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SOMMAIRE 

Le sujet de cette étude est la libération contrôlée de substances actives de 

grandes masses moléculaires: protéines et peptides. L'inconvénient commun de ces 

médicaments est leur administration par injection. Des micro gels ont été synthétisés en 

tant qu'excipients potentiels administrés par voie orale afin de protéger les protéines 

thérapeutiques contre les enzymes digestives, la dénaturation provoquée par le suc 

gastrique et pour permettre la libération prolongée de ces grosses molécules peu 

perméables directement aux muqueuses intestinales. 

Ces microgels sont formés d'un réseau de copolymères de poly(acide acrylique) 

entrecroisés de diméthacrylate d'éthylèneglycol et greffées de copolymères séquencés -

poly( oxyde d'éthylène)- poly( oxyde de propylène). Ils sont synthétisés par une 

copolymérisation entrecroisée radicalaire en une étape relativement simple.(ll) La 

formulation est simplement constituée d'un mélange à sec de microgels avec la protéine 

lyophilisée qui est ensuite directement comprimé. Les microgels répondent au 

changement du pH de l'environnement: ils restent intact en conditions acides et se 

gonflent en pH neutre. Ils possèdent des propriétés mucoadhesives et sont non irritants.(6, 

8, 10) Ces caractéristiques font de ces microgels de excipients potentiels pour la livraison 

orale des protéines thérapeutiques. 

La première section de cette thèse est un examen des différentes formes de 

libération contrôlée. La section expérimentale décrit la synthèse de trois micro gels et leur 

caractérisation par une variété de méthodes sous forme de particules sèches aussi bien 
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que dans un milieu aqueux. Dans cette partie, des micro gels sont formulés avec de 

l'albumine lyophilisée de sérum de boeuf utilisée comme protéine modèle. La capacité de 

chargement de ces micro gels a été évaluée. Des profils de libération de micro gels en 

conditions imitant le milieu gastro-intestinale sont comparés entre eux et aux deux 

excipients généralement utilisés: lactose et Carbopol. Les résultats de l'étude de libération 

de protéines ont été interprétés par la méthode de Ritger et Peppas. 

MOTS CLES: microgels, libération orale contrôlée, protéines thérapeutiques 
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SUMMARY 

The subject of this study is controlled release of proteins and peptides. Common 

disadvantages of these medications are their administration by injection. Microgels were 

synthesized as potential excipients for oral delivery of therapeutic proteins for their 

protection from the digestive enzymes and the denaturation caused by the stomach acid 

and to provide prolonged release of the se large and poorly permeable molecules directly 

to the intestinal mucosa. 

Microgels are composed of copolymers of ethylene glycol dimethacrylate 

crosslinked network of poly(acrylic acid) with grafted block-copolymer chains of 

poly(ethylene oxide)-poly(propylene oxide), which are synthesized by a relatively 

straightforward one-step free-radical crosslinking copolymerization.(ll) The microgels 

respond to environmental pH change: they collapse in acidic conditions and swell at 

neutral pH. They are proven to possess mucoadhesive properties and are non­

irritating.(6, 8, 10) The drug product is formulated by simple blending of dry microgel 

with lyophilized protein and directly compressed. 

The theoretic part of this thesis is a review of the different controlled-release 

forms, therapeutic proteins and their delivery systems. The experimental part describes 

the synthesis of three microgels and their characterization by a variety of methods alone 

as well as in formulations with a model protein, bovine serum albumin, in conditions 

mimicking the gastro-intestinal tract. The results of prote in release study were interpreted 

by the method of Ritger and Peppas. 

KEY WORDS: microgels, therapeutic proteins, controlled oral delivery, 
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THEORETIC PART 



1. CONTROLLED DRUG RELEASE 

1.1. Introduction 

Controlled-release products are formulated to release drug's active ingredient 

gradually and predictably over a I2-hour to 24-hour period. These formulations 

compared with the immediate-release drugs might provide potentially greater 

effectiveness in the treatment of chronic conditions through a more consistent delivery 

of the medication: reduced side effects, greater convenience and higher levels of patient 

compliance due to a simplified dosage schedule. 

The administration of a conventional or immediate-release dosage form 

provides rapid absorption initially with drug concentration in patient's plasma reaching 

peak maximum rapidly followed by a decrease in drug level due to progressive 

elimination of active pharmaceutical ingredient (urinary or other excretion, metabolism, 

degradation, etc). 

With conventional fast release drug products, in order to maintain plasmatic 

drug concentration within therapeutic range in order to provide effective therapy it was 

recommended to multiply the drug administrations. This type of medication has 

demonstrated numerous disadvantages such as fluctuation "peak and valley" of 

plasmatic concentration of the drug, adverse side effects (if maximum plasma 

concentration reaches toxic level) or lost of therapeutic effect, (plasma concentration 

decreasing rapidly, falling lower then the minimum effective concentration if the active 

pharmaceutical ingredient has a short half-life) 
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1 2 3 4 
Frequency of Usage 

Figure 1: Blood drug concentration levels after administrating multiple doses of 

conventional dosage form (An) vs. a single dose of a long-acting controlled­

release drug delivery system (B) (courtesy ofNoveon) 

Thus once-daily dosing carries significant benefits in terms of convenience and 

compliance. The potential also exists to improve the side-effect profile and enhance the 

overall efficacy of existing drugs. 

It is important to control drug release in such a way that drug concentration in 

plasma is constant and the intervals between drug administrations are increased. The 

kinetics of dissolution of the active pharmaceutical ingredient might be modified by 

alteration of physical properties such as particle shape or type of polymorph. Drug 

release might be also controlled by adjustment of the dosage form to the requirements 

of the particular active pharmaceutical ingredient delivery. 
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Figure 2: Blood drug concentration profiles of different controlled-release dosage 

forms 

1 - Conventional form 

3 Extended release form 

5 - Sustained release form 

1.2. Controlled-Release Terminology 

1.2.1. Controlled release 

. 2 Pulsatile release form 

4 - Delayed release form 

Controlled drug delivery systems usually have the same route of administration 

as a conventional form. However, it delivers the drug at a predetermined rate and/or to 

a specifie location according to the need of the body and the disease states over a 

definite time period.(38) 
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1.2.2. Extended release 

Extended-release systems include any dosage form that maintains effective 

therapeutic blood or tissue levels of the drug for a prolonged period. If the system can 

provide sorne actual therapeutic control of drug release in the body, whether it is 

temporal, spatial or both, it is considered a controlled delivery system. Extended release 

is not equivalent to controlled-release.(23) 

1.2.3. Modified-release 

This term is defined in the European Pharmacopoeia as a modification of the 

rate or place at which the active substance is released. Modified-release products coyer 

a wide range of release models, the principal types of which would include "delayed 

release" and "prolonged release" products.(3) 

1.2.4. Delayed release 

Delayed-release systems are either repetitive, intermittent dosing of a drug 

form one or more immediate-release units incorporated into a single dosage form, or an 

enteric delayed-release system. Examples of delayed-release systems include repeat­

action tablets and capsules, and enteric-coated tablets where timed release is achieved 

by a barrier coating.(23) The European Pharmacopoeia de fines delayed release form as 

a modified release product, in which the release of active substance is delayed for a 

finite "lag time", after which release is unhindered. [e.g. enteric coated or "Gastro 
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resistant" (Ph.Eur.) oral tablets or capsules which remain intact in the stomach and only 

disintegrate in the higher pH of the small intestine] 

1.2.5. Prolonged release 

Prolonged-release form is a product in which the rate of release of active 

substance from the formulation has been reduced, in order to maintain therapeutic 

activity over a prolonged period of time, to reduce toxic effects or for sorne other 

therapeutic purpose.(52, 18, 21) 

1.2.6. Site-specifie release 

Site-specific release refers to targeting of a drug to a certain biologicallocation. 

The drug is adjacent to or in the diseased organ or tissue. This system satisfies the 

spatial aspect of drug delivery requirement and is also considered controlled drug 

delivery system.(23) 

2. FUNDAMENT AL ASPECTS OF CONTROLLED RELEASE 

2.1. Diffusion 

". ". ". ··,'.·;>}M()1~êuhif@ffu,si6n:phèlfôm~rigl1:,~Q*ld: p( âêfi#e:d:#s:a :fnassJi#s,f~~:pf§sË~~' 
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'~~~s,~f~W~Io~,~rn;!~ri~~~}~l@;T?l~~":~'~d€~be;eaS~~:b~.:til19~~11~f 
.COnceritration,"::graâièht:(4):··:J1i~':'prp:çéss,<·cif·,:'diffusion;":thetèfot~;,'~:.miilÎriii?:,es '. :: .......... ::- ": "~': ,"; ", :-:" :» :.": ~:: :.; :;:.:-::":'(:',::-:" -,', . /:.:-.:.:-:~:. : :-:,:<:,;.-,:>. >:<'7:: ,,:-::-::: .:: ':::: ::~:'~" " <. ',' '. ':: ::':-:'" ,:: ,> '. ...' -':: ::'~:'",,:':X .·::>~\·::;.:\~:.>:~:.~;:~<;)Y :~~(. 
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In this equation 

J 

S 

D 

dc/dx 

is the flux of drug in the direction of decreasing concentration 

(amountlarea-time; mol/cm2 .sec) 

is the mass of the drug released at the time t (mol) 

is the surface of diffusion (cm2
) 

is the diffusion coefficient of the drug (cm2/sec) 

is the concentration gradient (mol/cm4
) 

The negative sign of the drug flux simply demonstrates that the vector of J is 

opposite to the vector of the concentration gradient. 

This first law of diffusion is used to derive the equations applièable to diffusion­

controlled reservoir drug systems, which are characterized by the constant 

concentration gradient (steady state). 

In matrix systems the concentration gradient on contrary varies with time. In 

this model it is assumed that the solid drug dissolves from the surface layer of the 

dosage form first; when this layer becomes exhausted of drug, the next layer begins to 

be depleted by dissolution and diffusion through the matrix to the bulk solution. The 
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interface between the region containing dissolved drug and that with dispersed drug 

moves into the interior as a front. 

Fick's second law of diffusion is applied to non-steady or continually changing 

diffusion state: 

(eq.2) 

Where··· 

It is important to stipulate that both Fick's laws in the forms of equation 1 and 2 

respectively are not applicable if diffusion coefficient D is not constant at unvarying 

temperature. 

2.2. Solute diffusion mechanism 

Considering that distribution of an active pharmaceutical ingredient within the 

pol ymer matrix is uniform, the release mechanism can be explained as follows: water 

or another biological fluid, while in contact with a pol ymer, penetrates into the material 

progressively dissolving the active pharmaceutical ingredient, which diffuses toward 

the exterior via a porous network or through intermolecular space. The type of the 
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transfer largely depends on a polymer state (glassy or rubbery).(61) According to the 

temperature, the polymers are in glassy state if T < Tg or are in rubbery state if T > Tg, 

where Tg is the temperature of glass transition and T is the temperature of the polymer. 

The macromolecular chains of the pol ymer, when in rubbery state, move 

constantly creating large spaces or "pockets", which are permeable for solvent 

molecules. (Fig. 3) 

" 

(a) 

Figure 3: Swelling of a hydrophilic pol ymer 

1 polymer in glass y state 

2.3. Three types of the transport 

2.3.1. Fickian type transport or "case 1" 

(bl 

2 - polymer in rubbery state 

This type of the transport is applicable to rubbery state polymers, where 

macromolecular chains are very flexible and adjust rapidly to the presence of solvent 

molecules(61) when the diffusion velocity of solvent molecules is significantly lower 

than the relaxation of macromolecular chains. This is a Fickian type also known as 

"case 1" diffusion. 
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The quantity of diffused substance Mt at the time t might be expressed as 

following: 

Where 

(eq.3) 

The diffusion velocity, derived from the previous equation is: 

dM/dt= 112. k. fOS (eq.4) 

k is a constant, which depends on form of the polymer and the 

diffusion coefficient. 

, kthethrit: (sec) i' 

2.3.2. "Case II'' type diffusion 

This type of transport is characteristic to polymers in glassy state where the 

relaxation of macromolecular chains is significantly lower then the velocity of solvent 

molecules diffusion.(61) 

The quantity of adsorbed or desorbed solvent is expressed as follows: 

(eq.5) 

And the velocity of diffusion is respectively: 

dM/dt=k (eq.6) 
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2.3.3. "Case III" type diffusion 

Non-Fickian or "anomalous" diffusion is observed when the velo city of solvent 

molecules diffusion and the relaxation of the macromolecular -chains are of the same 

order. This type of the transport is in between the "case 1" and the "case II''. The 

quantity of adsorbed or desorbed solvent is given as: 

(eq.7) 

And the velocity of diffusion is respectively: 

dM/dt=n.k.f-1 (eq.8) 

It has to be noted that the diffusion follows the Fick's law (case 1) if n=0.5; if 

the value of the parameter n is in between 0.5 and 1, then the process is anomalous 

(case III). However, when this parameter is' close to one, the diffusion of the solute 

within the polymers approaches the zero order kinetics (casé II). Table 1 demonstrates 

the three cases.( 48) 

Graphie presentation of the theory of solute diffusion (release) from the 

polymers for three types of diffusion is shown in the Figure 4.(33) 
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Parameter "n" Diffusion type , Diffusion velocity 
(dM/dt) 

0.5 Fickian diffusion (case I) (Ifl. 

0.5 < n < 1 Anomalous diffusion (case III) f-I 

i 

1 "Case II'' type diffusion Constant 

1 
1 

n>l "Super-case II'' type diffusion tn- l 

Table 1: Diffusion type and the kinetic parameter "n" 

Figure 4: Demonstration of Fickian (a), anomalous (h) and "case II'' (c) types of 

diffusion. 
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3. CONTROLLED-RELEASE SYSTEMS CLASSIFICATION 

Systems of the release might be sorted in four major classes according to the 

nature of the drug transport.(34) 

3.1. Diffusion-controlled systems 

These systems are more frequently studied and utilized. There are two diffusion 

modes: the active pharmaceutical ingredient might diffuse through the polymer 

structure (within the intermolecular space) as well as from a porous network filled with 

the solvent. There are two major types of formulation: reservoir and matrix. 

3.1.1. Reservoir systems 

In reservoir systems, the active pharmaceutical ingredient is coated with 

swellable or non-swellable polymerie film. The drug might be in solid form, in solution 

or . concentrated suspension as weIl as mixed with another solid excipient. The 

polymerie membrane controls the drug release. In general, these systems include coated 

tablets and granules, macro and microcapsules, liposomes and hollow fibers. Fick's 

equation characterizes the diffusion of the drug: 

dQ/dt = D.S.A.(CrCJJ/X (eq.9) 

Where 

dQ/dt is amount of active pharmaceutical ingredient (g) diffused per 

unit oftime (sec) 

D is a diffusion coefficient (cm2/sec) 
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s IS partition coefficient of the substance between the coated 

dosage form and the aqueous phase of the gastro-intestinal tract 

is a membrane surface (cm2
) 

IS a concentration of solution saturated with active 

. pharmaceutical ingredient (g/cm3
) 

is concentration of APIon GI tract side (g/cm3
) 

x is a membrane thickness (cm) 

In this case, the released drug is characterized by "zero order" kinetics as long 

as API within the film coated compartment is highly saturated since the diffusion 

coefficient, the partition coefficient, the membrane thickness and the surface area are 

constant.(32) The rate of release may be modified by changing the thickness of 

membrane, the surface area or the diffusion coefficient of API. For example, 

permeability of a membrane might be modified by adding more hydrophobie or 

hydrophilic polymers, like poly-ethylene oxide and poly-propylene oxide block 

copolymers or Pluronics®. 

A major advantage of these systems is the possibility to obtain "zero order" 

release, which is problematic with other dosage forms. 

There are a few disadvantages to the reservoir systems such as: accidentaI 

damage of a dosage form coating might cause dumping of the API contained in the 

reservoir.(19) "Zero order" is obtained only for the period of time when API inside the 
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coating is at high saturation, this varies with solubility. The manufacturing of reservoir 

dosage forrns is still relatively expensive due to the technology requirements. 

3.1.2. Matrix systems 

In the matrix systems the drug is uniforrnly distributed within the solid insoluble 

polymer excipient. The API embedded in this excipient network provides extended 

release.(32) The matrix may also be constituted of hydrophilic substances, which, when 

is in contact with water, forrn a gel. 

The solvent penetrates into the system and progressively dissolves the API, 

which then diffused to the exterior through the porous network or interrnolecular space. 

A matrix may be forrned by the evaporation of the solvent from a polymer 

solution with dispersed or solubilized API. The polymer should be hydrate d, dissolved 

or disintegrated before the drug is dissolved and diffused from the polymeric matrix. 

These systems are characterized by slow release. The API is not chemically bound to 

the polymer. The drug is active and is not modified. 

Based on the nature of the pol ymer, matrix system may be classified as 

hydrophilic, inert or lipid. 

3.1.2.1 Hydrophilic matrixes 

These matrixes include a cellulose-derived polymers (hydroxyl-propyl 

methylcellulose and carboxyrnethylcellulose sodium salt) and vegetable-derived 

polysaccharides (alginates, agar-agar and modified amidons) or polyrners of animal 

14 



origin (gelatin and chitosane) as weIl as synthetic materials (polyviny 1 acetate, 

polyethylene glycol and polyacrylic acid). 

Polysaccharide hydrophilic polymers are often used in oral extended-release 

formulations. Compared to inert and lipoid matrixes they are simple to formulate, might 

be loaded with API up to 80% w/w, are relatively inexpensive and versatile as they can 

be formulated with varied types of API.( 40) 

At the releasing contact area of a hydrophilic matrix, sorne amount of the drug 

is released instantly (burst effect), then hydratation of the gel-forming agent leads to the 

fast formation of progressively increasing gelated barrier on the surface of the dosage 

form. The API diffuses through this gelated barrier in to the aqueous surrounding. The 

release velocity progressively decreases as a function of the square root of the time.(36) 

For example, drug release from a flat disk-shaped matrix might be estimated by this 

form of the Hugichi equation (29): 

Where 

M = -VIC •. (2.A-CJ.D.tj (eq.lO) 

M amount of drug released from the unit of surface during the time 

t (g/cm2
) 

solubility of the drug in the matrix (g/cm3
) 

A concentration of the drug (g/cm3
) 
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t time(sec) 

D diffusion coefficient (cm2/sec) 

3.1.2.2 Inert matrixes 

Polymers used for inert matrixes are of a porous structure, non-toxic and 

chemically neutral to the API (polyvinyl' chloride, polyethylene, ethylcellulose, silicone 

etc.). 

In these dosage forms formulated drug dissolves and diffuses through the 

pores. The release is thus controlled by the porous structure. The rate of release may be 

modified by the alteration of a network pores' diameter,(53) shape and the dimensions 

of the dosage form.(3) 

The amount of released API is proportional to the square root of time. This 

matrix system release might be characterized by the solubility of the API, diffusion 

coefficient, porosity and tortuosity of the dosage form. 

Higuchi proposed a following mathematical model for a plane surface (29): 

Mt = S . ...JID.é.C~(2Cu-é.CJ.t/rJ (eq.l1) 

Where 

Mt amount of API released at the time t (g) 

S surface of a dise (cm2
) 
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D API diffusion coefficient (cm2/sec) 

li matrix porosity (sec/cm) 

CS API solubility in water (g/cm3
) 

matrix tortuosity (cm) 

Co concentration of API at the time zero (g/cm3
) 

Inert matrixes are relatively simple to formulate and manufacture by dry 

blending and direct compression. The release of API from these matrix systems is 

independent of the exterior conditions. 

3.1.2.3 Lipid matrixes 

A variety of biodegradable excipients is used to formulate these matrixes: 

natural and synthetic waxes, fatty acids and their esters, fatty alcohols, hydrogenised 

oils, etc. The API may be released through diffusion and through erosion of the matrix 

by enzymatic hydrolysis of the lipids.(13) 

Drug release from lipid matrixes depends on digestive enzyme composition of 

the stomach fluids.(20) The amount of released drug substance is proportional to the 

quantity of the excipient hydrolyzed by the enzymes.(S1) 
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3.2. Solvent-controlled systems 

3.2.1. Osmotically controlled systems 

The majority of the se systems were developed by ALZA Corporation. In the 

relatively simple dosage form, OROS®,(59) an osmotically active API in a core (drug 

substance blended with sodium or potassium chloride as osmosis agent) is surrounded 

by semi-permeable membrane which is permeable only to water. The drug substance is 

pumped out of the system through laser-drilled orifice at the same rate as the volume of 

water entering into core multiplied by drug concentration. The "zero order" drug 

release is controlled by the osmotic properties of the dosage form, surface, thickness 

and permeability of a membrane. 

Drug solution < Laser-drilled 

'.' . l.L,Orffice. '., 
i~'I)'~IoiIIoiII~~'" .,.. ..... ~ ... IIooW~ ... ' ... 

':. Water 
, ,'::':-,,', 

• 

'. Osmotically active drug 

Rigid semi-permeable membrane 

Figure 5: Simple osmosis-controlled oral system (OROS®) (courtesy of ALZA 

Corporation) 
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3.2.2. Swelling controlled systems 

Swelling controlled systems are composed of a slowly hydrating polymer 

loaded with a drug substance that allows controlled permeation of the solvent.( 46) 

Limited swelling depends in general on the nature of a pol ymer and in particular on the 

degree of cross-linking. At the initial phase, the polymer is in glassy form when API 

diffusion is nearly zero due to very low diffusion coefficient. Solvent permeation 

initiates phase transition to the rubbery state at the swelling interface. The drug 

substance diffuses through the rubbery portion toward the aqueous exterior.(35) Drug 

release is controlled by the progressive move of the permeation front. 

Drug substance 

••• 
•• •• •• • ••• • •• • • 

Glossypolymer 

Rubbery section 

Figure 6: Simplified release mechanism of a limited swelling matrix system 

Developed by ALZA Corporation, the OROS® Push-Pull™ system IS 

controlled by both: osmosis and swelling. A push compartment containing swellable 

polymer material is placed inside semi-permeable membrane provides delivery of a low 

solubility drug substance in a form of fine suspension.( 43) 
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Figure 7: Schematic representation of the OROS® Push-Pull™ system. 

(Courtesy of ALZA Corporation) 

3.3. Chemically controlled systems 

3.3.1. Biodegradable systems 

Matrix technology is more often applied to biodegradable systems rather than 

to reservoir. However, the latter exists mostly as skin patches and microcapsules. In the 

case of matrix technology the system erodes gradually releasing the APL In. reservoir 

systems the polymer coating may de grade after complete drug substance release. 

Heller categorized biodegradable systems in three major groups based on their 

bio-erosion mechanism (1,27): 
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a. Insoluble polymers with biodegradable main chain, which breaks into 

smaller soluble molecules when hydrolyzed 

1 
X 

b. Hydrolysis of cross-linking bonds 

1 
x 

1 
x x 

x 
1 

c. Insoluble polymer, which IS dissolved after their side chains are 

hydrolyzed, ionized or protonated 

1 1 1 
A B c 

B--C = hydrolysis, ionization or protonation 

For the majority of the biodegradable systems release, kinetics is the result of 

a combination ofboth - diffusion of drug and erosion of the polymer.(56) 
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(b) Diffusion + erosion 

Drug 
release 

Time 

(a) Diffusion 

Figure 8: Theoretic drug release profile for diffusion-controlled (a) and controlled by 
diffusionlerosion (b) systems 

3.3.2. Grafted chains systems 

In these systems pharmaceutically active substance that chemically bound to a 

polymer structure is released by hydrolysis or enzymatic cleavage. The polymer 

backbone itself might be biodegradable. Drug substance might be attached directly to 

the polymer backbone or through a linking agent, which would affect the hydrophilic 

properties of the system and eventually drug release rate.( 47) 

Covalent bond Drug substance 

·rrrI··· 
HYdr~IYSiS or' / . 
Enzyme activity 

Figure 9: Schematic representation of grafted chains system 
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3.4. Systems activated by magnetic fields 

These systems are characterized by having a drug substance and small 

magnetic particles uniformly distributed in the polymer matrix. The dosage form, when 

placed into aqueous milieu, releases active pharmaceutical ingredient in accordance 

with c1assic mechanism of diffusion described in respective section. However, drug 

substance is released at significantly higher rate when exterior oscillating magnetic 

fields are applied. 

This phenomenon might be explained by increase of the matrix pores due to 

attraction and repulsion between magnetic particles. The latter allows the drug 

substance to be released faster. 

3.5. Bioadhesive delivery systems 

Bioadhesion is a complex phenomenon related to the ability of sorne natural 

and synthetic macromolecules to adhere to biological tissues. If a biological substrate is 

a mucus membrane, bioadhesive interactions occur primarily with the mucus layer and 

this process is referred to as mucoadhesion. The bonds involved are more likely to be of 

secondary chemical nature, combined with physical entanglement of polymer chains. 

The process is a reversible one, where the mucoadhesive detachment is caused either by 

the breakage of low energy bonds or by the physiological process of mucus 

turnover. (58) 

Mucoadhesive controlled release dosage formulations have gained considerable 

attention due to their ability to adhere to the mucus layer and release the loaded drug in 
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a sustained manner. By using these dosage forms, contact time with the mucus surface 

increases, which results in an increased drug retenti on at the site leading to improved 

therapeutic efficacy, especially for large molecules like proteins. Diverse classes of 

polymers have been investigated for potential use as mucoadhesives. These include 

well known mucoadhesive polymers such as poly(acrylic acid), hydroxypropyl 

methylcellulose and poly(methylacrylate) derivatives, as weIl as naturally occurring 

polymers such as hyaluronic acid and chitosane.( 60) 

4. THERAPEUTIC PROTEINS AND THEIR DELIVERY 

Therapeutic proteins are promising alternative to drug small molecules. 

Protein based drugs have demonstrated extraordinary selectivity and lower risk of 

undesired side effects with the administration of micro gram amounts per daily dose. 

Unlike other medicines, they are not synthetically manufactured, and are usually 

produced through microbial fermentation or by mammalian cell culture. They are also 

more complicated, time-consuming and expensive to produce than synthetic drugs.(60) 

4.1. Marketed protein based drug products 

Currently therapeutic proteins are used to relieve patients suffering from 

<i various cancers (monoclonal antibodies, interferons), heart attacks, strokes, cystic 

fibrosis (enzymes, blood factors), diabetes (insulin), anemia (erythropoietin) and 

hemophilia (blood clotting factors). Leading protein based drug products on the market 

today are Procrit® and Epogen® for anemia treatment from Johnson & Johnson and 
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Amgen respectively, Intron A ® and Peg-Intron® for hepatitis from Schering-Plough and 

few others.(60) 

The delivery of these protein based drug products is currently performed 

through intravenous or subcutaneous injections, which is inconvenient for patients, 

increases treatment cost, and bears aU the risks related to this mode of drug 

administration. 

4.2. Alternative ways of protein and peptide administration 

Varietyof approaches has been developed as alternative delivery systems for 

therapeutic proteins and large peptides in order to avoid injections. Oral and nasal 

administration, pulmonary inhalation, implants and other pathways have been studied 

by different research groups and pharmaceutical companies for the deli very of large 

drug molecules. 

Pulmonary inhalation, which does not require deep lung delivery was applied 

by Syntonix Pharmaceuticals to develop a novel formulation for Interferon-beta therapy 

for multiple sclerosis.(60) 

Nasal formulation of leuprolide (ChiSys-Leuprolide™), a gonadotropin­

releasing hormone agoni st that is used in the treatment of hormone-responsive cancers 

and control of ovarian stimulation in in vitro fertilization is undergoing phase II clinical 

trial sponsored by West Pharmaceutical Services, Inc.(60) 

25 



A number of the research groups work currently on implant delivery systems 

for prolonged release oftherapeutic proteins and peptides. Kajihara et al. has developed 

subcutaneous silicone implant covered with human serum albumin or interferon in 

order to achieve a zero-order release of protein drug for 30-100 days without significant 

initial burst.(30) In another implant system, bovine serum albumin was loaded into 

poly(D,L-lactic-co-glycolic acid) micropartic1es coated with poly(vinyl alcohol) and 

incorporated into PLGA tissue-engineered scaffolds. These tissue-engineered implants 

have provided long-term controlled release of the protein.(28) 

The main barriers to oral administration of therapeutic proteins are the delicate 

physiochemical properties of protein-based drugs, which are sensitive to digestive 

enzymes and may be denatured by stomach acid before absorption. Another issue is the 

size of therapeutic proteins.(41) Being large and bulky molecules and characterized by 

poor permeability through intestinal mucosa, they require long time to be adsorbed with 

direct contact to the mucosa in order to traverse the intestinal tissue. 

Orally administered enzyme products are being developed by Altus 

Pharmaceuticals. In these protein based drug products an active ingredient is cross­

linked and crystallized in order to protect the substance from degradation in the 

stomach.(60) 

Marschutz M.K. et al. prepared matrices of the mucoadhesive pol ymer 

sodium carboxymethylcellulose with the covalently bound Bowman-Birk enzyme 

inhibitors and elastatinal enzyme inhibitors for the protection of embedded insulin from 

degradation by the luminally secreted serine-proteases. These oral drug-carrier matrices 
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have provided up to 80% of insulin recovery after one hour of treatment in artificial 

intestinal fluid.(39) 

Peppas N.A. and Foss A.C. et al. have developed nanospheres of crosslinked 

networks of methacrylic and acrylic acids grafted with poly( ethylene glycol) for use as 

oral insulin delivery devices.( 49) It was determined using photon correlation 

spectroscopy that nanospheres increased ten times in diameters in response to pH 

change from 2.0 to 6.0. Loading of insulin up to 7% w/w into the copolymers was 

achieved by partitioning from concentrated insulin solutions. In vitro studies have 

confirmed that insulin was protected at pH lower then 3.0 and released at pH 5.5. 

Animal studies were performed to investigate the abilities of insulin-Ioaded copolymer 

samples to influence the serum glucose levels of rats. In studies with diabetic rats, the 

serum glucose level was lower than control values for the animaIs that received the 

insulin-Ioaded copolymers and lasted for at least 6 h. The insulin loaded copolymer 

nanospheres caused a significant reduction of serum glucose with respect to that of 

control animaIs. 

Therefore oral administration of therapeutic proteins is considered to be an 

advantageous alternative to injections and may be applied to novel therapeutic proteins 

and peptides as well as to already marketed products. 
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5. MICROGELS, NOVEL EXCIPIENTS FOR PERORAL DELIVERY AND 

CONTROLLED RELEASE OF THERAPEUTIC PROTEINS 

In the past thirty years, work on hydrogels based· oncrosslinked copolymers 

has led to the establishment of a number of controlled release products for 

pharmaceutical agents.(24, 25, 62) Poly(acrylic acid)-based resins have been a subject 

of numerous drug master files with the U.S. FDA.(15) 

In this study microgels as copolymers of poly(acrylic acid) network 

crosslinked by ethylene glycol dimethacrylate with grafted block-copolymers chains 

(poly(ethylene oxide)-poly(propylene oxide) or poly(propylene glycol)) were 

synthesized in order to be studied as a potential system for oral delivery of therapeutic 

proteins. 

5.1. Grafted block copolymers 

Three block copolymers with different hydrophile-lipophile characteristics were 

selected to be cross-linked to microgels. Pluronic® is a trade name for group of 

poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO-PEO) block copolymers 

approved by the FDA as food additives and pharmaceutical ingredients. (2) Pluronic® 

L92 is hydrophobic with a molecular weight of 3650 Da, Pluronic®F127 is relatively 

hydrophilic and has a molecular weight about three times higher. The hydrophile­

lipophile properties of Pluronics® depend on their composition (Fig.10): Pluronic® 

F127 has a PPO:PEO ratio of 30:70 when L92 is 80:20. The third copolymer of choice 
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was poly(propylene glycol), a hydrophobic material with a molecular weight of 3500 

Da.(54) 

~~---..~~------~ . .--. 
X Y X 

PEO-PPO-PEO 

MW lkD-13kD 

x = 0 - 300 

y = 15 - 80 

Figure 10: Poly( ethylene oxide )-poly(propylene oxide) block copolymers or 

Pluronics® 

5.2. Microgel synthesis model and annotated structure 

The synthesis model has been studied extensively.(7, 9, 11) The synthesis 

sequence for micro gels involved free-radical polymerization of acrylic acid with chain 

transfer to block copolymer resulting in C-C bonding between P AA and Pluronic® . 

At 70°C, initiators form free radicals (R -) that trigger propagation of acrylic acid 

(AA) homo-polymer chains and abstraction ofhydrogen (H) from the block copolymers 

(XmH). Latter activation of block copolymers (Pluronics® and PPG 3500) leads to the 

chain transfer that is followed by grafting of P AA chains on block copolymers: 

R- + nAA ~ R-AAn-
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Introduction of di-vinyl crosslinker leads to formation of a PAA network, 

crosslinked by EGDMA, with grafted block copolymer chains. (Fig.ll) 
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Figure Il: Proposed structure of microgel fragment 
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5.3. pH responsive properties of microgels 

The microgels are responsive to environmental pH changes, which is crucial for 

protection of API from the acidity and proteolytic enzymes of gastric fluids. At low pH of the 

human stomach, the microgels stay collapsed and drug is not released, however, at pH closer to 

neutral, in the intestine, these materials start to swell and release active pharmaceutical 

ingredient.(11 ) 

5.4. Mucoadhesion of micro gels 

Among various possible bioadhesive polymeric hydrogels, P AA has been considered as a 

good mucoadhesive. It has been intensively studied and a number of mucoadhesive formulations 

was developed based on this polymer.(26, 37, 42) Polyether modified PAA formulations 

demonstrated mucoadhesive properties and are proven to be non-irritating.(6, 8, 10) 
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EXPERIMENTAL PART 
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Objectives: 

The general objective of this project is to synthesize and study micro gels of crosslinked 

poly(acrylic acid) network with grafted block-copolymers chains (poly(ethylene oxide)-

poly(propylene oxide) or poly(propylene glycol)) as a potential matrix for oral administration of 

therapeutic proteins and peptides. These microgels are synthesized in order to protect large 
, 

molecular size drugs in the stomach, and to pro vide prolonged release in the intestine. 
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1. MATERIALS AND METHODS 

1.1. Materials 

Name Lot Number Supplier 

Acetonitrile A25627 Aldrich 

Acrylic Acid mono mers (AAM) 10630LB Aldrich 

4' -4-azobis-( 4-cyanovaleric acid) 12688/1 Fluka 

Bovine Serum Albumin A 7906 113K0669 Sigma 

Carbopofw 971 NF CC9DAAJ085 Noveon 

Dichloromethane 99.9% LI00262KI Aldrich 

Dodecane DA027360A Aldrich 

Ethylene Glycol Dimethacrylate 07711LO Aldrich 

Ganex V-216 03200068154 ISP 
technologies 

Hexane 10655HC Aldrich 

Hydrochloric Acid IN standard 00507HC Aldrich 

Lactose 03912MC Sigma 

Lauroyl Peroxide 03727PO Sigma 

Magnesium Stearate 18724MA Aldrich 

Pluronic® F127 WPNX60C BASF 

Pluronic® L92 WPDX5335B BASF 

Poly(propylene glycol) 3500 08831AO Aldrich 

RS Protein Assay 81495A Bio-Rad 

Sodium Hydroxide 91040 MAT 

Sodium Hydroxide IN standard 03427DD Aldrich 

Sodium Phosphate dibasic anhydrous 85H0425 Sigma 

Sodium Phosphate monobasic mono hydrate 67H1245 Sigma 

Trifluoroacetic Acid 001210-50209- PSIG 
259 
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1.2. Equipment 

• Mechanical stirrer BDC 1850, Caframo 

• Hot plate with magnetic stirrer, Fisher Scientific 

• Filter paper 10Jlm, Whatman 

• Soxhlet extractor 

• Market grade test sieves mesh 20(0.86mm), 40(0.36mm) and 100(0. 14mm), Dual 

Manufacturing Co. 

• Optical microscope Labophot-2, Nikon 

• Tap density tester, Vanderkamp 

• Differentiai scanning calorimeter DSC-30, Mettler 

• Nuclear magnetic resonance spectrometer Avance 600 MHz, Bruker 

• Fourier transformed infrared spectrometer FTS800, Varian 

• Reversed-phase HPLC column 218TP54, Vydac 

• DuaI À absorbance detector 2487, Waters 

• HPLC sampler manager 2700, Waters 

• Binary HPLC pump 1525, Waters 
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• pH meter Orion 525A+, Thermo Electron 

• Tube rotator, Scientific Equipment Products 

• Hydraulic press, Carver 

• Punch and Die 0 1 cm, custom made 

• Tablet hardness tester PTB 302, Pharma Test 

• Balance BP211D, Sartorius 

• Incubator, Power Scientific 

• Variable-rate flask shaker, St. John Associates 

• Microcentrifuge Micromax, IEC 
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1.3. Methods 

1.3.1. Microgel synthesis 

The microgels were synthesized on laboratory scale according to the method (11) 

originally described by Dr. Lev Bromberg (Fig. 12) with sorne modifications. 

1.3.1.1. Preparation of Block Copolymer Solution (Solution A) 

39mL of AAM was neutralized by 0.5mL of 5M NaOH, charged into a flat-bottom 

flask and mixed. 24 g ofblock copolymer (Pluronic® or PPG 3500) and 1.1mL ofEGDMA was 

charged into the flask and ~ixed vigorously. The mixture of initiators: 100mg of Lauroyl 

peroxide and 100mg of 4' -4-azobis-( 4-cyanovaleric acid) in 2mL of AAM was added. The 

solution was stirred at 200rpm by magnetic stirrer for 10 minutes. AlI these operation were 

performed under a constant flow of dry nitrogen at room temperature. The mixture was 

deoxygenated for 30 minutes. 

1.3.1.2. EmulsionlDispersion 

A 500-mL three-necked round-bottom flask was charged with 250mL of 1 % w/v Ganex 

solution in dodecane and deoxygenated ovemight with constant stirring at 100rpm with a purge 

of dry nitrogen at room temperature. Next day, the flask was placed into an oil bath with 

temperature controller. The flask was equipped with a mechanical stirrer and a thermometer. 

Solution A was charged into the round-bottom flask. Dry nitrogen purge was initiated and kept 

until the end of the reaction. The mixture was stirred for 30 min at 200rpm at room 

temperature. Stirring rate was raised to 300rpm and maintained at this intensity until the end of 
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the reaction. Step-wise heating was started at the rate of 1-2°C per minute up to 70°C. The 

temperature was maintained at 70°C until the end of the reaction, for 4 hours. 

1.3.1.3. Filtration, Washing and Drying 

The reaction slurry was cooled to room temperature and filtered using Whatman filter 

paper (10Ilm). The wet filtrate was repeatedly washed with hexane and dried under vacuum 10-

3 Torr at room temperature for 36 hours. The dried microgel was then washed in a Soxhlet 

extractor with dichloromethane for 72 hours. AH the wash-out from both steps were collected 

and evaporated under vacuum to be used in the estimation of the effective degree of bonding 

between block copolymers and poly(acrylic acid). The washed micro gel was dried under a 

vacuum of 10-3 Torr at room temperature for 48 hours. 
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Figure 12: Microgel synthesis, washing and drying 

40 

lOOnlg Lauruy! Peroxlde 1 
100mg 4',.4 ~obis-{4-cyanovaleric acid) 1 

1.1 ml. 
EGOMA 

249 
Pluronic L 92 

stining 
(200rpm.10 min) 

deoxygenation 
(aO min) 

... 

Slifring 300rpm 

OilBath 
heallng 10 70°C 

.\::===::::::==} (1 ·2 OC/min) 

washingin 
soxhlel extractor • (dichloromethane) 
3days 

stirrlng 300rpm, 
dry nitrogen flow. 
temperature 70°C. 
4 heurs 

drying under 
vacuum 
(10-3 Torr) 



1.3.2. Microgel composition determination 

1.3.2.1. Fourier transform infrared spectroscopy (FTIR) 

FT IR analysis was done using a Varian FTS800. Block copolymer samples were 

prepared in dichioromethane in seriaI dilutions and analyzed for characteristic peaks at a 

wavenumber of 1100. Dried synthesis washouts from aH the batches, reconstituted in 

dichloromethane were analysed by FTIR for the peak intensity at the respective wavenumber, 

and quantities of unbound block copolymers for each batch were estimated from standard 

curves. 

1.3.2.2. Estimation of effective degree of boding 

An effective degree ofbonding between block copolymers and poly(acrylic acid) was 

calculated for aIl three microgels according to the following equation: 

Where: 

. DoB 

DoB = (Pch - P,).100% / P ch (eq.12) 

effective degree ofbonding (%) 

initial weight ofblock copolymer charged into the reactor (mg) 

weight of block copolymer In washouts, not· hound during the 

synthesis (mg) 
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1.3.2.3. High-performance liquid chromatography (HPLC) 

An analytical HPLC system with reversed-phase column was equilibrated using 0.1 % 

(v/v) aqueous trifluoroacetic acid at a flow rate of 1mLlmin. A linear gradient of water (0.1 % 

TF A)/ Acetonitrile (0.1 % TF A) from 9: 1 (v/vI) to 3:7 (v/v) was used. SeriaI dilutions of 

AAMs were prepared in water. Samples were injected by an automatic autosampler and 

monitored at 225nm and 280nm by means of a dual Â Absorbance Detector. 

1.3.3. Microgel characterization 

1.3.3.1. DifferentiaI scanning calorimetry (DSC) 

DSC evaluation was performed on each batch of dry micro gel particles and aU 

starting materials: AAMs, Pluronic® F127, Pluronic® L92 and PPG 3500. AH samples were 

tested utilizing Mettler DSC 30in standard aluminum crucibles at heating rate of lOoK/min 

was applied to aH DSC samples. Scanning was performed under constant nitrogen flow and 

with the starting temperature not higher them -1 OooK. 

1.3.3.2. Solid 13C nuclear magnetic resonance (NMR) 

Samples from each batch ofF127, L92 and PPO Microgels and Pluronic® F127 were 

prepared in tubes for solid state NMR. 13C spectra were acquired on a Bruker Avance 

600 MHz spectrometer at 600 MHz by staff of the Department of Chemistry of the 

University of Montreal. 
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1.3.3.3. Swelling of microgels and pH titration studies 

Swelling experiments were performed on each batch of micro gel in duplicate. 

Samples of lcm3 of dry material, independent of weight, were placed into 50ml plastic 

measuring flat bottom cylinders. The cylinders were sealed with rubber stoppers thoroughly 

at all time. The study was done at 37°C. Samples were pre-swelled in 30ml of distilled water 

for 2 days. After pre-swelling, the pH of the slurry was lowered to 2.0. Then the pH was 

increased gradually adding O.4mL of NaOH standard solution. These steps were repeated 

until the pH reached 12.0 for each microgel except micro gel PPO, which swelled to· the 

maximum volume at pH 6.0. IN HCI and IN NaOH standard solutions were used t6 adjust 

the pH. AlI samples were alIowed to stand for a minimum of 3 ho urs after adding NaOH or 

HCI and then the height was measured 

The swelling ratio (S) was calculated as folIows: 

Where: 

Ho 

(eq. 13) 

height ofthe swelled microgel column during the experiment 

height of the microgel column at time "0" (1 ml of dry micro gel 

pre-swelled in distilled water) 

Microgel PPO titration continued after the point of maximum swelling at pH 6.0 up 

to pH 12.0. These results were normalized per gram of dry micro gel and plotted. 

43 



1.3.3.4. Particle size determination and imaging of dry microgel particles 

Particle size analysis was performed for dry micro gel particles using market grade 

test sieves with mesh 20(0.86mm), 40(0.36mm) and 100(0.14mm). The fractions were 

weighted by means of an electronic balance (±0.01 mg). Images of the dry particles were 

obtained using an optical microscope Labophot-2. 

1.3.3.5. Carr's compressibility index determination 

A Vanderkamp Tap density tester with a tapping frequency 150 taps per minute was 

used to determine Carr's compressibility index.(16, 17) The tared 250-mL measuring 

cylinder was filled with pre-weighted test material to 100 mL, then the initial (or bulk) 

density was estimated. With minimal disturbance of the measuring cylinder, it was 

transferred to the tap density apparatus, tapping was done 150 times then the final (or tap) 

density was estimated considering the reduced volume of the sample after tapping. 

The following equation was used to calculate Carr' s compressibility index (x): 

x= (Do-Dt) .100% / Do (eq.14) 

Where: 

Do initial (bulk) density (glcm3
) 

Dt final (tap) density (g/cm3
) 
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1.3.4. Microgel preparation and tabletting 

Dry blending was used to fonnulate both test and reference products. Series of dry 

blends were prepared for each batch of microgel in duplicate. F127 microgel, L92 microgel, 

PPO microgel, Carbopol and Lactose were dry blended with 2%, 10%, 20% or 50% w/w of 

protein (BSA) and 0.5% w/w of Magnesium Stearate as a compression lubricant. BSA was 

sieved through a series of market grade test sieves before blending and the fraction between 

meshes 40 (0.36mm) and 100(0.14mm) was selected. Blank blends without BSA were 

prepared for each batch as a negative control. Blending was carried out at room temperature 

in glass vials on vertical tube rotator at 10 rpm for twenty minutes. 

Flat-faced plain tablets weighting 300mg, having a thickness of 3mm and with a 

diameter of 10mm, were compressed on a Carver press with 5000kg force applied. 

1.3.5. Acidic fluids and phosphate buffer preparation 

Acidic fluids were prepared by lowering the pH of distilled water to 2.2 by adding 

Hel (lN) volumetric standard solution. The 0.5M phosphate buffer pH 6.8 was prepared as 

follow: 14.08g of sodium phosphate monobasic monohydrate and 13.92g of sodium 

phosphate dibasic anhydrous were dissolved in four litres of distilled water. The final pH was 

aqjusted to 6.8 if required. 

1.3.6. Dissolution method and protein assay 

The limited sensitivity of the protein assay did not allow using the standard USP 

dissolution apparatus. The dissolution tests were perfonned on synchronised flask shakers 

45 



placed into a temperature-controIled environment of an incubator. Sample tablets were 

placed into SOmL sealed plastic Falcon tubes. Tablets were tested at 37°C for 48 hours: two 

hours in SOmL of acidic fluids at pH2.2, then the solution was changed using the same 

volume of O.SM phosphate buffer pH 6.8 to mimic the GI tract conditions. During the acidic 

treatment samples and blanks were shaken at 15 rpm then, after the change to phosphate 

buffer shaking was increased to 100 rpm. Aliquots of O.3mL were taken at 0, 1, 2, 2.5, 3, 4, 

5,8,24 and 48 hours. The aliquots were compensated with the same volume of the phosphate 

buffer at the same temperature (37°C) at each measurement. Acidic aliquots were neutralized 

using NaOH IN standard solution as required for the protein assay taking in consideration 

the dilution factor. 

Bio-Rad RC protein assay was used to determine the concentration of BSA. AIl the 

aliquots were centrifuged using a microcentrifuge at 10,000 rpm for 10min prior the protein 

assay. Sampling of the supematant was done in order to avoid presence of microgel particles 

in the assay. Samples with a concentration higher then the assay range were diluted 

respectively. AlI aliquots were assayed in triplicates. The protein assay was carried out in 

accordance with the following standard operational protocol: 

1 Prepare 6 dilutions of a protein standard (BSA) containing from 0.2 mg/mL to 1.2 

mg/mL. A standard curve is prepared each time the assay is performed in triplicate 

and in the same buffer as the sample. 

2 Pipette 5 J.lL of standards or samples into a clean, dry microtiter plate. 

-3 Add 25 J.lL of reagent A into each weIl. 
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4 Add 200 flL of reagent B into each well. Place the plate on a microplate reader and let 

the plate mix for 5 seconds. 

5 After 15 minutes, read the absorbance at 750 nm. The absorbance is stable for about 1 

hour. 

1.3.7. Method of estimation of release kinetics parameters 

The Peppas equation was applied to determine the kinetic parameters of BSA 

dissolution.( 45) 

MIMex; =k.1' (eq.15) 

Where: 

degree of BSA release 

kandn kinetic parameters 

t time(hours) 

The estimation of the kinetic parameters "k" and "n" was performed by linear 

regression of the logarithmic values of the time and degree of BSA release using the linear 

form of Peppas equation: 

log (MIMŒJ)=log(k)+ n log(t) (eq.16) 
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2. RESULTS AND DISCUSSION 

2.1. Microgel synthesis 

Two consecutive batches of each micro gel were synthesized in accordance with the 

method described in the section 1.3.1 at laboratory scale in adiabatic mode by a one-step 

free-radical crosslinking copolymerization of acrylic acid monomers and block copolymers 

with the covalent crosslinker ethylene glycol dimethacrylate. Both batches of each material 

were used in subsequent experiments. 

2.2. Microgels composition determination 

Given that resulting microgels are solid and absolutely insoluble whereas key starting 

compounds are mostly liquid, it was not feasible to use the same analytical technique to 

determine the degree of bonding for block copolymers. Thus washouts from the synthesis 

were collected and analysed by FTIR and HPLC to determine the composition of the solid 

fraction. FTIR results for seriaI dilutions of block copolymers obtained by the method 

described in section l.3.2.1, are presented in Figure13 a. b and c 
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Figure 13: FT IR results for seriaI dilutions of Piuronic® FI27 (a), Piuronic® L92 (b) 

and PPG 3500 (c) in dichlorornethane 
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r -
Areas under the curve for the characteristic peaks were plotted to obtain standard 

curves for respective material in order to quantitate these compounds (Fig. 14 a, b, c). 
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Figure 14: Standard curves for Pluronic® F127 (a), Pluronic® L92 (b) and PPG 3500 

(c) in dichloromethane 
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2.2.1. Block copolymer binding 

An effective degree ofbonding between block copolymers and poly(acrylic acid) was 

calculated for aIl three microgels in accordance with Equation 12. Quantitation of unbound 

block copolymers demonstrated a relatively high degree of bonding for these starting 

materials. More then 90% ofblock copolymers for both Pluronic®-based microgels and up to 

96% for PPO micro gel were not detected in the solvable washout of the synthesis. (Fig.15) 
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Figure 15: Block Copolymer incorporation into the microgels structure 

2.2.2. Acrylic acid monomer binding 

Acrylic acid concentration in seriaI dilutions and synthesis residuals was assayed by 

the HPLC method detailed in the section 1.3.2.3. HPLC results for seriaI dilutions of acrylic 

acid monomers are presented in the following figure. 

5mglmL 

Acrylic acid, by HPLC 

UO 1~ 1.70 1.7C5 1.EO 1.BC5 1.QO 1.Q!5 2.00 2.0C5 210 2.1C5 
"'lno.tes 

Figure 16: Acrylic acid monomer HPLC chromatograms used for calibration 

Figure 17 shows that acrylic acid mono mers were not detected in FI27 microgel 

wash-outs. Similar results were obtained for L92 and PPO microgels. High efficiency of 
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acrylic acid monomer incorporation into microgels has been previously reported.(12) Thus it 

was assumed that an the acrylic acid monomers charged into the reactor were consumed in 

the synthesis. 
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Figure 17: Acrylic acid mono mer were not detected by HPLC in F127 microgel wash-outs 

2.2.3. Efficacy of the microgel washing procedure 

DifferentiaI scanning calorimetry experiment was performed on dry particles of 

microgel according to the method described in section 1.3.3.1 to evaluate the completeness of 

the synthesis and to verify that they were free ofunbound phase after the multi-step washing-

drying procedure. Starting materials were assayed by DSC as references. Actual DSC data 

can be found in Appendix l of this memoir. 

Acrylic acid had demonstrated a sharp melting peak at 12°C, which was in 

compliance with the literature source.(22) This type of phase transition was not identified in 

any ofthe micro gel DSC profiles. 

53 



Pluronic® F127 distinctive melting peak at 56°C was in accordance with the technical 

bulletin of the manufacturer.(SO) No phase change occurred at this temperature in the 

Microgel F127 samples. 

According to the information provided by the BASF technical support staff, 

pour/melting point for liquid Pluronic® L92 is + 7°C. A small endotherrnic peak was observed 

at that temperature in pure block copolymer DSC profile. However no melting transition was 

identified at 7°C in Microgel L92. 

PPG-3500 is a liquid polymer. An endothermic peak was observed at -59°C. There 

was no heat flow event identified at temperatures lower then -50°C in PPO Microgel. 

The absence of the key starting material characteristic peaks in the DSC profiles for 

F127, L91 and PPO Microgels proved that the multi-step washing and drying procedure 

yielded materials of high purity. 

2.2.4. Microgel structure elucidation by solid 13e NMR 

Solid NMR technique, detailed in section 1.3.3.2, was selected due to the insoluble 

nature of the microgels. Only Pluronic® F127 among the key starting materials was solid, 

thus it was not feasible to perforrn a quantitive experiment. Carbon-13 NMR data was 

gathered in order to characterize the structure of the micro gels. The signaIs from carbon 

nuclear magnetic resonance spectrum were assigned (Fig. 18) to the carbons presented in the 
, 

molecule.(SS) Chemical shifts are listed in Table 2. 13C-NMR profiles for the microgels and 

Pluronic® F127 are presented in Appendix II. 
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Carbon-13 profiles of all of the microgels exhibited chemical shifts between 25 to 

44ppm and 177 to 179ppm, which are characteristic for carbon atoms of poly(acrylic acid) 

chains. Pluronic® F127 spectra demonstrated the chemical shifts typical for Carbons of 

block-copolyrners: at 18ppm, 61ppm, 70ppm and 74-78ppm. Those shifts were less 

distinctive in the microgel spectra, especially in the PPO Microgel sarnple; however in the 

most cornrnon l3C-NMR experiments the intensity of the signal is not directionally 

proportional to the number of equivalent l3C atoms.(5) NMR spectra of aIl the Microgels 

were consistent with their proposed structure. 

Figure 18: Annotated fragment of microgel structure 
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13C Chemical Shift (ppm) Assignment 

19 1 
25-48 2 

61 3 
70-71 4 
74-78 5 

177-179 6 

Table 2: Chemical shifts and assignments for 13C NMR 

2.2.5. Estimation of microgel composition 

Based on binding data for Pluronics®, PPG 3500 and acrylic acid monomers microgel 

compositions were estimated (Fig.l9 a, b, c). AU three microgels contain equivalent 

proportion ofpoly(acrylic acid) which is approximately equal to 65% and 35% by weight of 

block copolymer, however, for the latter the PEO-PPO ratio varies and defines the 

hydrophilic-hydrophobic properties of the microgels. 

a 
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L92 microgel 

b 

PPO microgel 

c 

Figure 19: Estimated Compositions of F127 microgel (a), L92 micro gel (b) and PPO 

microgel (c). 
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2.3. Characterization of microgel in aqueous milieu 

2.3.1. Swelling of microgels 

The swelling ratio was calculated in accordance with Equation 13 as described in 

section 1.3.3.3. Figure 20 shows that Microgel F127 swells the least at pH 12.00 compared 

to two other micro gels, while Microgel PPO swells the most at pH 6.0. Microgel L92 

demonstrated an intermediate swelling. 
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Figure 20: Swelling profiles of the micro gels 

-0- Microgel PPO 

-0- Microgel L92 

-0- Microgel F127 

These results were compared to the estimated compositions of the microgels: aIl three 

of them contain 64-65% weight content of P AA and vary in the grafted block-copolymer 

proportion. (Fig. 21) Thus the most hydrophobic material, Microgel PPO, demonstrated the 
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highest degree of swelling followed by the moderately hydrophilic Microgel L92. Microgel 

F 127 swelled the least and was estimated to be the least hydrophobic due to composition of 

Pluronic® F127. 

100 
90 

~ 0 80 
c 
0 70 E 
III 60 0 

. PPO . PEO 

c. 
E 50 0 
() 

40 Qi 
Cl 30 0 ... 
u 
:E 20 

10 
0 

Microgel PPO Microgel L92 Microgel F127 

Figure 21: Microgels relative Hydrophobic and Hydrophilic Blocks composition 

2.3.2. Titration of microgels 

Titration was carried out in accordance with the method detailed in section 1.3.3.3. 

The results were nonnalized per gram of dry micro gel and plotted. It was observed that aIl 

three microgels required approximately equal molar amount of Sodium Hydroxide per 1 

gram of dry Microgel to neutralize the carboxyl groups. Quantitation was made to estimate 

an isoelectric point at 0.008 moles of NaOH, hence straightforward calculation resulted with 

roughly 580 mg of P AA per 1 gram of a micro gel. That did not precisely correlate with the 

previously estimated 65% of weight however this may be explained by the reduced 
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accessibility of 5 to 10 % of the micro gel P AA chains within the microgel structure. AlI three 

Microgels responded similarly during the titration. 
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Figure 22: Microgels pH titration results were normalized per gram of dry microgel. 

2.4. CharacterÏZation of dry microgel particles 

2.4.1. Particle sÏZe determination 

Particle size distribution for each batch of microgel was done using a series of market 

grade test sieves (Fig.23) as described in section 1.3.3.4. The main fraction for both 

microgels based on Pluronics® was the one between meshes 40 (0.36mm) and 1 00(0. l4mm) 

as for the PPO microgel it was between meshes 40 and 100 and between meshes 100 and 

200(0.074mm) in about equal amounts. Thus, fraction between meshes 40 and 10 was chosen 

for farther experiments. 
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Figure 23: Microgel particles size distribution. 

2.4.2. Dry particles morphology 

0.074 

• PPO microgel 

• L..92 microgel 

[] F127 microgel 

The morphology of dry microgel particles was studied by optical microscopy. F127 

micro gel particles are of regular spherical shape of 100-180 Ilm diameters with a smooth 

surface, Image la. L92 microgel had similar shape and size, however, the surface of the 

particles was rougher and may be characterised by sorne sponginess, Image 1 b. This is 

similar to the results demonstrated by Dr. L.Bromberg (12). The higher susceptibility of the 

PPO content of Pluronics® to hydrogen abstraction reaction compared to PEO fragments was 

previously described.(9) This might lead to fonnation during the synthesis of highly 

crosslinked PPO-rich domains, which are later integrated into particles with less regular 

shape. The PPO content is almost twice higher in Pluronic®L92 then in Pluronic®F127. It 

also corresponds to the results for PPO microgel which is a material of highly dispersed size 

and shape, Image lc, probably due to the very high degree of crosslinking. 
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Image 1: a) microgel F127; b) microgel L92; c) microgel PPO 

2.4.3. Carr's compressibiIity index 

Carr' s compressibility index was calculated in accordance with Equation 14 for each 

microgel (Fig.24) as described in section 1.3.3.5. The best results, close to 20%, were 

obtained for both Pluronic based microgels. This characterised F127 microgel and L92 

microgel as products with good flowability and low cohesiveness, which are important 

characteristics for direct compression.(16, 17) 
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Carrls Compressibility Index 
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Carbopol 42% 

Microgel PPO 

Microgel L92 

Microgel F127 

Figure 24: Carr's compressibility index for microgels F127, L92 and PPO microgels 

vs. two commonly used excipients: lactose (immediate release) and Carbopol (modified 

release) 

2.5. Microgelloading capacity 

The drug loading capacity of micro gels was studied in order to frnd the optimal 

microgel-to-protein ratio. Series of dry blends were prepared for this purpose for each batch 

of gel, in duplicate, according to the process detailed in section 1.3.4 with a protein content 

of 2%, 10%, 20%, and 50% w/w. Hence, the final formulation inc1uded respective amount of 

BSA, dry microgel and 0.5% w/w of Magnesium Stearate as a lubricant. 
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2.5.1. Effect of loading on protein release 

Conditions mimicking the gastrointestinal tract were applied to the sampi es during 

protein release experiments. Buffer preparation, dissolution method and protein assay 

procedure were described in section 1.3.5 and 1.3.6. As shown in Figure 25, the optimal 

results were obtained for a 10% BSA blend. The protein released during the acidic fluid 

treatment was negligible. Subsequently BSA was released at moderate and near constant rate 

in the neutral milieu. Microgel formulations with 2% BSA loading did not provide detectible 

release for more than 3 hours of dissolution test and then released aIl the loaded prote in 

within 2 hours. Formulations with a protein loading higher then 10% did not efficiently 

prote ct active ingredient during the acidic treatment due to high porosity. 

Both Pluronic® based microgels released up to 98% of loaded BSA. However, for 

PPO microgel the maximum release was only 80% for formulation with 50% of loaded 

protein. The average error did not exceed 7% for aIl the results. 
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Figure 25: F127 (a), L92 (b) and PPO (c) Microgels Loading Capacity: protein 

release from seriai microgel fonnulations 
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2.6. Protein release from the microgels at 10% loading 

Formulations with 10% prote in w/w were prepared by dry blending as described in 

the section 1.3.4 for aH three microgels, lactose and Carbopol. Tablets were compressed to 

the same dimensions and weight as for previous experiment. Dissolution test and prote in 

assay were carried out in accordance with the same procedure as for the microge1 loading 

capacity evaluation experiment. Lactose and Carbopol were used as immediate and modified 

release reference excipients respectively. Plotled experiment results are provided in Figure 

26. 

Lactose tablets were dissolved during the acidic fluid treatment, which is expected in 

an immediate release formulation, whereas Carbopol did not release protein even up to 30% 

10ading after 48 hours of experiment while Pluronic® based microgels demonstrated the best 

protein release profiles. The average error did not exceed 6% for aH the results. 

Results of BSA release from the micro gels presented in 2D chart form are in Figure 

27. AH three micro gels provided an efficient protection for the prote in at lower pH's during 

the 2 hours of acid fluids treatment, Figure 28. However the PPO micro gel only released up 

to 72% ofloaded BSA after 46 hours oftreatment at neutral pH. 

Microgels F127 and L92 provided prolonged release of BSA fomp to 99% of the 

loaded protein. About 70% and 50% of loaded BSA was released from Microgel F127 and 

L92 respectively after 2 ho urs of neutral buffer treatment.' Over 90% of BSA was released . 

from the both microgels after 6 hours of swelling in phosphate buffer pH6.8. 
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Figure 26: Microgels protein release profiles ofvs. Carbopol and Lactose formulations 
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Figure 27: BSA release from the microgels: first 2 hours samples were treated with acidic 
fluids at pH 2.2, after that solution was changed for O.5M phosphate buffer pH 6.8 
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Figure 28: BSA release from the microgels after 2 ho urs of treatment with acidic fluids at 

pH 2.2 

2.7. Kinetics study of proteio release 

The Peppas model (31, 44) was used to determine the type of the release mechanism 

in accordance with the calculation method presented in the section 1.3.7. Linear regression 

on logarithmic values of the time and degree of BSA release in accordance with Equation 16 

was performed in order to estimate the kinetic parameters "k" and "n".(Fig. 29) 

Both kinetic parameters for aIl tree microgels were estimated. Table 3 shows that the 

order "0" of BSA dissolution varied between 0.63 to 0.98, which corresponds to a non-

Fickian or anomalous mechanism of diffusion. 
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Figure 29: BSA release from the microgels: log-log representation 

Microgel Kinetic Parameters (Peppas model) 

k n 

FI27 28.40 0.63 

L92 12.67 0.98 

PPo 7.40 0.90 

Table 3: Kinetic parameters of prote in release from the microgels 
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3. CONCLUSION 

This study demonstrated that microgels: copolymers of poly(acrylic acid) network 

crosslinked with ethylene glycol dimethacrylate with grafted· poly(ethylene oxide)­

poly(propylene oxide) block copolymer (Pluronic~ chains, have potential as release 

matrices for oral administration of therapeutic proteins and peptides. Pluronic® based 

microgels formulations protect the active pharmaceutical ingredient from the low pH of 

stomach fluids at the temperature close to human body for 2 hours, and pro vide prolonged 

release at neutral pH of the intestine for more than 6 hours. 

Microgels were synthesized by a one-step free-radical crosslinking copolymerization 

on a laboratory scale and thoroughly washed with organic solvents and dried. DSC results for 

aIl three microgels showed that multi-step washing and drying procedure yielded materials 

with high purity. 

DSC results of micro gels vs. key starting materials confirmed that synthesis of aIl 

three excipients was complete as no presence of the starting materials was identified in any 

micro gel sample. DSC results demonstrated that micro gels are thermo-stable within the range 

from DOC to 15D°C. Solid state l3C nuclear magnetic resonance spectra of the microgels were 

consistent with their proposed structure. 

Microgel compositions were estimated based on the quantitation of washed-out, 

unreacted ,starting materials. It was found that each micro gel contained 65% of poly( acrylic 

acid) and 35% of block copolymer on average. Titration of the materials with sodium 

hydroxide confirmed an equal poly(acrylic acid) contents in the microgels. 
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Pluronic®-based dry micro gel particles were of regular spherical shape of 100-180 

Ilm diameters with a relatively smooth surface. The micro gels have good flowability and low 

cohesiveness. These characteristics are valuable considering the relatively uncomplicated dry 

blending formulation of the final drug product. 

Swelling studies have shown that PPO Microgel are highly swellable at neutral pH. 

However, protein release from this material was not satisfactory, almost 30% ofloaded BSA 

was not released after 46 hours of swelling in phosphate buffer at pH6.8, and thus this 

material is not considered to be an excipient of choice for protein-based active 

pharmaceutical ingredients. 

Both Pluronic®-based Microgels swelled in response to a pH increase: while being 

collapsed at pH lower then 3.0, they increased in volume between pH 4.0 and 8.0. After pH 

8.0 Microgel F127 did not show significant swelling while Microgel 192 swelling gradually 

increased up to the final point of the experiment pH12.0. BSA release results on the contrary 

showed that Microgel F127 released 'protein faster then Microgel L92. These micro gels 

provided 7 hour release ofprotein at neutral pH ofup to 98% ofloaded BSA, which were the 

best results compared to 70% released from PPO micro gel and less the 30% from Carbopol. 

Both ofthese observations, swelling and BSA release profile, might be co-dependent. 

The micro gel with higher hydrophilic content swelled less and allowed faster diffusion while 

the increase in the hydrophobic degree of microgels slowed the release and might have a 

negative effect on total amount of the protein released. Kinetics study showed that the 

mechanism ofBSA diffusion from the Microgels F127 and L92 was non-Fickian. 
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Appendix 1 

DSC SPECTRA 

For 

Acrylic acid monomers, 

Pluronic@ F127, 

F127 microgel, 

Pluronic@ L92, 

L92 microgel, 

Poly(propylene glycol) 3500 and 

PPO microgel 
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Pluronic F127 
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Microgel F127 
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Pluronic L92 
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Polypropylene Glycol 3500 
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M icrogel PPO 
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Appendix II 

13C-NMR SPECTRA 

For 

F127 microgel, 

L92 microgel, 

PPO micro gel and 

Pluronic® F127 
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Image 1. 13C NMR Microgel PPO batch 1 

De: BD-I'IAS 
vr = l2 kM., Dl • Eqjl. 

==t O"Cil PolIl'a:J\tl.Cet" _ Mtcm 

~~o 18 
p;j.OCID l 

l'2 - l\i::lfll1i!liUan p,or""""", ... n 
it>€Ot.... ~i:>()4U2J 
Tirr ... - J.6.IS 
IN&rRUB o~6DQ 
momm S ml m1C'",o!:. IH 
J'tII..PROO ::>f11g 
TD ID24 
iiOL'lWr .:!leU 
IfS 1;.31.3 

M " SlIll 4~$4 S~7 lIz 
l'lllR.E8 44 ,~3!i'2.fNi Hz 
AD O.OH3l!iO ilé<: 
S'Jl lHOt 
CIIf 11. \Hl 0 U!SeC' 
00 4 .• 50 Wlec 
YB 2~2,6 K 
QI ijQ.\l'OO(J()IH!O l\'eC 
DU Q.\OOOliO{JO lS>e<:: 
I!ICIi"E:!ll' O.IJ.DOODO{lO ~ 
!1C'1lfU( O. O150(04)(t r;c;:! 

-_ ... --- C~L Et =~=:==== 
NDCl Ile 
fI 2:.<10 'U:!leo 
PLI 3·.(11) dB 
SFOI 15D.91BSB16 ~% 

::::a:::-=::.:.u. CJfJd~NET~ 1:2: .• t!IIIll' •• ~== 
CE'Dl'R!l2 apim.lU 
:m.d 113 
'?lU ~. 50 1Uaa' 
'?li 4.70 ~e~ 
PL2 5.50 ~ 
Ii'Li~ ).00 dl; 
SP02 ~O~.12&9250 r.Bz 

P2 - I>rQ';"a.tl.i,OS" .p .. r~te.r:! 
el 0192 
SF 150.90172$6 KHz 
'NI)I;9 EI!I 
S~ 0 
La 10~.OO HZ 
GIll t) 
PC LOD 

; I~ . " t • F I*!"l '1 lit j .... 4'T"" "1 , i i; .,it"" 1 i i ~ lA... l' 1 
;no no :UO :;100 1.90 lll-D 170 Hill ~so ao Bo Ull UO 100 9'0 eo ?D ~o !H} "'0 30 ~o :p;pm 

89 



Image 2. 13e NMR Microgel PPO batch 2 
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Image 3. 13C NMR Microgel L92 batch 1 

131:: a.,-I<I>.:O; 
,r" " 12 !l:Ez. Dl • !11) .. , 

1 '1 • =. . i • i 1 1 J i i i i i ._'..,. 1 , 1 1 If n ça,' i 

91 

o.'XI!:'-elitC :lJ.i!.t.. ",,,,,,,,,,,,,"ter .. 
t<\.'I.Il!!l; l1%It01'> 
1!:I':1't.fO 14 
~ 1 

n .... 1v~(lJ..l:ia:lt.ioo P.!!r~tC!:r!Oi 
~t~ 2()~41119 
'1'~ U,$!) 
:mBTJtt!l<! .. ,,~()I)< 
l'I?omm !i".., ltd:eI<'Q$ Ur. 
l'Ut.PROO .. gl9' 
'J'O' 1024 
SOLVEM? chc1~ 
llr.S :140(1) 
!lG .; 
SIIIR -4!Jo~ 5-4,54? 1llZ: 
FLORES ~4.JÔ9206 B~ 
AQ g. ill:13:i:501} '"""" 
ru:! U}B4 
l:)1li' 11, "GO u .. "'" 
00 ~L!!eO, Il,,,",,,, 

TB 293.2 Il: 
Dl !l'D. Oll-QQQOOO "'_ 
D:11D ,1 04000ll<O a_ 
MCRBS,T .(1, OOOOOOIl'D Bec 
MCNRX ~.Ol5000~O 8èt 

~Ma •• ___ CR~~ (:1 ·~e"l:===:=-:: 

IIIIIl:l 
Pi. 
PLI. 
iiî:"01 

q.:;: 
2 ",t)D' Ll~~ 

J..o-O da 
H'O.!!làGSlS tlK2 

... ____ fI//I'f!J( c~t. f.2 ===c::== 
C~DPRG2 ~inDL6A 
NQCl 1K 
lI';}O , •. 511 Il''''''' 
l'J.J, .:1 .?O 1J1S'o4!C 
l'LZ 50.50 da 
l>Ii;LJ 3. ail da 
SF03 600.126gZ51l KK. 

ra - Proteàei~ ~~rQr5 
Sl: BU2 
SE" l'!j!L !l'llzi 1:aB. )fr:~ _ f.!t( 

asa {I 
La 4Q.D'Il l'Ji<' 
ca () 
l1C L011 



Image 4. 13C NMR Microgel L92 batch 2 
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Image 5. Be NMR Microgel FI27 batch 1 
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Image 6. Be NMR Microgel F127 batch 2 
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Image 7. Be NMR Pluronic® F127 
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