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RESUME

Ce travail, a deux volets, propose d’une part [1] I’amélioration d’une méthode de
sélection de variables afin qu’elle soit mieux adaptée a des variables spatiales orthogonales
et, d’autre part, [2] les cartes de vecteurs propres asymétriques qui constituent une nouvelle
méthode permettant de générer des variables spatiales en considérant ’asymétrie spatiale
d’un processus écologique.

[1]La méthode progressive de la régression pas a pas est souvent utilisée en
écologie pour sélectionner un jeu réduit de variables explicatives. C’est une méthode
efficace pour construire un mod¢le statistique concis. Par contre, son utilisation avec des
variables spatiales construites dans le cadre des cartes de vecteurs propres de Moran (ou
Moran’s eigenvector maps, MEM) a tendance a surestimer la quantité de variances
expliquée et a gonfler ’erreur de type I. Le premier chapitre de ce travail propose une
innovation a cette méthode de sélection pour pallier a ces problémes. Une procédure en
deux étapes est développée. En premier lieu, un test global en utilisant tout le jeu de
variables spatiales doit étre réalisé. Si, et seulement si, le test global est significatif, la
méthode progressive de la régression pas a pas peut étre appliquée. Pour éviter la
surestimation de la variance expliquée, la régression pas a pas doit étre faite en utilisant
deux critéres d’arrét, soit (1) le critere de réjection alpha, ce qui est commun pour tout type
de régression pas a pas, et (2) le coefficient de déterfnination multiple ajusté (R%,) calculé
avec toutes les variables spatiales disponibles. Lorsqu’une variable spatiale fait dépasser le
seuil fixé pour I’un ou ’autre des deux criteres, cette variable est rejetée et la sélection
s’arréte.

[2] La répartition spatiale des espéces, tant animales que végétales, terrestres
qu’aquatiques, est influencée par de nombreux facteurs, comme les gradients physiques et
biogéographiques. Par exemple, la direction du vent dominant ou d’un courant induit des
gradients qui peuvent inﬂpencer la répartition spatiale de nombre d’espéces alors que des
événements historiques (e.g. une glaciation) peuvent créer des gradients biogéographiques.

A ce jour, aucune technique de modélisation spatiale n’a été développée qui considére



iii

I’asymétrie d’un processus contrélant lorsqu’une étude de la répartition spatiale est faite le
long d’un gradient. Le deuxi¢me chapitre de ce travail présentera une nouvelle méthode
modélisant la répartition des espéces dans I’espace en présence d’un processus asymétrique
connu. Cette méthode est une extension des MEM. La méthode produit les cartes de
vecteurs propres asymétriques (ou asymmetric eigenvector maps, AEM).

Chacun des chapitres de ce travail sera illustré par des données écologiques réelles.
Le premier chapitre est illustré par ’analyse de données du Parc national Bryce Canyon
(Utah, Etats-Unis d’ Amérique) alors que le second est illustré par 1’analyse de données de
contenus stomacaux d’ombles de fontaine (Salvelinus fontinalis) provenant de 42 lacs de la

réserve Mastigouche, Québec, Canada.

Mots-clés : méthode progressive de la régression pas a pas, asymétrie spatiale, coordonnées
principales de matrice de voisinage (PCNM), carte de vecteurs propres de Moran (MEM),
carte de vecteurs propres asymétriques (AEM), réserve Mastigouche, Salvelinus fontinalis,

Bryce Canyon National Park.



SUMMARY

This two-chapter work presents first an improvement of the forward selection
procedure that is better suited for orthogonal spatial variables. It also proposes a new
method to generate spatial variables, which considers the spatial asymmetry of an
ecological process. These variables are called asymmetric eigenvector maps.

The first chapter of this work proposes a new way of using forward selection that is
well adapted to eigenfunction-based spatial filtering methods. The classical forward
selection procedure carried out on orthogonal spatial variables presents a highly inflated
rate of type I error. To prevent this, we propose a two-step procedure. First, a global test
using all spatial variables must be carried out. If, and only if, the global test is significant,
one can proceed with forward selection. Furthermore, to prevent overesimation of the
explained variance, the forward selection has to be carried out with two stopping criteria:
(1) the usual alpha level of rejection and (2) the adjusted coefficient of multiple
determination (R?,) calculated with all spatial variables. When forward selection identifies a
variable that brings one or the other criterion over the fixed threshold, this variable is
rejected and the procedure stops.

Distributions of species, animals or plants, terrestrial or aquatic, are influenced by
numerous factors such as physical and biogeographical gradients. Dominant wind and
current directions cause the appearance of gradients in physical conditions whereas
biogeographical gradients can be the result of historical events (e.g. gléciations); such
factors are known to influence the spatial distributions of many species. No spatial
modelling technique has been developed to this day that considers the asymmetry of the
controlling factors when studying species distributions along a gradient. Here will be
presented a new spatial modelling method that can model species spatial distributions
generated by a known asymmetric process. This method is an eigenfunction-based spatial
filtering method; it pertains to the same general framework as Moran’s eigenvector maps

(MEM) analysis. The new method is called asymmetric eigenvector maps (AEM). To



illustrate how this new method works, AEM are compare to MEM through simulations and
with an ecological example where a known asymmetric fqrcing is present.

An ecological illustration is presented for each chapter. The first chapter uses plant
data gathered in Bryce Canyon National Park (Utah, USA). The second chapter uses dietary
habits of brook trout (Salvelinus fontinalis) sampled in 42 lakes in the Mastigouche

Reserve, Québec.

Key words: Forward selection, spatial asymmetry, principal coordinates of neighbor
matrices (PCNM), Moran’s eigenvector maps (MEM), asymmetric eigenvector maps

(AEM), Mastigouche Reserve, Salvelinus fontinalis, Bryce Canyon National Park.
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were run for each magnitude of error.
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- structure) pattern in the generation of the data.
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maximum of 3. Error bars represent 95% confident intervals. Each run consists
of 1000 independent simulations. Lines linking error bars were plotted to prevent
confusion between results of AEM and MEM analysis.
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| numbered L-1 to L-43; there is no lake L-20. Edges are numbered e-1 to e-65.
Adapted from Magnan et al. (1994).
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the absolute values represented. (c¢) Four groups K-means partition of the lakes

plotted on the river network map.
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INTRODUCTION

L’importance de 1’hétérogénéité spatiale en écologie est bien connue et ce depuis
longtemps (Kolasa et Rollo 1991). Par contre, les méthodes permettant d’étudier ces
phénoménes sont arrivées beaucoup plus tardivement. En 1989, Legendre et Fortin ont
publié un article qui s’avéra étre un point tournant pour 1’analyse spatiale en écologie. I1s
présentérent plusieurs méthodes provenant de domaines extérieurs a 1’écologie permettant
d’expliquer ’impact des phénomeénes spatiaux sur la répartition des communautés
végétales. Ces méthodes ont été utilisées dans d’autres sphéres de I’écologie comme la
limnologie (e.g. Cooper et al. 1997), I’océanographie (e.g. Planque et al. 1997), I’écologie
animale (e.g. Bergin 1992).

Ensuite, plusieurs écologistes plus versés dans la statistique et les mathématiques se
sont lancés dans le développement de méthodes pour analyser spécifiquement 1’espace en
écologie. Un bon exemple de développement méthodologique fait par un écologiste pour
mieux comprendre les phénoménes spatiaux en écologie est la partition de la variation
(Borcard et al. 1992). Cette méthode a été développée originalement pour mieux
comprendre quelle portion de la variance expliquée est uniquement due aux variables
spatiales d’un modéle, uniquement aux variables environnementales, ainsi qu’a une
combinaison de ces deux groupes de variables.

Avec la partition de la variation, il devenait impératif de trouver une fagon de
générer des variables permettant de bien modéliser la répartition spatiale des organismes.
La méthode la plus simple permettant de générer ce genre de variables_, connue a I’époque
du développement de la partition de la variation, éfait de calculer un polyndme de deuxiéme
ou de troisieme ordre a partir des coordonnées géographiques (Legendre 1990). Ceci
consiste & prendre les cordonnées XY des sites et les élever au premier (X et Y), au
deuxiéme (X, Y, XY, X? et Y?) ou au troisiéme degré (X, Y, XY, X%, Y2 X2Y, XY2, X et
Y?). Ce polyndme formait le tableau des variables explicatives dans une régression ou une
analyse canonique. Il devenait donc possible.d’analyser des structures spatiales dans un

contexte écologique. Ce type de méthode a par contre un défaut : pour pouvoir modéliser la



distribution d’organismes a une €chelle relativement fine, il est nécessaire de disposer d’un
polyndme extrémement long. Quoique mathématiquement possible, I’utilisation d’un
polyndme d’ordre supérieur  trois présente plusieurs problémes. La robustesse d’un test
statistique peut étre diminuée si trop de variables sont incorporées dans un mode¢le. Ce
probléme est particuliérement important lorsque le nombre d’observations est faible, ce qui
est fréquemment le cas en €cologie. Un autre probléme lié€ a I’utilisation d’un polynéme de
graﬁd ordre (plus que trois) est la difficulté qu’on peut avoir a interpréter 1’effet de ces
variables sur le tableau-réponse.

Pour pallier aux inconvénients qu’engendre 1’utilisation des polyndémes des
coordonnées géographiques, Borcard et Legendre (2002) ont développé les coordonnées
principales de matrices de voisinage (Principale coordinate of neighbour matrices, PCNM,
en anglais); I’acronyme anglais sera utilis€ dans le reste du texte pour €viter toute confusion
avec ’acronyme frangais des cartes de vecteurs de Moran. Les PCNM sont des variables
orthogonales issues d’une décomposition spectrale d’une matrice de distances tronquée
calculée a partir des coordonnées géographiques des sites d’échantillonnage (Figure 1). Une
matrice de distance tronquée consiste en une matrice de distance ou toutes les distances
plus grandes que la plus grande distance dans la chaine permettant de relier tous les sites
ensemble sont remplacées par une valeur trés grande (4 fois la plus grande distance
considérée, ou plus). Elles ont I’avantage de permettre de déceler des variations a échelle
fine et ce méme si un nombfe tres restreint de sites ont €té échantillonnés. Elles peuvent
étre utilisées dans des contextes trés variés. Borcard et al. (2004) présentent plusieurs
situations écologiques trés différentes ot ’analyse PCNM a produit des résultats trés
intéressants.

I1 a ensuite ét€ montré par Dray et al. (2006) que les PCNMs font partie d’un cadre
général, les cartes de vecteurs propres de Moran (Moran’s eigenvector maps, MEM en
anglais); I’acronyme anglais sera utilis¢ dans le reste du texte pour éviter toute confusion
avec celui des coordonnées principales de matrices de voisinage. Alors que les PCNM sont

uniquement basées sur les distances entre les sites échantillonnés, le cadre des MEM



présente une fagon de créer des variables ou non seulement les distances entre les sites
peuvent étre prises en considération, mais aussi le nombre de voisins; les sites peuvent étres
reli€s entre eux par un diagramme de connexions permettant de définir quels sites ont une
influence les uns sur les autres. La figure 2 présente schématiquement lé construction de
variables spatiales construites dans le cadre des MEM. Les MEMs permettent une trés
grande flexibilité qu’aucune autre méthode d’analyse spatiale n’avait jusqu’alors. :

Les PCNMs, comme les MEMSs, ont aussi leurs défauts et leurs limites. Ces deux
méthodes permettent de générer un nombre trés important de variables spatiales. Pour les
PCNMs, il est fréquent de voir 2n/3 variables générées, n étant le nombre de sites
échantillonnés. Pour les MEMs, il arrive souvent qu’il y ait (» — 1) variables générées, ce
qui est encore pire, puisque avec autant de variables, un test statistique est impossible &
faire par manque de degrés de liberté.

Ces deux méthodes se veulent généralistes : elles peuvent étre utilisées dans toutes
les situations ol 1’on souhaite modéliser la structure spatiale des données échantillonnées.
Malheureusement, certaines situations requieérent des méthodes plus spécifiques. Les
PCNMs et les MEMs tentent de modéliser 1a répartition spatiale d’organismes sans prendre
en considération des connaissances qu’on pourrait posséder a priori sur un milieu étudié.
Par exemple, si on tente de modéliser la répartition spatiale d’organismes dans une riviére a
’aide des PCNMs ou des MEMs, méme si ces derniéres sont trés flexibles, aucune de ces
méthodes ne permet de prendre en considération le fait qu’un courant puisse influencer de
fagon directionnelle la répartition spatiale des organismes €tudiés.

Dans toutes ces méthodes de modélisation spatiale, un grand nombre de fonctions
sont générées pour décrire les relations spatiales entre les sites d’échantillonnage. Il est
intéressant dans certains cas de réduire le nombre de variables spatiales explicatives des
données écologiques a ’aide d’une des méthodes de sélection menant & un modéle
parcimonieux. Un modele parcimonieux a plus de pouvoir prédictif (Gauch 1993, 2003).
Cela est désirable par exemple lors de la formulation de sous-mode¢les spatiaux

correspondant a des échelles spatiales différentes ou encore lorsqu’on veut représenter les



variables spatiales dans un diagramme d’ordination. La méthode couramment employée en
analyse canonique est-la sélection ascendante (forward selection, en anglais) des variables
explicatives. Or on sait que cette méthode est trop libérale; en d’autres termes, elle a
tendance a incorporer dans le modéle des variables qui n’ont qu’un effet aléatoire au niveau
de la population statistique. Parce que nous analysons un échantillon de taille réduite, ces
variables peuvent, par hasard, modéliser une partie du bruit qui se trouve dans les données.

Les deux chapitres de ce travail ont pour but de résoudre les deux problémes
mentionnés ci-dessus. |

Le premier chapitre propose une nouvelle méthode de sélection de variables
spatiales orthogonales. Il a pour but d’avertir les utilisateurs de cette méthode a propos des
comportements capricieux de la sélection progressive lorsque cette derniére est utilisée
pour sélectionner des variables spatiales orthogonales. Ce chapitre propose aussi une
nouvelle procédure de sélection progressive pour sélectionner des variables provenant du
cadre des MEM ou le nombre de variables spatiales explicatives est (n — 1).

Cette nouvelle procédufe sera validée a I’aide de simulations. Un jeu de données sur
la biodiversité des plantes vasculaires du Parc national de Bryce Canyon (Utah, Etats-Unis
d’ Amérique) sera utilisé pour illustrer comment cette nouvelle procédure réagit dans une
situation écologique réelle.

Le second chapitre de ce travail présente une nouvelle méthode pour générer des
variables spatiales. Il est bien connu que la répartition spatiale des espéces peut étre
influencée par un ou des gradients des variables environnementales (Huston 1996).
Beaucoup de gradients sont induits par des processus spatiaux asymétriques. Malgré les
développements méthodologiques importants qui ont permis de mieux comprendre
comment les structures spatiales influencent la répartition des espéces, aucune méthode ne
considére les processus asymétriques. La méthode développée ici entre dans le cadre des
" méthodes de filtrage spatial basées sur le calcul de valeurs et de vecteurs propres, concept

développé par Griffith et Peres-Neto (2006).



A échelle fine comme large, la répartition spatiale des espéces est souvent structurée
selon un ou plusieurs gradients, biotiques et/ou abiotiques. Nous proposons d’utiliser des
variables spatiales qui sont asymétriques par construction pour étudier la répartition spatiale
de communautés d’especes qui sont influencées par des gradients. Dray et al. (2006)
déplorent I’absence de méthode considérant 1’asymétrie spatiale; notre article servira a
combler cette lacune dans la littérature. Comme pour les MEMs, les variables asymétriques
présentées dans ce chapitre proviennent d’un cadre général trés flexible permettant de
générer des variables spatiales asymétriques. Les variables créées dans ce cadre s’appellent
des cartes de vecteurs propres asymétriques (asymmetric eigenvector maps, AEM, en
anglais); 1’acronyme anglais sera utilisé ici. Ces variables se veulent appropriées pour des
situations ou les processus environnementaux influengant les organismes étudi€s possédent
une asymeétrie spatiale connue (e.g. dans une riviere, un fleuve ou un courant marin). Ce
nouveau développement sera validé par des simulations créées dans un contexte
bidimensionnel. Un jeu de données sur les contenus stomacaux des ombles de fontaine
(Salvelinus fontinalis) dans 42 lacs de la réserve Mastigouche sera utilisé pour illustrer
I’utilisation des AEMs dans une étude écologique réelle. Une comparaison entre les AEMs
et plusieurs autres méthodes, dont les MEMs et les PCNMs, sera faite pour ce méme jeu de

données.
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Abstract. This report proposes a new way of using forward selection that is well
~adapted to eigenbased spatial filtering methods. The classical forward selection carried out
on orthogonal spatial variables presents a very inflated type I error. To prevent this, we
propose a two steps procedure. First, a global test using all spatial variables must be carried
out. If, and only if, the global test is significant, one can proceed with a forward selection.
Furthermore, to prevent overesimation of the explai_ned variance, the forward selection has’
to be carried out with two stopping criteria (1) the usual alpha level of rejectidn and (2) the
adjusted coefficient 6f multiple determination (R?,) calculated with all spatial variables.
When forward selection identifies a variable that brings one or the other criterion over the
fixed threshold this variable is rejected and the procedure is stopped. This new technique is
validated with simulations and an ecological example is presented with data from Bryce

Canyon National Park (Utah, USA).

Key words: Principal coordinates of neighbor matrices (PCNM), Moran’s eigenvector

maps (MEM), spatial analysis, simulations, type I error
INTRODUCTION

Since the introduction of principal coordinates of neighbor matrices (PCNM)
(Borcard and Legendre 2002, Borcard et al. 2004) and of Moran’s eigenvector maps (MEM)
(Dray et al. 2006), ecologist have been faced with the problem of having to handle large
numbers of spatial explanatory variables in their analyses. In their concluding remarks,
Bellier et al. (2007) stated: “PCNM requires methods to choose objectively the composition,
number, and form of spatial submodels”. We propose a new method for selecting spatial
submodels for those types of variables. The new method is completely independent of the
user’s knowledge of the data under study.

An automatic selection procedure is used in most cases to select a subset of
explanatory variables objectively. Having fewér variables that explain almost the same

amount of variance is interesting; it retains enough degrees of freedom for testing the F-
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statistic in situations where the number of observations is small because observations are
very costly. Furthermoré, a parsimonious model has greater predictive power (Gauch 1993,
2003). One method very often used for selecting variables in ecology is forward selection. It
presents the great advantage of working even when the initial dataset has more explanatory
variables then sites, which is often the case in ecology. Since forward selection is being
used mbre and more to select spatial variables (e.g. Borcard et al. 2004, Brind' Amour et al.
2005, Duque et al. 2005, Telford and Birks 2005, Halpern and Cottenie 2007), it is this
report’s goal to warn researchers against the sometimes capricious behavior of forward
selection when selecting orthogonal spatial variables. We also propose a new forward
selection procedure to select variables constructed through an eigenfunction-based spatial
filtering method where the number of spatial explanatory variables ié equal to (n — 1), where
n is the number of objects.

The procedure will be presented and validated with the help of simulated data. To
illustrate how it reacts on real ecological data, we shall use the Bryce Canyon National Park

(Utah, USA) dataset.

DIFFERENCE BETWEEN PCNM AND MEM VARIABLES

MEMs are a general framework to construct the many variants of orthogonal,
eigenvector-based spatial variables like PCNMs and distance-based eigenvector maps (Dray
et al. 2006). For example, PCNMs are constructed on the basis of a distance criterion. This
is not necessarily the case of other MEMs that can be constructed based on a connection
diagram, a number of neighbors, etc. Detailed explanation of the construction of PCNMs
and MEMs are presented in Borcard and Legendre (2002) and Dray et al. (2006)
respectively.

‘ In this report, we will use two types of spatial vvariables out of the MEM framework
to present our new approach of forward selection and investigate its properties by numerical

simulations. The first type is PCNMs because they are the most widely used at the moment
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in ecology (e.g. Duque et al. 2005, Kohler et al. 2006). PCNM is an eigen-based spatial
decomposition method that creates spatial variables (PCNM eigenfunctions) through a
truncated distance matrix initially constructed from the geographical coordinates of the
study sites. The other type is the simplest construction from the MEM framework, which we
call binary eigenvector maps (BEM) in this report. BEM are constructed from a connexion
diagram, which, in the particular case of a transect, links all sites from left to right. No
weights will be added to the links in the simulations presented in this paper. The connexion
matrix derived from the connexion diagram is used directly to build spatial variables
through a principal coordinate analysis (PCoA). All simulations and analyses were carried
out on an irregular transect of 100 sites. For irregularly spaced sites, PCNMs and BEMs

represent two extreme types in the MEM framework (Dray et al. 2006).

FORWARD SELECTION: A HUGE TYPE I ERROR

The simulationé presented below show that, when used in the traditional manner
(i.e., step-by-step introduction of explanatory variables with a test of the partial contribution
of each variable to be entered), forward selection of orthogonal spatial variables presents
two problems: (1) an inflated type I error, and (2) an overestimation of the amount of
variance explained. In a first set of simulations to measure the type I error rate, we created a
random normal response variable along a transect containing 100 irregularly spaced
simulated sampling sites. The site positions along the transect were created using a random
uniform generator. The same transect was used for all simulations. The simulations differ in
the data generated at those specific sites. PCNMs were computed from the spatial
coordinates of the points along the transect, and a forward selection was carried out to
identify the PCNM variables best suited to model the response variable, with a stopping o
level of 0.05. To increase computation speed, we ran all analyses using a parametric
forward selection procedure, adequate here because the simulated data were random normal.

Parametric tests should not, however, be used with non-normal data such as tables of
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species abundances. In such cases, randomization procedures should be used (Pitman,
1937a, 1937b and 1938). We repeated this procedure with 5000 independent sets of random
normal data. The same simulations were repeated with BEMs.

The simulation results are presented in Fig. 1. On PCNMs the procedure behaved
coﬁectly roughly 6% of the time only, selecting no PCNM to model a random variable, i.e.,
the overall type I error rate was about 94%. This is asténishingly high when compared to the
expected rate of 5%. Very often in the simulations (about 73% of the cases), one to four
PCNMs were selected to model random noise. Sometimes, up to 14 PCNMs were admitted
into the model. These results show that forward selection yields a hugely inflated type I
error. When forward selectidn was applied to BEMs, results were even more alarming. Only
once in 5000 tries did the forward selection lead to the correct result of not selecting any
BEM. Almost 60% of the time, 7 to 17 BEM variables were selected incorrectly. As was the
case for PCNM variables, very large numbers of BEMs were sometimes selected (up to 62).
These results show that one cannot run a forward selection without some form of |
preliminary, overall test. They prompted us to find new criteria to improve the type I error
of forward selection. This meant (1) to devise a rule to decide when it is appropriate to run a
forward selection, and (2) to strengthen the stopping criterion of the forward selection to
prevent it from being overly liberal.

Using numerical simulations, Ohtani (2000) has shown that the Ezekiel (1930)
adjusted coefficient of multiple determination (R?,) is an unbiased estimator of the real
contribution of a set of explanatory variables to the explanation of a response variable. Had
the simulations presented above given accurate results, the adjusted coefficient of multiple
determination would have been zero or close to zero all the time. In our results, after 5000
simulations, the mean of the .Rza statistics is 13.2 % for PCNM and 47.2 % for BEM. Why
do the R, values diverge so strongly from zero? The fundamental problem lies with the
forward selection procedure, which is exacerbated by the nature of these spatial variables.
PCNM and BEM variables are structured in such a way that they are more suited than other

types of variables to fit noise in the response data. The number of PCNM variables is at
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most 2n/3 whereas the number of BEM variables is (» — 1). Besides being numerous,‘these
variables are also orthogonal to one another, which means that each variable can model
entirely different aspects of a fesponse variable. Fig. 1b shows the number of PCNM
variables selected during the 5000 simulations above, and Fig. 1¢ shows corresponding
results for BEM variables. These graphs show that more BEM variables than PCNMs are
incorrectly selected, simply because they are more numerous. Thioulouse et al. (1995)
suggest that eigenvectors associated to small positive or ﬁegative eigenvalues are only
weakly spatially autocorrelated. With that in mind, we could expect the variance in our
unstructured response variables to be "explained" mainly by PCNM and BEM variables
with small eigenvalues. This was not the case: results show that all eigenvectors were

selected in roughly the same proportions (see Appendix A for details).

GLOBAL TEST: A WAY TO ACHIEVE A CORRECT TYPE | ERROR RATE

To prevent the inflation of type I error (our first goal), a global test needs to be done
prior to forward selection. This is the first important message of this report. A global test
means that all orthogonal variables created in the PCNM or BEM procedure are used
together to model the response variable. However, with BEMs, there are often # — 1 spatial
variables created. In this case no global test can be done since there are no degrees of
freedom left. This problem can easily be resolved. Thioulouse et al. (1995) have argued that
eigenvectors associated with high positive eigenvalues have high positive autocorrelation
and describe global structures; whereas eigenvector associated with high negative
eigenvalues have high negative autocorrelation and thus describe local structures. If the
response variable(s) is known to be positively autocorrelated, only eigenvectors associated
to positive eigenvalues should be used in the global test. On the other hand, if the response
variable(s) is known to be negatively autocorrelated, only eigenvectors associated to
negative eigenvalues should be used in the global test. In the case where there is no prior

knowledge or hypothesis about the spatial structure of the response variable(s), two global
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tests are done: one with the eigenvectors associated to negative eigenvalues and one with
the eigenvectors associated to positive eigenvalues. Since two tests are done, a correction
needs to be applied to the alpha level of rejection of Hy t6 make sure that the test has an
appropriate experimentwise rejection rate. Two corrections can be applied when there are
two tests (k = 2), the corrections of Sidak (Sidak 1967) where ps=1—(1 — p)* and
Bonferroni (Bonferroni 1935) where pp = k*p, where p is the p-value. The Sidak correction
was used in this report. Throughout this report we used a 5% rejection level.

The global testvon PCNMs, as presented in the previous paragraph, has already been
shown to have a correct type I error (Borcard and Legendre 2002). However, this has not
been done for BEMs, so we ran simulations. Following Thioulouse et al. (1995) and after
examination of the 99 BEMs obtained for n = 100 points, we divided the set into two
subsets of roughly equal size, the 50 first BEMs (i.e. those with positive eigenvalues) being
positively autocorrelated and the 49 last, negatively. Four distributions were used to
construct response variables to assess the type I error. Data was randomly drawn from a
normal, uniform, exponential, and exponential cubed distribution, following Manly (1997)
and Anderson and Legendre (1999). A permutation test was done. We repeated the
procedure 5000 times for each distribution. Results are shown in Fig. 2. In a nutshell, the
rate of type I error is correct for BEMs when using a global test based on the premises

presented above.

STRUCTURED RESPONSE VARIABLES: TOWARDS AN ACCURATE MODELING

When there is structure in the response variable(s), which is most often the case with
real ecological data, and if, and only if, the global test presented above is significant, what
should be done next? That depends on why the data are analyzed. If only the significance of *
the model and the proportion of variance explained are needed, then the procedure stops

with the global test and the unbiased R?, of the model containing all spatial variables.
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On the other hand, if the spatial structures modeled by PCNM or BEM variables
need to be investigated in more detail, a selection of the important spatial variables needs to
be carried out. This is where the R%, will be useful. As a precaution, we first checked that
R?, is a stable statistic in the presence of additional, non-significant PCNM variables added
in random order to the true explanatory variables. The following simulations were carried
out. We generated PCNMs on an irregular transect containing 100 sites. To cfeate a
spatially structured response variable, five of these PCNMs were randomly selected, each of
them was weighted by a number drawn from a uniform distribution (minimum = 0.5,
maximum = 1), and these weighted PCNMs were added to create the deterministic
component of the response variable. Finally, we added an error term drawn from a normal
distribution with zero mean and a standard deviation equal to the standard deviation of the
deterministic part of the response variable, to introduce a large amount of noise in the data.
Multiple regressions were then calculated on the simulated response variable, first with the
five explanatory PCNMs used to created the response variable (the expected value of R, is
then 0.5), then by adding, one at a time and in random order, each of the remaining PCNMs.
This procedure was repeated 5000 times. The same procedure was run for the two sets of
BEM defined above. Results are presented in Fig. 3. These results show that even when a
model contains a high number of explanatory variables that are of little or no importance,
the R%, is not affected. The reason why R%, were affected by forward selection in the first set
of simulations presented in this report, as was shown in Fig. 1a, is that forward selection
chooses the variable that is best suited to model the response regardless of the overall
significance of the complete model (hence the necessity of the global test), whereas in the
present simulations the model already contained the relevant explanatory variables and the
next variables to enter the model were randomly selected and added no real contribution to
the explanation.

In real cases, however, one does not know in advance what explanatory variables are
relevant. Therefore, given that a global test is significant and a global R, has been

estimated, our second goal is now to prevent the selection from being overly liberal.
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Preliminary simulations (not shown here, but see the Bryce Canyon example below) showed
that, rather frequently, a forward selection run on a globally significant model yielded a
submodel whose R%, was higher than the R%, of the global model. Obviously, this does not
make sense. |

Therefore, the second message of this paper is the following: the forward selection
should be carried out with two stopping criteria: (1) the pre-selected significance level alpha
and (2) the R%, statistic of the global model.

We ran a new set of simulations to assess the improvement brought by this second
point. We created response variables using the same procedure as in the previous run
(weighted sum of 5 randomly chosen PCNM or BEM variables), but three variants were
produced, differing by the magnitude of the error term added. The first set had an error term
equal to the standard deviation of the deterministic part of the response variable (as in the
previous simulations), the second set had an error with standard deviation 25% that of the
deterministic portion, and the last set of simulations had a negligible error term (0.001 times
the standard deviation of the determinist portion). Each of these response variables was
submitted to the procedure above, i.e., a global test followed, if significant, by a forward
selection of explanatory variables (either PCNMs or one of the two sets of BEMs), using the
double stopping criterion. Each result was compared to a result obtained when only alpha
was used as the stopping criterion (as usually done). Variables selected by the forward
selection were compared to the variables chosen to create the response variable. This was
intended to show how efficiently forward selection can identify the correct spatial variables.

Results are presented in Fig. 4, Appendix B and Appendix C. Since PCNMs and
both sets of BEMs react in the same way, Fig. 4 will be used in the discussion of all sets of
spatial variables. |

When error equals the standard deviation, a forward selection done with the two
stopping criteria (R, and alpha, Fig. 4a) rarely selected none or only one of the variables
used to create the response variables (less than 1.5% of the time). Roughly 7.5% of the time

2 variables used to create the response variables were selected. This percentage exceeded
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20% for three variables and 30% for four variables. In 37% of the cases, all variables used
to create theAresponse were found in the forward selection. On the other hand, the positive
influence of the double stopping criterion is obvious when looking at Fig. 4b: in more than
60% of the cases no additional PCNM variable was (incorrectly) selected.

When only the alpha criterion is considered as a stopping criterion, forward selection
identifies the correct variables very often (Fig. 4c). Under 1% of the time only, three
variables or less that were used to create the response variable were chosen by the forward
selection. However, this apparently better efﬁcienéy is counterbalanced by a much higher
number of cases of bad selections: in more than 90% of the cases one or several additional
variables are incorrectly selected (Fig. 4d).

The performance of forward selection improves when less error is added to the
response variable (Fig. 4e to 41), which was to be expected. Two points ought to be noticed.
(1) Even when there is practically no error in the created response variables, roughly half
the time, forward selection with two stopping criteria misses one of the true variables (Fig.
4i). When only the alpha criterion is used, forward selection invariably select all the good
variables, even when a noticeable amount of error (25% standard deviation) is present in the
data (Fig. 4k). (2) However, forward selection done with only the alpha criterion selects
wrong variables, often more than one, in about 90% of the cases even when response
variables are almost error free (Fig. 41).

It is also interesting to see how many times, in each procedure, all the variables used
to create the response variable, and only those, were chosen by the forward selection (Tgble
1). Again, results are very similar for PCNMs and positively and negatively autocorrelated
BEMs; they will thus be discussed together. When half of the variation in the response
variable is random noise (error term = standard deviation), the “perfect” selection is
achieved roughly 10% of the time when R*; and alpha are used together. This result drops to
less than 0.5% when only the alpha criterion is used. As expected, these results get better
with less noisy response variables. However, using two stopping criteria is always better

than using only one. The use of only the alpha criterion results in slightly more than 7% of
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"perfect" selections when almost no noise is present in the response variable. The score is
17% when both the R, and the alpha criteria are used. This better performance is due to the

success of the double stopping criteria in preventing "wrong" variables to enter the model.

EXAMPLE: BRYCE CANYON DATA

To show how this new way to run forward selection behaves in a real multivariate
situation, we used data from Bryce Canyon National Park (Utah, USA) (Roberts et al.
1988). The response table is composed of 169 vascular plants species sampled at 159 sites.
83 PCNMs variables were created on the basis of the site coordinates. The truncation |
distance was 2573.4 universal transverse mercator units (UTM). The global test was done
on the linearly detrended response variables with 999 permutations and was significant (p-
value < 0.001). The R?, calculated with all PCNMs was 26.4%. When a forward selection
(999 permutations) was done with only the alpha criterion as stopping rule, 24 PCNMs were
selected before the procedure stopped. However, the R%, calculated with those 24 PCNMs
was 31.5%, i.e., a value higher than the R?, of the complete model. When R?, was added
into the selection procedure as an additional stopping criterion, the number of PCNMs
selected dropped to 14 (with an R?, of 26.4%). Therefore, based on the simulations
presented above, it can be supposed that the addition of a second stopping rule prevented
several unwanted PCNM variables to be admitted into the model. Furthermore, since the
last of the 14 variables to enter the model explained about 0.6% variance, the procedure did
not prevent any important variable to be included. It is not the purpose of this report to
discuss this example in more detail, but we are confident that the more parsimonious model
resulting from our improved selection procedure would be less noisy and therefore would be

easier to interpret (Gauch 2003).
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DISCUSSION

Carrying out a global test including all spatial variables available is not only
important, it is necessary to obtain an overall correct type I error. We showed that the
particular global test devised when there are too many spatial variables present, as was the

‘case for BEMs, produces a correct type I error. But is the variance explained by a global
model influenced by the obviously too numerous vartables when orthogonal spatial
variables are used? In other words: does the R?, properly correct for these particular types of
spatial variables? Even though Fig. 3 shows that vafiations of explanation occur when
variables are added to a model already well fitted, these variations are usually of low
magnitude. Adding unimportant variables to an already well-fitted model has practically no
impact on the explained variance measured by R?,. Thus, the use of R%, as an additional
stopping criterion is a good choice in a forward selection procedure.

The use of our double stopping rule (R%, plus alpha level) has a number of impacts
on the final selection. The most important one is that in all cases, fewer useless variables are
selected. The selection is more realistic. However a comment raised by Neter et al. (1996,
chapter 8) explains that the use of automatic selection procedures may lead to the selection
of a set of variables that is not the best but which is very suitable for the response variable
under study. Our new approach does not prevent such outcomes; it prevents the possibility
of overexplaining a response variable by a set of "too-well-chosen" explanatory variables.
The use of R%, in addition to the alpha criterion for the stopping procedure was shown,
however, to select the best model more often.

Neter et al. (1996, chapter 8) proposed other parameters that could be used as
stopping criteria: the total mean square error and the prediction sum of square. We decided
to use the R?, because it offers the advantage of being also a measure of the explained
amount of variance. Also, this parameter is well known in ecology, which is not the case for

the other two proposed by Neter et al. (1996).



21

All the simulations in this report were carried out with only one response variable.
This was done for simplicity. The new procedure of forward selection can also be used,
without any modification, with multivafiate response data sets, as illustrated here by the
Bryce Canyon example.

The conclusions reached in this study are based on simulations. We tried to make the
simulations as general as possibl.e, even though we did not simulate all possible types of
ecological data. This is always the case in simulation studies (Milligan 1996). A quick look
at Hurlbert’s unicorns (Hurlbert 1990) is a good example of how peculiar ecological data
can be. |
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Table 1: Percentage of time when all the variables used to create the response variable, and

only those, were chosen by the forward selection procedure.

Error PCNM | Positive BEM | Negative BEM

Standard deviation Alpha & R°, [10.6 % 10.5 % 10.5 %
Alpha 0.5 % 0.4 % 0.5 %

Standard deviation/4 | Alpha&R’, | 17% 18.4 % 17.7 %
Alpha 8.3% 6.7 % 7%

Standard Alpha & R*, | 17% 16. 8 % 17.2 %

deviation/1000

Alpha 8 % 6.9 % 7 %
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FIGURE CAPTIONS

Fig. 1. Result of 5000 simulations of forward selection when only alpha is used as a
stopping criterion. The response variable is random normal. (a) R?, for each simulation,
black = BEM, grey = PCNM. The mean of the 5000 simulations is presented with a line
going through the distribution. (b) Number of PCNMs selected by forward selection. (c)
Number of BEMs selected by forward selection.

Fig. 2. Type I error of BEMs on series of 100 data points randomly selected from four
distributions. For each distribution, 5000 independent simulation were completed. The
error bars represent 95% confidence intervals.

Fig. 3. Variation of R?, when randomly selected spatial variables are added to a model
already containing the correct explanatory variables. Spatial variables were added one at
a time until none was left to add. 5000 simulations were done. Whiskers: extreme
values. (a) Results for PCNMs. (b) Results for positively autocorrelated BEMs. (c)
Results for negatively autocorrelated BEMs.

Fig. 4. Comparison of a forward selection done on PCNMs with both the R%, and alpha
level as stopping criteria (a-b, e-f, i-j) with one where only the alpha criterion (¢-d, g-h,
k-1) was used. Three different situations are presented: (1) the standard deviation of the
deterministic part of the response variable is the same as the standard deviatién of the
error (a-d), (2) the standard deviation of the error is 0.25 times that of the standard
deviation of the deterministic part (e-h) and (3) the standard deviation of the error is
0.001 times that of the standard deviation of the deterministic part (i-1). The left-hand
side presents the correct selections made by the forward selection, i.e., the variables
selected were the ones used to create the response variable. The right-hand side shows
the bad selections, i.e. the variables selected were not the ones used to create the

response variable. 5000 simulations were run for each magnitude of error.
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Figure 4: Comparison of a forward selection done on PCNMs with both the R%, and alpha

level as stopping criteria (a-b, e-f, i-j) with one where only the alpha criterion (c-
d, g-h, k-I) was used. Three different situations are presented: (1) the standard
deviation of the deterministic part of the response variable is the same as the
standard deviation of the error (a-d), (2) the standard deviation of the error is

0.25 times that of the standard deviation of the deterministic part (e-h) and (3) the
standard deviation of the error is 0.001 times that of the standard deviation of the
deterministic part (i-1). The left-hand side presents the correct selections made by
the forward selection, i.e., the variables selected were the ones used to create the
response variable. The right-hand side shows the bad selections, i.e. the variables
selected were not the ones used to create the response variable. 5000 simulations

were run for each magnitude of error.
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Appendix B: Comparison of a forward selection done on positively autocorrelated BEM

with both the R%; and alpha level as stopping criteria (a-b, e-f; i-j) with one
where only the alpha criterion (c-d, g-h, k-I) was used. Three different
situations are presented: (1) the standard deviation of the deterministic part of
the response variable is the same as the standard deviation of the error (a-d),
(2) the standard deviation of the error is 0.25 times that of the standard
deviation of the deterministic part (e-h) and (3) the standard deviation of the
error 1s 0.001 times that of the standard deviation of the deterministic part (i-
1). The left-hand side presents the cerrect selections made by the forward
selection, i.e., the variables selected were the ones used to create the response
variable. The right-hand side shows the bad selections, i.e. the variables
selected were not the ones used to create the response variable. 5000

simulations were run for each magnitude of error.



Nombrer wf guod sebectisss Nusmbr of bad scboe e
S0 4 A N 4 b
ann 4 )
o - loaxi S
HEXD = - | i
Voo - — | 1000 —
o — [ —j nd IS e e———
ii | i} LS ] 3l ' 2 | < 5 & ] L] L] 0
Wiy s 4 d
WX | &xn
g Xuxy
2000 - 000
1 - —_— 1000 = [7l] (==
0 - y p— {1 S Y e ———
[} 1 3 a 2 b [ ® } w
s - € sy 4 f
Ky 000
F ] War i
om0 | 20
oy | 100 | —
] P— o = Y Y S S it St | e —
0 1 3 4 u i - 5 6§ L] v i
o 4 B — s - h
00 \ 00
WHNi | ]
NN - i il
10m - | 1 a4 i_m—-—l — .
| - — g4 == ) ] T e e e e
[ 1 Y 4 5 o 1 ) 3 4 4 f % 0 10
Wmx 4 s 4 ]
4000 &
0 - 3000
2000 = I .o 1] |
1000+ | ] | .
o - L a e e———
4 ) 2 3 4 $ [ 1 2 Ve § 3 8 v oom
s000 4 — 3000 4 |
A0 4 | | ELii]
3000+ b ]
200 - ! 2000
ll'.!i-il-l ! HEwl] =3 o ‘|:| —_—
0 - - — . NN n- == =11 SE e B —
4] 1 2 3 & ) 0 i X 3 4 5 [ K f v 19 .

Appendix C:

Comparison of a forward selection done on negatively autocorrelated BEM
with both the R?, and alpha level as stopping criteria (a-b, e-f, i-j) with one
where only the alpha criterion (¢c-d, g-h, k-1) was used. Three different
situations are presented: (1) the standard deviation of the deterministic part of
the response variable is the same as the standard deviation of the error (a-d),
(2) the standard deviation of the error is (.25 times that of the standard
deviation of the deterministic part (e-h) and (3) the standard deviation of the
error is 0.001 times that of the standard deviation of the deterministic part (i-
1). The left-hand side presents the correct selections made by the forward
selection, 1.e., the variables selected were the ones used to create the response
variable. The right-hand side shows the bad selections, i.e. the variables
selected were not the ones used to create the response variable. 5000

simulations were run for each magnitude of error.
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ABSTRACT

Distributions of species, animals or plants, terréstria], or aquatic, are influenced by
nufnerous factors such as physical and biogeographical gradients. Dominant wind and
current directions cause the appearance of gradients in physical conditions whereas
biogeographical gradients can be the result of historical events (e.g. glaciations). No spatial
modelling technique has been developed to this day that considers the asymmetry of
controlling factors when studying species distributions along a gradient. This paper
presents a new method that can model species spatial distributions generated by a
hypothesized asymmetric, directional physical process. This method is an eigenfunction-
based spatial filtering technique that offers as much flexibility as the Moran’s eigenvector
maps (MEM) framework; it is called asymmetric eigenvector maps (AEM). To illustrate
how this new method works, AEM is compared to MEM analysis through simulations and
an ecological example where a known asymmetric forcing is present. The ecological
example reanalyses the dietary habits of brook trout (Salvelinus fontinalis) sampled in 42

lakes of the Mastigouche Reserve, Québec.
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autocorrelation; spatial model.

1. Introduction

It is well known that spatial distributions of species are influenced by environmental
gradients (Hutson, 1996). Since the al;ticle of Legendre and Fortin (1989), the importance
of spatial structures has been well understood by ecologists. This has led to a number of
methodological developments to study spatial patterns in ecology. Methods devised in
other domains have also been applied to ecology. For example, geostatistical tools have
been, and still are, used to investigate spatial relationships in an ecological perspective;
Peterson et al. (2007) is a recent example of the use of geostatistics in river modelling.
Legendre (1990) proposed to use polynomials of the geographic coordinates of the sites to
represent spatial relationships in models aimed at explaining species variation. More
recently, the development of principal coordinates of neighbour matrices (PCNM) (Borcard
and Legendre, 2002; Borcard et al., 2004; Legendre and Borcard, 2006) has provided a new
way for studying spatial variation. It has also significantly enhanced the proportion of
variation explained by spatial models. Dray et al. (2006) developed the framework of
Moran’s eigenvector maps (MEM), which is a generalization of the PCNM approach.
Griffith and Peres-Neto (2006) unified the PCNM, MEM, and spatial filtering methods
(Griffith, 2000) into a family called eigenfunction-based spatial analysis. Borcard et al.
-(1992) showed through variation partitioning that spatial relationships and environment can
explain both separate and common variation of the distributions of species. To this day,

however, no methodological development has shown how to model the influence of
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asymmetric, directional process on species distributions or other response variables of
interest.

At broad or fine scales, the spatiai distribution of species is often structured by
abiotic and/or biotic gradient(s). We propose that gradients influencing species spatial
distributions can be studied via spatial variables (eigenfunctions) that represent asymmetric
processes by construction. Dray et al. (2006) deplored the absence of methods capable of
modelling spatial asymmetry; the present paper fills that gap. Here, a new framework is
presented, which is also part of the eigenfunction-based spatial filtering framework, with
the added feature that it 1c0nsiders space in an asymmetric way. Variables created via this
framework will be called asymmetric eigenvector maps (AEM). This method was created
for situations where a hypothesized asymmetric, directional spatial process influences the
species distribution (e.g. the effects of a river network, or of currents in a sea, river, stream,
or fluvial lake, on species distributions). To test the functioning and limits of the new AEM
method, simulations will be carried out in a two-dimensional spatial context, where the

generating process is unidirectional.

2. Method

The Dray et al..(2006) MEM method consists in the diagonalization of a spatial weighting
matrix (W). Matrix W is a resemblance matrix that can be constructed through the
Hadamard product between two previously computed resemblance matrices: a connectivity
- matrix showing which sites are linked to one another by connections, and a weighting
matrix which gives the weight associated to each pair of sites (e.g. the geographic distance
or a function of the geographic distance). As developed by Dray et al. (2006), no direction
can be imposed on the created MEM spatial variables because the framework is based on

resemblance matrices that do not account for asymmetry.
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The simplest form of data leading to AEM construction is a tree-like structure, like a
river network. The relationships among the sampling sites can be written as described by
Legendre and Legendre (1998, section 1.5.7): for each site, the river links (called “edges”
hereafter, using the vocabulary of graph theory) located upstream from that site in the river
network and considered to be inﬂuenéing it receive the code “1” in a sites-by-edges table
E; all other edges receive the code “0”. The new development to this coding method,
proposed here, is to transform table E into eigenfunctions. This can be done in three
computationally different but otherwise equivalent ways:

1. Compute a principal component analysis (PCA) of table E and use matrix F of the
principal components as the new matrix of explanatory variables. PCA scaling (type 1 or
type 2) does not matter for the present application.

2. Alternatively, compute a-singular value decomposition (SVD) of the column-centred
table E, called E.. Decompose E; by SVD into UD V'; U and V are column-orthonormal
matrices and V' means V transposed. Use the left-hand column-orthonormal matrix U,
resulting from the decomposition, as the new matrix of explanatory variables; U is linearly
related to matrix F containing the principal components obtained by PCA and, for the
present application, is equivalent to it.

3. A third alternative is to compute an Euclidean distance matrix among the rows of table
E. A principal coordinate analysis (PCoA) of that distance matrix produces the same matrix
F as obtained above by PCA.

Contrary to PCNM and MEM, AEM analysis produces no negative eigenvalues
because a covariance matrix is a positive semidefinite matrix; hence, all PCA eigenvalues
are positive or null (Legendre and Legendre, 1998, p. 138). The construction of AEM is
presentéd in more detail in the next paragraphs and in Fig. 1. AEM eigenfunctions can be

constructed from a river network (example developed above) or from other types of
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directional connection networks. An ecological example presented later in this.article to
illustrate the use of AEM, will start from a set of lakes in a sjng]e hydrographic network.
The analysis will attempt to explain the variation in brook trout (Salvelinus fontinalis) gut
contents in 42 lakes of the Mastigouche Reserve, Québéc. These lakes have been the
subject of research for almost 20 years. Our goal with this ecological illustration is double:
(1) to see how much information can be gathered from a spatial model created with AEM
and (2) to present different ways to illustrate the results when AEM are used. In this
examp]e; we will assume that the directional process spatially structuring the brook trout
gut contents follows the river network.

AEM are based on a directional connexion network. Connexion networks can be
constructed to correspond to hydrological (example above; Fig. 5) or other dynamic
information available about the sampling units. In the absence of a precise dynamic model,
they can be constructed using graph theory (e.g. Berge, 1958; Barthélemy and Guénoche,
1988).

A general type of connexion network for a regular sampling grid is shown in
Fig. 1b. To impose directionality on the diagram and create asymmetric spatial variables, an
imaginary site (site 0 in Fig. 1b) is added upstream of the sampling area. This ﬁc.titious site
is connected to the uppermost true site(s) if, as in this example, the process influence is
assumed to come from upstream. It is connected to the lowermost sites if the influence is
hypothesized to come from downstream; that will be the case in the lake example presented
later in this paper. In Fig. 1b, there are five sites that are equal in being the most upstream
ones; site 0 is thus connected to all these sites (dashed lines). To quantify the connexions
(edges) between the sites and construct matrix E, a method originally proposed for
phylogenetic reconstruction by Kludge and Farris (1969: binary coding of a transformation

series) will be used. Sites (rows of table E) and edges (columns) are numbered;
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alternatively, they can be given names. In the fictitious example, which involves a
downstream process, each site is characterized by all the upstream edges connecting the site
of interest to site 0, directly or indirectly. The sites-by-edges table E is filled with 0’s and
1’s representing the absence or presence of the various edges linking each site to site 0 (Fig.
1c). It is to be noted that site 0 is not present in this matrix because it is not influenced by
any edge; if present, this site would add an unnecessary line to the matrix giving no
additional information.

Weights can be added to the sites-by-edges matrix by multiplying a vector of
weights to table E' (Fig. 1c) (Ronquist, 1996). Weights can be given based on various types
of known information, e.g. the inverse of the lengths of the edges.

The eigenfunctions created with this method are orthogonal variables, as is the case
for the eigenfunctions created by the PCNM and MEM methods. This is because they are
eigenvectors of a symmetric matrix. Computation through the calculation of a distance
matrix followed by principal coordinate analysis (computation method 3 above), as well as
the possibility to add weights to the links, show the closeness of the AEM (the present
paper) and MEM methods (Dray et al., 2006). |

The AEM framework sometimes generates eigenfunctions that have the same
weight (i.e., two or more eigenvectors have the same eigenvalue). This can also occur in the
MEM framework. This will need further investigation to better understand under what

circumstances these are generated and how to handle and interpret them.

3. Simulation study
We carried out a range of simulations to better understand the behaviour of AEM
eigenfunctions in different situations. AEM eigenfunctions were tested for type I error and

were compared to MEM eigenfunctions in the presence of asymmetric generating
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processes, for different types of spatial structures, using the proportions of variance
explained.

Simulations were first used to estimate the type I error of AEM analysis. Two sets
of simulations with a hundred points were produced, representing opposite extremqs of the
AEM framework: (1) the points were regularly distributed on a ten-by-ten grid (see Fig. 2a
for the connexion network), no weights were given to the edges; (2) the points were
irregularly distributed on the .mép (see Fig. 2¢ for the connexion network) and the edges
were weighted by the inverse of the distances. Following Manly (1997) and Anderson and
Legendre (1999), the response variables were drawn at random from four distributions:
normal, uniform, exponential, and exponential cubed. The relationship between the random
response variables and the AEM eigenfunctions was tested at the 5% significance level.
Because there are n — 1 eigenfunctions created by the» AEM procedure, where # is the
number of points, one cannot carry out a test of significance using all eigehfunctions.
Following Blanchet et al. (submitted), the AEM eigenfunctions were divided in two groups
depending on the value of the associated Moran’s I coefficients. The Moran’s I coefficients
were computed using only the direct links between sites. The first group contained the
eigenfunctions with Moran’s / values higher than the expected value; these were positively
autocorrelated. The second group, which contained the eigenfunctions with Moran’s /
values lower then the expected value, were negatively autocorrelated. The two sets of
eigenfunctions were tested separately for significance (permutation test, 999 random
permutations) and their probébilities were combined using Sidak’s (1967) method. Fig. 2b
and 2d present the ;esults for the two series of simulations. Each reported value is the result
of 5000 independent simulations. In all cases, the number of significant results was very

close to the 5% significance level. These results show that the AEM method has a correct
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level of t'ype I error in the two examined situations, and this for the four types of error
distributions.

Simulations were also carried out to see how well various subsets of the AEM
eigenfunctions react in the presence of gradients, when compared to MEM eigenfunctions.
These simulations were done on a ten-by-ten regular grid (Fig. 3a); thus » = 100. Eight
different structures were used to generate the data in these simulations (Fig. 3b). The eight
structures were generated in such a way that in each pair of structures (S1-S2, S3-S4, S5-
S6, and S7-S8), one represents a symmetric gradient from row 1 to row 10 whereas the
other is an asymmetric gradient. A gradient is considered symmetric when the weights to be
modelled are distributed evenly through the rows of the grid (even-numbered structures in
Fig. 3b); otherwise it is considered assymetric (odd-numbered structures in Fig. 3b). These
structures were each tested with three univariate and one multivariate response'data sets. In
the three univariate situations, a random normal error with a mean of 0 and standard-
deviation (s.d.) of 1, 2 and 3 was added to the structure. Standard deviations larger than 3
were not considered because in all situations except S1 and S2, the basic structure of the
data did not have “steps” higher than 3. For the multivariate situation, ten response
variables were generated, 5 containing structure and noise (random error) and 5 containing
noise only. The error values were drawn at rz;lndom from a normal distribution with mean 0;
the standard deviation was randomly drawn, for each simulation, from a uniform
distribution between 1 and 3. For each set, one thousand simulations were carried out.

Because both the AEM and MEM frameworks can create an infinite number of
different spatial variables for a given set of sites, we decided to include 21 different
combinations of functions and weights in our comparisons; thus 21 different sets of spatial

variables (eigenfunctions) were created. The connexion diagram used in all situations was

the same to allow appropriate comparisons (Fig. 3a). Weights were given to the edges
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based on the concave-down ( f; =1-d,/ max(a’,.j)a) and concave-up ( f, =1/d,") distance

functions, as in Dray et al. (2006). Ten different exponents of o were used. Also, in each
framework (AEM, MEM), a series of spatial variables was constructed where uniform
Weights of 1 were given to all edges. Each set was then used as the table of explanatory
variables for the simulated data. Because there are always (n — 1) AEM variables and often
also (n — 1) MEM variables, the same procedure used to test the type I error of the AEM
eigenfunctions was used here to test the significance of each set of spatial variables. The
eigenfunctions were divided in two groups, positively and negatively autocorrelated, using
the eigenvalues associated with the eigenfunctions; Dray et al. (2006) have shown that there
is a direct correlation between Moran’s / and the eigenvalues produced in the MEM
framework. The test used for the univariate simulations is a parametric test in multiple
regression; that test was appropriate because the error was normally distributed by
construction. In the multivariate simulations, the generated response data were analyzed as
a function of the AEM and MEM eigeﬁfunctions by canonical redundancy analysis (RDA),
followed by a permutation test produced by the “anova.cca” function of the “vegan”
package (Oksanen et al., 2007) in the R statistical language (R Development Core Team,
2007). That procedure allows the function to propose a statistical decision (reject Hy or not)
after 99 to 499 random permutations by steps of 100. For each particular type of data
structure (S1 to S8), the AEM and MEM results that are compared (1000 simulations) are
those corresponding to the 'eigenfunctions, obtained from a given weighting function (f1, f2)
and exponent, that explained, on average, the largest amount of variance (R?,) of the
response data, while still being significant at the 5% level. These choices are listed in

Table 1. The results for the univariate and multivariate simulations are presented in Fig. 4.
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Due to the inherent structure of the simulated data, we were explecting to obtain
better results with AEM only when the structure of the gradient was asymmetric (odd-
numbered structures). Actually, the AEM variables turned out to reject the null hypothesis
and identify a significant structure rﬁore often than MEM eigenfunctions in all situations,
except for S1, S3 and S7 when s.d. was large, meaning that a lot of random noise was
present in the data (Fig 4c); then, the am(;unt of explained variance (R;) was roughly the
same for AEM and MEM, the confidence intervals being superposed. This result surprised
us because it showed that the AEM framework, though it creates variables that represent
asymmetric processes by construction, is not only better suited than MEM for asymmetric
data, it is also equally or more appropriate than MEM variables in all gradient situations.
AEM variables produced results roughly equivalent to those of MEM analysis only in the
presence of abrupt changes in the gradient. S7 is a good example of such a situation. In
more continuous cases, AEM analysis always performed better than MEM at identifying
the gradient. |

The weighting functions (f1, f;) that best modelled the simulated déta were very
different between the two frameworks. MEM variables created with function f; were
always the best ones, but this was not always the case in AEM analysis. These results show
that the difference in construction between the two methods can result in very different
weights, and thus the interpretations can differ.

When comparing the three sets of univariate simulations, the best MEM models
were quite consistent between set§ of simuiations for each particular structure (S1 to SS):
the correlations coefficients among the three sets of o parameter values are all near 0.90.
This is not the case for AEM analysis, where the weighting function (f1, /) and the o
pafameter value for the best model may change between sets of simulations. To deepen the

investigation, we compared the variance explained by AEM models (R?,), on average,
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across each set of 1000 simulations. The means of the R?, statistics were very similar for
different weights a.; often the best and second-best results diverged by less than 0.1%.
Table 1 would thus be likely to be different after another series of simulation; the amounts
of explained variance presented in Fig. 4 would, however, not be different. This is related
to the construction of AEM variables when weights are added. The way weights are
considered in the AEM framework makes the variables less sensitive to the differences
among weights, compared to MEM analysis. The weights used in these simulations do not
favour the AEM framework: the results show that different weights create spatial variables
explaining almost identical amounts of variation in AEM analysis; this is not the case for

MEM eigenfunctions.

4. Ecological illustration
To illustrate the application of AEM analysis to real ecological situations, we used data
collected on 42 lakes of the Mastigouche Reserve, Québec, Canada (46°40°N, 73°20°W)
and analyzed by Magnan et al. (1994). The dependent data matrix describes brook trout
(Salvelinus fontinalis) diet composition in those lakes. In each lake, 20 stomachs were
sampled during daytime by anglers in June 1989. Mean percent wet mass was recorded for
nine functional prey categories: zoobenthos, amphipods, zooplankton, dipteran pupae,
aquatic insects, terrestrial insects, prey-fish, leeches, and other prey. More detailed accounts
of the data are presented in Lacasse and Magnan (1992) and Magnan et al. (1994). Fig. 5
presents a schematic map of the river network in the study area.

We compared AEM modelling to 6 other spatial modelling methods. The methods .
can be divided into three classes: those based on (1) lake geographic coordinates, (2) nodes
of the river network,' and (3) edges of the river network. Two analyses were done for type

(1) data, a canonical correspondent analysis (CCA, ter Braak, 1986) using as explanatory
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_ variables a third-degree polynomial, and a canonical redundancy analysis (RDA, Rao,
1964) using principal coordinates of neighbour matrices (PCNM, Borcard and Legendre,
2002, Borcard et al., 2004). A CCA and an RDA, both based on nodes, were the methods
used for type (2) data. The nodes used for the analyses are presented in Fig. 1 of the
Magnan et al. (1994) paper. For type (3) data, we computed an RDA based on edges, an
RDA based on Moran’s eigenvector maps (MEM, Dray et al., 2006), and an RDA based on
AEM spatial variables. Edges are labelled in Fig. 5. For each situation, a forward selection
of spatial variables wés carried out using a cutoff level of a = 0.05. For polynomial and
node modelling, CCA was used instead of RDA to allow comparison with the results of
Magnan et al. (1994); these authors used CCA on a subset of 37 lakes for which full
environmental data were available. They used a cutoff level of a = 0.10 in their forward
‘'selection in CCA. We used the full set of 42 lakes to obtain the results presented in Table 2.
PCNM variables were constructed with a truncation distance equal to the smallest distance
linking all lakes in a minimum spanning tree; this is a standard method in PCNM analysis.
MEM variables were created from a patristic distance matrix (Cain and Harrison, 1960)
along the river network, all edges having equal lengths of 1. In the same spirit, AEM .
variables were constructed with all edges having equal weights.

The adjusied coefficient of determination (Raz) corrects fo; the number of
explanatory variables in the model and for the number of observations. It provides an
unbiased estimate, in RDA, of the real contributions of the independent variables to the
explanation of a response data table (Peres-Neto et al., 2006). This statistic was used in
Table 2 to compare the results of the five RDA models. R, values are not given for CCA
because canonical analysis packages (e.g., Canoco, or the ‘vegan’ R-language library) do
not produce them yet due to its recent discovery (Perés-Neto et al., 2006) and the

complexity of its calculation. The ordinary R? statistic was used to compare CCA results to
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those of the other modelling techniqués, with the understanding that R* is biased and

produces higher values when the number of explanatory variables is larger.

" Results show that a larger proportion of the diet variation (R% R.%) is explained by
the AEM spatial model than by any of the other models pfesented in Table 2. The AEM
model, which is constructed from the edges of the river network, accounts for a very large
portion (R,> = 63.6%) of the variation in brook trout diet composition among the lakes.
That model may have captured both geomorphological differences among porﬁons of the
river network and differences among brook trout populations, which migrated from lake to
lake along the network. In 1994, Magnan et al. had mostly related the variation in trout diet
to environmental variables, including morphological characteristics of the lakes, and a
smaller fraction to the spatial distribution of the lakes on the map of the Mastigouche
Reserve (through geographic polynomial analysis) or along the river network (through
CCA based on nodes). AEM modelling presents a strong improvement over the modelling
methods that were available at the time.

Fig. 6 presents a triplot of the AEM model. This model clearly shows 3 groups of
lakes, with perhaps a few intermediate ones: lakes with brook trout populations dominated
by zoobenthos eaters (lower right), by zooplankton eaters (lower left), and by generalists
whose diet includes benthos, zooplankton, as well as prey-fish, aquatic insects, and
terrestrial insects (upper central). Bourke et al. (1997) associated these three lake groups
with three morphologically differentiable forms of brook trout, which they called the
benthic, pelagic, and generalist individuals. The pelagic form is morphologically
distinguishable from the benthic and generalist individuals. Thé RDA triplot (Fig. 6) also
shows that AEM variables 16, 22, 24, 27, and 29 model th¢ lakes dominated by the pelagic
form of brook trout (zooplankton eaters) whereas AEM eigenfunctions 2, 3, 4 and 25 model

lakes dominated by benthic individuals (zoobenthos eaters). AEM variables 1 and 19 are
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more suited to model lakes dominated by generalists, which have negative scores along
these variables.

For the subset of 37 lakes, Lacasse and Magnan (1992) had shown the same
differences among brook trout populations using biotic (presence of the creek chub
Castostomus commersoni and the white sucker Semotilus atromaculatus, and zooplankton
community structure) and abiotic variables (sampling date, morphoedaphic index,
importance of rock outcrops). They emphasized the direct and indi;ect impacts of white
suckers, explaining that their presence selectively favours the pelagic form of brook trout.
This conclusion was strengthened by Bourke et al. (1999) who found that creek chubs have
the same impact on the distribution of brook trout forms, although to a lesser extent. These
observations support the hypothesis that polymorphism is promoted by relaxation of
interspecific competition.

AEM analysis lends itself to different types of graphical representation. First, one
can draw bubble-plot maps of the significant, individual AEM variables (not shown). A
more parsimonious representation is obtained by plotting RDA fitted site scores on maps;
the fitted site scores of canonical axes 1 and 2 are plotted as bubble maps in Fig. 7 (a, b).
Another, more concise representation is—obtained by partitioning the lakes using their RDA
fitted site scores (all axes) by K-means (Fig. 7c). The partition was mapped for four groups.
Each group of lakes is a good representation of the different forms of brook trout. Since this
_partition explains 63.6% (and not 100%) of the variance of the brook trout diet
composition, the three groups of trout are not perfectly recognizable on that map.

A note has to be added regarding the way the selection of spatial variables was done
for this illustration. Contrary to the method proposed in Blanchet et al. (submitted), we used
the whole set of AEM eigenfunctions in the forward selection procedure. We decided to

proceed in that way because we were expecting both positive and negative autocorrelation
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to be of importance in this example. The finest scale of the sampling being a lake, two lakes
that were geographically close codld be very different with regard to the dietary habits of

brook trout. The same theoretical consideration would also apply to MEM eigenfunctions.

5. Discussion

The objective of spatial modelling using geographic eigenfunctions differs from that of
standard canonical modelling using only environmental variables as the explanatory table.
Magnan et al. (1994) did both types of modelling, acknowledging the fact that the presence
of spétial structures in communities is of great interest: it indicates that some process has
been at work to create these structures. Ecologists now understand that spatial structures
can be produced by two different mechanisms (Legendre and Legendre, 1998, p. 11; Fortin
and Dale, 2005, pp. 214-216): they may be the result of spatial dependence induced by
environmental forcing variables onto the community under study (niche-based processes);
they may also be the result of the dynamics of the community itself (neutral processes).
These two types of generating processes can often be distinguished because they act at
different spatial scales. Variation partitioning, mentioned in the first paragraph of the
Introductic;n, further allows ecologists to determine how much of the community variation
explained by the environmental variables is also spatially structured.

The AEM framework allows researchers to construct with great flexibility spatial
variables (eigenfunctions) corresponding to hypothesized asymmetric generating processes.
Three types of information are needed to create AEM eigenfunctions. (1) The geographic
coordinates of the sites under study. (2) A connection diagram linking the sites together.
How to c;btain that information may be obvious when one considers a river network, as in
our ecological example. It may also be less clearly defined, especially when finer-scale

phenomena are investigated. We suggest using prior information, if at hand, to construct the
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connection diagram. Current velocity, water depth, presence of water masses, geological
and historical events, etc. could be of great interest to construct an asymmetric connection
network well suited for a particular data set. (3) Last and most important, a direction in
which the asymmetrical process operates. With these three types of information, a binary
sites-by-edges table (E) can be constructed. This table, with or without weights added to the
edges, can be directly used to construct AEM eigenfunctions.

The combination of connection diagrams and weighted edges offers a broad range
of possibilities to create AEM eigenfunctions for a particular set of site coordinates. This is
both good and bad. It gives flexibility to enhance the explained proportion of variance of a
table of response variables; however, one can never construct all possible sets of weights
and, thus, AEM eigenfunctions for a particular dataset. So, one can never be certain that the
results obtained are the best that can be obtained in the AEM framework.

To guide users in their choice of a good connection network, we suggest to use prior
knowledge of the studied area: river network, mapped water or wind currents, population
migration routes, etc. This often helps in deciding how sites should be linked to one
another. Assigning weights is a more difficult task. One solution is to use the inverse of the
lengths or the squared lengths of the edges, or some other function. Weights can, generally,
represent any measure of the easiness of transfer of matter or information along the edges,
using prior knowledge such as current speed, dominant wind power and direction, etc. In
the absence of prior information, equal weights are given to the edges.

The core of this article has been to show that AEM variables are better than MEM
variables when a directional spatial process is considered. In the last few years,' numerous
methodological developments have been proposed to model space more accurately. Up to
Vefy recently, the trend in spatial modelliﬁg was to develop and use methods that could

model space for any ecologicai situation. Trend surface, PCNM and MEM analyses are
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good examples of those general methods. Presently, researchers are developing new
techniques that are specialised for modelling the effects of particular generating processes.
The AEM method follows that trend. As was mentioned earlier, when no directional
process is involved, there is no point in constructing spatial variables through the AEM
fr;dmework.

The particularities of AEM eigenfunctions make it possible for this framework to be
used in other fields of research. One future direction would be to use this method to address
phylogenetic research questions since it is well suited to model tree-like structures, with

and without reticulations.
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Table 1 — Weighting function (f;, /2) and exponent a. giving the highest explained variance
when modelling each structure in each set of simulations, with AEM or MEM. The chosen
combination of weighting function and exponent, in each case (2 weighting functions and
10 exponents a), was the one that produced the highest value of (R%,). The same response

variables were used in the AEM and MEM simulations. s.d. = standard deviation.

Response Structure AEM MEM

(S1to S8) Weighting Exponent o Weighting Exponent a

function function
Univariate 1 N 4 f 9
s.d. =1 2 N 3 f 5
3 f 8 f 8
4 N 4 f 5
5 S 10 f 10
6 N 5 f 2
7 N 10 f 9
8 f 6 f 5
Univariate 1 N 10 h 8
s.d.=2 2 5 2 f 5
3 S 3 f 9
4 f 3 f 5
5 N 9 f 9
6 h 2 f 2
7 S 9 f 9
8 N 4 f 7




Table 1 (Continued)

Response Structure AEM MEM

(S1to S8) Weighting Exponent o Weighting Exponent o

function function
Univariate 1 1 8 H 9
s.d.=3 2 fi 4 fa 8
3 f 5 f 9
4 fi 6 f 5
5 fi 9 f 10
6 A 4 §2 4
7 £ 4 f 9
8 f 6 f2 6
Multivariate 1 N 2 £ 8
2 h 8 f 7
3 fa 3 f 10
4 |2 3 f 8
5 fi 7 f 10
6 f 7 ) 3
7 h 1 f 10

8 S ' 10 f 5
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Table 2 — Comparison of spatial models of brook trout diet in 42 lakes, obtained from 7
different modelling methods. Forward selection was carried out using a cutoff level of a =

0.05.

Modelling methods No. spatial No. selected R? Rzadj

variables in full set  spatial variables

Method based on lake geographic coordinates

CCA', 3" deg. polynomial 9 4! 0225 -
RDA, PCNM analysis 24 3? 0.257  0.199
Methods based on nodes of river network

CCA', nodes 25 5° 0356 -
RDA, nodes 25 4 0.342  0.271

Methods based on edges of river network

RDA, edges 65 93 0.625  0.520
RDA, MEM analysis 41 118 0.669  0.562
RDA, AEM analysis 41 137 0.751  0.636

ISelected monomials: X, Y, YZ, X3

2Selected PCNM variables computed from coordinates: 3, 4, 17.

3Selected nodes: 2, 9, 10, 12, 14. The nodes are shoWn in Fig. 1 of Magnan et al. (1994).
*Selected nodes: 10, 12, 14, 25.

SSelected edges: 21, 24, 27, 38, 46, 50, 52, 54, 58. Edges are shown in Fig. S.

®Selected MEM variables computed from edges: 1, 3, 4, 6, 16, 17, 18, 20, 22, 27, 32.
'Selected AEM variables computed from edges: 1, 2, 3, 4, 6, 16, 18, 19, 22, 24, 25, 27, 29.
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Figure captions

Fig. 1 — Schematic representation of AEM analysis using a fictive example. (a) Data values
are represented by bubbles (empty = negative, full = positive values). (b) Sites are
linked by a connection diagram (b), which in turn will be used to construct the sites-
by-edges matrix E (c). Weights can be attributed to the edges (column) of this
matrix, representing the easiness of effect transmission between nodes (vector
underneath the siteé—by-edges matrix). (d) Descriptors (AEM variables, matrix X)
are obtained by calculating the left-hand matrix of eigenvectors of SVD, or the
matrix of principal components (site scores) of PCA. AEM variables (matrix X) can
also be obtained through the calculation of an Euclidean distance matrix followed
by the computation of eigenvectors via principal coordinate analysis (PCoA).

Fig. 2 — Type I error of AEM analysis (b, d) for sampling points and connection diagrams
shown in (a) and (c). No weights were used in (a), whereas the inverses of the
distances were used as weights in (c). The large arrow represents the direction of the
asymmetric process considered in (a) and (c). Response values were randomly
selected for each point from four different distributions. Each run consisted of 5000
independent simulations. The errors bars in (b) and (d) represent 95% confidence
intervals on the rejection levels. |

Fig. 3 — (a) Connection-diagram used to create AEM and MEM eigenfunctions. Arrows
represent directions of influence of sites on each other; these directions were taken
into account during the construction of AEM eigenfunctions, but not for MEM
eigenfunctions. The rows of data points are numbered. (b) Eight basic structures (S1
to S8, columns) used to generate the response variables. The numbers are values
added to all points on each line (1 to 10) of the diagram in (a), prior to adding
random normal noise.

Fig. 4 — Variancé explained (R?,) for the best set of AEM (full lines) and MEM (dashed
lines) variables for each of the 8 structures described in Fig. 3b. Panels (a-c) present

results of univariate simulations where the error term values were randomly drawn
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from a normal distribution with standard deviations of 1, 2, and 3 respectively.
Panel (d) presents results of multivariate simulations where the error term values
were randomly chosen from a normal distribution whose standard deviation was
selected at random from a uniform distribution with a minimum of 1 and a |
maximum of 3. Vertical error bars represent 95% confident intervals on the
rejection rates. Each run consists of 1000 independent simulations. Lines linking
error bars were plotted to prevent confusion between the results of the AEM and
MEM analyses. |

Fig. 5 — Schematic map of the river network in the Mastigouche Reserve. Lakes are
numbered L-/ to L-43; there is no lake L-20. Edges afe numbered e-1 to e-65; they
are written to the sites-by-edges table E. Adapted from Magnan et al. (1994).

Fig. 6 — RDA triplot (axes 1 and 2) showing the 42 lakes (open squares labelled 1 to 43), 9
prey categories (five are shown by arrows; the other 4 were very short and
contributed little to the ordination plane), and 13 AEM eigenfunctions (lines). The
only significant axes were 1 and 2. |

Fig. 7 — Bubble plot maps of the RDA fitted site scores for (a) axis 1 and (b) axis 2; black
square bubbles are positive, white bubbles are negative; square size is proportional
to the absolute values represented. (c) Four-group K-means partition of the lakes

plotted on the river network map using symbols.



59

gram

_$sa001d Jeijeds jo uonoalq

~
NN

-

0

Connection dia

data in table Y

Map of the raw

1]

20

(a)

mOwE[]

O ID'.D u

[Jo[Joo

- T —
s <scveesivenane sacezsonase
3
l-covecoancnenneccasceans P
4 R wieecnreczacn ssesase
“es-vscoscssscasc sescnssces
Jexsr0a0ssans cvsvssens svoe
Jra-asessascarec coecuavozow
slecscensesae cocescneccanesa
tlee-vscrsecrsnnsecevean P
loeciacanoscnnecisocreonzac
Jeoverane I
ifesc-ecssecrosecascessceses
arec-ssasac ssscsscazecsae
d--see- cenmansee soecsascns
ea-eean cecssecon cacccsacsn
A r-ecrcansnc seecrnccreace %
3 cemniiiiiiLiiiiis o
4 RS G  Sil Su s 50
= e PP L]
fe---casctaracrscesacrnscca o
e b c-evescocsessecsucn
R gfovnnnoan sscasscascraac P Q
i glerw-wrs6 228002 0er200c200 o e fenr]
= | feectosoll ceecane rrecnaes
< B ssecveseras acae =
bl I reeiiacea K=l
5 sl -2 eccasennne senaecenncw ha
N P B R @
Zi]-nveex-cci-ccses ceecisena =
A B TIITIiTIiiiiIniinii S
50 I i g Bl
o) sf-c--ec-cecs-asvervrocaces I
2 - - e - LS R L) - © V
P sfoncrmasrnnscana sssesoesse >
i ] ISR <. .
A oz cee e sevtzecieccsTo [e]
O o [P, chen-zane- caresczacens -
T sfv----cs-arvso-vecevecavcs &
N Hleocvncacicviasensecrons ree >
O o) [, re3zenase~secarecse 5}
B Y R R o
= o SRR sei-ecsoensne >
W o8 T
P D
o [ aoe
ot TR Y cieeua
o -
[ SRR se-caee aae
. .o e zaenzecs
Y [ %o e senaneance
I caennsesae
“f e = cau-wszacaneeca
Afamamcenncsacaen- sxa~nuen
e
N
wf - Ao emenu-e
I I
MR~ a2 IUILYEZRRRZINLEN —
is

(c)

cal analysis

Multiple regression

or canoni

(d)

Singular value decomposition or
principal component analysis

-
<

___ Principal coordinate analysis

-

X

Y

data table eigenfunctions

Response Spatial

Fig. 1



60

Normal Uniform Exponential Expoaential

KX XX XXX
KKK KKK

N N
XXX XXX

S »04&%0«
LK

AKX
XKD

Normal Uniform  Exponential Exponential

(@) T

cuabed

cubed

Fig. 2



O
, XXX IXIXIXA]
3 IXIXIX XX XIXIX]X]
XXX XXX XIXIX]
~ IXIXIXIXIXX XXX
° IXIXP \Lxmuf@x&
- XXX PXIXIXXXIX]
XX KX XXXIX]
>'\ XX 2K ;*\LKlX\!/\'( 1_
A A

10

61

o B o o oo B { o T o ) e ) o Y
o C o |o (o
I.




62

0.96 -
0.94 +
0.92 -
0.50

0.88 ]
0.86

0.84

5

0.82 -

0.85

® ] o] ® P
e 0.75- L
////\\\\A ‘,///* . 0.70- . //{{“““'
. 0651 /% e
,'"n‘u‘f//fj" 050~.4{(/\>E§qﬁ{f'
— 0.55 —
3 4 s 6 71 8

v
1 2

0.70
0.65 -
0.60-

rrs 0.55

& 0.50-
0.45-
0.40-

035,

Structures Structures
0.70 Tl
c) A e d Ao,
( /// | oes]@ /4/ '
!/:’,r 0.60 - ./""
.

0.55
0.50
0.45 -
0.40- }

[
.
Ll
.
-
”

g T
.
»
I3
.
LS
i

'

LN

»
- A
. .
“ A

3

T

Structures

Fig. 4

4 5 6
Structures

Ly =

1 2

e
o



63

IO ST W

T 4534 W
<51
1 Wy
G2 L 1A
12 L_l: 62\\\\ > Iy
[ A
6473, L3N
e,é§f.-3§ e‘ 30
1-29

1Gkm

142
L-39
z
- i
Vadi - S 1 =
: e2s Ao
=27 4 j e21/ %
e-33 . .
"”’m,\m{:" Q’TZ‘ <
i-26 L1-18
‘ A
5
:;\?
£y
by

46° 53 09" N

Fig. 5

46721 D" W



-0.75 0.5 -€.25 o 0.25 0.5
3 3 { E | |
N 5]
‘ 21
N X a
o 0‘ . 12
a 39 :
37 .
o .
[CI
« Q B
23
o i3a 5 X
= o D4 : AEM 23
ax 26 :
2 N AEM 29
- .
Z 40734 : a2
™~ 2% Prey-fish
" L. B )
B Terrestria] insectgas:
o .ﬁquggc sk | AEM 16 o
i % a 1n 219 \§
5 _ | 3 A
B IS PUPBE e~ 8B e
B AEM 18 7 e AEM 25
oy g © ShLZ I =]
5 A N 13 5
AEM G i AEM2 ” Zogbenthos
-
42 ' 9 & a5 27
. ! K1- e AEM o
Zooplankton i/ 8 : AEM 3 3t
a | - B
29 « a
16 nAEMAT : th
b 17 ) )
- . a 25 . 60
4 LOAEMI
3 o7
:
. AEM 19
. 2
. a
AEM 22 : 3 AEM4
o X
3t :
i 13 1 3 k]
-2 -1 9 ! 2

Fig. 6

Canonical axis 1 (53.7%)

64

0.75

~0.23

(.3



Fig. 7

iy E& )
(L [

| FERRTOPREMSSIRIRpI————— ]

bt kew

i35} "
T i i
a2
. &
Ty
24
{ B

3
2 2]
] T,
1]
L} v
3
[ iﬁ
13
g
fr. g ok 74

52§

65



66

CONCLUSION

Les deux chapitres de ce mémoire proposent des solutions a deux problémes
méthodologiques rencontrés en analyse spatiale des communautés d’espéces.

Le premier chapitre présente une solution e’le’gante‘ au probléme de la sélection des
variables spatiales orthogonales. Cette solution élimine les problémes de la surexplication
et de I’inflation importante de I’erreur de type 1. De plus, cette méthode permet de
conserver 1’objectivité tant appréciée par les chercheurs qui utilisent les méthodes de.
sélection automatique classiques. Ce chapitre présente aussi une nouvelle approche
permettant de tester des groupes de variables spatiales comportant (n —1) variables, comme
cela se produit fréquemment lorsque les variables spatiales servant a 1a modélisation sont
créées dans le cadre des MEM. 11 était jusqu’alors impossible de tester la signiﬁca;cion
statistique} de tels jeux de variables parce que le nombre de variables était trop élevé. Ce
développement permet aussi une meilleure interprétation des résultats obtenus lorsque la
méthode de sélection progressive est utilisée avec des variables spatiales orthogonales |
puisque les résultats présentent maintenant une erreur de type I juste.

La nouvelle fagon de créer des variables spatiales présentée dans le second chapitre
de ce mémoire montre une tendance de plus en plus présente dans la littérature en écologie
statistique, celle de créer des méthodes spécialisées pour un groupe de problémes
particuliers. Les AEM ont été développées pour des situations ou la présence d’un
processus spatial asymétrique est connue. Ce nouveau développement contribuera a une
meilleure compréhension des processus régissant les communautés d’especes simplement
parce que la méthode statistique est plﬁs adaptée aux données étudiées.

Ce mémoire présente des contributions a I’un des niveaux de la recherche
scientifique, soit la méthodologie statistique. La nature est extrémement complexe; chaque

étape a son importance pour mieux la comprendre.
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