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Résumé 

Libérer un principe actif à son site d'action afin d'obtenir une formulation 

plus efficace et moins toxique; tel est l'objectif de la vectorisation, en particulier des 

vecteurs colloïdaux. Par exemple, le re1argage dans les compartiments acides de la 

cellule peut être réalisé grâce à des liposomes rendus sensibles au pH par des 

polyanions amphiphiles qui induisent une déstabilisation de la membrane à pH acide, 

et provoquent ainsi une libération contrôlée des agents encapsulés. Dans ce mémoire, 

des poly(organophosphazenes) (PPZ), polymères biodégradables et polyvalents, ont 

été modifiés pour obtenir cinq dérivés amphiphiles et ionisables. Différentes 

proportions de di-éthylène glycol éthyle éther (EEE), d'acide amino-butyrique (ABA) 

et de polyéthylène glycol octadécyl éther (C I8(EO)IO) ont été utilisées afin d'identifier 

les proportions optimales pour la formulation des liposomes. La structure et 

composition des PPZ ont été déterminées par résonance magnétique nucléaire, 

titration acido-basique et chromatographie par exclusion de taille. Leur sensibilité à la 

température et au pH a été confirmée par calorimétrie différentielle et par 

turbidimétrie, respectivement. Il a d'abord été démontré que CI8(EO)1O permettait un 

ancrage efficace des polymères dans la bicouche des vésicules. La protonation des 

ABA, quant à elle, a permis une libération contrôlée d'un marqueur encapsulé dans 

les PPZ-liposomes. Enfin, l'exposition des PPZ-liposomes au sérum humain a 

provoqué une diminution de la sensibilité au pH, même lorsque ces vésicules sont 

PEGylées. Bien que la libération puisse être contrôlée en modifiant la composition et 

la quantité de PPZ ancrée aux liposomes, une optimisation de la structure des 

polymères pourrait améliorer la libération en présence de sérum. 

Mots-clés: Vectorisation du médicament, polyphosphazene, liposome, sensibilité au 

pH, LCST, amphiphile, ionisable. 
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Abstract 

Colloidal drug carriers are currently being developed in order to achieve a 

safer and more efficient drug delivery than classical administration forms. 

Particularly, pH-responsive liposomes are being designed to specifically release their 

contents in acidic cellular compartments. Such vesicles can be generated by fixing 

amphiphilic polyanions to the surface of liposomes in order to induce acid-triggered 

membrane destabilization and release of encapsulated agents. Amphiphilic ionizable 

poly(organophosphazenes) (PPZ) have been proposed as a biodegradable polymer 

that can impart pH-sensitivity to liposomes. In this master's thesis, five PPZ have 

been synthesized with varying proportions of diethylene oxide ethyl ether (EEE) , 

amino butyric acid (ABA) and polyethylene glycol octadecyl ether (C1S(EO)1O) to 

identify the requirements for an optimal PPZ-liposome formulation. The structure and 

composition of the PPZ were determined by nuclear magnetic resonance, acid-base 

titrations and size exclusion chromatography. DifferentiaI scanniilg calorimetry and 

turbidimetry assays confirmed the temperature- and pH-sensitivity of the PPZ, 

respectively. It was shown that C1S(EO)1O allowed efficient fixation of PPZ to 

vesicles, while protonation of ABA induced acid-triggered release of an encapsulated 

marker from the PPZ-liposomes. Exposure to human serum, however, significantly 

reduced the acid-triggered release of the marker, ev en when the vesicles were 

PEGylated. Though release can be tuned by adjusting the composition and the 

amount of the PPZ anchored to liposomes, further optimization of the PPZ structure 

may be required to improve the release in the presence of serum. 

Keywords: Drug delivery, polyphosphazene, liposome, pH-sensitive, LCST, 

amphiphilic, ionizable. 
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CHAPTER 1: Colloidal drug carriers, 

1-1 Introduction 

Colloidal drug carriers (CDC) are dispersed systems, typically of nanometric 

particle size « 1 !lm in diameter), intended to selectively deliver therapeutics to their 

target. The development of such formulations is particularly important for medicines 

with poor clinical efficiency due to their physicochemical properties. For instance, 

severallow molecular weight drugs (LMWD) are hydrophobic and need solubilizers 

to prevent drug precipitation in the bloodstream and ensure adequate bioavailability. 

Furthermore, many drugs are subject to premature degradation and/or elimination by 

the system's metabolic pathways. Consequently, LMWD that are intravenously 

administered (i. v.) require high dosages to attain therapeutics levels at the intended 

site and frequently involve adverse effects at other sites. In order to circumvent these 

obstacles, CDC have been developed to lengthen the circulation time of drugs and to 

reach diseased tissues by both passive and active targeting. A variety of CDC has 

been designed for the delivery of different types of bioactives, that include both water 

soluble and insoluble LMWD, as well as hydrophilic macromolecules, such as 

peptides [Bickel et al., 2001; Seong et al., 2006] and genetic material [Masson et al., 

2004]. 

CDC can be designed to achieve targeting of specific tissue, especially solid 

tumors, using. the enhanced permeation and retention (EPR) effect [Maeda et al., 

2000]. Compared to healthy tissue, sol id tumors are characterized by porous, leaky 

vasculature (Figure 1-1). Thereby, suitable sized vectors (50-200 nm) are able to 

extravasate through the fenestrations of these blood vessels and reach the tissue 

interstitium. Moreover, the poor lymphatic drainage observed in the tumors will 

ensure that the vector remains in the vicinity of the diseased tissue where it might 
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release its payload. Therefore, the EPR effect not only allows for the drug to be 

targeted to diseased cells but also ensures local concentration of the active agent. 

Vasculature of healthy tissue 

Figure 1-1: The EPR effect. 

1 Vasculature in tumors and 

inflammations 

In order to efficiently benefit from the EPR effect, the CDC has to remain in 

blood circulation for extended periods of time. But free drug administration is often 

limited by the half-life of the drug in blood circulation. So the role of a vector is to 

transport the active drug, protect it during its circulation, and prevent it from early 

elimination, particularly by the mononuclear phagocyte system (MPS). In this aim, a 

CDC should present specific properties conceming its size and surface properties. For 

the former, the vector diameter should ideally lie between 50 nm and 200 nm. Smaller 

CDC are more likely taken up through the fenestrations of the hepatic sinusoidal 

endothelium [Braet et al., 1995], while colloids above 200 nm are often trapped in the 

spleen [Moghimi et al., 2001]. To avoid elimination by the MPS, CDC can be coated 

using biocompatible, flexible, hydrophilic and non-charged polymers, such as 

polyethylene glycol (PEG). PEG forms a highly hydrated and steric shield against 

protein adsorption and recognition by cells of the MPS [Allen et al., 2002]. Although 

PEG remains the most widespread polymer for the preparation of long-circulating 

colloids [Owens III and Peppas, 2006], several other polymers, such as poly-N-(2-
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hydroxypropyl)methacrylamide (PHPMA) [Duncan et al., 2001] and poly(N-vinyl­

pyrrolidone) (PVP) [Lukyanov and Torchilin, 2004], have been developed for the 

same purpose. Long-circulating CDC have also been conceptually proposed to serve 

as drug containing reservoirs in the bloodstream [Moghimi et al., 2001]. 

Along with the EPR effect, intracellular drug accumulation can be increased 

by active targeting to specified cells. This can be performed by associating a targeting 

residue, or ligand, to the vector. The ligand is able to recognize andfix to a distinct 

receptor on the surface of the target cells, inducing internalization of the CDC. This 

has been exploited for the targeting of tumors known to over express specifie surface' 

receptors, such as folate-receptor [Chung et al., 1993]. Various targeting moieties 

have been investigated inc1uding galactosal!line [Seymour et al., 2002; Haag and 

Kratz, 2006], transferrins [Sahoo et al., 2004], antibodies [Allen et al., 1994; Kocbek 

et al., 2007] and aptamers [Nutiu and Li, 2005]. 

Site-specifie concentration of the drug can also be promoted by designing 

"intelligent" CDC that react to an externally applied stimulus, such as heat [Kono, 

2001], ultrasound [Kost et al., 1989] or a magnetic field [Vyas and Jain, 1994], to 

provoke a localized release. Although such techniques were successful, they often 

require sophisticated equipment. In contrast, sorne physiological variations within the 

organism, like changes in pH [Yessine et al., 2003], can be used to drive the 

discharge of the therapeutic agent without external assistance. pH-sensitive CDC are 

formulated to retain the therapeutic while in circulation in the blood, which is neutral 

(pH = 7.4), and release their contents in more acidic compartments, such as tumor 

interstices and acidic organelles [Schmaljohann, 2006]. Regardless of the stimulus, 

drug release can be induced by two principal mechanisms: (i) if the drug is covalently 

bound to the colloid, environmental changes induce hydrolysis of the bond [Seymour 

et al., 2002]; (ii) if it is physically entrapped within the vector, leakage results from a 

sudden destabilization of the CDC [Connor et al., 1984; Lee, Shin et al., 2003]. 

The type of colloidal drug delivery system is chosen according to the drug's 

physico-chemical properties and the intended mechanism of delivery. The following 
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chapter presents an overview of various CDC that exploit these concepts culminating 

with a discussion of liposomes, which have been extensively used in this ,work. 

1-2 Drug-Polymer Conjugates 

Drug-polymer conjugates consist of biologically active agents, including 

peptides and LMWD, covalentlybound to a polymer. They have encountered a 

certain success, since several formulations have reached the market and many more 

are currently in clinical trial [Duncan, i006]. While other CDC are usually designed 

to physically incorporate the therapeutic, conjugation enhances the pharmacokinetics 

of the drug by creating new "chemical entities" [Duncan, 2003]. Conjugation 

generally enhances ~mor targeting, limits toxicity and increases circulation times of 

the active agent. Furthermore, the administration of hydrophobic LMWD can be 

facilitated by associating them to hydrophilic polymers, thus vastly improving their 

water-solubility. 

, The first model of drug-polymer conjugate was proposed by Ringsdorf in 

1975 (Figure 1-2) and consists ofthree basic elements: the polymer, the linker and the 

bioactive substance. Optionally, a targeting ligand can be conjugated for cell-specific 

intemalization [Duncan et al., 2001; Seymour et al., 2002]. According to the number 

and localization of sites for conjugation, several structures could be envisaged (Figure 

1-2). 



Ringsdorf's 

Model 

A (Iinear) 

polymer 

B (multiple-polymer conjugate) 

C (multiple-drug conjugate) 

5 

optional 

Figure 1-2: Schematic representation of Ringsdorfs model of a drug-polymer 
conjugate and examples of different structures that can arise from conjugation. Haag 
R and Kratz F.: Polymer therapeutics: Concepts and applications. Angew Chem Int 
Ed. 2006. 45. 1198-1215. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. 
Reproduced with permission. 
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Polymer properties are crucial to impart appropriate pharmacokinetics to the 

drug conjugate. First, a neutral, water-soluble and flexible macromolecular structure, 

like PEG, can create a barrier protecting the complex from immunogenic response. 

Secohdly, the molecular weight of the polymer should be high enough to pro long 

blood circulation and promo te the EPR effect. AlI the while, depending on the nature 

of the polymer, the molecular weight should be sufficiently low to aIlow renal 

clearance after drug delivery, since most polymers used in conjugation so far are not 

biodegradable [Duncan, 2006]. As for the drug itself, therapeutics such as peptides, 

oligonucleotides and LMWD are aIl potential candidates as long as they possess a 

functional group permitting conjugation. The linker may be a simple covalent bond or 

a spacer molecule. Polypeptide drugs are typicaIly conjugated directly to the polymer 

through amino acid residues bearing nucleophilic groups, such as cysteine and 

arginine, as weIl as at the amino and carboxylic termini of the peptidic backbone 

[Veronese, 2001]. On the other hand, LMWD could be conjugated to the polymer via 

cleavable spacers, such as acid labile peptide sequences [Duncan, 2007] and 

_ hydrazone linkages [Lee et al., 2006]. In such cases, the spacer is employed to release 

the LMWD at the site of action. 

Most polymer-peptide conjugates are formed using PEG to increase blood 

circulation times of therapeutic proteins (Figure 1-2A). One of the' first proteins 

conjugated to PEG was the enzyme L-asparaginase. Treatment of lymphoblastic 

leukemia necessitates frequent intramuscular administration of L-asparaginase in high 

doses, which causes allergic and toxic reactions. PEGylated L-asparaginase 

(Pegaspargase, commercialized by Enzon as Oncaspar~ demonstrated dràsticaIly 

improved anti-Iymphoma activity over the native enzyme [Graham, 2003]. In 

pharmacokinetic studies, Pegaspargase demonstrated a half-life of 357 ± 243 h, which 

was significantly longer than that of L-asparaginase (20 ± 6 h) [Ho et al., 1986]. 

Since Pegaspargase, several other PEGylated-peptides have been marketed for their 

capacity to increase plasma residence times of the peptide therapeutics, which include 

interferon alfa-2a (Pegasys® and Peginterferon®) and 2b (peg-Intron®), recombinant 
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methionyl human granulocyte colony stimulating factor (Neulasta®) and adenosine 

deaminase (Adagen~[Duncan et al., 2005; Hamidi et al., 2006]. 

Though peptide conjugation should ideally involve water-soluble polymers, 

one particular exception must be noted. The anti-tumor protein neocarzinostatin 

(NCS) was conjugated to the hydrophobie polymer polystyrene-maleic anhydride 

(SMA) to form SMANCS [Maeda et al., 1984]. Two chains of SMA were bound to 

the 1 st and 20th amino acids ofNCS, 1eading to a double polymer conjugate (Figure 1-

2B). In aqueous media, SMA presents a globular structure due to the c1ustering effect 

of the hydrophobie residues, pushing the carboxylate groups to the surface of the 

globule. Due to the hydrophobie nature of the complex, SMANCS was formulated 

with the lipid contrast medium Lipidol® and has been approved for the treatment of 

hepatocellular carcinoma in Japan [Duncan, 2006]. 

Since linear PEG possesses only two sites of conjugation, at each terminus, it 

often carries insufficient payload to meet therapeutic requirements for LMWD. A 

greater loading capacity can be achieved by using polymers with multiple linking 

sites along the chain (Figure 1-2C) [Duncan, 2006]. Incidentally, it also allows for the 

conjugation of a targeting moiety [Thatte et al., 2005]. This is the case with PHPMA 

which displays similar non-toxic and non-immunogenic character as PEG, but 

additionally possesses several sites of conjugation by substitution of the 2-

hydroxypropyl groups. Several anti-cancer drugs have been conjugated to PHPMA 

and are currently 111 clinical trials, including pac1itaxel, camptothecin, 

diaminocyc1ohexane palatinate and doxorubicin (Dox) [Duncan et al., 2001; Duncan, 

2006]. The latter was conjugated to the PHPMA backbone via a Gly-Phe-Leu-Gly 

linker, which is hydrolyzable in the acidic medium of lysosomes [Duncan, 2007]. A 

liver targeting moiety; galactosamine, was also linked to the terminus of the 

copolymer. The final complex, called PK2, was then tested for the treatment of 

hepatocellular carcinomas. In a phase 1 study, it was determined that 15-20% of 

injected dose accumulated in the liver of cancer patients, which was significantly 

higher than the localization of the non-targeted conjugate [Seymour et al., 2002]. 
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Depending on the initial dose, the accumulation of Dox in hepatic tumor was 12 to 

50-fold higher for PK2 than for the free drug, thus achieving notable tissue targeting. 

Drug-polymer conjugates have formed the framework upon which other CDC 

might be developed. In their simplicity, they have exploited the beneficial properties 

of polymers to keep therapeutic agents in circulation long enough to promote passive 

and active targeting. Their development has thus been adapted to generate advanced 

CDC with more complex structure and that will potentially allow more efficient 

formulation, administration and delivery of CUITent and future medicines. 

1 -3 Polymerie N anopartieles 

Polymeric nanoparticles (NP) are defined as sol id dispersions that can be 

categorized as either nanospheres or nanocapsules [Mohanraj and Chen, 2006]. The 

first are·matrix-like systems within which a drug can be dispersed whereas the second 

are vesicular structures made of a polymer membrane that confines the drug within an 

aqueous or oily core [Brigger et al., 2002]. NP have been developed for the delivery 

of various therapeutics including genetic material [Mao et al., 2001; Yang et al., 

2008], proteins [Watnasirichaikul et al., 2000; Sanchez et al., 2003] and LMWD 

[Gaucher et al., 2007; Haley and Frenkel, 2008]. 

NP offer several advantages for the delivery of therapeutics. With a wide 

range of materials and preparation methods, these versatile systems can improve the 

pharmacokinetics of bioactive compounds [Soppimath et al., 2001]. The release 
i 

kinetics of the drug can be controlled by the porosity of the polymeric network [Sant 

et al., 2005] as weil as influenced by the biodegradability and erosion of the polymers 

[Soppimath et al., 2001]. With the help of additives that prevent precipitation, they 

can form relatively stable dosage forms [Pinto Reis ét al., 2006]. Furthermore, NP . 
can be functionalized with ligands for active targeting [Farokhzad et· al., 2006; 

Kocbek et al., 2007]. It is a1so possible to PEGylate the NP to increase blood 

circulation and reduce recognition by the MPS, which is especially important since 

NP are often formed with hydrophobic polymers [Li et al., 2001]. 
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Several methods can be used for the preparation of NP [Pinto Reis et al., 

2006]. Nanocapsules are prepared by either interfacial polymerizatiQn or by the 

.polymer condensation method. For instance, nanocapsules with aqueous cores have 

been prepared by the polymerization of alkylcyanoacrylates at the interface of water­

in-oil emulsions [Lambert et al., 2000; Watnasirichaikul et al., 2000]. Stable 

emulsions are first prepared with an aqueous solution of the active agent, an oily 

phase and stabilizing emulsifiers. Afterwards, a solution of the mono mer is added to 

the mixture which is stirred until complete polymerization, leading to the formation 

of films around the droplets. The aqueous core makes such systems interesting 

candidates for the encapsulation of most biological macromolecules [Lambert et al., 

2000; Watnasirichaikul et al., 2000]. Similarly, nanocapsules with hydrophobie cores 

can be prepared by first forming oil-in-water emulsions in order to encapsulate 

lipophilic molecules [Al Khouri Fallouh et al., 1986]. 

The preparation of nanospheres is often based on oil-in-water emulsions 

followed by solvent evaporation. This method is especially used to prepare 

nanospheres with hydrophobie polymers, such polY(D,L-lactic acid) (PLA), 

poly(glycolic acid) (PGA), poly(lactide-co-glycolic acid) (PLGA) and pcilY(E­

caprolactone ) (peL) [Soppimath et al., 2001; Pinto Reis et al., 2006]. NP consisting 

of such polymers have the added advantage of being biodegradable over time in 

aqueous media [Park, 1994; Sanchez et al., 2003]. The size of the NP can be 

controlled using emulsifiers, such as surfactants and block copolymers. The latter can 

additionally be designed to remain attached to the surface to generate long-circulating 

formulations with well hydrated surfaces [Gaucher et al., 2007]. The NP can be 

collected by dialysis, filtration or ultra centrifugation, which also helps remove excess 

emulsifiers and to wash the partic1es. 

Another method to prepare nanospheres is nanoprecipitation of hydrophobie 

polymers. In one particular study, PEGylated NP were formed with amphiphilic block 

copolymers with large PLGA chains and shorter PEG segments [Farokhzad et al., 

2006]. PLGA-block-PEG was first dissolved with the drug, Docetaxel (Dtxl), in 

acetonitrile and added dropwise into water. Without the need of surfactants, the 
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diffusion of the organic phase allowed the PLGA block to precipitate, thus producing 

PEGylated nanospheres (d:::::: 153 nm) loaded with Dtx1. Furthermore, each PEG chain 

possessed a carboxylic acid at the terminus that permitted conjugation of aptamers to 

the NP for active-targeting. Targeted NP improved tumor regression for mice bearing 

prostate cancer cells with a 100% survival rate, whereas only 50% survival was 

observed in mice treated with non-targeted NP and ev en less when free Dtxl was 

administered [Farokhzad et al., 2006]. 

Hydrophilic polymers, such as chitosan [Calvo et al., 1997b; Obara et al., 

2005] and dextran [Kim et al., 2000] have been used to prepare nanospheres due to 

their biocompatibility. They are particularly used for the vectorization of hydrophilic 

bioactives like peptides [Soppimath et al., 2001]. For instance, protein-Ioaded NP 

have been formed with positively charged chitosan by the neutralization of its charges 

using a counter-ion, tripolyphosphate [Calvo et al., 1997a, b] .. Genetic material, 

which is negatively charged, can be incorporated into chitosan NP by similar 

electrostatic interactions 

There is a wide range of biodegradable and biocompatible materials available 

for the preparation of NP. Though many NP preparation methods lead to the 

vectorization different bioactive compounds, the size and polydispersity of the 

particles are sometimes difficult to control, especially for NP produced by nano­

precipitation [Mohanraj and Chen, 2006]. AIso, a marked burst release of the drug is 

noticed when it is located close to the surface of the NP [Mohanraj and Chen, 2006]. 

Nonetheless, NP often exhibit greater drug loading efficiency and stability than the 

following CDC, i.e. polymerie micelles. 

1 -4 Polymerie Micelles 

Micelles are colloidal structures formed by the spontaneous self-association of 

low molecular weight or polymerie amphiphiles in a solvent that is selective for either 

moi et y [Torchilin, 2001]. These molecules exist separately below their critical 

micelle concentration (cmc), above which they assemble into core-shell structures 
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[Torchilin, 2001; Torchilin, 2007]. Polymerie micelles (PM) are made of amphiphilic 

block copolymers which possess an inert hydrophilic block to form ,the hydrated 

corona and another segment to form the core. Depending on the composition of the 

core-forming segment, micellization can be driven by hydrophobie or electrostatic 

cohesive forces. In addition, the length and structure of the segments can' influence 

the size and stability of the micelles. Though PM aregenerally spherical in shape, the 

length of the polymer blocks [Zhang and Eisenberg, 1995; Zhang and Eisenberg, 

1996] and the solvent conditions [Shen et al., 1999; Choucair and Eisenberg, 2003] 

may impose other morphological arrangements, such as rods, tubules and lamellae. In 

non-polar organic solvents, it is also possible to form reverse-micelles, which consist 

of hydrophobie corona surrounding a hydrophilic core. However, the following 

discussion will be limited to spherical PM formed in aqueous media as they are the 

most applied in drug delivery research. 

PM offer several advantages, such as their capacity to solubilize or 

incorporate bioactives, their size that allows for efficient passive targeting, and the 

biocompatibility of available polymers [Yokoyama, 2005; Torchilin, 2007]. The 

hydrophilic chains in the corona can also prevent secondary aggregation of the 

micelles due to their hydration, while also stabilizing core formation. Finally, PM are 

good candidates for active targeting since they can be formed of stimuli-sensitive 

polymers and can often be functionalized by chemical conjugation of ligands on the 

surface of the corona. PM have b~en successfully designed for the encapsulation of 

poorly water-soluble drugs [Ramaswamy et al., 1997; Cavallaro et al., 2004; Huh et 

al., 2005; Elsabahy et al., 2007], genetic material [Kataoka et al., 1999; ltaka et al., 

2003; Dufresne et al., 2004] and proteins alike [Harada and Kataoka, 1998, 1999]. 

Amphiphilic copolymers typically possess cmc values around 10-6_10-7 M, 

whereas those of low molecular weight surfactants (LMWS) usually lie between 10-3 

and 10-4 M [Bae and Kataoka, 2005]. PM are therefore considerably more stable 

against dissociation than LMWS-micelles upon dilution. Hydration of the hydrophilic 

block also imparts a steric stabilization that prevents aggregation of the PM. 
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In the same manner as for NP, organic solvents can be used to introduce 

hydrophobic LMWD into the core. The poorly water-soluble drug and the amphiphile 

are first dissolved in an organic phase. The latter is then slowly removed from the 

medium, either by dialysis against water or by evaporation after addition of the 

aqueous phase. These methods allow the hydrophobic chains to associate and entrap 

the drug. Another approach is to covalently conjugate the poorly water-soluble drugs 

to the core-forming block of the polymers [Y okoyama et al., 1990; Y okoyama et al., 

1991]. This method increases loading efficacy, . ensures the delivery of high doses and 

prevents the agent from leaking out. In such instances, it is sometimes preferable that 

the bonds are cleaved when the vector reaches the target site to improve therapeutic 

activity. 

PM designed for the delivery of charged bioactives are called polyion 

complex (PIC) micelles and associate via electrostatic interactions [Harada and 

Kataoka, 1998; Kataoka et al., 1999; ltaka et al., 2003; Dufresne et al., 2004]. PIC 

micelles are formed of copolymers possessing a neutral hydrophilic segment and a 

polyionic block. The latter can complex with charged bioactives and then self­

associate. For instance, negatively charged genetic material can be associated to block 

copolymers with a polycationic segment to form the core of the PM. PIC micelles 

have been shown to protect therapeutic oligonucleotides from nuclease activity 

[Katayose and Kataoka, 1998] and improve their pharmacokinetics [Harada-Shiba et 

al., 2002]. 

The following example highlights the principal advantages of PM as CDC. 

Lee et al. (2003) prepared Dox-Ioaded, pH-sensitive mixed micelles (PHSM), 

targeted or not with folate ligand (PHSM/f) against a malignant breast cancer cell line 

(MCF-7) [Lee, Na et al., 2003]. The authors synthesized block copolymers consisting 

ofpoly(L-histidine) (polyHis) and PEG, which micellized under basic pH [Lee, Shin 

et al., 2003]. The polyHis block that formed the hydrophobic core of the micelles had 

two roles. First, it provided pH-sensitivity to the PM since protonation of the histidine 

groups under mildly acidic conditions made the core-forming block water-soluble, 

thus prompting disassembly of the micelles and the release of Dox [Lee, Shin et al., 
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2003]. Secondly, polyHis was selected for its endosomolytic properties and was 

expected to promote i intracellular drug delivery by destabilization of the endosome 

[Lee, Na et al., 2003]. PolyHis-block-PEG was formulated with 25 wt% PLA-block­

PEG' to lower the dissociation pH from 7.6 to 7.0 [Lee, Na et al., 2003]. This 

proportion of PLA-block-PEG was necessary to enhance micelle stability at pH 7.4 

and yet permit controlled release ofthe incorporated contents [Lee, Na et al., 2003]. 

PHSM and PHSM/fwere administered by i.v. injection into mice grafted with MCF-

7, where Dox accumulation was 5 times greater than in the tumors of mice treated 

with free Dox [Lee et al., 2005]. For mice bearing a drug resistant MCF -7 strain, 

PHSM/f maintained Dox delivery to the tumor cells, while Dox accumulation was 

50% lower after PHSM-treatment and undetectable after administration of the free 

drug [Lee et al., 2005]. 

As compared to nanospheres, the size of PM can be more easily controlled 

due to the way amphiphilic block copolymers self-assemble. Second, micelle 

formation is govemed by a dynamic structure that gives PM the potential for 

improved triggered release. Stimuli-responsive polymers can be employed to control 

disassembly and delivery of the therapeutic. In the final section of this chapter, we 

discuss liposomes, which are also formed by self-association of amphiphiles and can 

likewise be designed to respond to stimuli. 

1-5 Liposomes 

Liposomes are c10sed micro- or nanoparticulate vesic1es of one or more 

lamellae that are formed by the self-assembling of phospholipids [Lasic and 

, Templeton, 1996]. As the latter are typically found in the biological membranes of all 

living organisms, their biocompatibility makes liposomes good CDC candidates. 

Although liposomes are not composed of synthetic polymers, polymer chemistry has 

played a role in the design of liposomes for drug delivery. The following sections will 

begin with a synopsis of the structures and dynamics involved in liposome formation, 

followed by a brief review of the different types of liposomal vectors. 
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1-5.1 Liposome composition 

One of the principal benefits of liposomes is that the y can be prepared using 

natural amphiphiles. There are three major classes of natural lipids, as de~cribed in 

Table 1-1. The first class consists of phospholipids, specificaUy glycerophospholipids, 

which are fonned of a glycerol molecule bonded to a phosphate group to fonn the 

polar head group, and one or two fatty acids via ester linkages. The fatty acids 

generaUy vary in chain length (12, 14, 16 and 18 carbons) and unsaturation (l, 2 or 

3). The second class are the sphingolipids, since they are derivatives of the base 

structure, sphingosine. Sphingomyelin, which is often used for liposome preparation, 

may also be categorized as a phospholipid because it, too, possesses a phosphate 

group. The third type of naturaUy occurring lipids employed for liposomes is sterols, 

of which cholesterol (Chol) is the most commonly used. AU three classes of lipids 

have in common a lipidic domain and a hydrophilic head. These two regions account 

for the attraction of the hydrophobie tails and electrostatic repulsion of the 

hydrophobie heads. The sum of the attractive and repulsive forces results in the. self­

assembly of the amphiphiles in aqueous media. 
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Table 1-1: Classification of naturallipids used in liposome preparation 

Class 
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Note: The molecule shown here is 
cholesterol, which is the most common. 
Other natural sterols exist with different 
unsaturations and sites with additional 
methyl or ethyl groups. 

The molecular geometry of these lipids dictates their arrangement in aqueous 

media (Table 1-2). Phospholipids that possess a cylindrical shape associate into lipid 

bilayers. This arrangement is the most thermodynamically stable conformation since 

it allows minimal contact of water with the lipophilic chains. Conversely, lipids that 

possess a single alkyl chain per molecule are said to have an inverted conical shape 

and preferentially associate to form micelles. Finally, phospholipids with smaller 

head groups and unsaturated fatty acid chains possess a conical shape and self­

associate into a hexagonal phase, which can be illustrated as reverse micelle rods. The 

physical properties of liposomal membranes are typically controlled by lipid 

composition and can be influenced by the environmental conditions (temperature, pH, 
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etc.). Based on the desired membrane properties, synthetic lipids can also be designed 

to complement or replace naturally existing lipids. 

Table 1-2: Phospholipid geometry and aggregation 
permission from [Dowhan and Bogdanov, 2002]. 
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While liposomes are sometimes c1assified according to the method of 

preparation [Simard et al., 2007], it may be more intuitive to compare them by size 

and lamellarity [Sharma and Sharma, 1997; Simard et al., 2007]. When dried lipids 

are rehydrated, they form a heterogeneous dispersion of multilamellar vesic1es 

(ML V), ranging in size from 0.1 to 10 Ilm [Ulrich, 2002]. These vesic1es generally 

contain multiple lipid bilayers of concentric spheres [Deamer and Uster, 1983] and 

can also be called giant oligomeric vesic1es (GOV) [Simard et al., 2007]. Large 

unilamellar vesic1es (LUV) are between 100 and 400 nm in diameter and small 

unilamellar vesic1es (SUV) between 40 and 100 nm [Simard et al., 2007]. Sometimes, 

the term medium sized unilamellar vesic1es (MUV) is used for liposomes with a size 

distribution overlapping LUV and SUV [Simard et al., 2007]. 
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1-5.2 Liposome preparation 

Several met~ods exist to prepare liposomes, depending on the desired size and 

lamellarity. The first preparation of ML V was described by Bangham et al. (1965). 
, 

The lipids were solubilized in an organic solvent, like chloroform, which was 

removed by evaporation to obtain a dry. lipid film. Then, slow hydration under 

moderate agitation lead to ML V formation. The size of ML V can be tuned by 

vigorous vortexing, brief sonication or extrusion [Szoka and Papahadjopoulos, 1981]. 

Figure 1-3: Schematic representation for the preparation of MLV, LUV and SUV. 
Reproduced with permission from [Lasic, 1997]. 

LUV can be generated by several methods. First, extrusion of ML V with 

multiple passages through polycarbonate filters results in LUV with narrow size 

distribution [Deamer and Uster, 1983]. The second method is reverse-phase 

evaporation [Szoka and Papahadjopoulos, 1981], which consists of preparation of 

inversed micelles by first forming water-in-oil emulsions with lipids as emulsifiers 

and then sonication to homogenize the drop lets. Subsequent evaporation of the 

organic phase under reduced pressure allows the lipids to coalesce to form LUV 

[Deamer and Uster, 1983]. A last commonly used method is the detergent removal 
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method [Deamer and Uster, 1983]. Lipids and detergent are co-suspended 10 a 

concentrated aqueous phase. Dilution, often by gel filtration, removes the detergent 

and allows vesicle formation. 

Conceming SUV, there are primarily two methods used for their preparation: 

sonication and solvent-injection. The former consists of sonicating MLV su'spensions 

either using a probe or bath sonicator. Though the probe can provide more power and 

produces SUV in a few minutes, it might degrade the lipids and contaminate the , 

vesicles with metal impurities [Szoka and Papahadjopoulos, 1981]. Conversely, bath 

sonication allows for better control of the temperature and the lipid suspension may 

be manipulated in an inert atmosphere [Szoka and Papahadjopoulos, 1981]. The 

solvent-injection method implies that phospholipids, dissolved in a small volume of 

organic solvent like ethanol, are injected through a narrow syringe into a large 

aqueous medium where they self-assemble [Szoka and Papahadjopoulos, 1981]. The 

solvent is then subsequentlyremoved by filtration. A similar method replaces ethanol 

with diethyl ether. The aqueous medium is heated so that, as the organic solutionis 

inject~d, the ether is removed by evaporation and the SUV are formed. 

In this work, we used the extrusion method to produce LUV smaller than. 200 

nm in size. Amphiphilic polymers were included in the lipid composition in order to 

incorporate them into the bilayer. 

1-5.3 Liposomes for drug delivery 

The application of liposomes in drug delivery first arises from the possibility 

of encapsulating hydrophilic molecules in the aqueous inner compartment of the 

vesicles. It has also been established that hydrophobie drugs and amphiphilic 

molecules can be trapped into the lipid bilayer [Sharma and Sharma, 1997]. 

Incorporating amphiphilic polymers into the membrane has been particularly useful 

for the modification of liposome surface properties. Pharmaceutical liposomes can 

thus be classified on the basis of their composition, which places them in at least one 

of the following categories (Figure 1-4): conventionalliposomes, cationic liposomes, 
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targeted liposomes, 10ng-circu1ating (stealth) liposomes [Storm and Cromme1in, 

1998]. Each of these categories has its particularly intended applications [Storm and 

Crommelin, 1998], yet recent developments are seeking to combine these 

technologies. 

Conventional 

Targeted 

Figure 1-4: Schematic representation of the four major categories of liposomes 
Reproduced with permission from [Storm and Crommelin, 1998]. 

Conventional liposomes are by far the simp1est type, constituted main1y of 

bi1ayer-forming phospholipids. These are the basis for the deve10pment of aU other 

types of liposomes. Their application in drug de1ivery has been 1imited by uptake by 

the MPS [Storm and Crommelin, 1998], yet the rate of elimination is dependent on 

the 1ipids selected for the formulation [Gabizon and D, 1988]. On the other hand, 

cationic liposomes, or liposomes formed with positively charged lipids, are 

particu1arly efficient for the complexation and formulation of genetic materia1 [Lasic 

and Temp1eton, 1996; Huang, 2008]. As for aU the CDC seen so far, targeted 

liposomes can be formed by fixing recognition ligands to the phospho1ipid surface. 

For instance, antibodies can be grafted to the surface of the liposome, forming 

immunoliposomes [Torchi1in, 2006; Khaw et al., 2007]. To overcome premature 

elimination, 10ng-circulating liposomes can be generated by the addition of PEG-
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conjugated lipids to the liposome composition [Ulrich, 2002]. Several long­

circulating liposome' formulations are on the market or in clinical studies for the 

passive targeting of cancers [Sharma and Sharma, 1997]. 

, The inherent contradiction with long-circulating liposomes for drug delivery is 

that the contents are required to be released for therapeutic activity. Stimuli-sensitive 

liposomes have thus gained noteworthiness for the triggered discharge of 

encapsulated agents [Kono et al., 1994; Kono et al., 1999; Drummond et al., 2000; 

Simoes et al., 2004; Ishida et al., 2006; Karanth and Murthy, 2007; Huang, 2008]. 

pH-sensitive liposomes can use natural physiological changes in pH to release the 

contents. The first pH-sensitive vesicles were generated using positively charged 

phospholipids with an inversed conical shape, dioleoyl phosphatidylethanolamine 

(DOPE), that were stabilized by mildly acidic amphiphiles to form bilayers [Connor 

et al., 1984]. When the medium was acidified, the amphiphiles were protonated, 

destabilizing the hydrophobie interactions within the bilayer. The liposomes thus 

became fusogenic and the encapsulated material was released [Ellens et al., 1984, 

1985]. Other pH..:responsive liposomes have since been developed, employing various 

mechanisms, such as fusogenic peptides [Subbarao et al., 1987], pH-sensitive 

polymers [Yong-Hee et al., 1994] and acid-labile bonds [Guo and Szoka, 2001; 

Boomer et al., 2003]. These are discussed in more depth in the fourth chapter of this 

thesis. 

More recently, advanced liposomal CDC have beendeveloped, combining the 

different types of liposomes. For instance, it was possible to formulate vesicles with 

both pH-sensitive polymers and PEG-lipids in order to produce ~H-responsive, long­

circulating liposomes [Roux et al., 2004]. Others prepared vesicles by stabilizing 

DOPE with lipids conjugated to PEG using acid labile bonds [Hong et al., 2002]. 

Cleavage of PEG induced liposomal fusion and leakage of the contents. Long­

circulating immunoliposomes have also been developed by decorating the surface of 

the vesicles with both PEG and monoclonal antibody conjugates [Allen et al., 1995; 

Maruyama et al., 1997]. Currently, liposomal delivery systems are being developed 

bearing all three features: long-circulation, target-mediated and stimuli-induced 
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release [Mastrobattista et al., 1999]. In addition to this, numerous polymers are being 

investigated for either their capability to shield liposomes or their response to stimuli. 

Indeed, we propose poly(phosphazenes) for the pH-induced drug release from 

liposomes. In the following chapter, we review the history and principles of 

phosphazene chemistry, as well as the various applications of poly(phosphazenes), 

including drug delivery. 



CHAPTER II: Poly(phosphazenes) - Poly~alent 

polymers 

11-1 Introduction to poly(phosphazenes) 

The term phosphazene refers to molecules possessing a phosphorus and 

nitrogen atom linked by a double bond [Allcock, 2002]. Therefore, 

poly(phosphazenes) (PPZ) are linear or cyclic chains of altemating phosphorus and 

nitrogen atoms, as depicted in Figure II-l. 

Figure II-l: The general structure ofPPZ 

In fact, the backbone of PPZ resembles a conjugated system since there is an 

observed contraction of the length of the cr-bonds in comparison to normal P-N bonds 

[Allcock, 1972]. Note that, in a phosphazene repeat unit, two other functional groups 

are linked to the phosphorus atom. The nature of these pendant groups alters the 

physicochemical properties of the polymers. Rence, phosphazene chemistry has been 

especially dedicated to the synthesis and modification of PPZ. Numerous side groups, 

organic, inorganic and organometallic, have been used to generate PPZ with a wide 

range ofproperties [Mark et al., 1992]. Thepresent chapter will give a brief overview 

of the history of phosphazene chemistry and the versatility of PPZ through the 

different synthetic approaches and sorne of their applications. 
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11-2 Poly(phosphazene) synthesis 

The history 'of phosphazene chemistry dates back to the 19th century, before 

Lewis proposed his theory on bonding [Lewis, 1916], and well before the term 

polymer was universally accepted [Staudinger, 1920]. In 1850, Laurent proposed that 

the white precipitate formed by heating phosphorus pentachloride (PCls) with 

ammonia (NH3) should simply be CbPN [Laurent, 1850]. Over ten years later, 

Gladstone confirmed that the product more likely possessed the empirical formula 

P3N3Cl6 [Gladstone. and Holmes, 1864], or three times the formula proposed by 

Laurent. Near the end of the century, Stokes obtained sorne groundbreaking results, 

isolating and characterizing a series of four phosphonitrilic chlorides, [CbPNh-7, also 

multiples of Laurent's formula [Stokes, 1897]. Stokes suggested that these were 

cyclic polymers, and the trimer was the primary solid product [Stokes, 1895]. The 

structure of the trimer, hexachlorocyclotriphosphazene (HCTP, Figure 11-2), was 

properly defined several decàdes later [Jaeger and Beintema, 1932]. 

Figure II-2: Hexachlorocyclotriphosphazene 

In addition to this, Stokes noticed that, upon further heating, these cyclic 

molecules were transformed into a highly elastic inorganic rubber that was insoluble 

in neutral solvents, yet swelled in benzene [Stokes, 1897]. This substance had a 

complex structure and high molecular weight but he failed toanalyze it precisely as it 

broke down to a mixture of smaller molecules. 1t was later determined that the 

inorganic rubber swelled in benzene because it was highly cross-linked [Meyer et al., 

1936]. In 1962, Shaw et al. rightly proposed to replace the term phosphonitrilic 
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chlaride for phasphazene because of the double bond between phosphorus and 

nitrogen [Shaw et al., 1962]. In the mid-1960's, Allcock et al. finally fine-tuned 

Stokes' polymerization procedure to ob tain high molecular single chains of 

polydichlorophosphazene (PDCP), where the side groups are chlorides. Today, PDCP 

is a precursor to most functional PPZ by the substitution of the chlorine side-groups. 

In the following section, we shall first discuss the conclusions of Allcock's initial 

work which has led to the vastly employed "thermal ring-opening polymerization. We 

will then examine the evolution of the alternative condensation polymerization 

procedures as well as the post-polymerization modifications that impart stability and 

functionality to these polymers. 

11-2.1 Thermal ril1g-opening polynlerization 

The major problem with Stokes's polymer was its hydrolytic instability, due 

to the reactivity of the phosphorous-chlorine bonds. Stabilization of the polymer 

required the synthesis of a linear PDCP that wou Id be soluble in a suitable solvent for 

side-group substitution. Allcock et al. (1964) first noted that, unlike condensation 

reactions, there was no leaving group in this polymerization as the empirical formula 

essentially remained the same. Conductivity data obtained during polymerization 

suggested that heating induced dissociation of a chloride ion, which permitted 

nucleophilic attack by the nitrogen from a neighboring HCTP [Allcock and Best, 

1964]. Hence, the mechanism for the ring-opening polymerizationwas elucidated, as 

depicted in Figure 11-3. Later, careful control of the reaction time, temperature and the 

purity of HCTP yielded linear PDCP that was soluble in several aprotic solvents (e.g. 

THF) and could subsequently be substituted with various nucleophiles [Allcock and 

Kugel, 1965, 1966; Allcock et al., 1966]. These reactions will be further discussed 

with other post-polymerization modifications. 
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Figure II-3: Mechanism of thermal ring-opening polymerization ofHCTP. 

, Thermal ring-opening polymerization is usually performed in the bulk state in 

closed tubes. Trace impurities such as water [Allcock et al., 1975] and Lewis acids 

[Hergenrother et al., 1986; Sohn et al., 1995] can catalyze the reactions. 

Cyclotriphosphazenes bearing good leaving groups, such as other halogens, can be 

polymerized in the same way. However, the temperature of the reaction should be 

adjusted accordingly. For example, hexafluorocyclotriphosphazene polymerizes at 

350 oC instead of 250 oC because of the strength of the phosphorus-fluorine bond 

[Seel and Langer, 1956]. 

The thermal ring-opening polymerization of HCTP possesses several 

advantages. First, polymers of very high molecular weight, over 100,000 g mor l
, can 

be generated by this method. Regularly altemating repeat units can also be formed by 

partially substituting sorne of the chlorines on HCTP prior to polymerization [Allcock 

et al., 1978; Allcock et al., 1990]. To this end, no more than 2 or 3 chlorides should 

be replaced to prevent over-stabilization of the trimeric unit, unless trans-annular 

-organic or ferrocenyl species are substituted on the ring [Allcock et al., 1991]. It is 
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believed that the strain imposed by these substituents on the cyclic monomer 

promotes ring-opening upon heating. The lower reactivity of substituted­

cyclotriphosphazenes can generally help limit the rate of chain elongation wh en 

desired. The principal disadvantages of the ring-opening procedure are the high 

polydispersity of the resulting PPZ (> 2) and the difticulty to control the molecular 

weight. 

11-2.2 Condensation polymerization 

Although the ring-opening polymerization is the most popular synthesis 

pathway for the preparation of PDCP, condensation polymerization offers several 

advantages that are particularly interesting for the preparation of CDC. Sorne of the 

methods could be simply transposed in industrial settings while others give access to 

polymers with controlled chain length and low polydispersity. Furthermore, they may 

lead to PPZ with different and precise structures. The following will describe the 

synthesis and polymerization of three types of condensation monomers, presenting 

for each their synthetic advantages and disadvantages. 

11-2.2.1 Condensation of phosphorus pentachloride and ammonia 

The tirst condensation polymerization is based on the same starting blocks as 

for the preparation of HCTP. However, Hombaker et al. (1980) developed an 

industrial process for the synthesis of short oligomers. Since manipulation of PCIs is 

delicate on large scales, it was prepared in situ prior to the addition of ammonia. 

Liquid PCb was tirst fed along with gaseous chlorine (Ch) into a chlorobenzene 

tilled reactor set between 100 and 140 oC, followed by addition of ammonia or 

ammonium chloride (Figure 1I-4). Controlling the feed to have a slight excess in PCb 

yielded linear PPZ with 2 to 9 repeat units [Hombaker and Li, 1980]. 
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NH3(g) + -
PCI3(l) + CI2(g) -------1 ....... CI-tPCI2NtPCI3 PCl6 + HCI 

Chlorobenzene 2-9 

100-140 Oc 

Figure IIA: Preparation of short PPZ oligomers 

After oligomerization, the temperature can be increased to 140-160 oC and 

NH4CI added to the reactor to link the short chains together, forming PPZ up to 6900 

g mOrl [Pettigrew et al., 1983]. This method offers the advantages ofusing affordable 

reactants and modest polymerization temperatures (160 vs. 250 oC for ring-opening). 

Nevertheless, this technique leads to considerable losses as cyclic side-products and 

short polymer chains. 

11-2.2.2 Synthesis and polymerization of CI3P=NP(O)Ch 

CbP=NP(O)Ch is a moi sture sensitive, inorganic solid that could be 

polymerized to form PPZ with higher molecular weight than the previous method. It 

was most efficiently obtained by heating PCIs with ammonium sulfate (Figure II-5). 

Figure II -5: Synthesis of ChP=NP(O)Ch 

This reaction achieved a 100%, high purity yield since all of the side products 

are gaseous and readily removed from the reaction medium [Emsley et al., 1971]. The 

monomer polymerizes by heating above 240 oC and is monitored by the removal of 

gaseous OPCh from the reaction medium [D'Halliun and De Jaeger, 1989]. When 

ChP=NP(O)Ch was heated to 245 oC, OP Ch production was no longer detected in 

the vessel after 7.7 h and 95% completion of the reaction [D'Halliun et al., 1992]. 

Further heating for two additional hours at 276 oC improved the conversion to almost 
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98%. This approach presents the advantages of cheap starting blocks and simplicity 

of the reaction conditions. Conversely, the molecular weight of the P:PZ cannot be 

controlled nor reach the chain lengths obtained by ring-opening polymerization. The 

polymerization of ChP=NP(O)Clz also displays a broader weight distribution than the 

next method using (trimethylsilyl)phosphoranimines. 

11-2.2.3 Synthesis and polymerization of 
(trimethylsilyl)phosphoranimine 

Most recently, PDCP has been synthesized by "living" cationic 

polymerization of trichloro(trimethylsilyl)phosphoranimine (ChP=NSiMe3). The 

application of the ChP=NSiMe3 was at first strongly disadvantaged by typically low 

synthesis yields, around 20% [Niecke and Bitter, 1973]. This procedure consisted of 

reacting. PCIs with LiN(SiMe3h at 10 oc. Subsequent attempts to improve the 

synthesis of ChP=NSiMe3 were limited to 60% yields [Honeyman et al., 1994; 

Allcock, Crane et al., 1999]. It was later proposed to replace PCls with the less 

reactive PCh [Wang et al., 2002] when it was discovered that the former can initiate 

polymerization [Honeyman et al., 1995; Allcock et al., 1996]. The optimized reaction 

scheme was as follows: 

Et20 
OoC 

--~~--;....... C13P NSi(CH3h + ClSi(CH3h 
- S02 

Figure II-6: The optimized synthesis pathway for ChP=NSiMe3. 

As shown in Figure 11-6, the second step consists in oxidation of the 

intermediate product, ChPN(SiMe3)2, by sulfuryl chloride (S02Clz) to produce the 
1 

phosphoranimine. More than 80% yields were consistently obtained with over 98% 
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purity [Wang et al., 2002]. ChP=NSiMe3 is il clear, oily and reactive liquid that can 

polymerize or cyclize at room temperature [AIlcock, Crane et al., 1999] and, 

therefore, must be ston;:d carefully under dry conditions at -20°C. Also, Me3SiCl must 

be removed as it was found to inhibit chain propagation during polymerization. 

Two groups collaborated and studied the polymerization of ChP=NSiMe3 

catalyzed by several Lewis acids, including PCls [Honeyman et al., 1995; AIlcock et 

al., 1996]. The synthesis can be carried out in the bulk phase as weIl as in several 

solvents. Methylene chloride and hexanes allowed the synthesis of polymers with the 

lowest polydispersity. The initiation and chain propagation steps are shown in Figure 

II-7. 

+2 pels + 
Initiation C13P N-PC13 PC16 

Propagation 

Figure II-7: PDCP synthesis by the "living" cationic polymerization of ChP=NSiMe3. 

Indeed, this procedure was a breakthrough in the preparation of PD CP for 

several reasons. Firstly, most methods required considerable heating, whereas the 

cationic polymerization procedure could be carried out at room temperature, which is 

especially convenient for large scale synthesis. Secondly, "living" cationic 

polymerization allows good control of the chain length, since monomeric units could 

be added to the ionized termini, which remain active until the phosphorus-chloride 

bonds are substituted after polymerization. The desired polymer chain length could be 

obtained with narrow polydispersity by varying the monomer:initiator ratio. 

Furthermore, PCls as weIl as "living" pol ymer chains can initiate the polymerization 

of mono and bise organo )phosphoranimines to produce phosphazene block copolymers 

[AIlcock, Nelson et al., 1997; AIlcock, Reeves et al., 1997; AIlcock et al., 2000; 

AIlcock et al., 2001]. Various initiators have been designed for the synthesis of PPZ 
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dendrimers [Cho and Allcock, 2007], star-shaped polymers [Nelson and Allcock, 

1997], telechelic [Allcock, Nelson et al., 1999] and block copolymers [Nelson et al., 

1998; Prange et al., 2000; Chang, Bender et al., 2002; Chang, Prange et al., 2002]. 

Polytnerization of triC organo )phosphoranimine has also been developed, but one of 

the substituents must be a good leaving group, such as trifluoroethanolate [Wisian­

Neilson and Neilson, 1980; Neilson et al., 1987; Matyjaszewski et al., 1992; 

Matyjaszewski et al., 1993]. Since the phosphorus atoms were already substituted, the 

resulting PPZ did not require post-polymerization modifications. However, this 

polymerization reaction required heating over 190 oC and produced polymer batches 

with broad size distributions . 

11-2.3 . Post-polymerization modifications 

Traditional polymers are generally limited by the different types of available 

monomers. Furthermore, the reactivity of these monomers influences their even 

distribution along the backbone of random copolymers. However, macromolecular 

substitution of PDCP overcomes these challenges with the availability of a large 

variety of potential side-groups and the reactivity of the P-Cl bonds. It is thus an 

indispensable route to the preparation of a wide range of PPZ with customized 

physical and chemical properties. 

The macromolecular substitution process consists of a nucleophilic attack on 

the labile phosphorus-halide bond to graft new side-groups along the PPZ backbone. 

A multitude of nucleophiles can be generated from alcohols [Alléock et al., 1986], 

primary or secondary amines [Allcock et al., 1972; Allcock et al., 1977] and 

organometallic compounds [Diaz and Valenzuela, 2006]. Hence, researchers have 

access to an innumerable possibility of polymers with tailored properties and 

functionality. The cyclic monomer, HCTP, can be used as model for PDCP 

.. substitution, especially since it is commercially available in a pure form. 

Secondary reactions can also be carried out onthe organic side-groups. For 

instance, there are many ways to cross-link PPZ depending on the nature of the side­

groups. PPZ with alkoxy substituents can be covalently cross-linked by irradiating 
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with gamma [Allcock et al., 1988] or UV rays [Nelson et al., 1991]. Similarly, 

hydrolysis of side-groups bearing ethyl-ester groups have lead to P~Z that form 

networks through ionic intermolecular bonding [Allcock and Kwon, 1989; Cohen et 

al., 1990]. In addition to cross-linking, other secondary reactions inc1ude numerous 

protection, deprotection and functionalization chemistry [Allcock, 2006]. These 

primary and secondary transformations have helped design PPZ for various 

applications. Sorne examples are described in the following section. 

11-3 Applications of poly(phosphazenes) 

11-3.1 Industrial applications of poly(phosphazene) 
materials 

Synthetic polymers have become more prevalent in everyday settings. PPZ are 

finding their niche in il wide range of applications as a result of developments in 

material science. In this field of research, PPZ are characterized by their 

hydrophobic/hydrophilic properties, which dictate the behaviour of the polymer in 

different solvents. They are also described by their physical properties in the solid 

state. Since solid PPZ are generally amorphous, the parameter most often evaluated is 

the glass transition temperature (Tg). High Tg values indicate brittle solids, while 

polymeric materials with low Tg are more malleable. 

Since Stokes first described the polymer as an inorganic rubber, PPZ have 

logically been used as elastomeric materials. The elastic properties of PPZ are due to 

the flexibility of the phosphazene backbone [Allcock, 2002]. In the case ofPDCP, the 

smallsize of the chlorine atoms also allow for increased mobility of the chains as 

expressed by sub-zero Tg values. Substituting the P-Cl bonds with small, flexible 

organic side groups, such as alkyloxy [Reynard and Rose, 1974], aryloxy [Futamura 

et al., 1980] and organosilicons side groups [Allcock and Brennan, 1988], can 

produce stable elastomeric PPZ. By using combinations of different, randomly 

substituted side-groups, it is possible to avoid the formation of crystalline domains 

and to lower the Tg [Reynard and Rose, 1974]. In contrast, cross-linking and the 
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addition of fillers, such as iron oxide, help in reducing the elasticity of the material 

[Mitchell and Obester, 1980; Mueller and Landry, 1989]. Particular characteristics of 

PPZ elastomers inc1ude improved flexibility at low temperatures, resistance to 

hydrocarbons, flame retardation, and insulation to heat, sound and electrical currents. 

They can therefore be used in fuel lines, seais and junctions for aeronautic and 

automotive applications, or blended with other polymeric fibers, such as 

polypropylene [Zhang and Horrocks, 2003] to form flame-retardant textiles. 

PPZ elastomers are also useful as soUd so/vents for metal cations to form 

polymer electrolytes. Normally, polyethylene oxides (PEO), which are semi­

crystalline in the solid state can coordinate lithium salts in their amorphous regions, 

and so are used as soIid conducting matrices for rechargeable batteries [Armand and 

Duc1ot, 1981; Armand, 1986]. In contrast, poly(bis-methoxyethoxyethoxy­

phosphazene) (MEEP) can form a completely amorphous solid that exhibits a 

conductivity 2.5 orders of magnitude greater than PEO [Blonsky et al., 1986]. The 

flexibility of MEEP's side-groups helps coordination of the lithium ions while 

improving the migration of the salts through the polymer matrix [Blonsky et al., 

1984; Allcock et al., 1986]. 

PPZ have also been proposed for the design of optical devices. Phenyl-, 

biphenyl- or naphthyl-substituted PPZ are able to form thin films with refractive 

indices on average 0.1 higher than ·liquid phenol, biphenol and naphthalene by 

increasing 1t-electron density [Olshavsky and Allcock, 1995]. These films were 

essentially transparent in the entire visible spectrum, except for naphthyl-substituted 

PPZ, which eut-off near UV light. Such PPZ usually form crystalline or liquid 

crystalline structures when decorated with a single substituent, while PPZ with 

different side-groups co-substituted are generally amorphous. PPZ with chiral 

biphenyl groups formed liquid crystals with high Tg values [Allcock and Klingenberg, 

1995] whereas PPZ with combinations of these side-groups formed refractive films 

that were both transparent and amorphous at room temperature [Allcock et al., 1998]. 
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11-3.2 Biomedical applications of poly(phosphazenes) 

Significant ,research advances have made PPZ promising candidates for 

numerous biomedical applications. Careful selection of side-groups for 

macromolecular substitution has lead to the synthesis of a variety safe, non-toxic PPZ 

with biological functionality. The choice is first evaluated by the desired physical 

properties, namely: elastomers to glasses, hydrophilic to hydrophobie, bioinert to 

bioactive materials, and electrical conductors to insulators [Honarkar and Rahimi, 

2007]. However, for biological considerations, the polymers are required to induce 

minimal immune response and resist fungal and bacterial colonization, which can also 

be regulated by careful selection of the side-groups [Laurencin et al., 2003]. It is 

impossible to give an account of all the potential biomedieal applications of PPZ in 

very few pages. Therefore, the final part of this chapter is dedicated to highlighting 

the biologically relevant properties that can be imparted to the phosphazene backbone 

through examples of PPZ as solid biomaterials, and hydrophilic pharmaceutical 

systems, inc1uding CDC. 

11-3.2.1 Biomedical poly(phosphazene) materials 

As previously mentioned, PPZ have been extensively used for their 

elastomeric properties. Poly(fluoroalkoxyphosphazenes) (PF AP) have been 

particularly promising for the coating of implants and prosthetics. For example, 

denture liners have been developed with PF AP to improve durability, comfort and 

stress relief by strategically controlling the softness of the elastomer throughout the 

lining [Gettleman and Gebert, 1987]. In another application, they are proposed to coat 

surgi cal implants [Grunze and Gries, 2007]. For instance, metallic coronary stents 

have been coated to aid arterial healing [Verweire et al., 2000]. 

PPZ have also been widely investigated as scaffolds for tissue engineering. 

The concept is based on implanting three-dimensional polymeric networks where 

cells can adhere and proliferate to restore, regenerate or improve tissue functions 

[Langer and Vacanti, 1993]. Different PPZ scaffolds have been designed to guide 
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nerve regeneration [Aldini et al., 1997], hepatocyte adherence and proliferation 

[Heyde et al., 2007], as weIl as bone repair [Nukavarapu et al., 2008]. The PPZ in 

question are generally of variable porosity and possess Tg values above physiological 

temperatures. 

11-3.2.2 Pharmaceutical app1ications of poly(phosphazenes) 

Polymers with various biologically relevant ,properties have been developed 

for in vivo applications, particularly where water-solubility is required. For this 

reason, the design of PPZ with hydrophilic character represents a rapidly expanding 

subfield of research. A vast array of water-soluble side-groups is available for the 

synthesis of PPZ that can be applied in pharmaceutical settings. For instance, it was 

noticed that alkyl ether-substituted PPZ in aqueous solution possess a lower critical 

solution temperature (LCST). This phenomenon consists of a coil-to-globule phase 

transition that occurs upon heating. By varying the nature of the substituents, the 

LCST can be adjusted to physiological temperatures [Allcock et al., 1992; AUcock 

and Dudley, 1996]. Cross-linked, temperature-sensitive PPZ can form hydrogels that 

expand and swell upon cooling below the LCST and collapse upon heating. 

Biodegradable PPZ can also be synthesized by grafting amino acid esters [Crommen 

et al., 1992a, b] or imidazole [Allcock et al., 1982; Andrianov et al., 2005] si de­

groups. These substituents can be cleaved from the polymer by intramolecular or 

intermolecular catalysis [Allcock et al., 1994]. The phosphazene backbone might then 

be exposed to nucleophl1ic attack by water and the subsequent rupturing of 

phosphorus-nitrogen bonds [Schacht et al., 1996; Andrianov, 2006]. The final product 

of complete degradation is a mixture of phosphate, ammonia and the free side-groups. 

Furthermore, it is possible to combine thermo-sensitivity and biodegradability 

through co-substitution of PDCP with appropriate side-groups [Lee et al., 1999]. 

Recently, biodegradable hydrogel implants have been developed with PPZ for tissue 

engineering [Sethuraman et al., 2006] and drug delivery [Kang et al., 2006] 

applications. 
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One of the major application of PPZ consists of an adjuvant for vaccines 

[Andrianov, 2006]. It is understood that when antigens are physically or chemically 

bound to polymers, ' the immune response is improved over the free antigen as a result 

of aggregation of the antigens [Cairo et al., 2002; Kabanov, 2004]. The first and most 

studied PPZ immunoadjuvant is poly[ die carboxylatophenoxy)phosphazene] (PCPP), 

which has been shown to considerably increase immune response for numerous 

infections, such as herpes and hepatitis B, by physically complexing antigens 

[Andrianov, 2006]. Many derivatives of PCPP have been investigated as improved 

immunoadjuvants, including - poly[ die carboxylatoethylphenoxy)phosphazene] 

[Mutwiri et al., 2007]. The latter has been shown to increase immune response up to 

10 times more than PCPP [Andrianov et al., 2006]. 

PPZ have also become significant candidates for the development of CDC. 

Spacer molecules can be bound to the backbone through macromolecular substitution 

and used to conjugate anti-cancer drugs, such as Dox [Song et al., 1999] and 

platinum(II) derivatives [Sohn et al., 1997; Song et al., 2005]. Co-substitution with 

short PEG molecules enhances tumor accumulation by the EPR effect [Jun et al., 

2005]. Colloidal micro and nanoparticles can be formed from dispersed PPZ 

hydrogels. As they consist of polymeric matrices entrapping water, they are suitable 

vectors for water-soluble therapeutics, such as peptides [Veronese et al., 1998; 

Caliceti et al., 2000] and DNA [Yang et al., 2008]. Furthermore, the rate ofrelease of 

encapsulated agents can be regulated if the matrix is biodegradable [Laurencin et al., 

1987]. PPZ-based nanoparticles can also be surface modified to increase in vivo 

circulation times [Vandorpe et al., 1996; Vandorpe et al., 1997]. 

Zhang et al. published a series of articles that focused on synthesizing 

thermosensitive amphiphiles that can be used to generate micelles by randomly co­

grafting oligomeric poly(N-isopropylacrylamide) (PNIP AM) and different amino acid 

esters [Zhang et al., 2004; Zhang, Li et al., 2006; Zhang, Qiu, Jin et al., 2006b, a; 

Zhang, Qiu, Wu et al., 2006]. PNIPAM, which possesses a LCST be10w 37 oC, forms 

the corona of the micellar structures with relatively broad size distributions. When 

solution temperature exceeded the LCST, PPZ co-substituted with PNIP AM and ethyl 
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glycinate aggregated with a narrow uni modal size distribution [Zhang, Qiu, Wu et al., 

2006]. It was then found that the actual morphology of PPZ aggregation,depended on 

the proportion of the substituents on the backbone and the organic solvent used in 

preparation [Zhang, Qiu, Jin et al., 2006a]. When ethyl tryptophan was co-substituted 

with PNIP AM, PPZ micelles were able to encapsulate several structurally different 

hydrophobie LMWn, su ch as indomethacin [Zhang, Li et al., 2006]. Indomethacin­

loaded PPZ micelles, tested in vivo in a rat model, showed increased plasma retenti on 

over the free drug and seemed to be best suited for local sustained release for 

treatment of arthritis [Zhang, Li et al., 2006]. 

PPZ are proven to be a promising family of polymers. We have reviewed the 

evolution, improvements and synthetic versatility that have made PPZ candidates for 

numerous biomedical applications, inc1uding for the developmentof cne. The focus 

of the following chapters is the application oftri-substituted PPZ for the development 

of pH -responsive liposomes. 

11-4 Research hypothesis and objectives 

"Intelligent" polymers that respond to environmental stimuli have been used 

to trigger the release of liposome-encapsulated drugs. Polyanions have received 

particular attention for their property of conferring pH-sensitivity to liposomes. As 

first reported by Couffin-Hoarau and Leroux (2004), pH-responsive vesic1es can be 

generated using customized amphiphilic and polyanionic PPZ. These PPZ were 

synthesized with three pendant groups, in particular an amino acid substituent, which 

was intended to provide both pH-sensitivity and potential biodegradability. However, 

PPZ-liposomes that were first reported were not stable at pH 7.4 and 37 oC, normal 

physiological conditions in the blood, and leakage of encapsulated marker was 

observed. Based on these results, it was necessary to determine the requirements for 

an optimized PPZ-liposome formulation, especially in the composition of the PPZ. 

In order to do so, we established the following objectives: 

1. Synthesize a set of pH -sensitive PPZ, varying the ratios of the three substituents. 
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2. Characterize the PPZ for composition, as weIl as pH- and temperature-dependent 

phase transitions. 

3. Evaluate the biodegradability of the PPZ. This feature was not considered in the 

previous report and it appeared important to determine whether this aspect was 

truly advantageous. 

4. Determine the efficiency ofPPZ fixation to the surface ofliposomes. 

5. Evaluate the release kinetics of PPZ-liposomes at different pH, before and after 

serum exposure. 

These objectives were completed through the series of experiments described 

in the following chapter, which is a copy of the manuscript submitted for future 

publication in the book Biomedical Applications ofPolyphosphazenes, edited by 

Alexander K. Andrianov (Publisher, John-Whiley and Sons). 
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111-1 Abstract 

Amphiphilic ionizable poly( organophosphazenes) (PPZ) were investigated for 

the preparation of pH-sensitive liposomes, which are designed to deliver drugs from 

the intracellular acidic organelles· to the cytoplasm. Randomly grafted PPZ were 

synthesized with different ratios of diethylene glycol ethyl ether (EEE), polyethylene 

glycol octadecyl ether (C I8(EO)IO) and amino butyric acid (ABA) by sequential 

macromolecular substitution of poly(dichlorophosphazene). DifferentiaI scanning 

calorimetry and turbidimetry analysis of aqueous solutions of PPZ (Mw = 15,100 -

19,600, PDI :s 1.06) revealed that the polymers displayed both temperature- and pH­

sensitivity. Stable pH-sensitive vesic1es (120 - 180 nm) were prepared at pH 7.4 by 

the fixation of PPZ during vesic1e formation or by incubation of the polymers with 

preformed liposomes. The latter method was preferred for PPZ containing the highest 

proportions of the anchoring moiety (CI8(EO)IO) as liposomes otherwise aggregated. 

In vitro release kinetic assays performed at physiological temperature (37°C) showed 

that the PPZ-liposome systems released 33-82% of their content within -30 min upon 

lowering the external pH to 5. The extent of pH-triggered release was dependent on 

PPZ nature and composition of the phospholipid bilayer. Upon incubation with 

human serum, a substantialloss ofpH-sensitivity was observed, suggesting a possible 

extraction of PPZ by the serum components. While these data c1early show that PPZ 

can impart pH-responsive properties to liposomes, they indicate that the polymer 

composition should be fine-tuned to resist vesic1e inactivation in the blood. 
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111-2 Introduction 

A key challenge in the field of drug delivery has been improving targeting of , 

the active agent in order to maximize efficacy and reduce toxicity. A promising 

approach is to provoke site-specific drug release from a vector in response to stimuli 

that c~m be either applied extemally or be physiologically produced. Several means 

can thus be exploited for this purpose, such as ultrasound, enzymatic c1eavage, 

temperature and pH. The latter has peaked interest of researchers as variations in 

acidity are observed in certain pathologies as well as in normal intracellular activity. 

Differences in pH that exist between normal vasculature (pH 7.4) and the 

tissue interstices of tumors, infections and inflammations (-pH 6.5) pushed for the 

design ,of a delivery system targeting such extracellular compartments 

[Schmaljohann, 2006]. Yet it has been technically challenging to construct a vector 

that' could respond to such a narrow variation. In contrast, pH-responsive 

formulations have shown to improve the cytoplasmic delivery of therapeutic agents 

rather than simply in the vicinity of the target cells [Drummond et, al., 2000; Simoes 

et al., 2004; Yessine and Leroux, 2004]. Vpon receptor-mediated intemalization, the 

pH-gradient established between the endosomaVlysosomal compartments and the 

cytoplasm is used to induce discharge of the encapsulated material. 

Of the vectors explored, pH-sensitive liposomes have received distinctive 

attention as controlled release can be easily prompted by destabilization of 

phospholipid bilayers. There are three mechanisms proposed for the delivery of a 

liposome-encapsulated agent from the endos omal compartment to the cytoplasm 

[Karanth and Murthy, 2007] (Figure III-l). The first mechanism presumes that pH­

sensitive liposomes can induce pore formation in liposomal and eventually endosomal 

membranes. The second involves passive diffusion of the drug through the endosomal 

membrane once liberated from the destabilized vector. This process is limited by the, 

nature of the therapeutic in question. The final pathway suggests fusion between the 

liposome and endosome for direct release into the cytoplasm. The delivery of the drug 



41 

is ultimately dependent on the composition of the liposome, the destabilization 

mechanism and the interaction of the formulation with the endosomal membrane. 

pH-sensitive 
liposome ~ 

~ endocyt011 

\ 
A ~:~;?'.~.:) @) ~'~7;dosome {pH 6 5} 

® 
~ @) laIe endosome (pH 5.0·U) 

B .... ... ~ 10-15 min 

.~) + / " \ 

CI D--.. ~ ®.......... lysosome (pH 4.0-5.0) 
C CI CI CI i : :: .~ 30-35 min 

CI ~ _ . 

Figure III-l: Mechanisms of intracellular targeting. Upon endocytosis, the 
acidification of the endosomal lumen induces one of three possible release 
mechanisms: destabilization and pore formation of both liposome and endos orne (A), 
destabilization of the liposome and passive diffusion of the active agent (B) or fusion 
between liposomal and endosomal lamella (C). Adapted with permission from 
[Simoes et al., 2004]. 

The first generation of pH-sensitive liposomes were prepared by the 

combination of unsaturated phosphatidylethanolamine (PE) and mildly acidic lipids 

[Connor et al., 1984], su ch as oleic acid and cholesterylhemisuccinate. PE alone 

cannot form liposomes due to its molecular geometry and requires the presence of the 

charged amphiphiles to construct bilayers at neutral pHs. Following endocytosis and 

acidification of the endosomal lumen, the charged lipids are neutralized by 

protonation resulting in transition from lamellar to hexagonal (Hu) phase, which leads 

to liposome destabilization and, eventually, fusion with the endosome membrane. 

Such liposomes have been found to efficiently deliver encapsulated agents to the 

cytosol when tested in vitro [Drummond et al., 2000]. However, moderate stability in 
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the blood and rapid elimination have hampeted their efficiency when administered 

systemically. These 'problems can be resolved in part by using lipid-conjugated 

hydrophilic polymers inserted within the bilayer to form a steric barrier, stabilizing 

the liposomes [Hong et al., 2002; Ishida et al., 2006]. In similar fashion, such 

polymers have been Iinked to hydrophobie anchors via acid-labile bonds which can 

be cleaved in the endosome from the surface of the vesic1e, in order to allow fusion 

after endocytosis [Guo and Szoka, 2001; Boomer et al., 2003]. 

Peptides and proteins inspired from nature have also been used to improve 

cytoplasmic delivery of liposomal content. For instance, the pore forming protein, 

listeriolysin 0 (LLO), was co-encapsulated with an active agent into PE-based pH­

sensitive liposomes [Provoda et al., 2003]. Upon release of the liposomal contents, 

LLO created pores in the endosome membrane releasing the therapeutic into the 

cytosol. Similarly, association of derivatives of the influenza virus fusion protein, 

hemagglutinin, to cationic liposomes has been proven to· increase transfection 

efficiency several fold [Kamata et al., 1994; Kichler et al., 1997]. Many other pH­

sensitive fusion peptides have been studied for the destabilization of liposomal and 

endosomal membranes [Drummond et al., 2000; Li et al., 2004], yet their use poses 

sorne challenges. Employing proteins in a drug delivery system incurs the possibility 

of immunogenicity. Moreover, co-encapsulation of drug and pore-forming elements 

within the vector may not solve in vivo stability and circulation time issues [Karanth 

and Murthy, 2007]. 

An alternative method consists of using synthetic polymers tailored to induce 

pH-triggered drug release. pH-responsive liposomes have been generated by 

anchoring polyanions into the lipidic bilayer. Such polymers undergo a coil-to­

globule phase transition below a critical pH that elicits destabilization of lipid 

membranes [Yessine and Leroux, 2004]. Table III-i summarizes sorne of the research 

employing polyanions for the preparation of pH-sensitive liposomes. It should be 

noted that copolymers of N-isopropylacrylamide (NIP AM) havebeen the most 

investigated so far and that pH-triggered release has been predominantly tested in 

vitro with fluorescent probes. 



Table 111-1: Summary of pH-sensitive copolymers investigated for liposomes. 

Polymer 

PEAA 

PG 

P(NIP AM-co-Gly-co-ODA) 

P(NIP AM-co-MAA-co-VP-co­
ODA) 

P(NIP AM-co-MAA-co-ODA) 

DODAm-P(NIP AM-co-MAA) 

Tenninal (T) 
or random (R) 

anchor 

T 

T 

R 

R 

R 

T 

Anchoring element 

DMPE 

Decylamine 

ODA 

ODA 

ODA 

DODA 

Lipids 

EPCIDMPE 

EPCIPG 

POE-SE/Chol 
or 

POCP/Chol 

EPC/Chol 
or 

EPC/ChoIlPEG-DSPE 

EPC/Chol 

DOPC/Chol 

EPC/Chol 

Marker or drug encapsulated 

Calcein 

Calcein 

HPTSIDPX 

HPTSIDPX 

HPTSIDPX 

DOX 

HPTSIDPX 

Reference 

[Maeda et al., 
1988] 

[Konoet al.; 1997] 

[Francis et al., 
2001] 

[Roux, Francis et 
al., 2002; Roux et 

al., 2003] 

[Leroux et al., 
2001] 

[Leroux et al., 
2001] 

[Leroux et al., 
2001] 

EPC/ChoIlPEG-DSPE HPTSIDPX [Leroux et al., 
2001; Roux et al., 

2004] 
PPZ (EEE, ABA, C1S(EO)IO) R C1s(EO)10 EPC/Chol HPTSIDPX [Couffin-Hoarau 

and Leroux, 2004] 
PEAA: poly(2-ethylacrylic acid); DMPE: dimyristoyl-N-[[ 4-(maleimidomethyl)cyclohexyl]carbonyl] phosphatidyJ-ethanolamine; EPC: egg 
phosphatidylcholine; PG: decylamine-succlnylated poly(glycidol); NIPAM: N- isopropylacrylamide; MAA: methacrylic acid; VP: N-vinylpyrrolidone; Gly: 
glycine acrylamide; ODA: octadecyl acrylate; DODA: dioctadecylamide; HPTS: tri sodium 8-hydroxypyrene trisulfonate; DPX: p-xylene-bis-pyridinium; PEG­
DSPE: N-[methoxy(polyethylene glycol) 2000] carbonyl-I,2-distearoyl-sn-glycero-3-phosphoethanolamine; PPZ (EEE, ABA, C1s(EO)\O): ethylene oxide 
diethyl ether-aminobutyric acid-polyethylene glycol octadecyl ether-grafted poly(organophosphazenes); C1s(EO)\O: polyethylene glycol octadecy~ ether. 
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NIP AM derivatives have been proposed early for the design of stimuli­

responsive liposomes. Original interest was spurred by PNIP AM's 1 sharp lower 

critical solution temperature (LCST) at 32 oC [Heskins and Guillet, 1968; Winnik, 

1990]. This transition can be tuned to temperatures relevant to physiological 

applications by introducing a weakly acidic monomer such as methacrylic acid 

(MAA), which also renders the polymer pH-responsive [Chen and Hoffman, 1995; 

Brazel and Peppas, 1996]. Liposomes formulated with alkylated NIP AMlMAA 

copolymers rapidly released their contents in an acid environment [Meyer et al., 

1998; Zignani et al., 2000; Leroux et al., 2001; Roux, Stomp et al., 2002]. It was 

shown that upon collapse, the interaction area between the phospholipids and the 

copolymers increased [Petriat et al., 2004]. The latter introduced a curvature in the 

bilayer plane, inducing membrane defects [Roux et al., 2003] and release of the 

entrapped content [Francis et al., 2001]. Although no acute toxicity has been 

observed for NIP AM copolymers [Taillefer et al., 2000; Li et al., 2005; Malonne et 

al., 2005], their safety following long-term exposure has thus far not been 

demopstrated as they are not biodegradable. 

Poly(organophosphazenes) (PPZ) have previously been introduced as 

biodegradable alternatives to NIP AM copolymers [Couffin-Hoarau and Leroux, 

2004]. It was shown that the properties of PPZ can be tailored by incorporating three 

critical moieties into the polymer composition, namely polyethylene glycol octadecyl 

ether (C I8(EO)1O), amino butyric acid (AB A) and ethylene oxide ethyl ether (EEE) 

(Figure III-2). These units provide for liposome-anchoring capabilities, pH- and 

temperature-responsiveness, respectively. EEE was selected over other alkoxy side 

groups since EEE-substituted PPZ possessed an LCST close to physiological 

temperature [Allcock and Dudley, 1996]. ABA helps modulate the LCST with respect 

to environmental pH. Furthermore, it can confer biodegradability by mediating 

intramolecular catalysis of phosphorus-nitrogen bonds [Allcock et al., 1982; Allen et 

al., 2002]. Liposomes prepared with the tri-substituted PPZ displayed pH-dependent 

release but were unstable under physiological temperature (37 OC) at pH 7.4 [Couffin­

Hoarau and Leroux, 2004]. In the present work, we investigated whether th~ stability 
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of the formulation at neutral pH could be improved by varying the content of the 

ionizable ABA moiety and lowering the molecular weight _ of the polymer. An 

advantage of a lower molecular weight polymer would be faster excretion after 

administration. We also examined the degradation of the PPZ under physiological 

conditions and studied the impact of human serum on the pH-sensitivity of the 

formulations. 

1) (C18(OEho)Na 

3) (EEE)Na 

4) NaOH(aq) 

(NHCH2CH2CH2COOH)x TCH2CH20)"ClSH,,>, 

+-j=Nt.-
(O(CH2CH20hCH2CH3)z 

Figure 111-2: Synthesis of tri-substituted amphiphilic, pH-sensitive PPZ. 

111-3 Materials and Methods 

111-3.1 Materials 

Cholesteryl 4, 4-difluoro-5,7 -dimethyl-4-bora-3a,4a -diaza-s-indacene-dodecanoate 

(Chol-BODIPY), 8-hydroxypyrene-l,3,6-trisulfonic acid (HPTS) and p-xylene-bis­

pyridinium bromide (DPX) were obtained from Molecular Probes (Burlington, ON, 

Canada). Egg phosphatidylcholine (EPC) and N-[methoxy(polyethylene glycol) 

2000] carbonyl-l ,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt 

(PEG2ooo-DSPE) were purchased from Northem Lipids (Vancouver, BC, Canada). AlI 

other chemicals were obtained from Sigma (Oakville, ON, Canada) and used as 

received, except for the following: diethyl ether (Et20), dichloromethane (DCM) and 

tetrahydrofuran (THF) were run through PureSolv™ drying columns (Innovative 
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Technologies, Newburyport, MA); triethylamine (TEA) was distilled over calcium 

hydride; phosphorus 'trichloride (PCh) and sulfuryl chloride (S02Ch) were distilled 

under argon; phosPhorus pentachloride (PCls) was sublimed under vacuum; PEG 

octadecyl ether (Brij®76, CI8(EO)IO) a~d ethyl 4-aminobutyrate hydrochloride 

(EAB·HCl) were dried ovemight under vacuum over phosphorus pentoxide. 

111-3.2 Synthesis and characterization 

111-3.2.1 Phosphoranimine synthesis 

AlI sol id products were weighed in a glove box under inert argon atmosphere 

while reactions were performed using standard Schlenk techniques. IH (400 MHz) 

and 31 p (162 MHz) NMR spectra were recorded on a Bruker ARX 400 spectrometer 

(Milton, ON, Canada) in deuterated ch10roform (CDCh). Chemical shifts for 31 p 

spectra were recorded with respect to an 85% phosphoric acid standard. 

Trichloro(trimethylsilyl)phosphoranimine (ChP=NSiMe3) was synthesized as' 

reportedby Wang et al. (2002). Briefly, lithium bis(trimethylsilyl)amide (10 g, 0.058 

mol) was suspended in 200 mL dry Et20 and cooled to 0 oC before the dropwise 

addition of distilled PCh (5.06 mL, 0.058 mol). Completion of the reaction (~1 h) 

was monitored by 31 p NMR from the disappearance of the PCh peak (0 = 220 ppm) 

and appearance of a new species (ChPN(SiMe3)2, 0 = 186 ppm). Distilled S02Ch (4.7 

mL, 0.058 mol) was then added dropwise at 0 Oc and allowed to react for 1 h. 

Complete conversion was evidenced by the appearance of a single peak at 0 = -54 

ppm in the 31 p NMR spectra. The reaction mixture was then filtered through dry 

celite. Et20 and trimethylsilyl chloride, a reaction side product, were sequentially 

evaporated at 0 oC from the filtrate under reduced atmosphere (200 and 50 mmHg, 

respectively). Crude ChP=NSiMe3, a colorless liquid, was purified by distillation (25 

oC, 0.1 mmHg of static vacuum) into a liquid nitrogen-cooled trap tocollect the final 

product (10.6 g, 81 % yield). 



47 

111-3.2.2 Synthesis of poly(dichlorophosphazene) 
, 

Poly( dichlorophosphazene) (PDCP) was obtained by cationic polymerization , 

using PCls as the initiator [Allcock et al., 1996]. A concentrated solution of 

ChP=NSiMe3 (6.1 g, O.027mol) in dry DCM (5 mL) was cannulated to a solution of 
1 

PCl5 (0.16 g, 7.8 x 10-4 mol, CI3P=NSiMe3:PCI5 molar ratio of 35:1) under inert 

argon atmosphere to reach a final initiator concentration of 0.035 mol/L. The 

polymerization reaction was carried out at room temperature and monitored by 31p 

NMR by following the disappearance of the ChP=NSiMe3 peak and the appearance 

of the PDCP backbone peak (0 -17 ppm). After 2 h, DCM was evaporated and the 

crude product stored under inert conditions at -20 oC. 

111-3.2.3 Synthesis of poly( organophosphazenes) 

pH-sensitive PPZ were prepared as described before [Couffin-Hoarau and Leroux, 

2004]. Synthesized polymers are named Ax-Py, with x and y representing the ratios of 

the ASA and C18(OE)1O moieties, respectively. The following is the typical procedure 

as performed for the synthesis of PPZ A7-P6 (Table 111-2). Under inert argon 

atmosphere, a solution stirred overnight of CI8(EO)1O (0.72 g, 1.0 mmol) and NaH 

(0.026 g, 1.0 mmol) was added dropwise to a PDCP solution (obtained from 1.0 

mmol of ChP=NSiMe3) dissolved in 10 mL dry THF. After 6 h at room temperature, 

a solution ofEAB·HCl (0.35 g, 2.0 mmol) treated with 2.8 eq. distilled TEA (0.8 mL, 

,5.7 mmol) was added and the mixture was heated 48 h at 50 oC before being cooled to 

room temperature. Finally, an excess solution of EEE (4.8 mL, 3.5 mmol), treated 

overnight by NaH (0.88 g, 3.5 mmol), was added dropwise and the reaction was 

stirred overnight at room temperature. The progression of each substitution reactions 

was tracked in 31 p NMR by the appearanc{: of a peak at 0 -8 ppm corresponding to 

the substituted phosphazene. After completion of the last reaction, the final solution 

was filtered from excess salts,concentrated and dialyzed against deionized water for 

48 h (molecular weight cut-off 12,000-14,000). The resulting aqueous polymer 

solution was treated by 5 mL of 1 N NaOH for 4 h at room temperature to complete 
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hydrolysis of EAB to ABA. The final PPZ was dialyzed against water for 24 h and 

lyophilized to obtain 3 g of a yellow colored oil (75% yield). 

111-3.3 Physical characterization of pH-responsive 
polymers 

The degree of substitution was estimated using I H NMR by calculating the ratios 

between the methyl protons of C I 8(OE)1O and EEE (ù = 0.9 ppm and 1.2 ppm, 

respectively) and a CHz of ABA (ù = 1.7 ppm). The percentage of ABA was also 

confirmed by potentiometric titration using an Accumet AP61 pH-meter (Fisher 

Scientific, Montreal, QC, Canada), according to the following procedure: an aqueous 

solution of the polymer (5 mL, 1 mg/mL) was treated with excess NaOH (3 mL, 0.01 

N) to ensure dissolution of the PPZ and complete ionization of the acid functions. 

Titrations were performed by adding increments of 0.01 N HCI and measuring 

aqueous pH. During this process, both the amine and carboxylic acid of the ABA 

molecules were titrated and considered in calculations [Couffin-Hoarau and Leroux, 

2004]. 

The absolute number- (Mn) and weight- (Mw) average molecular weightsof the 

polymer sampI es were determined by size exclusion chromatography (SEC) using a 

Breeze system (Waters, Milford, MA) equipped with a Waters 2410 refractometer 

and PD2000 light-scattering detector (Precision Detectors, Bellingham, MA). 

Measurements were performed in N ,N-dimethylformamide containing 10 mM lithium 

bromide at a flow rate of 1 mUmin at 40°C. Molecular weight separation was 

achieved using three Waters Styragel columns (HT2, HT3 and HT4) in series and the 

instrument calibrated with monodisperse polystyrene standards. 

The pH-dependent precipitation of PPZ in aqueous solution was investigated by 

turbidimetry. PPZ were dissolved in 200 mL phosphate buffer (PB) saline (53 mM 

NazHP04, 13 mM NaHzP04, 75 mM NaCI) at a concentration of 0.2 mg/mL. The pH 

of the solution was adjusted to pre-determined values and the turbidity of aliquots 
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was measured at 480 nm (37°C) using a Series 2 Aminco Bowman fluorometer 

(Spectronics Instruments Inc., Rochester, NY) [Roux, Stomp et al., 2002]. 

The lower critical solution temperature (LCST) and enthalpy of transition 

(~HLCST) of the PPZ were determined in triplicate on three djstinct samples by 

differential scanning calorimetry on a MicroCal VP-DSC (MicroCal, Northampton, 

MA). Polymer samples were dissolved in saline 2-N-(morpholino)ethanesulfonic acid 

(MES) (100 mM, 110 mM NaCl, pH 5.0) at a concentration of 10 mg/mL. Scans were 

performed on samples of 0.509 mL at a rate of 20 °C/h from 7 to 65 Oc. 
The degradability of the PPZ was tested by incubating 5 mL aliquots of polymer 

solutions (1.2 mg/mL in 10 mM PB, pH 7.4), which were filtered un der sterile 

conditions, and then incubated at 37°C for 21 weeks. The samples were lyophilized 

and changes in Mw were measured by SEC. 

111-3.4 Analysis of pH-sensitive liposomes 

111-3.4.1 Incorporation of po]y( organophosphazenes) into 
Uposomes 

The pH-sensitive liposomes were prepared as described before [Zignani et al., 

2000, DG205; Leroux et al., 2001]. Briefly, a lipid film was obtained by evaporating 

chloroform solutions of EPC, cholesterol and PPZ with a respective molar ratio of 

59:40: 1. The polymer/lipid mass ratio was approximately 0.2. In the case of 

PEGylated liposomes, 5.5 mol% PEG2oqo-DSPE was inc1uded in the lipid bilayer as 

reported elsewhere [Yang et al., 2003; Roux et al., 2004]. The film was then hydrated 

overnight in an isotonie 2-[ 4-(2-hydroxyethyl)-I-piperazinyl]ethanesulfonic acid 

(HEPES) buffered saline solution (HBS, 20 mM HEPES, 144 mM NaCl, pH 7.4) to 

obtain a lipid concentration of 40 mM. Finally, the mixture was extruded through 

400-, 200- and 100-nm polycarbonate membranes (Avanti, Alabaster, AL) 21 times 

each. For sorne formulations, the polymer was post-inserted by incubation with 

preformed extruded vesic1es ovemight at 4 Oc in HBS (PPZ molar"ratio of 1 %). In 

both cases, unbound polymer was removed by SEC using a Sepharose 2B column. 
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Liposome size was measured by dynamic light scattering on a Malvem Zetasizer ZS 

(Malvern, Worcestershire, UK) with a fixed angle of 173° at 25 oC. Final vesicle sizes 

were between 120 and 180 nm, with narrow polydispersity « 0.12). 

A procedure adapted from G.R. Bartlett (1959) was used to measure the total 

amount of phosphorus in the formulations from which the efficiency of PPZ 

incorporation was calculated. Chol-BODIPY (0.2 mol% of lipids) was added during 

the preparation of liposomes as an internaI standard to normalize for phospholipid 

concentrations. The percent PPZ incorporated could then be obtained by subtracting 

the phosphorus content ofbare liposomes from PPZ-liposomes. 

111-3.4.2 ln vitro release kinetics 

ln vitro release kinetics were monitored for EPC/Chol/PPZ liposomes 

incorporating the fluorescent markers HPTS (35 mM) and quencher DPX (50 mM) 

in HEPES buffer (20 mM) before and after 1 h incubation with 50% (v/v) human 

seru~ [Han et al., 2006]. SEC was performed to remove non-encapsulated 

marker/quencher as weIl as excess serum components. The release profiles of the 

various formulations were measured by adjusting the external pH with either HBS 

(pH 7.4) or MES adjusted to pH 5.0 or 6.0. HPTS release was monitored by 

fluorescence assay using a Tecan Safire plate reader (Tecan, Durham, NC) (Àex= 412 

nm and Àem= 513 nm) at 37 oC. The percent release at each time point was obtained 

from the relative fluorescence intensity with respect to the intensity obtained after 

sample lysis with 0.5 % (vlv) Triton X-lOO. 
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111-4 Results and Discussion 

111-4.1 Syrithesis and characterization of pH-sensitive 
'poly( organophosphazenes) 

111-4.1.1 Synthesis 

PDCP was synthesized by cationic polymerization of the phosphoranimine 

monomer as described previously [Allcock et al., 1996; Couffin-Hoarau and Leroux, 

2004]. Five different pH-sensitive PPZ (Table III-2) were generated by performing 

three sequential substitution reactions of P-Cl bonds in PDCP backbone(Figure III-

2). Due to increasing reactivities, CI8(EO)1O was added tirst, followed by EAB and 

then EEE. Final substitution ratios of 7-14% and 5-16 mol% were obtained for ABA 

and CI8(OE)IO, respectively (Table III-2). The slightly lower than theoretical ratios of 

ABA may result from metathetical exchange during substitution· of sorne EAB by the 

stronger nuc1eophile, EEE [Allco~k, 1977]. Moreover, the basic conditions used for 

hydrolysis of EAB to. ABA might induce c1eavage of the aminophosphazene bond 

[Allcock et al., 1982], also decreasing the ABA molar ratio. It was previously 

reported that PPZ (Mw = 38,000, 9% ABA, 5 mol% CI8(EO)IO, respectively) can 

provide pH-responsive properties to liposomes [Couftin-Hoarau and Leroux, 2004], 

but no further studies were carried out to determine the relation between structure and 

properties. The PPZ synthesized here possessed lower Mw (15,000-20,000) and 

various ABAlCI8(OE)1O molar ratios, which allowed examination into the impact of 
r 

PPZ composition on the release kinetics. 



Table III-2: Characteristics of synthesized poly( organophosphazenes) 

Composition (ABA : CIS(EO)IO: EEE) 
LCSTe e 

~HLCST % liposome 
PPZ (mol%) Mw MwlMn 

fixationd eq (1/g) 
Theoreticala Experimentalb 

ArP6 10: 5 : 85 7: 6: 87 16,300 LOI 33.5 ± 0.1 17.6 ± 0.8 81.3 ± 7.9" 

A9-PS.S 15 : 5: 80 9: 5.5: 85.5 19,300 LOI 35.5 ± 0.7 10.1 ± 0.8 97.3 ± 6.18" 

A9.s-P7.S 10: 7 : 83 9.5: 7.5: 83 15,100 1.06 34.0 ± 0.3 12.6 ± 0.4 92.3 ± 16.7" 

AwPIO 10: 10: 80 II : 10 : 79 18,300 1.03 31.7 ± 0.6 6.3 ±2.5 33.8 ±18.6 f 

AWPI6 15:10:75 14:16:70 19,600 1.03 33.0±1.l 4.6±1.3 52.8±14.3 f 

a) Theoretical values are calculated from the proportions of the reagents used for the substitution of the polymers. 
b) Experimental values are based on IH NMR and acid-base titration results. 
c) DSC results LCST and ~HLCST were obtained at pH 5.0 and performed in triplicate. 
d) Efficiency ofPPZ fixation to EPC/Chol (3:2 moUmol) liposomes prepared with 1 mol% PPZ as determined by phosphorus content. 
e) PPZ added to lipids before the extrusion process. 
f) PPZ fixed to liposomes after ovemight incubation with preformed vesic1es at 4 oc. 

VI 
N 
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111-4.1.2 Physical characterization 

Figure III-3 shows the typical pH-dependent phase transition of 3 

representative PPZ at 37 oC. Turbidimetry was used to detect the polymers' phase 

separation from the buffered medium under di lute conditions. With the exception of 

polymer A7-P6, the PPZ were fully soluble at pH 7.4, white the turbidity markedly 

increased upon lowering the pH below 6.0. The change in solubility around this pH is 

what is sought to destabilize the phospholipid membrane after endocytosis and 

release the liposomal content. As shown in Figure III-3, sample ArP6, displayed 

sorne turbidity near pH 7, reflecting the incomplete dissolution of the polymer. This 

might be attributed to its lower ABA content, which renders the polymer less 

hydrophilic. We indeed previously reported that a PPZ with comparable composition 

(9 mol% ABA, 5 mol% CI8(EO)IO), but higher molecular weight (Mw 38,000) 

possessed a LCST of 32.4 Oc at pH 7.4 [Couffin-Hoarau and Leroux, 2004]. It has 

been shown that fully EEE-substituted PPZ have a LCST of 32°C at pH 7.4 [Couffin­

Hoarau and Leroux, 2004] while the introduction of a sufficient amount of ionizable 
, . 

moiety, such as ABA, can raise the LCST at this pH [Hirotsu et al., 1987; Chen and 

Hoffman, 1995]. Therefore, owing to their better solubility at physiological 

temperature and neutral pH, PPZ AWP16 and A9-PS.S are expected to be better 

candidates than A7-P6 for the design ofpH-responsive vesicles that would be stable at 

pH 7.4 and destabiliied under mildly acidic conditions. 
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Figure III-3: pH-dependent phase transition ofPPZ ArP6 (circ1es), A9-PS.S (triangles) 
and AWPl6 (squares) as determined by turbidimetry in PBS at 37 oc. Mean ± SD 
(n~3). 

DSC thermograms were recorded for the different PPZ at pH 5.0. LCST 

values obtained were taken at the maxima of the endotherms and ranged between 32 

and 35.5 oC, with transition enthalpies varying from 4.6 to 17.6 J/g (1.1 to 4.2 callg). 

As shown in Table III-2, all LCSTs were in the same range un der acidic conditions. 

For previously synthesized pH-sensitive PPZ, acidification to pH 5.0 decreased the 

LCST below 30 oC [Couffin-Hoarau and Leroux, 2004], which is lower than for the 

PPZ presented here. Feil et al.(1993) have noted that the LCST of NIPAM 

copolymers was strongly influenced by their overall hydrophilicity and the structuring 

of water around hydrophobie groups. In the present case, it is difficult to predict the 

precise variations the substituents impose on the LCST of the PPZ as there are three 

side groups involved. Moreover, the C1s(EO)\O side group is by itself amphiphilic due 

to the contribution of the (EO)\O and C 18 segments. While, the (EO)\O chain may 
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raise the LCST as the addition al oxygen atoms can increasè hydration [Allcock and 

Dudley, 1996], the alkyl chain may decrease the LCST depending on whether they 
, 

self-assemble (i.e. exclusion from the solvent) or not in water. 

Interestingly, the changes in enthalpy associated to the phase transition were 

lower than previously observed for other pH-responsive PPZ [Couffin-Hoarau and 

Leroux, 2004]. It could be hypothesized that the decreased ilHLCST is a resuIt of the 

generally higher proportions of CI8(EO)1O and protonated ABA moieties, which may 

reduce of the interactions between the polymer and the water molecules and/or 

increase interactions of the polymer with itself. This tendency was also observed for 

PPZ AWPl6 which had the highest leve1 of ABA and CI8(EO)1O while exhibiting the 

10west ilHLCST at pH 5. Indeed, a similar dependence was observed by Laukkenen et 

al. (2005) for a thermosensitive pol ymer modified by increasing proportions of an 

amphiphilic graft. 

111-4.1.3 Biodegradation study 

Poly(aminophosphazenes) have been extensively explored as degradable 

alternatives to other synthetic polymers [Allcock et al., 1977; Crommen et al., 1992a; 

Allcock et al., 1994]. The degradation of two PPZ, A9.S-PS.s and AWPI6, was 

compared after a period of21 weeks at pH 7.4 and 37 oC. Only 20% decrease in Mw 

was observed for both polymers, showing that the degradation was partial. It is 

known that the degradation of PPZ involves the cleavage of the aminophosphazene 

bond [Allcock et al., 1982; Lee et al., 1999] catalyzed by the free acid of ABA. 

However, the extent of degradation is dependent on the nature of the amino acid 

.[Allcock et al., 1982] and its molar ratio [Crommen et al., 1992b; Lemmouchi et al., 

1998]. It is thus likely that the low ABA content aloilg the PPZ backbone could not 

promote complete degradation. 
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111-4.2 Characterization of pH-responsive liposomes 

111-4.2.i Incorporation of po)y( organophosphazenes) into 
liposomes 

pH-responsive liposomes were prepared by either of two methods.PPZ with 

lower anchor content were incorporated by the inclusion of 1 mol% PPZ in the lipid 

film. However, for An-PIO or AWPI6, this method failed to produce monodisperse 

vesicles. For these two polymers, bridging between vesicles may have resulted from 

the relatively high PPZ/lipid ratio (0.2 w/w) and elevated C J8(OE)1O content, thus 

forming a complex network [Meier et al., 1996]. The increased viscosity thus could 

, have made it also mechanically difficult to extrude. As a consequence, An-PlO and 

AWPl6 were associated to the lipid membrane by incubating a PPZ solution with 

preformed extruded vesicles overnight at 4 oC. The post-incorporation method 

involved the addition of PPZ to the vesicle suspension resulting in a more di lute 

mixture. Therefore, it permitted the formation of stable liposomes with PPZ inserted 

solely on the externalleaflet of the bilayer. 

The extent of polymer incorporation for the different formulations was 

calculated from the phosphorous content (Table III-2). PPZ fixatien was significantly 

higher when included in vesicle preparation, as over 80% PPZ incorporation (0.16 g 

PPZ/g lipid) was obtained. For PPZ AlI-PlO and AWPI6, which were incorporated by 

incubation, anchoring efficiencies of 35 and 50% were achieved, respectively. These 

findings can be compared to EPC/Chol liposomes prepared with NIP AMlMAA 

copolymers containing 2% octadecyl acrylate (ODA) for fixation. A 2-fold increase 

in binding efficiency was obtained for P(NIPAM-co-MAA-co-ODA) when included 

in vesicle preparation rather than post-incorporated [Zignani et al., 2000]. This can be 

explained by the increased surface area available for incorporation on both sides of 

the bilayer and lipid mixing. Furthermore, the post incorporation of P(NIPAM-co­

MAA-co-ODA) yielded a maximum of 0.038 g copolymer/g lipid, which 

corresponded to a plateau with an efficiency of 30% when prepared with an initial 

mass ratio of 0.12 g copolymer/g lipid. This is somewhat lower than what was seen 

with PPZ Ali-PlO and A14-PI6 (0.07 and 0.1 g PPZ/g lipid, respectivèly). Increasing 
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the content of anchoring moiety seems to havé improved copolymer fixation. Kono et 

al. (1999) also obsen,ed increased liposome bindîng for polymers of larger molecular 
1 

weight while maintainîng the proportion of the anchor, suggesting that the bîndîng 
, 

efficiency împroves with an increasing number of anchoring moieties per polymer 

chain. This general trend is also observed for PPZ with increasing proportions of 

C1S(OE)IO. 

111-4.2.2 ln vitro release kinetics of pH-responsive liposomes 

pH-sensitive PPZ are required to promote maximal discharge under acidic 

conditions while permitting complete retention as long as the vector remains in 

circulation. To test for this character, the release of the encapsulated probe HPTS 

from pH-responsive liposomes was measured at pHs 5.0, 6.0 and 7.4, and at a 

temperature of 37 oC. Figure 111-4 shows the in vitro release kinetics of formulations 

prepared with PPZ A7-P6 (A), A9.5-P7.5 (B) and A14-P16 (C). It can be seen that PPZ 

induced a marked increase in the release rate of the encapsulated dye as the pH was 

acidified. Liposomes prepared with PPZ ArP6 released a substantial amount of HPTS 

at neutral pH (27% within 35 min, Figure 111-4). As discussed above, this polymer is 

partially dehydrated at pH 7.4 and 37°C, and thus can destabilize the lipid rpembrane. 

In our previous report, pH-sensitive liposomes prepared with PPZ having an LCST of 

32 oC at pH 7.4showed similar profiles under the same experimental conditions 

[Couffin-Hoarau and Leroux, 2004]. In contrast, the other two formulations were 

significantly more stable with less than 5% dye released after 35 min at neutral pH. 

A9.5-P7.5 (Figure 11I-4B) demonstrated the best triggered release profile (75 and 47% 

HPTS released at pHs 5.0 and 6.0, respectively). As depicted in Figure III-l, release 

should ideally occur within the transit time of the endocytosed material to mature 

lysosomes « 35 min). A rapid response to the decrease in pH would also improve . 

discharge of the content anddelivery to the cytoplasm. PPZ A9.5-P7.5 not only 

exhibited high marker release over 35 min, yet also showed a triggered discharge 

within the first 5 min, which was not seen for the other PPZ reported here. AWP16 

was less efficient in destabilizing the liposomes at acidic pH. After 35 min, about 



58 

45% leaked from the vesicles at pH 5.0. The lower performance of AWPl6 can be 

explained by the presence of PPZ only on the outer leaflet of the liposomes due to the 
1 

incorporation method. We and others previously reported that pH-responsive 

liposomes were more readily destabilized wh en polymers were fixed on both sides of 

the bilayer [Hayashi et al., 1999; Zignani et al., 2000; Roux, Francis et al., 2002; 

Couffin-Hoarau and Leroux, 2004] 
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Figure III-4: Percent HPTS released from EPC/Chol (3:2 mol/mol) liposomes (120-
180 nm) prepared with lmol% PPZ A7-P6 (A), A9.5-P7.5 (B) and AWPl6 (C) at 37 Oc 
and pH 7.4 (solid triangles), 6.0 (open circles) and 5.0 (solid circles). Mean ± SD 
(n=3). 
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pH-sensitive liposomes, injected intravenously, must circulate for a 

sufficiently long period to attain target cells. However, EPC/Chol liposomes typically 

do not survive in the blood stream as they are quickly opsonized and eliminated by 

the mononuc1ear phagocyte system (MPS). Pharmacokinetic studies revealed that 
1 

their biological half1ife (tI/2) is less than 35 min in rats after i.v. injection [Roux et al., 

2003]. PEGylation is well knownfor providing liposomes with a steric barrier from 

opsonins and other serum proteins, as weB as considerably extending circulation 

times in the blood stream [Klibanov et al., 1990; Simoes et al., 2004]. pH-sensitive 

liposomes can additionally be PEGylated to improve their circulation half life [Roux, 

Stomp et al., 2002; Roux et al., 2003]. 

The effect of PEGzooo-DSPE was therefore evaluated on A9.S-P7.S-liposomes. 

This PPZ was chosen as it showed to the best release kinetics of HPTS. They were 

both incorporated into the bilayer during vesic1e preparation, in the sanie manner as 

for the non-PEGylated forms. In spite of this, only 32% PPZ fixation was achieved, 

which is a dec1ine of 50% in A9.S-P7.5 binding efficiency. Steric hindrance caused by 

t~e PEG chains may have impaired the anchoring of the PPZ into the bilayer. The 

HPTS release kinetics of PEGylated pH-sensitive liposomes is reported in Figure III-

5. In comparison to the unmodified formulation, the amount of dye liberated 

decreased from 75 to 55% after 35 min at pH 5.0. AIso, a lag time was se en for the 

onset of the release. Roux et al. (2003) had previously shown that PEG2ooo-DSPE 

contributed to a significant stabilization of pH-sensitive liposomes. The loss in pH­

responsiveness could therefore be attributed to both the reduced fixation of the PPZ 

and the stabilizing effect ofPEG2000-DSPE on the bilayer. 
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Figure III-5: Percent HPTS released from EPCIChol (3:2 moVmol) liposomes (ca. 
120 nm) at 37 oC prepared with PPZ A9.s-P7.5 and 5.5 mol% PEG2000-DSPE. Release 
performed at pH 7.4 (solid triangles), 6.0 (open circles) and 5.0 (solid circles). Mean 
± SD (n=3). 

For a formulation to be c1inically viable, it is crucial that it remains stable in 

the presence of serum. Figure III-6 compares the amount of HPTS released after 30 

min for A9.5-P7.s-liposomes with and without PEG, before and after serum incubation. 

Decreased release at acidic pH was observed when PPZ-liposomes were pre­

incubated with 50% (v/v) human serum for 1 h. In other studies, exposure to serum 

reduced pH-sensitivity ofPEGylated vesic1es bearing randomly alkylated P(NIPAM­

co-MAA) [Roux et al., 2003] whereas no significant desensitization was observed 

wh en the anchor was present on the terminus of the polymer chain [Roux et al., 

2004]. The reduced response may be a result of polymer extraction and/or a shift in 

transition pH due to prote in adsorption [Harvie et al., 1996]. Randomly alkylated 

polymers may affect the formation of an adequate protective PEG barrier around the 

liposome, thus allowing protein adsorption. In contrast, terminally alkylated 

copolymers may facilitate resistance to serum inactivation by allowing uniform 

polymer distribution on the vesicle surface. 
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Figure III-6: Percent HPTS released after 30 min at 37 oC from pH-sensitive 
EPC/Chol (3:2 mol/mol) A9,s-P7,s-liposomes (ca. 120 nm) prepared without (A) and 
with (B) 5.5 mol% PEG-DSPE. pH-sensitivity was evaluated before and after l-h 
incubation with 50:50 (v/v) human serum at pH 6.0 (solid bars) and 5.0 (open bars). 
Mean ± SD (n=3). ' 

111-5 Conclusion 

Amphiphilic polyelectrolyte PPZ are candidates to regulate the targeted 

release of liposome-encapsulated agents. The LCST of EEE-substituted PPZ was 

modified as a function of pH 'by co-substitution of the acidic moiety ABA. The 

relatively small proportion of this amino acid grafted seems to have limited the 

degradability of the PPZ, thus making it preferable at this time to keep the molecular 

weight low enough to favor renal excretion after administration. Adding CI8(EO)1O 

randomly along the backbone permitted efficient anchoring of the pH-responsive PPZ 

into EPC/Chol liposomes, both during or after the preparation of the vesicles. 

Liposomes formulated with PEG2ooo-DSPE maintained sorne pH-sensitivity in spite 

of a significant reduction of polymer anchoring. However, exposure to serum reduced 

the pH-responsiveness for both PEGylated and non-PEGylated forms. Additional 

investigation is, thus, required to determine the cause of this partial deactivation. In 

conclusion, the potential of PPZ has been further demonstrated for the development 
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of stimuli-responsive liposomal drug carriers. Steps have been taken in order to 

define the parameters required to implement such polymers in an efficieht and viable 

drug delivery system. Consequently, improved systems can possibly be formulated by 

further fine-tuning the PPZ structure to allow the preparation of serum-stable pH­

sensitive liposomes. 
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i CHAPTER IV: Discussion 

IV -1 Synthesis and characterization of pH-sensitive 
poly( organophosphazenes) 

IV-1.1 Synthesis 

Five pH-sensitivePPZ were synthesized according to the procedure developed 

by Couffin-Hoarau and Leroux (2004) to evaluate the parameters required for the 

preparation of pH-responsive liposomes. They were prepared by the sequential 

substitution of PDCP with CI8(OE)IO, EAB and EEE, then hydrolysis of the ethyl 

ester to convert EAB to ABA (Figure IV-l). PPZ were named Ax-Py according to the 

molar percentage, x and y, of ABA and CI8(OE)IO, respectively. Although the 

synthesis ofPPZ has been well established over the years (as described in Chapter II), 

a few challenges were encountered at the onset for the synthesis of CbP=NSiMe3. 

The best yields were 10%, significantly lower than reported in the literature [Wang et 

al., 2002], thus producing insufficient monomer for the preparation of an adequate 

amount of PPZ for physical characterization and liposome studies. In consequence, 

the experimental procedures were fine-tuned, raising the yie1ds between 65 and 90%. 

Critical improvement resulted from removing the slightly volatile Me3SiCl by 

distillation, before final purification of CbP=NSiMe3. As can been seen in Figure IV-

1, the removal of Me3SiCl is crucial since it is a by-product of both the monomer 

synthesis and cationic polymerization. Its presence during the latter can inhibit chain 

propagation causing cyc1ization [Allcock, Crane et al., 1999]. Table III-2 lists the 

PPZ that were synthesized with 7-14% and 5-16% of ABA and CI8(OE)IO, 

respectively, and completed using an excess of EEE. Grafting ratios were determined 

by NMR and acid-base titrations. The proportion of ABA was generally slightly 

lower than the theoretical feed of the substituent. The replacement of ABA by EEE, 

which is a stronger nuc1eophile [Allcock, 1977], and c1eavage of ABA from the 
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backbone during hydrolysis of the ethyl ester [Allcock et al., 1982] are potential 

explanations for the lower ABA portions than expected. The molecular weight of the 

PPZ was limited to 20,000 g mor l
, or half the molecular weight of the PPZ 

previously reported [Couffin-Hoarau and Leroux, 2004]. The biodegradability of such 

PPZ had not yet been assessed and it was deemed important to consider the need for 

renal clearance in eventual in vivo applications. Therefore, we set out to determine 

wh ether pH-responsiveness can be maintained while reducing the molecular weight 

of the polymers. 

-Ht 
1) Cul<ŒhoNa 
2) EAB 1-0, TEA 
3)(EEE)Na 

ll-F, RT 

NaOH(aq) 

«CHPi2Q),oC,IIHw)Y (C,a<E0),o) 
(O(CH2CH20}zCH~H3h (EEE) 

~=+-
(NH(CH2bCOOH) x (ASA) 

Figure IV -1: Complete synthesis of amphiphilic ionizable PPZ. 
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IV-l.2 Physical characterization 

The physical properties of the PPZ were then evahiated. It is necessary that 

the polymers be soluble under physiological conditions (PH 7.4, 37 OC) in order to 

coat the surface of the bilayers. Yet in order to efficiently target cytoplasmic delivery, 

they should also become more hydrophobie upon acidification to destabilize the 

liposomes and to release the vesicle's contents. For this reason, the pH-dependent 

phase transition was determined for each PPZ by turbidimetry at 37 Oc (Figure III-3). 

It was noticed that increasing the proportion of ABA-grafts along the PPZ backbone 

improved the solubility of the polymer al pH 7.4. Solutions ofPPZ with greater ABA 

portionsbegan phase transitioning at lower pH. This effect is indicative of how 

increasing the proportion of ionizable moieties improves the water solubility of the 

polymer [Hirotsu et al., 1987; Chen and Hoffman, 1995]. A greater ABA ratio also 

provided a sharper coil-to-globule transition upon acidification by increasing polymer 

solubility at pHs close to 7.4 (Figure III-3). Increasing the solubility of the PPZ at 

neutral pH and the sharpness of the transition could therefore prevent premature 
, . 

leakage of agents encapsulated in PPZ-liposome and improve the acid-triggered 

release thereof. 

The LCST represents the temperature at which a polymer in solution evolves 

from a free coil to a globular state. This phenomenon principally results from 

dehydration of the polymer, thus favoring intramolecular interactions, especially 

hydrophobie ones. Hence, microcalorimetry by DSC is a good technique to measure 

the amount of energy absorbed leading to polymer dehydration, which can be 

expressed by the f.HLcsT. Experimentally, the LCST can· be measured at the 

maximum of the endothermic peak, as described elsewhere [Schild, 1992; Lessard et 

al., 2001; Kujawa et al., 2006]. The experiment was conducted in pH 5 buffered 

solutions, since transition is expected to take place in acidic compartments. The 

results are listed in Table III-2. The measured LCST of the PPZ were close to each 

other, between 32 and 35.5 oC, and the f.HLCsT ranged from 4.6 to 17.6 J/g. Several 

parameters may influence the LCST; particularly, increasing the hydrophobic 
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character of the copolymer should decrease it [Feil et al., 1993]. But in this case, the 

hydrophobicity supplied by the alkyl chains of an increased C I8(EO)1O ratio could be 

counter-balanced by the hydrophilicity of the ethylene oxide units. More thorough 

analysis could be given by synthesizing PPZ with a wider range of grafting levels, 

independently varying the side-group proportions. 

In order to study the influence ofpH on LCST, results were compared at pH5 

and 7.4 for ArP6 (raw data on Figure IV-2). As noticed on curve A, thermodynamic 

data was impossible to determine at pH 7.4 because the baseline and transition could 

not be clearly defined on the thermogram. However, the peak of the transition was 

approximately 36 oC. This is slightly higher than under acidic conditions (33.5 oC), 

when the polymer was protonated and more hydrophobie [Hirotsu et al., 1987; Chen 

and Hoffman, 1995]. It had previously been shown for a pH-sensitive PPZ that the 

~HLCST decreased from about 39 to 27 J/g and the LCST increased from 29 to 31°C 

when the pH was raised from 5 to 7.4 [Couffin-Hoarau and Leroux, 2004]. The 

magnitude ofthese variations is relatively close to those observed in Figure IV-2. 
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Figure IV-2: Comparison ofraw DSC thermograms for ArP6 at pH 7.4 (A) and 5 (B) 
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IV-1.3 Biodegradation stndy 

PPZ have the particular advantage of being stable against hydrolysis when 

desired or biodegradab1e by simp1y grafting cleavable side-groups. 

Aminophosphazenes have been extensively studied for their hydro1ytic properties 

[Allcock et al., 1982], especially PPZ bearing amino acid esters [Allcock et al., 1977; 

Crommen et al., 1992a]. Allcock, et al. (1994) proposed three possible mechanisms 

for PPZ hydrolysis (Figure IV - 3). 
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Figure IV- 3: Possible mechanisms for PPZ hydrolysis, adapted with permission from 
[Allcock et al., 1994]. 
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In aIl mechanisms, it is believed that a phosphazane, a species possessing an 

oxidized phosphorous and a single bond to nitrogen, is the intennediate to backbone 

hydrolysis, which finally results in substituted phosphates and ammonia. However, 

the first steps may differ: in mechanism A, hydrolysis of an ester function would 

precede nucleophilic attack of the free acid on the phosphorous backbone, whereas in 

mechanism B, nucleophile substitution might be conducted directly by the ester, 

releasing the amino acid from the backbone in one step. Intramolecular catalysis by 

mechanism Amay be preferred over mechanism B since poly(amino acid 

ester)phosphazenes degrade at slower rates than the free acid polymers. Hydrolysis of 

the ester could be the rate-limiting step for the hydrolysis of poly(amino acid ester) 

phosphazenes [Schacht et al., 1996]. Others have also noticed that the extent of 

degradation can be dependent on the substitution ratio of the side-group [Lee et al., 

1999]. However, it cannot be neglected that a water molecule can catalyze hydrolysis, 

as shown in mechanism C. This is particularly true for other side groups, such as 

imidazole [Allcock et al., 1982; Andrianov et al., 2005] and N-ethylpyrrolidone 

[Andrianov et al., 2005], that have also been used to produce hydrolysable PPZ. 

Nonetheless, most PPZ that have shown complete degradation are substituted with 

relatively high portions of the hydrolysable side-group. 

The biodegradability of the synthesized PPZ was assayed by incubating 

polymers in buffered solutions at pH 7.4 and 37 oC. Samples were collected at 

different time intervals over 21 weeks, lyophilized and re-suspended for molecular 

weight analysis by SEC. The degradation test showed that the Mw of the PPZ 

decreased by only 20% within the first four weeks and did not vary much over the 

following 17 weeks of the assay. This result could be related to the relatively low 

ABA substitution ratio, since it is primarily responsible for degradation. Once aIl the 

ABA was consumed, the PPZ backbone may no longér becleaved, assuming that 

alkoxy groups are relatively stable to hydrolysis. Moreover, hydrolysis can also be 

limited by the increased hydrophobicity of the PPZ, once ionized ABA is cleaved 

from the backbone. One study compared the biodegradability of PPZ co-substituted 

with different ratios of glycine ethyl ester and ll)-methylpoly(ethylene oxide) (PEO) 
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of varioùs molecular weight (750, 2000 and 5000 g mor l
) [Vandorpe and Schacht, 

1996]. The authors reported that increasing the portion ofhigh moleculaF weight PEO 

(PEO-2000 and PEO-5000) accelerated the rate of degradation. They suggested that 

these polymers were more hydrated and allowed greater access of water to the 

backbone. Moreover, increasing the amount of PEO-750 along the backbone did not 

affect the rate of hydrolysis [Vandorpe and Schacht, 1996]. In comparison, the EEE 

substituent, whieh is smaller (134.0 g mor l
) and more hydrophobie than PEO-750, 

might slow down degradation, especially as its ratio inereased while ABA was 

cleaved from the baekbone. The remaining PPZ resulting from the hydrolysis may 

rather behave like EEE-PPZ. Couffin-Hoarau and Leroux (2004) previously reported 

that the LCST of EEE-PPZ was around 32 oc. It was also demonstrated by 

turbidimetry that A7-P6, with 7% ABA, was not eompletely soluble at 37 oC and pH 

7.4. An LCST -type transition of the remaining ehains eould therefore limit 

hydrolysis, as eonfirmed by a slight turbidity in' the sample tubes prior to 

lyophilization, 

IV -2Characterization of pH-responsive liposomes 

IV-2.t Incorporation of poly(organophosphazenes) into 
liposomes 

Physieal evaluation of PPZ showed their pH-sensitivity and potential to 

induce liposome destabilization. Consequently, the next step of this work was to 

prepare EPCIChol liposomes and evaluate the fixation efficieney of the PPZ onto the 

surface. A 1 mol% PPZllipid ratio was used to prepare stable vesicles. It was initially 

intended to include PPZ in the lipid film, since this method was shown to incorporate 

amphiphilic polymers with greater efficiency than by post-incorporation [Zignani et 

al., 2000]. However, lipid mixtures containing the PPZ AwPto or AWP16 revealed 

difficult to extrude due to increased viscosity after only a few passages, which 

suggests bridging of the lipid vesicles [Meier et al., 1996]. Therefore, these PPZ were 
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fonnulated with pre-formed vesic1es using the same molar percentage in order to 

compare with previously obtained data. 

In spite of' the different fixation methods, it was possible to extract and 

compare sorne valu able infonnation from the experimental data. First, over 80%· 

fixation was obtained for PPZ ArP6, A9-PS.5 and A9.5-P7.S (incorporated in lipid film), 

while 35 and 50% fixation where obtained for An-PIO and AWP16 (post-incorporated 

in liposomes). The decreased fixation by the second method might correlate with the 

reduced area exposed for polymer incorporation, since only the outer surface of the 

liposome is available. 

IV-2.2 In vitro release kinetics of pH-responsive 
liposomes 

In order to ensure maximal drug delivery, pH-responsive liposomes should 

efficiently retain their payload at neutral pH and th en release their contents upon 

acidification of their environment. In principle, complete discharge should occur 

before maturation of the endosome to lysosomes (Figure IIl-l). A fluorescent marker, 

HPTS, was encapsulated within PPZ-liposomes and the release was followed at 37 oC 

in pH 5.0, 6.0 and 7.4. The in vitro release kinetics was measured before and after 1 h 

exposure to 50% v/v of human serum, in order to evaluate the influence of serum 

components on the pH-triggered release of the vesic1es. 

Figure IlI-4 shows the acid triggered release of HPTS from PPZ-liposomes. 

At pH 7.4, A9.5-P7.5 and AWP16 retained well their contents (only 5% of HPTS 

released after 30 min), whereas ArP6 re1eased more HPTS, likely because of its 

partial dehydration (Figure IlI-3). The pH-triggered release was observed for each 

PPZ, with A9.5-P7.5 perfonning the best (75% HPTS released in 30 min). The slower 

release from AWP16 can be explained by the fact that incorporating pH-responsive 

polymers only on the outer surface of the vesic1es reduces their capacity to destabilize 

the bilayer [Hayashi et al., 1999; Zignani et al., 2000; Roux, Francis et al., 2002; 

Couffin-Hoarau and Leroux, 2004]. Furthennore, it was previously shown that the 
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ex te nt of release increases with greater PPZ:lipid ratios [Couffin-Hoarau and Leroux, 

2004]. 

All PPZ-liposomes were tested for resistance to serum proteins and showed a 

significant 10ss in pH-sensitivity after 1 h incubation with 50% (w/w) human serum 

(shown in Figure 1II-6A for A9.5-P7.5-liposomes). The 10ss in sensitivity can possibly 

be attributed to the serum proteins that are either extracting the PPZ or binding to the 

bilayer decreasing the transition pH [Harvie et al., 1996]. Interestingly, the acid­

induced release was not completely eliminated for PPZ solely incorporated on the 

outer surface of the bilayer. A9.5-P7.5-liposomes demonstrated the best retention at pH 

7.4 and release under acidic conditions, before and after serum exposure. 

In order to reduce serum-induced desensitization and obtain long circulating 

liposomes, 5.5 mol% PEG-DSPE was added in the formulation of PPZ-liposomes. 

For PEGylated liposomes to be stable in serum conditions, it is important that the 

surface of the liposomes be coated by PEG in what is called a brush regime [de 

Gennes, 1980], which forms a steric barrier against serum proteins. This regime 

consists of PEG chains in the extended coil conformation, evenly distributed on the 

surface of the vesic1es, and occurs when the surface of the lipid bilayer is nearly 

saturated with polymers [de Gennes, 1980; Hristova and Needham, 1995]. PEG 

should also be of sufficiently high molecular weight (ca. 2000 g mor l
) since short 

PEG-lipids cannot form a significant barrier nor provide long-circulation properties 

[Allen et al., 2002]. 

Characterization ofthese liposomes showed that PEG-DSPE reduced the PPZ 

incorporation efficiency (32% vs. 92%), because of a possible adsorption competition 

effect. Secondly, DSPE-PEG incorporation also reduced the efficiency of pH­

triggered release (Figure III-5 and Figure III-6). This can be caused by a combination 

of the reduced fixation of the PPZ when formulated with PEG and from the 

stabilizing effect of PEG corona on the lipid-bilayer [Roux et al., 2003]. PEGylated 

A9.S-P7.S-liposomes were then tested in the event that PEG could help maintain pH­

sensitivity after exposure to serum. Figure III-6 compares the pH-induced release of 

HPTS from PPZ-liposomes before and after serum incubation. Exposure to serum 
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considerably reduced the sensitivity of the liposomes, even when PPZ-liposomes 

were formulated with PEG. Others have also observed that PEGylation of pH­

responsive liposomes prepared with randomly-alkylated P(NIPAM-MAA) could not 

limit interaction with serum components nor prevent potential polymer extraction 

[Roux et al., 2003]. On the other hand, liposomes prepared with both 'PEQ and 

terminally-alkylated P(NIPAM-co-MAA) were not desensitized by serum exposure 

[Roux et al., 2004]. Terminally-alkylated PPZ may therefore be better candidates for 

the preparation of serum-stable pH-responsive vesicles. 

It was noticed that the profile of the kinetic release studies had an overall 

different shape in comparison to other profiles reported in the literature [Roux, Stomp 

et al., 2002; Boomer et al., 2003]. Since the analytical methods differed, we 

compared use of the multiple well plate reader wÎth that of a conventional 

fluorometer for kinetic measurements. Indeed, a faster release was observed with the 

latter device (data not shown). Though the plate reader allowed comparison of several 

samples in a single assay, this technique has two principal drawbacks: (i) the samples 

" are prepared at room temperature; (ii) it was impossible to maintain constant stirring. 

These limitations account for an uneven heat distribution, resultingin a deiayed 

release of the marker. Conversely, the conventional fluorometer allowed the 

conditions in the cuvette to remain constant, since it is equipped with a heating block 

and stirrer. 

The influence of serum on· the pH -sensitivity was then reassessed with the 

conventional fluorometer. Figure IV-4 compares the amount of HPTS released at 30 

min from non-PEGylated (A) and PEGylated (B) A9-PS,s-liposomes before and after 1 

h incubation with 50% (w/w) human serum. The primary observation is that 

PEGylated liposomes retained their contents more efficiently than the non-PEGylated 

ones at pH 7.4, demonstrating the stabilization effect of the PEG corona. Although 

PEG could change the acid-induced kinetics (as previously shown in Figure III-5 and 

Figure III-6), the release levels here were comparable after 30 min, even post-serum 

exposure. In the latter case, it was confirmed that PEGylation could not prevent 
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serum-induced desensitization to acidic conditions, in concordance to the previously 

obtained data. 
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Figure IV-4: Percent HPTS released after 30 min at 37 oC from pH-sensitive 
EPC/Chol (3:2 mol/mol) A9-Ps.s-liposomes (ca. 120 nm) prepared without (A) and 
with (B) 5.5 mol% PEG-DSPE. Percent released is relative to complete HPTS 
released from lysed liposomes. pH-sensitivity was evaluated before and after l-h 
incubation with 50:50 (v/v) human serum at pH 7.4 (solid bars), 6.0 (open bars) and 
5.0 (grey bars). Mean ± SD (n=3). 

In summary, though PEGylation did not provide sufficient protection towards 

serum exposure, it prevented sorne leakage at pH 7.4. Also, A9.s-P7.s-liposomes 

showed the overall best pH-responsive triggered release with good retention under 

neutral conditions. 



Chapter V: Conclusion and research perspectives 

Polyanionic amphiphilic polymers are "intelligent" polymers that are capable 

of promoting the acid-triggered release of liposome-encapsulated bioactives. 

Ionizable PPZ have been proposed as biodegradable pH-sensitive polymers, which 

can be used to coat the surface of liposomal CDC in order to achieve targeted 

delivery oftherapeutics [Couffin-Hoarau and Leroux, 2004]. In this master's thesis, 

we have described the latest developments in defining the required parameters for the 

implementation ofPPZ for pH-responsive liposomes. 

It was determined that increasing the content of the ionizable moiety, ABA, 

increases the water-solubility of the PPZ at neutral pH. Though difficult to predict, 

the LCST can be adjusted by varying the proportion of the three substituents. In a 

biodegradation assay, the PPZ were only subject to partial hydrolysis. This was 

attributed to the PPZ's relatively low ABA content, which may have limited 

intramolecular catalysis and the possibility for water to access the phosphazene 

backbone. Randomly alkylated PPZ showed efficient liposome fixation, especially 

when inc1uded during vesic1e formation, and mediated acid-induced release of an 

encapsulated marker. Finally, exposure to serum proteins reduced the pH­

responsiveness of the PPZ-liposomes. Although PEGylation reduced leakage of the 

marker from the PPZ-liposomes at pH 7.4, it was unable to protect them against 

serum components. 

There is evidence that randomly-alkylated polymers may not be ideal for the 

preparation long-circulating pH-responsive liposomes and that terminally alkylated 

PPZ may allow more efficient coating of membrane surfaces. We therefore propose 

that future research investigates the synthesis of hydrophobically-modified telechelic 

PPZ in order to increase serum resistance. Furthermore, limiting alkylation to the 

terminus will allow easier identification of the proportions ABA and EEE required to 

eliminate leakage under neutral conditions and maximize acid-triggered release. 
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