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Résumé 

Les synapses jouent un rôle important dans la transmission de l'information au sein 

du système nerveux. Elles montrent une certaine plasticité tout au long de la vie et 

jouent un rôle essentiel lors du développement, de l'apprentissage et de la mémoire. 

Dans cette étude, nous avons exploré un nouveau rôle des cannabinoides endogènes 

ainsi que leur récepteur CBl dans la formation, le remodellage, et le maintien des 

synapses. Les cannabinoides endogènes et leurs récepteurs CB 1 sont surtout connus 

pour l'effet modulateur qu'ils excercent sur la libération de neurotransmetteurs au 

niveau de la synapse. Mais, ils sont également impliqués dans plusieurs événements 

lors du développement. Récemment, il a été rapporté que les cannabinoïdes 

endogènes diminuaient le nombre de synapses fonctionnelles entre des neurones 

pyramidaux en culture. Ici, nous démontrons que les cannabïnoides endogènes et les 

récepteurs CBl régulent la formation de filopodes axonaux et dendritiques 

(précurseurs de synapse) et sont impliqués lors de la synaptogénèse. La stimulation 

de neurones corticaux in vitro à l'aide d'un agoniste du récepteur CBl, 

l'arachidonyl-2'-chloroethylamide (ACEA), produit une diminution significative du 

nombre de filopodes (précurseurs synaptiques) à DIV8, et par la suite une réduction 

de la densité synaptique à DIVIO. D'autre part, antagoniser l'action des 

endocannabinoides et de leur récepteurs CBl à l'aide d'un agoniste inverse, le 

AM251, ou d'un antagoniste pur, le 02050, augmente la densité des filopodes à 

DIV8 et éleve le nombre de contacts synaptiques à DIVIO. Aussi, nous avons 

constaté que ces augmentations étaient bloquées lorsque les cultures étaient 

préalablement traitées à l'aide du H89 ou du KT5720 (deux inhibiteurs de protéine 

kinase A(PKA)) ou d'un anticorps blocant lafonction du récepteur DCC (Deleted in 

Colorectal Cancer). Fait à noter, nous avons observé une diminution significative de 

la présence des récepteurs DCC à la surface membranaire des cellules traitées avec 

l'ACEA. D'autre part, nous avons remarqué une augmentation de la présence de 

DCC à la surface quand les récepteurs CBl étaient antagonisés à l'aide de l'AM251 
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ou de 1'02050. Cette augmentation a été bloquée lorsque les cellules étaient 

prétraitées avec le H89 ou le KT5720.Ceci a validé les observations précédentes 

démontrant que l'activation de la voie de l'adénylate cyclase et de la PKA produisait 

une augmentation de la formation de contacts synaptiques dépendant de la voie de la 

nétrine-l et de son récepteur DCC. Afin de confirm,er que l'effet produit par les 

endocannabinoides et leur récepteur CB] est médié par la nétrine-l et son récepteur 

DCC, nous avons traité des neurones corticaux provenant d'embryons de souris où 

le gène codant pour le récepteur DCC a été délété à l'aide d'un agoniste inverse ou 

d'un antagoniste pur du récepteur CB]. En l'absence du récepteur DCC, l'agoniste 

inverse AM251 et l'antagoniste 02050 n'ont montré aucune augmentation du nombre 

de filopodes axonaux et dendritiquse. Le nombre de contact synaptique demeura 

également inchangé, confirmant ainsi le lien existant entre les endocannabinoïdes, 

leur récepteur CB] et le récepteur DCC lors de la synaptogenèse. Nous proposons 

donc que les endocannabinoïdes agissant sur les récepteurs CB], diminuent la 

concentration cytosolique de l'AMPc, ce qui diminue l'activité de la PKA, bloquant 

ainsi le recrutement du récepteur de DCC à la surface membranaire, empêchant 

l'action de la nétrine-l, ce qui diminue la synaptogenèse. Dans cette étude, nous 

prouvons qu'une interrelation existe entre le système des endocannabinoïdes et celui 

de la nétrine-l, molécule habituellement impliquée dans le guidage axonal. Ce 

nouveau mécanisme participe à la formation de synapse au cours du développement 

neural. Ces résultats démontrent un rôle nouveau majeur des cannabinoides 

endogènes et représentent une percée importante dans l'identification des 

mécanismes impliqués dans la synaptogenèse. 

Mots-clés: Synaptogenèse, récepteur aux cannabinoïdes CBI, Deleted in Colorectal 

Cancer, nétrine-l, filopodes, protéine kinase A. 
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Abstract 

Synapses play a major role in signalling transduction in the nervous system. They 

display extensive activity-driven plasticity during development, learning and memory. 

Here we have explored a new role of endogenous cannabinoids and their CHI 

receptors in synapse formation, remodelling, and maintenance. 

Endogenous cannabinoids and their CHI receptors have been known to regulate 

neurotransmitter release at the level of the synapse and have also been implicated in 

several developmental events. Recent/y, if was reported that endogeneous 

cannabinoids decrease functional synapses in pyramidal neurons. We show here that 

endogenous cannabinoids and their CHI receptors regulate the dendritic and axonal 

filopodia formation (synapse precursors) and synaptogenesis obtained from 

embryonic mice cortical cultures. Stimulating the cortical cultures with the synthetic 

CHI receptor agonist, arachidonyl-2'-chloroethylamide (ACEA), produces a 

significant decrease in filopodia number at DIV8, and subsequently a lower synaptic 

contact density at DIV10 compared with the control group. On the other hand, 

inhibiting the action of endogenous cannabinoids and their CHI receptors by the 

inverse agonist AM251 or by the pure antagonist 02050 increases filopodia density 

at DIV8, and elevates synaptic density formation at DIV10. Furthermore, we found 

that this increase was reversed when cultures were pre-treated with H89, KT5720 

(both inhibitors of Prote in Kinase A (PKA)) or DCCjb antibody, (an antibody which 

blocks the function of Deleted in Colorectal Cancer Receptor). Interestingly, a 

decrease of DCC receptors present at the surface of the neurons was observed when 

treated with ACEA. Conversely, an externalisation of DCC was observed when CHI 

receptors were antagonised by AM251 or 02050 and this effect was prevented when 

neurons were pretreated using H89, KT5720. This confirms the previous observations 

showing that the activation of adenylate cyclase and P KA pathway produces a netrin­

l-DCC dependent increase in synaptogenesis. 
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In order to verify the putative link between cannabinoid and netrin-l systems, we 

performed in vitro experiments on primary cortical neurons obtained from dcc 

knockout mouse embryos. In the absence of the DCC receptor, the inverse agonist 

AM251 and the antagonist 02050 show no increase in axonal and dendritic 

filopodia, or synapse density confirming a connection between the two systems in the 

underlying mechanisms of synapse formation. We propose that endocannabinoids 

acting on their CE, receptors, decrease cytosolic cAMP concentration and inhibit 

PKA. This blocks the recruitment of the DCC receptor to the membrane surface and 

therefore, inhibits the action of netrin-l regulating synaptogenesis. 

In this study, we show that an interplay between the endogeneous cannabinoids and 

the DCC / netrin-l pathways regulates synapse formation during neural 

development. These findings indicate a profound raIe of endogenous cannabinoids 

and a breakthrough in understanding the mechanisms implicated in synaptogenesis. 

Keywords: Synaptogenesis, Cannabinoid Receptor 1, Deleted in Colateral Cancer 

Receptor, netrin-l, filopodia, Protein Kinase A. 
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Introduction 

A major issue of modem neurobiology is to understand how neurons extend their 

neurites to form a functional network. While a large amount of information is 

available on the mechanisms driving neuritogenesis and synaptogenesis, the study of 

the intricate molecular machinery underlying the intracellular mechanisms has only 

been recently addressed. 

Formation of synapses during development is essential in the wiring of the brain. 

Synaptogenesis requires molecular recognition cues and guiding interaction cues to 

regulate the axons and dendrites toward their final target. The morphological 

development is initiated with the protrusion of filopodia transiently from dendritic 

shafts. Dendritic filopodia extend and initiate physical contacts with nearby axons or 

axonal filopodia which results in filopodial stabilization and the formation of 

functional presynaptic boutons. The increase in the number of boutons coincides with 

a decrease in the number of transient filopodia and an increase in the number of stable 

dendritic spines (Ziv NE and Smith SJ, 1996). After the initial contact, a stable 

synaptic adhesion site is established and the axonal and dendritic compartments 

differentiate into pre- and postsynaptic specializations respectively. 

Synapses play a significant role in plasticity. Mechanisms of synaptic plasticity are 

regulated by the state of the postsynaptic cell, which is controlled by the interactions 

of synaptic inputs from multiple sources. 
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Recent reports on the effects of cannabis on cognitive processes have lead to 

investigations on their effect on synaptic plasticity. Due to their presence at the fetal 

and early postnatal periods, endocannabinoids and their CB) receptors have been 

implicated in playing a significant role in developmental events, such as proliferation 

and migration of neuronal cells, and synaptogenesis. Although cannabinoids have 

been reported before to have a retro grade regulatory role on the neurotransmitter 

release, they have not been clearly implicated in synapse formation. Recently, Kim 

and Thayer observed that endogenous cannabinoids by activating the CB) receptors 

decrease the number of synapses, however the underlying mechanisms are still to be 

uncovered. 

Here we show that endogenous cannabinoids via the activation of CB 1 receptors with 

the agoni st ACEA negatively modulate axonal and dendritic filopodia formation. The 

decrease in axonal and dendritic filopodia number reduces the contact probability 

between pre- and postsynaptic counterparts and therefore decreases the formation of 

synapses. This mechanism was found to be dependent of PKA activity and the action 

of netrin-l, a guidance molecule that acts on DCC receptors. Therefore, a novel role 

of CB) receptor in regulating synaptogenesis during development has been 

discovered. 
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Chapter 1: Literature Review 

1. Synaptogenesis 

Synaptogenesis is a process involving the formation of neurotransmitter release sites 

pre-synaptically and receptive fields post-synaptically in neurons. Progress towards 

understanding the molecular basis of synaptogenesis is still in its early stages. 

Neurons acquire the ability to form synapses as part of a deve10pmental maturation 

process. Synaptic specificity is determined by: (l) neuronal and glial eues that 

influence competence for synaptogenesis, (2) by long-range and local axon and 

dendrite guidance eues, (3) by cell-adhesion molecules that mediate contact, (4) and 

by local presentation of differentiation-inducing molecules. Moreover, the 

differentiation process is so intricate that neurons develop and maintain molecularly 

distinct synaptic specializations for excitatory and inhibitory actions, often only 

microns apart (Linhoff et al., 2006). 

1.1 Filopodia and Spine formations 

Filopodia formation is a key prerequisite for synaptogenesis in central nervous 

system neurons. The filopodia are slender cytoplasmic projections which extend from 

dendritic shafts (Mattila et al., 2008). They contain actin filaments (Figure la) cross­

linked into bundles by actin-binding proteins (Hanein et al., 1997). Filopodia extend 
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to fonn adhesions with the neuronal axons and are attracted by guidance cues that 

regulate their migratory pathways, and then the y differentiate into stable spines 

(Mattila and Lappalainen, 2008). A dendritic spine (Figure Ic) IS a small 

membranous protrusion from the central stalk of a dendrite that IS typically 

electrophysiologically active and synapses with a single axon. TypicaIly, spines have 

a bulbous head and a thin neck that connects the head of the spine to the stalk of the 

dendrite. Spiny dendritic stalks host many spines, so because each individual spine 

typically synapses with a reciprocal axon, a spiny dendrite could receive a multitude 

of signaIs whereas a traditional dendrite would receive less (Nimchinsky et al., 2002). 

Dendritic spines, sites of excitatory input in CNS neurons, can be highly dynamic, in 

later development as weIl as in the mature brain. Spine motility has been proposed to 

facilitate the fonnation of new synaptic contacts, and they continue to be dynamic 

even after bearing synaptic connections (Dailey et Smith, 1993). 

Figure 1. Filopodia and Spines: Actin network in neurons 

• ~-------
( 

''-~",,"-;--------, ,Y<? 
- ---::;< '\ \fI 

) 
Natu,"" Rooview'l Molecul., Celi lIlolosy 

Piel. K. Mattila & Pekka Lappalainen, Filopodia: molecular architecture- and cellular runctions, Nature Rrviews Molecular Cell Biology 9, 446-454 (June 2008) 
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1.2 Axo-Dendritic Contact 

A synaptic site develops when contact between axons and dendrites is established 

(Ziv and Smith, 1996; Fiala et al., 1998; Ahmari et al., 2000; Friedman et al.,2000; 

Alsina et al., 2001 ; Ziv and Garner, 2001). Factors enhancing the axo-dendritic 

contact therefore are significant role players in synaptogenesis. It was previously 

thought that axons extend and initiate contact with dendrites or other target cells 

while dendrites are more stationary. This was best explained by the neuromuscular 

junction model, which is mainly based on the well-characterized development of the 

neuromuscular junction (NMJ) (Sanes and Litchman, 1999; Burden, 2002), where 

target muscles are rather stationary, and axonal growth cones migrate toward the 

muscle and initiate contact forming a synapse. 

Although axonal growth cones play a central role in wiring the nervous system and 

initiating axo-dendritic contacts, recent numerous studies have also attributed an 

important role for dendritic filopodia and spines in synaptogenesis (Ziv and Smith, 

1996; Jontes et al., 2000; Luscher et al., 2000). The observation that the majority of 

excitatory synapses in the CNS are formed between spines and varicosities along 

axons (Gray, 1959; Vaughn, 1989; Harris and Kater, 1994), suggested that dendritic 

extensions, which are actin filaments, function to efficiently connect axons with a 

multitude of dendritic shafts, without the need for axons to run convoluted paths 

(Anderson and Martin, 2001). Dendritic filopodia are often present before the 
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fonnation of synaptic contacts and spines, and their number decreases as neurons 

mature, therefore they were believed to initiate axo-dendritic synaptogenesis and to 

be the precursors for dendritic spines and (Dailey and Smith, 1996; Ziv and Smith, 

1996; Smith, 1999) important role players in synaptogenesis. 

1.3 Synapse formation 

Synapses must remain dynamic during development, allowing neurons to remodel 

their connections. Such fonns of synaptic plasticity are influenced by the activity of 

synapses in neurons, and their variations are thought to underlie the adaptive 

responses of neural circuits, including the adaptive characteristics of leaming and 

memory (Kandel, 2000). The mechanisms underlying plasticity stem from both the 

modulation of channel and receptor activity, and the physical movement of channels 

and receptors into and out of the synapse. The mechanisms that govem synapse 

fonnation and elimination are fundamental to our understanding of neural 

development and plasticity. 

The wiring of neural circuitry requires that vast numbers of synapses be fonned and 

disassembled. The subsequent refinement of neural circuitry involves the fonnation 

of additional synapses coincident with the disassembly of previously functional 

synapses. There is increasing evidence that activity-dependent plasticity also involves 

the fonnation and disassembly of synapses (Goda and Davis, 2003). 

Complexity of synapse differentiation development arises from the presence of 

multiple neuron types in the CNS, each fonning molecularly and functionally distinct 

synaptic specializations. 
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Differentiation of neurons into glutamatergic or GABAergic subtypes occurs early, 

before neurons extend axonal processes (Tozuka. and Hisatsune., 2005). Thus, the 

type of neurotransmitter released from a given presynaptic active zone is 

predetennined weIl before synapse fonnation (Hampson and Deadwyler, 1999). 

Consequently, the question arises of how a dendrite can specifically cluster 

glutamatergic and GABAergic postsynaptic specializations opposite glutamatergic 

and GABAergic presynaptic contacts, respectively. A likely possibility is that local 

signaIs from the axon at nascent contact sites direct the aggregation of appropriate 

postsynaptic proteins at these sites. Recent evidence suggests that b-neurexins could 

be good candidates for such signaIs. Exogenous focal application of neurexin-l b 

induces the clustering of glutamatergic and GABAergic postsynaptic receptors, 

scaffolding proteins and signalling proteins via neuroligins (Dean and Dresbach, 

2005).The localization of neuroligin-1 to glutamatergic synapses and neuroligin-2 to 

GABAergic synapses, and the apparent linkage of neuroligins-l, -3, and -4 to 

proteins of glutamatergic postsynapses and of neuroligin-2 to proteins of GABAergic 

postsynapses, suggests that neurexins can influence postsynaptic differentiation by 

aggregating the proper neuroligin isofonns at nascent contact sites. Therefore, 

differential expression of neurexin isofonns by glutamatergic versus GABAergic 

neurons could contribute to local induction of glutamatergic versus GABAergic 

postsynaptic specializations. However, such a model of postsynaptic specification 

based solely on neurexins is probably too simplistic. Additional proteins that interact 

with neurexins and neuroligins and/or that act independently, such as NARP and 

ephrins, are probably needed to specify appropriate postsynaptic differentiation 
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(Craig and Linhoff, 2006). Interestingly, N-cadherin is found at hippocampal 

glutamatergic and GABAergic synapses early in development and then lost from 

GABAergic synapses (Benson and Tanaka, 1998). Thus, cadherin isoforms could· 

also contribute to maintaining aspects of specificity. Further studies of synaptic 

molecules would give a better understanding of the basis for matching pre- and pro­

synaptic compartments. 

2. Synaptic Plasticity 

Synaptic pl asti city was first proposed as a mechanism for learning and memory on 

the basis of theoretical analysis (Hebb, 1949). The plasticity mIe proposed by Hebb 

postulates that when one neuron drives the activity of another neuron, the connection 

between the se neurons is potentiated. Theoretical analysis indicates that not only 

Hebbian like synaptic potentiation is necessary but also depression between two 

neurons that are not sufficiently coactive (Stent, 1973, Sejnowski 1977). Depression 

is necessary for several reasons, among them to prevent all synapses from saturating 

to their maximal values and thereby loosing their selectivity. It is also important to 

prevent a positive feedback loop between network activity and synaptic weights. The 

experimental correlates of these theoretically proposed forms of synaptic plasticity 

are called long-term potentiation (L TP) and long-term depression (L TD). LTP and 

L TD, the long-term potentiation and depression of excitatory synaptic transmission, 

are widespread phenomena expressed at possibly every excitatory synapse. It is now 

clear that (L TP) and (L TD) are not unitary phenomena. Their mechanisms vary 
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deperiding on the synapses and circuits in which they operate (Bear and Malenka, 

1994). 

Recent evidence suggests that induction of L TP may require, III addition to 

postsynaptic Ca2
+ entry, activation of glutamate receptors and the generation of 

diffusible intercellular messengers. On the other hand, long-term depression (LTD) 

requires Ca2
+ entry through the NMDA receptor (Yashiro and Philpot, 2008). 

Two broad classes of models of synaptic plasticity can be described: 

1) Phenomenological models: these are very simple models that are typically based 

on an input-output relationship between neuronal activity and synaptic plasticity. 

Phenomenological models are typically used in simulations to account for higher 

level phenomena such as the formation of memory, or the development of neuronal . 

selectivity (Bliss and Lomo, 1973). 

2) Biophysical models: These more detailed models incorporate more of the cellular 

and synaptic biophysics of neurons, and are typically used to account for controlled 

synaptic plasticity experiments. Substantial evidence indicates that the number and 

strength of synaptic connections can be changed by neuronal activity (Bailey and 

Kandel, 1993; Bliss and Collingridge, 1993; Malenka, 2003). These changes must be 

stabilized or consolidated in order for memory to persist. Temporary reversible 

changes are referred to as short-term memory (STM) and the persistent changes as 

long-term memory (L TM). 
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2.1 Elements inducing Synaptic Plasticity 

Since its discovery by Bliss and Lomo (1973), LTP has been the object of intense 

investigation as it is believed to provide an understanding of the cellular and 

molecular mechanisms by which memories are formed and stored (Bliss and 

Collingridge, 1993). Calcium influx into the postsynaptic spine is crucial for the 

induction of many forms of bidirectional synaptic plasticity. Much of the calcium 

entering the postsynaptic spine cornes through NMDA receptors (Garner and Ziv, 

2002). Blocking NMDA receptors pharmacologically can eliminate both L TP and 

LTD, and a partial block ofNMDA receptors can convert an LTP to LTD. Moreover, 

experimental results show that a strong postsynaptic calcium transient, in the absence 

of a presynaptic stimulus can pro duce L TP while a prolonged moderate calcium 

transient results in LTD (Yang et al., 1999). Many intracellular cascades are initiated 

after NMDA receptor activation leading to the development of synaptic plasticity. 

One particular signalling cascade is the one of CaMKII (Kawaguchi and Hirano, 

2002). This kinase is unique in that after sufficient stimulation, auto phosphorylation 

occurs and transforms it from a Ca2+-dependent to a Ca2+-independent state. In this 

hyper phosphorylated state, CaMKII activity will continue independently of the 

NMDA receptor activation (Lisman et al., 2002). Moreover, acute CaMKII activation 

has been reported to enhance GABAA receptor-mediated transmission (Chum et al., 

2002 ; Kawaguchi and Hirano, 2002 ). However, a preferential down regulation of 

GABAA receptors has been reported in the neocortex after withdrawal from periods of 

elevated GABAA receptor activation (S. S. Smith et al. 1998 ; Casasola et al., 2001). 
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Sustained CaMKII activity could result in a transient elevation of GABAA receptor 

function and may trigger a subsequent down regulation of GABAA receptor 

expression. During brain development, transmitter-gated receptors are operative 

before synapse formation, suggesting that their action is not restricted to synaptic 

transmission. GABA, which is the principal excitatory transmitter in the developing 

brai n, acts as an epigenetic factor to control processes including cell proliferation, 

neuroblast migration and dendritic maturation. Neurons express functional GABA 

receptors before formation of functional synaptic contacts (Represa.and Ben-Ari, 

2005 ). 

2.2 Signal Transduction Mechanisms 

In neurons, signal transduction mechanisms underlie the action potentials that travel 

along nerves. The influx of ions that occurs in response to ligand-gated ion channels 

often induce action potentials by depolarizing the membrane of the post-synaptic 

cells, which results in the wave-like opening of Na+ voltage-gated ion channels 

(Huang and Kandel,1996). In addition, calcium ions are also commonly allowed into 

the cell during ligand-induced ion channel opening. This calcium can act as a 

classical second messenger, setting in motion signal transduction cascades and 

altering the cellular physiology of the responding cell. This may result III 

strengthening of the synapse between the pre- and post-synaptic neurons by 

remodeling the dendritic spines involved in the synapse (Kandel, 2000). 

Overwhelming evidence implicates Ca2+ -sensitive kinases such as PKC and 

calciumlcalmodulin-dependent kinases (CaMK), as weIl as cAMPIPKA signalling, in 
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the enhancement of synaptic transmission (Lisman et al.,2002; Nguyen and 

Woo,2003). Conversely, Ca2+-dependent phosphatases such as calcineurin and 

prote in phosphatas es 1/2A are shown to decrease synaptic transmission (Morishita et 

al., 2001; Winder and Sweatt, 2001). Ca2+ levels therefore bi-directionally control 

synaptic efficacy by influencing the balance between the activity of prote in kinases 

and phosphatases. 

3. Role of PKA and cAMP in CNS Synapse Formation and Plasticity 

Adenylyl cyc1ases are a critically important family of multiply regulated signalling . 

proteins. It is a transmembrane protein that passes through the plasma membrane 

twelve times. Sorne adenylate cyc1ases are stimulated by Gs proteins, and by 

forskolin. In neurons, a majority of adenylate cyc1ases are located next to calcium ion 

channels for faster reaction to Ca2+ influx; they are suspected of playing an important 

role in the leaming processes. This is supported by the fact that adenylate cyc1ases are 

coincidence detectors, meaning that they are only activated by several different 

signaIs occurring together (Cooper, Mons, and Karpen, 1995). Prote in kinase A, 

refers to a family of enzymes whose activity is dependent on the level of cyc1ic AMP 

(cAMP) in the cell. PKA is also known as cAMP-dependent protein kinase. Each 

PKA is a holoenzyme that consists of two regulatory and two catalytic subunits 

(Deadwyler et al., 2000). Under low levels of cAMP, the holoenzyme remains intact 

and is catalytically inactive. When the concentration of cAMP rises, cAMP binds to 

the two binding sites on the regulatory subunits, which then undergo a 

conformational change that releases the catalytic subunits. The cAMP signalling 
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cascade is central to certain types of learning and memory. Changing the strength of 

connections between neurons is thought to underlie memory formation and may 

result from the recruitment of new sites of synaptic transmission. New functional 

synapses can be induced between neurons in culture by elevating cAMP levels (Kim 

and Thayer, 2001). 

3.1 Implication of cAMP in synaptogenesis and plasticity 

It had long been believed that almost all synaptic effects of cAMP could be attributed 

to the direct binding of cAMP to cAMP-dependent prote in kinase (PKA) (Evan and 

Morgan, 2003). PKA is a ubiquitous serine/threonine protein kinase that regulates 

many cellular functions. Cyclic AMP-GEFs bind cAMP and selectively activate the 

Ras superfamily guanine nucleotide binding protein (Rap1A) in a cAMP-dependent 

but PKA-independent manner. B-Raf, a member of the Raffamily ofSerine/threonine 

kinases, stimulated by Rap1 subsequently activates mitogen-activated protein kinase 

(MAPK) pathways (Vossler et al., 1997; York et al., 1998). The MAPK pathways 

(including at least three pathways: extracellular-signal-regulated kinase (ERK), c-Jun 

amino-terminal kinase (JNK) , and p38 MAPK) are involved in a widespread set of 

cellular functions including neuronal differentiation in a transcription-dependent 

manner (Hazzalin and Mahadevan, 2002), such as ion-channel conductivity, and 

synaptic release of neurotransmitters. Rapid modulation of synaptic transmission 

efficacy during the early phase of synaptic plasticity is likely mediated by both pre­

and postsynaptic events. However, it remains unclear to what extent these changes 

contribute to the long-term maintenance of facilitated or depressed synaptic 
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transmission. It is currently thought that use-dependent modulation of gene 

expression and protein translation confers long-term plastic changes. In fact, 

modulation of cAMP-response element (CRE)-regulated gene expression by CRE­

binding protein (CREB) appears to be a universal requirement for this process 

(Kandel, 2001; West et al., 2001). 

3.2 Dual role of PKA and cAMP in neuritogenesis and synaptogenesis 

To create precise neural circuits in the nervous system, neuritogenesis, axon 

guidance, and synaptogenesis are the critical cellular processes during neuronal 

differentiation. Recent studies have examined the role of cAMP in signalling 

pathways for regulating neuritogenesis and synaptogenesis. A rise in intracellular 

cAMP concentration by a membrane-permeable cAMP analog, dibutyryl cAMP 

(dbcAMP), is thought to increase the number of neurites and varicosities 

(Tojima,Kobayashi, and Ito, 2003). On the other hand, inhibition of cAMP-dependent 

protein kinase (PKA) activity by a PKA inhibitor (H89) although accelerates, 

neuritogenesis.neurite outgrowth rate; but it, however, decreases the number of 

varicosities and the frequency of postsynaptic miniature currents, resulting m 

suppression of synaptogenesis (Cesa, Scelfo, andStrata, 2007). PKA activity mediates 

phosphorylation of a gene transcription factor, CREB. On the other hand, inhibition 

of ERK pathway by PD98059 suppresses both neuritogenesis and neurite outgrowth 

without CREB phosphorylation. This strongly suggests that PKA simultaneously 

plays two different roles in neuronal differentiation: inhibition of neuritogenesis and 
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stimulation of synaptogenesis, via CREB-mediated gene expression. (Tojima et al., 

2003) 

4. Netrins 

Netrins are a family of proteins that guide cell and axon migration during 

development. Three secreted netrins (netrin-l, ':3/2-like and -41B) have been 

identified in mammals, in addition to the two GPI-anchored membrane proteins, 

netrin-G 1 and G2 (Mehlen and LIambi, 2005). 

4.1 Netrin Structure and Function 

The netrin family of guidance molecules is mainly known to be involved in axon 

guidance. Netrins are chemotropic; a growing axon will either move towards or away 

from a source of netrin (Stretaven et al., 1999). Though the detailed mechanism of 

axon guidance is not fully understood, it is known that netrin attraction is mediated 

through UNC-40IDCC cell surface receptors and repulsion is mediated through UNC-

5 receptors. This protein gradient is bifunctional, attracting sorne axons to the midline 

and repelling others. Receptors for the secreted netrins include DCC (deleted In 

colorectal cancer) and the UNC5 homologues: UNC5 -1/ A, 21B, 3/C, 4/D in 

mammals. DCC mediates chemoattraction, while repulsion reqmres an UNC5 

homologue and, in sorne cases, DCC (Stretaven et al., 1999). The netrin-G proteins 

bind NGLs (netrin G ligands), single pass transmembrane proteins unrelated to either 

DCC or the UNC5 homologues. Netrin function is not limited to the developing CNS 
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midline. Various netrins direct cell and axon migration throughout the embryonic 

CNS, and in sorne cases continue to be expressed in the mature nervous system (de 

Castro, 2003). Furthermore, although initially identified for their ability to guide 

axons, functional roles for netrins have now been identified outside the nervous 

system where they influence tissue morphogenesis by directing cell migration and 

regulating ceIl-cell and cell-matrix adhesion. 

4.2 DCC, a netrin-l receptor 

Deleted in Colorectal Cancer, also known as DCC, is a human gene that has long 

been implicated in colorectal cancer. The protein coded by the dcc gene is a single 

transmembrane receptor also known as DCC. Since it was first discovered in a 

colorectal cancer study in 1990, DCC has been the focus of a significant amount of 

research (Fearon , Cho, Nigro et al, 1990). DCC held a controversial place as a 

tumour suppressor gene for many years, and is weIl known as an axon guidance 

receptor that responds to netrin-l(Hahn SA, Schutte M, Hoque AT, et al., 1996). 

More recently DCC has been characterized as a dependence receptor, and theories 

have been put forward that have revived interest in DCC's candidacy as a tumour 

suppressor gene, as it may be a ligand-dependent suppressor that is frequently 

epigenetically silenced. 



Figure 2. Structure of netrin-l and netrin-l dependence receptors 
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The dcc gene is located at 18q21.3, and has a total of 57 possible exons and 43 

possible introns. This theoretically results in 13 correctly sliced, putatively functional 

proteins. The typical DCC protein has one signal peptide motif and eleven domains, 

including multiple irnrnunoglobulin-like domains, a transmembrane domain, and 

several fibronectin type 3 domains (Michael A. Reale, Fearon et al., 1994). 

DCC has extracellular binding sites for both netrin-l and heparin. Heparin sulphate is 

believed to also be present during neural growth as a type of co-factor for axon 
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guidance. Intracellularly, DCC has been shown to have a caspase-3 proteolysis site at 

Asp 1290 (Mehlen et al., 2001). 

DCC and neogenin, two of the netrin-l receptors, have recently been shown to have 

sites for tyrosine phosphorylation (at Yl420 on DCC) and are likely interacting with 

Src family kinases in regulating responses to netrin-l(Xiu-Rong Ren et al., 2008). 

4.3 Signaling Downstream of Netrin Receptors 

Historically, cellular receptors have been thought to be activated when bound to their 

ligand, and are relatively inactive when no ligand is present. A number of receptors 

have been found that do not fit into this conceptual mould, and DCC is one of them. 

These receptors are active both with ligand bound and unbound, but the signaIs 

transmitted are different when the receptors are ligand bound (Mehlen et al., 2004). 

Collectively, this type of receptor is known as a dependence receptor because the 

unbound pathway is usually apoptotic, meaning that cell survival depends on ligand 

presence. Other receptors also show this functional profile, inc1uding p7SNTR
, the 

androgen receptor, RET, several integrins and Patched (Mehlen et al., 2004). 

When DCC is present on the membrane and bound to netrin-l, signaIs are conveyed 

that can lead to proliferation and cell migration (Zanker et al, 2007). Only in the 

absence of the DCC receptor is there an absence of downstream signaling. There are 

therefore three possible signaling states for dependence receptors: on (ligand-bound, 

migration and proliferation), off (ligand-unbound, apoptosis inducing) and absent 

(lack of signal). 
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4.4 Developmental and Neurological Roles 

DCC's role in commissural axon guidance is perhaps it's most characterized. In the 

developing spinal cord, commissural neurons located dorsally extend axons ventrally 

using a mechanism dependent on a ventral midline structure, the floor plate (Imondi 

and Kaprielian, 2001). A gradient of netrin-1 is produced from the floor plate, which 

allows orientation of the extending axons, ai ding the development of the dorsal­

ventral axis of the brain and spinal cord. A variety of receptors are present on the 

axon surface which either repe1 or attract axons to the midline. When membrane DCC 

is stimulated by netrin-1, it promotes axon progression towards the midline 

(Kaprielian" Runko., and lmondi, 2001). 

Several other molecules are also involved in the guidance of axons to and across the 

midline. The slit proteins have repulsive functions, as opposed to netrins, and are 

mediated by the transmembrane protein Robo (Simpson et al., 2000). Axonal growth 

cones that are attracted to the midline by netrinlDCC signaling eventually cross the 

floor plate. When this occurs they lose responsiveness to netrin and become repulsed 

by slitiRobo signaling. This is accompli shed by the formation of a DCC-Robo 

complex, which inhibits attractive netrinlDCC signaIs while allowing slitiRobo 

signaIs (Farmer et al., 2008). Netrin also has other receptors, the UNCS family. The 

UNCS receptors have repellant migratory responses to netrin binding, and have 

similar effects to the slitlRobo system (Farmer et al., 2008). 

The intracellular signaling responses to netrin-1 are not fully understood. Several 

phosphorylation events have been established, as have the involvement of several src 



20 

family kinases and small GTPases, but the sequence of events has not yet been 

determined (Zheng et al., 2003). DCC is also required to be recruited to lipid rafts for 

axon outgrowth and apoptotic signaling. Activating PKA increased the distance over 

which axons tumed toward a source of netrin-l, whereas PKA inhibition reduced this 

distance (Bartoe et al., 2006). However, in contrast to the cyc1ic nuc1eotide switch 

model, inhibiting PKA does not cause these axons to be repelled by netrin-l 

(Bouchard et al., 2004; Moore, and Kennedy, 2006). Thus the mechanisms 

underlying chemoattraction to netrin-l are independent of mechanisms required for 

cyclic nucleotide-dependent switching. PKA regulates the sensitivity of spinal 

commissural axon chemoattraction to netrin-l and mobilizes DCC from an 

intracellular vesicular pool to the growth cone plasma membrane (Bouchard et al., 

2004; Moore and Kennedy, 2006). 

Axon growth and pathfinding are crucial events involved in the establishment of the 

correct neuronal circuitry during the development of the nervous system. This is 

achieved by the complex integration of intracellular mechanisms mediated by several 

highly conserved families of guidance cues, including the netrins (Huber et al., 2003). 

Netrins are bifunctional ligands attracting or repelling different classes of neurons, 

depending on the expression of the receptors at the cell surface of the growth cone 

(Round and Stein, 2007). 

Remodelling of the actin cytoskeleton within the neuronal growth cone is an 

important step in the response of an axon to attractive and repulsive cues leading the 

axon to advance, retract, or tum in the appropriate direction. Rho-family GTPases, in 
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particular Racl, Cdc42 and RhoA are important regulators of cytoskeletal dynamics 

in neuronal and non-neuronal cells and act downstream of most guidance cue 

receptors (Hall, 1998; Luo, 2000; Dickson, 2001; Govek et al., 2005). Rho GTPase 

activities regulate growth cone extension and axon outgrowth (Mueller, 1999; 

Dickson, 2001). Rac1 promotes the formation of actin-based lamellipodia, which 

provides tension necessary for neurite elongation, while Cdc42 is responsible for the 

formation of filopodia that serves to orient the growth cone by sensing the 

extracellular environment (Waterman-Storer et al., 1999; Suzukia and Takahashi, 

2008). 

RhoA activity also affects the growth cone morphology by decreasing actin 

polymerization, regulating actomyosin contraction and inducing growth cone collapse 

(Tashiro et al., 2000). A widely accepted model in neuronal morphogenesis suggests 

that attractive cues promote actin polymerization and neurite outgrowth via activation 

of Rac1 and Cdc42 whereas repulsive cues induce neurite collapse via RhoA 

activation (Hall, 1998; Mueller, 1999). However, in sorne cases, their roles in neurite 

outgrowth seem to be interchanged (Meyer and Feldman, 2002). For instance, 

Sema3D-induced chick dorsal root ganglia (DRG) growth cone collapse is mediated 

by Rac1 (Jin and Strittmatter, 1997). Similarly, Rac1 activity is required for Ephrin­

A2-mediated growth co ne collapse in chick retinal cells and sensory neurons (Jumey 

et al., 2002). Conversely, RhoA activity has been implicated in mediating neurite 

outgrowth (Sebok et al., 1999; Arakawa et al., 2003) and axon guidance (Bashaw et 

al., 2001; Yuan et al., 2003). lndeed, low concentration of stromal cell-derived factor 

(SDF-la) promotes axon elongation by activation of the RhoA/mDia pathway in 



22 

cultured cerebellar granule neurons (Arakawa et al., 2003). Similarly, a Dbl family 

RhoGEF was found to promote axon attraction in Drosophila, in a Rho but not Rac or 

Cdc42-dependent manner (Bashaw et al., 2001). Rac 1 and Cdc42 are important 

downstream signaling components of netrin-l receptor DCC signaling (Li et al., 

2002b; Shekarabi and Kennedy, 2002; Shekarabi et al.,2005). Rho GTPases are 

implicated in the signalling mechanisms induced by the netrin-l receptor UNC5 

(Briançon-Marjollet and Lamarche-Vane, 2008). Rac1, Cdc42 and RhoA have been 

shown to play a role in UNC5a signalling and are implicated in the regulation of 

neurite outgrowth (Sebok et al., 1999; Arakawa et al., 2003).AIso recent studies 

showed that UNC5a highly activate RhoA and to a lower extent Rac1 and Cdc42 in 

response to netrin-l in fibroblast cells (Cirulli andYebra, 2007). Interestingly, UNC5a 

has been shown to induce neurite outgrowth but not growth cone collapse in NIE-115 

neuroblastoma cells in a netrin-I-dependent manner (Huber et al., 2003). UNC5a was 

shown to strongly activate RhoA and thus RhoA activity is thus required for UNC5a­

mediated neurite outgrowth (Cirulli and Yebra, 2007). 

DCC is developmentally regulated, being present in most fetal tissues of the body at 

higher levels than what is found in adult tissues (Jiang et al., 2003). DCC and netrin 

have been found to be specifically involved in the secondary migration of neural crest 

cells into the pancreas and developing gut structures, and may prove to be vital to 

other areas during fetal growth (Jiang et al., 2003). 
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4.5 Novel Functions for Netrins 

N etrin-l and DCC play a role in the development of the embryonic nervous system, 

specifically in the formation ofaxonal and dendritic filopodia, and have a possible 

role in initiating synaptic contacts and modulating synaptic transmission. Recently, 

Bouchard et al. showed that activation of PKA enhances the presence of DCC at the 

cell surface and increases axon extension in response to netrin-l. While inhibiting 

adenylate cyc1ase, PKA, or exocytosis blocks DCC translocation decreasing axon 

extension (Bouchard et al., 2004; Bouchard et al. 2008). 

5. Cannabinoids 

The marijuana plant contains more than 60 bioactive ingredients, of which delta9-

tetrahydrocannabinol (.A9-THC) is mainly responsible for its psycho active properties. 

Cannabinoids are a group of substances that are structurally related to A 9 
-THC 

or that bind to cannabinoid receptors. Currently, there are three general types of 

cannabinoids: herbaI cannabinoids occur uniquely in the cannabis plant; endogenous 

cannabinoids are produced in the bodies of humans and other animaIs; and synthetic 

cannabinoids which are produced in a laboratory (Lambert and Fowler, 2005). 

Phytocannabinoids also called natural cannabinoids, herbaI cannabinoids, and 

c1assical cannabinoids, are only known to occur naturally in significant quantity in 

the cannabis plant, and are concentrated in a viscous resin that is produced in 

glandular structures known as trichomes (Lambert and Fowler, 2005). In addition to 

cannabinoids, the resin is ri ch in terpenes, which are largely responsible for the odour 
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of the cannabis plant (Lambert and Fowler, 2005). Phytocannabinoids are nearly 

insoluble in water but are soluble in lipids, alcohols, and other non-polar organic 

solvents (Taura et al., 2007). However, as phenols they fonn more water-soluble 

phenolate salts under strongly alkaline conditions (Taura et al., 2007). An natural 

cannabinoids are derived from their respective 2-carboxylic acids (2-COOH) by 

decarboxylation (Thakur et al., 2005). Many cannabinoids have been isolated from 

the cannabis plant. An classes derive from cannabigerol-type compounds and differ 

mainly in the way this precursor is cyclised (Burns and Ineck, 2006). 



Figure 3. Natural cannabinoids 
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5.1 Cannabinoid Structure and Function 

In the 1970's, it was believed that ,A9-THC produced its effects by perturbing 

neuronal membranes due to its lipid-soluble, hydrophobie nature. It was 

subsequently demonstrated that saturable, stereo selective, high-affinity membrane 

binding sites for cannabinoids are present in the mammalian brain (Thakur et al., 

2005). There are currently two known subtypes, CBI which is expressed mainly in 

the brain, but also in the lungs, liver and kidneys and CB2 which is mainly expressed 

in the immune system and in hematopoietic cells (Begg et al., 2005). Mounting 

evidence suggests that there are novel cannabinoid receptors that is, non-CB 1 and 

non-CB2, which are expressed in endothelial cells and CNS. One of the se is the 

GPR55, which was identified and cloned for the first time in 1999 (Sawzdargo et al., 

1999). Later it was identified by an in silico screen as a putative cannabinoid receptor 

because of a similar amino acid sequence in the binding region (Baker et al., 2006). 

GPR55 is only 13.5% identical to CBI and 14.4% identical to CB2, and its mRNA is 

present in the brain and periphery (Ryberg et al., 2007). The physiological role of 

GPR55 is unclear. Mice with a target deletion of the GPR55 gene show no specifie 

phenotype (Johns et al., 2007). GPR55 is widely expressed in the brain, especially in 

the cerebellum. GPR55 is not expressed in the periphery, except for the jejunum and 

ileum (Ryberg et al., 2007). This profile as a distinct non-CB I/CB2 receptor which 

responds to a variety of both endogenous and exogenous cannabinoid ligands, has led 

sorne groups to suggest GPR55 should be categorised as the CB3 receptor, and this 

re-classification may follow in time (Overton et al., 2003). However this is 
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complicated by the fact that another possible CB) receptor has been discovered in the 

hippocampus, although its gene has not yet been cloned, (De Fonseca and Schneider, 

2008) suggesting that there may be at least four cannabinoid receptors which will 

eventually be characterised. 

The currently recognized cannabinoid receptors, CBI and CB2, are about 45% similar 

in their protein sequences (Munro et al., 1993). The existence of specific membrane 

receptors for plant-derived substances in mammalian neurons triggered a search for 

an endogenous ligand. In 1992, this search culminated in the identification of 

arachidonyl ethanolamide, named anandamide, a brain-derived lipid that binds to 

cannabinoid receptors and mlmlCS the biological effects of A9-THC 

(Mechoulam et al., 1998). Three years later, a second endogenous cannabinoid, 2-

arachidonoylglycerol (2-AG) was isolated (Mechoulam et al., 1998). In the ensuing 

years, several other related lipids with endocannabinoid properties were identified, 

but have been characterized less extensively (Pagotto et al., 2007). CBI receptor is a 7 

pass transmembrane super family member. It couples to inhibitory G-proteins (Gi/o) 

and therefore, cannabinoid agonists inhibit adenylate cyclase and decrease the activity 

of protein kinase A (Collins et al., 1994). Stimulation of adenylyl cyclase has been 

reported in pertussis toxin-treated ceIl, suggesting that in the absence of functional 

Gi/o coupling, the CBI receptor can activate Gs (OHanas and Onali, 2006). 

Activation of CBI receptors also inhibits synaptic transmission, probably via 

inhibition of voltage-gated Ca2+ channels and activation of K+ channels (Deadwyler 
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et al., 1993). The cannabinoid CB 1 receptor is one of the rnost abundant G-protein-

coupled receptors in the brain (Begg et al., 2005). 

Figure 4. CBI and CB2 receptors Structures 

•• ::::::::::::::::::l ........................................ .. ::.. : 
: : 1 ..................................... •• 

•••• :'1'" •• ::'::ll::~~. .. . " •• " .• .' .-;-•. 'l,. •• . . ~) i'" _ •• 1 :. ~ .1. "'1 ,.... . , ,ft'" III .... .••. .1. .... ,., ., ~ ".' 
••• ,. . ' •• 1 ., •• , •••• • ... ., . t , ::::. :::; :::'. :::. :::: Sii: U!; 
.... • •• ' .. ::.. • .... ! ...... .)"" .... ':: .. ~ :::! -::ri at:::. __ t::. ·:·c~ .::: •• 

Siraiker A. J NeurpbY!liol, 2003; Ho_leu AC. Pharmacol Rev, 2002; Howleu AC. "andb Exp Ph.rm.co~ 2005 

5.2 CBI receptor: Agonist, Antagonist and Inverse Agonist 

Historically, laboratory synthesis of cannabinoids was often based on the structure of 

herbaI cannabinoids and a large number of analogs have been produced and tested. 

Later novel cornpounds were not related to natural cannabinoids but actually based on 

the structure of the endogenous cannabinoids. Synthetic cannabinoids are particularly 

use fuI in experirnents to deterrnine the relationship between the structure and activity 

of cannabinoid cornpounds and for studying cannabinoid receptor rnechanisrns. Sorne 

ofthese are described below: 
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Arachidonyl-2'-chloroethlamide (ACEA) is a potent and highly selective CBl 

receptor agoni st (Ki = 1.4 nM). It displays a greater than 1400-fold selectivity over 

CB2 receptor active in vivo (Hillard et al., 1999). 

AM251 is a CB 1 cannabinoid receptor inverse agoni st. AM251 is structurally very 

close to SR141716A (rimonabant), which both are biarylpyrazole cannabinoid 

receptor inverse agonists. In AM251, the p-chloro group attached to the phenyl 

substituent at C-5 of the pyrazole ring is replaced with a p-iodo group. The resulting 

compound exhibits slightly better binding affinity for the CBl receptor with a Ki 

value of 7.5 nM compared to SR141716A, which has a Ki value of 11.5 nM (Hillard 

et al, 1999; Pertwee, 2005). However AM251 is about two-fold more selective for the 

CBl receptor when compared to SR 141716A. AM 251 displays a Ki value at CBl 

receptors which is 306-fold selective over CB2 receptors. In comparison, SR141716A 

displays a Ki value which is 143-fold selective over CB2 receptors (Hillard et al, 

1999; Pertwee, 2005). 

02050 is a high affinity cannabinoid CB 1 receptor pure antagonist (Ki = 2.5 nM); 

devoid of agonist effects (Hillard et al, 1999;Pertwee, 2005). 
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5.3 CD I cannabinoid receptor and their behavioural effects 

Cannabis derivatives are among the most ancient and frequently consumed drugs. 

Cannabinoid dependence and self-administration have been verified in animal tests 

(Tsou et al., 1995; de Fonseca et al., 1997; Martellotta et al., 1998; Tanda et al. 2000), 

further confirming that cannabinoids ho1d a considerable abuse potential (Abood and 

Martin, 1992). It is generally considered that the recreational use of cannabinoids is 

related to their positive modulatory effects on brain-rewarding processes along with 

their ability to positively influence emotional states and remove stress responses to 

environmental stimuli (De Fonseca et al., 1997). Indeed, recent studies have shown 

that dopamine release is significantly increased in the nucleus accumbens after 

cannabinoid treatment presumably because of increased activity of dopaminergic 

neurons in the ventral tegmental area (Chen et al., 1990; Tanda et al., 1997). In 

addition, cannabinoid exposure decreases corticotropin-releasing hormone level in the 

amygdala, which may account for the reduced stress responses (De Fonseca et al., 

1997). 

The neuronal cannabinoid receptor CB1 has been shown to be responsible for most 

behavioral effects of cannabinoids (Ledent et al., 1999; Zimmer et al., 1999). 

Accordingly, CB) knock-out animaIs do not develop cannabinoid dependence or self­

administration (Ledent et al., 1999). CB) receptors are widely distributed in the brain 

(Tsou et al., 1998), suggesting that several brain areas may be affected by 

cannabinoids and contribute to their behavioral effects and abuse potential. 
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Thus, to understand how cannabinoids modulate emotional states, one should 

consider that other brain regions may also play important roles in different aspects of 

these phenomena and elucidate the role of CB I receptors at the synaptic, cellular, and 

network levels in these regions. 

5.4 DSI and DSE: a role of endocannabinoids in short-term plasticity. 

In the hippocampus, depolarization of pyramidal neurons induces a short-term 

suppression of GABAergic IPSCs. This phenomenon termed Depolarization-induced 

Suppression of Inhibition (DSI) is blocked by perfusion of CB I receptor inverse 

agonists (SR141617A and AM251), and it is absent in enrl-/- mice (enrl: gene 

co ding for CB I receptors). DSI expressed in the hippocampus is transient «30s) and 

suppression of the resulting inhibition could not account for long-term plasticity of 

synapses. However, more recent in vivo studies fail to confirm DSI in response to a 

variety of behaviourally relevant neuronal activation patterns. Furthermore, recent 

studies demonstrate that not all neuronal phenotypes in the hippocampus exhibit the 

capacity for endocannabinoid-mediated DSI. In the cerebellum, researchers obtain 

similar results. Moreover, Kreitzer and Regehr found that both climbing fiber and 

parallel fiber excitatory inputs to Purkinje neurons could also be transiently 

suppressed following Purkinje cell depolarization, the Depolarization-induced 

Suppression of Excitation (DSE) phenomenon. They showed also that DSE could be 

blocked by AM251. This suggests that endocannabinoids have a fundamental role in 

DSI/DSE and synaptic plasticity. 
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5.5 Long-Term Potentiation (L TP) and Long-Term Depression (L TD): a role of 

endocannabinoids in long-term plasticity 

The tirst investigation on the role of cannabinoids on L TP shows that A9 
- THC 

could either inhibit or potentiate high-frequency stimulation-induced LTP, depending 

of the concentration used (Bear et al., 1994). A few years later, Collins et al 

demonstrated that cannabinoids are stereo-selective inhibitors of L TP (Collins et al., 

1995). This effect has been confirmed for another cannabinoid, where perfusion of 

WIN55, 212-2, blocks LTP (Carlson et al, 2002). Inverse agoni st of CBI receptors, 

SR141716A pre vents the blockade of LTP induced by HU-21O, WIN55, 212-2, 2-

arachidonylglycerol, or anandamide (Davies et al., 2002). Furthermore, high 

frequency stimulation induces significantly larger L TP in hippocampal slices 

prepared from cnr-I
- mice compared with wild-type controls (Alger et al., 2002). 

These results contrast with the study published by Aiger's group showing that LTP at 

hippocampal excitatory synapses can be facilitated by endocannabinoid release 

(Alger et al., 2002). Thus when weak stimulus trains that not alone produce L TP are 

preceded by DSI-inducing depolarizing step, L TP is induced (Carlson et al, 2002). 

This form of DSI-paired LTP is blocked by AM25 1 suggesting that the postsynaptic 

depolarization produces an endogenous cannabinoids-dependent inhibition of GABA 

release that is significant to facilitate glutamatergic transmission. However, because 

recordings from neuron pairs demonstrate that DSI is spatially restricted to < 20llm in 

the hippocampus, it can be assumed that endocannabinoids released by post-synaptic 
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depolarization will only facilitate L TP within a circumscribed region surrounding the 

depolarized cell. In contrast, a reduction in L TP will tend to occur during periods of 

global CB I receptor activation. In the striatum, another type of long-term plasticity, 

L TD, is dependent upon endocannabinoid release. In the prefrontal cortex, 

WIN55.212-2 increases the proportion of cells exhibiting LTD and decreases the 

proportion exhibiting LTP, whereas SR141716A increases the proportion ofneurons 

exhibiting L TP and decreases the proportion exhibiting L TD (Pertwee, 2005). 

5.6 Putative roles of endocannabinoids and their CD) receptors during 

development and early postnatal periode 

Due to their presence at the fetal and early postnatal periods, endocannabinoids and 

their CB1 receptor might be involved in several developmental events, such as 

proliferation and migration of neuronal cells, or during synaptogenesis (Fernandez­

Ruiz et al., 2000). One of the evident roles of endogeneous cannabinoids is 

modulation of retro grade signalling at the synapse. Postsynaptic neurons in the 

nervous system release the endogenous cannabinoids anandamide and 2-

arachidonylglycerol, which act retrogradely at presynaptic neurons to block 

neurotransmitter release (Freund et al., 2003). In the developing brain, CB1 

cannabinoid receptors are expressed in neural precursors and growing axons, and CB1 

receptor expression increases during synaptogenesis period (Piomelli, 2003). 

CB I receptors are localized to the developing axons of cortical and hippocampal 

pyramidal cells in mice (Hoffman et al., 2003). Similarly, diacylglycerol lipases, 
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DAGL, which are necessary for 2-arachidonylglycerol production, are present in 

elongating axons, suggesting that endocannabinoid production and signalling may 

occur in the same neurons during axon outgrowth (Leterrier et al., 2004). AIso, CBI 

receptors localized to the axons and growth cones of GABAergic intemeurons 

(Katona et a1., 2006). In contrast, DAGL localized to glutamatergic pyramidal cell 

dendrites, suggesting that CBI receptors and endocannabinoids are positioned on 

opposite sides of pyramidal cell synapses during synaptogenesis (Leterrier et al., 

2004). In cultures of GABAergic intemeurons, CBI receptors localized to the F­

actin-rich filopodial tips of growth cones (Katona et al., 2006). Anandamide 

treatment shifted CBI receptors into the center of the growth cone (Terranova et al., 

1995). In cultured hippocampal neurons, anandamide treatment induced the 

retro grade transport of CBI receptors through the axon, away from the growth cone 

(Terranova et al., 1995). Endocannabinoids are chemorepulsive; the CBI receptor 

agoni st WIN55, 212-2 induced growth cones to tum away from the drug application 

site and collapse (Maneuf et al., 1997). During growth cone repulsion, RhoA GTPase 

activates the serine-threonine Rho kinase (ROCK). In contrast to the WIN55, 212-2 

treatment alone, co application of WIN55, 212-2 with the ROCK inhibitor Y-27632 

was chemo attractive; inducing growth cones to tum toward the drug application site, 

suggesting that CBI receptor is coupled to RhoA (Carlson et al., 2002). GABAergic 

intemeurons express the homeobox genes Dlx5 and Dlx6 during embryonic 

deve10pment and transporters for vesicular GABA (VGA T) and vesicular glutamate 3 

(VGLUT3) in adulthood (Mu and Deadwyler et al.,2000). In one study, mated mice 

were mated with the CBI receptor gene surrounded by loxP recombination sites to 
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mice expressing Cre recombinase in Dlx5- and Dlx6-expressing cells (Monory et al., 

2006). Pyramidal cells in the resulting progeny had more VGAT- and VGLUT3-

positive synaptic inputs relative to wild-type mice, suggesting that the absence of CB 1 

receptors impairs axon target selection (Berghuis et al, 2007). Therefore, marijuana 

exposure might cause premature growth cone collapse and impaired synaptogenesis 

in the fetal brain (Robbe et al., 2006). In adults, cannabinoids localize to dendritic 

spines in the hippocampus, so marijuana exposure may inhibit synaptic plasticity. 

Because RhoA inhibits peripheral axon regeneration, the cannabinoid receptor 

inhibitor AM251 might induce the regrowth of axons following injury (Piomelli et 

al.,2003). 

Recent physiological, pharmacological, and high-resolution anatomical studies 

provided evidence that the major physiological effect of cannabinoids is the 

regulation of neurotransmitter release via activation of presynaptic CBI receptors 

located on distinct types ofaxon terminaIs throughout the brain. Subsequent 

discoveries shed light on the functional consequences of this localization by 

demonstrating the involvement of endocannabinoids III retrograde signalling at 

GABAergic and glutamatergic synapses. 

Under certain conditions, cannabinoids via their presynaptic CBI receptors decrease 

glutamate release; blocking the induction of L TP. Because L TP, via a positive 

modulation of glutamate release, increases pre and post-synaptic contacts, a decrease 

of glutamate release induced via CB1 receptor activation perhaps could decrease the 

number of synaptic contacts (Carlson et al., 2002). 
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Here we show that endogenous cannabinoids via the activation of CB 1 receptors with 

ACEA agoni st negatively modulate axonal and dendritic filopodia formation and 

synape formation dependant of PKA activity and the action of netrin-l on DCC 

receptor. 

Figure 5. Inverse agonist, agonist, and antagonist of CD] receptors 
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Chapter 2: A Novel Role for Cannabinoids in 

Synaptogenesis 

Introduction 

37 

Although, the endogenous cannabinoid signalling system has been studied for a 

decade, many of its physiological roles have yet to be revealed. Early studies have 

shown that cannabinoids inhibit adenylate cyclase (AC) in the nervous system 

(Howlett et al., 1984). Furthermore, AC inhibition was observed only in certain cell 

types, ruling out a direct inhibitory effect of cannabinoids on the enzyme itself, or a 

non-specific effect through changes in membrane fluidity (Howlett et al., 1988). 

Before the 1970's, it was often speculated that the cannabinoid lipid soluble 

hydrophobic molecules produced their physiological and behavioral effects via 

nonspecific interaction with cell membranes, instead of interacting with specific 

membrane-bound receptors (Abel EL., 1970). In the late 1980's, specific binding sites 

for cannabinoids were described in a rat brain membrane preparation (Deadwyler et 

al., 1993). After that, a cannabinoid receptor was isolated and cloned from a rat 

cerebral cortex cDNA library. This new receptor in the presence of ,l\9-THC 

could inhibit forskolin-induced cyclic AMP accumulation (Matsuda et al., 1990). 

This discovery of the first cannabinoid receptor, namely CB l receptor, was followed 

by the characterization of a second cannabinoid receptor, CB2, in immune cells 

(Devane et al., 1992). 
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CB 1 and CB2 receptors are the two major cannabinoid receptors but sorne 

pharmacological data suggest the existence of other receptors (Munro, et al., 1993) 

such as GPR55 that has also been proposed to be a novel cannabinoid receptor (Begg 

et al., 2005). 

Recent studies provided evidence that the major physiological effect of cannabinoids 

is the regulation of neurotransmitter release via activation of presynaptic CB 1 

receptors located on distinct types ofaxon terminaIs throughout the brain (Caboche et 

al., 2003). Subsequent studies shed light on the functional effects of this localization 

by demonstrating the involvement of endocannabinoids in retrograde signalling at 

GABAergic and glutamatergic synapses (Piomelli et al., 2003). 

Recently, using FMI-43 technique, endocannabinoids were reported to block the 

increase of functional synapses induced by forskolin (FSK), an activator of adenylate 

cyclase, in primary hippocampal neuron culture (Kim and Thayer, 2001; Kim and 

Thayer, 2008). Albeit these results are very preliminary, they suggest that the role of 

endocannabinoids is not only restricted to the modulation of synaptic transmission, 

but that they could possibly play a role in synapse formation and maintenance. The 

generation of a functional neuronal network requires the elaboration of precise 

synaptic connections between neurons and their targets. This connectivity is 

established during the development of the nervous system in a series of continuous 

events that can be divided into three stages: (1) neurite guidance, (2) target 

recognition, and (3) synapse formation. There is evidence that the initial contact 
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between axons and dendrites is sufficient to establish a functional synaptic site (Ziv 

and Smith, 1996; Fiala et al., 1998; Ziv and Garner 2001), and that dynamic actin­

based filopodial extensions from both axonal and dendritic compartments are 

important in initiating this contact (Chang and De Camilli, 2001; Jontes and Smith, 

2000). Moreover, activity-dependent actin reorganization was shown to contribute to 

synaptic plasticity (K.rucker et al., 2000; Lendvai et al., 2000; Trachtenberg et al., 

2002; Fukazawa et al., 2003). The identification of signaIs that influence actin 

dynamics and the formation ofaxonal and dendritic filopodia are therefore essential 

to understand the molecular mechanisms of synapse formation and synaptic 

plasticity. 

Netrins are a family of secreted molecules involved in cellular, axonal and dendritic 

guidance during the development of the central nervous system (CNS) (Manitt and 

Kennedy, 2002; Kim and Chiba, 2004). Netrin-1 signaIs through Deleted in 

Colorectal Cancer (DCC) receptors (KeinoMasu et al., 1996) modulating actin 

cytoskeleton dynamics, enhancing the formation and motility of filopodia (Li et al., 

2002b; Shekrabi and Kennedy, 2002; Dent, et al., 2004). Netrin-1 and DCC are 

involved in the formation ofaxonal and dendritic filopodia, and have a possible role 

in initiating synaptic contacts and modulating synaptic transmission (Kennedy et al., 

2002; Bouchard et al. unpublished data). We propose that cannabinoids acting at CB1 

receptors regulate filopodia formation, and synaptogenesis. Activating the CB 1 

receptors causes a decrease in cytosolic cAMP concentration, inhibiting PKA. This 

blocks the recruitment of DCC receptor to the membrane surface and therefore, 
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inhibits the action of netrin-1 regulating filopodia formation and synaptogenesis. In 

this study, we show that an interplay between the CB I / endogenous cannabinoids and 

the DCC / netrin-1 pathways coordinates and maintains synapse formation during 

neural development. 

Materials and Methods 

Reagents 

AlI cell culture media and supplements were purchased from Invitrogen Canada 

(Burlington, ON). Monoclonal DCC antibody directed against intracellular epitope 

(G97-449) was obtained from PharMingen (Mississauga, ON) and the function 

blocking DCC monoclonal antibody, DCCFB (DCC, clone AF5) from Calbiochem 

(LaJolIa, CA). Polyclonal antibodies against GAP-43 (AB5220), NCAM (AB5032), 

GluR1 (AB1504), GluR2/3 (AB1506) and NFM (AB1987) were obtained from 

Chemicon (Temecula, CA). Anti-MAP2, anti-synaptophysin, and anti-actin (A5316) 

monoclonal antibodies were purchased from Sigma-Aldrich (Oakville, ON). Anti­

CB I (209550) was obtained from Calbiochem (LaJolIa, CA). Anti-CB2 (101550), 

anti-F AAH (101600), and anti-MGL (100035) were obtained from Cayman Chemical 

(Ann Arbor, MI). Anti-CB I (sc-10066) and Anti-CB2 (sc-10076) were purchased 

from Santa Cruz Biotechnology (Santa Cruz,CA). Anti-N-Cadherin (610920) was 

obtained from BD Pharmingen (San Diego,CA). Polyclonal anti-NRI was purchased 

from Upstate (Lake Placid, NY). 
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Polyclonal anti-GFP (A-6455), the FMI-43 dye, the secondary antibodies Alexa 488 

(AII001& AII008), and Alexa 546 (AI1003 & AII0I0) were obtained from 

Molecular Probes (Eugene, OR). The secondary antibodies horseradish peroxidase­

conjugated goat directed against rabbit,-mouse or goat IgG (GRP-HRP (711-035-

152), GMP-HRP (715-035-150) and GGP-HRP (705-035-003)) were purchased from 

Jackson Immunoresearch (West Grove,PA). The inverse agoni st AM251 (1117), the 

pure antagonist 02050 (1655), and the agoni st ACEA (1319) were obtained from 

Tocris Bioscience (EIlisville, MO). FSK (F6886), KT5720 (K3761), H89 (BI427) 

and Hoe 33258 (Bis-benzamide) were purchased from Sigma-Aldrich (Mississauga, 

ON). 

Cortical Neuron Cultures 

AIl procedures with animaIs were performed in accordance with the Canadian 

Council on Animal Care guidelines for the use of animaIs in research. Staged 

pregnant CD 1 mice were obtained from Charles River Laboratories (St-Constant, 

QC). dcc KO mice and their wild-type littermate were kindly provided by Dr. 

Timothy Kennedy (Montreal Neurological Institute, QC). 

The cortices of embryonic day 14 mi ce were isolated by micro-dissection and 

dissociated to produce a suspension of single cells as previously describ~d (Brewer et 

al., 1993; Banker and Goslin, 1998). Briefly, cortices were dissected in ice cold 

Hank-Balanced Salt Solution, diced and incubated for 15 min at 37°C in Hepes­

buffered Minimum Essential Medium containing 0.25% Trypsin and 0.001 % DNase 

1. The tissue was then washed once in co Id Neurobasal supplemented with 10% heat-
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inactivated fetal bovine serum (FBS) and gently triturated with a flamed Pasteur 

pipette to yield a suspension of single cells. Dissociated cells were plated at low 

density (15,000 cells/cm2
) for analyses of branching, filopodia and synapse number, 

at high density (40,000 cells/cm2
) for biochemical analyses, and for transfection. 

Cultures were maintained for 2 to 15 DIV in Neurobasal medium containing 1% B27, 

0.5% N2, 2 mM glutamine, 1 unit/ml penicillin, and 1 !lg/ml streptomycin at 37°C in 

a humidified 5% CO2 incubator. Penicillin, streptomycin and glutamine were omitted 

from the culture medium after one wèek in culture. Under the se conditions, cortical 

neurons formed large networks and developed functional synapses, while keeping 

glial cell contamination low. Cortical neuron cultures were stimulated by adding 300 

nM AM251, 50nM ACEA, 1 !lM 02050, 10 !lM forskolin (FSK), 200 nM KT5720, 

200 nM H89 or anti-DCCfb antibody IO!lg/ml directly to the culture media. 

Immunocytochemistry 

Dissociated neurons were plated and then cultured for either 8 days (dendritic and 

axonal filipodia analysis) or 10 days (synaptic punctae analysis) in 24-well plates 

(Sarstedt, St-Leonard, QC). Neurons were grown in the wells on 12 mm round glass 

coverslips (No.O DeckgHiser, Carolina Biological, NC) that had been coated with 

poly-D-Iysine (PDL) (70-150 kDa, 20!lg/ml). After a 1 hour (filopodia) or 24 hour 

(synaptic punctae) treatment with 1 !lM 02050, 300 nM AM251, or 10 !lM forskolin 

respectively, cultures were fixed with 4% paraformaldehyde (PF A) in 0.1 M 

phosphate buffered saline (PBS), pH 7.4, and blocked with 2% FBS/2% bovine 
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serum albumine/O. 1 % Tween-20 in 0.1 M PBS, pH 7.4, for 1 hr at room temperature. 

Antibodies were added in blocking solution and left ovemight at 4°C at the following 

dilutions: anti-DCC (1 :500), anti-GAP-43 (1: 1 000), anti-GFP (1: 1000), anti-GluRI 

(1 :500), anti-MAP2 (1: 1 000), anti-NFM (1: 1 000) and anti-synaptophysin (1 :500). 

After three washes in PBS, cells were labelled with either Alexa 488 or Alexa 546 

secondary antibodies for 2 hr at room temperature in blocking buffer. Then nuclei 

were stained using Hoe 33258 (Bis-benzamide). Photomicrographs were taken with 

an inverted Olympus IX71 microscope (Olympus Canada, Markham, ON) and an 

Evolution VF camera (Media Cybemetics, Bethesda, MD). Images were analyzed 

with Image Pro Plus 5.1 image analysis software (Media Cybemetics). 

FMl-43: 

Primary pyramidal neurons were cultured on cover slips for 10 DIV, and then cell 

culture media was exchanged for a saline solution consisting of (in mM) 128 NaCI, 5 

KCI, 2.7 CaCb, 1 MgCb, 10 dextrose, and 20 HEPES. Synaptic terminaIs were 

loaded in the presence of 15 !lM FMI-43 and 80 mM KCl. After loading, a field 

containing labeled punctae was imaged with a cooled charged-coupled device (CCD) 

camera (Evolution VF camera (Media Cybemetics, Bethesda, MD)) through a 100X 

objective mounted on an Olympus IX71 microscope and Image Pro Plus 5.1 image 

analysis software (Media Cybemetics). The FMI-43 was unloaded with a 90-s 

stimulation using 80 mM KCI in FMI-43 free saline solution. Then, another 

photomicrograph was taken. 
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Surface Receptor Biotinylation 

Eight DIV and ten DIV cortical neurons were washed three times with ice-cold PBS 

containing 0.1 mM CaCh and 1 mM MgCh (PBS++). Surface biotinylation was 

performed by adding 0.5 mg/ml EZ-Link Sulfo-NHS-LC-biotin (Pierce,Rockford, IL) 

in PBS++ for 30 min at 4°C. Excess biotin was quenched by washing the ceUs twice 

with 10 mM glycine in PBS++ at 4°C and twice with ice-cold PBS++. CeUs were 

lysed in 1 ml RIPA buffer (150 mM NaCI, 20 mM Tris pH 8.0, 1 mM EDTA, 1% 

NP-40, 0.5% Sodium Deoxycholate, 0.1 % SDS) for 15 min on ice. Biotinylated 

proteins were precipitated with streptavidin-agarose beads (Pierce, Rockford, IL) for 

1 hr at 4°C and analyzed by western blot. 

Western Blot 

Proteins were extracted by cell lysis and were run on an SDS-PAGE gel (8%) and 

then transferred to a nitrocellulose membrane. The membranes were exposed 

overnight to a primary antibody and then washed. A secondary antibody was added 

for two hours (GRP-HRP, GMP-HRP, or GGP-HRP).The immunoreactive bands 

were detected by enhanced chemiluminescence (ECL). 

Data Analysis and Quantification 

Dendritic filopodia were defined as GAP-43 positive protrusions from pnmary 

dendrites. Synapses were defined as synaptophysin immunoreactive punctae closely 

apposed to the GluRI immunoreactive dendrites. The density of filopodia and 

synapses were calculated over the area that corresponds to a 30 !-lm length of the 
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neuronal process. Statistics were performed usmg the Systat Software package 

(Chicago, IL). The results were expressed as mean ± SEM and analyzed using one­

way ANOV A followed by Bonferroni post hoc test. p < 0.05 was used as the criteria 

for statistical significance unless otherwise indicated. 

Results 

CD. receptor distribution in embryonic cortical neurons 

First, we examined the distribution of CB 1 receptors using cultures of embryonic day 

15 (E15) mouse cortical neurons. These cultures were maintained in serum-free 

medium to prevent the proliferation of glia (Brewer et al., 1993). Under these 

conditions, cortical neurons display typical features of mature pyramidal neurons 

such as weIl differentiated axonal and dendritic arbors, and functional synaptic 

connections (Evans et al., 1998).Westem blot analysis of primary cortical culture 

lysates harvested after 1 to 21 days in vitro (DIV) revealed that these cultures express 

CBI receptor, synaptophysin (SVP38), AM PA receptor subunit GluR1, and NCAM 

(Figure 6A). Interestingly, there was an increase of CBI receptor protein levels 

around DIV 13 (Figure 6A). 

We next analyzed by immunofluorescence mlcroscopy the localization of CBI 

receptors in cortical neurons following fixation. Neurons were plated at low density 

to allow resolution of individual processes and cellular distribution of CBI receptors 

at 3DIV (non-polarized neurons) and 15DIV (polarized neurons). Examination of 
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neurons shortly after plating, before the development of polarity (3 DIV), showed 

CB I receptors present in aU neurites (GluRI or NFM positive) and their growth cones 

(Fig. 6B). At 15 DIV, CB I immunoreactivity was detected in neuronal processes 

labeled with either MAP2, a cytoskeletal protein restricted to dendrites, as well as in 

MAP2-negative axons (Fig. 6C; arrowhead), suggesting that CB1 receptors distribute 

to both axonal and dendritic compartments in mature neurons. This observation was 

confirmed by the presence of CB 1 receptors in both NFM-positive axons and NFM­

negative dendrites (Fig. 6C). 

Endogenous cannabinoids decrease the number of synaptic contacts 

Here, we investigated whether endocanabinoids could modulate the formation of 

synaptic connections. Cortical neurons cultured for 10 DIV were stimulated by bath 

application of 50nM ACEA, 300nM AM251, or 10)lM FSK for 24 hr, and then they 

were fixed and processed for synapse visualization by immunocytochemistry. 

Synapses were identified as synaptophysin immunoreactive puncta (presynaptic) 

closely apposed to GluRI (postsynaptic) immunoreactive dendrites (Fig. 7) (0' Brien 

et al., 1997; Rao et al., 1998). Quantitative immunocytochemical analysis revealed a 

FSK induced increase in the density of paired GluRl (postsynaptic) and 

synaptophysin (presynaptic) immunoreactive punctae along the proximal 30 )lm of 

primary dendrites. Addition of 50nM ACEA, a potent and highly selective CB 1 

receptor agonist, to the cultures produced a decrease in synaptic contacts (Fig. 7C). 

The addition of a potent and selective CB1 receptor inverse agonist, 300nM AM 251, 
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to neurons increased the colocalization of pre and postsynaptic punctae. Furthermore, 

treating the culture with l/-lM 02050, a pure antagonist of CB l receptors also 

increased the synaptic punctae formation. 

The dendritic thickness measured as the ratio of dendritic surface area to dendritic 

length was compared within the different treatments and was found not to be affected 

by ACEA, AM 251, 0 2050, nor FSK stimulation (Fig. 7D). 

Also, western blot analysis of lysates obtained from cultured cortical neurons treated 

with agonist, inverse agonist or antagonist of CB l receptors or FSK for 24 hrs did not 

reveal any significant changes in the protein expression levels of major synaptic 

proteins. This indicated that the observed modulation in synaptic density is due to the 

reorganization of synaptic components (Fig. 7E). 

Endogenous cannabinoids decrease funcfional synapses 

In order to directly measure presynaptic function without usmg post synaptic 

responSlveness as an indicator, we next examined the ability of primary cortical 

pyramidal neurons to take up the fluorescent stryryl dye FMl-43 into synaptic 

vesicles during activity (Betz et al., 1992; Betz and Bewick, 1992; Ryan et al., 1993; 

Cochilla et al., 1999). Primary cortical neurons that had been cultured in the presence 

of 300nM AM251, l/-lM 02050, or 10 /-lM FSK for 24 hrs had significantly more 

FMl-43 positive synaptic terminaIs compared to the control condition (Fig 7J). 

Treatment with 50nM ACEA significantly decrease the number of FMl-43 positive 

punctae (Fig 7J). In aH cases, FMl-43 was observed in synaptic puncta like spots 
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along dendrites and somas (Fig 7F & G), and these punctae destained with similar 

kinetics (data not shown). This finding indicates that cannabinoids strongly decrease 

the density of active presynaptic sites. 

Cannabinoids modulates the number of synaptic punctae in vitro: link between 

cannabinoids, PKA, and synaptogenesis 

Here, we investigated whether the endocanabinoids modulation of synaptogenesis 

was linked to the activation of cAMP/PKA pathway. 

Immunocytochemical analysis of 10 DIV cortical neurons shows that 24 hr 

application of 300 nM AM 251 and IIlM 0 2050, respectively a cannabinoid CBl 

receptor inverse agoni st and antagonist, significantly increases the number of 

synaptophysin immunoreactive punctae closely apposed to GluRI immunoreactive 

dendrites. This effect however was reversed when neurons were pre-treated with 

KT5720 of H89 both inhibitors of PKA (Results not shown). 

Quantification of 10 DIV cortical neurons shows that 24 hrs application of 300 nM 

AM 251, and IIlM 0 2050 significantly increases the number of synaptophysin 

immunoreactive punctae closely apposed to GluRI immunoreactive dendrites when 

compared to control and that this effect was reversed when neurons were pretreated 

with KT5720 and H89, two inhibitors ofPKA (Fig. 8A). 

Activation of adenylate cyclase and PKA using lOIlM forskolin (FSK) induced an 

increase in the number of presynaptic punctae closely apposed to dendrites. This 

response was blocked by 50 nM ACEA, an agonist of CB1 receptors and by KT5720 
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and H89 (Fig. 8A). Mean dendritic thickness, measured as the ratio of dendrite 

surface area to dendrite length and plotted as % control, was not appreciably affected 

by AM 251, 0 2050, H89, KT5720 or FSK stimulation (Fig. 8B). 

Cannabinoids modulates the presence of DCC at the cell surface via the 

cAMPIPKA pathway 

Our observations suggest that cannabinoids act asmodulators in the creation and 

function of synaptic contacts. 

Recent reports showed that activation of cAMP/PKA pathway increases the cell 

surface expression of DCC in commissural and cortical neurons (Bouchard et al., 

2004; and Bouchard et al., 2008). In order to understand how cannabinoids might 

affect DCC-expressing neuronal processes, we tested whether they modulate the 

surface presentation of DCC in cortical neurons. Mature cortical neuron cultures were 

stimulated with ACEA, AM251, 02050, FSK, or AM251 +KT5720 for 15 min, and 

processed for cell surface protein expression using biotinylation, streptavidin pull­

downs and western blot analysis. DCC surface expression was significantly decreased 

after 15 min in the presence of ACEA (Fig. 8C). Interestingly, addition of AM251, 

02050, or FSK increase DCC surface expression and this effect was blocked by a 

pretreatment with KT5750 (Fig. 8C).These results suggest that cannabinoids in 

cortical neurons modulates the relative amount of DCC at the plasma membrane via a 

cAMP /PKA dependent mechanism. 
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CD} receptors modulate synapse formation in vitro and this effect is dependent 

of DCC receptor 

Furthermore, addition of DCCfb antibody pnor the AM251, 02050, or FSK 

treatments completely aboli shed the increase in filopodia formation induced by these 

pharmacological agents (Fig. 9A). Immunocytochemical analysis of 10 DIV cortical 

neurons shows that a pre-treatment of neurons with DCCfb antibody blocks the effect 

of 300nM AM 251 or 1 ~M 0 2050 on the number of synaptophysin immunoreactive 

punctae c1ose1y apposed to GluRl immunoreactive dendrites. 

Stimulating with 300 nM AM 251 and 1 ~M 0 2050, a pure antagonist of CB1 

receptor, produced a significant increase of synaptic punctae. This effect was 

antagonized by an antibody blocking DCC function, DCCfb (Fig. 9A). 

Mean dendritic thickness, measured as the ratio of dendrite surface area to dendrite 

length and plotted as % control, was not appreciably affected by ACEA, AM 251, 

AM 251 +DCCfb, 0 2050, 0 2050 + DCCfb or FSK stimulation. 

DCC is essential for the cannabinoid induced modulation of synaptic contacts 

In order to confirm the link between cannabinoid and netrin-l/DCC systems, we 

performed in vitro experiments on the effects of the CB 1 inverse agonistlantagonist in 

primary cortical neuron cultures obtained from embryonic dcc knockout mice. In the 

absence of the DCC receptor, the inverse agoni st AM 251 and the antagonist 0 2050 

showed no increase in synapse density (Fig. 9D). Activation of adenylate cyc1ase and 

PKA using 1 O~M forskolin (FSK) also induced no increase in the number of 
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presynaptic punctae c10sely apposed to dendrites in the embryonic dcc knockout 

mice. Treating with agoni st ACEA also showed no decrease of synapses compared to 

control cortical neurons (Results not shown). These results confirmed a connectioh 

between the two systems in the underlying mechanisms of synapse formation. 

Endogenous cannabinoids decrease filopodia density 

Initial contact between axons and dendrites is sufficient to initiate assembly of a 

functional synaptic site (Ziv and Smith, 1996; Fiala et al., 1998). Factors that 

modulate the dynamics of branches and filopodia are therefore likely to influence 

synapse formation, simply by altering the probability of chance encounters between 

axons and dendrites. We recently reported that DCC influences cytoskeletal dynamics 

and promotes the formation of filopodia in commissural (Sherkarabi et al., 2005) and 

cortical neurons (unpublished data). To determine whether cannabinoids similarly 

influences the formation of initial contacts between axons and dendrites, dissociated 

cortical neurons cultured for 6 to 8 DIV were stimulated for 1 hour by bath 

application of cannabinoid pathway modulators. Then they were fixed and stained for 

GAP-43, a membrane protein associated with the cytoplasmic surface of growth 

cones and filopodia. GAP-43 staining is detected in both axons and dendrites of 

neurons cultured for up to 8 DIV, but is restricted to axons at later developmental 

stages, consistent with previous reports (Van Lookeren et al., 1992). Addition of 50 

nM ACEA to the cultures produced a decrease in the density ofaxonal and dendritic 

filopodia formation (Fig. 10E). The addition of 300nM AM251, I/lM 02050, or 10 
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!lM FSK to neurons increased it (Fig. 10E). To investigate the mechanism regulating 

the increase in filopodia formation, cultures were exposed to different enzyme 

inhibitors 15 min before the addition of AM251, 02050, or FSK to the media. To 

confirm that these drugs were acting by increasing through PKA, cortical neurons 

were pretreated with 200 nM KT5720 or 200 nM H89, specific inhibitors of PKA 

(Kaseet al., 1987, Lochner et al., 2006). KT5720 and H89 both blocked the increase 

in axonal and dendritic filopodia induced by AM251, 02050 and FSK (Fig. 10 E). 

These observations suggest that cannabinoids inhibit axonal and dendritic filopodia 

formation, weIl known precursors of synaptogenesis and this effect is related to the 

PKA activity and the DCC pathway (Figure 10 A-E). 

To confirm and strengthen the link between CB 1 receptor, PKA and DCC, 

supplemental experiments were performed using dcc KO mice. In the wildtype group, 

ACEA decreased the number of filopodia density. Conversely AM 251, 0 2050, and 

FSK increased that number (Fig. lOF). On the other hand, in their KO littermates, 

these pharmacological agents did not produce any effects (Figure lO(F-G)). 

Discussion 

Cannabinoids have been known to interfere with learning and memory in humans 

(Abel, 1970; Tart, 1970; Chaperon and Thiebot, 1999) and are thought to impair 

synaptic plasticity (Lévénès et al, 1998). L TP, a weIl studied form of synaptic 

plasticity, is associated with changes in synapse number and structure. Several reports 

demonstrate that activation of cannabinoid receptors will inhibit L TP (Stella et al., 
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1997; Misner and Sullivan, 1999; Bohme et al., 2000). Interestingly, the late stage of 

long-tenn potentiation (L-L TP) is critically dependent on the activation of PKA. L­

LTP can be induced by PKA activation, and electrically induced L-L TP is blocked by 

PKA inhibition. L-LTP involves a PKA induced increase in the number of quanta 

released by a single action potential and an increase in the number of functional 

presynaptic tenninals between hippocampal pyramidal neurons (Bohme et al., 2000) .. 

The cAMP signalling cascade is central to certain types of leaming and memory 

(Impey et al., 1998). Changing the strength of connections between neurons is 

thought to underlie memory fonnation and may result from the recruitment of new 

sites of synaptic transmission (Bolshakov et al., 1997). New functional synapses 

between hippocampal neurons in culture can be induced by an elevation in cAMP 

(Kavalali et al., 1999; Ma et al., 1999). cAMP-induced changes in synaptic plasticity 

contribute to memory fonnation and moreover cannabimimetic drugs are known to 

inhibit adenylyl cyciase and impair memory. CBI receptors can modulate cAMP­

dependent synaptic plasticity (Impey et al., 1998). 

Kim and Thayer, using a FM1-43-based assay to identify functional synaptic boutons 

in rat hippocampal cultures, found that cannabimimetic drugs prevent the recruitment 

of new synapses by inhibiting the fonnation of cAMP (Kim and Thayer, 2001). 

Forskolin increased the number of FM1-43-labeled functional synapses between 

cultured hippocampal neurons (Kim et Thayer, 2001). The fonnation of new synaptic 

sites was dependent on activation ofprotein kinase A. The forskolin-induced increase 

in the number of functional boutons was compared to the increase in synaptic puncta 
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induced by Sp-cAMPS in hippocampal slices (Bozdagi et al., 2000). Cannabimimetic 

drugs inhibited recruitment of new synapses by activation of CBl receptors as 

indicated by antagonism with SR141716 (Collins et al, 1995). A,9 -THC inhibited new 

synapse formation consistent with the partial agonist properties of this drug (Sim et 

al., 1996a; Shen and Thayer, 1999). Win55212-2 blocked the formation of new 

synaptic boutons induced by forskolin but not those induced by Sp-cAMPS, 

suggesting that cannabimimetic drugs block new synapse formation by inhibiting the 

synthesis, not the actions of cAMP (Shen and Thayer, 1999). Cannabinoid 

modulation of both cAMP signalling and neurotransmission contribute to changes in 

synaptic plasticity in vivo. Other receptors that couple to adenylyl cyclase may 

regulate synaptic plasticity by modulating cAMP levels. This is clearly true for Gs-

coupled receptors such as the P adrenergic receptor, activation of which lowers the 

threshold for eliciting both the early and the late phase of mossy fiber L TP (Huang 

and Kandel, 1996). Activation of adenosine Al receptors inhibits L TP, which could 

theoretically be mediated via inhibition of adenylyl cyclase, but the strong inhibition 

of neurotransmitter release by adenosine appears to predominate (de Mendonca and 

Ribeiro, 1997). 

In this article, we show that cannabinoids decrease axonal and dendritic filopodia and 

reduce the number of synaptic connections in a PKAlDCC-dependent manner in 

vitro. Our data suggest a novel function for cannabinoids in modulating synapse 

plasticity. 
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Effect of cannabinoids on synapse density 

The effect of cannabinoids on changes in synapse number was studied by visualizing 

a colocalization punctae of synaptophysin and GluRl proteins. Stimulation of CB, 

receptor agoni st significantly decreased the number of synaptophysin 

immunoreactive punctae c10sely apposed to GluRl immunoreactive dendrites when 

compared to control. Treatment with an inverse agonist or a pure antagonist of the 

CB, receptor pro duces a significant increase in synaptic punctae. The functionality of 

these synaptic contacts was confirmed using FMl-43. ACE A decreased the number 

of functional synapses. On the other hand, blocking CB! receptors increased the 

number of functional synapses. 

Cannabinoids modula te synapse number via PKA 

Long-term potentiation (L-LTP) of synaptic plasticity is critically dependent on the 

activation of PKA (Bohme et al., 2000). Cannabinoids via their CB! receptors could 

decrease cAMP levels and PKA activity as confirmed by the increase in the positive 

FM143 punctae in FSK treated neurons compared to the control. This effect was 

antagonized by PKA inhibitors (Figure 8). 

Cannabinoids modula te synapse number through a connection between the 

netrin-l/DCC and cAMPIPKA pathways 

Immunocytochemical analysis of 10 DIV cortical neurons shows that a pre-treatment 

of neurons with DCCfb antibody and an application of AM 251 or 0 2050 for 24 hrs, 
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did not increase the number of synaptophysin immunoreactive punctae closely 

apposed to GluRI immunoreactive dendrites when compared with control and 

significantly decreased the number of synaptophysin immunoreactive punctae 

compared to neurons treated with AM 251 or 0 2050 only (Figure 9). 

Interestingly, a decrease of DCC receptors present at the surface of the neuron 

membrane was observed when treated with ACEA. An increase of DCC was 

observed when CBl receptors were antagonized and this was prevented when neurons 

were pretreated with inhibitors of PKA (Figure 9). These observations implicated a 

possible connection between the DCC receptor, the cyclic AMP/PKA pathway and 

the effect of CB] on synaptic density. To further confirm this link we repeated the 

same experiments in dcc -/- cultures and interestingly, in this experimental group 

cannabimimetic drugs had no effect on synaptic density (Figure 8). When we 

compared the treated 10 DIV cortical neurons derived from DCC receptor knockout 

(-/-) compared to their wild type (+/+) littermates, no increase in synaptic density, 

revealed by the close apposition between GluRI-positive dendrites and 

synaptophysin-positive presynaptic boutons was observed when treated with CB] 

inverse agonist, antagonist or FSK for 24 hrs. Thus, it seems that the action of 

endocannabinoids at CB 1 in modulating synaptic density is interconnected with the 

DCC receptor and the netrin-1, neuronal guidance cue. 

Modulation of synapse precursors by cannabinoids 

It is well established that initial contact between axons and dendrites is sufficient to 

establish a functional synaptic site (Ziv et Smith, 1996; Fiala et al.,1998), and that 
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dynamic actin-based filopodia extensions from both axonal and dendritic 

compartments are important in initiating this contact (Jontes et Smith, 2000; Chang et 

De Camilli, 2001). Neuronal signaIs that influence cytoskeletal dynamics are 

therefore likely to affect synapse formation. 

Netrin-l mediates its guidance function during development by inducing actin 

reorganization and increasing filopodia number in neuronal growth cones, through the 

activation of the Rho GTPases Rac1 and Cdc42 (Li et al.,2002; Shekarabi et 

Kennedy, 2002; Shekarabi et al.,2005). Accordingly, we find that netrin-l increases 

the number of filopodia and branches in both axonal and dendritic compartments of 

cortical neurons in a DCC-dependent manner, suggesting that netrin-l similarly 

affects Rho GTPases in cortical neurons (unpublished observations). This effect is 

consistent with previous reports that demonstrated a role for netrin-l in axonal branch 

formation in vitro and in vivo (Wadsworth et al., 1996; Dent et al., 2004). 

In agreement with the hypothesis that increased axo-dendritic contact favors 

synaptogenesis, we detect a decrease in the density ofaxonal and dendritic filopodia 

and synaptic contacts in cortical neuron cultures 24 hr after CBI agoni st stimulation. 

Conversely, blockade of the CBI receptor using inverse agoni st or antagonist increase 

the number of filopodia and synaptic contacts. This effect was reversed by PKA 

inhibitors or by an antibody which blocks DCC function. Furthermore, in the dcc -/­

mouse, stimulation or blockade of CBI receptors had no effect on filopodia and 

synaptic density Taken together; these observations confirm that cannabinoids 

modulation requires signaling through PKA and DCC. We propose a modulatory role· 
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for cannabinoids ln decreasing the likelihood ofaxo-dendritic contact and 

synaptogenesis. 

Link between the cannabinoids, PKA activity, and DCC during synaptogenesis 

Long-tenn potentiation is associated with changes in synapse number and structure. 

This is dependent on the activation of PKA. It has been shown that FSK stimulation 

caused DCC extemalization into the synaptic plasma membrane and increases the 

presence of DCC at the synapse. (Bouchard et al., 2004) In a few words, our 

hypothetical model could be summarized as follow. Endogenous cannabinoids acting 

via their CB 1 receptors decrease adenylate cyclase and PKA activities. This reduces 

the recruitment of DCC at the cell surface, diminishing axonal and dendritic 

filiopodia contacts, and thereby decreasing synapse density (figure. Il). 

Conclusion 

We have shown that CB 1 stimulation by endogenous cannabinoids causes a decrease 

in filopodia and synapse density. Meanwhile, the inhibition of CB 1 function with 

inverse agonist or antagonist induces an increase in filopodia and synapse number. 

Our results also showed that CB 1 regulatory action is dependant upon the DCC 

pathway. We have confirmed the role for CB 1 receptor as a major player in regulating 

synaptogenesis at the developmental stages. The identification of a fundamental 

molecular mechanism regulating the connections between neurons will pro vide 

important insight into nonnal brain function, leaming process and will pennit the 
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development of innovative therapeutic strategies almmg at treating congenital or 

neurodegenerative diseases and trauma injuries. 

The implications of the se findings open door to more research and a better 

understanding of synaptogenesis and its complexities. Identifying novel roles of 

receptors in synaptogenesis regulation brings us a step closer to uncovering neuron 

wiring in brain development. In the next chapter, examples of future investigations in 

this field are discussed. 
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Chapter 3: General Discussion 

CB) has been linked to an endless list of research fields such as neurogenesis, fear 

extinction, neural cell development, plasticity in the CNS, obesity, leaming and 

memory, addiction, pain suppression, control of motor function, Parkinson's disease 

and the literature is still expanding. 

CB) and its ligands, the cannabinoids, have been shown to have a plethora of effects 

on nerve cells and brain circuits and our results show an outstanding new link that 

explain the role of CB) in modulating synaptogenesis. 

Synapses play an important role in wiring the brain circuitry. The wiring of the 

central nervous system represents the biological basis of how we understand the 

world, how we represent knowledge, process information and store memories. For 

humans to have meaningful behavior synapses need to be wired up properly. 

Synapse formation and stabilization in the central nervous system is a dynamic 

process, requiring contact between pre- and postsynaptic sites. Numerous 

mechanisms coordinate where and when synapses are made in the developing brain. 
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Implications of our findings 

This new role of CBI in synapse formation brings us a step doser in understanding 

how signaling mechanisms in the brain develops. These findings will be important for 

understanding both developmental disorders and regeneration after disease or injury. 

The discussion of our findings on the functional contribution of cannabinoids and 

their receptor CBI to synapse formation and their molecular mechanism can be 

divided into two points: 

1. Role in synapse formation and synaptic remodeling. 

II. Identifying the underlying mechanisms by which they modulate synaptogenesis 

and plasticity. 

Western blot analysis of primary cortical culture lysates harvested after 1 to 21 days 

in vitro (DIV) revealed that these cultures express CBI receptor, synaptophysin 

(SVP38), AMPA receptor subunit GluRl, and NCAM (Figure 6A). Interestingly, 

there was an increase ofCB 1 receptor protein levels around DIV 13 (Figure 6A). 

We next analyzed by immunofluorescence mlcroscopy the localization of CBI 

receptors in cortical neurons following fixation. In our study, we found that the 

distribution of CBI receptors in immature non-polarized neurons (DIV3) and mature 

cortical neurons (DIV 15) were expressed in aIl neurites, dendrites and axons (Figure 
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6), CB 1 proteins were distributed on dendrites in mature cortical neurons as indicated 

by the colocalization of CB 1 with MAP2. CB 1 receptor also localizes to MAP2-

negative axons. It is confirmed by its colocalization with NFM positive axons and 

NFM negative dendrite (Figure 6C). 

CB 1 receptors played a role in regulating the formation, extension and stability of 

dendritic filopodia (Figure 10). 

Like growth cones, developing dendritic shafts are decorated with filopodia. Recent 

observations suggest that many synaptic contacts are initiated by dendritic filopodia 

that actively seek out an axonal contact. Furthermore, dendritic filopodia have been 

proposed to differentiate into spines following their contact with an axon. 

The emerging model is that both dendrites and axons seek for synaptic partners 

(Mattila et al., 2008). Following the initial contact, a stable synaptic adhesion site is 

established and the axonal and dendritic compartments differentiate into pre- and 

postsynaptic specializations. The molecular mechanisms regulating the formation of 

dendritic filipodia are not perfectly understood, but the observation that cytchalasin­

D, a drug that interferes with actin polymerization; blocks the motility of dendritic 

protrusions suggests a key role for actin (Fischer et al., 1998; Zhang and Benson, 

2002). 
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We show here that cannabinoids via their receptors CB) regulate the formation, 

extension and stability of dendritic filopodia. The treatment of dendrites with 

agonists ACEA or antagonists AM251, 0 2050 to has c1early showed an effect on the 

dynamics of dendritic filopodia (Figure 10). . These experiments were performed on 

pyramidal neurons that were derived from E 14 mouse cortex then dissociated and 

plated in borosilicate chambered cover glass, allowing the use of high magnification 

short working distance objectives and DIC optics (lOOX PlanApochromat, Olympus 

IX71). Measured stable cell cultures were maintained on the microscope in a chamber 

that controls C02, humidity, and temperature. 

E14 mouse cortical neurons were cultured for 8 DIV, allowing visualization of 

differentiated axons and dendrites. Pharmacological agents were then be added to 

culture media for 1 hr. Density of filopodia was found to increase compared to the 

control when neurons were treated with antagonist AM251 and inverse agoni st 

02050 and FSK. On the other hand, with ACEA agoni st the density of filopodia was 

found to be below the control. Subsequently, we determined that cannabinoids 

modulates filopodia, precursors of spine formations. 

Filopodia have been proposed to develop into dendritic spines. We assessed whether 

CB I receptor is required for spine formation. In mice, spine density in the 

hippocampus and neocortex is maximal at approximately 3 weeks after birth, a period 

of intense synapse formation. U sing immunohistochemistry techniques synapse 

maturation and maintenance was monitored, dendrites were visualized with 
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glutamatergic spines with anti-GluRI (polyclonal), and presynaptic terminaIs with 

anti-synaptophysin (monoclonal). The density and structure of dendritic spines of the 

cortical neurons were examined using microscopy. 

Our recent observations suggest that endocannabinoids via the CB1 receptors 

negatively regulate synaptogenesis (Figure 7) but the exact mechanism by which this 

occurs is still unrevealed. It has been demonstrated conclusively that stimulation of 

this Gi/Go-protein coupled receptor inhibits cAMP production and substantially 

decreases PKA activity. It was recently showed that activation of adenylate cyclase 

and PKA induced the translocation of DCC to the plasma membrane and produced a 

netrin-l-DCC dependent increase in synaptogenesis (Bouchard et al., 2008). 

Long-term potentiation, a well studied form of synaptic plasticity, is associated with 

changes in synapse number and structure. Interestingly, the late stage of long-term 

potentiation (L-L TP) is critically dependent on the activation of PKA. L-L TP can be 

induced by PKA activation, and electrically induced L-LTP is blocked by PKA 

inhibition. L-LTP involves a PKA induced increase in the number of quanta released 

by a single action potential and an increase in the number of functional presynaptic 

terminaIs between hippocampal pyramidal neurons (Bear and Malenka, 1999). 

We have shown that FSK stimulation caused DCC extemalization into the synaptic 

plasma membrane and increased the presence of DCC at the synapse. To complete 

our results showing that netrin-l and DCC contribute to the PKA dependent 
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synaptogenesis, membrane permeable direct activators of PKA, ImM db-cAMP and 

50llM Sp-cAMP should be applied to E14 cortical neuron cultures and single cell 

patch analysis additional to our immunocytochemical analysis (colocalization, and 

FMl-43) will further confirm that PKA activation affects synapse number and 

efficacy. 

We have showed that FSK acts via the adenylate cyclase and PKA (200nM KT5720, 

21lM H89) (Figure 8). AIso, we have determined that netrin-1 and DCC are required 

effectors of PKA induced synapse formation by applying function-blocking 

antibodies. In order to validate these observations, a second set of experiments were 

realized using embryonic primary cortical neuron culture obtained from dcc and 

netrin-l KO mi ce (Figure 9 C-D). 

We showed that PKA induced translocation of DCC is required for PKA mediated 

synapse modification. Cortical neurons were stimulated with ACEA, AM 251, or 0 

2050 for 15 min and cell surface protein expression levels were measured using by 

biotinylation and streptavidin pull-downs. AM 251, 0 2050, and FSK significantly 

increased cell surface DCC 15 min after stimulation (biotinylated) and ACEA 

significantly decreased it. Application of KT 520 completely abolished the effect 

produced by AM 251. Membranes were stripped and reprobed for synaptophysin 

(SVP38) as a negative control to test the membrane permeability (Figure 8C). 
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Our results show that endogenous cannabinoids produced by neurons in culture, 

negatively modulate synapse formation. To determine if PKA, netrin-l and DCC 

contribute to this effect, we added CB) receptor antagonists (AM25 1 , 02050) to the 

neurons in culture for 1 day in the presence or not of antibodies that block DCC and 

netrin-l function, and quantified synaptic density and functionality as pre and post­

synaptic marker colocalization, FMl-43 staining. Another set of experiments were 

realized using embryonic primary cortical neuron culture obtained from dcc and 

netrin-l knockout mice. Using pharmacological inhibitors, we confirmed that 

antagonizing CB) receptors increases adenylate cyclase and PKA activities (200nM 

KT5720, 2)lM H89). 

CB) is shown here to be a major player in synapse formation and to be an active 

modulator in development for brain wiring. It was previously known that many types 

of neurons can release endocannabinoids that act as retro grade signaIs to inhibit 

neurotransmitter release from presynaptic terminaIs (Freund et al., 2003). Here we 

report that synaptic development is evoked by endocannabinoid release and regulated 

by the CB) receptor. Further more we have linked this activity to the cAMPIPKA and 

netrin -l/DCC pathways uncovering a possible mechanism of synapse formation. 

This leads us to come closer to the exciting possibility of arriving one day at the 

ability of interfering in the synapse formation stages and rewiring neurons of 

importance. 
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Understanding synaptogenesis and eventually regulating neuron wiring can be a huge 

step forward for the human race in controlling the brain complexities. 

Suggested future investigations 

Our results provide evidence that endocannabinoids regulate the density of synapses. 

However, our experiments have not undercovered various missing complexities in the 

underlying mechanisms of action. In order to further explore these results and to 

better understand the mechanisms, other experiments can be performed. 

Genetic experiments: To determine if endogenous cannabinoids and their CB 1 

receptor are absolutely required for synaptogenesis, culture cortical neurons derived 

from cnr 1 knockout mice can be examined. Cultures from dissociated cells will be 

treated with pharmacological agents, and synapse and filopodia densities will be 

quantified and compared to the wild type mice. 

siRNA experiments: Another way of determing if CB 1 receptor is required for 

synaptogenesis is to block its expression using siRNA technology. Synapse and 

filopodia density can then be measured in these cultures and compared with cultures 

where the CB 1 expression is not silenced. 



68 

Electron Microscopy experiments: Although functional synaptic activity has been 

reported within minutes following contact between two excitable cells, a mature 

ultrastructural appearance takes days to develop. To determine the effect of 

cannabinoids on the ultrastructural characteristics of synapses, electron microscopy 

(EM) can be performed. Ultrastructural characteristics, number of synapses, total and 

docked vesicles per synapse can be assessed. Primary neurons obtained from enr 1 

KO animais can also be compared with those obtained from wild type animais. 

Electrophysiological analysis: Conscious of the short term modulatory effect of CB I 

receptors on Ca2+ and K+ channels (Deadwyler et al., 1993), long term physiological 

significance of the effect of cannabinoids on synapse function will be assessed 24 and 

48 hrs after pharmacological manipulations. An increase in the number of 

glutamatergic synapses is predicted to increase the effectiveness of synaptic 

transmission in the neuronal network in vitro. Thus it would be interesting to analyze 

the recordings from cultured cells treated with the pharmacological drugs. In another 

set of experiments, enr 1 KO animais can be compared to wild type animais. The 

endogenous cannabinoid system is thought to be an important neuromodulator in 

motivation, reward and motor control systems. Observations using animal models 

suggest that modulation of endogenous central cannabinoid signaling in mesolimbic 

pathways may be one component of the addiction process, particularly via interaction 

with opio id and doparninergic systems. 
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The endocannabinoid system as a ubiquitous mediator of biological pathways in 

health and diseases. An understanding of the crucial role of cannabinoids in health 

and diseases has been rapidly gained from novel tools permitting the identification 

and functional characterization of cannabinoid receptors. Consequently, several 

studies have shown that, in addition to their anticipated CB1-dependent central 

effects, cannabinoids also display a wide variety of CBI- or CB2-mediated peripheral 

functions, including regulation of energy balance, immune and inflammatory 

responses and bone mass, as weIl as antitumor properties and vasoregulatory and 

lipogenic effects Our preliminary findings suggest a novel mechanism by which 

endocannabinoids and their CBI receptors play a fundamental role in regulating 

synaptogenesis during neural development. Further investigation on the matter will 

contribute to our understanding of phenomena that regulate leaming, memory, 

congenital, and neurodegenerative diseases. 

development of new therapeutic agents. 

This will possibly permit the 

CB l is shown here to be a major player in synapse formation and to be an active 

modulator in development for brain wiring. It was previously known that many types 

of neurons can release endocannabinoids that act as retro grade signaIs to inhibit 

neurotransmitter release from presynaptic terminaIs (Freund et aL, 2003). Here we 

report that synaptic development is evoked by endocannabinoid release and regulated 

by the CB I receptor. Further more we have linked this activity to the cAMPIPKA and 

netrin -lIDCC pathways uncovering a possible mechanism of synapse formation. 
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This leads us to come closer to the exciting possibility of arriving one day at the 

ability of interfering in the synapse formation stages and rewiring neurons of 

importance. Understanding synaptogenesis and eventually regulating neuron wiring 

can be a huge step forward for the human race in controlling the brain complexities. 
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Figures and Figure Legends 

Figure 1. Filopodia and Spines: Actin network in neurons 

(A) In migrating cells, filopodia, that are localized at the leading edge, 

probe the microenvironment and serve as pioneers in cell protrusion. 

(D) Filopodia of epithelial sheets, which protrude from opposing cells, help 

the sheets of cells to align and adhere together. 

(C) Filopodia participate in the guidance and migration of neuronal growth 

cones (top inset) and are precursors of the dendritic spine (bottom inset), 

which are the postsynaptic regions of most excitatory neuronal synapses. 

As a dendritic spine matures, its morphology changes from a filopodia-like 

protrusion to a mushroom-shaped structure. 

From the following article: 

Pieta K. Mattila & Pekka Lappalainen, Filopodia: molecular architecture 

and cellular functions, Nature Reviews Molecular Cell Biology June 2008, 

9:446-454 
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Figure 2. Structure of netrin-l and netrin-l dependence receptors 

Structure of netrin-1 and netrin-1 receptors. DCC is a type 1 transmembrane 

protein with an extracellular domain composed of four immunoglobulin 

domains, six fibronectin type III domains, a single transmembrane spanning 

region and a cytoplasmic domain including ADD. The four UNC5H 

receptors all have two immunoglobulin domains and two thrombospondin 

domains in the extracellular region and a ZU-5 domain (a domain of 

homology found in Zona Occludens-1 and UNC-5 protein). Their ligand, 

netrin-1, is a laminin-related secreted prote in with V and VI domains (three 

epidermal growth factor domains) related to laminin and a positively 

charged carboxy (C)-terminal domain. 

From the following article: 

Mehlen P and Llambi F,Role ofnetrin-l and netrin-l dependence receptors 

in colorectal cancers, British Journal of Cancer (2005) 93, 1-6. 
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Figure 3. Natural cannabinoids 

Cannabinoids are a group of substances that are structurally related to A9
_ 

THC or that bind to cannabinoid receptors. Currently, there are natural and 

synthetic cannabinoids. Different types of natural cannabinoids are their 

structures are shown in this figure. 

From the following website: 

http:// en. wikipedia.org/wiki/Cannabinoids 
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Figure 4. CB. and CBl receptors Structures 

There are currently two known subtypes, CS, which is expressed mainly in 

the brain, but also in the lungs, liver and kidneys and CB2 which is mainly 

expressed in the immune system and in hematopoietic cells. The protein 

sequences of CBI and CB2 receptors are about 45% similar. 

From the following article: 

Straiker A, J Neurphysiol, 2003; Howlett AC, Pharmacol Rev, 2002; 

Howlett AC, Handb Exp Pharmacol, 2005 
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Figure 5. Inverse agonist, agonist, and antagonist of CH. receptors 

The cannabinoid receptor type 1, often abbreviated to CB 1, is a G protein­

coupled cannabinoid receptor that is found in the brain and is activated by 

the psycho active drug cannabis and its active compound A9 
-THC 

and by a group of endocannabinoid neurotransmitters inc1uding 

anandamide. 

In this figure, the structures of selective inverse agonist, agoni st and 

antagonist for CBI areshown. From the following website: 

http://www.tocris.coml 



Figure 6. CB. receptors are expressed in cortical neuron cultures. They are 

distributed along dendrites and axons in polarized pyramidal cortical neurons in 

vitro. 

(A) Western blot analysis of CB) receptor, synaptophysin (SVP38), AMPA 

receptor subunit GluR1, and NCAM protein expression in primary cortical 

neurons cultured for 1 to 21 days in vitro (DIV). There is an increase of 

CB) receptor protein intensity levels around DIV 13. 

(B-C) Cellular distribution of CB) receptor in vitro. Primary cultures of 

cortical neurons were grown under serum free conditions for 3 DIV (B) or 

15 DIV (C), fixed and stained for CB) receptor (B and C (red)) and GluRI 

(Chemicon, ABI504), NFM (Chemicon, MAB1621, AB1987) or MAP2 

(Sigma M1406) (green). 

(B) Distribution of CB) receptors III immature non-po1arized neurons 

(DIV3). AlI neurîtes were positives for either GluRl or NFM. 

(C) CB) prote in distributes to dendrites in mature cortical neurons as 

indicated by the colocalization of CB) with MAP2. CB) receptor a1so 

localizes to MAP2-negative axons (arrowhead). It is confirmed by its 

colocalization with NFM positive axons and NFM negative dendrite 

(arrowhead) Scale bar = 15 !lm. 
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Figure 7. CD. receptors modulate functional synapses in vitro. 

(A-D) Immunocytochemical analysis of 10 DIV cortical neurons shows that 

24 hrs application of 300 nM AM 251, a cannabinoid CB 1 receptor inverse 

agonist, significantly increases the number of synaptophysin 

immunoreactive punctae closely apposed to GluRl immunoreactive 

dendrites (B) when compared to control (A). GluRl staining is shown in 

green and was used as a dendritic marker. Synaptophysin stain (red) labels 

presynaptic boutons. Isolated GluRl positive neurons were selected 

randomly and quatification was performed blindly. Scale bar = 15 Ilm. 

(C) Average number of immunoreactive synaptic puncta per Ilm2 dendritic 

area plotted as ~ % control. * p < 0.05 vs ctrl. # p < 0.05 vs AM 251, 0 

2050. 

Stimulating with 300 nM AM 251 and 1 uM 0 2050, a pure antagonist of 

CB1 receptor, produced a significant increase of synaptic punctae. (D) 

Mean dendritic thickness, measured as the ratio of dendrite surface area to 

dendrite length and plotted as % control, was not appreciably affected by 

ACEA, AM 251, 0 2050, or FSK stimulation. 

(E) Western blot analysis of lysates obtained from cultured cortical neurons 

treated with agonist or antagonistlinverse agoni st of CB 1 receptors or FSK 

for 24 hrs did not reveal any significant changes in the protein expression 

levels ofGluRl or SVP 38. 

(F -G) Average denisty of active vesicules in AM 251 treated cells (G) 

increased compared to control (F). Active presynaptic sites are identifed by 

monitoring the endocytosis and release of the fluorescent styryl dye FM1-

43. (H-I) These panels represent differential interference contrast (DIC) 

pictures ofcells (F and G) respectively. 
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(J) Significant differences in the density of active vesicles were found 

between control cultures and cultures treated with ACEA, AM 251, 0 

2050, or FSK. 
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Figure 8. Cannabinoids modulate the number of synaptic punctae in vitro: 

Link between Cannabinoids, PKA, and synaptogenesis 

Immunocytochemical analysis of 10 DIV cortical neurons shows that 24 hrs 

application of 300 nM AM 251, a cannabinoid CB I receptor inverse 

agonist, significantly increases the number of synaptophysin 

immunoreactive punctae closely apposed to GluRl immunoreactive 

dendrites. This effect was reversed when neurons were pre-treated with 

KT5720 of H89 both inhibitors of PKA 

(A) Quantification of 10 DIV cortical neurons shows that 24 hrs application 

of 300 nM AM 251, and 1 uM 0 2050 significantly increases the number of 

synaptophysin immunoreactive punctae closely apposed to GluRl 

immunoreactive dendrites when compared to control. This effect was 

reversed when neurons were pretreated with KT5720 and H89, two 

inhibitors of PKA. 

Activation of adenylate cyclase and PKA using IOIlM forskolin (FSK) 

induced an increase in the number of presynaptic punctae closely apposed 

to dendrites. This response was blocked by 50 nM ACEA, an agonist of 

CB I receptors and by KT5720 and H89. 

Average number of immunoreactive synaptic puncta per 11m2 dendritic area 

plotted as ~ % control. * p < 0.05 vs ctrl. # p < 0.05 vs AM 251, 0 2050, or 

FSK. 

(D) Mean dendritic thickness, measured as the ratio of dendrite surface 

area to dendrite length and plotted as % control, was not appreciably 

affected by AM 251, 0 2050, H89, KT5720 or FSK stimulation. 

(C) Cortical neurons were stimulated with ACEA, AM 251, or 0 2050 for 

15 min and cell surface prote in expression levels were measured using by 

biotinylation and streptavidin pull-downs. AM 251, 0 2050, and FSK 
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significantly increased cell surface DCC 15 mm after stimulation 

(biotinylated) ACEA significantly decreased it. 

Application of KT 520 completely abolished the effect produced by AM 

251. 

Membranes were stripped and reprobed for synaptophysin (SVP38) as a 

negative control to test the membrane permeability. 



81 

Figure 9. CD I receptors modulate synapse formation in vitro and tbis effect is 

dependent of DCC receptor and PKA 

Immunocytochemical analysis of 10 DIV cortical neurons shows that a pre­

treatment of neurons with DCCfb antibody blocks the effect of 300nM AM 

251 or 1 uM 0 2050 on the number of synaptophysin immunoreactive 

punctae closely apposed to GluRI immunoreactive dendrites. 

(A) Average number of immunoreactive synaptic puncta per Jlm2 dendritic 

area plotted as ~ % control. * p < 0.05 vs ctrl. # p < 0.05 vs AM 251, 0 

2050. 

Stimulating with 300 nM AM 251 and 1 uM 0 2050, a pure antagonist of 

CB, receptor, produced a significant increase of synaptic punctae. This 

effect was antagonized by an antibody blocking DCC function (DCCfb). 

(D) Mean dendritic thickness, measured as the ratio of dendrite surface area 

to dendrite length and plotted as % control, was not appreciably affected by 

ACEA, AM 251, AM 251 +DCCfb, 0 2050, 0 2050 + DCCfb or FSK 

stimulation. 

(C-D) 10 DIV cortical neurons derived from DCC receptor knockout (-/-) 

compared to their wild type (+/+) litterrnates display no increase in synaptic 

density, revealed by the close apposition between GluRl-positive dendrites 

and synaptophysin-positive presynaptic boutons when treated with CB, 

inverse agonist, antagonist or FSK for 24 hrs. 
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Figure 10. Cannabinoids regulate axona) and dendritic filopodia number via a 

mechanism dependent of the cAMPIPKA pathway and of DCC 

(A) Control (untreated) and AM 251 treated (B) 8 DIV cortical neurons 

stained for GAP-43. Axonal or dendritic filopodia were identified as GAP-

43 protrusions stemming from the axon or the dendrite. (C-D) Close-up of 

the dendrites of control verses AM251 treated neuron. Scale bar = 15 J.Lm 

for upper panels and 5 J.Lm for lower panels. 

(E) Average number of filopodia per J.Lm2 dendritic area plotted as Ô % of 

control. Significant differences were found between Ctrl cultures and 

cultures treated with ACEA, AM 251, 02050, or FSK. Addition of PKA 

inhibitors (K5720, H89) or of DCC function blocking antibody reverse the 

increase in filopodia number induced by AM 251, 0 2050 or FSK. * P < 

0.05 vs ctrl, # p < 0.05 vs AM 251, 02050, or FSK. 

Mean dendritic thickness, measured as the ratio of dendrite surface area to 

dendrite length and plotted as % control was compared between the 

different treatments and the control. No statistical differences were 

observed. (Results not shown). 

(F -G) 8 DIV cortical neurons derived from DCC receptor knockout (-/-) 

compared to their wild type (+/+) littermates display no 
. . 
IDcrease ID 

filopodia density, revealed by the GAP43-positive dendritic and axonal 

neurîtes when treated with the inverse agonist, antagonists or FSK for Ihr. 
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Figure 11. Putative mechanism by which endogenous cannabinoids decrease 

synaptic density 

(A) The overall hypothesis is that acting on the CB I receptor; cannabinoids 

decrease cytosolic cAMP concentration, inhibiting PKA, and block the 

recruitment of DCC to the neuron membrane, thereby decreasing the 

formation ofaxonal and dendritic filopodia formation and synaptogenesis. 

(D) By activating their CB 1 receptors, endogenous cannabinoids decrease 

the number of synapses. 

(C) Our results suggest that endogenous cannabinoids via the activation of 

their CB I receptors reduce axonal and dendritic filopodia. This mechanism 

is dependent of PKA and DCC. Dendritic filopodia differentiate into spines 

following their contact with an axon. Following the initial contact, a stable 

synaptic adhesion site is established and the axonal and dendritic 

compartments differentiate into pre- and postsynaptic specializations. 

Therefore axonal and dendritic filopodia have an essential role in the 

synaptogenesis. 

(D)The decrease ln axonal and dendritic filopodia number reduces the 

contact probability between pre and postsynaptic counterparts and therefore 

decrease synapse density. 
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