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Résumé 

Lors d'un battement cardiaque normal, l'activation électrique débute dans le nœud sinus al 

et se propage dans les deux oreillettes. Elle atteint ensuite le faisceau de His, puis finalement 

les fibres de Purkinje qui distribuent l'excitation dans les ventricules pour déclencher la con­

traction. Cette propagation se produit parce que les myocytes cardiaques peuvent produire 

un potentiel d'action quand ils sont dépolarisés au-delà d'un seuiL que les cellules sont 

connectées électriquement, la dépolarisation d'une partie du tissu cardiaque provoque une 

augmentation du potentiel dans le tissu voisin, jusqu'à ce que ce dernier atteigne son seuil 

d'excitation et devienne à son tour une source qui permet à la propagation de se poursuivre. 

Les propriétés électriques de la membrane des myocytes cardiaques ventriculaires ont été 

décrites par différents modèles mathématiques. Dans ce travail, nous utilisons une variante 

du modèle de Beeler et Reuter, qui fournit une représentation de type Hodgkin-Huxley 

des conductances de courants ioniques membranaires. En voltage imposé, le modèle est 

constitué par un système d'équations différentielles ordinaires qui décrivent la dynamique 

temporelle du potentiel membranaire, des variables portes contrôlant la conductance des 

différents canaux ioniques et de la concentration interne de calcium. Pour' ce qui est de 

description du tissu ventriculaire, la plupart des travaux de modélisation considèrent la 

membrane et les milieux intra et extracellulaires comme continus, de telle sorte que les flux de 

courants à travers la membrane et les milieux résistifs intra et extracellulaires sont représentés 

par une équation aux dérivées partielles. Cependant, le tissu cardiaque est constitué par des 

myocytes discrets, dont les milieux intracellulaires sont joints par des protéines. Ces 

agissent comme des résistances connectant électriquement les milieux intracellulaires des 

cellules voisines. C'est ce dernier point de vue que nous avons adopté dans cet mémoire. 

Le but de notre étude est d'examiner l'effet des résistances de jonction sur les car­

actéristiques des réent rées pouvant se produire dans un modèle de boucle unidimension­

nelle de cellules cardiaques. La réentrée cardiaque correspond à la propagation soutenue 
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d'un front d'activation autour d'un obstacle anatomique ou fonctionnel. La propagation 

autour d'une boucle unidimensionnelle est donc le modèle de réentrée le plus simple. Des 

travaux précédents sur des boucles uniformes et continues, dont les propriétés membranaires 

étaient représentées par divers modèles ioniques, ont montré que la réent rée pouvait demeurer 

soutenue mais devenir quasi-périodique quand la dimension de la boucle était inférieure à une 

longueur critique L crit et qu'elle s'interrompait pour des longueurs inférieures à une longueur 

minimale Lmin. Ces travaux ont montré que la transition de réent rée périodique à 

quasi-périodique était contrôlée par les courbes de restitution et de dispersion, décrivant 

respectivement la variation de la durée des potentiels d'action et de la vitesse de propaga­

tion en fonction de la prématurité de la stimulation. Nous avons étudié une boucle formée 

de cellules discrètes par des résistances de jonction et avons développé une méthode 

numérique pour solutionner le système de réaction-diffusion décrivant ce milieu. Nous avons 

trouvé que la diminution de LCl'it et de L min résultant de l'augmentation des résistances de 

jonction n'était pas réductible à un simple facteur d'échelle appliqué sur les résultats des 

boucles uniformes continues. Nous avons plutôt montré que les résultats étaient expliqués 

par les changements dans les courbes de restitution et de dispersion induits par l'effet des 

résistances de jonction sur la dynamique locale. 

Mots clé : Potentiel d'action, Réentrée, Réentrée stable périodique et quasi-périodique, 

Résistance de jonction, Bifurcation, Durée de potentiel d'action, Intervalle diastolique, Longueur 

de boucle, Temps de conduction, Vitesse de conduction, Mode-O, Mode-l. 
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Abstract 

In a normal heartbeat, electrical activation starts from the SA node and propagates to 

both atria. It travels successively through the AV node, the His Bundle and finally the 

Purkinje fibers that distribute the excitation and contract ventricles. 

The electrical activation is formed by the unequal ionic distribution on both sides of the 

sarcoplasmic membrane, producing a difference of potential between the intra and extracel­

lular media. The electrical properties of the ventricular cardiac myocytes are described by 

the different mathematical models. The Hodgkin-Huxley model and Beeler-Reuter model 

use the ordinary differential equation to simulate membrane potential as a time-dependent 

function. The bifurcation phenomena of action potential duration and diastolic interva.l are 

simulated, which are proved by the finite difference model. 

The action potential propagates in cardiac tissue. The low-dimensional model was em­

ployed. In the one-dimensional model, since cardiac tissue is regarded as the uniform con­

tinuous cable, bifurcation phenomena are simulated, and these results are proven by the 

integral delay model. The other model is that the gap junction resistance exists between 

cells. The propagation delay is shown between cells. The action potential propagates in the 

one-dimensional ring with the gap junction resistance, shown to be the most interesting in 

recent research. 

The purpose of our study is to investigate the effect of gap junction resistance on the 

characteristics of reentry in a one-dimensional ring of model cardiac tissue. Tachyarrhythmia 

is commonly induced by reentry. Cardiac reentry corresponds to the self-sustained propaga­

tion of an activation front around a functiona.l or anatomica.l obstacle. Propagation around 

a one-dimensional ring is the simplest model of reentry. Previous work on a uniform contin­

uous I-D ring model, with membrane properties represented by an ionic model, has shown 

that reentry was still sustained but quasiperiodic, below a critical length Lcrit , and that it 

was blocked for rings shorter than a minimum length Lmin. The transition from periodic to 
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quasiperiodic reentry was shown to be controlled by the restitution and dispersion curves, 

giving respectively the action potential duration and speed of propagation as a function 

of prematurity. However, cardiac myocytes are connected by discrete channels, called gap 

junctions, acting as resistance between the cells. 'vVe have studied a ring of cells connected 

by discrete gap resistances (R) and developed a numerical method of solving the resulting 

reaction-diffusion system. We found that the decrease of Lcrit and Lmin as a function of R 

was not a simple scaling of the results of the uniform ring, but could be explained by the 

change in the restitution and dispersion C"llrves induced by the resistance that modulates the 

effect of neighbors on the local dynamics. 

Keywords: Action potential, Reentry, Stable Reentry, Quasiperiodic reentry, Gap junction 

resista.nce, Bifurcation, Action potential duration, Diastolic interval, Ring length, Conduc­

tion time, Conduction velocity, Mode-O, Mode-l. 
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Chapter 1 

Introduction 

In Canada and the USA, cardiovascular diseases remained the main cause of death in 2003, 

being respectively responsible (rate per 100,000 population) for 133.3 [1] and 232.3 [2] deaths 

in these two countries. Cardiac Rhythm disorders lead to over 400,000 cases of sudden 

annually in the USA alone [3]. Reentry, which tefers to the self-sustained propagation of 

an activation front in the cardiac tissue, is one of the major mechanisms causing cardiac 

arrhythmia [4-8]. Understanding the effect of the ionic and structural properties of the 

tissues at the onset and perpetuation of reentry could thus be useful in designing more 

appropriate prophylactic or curative interventions. The purpose of our study is to investigate 

the effect of intercellular gap junction resistance on the characteristics of reentry in one­

dimensional ring of model cardiac tissue. 

1.1 Membrane Potential 

In the cardiac myocyte, there are high concentrations of intracellular potassium (K+) inside 

the ceU while the concentrations of sodium (Na+), chloride (CZ-), and calcium (Ca2+) are 

less than in the extracellular fluid [9-11]. The unequal ionic distribution on both sides of the 

sarcoplasmic membrane produces a difference of potential between the intra and extracellular 

media. Ions can cross the membrane through channels that are specifie to each ionic species. 

The movement of the ions across the channels is driven by both the gradient of concentration 

specifie to each species and the gradient of the potential resulting from the whole population 
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of ions. In addition, pumps such as the AT P-driven Na K can move the 

ions against their electrochemical potentials and can restore or the gradients of 

concentration. 

In the resting state, the membrane is much more permeable to K+ l such that the resting 

membrane potential (Vm = Vin - Vout ) is close to the K+ reversaI potential given by the 

Nernst equation [9-11]: 

RT Ka 
Vm = yln( K.) ~ -90mV at T = 300K 

t 

( 1.1) 

When a myocyte is depolarized by the effect of neighbouring excited cells or an external 

stimulus raising the potential over a threshold value ('" -50m V) [9-11], sodium channels 

open and give a transient inward current that brings v'n close to the Na potentia.l 

[9-11]. Because this phase does not depend on a current provided by an external source, it is 

called a regenerative or active membrane response. The fast Na-driven of potential 

i5 called the upstroke. This increase in sodium permeability is transient, and within a few 

milliseconds it is markedly curtailed. At the end of the upstroke, the sodium permeability of 

the membrane diminishes to a level near that of the resting state. However, the membrane 

potential does not return to the resting potential. It is maintained near zero for a period 

before it repolarizes. This long lasting depolarized phase lS called the plateau. plateau is 

caused by the opening of the Ca channels that lets the calcium ion flow inward. This calcium 

current is often referred to as the slow current to distinguish it from the rapid sodium current. 

It is the calcium inflow, that triggers the release of calcium for the reticulum, 

which is important in the contractile response. At a later time, the channels begin 

to close as the K channels start to open, which ends the plateau and initiates the 

final repolarizing phase of the action potential. The plateau is important it delays 

repolarization. Binee the cardiac cell cannot be excited again until it has repolarized to 

negative potential below the threshold level (-50m V), the plateau defines a long absolute 

refractory period, the period of inexcitability following an excitation. The duration of the 
( 

action potential of ventricular myocardial cell is approximately 250ms in mammals [9]. 
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Figure l.1: Schematic diagra.m of transmembrane action potential for ventricular ceil. 

The schematic diagram of the action potential is given by Fig. 1.l. 
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In normal cardiac cells, refra.ctoriness is primarily controlled by the membrane potential. 

The absolute refractory period coincides with the period when the membrane potential is 

more positive than the threshold potential. The relative refractory period, in which a higher 

stimulation current has to be applied to launch an action potential, corresponds fairly closely 

to the phase of repolarization when the membrane potential is between the threshold po-

tential and the resting potential. In sorne cardiac ceUs, the relative refra.ctory period is 

followed by a. supernorma.l period of enhanced excitability near the termination of repolar-

ization. The excitability of ca.rdiac cells, assessed by applying electrical stimuli, has received 

considerable alteration. The strength, duration, and polarity of the applied current are aU 

important in determining responses. In general, the longer the duration of the stimulus, 

the less the intensity of current is required for excitation. For a fixed stimulus duration, 

the minimal stimulus required to pro duce an action potential is referred to as the stimulus 

threshold. relationship between current strength and duration for threshold stimuli is 

approximately hyperbolic. Certain cardiac cells, such as cells of the sinoatrial (SA) node, 

spontaneously depolarize to threshold potential to generate action potentials. Generally, 
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such automatic ce11s exist in the sinoatrial node, the atrioventricular (AV) node, the His 

bundle and the peripheral Purkinje network. There is considerable functional heterogeneity 

among these components; however, each has properties of automaticity and/or conduction 

that differentiate it from ordinary working myocardial ce11s. 

1.2 Rhythmical Excitation of the Heart 

In a normal beat, electrical activation starts from the SA node which propagates to both 

atria. It travels successively through the AV node, the His Bundle and fina11y to the Purkinje 

fibers that distribute the excitation around both ventrides [9-11]. In human, when the 

system functions norma11y, the atria contract about one sixth of a second ahead of the 

ventrides, which a110ws the final fi11ing of the ventrides before they pump the blood through 

whole body [10,12]. Another especia11y important property of the system is that it a110ws 

a11 the tissue in the ventrides to contract in order to optimize the ejection of blood. 

1.3 Arrhythmias 

Genera11y human heart rhythm is considered normal if excitation originates in the SA node, 

is conducted through the normal pathway, and has a regular rate between 60 to 100 beats per 

minute [12]. But this simple definition, although attractive, cannot account for the c6mplex­

ity of a11 the cardiac rhythms. According to the standard definition, sinus rhythm less than 

60 beats per minute should be regarded as abnormal. But young adults, particularly athletes, 

frequently display resting heart rates of 40 beats per minute or less, often with intermittent 

junction escape rhythms and occasiona11y with AV nodal block [13]. Children and young 

adults may also manifest irregular heart rates that may be seen as sinus arrhythmia but that, 

on doser inspection, has no pathological significance. In contrast, these same rhythms in the 

symptomatic elderly patient are frequently manifestations of serious underlying diseases. A 

low sinus rate can also suggest an underlying pathology such as hypothyroidism. 

The definition of sinus tachycardia is equa11y imprecise. Although a heart rate of more 
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than 100 beats per minute is a1so regarded as abnormal, it may be a normal response to 

stress. In fact, aH cardiac rhythms must be evaluated in the clinical settings in which they 

are seen. Any evaluation of the significance, untoward effects, and treatment of a disorder 

of cardiac rhythm is inadequate without the relevant clinical information. 

The abnormal rhythm of heart beat is called arrhythmia. This is the most common term 

and it has become widely accepted, despite the fact that it erroneously suggests an irregu­

larity of the heart beat. On the contrary, many of the arrhythmias have an entirely regular 

rhythm as, for example, paroxysmal atrial tachycardia, atrial flutter, ventricular tachycardia, 

complete A V heart block, and others. The term is dysrhythmia. arrhythmias can be 

classified among three groups according to their mechanisms: of impulse formation 

(Le., those caused by abnormal automaticity), disorders of impulse conduction and disorders 

produced by abnormalities of both impulse formation and impulse conduction [12J. 

1.4 Reentry 

Tachyarrhythmia is commonly produced by reentry. Reentry is self-sustained propaga-

tion of an activation front in an excitable medium. The onset of reentry requires sorne form 

of unidirectional block within a conducting pathway. Furthermore, the effective refractory 

period of involved action potentials plays a major role in determining whether or not a 

reentry circuit becomes established [4,12]. 

The reentry is the highest proba.ble mechanism of ventricular tachycardias (VT) occurring 

during the chronic phase of myocardial infarction. It is also the mechanism for atrial flutter. 

Fig. 1.2 illustrates the requisite conditions for re-excitation by means of a re-entrant circuit. 

First, a barrier must exist in order to form a circuit. This barrier could be an anatomical or 

functional obstacle. In the case a ring of tissue, the barrier is the central hole. Second, the 

conduction time around the ring must exceed the refractory period. In the case of normal 

cardiac muscle, the long refractory period makes reentry difficult. A locus of abnormally 

slow conduction may help sa,tisfy the requirement that the transit Ume exceeds the refractory 
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Normal 

Reentry 

Figure 1.2: Schematic diagram of reentry. Top panel: normal propagation, the excitation 
propagates through branches 1 and 2, and dies out at position 3. Bottom panel, the branch 
2 acts as a site of unidirectional block. When the excitation front comes, the branch 2 is 
refractory and the excitation only propagates from branches 1 to branch 3. Excitation can 
then be conducted in branch 2, if it has regained its excitability. If branch 1 is again excitable 
when the excitation front exits from branch 3, a reentry is established [4]. 
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period of site that is l'c,-av'-" [4,12]. In normal propagation, shown in the top panel of 

Fig. 1.2 the excitation propagates through branches 1 and 2, and dies out at position 3. In 

the bot tom panel of Fig. 1.2, the branch 2 acts as a site of unidirectional block. \iVhen the 

excitation front cornes, the branch 2 is refractory and the excitation only propagates from 

branches 1 to branch 3. Excitation can then be conducted in branch 2, if it has regained its 

excitability. If branch 1 is again excitable when the excitation front exits from branch 3, a 

reentry is established. 

Even if it represents an oversimplified experimental model of clinieal tachyarrhythmias, 

the study of reentry in rings of eardiac tissue have allowed a careful analysis of a. variety of 

dynamic events that are relevant to ventricular tachycardia occurring around an inexcitable 

obstacle as weIl as atrial flutter [8,14-16]. a complete understanding of the spatial 

and time properties of the phenomenon, however, there serious complicating factors, 

such as the anisotropie tissue properties, the spatial in membrane properties and 

cellular interconnections. 

1.5 Beeler-Reuter-Roberge-Drouard Model of the Car­
diac ventricular myocyte 

1.5.1 Description 

Different mathematical models of the electrical properties of ventricular cardiac myocytes 

have been proposed, they differ in the number of ionie meehanisms that they include [17-20]. 

In our study, we used the Beeler-Reuter model, as modified by Drouard and Roberge [18,20J. 

We chose this model because its dynamic properties were thoroughly established both in the 

space-clamped and continuous one-dimension al ring configurations. Since our goal was to 

contrast the dynamics in the continuous and discrete one-dimensional loop, we have decided 

that this was an appropriate choice to analyze the changes specifically indueed by discrete 

intercellular gap junction resistance. 

The includes three voltage and time-dependent Hodgkin-Huxley type currents [19], 
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the excitatory inward sodium current, iNa , a slow inward calcium current, iCa, assumed to 

be carried by calcium ions, and , a K+ outward current. There is also an additional 

time-independent outward potassium current, i k1 , exhibiting inward-going rectification. The 

iNa. primarily controls the rapid upstroke of the action DotelltI:!l.l while the other currents 

determine the configuration of the plateau and the repolarization phases. In the space­

clamped configuration, the variation in membrane potential (Vm , in mV) is expressed by the 

relation: 

dVm 1 (' . . . dt = - Cm ~kl + ~xl + ~Na + ~Ca (1.2) 

The membrane current density is expressed in fLA/ cm2
, while the membrane capacity 

Cm is set at 1fLF / cm2
) the generally accepted value for the capacity of biological membranes 

Cm [19,20]. iext corresponds to a stimulus current that can be injected in the internaI medium. 

The scaling of the individual ionic current is chosen to provide éurrent-voltage relationships 

which match the best estimates obtained experimentally and taken together, pro duce an 

acceptable shape for the ventricular action potential. The individual Ionie currents (iNa) are 

given by the relations: 

(1.3) 

where gNa = 15mS/cm2 is the maximum conductance of the sodium (mS/crn2 = 1/ Kn/crn2) 

and where ENa is the Nernst potential associated to the Na+ ions (fixed at -40mV). The 

state of each sodium channel is controlled by three types of independent gates that can be 

open or close: one activation gates (m), and two inactivation (h and j). The variables 

m, h, and j represent the proportions of each type of gates that are in the open state. 

The individua.l ionic currents (ica) are given by the relations: 

(1.4) 

where gCa = 0.09mS/ crn2 is the maximum conductance of the calcium, the cl and f are the 

proportion of the activation gates and inactivation gates of the Ca2+ channels in the open 
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state, respectively. Eca, the calcium Nernst potential, varies with the internaI concentration 

of [Ca] (mM) according to the relation: 

ECa = -82.3 13.02871n[Ca] (1.5 ) 

The dynamics of [Ca] is described by the relation: 

(1.6) 

The time dependent activated outward potassium current ixl is given by 

(1.7) 

where Xl is the activation gate variable and Zxl is given by 

-: 0.8{ exp[0.04(~n + 77)]- 1} 
~xl = 

exp[0.04(~n + 35)] 
(1.8) 

The time-independent potassium current exhibiting inward-going rectification (ik1 ) is given 

by 

o 035{ 4(exp[0.04(Vrn. + 85)]- 1) + __ ~_ ... _-:---'----:-:::} ( ) 
. exp[0.08(Vm + 53)] + exp[0.04(~n + 53)] 1 _ ' 1.9 

the dynamics of the gate variable m, h, j, d, f and xl is described by the relation 

(1.10) 

(1.11) 

where Yoo and Ti are related to the rate constants of the transition from close to open state 

(a) and open to close state ((3) by the relation 

1 
Ti= --­

ai + (3i 

The voltage-dependent rate constants a and (3 are given by 

a((3) = Clexp[C2(~n + C3 )] + C4 (Vm. + C5 ) 

exp[Cô(Vm + C3 )] + C7 

(1.12) 

(1.13) 

(1.14) 
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Table 1.1: C, defining function and values for rate constants (0: and (3) 

Rate constant Cl ms-1 C2 m C3 mV C4 (mVms) 1 C5 mV C6 mV-1 C7 

O:m 0 0 -0.818 42.65 -0.22 -1 
/3m 1.437 -0.0 0 0 0 0.1 
O:h 0.1 -0.1 0 0 0 -0.4 
/3h 2.8 0 0 0 -0.095 1 
O:j 0.055 -0.25 78 0 0 -0.2 1 
/3/ 0.3 0 32 0 0 -0.1 1 
O:d 0.095 -0.01 ·5 0 0 -0.072 1 
/3d 0.07 -0.017 44 0 0 0.05 1 
O:f 0.012 -0.008 28 0 0 0.15 1 

/3i 0.0065 -0.02 30 0 0 -0.2 1 
O:xl 0.0005 0.083 50 0 0 0.057 1 
/3xl 0.0013 -0.06 20 0 0 -0.04 1 

by table 1.1. The dynamics of these 

gates variables fo11O\v the formulation first proposed by Hodgkin and Huxley [19]. Using this 

approach, with a fixed membrane potential Vm , the proportion of any specifie gate popu­

lations in the open state converges toward a voltage dependant steady-state Yi,cx,(Vm) with 

a characteristic time constant Tlv~n). If Yi,=(Vm ) is small at low Vm values and increased 

toward 1 as Vm is increased, the Yi gate is said to be an activation variable, and is called 

an inactivation variable in the inverse case. Typica11y, the value of the steady-state and· 

time constant function of the gate variable are obtained by fitting the experimental results 

obtained using the voltage-clamp technique [19]. In essence, this technique involves abruptly 

changing the transmembrane potential from an initial value to a predetermined clamp po-

tential and maintaining this clamp potential constant by the injection of a feedback current 

despite changes in the membrane conductance. It involves different procedures in order to 

isolate the contribution of a specifie current, as weIl as multistep protocols to obtain char-

acteristics of the activation and inactivation gates when they contributed together to the 

dynamics of the current [21,22]. 
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1.5.2 Dynamics on the Space-Clamped M BR 

The Figure 1.1 shows the action potential obtained from the M BR model stimulated from 

rest by a square current pulse of 1 ms. The dynamics of the space-clamped M BR model 

have been studied both for the presence of constant bias currents and repetitive pacing with 

square pulses of current. In the case of the constant bias current, it was shown that there was 

an interval over which the model is automatic, producing repetitive action potentials [23]. 

However, the results obtained with pacing are more relevant to the present work on reentry. 

For pulse stimulation, the response of the M BR model is aU or none [24]. If the current 

is below a threshold, it produces a small passive depolarization and repolarizes as soon 

as the stimulus is removed. If the stimulus is ab ove the threshold, it produces an action 

potential as in Fig. 1.1, whose duration does not depends on the intensity of the stimulus 

above the threshold. This can be seen in the Fig. 1.3, which shows the stable entrainment 

response of the model to 40 pA/ cm2 square pulses of current of 1ms duration applied at two 

different basic cycle lengths (BC L = 1000 and 350ms). In both cases, the system produces 

a stable period-1 repetitive response with fixed action potential duration (A) and diastolic 

interval (D) that it reaches after a transient period at the beginning of pacing. During the 

plateau of the action potential, the slow inactivation variable J controlling ica. closes, and the 

slow activation variable Xl of i k opens, both contributing to the repolarization. Then, these 

gates variables return toward their respective resting value during the next diastolic interval. 

However, as BCL is decreased, they do not have the time to recover completely, leading to 

a buildup of the Xl and a graduaI decrease J, which lead together to an abbreviation of the 

action potential duration. Period-1 response corresponds to an equilibrium, where Xl and J 

reach a mean value such that the changes occurring during the depolarized phase are exactly 

compensated by the recovery during the next diastolic interval. 

The value of the threshold current (Ithr) depends on the duration of the pulse, and 

on the prematurity of the stimulation. The action potential duration is also a function of 

prematurity. As shown in Fig. 1.4, the prematurity can be measured by the time interval 
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Figure 1.3: The action potential duration is also a function of prematurity, This graph shows 
the stable entrainment response of the model to 40 muA/cm2ms square pulses of current of 
1 ms duration applied at two different basic cycle lengths (BeL = 1000 and 350ms). The 
duration of the action potential is reduced when the BeL, which is the time between the 
successive stimuli, becomes shorter [23]. 

between the onset of the new stimulus 52 and that of the prevlOUS stimulus 51 having 

produced an action potential, the so-called 52 - 51 interval. Alternately, prematurity can 

also. be measured by the diastolic interval D, consisting of in the time span between the end 

of the previous action potential and the onset of the new stimulus 52. For the AI BR model, 

the action potential duration (A) is defined to end at the moment when Vm reaches -50 

m V in repolarization. The restitution curve, giving the duration of the action potential as a 

function of the prematurity of the stimulus, provides a global picture of variation in the action 

potential duration. As illustrated in Fig. 1.5, the restitution curve can be constructed by 

first obtaining stable entrainment of the system for a given BeL pacing, and then applying 

52 stimuli with a varying prematurity on the reference action poteiltial. The duration of the 

resulting action potential for each value of the 52 - 51 interval are recorded. 

Fig. 1.5 shows the restitution curves obtained after a pacing of BeL at 1000.and 350ms, 

of which stable responses are displayed in Fig. 1.4. The two restitution curves are different 

because the action potentials after which 82 is applied are different. The action potential 
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Figure 1.4: The two different basic cycle lengths (BeL = 1000 and 350ms). Two stimuli 
SI and S2 applied [23]. 

duration ofthe stable entrainment response at BeL = 350ms is much shorter than the action 

potential obtained at BeL = 1000ms. In consequence, the absolute refractory period at 

BeL = 1000ms is longer, as the minimal S2 - SI interval to obtain an active response is 

longer. The two restitution curves expressed as a function of S2 - SI appear to be shifted, 

relative to each other. However, as seen in the right panel of Fig. 1.5, the two curves are 

almost identical when A is expressed as a function of the diastolic interval ([S2 - Sl]- As, 

the As of the response to pacing). In reference [23], it was shown that the A(D) restitution 

curves of the l'vI BR model were almost identical for reference action potentials obtained from 

a wide range of pacing frequencies and durations of square pulse stimulation. It was also 

shown that Ithr(D; Tpulse) , the variation of threshold current as a function of the diastolic 

interval for each duration Tpulse of the square pulse stimulus, was also an invariant function 

for each duration. Memory effect, by which the threshold and/or the A would depend not 

only on the last action potential but also on the preceding sequence of activations, can 

therefore be neglected in the standard 1\11 BR model. However, it was shown that for sorne 

modifications of the 111 BR model, such as shortening the time constant of iCa gate variables, 
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Figure 1.5: Action potential duration (A) obtained by premature stimulations of the stable 
response at two BeL. S2 - SI is the time from onset of the last pacing stimulus to the 
premature stimulation. D is the time from the end of the action potential to the onset of 
the premature stimulation. Left panel: A changes when expressed as a function S2 - SI. 
Rigth Pannel: When A is expressed as a function of D, the two curves merge, showing that 
A only depends on D [23]. 

the memory effect could no longer be neglected [25,26]. 

As it will be explained below, the invariance of the A and It1~T curve as a function of D 

permits understanding of the change in entrainment response with respect to the frequency 

of stimulation. Fig. 1.6 shows the stable entrainment response of the model to 40pA/ cm2 

square pulses of current of Ims duration applied at different BeL. In each of the two 

top panels, aU stimuli produced the same action potential. This entrainment can be caUed 

a 1: 1 response, meaning that each stimulus pro duces the same active response. However, 

as expected, the duration of the action potential is reduced when the BeLis shortened. 

The two subsequent panels, with BeL = 265 and 260 ms, show another type of entrainment 

where each stimulus still produces an active response, but with duration alternating between 

a long and short action potential. This can be caUed a 2:2 entrainment, meaning that 

the periodic pattern of response repeats after two stimuli and induces two different active 

responses. Finally, at a shorter BeLin the bottom panel, the pattern of response still repeats 
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Figure 1.6: The first and the second rows show 1:1 response, the third and the forth rows 
show 2:2 response and the last row shows 2:1 response. 

after two stimuli but each periodic sequence contains an active and a passive response, a 

rhythm that can be called a 2:1 response. Fig. 1.7, showing the maximum inward current 

following each stimulus, provides a synthetic view of the bifurcations. 

Fig. 1.8 provides a schematic representation of the dynamics for producing successive 

stimuli that provoke an active response during pacing at a fixed BCL. Di, the diastolic 

interval preceding the onset of the ith stimulus, is equal to BCL - Ai-l, where A i- l is the 

duration of the action potential produced by the stimulus i - 1. Since A is only a function 

of the diastolic interval, this relationship leads to the finite-difference (F D) equation: 

(1.15) 

A 1:1 response corresponds to a fixed point (i.e. Di = Di+l = Ds) of the system and is 

stable if and only if 

(1.16) 

The finite-difference F D model, based on the invariance of the A(D) function predicted 
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Figure 1.7: The maximum inward current (IIion(flA/cm2 )1) following each stimulus provides 
a synthetic view of the bifurcations. 

Figure 1.8: The Schematic diagram gives the relationship between BeL, APD and DIA. 
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Figure 1.9: The finite difference model reproduces the bifurcation of the AI BR model. The 
model was simulated using A(D) function fitted from Fig. 1.7. 

that the 1: 1 response loses its stability when A and D faH on the portion of the restitution 

curve where the slopes are greater than 1. Fig. 1.9 presents the bifurcation from 1:1 to 

2:2 predicted by the F D model, with A( D) fitted from Fig. 1. 7. It reproduces the nature 

and the position of the bifurcation obtained in the M BR model. In fact, the F D model, 

complemented by rule to account for the threshold and the absolute refractory period, has 

also been shown to correctly reproduce the complex bifurcation structure, appearing with 

respect ta the BCL and the amplitude of stimulation. However, as we shaH see in the next 

section, the bifurcation from 1:1 to 2:2 response is the most relevant with respect to reentry. 

1.6 Modified Beeler-Reuter Loop Model 

The bifurcation from 1:1 to 2:2 response observed as the frequency of pacing is increased 

in the space-clamped M BR model suggests that transitions may also occur during reentry. 

Much work has been do ne on reentry in a one-dimensionalloop, using either ionic models or 

low-dimensional representations of the dynamics [25,27-36]. Most of the studies using ionic 

models have used the cable equation, which considers the membrane as an homogeneous 
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and continuo us cylinder, the extracellular medium as an equipotential and neglects the 

radial current in the intracellular medium [21]. With these hypotheses, the evolution of the 

membrane potential V on a loop of length L is described by the partial differential equation: 

~ 82
Vi(x, t) = S[e. 8Vi(X, t) Ii ( )] XE[O, L] 
~ 2 ln ~ + ton X, t , P uX ut 

(1.17) 

with the boundary condition 

V(O, t) = V(L, t) (1.18 ) 

where p (KD·cm) is the constant axial intracellular resistivity, Cm (p,F/cm2 ) is the membrane 

capacitance and S (l/cm) is the ratio of the surface of the membrane to the volume of the 

intracellular medium. Iion(x, t) is the ionic current crossing the membrane. For the M BR 

model presented in the previous section, the dynamics variables (Yi, i = 1,6) and [Cai] 

become functions of space and time in such a way that their equations must be solved at 

each site of the membrane. There is no diffusive term for these variables, but they must 

fuI fi Il the boundary conditions (Yi(O, t) = Yi(L, t), [Cai(O, t)] = [Cai(L, t)]. Diverse numerical 

methods exist for solving this type of system [27,34]. We present here a numerical method 

devisecl for parallel processing [27]. This method is described in Appendix l of this thesis, we 

have modified for the loop with dis crete gap junction resistances. The loop is first divided 

in a number of segments (j = 1, N) of length Le and the system is solved with a constant 
i ' 

time step 6.t. For each time step, the system describes the spatial evolution of V within 

each segment at time t + 6.t becomes an ordinary differential equation: 

d
2
Vj(x,t+6.t)=pSCmVj ( J\)_pSCmVj() SIj ( ) 

dx2 6.t x,t+ut 6.t x,t +p ton x,t (1.19) 

Since aH the quantities at time tare known, this system is equivalent to: 

_d
2

----'V J=--::-' (x----,) K 2 vj - j () [L]' - 1 N dx2 - - 9 X XE 0, e J - ... (1.20) 

With the boundary conditions: 

(1.21) 
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V1(0) V N (Le), (1. 22) 

dVi(O) dVi-1(Le) 
j = 2,N-1 (1. 23) 

dx 
-

dx 
dVl(O) dVN (Le) 

(1. 24) = dx dx 

conditions assure the continuity of the voltage and of the axial current between the 

loop. 

The solution of Eq.(1.20) is given by the sum of a particular solution V; and of the 

solution Vk of the homogeneous system; 

(1.25) 

The V; is obtained by solving Eq.(1.20) for each segment with the Neumann boundary 

conditions: 

(1.26) 

To obtain this particular solution, each segment is discretized with a constant spatial step 

of .6.x and the is solved by using a linear finite element method [34]. Then the 

segments are reconnected by calculating the Aj and Bj to fulfill the continuity conditions. 

Reentry can be initiated by disconnecting the loop, stimulating one of the free ends and 

then closing the loop after a delay. Once reentry has stabilized, it is possible to shorten 

the loop gradually to investigate the effect of the circumference on the dynamics of reentry. 

Quan and Rudy [35] have shown that reducing the loop length results in an increased degree 

of head-tail interaction that, in turn, brings about shortening and eventually alternation in 

. action potential durations. Vinet et al. [27,28] as weIl as Courtemanche et al [30,31], working 

respectively with the Iv! BR model and the original BR model, have provided a complete 

study of the effect of the loop length. 

Results for the M BR model are presented in Fig. 1.10 (A). For each loop of length 

L, measurements are taken at one site for multiple turns. a, long L, the cycle length, 

which is the time between successive acti0n potentials at the measuring, is constant. 

Moreover, the action potential duration (APD: from the of the upstroke to -50mV 
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downcrossing in repolarisation), the diastolic interval (D l A: from the end of the action 

potential to the next upstroke) are the same for aIl action potentials. In this case, 

the reentry is periodic (period-1) and corresponds to a fixed waveform traveling at constant 

speed around the loop. As the loop is shortened, the cycle length decreases because the 

speed of propagation remains almost constant. Both DIA and AP D also diminish, they 

take place in a space-clamped membrane when the pacing frequency is increased. Then, 

below a critical length Xcrit, the cycle length, DIA and AP D become multiple values. At 

X c.rit , the cycle length has exactly the value for which there is a transition from 1:1 to 2:2 

response in the space-clamped model. However, the response is not 2:2 in the loop but rather 

wanders between an upper and a 10we1' bound. These bounds part as L becomes shorter, 

until a minimum X min below which sustained reentry becomes impossible. 

To get a clear picture of reentry below X crib propagation must be followed as it proceeds 

along the loop, recording successive AP D and DIA values at each site. 1.11 shows the 

spatial variation of DI A along the loop for successive turns abutted end-to-end. There is a 

spatial oscillation of DIA as propagation proceeds, with a wavelength that is an irrational 

fraction of L. Hence, the sequence of DIA measured at one site becomes quasiperiodic (QP). 

As shown in figure l.I1, two different types of QP reentry were observed on the MER loop, 

one with a wavelength close to 2L, and a second with a wavelength close to 2/3L. 

Courtemanche et al. [31] have extended the F D model that was developed for the paced 

space-c!ampe. As for the F D model, AP D is assumed to be a function of the previous action 

potential, which yields 

(1.27) 

where DIA(x) stands for the diastolic interval of the ith action potential at site X, and 

C Li (x) is the cycle length between the new activation and the previous one. If the successive 

turns are abutted end-to-end and X is extended to span multiple loop length L, DIAi_l(X) 

would the value that occurred at position x - L. The equation can be rewritten as a 
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Figure 1.10: Analysis of temporal activity recorded at a single point on rings of different 
lengths. (A and B) CL and DIA for a maximum of 25 successive turns at each ring length. 
Stable reentry occurs for X > X crit = 19.6cm, complete block for X < X min = 12.8cm, and 
irregular propagation for 12.8cm < X < 19.6cm. (C and D) Scatter diagrams of latency and 
APD versus DIA for aIl patterns displayed in (A) and (B). Arrows in (C) and (D) indicate 
the set of points corresponding to stable reentry (X > 19.6cm) [27]. 
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Figure 1.11: Mode-O at L = X min = 12.8cm, and mode-l at L = 18.65cm, MBR model [29]. 

delay equation: 

DIA(x) = CL(x) - APD(DIA(x - L)) (1.28) 

The last hypothesis, appropriate for the BR and M BR models, is that the speed of propa-

gation e is also a function of DIA. Then, 

l
x 1 

CL(x) = x-L e(DIA(y))dY (1.29) 

and the complete model becomes an integral-delay equation: 

l
x 1 

DIA(x) = x-L e(DIA(y))dY - APD(DIA(x - L)) (1.30) 

Courtemance et al. [31] have analyzed the stability of the constant solution (DI A(x) = 

constant) corresponding to period-l reentry. They have proven that it remains stable until 

DI A = DI Acrit where ' 
d(APD) 

1 d(DI A) IDIACTit= 1 (1.31 ) 

Renee, the criterion for the stability of the 1:1 response in the paeed spaee-clamped model 

also controls the stability of the period-l reentry in the loop. Furthermore, they have also 

proven that an infinite number of quasiperiodic mode of reentry appears at the bifurcation, 

with wavelength 

À ~ 2L [l 
n 2n + l' nE 0,00 (1.32) 



23 

The two modes of shown in Fig. 1.11 have a wavelength close to n o and 

n = 1 respectively, and are accordingly designated as mode-O and mode-1 reentry. 

two modes were observed in the BR and M BR models. In both cases, mode-O reentry 

was shown to appear through a supercritical Hoph bifurcation. The amplitude of the spatial 

DIA oscillation grows from 0 as L is shortened below Xcrit? and reaches a maximum at X min , 

where sustained reentry stops. Vinet et al. [27] found that the mode-1 reentry to display 

a large amplitude at a length shorter than X crit and to disappear when L is larger than 

X min . Higher modes (n > 1) of propagation were never observed, even after a systematic 

search for appropriate initial conditions [27,29]. Although successful in predicting the loss 

of period-1 solution, the integral-delay model could not explain the difference in the way 

mode-O and mode-1 are created, as weIl, the absence of n > 1 modes goes unexplained. 

Vinet et al. also observed that the AP D vs DI A relationship was becoming dual value (Fig. 

1.1 O(D)) in quasiperiodic reentry. They suggested that this was a consequence of the effect of 

coupling on repolarization, by which the surrounding of a point influences its repolarization 

and modifies the APD [29,37,38]. They proposed to include in the integral-delay model the 

effect of coupling on AP D through the equation: 

APD(x) = fUuw(y)APDr(DIA(X+y))dy (l.33) 

where APDADIA) is the restitution curve as in the DF model, w(y) is a weighting function 

chosen as a normalized Gaussian (i.e. w(O) = 1), and u is the extent of the neighborhood 

influence. This led to the modified integral delay model 

DI A(x) = l~L ()(DI~(Y)) dy - f: w(y)APDr(DIA(x - L + y))dy (l.34) 

As shown in Fig. l.12, the modified integral-delay model can correctly reproduce the bifur­

cation structure of the M BR model as weIl as the multiple-value AP D vs L relationship 

observed in quasiperiodic propagation. FormaI analysis of the model [29,37,38] ruso shows 

that the coupling displaces the value of the loop Iength at which the mode is created and 

may forbid the appearance of higher modes. The study of bifurcation has been extended to 
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Figure 1.12: Mode-O is represented by the solid line, and mode-1 is given by the dash line 
as a function of L [29]. 

the two-dimensional ring, a more complex system due to additional contribution of curvature 

of activation and repolarization front to the stability of reentry [39-42]. 

1.7 Role of gap junction in the propagation of the car­
diac action potential 

Real cardiac tissue does not form a syncytium as hypothesized in the cable equation. Rather, 

the tissue is formed by discrete myocytes electrically connected by gap junction resistances 

such the cell to cell propagation is discontinuous [43,44]. Gap junctions play an important 

role in the velocity and the safety of impulse propagation in cardiac tissue. Under phys­

iologie conditions, the specifie subcellular distribution of gap junctions together with the 

tight packaging of the rod-shaped cardiomyocytes underlies anisotropie conduction, which is 

continuous at the macroscopic scale. During gap junction uncoupling, discontinuities reap-

pear and are accompanied by slowed and meandering conduction. Junction resistance can 

-be modulated to obtain very high values in abnormal cases such as ischemia and infarction, 
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Figure 1. B: Gap junction in the series branches of myocytes from the most superficiallayer 
of the monkey's right ventricle (1660x). They consist of steps and risers [45]. 

leading to very slow conduction. In extreme cases, it may lead to complete decoupling of 

neighboring cells , resulting in a conductioll block. Fig. 1.13 shows an electron microscope 

picture of the gap junctions in myocytes extracted from a lllonkey's right ventricle. 

The cellular structure of the myocardium is important for understanding both normal 

propagation and arrhythmogenesis. Structural anisotropy may be related to cell shape and 

also to the cellular distribution pattern of proteins involved in impulse conduction, such as 

gap junction conllexins and membrane ion channels. The functional connections bctween 

cardiac cells, consisting of so-called gap junctions, vary in their molecular composition, degree 

of expression and distribution pattern. Each of these variations may contribute to the specifie 

propagation properties of a given tissue in a given species. The gap junction is formed by 

the junction of two connexin proteins, eaeh being embedded in the membrane of one cell. 

Fig. 1.13 presents a sehematic representation of a gap junction eonnexin protein. There 

exist different forms of connexin as Fig. 1.14 demonstrate [46-50]. Connexin 43 (Cx43) is 

the most abundant protein in the heart and is also present in many other organs. Cx43 ean 
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be found in the ventricle, atria and the ventricular conducting system [46,51-55] while its 

presence is disputed in the sinoatrial node and in the àtrioventricular node [46, 54,56-58]. 

Cx40 plays an important role in the atria, the atrioventricular node, and the ventricular 

conducting system [46,51,53,59-62]. Due to its large single-channel conductance, Cx40 is 

likely to contribute to a high propagation velo city in parts of the atria (crista terminalis) 

and the specific ventricular conducting system. While some studies have shown expression 

of Cx45 in most myocytes [60J, its role in impulse conduction in the ventricle is not fully 

clarified. A further, still not fully answered question relates to the functional consequences 

of colocalization of different connexins in gap junctions. Such colocalization may refiect 

heterotypic or heteromeric' gap junctions with electric properties that are different the 

properties of corresponding homotypic or homomeric channels shown as Fig. 1.14. White 

such formation has shown to produce a multitude of electric conductance states in vitro 

[63-67], their functional role in vivo still remains to be defined [68]. 

Fig. 1.15 presents a simple model of a one-dimensional strand of cardiac ceUs joined by 

gap resistances. In this model, all the gap junction channels are lumped in a single value of 

resistance which is assumed to be constant. 

Keener has published a theoretical analysis on the space-constant of a passive discrete 

one-dimensional cable [69J. In his approach, each ceU is considered a continuous cable of 

length L, internaI section A, circumference p, axial resistivity Pi and capacitance Cm. It is 

surrounded by a continuous external medium of section Ae and resistivity Pe. The evolution 

of the intracellular and extracellular potentials Vi and Ve within each celI are given by the 

equations: 

(1.35) 

(1.36) 

where V = Vi Ve is the membrane potential. The intracellular medium of the ceUs are 

connected by a gap junction of resistance Tg, while the external medium is continuous. If 

the width of the gap junction is neglected, the connection between the ntth and n + l;th 
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Figure 1.14: Top panel: the molecule of connexion topology, the transmembrane is shown 
as white, the N-terminal is shown as grey, the tail C-terminal are black. The bottom panel; 
the sequences of amine acids of the different connexion, starts from N-terminal [50]. 

Figure 1.15: A small segment of the theoretical model with the gap junction [70J. 
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ceU is equivalent to the continuity condition, this condition states that the axial CUITent 

is continuous between the cells. vVhen the current flows in the gap junction resistance, it 

causes a difference of potential between the end of a cell and the beginning of the following 

cell. 

If Ve is assumed to be an equipotential as in Eq.(1.35) the system can be rewritten as 

( 1.37) 

This is the cable equa,tion applied within each ceIl, with boundary condition: 

A8V(x = nL+) 

Pi 8x 
(1.38) 

This is the formalism that we have adopted to study the dynamics of the discrete one­

dimensional loop that is presented in the following chapter. 

The of Keener was to obtain an expression for the space-constant of the system 

Eq.(1.35) assuming a passive membrane current given by: 

V 
lion = R 

m 

(1.39) 

where R"i i8 the resting membrane resistance. He has obtained an analytical expression for 

the asymptotic profile of Vi and Ve (i.e. a~~,e = 0) on a finite cable (x [0, L]) with a 

constant current injected at x = 0 and no flux boundary condition at the other end. Fig. 

1.16 shows an example of the resulting asymptotic profile of Vi and Ve [69]. There is a 

smooth decrease of Ve because the extracellular medium is continuous. Vi has a saw-tooth 

appearance due to the gap junction resistance. 

Rudy, working \vith different collaborators) has published a series of articles on the in-

fluence of discrete gap junction coupling in a linear strand model of cardiac cells, using 

either the model [73] or the so-called Luo-Rudy II model [70,74]. As shown in figure 

1.17 (velocity 0) [73J and figure 1.18 (time delay) [73], the velocity in a cell increases with 

crE:3S1llll? disk resistancè, reflecting the fact that the current is more confined to the cell, 

therefore, more current is available to depolarize the cellular membrane. On the other hand, 
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Figure 1.16: The intracellular potential and the extracellular potential are a function of the 
distance in the cell x [69]-

the velocity between cells decreases with the increase in disk resistance as a result of an 

increased time delay at the disk. The intercellular latency increases because the current 

fiowing from one cell to another is smaller as the gap junction resistance is increased, so that 

it takes longer for the next cell to reach threshold. Moreover, a slower increase of potential 

is also associated with a partial inactivation of the sodium current which further increases 
1 

the threshold and the latency. This explains why there is a limiting value of intercellular 

gap resistance when propagation fails. As for the low longitudinal resistivity, the net macro­

scopie velo city closely follows the inverse square root relationship of continuous cable theory. 

However, in the case of high longitudinal resistivity, changes in the disk resistance result in 

a greater decrease in macroscopic velo city than predicted by the inverse square root rela-

tion [73]. Critical gap junction uncoupling reduces conduction velocities to a much larger 

extent than does a reduction of excitability, which suggests that the safety for conduction is 

higher at any given conduction velo city for gap junction uncoupling. In unifonnly structured 
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Figure 1.17: Effects of variations in axial (longitudinal) resistivity on velocity in cell (Omie, 
curve 1) and on average velocity between cells (Omae, curve 2). The continuous case (no disks 
included in the model) is shown for comparison (curve 3) and follows the inverse square root 
relation of continuo us cable theory. The effective longitudinal resistivity is varied by varying 
the disk resistance while the myoplasm resistivity is kept constant at 200 0 . cm. Both 
effective longitudinal resistivity and the corresponding disk resistance are indicated [73]. 

tissue, gap junction uncoupling is accompanied by a parallel decrease in conduction velo city. 

However, this is not necessarily the case for non-uniform structures like tissue expansion 

where partial uncoupling paradoxically increases conduction velo city and has the capacity 

to remove unidirectiona.l conduction blocks [68,70]. 

a continuous cable of intracellular resistance Ri, the speed of propagation is propor-

tional to In a discrete cable, the global speed of propagation depends simultaneously 

on gap resistance (as shown in Fig. 1.17) the intracellular resistiviy and the length of the 

cell (as shown in Fig 1.19). Joyner [71] has studied propagation in a cable stimulated from 

rest with membrane currents represented by the BR mode!. Each segment of the cable, with 

a length of 50 /-lm and a radius of 10 /-lm, has either a low axial resistivity PL = 2000· cm or 

a high axial resistivity PH. He studied the situation depicted in the top panel of Fig. 1.20, 

where a single segment of high resistivity is intercalated between every island of N segments 
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Figure L 18: Delay of the propagating action potential as a function of disk resistance, both 
in the cell (curve 2) and at the intercalated disk (curve 1) [73]. 

of low resistivity. The equivalent lumped resistivity of the medium is then: 

Ri = NPL + PH (1.40) 

The bottom panel of Fig. 1.20 shows the conduction velocity for the continuous media (A) 

and two levels of PH, 5000 n·cm, (moderate, B) and 10000 n-cm (high, C), The plot is given 

as a function of &. = N + etL, for different value of N [71.]. For moderate discontinuity (B), 
PL PL 

the speed is al ways lower than for a continuous cable with equivalent lumped resistivity. For 

high discontinuity (C), the speed is lower than in (B), but has a maximum at an intermediate 

value of N. Although this setting does not represent a ceU separated by discrete gap junction 

resistance (aU segments have an active membrane), it shows that the velocity of propagation 

may depend, in a complex manner, on the distribution of the high and low resistive segments. 
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Figure 1.19: Increase in intercellular conduction delay with decrease in gap junction cou­
pling. Action potential upstrokes from the edge elements (see il1set) of two adjoining cells 
for intercellular conductance of 2.5j.lS (A) and intercellular conductance of O.25j.lS (B). Dis­
cretization of 21 patches per cell was used. For control coupling (A) , intercellular conduction 
delay is approximat.ely equal t.o intracellular (myoplasmic) conduction time. A 10-fold de~ 
crease in intercellular conductance (B) increases intercellular conduction time and decreases 
intracellular conduction time dramatically, resulting in gap junction dominance of overall 
conduction velo city ~701. 
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Figure 1.20: Principles of discontinuous propagation. Top: discontinuity is defined by a 
row of excitable elements (abscissa denotes element number) separated by resistors. N 
elements forming a group are interconnected by resistors of low value (R1ow ). Each group of 
N elements is connected to the next group by a resistor of high value (Rhigh ). The effective 
or overalliongitudinai resistance (Ri) plotted in the bottom panel is equal to the average 
longitudinal resistance. Bottom: change of propagation velocity (8) as a function of ~ for 
3 degrees of discontinuity. For simplicity, values are plotted in units of ~ 20Œl . cm. 
Case A: continuous 82 ex: 1/ Ri [72]. Case B: moderate discontinuity, R10w 200n, cm, 
Rhigh 5) DOOn, cm, the numbers on the trace denote the number of elements N in a group. 
Case C: marked discontinuity, R10w = 200n, cm, Rhigh = 10, DOOn· cm , the numbers on the 
trace denote the number of elements N in a group, Note that case B behaves similarly to 
the fully continuous case A. In case C, the propagation velocity decreases with both a large 
and a small number of elements N and is optimal only in a region where there is a match 
between R1ow , Rhigh , and N [71]', 
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Abstract 

Dynamics of reentry are studied in a one dimensionalloop of a model of cardiac cells with 

discrete interc~llular gap junction resistance (R). Each cell is represented by a continuous 

cable with ionic current given by a modified Beel.er-Reuter formulation. For R below a 

limiting value, propagation is found to change from period-l to quasiperiodic (QP) at a 

critical loop length (Lcrit ) that decreases with R. Quasi periodic reentry exists from Lcrit to 

a minimum length (Lmin ), which is also shortening with R. The decrease of Lcrit(R) is not 

a simple scaling, but the bifurcation can still be predicted from the slope of the restitution 

Ct1fve giving the duration of the action potential as a function of the diastolic interval. 

However, the shape of the restitution curve changes with R. An increase of R does not seem 

to increase the number of possible QP solutions since, as in the continuous cable, only two 

QP modes of propagation were found despite an extensive search through alternative initial 

conditions. 



36 

2.1 Introduction 

Self-sustained propagation of electrical activity around a one-dimension al (l-D) loop of car­

diac tissue is the simplest model of reentry, the mechanism by which a propagating activation 

front maintains itself by travelling around a functional or anatomical obstacle. Reentry has 

been much studied because it was demonstrated to be an important mechanism of cardiac 

arrhythmia [5,6,8,75]. For the 1-D loop, most work has been done assuming the membrane 

to be a continuous and uniform cable with constant intracellular axial resistivity [25,27-36]. 

For different models representing the ionic properties of the membrane, propagation was 

found to change from stable period-1 propagation to quasiperiodic reentry when the length 

of the loop was reduced below a criticallength. The quasiperiodic reentry was characterized 

by a spatial oscillation of the action potential duration as propagation proceeded around the 

loop. Based on numerica.l simulations, the bifurcation was in most cases classified as super­

critical, with the amplitude of the oscillation growing as the length of the loop was reduced 

below the criticallength. Quasiperiodic reentry was found to exist from the criticallength to 

a rninimallength below which sustained propagation became impossible. In sorne instances, 

two different modes of quasiperiodic propagations were identified, with different wavelengths, 

different intervals of existence, and sometimes different scenarios of creation [25,27,29-31]. 

Va.t\ous attempts were made to build simplified representations of the dynamics allowing 

analytical examination of the nature of the bifurcation [29,32,38,76,77]. One of these ap­

proaches, which guides the present investigation, relies on an integral-delay model [30,31]. 

It is based on the assumption that both the speed of propagation and the action potential 

duration can be expressed as functions of the diastolic interval, which measures the recov­

ery time from the end of the previous action potentia.l. The model has been successful in 

reproducing the locus of the bifurcation observed by numerical simulations of ID loops with 

Beeler-Reuter-type representations of the membrane. It predicts that the bifurcation should 

occur when the diastolic interval in the period-l reentry reaches the critical value where the 

slope of the restitution curve becomes 1. 
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However, cardiac excitable tissue is not a syncytium, but rather a mesh of myocytes 

connected by discrete gap junction resistances [78]. Much work has been do ne to investigate 

the effect of discrete 'resistances in a one-dimension al structure [35,69,70,79-81], many 

focused on the effect of resistivity on excitability. In the discrete case, the resistance no 

longer acts as a scaling factor with regard to space. Because the intercellular current is 

reduced as the gap junction resistance is increased, the latency of the cell-to-cell propagation 

is augmented until propagation fails at sorne limiting value of the resistance. Besides, upon 

premature or repetitive stimulations, the excitability of the tissue must be more recovered for 

propagation to proceed, which corresponds to an increase of the refractory period. Discrete 

coupling has also been to shown to act on the dynamics of propagation during reentry 

and pacing by modifying the repolarization, thereby changing the duration of the action 

potentia.ls [88-90]. 

This paper describes how the bifurcation from period-l to quasiperiodic propagation 

and the characteristics of the quasiperiodic propagation are modified by the increase of the 

intercellular resistance in a ID loop of discrete model cardiac cells. This paper is organized 

as follows. In the next section, the model and computational method are described. The 

results of the numerical simulation are presented in 2.3. The bifurcation from stable period-l 

reentry is explained in 2.4. The QP modes of reentry are analyzed in 2.5. The final section 

is devoted to a summary and discussion. 

2.2 Methods 

We consider a one-dimensional loop formed by N identical cells connected by gap. junction 

resistances. Each cell is modeled as a continuous and uniform cable of radius (a) 5 f-Lm, 

length (Le) 100f-Lm and intracellular resistivity (p) 0.2 KD.·cm lying in an unbounded volume 

conductor of negligible resistivity. The transmembrane potentia.l (Vi=l,N in m V) of the cells 

is described by the well-known cable equation: 
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[ 
OVi(X, t) i ] 

S Cm Dt + Iion(x, t) ) 

x é {O, Le}, i é {I, N} (2.1 ) 

in which Cm is the membrane capacitance (1 MF/cm2 ), S is the surface-to-volume ratio 

(0.4 Mm- 1 ) and lion is the ionic current (MF/cm2 ). The membrane ionic model is the 

same MBR model that was used in our previous works on continuous ID and 2D rings 

[23, 39,82]. In this model, the sodium current is controlled by an activation gate 

variable m and two inactivation gate variables h and j. The plateau and repolarization of 

the action potential involve agate controlled calcium current as well as agate controlled and 

a voltage dependant potassium current. Each cell is connected to its neighbors by a discrete 

gap junction resistance R (Kn). Conti nuit y of 

yields the boundary conditions [69] 

intracellular current between the cells 

. ovmod(i,N)+l 

OX 
p 

= -2 hmod(i,N)+l 
Ka 

V mod(i,N)+l (0) RI 
i,mod(i,N)+l (2.2) 

For simulation, we have modified the numerical method that we developed for continuo us 

loops [27]. Briefty, for each time step (6.t = 2 MS), Eq.(2.1) becomes equivalent to an ordinary 

differential equation 

(2.3) 

whose solution can be expressed as the sum of a particular solution V~ (x) and of the homo-

geneous solution 

(2.4) 

~f (x) is obtained by solving Eq.(2.3) with Neumann boundary conditions (âVijâxlx=O,Lc = 

0) using a Galerkin finite element method projected on linear basis function [34] with a 
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uniform grid ( ,0.x = 25p,m) , i.e. five nodes. Cells ar~ then reconnected by choosing the co­

efficients of the homogeneous solutions to fulfill the continuity conditions given by Eq.(2.2). 

For a subset of R values, calculations repeated with ,0.x = 12.5p,m and ,0.t = 1p,s gave the 

same results. 

The purpose of the simulations is to obtain a description of the regimes of reentry of 

the function Rand L = N Le, the length of the loop. During reentry, the successive action 

potentials (s = 1, l) at each node can be characterized by their activation times (T~et)' set 

at the maximum derivative of the upstroke, and their repolarization times (T:epol ), taken 

at the -50 mV downcrossing in repolarization. The action potential duration (A) and the 

diastolic interval (D) associated to each action potential are calculated respectively as AS = 

T:epol - T~ct and DS = T~et - T:e-;'~l [25,27-29]. The propagation of the wave front along the 

loop generates spatial profiles of A and D that typify the reentry. In contrast to a continuous 

loop, propagation on a discrete loop can be patterned inside each cell but identical across 

all the cells. We have chosen to use only A and D values of the middle node of all cells 

to characterize the reentries. We label period-1 (P-1) reentries in which A and D remain 

constant across all the middle nodes, and Q P reentries where A and D oscillate both in time 

and space. The label" quasiperiodic" was used by analogy with the results of the analysis 

of integral-delay model done by Courtemanche et al. [30,31], but no further processing was 

done to clarify the exact nature of these nonconstant solutions. 

For each value of R, an initial L was chosen large enough to sustain P-1 stable reentry. 

Reentry was initiated by transiently opening the loop and stimulating one end. Computation 

was continued until stable period-1 reentry was detected, the stability criteria being less than 

0.5 ms difference in A and D between all the middle nodes for one rotation of the front. 

Afterward, the loop length was gradually reduced by steps of one cell, using the final state of 

the previous L as initial condition and removing one cell far from.the position ofthe excitation 

front. When the stability criterion was not fulfilled after a minimum of 25 turns, reentry was 

labelled as QP. With this procedure, both L crit and Perit, respectively, the minimum length 
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and minimum period with P-l reentry, as well as Lmin , the minimum length for sustained 

reentry, were identified for each value of R. In sorne bistability between P-1 and 

QP reentry was investigated by stepwise expanding loops that were initiaUy in quasiperiodic 

regime. One ceU was inserted in the loop, withinitial conditions set at the mean of the 

states of its neighboring cells. Finally, we also searched for distinct modes of QP reentry 

using the method described in [29], in which D spatial profile of a Q P solution for a given 

L value is compressed by a scaling factor to construct initial conditions to find alternative 

Q P solutions with sm aller wavelengths. 

2.3 Results 

Figure 2.1 A) shows Ledt and Lmin as a function of R. Both Lcrit and Lmin untH they 

merge at R ~ 104 KD. From this resistance, QP reentry do es not anymore and P-1 

reentry remains the only regime of sustained propagation. From there, the limiting length for 

P-l reentry increases until sustained propagation becomes impossible at R 108.429 KD. 

Increasing the resistivity in a continuous loop would also decrease Lerit and Lmin. However, 

the speed of propagation being proportional to 1/ JP in a continuous media [83], JPLcrit(P) 

and JPLmin(P) would remain invariant. To compare the continuous and discrete medium, 

we computed the equiva.lent resistivity of the latter as 

N R1fa2 R1fa2 

Peqv(R) = p+ L = P+-r 
e 

(2.5) 

With this notation, R = 0 corresponds to a continuous loop with resistivity p. If the two 

media were equivalent, the ratio L(Rhj Peqv(R)/ L(R = O)JP would remain equal to 1. Fig. 

2.1 B) shows clearly that the diminution of Lcrit and Lmin cannot be explained by a simple 

scaling, as it occurs in a continuous medium. 
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Figure 2.1: A) Lerit (cm, dashed line) , the shortest L with period-1 reentry, and Lmin (cm, 
soUd hne), the mininum L with QP reentry, as a function of the gap resistance R(KO). B) 

Normalized values of Lerit and Lmin Lcrit,min(R)VPeqv(R)/ Lerit,min(R = O)JP (see text). 

2.4 L crit , Perit in transition to Q P reentry. 

Two distinct scenarios can lead to the disappearance of 1 reentry. For 108.429KO > R > 

104KO, sustained reentry does not exist for L < Ledt Lmin , so that reentry ends abruptly 

with the disappearance of the P-1 solution. For R < 104KO, P-1 reentry is replaced by 

QP reentry that persists from Lerit to Lmin. In this section, we con si der the second type of 

transition. In the continuous MBR loop, the bifurcation from P-1 to Q P propagation occurs 

at the critical period Pcrit = Dcrit + AcTit where Derit and ACTit are the values for which the 

slope of the restitution curve A(D) reaches 1 [27,30]. Perit is constant and independent of 

P in a continuous medium. In contrast, Fig. 2.2A) shows that Perit increases with R in the 

discrete loop. Both A erit and D erit contribute to the change of (Fig. 2.2B), but the 

increase of Derit is more important. For each value of R, we collected the D and A values of 

the solutions for a set of L values close to Lerit as well as those of the first QP solution 

below to construct the A(D) restitution curve. Each curve was fitted with a simple 

exponential to find Derit,th(R) , the value where the slope of the fitted A(D) = l, and the 
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theoretical value Pcrit,th = Derit,th +A(Derit,th). As shown in Fig. 2.2A, Perit,th faIls very close 

to the Perit values found by simulation. Rence, the mechanism responsible for the transition 

from P-1 to QP reentry is the same in the continuous and discrete loop, and the increase of 

Perit results from R transforming the restitution curve. The mechanisms responsible for the 

change of D and A can be identified in Fig. 2.3, which shows the action potentials of the 

first node in the three successive ceIls for increasing values of R. (top to bottom, R=O,' 80 

and 103 KD). Increasing R prolongs the latency of the action potential, defined as the time 

interval between the minimum diastolic potential and the beginning of the action potential, 

set at the maximum derivative in the upstroke (left column panels). Since latency is included 

in the diastolic interval, its increase translates as an increase of D. 

The mechanisms responsible for the change of Aerit and of the form of the restitution curve 

are complex and involve an interaction between the diffusive current and the gate variables, 

as it has been demonstrated in previous works [88,90]. Neighboring cells exchange current 

during the early phase of repolarization, which compensates for the delay of activation and 

tends to prolong the action potentia.l. If the time course of the gate variables of the calcium 

and potassium currents controIling the action potential duration was not concurrently altered 

during the subthreshold and early repolarization phase, Aerit(R) would always be longer 

than Aeont(Derit(R)), the duration of t.he action potential produced by an activation with 

D = Derit(R) on a continuous loop. As illustrated Fig. 2.2B), Acrit(R) is always smaIler 

that Aeont(Derit(R)), which shows that the net effect of the diffusion current goes beyond a 

simple passive prolongation of the action potential. 

Once Perit is known, Lerit can be calculated if the speed of propagation ()(Derit ), is 

provided. In dis crete media, the total time to propagate from one ceIl to another is a 

composite of the propagation time within and between the ceIls. The former decreases 

with R , while the latter, which is equivalent to the latency displayed in Fig. 2.3, in­

creases. The final composite ()(Derit ( R)) is shown in left panel of Fig. 2.4. In a continuous 

medium, eo(D)yiP = c(D), where c(D) is constant characterizing each value of D and eo(D) 
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Figure 2.2: A) Solid line: For each value of the gap resistance R, the criticaJ cycle length 
Perit (ms) at Lcrit , the shortest loop with period-1 reentry. Dashed Perit,th, the critical 
cycle length computed from the restitution curve (see text). B) Value of diastolic interval 
(Dcrit , dashed line) and of the action potential duration (Acrit , soUd tine) at Lcrit . The 
dotted line (Acont ) is the action potential duration for P-1 solutions with D = Dcrit(R) on 
the continuous cable. 
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Figure 2.3: Action potentials (m'V) in the first no de of 3 successive cells as a function of 
time (ms) during period-1 reentry for, from top to bottom, R = 0, 800 and 103 Kn. In the 
left column panels, only the activation is shown, while the complete action potentials are 
displayed in the rigth column panels. 
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Figure 2.4: Left panel: B(Dcrit ) the intercellular activation speed (calculated between the 
first node of successive cells, cm/ s) at Dcrit as a funtion of the gap resistance R. Right panel: 

Bnorm(Dcrit) , normalized activation speed, defined as B(Dcrit(R)h/Peqv(R)/Bo(Dcrit(R)).jP, 
where Bo(D) is the speed of a period-l solution with diastolic interval D in the continuous 
loop. 

refers to the speed of a period-l solution with diastolic interval D. Rence, Bnorm(Dcrit(R))= 

B(Dcrit(R))) Peqv(R)/Bo(Dcrit(R)).jP would remain equal to l if R was acting on the speed 

only as a scaling factor, which is not the case as shown in the right panel of Fig. 2.4. 

2.5 QP reentry 

The characteristics of the Q P reentry in the continuous MBR loop have been extensively 

discussed in previous papers [27]. Two modes of Q P were identified, characterized by D and 

A oscillations with different spatial wavelengths P,). The first mode, referred to as mode-O, 

exists from Lcrit to Lmin. Its À, close to two turns ofthe loop at Lcrit , diminishes as the loop is 

shortened, but always remains longer than L. It appears through a supercritical bifurcation, 

in which the amplitude of D and A oscillation grows from zero as L is decreased below Lcrit . 

The second, referred as mode-l, exists only over a subset of the [Lmin , Lcritl interval with À 

always less than L. The mode-l solution is created by a subcritical bifurcation at L < Lcrit . 
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Figure 2.5: Characteristics of the mode-O QP solution at Lmin for R = 3Kn (top row panels) 
and R = I03Kn (bottom row panels). Left panels: D, the diastolic interval, as a function of 
position (xl L) for three successive turns abutted end-to-end. Middle panels: A, the duration 
of the action potential, as a function of D, from the solutions shown in the left panels. Right 
Panels: Ile, the cell-to-cell conduction time, as a function of D from the solutions shown 
in the left panels. Only the data of the first no de of each cell were used to construct these 
plots. 

These two types of QP solutions were found for aU values of R < I04Kn where QP solutions 

exist. 

2.5.1 mode-O QP reentry 

We first consider the mode-O solutions that exist over the who le [Lmin, Lcritl interval. Fig. 2.5 

presents the characteristics of the mode-O solutions at Lmin for two values of R (top panels, 

R = 3Kn, L = 7.65cm , bottom R = I03Kn , L = 1.04cm ). The leftmost panels show the 

spéttial oscillation of D by plotting successive turns end to end. Similar mode-O solutions 

were obtained for aIl L E [Lmin(R), Lcrit(R)], characterized by stable D spatial profiles 

repeating with a wavelength À > L. These solutions can be either periodic or quasiperiodic, 

depending whether À is a rational or irrational fraction of L. Since À decreases gradually as 

L is reduced, we chose to refer to them coUectively as mode-O quasiperiodic solutions. 

/ 
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Figure 2.6: D of the period-1 solution and from L = Lc:rit (arrow) Dmax and D min of the 
mode-O QP solution as a function of L for R =1 KO (left panel) and 50 KO (right panel). 

Mode 0 solutions were also found to appear through a supercritical bifurcation with, as 

shown in Fig. 2.6, a graduaI increases of the amplitude below Lerd' For these two cases, the 

nature of the bifurcation was further ascertained by prolonging the calculation up to 100 

turns for L values close to Lcrit and by enlarging the loop starting from L < Lc:rit in the 

mode-O Q P regime. 

An obvious difference between the left column panels of Fig. 2.5 and between those 

of Fig. 2.6 is the range of D values covered by the solutions for different R. The left 

panel of Fig. 2.7 shows Dmin and Dmax, the minimum and maximum value of D for the 

mode-O solutions at Lmin(R). It is well known that, in a discrete medium, the minimum 

excitability needed to sustain propagation increases as a function of R until a limiting value 

beyond which propagation is blocked even in' a medium at rest [80]. In the MBR model, 

the excitability can be measured by the product hj of the inactivation gates of the sodium 

current. The rightpanel of Fig. 2.7 shows hj (Dmin) and hj (Drnax ), the excitability of 

the action potentials produced, respectively, at Dmin and Dmax for the mode-O solutions at 

Lmin. As R increases, the minimal excitability allowing propagation becomes higher, which 

requires an increase of Dmin (R). At R = 104KO, hj(Dmin ) = hj(Dcrit ), QP propagation 

disappears and only 1 reentry remains. On the other hand, the curve hj (Dmax) rather 

reflects the inactivation of the sodium current occurring during the latency preceding the 
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Figure 2.7: Left Panel: Dmin (solid line) and Dmax (dashed line), respectively, the minimum 
and maximum diastolic intervals of the mode-O QP solutions at Lmin as a function of R. 
Right Panel: hj, the product of the sodium current inactivation gates taken at Dmin (solid 
line) and Dmax (dashed line) for the mode-O QP solutions at Lmin. 

upstroke of the longer action potential. At R = l04Kn, the limit for QP propagation, 

hj(Dmax) > hj(Dmin ) = hj(Dcrit ), which indicates that P-l propagation is still possible if 

R is increased. However, the difference is small, such that the range of R values over which 

P-l reentry can still occur is limited, as it is seen in Fig. 2.1. 

The middle column panels of in Fig. 2.5 display the A(D) relation obtained from each 

QP mode-O solution. Each curve has two branches, the lower and upper branch coming, 

respectively from the increasing and the decreasing portion of the D spatial profile. Such 

a dual structure has been observed in the continuous loop and was explained either by the 

influence of neighbors on the repolarization [38J or by short term memory [36]. The separation 

between the branches is enhanced by the increase of R. Finally, the right column panels of 

Fig. 2.5 show l/e vs D, the dispersion relation of the conduction time. For R = 3Kn (top 

right panel), the dispersion relation appears as a single value function, similar to what is seen 

in the MBR continuous loop. For R = l03Kn (bottom right panel), the dispersion relation 
. . 

has two branches, as the A(D) curve. The lower branch is associated with the decreasing 
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Figure 2.8: Mode-O (top panel) and mode-l (bottom panel) QP solutions for L =1.80cm 
and R =50Kn. The plots show D, the diastolic interval, as a function of position (J? / L), for 
three turns abutted end to end. 

portion of the D spatial profile. 

2.5.2 Higher QP Modes 

Fig. 2.8 shows an example of mode-O and mode-l solution for R = 50Kn and L = 1.8 

cm, in the middle of the [Lmin> Lcritl =[1.61cm, 1.99cml interval for this value of R. Mode-l 

solutions were found for aIl values of R with QP propagation over a subset of the [Lmin , Lcrit ] 

interval, as in the case of the continuous cable. Courtemanche et al. [31] in their analysis of 

a delay-integral model representing reentry on a ID loop have predicted the existence of an 

infinite number of Q P modes, with spatial wavelengths near Lcrit given by 

>.(n) = 2L 
2n+ 1 

c 
(2n + 1)3 

(2.6) 

where n is the order of the mode and C is a small positive constant. As se en 2.8, 

>'( 0) / >'( 1) is indeed close to 3. However, in the MBR continuous loop, only the first two 

modes (i.e. 0 and 1) were observed. This was explained by the effect of resistive coupling 

between neighbors that limits the spatial gradient of voltage and forbids the appearance of 
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higher modes [29]. Theoretica.lly, 

>'(2) 1 
-- '" -
>'(0) - 5' 

>'(2) 3 
-- '" -
>'(1)~ 5' 

(2.7) 

To look for mode-2 solutions for different Rand L values, we have compressed the D 

profiles of the mode-O and mode-1 solutions up to, respectively, a factor 6 and 2 to build 

different initial conditions. This procedure was successful in obtaining mode-1 solutions 

from mode-O solutions, but higher modes of propagation were never produced. For aU scaling 

factors, propagation was found to stabilize either to mode-O or mode-l. It is noteworthy that 

mode-l solutions always appeared at L < Lerit with a high-amplitude complex oscillations 

that damped as L was reduced, until reaching smooth patterns as the one shown in Fig. 2.8. 

2.6 Discussion and Summary 

Increasing R in the discrete loop allows sustained reentry to be maintained in much shorter 

circuits than in continuous loops with equivalent lumped resistance. The critical period at 

which the bifurcation from period-1 to QP propagation occurs can still be predicted from the 

A(D) dispersion curve constructed by gathering data from P-1 solutions and from mode-O 

QP solutions close to the supercritical bifurcation. However, increasing R modifies A(D) and 

the value of Perit. On one hand, the latency of the ceU to cell propagation is augmented due 

to the decrease of the intercellular current. This prolongs D , which includes the latency, and 

pushes A(D) to the right. The partial closure of the sodium current inactivation gates, which 

occurs during slow depolarization, increases the voltage threshold and also contributes to the 

prolongation of D. In space-clamped models, changing the amplitude [88] or the duration 

of square pulse stimuli [91] modifies the A(D) restitution curve. Hence, the change of the 

subthreshold depolarization coming with higher R impacts on the restitution curve, together 

with the diffusion current in early repolarization phase that influences the time course of the 

membrane voltage and of the gate variables. The increase of Perit and the change of A(D) 

are in hne with the results of Qu [88] who found, using a Luo-Rudy-l paced cable with nodes 
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linked by discrete resistances, that reducing the coupling displaced the onset of alternants 

toward higher stimulation periods. 

The shift of Perit depends on both the change of Dcrit and A(Dcrit ). In order to analyze 

these effects, it would be more appropriate to separate the latençy from the diastolic interval, 

redefining D from the end of the action potential to the minimum of V in repolarization and 

considering the latency lat to extend from the end of D to the maximum derivative of the 

upstroke [92]. Then both A and lat could be analyzed as functions of D and R. However, 

even with this change, it will be difficult to build a low-dimensional equivalent model of the 

propagation, extending the integral-delay model developed for the continuous loop. As seen 

in Fig. 2.5, increasing R enhances the dual structure of A(D) during propagation. Moreover, 

a similar type of dual structure also appears for Ile, which is a.lmost equivalent to the latency 

at high R values. It thus becomes impossible to neglect the modulating effect of coupling on 

both A and e at high R values. Whether alternative approaches that have been proposed 

for the continuous loop would be more appropriate remains to be determined [32,76,77]. In 

any case, we are still far from a general low-dimensional model that could also be applied in 

situations including a dynamic change of the intercellular coupling, as in [84-86]. 

R also influences Lmin , the minimal length with QP propagation. Because higher R 

necessitates more excitability for propagation, the minimum D in sustained QP reentry 

increases until it reaches Dcrit(R). From this value of R, QP propagation becomes impossible. 

For R above this limiting value, period-1 reentry ends abruptly wh en its D reaches the 

minimal value allowing propagation. The minimal L for propagation increases until R reaches 

the value where propagation becomes impossible even in a medium at l'est. Again, it would 

be very interesting to study reentry in a medium with dynamical modulation of the gap 

resistance. 

In aIl cases with QP propagation, we found the bifurcation from period-l to mode­

o propagation to be supercritical. For sorne R values, the nature of the bifurcation was 

further ascertained by prolonging simulation up to 100 rotations and by expanding the 
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loop from a length with QP propagation. It cannot be excIuded that the bifurcation was 

miscIassified at least for sorne values of R because of prolonged slow growing transients. 

A numerical analysis of an integral-delay model of reentry has shown that increasing the 

slope of the A(D) function could turn the bifurcation from super to subcritical [29]. Since 

Qu [88] has reported that reduced coupling increases the slope of A(D) at least at short 

D values and since Fig. 2.5 also shows that it increases the steepness of the restitution 

relation, the increase of R was expected to change the bifurcation. However, the nature of 

the bifurcation, which is deterrriined by the response of the system to small perturbations 

around the period-1 solution, is controlled by the variation of the slope close to D crit . In our 

case where the A(D) functions were constructed from stable solutions cIose to LCTit(R) , we 

observed a minimal increase of the steepness of the function around D crit for aIl values of R. 

This may explain why the bifurcation has remained supercritical, and it does not excIude 

the possibility that it could be different for other ionic models. 

As in the continuous case, the mode-1 solutions were found to exist in a subset on the 

[Lmin, LCTa ] interval. We also devoted mu ch effort to fin ding n > 1 modes of QP propagation 

for different values of R, building initial conditions either from mode-O or mode-1 solutions 

for different L within the [Lmin' LCTit ] interval. AlI these attempts were unsuccessful. Our 

initial guess was that the increase of R should allow more abrupt gradients of potential 

to exist between the cells, thus permitting the existence of higher modes of propagation. 

However, as seen in Fig. 2.5 , the dual structure of the A(D) and Ile relations becorries 

more pronounced at high R. This suggests that coupling stiIllimits the gradient below what 

would be needed for higher modes of propagation. 

This work was supported by a grant from the Natural Sciences and Engineering Research 

Council of Canada. 
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Chapter 3 

Discussion and Conclusion 

In an isotropie continuous medium, the resistivity acts only as a space scaling factor such 

that the dynamics of the system is invariant once expressed in one-dimensional space and 

time coordinates. Our work shows clearly that this is the case in homogenous medium made 

of discrete cells connected by resistive gap junctions. 

Increasing the gap junction resistance R in a one-dimension al discrete loop speeds up the 

propagation of the activation front within each cell, but increases the latency of the cell-to­

cell propagation. Because the latter effect becomes more important as R is increased, the 

global macroscopic speed is much lower than in a continuous cable with equivalent lumped 

resistivity. As a consequence, sustained reentry can be maintained on much shorter loop 

than for continuous media. The effect of R on speed was already documented in previous 

work [68-70,73,74]. The intercellular potential is not continuous change with the length of 

tissue, and the propagation speed is not as () ex Rl/2. The speed between cells decreases with 

R increasing, and the speed in the cell increases with R increasing. 

R has also an effect on the repolarization and on the duration of the action potential. The 

differenceof fixing times between neighbouring cells mentioned ab ove , results in a difference 

of potential between the cells at the beginning of their action potential as in Fig. 2.3. These 

differences of potential are partially erased by the current exchanged during repolarisation. 

As a consequence, the action potential duration, which is measured from the upstroke, is 

prolonged as R is increased. Longer latency also means that the raise of the potential toward 
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the threshold is slower, which implies a partial closure of the sodium current inactivation 

gates and an opening of the activation gate of the potassium current during the foot of the 

action potential. These two effects contribute together to a further raise of the threshold. 

As a consequence, the minimum excitability to sustain propagation must be higher as R is 

increased, which corresponds to a larger minimum diastolic interval DIAmin(R). DIAmin(R) 

increases until a limiting value of R where propagation becomes impossible even in a medium 

at rest where excitability is maximal. 

Our work was focussed on two specifie aspects of the reentry: the bifurcation from period-

1 to QP reentry occurring at a criticallength Lcrit(R); the regime of QP bifurcation existing 

for L < Lcrit ' For continuo us isotropie one-dimension al loop, the stability of the period-1 

reentry was shown to be controlled by the slope of the restitution curve. For a period-1 

reentry on a loop of length L with diastolic interval DI Af(L) = const to be stable, the slope 

of the restitution curve at DI Af has to be less than one. As a consequence, period-1 solutions 

lose stability at the critica.l diastolic interval DI Acrit where the slope of the restitution curve 

reaches the value of 1. This result was also proved analytically using an integral-delay 

model based on the premise that both the AP D and the velo city are invariant functions of 

DI A. Our work shows that this is still true in the discrete loop model. However, sin ce the 

restitution curve change with R, a representative restitution curve has to be obtained for 

each value of R. 

One may questions the relevance of the integral-delay model since the restitution curve 

obtained in quasiperiodic reentry is multiple-valued for the continuous loop, and that this 

effect is even more marked in the continuous loop as in Fig. 1.10. However, it must be 

remember the argument, based on a linearization of the integral-delay model, concerns the 

response of the system to infinitesimal perturbations around the period-1 solution. In order 

to judge the stability of a specifie DI Af(L) period-l solution, what is needed is a restitution 

function representing realistieally the fluctuation of AP D resulting from small perturbations 

around DIA f (L ). In the context of local stabili ty, the fact that AP D (D lA) may not repre-
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sent the response of the system for DIA far from DIA J (L) is inconsequential. In our case, 

representative restitution curves for each value of R, were obtained by using points coming 

from the stable period-l solutions at values of L close to the critical length L crit as weIl 

as those of the mode-O solutions also close to Lc1'ib for which the variation of DIA curves 

only a few ms. This choice ends up being appropriate since it enables a correct prediction 

of the critical period Perit. Vve suggest that this procedure will still be appropriate with 

Ionie models with large memory effect, in which the restitution curve is built by premature 

stimulation changes according to the prior rhythm of stimulation [29]. 

The second aspect of our research was on the nature of the Q P reentries between 

the critical length Lerit and the minimum length Lmin with sustained reentry. We found the 

QP solutions to disappear at a critical value of R where DI Amin DI Acrit . For R 

than a critical value, we found two modes of Q P reentries, similar to those observed in the 

continuous loop model. In the continuous loop model, it was suggested the presence of only 

two modes of reentry, the difference in the values of L where each mode was appearing, 

as well as their respective scenario of creation were explained by the effect of coupling on 

repolarization. This led to a modification of the integral delay model to include the effect 

of neighbours on repolarization which was reproducing all the dynamics of the M BR ionic 

loop mode!. As shown in figure 2.5, the effect of coupling on the repolarization in QP 

propagation becomes more important as R IS increased. Besides, it also shows up on the 

dispersion curve of the macroscopic speed that also becomes multivalued, while this was 

negligible in the continuous loop. To extend the integral-delay model to reproduce correctly 

aIl the regimes of propagation for a specifie value of R will thus at least obtaining 

representative restitution and dispersion functions, an appropriate value of DIAmm' and to 

develop a correct representation of the effect of neighbours on these two functions. The 

challenge will even be more complex for a reduced model that could be applied for aU 

val ues of R. Our results show that AP D, the speed and DI Amin are aIl changes as a 

function of R. \iVhether these changes can be realistically described by analytical expressions 
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remains to be seen. This will be a prerequisite for a low dimensional model that could be 

applied in the context of dynamically changing gap resistance, as it is known to be the 

case [85]. Their results show that, when the cells are tightly coupled (6700 channels), the 

gap junction resistarice during propagation is few changes. Thus, for tight coupling, there 

are negligible differences in the wav<:shape and propagation velocity when comparing the 

dynamic and static gap junction representations. For poor coupling (85 channels), the gap 

junction resistance increases 33 Mn during propagation. This transient change in resistance 

resulted in increased transjunction conduction delays, changes in action potential upstroke, 

and block of conduction at a lower junction resting resistance relative to a static gap junction 

model. The results suggest that the dynamics of the gap junction enhance cellular decoupling 

as a possible protective mechanism of isolating injured cells from their neighbors. 

Future work should also extend this study to two and three dimension al tissue. Transition 

from period-1 to Q P reentry has also been observed in continuous two dimensional annulus 

[39-42,87]. In this case, it was shown that, besides the restitution curve, the bifurcation 

was dependant on the internaI and external radius of the media, which both influence the 

curvature of the activation and repolarization front [39,41]. A discrete annulus model will 

have ta consider the evolution of the potential in both the axial and transverse direction 

within each cell. How our numerical method, which solves each cell with Newman boundary 

condition and reconnected them by using the homogeneous solutions of the system, can be 

adapted to a two-dimensional setting? 

In summary, numerical simulations have provided us a complete quantitative description 

of the regime of reentries on a one-dimensional loop model. The low-dimensional represen­

tation developed for the continuous loop model was useful to understand the variation of 

Lcrit as a function of R, as well as the reduction and final disappearance of the interval of L 

over which QP solutions could exist. However, it. also became clear that the integral-delay 

model has either to be modified to represent the details of all the Q P mode of propagation 

for each R, or to be applied to all values of R together. These developments, as well as 
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the extension of the study to two-dimensional medium, open the door for interesting and 

challenging future work. 
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Appendix 1: Methods to Solve the One-Dimensional Ca­
ble Equation with Discrete Gap J unction Résistance 

To solve the Eq.(2.3), K2 = p~f and g(x) pSlion(x, t) - K2V(x, t -6:.t), its solution 

can be as the sum of a particular solution V; and the homogeneous solution V~ 

(Vi V; + V':'), and here V,:, is given by 

(1) 

Vi is obtained by solving Eq.(2.3) with Neumann boundary condition (~lx=O,Lc = 0) 

by the linear finite element method. 

In using the finite element method, we divide one cell ta N segments by N + 1 nodes, as 

shawn by the Fig. 1. The conditions at the beginning and the end of the cell are given by 

o. 

Let us consider the function L(V) which is given by the difference between the left and 

right of Eq.(2.3) 

L(V) = â2~~~, t) _ K 2V(x, t) g(x, t). 

N elements 

N+1 nodes 

element i 

Figure 1: The schema of N elements. 

(2) 
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We use the finite element method, and the weight function ni(x) for the ith no de is given by 

{ 

0 x < X~-l 
X-X,_l . < 

( ) 
_ -1 Xt-l X < Xi 

nt x - -x ==--=- x~ < x < Xi+! 
X1.+1- X t -

o X ~ X~+l 

(3) 

Let us take the time t, the potential being only the function of the space x that is 

given by V(x), it is rewritten by the term of the potential Vi and the weight functions ni(x) 

for the node i 

V( ) - Vi - 1 + ui + ' Vi+l X - ni-l p niVp ni+! p (4) 

where x is in the interva.l ) Xi+ll. For i = 1,2 ... N, combine Eq.(2) and ( 4) to define 

the function X it is given by Xi = 1; node ni(x)L(V)dl 

for any i node, here A, Band C are given by 

(5) 

B -K21;~:1 ni(x)V(x)dx (6) 

C -1;~:1 ni(x)g(x)dx. (7) 

1 Calculation of terms A, Band C 

Let us integrate the term A, 

A [ dVlxi+l lXi dni dV d lXi+1 dni dV d () + n·- - - x- -- x 8 
t dx xi xi_1 dx dx xi dx dx 

using the Eq.(3) and letting 6.x V(x;-) V;, and 

~~ lx; , we get A that is given by 

(9) 

Use the same method, and B is given by 
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+ V; 1:i+1 

ni(X)ni(X)dx + +V;+l 1:i+1 

nj(X)ni+l(X)dx] 
, , 

(10) 

::;;:: _K2 6.X[~ Vi - l + ~ Vi + ~ V i +11 

6 P 3 P 6 pJ 

fraction is written by 9(X) = ni-l(x)9i-1(X) + ni(x)9i(X) + ni+19i+l(X), and C term 

is calculated by 

(11) 

(12) 

For the first no de (i = 1) and the last node (i N + 1), with the relations V(Xt_l) = 

V(xi) 0 and V(xt) = V(xi+1) = 0, Al, BI, Cl, AN, BN and eN are given by 

Al 

BI 

Cl 

AN 

B N 

eN 

then the first term (:\::1) obtains 

1 
Xl=-

6.x 

= 

-

= 

= 

= 

_1 (V2 _ V.1) 
6.x P P 

-K26.X[~Vl + ~V2] 
3 P 6 P 

1 1 
-6.X[-91 + -92] 

3 6 

_l_(VN _ V N+I ) 
6.x P P 

-K26.x[~VN + ~VN+1] 
6 p 3 P 

1 1 
-6.X[Ei 9N + 39N+l], 

1 1 1 1 Vp
l 

_ 1 91 
[(--:-----c-:- - 3) ((6.xK)2 - 6)][Vl1- K2[1/3 1/6][g/ 

Let us put Q = .,...,.--'~, Eq.(20) is rewritten by 

1 
[( -Q - ) (Q 

3 

o 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 



for the last term of the node N + 1 (XN +l), the relation yield below, 

[(Q 
1 
-) (-Q 
6 

1 V: _ 1 gN 
-3)][VN+ll - K2 [1/6 1/3l1 g ], 

p N+l 

for the node i 2,3,' .. N, they are given by 

((Q 
1 2 1 (V;~I) 

) (-2Q - -) (Q - - )) V; 
6 3 6 V i +I 

p 

Combine the N + 1 equations as a matrix equation, it is given by 

a/2 fJ 0 0 0 VI hl 
P2 

fJ a fJ 0 0 Vp h2 

0 fJ a fJ 0 V3 
P h3 

= 

0 0 0 fJ a fJ V N 
P 

hN 
0 0 0 0 fJ a/2 V N+1 

P hN+l 

here a = -2(Q + ~), fJ = Q land 
6 

if i = 1 
hi = 

1 { 2g1 + g, 
gi-l + 4gi + gi+l if 1 < i < N 

Let a matrix Ai is 

M 

2 Solution of V; 

gN + 2gN+1 

a/2 
fJ 
0 

o 
o 

fJ 0 
a fJ 
fJ a 

O. 0 
o 0 

if i = N + 1 

0 0 
0 0 

fJ 0 

fJ a fJ 
o fJ a/2 

To solve V;) we decompose the matrix M to LU, 
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(22) 

Mv = LUv = h. (23) 

The matrix j\l[ can be broken up into two triangular system matrices, let Ly h and y = Uv, 

the matrix L is the triangular below part, and U is the triangular above part with 1 on all 

the diagonal. 
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The matrices Land U are described below, the elements of the matrix of Lare given by 

0'./2 
(3 

(32 0'.---
li-l,j-l 

Q_L 
2 ln,n 

o 

i=j=1 
i=j+l 

i = j =1= 1, i = j =1= N + 1 

i=j=N+l 

other 

and the element of the matrix of U is given by 

{

Ii = j 
(3 . _ . 

Ui,j = ~ J - ~ + 1 
',) 

o other 

From Ly = h, the elements of the vector y is given by 

{
?- i=l _ 1,1 

Yi - hi-(3Yi-l i > 1 
1· . _,t 

We know the triangular above part matrix is given by Uv = y, therefore the elements of the 

vector v is given by 

i {YN+l i = N + 1 
Vp = y. _ ..Q.. Vi+l i < N + 1 

t li,; p 

3 Connection the CeU 

Once the particular solution of potential V; is obtained, we connect aU ceUs to fulfiU the 

boundary conditions Eq.(2.2), using the constants Ai and Bi of the homogeneous solution. 

For ceU i = 1, 2 ... n - 1 (n: the number of ceU), the two boundary conditions can be 

expressed as: 

For i = n, boundary conditions are given by 

7ra2R V;1(O) + Al + BI _ __ [AnKeKLc - BnKe-KLcl 
p 

AIK-B1K (25) 
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Let {3 = R7r~2K, ( = eKLc and Ci = Vp(mod(i,n)+l)(O) - V;(Lc). Combining the Eq.(24) and 

Eq.(25), the 2n equations can be rewritten as Mx = y, where the matrix M, the vector x 

and y are given by these three equations below, respectively. 

((1 + (3) -1 0 0 (1-,8) -1 0 0 ( 

0 ((1 + (3) 0 0 0 (1-,8) 0 0 ( 

0 0 «(1 + (3) -1 0 0 (1-,8) -1 ( 

-1 0 0 ((1 + (3) -1 0 0 (1-,8) 
M= ( 

(K -K 0 0 K K 0 0 ( 

0 (K 0 0 0 _K 0 0 ( 

0 0 (K -K 0 0 K K -ç-
-K 0 0 (K K 0 0 _K 

( 

(26) 

Al 

A2 

An-l 
An 

x= BI 

B 2 

Bn-l 
Bn 

(27) 

Cl 

C2 

cn-l 
cn 

y= 
0 
0 

0 
0 

(28) 
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To obtain Ai and Bi, we need to compute the inverse matrix of M-l. For solving' M-l, 

consider an n x n permutation matrix P given by 

( 

0 1 
o 0 

p= .. 

1 0 

o 
1 

o 

matrix P has specifie characteristics. If P multiplies any matrix T from left (p. T), 

the result is a circular permutation of the row of T, the direction of the rotation is from top 

to bottom. For example, if T is given by 

T= 

then, p. T 
T2,1 T2,2 T2,n 

T3,1 T3,2 T3,n 

P·T= 

Tn,l Tn,2 Tn,n 
Tu T1,2 T1,n 

The first row of T becomes the last row of P . T, and an the other rows decrease and are 

pushed upward. 

Wh en P multiplies any matrix T from right (T . P), the resulting matrix is a circular 

permutation of the column of T. The direction of rotation is from right to left. For example, 

multiplying T given by above P gives: 

.p 

Tn-1,n-l 
Tn,n~l 

The last column of T becomes the first column of T . P, and a11 the other columns are 

shifted to the right. For p2, 

until (pn = 1), respectively. 

and pn, the matrix T is rotated two times, three times, 



The 2n x 2n matrlx Mean be rewritten as: 

M = ( (1 + (3)(/ - P 

K(I - KP 

Defining the 2n x 2n diagonal matrix Jas: 

1 0 0 
0 1 0 

J= 
0 0 1 
0 0 0 
0 0 0 

0 0 0 

The matrix Mean be rewritten 

0 
0 

0 

(1çJ1)I _ P ) , 

_KI + KP ç 

0 0 
0 0 

0 0 
K 0 0 
0 K 0 

0 0 K 

M=Jm 

with m given by: 

m = ( (1 + (3)(/ - P 

(/-P 

The inverse matrix M- 1 then becomes: 

The inverse matrix J-1 is: 

1 0 0 
0 1 0 

J-1 = 0 0 1 
0 0 0 
0 0 0 

0 0 0 

The matrix m can be divided in four blacks 

m_(A - C 

(1ç(3)I_P) , 

_II + P ç 

0 0 0 
0 0 0 

0 0 0 
1 0 0 K 
0 l 0 K 

0 0 l 
K 

~) , 
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(29) 

(30) 



65 

where A, B,e and D are bidiagonal n x n matrices, they are given by 

A = ( «(1 Cl -1 0 

((1LJ 
({1 +m -1 

= ((1 + (3)1 P, 

0 0 

( (-l(~ _ ~l -1 0 

c-J -~l ) (-1(1 - (3) -1 = (1 - (3) 1 _ P 
( , 

-1 0 0 

c=( 
( -1 0 n =(I-P, 
0 ( -1 

1 0 0 

( 
1/( 1 0 

L) 0 1/( 1 l 
D = --+P ( ) 

1 0 a 
If the inverse matrix m-1 can also be divided in four blocks: 

The elements of the matrices A, B, C and D can be represented by using the permutation 

matrix. For example, the ith column of the matrix A is defined by the vector Ai: 

Then (i+1)th column of A, AHl is given by 

i l,2, .. ·n 1 (31 ) 

Wh en the permutation matrix P multiplies a matrix from the right, the same rule shown 

above can be used. For the inverse matrix m-l ) the first row of m-lm are given by Eq.(32) 

and Eq.(33) 

(32) 
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(j -1 1) (33) 

Similarly, for the second row of rn-lm, the second element is 1 and the other are zero. Using 

the Eq.(31), these elements yield: 

L F 2,i A i,2 + G2,iC i,2 = L F2,iPAi,1 + G2,i PCi,1 = 1, 
i 

L F 2,i A i,j + G2,i C i,j = L F 2,i PAi,j-l + G2,i PCi,j-l = 0, 
i 

(34) 

(j -1 2) (35) 

If Fl,i = F2,iP and Gl,i = G2,iP, these relations are identical to Eq.(32) and Eq.(33). These 

operations can be repeated for rows in F and G. Therefore aH the rows or columns of 

matrices F and G can be obtained by the circular permutation of the first row or column. 

We just have to find all elements of the first row, and the other n - 1 rows can be obtained 

by permutation. By the same method, the matrices H and l can be proven to be circular, 

such that we only have to calculate all elements of a row or column of matrix. 

We represent the first row m- l by two en x 1) vectors V and W, and compute the first 

line of rn-lm to obtain: 

(1 + ,B)(V - V P + (W - W P = h 

(1-,B)V_Vp_ W +WP=O 
( ( 

where Il is the first line of the n x n unit matrix. This yields: 

W 

v -

1 0 0 0 1 

-
2(2+ l )+.6(2 -1) 1 0 0 0 2( 

2(2+1)+.6W-l) 1 - 1 0 0 2( 

0 0 0 1 _ 2W+l)+.6W-l) 
2( 

(36) 

(37) 

- 2(2 + l )+.6(2 -1) 
2( 

1 

0 

1 
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VI 
I 

2( 

V2 
1 

-"2 
V3 0 

Vn 0 
(38) 

Similarly, representing the (n + l)th row of m- 1 by two (n x 1) vectors X and Y, and 

computing the (n + l)th li ne of m-1m to obtain: 

(1 + ,6)(X - X P + (Y - Y P = 0 

--,---0_-_,6-'..) X - XP - Y + YP = h 
( ( 

(2(1 +,6) + (1- ,6))X _ 2XP +.((2 -l)y = h =* 
( ( 

Y (_( -)1 _ (e(l +,6) + (1 - ,6))X + (~)X P 
(2 _ 1 1 (2 _ 1 (2 - 1 

X 2 (e + 1) + ,6 ((2 - 1) X P + X p 2 = f l _ ~ l P 
2( 2 1 2 1 

Such that the final system for X is 
1 0 

-
2((2+ 1)+,6((2 -1) 1 2( 

1 -
2( (2+ 1)+,6((2 -1) 

2( 

o o 

o 

0 0 

0 0 

1 0 

o 1 

1 

0 

0 

-=- 2((2+1)+,6((2_1) 
2( 

_ 2((2+1)+,6((2_1) 
2( 

1 

o 

1 

(39) 

(40) 

( 41) 

With these relations, m-1 can be obtained for each loop holding n cells. Then, for each 

time step, the appropriate values of Ai and Bi are obtained by performing the product 

m-1 J-1y, with y given by Eq.(28). Because the last n rows are 0, only the values of the 

vectors V and X need to be computed. Besides, the non-zero first n elements of y correspond 
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10 15 20 25 30 35 40 

Figure 2: The 40 elements of V. 

to the difference of potential between the end of a ceIl and the beginning of its first right 

neighbors, which permits a further simplification of the calculation, as explained below. 

In our model, the parameters of the cable are p = 0.2Ko'cm, S = 4000cm- 1
, Cm 

IpPcm- 2
, D..t = 0.002ms, such that K = Jp;~ = 632.4555cm- 1. We have chosen to 

perform the simulations with a precision of 1O-5m V for potential V. Since the length of ceIl 

is Le = 100fLm, eKLc = 558.1094. 

We considered that a loop has 40 ceIls with a gap resistance of R = 1000" the elements 

of the vectors V and X, solutions of the equations (38) and (41) then getting the results of 

Ai and Bi, are shown on Fig. 2 and Fig. 3. The elements of V beyond those of the first 

neighbors are to the order of 10-9 . If the maximum difference of potential between the ceIls 

is to the order of 10mV and (. = eKLc is to the order of 102 , the contribution AieKLc of 

the second neighbours to the potential of the center ceIl will be to the order of 1O-6m V, 

which can be neglected. Similarly, the contribution of the second neigbours for X will be to 

the order of 10-7 , if the maximum difference of action potential between the nearest nodes 

is less than 10mV and e- KO given by 1, the potential Bi is around 1O- 6mV, and it can 
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Figure 3: The 40 elements of X. 

be ignored. Therefore, in this case, it is sufficient to keep only the contribution of the first 

neighbours for calculation of the potential, which simplifies and speeds up the ca1culation. 

This approximation becomes even better as R is increased. 
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