 
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observation, our fluorescence measurement data also showed no significant change in the 

responsiveness of cells i~olated from pregnant rats to the oxidative stressors HNE or H202, 

suggesting that in pregnancy cardiac cells maintain full capacity to adapt to this 

physiological condition. It is also noteworthy that cells were more sensitive to the 

application of lactate in the presence of pyruvate in P vs. NP, in agreement with the 

expected increased use of those substrates in this condition. 

As mentioned previously in the Introduction (Section 1.3.), pregnancy is also 

associated with pronounced changes in the endocrine system, which are linked to increased 

blood volume and cardiac output during the course of gestation. Aldosterone is one of the 

hormones that rise during pregnancy, which acts on epithelium through the RAAS 172
, to 

promote sodium and water retenti on as well as potassium excretion and thus contributing to 

blood volume and blood pressure homeostasis. This has been observed in humans173 as weIl 

as in rats l74. Lack.of hormonal changes during complicated pregnancy174 points to the 

importance of these hormonal adaptations during gestation. Aldosterone is known to act via 

its MR on non-epithelial tissues, inc1uding the heart. MR antagonists, such as 

spironolactone, have been demonstrated to significantly reduce mortality and morbidity 

among patients with severe congestive heart failure 175. Despite the fact that MR inhibition 

was described to be beneficial in certain pathological conditions su ch as in hypertensive 

kidney or cardiovascular diseases, their inhibition in physiological conditions, such as 

pregnancy, can be harmful. The RAAS is significantly increased in normal pregnancy, but 

blunted in pathological pregnancies, such as pregnancy induced hypertension174 suggesting 

that RAAS is one of the hormonal systems that help cardiovascular adaptations put in place 

during pregnancy. A decrease in blood pressure in normal pregnancy, accompanied by 

elevated RAAS is paradoxical to other known conditions. RAAS pathway is also known to 

induce oxidative changes under pathological conditions77
, namely by altering aldosterone 

regulation via its MR, we have therefore opted for inhibition of RAAS pathways by 

canrenoate, the metabolite of spironolactonel76 to induce the conditions of oxidative stress 

in vivo conditions. 
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One of the most important pathways by which aldosterone exerts its negative effects 

on cardiovascular system is through production of ROS77
• In a normal cell, mitochondria 

act as net scavengers of ROS177
, but in situations with cellular stress, mitochondrial 

cytochromes become significant sources of ROS77
• Two major systems that are acting as 

scavengers of oxygen radicals are glutathione and the thioredoxin system, but when larger 

amounts of superoxide or other oxidative by-products are formed, oxidative damage 

predominate72
. Paradoxically, our results in non-pregnant as well as in pregnant conditions 

indicated that treatment with canrenoate induced changes in the blood that can be correlated 

with increased oxidative stress markers. Interestingly, this rise in oxidative stress markers 

correlated with a decrease in lactate concentration in both conditions, an observation that 

was not reported so far. This result can suggest a possible relationship between metabolic 

switch in the use of energy substrates in pregnancy and oxidative stress changes and need 

to be further studied in the future. We therefore propose the hypothesis that MR can assist 

the heart in its adaptations to pregnancy by acting on the cell availability of metabolic 

substrates such as lactate, as well as by helping to prote ct it from oxidative stress. 

In NP rats treated with canrenoate, we observed similar modifications III the 

fluorescence levels in response to oxidative strèssors as in non-treated ones. These results 

aHow us to conclude that the heart of these animaIs is capable of adapting to the MR 

inhibition by canrenoate. However, in Pean rats, we noted differences in the responsiveness 

of the cells to H202 but not HNE. We also observed the differential effect of BCNU. These 

results' point to possible lack of adaptation of the cells in these conditions. At the same 

time, it is important to take into consideration that in canrenoate-treated animaIs, cardiac 

cells would be exposed to both the presence of higher HNE and lower lactate levels, which 

may result in altered NAD(P)H levels. This is one of the limitations of our study which was 

only done using equal concentrations of substrates when different conditions were studied, 

which is not the case in vivo. In the future, il would be interesting to compare NAD(P)H 

fluorescence in media specifie to normal vs. canrenoate-treated pregnancy to comprehend 
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the changes in metabolic oxidative state. AIso, it would have been interesting to quantify 

HNE-protein adducts in the cardiac tissue in addition to the blood, as weIl as to test the 

effect of HNE concentrations similar to those observed in vivo, which are likely to be close 

to the nanomolar rather than micromolar range. 

Our data provide the first information on the use of spectrally-resolved TCSPC 

technique as a powerful new tool that can be applied to investigate metabolic changes 

directly in freshly-isolated living cardiomyocytes. We project that future development of 

application of this technique can eventually lead tonew diagnostic approaches for early 

detection ofmitochondrial dysfunction associated with pathological conditions. 
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5. CONCLUSIONS AND PERSPECTIVES 

The presented work is unique and valuable, focusing on investigation of NAD(P)H 

fingerprinting by advanced spectrally-resolved lifetime spectrometry technique as a useful 

tool to study dynamic mitochondrial oxidative metabolism in living cardiomyocytes and its 

modifications by oxidative stressors. We demonstrate that spectrally-resolved TCSPC 

recordings of cardiomyocyte AF allow fast and reproducible measurements of NAD(P)H­

based fluorescence spectra and fluorescence decays, with sufficient sensitivity to detect 

oxidative metabolic changes in living cardiac cells in response to oxidative stress challenge. 

We also analyzed in details fluorescence parameters of AF to gather more profound 

understanding of the effects of metabolic modulators. Component analysis, perfonned for 

the first time in our experimental conditions, proved to be highly beneficial in bringing 

more profound insight into parameters underlying changes in fluorescent characteristics of 

NAD(P)H molecules, including not only their amounts, but also modifications in their 

microenvironment. 

Our data of preliminary experiments showed that this technique can also be used to 

study changes in metabolic oxidative status and its responses to oxidative stressors under 

(patho)physiological conditions. We have ch os en pregnancy as an example of major 

physiological changes in cardiac metabolism associated with changes in global energy 

balance reflected by modifications of blood energy substrate concentrations. We have 

found that during nonnal pregnancy, cardiomyocyte response to oxidative insult, evaluated 

with NAD(P)H fluorescence, was not significantly different from that observed in non­

pregnant condition. This result indicates that the heart has the full capacity to adapt to 

conditions of nonnal gestation without affecting its response to, oxidative stressors at the 

cellular level. On the other hand, we have also examined the sensitivity of NAD(P)H 

fluorescence in living cardiomyocytes isolated from rats treated with MR inhibitor 

canrenoate. In canrenoate-treated pregnant rats, in addition to blood oxidative metabolic 

changes, we have noted sorne significant differences in cardiomyocyte responses to 
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NAD(P)H fluorescence modulators wh en compared to normally pregnant ones, strongly 

suggesting a role of the RAAS in the heart response to oxidative stressors in this condition. 

However, due to complexity of the studied conditions, further experiments are necessary in 

the future to confirm and fully understand this finding. 

Our results have shown that employed technique combined with applied analytical 

approaches is very powerful in understanding rapid cellular adaptations to changes in 

energy and/or metabolic conditions. However, this work requests intense data processing 

and use of advanced analytical methods. In fact, due to an unanticipated and overwhelming 

amount of data to process, we were unable to perform component analysis in (patho) 

physiological conditions, and this constitutes the limitation of the presented preliminary 

study. We therefore intend to perform the component analysis under aIl studied 

pathophysiological conditions III the future to properly understand changes related to 

individual components. AIso, we propose to investigate NAD(P)H fluorescence using 

distinct concentrations of substrates such as lactate and pyruvate in external media, but also 

fatty acids, as determined by the blood analyses, to mimic differential changes in the 

substrate availability during pregnancy. Utilization of specific modulators of respective 

cytosolic and mitochondrial redox state could also shed more light on the regulatory and 

crosstalk processes involved'between cytosol and mitochondria for energy metabolism and 

response to oxidative stress. 

We are convinced that information gathered on the regulation of NAD(P)H III 

cardiomyocytes will be useful for subsequent studies. Combined with data obtained from 

complementary approaches i.e. using electrophysiology or working heart perfusions could 

also be essential for better understanding of relations between cardiac NAD(P)H and 

contractile function. This method will exp and our knowledge about the sensitivity of 

oxidative metabolic state to pathophysiological conditions such as complicated 

(hypertensive or diabetic) pregnancy, at different stages of gestation. It will also bring a 
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comp1ete1y new insight into investigation of the effects of pharmaceutical drugs on 

mitochondrial metabolism and oxidative stress in numerous pathological conditions. 
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Abstract 

NAD(P)H, crucial in effective management of cellular 
oxidative metabolism and the principal electron donors 
for enzymatic reactions. is a major source of 
autojluorescence induced in cardiac cel/s following 
excitation by UV Iight. Spectrally-resolved time­
correlated single photon counting was used to 
simultaneously measure the fluorescence spectra and 
fluorescence lifetimes of NAD(P)H, following excitation 
by a pu/sed picosecond 375 nm laser diode. Spectra. as 
weil as fluorescence /ifetimes of NADH and NADPH 
molecules were investigated in solution at different 
concentrations EJJects of their respective 
dehydrogenation by Iipoamide dehydrogenase (LipDH) 
or glutathione redllctase (GR) were also questioned 
NAD(P)H autojillorescence recorded in vitro was 
compared to the one measllred infreshly isolated cardiac 
cel/s. We observed a good comparability between 
NAD(P)H parameters recorded in solution and in cel/s. 

1. Introduction 

Endogenous fluorescence of NAD(P)H, induced 
following excitation with the UV Iight, 1S long used for 
non-invasive fluorescent probing of metabolic state. Blue 
autofl)lorescence of mt cardiac myocytes was 
demonstrated to correlate with metabolic changes and 
was mostly ascribed to mitochondrial NADH and 
NAD PH [2]. Adenosine trisphosphate (ATP), produced 
in the process of mitochondrial oxidative 
phosphorylation, is the primary molecular energy source 
for the contraction of cardiac myocytes. This process is 
coupled to oxidation of reduced NADH, the principal 
electron donor for the electrochemical gradient 
indispensable for oxidative energy metabolism. The first 
step in this process, which accounts for 95% of ATP 
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generation needed for cardiomyocyte contraction, is the 
dehydrogenation of NADH by Complex 1 of the 
mitochondrial respiratory chain. NADH consumption mte 
is long investigated using fluorescence techniques in 
tissues and isolated mitochondria. On the other hand, 
NADPH is an important cofaetor for several enzymes 
involved in different metabolic pathways (i.e .. pentose 
phosphate pathway, Krebs cycle) and is essential for 
antioxidant processes in the glutathione reductase (OR) 
reaction. This enzyme allows the recycling of glutathione 
by converting its oxidized form (OSSO) into reduced 
glutathione. Oxidative stress can modulate the cellular 
NADPH content through the retease of peroxides and 
various by-products that has been shown to decrease the 
activity of several enzymes, such as the NADP-isocitrate 
dehydrogenase (NADP-ICDH) [1]. Here. we investigate 
NAD{P)H fmgerprinting by spectrally-resolved lifetime 
spectroscopy. More precisely, we characterize 
fluorescence spectra and fluorescence Iifetimes of NADH 
and NADPH in intracellular-like solutions and compare 
resolved data with spectral and temporal characteristics 
of endogenous NAD{P)H fluorescence, directly in living 
cardiomyocytes. 

2. Methods 

2.1. Cardiomyocyte isolation 

Left ventricular myocytes were isolated from Sprague­
Dawley rats (l3-14weeks old, Charles River, Canada) 
following retro grade perfusion of the heart with 
proteolytic enzymes [4]. Ali procedures were performed 
in accordance with Institutional Committee accredited by 
the Canadian Council· for the Protection of AnimaIs 
(CCPA). Myocytes were maintained in a storage solution 
at 4°C until use". Only cells that showed clearly defined 
striations were used in up to 10 hrs following isolation. 

Computers ln Cardlology 2007;34:349-352. 



2.2. TCSPC 

We have used time correlated single photon counting 
(TCSPC) setup based on inverted microscope (Axiovert 
200M, Zeiss, Canada) [4]. In brief, a picosecond diode 
laser with emission line at 375 nm (BHL-375, Becker­
Hickl, Boston Electronics, USA) was used as an 
excitation source (output power -1 mW, repetition rate 
20 MHz, pulse widths typically < 100 ps). The laser 
beams were combined by dichroic filters and reflected to 
the sample through epifluorescence path ofAxiovert 200 
inverted microscope to create slightly defocused elliptical 
spot (10-20 flm). The emitted fluorescence was spectrally 
decomposed by 16-channel photomultiplier array (PML-
16, Becker-Hickl, Boston Electronics, USA), running in 
the photon-counting regime. and feeding the time­
correlated single photon counting interface card SPC 830 
using SPCM software (both Becker-Hickl, Boston 
Electronics, USA), attached to the imaging spectrograph 
(Solar 100, Proscan, Germany). Fluorescence decays 
were measured for 30 s with 25 ns TAC time-base 
sampled by 1024 points. Ce Ils were studied at room 
tempèratures in 4-well chambers with UV -proof 
coverslip-based slides (LabTech). 

2.3. Solutions, drugs and data analysis 

The basic external solution contained (in mM): NaCl, 
140; KCI, 5.4; CaCh, 2; MgCI2, 1; glucose, 10; HEPES, 
10; adjusted to pH 7.35 with NaOH. Basic intracellular 
solution contained (in mM): KC1, 140; NaCl, 10; glucose, 
10; HEPES, 10; adjusted to pH 7.25 with NaOH. LipDH 

. (porcine; 2 U/flL), NADH or NADPH in concentrations 
ranging from 1 to 20 flM were added to basic internai 
solution. NADPH was also produced from NADP-ICDH 
(3.9 U/mL) by reaction of Isocitrate (89 mM) and NADP 
(0.5 mM) with or without GSSG (50 nM) and GR (0.5 . 
U/mL or 1 U/mL). Chemicals were from Sigma-Aldrich 
(Canada). Data were analyzed using SPClmage software 
(Becker-Hickl, Boston Electronics, USA), Origin 7.0 
(OriginLab, USA) and custom-written procedures for 
data correction and analysis written in C++. Home-made 
data base was used for appropriate data management. Data 
are shown as means ± standard errors (SEM). 

3. Results 

3.1. NADH and NADPH in vitro 

Fluorescence spectra and fluorescence lifetimes of 
intrinsic NADH and NADPH fluorescence were recorded 
in vitro in intracellular media-mimicking solutions. 
Steady-state emission spectra measured simultaneously at 
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16 acquisition channels were determined as the total 
photon counts on each spectral channel. Concentrations 
ranging from 1 to 20 IlM were used to question the dose 
dependence of spectral and lifetime properties of the 
NADH and NADPH fluorescence. Spectral intensity of 

. NADH fluorescence followed linear concentration­
dependence (Fig. lA), as described previously [2]. 
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Figure 1. Emission spectra of NADH in vitro in intracellular 
solutions at concentrations ranging from 1 to 20 I!M (n=5 
samples each) (A). Concentration-dependence of the NADH 
and NADPH auto fluorescence at spectral peak of 450 nm (D). 

Normalized spectra superimposed perfectly for NADH 
concentrations between 1 to 20 flM (data not shown), 
confirming the same molecular origin. Free NADPH and 
NADH had autofluorescence with spectral maximum at 
450 and 470 nm respectively in intracellular solution 
(Fig. 4). The spectral intensity of NADPHlNADH was 
linearly dependent on their concentration, as illustrated in 
Fig. lB at 450 nm. Quantum yield of NADPH was 
smaller than that of NADH, as previously reported [2]. 
Normalized fluorescence intensity recorded in intra 
cellular medium showed slight shift of about 20 nm 
between NADPH and NADH (Fig. 4). At the fluorescen­
ce maximum wavelength of 450 nm we have resolved 
three fluorescence lifettmes for NADH (20 flM, n= 1 0 
samples): li =0.39±0.01 ns (with relative amplitude of 
69.9±1.0%), 1:2 = 1.46±0.05 ns (20.5±0.8%) and 1:3 = 

8.l2±0.07 ns (9.8±0.2%), but only 2 significant ones for 



NADPH (20 !lM, n=5 samples): t1 = 0.31±0.01 ns (74.6 
±2.4%) andt2 = 0.75±0.02 ns (25.3±2.9%). Resolved 
lifetime parameters were independent on the studied 
emission wave1ength, or concentrations (data not shown). 

3.2. NADPH regulation by GR and NADH 
regulation by LipDH 

NADPH produced in vitro from NADP-ICDH had 
same spectral and lifetime characteristics as NADPH in 
intracellular solution (data not shown). In the presence of 
OSSO, OR lowered (0.5 D/mL) or nearly completely 
abolished (1 D/mL) NADPH autofluorescence produced 
by . NADP-ICDH (Fig. 2A), in agreement with 
dehydrogenation of NADPH by OR. Nonnalized and 
blank-corrected spectra showed no difference of NADPH 
spectral properties in the presence or absence of OR with 
OSSO and our data revealed no modifications ofNADPH 
lifetime kinetic properties by OR (data not shown). 
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Figure 2. Normalized, background-corrected steady-state 
emission spectra ofICDH-produced NADPH in the absence and 
presence of GR (0.5 or 1 UlmL, n=5 samples each) (A) and of 
20 /lM NADH (n= 1 0) in the absence and presence of 2 UI/lL 
LipDH in intracellular solution (n=5) (8). 

On the other hand, dehydrogenation of NADH (20 
JlM) to NAD+ by LipDH (at 2 V/JlL) - a disulfide 
oxidoreductase which is a part of the multienzyme 
Complex 1 - decreased fluorescence intensity (Fig. 2B). 
The effect was accompanied by a spectral broadening of 
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about 10 nm towards red spectral region, as demonstrated 
by nonnalized emission spectra (Fig. 3A). NADH 
fluorescence decays were prolonged by LipDH (Fig. 3B) 
due to a significantly increased lifetime of the component 
2(at 504 nm, t2 was prolonged from 1.84±O.l2 ns to 
2.74±O.l8 ns, p<0.05). 
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Figure 3. Comparison of ncirmalized, background-corrected 
steady-state emission spectra ofNADH (20 /lM; n=lO samples) 
in the absence or presence LipDH (2 Ulf.lI..) in intracellular 
solution (n=5) (A). NADH normalized fluorescence lifetimes 
(20 /lM) at 504 nm with or without LipDH (2 U/f.lI..) (8). 

3.3. Endogenous NAD(P)H in cardiac cells 

To investigate the endogenous fluorescence of 
NAD(P)H in living cardiomyocytes, spectrally and time­
resolved autofluorescence decays were recorded in cells 
bathed in basic external solutions. Nonnalized steady­
state emission spectra of the cardiomyocyte auto 
fluorescence had spectral maximum at 450 nm (Fig. 4) 
and showed a slight blue-spectral shi ft when compared to 
NADH in vitro, while being c10ser to those of NAD PH. 
Analysis of exponential decay of cardiomyocyte 
auto fluorescence showed acceptable chi-square values 
Cl<1.2; n=70/13 animais) and flat plot of weighted 
residuals when using at least a 3-exponential model, 
namely tl = 0.69±0.01 ns (69.3±1.0%), t2 = 2.03±0.05 
ns (27.6±0.9%) and t3 = 12.68±0.08 ns (3.l±0.2%). 
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4. Discussion and conclusions 

Although spectra of intrinsically fluorescing 
substances are now weil characterized in cardiac tissue. 
the fluorescence Iifetimes. considered to provide better 
quantitative measurement of different NAD(P)H 
conformations and/or molecular complexes contributing 
to the uv -excited autofluorescence of biologieal 
sampi es, are much less clearly identified in living cells. 
Here we demonstrate that NAD(P)H autofluorescence 
can be measured in living cardiomyocytes by time­
resolved emission spectroscopy approach with good 
reproducibility. Recorded auto fluorescence kinetics were 
comparable toalready published data in cardiac 
mitochondria [2]. As expected. comparison with NADH 
and NADPH kinetics in vitro pointed to the NAD(P)H 
origins of the autofluorescence. While our data confirmed 
close spectral characteristics of NADH and NADPH 
moiecuIes, curiously, we have identified differences in 
their Iifetimes. This can be due to distinct kinetics of the 
two moiecuIes, or the presence of impurities; kinetics of 
further purified molecules need to be done in the future. 
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Figure 4. Nonnalized, background-corrected emission spectra, 
dctennined as total photon counts of NAD(P)H 
auto fluorescence of single cardiac celIs, compared to NADH 
and NADPH (both 20 !lM) in basic extracellular solution. 

The LipDH flavoprotein served as example to 
investigate NADH dehydrogenation. Observed increase 
in the Iifetime· kinetics can be related to conformational 
changes of NADH induced by the enzyme. Indeed, upon 
dehydrogenation, the oxidized form of the protein 
promotes the binding of the neutral dihydro-nicotinamide 
moiety of NADH [3], in addition to the formation of 
negatively charged charge-transfer complexes between 
transiently bound NAD+ and covalently bound flavin 
adenine dinucleotide (F AD) cofactor. In this reduced 
form, nicotinamide moiety is in a different conformation 
from uniformly ordered structure of NADH juxtaposing 
nicotinamide and isoalloxazine flavin ring systems and is 
not proximal to F AD [3], which can be reflected in the 
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change of fluorescence kinetics. On the other hand, 
appearance of the red-spectral shoulder points to possible 
presence of Fôrster resonant energy transfer (FRET). 
Being a flavoprotein, excitation of LipDH by visible Iight 
(420-460 nm) results in green FAD-autofluorescence 
with emission maximum around 500 nm [4]. As the 
LipDH-binding domain for NADH is in close proximity 
to FAD+-binding one [3] and the 450 nm emission 
maximum ofNADH corresponds exactly to an absorption 
peak of the F AD+ moiety, this fulfils the prerequisites for 
the FRET between the two molecules. Nevertheless, 
since no decrease in NADH Iifetime(s) was observed, 
further study is needed to fully understand significance of 
changes in NADH fluorescence following its binding to 
enzymes in living eeUs. Failure to observe lifetime 
kinetic changes following NADPH dehydrogenation by 
GR can be due to much faster kinetics of the NADPH 
moiecule andlor much lower signal recorded in these 
experiments. Gathered data demonstrate the robustness of 
the TCSPC approach for NAD(P)H auto fluorescence 
study directly in living ceUs. This approach brings an 
important insight tnto the understanding of metabolic 
state(s) of the heart in pathophysiological conditions. 
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