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Abstract 

Glucose-fed rat is a model of insulin resistance that displays hypertension and sensory 

polyneuropathy. This study aimed at comparing the beneficial effects of an antioxidant 

(N-acetyl-L-cysteine, NAC) and an angiotensin-l converting enzyme inhibitor (ramipril) 

in glucose-induced tactile and cold allodynia, hypertension, plasma levels of glucose, 

insulin, malondialdehyde (MA) and 4-hydroxynonenal (4-HNE), liverlaortic superoxide 

anion, changes of skeletal muscle insulin receptor substrate-l (IRS-l) protein expression 

and of tissue kinin BI receptor mRNA. Methods: Male Wistar rats (50-75 g) were given 

10% D-glucose in their drinking water during Il and 20 weeks. NAC (1-2 g/kg/day 

orally) and ramipril (1 mg/kg/day in drinking water) were administered for the last 4-5 

weeks. Results: Systolic blood pressure, plasma levels of insulin and glucose as well as 

insulin resistance (HOMA index) were significantly higher in rats treated with glucose 

for 20 weeks. This was associated with a higher production of superoxide anion and 

NADPH oxidase activity in aorta and liver and with a marked reduction of IRS-l protein 

expression in the gastrocnemius muscle. Tactile and cold allodynia occurred after six 

weeks of glucose treatment and BI receptor mRNA was increased in the spinal cord and 

renal cortex at Il weeks. NAC restored all these alterations in glucose-fed rats and 

decreased plasma MA and 4-HNE levels. Although ramipril provided the same 

therapeutic effect as that ofNAC on blood pressure and allodynia, it was less effective in 

reducing insulin resistance and failed to reduce liverlaortic NADPH oxidase activity and 

plasma levels of MA and 4-HNE. Ramipril normalized superoxide anion only in the 

aorta. 
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Conclusion: The beneficial effects of NAC and ramipril on insulin resistance, 

hypertension and allodynia were linked to the reduction of the oxidative stress and kinin 

BI receptor expression. The antioxidant effect ofNAC involved the inhibition ofNADPH 

oxidase and lipid peroxidation while that of ramipril was exerted most strongly in 

vascular tissue independently ofNADPH oxidase and lipid peroxidation. 

Key words: allodynia, diabetes, hypertension, insulin resistance, kinin BI receptor, N­

acetyl-L-cysteine, oxidative stress, polyneuropathy 
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Résumé 

L 'hypertension et les polyneuropathies apparaissent chez le rat recevant du glucose, un 

modèle de résistance à l'insuline. Cette étude a pour but de comparer, chez le rat recevant 

du glucose, les effets bénéfiques d'un antioxydant (N-acétyl-L-cystéine, NAC) et d'un 

inhibiteur de l'enzyme de conversion de l' angiotensine-1 (ramipril) sur l' allodynie tactile 

et au froid, l'hypertension, la glycémie, l'insulinémie, les taux plasmatiques de 

malondialdéhyde (MA) et de 4-hydroxynonenal (4-Hl\JE), l'anion superoxyde dans 

l'aorte et le foie, les changements d'expression protéique de «insulin receptor substrate-

1» (IRS 1) dans le muscle gastrocnemius ainsi que sur l'expression tissulaire (ARNm) du 

récepteur BI des kinines. Méthodes: Des rats mâles de 50-75 g ont reçu 10% de glucose 

dans l'eau de boisson pendant Il et 20 semaines. NAC (1-2 g /kg/jour oralement) et 

ramipril (1 mg/kg/jour dans l'eau de boisson) ont été administrés pendant les 4 et 5 

dernières semaines. Résultats: La pression systolique, la glycémie, l'insulinémie ainsi 

que la résistance à l'insuline (indice HOMA) étaient significativement augmentées 

chez le rat recevant du glucose pendant 20 semaines. Ceci était associé avec une plus 

grande production de l'anion superoxyde et de l'activité de la NADPH oxydase dans 

l'aorte et le foie et avec une réduction marquée de l'expression de l'IRS-l dans le 

gastrocnemius. L' allodynie tactile et au froid apparaissaient après six semaines de 

traitement au glucose et l'ARNm du récepteur BI était augmenté dans la moelle épinière 

et le cortex rénal à Il semaines. Le NAC a corrigé toutes ces anomalies chez le rat 

recevant du glucose et a diminué les taux de MA et 4-HNE. Bien que le ramipril ait 

produit les mêmes effets thérapeutiques que le NAC sur la pression artérielle et 

l'allodynie, il s'est avéré moins efficace à réduire la résistance à l'insuline et n'a pas 
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réduit l'activité de la NADPH oxidase dans le foie ou l'aorte ou encore les taux de MA et 

de 4-HNE. Le ramipril a toutefois normalisé la production d'anion superoxide dans 

l'aorte. 

Conclusion: Les effets bénéfiques du NAC et du ramipril sur la résistance à l'insuline, 

l'hypertension et l'allodynie sont liés à la réduction du stress oxydatif et à l'expression du 

récepteur BI des kinines. L'effet antioxydant du NAC implique l'inhibition de la NADPH 

oxydase et de la peroxydation des lipides, tandis que celui du ramipril est exercé 

principalement sur les vaisseaux indépendamment de la NADPH oxidase et de la 

peroxydation des lipides. 

Mots clés: allodynie, diabète, hypertension, résistance à l'insuline, récepteur BI, stress 

oxydatif, polyneuropathie et N-acétyl-L-cystéine 
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1. Introduction 

1.1 Diabetes Mellitus 

Definition: Diabetes mellitus is a chronic disease caused by inherited and/or 

acquired deficiency in production of insulin by islets of pancreas, or by the 

ineffectiveness of the insu lin produced. Deficiencies lead to increased concentrations 

of glucose in the blood, which in tum damage man y of the body's systems, in 

particular the blood vessels and nerves. It is probably the most important metabolic 

disease and is widely spread ail over the world. Diabetes mellitus is a chronic disease 

that requires long-term medical consideration both to Iimit the development of its 

harmful complications and to manage them when they do occur. Because of the huge 

premature morbidity and mortality associated with the disease, prevention of 

complications is the key issue. 

1.2 Type 1 Diabetes Mellitus 

It was formerly known as insulin-dependent diabetes, in which the pancreas 

fails to produce the insulin which is essential for survival. Most cases of type 1 

diabetes are immune-mediated characterized by autoimmune destruction of insulin­

producing B cells in the islets of langerhans of the pancreas by CD4+ and CD8+ T 

cells and macrophages infiltrating the islets (Foulis et al., 1991). This form develops 

most frequently in children and adolescents, but is being increasingly noted in adult 

people. The disease accounts for about 10% of ail cases of diabetes, occurs most 

commonly in people of European descent and affects 2 million people in Europe and 

North America. 



3 

There is a marked geographic variation in incidence, with a child in Finland being 

about 400 times more likely than a child in Venezuela to acquire the disease 

(Gillespie, 2006). (Figure 1) 

Sardinia 

Finland 

Canada 

UK (Oxford) 

United States 

Kuwait 

Denmark 

Poland 

Venezuela 

China 

0 10 20 30 40 

Annual incidence per 100 000 

Figure 1 Geographie variation in annual incidence oftype 1 diabetes. 

The CUITent global increase in incidence of 3% per year is weIl reported. 

Furthermore, the incidence of type 1 diabetes will be 40% higher in 2010 than in 1998 

(Onkamo et al., 1999). This rapid ri se strongly suggests that the action of the 

environment on susceptibility genes contributes to the evolving epidemiology of type 

1 diabetes (Gillespie, 2006). People with type 1 diabetes depend on regular insulin 

injections with multiple self care tasks to achieve best blood glucose control. 
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1.3 Type 2 Diabetes Mellitus 

It was formerly named non-insulin-dependent diabetes, which results from the 

body's inability to respond properly to the action of insulin produced by the pancreas. 

Type 2 diabetes is much more common than type 1 and approximately accounts for 

90% of ail diabetes cases worldwide. It occurs most frequently in adults, but is being 

noted increasingly in adolescents as weil (Likitmaskul et aL, 2003; Hotu et aL, 2004). 

Most of type 2 diabetic patients are not diagnosed until the individual has had the 

disease for many years, and the microvascular complications of diabetes (retinopathy, 

nephropathy and neuropathy) are already present (Spijkerman et al., 2003). Lifestyle 

modification is the cornerstone of both treatment and attempts to prevent type 2 

diabetes (Mann et aL, 2004). 

1.4 Global prevalence of diabetes 

The prevalence of diabetes for aIJ age-groups worldwide was estimated to he 

2.8% in 2000 and 4.4% in 2030. The number of people with diabetes is expected to 

increase from 171 million in 2000 to 366 million in 2030. The proportion of diabetic 

patients is increasing due to growth of population, aging, change in life style, and 

increasing prevalence of obesity and physical inactivity (Woods et aL, 2004). The 

morbidity and mortality associated with diabetes are related to the short- and long­

term complications. These complications include hypoglycemia and hyperglycemia, 

increased risk of infections, microvascular and macrovascular complications. 



1.5 Complications associated with Diabetes Mellitus 

1.5.1 Microangiopathy 

The microangiopathy is arising from small blood vessels disease which includes: 

(a) Diabetic retinopathy 

5 

Diabetic retinopathy is one of the most common microvascular complications, 

the most frequent cause of new cases of blindness in Europe and North America in 

age group of 30 to 70-74 years (Villar et al., 1999; Stitt et al., 2002). Recent cl inical 

studies have revealed that the presence of diabetic retinopathy is predictable of 

diabetic nephropathy (Villar et al., 1999; EI-Asrar et al., 2001; Rossing et al., 2002). 

Due to its high content of unsaturated lipids and high oxygen demand, the retina 

represents a site which is partially prone to hyperglycemia induced free radical 

generation and lipid oxidation. Furthermore, recent studies have shown that NF-kB 

activation in retinal pericytes is responsible for hyperglycemia-induced loss of 

pericytes observed in diabetic retinopathy. Loss of vision due to certain types of 

glaucoma and cataract occurs primarily due to age, but is more common in diabetes. 

Moreover, cataract is common in diabetic person where superoxide anion in the 

mitochondria is elevated as a result of hyperglycemia (Vinson, 2006). Clinical trials 

suggest that blood glucose control and control of hypertension can delay the onset and 

progression of diabetic retinopathy and loss ofvision associated with diabetes (Grassi, 

2003; Fong et al., 2004a; Fong et al., 2004b). Morover, loss of vision due to diabetic 

retinopathy can be prevented by early detection and treatment of vision-threatening 

retinopathy by regular eye examinations and timely intervention with laser treatment, 

or through surgery in cases of advanced retinopathy. 
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(b) Peripheral neuropathy 

Neuropathy is an early clinical sign of diabetes affecting sensory and 

autonomic peripheral functions. Studies suggest that about 30-50% of people with 

type 2 diabetes are affected to sorne degree of neuropathy (Dickinson et al., 2002; 

Feldman, 2003). Moreover, diabetic neuropathies are the most common chronic 

disturbing complications of diabetes mellitus because of the pain, discomfort, and 

disability. Pain or numbness in the legs or feet may be the most common complaint 

from diabetic neuropathic patients (Park et al., 2004), who also display autonomic 

dysfunction (especially erectile dysfunction and altered cardiac vagal response). The 

pathogenesis of diabetic neuropathic pain is still unknown, yet several mechanisms 

were proposed. These include: (1) axonal degeneration/regeneration, (2) neuroma 

properties, which cause ectopic impulse generation and ephaptic transmission, (3) 

small-fiber diseases, which involve the AB and C-fibers, (4) dorsal root ganglion 

involvement, and (5) central sensitization and neural plasticity. The early detection 

and diagnosis of diabetic neuropathies are important to reverse and prevent their 

progression (Park et al., 2004). Diabetic patients who are inadequately treated have 

higher morbidity and complication rates related to neuropathy than patients whose 

blood glucose is closely controlled. Peripheral neuropathy represents the main 

etiologic factor involved in the development of diabetic foot ulceration and lower 

limb amputation. 
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c) Erectile dysfunction 

Erectile dysfunction is commonly associated with diabetes and occurs at an 

earlier age in such patients than in the general population. Hyperglycemia has 

pathologic effect on peripheral tissue innervation and vascularization, both of which 

are critical for erectile function. Oxidative stress to cavernous tissue may be an 

important causative factor to erectile dysfunction in diabetic patients (Ryu et al., 

2005). 

(d) Diabetic nephropathy 

Nephropathy is an irreversible complication of diabetes representing 30% of 

ail new cases of end-stage renal failure and the most distressing and money­

consuming complication in patients with diabetes throughout the world. The principal 

lesion of diabetic nephropathy occurs in renal glomeruli and is called diabetic 

glomerulosclerosis. Hyperglycemia is responsible for the development and 

progression of diabetic nephropathy through different metabolic pathways, including 

increased oxidative stress, renal polyol formation, activation of protein kinase C 

(PKC)-mitogen-activated protein kinases (MAPKs), and accumulation of advanced 

glycation end products, as weil as hemodynamic factors such as systemic 

hypertension and increased intraglomerular pressure (Kikkawa, 2000). 

(e) Diabetic cardiomyopathy 

This prominent cardiovascular complication has been recognized as a 

microvascular disease that may lead to heart failure. Pathogenesis of diabetic 

cardiomyopathy involves vascular endothelial cell dysfunction, and cardiomyocyte 

necrosis (Devereux et aL, 2003). Chronic hyperglycemia induces several biochemical 



8 

changes including increased non-enzymatic glycation, sorbitol-myoinositol-mediated 

changes, redox potential alterations, and protein kinase C (PKC) activation, ail of 

which have been implicated in diabetic cardiomyopathy (Farhangkhoee et al., 2006) 

1.5.2 Macrovascular complications 

The development of macrovascular complications, including cardiac, 

cerebrovascular, and peripheral vascular complications, is an important concern 

considering that a substantial proportion of premature deaths in patients with type 1 

diabetes mellitus (Deckert et al., 1978), and most deaths in type 2 diabetes mellitus 

are related to macrovascular disease (Morrish et al., 1990; Morrish et al., 1991). 

(a) Hypertension 

Patients with diabetes have a much higher rate of hypertension th an would be 

expected in the general population. There is an increased prevalence of hypertension 

among diabetic patients (Sowers et al., 2000). Population studies suggest that blood 

pressure in excess of 140/90 mmHg is found in nearly 30% of adults havi ng type 2 

diabetes. Moreover, both conditions are strongly age-dependent, and exhibit large 

geographical variations. These two medical conditions tend to occur together in the 

same patients; approximately 2/3 of diabetics will have hypertension while 

hypertensive persons, have a substantially increased risk of diabetes. Elevated blood 

pressure is known to contribute to diabetic microvascular and macrovascular 

complications. Hypertension in patients with diabetes increases the risk of coronary 

artery disease. In the general population, the prevalence of coronary artery disease lies 

at around 1 % to 4 %, but this may increase by as much as fourfold in older adult 

diabetic patients, compared with non diabetic individuals of the same age. AIso, the 
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risk of heart failure has been shown to increase twofold for diabetic men and fivefold 

for diabetic women, relative to nondiabetic individuals (Krum, 2003). ln addition, 

more than one third of patients with myocardial infarction also suffer from clinically 

diagnosed type 2 diabetes (Norhammar et al., 2002). Hypertension increases the 

incidence of stroke in patients with diabetes. Survival rates and recovery from stroke 

are reduced in patients with diabetes compared with patients without diabetes; also 

hypertension increases the risk of peripheral vascular disease and subsequent foot 

ulcers and amputations in patients with diabetes. Hypertensive diabetic patients are 

also at increased risk for diabetes-specific complications including retinopathy and 

nephropathy. Heart disease accounts for approximately 50% of ail deaths among 

people with diabetes in industrialized countries. Diabetes mellitus induces abnormal 

changes in the structure of different components of the heart including the plasma 

membrane and other cytoplasmic organelles of cardiomyocyte. Pathological findings 

include cell hypertrophy, neuropathy, interstitial fibrosis, myocytolysis, apoptosis and 

Iipid deposits in the heart of diabetic patients (Adeghate, 2004). 

(b) Peripheral vascular disease 

The diabetic foot disease, due to changes in blood vessels and nerves, often 

leads to ulceration and subsequent limb amputation. It is one of the most costly 

complications of diabetes, especially in communities with inadequate footwear. lt 

results from both vascular and neurological disease processes. The impairment of 

microcirculation of diabetic patients leads to secondary complications in lower limbs, 

as foot infections and ulcerations. These microcirculatory changes, which are mainly 

functional rather than structural, are responsible for the impaired ability of the 

microvasculature to vasodilate in response to injury, and nerve reflex related 
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microvascular vasodilatation is also impaired in the diabetic population (Schramm et 

al., 2006). Diabetes is the most common cause of non-traumatic amputation of the 

lower limb, which may be prevented by regular inspection and good care of the foot. 

1.6 Diabetes Mellitus and oxidative stress 

1.6.1 Source of oxidative stress in diabetes 

Oxidative stress has been considered to be a common pathological factor of 

diabetes complications and appears a target for therapeutic treatments (Shih et al., 

2002). Tissue exposure to hyperglycemia results in increased production of reactive 

oxygen species (ROS). Furthermore, ROS and reactive nitrogen species (RNS) are 

products of normal cellular metabolism, and recognized for playing a double role as 

both harmful and beneficial to living systems (Valko et al., 2006). Beneficiai effects 

of ROS occur at low/moderate concentrations and involve physiological roles in 

cellular responses to anoxia, in defense against infectious agents, in a number of 

cellular signaling systems, and induction of a mitogenic response. Oxidative stress is 

defined in general as excess formation and/or inadequate removal of highly reactive 

molecules such as ROS and RNS (Turko et al., 2001; Maritim et al., 2003). The 

sources for the overproduction of ROS in diabetes are widespread and include 

enzymatic pathways, auto-oxidation of glucose, and mitochondrial superoxide 

production. ROS include free radicals su ch as superoxide anion (02.), hydroxyl (OH), 

peroxyl (R02), hydroperoxyl (HR02-) and nonradical species such as hydrogen 

peroxide (H20 2) and hydrochlorous acid (HOCI) (Turko et al., 2001; (Evans et al., 

2002). RNS include free radicals like nitric oxide (NO) and nitrogen dioxide (N02-) 

as weil as nonradicals such as peroxynitrite (ONOO-), nitrous oxide (N20) and alkyl 

peroxynitrate (RONOO) (Turko et al., 2001; Evans et al., 2002). Reactive molecules, 
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superoxide anion, "NO and ONOO- are the main species which play important roles in 

diabetic complications. In diabetes, the antioxidant defense is blunted whereas the 

generating system is stimulated (Dickinson et al., 2002). Induction of ROS formation 

can result from different additive mechanisms. These mechanisms include direct 

intracellular effect of glucose in cells subjected to increase glucose uptake during 

hyperglycemia (renal, retinal, and some nerves cells) and indirect via the extracellular 

formation of advanced glycation end products (AGEs). Excess generation of oxidative 

stress has pathological consequences including damage to proteins, Iipids and DNA. 

'02- can activate several damaging pathways in diabetes including accelerated 

formation of AGE, polyol pathway, hexosamine pathway and PKC, nicotinamide 

adenine dinucleotide phosphate (NAD(P)H) (Kitada et al., 2003), mitochondrial 

electron-transport chain (Brownlee, 2001), ail ofwhich were proven to be involved in 

micro- and macrovascular complications. In addition, -02- and H20 2 stimu1ate stress­

related signalling mechanisms such as NF-KB, p38-MAPK and STAT-JAK resulting 

in vascular smooth muscle cells migration and proliferation. In endothelial cells, H20 2 

mediates apoptosis and pathological angiogenesis (Taniyama and Griendling, 2003). 
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Figure 2 Relationship between oxidative stress and the development of type 2 
diabetes (Evans et al., 2002). 

Figure 2, shows the proposed causative link between hyperglycemia, elevated 

free fatty acid (FFA), mitochondrial ROS generation, oxidative stress, activation of 

stress-sensitive pathways (NF-kB, p38 MAPK, JNK/SAPK, and others), insulin 

resistance, B-cell dysfunction, and diabetic complications O\Jishikawa et al., 2000). 

The activation of NAD(P)H oxidase by protein kinase C produces the predominant 

source of reactive oxygen species in vasculature that directly lead to diabetic 

complications and cardiovascular disease ( Kitada et al.,2003; Feldman, 2003). ROS 

can stimulate oxidation of low-density lipoprotein (LDL), and oxidized-(ox)-LDL, 

which is not recognized by the LDL receptors. The ox-LDL which formed can be 

taken up by scavenger receptors in macrophages leading to foam cel! formation and 

atherosclerotic plaques as shown in Figure 3 (Taniyama et al., 2001). 
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Figure 3 Pathogenic cascade of hyperglycemia, oxidative stress, LDL oxidation, 
arteriogenic plaque formation and myocardial infarction rate. 

Under normal conditions, .02- is immediately eliminated by natural defense 

mechanisms, but in excess .02- reacts with "NO immediately and generates cytotoxic 

ONOO- , which is a strong oxidant. This reaction has several consequences. First, 

ONOO- alters functions of biomolecules by protein nitration and Iipid peroxidation. 

Increase levels ofnitrotyrosine are associated with apoptosis ofmyocytes, endothelial 

cell and fibroblasts in diabetes (Turko et al., 2001). Second, ONOO- causes single-

strand DNA breakage which in tum activates nuclear enzyme poly (ADP-ribose) 

polymerase (PARP) (Soriano et al., 2001). Third, it decreases "NO bioavailability 

causing impaired relaxation and inhibition of the antiproliferative effects of ·NO 

(Maritim et al., 2003). Furthermore, ONOU oxidizes tetrahydrobiopterin (BH4), an 

important cofactor for NOS, and causes uncoupling of NOS, which produces .02-
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instead of 'NO (Maritim et al., 2003). AlI these pathological modifications contribute 

to the pathogenesis ofvascular complications of diabetes. 

1.7 Antioxidants and diabetes 

1.7.1 Defense system against oxidative stress 

Exposure to free radicals from different sources has led organism to develop a 

series of defense mechanisms (Cadenas, 1997). The defense mechanisms against free 

radical-induced oxidative stress involve: (1) preventive mechanisms, (2) repair 

mechanisms, (3) physical defenses, and (4) antioxidant defenses (Valko et al., 2006). 

Under normal physiological conditions, our body constantly produces ROS and RNS, 

which are eliminated by antioxidant enzymes as primary antioxidants. But when the 

production of ROS and RNS is significantly increased, the enzyme systems are 

rapidly overloaded. The oxidation may be slowed down by secondary antioxidants 

provided in the diet. Under normal conditions, there is a balance between the activities 

and the intracelIular levels of these antioxidants. This balance is essential for the 

survival of organisms and their health. 

(a) Primary antioxidants: active detoxification 

The celI has antioxidant enzymes, which are very effective defense systems 

because enzymes have the property to eliminate free radicals in a constant manner. 

This line of defense is composed of three major antioxidant enzymes, superoxide 

dismutase (SOD), glutathione peroxidase (GPX), and catalase, which differ from each 

other in structure, tissue distribution, and cofactor requirement. Their substrates are 

reactive species; they change superoxide anions and hydrogen peroxide into non­

harmful products. 
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SOD: O2- + O2- + 2H+ -+ H202 + O2 

GPX: ROOH + 2GSH -+ ROH + H20 + glutathione 

SOD is the first line of defense against ROS by preventing changes in NF-kB, 

polyol pathway, AGE formation and PKC activity. There are 3 different forms of 

SOD: Mn-SOD, a tetramer molecule present in mitochondria, Cu/Zn-SOD, a dimer 

molecule present in the plasma and a tetramer form in the cytosol. SOD works 

immediately to convert the superoxide radical O2- to hydrogen peroxide (H20 2), 

which is toxic for the cell as it is involved in the formation of hydroxyl radical. H202 

is then detoxified to water either by catalase in the lysosomes or by glutathione 

peroxidase in the mitochondria. 

Catalase is a tetramer containing NAPH molecule which stabilizes the active 

site and heme molecule necessary for enzymatic activity. Catalase reacts very rapidly, 

without requiring any energy. Contrary to catalase, peroxidases need energy from the 

cell and cofactors as ascorbate for ascorbate peroxidase and both glutathione and 

selenium for selenium-dependent glutathione peroxidase (GPX). GPX is a tetramer 

present in plasma and cytosol; it mediates the transformation of GSH to GSSH 

(Bharath et al., 2002). GSH plays a critical role as a cellular antioxidant, reacting with 

free radicals nonenzymatically, and also in the reduction of peroxides, catalyzed by 

GPX. 

Prolonged exposure to hyperglycemia increases the generation of free radicals 

and reduces capacities ofthe antioxidant defense system. The pathogenesis of diabetic 

complications is strongly related to cellular injury caused by intracellular alterations 

in the metabolism of natural defense system against oxidative stress. Simple 

inactivation of enzymes by glycating proteins, for example, glycation of SOD, also 
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lead to DNA cleavage (Kaneto et al., 1994). The most common antioxidant 

deficiencies reported in diabetes are lower levels of ascorbate, glutathione and 

superoxide dismutase, also the concentration of reduced glutathione has been seen in 

diabetic neutrophils and monocytes (Venugopal et al., 2002). Aiso the activity and 

expression of SOD and glutathione peroxidase are decreased in diabetic models 

(Maritime et al., 2003). 

b) Secondary antioxidants: passive detoxification 

The passive detoxification is a second corn plementary line of defense 

including compounds able to significantly slow down the etfects of free radicals that 

have not been eliminated by the enzymatic defense systems. Non enzymatic systems 

include vitamins A, C and E; glutathione; a-Iipoic acid; carotenoids; trace elements 

Iike copper, zinc and selenium; coenzyme QIO (COQIO); and cofactors Iike folic acid, 

uric acid, albumin, and vitamins B1, B2, B6 and B12• These systems are located in cell 

membrane, cystol, and plasma where they play specific functions. Numerous studies 

demonstrated that antioxidant vitamins and supplements can help lower the markers 

indicative of oxidative stress and lipid peroxidation in diabetic patients and animal 

models (Mayne, 2003). A number of studies have reported vitamins C and E and beta­

carotene deficiency in diabetic patients and experimental diabetic animais (Penckofer 

et al., 2002; Naziroglu and Butterworth, 2005). Vitamin E (tocopherols and 

tocotrienols) is a lipophilic vitamin that prevents lipid peroxidation. It exists in 8 

ditferent forms, of which alpha-tocopherol is the most active form in humans. Alpha­

tocopherol mainly eliminates Iipid peroxyl radicals while gama-tocopherol is able to 

scavenge peroxinitrites. Hydroxyl radical reacts with tocopherol forming a stabilized 

phenolic radical which is reduced back to the phenol by ascorbate and NAD(P)H 



17 

dependent reductase enzymes (Hensley et al., 2000; Hensley et al., 2004). Vitamin C 

is a hydrophilic molecule and is the strongest physiological antioxidant acting in the 

organism's aqueous environment. It has been shown to be an important antioxidant, to 

regenerate vitamin E through redox cycling, and to raise intracellular glutathione 

levels (Zaidi and Banu, 2004). Thus vitamin C plays an important role in protein thiol 

group protection against oxidation (Rahimi et al., 2005). In contrast to vitamin A, the 

combination of vitamins C and E can also be safely used in high doses to prevent 

diabetes and cardiovascular disease (Hatzigeorgiou et al., 2006). 

COQIO is a lipid soluble antioxidant, endogenously synthesized compound that 

acts as an electron carrier in the Complex 11 of the mitochondrial electron transport 

chain. At higher concentrations, it scavenges '02' and improves endothelial 

dysfunction in diabetes. Furthermore, it inhibits lipid peroxidation by either 

scavenging free radicals directly or reducing alpha-tocopheroxyl radical to alpha­

tocopherol (Kagan et al., 1990; Emster and Dallner, 1995; Forsmark-Andree et al., 

1995; Lass and Sohal, 1998; Abusheikha et al., 1998). The concentration of CoQ 

homologues in plasma, tissue homogenates and mitochondria can be increased by 

dietary COQIO supplementation. CoQ supplementation can modulate the plasma 

aminothiol redox status towards antioxidants and lower protein oxidative damage in 

skeletal muscle mitochondria (Vahle et al., 2002). Furthermore, CoQ intake enhances 

the antioxidative potential of tissues by elevating the endogenous amounts of alpha -

tocopherol (Kamzalov et al., 2003). 

Glutathione, a water-soluble tripeptide (y-L-Glu-L-Cys-Gly) is the most 

abundant intracellular nonprotein thiol compound in mammalian cells (Sies, 1999). It 

plays a crucial role in antioxidant defense, nutrient metabolism and in regulation of 
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pathways essential for the whole body homeostasis (Deneke and Fanburg, 1989; 

Kretzschmar, 1996). It occurs in reduced thiol (OSH) and oxidized disulfide forms 

(OSSO). OSH is linked to many physiologic processes including detoxification of 

xenobiotics, modulation of signal transduction, prostaglandin metabolism, regulation 

of immune response, and enzyme activities. Synthesis of glutathione depends on the 

intake of cysteine. Cysteine availability is known as the rate-Iimiting factor in OSH 

synthesis. Glutathione deficiency leads to increase oxidative stress and may therefore 

play a key role in the pathogenesis of many diseases. Low levels of glutathione are 

found in persons with arthritis, diabetes, and cardiac injuries (Julius et al., 1994) or in 

neurodegenerative pathologies including dementia (Jenner, 1994). 

Alpha-Lipoic acid (LA), a dithiol compound derived from octanoic acid, is 

used as a pote nt antioxidant, and has special criteria making it a powerful antioxidant. 

These criteria include radical quenching, metal chelation (Packer et al., 1995), 

amphiphilic character, bioavailability and safety, interaction with other antioxidants, 

and metabolic regeneration (Packer et al., 1995). LA scavenges hydroxyl radicals, 

hypochlorous acid, peroxynitrite, and singlet oxygen. Dihydrolipoic acid also 

scavenges superoxide and peroxyl radicals and can regenerate thioredoxin, vitamin C, 

and glutathione, which in turn can recycle vitamin E. In addition to its antioxidant 

properties, LA increases glucose uptake through recruitment of the glucose 

transporter-4 to plasma membranes, a mechanism that is shared with insu lin­

stimulated glucose uptake by activating elements of the insulin-signaling pathway. 

Furthermore, recent trials have demonstrated that treatment of insulin-resistant fatty 

Zucker rats with LA increased both oxidative and nonoxidative glucose metabolism 

and enhanced insu lin sensitivity (Jacob et al., 1996). In experimental and clinical 

studies, LA markedly reduced the symptoms of diabetic pathologies, including 
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cataract formation (Maitra et al., 1995), vascular damage (Hofmann et al., 1999), and 

improved neural blood flow, endoneural glucose uptake and metabolism and nerve 

conduction (Ruhnau et al., 1999; Smith et al., 2004). Treatment with a-lipoic acid has 

also been shown to prevent diabetic nephropathy (Siu et al., 2006). 

1.8 N~acetyl-L-cysteine (NAC) 

N-acetyl-L-cysteine (NAC) developed in the 1960s, is a sulfhydryl-containing 

compound, which is a stable derivative of the amino acid cysteine, has antioxidant 

properties and makes up part of the tripeptide glutathione. NAC is rapidly absorbed 

into various tissues following an oral dose, is deacetylated and metabolized in the 

intestine and liver, and incorporated into disulfide protein peptides. A peak plasma 

level of NAC occurs approximately one hour after an oral dose and at 12 hours post­

dose it is undetectable in plasma (De et al., 1989).The biological activity of NAC is 

attributed to its sulfhydryl group while its acetyl substituted amino group affords its 

protection against oxidative and metabolic processes. NAC can be administered 

orally, intravenously and via respiratory nebulizer. 

1.8.1 Mechanism of action of N AC as antioxidant and anti-inflammatory agent 

NAC is rapidly metabolized to cysteine, which is a direct precursor in the 

synthesis of intracellular GSH. In this way, it acts as an antioxidant by restoring the 

pool of intracellular reduced GSH (Santangelo, 2003). NAC can also have reducing 

and antioxidant properties by acting as a direct scavenger of free radicals such as OH· 

and H202 and 02-· (Aruoma et al., 1989; Benrahmoune et al., 2000). Moreover, as a 

direct consequence of its antioxidant and SH-donating properties, NAC restores 

cellular redox-status and can in this way modulate the activity of redox-sensitive cell-
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signaling and transcription pathways su ch as NF-KB which regulates a variety of 

proinflammatory genes (Desaki et al., 2000), and the p38, ERK 1 /2, SAPKlJNK, c-Jun 

and c-Fos pathways (Zafarullah et al., 2003; Wuyts et al., 2003). The possible sites of 

action of NAC as antioxidant and anti-inflammatory agent on chronic obstructive 

pulmonary disease are shown in Figure 4 (Sadowska et al., 2007). 
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Figure 4 Possible sites of action of N-acetyl-L-cysteine (NAC). NAC inhibits the 
oxidative stress by acting as direct ROS scavenger and by changing the cellular redox 
status. This, in tum, may influence NF-KB activation and modulate the inflammatory 
response (Sadowska et al., 2007). 

1.8.2 Therapeutic uses of NAC 

NAC has been in clinical practice since 1960s (Ziment, 1986; Flanagan, 1987; 

de and De, 1993; van, ] 995). Initially, NAC was introduced as a mucolytic agent for 
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the treatment of respiratory diseases such as chronic bronchitis and cystic fibrosis 

(Webb, 1962; Richardson and Phipps, 1978). It acts as an expectorant by stimulating 

both ciliary action and the gastro-pulmonary vagal retlex, thereby clearing the mucus 

from the airway (Sheffner, 1966). For this reason, NAC is used clinically in 

bronchopulmonary diseases to reduce both the viscosity and the tenacity of mucus, as 

weil as to facilitate its removal. In the late 1970s, NAC was recognized as an antidote 

for the therapy of acute acetaminophen intoxication (Prescott et al., 1977; Prescott et 

al., 1979). Recent studies have shown an effect of NAC in the prevention of 

atheromatous plaque formation, NAC inhibits the oxidation of LDL which 

accumulates in the vascular wall and promotes a local intlammatory process 

contributing to the progression of atheromatous plaque (Van et al., 2005). More 

recently NAC was found to prevent fructose-induced insulin resistance and 

hypertension in rats (Song et al., 2005). NAC also increased fat degradation and 

decreased body weight gain in conditions of excess sucrose intake (Diniz et al., 2006). 

Chronic treatment with NAC in Spontaneously Hypertensive Rats (SHR) decreased 

blood pressure by improving sympathetic functions and p-adrenergic pathway 

(Girouard et al., 2003). Furthermore, NAC exerts protective effect against glucose 

toxicity on pancreatic p-ceUs in various models of diabetes, reduces blood glucose and 

increases glucose-induced insulin secretion (Ho et al., 1999; Kaneto et al., 1999; 

Tanaka et al., 1999). NAC has been shown to be a strong antioxidant, to exert 

antigenotoxic and anticarcinogenic properties, and to detoxify free radicals that cause 

DNA changes in diseases (e.g., cancer). These effects of NAC have been attributed to 

its ability to act as an analogue of cysteine and precursor of reduced glutathione 

(GSH), to improve the activities of glutathione S-transferases, glutathione peroxidase, 

glutathione reductase, NADH- and NAD(P)H-quinone reductase, and probably, to 
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promote DNA repair by protecting ADP-ribosyltransferase activity (Albano et al., 

1984; De et al., 1984; De et al., 1984; De et al., 1985; De et al., 1985; De et al., 1986; 

Perchellet et al., 1987; Dorsch et al., 1987; De and Ramel, 1988; Cesarone et al., 

1988). 

1.9 Angiotensin-converting enzyme (ACE) inhibitor 

Angiotensin Tl (Ang Il), is a potent vasoconstrictor that is involved in the 

regulation of vascular functions such as cell growth, apoptosis, migration, 

inflammation, and fibrosis (Touyz and Schiffrin, 2000; Wolf and Wenzel, 2004). Ang 

Il is an important growth modulator of blood vessels and renal organogenesis during 

development. It plays a critical role in regulating blood pressure and fluid homeostasis 

in physiological conditions. Ang 11 contributes to altered vascular tone, endothelial 

function, structural remodeling and to vascular inflammation, characteristic features 

of vascular damage in hypertension, atherosclerosis, vasculitis, and diabetes 

(Griendling and Ushio-Fukai, 2000; Touyz and Schiffrin, 2000). Angiotensin-l 

converting enzyme (ACE) inhibitors are widely accepted as vascular protective 

agents. They are frequently used as the first line of treatment of hypertension in type 2 

diabetic patients, and have been shown to improve insulin sensitivity and to reduce 

cardiovascular complications in diabetes (Henriksen et al., 1996; McFarlane et al., 

2003). The mechanism by which ACE inhibition improves insulin sensitivity and 

reduces the development of type 2 diabetes in patients with essential hypertension is 

not yet completely elucidated and goes beyond the blockade of the renin-angiotensin 

system (Couture and Girolami, 2004). Treatment with ACEI attenuated ROS 

formation and prevented phenotypic changes in the heart (cardiomyocyte 

hypertrophy, perivascular fibrosis) and in the aorta of diabetic rats (Fiordaliso et al., 
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2006). ACE is a major link between the renin-angiotensin system and the kinin 

system, because it not only con verts Ang 1 to Ang II but also degrades kinins. 

1.9.1 Ramipril 

Ramipril is an ACE inhibitor. As inactive prodrug, ramipril is converted to 

ramiprilat in the liver by esterase enzymes, and is used to treat hypertension and heart 

failure, to reduce proteinuria and renal disease in patients with nephropathies, and to 

prevent stroke, myocardial infarction, and cardiac death in high-risk patients. 

Ramiprilat is mostly excreted by the kidneys. The half-Iife of ramiprilat is variable (3 

- 16 hours), and is prolonged by heart and liver fai 1 ure, as weil as kidney failure. 

Ramiprilat, the active metabolite, competes with angiotensin 1 for binding at the 

angiotensin-converting enzyme, blocking the conversion of angiotensin 1 to 

angiotensin II. As angiotensin Il is a vasoconstrictor and a negative-feedback 

mediator for renin activity, lower concentrations result in a decrease in blood pressure 

and an increase in plasma renin. Ramiprilat may also act on kininase II, an enzyme 

identical to ACE that degrades the vasodilator bradykinin. Recent studies have shown 

that ramipril, reduced the accumulation of advanced glycation end products in 

experimental diabetic nephropathy (Forbes et al., 2002). 

1.10 Diabetic neuropathic pain 

Functional and structural impairments of peripheral nervous system in diabetic 

individual are generally defined as diabetic neuropathy, which is a common 

complication of both type 1 and type 2 diabetes (Boulton et al., 2005). Periphera1 

neuropathy affects about 30% of people with diabetes mellitus. Between 16% and 

26% of diabetes patients experience chronic pain. This may be referred to as diabetic 
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neuropathic pain (ONP) or diabetic peripheral neuropathic pain (DPNP) (Jensen et al., 

2006). Most commonly, it manifests as sensory loss, which predisposes to foot 

abnormalities and high risk of ulceration. It has been reported that between 4 and 33% 

of patient with diabetes mellitus suffer from the painful type of neuropathy, which is 

recognized as one of the most difficult type of pain to treat (Ziegler et al., 1992; 

Oaousi et al., 2004). Oiabetic neuropathic pain can occur either spontaneously or as a 

result of exposure to mild painful stimuli (hyperalgesia) or to abnormal non painful 

stimuli (allodynia) (Brown and Asbury, 1984; Clark, Jr. and Lee, 1995). Diabetic 

neuropathy, during its natural course progresses from initial functional changes to late 

poorly reversible structural changes. Various interconnected pathogenetic concepts of 

diabetic neuropathy have been proposed based on metabolic and vascular factors, 

mostly derived from long-term hyperglycemia. The etiology of diabetic neuropathy is 

multifactorial, long term hyperglycemia, increased oxidative stress and altered protein 

kinase C activity and poly AOP-ribose polymerase (PARP) activation, all these lead 

to development of neuropathy (Yagihashi, 1995; Sima and Sugimoto, 1999; 

Yagihashi, 2006; Yagihashi et al., 2007) (Fig 5). 
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Figure 5 Multifactorial etiology of diabetic neuropathy. Hyperglycemia increases 
polyol pathway, AGE formation, oxidative stress and cytokine release. These factors 
interact or operate independently in diabetic neuropathy. They can affect nerve tissues 
either directly or indirectly through nutrient vascular tissues (Yagihashi et al., 2007). 

These pathogenic mechanisms have been targeted in several experimental and 

clinical trials (Yagihashi et al., 2007). The experimental rat model of chronic glucose 

feeding presents aIl the hall marks of type 2 diabetes such as the increases of plasma 

levels of glucose and insulin, arterial hypertension, insulin resistance and increases in 

the production of superoxide anion (marker of the oxidative stress) in the heart and 

aorta (Midaoui and de Champlain, 2002; Midaoui and de Champlain, 2005). Further 

studies have shown sensory abnormalities, namely tactile and cold allodynia, after 4 

weeks of treatment with glucose. However, glucose-fed rats did not exhibit thermal 

hyperalgesia up to 20 weeks of treatment. Thermal hyperalgesia is mediated by 

myelinated Ab and unmyelinated primary afferent neurons, which include both 

peptidergic and non peptidergic C-fibers. Foot withdrawal responses evoked by 10w 

rates of skin heating are primarily mediated by C-fiber nociceptors (Handwerker and 
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Kobal, 1993; Yeomans and Proudfit, 1996). Whereas C-fi bers are thought to be 

involved in the transmission of warm sensations, Ao-fibers are stimulated by cold 

stimulus (Pierau and Wurster, 1981). On the contrary, tactile aBodynia is a central 

phenomenon mediated by large myelinated A~-tibers (Woolf et al., 1992; Shortland et 

al., 1997; Pitcher and Henry, 2000). Thus, sensory neuropathy measured in glucose­

fed rats may affect primarily sensory A~ and Ao tibers and less Iikely polymodal C­

tibers. 

A recent study showed an impairment of cutaneous endothelium-related 

vasodilation and C-tiber-mediated vasoconstriction in peripheral diabetic neuropathy. 

Peripheral nerve perfusion is reduced by diabetes and this makes an important 

contribution to neuropathy in patient and animal models (Tuck et al., 1984; Cameron 

et al., 2001; Quattrini et al., 2007). Treatment of diabetic neuropathic pain is based on 

four cornerstones: (a) causal treatment aimed at (near)-normoglycemia, (b) treatment 

based on pathogenetic mechanisms, (c) symptomatic treatment, and (d) avoidance of 

risk factors and complications (Ziegler, 2006). A c1inical study in diabetic 

polyneuropathic patients has shown that the oral treatment with alpha-lipolic acid for 

tive weeks improves the neuropathic symptoms and deticits (Ziegler et al., 2006). 

Inhibition of xanthine oxidase (an important source of ROS that contributes to 

neurovascular dysfunction in experimental diabetes) could be a potential therapeutic 

approach to diabetic neuropathy and vasculopathy (lnkster et al., 2007). Systemic 

injection of the ROS scavenger phenyl-N-tert-butylnitrone (PBN) relieved mechanical 

allodynia in a model of neuropathic pain (Kim et al., 2004). Intraperitoneally 

administration ofNAC resulted in signiticant reduction of hyperalgesia after chronic 

constriction of the sciatic nerve in rats (Naik et al., 2006). 
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1.11 Insulin signaling and action 

Insu 1 in is the most potent ana bol ic hormone and is essential for normal tissue 

development, growth, and maintenance of body glucose homeostasis. It is secreted by 

the pancreatic B cells of islets of Langerhans in response to increased circulating 

levels of glucose and amino acids after a meal. Insulin regulates glucose homeostasis 

at different organ sites, reducing hepatic glucose output (via decreased 

gluconeogenesis and glucogenolysis) and increasing the rate of glucose uptake, 

primarily into striated muscle and adipose tissue (Goal stone and Draznin, 1997). 

Gluconeogenesis represents the generation of glucose [rom non-sugar carbon 

substrates and occurs during periods of fasting, starvation or intense exercise. 

Glycogenolysis refers to enzymatic breakdown or catabolism of the polysaccharide 

glycogen into molecules of glucose and molecules of glucose I-phosphate. 

Insulin signaling at the target tissue results in a large array of biological 

functions. It is essential for normal growth and development and for normal 

metabolism of glucose, fat and protein. The insu lin pathway is critical for the 

regulation of intracellular and blood glucose levels and the avoidance of diabetes. 

Moreover, studying the signaling pathways involved in insulin action increases our 

understanding of the pathophysiology of insulin resistance related to type 2 diabetes 

and can help to identify the key molecules for the development of more effective 

therapeutic. 

1.11.1 Insulin receptor 

The insu lin receptor (IR) belongs to a family of transmembrane receptors with 

intrinsic tyrosine kinase activity (Schlessinger, 1993). 1t is an heterotetrameric protein 

made oftwo extracellular a subunits and two transmembrane ~ subunits (Fig 6). 



28 
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Figure 6 Structure of the insu lin receptor. CR, Cysteine-rich domain; JM, 

juxtamembrane domain; KD, kinase domain; CT, carboxyl-terminal domain. The 

positions of the tyrosine autophosphorylation sites are indicated. The left side depicts 

IR-B, which includes l2-amino acids alternatively spliced exon Il (ExIl) at the 

carboxyl terminus of the a -subunit. The right side depicts IR-A. The extracellular -

and intracellular B-subunits are indicated. The horizontal black bars represent 

disulfide linkages (De Meyts and Whittaker, 2002). 

Binding of insulin to a subunits induces a conformational change resulting in 

the autophosphorylation of a number of tyrosine residues present in ~ subunits (Van, 

Baron et al., 2001). These residues are recognized by phosphotyrosine-binding (PTB) 

domains of adaptor proteins such as members of the insulin receptor substrate family 

(lRS) (Lizcano and Alessi, 2002). Receptor activation leads to the phosphorylation of 

key tyrosine residues on IRS proteins, sorne of which are recognized by the Src 

homology 2 (SH2) domain of the p85 regulatory subunit of PI 3-kinase (a lipid 
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kinase). The binding of insu lin to the a subunit of IR not only concentrates insulin at 

its site of action, but also induces conforrnational changes in the receptor, which in 

turn stimulates the tyrosine kinase activity intrinsic to the p subunit of the IR and 

triggers the signaling cascades (Fig 7). Insulin receptors trans phosphorylate several 

immediate substrates (on Tyr residues) including IRS 1 - 4, Shc, and Gab 1, Cbl, 

APS, and P60dok
. Each of these provides specifie docking sites for other signaling 

proteins containing Src homology 2 (SH2) domains (White and Yenush, 1998). 

These events lead to the activation of downstream signaling molecules including PI-3 

kinase. 

The four IRS proteins are highly homologous with overlapping and differential 

tissue distribution. Studies with genetic deletion in mouse models and cell lines 

indicate that the IRS proteins serve complimentary functions in different tissues as 

immediate substrates for insulin and IGF-I receptors. Combined heterozygous 

deletions of insulin receptor, IRS-l, and IRS-2 in different tissues develop severe 

insulin resistance in skeletal muscle and liver and marked p-cell hyperplasia. A recent 

study suggested tissue-specifie differences in the roles of IRS proteins to mediate 

insulin action, with IRS-I playing a prominent role in skeletal muscle and IRS-2 in 

liver (Kido et al., 2000). Aiso rRS-2 promotes p cell replication, function, and 

survival, especially during metabolic stress (Park et al., 2006). Furtherrnore, recent 

studies showed that IRS-3 and IRS-4 impair IGF -l-mediated IRS-I and IRS-2 

signal ing in cells (Tsuruzoe et al., 2001). 

Activation of the insu lin receptor evokes increased transcription of SREBP 

and the phosphorylation of members of the IRS family, SHC and Cbl. Upon tyrosine 

phosphorylation, these proteins interact with signaling molecules through their SH2 
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domains, which results in the activation of a variety of signaling pathways, including 

Pl 3-kinase signaling, MAPK activation and the activation of the Cbl/CAP complex. 

These pathways act in a coordinated manner to regulate glucose, lipid and protein 

metabolism. 
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Figure 7. Activation of the insulin receptor evokes increased transcription of SREBP 

and the phosphorylation of members of the IRS family, SHC and Cbl, Gab l, SIRPS, 

and adaptor protein containing PH and SH2 domains APS. This results in the 

activation of a variety of signaling pathways, including PI 3-kinase signaling, MAPK 

activation and the activation of the Cbl/CAP. Taken from 

www.endotext.org/Diabetes/diabetes4/diabetesframe4.htm (Li and Zhang 2007). 
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1.11.2 Glucose transporters 

Glucose is cleared from the bloodstream by transporters (GLUTs) which 

include a family of highly related 12 transmembrane domain-containing proteins 

(Joost and Thorens, 2001). The GLUT family contains 13 known members and can be 

classified into three classes based upon their structural characteristics (Joost et aL, 

2002). Class 1 includes GLUTs 1-4 which are, by far, the best characterized 

transporters of the family. Class II includes GLUT5 (a fructose-specific transporter), 

and GLUTs 7, 9, and Il (Joost and Thorens, 2001). Class III includes GLUTs 8, 10, 

12, and the proton-myoinositol symporter H+-myo-inositol cotransporter (HMITI) 

(Joost and Thorens, 2001). GLUT4 is expressed primarily in striated muscle and 

adipose tissue and, unlike most other GLUT isoforrns, is sequestered in specialized 

intracellular membrane compartments under basal conditions (Bryant et al., 2002). 

GLUT4 is the only known insulin-responsive GLUT which is highly and specifically 

expressed in muscle and adipose tissue, the major sites of postprandial glucose 

disposaI. Interestingly, overexpression of the human GLUT4 gene in muscle and fat 

tissue of the diabetic db/db mou se, which lacks the leptin receptor, protects these 

animais from insulin resistance and diabetes (Brozinick et aL, 2001) 
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1.12 Hypothesis (article #1) 

Long term treatments with N-acetyl-L-cysteine (NAC), a potent antioxidant, 

and ram ipril (an angiotensin-l converting enzyme inhibitor) can reverse arterial 

hypertension and insulin resistance in a rat model of diabetes induced by glucose 

tèeding. It is expected that these beneficial effects are partly due to the inhibition of 

the oxidative stress (associated to overproduction of aortic/hepatic superoxide anion 

and plasma lipid peroxidation) and to the normalization of skeletal muscle insu lin 

receptor substrate-l (IRS-l) protein expression. Decreases in the expression ofIRS-I 

may account for insulin resistance as these proteins play an important role in insulin 

signaling. 

Experimental approach: Male Wistar rats were given tap water only (control) or 

water supplemented with 10% D-glucose for 20 weeks. Treatments with NAC (2 

g/kg/day) and ramipril (1 mg/kg/day) were initiated at 16 weeks in the drinking fluid. 

Body weight and blood pressure were measured weekly during the last four weeks. 

Systolic blood pressure was measured by tail-cuff photoplethysmography, Plasma 

glucose concentrations were measured with a glucometer. The Homeostasis Model 

Assessment (HOMA) was used as an index of insulin resistance and calculated by the 

following formula: insulin (!lU / ml) x glucose (mmol/L) ..;- 22.5. Superoxide anion 

production was measured in isolated aortic and hepatic small slices using the 

lucigenin-enhanced chemiluminescence method. TotalIRS-1 protein levels in skeletal 

muscle (gastrocnemius muscle) were measured by Western blot. Plasma samples were 

analyzed for malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) which are 

specific markers of lipid peroxidation. 
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1.13 Hypothesis (article #2) 

Long tenn treatments with N-acetyl-L-cysteine (NAC), a pote nt antioxidant, and 

ramipril (an angiotensin-l converting enzyme inhibitor) can improve sensory 

polyneuropathy such as tactile and cold allodynia in add ition to their anti-hypertensive 

effects in glucose-fed rats. ft is suggested that these sensory abnonnalities are 

associated with the oxidative stress and the induction of kinin BI receptor expression. 

Inhibition of oxidative stress may provide a protective effect by preventing the 

induction of this pro-nociceptive receptor. This should be consistent with the 

inhibition of tactile and cold allodynia recently reported with BI receptor antagonists. 

Blockade of this receptor in the central nervous system also reversed high blood 

pressure in glucose-fed rats. 

Experimental approach: Male Wistar rats (50-75 g) were given 10% D-glucose in 

their drinking water for 11 weeks or tap water only (controls). Treatment with NAC (\ 

g/kg/day, gavage) or ramipril (1 mg/kg!day in drinking water) was initiated after six 

weeks, for a period of five weeks. Blood glucose was measured weekly with the 

glucose oxidase-impregnated test strip. Systol ic arterial blood pressure was measured 

weekly before and after the administration of NAC and ramipril by tail-cuff 

photoplethysmography. Tactile allodynia was assessed by measuring the hindpaw 

withdrawal threshold to a calibrated series of six von Frey filaments (2, 4, 6, 8, 10 and 

15 g). Co Id allodynia was assessed using the acetone drop method. At the term of the 

protocol of Il weeks, rats were anaesthetised with CO2 inhalation and then 

decapitated. Approximately 10 mg of rat tissues (thoracic spinal cord and renal 

cortex) were isolated and put in RNA later stabilisation reagent, and the relative 

quantification of BI receptor gene expression was analyzed by the 2-';Ct method 
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CHAPTER TWO 

Article #1: Comparative effects ofN-acetyl-L-cysteine and ramipril 

on arterial hypertension, insu lin resistance and oxidative stress in 

chronically glucose-fed rats 
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2.0 Abstract 

Objectives ofthe study : To compare the ability ofN-acetyl-L-cysteine (NAC) and 

ramipril (ACEI) to reverse arterial hypertension, insulin resistance, the oxidative 

stress, Iipid peroxidation and changes of skeletal muscle insulin receptor substrate-J 

(IRS-l) protein expression in a rat model of diabetes. 

Methods: Rats were given tap water only (control) or water supplemented with 10% 

D-glucose for 20 weeks. Treatments with NAC (2 g/kg/day) and ramipril (1 

mg/kg/day) were initiated at 16 weeks in the drinking fluid. 

Results: Systolic blood pressure, plasma levels of insulin and glucose as weil as 

insulin resistance (HOMA index) were significantly higher in rats treated with glucose 

for 20 weeks. This was associated with a higher production of superoxide anion and 

NADPH oxidase activity in aorta and liver and with a marked reduction of 1 RS-J 

protein expression in the gastrocnemius muscle. NAC prevented aIl these alterations. 

Although ramipril provided the same therapeutic effect as NAC, on blood pressure 

and lRS-l protein, it had a lesser effect on insulin resistance. At the same time 

superoxide anion production was lowered only in aorta but not in liver by ramipri1. 

Furthermore, it did not reduce NADPH oxidase activity in aorta or liver and fai\ed to 

reduce plasma levels of 4-hydroxynonenal and malondialdehyde in contrast to NAC. 

Conclusions: The data indicate a pathologic role for oxidative stress in both 

hypertension and insulin resistance and that ramipril antioxidant activity is exerted 

most strongly in vascular tissue. In contrast to ramipril, the antioxidant effect of NAC 

is dependent ofNADPH oxidase and affects lipid peroxidation. 

Key words: hypertension, insu lin resistance, oxidative stress, N-acetyl-L-cysteine, 

ramipril 
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2.1 Introduction 

The "metabolic syndrome" is an emerging epidemic worldwide and consists of 

an association of multiple cardiovascular risk factors (1). These factors, including 

hypertension, insu lin resistance, and obesity, directly contribute to the higher 

incidence of cardiovascular disease as weil as to the development of type 2 diabetes. 

An increase in oxidative stress is one of the main hypotheses suggested to explain the 

enhanced risks associated with metabolic syndrome [l, 2, 3]. Oxidative stress may 

result from either excessive production of reactive oxygen species (ROS), especially 

the superoxide anion (02 e), or from reduced antioxidant reserve. Previous studies 

have suggested that increased O2 e- production may be involved in the pathogenesis 

and complications of both diabetes and hypertension [3,4]. In animal studies, arterial 

tissue O2 e- levels were reported to be increased in spontaneously hypertensive rats 

(SHR) [5, 6], insulin resistant rats [3] and obese rats [4]. Treatment with the thiol 

compound, alpha-lipoic acid was reported to lower blood pressure in SHR [7], to 

enhance insulin-stimulated glucose metabolism and to reduce insu lin resistance in 

fatty Zucker rats [8], and to increase tissue levels of gluthatione in mice [9]. We 

previously reported that the treatment with alpha-lipoic acid prevented the sustained 

elevation of blood pressure, the basal overproduction of O2 e- in cardiovascular tissues 

and attenuated the development of insu lin resistance in 4 and 12 week glucose-fed rats 

[10-13]. Moreover, N-acetyl-L-cysteine (NAC), another potent antioxidant acting as a 

free radical scavenger and glutathione donor [14], was found to prevent fructose­

induced insulin resistance and hypertension in rats [15]. NAC also decreased body 

weight gain in conditions of excess sucrose intake [16]. Chronic treatment of SHR 

with NAC decreased blood pressure and heart rate by inhibiting sympathetic activity 
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and restoring cardiac ~-adrenoceptor function [17]. The improvement of the 

cardiovascular function in SHR was also associated with the normalization of tissue 

lipid peroxidation and of the balance between oxidized and reduced glutathione [18, 

19]. Furthermore, NAC exerts protective eftècts against glucose toxicity on pancreatic 

~-cells in various models of diabetes, reduces blood glucose and increases glucose­

induced insulin secretion [20, 21, 22]. 

Angiotensin-l converting enzyme (ACE) inhibitors, frequently used as first 

line treatment of hypertension in type 2 diabetic patients, have been shown to improve 

insu lin sensitivity and to reduce cardiovascular complications in diabetes [23, 24]. The 

mechanism by which ACE inhibition improves insulin sensitivity and reduces the 

development of type 2 diabetes in patients with essential hypertension is not yet 

completely elucidated [25]. Yavuz et al. [26] have reported that ACE inhibitors 

improve insulin sensitivity and endothelial dysfunction and decrease lipid 

peroxidation in patients with essential hypertension. Moreover, studies have shown 

that ramipril, an ACE inhibitor reduced the accumulation of advanced glycation end 

products in experimental diabetic nephropathy [27]. lt is therefore tempting to 

propose that ACE inhibitors exert their beneficial effects on glucose metabolism and 

blood pressure through their antioxidant properties in .hypertensive and insulin 

resistant states. 

We thus postulated that an increase in oxidative stress could contribute not 

only to the development of hypertension and insulin resistance but also to their 

maintenance. In this study, we investigated whether a chronic treatment of 4 weeks 

with the antioxidant, NAC, or the ACE inhibitor ramipril could reverse the established 

blood pressure elevation, insulin resistance, plasma lipid peroxidation and the rise in 

02 e- and NADPH oxidase activity in aorta and liver tissues in the experimental model 
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of chronic glucose feeding. Moreover, we evaluated the effect of 20 weeks of glucose 

feeding on skeletal muscle insulin receptor substrate-l (IRS-l) protein levels in the 

presence and absence ofNAC or ramipril. 



2.2 Materials and Methods 

2.2.1 Animais and protocols 

40 

Male Wistar rats weighing 70-80 g were purchased from Charles River, St­

Constant, Que., Canada, a few days prior to experiments and were housed two per 

cage, under controlled conditions of temperature (23 oC) and humidity (50 %), on a 

12 h light-dark cycle and allowed free access to normal chow diet (Charles River 

Rodent # 5075) and drinking water. Ali research procedures and the care of the 

animais were in compliance with the guiding principles for animal experimentation as 

enunciated by the Canadian Council on Animal Care and were approved by the 

Animal Care Committee of our University. Thirty six rats were given 10 % D-glucose 

in their drinking water during 16 weeks. For the subsequent four weeks, they were 

randomly administered 10% D-glucose (n = 18), D-glucose plus NAC (2 glkg/day, n 

= 7) or D-glucose plus ramipril (1 mg/ kg/day, n = Il) in their drinking water. Control 

rats (n=14) received tap water for the entire 20 weeks. Fluid consumption of each rat 

was monitored every two days to adjust the dosage of NAC and ramipril throughout 

the study. 

Body weight and blood pressure were measured weekly during the last four 

weeks. Systolic blood pressure was measured by tail-cuff photoplethysmography 

(Harvard Apparatus Ud) and registered on a MacLab/8 system. The average of five 

blood pressure readings was recorded for each measurement. At the end of treatment, 

rats were killed by decapitation after light anesthesia with CO2• Blood was rapidly 

collected from sectioned carotids and transferred into a chilled vacutainer tube 

containing 0.63 mg/ml heparin for plasma biochemistry. Ali blood samples were 

drawn early in the moming after fasting ovemight (16 h). Slices of liver and aorta 
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were sam pied and placed in liquid nitrogen and stored at -80 oC until the measurement 

of02
e

- and NADPH activity. 

2.2.2 Laboratory analysis 

Plasma glucose concentrations were measured with a glucometer (Elite, Bayer 

lnc, Toronto, Canada). lnsulin levels were determined by radioimmunoassay (Rat 

insulin RIA kit, Linco Research, St. Charles, MO) using 1 00 ~l plasma. The 

Homeostasis Model Assessment (HOMA) was used as an index of insu lin resistance 

and ca1culated by the following formula: insu lin (Il-U / ml) x glucose (mmol/L) ...;- 22.5 

[28]. 

2.2.3 Aortic and hepatic superoxide anion measurement 

Superoxide anion production was measured in isolated aortic and hepatic small 

slices using the lucigenin-enhanced chemiluminescence method as described 

previously [29, 30]. Briefly, small slices from aorta and liver tissues were 

preincubated in Krebs-Hepes buffer (saturated with 95 % O2 and 5 % CO2, at room 

temperature) for 30 min and then transferred to a glass scintillation vial containing 5 

~mol/L lucigenin for the determination of basal O2 e- levels. The chemiluminescence 

was recorded every minute for 15 min at room temperature in a liquid scintillation 

counter (Wallac 1409, Tuku, Finland). Lucigenin counts were expressed as cpm/mg 

of dry weight tissue. Moreover, the activation of NAD(P)H oxidase activity in the 

samples was assessed by adding 0.1 mM NADPH to the vials before counting. Basal 

superoxide induced luminescence was then subtracted from the luminescence value 

induced by NADPH. 

2.2.4 Skeletal muscle IRS-l protein levels 

Total IRS-l protein levels in skeletal muscle were measured by Western 
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blotting as follows: gastrocnemius muscle was homogenized in Iysis buffer: 50 mM 

Tris pH 7.5, 1 mM EDTA, 1 mM EGTA, 0.5 mM sodium orthovanadate, 0.1 % beta­

mercaptoethanol, 1% Triton X-100, 5 mM sodium pyrophosphate, 10 mM sodium­

beta-glycerol phosphate, 0.1 mM PMSF, 1 ~g/ml Aprotinin, 1 ~glml pepstatin, 1 

~g/ml leupeptin and 1 ~g/ml microcystin. Equal amounts of total cell Iysates (40 ~g) 

were separated on 10% sodium dodecyl sulphate (SDS) polyacrylamide gels by 

electrophoresis and transferred onto nitrocellulose membranes. Nonspecific binding 

was blocked with 5 % BSA and membranes were then probed with anti-IRS-1 

antibody (1/1000, Upstate Biotechnology, Lake city, New York). The blots were 

visualized using HRP-conjugated secondary antibody (1/2500 goat anti-Rabbit IgG­

HRP, Santa Cruz Biotechnology) followed by chemiluminescence. The prote in band 

intensities were quantified by densitometry. 

2.2.5 Malondialdehyde and 4-hydroxynonenal analysis 

To assess Iipid peroxidation, plasma samples were analyzed for 

malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) by a modification of a 

previously described method [31 J. Brietly, plasma aldehydes and 100 pmol of 

benzaldehyde-ring-D5 (internai standard) were derivatized by pentatluorobenzyl 

hydroxylamine hydrochloride (PFBHA'HCI) to form the aldehydes-PFBHA 

derivative. Plasma prote in was precipitated by methanol, and aldehydes were 

separated by hexane extraction. The hydroxyl group of 4-HNE was further derivatized 

by 50 !lI of N, O-bis(trimethylsilyl)-tritluoroacetamide (BSTF A) + 1 % 

trimethylchlorosilane (TMCS) at 60°C for 15 min. Finally, 50 !lI of hexane were 

added to each sample, and 1 !lI was analyzed by gas chromatography-mass 

spectrometry (GC-MS). The Hewlett-Packard 5973N MSD GC-MS was equipped 
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with an HP-5 ms capillary column (30 cm length, 0.25 mm JD, 0.25 /lm film 

thickness), and the mass spectrometry was performed in negative-ion chemical 

ionization with methane as the reagent gas. 

2.3 Drugs 

Except where otherwise stated, all chemical components of solutions and 

drugs were purchased from Sigma-Aldrich Canada. 

2.4 Statistical analysis of data 

Data are expressed as mean ± SEM of values obtained from (n) rats. Statistical 

analysis of data was performed with Graph-Pad Prism software. Data were subjected 

to a one-way analysis of variance (ANOV A), followed by the Bonferroni/Dunn 

multiple comparison test to estimate the signif1cance of differences between groups. 

Significance was considered when P < 0.05. 



44 

2.5 Results 

2.5.1 Systolic blood pressure and body weight 

As shown in Table 1, chronic administration of glucose for 16, 18 and 20 

weeks resulted in a significant increase in systolic arterial blood pressure when 

compared to control rats. The increase in systolic blood pressure in glucose-fed rats 

was not significantly reduced by NAC after two weeks but was significantly reduced 

after 4 weeks of treatment. On the other hand, the increase in systol ic blood pressure 

was reversed to control values after two and four weeks treatment with ramipril. 

Twenty weeks glucose feeding had no significant effect on final body weight in 

comparison to control animais (Table 2). A treatment of four weeks with NAC 

significantly reduced body weight in chronically glucose-fed rats. In contrast, four 

weeks treatment with ramipril had no significant effect on body weight in 20 week 

glucose-fed rats (Table 2). 

2.5.2 Metabolic parameters 

Twenty weeks of glucose feeding resulted in a significant increase in plasma 

levels of glucose in comparison to controls (Table 2). Four weeks of treatment with 

either NAC or ramipril normalized the hyperglycemia in glucose-fed rats to control 

values. As shown in Table 2, plasma insu lin levels were significantly increased (by 81 

%) in glucose-treated rats in comparison to control animais. Four weeks oftreatment 

with NAC normalized plasma insulin levels while ramipril reduced these by 42 % 

compared to untreated glucose-fed rats. lnsulin resistance as expressed by the HOMA 

index was increased by 166 % in glucose-fed rats in comparison to control animais 

(Table 2). A treatment of four weeks with NAC reversed insu lin resistance, while 

ramipril reduced it by 21 % (p > 0.05) in glucose-fed rats. 
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2.5.3 Oxidative stress parameters 

As shown in Figure 1 panels A and B, basal O2.- production was significantly 

(P<0.05) increased in 20 weeks glucose-fed rats in aorta and liver tissues in 

comparison with control. Four weeks of treatment with NAC normalized the rise in 

both aortic (P<O.O 1) and hepatic (P<0.05) basal O2.- production in glucose-fed rats. A 

treatment of four weeks with ramipril also normalized the increase in basal 02·­

production in aortic tissue (P<O.O 1). Ramipril failed to significantly reduce basal O2.­

production in hepatic tissue in 20 weeks glucose-fed rats. However, the residual value 

of basal O2.- production in this group was no longer significantly different from 

control values. As shown in Figure 2, panels A and B, NADPH oxidase activity was 

significantly increased in 20 weeks glucose-fed rats in aorta (P<0.05) and liver 

(P<0.05) tissues in comparison with control. Four weeks of treatment with NAC 

normalized (P<0.05) the increase in NADPH oxidase activity in both tissues in 

glucose-fed rats. In contrast, four weeks of treatment with ramipril had no effect on 

NADPH oxidase activity in aorta or liver tissues in glucose-fed rats. As illustrated in 

Figure 3, panels A and B, plasma levels of 4-hydroxynonenal and malondialdehyde 

were not altered by 20 weeks of glucose feeding. Four weeks treatment with NAC, 

however, decreased significantly (P<O.O 1) plasma levels of 4-hydroxynonenal and 

malondialdehyde in glucose-fed rats. A treatment of four weeks with ramipril had no 

significant effect on these markers in 20 weeks glucose-fed rats (Figure 3A, 3B). As 

shown in Figure 4, 20 weeks glucose feeding resulted in a significant (P<0.05) 

decrease ofIRS-1 protein levels in the gastrocnemius muscle in comparison to control 

animais. A treatment of four weeks with either NAC or ramipril normalized (P<0.05) 

the decrease ofIRS-1 protein levels in gastrocnemius muscle in glucose-fed rats. 
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2.6 Discussion 

In this study, it is reported for the first time that chronic high glucose (lO% in 

drinking water) feeding for 20 weeks increased the production ofvascular and hepatic 

O2.- along with NADPH oxidase activity. Rats treated chronically with glucose 

displayed a sustained increase in systolic blood pressure, insulin resistance and a 

decrease in IRS-l protein levels in the gastrocnemius muscle. Ali these abnormalities 

were restored by a four week treatment with NAC which was associated with the 

inhibition of vascular and hepatic oxidative stress and a decreased plasma Iipid 

peroxidation. Contrary to NAC, the therapeutic effect of ramipril in chronically 

glucose-fed rats was not associated with the inhibition ofNADPH oxidase activity or 

lowering of plasma Iipid peroxidation markers. 

The increase in oxidative stress in glucose-fed rats is in agreement with a 

previous study performed in the same strain of rats with a regimen of high sucrose 

[16]. NAC reduced body weight and plasma oxidative stress and normalized 

metabolic functions in hepatic tissue and thus enhanced fat degradation in chronically 

sucrose-fed rats [16]. In the present study, NAC also reduced body weight and 

decreased the overproduction of O2.- and NADPH oxidase activity in aorta and Iiver 

of20 week glucose-fed rats. Whereas lipid peroxidation was not increased in glucose­

fed rats, NAC reduced plasma levels of 4-hydroxynonenal and malondialdehyde, 

suggesting a protective effect of NAC which is not related to the state of insulin 

resistance. 

The increased blood pressure in 20 week glucose-fed rats is in agreement with 

our previous short term studies performed in four week glucose-fed rats [10, Il, 12] 

and with the rat model of fructose feeding which exhibited arterial hypertension [32]. 

Similar to our study, increases in basal 02·- production and NADPH oxidase activity 
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were reported in aorta from insulin-resistant fructose-fed rats [3] and NAC prevented 

the increase in blood pressure elevation in association with a decrease in oxidative 

stress in 10 week fructose-fed rats [15]. Thus, our study in 20 week glucose-fed rats 

supports the involvement of vascular oxidative stress not only in the development of 

hypertension but also in its maintenance. Likewise hepatic oxidative stress may 

contribute to the development of insulin resistance induced by glucose feeding. The 

decrease of IRS-l protein level in the gastrocnemius muscle of glucose-fed rats is in 

agreement with the investigation of Giorgino et al. [33] who have reported that total 

IRS-l protein level is decreased in skeletal muscle of type 1 diabetic hyperglycemic 

rats. The present study with NAC and ramipril suggests an involvement of oxidative 

stress downstream to the inhibition of the renin-angiotensin system in the decrease of 

IRS-l prote in in skeletal muscle in a type 2 model of diabetes. The recovery of IRS-l 

expression by these drugs is believed to contribute to the retablishment of insulin 

signaling in skeletal muscle and to the inhibition of insulin resistance. 

It is weil known that ACE Înhibitors exert beneficial effects on blood pressure 

and insulin sensitivity through the inhibition of the renin-angiotensin system and of 

the kinin metabolism [23-26, 34]. ln this study, we tested the hypothesis that ramipril 

could normalize the vascular and/or metabolic abnoimalities through its antioxidant 

properties in the model of glucose-induced insulin resistance. Interestingly, we found 

that ramipril normalized the rise in blood pressure in parallel with a reduction in aortic 

basal superoxide anion production in 20 week glucose-fed rats. However, it had a 

weaker, only partial, effect to improve insulin resistance. This was associated with a 

lack of improvement in basal hepatic superoxide production. Furthermore, ramipril 

failed to decrease plasma levels of 4-hydroxynonenal and malondialdehyde as weil as 

NADPH oxidase activity in aorta and liver tissues in chronically glucose-fed rats. This 
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finding suggests that ACE inhibitors may exert their beneficial effects on blood 

pressure and oxidative stress, at least in part, through an NAD PH oxidase-independent 

pathway involving additional mechanisms such as the kinin-NO pathway [25]. In 

addition, the normalization of skeletal muscle IRS-l protein by ramipril, while insu lin 

resistance was not reduced to normal in contrast to the effect of NAC treatment, 

indicates that additional defects in insulin signaling exist, likely mediated by oxidative 

stress, in liver and/or muscle. These data suggest that the "antioxidant" effects of 

ramipril may be limited to vascular tissue, a more efficient target of ACE inhibitors. 

In conclusion, this study suggests that the reversai of hypertension and insu lin 

resistance in chronically glucose-fed rats is linked to the inhibition of vascular and 

hepatic oxidative stress mediated, at least in part, by an NADPH oxidase dependant 

pathway. The results also indicate that while NAC exerts effective antioxidant activity 

in multiple tissues, ramipril appears to preferentially target the vasculature. 
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Table l 

Effect of four weeks treatrnent (from 16 to 20 weeks) with NAC or ramipril on 

systolic blood pressure (SBP) in glucose-fed rats. 

SBP (mmHg) 

Week16 Week 18 Week20 

Control (14) 123.4 ± 3.6 125.8 ± 1.5 124.9± lA 

Glucose (18) 149.0 ± 2.2 *** 158.2 ± 1.8 *** 154.9 ± 2.5*** 

Glucose + NAC (7) 149.6 ± 5.2 *** 150.5 ± 8.7 *** 127.7 ± 3.6 ttt 

Glucose + ramipril Cl ]) 152.9 ± 604 *** 134.0 ± 5.5 ttt 127.5 ± 3.4 ttt 

Data are means ± SEM of values obtained from (n) rats. Statistical comparison to 

control (*) or to glucose-treated rats (t) is indicated by ***, tttP < 0.001, 

respectively. 
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Table 2 

Effects of chronic glucose feeding (20 weeks) combined or not with NAC or ramipril 

treatments (final four weeks, week 16-20) on final body weight, plasma levels of 

glucose and insulin as weil as insulin resistance (HOMA). 

Control Glucose Glucose+NAC Glucose+Ramipril 
n= 14 n = 18 n=7 n = 11 

Body weight 615.5 ± 18.7 604.6 ± 19.5 458.9 ± 8.8 tt 611.0±21.9 
(g) 

Plasma glucose 5.5 ± 0.2 6.9 ± 0.2** 5.1 ± 0.1 tt 5.9 ± 0.2 tt 
(mmollL) 

Plasma insulin 3.1 ± 0.3 5.6 ± 0.4** 2.0 ± 0.8 tt 4.4 ± 0.5 
(ng/ml) 

HOMA 13.6 ± 1.8 36.2 ± 5.1 ** 13.0 ± 4.6 tt 28.6 ± 4.5 

Data are means ± SEM of values obtained from (n) rats. Statistical comparison to 

control (*) orto glucose-treated rats (t) is indicated by **, ttP < 0.01, respectively. 
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Figure 1 

Effects of 20 weeks of glucose feeding combined or not with four weeks (week 16-
20) ofNAC or ramipril treatment on superoxide anion production in the aorta (A) and 
liver (B). * P<0.05 vs control; t P<0.05 vs glucose, tt P<O.O 1 vs glucose. 
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Figure 2 

Effects of 20 weeks of glucose feeding combined or not with four weeks (week 16-
20) ofNAC or ramipril treatment on NADPH oxidase activity in the aorta (A) and 
liver (B). * P<0.05 vs control; t P<0.05 vs glucose. 
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Figure 3 

Effects of 20 weeks glucose feeding combined or not with four weeks (week 16-20) 
of NAC or ramipril treatment on plasma levels of 4-hydroxynonenal (A) and 
malondialdehyde (B). ** P<O.OI vs control. 



Figure 4 

1.25 

4> 1.00 - .. ch: 
~ u 0.75 
;a .5 
Q'C 
1- g 0.50 

0.25 

~~­
t 

0.00 .L.L.._ ...... 

r:::::JControl 
II'l!IIGlucose 

l5!iJ Glucose + Ramipril 
_ Glucose + NAC 

61 

Effects of 20 weeks of glucose feeding combined or not with four weeks (week 16-
20) ofNAC or ramipril treatment on IRS-I protein levels in the gastrocnemius muscle 
(expressed in arbitrary unit). *P<0.05 vs control; t P<0.05 vs glucose. 
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CHAPTER THREE 

Article # 2: Blockade of sensory abnormalities and kinin BI receptor 

expression by N-acetyI-L-cysteine and ramipril in a rat model of 

insulin resistance 
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3.0 Abstract 

Glucose-fed rats is a model of insu lin resistance that displays sensory 

polyneuropathy and hypertension. This study aimed at comparing the beneficial 

effects of N-Acetyl-L-cysteine (NAC, antioxidant) and ramipril (angiotensin-l 

converting enzyme inhibitor) on tactile and cold allodynia induced by chronic glucose 

feeding. Impact of these treatments was also assessed on hypertension, 

hyperglycaemia and kinin B1 receptor expression. 

Male Wistar rats (50-75 g) were given 10% D-glucose in their drinking water 

for 11 weeks or tap water only (controls). Treatment with NAC (1 g/kg/day, gavage) 

or ramipril (I mg/kg/day in drinking water) was initiated after six weeks, for a period 

of five weeks. Glucose feeding led to significant increases in systolic blood pressure 

(tail-cuff photoplethysmography) and kinin BI receptor mRNA in the spinal cord and 

renal cortex (real-time QRT-PCR) along with tactile and cold allodynia (application 

of von Frey filaments and acetone to the pIantar surface of the hindpaws). NAC and 

ramipril reversed gradually tactile and cold allodynia from 6 to Il weeks. 

Hypertension, hyperglycaemia and kinin B1 receptor expression were also normalized 

at 10-11 weeks. Data suggest an association between the expression of B1 receptor, 

the oxidative stress (documented in a previous study) and the sensory abnormalities 

and hypertension encountered in this model ofinsulin resistance. 

Key words: ACE inhibitor; allodynia; arterial hypertension; diabetes; insulin 

resistance; N-Acetyl-L-cysteine; oxidative stress; pain neuropathy 
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3.1 Introduction 

Diabetes Mellitus is a serious illness with multiple complications and 

premature mortality, accounting for at least 10% of total health care expenditure in 

several countries (King et al., 1998). The World Health Organization has estimated 

that there will be around 300 millions of clinically diagnosed type 2 diabetes 

worldwide by the year 2025 (Gorus et al., 2004). The number of diabetic patients is 

increasing due to growth of population, aging, change in life style, and increasing 

prevalence of obesity and physical inactivity (Woods et aL, 2004). Diabetes is 

associated with depletion ofcellular antioxidant defence system and increased level of 

reactive oxygen species, which are known as important factors in the onset and 

progression of diabetes and its complications. Proteins that are damaged by oxidative 

stress have decreased biological activity leading to 10ss of energy metabolism, cell 

signaling, transport, and ultimately, to ce Il death (Vincent et al., 2004). 

Antioxidants or nutrients with high antioxidant capacity may offer a unique 

therapeutic option for the treatment of diabetes and its complications. Treatment with 

scavengers of reactive oxygen species improves nerve blood flow, oxygenation and 

function in experimental diabetes (Cameron et al., 1994; Nagamatsu et a1., 1995). N­

Acetyl-L-cysteine (NAC) is an endogenous antioxidant acting as a fTee radical 

scavenger and precursor of glutathione. ft was found to prevent fructose-induced 

insulin resistance and hypertension in rats (Song et al., 2005), to decrease blood 

pressure in spontaneously hypertensive rats by decreasing sympathetic activity and 

restoring cardiac p-adrenergic function (Girouard et al., 2003), and to inhibit the 

development of diabetic neuropathies (Sagara et al., 1996; Love et al., 1996). Diabetic 

neuropathies, among the most common complications of type 1 and type 2 diabetes 
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(Boulton et al., 2005), affect about 33% of patients with diabetes mellitus and are 

recognized as one of the most difficult type of pain to treat (Daousi et al., 2004). Pain 

associated with diabetic neuropathy can occur either spontaneously or as a result of 

exposure to mildly painful stimuli (hyperalgesia) or to stimuli not normally perceived 

as painful (allodynia) (Brown and Asbury, 1984; Clark and Lee, 1995). 

Angiotensin-l converting enzyme inhibitors (ACEI) have been shown to 

improve insulin sensitivity and to reduce cardiovascular complications in diabetes 

{Henriksen et al., 1996; McFarlane et al., 2003). ACEI improve insulin sensitivity and 

endothelial dysfunction and decrease Iipid peroxidation in essential hypertensive 

patients (Yavuz, et al., 2003). The ACEl ramipril reduced the accumulation of 

advanced glycation end products in experimental diabetic nephropathy (Forbes et al., 

2002). The mechanisms of the therapeutic effects of ACEI include inhibition of the 

oxidative stress, angiotensin Il formation and of kinin catabolism (Couture and 

Girolami,2004). 

Recently, we reported that a treatment of four weeks with NAC or ramipril 

normalized the elevation of blood pressure and attenuated insulin resistance along 

with a reduction in aortic basal superoxide anion production in 20 weeks glucose-fed 

rats (El Midaoui et al., 2007). BI receptor was induced in seve rai tissus in glucose-fed 

rats and the inhibition of the oxidative stress with a diet enriched with alpha-Iipoic 

acid prevented allodynia and the up-regulation of BI receptor. Finally, blockade of the 

BI receptor reversed allodynia and hypertension in this model of insulin resistance 

(Dias et al., 2007; Lungu et al., 2007). 

Thus, the present study was undertaken to determine whether a chronic 

treatment of five weeks with NAC or ramipril can also reverse tactile and cold 

allodynia induced by chronic glucose feeding. Furthermore, we tested the possibility 
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that either treatment could affect the induction and overexpression of kinin BI 

receptor in two selected tissues, the renal cortex and spinal cord. 
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3.2 Materials and methods 

3.2.1 Experimental animais and treatments 

Male Wistar rats (50-75 g Charles River, St-Constant, Que., Canada) were 

housed one per cage, under controlled conditions oftemperature (23°C) and humidity 

(50 %), on a 12 h light-dark cycle and allowed free access to normal chow diet 

(Charles River Rodent) and tap water (control rats, n = 8) or 10 % D-glucose (Sigma­

Aldrich Canada) in the drinking water (diabetic rats, n = 23) during Il weeks. From 6 

to 11 weeks glucose-fed rats were randomly divided into three groups; Group 1: 

vehicle (n = 8), Group 2: NAC (1 g/kg/day, n = 7) and Group 3: ramipril (1 

mg/kg/day, n = 8). Ramipril was added to the drinking water, while NAC was given 

by gavage once daily. Fluid consumption for each rat was monitored every two days 

to adjust the dose of ramipril throughout the study. Ali research procedures and the 

care of the animais were in compliance with the guiding princip les for animal 

experimentation as enunciated by the Canadian Council on Animal Care and were 

approved by the Animal Care Committee of our University. Effects of NAC and 

ramipril were determined weekly on body weight, water and food intake, blood 

glucose, systolic blood pressure, and sensory abnormalities (tactile and cold 

allodynia). 

3.2.2 Measurement of blood glucose and blood pressure 

Blood glucose was measured weekly with the glucose oxidase-impregnated 

test strip and a reflectance meter (Accu-Check III, Boehringer Mannheim, Germany) 

from a drop of blood obtained by tai! pinprick. Systolic arterial blood pressure was 

measured weekly before and after the administration ofNAC and ramipril by tail-cuff 

photoplethysmography (Harvard Apparatus Ltd.) with the use of a cuff placed around 
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the tail and recorded on a MacLab/8 system. For each measurement, three individual 

readings were averaged. 

3.2.3 Behavioural testing 

8ehavioural signs representing tactile and cold aliodynia were assessed with 

the rats placed on a wire mesh floor beneath an inverted plastic cage (20 x 10 x 10 

cm). The rats were allowed to adapt for about 15 min or until explorative behaviour 

ceased. 

3.2.4 Tactile allodynia 

Tactile aliodynia was assessed by measuring the hindpaw withdrawal 

threshold to a calibrated series of six von Frey filaments (2, 4, 6, 8, 10 and 15 g) 

(Stoelting, Wood Dale, IL) using the up-down method of Chaplan et al., (1994). 

Starting with the filament that has the lowest force (2 g), the filament was applied 

perpendicularly to the mid-plantar surface with sufficient force to cause the filament 

to buckle slightly. Brisk withdrawal or paw flinching was considered as positive 

response. Each filament was applied five times to each paw (for 6-8 s per stimulation, 

with an inter stimulus interval of 1-2 min). Minimum recording of five positive· 

responses (50 %) out of 10 stimulations for both paws was considered to be the 

threshold (in grams). Absence of a response (Jess th an five withdrawals) prompted use 

of the next graded filament of increasing weight. Maximal withdrawal threshold in 

control rats was fixed at 15 g. 

3.2.5 Cold allodynia 

Cold allodynia was assessed using the acetone drop method described by Choi 

et al. (1994). With the rats in the same conditions of testing, an acetone bubble 

formed at the end of a standard plastic syringe was placed to the plantar surface of the 
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hindpaws. Acetone was applied five times to each paw at intervals of 3-5 min. Nonnal 

rats either ignore the stimulus or occasionally respond with a small and brief 

withdrawal. Allodynic rats respond with a prompt and intense paw withdrawal or 

escape behaviour to acetone application. The frequency of paw withdrawal was 

expressed as a percentage (the number ofpaw withdrawals + number of trials x 100). 

3.2.6 SYBR green-based quantitative RT-PCR 

At the term of the protocol of 11 weeks, rats were anaesthetised with CO2 

inhalation and then decapitated. Approximately 10 mg of rat tissues (thoracic spinal 

cord and renal cortex) were isolated and put in RNA later stabilisation reagent 

(QIAGEN, Valencia, CA, USA). Total RNAs were extracted from tissue according to 

the manufacturer's protocol. First-strand cDNA synthesized from 400 ng total RNA 

with random hexamer primers was used as template for each reaction with the 

QuantiTect Rev Transcription Kit (QIAGEN). SYBR Green-based real-time 

quantitative PCR was performed as described (Aoki et al., 2002). Mx3000p 

(stratagene) was used for the signal detection and the PCR was performed in 1 x 

SYBR Green Master mix (QI AGEN) with 300 nM of each primer. For standardization 

and quantification, rat 18s was amplified simultaneously. The following primer pairs 

were designed by Vector NTI and used: 5'- GCAGCGCTIAACCATAGCGGAAAT-

3' (upper, 367-391) and 5'- CCAGTIGAAACGGTICCCGATGTI -3' (lower, 478-

454) for amplification of rat BI receptor (GenBank accession No. NM_03085 1); 5'­

TCAACTTICGATGGTAGTCGC CGT -3' (upper, 363-386) and 5'­

TCCTIGGATGTGGTAGCCGTITCT -3' (Iower, 470-447) for amplification of rat 

18s (GenBank accession No. XO 1117). PCR conditions were: 95°C for 15 min, 

followed by 46 cycles at 94°C for 15 s,60°C for 30 sand noc for 30 s. The cycle 

threshold (Ct) value represents the cycle number at which a fluorescent signal rises 
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statistically above background (Wada et al., 2000). The relative quantification of gene 

expression was analyzed by the 2"ôCt method (Livak and Schmittgen, 2001). 

3.3 Drugs 

Ramipril, N-Acetyl-L-cysteine and ail other reagents were purchased from 

Sigma-Aldrich Canada, Ltd (Oakville, ON, Canada). 

3.4 Statistical analysis of data 

Data are expressed as mean ± SEM of values obtained from (n) rats. Statistical 

analysis of data was performed with Graph-Pad Prism software. Data were subjected 

to a one-way analysis of variance (ANOY A), followed by the BonferronilDunn 

multiple comparison test to estimate the significance of differences between groups. 

Significance was considered when P < 0.05. 



3.5 Results 

3.5.1 Effeet of NAC and ramipril on body weight, blood glucose and blood 
pressure in glueose-fed rats 
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As shown in Table l, rats fed with 10% glucose had their body weight slightly 

but not significantly reduced when compared to control rats during the protocol of Il 

weeks. However the body weight of rats retreated with NAC or ramipril was 

significantly reduced at ] 1 and 10 weeks oftreatment, respectively. Plasma levels of 

glucose were significantly increased in glucose-fed rat at 6, 8, 9, 10 and Il weeks 

when compared with age-matched control rats. The hyperglycaemia was significantly 

reduced in the rats treated with NAC from 8 to 11 weeks and with ramipril from 9 to 

Il weeks when compared with age-matched glucose-fed rats. Systolic blood pressure 

was significantly higher in glucose-fed rats at 6 weeks and increased further at 10 and 

11 weeks. Treatment with NAC prevented the increase in systolic blood pressure in 

glucose-fed rats to values which were not significantly different from control values. 

Ramipril reduced the increase in systolic blood pressure in glucose-fed rats to values 

which were slightly lower than control values at 10 and Il weeks. 

3.5.2 Effeet of NAC and ramipril on food and water intake in glueose-fed rats 

As shown in Table 2, food intake was significantly decreased while water 

intake was significantly increased in glucose-fed rats when compared to control rats 

receiving tap water during the protocol of 11 weeks. Whereas ramipril had no 

influence on food intake, NAC showed a significant inhibitory effect at 8 and 11 

weeks in glucose-fed rats. Water intake in the ramipril group was significantly 

increased at 8 and 10 weeks, but there was no significantly change with NAC. 



3.5.3 Effects ofNAC and ramipril on tactile and cold allodynia in glucose-fed 
rats 
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G1ucose-fed rats displayed significant and sustained tactile allodynia (decrease 

in paw withdrawal threshold) from 6 to Il weeks when compared to age-matched 

controls (Fig.I). NAC and ramipril caused a progressive and significant reduction of 

tactile allodynia in glucose-fed rats after 3, 4 and 5 weeks of treatment; the anti-

allodyniceffect of NAC was quite similar to that produced by ramipril. Tactile 

allodynia was completely aboli shed by either treatment after 5 weeks. 

Response to acetone stimulation was significantly higher (cold allodynia) at 6 

weeks in glucose-fed rats and remained stable up to Il weeks. The reduction of cold 

allodynia by NAC in glucose-fed rats reached significance after 3-4 weeks. The 

inhibition of cold allodynia by ramipril was similar to that achieved with NAC and 

reached significance at 3, 4 and 5 weeks post-treatment (Fig. 2). Cold allodynia in 

glucose-fed rats was completely abolished by NAC and ramipril after 5 weeks of 

treatment. 

3.5.4 Effects of NAC and ramipril on kinin BI receptor expression in glucose-fed 
rats 

Kinin BI receptor mRNA was under expressed in the spinal cord and renal 

cortex of control rats (Fig. 3). Glucose feeding for a period of II weeks increased by 

13.6-fold BI receptor mRNA in the same tissues. This marked increased of BI 

receptor expression in glucose-fed rats was significantly reversed by 5 weeks 

treatment with NAC or ramipril. Complete inhibition of receptor expression was 

achieved in the renal cortex. 
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3.6 Discussion 

ln a recent study, we found that four weeks treatment with NAC was 

associated with the inhibition of vascular and hepatic oxidative stress and NADPH 

activity along with the reduction of plasma lipid peroxidation, hyperglycaemia, 

hyperinsulinemia, insulin resistance and hypertension in 20 weeks glucose-fed rats (El 

Midaoui et al., 2007). Thus, the present study in Il weeks glucose-fed rats confirms 

'the anti-hypertensive and anti-hyperglycaemic effects ofNAC and reveals for the first 

time a pote nt anti-allodynic effect under insulin resistance. Tt is worth noting that 

NAC acts as a cysteine donor to maintain intracellular glutathione level (endogenous 

antioxidant enzyme) and mitochondrial oxidative metabolism by protecting the 

cytochrome oxidase complex 1 from NO-mediated damage (Moncada; 2000). NAC 

has been shown to exert neuroprotective effect for a range of neuronal cell type 

against a variety of stimuli {Cooper and Kristal, 1997). 

Ramipril also exerted anti-hypertensive and anti-allodynic effects with a 

temporal profile similar to that of NAC. The beneficial effect of ramipril on sensory 

abnormalities and hypertension is also thought to be associated with the inhibition of 

the oxidative stress as a similar treatment with ramipril normalized the basal over 

production of aortic superoxide anion in 20 weeks glucose-fed rats (El Midaoui et al., 

2007). Because NADPH oxidase has been suggested to be the major superoxide 

anion-generating enzyme in the vascular wall following the activation of AT] 

receptors by angiotensin JI (Cai et al., 2003), ramipril can interfere directly at the 

source of the oxidative stress by preventing the activation of NADPH oxidase by 

angiotensin ]1. 

One should consider, however, that in addition to preventing the conversion of 

angiotensin 1 into angiotensin II, ramipril can block the degradation of kinins into 
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inactive metabolites. The protection of endogenous bradykinin by ramipril is expected 

to preserve endothelial function by reducing the oxidative stress following the release 

of endothelial nitric oxide (NO) upon activation of B2 receptors in blood vessels 

(Couture and Girolami, 2004). Activation of kinin B2 receptor has also been shown to 

facilitate glucose uptake by triggering the translocation of GLUT -4 transporter via 

insulin-dependent and -independent pathways in skeletal muscles (for review see 

Couture and Girolami, 2004). However, it is unlikely that the endogenous kinins-NO 

system is involved in the anti-allodynic effect of ramipril because blockade of kinin 

BI and B2 receptors with selective antagonists reversed tactile and co Id allodynia in 

glucose-fed rats (Dias et al., 2007; Lungu et al., 2007). The latter studies plead in 

favour of a role for kinin receptors in glucose-induced sensory abnormalities. This 

statement is further supported by the present results showing the inhibition by NAC or 

ramipril of the up-regulation of BI receptor mRNA in the spinal cord and renal cortex 

in glucose-fed rats. Earlier studies provided evidence that the oxidative stress induced 

by chronic glucose feeding is the trigger mechanism of BI receptor induction and 

overexpression both in the spinal cord and peripheral tissues (El Midaoui et al., 2005; 

Lungu et al., 2007). Hence, it is tempting to propose that the anti-allodynic effect of 

NAC and ramipril in glucose-fed rats is associated to the inhibition of oxidative stress 

that leads to the subsequent inhibition of BI receptor overexpression. 

Impact of NAC and ramipril was also assessed on water and food intake in 

glucose-fed rats. As usually seen in diabetic states, water intake was increased 

(dipsogenia) in these rats. Because glucose is given in the drinking water, these rats 

increased their consumption of glucose that was compensated by a decrease of food 

intake. The increase ofwater intake induced by ramipril in glucose-fed rats is believed 

ta be a consequence of the diuretic effect generally observed under treatment with 
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ACEI. Interestingly, the higher glucose intake resulting from the higher water intake 

seen in ramipril treated rats did no affect food intake. Thus the 10st of body weight 

induced by ramipril can hardly be explained by the diet. The inhibition of angiotensin 

Il as trophic factor and/or inhibitor of apoptotic 'mechanism may better explain the 

reduction of the body mass. Whereas NAC did not significantly affect water intake in 

glucose-fed rats, it did decrease significantly food intake at sorne end points. Because 

NAC contains sulphydryl (SH) groups which repels and provokes nausea, it is likely 

that this may cause inhibition of appetite and may account for the slight loss of body 

weight in these rats at the end of the five weeks treatment. 

Conclusion 

The inhibition of the oxidative stress by NAC (an antioxidant) and ramipril (by 

preventing the pro-oxidative effect of Ang Il) and the subsequent inhibition of BI 

receptor up-regulation can explain the anti-al1odynic effect of these drugs in glucose­

fed rats. Thus antioxidants and ACEJ may have therapeutic value in the treatment of 

diabetic sensory polyneuropathy. 
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Table L Effect ofNAC and ramipril on body weight, blood glucose and blood pressure in glucose-fed rats 

6weeks 7weeks 8weeks 9weeks 10weeks 11 weeks 

Control (n=8) 
Body weight Cg) 369± 8 429±10 470±13 491±13 509±18 523±16 
Plasma glucose (mM) 5.9± 0.1 6.2±0.2 5.7±0.2 5.3± 0.1 5.7±0.2 4.9± 0.1 
Blood pressure (mmHg) 120±2 n.d. n.d. n.d. 134±3 139± 1 

Glucose (n=8) 
Body weight Cg) 355± 9 410±12 465±13 469±14 493±16 517±16 
Plasma glucose (mM) 7.8± 0.3*** 5.8± 0.3 7.0± 0.6*** 6.6± 0.2*** 8.9± 0.9*** 6.9± 0.2*** 
Blood pressure (mmHg) 146± 4""* n.d. n.d. n.d. 161± 3*'- 161±3*** 

Glucose+NAC (n=7) 
Body weight (g) 364±9 385±14 421±18 435±19 450±19 463±15* 

Plasma glucose (mM) 8.4± 0.4*** 5.8±0.3 5.8± 0.3ttt 5.0± 0.2ttt 5.4± 0.2ttt 5.4± 0.2ttt 

Blood pressure (mmHg) 148± 4*** n.d. n.d. n.d. 129±3ttt 137± 3ttt 

Glucose+ramipril (n=8) 
Body weight (g) 369±7 373±18 464±27 434±16 439±20* 469±20 
Plasma glucose (mM) 8.0± 0.3u * 5.S± 0.2 6.7± 0.3 5.3± 0.2ttt 5.0±0.2ttt 5.3± 0.1t+t 

Blood pressure (mmHg) 149± 3**" n.d. n.d. n.d. 123± 3ttt* 121± 2ttt*** 

Values represent the mean ± S.E.~J obtained from (n) rats. Statistical comparison to control (*) and glucose (t) is indicated by 
,. P< 0.05, ***tttP< 0.001 .Treatrnent with NAC (1 g Ikglday) and ramipril (1 mg!kglday) were given from 6 to Il weeks in glucose-
treated rats. Not determined (n.d.). 



Table 2.Effect ofNAC and ramipril on food intake and water intake in glucose-fed rats 

6weeks 7weeks 8weeks 9weeks 10weeks 11weeks 
Control (8) 

Food intake(g) 23.6±1.2 29.9±1.9 30.6±1.1 31.7±O.9 31.9±O.8 30.7±1.3 
Water intake(ml) 89.4±5.2 98.7±6.4 92.5±11.5 76.9±3.4 96.2±4.9 95.6±5.9 

Glucose (8) 
Food intake(g) 16.4±O.5*** 18.5±O.9*** 19.2±1.2 ...... 17±1.3*** 16.4± 1.1 *** 21.4±1.6*** 
Water intake(ml) 142.5±12.2*** 155±8.2*** 140.0±5.9*** 161.3±4.4*** 161.9±4.6*** 170.0±4.6*** 

Glucose+NAC (7) 
Food intake(g) 14.9±1.0*** 18.4± 1.3*** 12.8±O.8***tt 14.9±O.9*** 14.1±1.2*** 13.7±O.9***tt 
Water intake(ml) 142.9±7.5*** 141.4±7.5*** 147.1±8.6*** 155.7±7.5*** 144.3±5.r** 155.7 ±6.6*** 

Glucose+Ramipril 
(8) 
Food intake(g) 19.6±1.1 22.0±1.2*** 16.4±1.2*** 16.0±1.0*** 16.2±1.1*** 17.1 ±1.0*** 

Water intake(ml) 137.5±7.6*** 171.3±5.5*** 173.8±12.1***tt 156.3±3.r** 195.0±3.3***tt 195.0±4.2*** 

Values represent the mean ±S.E.M obtained from (n) rats. Statistical comparison to control (*) and glucose (t) is indicated by 
tt p < 0.01, ttt*** P< 0.001. Treatment with NAC (l g Ikg/day) and ramipril (l mg/kg/day) were given from 6 toll weeks in 
glucose-treated rats. 
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Effect of a treatment of five weeks with N-Acetyl-L-cysteine (1 g/kg/day, gavage) or 
ramipril (1 mg/kg/day, in drinking water) on tactile allodynia induced by glucose feeding 
(10 % in drinking water). Control rats received tap water only. Glucose was given for a 
period of Il weeks and treatment with NAC or ramipril was initiated after six weeks. 
Data are means ± SEM of (n) rats as indicated in Table 1. Statistical comparison with 
controis (*) or glucose-fed rats (t) is indicated by *p< 0.05, ***tttP< 0.001. 
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Figure 2 

Effect of a treatment of five weeks with N-Acetyl-L-cysteine (1 g/kg/day, gavage) or 
ramipril (1 mglkg/day, in drinking water) on cold allodynia induced by glucose feeding 
(l0 % in drinking water). Control rats received tap water only. Glucose was given for a 
period of Il weeks and treatment with NAC or ramipril was initiated after six weeks. 
Data are means ± SEM of (n) rats as indicated in Table 1. Statistical comparison with 
controls (*) or glucose-fed rats (t) is indicated by **p< 0.01, ***tttP<O.OOl. 
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Effect of a treatment of five weeks with N-Acetyl-L-cysteine (1 g/kglday, gavage) or 
ramipril (1 mglkg/day, in drinking water) on BIR rnRNA over expression induced by 
glucose feeding (10 % in drinking water) in the thoracic spinal co rd and renal cortex. 
Control rats received tap water only. Glucose was given for a period of Il weeks and 
treatrnent with NAC or rarnipril was initiated after 6 weeks. Data are means ± SEM of (5 
to 7) rats per groups. Statistical comparison with controls (*) or glucose-fed rats () is 
indicated by + P<0.05, ** ++ P < 0.01. 
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4.0 Diabetes and oxidative stress 

The relationship between hyperglycaemia, oxidative stress, cellular and 

endothelial dysfunction has been documented in recent studies. Increased formation of 

superoxide radicals and inactivation of nitric oxide in condition of hyperglycaemia is one 

of the probable causes of the evolution of vascular complications in diabetes mellitus. 

Moreover, data from animal and cell culture models of diabetes as weIl as clinical trials 

with antioxidants strongly implicate hyperglycemia-induced oxidative stress in diabetic 

neuropathy (Vincent et al., 2004). In animal studies, arterial tissue O2.- levels were 

reported to be increased in insulin resistant rats (Kashiwagi et al., 1999), and in 

spontaneously hypertensive rats (Suzuki et al., 1995; Kerr et al., 1999). This gives 

rationale to look for a relationship between the oxidative stress, diabetes and its 

complications. Thus inhibition of the oxidative stress with different antioxidants should 

prevent diabetes and its complications. 

Antioxidants are compounds that have a chemical affinity for free radicals and 

bond with free radicals before they can cause harmful effect and damage. Antioxidants 

are: 1) enzymes such as catalase, peroxidase, and superoxide dismustase (SOD); 2) 

peptides such as glutathione, phenolic compounds like vitamin E and plant flavonoids; 3) 

nitrogen compounds which include various amino acids and carotenoids. Other agents 

may have antioxidant effects through replenishing mechanisms. Vitamin C, for instance, 

helps to recycle vitamin E, and N-acetyl-L-cysteine (NAC) provides an important 

component of glutathione. 
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The effects of antioxidants on oxidative stress are measured by specific 

observable biomarkers. These markers include the enzymatic activities of catalase, SOD, 

GSH-Px, and GSH-reductase, as well as thiobarbituric acid reactants levels, an indirect 

measurement of free-radical production that has been shown to be consistently elevated 

in diabetes. In our study, superoxide anion production was measured in isolated aortic 

and hepatic small slices using the lucigenin-enhanced chemilurninescence method, and by 

this method we measured the effect of NAC and ACEI (ramipril) on oxidative stress in 

glucose-fed rats. 

NAC acts as a free radical scavenger and a cysteine donor to maintain 

intracellular glutathione level (endogenous antioxidant enzyme) and mitochondrial 

oxidative metabolism by protecting the cytochrome oxidase complex l from NO­

mediated damage (Moncada, 2000, De Vries et al., 1993). It did prevent fructose-induced 

insulin resistance and hypertension in rats (Song et al,.2005), and exerted protective 

effect against glucose toxicity on pancreatic ~-cells in various models of diabetes in 

addition to reducing blood glucose and increasing glucose-induced insulin secretion (Ho 

et al.,1999; Kaneto et al.,1999; Tanaka et al., 1999). NAC was found to inhibit the 

development of functicinal and structural abnorrnalities of the peripheral nerve in 

streptozotocin-induced diabetic rats (Sagara et al., 1996), to inhibit diabetic neuropathy 

and to protect against neuropathies caused by chemotherapy drugs (Love et al., 1996). 

Thus NAC is neuroprotective for a range of neuronal cell type against a variety of stimuli 

(Cooper et al., 1997). 
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Moreover, studies using alpha-lipoic acid, another antioxidant, were reported to 

lower blood pressure in SHR (Vasdev et al., 2000), to increase insulin-stimulated glucose 

metabolism and to reduce insulin resistance in fatty Zucker rats (Jacob et al.,1996) in 

addition to increasing tissue levels of gluthatione in mice (Busse et al.,1992). Treatment 

with alpha-lipoic acid also prevented the sustained e1evation of blood pressure, the basal 

over production of O2 e- in cardiovascular tissues and attenuated the development of 

insulin resistance in 4 and 12 weeks glucose-fed rats (Midaoui and de Champlain, 2002; 

Midaoui et al., 2003; 2005). 

4.1 Advantages and disadvantages of the model of glucose-fed rats 

We focused on the effects of NAC and ACEI (ramipril) in glucose-fed rats. This 

model of insulin resistance has several advantages over the commonly used genetic 

models of type 2 diabetes. First, the diabetes induced by glucose is controllable and much 

less costly than the commercially available genetic models. Second, this experimental 

model does mimic the North American diet enriched of carbohydrates (soft drinks, fruit 

juices). Third, the model of glucose-fed rats is not linked to obesity, and allows studying 

diabetes and its complications without association with hyperlipidemia; for instance, the 

body weight is not affected in glucose-fed rats. On the other hand, the model of glucose­

fed rats is not perfect and one possible disadvantage to mention is the fact that it is not a 

real model of type 2 diabetes as it does present the characteristics of a pre-diabetic state 

with insulin resistance. This provides the possibility, however, to study the mechanisms 

involved in the development of the early phase of diabetes. Hyperglycaemia is indeed 

borderline and not very striking. The reason why glucose levels in glucose-fed rats is not 

as high as in diabetic subjects is likely due to the presence of hyperinsulinemia. Indeed, 
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hyperinsulinemia increases glucose uptake and would prevent hyperglycaemia to occur. 

However, pancreas insufficiency and insulin deficit are expected to occur in a later stage 

and may lead to higher hyperglycaemia. Importantly, it is worth noting that glucose-fed 

rats present other hallmarks generally described in type 2 diabetes such as arterial 

hypertension, hyperinsulinemia, insulin resistance and polyneuropathy. 

The model of glucose has other advantages over the commonly used model of 

streptozotocin diabetic rats (STZ). Rats treated with STZ develop type 1 and not type 2 

diabetes. In our study, we focused on the effects of NAC and ramipril on the 

complications (hyperglycaemia, hypertension, hyperinsulinemia, and sensory 

abnormalities) associated with a model of insulin resistance (pre type 2 diabetic phase). 

A recent study was performed in STZ-induced diabetes treated with an ACEI (lisinopril, 

5 mg/kg/d), an antioxidant (NAC, 0.5 g/kg/d) or with their combination. Authors showed 

that the treatment with the ACEI or NAC attenuated ROS formation and prevented 

phenotypic changes in the heart (cardiomyocyte hypertrophy, perivascular fibrosis) and 

in the aorta of seven weeks STZ rats. AIso, systolic blood pressure was significantly 

lower in the two groups receiving ACEI, alone or in combination with NAC. Blood 

glucose level remained elevated in all groups of STZ- diabetic rats, suggesting a 

dissociation with hyperglycaemia (Fiordaliso et al., 2006). In that case, the increased 

oxidative stress Îs most likely induced by angiotensin II and its inhibition with lisinopril 

can account for the reduction of ROS and the cardiac complications. 

We reported that the increased oxidative stress plays an important role in the 

development of complications in glucose-fed rats and contributes to the up-regulation of 

BI receptor (Dias et al., 2007; Lungu et aL, 2007). It was reported that BI receptor is 
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induced in several peripheral organs, the spinal cord and brain in STZ-diabetic rats 

(Couture et al., 2001; Abdouh et al., 2003; Vianna et al., 2003; Ongali et al., 2004; 

Campos et al., 2005). The STZ model of type 1 diabetes was used to study the 

involvement of BI receptor in thermal hyperalgesia (Gabra et al., 2005). 

A final concem that deserves to be addressed is the reduction of food intake 

caused by glucose feeding. The consumption of glucose decreased the appetite for food 

as documented in the second study. One can raise the possibility that this model can mask 

a malnutrition effect as rats would eat less proteins and other essential nutrients from the 

diet. Although the real impact of this issue on our data is difficult to address, an 

unpublished study performed in our laboratory showed that the calories balance (total 

calories ingested daily from the chow diet and 10 % glucose solution) was maintained 

throughout the treatment with glucose. This means that rats, contrary to obese human 

beings, show a strict regulation of their daily calories intake. Thus greater glucose 

ingestion is finely compensated by a reduction of eating by the central mechanisms of 

satiety. 

Although ramipril failed to interfere with the mechanism of food intake in 

glucose-fed rats, NAC reduced further food intake induced by glucose. This may account 

for the loss of body weight measured in rats receiving NAC. The reduction of food 

appetite by NAC appears independent of the water intake because glucose-fed rats 

receiving ramipril drank more without changing their food intake. Because NAC contains 

sulfhydryl (SH) groups which repels and provokes nausea, it is likely that this may cause 

inhibition of appetite. Although the impact of this side effect on insulin resistance and the 
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reduction of oxidative stress is not known at the present time, it should be mentioned that 

a diet enriched with alpha-lipoic acid, another antioxidant, had the same beneficial effects 

as that ofNAC on insulin resistance, oxidative stress and arterial hypertension in glucose­

fed rats (Midaoui et al., 2003; 2005; Lungu et al., 2007) 

NAC and Ramipril were not given to control groups for the following reasons: 

1- BIR is not expressed in control rats. We do not expect that an antioxidant or an 

ACEI would induce this receptor. 

2- Oxidative stress is not abnormal in controls and therefore antioxidants should 

be ineffective. 

3- In control rats, blood pressure and metabolic parameters are normal and the rats 

do not display sign of allodynia. 

NAC and ACEI are expected to normalize alterations and to exert minimal effect on 

control values. Nevertheless, one cannot exclude an effect of these drugs on lipid 

peroxidation in control rats. It is also advisable to provide the same treatments to controls 

to assess any unexpected effects exerted by pharmacological treatments. This should be 

considered in the design of future experiments. 

4.2 Observations made in the two articles 

In the first study, we investigated the ability of NAC and ramipril (ACE!) to 

reverse arterial hypertension, insulin resistance, the oxidative stress, lipid peroxidation 

and changes of skeletal muscle insulin receptor substrate-l (lRS-l) protein expression in 

glucose-fed rats. For that purpose we used young male Wistar rats (50-75 g) as rats were 

treated with 10 % D-glucose for a period of 20 weeks. Large rats are more difficult to 

manipulate, to assess blood pressure and require greater amounts of drugs. We found that 
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chronic administration of glucose for 16, 18 and 20 weeks resulted in a significant 

increase in systolic arterial blood pressure when compared to control rats. The increase in 

systolic blood pressure in glucose-fed rats was not significantly reduced by NAC after 

two weeks but was significantly reduced after four weeks treatment with NAC. On the 

other hand, the increase in systolic blood pressure was reversed to control values after 

two and four weeks of treatment with ramipril. Whereas 20 weeks (first study) and Il 

weeks (second study) glucose feeding had no significant effect on final body weight, a 

treatment of four or five weeks with NAC reduced significantly body weight in 

chronically glucose-fed rats. Whereas four weeks treatment with ramipril had no 

significant effect on body weight in 20 weeks glucose-fed rats, ramipril reduced body 

weight in the second study. This discrepancy cannot easily be explained as in both studies 

the same dose of ramipril was provided; the age of rats when treatment with ramipril was 

initiated was however different (from 16 to 20 weeks versus 6 to Il weeks in the first and 

second study, respectively). One should notice that the effect of ramipril was not 

sustained and was seen only after four weeks of treatment; values at three and five weeks 

were not significantly different from non treated glucose-fed rats. Chronic glucose 

feeding for 20 weeks increased the production of oxidative stress as assessed by the 

measurement of vascular and hepatic 02--, and NADPH oxidase activity. This finding is 

in agreement with a previous study performed in the same strain of rats with a regimen of 

high sucrose (Diniz et al., 2006). The treatment of glucose-fed rats with NAC for four 

weeks inhibited vascular and hepatic oxidative stress and plasma lipid peroxidation, 

suggesting the involvement of oxidative stress in the cardiovascular and metabolic 

abnormalities occurring in this model of insulin resistance. The restoration of IRS-l 
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prote in in skeletal muscle of chronically glucose-fed rats by NAC also suggests that part 

of the beneficial effect related to the inhibition of the oxidative stress is mediated by the 

improvement of insulin receptor function. 

The first study also revealed that treatment with ramipril for four weeks 

normalized high blood pressure and reduced insulin resistance and hyperinsulinemia 

chiefly through its antioxidant properties at the level of vascular tissues because aortic 

but not hepatic basal superoxide anion production was inhibited by ramipril in 20 weeks 

glucose-fed rats. Aiso the treatment with ramipril had no effect on NADPH oxidase 

activity in aorta and liver tissues in glucose-fed rats and failed to decrease plasma levels 

of 4-hydroxynonenal and malondialdehyde. These findings suggest that ramipril may 

exert its beneficial effects on blood pressure, insulin resistance and the oxidative stress 

through an NADPH oxidase independent pathway. 

The second study was undertaken to determine whether a chronic treatment of 

five weeks with NAC or ramipril can also reverse sensory abnormalities (tactile and cold 

allodynia) in the experimental rat model of insulin resistance induced by chronic glucose 

feeding. This study, initiated in young male Wistar rats (50-75 g) for the reasons given 

above, confirms the anti-hypertensive and anti-hyperglycemic effects ofNAC and reveals 

for the first time a potent anti-allodynic effect in glucose-fed rats. Ramipril also exerted 

anti-hypertensive and anti-allodynic effects with a temporal profile similar to that 

obtained with NAC. 

Part of the beneficial effect of ACEI (ramipril) might be attributed to inhibition of 

kinin BI receptor activity in addition to the blockade of the renin-angiotension system. 
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Treatment with ramipril reversed the up-regulation of BI receptor expression in tissues 

(spinal cord and renal cortex) of glucose-fed rats. In a previous study, we provided 

evidence that BI receptors are involved in hypertension and allodynia in the model of 

glucose. For instance, a treatment with SSR240612, a non-peptide BI receptor antagonist, 

prevented high blood pressure in glucose-fed rats (Dias, M.Sc. Thesis, 2007), as weIl as 

tactile and co Id allodynia (Dias et al., 2007). Moreover, i.c.v. injection of R-715, another 

BI receptor antagonist, inhibited arterial hypertension in glucose-fed rats (Estevào et al., 

2006). R -715 was used to dissociate the contribution of central and peripheral BI 

receptors because this antagonist does not cross the blood brain barrier. When injected 

intraperitoneally, R-715 failed to affect high blood pressure but blocked tactile and cold 

allodynia in glucose-fed rats (Lungu et al., 2007). These results allowed us to conclude 

that arterial hypertension induced by glucose is mediated by central BI receptors while 

allodynia is mediated by peripheral BI receptors. 

ACEI can also prevent the degradation of kinins and by this way can exert 

vasodilatation and decrease blood pressure elevation through B2 receptor activation. This 

concept was recognized as a beneficial affect of ACEI in the treatment of hypertension 

(Couture and Girolami, 2004). Thus ACEI appear to exert paradoxical effect on the kinin 

system which can be explained by the opposite effects of kinins in the periphery (B2 

receptor mediated vasodilatation and decrease blood pressure via the endothelial-NO 

pathway) and the CNS (BI receptor mediated vasoconstriction and increase blood 

pressure through activation of the sympathetic nervous system). 
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The beneficial effect of NAC and ramipril with regard to sensory abnormalities 

also appear to be due to inhibition of the oxidative stress and BI receptor expression. 

Both treatments were found to inhibit the expression of BI receptors in the spinal cord 

and peripheral tissue (renal cortex) and BI receptor antagonists blocked allodynia (Dias et 

al., 2007; Lungu et al., 2007). The use of a diet supplemented with alpha-lipoic acid, 

another antioxidant, blocked allodynia and prevented the induction and overexpression of 

BI receptors in the spinal cord and several peripheral tissues of glucose-fed rats (Lungu et 

al., 2007). Hypertension, insulin resistance, hyperinsulinemia and the overproduction of 

aortic superoxide anion were also normalized in glucose-fed rats by the diet enriched of 

alpha-lipoic acid. 

ACEI are currently among the best medications, and their therapeutic effects in 

cardiovascular disease appear to be exerted through several mechanisms: 1- inhibition of 

the renin-angiotensin system by preventing the conversion of angiotensin l to angiotensin 

II; 2- inhibition of the oxidative stress by preventing the activation ofNADPH oxidase by 

angiotensin II on the AT 1 receptor; 3- inhibition of the metabolic degradation of kinins 

into inactive peptides, thus allowing the release of NO from endothelial cells upon 

activation of B2 receptors by endogenous kinins; 4- enhancement of B2 receptor 

expression (Ongali et al., 2003); 5- inhibition of BI receptor expression in the CNS and 

peripheral tissues, most likely through their antioxidant properties. The latter mechanism 

regarding the inhibition of the deleterious effect of BI receptor on the cardiovascular 

system and sensory abnormalities was discovered in studies conducted in the frame of 

this the sis. 
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4.3 Perspectives 

Additional studies using conventional models of type 2 diabetes (Obese diabetic 

Zucker rats, obese db/db diabetic mice) are needed to consolidate the contribution of BI 

receptors in the cardiovascular and sensory abnormalities occurring in diabetes. AIso, it 

would be relevant to demonstrate whether BI receptor antagonists can block the oxidative 

stress and metabolic changes (hyperglycaemia, hyperinsulinemia, hyperlipidemia, insulin 

resistance) in diabetes. The role of kinin receptors in other complications, including 

retinopathy, nephropathy and vasculopathy (vascular remodelling, fibrosis, apoptosis) are 

subjects which warrant y further investigations. 

Summary and Conclusion 

The salient findings of this the sis are the following: 

1- Chronic treatment with 10 % glucose in drinking water for Il or 20 weeks 

induced hyperglycaemia, hyperinsulinemia, insulin resistance, arterial 

hypertension, aortic and hepatic oxidative stress (over production of superoxide 

anion and increased NADPH oxidase activity) , reduction of skeletal muscle 

insulin receptor substrate-1 (IRS-1) and sensory abnormalities (tactile and cold 

allodynia) in rats. These alterations were accompanied by an induction and up­

regulation of kinin BI receptor mRNA in the spinal cord and renal cortex. 

2- A treatment with the antioxidant N-acetyl -L-cysteine (1-2 g/kg/day) or the ACEI 

ramipril (1 mg/kg/day) initiated 4-5 weeks prior to the end of the treatment with 

glucose (11 and 20 weeks) restored aIl these abnormalities occurring in glucose­

fed rats. Although NAC and ramipril provided the same beneficial therapeutic 

effects, dissociation was seen on the oxidative stress. Whereas NAC prevented the 
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increased production of superoxide anion and NADPH oxidase activity in aorta 

and liver, ramipril targeted the oxidative stress on vascular tissue by a mechanism 

independent of NADPH oxidase activity. Also NAC but not ramipril reduced 

plasma levels of 4-hydroxynonenal and malondialdehyde, two markers of lipid 

peroxidati on. 

It is conc\uded that arterial hypertension and sensory abnormalities encountered in 

the model of insulin resistance induced by glucose may be due to the induction and 

overexpression of central and peripheral kinin BI receptors. The therapeutic effect 

afforded by NAC and ramipril involves the inhibition of kinin BI receptor overexpression 

which is triggered by the oxidative stress. Thus any strategies aimed at blocking the 

oxidative stress and/or the BI receptors would prevent the development of diabetes and 

its complications. 
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