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SUMMARY 

We define the concepts of real, Kahler, and quaternionic manifolds from a math­

ematical and physical point of view. We then introduce the results of previous 

classifications of these spaces and present the new technique we developed to 

classify these manifolds. Our method relies on the existence of constrained in­

stantons, Seiberg-Witten curves, and the use of Freudenthal, Rosenfeld, and Tits' 

magic square. We conclude by arguing that our classification method reproduces 

the results of the previous classifications and show how it also leads to the dis­

covery of a new set of Kahler manifolds. 

Keywords: Mathematical physics, manifolds, instantons, quaternionic, Kahler, 

magic square, Seiberg-Witten curves. 
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SOMMAIRE 

Nous définissons les notions de variétés différentiables réelles, de Kahler et quater­

nioniques d'un point de vue mathématique ainsi que physique. Nous introduisons 

par la suite les résultats des classifications antérieures de ces espaces et présen­

tons la nouvelle technique que nous avons développée pour classifier ces variétés. 

Notre méthode est basée sur l'existence d'instantons contraints, des courbes de 

Seiberg-Witten et utilise le carré magique de Freudenthal, Rosenfeld et Tits. Nous 

concluons en montrant que notre méthode de classification reproduit les résultats 

des classifications précédentes et permet la découverte d'un nouvel ensemble de 

variétés de Kahler. 

Mots-Clés: Physique mathématique, variétés différentiables, instantons, quater­

nionique, Kahler, carré magique, courbes de Seiberg-Witten. 
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INTRODUCTION 

Real, Kahler, and quaternionic manifolds play an important role in physics. It 

is known today that they appear as moduli space of sigma models for N = 2 

supergravity theories in five, four and three space-time dimensions respectively. 

In fact, in the framework of N = 1 supersymmetry in four dimensions with global 

susy, the target manifold of a non-linear sigma model can be any Kahler manifold 

lI]. In N = 2 supersymmetry in four space-time dimensions with local supersym­

metry, the target manifolds of a non-linear sigma model coupled to supergravity 

can only be quaternionic Kahler manifolds [21, 43]. 

The classification of quaternionic manifolds was started in [18, 44] using tran­

sitive solvable groups of isometries and finally completed in [25] through the use 

of supergravity arguments. In this thesis, we classify non-compact symmetric 

quaternionic manifolds using a different technique than what has been do ne pre­

viously. In particular, we look for gauge theory with certain global symmetries 

and show that all the symmetric quaternionic manifolds can be succintly classi­

fied by constrained semilocal instantons. One can show that the low momentum 

dynamics of this theory gives a sigma model with quaternionic target space. Such 

an approach was first discussed in [45] and later elaborated in [46, 47]. In this 

thesis, we complete the analysis by detailing the corresponding gauge theory con­

struction. 

Our theory resembles a sector of Sei berg-Witten theory in certain parametriza­

tions but is not asymptotically free. More precisely, the action for our model is 
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given by the following generic form (see Section 3.1 of [24]): 

S = J d4x [ltrSU (2) (F{ivPW
) + tr(D{iqt. D{iq) + V(tr(qt. q)) + fermions] 

(0.0.1) 

where q is a generic quaternion written as a 2 x 2 matrix, F{iV is the field strength, 

and Dfi is the covariant derivative. This is not quite a Seiberg Witten theory as 

it stands but it suffices to modify this equation a little for the action to resemble 

a part of the standard N = 2 action with a potential V. It is then possible to use 

Seiberg-Witten curves to determine the global properties of this model. 

Our goal is to study instantons in (0.0.1). We perform this analysis in two 

ways: from a group theory perspective by reinterpreting Freudenthal, Rosenfeld, 

and Tits' magic square [31] and from the Seiberg-Witten theory point of view 

[30, 38]. The latter leads to the concept of fibration of semilocal defects over 

quaternionic spaces. This technique is ideally suited to study several types of 

manifolds in the magic square. Also, it proves to be convenient for theories 

that may not have a good Lagrangian description and for which the existence of 

instantons might be questioned. 

Our new method of studying the magic square and classifying the quaternionic 

manifolds through Seiberg-Witten curves allows us to reproduce the results of 

previous classifications and to discover a new set of Kiihler manifolds. In addition, 

we study the sigma model description of our quaternionic manifolds by deriving 

for the first time in detail the prepotential functions for the relevant cases. These 

functions determine Kiihler metrics and potentials. Using a given map, we can 

finc1 the metrics of the associated quaternionic manifolds. 
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The article presented in this thesis is self-contained. However, we take the 

time, in the following first chapters, to introduce mathematical and physical no­

tions that might not be familial' to the reader. We also introduce subjects that 

were not addressed in detail in the article such as Alekseevskii and De Wit-Van 

Proeyen's previous classifications of real, Kahler and quaternionic manifolds. We 

finally summarize the main results found in the article. 

In Chapter 1 of this thesis, we introduce many notions of Riemannian geom­

etry required to understand our work. We also define in detail the several types 

of manifolds with which we work. Finally, we present the first classification of 

quaternionic manifolds which used the concept of isometry groups. This will al­

low the reader to see the results that our classification method has to reproduce. 

In Chapter 2, we introduce the notions of moduli spaces, target manifolds, and 

sigma models. This gives a better understanding of the importance of real, Kah­

ler, and quaternionic manifolds in physics. We also present in detail the functions 

generating these manifolds and introduce briefly the concepts of supersymmetry 

and supergravity. These are the basis to understand the complete classification of 

De Wit and Van Proeyen. We conclude this chapter by presenting their results. 

Chapter 3 presents the physical and mathematical concepts required to un­

derstand our classification: gauge theory, Seiberg-Witten theory, and constrained 

semilocal instantons. We discuss about the construction of these instantons and 

of the associated quaternionic manifolds. We also introduce the magic square, 

explain how to construct several manifolds from it using the technique of sequen­

tial gauging, and summarize the results obtained. We conclude this section by 

presenting the new set of Kahler manifolds we found and summarizing the tech­

nique used to find the prepotential functions. 

Chapter 4 of the thesis contains the article that l wrote in collaboration with 

Keshav Dasgupta from McGill University and Véronique Hussin from Université 

de Montréal. The article presents a detailed classification of symmetric quater­

nionic manifolds. It was published Ïn Nuclear Physics B in April 2008. 

During the preparation of our article, l studied in detail several previous clas­

sifications of real, Kahler, and quaternionic manifolds as well as the properties 
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of these spaces and the maps that link them. l participated in the study of 

how quaternionic manifolds appear from string theory and their realisation of the 

quotient spaces. l analyzed the construction of the magic square as weIl as the 

manifolds associated to it. My contribution in the classification of quaternionic 

manifolds was to address spaces in string theory that were not realised directly 

in the magic square. FinaIly, l wrote the entire Section 4.6 of [24] where l de­

rived aIl prepotential functions associated to the Kahler manifolds realised in the 

magic square. These functions allow one to derive the metric of the corresponding 

quaternionic Kahler manifolds. 



Chapter 1 

MATHEMATICAL DEFINITIONS 

1.1. RIEMANNIAN GEOMETRY 

ln this chapter, we introduce definitions required to fully understand 

the mathematical concepts forming the background of the article presented in 

this thesis. 

1.1.1. Riemannian manifold 

A real (complex) n-dimensional manifold M is a space which looks like an 

Euclidean space IRn (Cn ) around each point. 1Vlore precisely, a manifold is de­

fined by introducing a set of neighborhoods Ui covering M and coordinates which 

maps these neighborhoods onto open subsets of]Rn (Cn ). A manifold is said to be 

smooth or differentiable if the coordinate maps are differentiable functions. The 

spaces we classify are Riemannian manifolds (AI, g). They are smooth manifolds 

M with a Riemannian metric g. The Riemannian metric is a natural general­

ization of the inner product between two vectors in IRn defined at each tangent 

space TpM. Such a tangent space is defined as the vector space spanned by the 

tangents at point p E M to an curves passing through p in the manifolds [2]. 

1.1.2. Topology 

A Riemannian manifold M is said to be connected if and only if the only 

subsets which are both open and closed are the void set and the space Iv! itself. 

lt is said to be orientable if every closed path is orientation preserving [9]. A 

collection of open subsets of j\;[ is called a covering if the union of these elements 
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generates NI. A Riemannian manifold is compact if every covering of M has a 

finite subcovering [li] and is said to be locally reducible if it resembles locally to 

a product space of submanifolds. 

1. 1.3. Lie groups as manifolds 

A Lie group G is a manifold together with differentiable maps that constitute 

group product and inversion, aIl of which turn the smooth manifold into a group 

[15]. In addition, the Lie algebra of a Lie group is the tangent space TeG at 

the group identity e. Let G be a Lie group and H any subgroup of G. The 

coset space G j H admits a differential structure and G j H becomes a manifold, 

caIled a homogeneous space. Note that dim (GjH) =dim G-dim H [14]. The 

homogeneous space G j H provided with an invariant Riemannian metric is called 

a Riemannian homogeneous space 1131. 

1.1.4. Curvature tensor 

There exist intrinsic objects whose geometrical meaning is a measure of how 

much a manifold is curved, namely the torsion tensor and the curvature tensor 

which is also called the Riemann curvature tensor. The components of the cur­

vature tensor are represented by the Riemann tensor denoted Rjkl. The Ricci 

tensor is a contraction of the curvature tensor. components are by definition 

Rik = R/kj' The Riemann curvature scalar or Ricci scalar is given by R = gij Rij 

[Il]. We say that a Riemannian manifold is if its Ricci tensor is pro­

portional to the metric tensor i.e., Rij = Àgij with sorne constant À E IR. A 

Riemannian manifold is called Ricci flat if Rij = 0 [12, 8]. 

1. 1.5. Symmetric spaces 

A Riemannian manifold is locally symmetric if and only if it has a constant 

Riemann curvature l12] and is said to be nonsymmetric if it is not locally sym­

metric. An equivalent definition involves geodesic symmetries. A function defined 

on a neighborhood of p E lvI is called ageodesic symmetry if it point 

p and reverses geodesics passing through that point. In particular, this function 

aets as minus the identity mapping on the tangent space of p. So a Riemannian 
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locally symmetric manifold is such that for each p E M there exists a certain 

neighborhood of p on which the geodesic symmetry with respect to pis an isom­

etry. We say that the manifold is globally symmetric (symmetric for short) if the 

geodesic symmetry extends to a global isometry [7]. 

1.1.6. Complex manifold 

Let M be a real manifold of even dimension. An almost complex structure 

on M is a tensor JI satisfying j2 = -1. J can be viewed as a matrix acting 

on tangent vectors. In particular it gives each tangent space TpM the structure 

of a complex vector space. We can associate a tensor N == N]k to J called the 

Nijenhuis tensor 

(1.1.1) 

An almost complex structure is integrable if and only if N = O. In this case, it is 

called a complex structure. A complex manifold (1'vl, J) is a manifold M with a 

complex structure J [12]. 

We pause for a moment to discuss an analogy with general relativity that 

would allow us to better understand the implication of a vanishing Nijenhuis ten­

sor [3]. 

Suppose we are given a manifold K with a symmetric tensor field 9ij which 

could be considered, for instance, as the metric tensor. By linear algebra, one 

can show that given any point p E NI there is a coordinate system such that the 

metric tensor 9 takes the standard form 9ij = Oij at p. Now, we would like to ask 

whether we can find coordinates which will put 9 in the standard form not just at 

one point p but in a whole neighborhood of p. Such a coordinate system is called 

a fiat coordinate system. A necessary condition for the existence of a fiat co or­

dinate system in a whole neighborhood of a point p is that the Riemann tensor 

R ijkl , which is made of 9 and its derivatives, should vanish in this neighborhood. 
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We would like to carry out an analogous argument in the case of an almost 

complex structure. Given a manifold I< with an almost complex structure J and 

any point y E I<, one can find a suitable basis of complex coordinates and their 

complex conjugates in which J takes the form J] = i8j, J] = -i8~ at that one 

point y. Note that the bar symbol specifies that we are working with complex 

conjugate coordinates. We will calI these expressions the canonical form of J. We 

would like to know if we can choose complex coordinates to put J in the canonical 

form not just at the point y but in a whole open set containing y. Coordinates 

with this property are called local holomorphic coordinates. If such coordinates 

exist in a neighborhood of each point y E I< then, the almost complex structure 

is said to be integrable. There is essentially only one tensor field constructed 

from J] and its derivatives namely, the Nijenhuis tensor. The condition N = 0 

refiects the fact that J will be in the canonical form not only in one point but in a 

neighborhood of that point, in the same way that a zero Riemann tensor assures 

that the Riemann metric is fiat not only at one point but in its neighborhood. 

l.2. MANIFOLDS 

1.2.1. Holonomy 

Holonomy is the pro cess of assigning to each closed curve the linear transfor­

mation measuring the rotation which results when a vector is parallei transported 

around the given curve. From these linear transformations we get a set of ho­

lonomy matrices. This set forms a group called the holonomy group r = r(g) 

where 9 is the Riemannian metric [2]. 

1.2.2. Berger's classification 

In 1955, Berger classified in [5] the possible holonomy groups associated to 

n-dimensional simply-connected, locally irreducible, and nonsymmetric Riemann­

ian spaces. The possible holonomy groups for these manifolds are compact Lie 

subgroups of SO(n) and are listed in the following Berger's classification where 

exactly one of the following class holds [12, 4]: 



(1) r = SO(n) 

(2) r = U(m) C SO(2m) with n = 2m, m ;::: 2 

(3) r = SU(m) C SO(2m) with n = 2m, m ;::: 2 

(4) r = Sp(m) C SO(4m) with n = 4m, m ;::: 2 

(5) r = Sp(m) x Sp(l) C SO(4m) with n = 4m, m ;::: 2 

(6) r = G 2 C SO(7) with n = 7 

(7) r = Spin(7) C SO(8) with n = 8 or 

(8) r = Spin(9) C SO(16) with n = 16 

10 

Recall that SO(k) is the special orthogonal group. For generic Riemannian met­

ries, r = SO(n). The unitary group and special unitary group are represented 

by U(k) and SU(k) respectively. The symplectic group is denoted Sp(k) with 

Sp(l) == SU(2) in complex dimension 2. G 2 is one of the exceptional Lie groups. 

Spin(n) is the Spin group which is the universal cover of SO(n) [15]. The holo­

nomy groups G 2 and Spin(7) are called, in [12], the exceptional holonomy groups. 

Metrics with these holonomy groups are Ricci-fiat. Berger's original classification 

took the case r = Spin(9) into account. However, it has been proved in [4] 

that there exists no locally nonsymmetric Riemannian space with this holonomy 

group. The figure below summarizes the links between the manifolds we will use. 

l 
Kahler 

l 

l l 

Real manifold (even dimensions) 
l 

l 
Complex 

l 

l 
non Kahler 

l 
QK 

l 
not Complex 

CY HK 

FIG. 1.1. Links between manifolds. Notation: Quaternionic Kiih-

1er (QK), HyperKiihler (HK), Calabi-Yau (CY). 
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1.2.3. Kahler manifolds 

We call 9 a Hermitian metric if gij = JikJJgkl' A Hermitian metric 9 on a 

complex manifold (M, J) is called a Kahler me tric if J is a constant tensor on 

M i.e., if its covariant derivative is equal to zero. Riemannian metrics 9 with 

r ç U (m) are also Kahler metrics. Kahler met ri cs are a natural class of metrics 

on complex manifolds and generic Kahler metrics on a given complex manifold 

have r = U(m). A manifold that admits such a me tric is called a Kahler manifold 

[3,12]. 

1.2.4. Calabi-Yau Manifold 

Metrics 9 with r = SU(m) are called Calabi-Yau metrics. Calabi-Yau metrics 

are locally the same as Ricci-fiat Kahler metrics. Thus, a Calabi-Vau m-fold is a 

Ricci-fiat Kahler manifold with holonomy SU(m) [12]. Some authors also define 

a Calabi-Yau manifold as a Kahler manifold with vanishing first Chern class [3]. 

1.2.5. Quaternionic manifold 

A Riemannian manifold with holonomy r c Sp(l) x Sp(m) is called a quater­

nionic space. These spaces are Einstein if 4m = n. Quaternionic manifolds have 

non-zero Ricci curvature. If the Ricci curvature is equal to zero, the holonomy 

groups of these spaces reduces to Sp(m): these are the hyperKahler manifolds. 

Quaternionic Kahler manifolds are manifolds with r = Sp(l) x Sp(m). They are 

in fact not Kahler: they are Einstein, but not Ricci-fiat. They are not locally 

symmetric spaces. The quaternionic Kahler manifolds we will be working with 

have negative curvature. Compact, homogeneous, globally symmetric quater­

nionic manifolds are called Wolf spaces [4, HI]. 

1.2.6. HyperKahler manifold 

A Riemannian 4m-manifold (M, g) is called hyperKahler if r = Sp(m). These 

manifolds are Ricci-fiat, Kahler and thus complex manifolds. 
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1.2.7. Quaternions 

The quaternions are an extension of complex numbers. Quaternions form a 4-

dimensional associative algebra denoted by ]HI = (1, il, i2 , i 3) f"V JR4 where objects 

take the form q (a+bi l +ci2+di3 , a, b, c, dE JR). Addition is given by ql +q2 = q3 

with q3 (al +a2)+(b1 +b2)i l +(CI +c2)i2+(d1 +d2)i3 . Multiplication respects: 

1.2.8. Maps 

There exists two maps connecting certain manifolds together, namely the r­

map, which links real manifolds to Kahler ones, and the c-map, which connects 

Kahler manifolds to quaternionic Kahler manifolds: 

where n 1, n and n + 1 denote the complex and quaternionic dimensions 

of the real, Kahler and quaternionic spaces respectively [17]. Important physical 

results regarding the c-maps can be found in [16]. 

1.3. PREVIOUS CLASSIFICATIONS 

Several classifications of real, Kahler and quaternionic Kahler manifolds were 

made over the years using either mathematical or physical approaches. In the 

next section, we will introduce the concept used by Alekseevskii to generate the 

first classification of these manifolds. We will then expose his results. This will 

allow us to better understand the results that we should recover through our 

classification. 

1.3.1. Isometry Group 

A map between two manifolds is called a homeomorphism if it is continu­

ous and has an inverse which is also continuous. To illustrate this, suppose we 

have two manifolds made of ideal rubber that we can deform at our will. These 

manifolds are homeomorphic to each other if we can deform one into the other 
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continuously, that is, without tearing it apart and pasting it. If a homeomor­

phism and its inverse are differentiable the function is called a diffeomorphism 

and the two manifolds are said to be diffeomorphic. Two diffeomorphic spaces are 

regarded as the same space. A diffeomorphism is an isometry if it preserves the 

metric [14]. An isometry group of a manifold is the set of all isometries from the 

manifold onto itself, with the function composition as group operation. Its iden­

tity element is the identity function. As we will see in the next chapter, isometry 

groups were used to create the first classification of quaternionic manifolds. 

1.3.2. Alekseevskii's classification 

Alekseevskii made the first classification of homogeneous quaternionic spaces. 

He conjectured that all homogeneous quaternionic spaces were exhausted by com­

pact symmetric quaternionic spaces and non-compact normal quaternionic space. 

Normal quaternionic spaces are quaternionic spaces which admit completely solv­

able transitive groups of motions I. The rank of the group l that is, the dimension 

of its Cartan subgroup, is called the rank R of the normal quaternionic manifold. 

Alekseevskii classified in [18] normal quaternionic manifolds. He found that the 

rank of these spaces does not exceed four and all spaces of rank sm aller than 

four are symmetric. He also found that there exists two series of non symmetric 

quaternionic spaces of rank four which were denoted l;V(p, q) and V(p, q) with p, q 

integers. Among these, there exists symmetric exceptions: W(p, q) with p = 0 

and V(p, q) when p = 1. See the table on the next page for Alekseevskii's classi­

fication of normal non-compact symmetric quaternionic spaces. 
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Notation Quotient-space 1 Rank Quaternionic 

representation (R) dimension 

cm 
l 5p{1, m)/ 5p(1) ® 5p(m) 1 m 

Al 
1 5U(2,1)/U(2) 1 1 

A;'\ (m > 1) 5U(2, m)/ 5(U(2) U(m)) 2 m 

G~ G2 /5U(2) 5U(2) 2 2 

B3 
3 50{ 4,3)/ 50( 4) ® 50(3) 3 3 

~V(O, 0) 50(4,4)/50(4) 50(4) 4 4 

W(O,m 4), (m > 4) 50{4,m)/50(4) 50(m) 4 m 

V(l,l) F4/5U(2) G 5p(3) 4 7 

V(1,2) E6 /5U(2) G 5U(6) 4 10 

V(1,4) E 7/SU(2) 50(12) 4 16 

V(1,8) Es/5U(2) 4 28 
TAB. 1.1. Classification of normal quaternionic spaces. 



Chapter 2 

PHYSICAL DESCRIPTIONS 

One can better understand the relevance of studying real, Kahler and quaternionic 

Kahler manifolds if we analyze these spaces in the framework of supergravity. In 

this section, we will first of all introduce briefiy the concepts of supersymmetry 

and supergravity. We will then explain how our manifolds can be thought of in 

this language. This will allow us to better understand another very important 

classification of these manifolds that was made a few years ago. 

2.1. SUPERSYMMETRY AND SUPERGRAVITY 

Supersymmetry is a continuous symmetry that mixes up fermions (matter) 

with bosons (the carriers of force), either in fiat space (supersymmetry) or in 

curved space-time (supergravity). A model which possesses local (gauged) su­

persymmetry is called supergravity. A supersymmetric theory cornes with an 

algebra which indicates how the various symmetry transformations affects each 

other. The possible systems on which the supersymmetry transformations act are 

multiplets of particles or quantum fields involving bosons and fermions. Super­

symmetry transformations are generated by quantum operators Q which trans­

form different members of a multiplet into each other i.e., change fermionic states 

into bosonic states and vice versa. These operators are in fact spinor operators, 

and in four space-time dimensions have at least four real components. Often 

called supercharges, they are denoted Qai with Cl: = 1, ... ,4 and i = 1, ... , N 

where Cl: is the spinor index and i is an internaI index which indicates how many 
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supersymmetry there is. The simplest supersymmetric theory is called N = 1 su­

persymmetry. It is invariant under the transformations generated by just the four 

independent components of a single spinor operator. In the case of additional su­

persymmetry, there will be several spinor generators with four components each: 

these theories are called N-extended supersymmetries. For a flat-space renormal­

isable field theory, the allowed values of N are 1, 2, and 4. N = 3 has the same 

algebra than N = 4. N can equal 8 for supergravity theories [27, 28, 29]. In 

this note, we will be concerned with N = 2 supersymmetry in four dimensions. 

As it is described in details in Section 2.2 of [24], this theory has severalgeneric 

multiplets. We will be concerned with two of them: the first one being the vector 

multiplet that contains a (massless gauge) vector field AM' two real scalar fields 

(or one complex scalar field) and two fermions aIl in the adjoint representations 

of the gauge groups. The second multiplet will be the hypermultiplet, which has 

four real scalar fields (or two corn plex on es ) and two fermions [30 J. 

2.2. MODULI SPACE, TARGET SPACE, AND SIGMA MODELS 

The set of zero-mode solutions of any quantum field theory fonns a moduli 

space. Moduli are the parameters labeling a space of degenerate and, usually, 

physically inequivalent vacua in quantum field theory. The moduli space is the 

space of geometries or vacua, whose coordinat es are the moduli [48]. Thus, a 

moduli space can also be thought of as the space spanned by the scalar fields of a 

multiplet. A sigma model is a model whose Lagrangian is given by 0MxiO//xj hM// 9ij 

where Xi, x j are the coordinates of the target space (the space-time), 9ij is the 

metric on the target space, and hM// is the metric of the sigma model. The sigma 

model metric is the metric appearing in the string world-sheet action. Aiso known 

as the string metric, this differs from the Einstein metric be a dilaton-dependent 

Weyl transformation [48]. A target space is the space-time as se en from the 

sigma model point of view: it is the moduli space of the sigma model. The target 

space is the space in which a function takes its values. This is usually applied to 

the nonlinear sigma model on the string world-sheet, where the target space is 



17 

itself the spacetime. Recall that the world-sheet is the two-dimensional surface 

in spacetime swept out by the motion of a string [48J. 

2.2.1. Manifolds' description in supergravity theories. 

We can now better appreciate the l'ole of real, Kiihler and quaternionic Kiihler 

manifolds in physics. In N = 2 supersymmetry, a real manifold is a moduli space 

parametrised by the scalar fields in the vector multiplets for five dimensional su­

pergravity. Dimensionally reducing this to four dimensions yields a Kiihler moduli 

space for the vector multiplets and further dimension al reduction to three dimen­

sions yields a quaternionic Kiihler manifold which is a moduli space spanned by 

the scalar fields of the hypermultiplets. This last fact is used in Section 2.2 of 

[24] to show in detail how a quaternionic model appears in string theory 

by compactifying Type II strings on a Calabi-Yau three-fold. 

The physics literature denotes the spaces mentioned above as special manifolds 

[25]. Special Kiihler manifolds are those in the of an T'-map whereas special 

quaternionic manifolds are in the image of a c-map. As we will see in the next 

subsection, these spaces are generated by certain functions. Although we will 

now drop the term special, these are the manifolds we will be concerned with for 

the l'est of this note. 

2.3. PREVIOUS CLASSIFICATIONS 

In this section, we introduce in details the notion of. generating functions. 

This is done for two reasons. First of aU, generating functions combined with 

supergravity are the pillars on which De vVit and Van Proeyen's classification 

relies. Secondly, we studied the generating functions in some details in [24] and 

will come back to them in later chapters. 

2.3.1. Generating functions 

The structure of Kiihler manifolds is encoded in a holomorphie and 

h01110geneous function F(X I ) of degree two [191. Unde!' (an inverse) T'-map, these 

functions correspond to cubic polynomials C( h) which characterize real spaces. 
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These cubic functions were classified by De Wit and Van Proeyen in [25] where 

they were parametrized by: 

(2.3.1) 

where dABC is a syrpmetric tensor and hK , K = A, E, C represent scalar fields 

with certain restrictions. It was shown in [21] that the F functions could be 

written in the form 

(2.3.2) 

where Xl, l =1, ... , n + 1 are complex scalar fields corresponding to certain 

N = 2 vector multiplets. As discussed in [22], these F functions give us important 

physical informations such as the Kahler potential K(X, X) and metric ds 2 of a 

Kahler manifold: 

- . -1 1- 2 l -J . -
K(X, X) = z(X FI - X FI), ds = NIJdX dX , NIJ = z(FIJ - FIJ ) (2.3.3) 

where FI = 8F/8XI. These F functions are referred to as prepotential functions 

in the physics literature and determine the Kahler spaces associated to certain 

quaternionic spaces. By using the c-map, one can find out the metric of the 

associated quaternionic space. 

2.3.2. Cecotti's classification 

Cecotti classified in [20] normal homogeneous Kahler spaces. The classifica­

tion of symmetric Kahler manifolds was already solved sorne time ago by Cremmer 

and Van Proeyen [26]. Cecotti's main result was that there exists two infinite 

families of homogeneous non-symmetric Kahler manifolds allowed in N = 2 su­

pergravity: K(p, q), and H(p, q) with sorne symmetric exceptions. These spaces 

have rank 3 and are in one-to-one correspondence with the homogeneous quater­

nionic spaces found by Alekseevskii [18]. See the table at the end of this section 

for a complete list of the symmetric cases. 

2.3.3. De Wit and Van Proeyen's classification 

Alekseevskii and Cecotti's classifications of homogeneous spaces was com­

pleted a few years ago by De Wit and Van Proeyen in [25] where they used 
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N = 2 supergravity arguments. They derived a classification of aIl homogeneous 

quaternionic spaces that were in the image of cor map. Their analysis was per­

formed completely at the level of special real spaces and amounted to classifying 

aIl the cubic polynomials C(h) generating these spaces. As a result, they found, 

in addition to the previously classified spaces, a new class of rank-3 spaces of 

quaternionic dimension larger than 3 and specified in more details sorne of Alek­

seevskii's rank-4 spaces. The table at the end of the section shows the complete 

classification as it is accepted today. Note that the star symbol corresponds to 

spaces first discussed by De Wit and Van Proeyen1 and that SC stands for pure 

N = 2 supergravity theory in five, four and three dimensions for real, Kahler 

and quaternionic spaces respectively. This table, which is a summary of the re­

sults presented in [25, 17], describes aU the homogeneous real, quaternionic and 

Kahler spaces known before our classification. 

l We do not know yet if these spaces are described by a quotient space structure. 
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C(h) real Kahler quaternionic 1 R 1 

sc 
U Sp(2n+2,2) 

U Sp(2n+2)0SU(2) 

SC U(1,2) 
U(1)0U(2) 

U(n,l) U(n+l,2) 
U(n)0U(1) U(n+l)0U(2) 

SC SU(l,l) G 2(+2) 

----uw SU(2)0SU(2) 

L(-I,O) 80(1,1) [ SU(l,l) ] 3 SO(3,4) 
U(l) (SU(2))3 

L( -1, P) SO(P+l,l) 

* * SO(P+1) 

L(O,O) [80(1,1)]2 [ SU(l,l) ] 3 SO(4,4) 
U(l) SO(4)0S0(4) 

L(O, P) SO(P+1,1) 080(1 1) SU(l,l) SO(P+2,2) SO(P+4,4) 
SO(P+l) , ----uw 0 SO(P+2)0S0(2) SO(P+4)0S0(4) 

L(O, P, p) Y(P,p) K(P, p) W(P,p) 

L(q, P) X(P, q) H(P, q) V(P, q) 

L(4m, P, p) * * * 
L(I,I) SI(3,lR) Sp(6) F1 

SO(3) U(3) USp(6)0SU(2) 

L(2,1) SI(3,1C) SU(3,3) E6 
SU(3) SU(3)0SU(3)0U(1) SU(6)0SU(2) 

L( 4,1) SU·(6) SO· (12) E7 
Sp(3) SU(6)0U(1) SO(12)0SU(2) 

L(8,1) §.fl. E7 Es 
F4 E60U(1) E70SU(2) 

.. 
TAB. 2.1. Homogeneous specIal real, Kahler, and quatermomc 

spaces. Rank (R) of quaternionic spaces indicated. The rank of 

the corresponding real and Kahler spaces is found by decreasing R 

by 2 or 1 respectively. Integers P, P, q and m can take values 2: 1. 

0 

1 

1 

2 

2 

3 

3 

4 

4 

4 

4 

4 

4 

4 

4 

4 



Chapter 3 

OUR CLASSIFICATION 

We are now ready to discuss the classification method presented in our paper. In 

[24], we tried to understand the classification of non-compact symmetric quater­

nionic Kahler manifolds using a different technique than what has been done 

previously. More precisely, our classification does not rely on isometry groups 

nor on supergravity. Instead, we describe the whole system via SU(2) gauge the­

ories with global symmetries ç; and exploit the resemblance of this theory with a 

sect or of N = 2 Seiberg-Witten theOl'y to classify all quaternionic manifolds. We 

st art this section by introducing sorne preliminary concepts. We then walk the 

reacler through the different steps of our paper, leaving aside the heavy details 

and focusing on the premises. 

3.1. PRELIMINARY NOTIONS 

3.1.1. Gauge theory 

A lagrangian invariant under a continuous symmetry of a certain group G 

is said to be globally gauge-invariant if the transformation does not depend on 

space-time coordinates. More precisely, a transformation cPi(X) -t UijcPj(x) which 

acts on scalar fields and which leaves a particular lagrangian invariant is called 

a global symmetry transformation. The symmetry group Uij E G is independent 

of the space-time label x and is called a gauge group. A lagrangian invariant 

uncler a transformation cPi(X) -t Uij(x)cPj(x) where the gauge group depends on 
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space-time coordinat es is said to be locally gauge-invariant [27]. 

In the rest of this note, we will be concerned with an SU(2) gauge theory with 

global symmetry Q where Q = {Sp(n+ 1), G2 , F4' E6, E7, Es}. In other words, we 

will have a lagrangian locally symmetric un der SU(2) and globally symmetric1 

under the group Q. 

3.1.2. Seiberg-Witten theory 

In 1994, Seiberg and Witten studied the vacuum structure of N = 2 super­

symmetric gauge theory in four dimensions with gauge group SU(2). The theory 

is remarkably rich and has physical properties which can be described precisely; 

exact formulas can be obtained, for instance, for the metric on the moduli space 

of the vacua. This theory allows one to ob tain information about the strong 

coupling behavior of N = 2 theories in the case of SU(2) gauge theory without 

matter multiplets [30] and with matter multiplets [38], Global properties of these 

theories are contained in what are known as Seiberg-Witten curves [39, 40]. The 

model we study in [24] is a sector of this larger framework. 

A table of precise connections between elements of the full Seiberg-Witten 

theor'y and our theory is provided in Section 3.1 of [24], Our theory being a 

small sub-sector of the full theor'y, the complicacies of the original Seiberg-Witten 

theory do not affect our analysis. We will come back to this in later subsections. 

3.1.3. Instantons 

The term instanton has come to refer to localised finite-action solutions of 

the classical Euclidean field equations of a theory. In particular, they are finite­

action solutions of the Euclidean SU(2) Yang-Mills gauge theory, Instantons 

are by definition gauge field configurations. They are associated to self-dual or 

anti-dual field strength and carry non-vanishing topological quantum number 

[2]. Instantons also play an important role in quantum theOl'y where they lead 

IThere is a subtlety here since there might not be a lagrangian description of our model for 

high global symmetry such as En and F4 . This is discussed in detail in [24]. 
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to vacuum tunneling and related phenomena [37]. In our paper, we will be 

using Euclidean SU(2) Yang-Mills instantons in the framework of gauge theory. 

Although a lagrangian description of our model might not be possible for high 

global symmetries, this does not affect the existence of these instantons since we 

find alternative ways to construct them such as embedding the system in F-theory. 

These details are presented in Section 3.1 of [24]. 

3.2. ANALYSIS OF INSTANTONS 

The key point we will be using to classify non-compact symmetric quaternionic 

Kahler manifolds is the following: we look for SU(2) gauge theories with global 

symmetry 9 and find what are called semilocal constrained instantons configu­

rations. We know that the low momentum dynamics of these theories are sigma 

models with quaternionic target spaces. 

Thus, our goal is to study instantons in (0.0.1). The analysis of instanton in 

this theory can be done two ways, both of which will be discussed here and lead 

to the same results. First, observe that a theory like (0.0.1) will not allow any 

non-trivial instantons if 

(3.2.1) 

where 7r3 is the third homotopy, 9 is the global symmetry of our theory, and H 

is an ungauged subgroup of g. We call the coset space (~) the vacuum manifold 

Ml. A certain type of instantons called constrained instantons will be possible 

when a subgroup of gis gauged. We will describe this in detail in the next section. 

The second way one can analyze instantons in (0.0.1) is through Seiberg­

Witten theory. Indeed, when one adds a few terms to (0.0.1) and rewrites the 

equation in complex coordinates (see Section 3 of [24]), the theory describes 

a sector called the Higgs branch of the full Seiberg-Witten theory. The vac­

uum manifold Ml becomes the moduli space of one-instanton. These instantons 

are described by embedding the SU(2) group inside the global symmetry group. 

The different SU(2) orientations de scribe the moduli space of the theory. These 
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SU(2) orientations form an S3. In this language, the instanton moduli space will 

be fibered over a quaternionic Kahler space. Thus, from a mathematical point 

of view, we have an SU(2) instanton fibered over a base space (~). The target 

space is (~) x SU(2). 

Now that we have laid down the elementary criteria to construct quaternionic 

manifolds with global symmetry ç from instantons configurations, there are sorne 

important points to analyze. 

First, we have to verify if it is possible to construct a Seiberg-Witten-like 

theory with this global symmetry ç. This will be confirmed by the existence of 

the corresponding Sei berg-Witten curve for the system. A generic curve has the 

form: y2 - x3 - a2 x2k(z) + alxyl(z) + a3yh(z) - a4xf(z) - a6g(z) = 0 where ai 

are constants and k(z), l(z), h(z), f(z) and g(z) are polynomials in z. The right 

choice of k, l, h, f and 9 can generate a curve that refiects the global symmetry 

(see Section 3.1 of [24]). 

The next step would be to check the existence of instantons in this full Seiberg­

Witten theory with global symmetry ç. Note that to get a Seiberg-Witten curve 

for our model, we had to sum over aIl the instantons contributions. Thus the 

existence of instantons is verified by construction. In the next section, we will 

construct explicitly these instantons as weIl as the quaternionic spaces on which 

they are fibered. 

3.3. CONSTRUCTION OF INSTANTONS AND QUATERNIONIC MANI­

FOLDS 

The construction of instantons for our model is subtle. First because based on 

the global symmetries we are using, ç = {Sp(n + 1), G2 , E6, E7, Es, F4 }, instan­

tons are not allowed i.e., 7r3(Md = 1 for aIl cases2
. The only allowed instanton 

2H = {Sp(n) x SU(2),SU(2) x SU(2),SU(6) x SU(2),SO(12) x SU(2),E7 x SU(2),Sp(3) x 

SU(2)} respectively for non-compact quaternionic manifolds. 
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configuration in our system is the semilocal instanton obtained by gauging an 

SU(2) part of the global symmetry. The second subtlety cornes from the pres­

ence of V(tr(qt . q)) in the action (0.0.1). Namely, the presence of a mass term in 

the potential makes all the instantons squeeze to zero size. Instantons with this 

property are called constrained instantons. They resemble the standard instan­

tons at short distances but decay exponentially in the infrared limit. Thus, our 

semilocal instantons are also constrained instantons. 

To construct constrained instantons, all we require is for the maximal sub­

algebra of the extended Dynkin diagram of 9 to be expressible as a product of 

two subalgebras and demand that one of these subalgebra be sp(l). Constrained 

instantons are exactly of the gauged SU(2) = Sp(l) group. 

We move on by giving an example which illustrates how to construct the 

quaternionic manifold which is associated to these instantons. Take for instance 

the global symmetry group 9 = Sp(n + 1) which is studied in detail in Section 

3.1 of [24]. The decomposition of the maximal subalgebra into a sum of subalge­

bras leads to sp(n) EB sp(l). Knowing this decomposition, the quaternionic space 

associated with the global symmetry group Sp(n + 1) is built in the following 

way: 

Sp(n + 1) = lHIIPn 

Sp(n) x Sp(l) . 
(3.3.1) 

Therefore, the constrained SU(2) instantons are non trivially fibered over the 

quaternionic base lHIIPn
. To conclude the argument, we show in [24] that the 

vacuum manifold associated to a global symmetry Sp( n + 1) is 

Ml = Q = Sp(n+ 1) ;::::j s4n+3 

1{ Sp(n) 
(3.3.2) 

Now recall that any 4n + 3 sphere is equivalent to a S3 fibration over a quater­

nionic base lHIIPn which confirms the validity of our construction. 

A few remarks: in order for the reader to see clearly that our classification 

of quaternionic manifolds is consistent with that of Alekseevskii and De Wit-Van 
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Proeyen, we will work with the non-compact version of these manifolds. Thus, 

the compact version of the quaternionic projective space we found earlier i.e. 

Sp(n+I) b Sp(n,l) Q .. 'f Id .. l . . 
Sp(n)xSp(l) ecomes Sp(n)xSp(l)' uatermOlllC malll 0 sare wntten III t Ils way III 

previous classifications. As we just saw, our method allows us to construct spaces 

such as lHl]p>n even though these quaternionic manifolds are not in the image of a 

c-map. In Section 4 of [24], we show in detail that aIl quaternionic symmetric 

spaces can be studied using the technique of constrained semilocal instantons. 

3.4. REALISATION OF THE QUOTIENT SPACE 

From the steps described in the previous section, the structure of quotient 

l Sp(n+ 1) l Id b l NIl . l b f spaces SUCl as Sp(n)xSp(l) S 10U e C ear. ame y, t le maXIma su group 0 

Sp( n + 1) expressed in terms of a product of two subgroups such that one of 

those subgroup is SU(2) gives us Sp( n) x SU(2). What remains to study is the 

precise embedding of the SU(2) group inside 9 = Sp(n + 1). 

Section 3.2 of our paper presents, as an ex ample , the realisation of the quo­

tient space Sp(l)~2SP(1) which has been already given in [41, 42J. For the case 

of 9 = G2 , we use the embedding of the exceptional complex Lie group G2 (C) 

into the complex orthogonal Lie group SO(7, C). This allows us to identify the 

maximal subalgebra 80(4) = 81L(2) EB 81L(2) in G2 . 

3.5. MAGIC SQUARE 

The magic square is a mathematical construction which was first developed 

by Freudenthal, Rosenfeld and Tits in the mid 20th century and was introduced 

in string theory a few years later by Gunaydin, Sierra and Townsend [31, 32J. 

The magic square is used to show the relation between division algebras, Jordan 

algebras, and Lie algebras. It consists of a 4 x 4 square with entries given by 

elements of Lie algebras. The columns of the magic square are defined by the 

Jordan algebras whereas the rows are defined by the division algebras. The 

division algebras are the real (IR), complex (C), quaternion (1HI), and the octonion 



27 

(0). The columns are labeled from left to right by J3(R), J3(C), J3(Q), J3(0) 

where J 3 (OC) is the algebra of 3 x 3 Hermitian matrices over OC. The magic square 

can be represented as follow: 

Al A 2 C3 F4 

A 2 A~ A5 E6 

C3 D6 E7 

P4 E6 E7 E8 

TAB. 3.1. MagIc square 

where A, Ci, Di, ,F4 are the usuaI s'u(i + 1), sp(i), so(2i), E6,7,8 and F4 Lie aI­

gebras respectively. Through out this note, we will be concerned with the version 

of the square associated to the corresponding Lie groups. 

3.5.1. Classification of manifolds from the magic square 

To construct quaternionic, Kahler, and real manifolds from the elements of the 

magic square, we developed a technique called sequential gauging. This method 

consists of gauging various subgroups of a gauge group g as we move along the 

magic square. We argue in Section 4 of [24] that the existence of constrained 

instantons indicates that we have to gauge by an SU(2) subgroup to construct 

quaternionic manifolds whereas Kahler manifolds are buil t by gauging a U (1 ) 

subgroup associated to semilocal strings. As indicated in our paper, reai mani­

folds do not require any gauging. 

The magic square turns out to be a very useful tool to classify these manifolds 

since we can read off from it the global symmetry groups as well as the gauged 

maximal subgroups needed to build the quotient space which defines these man­

ifolds. This construction is analyzed in great details in Section 4 of our paper. 

Applying the method of sequential gauging through the entire magic square we 
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find the following results where columns from right to left represent quaternionic 

Kahler, Kahler, and two real manifolds respectively3. 

SO(3) 

SU*(3) 

TAB.3.2, 

3.5.2. Beyond the magic square 

After having described the complete magic square in terms of constrained 

stantons and other semilocal defects, we use the same procedure to study other 

coset spaces in string theOl'Y. We analyze, in Section 4.5 of our paper, spaces 

generated by U(p) local symmetry with SU(n + p) global symmetry and SU(2) 

local symmetry with SO(p q) global symmetry. With these coset spaces, we 

exhaust Alekseevskii and De Wit-Van Proeyen's classifications. 

In addition of reproducÎng the classification of existing manifolds with our 

new technique, we also describe, in Section 4.5 of our paper, the construction 

of a new sequence of Kahler manifolds not realized directly in the magic square. 

To construct these manifolds, we built coset spaces out of elements of the magic 

square and their unused subgroups. By unused we mean here subgroups that our 

technique of sequential gauging did not already use to construct real, Kahler and 

quaternionic Kahler manifolds. new sequencing of the magic square follows 

rather straightforwardly from our original prescription. Applying this technique 

to the elements of the second column of the magic square we found the following 

new set of Kahler manifolds: 

This construction has recently appeared also in [35J, 

3Notation: the number in the bracket of the global symmetry group Le. E6( +2) denotes the 

difference between the number of compact and non-compact generators whereas the * symbol 

represents complex matrices with some constraints (see [23]). 
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3.6. G ENERATING FUNCTIONS REVIsrrED 

In previous sections, we discussed the issue of F-functions that could be used 

to determine the metric on the quaternionic Kahler manifolds. In this section, we 

complete the analysis by postulating the procedure to determine the F-functions 

for the cases. Manifolds with global symmetry ç; = {F4' E6, E7, Es} are 

referred to as the magic cases because they appear in the magic square. 

Cecotti constructed in 120] each F-functions corresponding to the normal 

quaternionic spaces that appeared in Alekseevskii's classification. However, his 

construction of those functions was not explicitly given for the magic cases and 

was written in a parametrization that did not allow the use of (2.3.3). In [23], 

the authors wrote down the F-functions corresponding to the magic cases but 

again in a parametrization that made the computation of the metric in the for­

mat proposed in (2.3.3) not possible. This is why we decided in [24J to start 

from the beginning and write down these F-functions explicitly in the canonical 

parametrization for the magic cases. This form allows one to compute classical 

moduli space metrics and Kahler potentials. Note that a general form of the 

F-functions which resembles ours was given in [17] but where the authors used 

an arbitrary linear redefinition of the complex variables instead of the canonical 

parametrization. 

We start this construction with the cubic functions C(h) dABChAhBhc asso-

ciated to real manifolds. These were classified in [25J. Imposing certain conditions 

[21, 25J on the generic form of C(h), we find a construction for the holomorphie 

function F(XI ) for the magic cases. These functions can be expressed in terrns 

of complex variables X [ and gamma matrices which generates certain Clifford 

algebras. A classification of Clifford algebras in ter ms of gamma matrices already 

exits [36]. To classify the several F-functions, we needed to find the right gamma 
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matrices with the knowledge of the Clifford algebras present. 

In Section 4.6 of our paper, we der ive aU the F-functions associated to the 

magic Kahler manifolds which aUows us to determine the Kahler metric of those 

spaces. One can then derive the associated quaternionic metric. 
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o Introduction 

A Riemannian manifold (M, g) is a smooth manifold M endowed with a metric g defined in 
T* M. The holonomy of such a connected oriented Riemannian manifold belongs to the foIlow­
ing list: 

• SO(n): generic case. 
• SVen), Ven) c SO(2n): Calabi-Yau and Kahler cases. 
• Sp(n), Sp(n) x Sp(1) C SO(4n): Hyper-Kahler and quaternionic Kahler cases. 
• G2 C SO(7), Spin(7) C SO(8). 

The above is the so-called Berger's classification theorem [1]. We will be mainly concerned 
with the fol1owing two holonomies: Sp(n) and Sp(n) x Sp(l). Both the se groups act on H n = 
R4n where H/1 is the right vector space over the quaternions H. The Sp(l) == SV(2) factor in 
Sp(n) x Sp(l) is the group of unit quaternions acting from the right. 

The quatemionic Kahler manifolds are always Einstein 1 for n ~ 2 and are self-dual Einstein 
for n = 1. They are considered positive if their metrics are complete and have positive scalar 
curvatures. When the scalar curvatures are zero, then the holonomies of these manifolds reduce 
to Sp(n) and are called the hyper-Kahler manifolds. Thus clearly quaternionic Kahler manifolds 
are not Ricci fiat. 

Examples of quaternionic Kahler manifolds with positive scalar curvatures are given by com­
pact symmetric spaces classified by Wolf [2] and Alekseevskii [3] and are known as the Wolf 
spaces. They are classified by taking centerless Lie group G which form the isometry group of 
quatemionic Kahler spaces .given as conjugacy classes of Sp(l) in G determined by the highest 
root of G. These spaces are: 

HP1 = Sp(n + 1) Gr2(Cn+2) = SVen + 2) 
Sp(n) x Sp(l) S(V(n) x V(2))' 

Gr (R/1+4) _ SO(n + 4) 
4 - SO(n) x SO(4)' 

SU(6) x Sp(l)' 

F4 
Sp(3) x Sp(l) , 

Spin(l2) x Sp(l)' 

G2 

SO(4) 

Es 

E7 X Sp(l) , 

( 1.1) 

Observe that ail these spaces are modded by a Sp(l) group as expected. This will be usefullater 
when we will map our configurations to semi-local defects. 

The above ex amples are ail compact. The non-compact duals are symmetric examples of 
quaternionic Kahler manifolds with negative scalar curvatures. The non-symmetric, non-compact 
examples with negative scalar curvatures are also known. However no concrete examples of non­

. compact non-symmetric positive curvature manifolds are presently known. 
In Section 2 we will give sorne examples of symmetric quaternionic Kahler manifolds that 

appear in string theory. We will study few representative cases-in Sections 2.1 and 2.2-and 
discuss possible quantum corrections to these spaces. Although most of this is weIl known, we 
will present it in a way so as to connect to latter parts of the paper. Important concepts like c, s 

1 By this we mean that the Ricci tensor is proportionaI to the metric. 
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and r-maps will be introducedin Section 2.2. The connection between c and r-maps, as we will 
discuss soon, is the following: 

Real manifold ~ Kahler manifold ~ Quaternionic Kahler manifold, 

which in the language of supergravity means the following: the moduli space of the scalar fields 
in the vector multiplets for a five-dimensional supergravity is a real manifold. Dimensionally 
reducing this to four dimension yields a Kahler moduli space for the vector multiplets and further 
dimensional reduction to three dimensions yields a quatemionic Kahler manifold for the hyper­
multiplets. This way of viewing the connection was described by various authors, for example 
[4-6], which also led to the connection to the magic square of Freudenthal, Rosenfeld and Tits 
[7] that we describe at the beginning of Section 4. 

Our method of studying the magic square and classifying the quatemionic manifolds is dif­
ferent from what has been attempted so far. We will not analyse using supergravities at ail, 
instead we will describe the whol'e system via SU(2) gauge theories with global symmetries Ç} 
that resemble sectors of N = 2 Seiberg-Witten theories [8] in certain parametrisations, but are 
not asymptotically free. Most of the se theories that we analyse are at strong couplings, and in 
certain cases simple Yang-Mills description may not suffice. Nevertheless we will show that 
one-instanton moduli spaces could be studied in all these cases, and the corresponding Sei berg­
Witten curves could be usedto classify the quatemionic spaces. The instantons that we study are 
not only constrained instantons [9], but are also semilocal [10].2 The Kahler3 and the real spaces 
could then be classified by other semilocal defects in the theory for certain choices of global sym­
metries that we analyse using the so-called sequential gauging. These aspects will be described 
in Sections 3 and 4. In Sections 4.1 to 4.4, we will give strong evidence that all the elements of the 
magic square [7] can be reproduced starting from certain sectors of N = 2 SU(2) gauge theories 
with E6, E7, Es and F4 global symmetries. The case with G2 global symmetry is interesting, and 
we study this in Section 3.2 by detailing an explicit construction of the associated quatemionic 
space. Norrnally one would not attach G2 to the magic square, but we show that there is a way 
to incorporate the G2 group sequence in the magic square too by adding one extra column. 

In Section 4.5 we study another example that has not been discussed in the physics literature 
in details. This new sequencing of the magic square follows rather straightforwardly from our 
arguments of sequential gauging and could also be added to the magic square by a different 
choice of the underlying Jordan algebras [12]. 

In Section 4.5.2 we discuss the sigma model descriptions of the se quatemionic spaces by 
analysing the F -functions [5] for ail the relevant cases. These F -functions are the prepotential 
that deterrnine the Kahler spaces associated to the quaternionic spaces. We then use the c-map to 
de termine metrics of aH the quatemionic spaces. Finally, in Section 5 we conclude with a brief 
discussion and point out sorne future directions. 

We now begin with the very basics of quatemionic spaces: their role in string theory and gauge 
theories. 

2. Quaternionic manifolds and string theory 

Our first question would be to ask where does the quatemionic manifolds fit in the whole 
paradigm of string compactifications. One of the place where these manifolds appear is weil 

2 In mathematical terminology therefore these instantons are constrained instanton bundles. 
3 These Kahler spaces have been originally classified in [11]. 
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known: the moduli space of sigma models for N = 2 supergravity in four space-time dimensions. 
Imposing only global N = 2 supersymmetry in four dimensions would lead to sigma models with 
hyper-Kahler target spaces [l3]. The N = 2 multiplets on the other hand can be written in terms 
of JV = 1 multiplets. This should tell us the moduli space structure for the corresponding N = 1 
case also. In fact one can now make the following classifications for JV = 1 supersymmetry in 
four dimensions: 

• With global supersymmetry the target manifold of a non-linear sigma model can be any 
Kahler manifolq [14]. 

• With local supersymmetry the target manifold of a non-linear sigma model (which is coupled 
to supergravity) can only be a restricted Kahler type, also known as a Hodge manifold [15]. 

The second point is easy to show [15]. We can define a Kahler potential K in terms of the 
chiral superfield cpi and cP;. The terms appearing in the N = 1 Lagrangian can be expanded 

K 
from -3e-3'. The first two relevant terms are 

(2.1) 

where gi] (not to be confused with g) is the metric on the moduli space parametrised by the 

1Ji -the scalar component in the chiral multiplet cpi. 
The Lagrangian (2.1) possesses Kahler invariance under a Kahler transformation. On a local 

patch it is easy to demonstrate. However to demonstrate this globallY one has to show how 
this transformation can be defined from one patch to another. This gives rise to the consistency 
condition on triple junctions. From here one can argue the condition required on the elements 
of the second cohomology group of the target manifold H 2 : they have to be even integers [15]. 
Quantization of Newton's constant also follows directly from here [15]. 

On the other hand, the classification for N = 2 supersymmetry is more interesting. We dis­
cussed this briefly at the beginning of this section. We will now e1aborate this in sorne details. As 
before, global and local supersymmetry will have distinct properties: 

• With global supersymmetry the' target manifold of a non-linear sigma mode! can be any 
hyper-Kahler manifold [13]. These are 4n-dimensional real Riemannian manifolds with 
holonomy group Iying in Sp(n). 

• With local supersymmetry the target manifolds of a non-linear sigma model coupled to su­
pergravity can only be quatemionic Kahler manifolds [16]. These manifolds are oriented 412 
real dimensional manifolds with holonomy groups lying in Sp(n) x Sp(l). These manifolds 
have negative curvatures given by [16]: 

R = -64JTn(n + 2)G N, (2.2) 

where G N is the Newton's constant and n is an integer. This means that the Newton's con­
stant is fixed for a given manifold and not quantised like the earlier N = 1 cases. It also 
means that the global susy couplings are no longer compatible for the local susy case. Only 
in the limit G N -+ 0 the local and global cases could be identified. 
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ÔAn example in detail 

Let us consider one concrete example where quaternionic target space can be illustrated. As 
mentioned above, a sigma mode1 with quaternionic target space has to be coupled to supergravity 
to make sense. Global supersymmetry cannot yield a quaternionic target space. Therefore our 
four-dimensional Lagrangian can be taken as: 

(2.3) 

which is a Fubini-Study me tric on the target space. In fact the way we wrote the Lagrangian only 
implies a CpN target because the coordinates go from a = 1 to a = N + 1. This is a Kahler 
metric, but still not quaternionic because the Kahler potential K is 

(2.4) 

where za are summed from a = 1 to a N because we are in a patch with ZN+1 = 1. To convert 
(2.3) to quaternionic case, we will first replace ail Zll B qU, where qa is a 2 x 2 matrix given as: 

(2.5) 

where a = 1, ... , N. This would then convert (2.3) to the following quaternionic analogue: 

where we have defined tr(q t. q) as La tr(qatqa) and similarly the other terms. Such a redefini­
tion to convert (2.3) to (2.6) changes CpN to HpN where 

HpN = Sp(N + 1) 
Sp( N) x Sp(l) 

(2.7) 

The quatemionic analogue of CpN Le., HpN in fact shares the sume properties as CpN: the qa 
vectors are defined upto a scaling by a quaternion (recall Zll are only defined upto a complex 
scaling). It is also important to note that any 4N + 3 sphere is equivalent to a S3 fibration over a 
quaternionic base HpN. This will he useful soon. 
< 

@? Structure of the multiplets 

The quatemionic sigma model that we discussed above can be shown to appear in string theory 
by compactifying type II strings on a Calabi-Yau tbree-fold. This leads to N = 2 supersymmetry 
in four-dimensional space-time with the following generic multiplets: 

• Vector multiplet: (A tI , 2ep, 21/1). 
• Hypermultiplet: (4ep, 21/1). 
• Tensor multiplet: (B,~v, 3ep, 21/1). 
• Double tensor multiplet: (2B p.v, 2ep, 21/1). 
• Vector tensor multiplet: (B'lI;' A tl , ep, 21/1). 
• Gravit y multiplet: (gil. V , A,)., 21/1/-1.)' 
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Where cp appearing in all these multiplets are real scalars, Vr are Weyl fermions in four dimen­
sions and Vr'l are four-dimensional gravitinis. Observe that both the double tensor multiplet as 
well as the tensor multiplet are dual to the hypermultiplet. Similarly the vector tensor multiplet is 
dual to the vector multiplet. Thus the non-trivial four-dimensional JV = 2 multiplets are the ~ec­
tor, hyper and the gravit y multiplets. Compactifying type lIB theory on a Calabi-Yau three-fold 
gives ri se to the following multiplets: 

(2.8) 

where we have ignored the fermionic degrees of freedom. From ten-dimensional type lIB point of 
view, the metric fluctuations give rise to (2h2l + h 11) scalars in four dimensions, the NS and RR 
antisymmetric tensors both contribute h Il scalars in four dimensions along with the axio-dilaton 
contributing two more scalars. Thus the scalars in the vector multiplets all come from the metric 
fluctuations whereas the scalars in the tensor multiplets come partly from the metric fluctuations 
and partly from the zero mode fluctuations of the NS and RR two form tensors. Finally the axio­
dilaton go to the double tensor multiplet. On the other hand, the vectors in the gravit y as well as 
vector multiplets all come from the zero mode fluctuations of the four-form field. The four-form 
fluctuations also contribute h Il antisymmetric tensors that go to the tensor multiplets whereas 
the NS and RR two forms both go to the double tensor multiplet. It is also easy to see that once 
we dualise the tensor and the double tensor multiplets, we will have one gravit y multiplet, h 12 

number of vector multiplets and (1 + h Il) number of hypermultiplets. On the other hand, type lIA 
theory when compactified on the same Calabi-Yau will give us the following four-dimensional 
multiplets: 

(2.9) 

where again we have ignored tht; fermions. To keep track of the scalars: the hyperrnultiplet scalars 
come from both the metric fluctuations and a zero mode fluctuations of the three-forrn field. The 
vector multiplet scalars come partially from the zero mode fluctuations of the BNS field and 
partially from the fluctuations of the metric. The dilaton however goes to the tensor multiplet this 
time. On the other hand, the vectors in the vector multiplets do not come from the lIA vectors 
but from the zero mode fluctuations of the three form field. In fact the type lIA vector go to 
the gravit y multiplet. The antisymmetric tensor in the tensor multiplet is the type lIA BNS field. 
Observe also that in the dual picture (i.e., dualising the antisymmetric B/1v field) we have one 
gravit y multiplet, h Il number of vector multiplets and (1 + h2l) number of hypermultiplets. This 
would be exactly the same as the type lIB multiplets if 

h l1 (IIA)=h2l(IIB), and h2l(IIA)=h ll (IIB), (2.10) 

which is of course the statement of mirror symmetry at perturbative tree level. 
At this pointwe should also note that the structures of quatemionic manifolds in string theory 

are restricted in string compactification. This is easy to see from the fact that sorne of the scalars 
in the hypermultiplets come from the zero mode fluctations of the metric. The moduli space of 
these scalars are I5ahler manifolds and therefore the full quatemionic structure of the hypermul­
tiplet moduli space [6, 16]-that come from adding RR scalars to the metric ftuctuations-should 
have a submanifold that is a Kahler manifold. This mapping of a Kahler submanifold to the full 
quatemionic manifold is called as a c-map4 [5]. Thus, for example, in type lIB on a Calabi-Yau 

4 Or sometime as the s-map [5]. 

7 
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manifold the quatemionic space is of real dimension 4( 1 + h 11) with a subspace given by 

SU(l,I) 
---XMk 

U(l) , 

37 

(2.11 ) 

where the first part is parametrised by four-dimensional axion-dilaton i.e., the double tensor mul­
tiplet, and the second part is the Kahler submanifold. On the other hand, in type lIA theory the 
first part of (2.11) cornes from the four-dimensional tensor multiplet. Thus clearly the hypermul­
tiplet target space cannot be a generic quatemionic manifold because of the c-map constraint [5]. 
Furthermore since the dilaton resides in the hypermultiplets, the tree level picture is not correct. 
Details of these have been worked out various authors (see for ex ample [17-19] and references 
therein). In particular, the perturbative corrections are now fully understood, and not just for the 
universal hypermultiplet-as shown by [18] there are no quantum corrections beyond 1-loop due 
to a nonrenormalization theorem. Moreover, the complete worldsheet, Dl and D( -1) instanton 
corrections in lIB as well as half of the D2 instanton effects in lIA have been determined by [18] 
together with [19]. The resulting modified moduli spaces are quatemionic in agreement with 
unbroken N = 2 supersymmetry.5 

2.3. Few more examples 

The restriction that we mentioned regarding construction of quatemionic manifolds may pose 
a difficulty in having explicit examples. However string theory gives us a very simple way to 
construct quatemionic manifolds that are consistent with the c-map: 

• Construct a vector multiplet Lagrangian in four dimensions. The multiplet is (A/~' 2q;, 21/f) 
with the real-scalars forming a Kahler target space. Such a Lagrangian cou pied to gravit y is 
wel1 known [16]. 

• Dimensionally reduce this Lagrangian to three space-time dimensions. The vector multiplet 
will give us (AIL' 3q;, 21/f) in three dimensions. 

• Dualise the vector to another scalar cp via dcp = *dA to convert the vector multiplet to a 
hypermultiplet (4q;, 21/f). The metric on the moduli space of these scalars is exactly quater­
nionic [6]. 

• The quatemionic metric is also consistent with the c-map because we derived this from the 
vector multiplet with a Kahler target. Thus the quatemionic manifold will have a submani­
fold that is Kahler, as one would have expected [6]. 

In fact the above set of steps can be put into a more concrete setting. Consider a simple N = 2 
Lagrangian with complex scalars cou pied to one forms and gravity. A typical set up is 

S4 = f d4x Jg[ R + GorALq;O all;jyh + ci} Fi ;\ *F i] + di} Fi ;\ Fi, (2.12) 

where GaJJ is the metric on the moduli space-which will be a Kahler metric as we discussed 
ab ove-and cij and di} are sorne coefficients which are functions of the moduli q;o. The subscript 
i, j signify the number of vector multiplets that we couple to gravity. 

In this form the Lagrangian (2.12) is almost like a D3-brane action coupled to gravity. How­
ever the resulting configuration should not be viewed as a D3 located at a point on a Calabi-Yau 

5 We thank Ulrich Theis for pointlng this out to us. 
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because the supersymmetry will not be JV = 2 and the dimension of the Kahler moduli space 
will be fixed. Furthermore the instanton coefficient dij is not quite related to the ten-dimensional 
axion. We will however relate a slight variant of this configuration to a D3-brane metric soon. 

After a dimensional reduction and subsequent duality, we will get a three-dimensional action 
for the hypermultiplets. This is given by: 

53 = f d3 x y'g"[ R + GahoJL<P ll Oll<ph + 9cd 'Dll <p
C'D11 cpdJ, (2.13) 

where (<p, <p, <p, cp) form the coordinates of a quaternionic space with a metric gcJ spanning the 
submanifold specified by the coordinate <pc. The covariant derivatives 'D JL <pc are with respect to 
sorne connection. This structure of the moduli space can be easily connected to the ones studied 
by [17,20]. 

We can try to make this a bit more precise using the previous form of our action (2.6). Let us 
consider the following choice of the quaternion: 

q=(~ ~), (2.14) 

where both Band C are complex numbers (not necessarily independent). The scalar target space 
parametrised by the quaternion then will have the following structure: 

L = I011C1
2 + IOJLBI2 

ICl2 + IBI2 
ICoJLC* + BoJL B*1 2 

(ICl2 + IB12)2 
(2.15) 

where we have suppressed the gravit y part. Consider now the scenario where Band C appearing 
above are complex numbers, but are not independent. They are related by 

B=-C* (2.16) 

as is clear from the quaternionic structure of the q coordinate. Such a choice of B, C would imply 
that the Lagrangian (2.15) can be recast as 

IOJL5 - 2CoJL C*12 

(5 + 5*)2 

where, in our notation, 5 is not quite an independent variable as it stands. It is given by 

(2.17) 

(2.18) 

The reason for writing (2: 17) in the present forrri is to allude to the subsequent structure that we 
will be inferring from string theory. 

The string theory examples that have been studied earlier are ail non-compact symmetric 
spaces with negative curvatures. In fact string the ory tells us precisely how 5 defined above 
(2.18) should be modified sa as not ta change the underlying quaternionic structure. The resulting 
metric will be consistent with the target space metric of a tensor multiplet (BJLv , 3<p. 21/1) when 
dualised to a hypermultiplet in four dimensions. Although this is no way the most generic method 
to derive the metric, it does help us to see the subsequent structure. In type lIA this is therefare 
a compactification on a Calabi-Yau three-fold that has no complex structure deformations (more 
on this later). Furthermore since dilaton sits precisely in such a multiplet, quantum corrections 
are expected to affect the target space metric. 'After the dust seules, the final answer is a slight 
modification of our simple ca1culation above. The quantity 5 changes from (2.18) to 

(2.19) 
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where cp is the dilaton sitting in the tensor multiplet, cp is the corresponding axion (dualised from 
the BI1V field in four dimensions) and C, C* are the other two scalars in the tensor multiplet. 
These are the two scalars that come from type lIA three form in ten dimensions. Similarly the 
Kahler potential is changed to 

K = -ln(S + S* - 21C1 2 + quantum corrections), (2.20) 

which implies that the resulting manifold is also Kahler (see [17] for sorne details). Without 
quantum corrections the tree level moduli space for the universal hypermultiplet is given by 

A1 _SUO.2} (2.21) 
H - U(2) , \ 

which is the non-compact analogue of Gr2(C3) because of the negative curvature. Under tree 
level quantum corrections the Kahler structure of the moduli space is broken [21]. Further cor­
rections to the moduli space come from the two- and five-brane instantons. These and others have 
been addressed in [18,19,22] as we discussed briefty before, although a full treatment is far from 
complete. 

Let us consider another example. This time we compactify type lIA theory on a Calabi-Yau 
threefold with no complex structure deformations (i.e., h2l = 0). Thus in four dimension we will 
have the following multiplet structure: 

(2.22) 

which is a slight modification of (2.9). As we can see, the universal hypermultiplet is always 
there. The moduli space therefore is from the vector multiplet Kahler space as weil as the uni­
versai hypermultiplet, as is given by 

hll SU(2, 1) 
M = ÇKahler (9 U(2) , (2.23) 

where ç is the Kahler manifold of dimension h Il. Observe also the fact that there are (1 + h Il) 
vectors in this setup (extra one coming from the gravi-photon). 

Compactifying type lIB theory on the same Calabi-Yau gives us (1 + h Il) hypermultiplets 
coupled to gravit y (and graviphoton) and no vector multiplets. The quatemionic manifold that 
we get here can in fact be derived from the moduli space (2.23) via the c-map. This is given by 

ç4(h21 +1) 
quaternion' (2.24) 

from where we can easily see that the quatemionic space s~~~/) forms a sub-manifold of the 

final irreducible quatemionic space ç4(h21 +1). This is the essence of the c-map in the presence 
of the universal hypermultiplet. 

In the following section we will address the question of classifying quatemionic manifolds 
using constrained instantons and Seiberg-Witten curves, and discuss the emergence of the so­
called magic square. 

3. On the classification of quaternionic manifolds: standard cases 

As discussed in earlier sections, the classification of quatemionic manifolds have been started 
in [2,3], and completed finally in [23]. Many of the cases that we studied so far (or have been 
addressed in the literature) can be seen to follow from the above framework. For our case we 
will try to understand the classification of the compact symmetric quatemionic Kahler manifolds 
using a different technique. Sorne aspects of this have been addressed earlier in [24]. 
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(!~j;,"sP(n + 1) quaternionic space 

Our first starting point will be the simplest case of Sp(n + 1) quaternionic space.6 As we 
will discuss below, the quaternionic space associated with Sp(n + 1) group is special in the 
whole classification of quaternionic spaces. The key point that we will follow to classify these 
spaces is this: we look for gauge theories with certain global symmetries ç (here, for this case, 
it is Sp(n + 1)) and find semi-Iocal instanton configurations. The low momentum dynamics of 
these theories (by low momenta we me an momenta lower than the masses of the Higgs and the 
masses ofthe photons) can be shown to be sigma models with quaternionic target spaces. Such an 
approach was first discussed in [25] (see also [26] for sigma models on Kahler target spaces) and 
later elaborated in [24]. Here we will try to complete the analysis by detailing the corresponding 
gauge theory constructions. 

The gauge theory that we are looking for is an Sp(l) == SU(2) gauge theory with a global 
symmetry ç. Clearly this theory resembles closely to a sector of the corresponding Seiberg­
Witten theory with global symmetries [8]. To make this precise, let us write the action for our 
the ory. This is given by the following generic form [25]: 

where q is a generic quaternion as described in the previous section, and the trace is over the 
global symmetry.7 Obviously, as mentioned above, this is notquite a Seiberg-Witten the ory as it 
stands. However once we write the quaternions in terms of complex fields (we show an ex ample 
below), the action will resemble a part of the standard N = 2 action with a potential V (a simple 
case is the one worked out in [27] for an Sp(l)g x Sp(l), case). In this sense, we can use the 
Seiberg-Witten curves to determine the global properties of this mode!. A recent example of 
semilocal defects like strings in Seiberg-Wittt:m theory is [28]. Our goal is to study instantons 
in the model (3.1), Le., a sector of, and not quite the actual, Seiberg-Witten theory. In fact the 
analysis of instantons in this theory can be do ne in two different ways, both leading to the same 
result. The first way is to observe that a theory like (3.1) will not allow any non-trivial instantons 
if 

(3.2) 

where H is the unbroken subgroup. However instantons are possible when a subgroup of ç is 
gauged.8 Let us call the ungauged subgroup of 9 to be gg == H. Then the vacuum manifold MI 
of this theory is rather simple. It is given by: 

MI = ~ = Sp(n + 1) ~ 84n+3, 
gg Sp(n) 

(3.3) 

6 A point about notation: we will be considering Sp(n) groups instead of Sp(2n) groups used sometime in the literature. 
In our notation therefore Sp(n) group is just the quatemionic unitary group U(n, H). Its a real, compact and simply 
connected Lie group of dimension n(2n + 1). In particular Sp(l) = SU(2) and we will not distinguish between them in 
this paper. 

7 Note that q will transform as a fundamental of both the global ç and the local SU(2) groups for ail choices of ç 
considered henceforth unless mentioned otherwise . 
. 8 These are the constraÎned instantons [9] as we will explain below. 
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where, as should be clear from the above analysis, 9g = Sp(n) and we are taking the following 
breaking pattern: . 

Sp(n + l)g x Sp(I), ~ Sp(n)g x Sp(l)g 

Z2 Z2 
(3.4) 

with <P being the Higgs field. The Higgs field is to be considerèd as a quaternion and not a 
. complex number, although we could consider this also to be a complex matrix. The quaternion 
that cou Id be used to represent the Higgs field is already pointed out above in (2.5). Thus 

(3.5) 

is a good representation of the Higgs field in terms of the quaternions (q(l) = (q l, q2, ... , qn) or in 
terms of <Pa. As pointed out in [1O,25J (and references therein) this is equivalent to a model with 
Il + 1 copies of the electroweak scalar sector with an Sp(n + 1) global symmetry in the ew = 0 
limit. 

The second way is to view (3.1), when' written in terms of complex coordinates and incorpo­
rating other terms, as describing the Higgs branch of Seiberg-Witten theory. Then the semilocal 
instantons can be related to the smalt instantons described by Witten [29] and Ganor-Hanany 
[30J and the vacuum manifold A1l becomes the moduli space of one-instanton. These instantons 
are described by embedding SU(2) groups inside the global groups, and therefore the different 
SU(2) orientations describe the moduli space of the theory.9 These SU(2) orientations form an 
S3 and the moduli associated with the sizes of these instantons form the radii of the three cy­
cles. In this language these three cycles will be fibered over quaternionic Kahler spaces. Such 
an approach has been used to study quaternionic Kahler manifolds associated with An, BIl' en 
and DIl groups [34J. The moduli space then is a 3-Sasakian spaces that are Sp(1) fibrations over 
quaternionic Kahler spaces [35] and is given by: 

(3.6) 

where R4 denotes the .four-translation moduli, R+ den otes the size moduli; the subscript k 
denotes k-instantons, Qk denotes the quaternionic space associated with k-instantons and the 
subscript f denotes non-trivial fibration. In the following we will give a concrete example of 
such fibration using mostly the first technique (although in many cases we will alternate be­
tween the two techniques lO). This will prove convenient for theories that may not have a good 

9 Observe that, if we view the Seiberg-Witten theory to be generated by 03/07 system a la [31]. then the gauge 
instantons are O( -1 )-branes inside 03-branes. whereas the small instantons are the bound states of 03-branes with the 
07-branes [32]. If we T -dualise the system then we will have a configuration of 01.05 and 09-branes. The moduli space 
of the small instantons on 09-branes i.e., 05-branes in 09-branes is given via AOHM data by a special hyper-Kahler 
manifold. or a quatemionic Kahler manifold when coupled to supergravity [29]. On the other hand the moduli space of 
o I-branes is given by a 'sigma model with AOHM target space [32.33]. Thus both the pictures describe the sa me physics. 

10 There is also a third way of studying the moduli spaces of these instantons that is slightly different l'rom the above 

two approaches (although more related to the second one). This has to do with the fact that N = 2 supersymmetric gauge 
theories also have hypermultiplets in the adjoint representations of the gauge groups. Observe that the hypermultiplets 
that we considered for the above two cases are ail in the fundamental representations of the gauge groups. Combining 

these adjoint hypermultiplets with the N = 2 vector multiplets will give us the spectrum of N = 4 gauge theories. In 
the se theories moduli spaces of instantons will be exactly the sa me as for the fundamental hypermultiplets if we exchange 
the global symmetries with gauge symmetries. Thus N = 4 theories with exceptional gauge symmetries will have the 
same moduli spaces of instantons as we study here. Such an approach has been discussed by Stefan Vandoren in the last 
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Table 1 

Semilocal the ory 

Semilocal instantons 

G / H = Vacuum manifold 

Gauging an SU(2) subgroup of the global group 
n3(G/Hj = l. n3(SU(2)) = Z 

H = Unbroken subgroup 

Quaternions 

SU(2) gauge group 

Quaternionic Kahler manifold 

Semilocal strings 

Mass term in the potential 

Seiberg-Witten theory 

Small instantons 

Higgs branch = Instanton moduli space = Special 
hyper-Kahler manifold 

Embedding SU(2) instanton in the global 
group = Orienting SU(2) group in a global group 

H = Stability group of the instanton 

N = 1 chiral multiplets or N = 2 hypermultiplets 

Microscopic SU(2) group 

Quaternionic Kahler manifold 

Semilocal strings 

Massive hypers, mixed Coulomb-Higgs branch 

Lagrangian description (and therefore no weil defined Higgs branch) but more importantly the 
technique of semilocal defects is ideally suited to study other manifolds in the magic square as 
we will discuss soon. In Table 1 we show the precise connection between our semilocal theory, 
and the full Seiberg-Witten theory. 

From above table it should be clear that although our theory (3.1) is a small sub-sector of 
the original Seiberg-Witten the ory, it has aIl the necessary ingredients to understand the detailed 
aspects of magic square as we will demonstrate soon. The complicacies of the full Sei berg­
Witten theory, for example the existence of Coulomb branch or mixed Coulomb-Higgs branch, 
do not effect the analysis that we are going to perform therefore we will continue with our 
simpler version (3.1).11 However we will try to demonstrate, whenever possible, how to analyse 
the system from the full Seiberg-Witten theory. 

Thus having laid down the possible criteria to construct explicit Sp(n + 1) quaternionic man­
ifolds, there are a few important points to analyse now: 

• We have to verify whether it is possible to construct a Seiberg-Witten like theory with 
Sp(n + 1) global symmetry. This would be confirmed by the existence of the correspond­
ing Seiberg-Witten curve for the system. We expect, on generic ground, a curve of the form: 

(3.7) 

with ai being constants and k(z), lez), h(z), fez) and g(z) are polynomials in z. The coor­
dinate z specifies the complex plane in the corresponding Seiberg-Witten the ory. The above 
equation with the right choice of k, [, h, f and g takes the following Weierstrass form that 
reftects an Sp(n + 1) global symmetry: 

5 Zll+l 
Y = ± x 3 +xzl1+l + _Z211+2 - --. 

4 2 
(3.8) 

reference of [34]. For most of our analysis in this paper we will not consider the adjoint hypermultiplets as we want to 
analyse JV = 2 gauge theories only. 
II ln fact our model (3.1) does not have a Coulomb branch. So in the corresponding Seiberg-Witten theory this is the 
pure Higgs branch. 
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Using this one can check that the curve l2 has the right singularity structure to allow an 
Sp(n + 1) global symmetry. A similar curve should then describe the global properties of 
our model. 

• The next step to verify wou Id be the existence of instantons in this model. Clearly existence 
of the corresponding curve (3.8) means that we have summed ail the instanton contributions 
to get the required Seiberg-Witten curve. However it is instructive to actually construct these 
instantons. Out of the various different possibilities of instanton configurations in our system 
(because of the matter representations) we will henceforth only concentrate on the so-called 
semilocal instantons unless mentioned otherwise. These are the small instantons in the Higgs 
branch of the full theory. Their construction is subtle because of two reasons. Firstly the 
vacuum manifold being s4n+3 would imply 

(3.9) 

so would disallow instantons. The only allowed instanton configurations therefore wou Id be 
the semilocal instantons by gauging an Sp(l) part of the global symmetry.13 We may th en 
expect that the low momentum dynamics of the theory should be a sigma-model on a certain 
quatemionic space, or altematively the moduli space of the Higgs branch instantons should 
be given by the quatemionic space. The structure of the corresponding quatemionic space 
can be determined from the following gauge field configuration: 

A == Ali aa = _1_ . q t . âttq - q . â/1 q t 
Il tt 2g?M tr(qt . q) 

(3.10) 

where the sum over repeated indices are implied via the dot product and aCl are the Pauli 
matrices. Now due to the existence of F- and D-terms the low energy effective action will be 
a quatemionic manifold Hp'l as shown in (2.6) when (3.10) is plugged in the action (3.1). 
The semilocal instantons in this model have the following structure (see also [25]): 

(3.11) 

provided certain subtleties are considered. This is the second reason. The subtlety has to 
do with the presence of V(tr(qT . q» term in the action (3.1), namely, due to Derrick's 
theorem once the scale invariance is broken by a mass term in the potential, the instantons 
ail squeeze to zero size. So the semilocal iqstantons that we are alluding to should exactly be 
the constrained instantons of Affleck [9]. These constrained instantons resemble the standard 
instanton at short distances only but decay exponentially at the IR [9] (see also [36]). In the 
notation of [27], when 

= S3 = 0, (3.12) 

12 Observe that this is only a genus one curve. For higher local gauge symmetry. for example SU(N) with N > 2. we 
will have a genus N - 1 curve. ln this paper we will look mostly at the sector of the theory that is given by a genus one 
(Le., N 2) curve although in the last p:llt of Section 4 we will give sorne examples of higher genus curves. Generic 
case of an SU(N) gauge theory broken to SU(2) x Glocal gauge theory will be studied in the sequel to this paper. 
13 One might be wondering about the connection between the curve (3.8) and the contributions From the semilocal 
instantons. As is weil known ail possible instantons should contribute to the path integral to determine the full curve of 
the theory [33]. The curve (.l8) is the minimal curve with Sp(n + 1) global symmetry 50 will have contributions From 
the semilocal instantons (which are of course the small instantons in the Higgs branch). The situation gets tricky when 
the global symmetry becomes very large (for example En as we will encounter later). In those situations how exactly ail 
the instantons contribute to give us the full curve will be described elsewhere. 
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Fig. 1. 

where ç are the FI terms, then the instanton allowed are the standard instantons. For the 
case when the FI terms are non-zero, to construct constrained instantons ail we require is the 
maximal subalgebra of the extended Dynkin diagram of Sp(n + l): 

should be expressible as a product of two subalgebras. This fixes the maximal subalgebra for 
our case to be sp(n) EB sp(l). The constrained instantons are exactly of the gauged Sp(l) == 
SU(2) group. The simplest non-trivial example of such an instanton is for the global group 
Sp(2). The quaternionic space associated with this global group is a four sphere S4 because: 

Sp(2) = S4 == Hp! 
Sp(l) X Sp(l) 

(3.13 ) 

and therefore the constrained instantons are non-trivially fibered over the four sphere (this 
has also been noticed for a non-stringy example in [25]). For our case when Ç3 =j:. 0 and ail 
other FI terms vanishing in V (tr(q t . q)) of (3.1),. the constrained instanton can be explicitly 
worked out to be of the following form: 

2p2a"IJ{l x T3gy
2

M 
a(/IJI{~l!Xl! A _ lil! l! __ " __ • + ... 

J1. - x2(x2 + p2) 2 x 2 (3.14) 

where p2 is the typical size of the instanton in the scale invariant limit (which is of course 
the Ç3 = 0 limit). Observe that we need to also switch on non-zero expectation values for the 
quaternions. It can be easily shown that the background values of the quaternions are always 
proportional to the FI term Ç3 so that in the scale invariant limit their expectation values have 
to vanish to allow the standard instantons to .exist. In Fig. 1 a typical constrained instanton 
is shown. We see that the instanton is non-trivially fibered over the quaternionic base Hpn 
and wraps the three sphere S3 once at infinity. Over the rest of the space it completes a non- . 
trivial four sphere S4 in the quaternionic space. This also means that for Hpl we will have 
a controlled theoretical way to study the instanton. This is in fact further facilated by the 
following group theory identities: 

Hpl = S4 = SO(5) 
SO(4) , 

(3.15) 

which means that this special case could even be studied using real fields. This is indeed the 
case, and has been attempted in [25]. 

The above set of procedures was to construct a configuration of the simplest quaternionic 
space Hpll using constrained instantons. The relevant non-compact extension of the ab ove space 
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is the quaternionic space 

Sp(n, l) 
(3.16) 

Sp(n) x Sp(l) , 

which is more usefu! to study the moduli spaces in type II theories. Now recall that there is a 
naturaJ one-to-one correspondence between quaternionic normal Lie algebras and quaternionic 
simp1y connected normal homogeneous spaces. In fact any normal quatemionic algebra should 
contain a one-dimensional quaternionic subalgebra called the canonical quaternionic subalgebra. 
The manifold that we studied above (3.16) correspond to the following totally geodesic suba-Ige-
bra: ~.~ 

Cl = Sp(l,1) 
1 - Sp(l) x Sp(l) 

(3.17) 

In fact (3.16) is the unique quaternionic algebra whose canonical subalgebra is isomorphic to 
Ci [3]. However there is no Kahler space associated with (3.16) because there is no c-map. 
So (3.16) cannot appear as low energy Lagrangian in type II theories. Thus our construction of 
the corresponding compact Hpn gives the only legitimate way to study this manifold in string 
theory. Below we will show that ail the compact versions of the symmetric quaternionic spaces 
can be studied using the technique of constrained instantons. In fact we will show how the magic 
square appears in this analysis. But first, lets go to the next non-trivial example related to the G2 
quatemionic space. 

3.2. G2 quaternionic spa ce 

The technique that we developed in the previous subsection is universal. We will use the 
same procedure of constrained instantons to construct quatemionic manifolds for the G2 cases 
also. However instead of repeating the same constructions once again, we will give a concrete 
mathematical way to build the quotient space: 

Sp(l) x Sp(l) , 
(3.18) 

so that combining this procedure and the steps elucidated in the previous subsection we will be 
able to cIassify the magic square cases in the next section. 

Before going into the details of the specifie construction of (3.18) we would like to make 
the following comments. The quotient structure of (3.18) should be obvious from the previ­
ous analysis, namely, the maximal subalgebra of G2 without an U ( 1) factor from the extended 
Dynkin diagram: 

2 

is so(4) == su(2) su(2). As this is already expressed in terms of two product group (with an 
su(2) factor) we need not go any further. In fact the 1 of G2 then decomposes as l4 : 

,-+ (2.2) + (1, 3), (3.19) 

14 We thank Tom Kephart for discussions on this point. 
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un der SU(2) X SU(2), where once we give a VEV to (2,2) one of the global SU(2) (which is 
broken) mixes with the broken local SU(2) to give us a diagonal unbroken SU(2). The quotient 
space is then clearly (3.18). What remains to study however is the precise embedding of the 
SU(2) groups inside a G2. This will be addressed below. 

The next issue is the existence of the corresponding Seiberg-Witten curve for a global G2 
group. We have already laid down the possible curve for any global group ç in (3.7). For ç = G2 
we can choose certain specifie functional form for k, l, h, f and gin (3.7) to give us the following 
curve: 

( 
12alZx - 4alazz2 - 4afz2 + 12a3Z2)2 

y+ 24 

3 x [ 4 4 (2 ) 3 ') 2] = X - 48 al Z + 8 al a2 - 3a 1 a3 - 6a4 Z + 16a2 z 

+ _1_[a~z8 + 12(aia2 - 3aia3)z5 + (48afai + 216aj -72afa4'-': 144ala2a3)z4 
864 

+ (64a~ - 288a2a4 + 864a6)Z3]. (3.20) 

where ai are sorne constants. The precise mapping of this curve to the G2 Casimirs can be worked 
out but we will not do so here as our emphasis is more on the magic square. One can check that 
the discriminant is 

(3.21) 

and therefore reftects a global G2 symmetry near the point Z = O. To see the full global symmetry 
for other cases one has to generalise the above curve (3.20) further. Examples of these will be 
discussed in the next section. 

Another point is the existence of third homotopy groups for various coset spaces. For a global 
group ç broken to a subgroup H x SU(2) our first criteria would be to ask the value of the third 
homotopy from the exact sequence 

----+ ]l'3 (H) ----+ JT3 (9) ----+ JT3 (Ç /H) ----+ 0, (3.22) 

where both ç, H are Lie groupS.l5 For simple cases dealing with-non-exceptional groups this is 
easy and weIl known. The interesting question cornes when ç is an exceptional group or when 
both ç and H are exceptional groups. Three rules have been developed to address these questions 
[37]: 

• When both ç and H are simple, i.e., when both ç and H do not have invariant Lie subgroups, 
then 

1 
M=-, 

L 
(3.23) 

where L is a non-negative integer called the index of a representation Dg for the group ç. 
Similarly 1 is the index for the corresponding representation Dl-{ for the group H. These 

15 This is crucial because, as mentioned earlier. our theory is only a sector of a bigger theory. Consistency requires that 

we evaluate the third homotopy of "* to study the instantons. On the other hand, in the full Seiberg-Witten theory, the 
instantons are in the Higgs branch and so we would only require to evaluate the third homotopy of the global group g. 
For more details see the table of comparison given earlier. 
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indexes are tabulated in details for many representations in [38].16 The idea is to look for a 
particular representation (say vector or tensor) for the group Q and then look for the same 
representation for the group H. The ratio of the corresponding indexes will give us the value 
for Jr3(Q jH). It is interesting to note that as long as we choose the same representations for 
both Q and H the ratio l j L will always be the same . 

• If Q is simple but H is of the form of H 1 0 H2 0 ... 0 Hn with Hi simple, then 

Z. 
71"3 (Ç} jH) = Z mod every -.!...., 

. L 
(3.24) 

where (li, l2, ... , li) are the collection of n-tuples. In fact H can have an additional Abelian 
subgroup without changing the result. Furthermore modding by a discrete subgroup also 
does not change the result. 

• When both Q and H are not simple and Q is of the form QI 0 Q2 0 ... 0 Qn where Qi are 
simple, 1 7 then Jr3 (Ç} jH) consists of n -tuples of the form 

[ l~l) l~2) l~n)] 
(al, a2, ... , an) mod every _1_, _1_, ... , -'- , 

LI L2 Ln 
(3.25) 

where (l?), l?l, l?l, ... , lt») are the n-tuples associated with the simple groups Hi l
), Hi2l , 

... , etc., where the Lie algebras g, gi, hi associated with the Lie groups Q, Qi, Hi, respec­

tively have the decomposition hi = E9 j h;j) with the condition hij) ~ gj. The Lie algebras 

hi}) are either isomorphic to hi or fOl. For more details the readers may want to refer to 
[37,38]. 

Therefore the upshot of ail these discussions is that the third homotopy groups for coset 
spaces can either be 1 or Z p' For exceptional groups the third homotopy groups are ail Z. 
In fact generically Jr3(SU(n))ln;;':2 = Z. Similarly Jr3(SO(n))ln;;':3,nI4 = Z and Jr3(SO(4)) = 
Jr3(SU(2) x SU(2)) = Z œ z. This would mean that Jr3(G2jSU(2)) = 1 i.e., the third homo­
topy group is trivial,18 although this does not me an much because with G2 global symmetry a 
Lagrangian description of the system like (3.1) discussed previously is not possible.1 9 Therefore 
to study the constrained instantons in the system we gauge the SU(2) subgroup of the maximal 

16 These indexes are represented as ~a(;~ in [38]. 
17 Additionally allowing Abelian groups as weil as discrete moddings. 
18 It tums out there are other possible embeddings of an SU(2) group in G2, namely that the 7 of G2 goes to 3 + 2 + 2 
of SU (2) or the 7 of G2 goes to 7 of SU (2). For these two cases 7r3 (G2/ SU (2») = Z3 or Z28 respectively. We thank Y.P. 
Nair for pointing this out to us. 
19 It is an issue-and we will discuss this again later-for ail theories with exceptional global symmetries. One can 
see this from the D3/D7-brane construction ofthese theories. The fundamental hypermultiplets appear from the strings 
connecting the D3-branes with the D7-branes. The gauge symmetries of the seven brane theories appear as global sym­
metries of the underlying D3-brane theories. For classical Lie groups as gauge or global symmetries, the seven branes 
are ail D7-branes. However when we have exceptional Lie groups, not ail seven branes are D7-branes. Sorne of them 
are SL(2, Z) transform of the D7-branes. Because of that strings connecting the D3 and the seven branes may take non­
trivial paths in the u-planes of corresponding Seiberg-Witten theories [39]. For such strings simple Bom-Infeld action 
may not be easy to write down. Nevertheless such theories exist as can be easily shown from the corresponding F-theory, 
or the Seiberg-Witten curves. Since the curves are constructed by summing up ail the instantons, we also know that these 
instantons exist. Therefore in this paper we will try to give as much information as possible, for these instantons, that do 
not rely on explicit Lagrangian formulations. In the sequel to this paper we will attempt more explicit constructions. 
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SU(2) x SU(2) group, or alternatively-viewing this in the Higgs branch-we study the orien­
tations of SU(2) inside G2. Thus effectively we are studying SU(2) constrained instantons in a 
theory with the maximal group. These instantons are non-trivially fibered over the base (3.18). 

As we discussed for the Sp(n + 1) case in the previous section we can now describe a possible 
quaternionic geometry associated with the constrained instantons. In fact, as before, we need the 
sigma model on the non-compact version of the geometry namely, on 

SU(2) x SU(2) . 
(3.26) 

. To determine this we can use the trick of the c-map, that uses the metric of the Kahler manifold 
to determine the quaternionic manifold. The Kahler manifold and the associated F function in 
question are [5,6,16]: 

SU(l,I) 
U(1) , 

(3.27) 

where X l , 1 = l, 2, ... , n + 1 are the scalar fields corresponding to certain other N 2 vector 
multiplets (including the gravi-photon) and we have introduced the F function to determine the 
Kahler metric of the manifold j\ltKtihler' This F function can be used to determine the Kahler 
potential K and the metfÏc G AB == -KAB = -OAaBK in the following way [6,40]: 

(3.28) 

where Zl = ~~ {l, ZA} and the Kahler metric therefore is the usual form ds 2 

-K ABdZAdiB. Observe that the metric is only positive definite in the region where Z' Nil il 
is positive definite. Therefore K AB is negative definite [6,40]. 

It is now time to use the power of the c-map to determine the quaternionic metric for our 
case. To build the quaternionic manifold we need 4(n + 1) coordinates. The ZA, i A contribute 
2n coordinates. The other 2n coordinates are denoted as A' , B" along with two more complex 
coordinates 4>, <p. The c-map then defines the quaternionic metfÏc in the following way [6]20; 

_ 1 A· dB - B . dA 1
2 

-ds2 Id4>1 2 -2e-t/>(ReN),jW/Wl +e-2t/> d<p- 2 -4KABdZAdZ B, 

(3.29) 

where it should be clear that the Kahler geometry (3.27) forms a submanifold in the quaternionic 
space as expected. The structure of the universal hypermultiplet can also be extracted from (3.29). 
The components of the matrix N, and W / are defined as: 

_ - NIKN1LXKXL 
JV Il = -i 0 ïO j F - ---;----;--­

NI 

W' = [(ReJV) 1]11 (2NJKdA K - idBJ), (3.30) 

where ReN is negative definite. For other details about the properties of N etc the readers 
may want to refer to [6,16,40,41]. In the remaining part of this section we will give an explicit 
realisation of the quotient space (3.18). 

20 We are using the notations of [40]. 
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3.2.1. Realisation of the quotient space 
To give an explicit realization of the homogeneous space (3.18), i.e., SP(i)~2Sp(i) == Sg?4) , we 

use the embedding of the exceptional complex Lie group G2 (C) into the complex orthogonal Lie 
group SO(7, C). Similar embeddings are valid for the two real forms of G2, since the compact 
group Gf (R) is inc\uded in SO(7, R) and the non-compact real group G~ C (R) in the real Lie 
group SOC 4, 3). In the following, we will consider only the complex case and so we will omit the 
presence of C in the definition of our Lie groups. 

The group G2 has been shown [42,43] to be isomorphic to the group of orthogonal trans­
formations SO(7) acting on the vector space C7 and leaving invariant a third-order completely 
antisymmetric tensor T. It is completely characterized by the following: 

Ti27 = Tl54 = Tl63 = T235 = T264 = T374 = T576 = 1. (3.31) 

Choosing to realize the group SO(7) by matrices G == {gah} E C 7x 7 with determinant equal to 1 
that satisfy the orthogonality relation: 

(3.32) 

we know that G will th'us be characterized by 21 independentparameters. The invariance of the 
tensor T under such transformations may be written as 

(3.33) 

where Ta is the 7 x 7 matrix which elements are given by (~,he = Tahe. It gives rise to 7 
additional constraints on the elements of Gand G thus contains the 14 independent parameters 
that leads to G2. 

A simple realization of these conditions could be easily seen when we consider the algebra 
g2. It can indeed be realized as the set of orthogonal matrices M E 0(7) such that MT = -M 
and satisfying the invariance condition 

[Ti, M] = aijTi, (3.34) 

which can be easily obtained from the relation (3.33) using the usual derivation of the exponential 
map which relates the group and algebra elements. We thus find an explicit form of M E G2 in 
terms of 14 independent parameters as: 

0 ai2 al3 al4 ai5 al6 al7 

-al2 0 a23 a24 a25 a26 a27 

-al3 -a23 0 a34 a35 a36 -ai5 - a26 

-a14 -a24 -a34 0 a27 - a36 -a17 + a35 ai6 -a25 

-ai5 -a25 -a35 -a27 + a36 0 ai2 -a34 al3 + a24 

-ai6 -a26 -a36 al7- a 35 -ai2 + a34 0 -ai4 + a23 

-ai7 -a27 al5 + a26 -ai6 + a25 -al3 - a24 ai4 - a23 0 

(3.35) 

49 
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Let us mention that the maximal subalgebra so(4) = su(2) EB su(2) is easily identified. Indeed, 
we first take aiS = ai6 = ai7 = 0 for i = 1.2,3 to reduce the matrix to the form 

0 al2 aI3 al4 0 0 0 
-a12 0 a23 a24 0 0 0 
-a13 -a23 0 a34 0 0 0 
-a14 -a24 -a34 0 0 0 0 (3.36) 

0 0 0 0 0 al2 - a34 al3 + a24 
0 0 0 0 -a12 + a34 0 -a14 + a23 
0 0 0 0 -a13 - a24 al4 - a23 0 

and then take the six remaining independent parameters as a34 ± a 12 = 2X±3, a24 =f a I3 = 
2X±2, al4 ± a23 = 2X±1 to get the direct sum decomposition as A EB B, where: 

0 X+3 -X+2 X+I 0 0 0 
-X+3 0 X+I X+2 0 0 0 
X+2 -X+I 0 X+3 0 0 0 

A= -X+l -X+2 -X+3 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 -X-3 X-2 X-l 0 0 0 

X-3 0 -X-l X-2 0 0 0 
-X-2 X-l 0 X-3 0 0 0 

B= -X-l -X-2 -X-3 0 0 0 0 (3.37) 
0 0 0 0 0 -2X-3 2X-2 
0 0 0 0 2X-3 0 -2X-l 
0 0 0 0 -2X_2 2X-l 0 

We also see the inclusion of the preceding subalgebra so(4) of G2 in the algebra 80(4) EB 80(3) 
as a subalgebra of so(7). 

3.2.2. Coordinates of the quotient space 
We start with the well-known realization of the Grassmannian of nondegenerate three-planes 

Gr4(C7) which is isomorphic to 5L(7)/ Aff(4, 3) where Aff(4, 3) is realized by matrices of the 
form 

G E C4x4 
Il , 

det G Il . det G22 = 1. (3.38) 

We then define homogeneous coordinates on Gr4(C7) as 

X = ( ~ ), X, Y E C3
•

3
, Z E C3

, (3.39) 

so that 5L(7) acts from the left as X' = GX with G E 5L(7) and Aff(4. 3) is thus the isotropy 
group of the origin chosen as Xo = (0,0, l)) T and X = GXo. The restriction to 50(7) leads to 
the isotropy group 50(4) 050(3) since Go being orthogonal, it implies G2l = O. The homoge­
neous coordinates X = GXo of 50(7)/(50(4) x 50(3)) satisfy the orthogonality condition: 

X T X + zz T + Y T Y = 1, (3.40) 
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which represents a set of 6 independent equations between the 21 parameters characterizing X. 
Since we have 

d' [ 5L(7) ] 
lm Aff(4, 3) 

i [ 50(7).] - 12 
dm 50(4) x 50(3) - , (3.41) 

the usual way to reduce further the independent quantities Îs to use the affine coordinates defined 
as 

det Y =f. O. (3.42) 

Let us now consider the quotient space G2/50(4). We have 

dim[~J = 14 6=8. 
50(4) 

(3.43) 

This space can be characterized by the homogeneous coordinates X = GXo where now C E 

C2 C 50(7) and thus satisfies the relations (3.33). They give rise to supplementary conditions 
on the 21 parameters characterizing X. lndeed, we can write 

gl5 816 817 

g25 g26 827 

X=GXO=G(J,) = 
g35 836 837 

845 g46 g47 (3.44) 
855 g56 g57 

g65 g66 g67 

875 876 877 

The relations (3.33) imply, together with (3.31), that: 

gah(nh6 = ga5 = Taefge78f6". (3.45) 

so the 7 parameters of the first colurnn of X are expressed in terms those of the other columns. 
Moreover, we have the orthogonality condition (3.40) which implies 3 more relations between 
the remaining parameters: 

ga6ga6 = ga7ga7 = 1, ga68a7 = O. (3.46) 

So, the number of independent parameter has been reduced to Il at this stage. As before, the last 
step ta reduce further the number of parameters is to use the affine coordinates. The conditions 
on W and w that leads a characterization of the quotient C2! 50(4) are explicitly given in [44]. 

With this we are now ready to discuss the magic square. We will also show how sorne of the 
aspects that we studied here can be elucidated from the properties of the magic square. 

4. On the classification of quaternionic manifolds: The magic square 

The magic square in mathematics is used to show the relation between division algebras, 
Jordan algebras [12] and Lie algebras. The idea was first developed by Frelldenthal, Rozenfeld 
and Tits [7] and is introdllced to string theory by Gunaydin-Sierra-Townsend [4]. The magic 
square in mathematics is a 4 x 4 square with the entries given by elements of the Lie algebras. 
The columns of the magic square are defined by the Jordan algebras, whereas the rows are defined 
by the division algebras [45]. The division algebras are the real (R), complex (C), quaternion (Q) 
and the octonion (0). The columns are labelled by: J 3(R), J3(C), J3(Q), J3(0) where J3(K) 
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is the algebra of 3 x 3 Hermitian matrices over K. The magic square is th en given by: 

where Ai, Ci, Di, El, F4 are the usual SU, Sp, SO; E6,7.8 and F4 Lie groups respectively (a sim­
Har square can be drawn for the corresponding algebras also). The rules for filling up the entry L 
ofthe magic square can be given by the relation (see for example [45]): 

L Der A Et! (Ao ® Jo) Et! Der J, (4.1) 

where Der A and Der J are the generators of the automorphism group of the Hurwitz (division) 
algebra A and of the algebra J, AD are the pure imaginary elements of Ro = So, Co S i , Qo 
S3 and 00 = S7 and Jo are the elements of trace zero of the Jordan algebra J. To make this clear, 
we can write the magic square in terms of the dimensions of the Lie algebras in the following 
way: 

The reason for the magical property of the square can be made clear from the entry-rule given 
in (4.1). In terms of last to the first row, we can write the elements of the magic square in the 
following way: 

! 

52 78 = 52 + 1 x 26 133 = 52 + 3 x 26 + 3 248 = 52 + 7 X 26 + 14 

21 35 = 21 + 1 x 14 66 = 21 + 3 X 14 + 3 133 = 21 + 7 X 14 + 14 

8 16=8+1x8 35 = 8 + 3 X 8 + 3 78 = 8 + 7 X 8 + 14 

! 3 8=3+1x5 21 = 3 + 3 X 5 + 3 52 = 3 + 7 X 5 + 14 

For more details see for example [46] (and references therein). The interesting feature of the 
magic square is that its symmetric and four of the five exceptional Lie algebras accur in the last 
row. In fact one could also add G2 to the magic square by adding an extra column (therefore 
sorne literature also refers the magic square as a 4 x 5 rectangle). The extra column corresponds 
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to the Jordan algebra R (see figure below): 

where other elements of the square are to be filled in the dotted parts. Once we have the Lie 
groups, we should ask how to accomodate the quatemionic spaces or Kahler spaces in the magic 
square. To describe this let us use the column containing G2 and AI Lie groups as this is the 
simplest. In the language of constrained instantons, observe that in the maximal subgroup of G2 
Le., SU(2) x SU(2) one of the SU(2) is gauged. This leaves one free SU(2) and the quatemionic 
manifold is (3.18) (or (3.26) in the non-compact limit). For the next element of the magic square 
i.e., Al here, we look at the U (l) subgroup of the ungauged SU (2) and gauge it. The resulting 
space is Sif(W or S~?i)l) in the non-compact limit. This reproduces the next element of the magic 
square. Finall y since we have gauged the remaining U (l) we have nothing else to gauge, so the 
other two remaining elements of the magic square are 0 and 0 (see figure above). 

Observe however that in the above figure we have ignored a subtlety regarding the c-map for 
the G2 case. This has to do with the existence of two different non-trivial F functions for the 
corresponding SU(l, 1)/ U (1) Kahler space [5,6]. This can be illustrated in the following way: 

1 U(2,2) /U(2) J 
c-map 

'" 

where we see that the same Kahler space can give rise to two different quatemionic space. One 
of the quatemionic space does not lie in the magic square and is generated by a F function given 
by: 

(4.2) 

The fact that this is no contradiction is explained in [6]. What we are looking for is the c-map 
related to Jordan algebra and this is given by the horizontal arrow. 

Thus for the generic case our procedure should now be clear. We are gauging various sub­
groups as we move along the magic square. We cali this sequential gauging. Let us consider a 
part of magic square represented by non-compact group e1ements A, B, C and D in the following 
way: 

Question now is whether we can determine the corresponding manifolds associated with these 
elements of the magic square using the arguments of constrained instantons. The manifold asso­
ciated with group A is easy. This has to be a quatemionic manifold in such a way that a SU(2) 



K. Dasgupta et al. / Nuc/ear Physics B 793 (2008) 34-82 

subgroup of the maximal group is gauged. What is the maximal subgroup of A here? This is 
exactly given by the next element B of the magic square. Let Be be the compact version of the 
group B. Then the maximal subgroup of A is clearly Be X SU(2) giving rise to the quatemionic 
manifold: 

A 
(4.3) 

Be X SU(2) 

Now question is whether we can determine the next manifold that should be Kahler (recall the 
c-map constraint). Looking at the next element we find the group C whose compact version is 
Cc' What we need now is that the ungauged group B should decompose into Ce and another 
subgroup. This is easy to determine from the list of subgroups given in [38]. Let the subgroup be 
Hl, This therefore gives us the Kahler manifold: 

B 
(4.4) 

Cc x Hl' 

whose c-map therefore will be (4.3). Going in this way we can reproduce all the manifolds 
associated with the elements of the magic square in the following way: 

where the subgroups Hi could in principle be determined from [38]; and the dotted tines are used 
to show the connection between the ungauged groups. But the story does not end here because it 
tums out that the subgroups themselves are not arbitrary. The quatemionic space was determined 
by gauging the SU(2) subgroup. This was related to the constrained instantons. Now what could 
be the next subgroup that we can gauge? Clearly this has ta be a U(l) subgroup related to 
semilocal strings. Similarly we can ask about the next to next subgroup. Since we gauged SU(2) 
as weIl as U (1) we cannot gauge any other group! So our prediction for the magic square will be 

Hl = U(l), (4.5) 

Observe however that there are sorne subtleties related to these identifications because the third 
manifold associated with the group C in the magic square should be a real manifold, so we 
might have to consider appropriate complex conjugates of the relevant groups. The final picture 
that emerges from aIl the above consideration is: 

D 
C 

De 

A 

BeX SU(2) 

which we wou Id verify in the next few examples. A more detailed anqlysis of the manifolds 
other than the quatemionic ones will be presented in the sequel. In the following sections we will 
mainly study the quaternionic manifolds associated with En and F4 groups. 
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4.1. E6 quaternionic space 

Our first case is to look for a theory with global symmetry ç = E6. To extract the quaternionic 
space associated with this group we should study the maximal subalgebra.21 The maximal regular 
subalgebra of E6 can be extracted from the extended Dynkin diagram: 

and is given by 'H = su(6) EB su(2). This immediately tells us two things: One, we are dealing 
with a gauge theory with 'HI = SU(2) = Sp(l) gauge group, and two, the manifold A1.Eo is 

E6 
ME6 = SU(6) x Sp(l) 

(4.8) 

From the analysis that we presented in the previous section and using [37], one can verify that 
TC3 (Sfft6)) = 1, so we need to gauge an SU (2) subgroup. Indeed, as like the previous cases, one 
can find the following decomposition: 

27 -7 (6,2) + (15, 1), (4.9) 

under SU(6) x SU(2) subgroup. The SU(2) subgroup that we want to gauge is slightly different. 
This subgro~p is the diagonal subgroup of the SU(2)g x SU(2), where g, 1 stand for the global 
and local groups respectively. Both the global and the local groups are broken by Higgs expec­
tation value--once we give a VEV to (6, 2)-a?d therefore an SU(2)~fJ group survives (which 

we will call SU(2) henceforth). Since SU(2) '"" S3, the homotopy classification will tell us that 
1T3 (S3) = Z. These are the constrained instantons, and therefore should have a construction via 
the quaternion as we discussed before. These instantons are again non-trivially fibered over the 
space (4.8) and therefore exist only as semi-local defects. 

Thus we seem to get our required exceptional semilocal defect in this mode!. However in the 
process of deriving this we have ignored a subtlety. This subtlety cannot be seen at the level of 
group structure, in the sector of Seiberg-Witten theory that we study, but is visible when we look 

. at the corresponding Sei berg-Witten curve associated to our manifold. Therefore let us construct 
the corresponding curve by modifying the G2 curve that we discussed in (3.20). The reason why 

11 Notice that in addition to the choice of maximal subalgebras. we also ask for sym/lletric subalgebras of the groups. 
The symmetric subalgebras for various groups have been listed in [38]. For the An. Bn. Cn, Dn cases, they are 

Sll(p + q) '""* su(p) EB su(q) EB u(l), so(p + q) '""* so(p) EB so(q), 

sp(2 P + 2q) '""* sp(2 p) EB sp(2q), 

where p and Cf form the various distribution (as even or odd integers). For the En cases one would have 

es '""* so(16), 

q '""* su(8), 

su(2) EB e7. 

su(2) EB so(l2), 

sll(2) EB su(6), 

e6 EBu (l), 

50(10) EB u(l), /4· 

From the list one has to extract out the relevant algebras that we would require for our case. 

(4.6) 

(4.7) 
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we want to start from G2 and go ail the way to Es is because of the last row of the magic square 

which is expressed as a part of the 4 x 5 rectangle. Since the magic square elements are related, 
we will then take (3.20) and add changes so that it eventually becomes the curve for E6, and then 
subsequently for other cases (we have ignored the F4 case for the time being because it will be 
shown later to be very close to the E6 case). 

Our first modification would be to change the powers of z in (3.20). This modifies the curve 
to the following: 

( 
12a]zx - 4a]a2Z3 - 4arz2 + 12a3Z2)2 

y+ 24 

= x 3 - ~ [(a( + 8ara2 + 16ai)z4 - 24(a]a3 + 2a4)Z3] 
48 

+ _l_[a~zS + (12a(a2 + 48arai + 64ai)i + 216a?z4 
864 

- (36aia3 + 72ara4 + 144a]a2a3 + 288a2a4 - 864a6)Z5], (4.10) 

with ai arbitrary. To fix the values of ai we have to study the singularity structures carefully. The 
discriminant locus of this equation near the points z = 0 can be easily worked out. For us this 
will be given by 

(4.11 ) 

up to an overall numerical factor. To study the singularities at z =1 0 the curve (4.10) is not generic 
enough. To derive the actual curve we need to manipulate (4.10) further. We will do this in few 
steps. First observe that (4.10) can be re-written as: 

Z4 
y2 = x 3 - xz3(Az + B) + 864 (Cz4 + Dz3 + Ez + F), (4.12) 

where the new coefficients A, ... , F and Y are defined from (4.10) in the following way: 

12a]zx - 4a]a2Z3 - 4arz2 + 12a3Z2. 
y = y + 24 ' C=a~, F = 216aj, 

D = 12a( + 48arai + 64a~, A = a( + 16ai + 8ara2, 

B = -24(a]a3 + 2a4), E = 36aia3 + 72ara4 + 144a[a2a3 + 288a2a4 - 864a6. 
(4.13) 

Secondly, that the curve (4.12) does not fully capture the E6 singularities completely can be 
easily demonstrated (see also [47]). The dimensionality of x. Y, z, etc. can be worked out from 
the equation 

(4.14) 

where Àsw is the Sei berg-Witten differential. We can then break the E6 global symmetry to 
SOC 10) x U (1) such that the fundamental 27 decomposes as 

(4.15) 
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where the subscripts denote the U (1) charges. This would then imply that the coefficient of x in 
(4.12) should have a zZ term [47]. Similar conclusion can be extracted by further breaking the 
global symmetry to D4 == SO(8) where we know that zZ should exist (see Eq. (2.16) in [48]). 
Therefore if we redefine x. Y to x, y as: 

(4.16) 

where the redefinition makes sense because we are not analysing the Z = 0 points, then (4.12) 
can be written as 

y2 = x 3 
- x(Gzz + A'z + B) + _1_(Cz4 + D Z3 + Ez + F)(l - ~ logz + ... ), (4.17) 

864 . 2 

where A' and G are the minimal changes to (4.12). Observe that we can assume A' ex A without 
a loss of generality. 

The new curve (4.17) is almost the one discussed in [47] with the exception of the additional 
log z terms. These terms could be ignored for our case as we want to realise the pure E6 global 
symmetry.zz To complete the picture we need to derive the explicit form for G, A' and ai (i = 
1.2.3,4,6). These are given in terms of E6 Casimirs defined in the following way [50]: 

( ) "'C nI n2 n3 n4 n5 n6 Pn Xj = ~ [n;}X I Xz X4 X5 X6 Xs ' 
Ini 1 

(4.18) 

where the operators Xi are defined in terms of the Cartan subalgebra of E6 and n, ni are integers 
satisfying the following algebraic equation: 

n == {2, 5, 6,8,9, 12} = nI + 2nz + 4n3 + 5n4 + 6n5 + 8n6 (4.19) 

and C(ni 1 are integers. The sum is over ail possible integer solutions of the above Eq. (4.19). As 
an ex ample the Casimir P6 will be defined via the following values of the coeffcients Cln/}: 

COOOOIO = -1, 

CZOIOOO = -15, 

C410000 = -1062, 

177 
C220000 = - 2' 

5 
COI 1000 = 4' 

CIOOIOO = -60, 

23 
C030000 = - 8' 

C600000 = -4680, (4.20) 

where one can get the fulliist in [50]. Using these Casimirs one can easily determine the coef­
ficients G, A' and ai by comparing the curve (4.17) with the one given in [47]. They are given 
by: 

G = - PZ A' = 2P5 al = 25/ s33/ 8 ~ 2.328, 
3 ' 3 ' 

aj 32 298 Z lOI 3 13 2 

4= 135 P12 - 18225 Pzps - 218700 PZP6 + 405 P6 -
49 6 19 2 

1049700 P2 - 3645 P2PS' 

a = ~ [_7_ 4 __ 11_ Ps _ ')5/S 3/8 ] 
4 2 10368 Pz 1080 PZP6 + 45 - 3 a3, 

bZ 1 b 1.837 
az =(ù+ -. - - - ~(ù+ -- -1.355, 

9a2 (ù 3a (ù 

22 It is not clear to us what singularities would the additional log z dependent terms would imply. Of course additional 
singularities besides E6 have been observed for certain F-theory curves in [49]. but there the singularities were simple. 
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(4.21) 

where using 

c = 576p6 - 56p~ - 144J6, a =64, (4.22) 

we can define ù) appearing in the definition of a2 above as 

(2-.b3 
_ .:)2 

27 a3 a 
(4.23) 

which would imply that a2 is a negative definite quantity. From the above we can also determine 
the proportionality constant between A and A'. This is given by 

2ps 2ps 
----------~--------~~--~----~~------
48a~ + 217/437/4a2 + 36.J6 48a~ + 302.8a2 + 29.37' 

(4.24) 

where a2 can be extracted from above. This therefore completes the full analysis of the Seiberg­
Witten curve for the system. 

The subtlety that we were alluding to earlier lies in the realisation of the subalgebra (or the 
subgroup (4.9)) assoc.iated with the E6 symmetry that would be used to determine the quater­
nionic manifold directly from the curve (4.17). Knowing the discriminant we can in principle 
extract the corresponding subalgebra associated with the global group Ç} = E6 provided the back­
ground space is specified. However the issue is more intricate because: 

• There is no Lagrangian description of the system with exceptional global symmetry. In fact 
existence of the curve does not guarantee that the system is a SYM theory in sorne limit. 

• Even if there exist sorne suitable description, the system is at strong coupling [49] where a 
controlled analytical calculation cannot be done. Furthermore due to large nurnber of flavors 
the theory is not asymptotically free. 

AIl these issues rnight still be resolved if we embed our gauge theory in sorne stringy set­
up. There are various possibilites here. We might ernbed it in a F-theory set-up rnuch like the 
one discussed in [24,27,31,49,51,52], etc., or in a M-theory set-up like [53].23 Using any of 
the se cases, ail we need is that the eight singularities decompose into a bunch of six and two 
singularities giving ri se to the discriminant and subgroup 

(4.25) 

which is of course the maximal subgroup for our case. Once the global symmetry is broken, a 
Lagrangian descripti<?n is possible when the systemîs embedded in a F-theory set-up. In F-theory, 
analysing the curve however leads to the following subalgebra: 

su(5) EB su(2) EB u(l) (4.26) 

23 rn faet, since our theory is just a sector of the Sei berg-Witten theory. ail the subtleties afflicting the original theory 
will not have much effeet on our analysis. Furthermore the Seiberg-Witten curve is the only output that wc will be using 
for our case. 
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instead of the subalgebra associated with the decomposition (4.9). This is almost the maximal 
subalgebra that we wanted, but not quite. 24 In fact su(6) is broken to sueS) EB u(I). Thus this is 
the closest we come to getting the full structure of the coset space directly from type lIB string 
theory (or F-theory).2S In fact what we need is that the 6 of SU(6) should decompose under 
SUCS) x U(l) as: 

(4.28) 

which would form the ungauged maximal subgroup. The associated monodromy matrix is then 
clearly 

(
-1 
-1 

-1) 
-2 ' (4.29) 

which leaves one of the dyonic point in the monodromy matrix and determines the rest of the 
SU(6) generators non-perturbatively. The surviving diagonal SU(2) is now gauged according to 
our earlier discussion.26 

The above construction therefore gives us the constrained instanton configurations associated 
with global symmetry E6 that are fibered over the quatemionic base ME6 (4.8). However, as in 
the previous sections, this is not quite the manifold that we are looking for. We should aim for 
the non-compact version of (4.8), i.e., 

V(1 2) = E6(+2) 
.' - SU(6) x SU(2) , 

(4.30) 

where +2 in the bracket denote the difference between the number of compact and non-compact 
generators. The corresponding Kahler space associated with (4.30) can be constructed by gauging 
subgroups of SU(6) according to our scheme. The relevant subgroup of SU(6) for us is SU(3) x 
SU(3) x U(l) under which 6 decomposes as: 

6 = (1,3)-1 + (3, 1)+1, (4.31) 

where by modding As by the corresponding subgroup gives rise to the following Kahler space: 

SU(3,3) 
(4.32) 

SU(3) x SU(3) x U(1)' 

24 When our theory is embedded in the full Sei berg-Witten theory the same subtlety should show up in determining the 
Higgs bran ch. However in the absence of a proper Lagrangian description this may not be easy to impie ment. 
25 The full configuration on the other hand can be determined in the following way: First we decompose the E6 adjoint 
in terrns of the subalgebra (4.26) as 

78 = (24.1)0 + (1. 1)0 + (1,3)0 + (10.2)_3 + (S. 1)6 + C.c .. (4.27) 

where the subscripts refer to the U(l) charges and the c.c are associated with Co and 5 with Utl) charges 3 and -6. 
respectively. Secondly. having given the decomposition, the rest of the discussion now should follow the familiar line 
developed in the series of papers [39.49]. We will not elaborate on this aspect as the readers can look up the details in 
those papers. It will simply suffice to mention that the non-trivial configuration required to get the full group structure 
lies in the process of brane creation via the Hanany-Witten effect [54]leading to strings with multiple prongs [55-57] 
that fill out the rest of the group generators [391. 
26 Recall that before combining the SU(2) part of the unbroken global group with the local SU(2) gauge symmetry we 

expect a monodromy matrix of the form (':" 2 _2, ). 
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where SU(3, 3) is the non-compact version of SU(6). Observe also that (4.32) is exactly of the 
form (4.4) with HI = U (1) and C· = SU(3) x SU(3). Furthermore, under a c-map (4.31) does 
give us (4.30) once the F -function is specified. We will specify the F -function a bit later. Looking 
now into the magic square for the E6 sequence: 

where the vertical sequence is shown to emphasise how the curves were constructed, and the 
horizontal sequence is constructedby various maps: C, r etc., we can easily argue the various 
manifolds associated with the horizontal elements of the magic square using the technique of 
partial gauging of the subgroups discussed in the previous section. This wi]] give us the following 
sequence: 

SU*(3) 
SL(3;C) SU(3,3) E6(+2) 

SU(3) SU(3) x U(3) SU(6) x SU(2) 

where the third term in the sequence has H2 = 1 .and the fourth term has H3 = 1 as predicted in 
(4.5). With this sequencing structure we can now determine the sigma-model me tric associated 
with the constrained instantons fibered over the quaternionic base (4.10) (or (4.30) in the non­
compact limit). The quaternionic metric is always of the form (3.29) which is derived from the 
corresponding Kahler metric (3.28). AlI we need to complete the picture for the E6 case would 
be the F -value. We will present a detailed analysis of this in Section 4.5.2 including a generic 
derivation for aIl possible cases. 

Before we end this section, notice that we have not yet checked whether there is sorne semi­
local soliton that could be fibered over the space (4.32) much like the quaternionic examples 
studied so far. For this we have to study the associated vacuum structure. Whether this theory 
could be studied in the same moduli space as the present ones needs to be investigated. It is of 
course highly suggestive that there are semilocal string like defects because lT 1 (U ( 1)) = Z and 
using the exact sequence for Lie group Ç} and its subgroup H: 

° ~ lT2(~) ~ lTI(H) ~ lTI(Ç}) ~ lTl (~) ~ 0, (4.33) 

one can easily argue that for Ç} = SU(n) = SU(6) and H = SU(3) x SU(3) (or in fact for any 
generic Lie subgroups [58]): 

lT ( SU(6) ) _ ° _ lT ( SU(6) ) 
1 SU(3) x SU(3) - - 2 SU(3) x SU(3) , 

(4.34) 

showing that there could only be semilocal defects. We will however leave a detailed study of 
this for future investigations. 
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4.2. E7 quaternionie space 

Let us now turn towards the next group ç = E7. The extended Dynkin diagram of E7: 

can be eut in different ways to give rise to various maximal regular subalgebras of E7. They are 
given by 

su(8), spin(12) EB su(2), su(6) EB su(3), (4.35) 

where spin(12) actually cornes from so(12) with sorne identification between the generators. 
From the set of steps that we mentioned earlier, we can immediately ignore the subalge­
bras su(8), su(6) EB su(3) and e6 EB u(l) and therefore the associated groups 5U(8), 5U(6) x 
5U(3), E6 x U(I) as they cannot be realised in the present scenario (recall that the gauge group 
is 5U(2».27 The above consideration immediately gives us the corresponding unique coset man­
ifold for the global symmetry E7 as 

E7 
J'v! E = -------

7 Spin(l2) x 5p(1) 
(4.37) 

Our previous consideration will require us to view this as a homogeneous quaternionic Kahler 
manifold. The 5U(2) constrained instantons are fibered over this manifold because the third 
homotopy group of the vacuum manifold is trivial i.e., Jr3 (so~b) = 1. But th en again such a bi~ 
global symmetry will not allow a Lagrangian description of the system, so to make any concrete 
statements we have to analyse the maximal subgroup 50(12) x 5U(2) associated with the system. 

However as before, analysing the corresponding Seiberg-Witten curve will tell us that the 
actual subgroup realised perturbatively is different from 50(12) x 5U(2) or Spin(l2) x 5p(1). 
To see this we will study the theory in few steps. Firstly, the breaking pattern for the 56 of E7 is: 

56 = (12,2) + (32, 1) (4.38) 

under SO(l2) x SU(2). Giving a VEV to (12,2) the broken global SU(2) can combine with the 
broken local 5U(2) and give us the unbroken global group 5U(2) == 5p(l). This is the 5p(l) that 
appears in (4.37). Furthermore once we have the coset space (4.37) we have to analyse the rest 
of the coset spaces from the magic square column: 

To analyse the coset space (4.37) let us determine the curve associated with E7 by deforming 
the E6 curve (4.17) that we determined earlier. Our first attempt to determine the curve using the 

27 Observe however that the third homotopy groups of SU(2) and SU(3) are bath given by 

1t3 (SU(2») = 1t3 (SU(3)) = Z (4.36) 

and therefore SU(3) theory can also allow non-trivial constrained instantons. It would be interesting to study the manifold 
associated with this setup. 
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following values of the variables in (3.7): 

{l, k, h, J, g} = {z, Z2, ~3, Z3, Z5}, (4.39) 

can only tell us the discriminant behavior at Z = O. To determine the curve at any generic point 
z i= 0 we can deform (4.17) to the following curve: 

i =;3 -; (2Z3 + M Z2 + N z + p) 

+ _1_ (Qz4 + RZ3 + Sz + T) (1 - ~ log z + ... ) (4.40) 
864 2' 

where M, N, ... , etc., are written in terms of SO(l2) Casimirs (see [47] for details). The dis­
criminant locus that we can realise here will be: 

(4.41) 

and therefore would show an E7 singularity. On the other hand, we would not be able to re­
alise the maximal S0(12) x SU(2) subgroup here. The curve (4.40) will reftect the following 
subalgebra: 

su(6) EB su(2) EB u(l) (4.42) 

where the SU(2) is the same SU(2) symmetry that gets broken completely to give us an unbroken 
global SU(2) in (4.37). Also as expected the 12 and 32 of S0(12) decomposes as: 

(4.43), 

under SU(6) x U (1). The monodromy matrix is now different from (4.29) that we had earlier for 
the E6 case. It is given by 

(-2 -3) 
-1 -2 ' 

(4.44) 

although the same dyonic point is enclosed. The two monodromy matrices (4.29) and (4.44) 
differ by the monodromy matrix (6 ~) as expected. 

As before the manifold (4.37) is not quite the quaternionic manifold that we are looking for. 
Our aim is to get the non-compact version of this. Therefore using the compact and non-compact 
generators of E7 we can construct the following manifold: 

E7(-5) 
(4.45) 

S0(12) x SU(2) , 

which is the required quaternionic manifold falling in the classification of Alekseevskii [3]. In 
this classification the manifold (4.45) is known as V (l, 4) manifold, and should be generated 
from a Kahler space via the c-map. So the question is: can we derive the Kahler space associ­
ated with (4.45) using our argument of partial gauging? From the technique developed in earlier 
sections, we have to look for the U (1) subgroup of the ungauged group in the global symmetry. 
Here the ungauged group is S0(12) whose subgroup is clearly SU(6) x U(1). Therefore from 
the sequencing of the magic square, we can predict the Kahler space to be: 

SO*(12) 

SU(6) x U(1)' 
(4.46) 

which when acted by the c-map will generate (4.45). The other coset spaces associated with the 
magic square can also be easily generated using the arguments of the previous sections. The final 
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magic square sequence for E7 will be given by: 

Sp(3) 
SU*(6) 

Sp(3) 

SO*( 12) 

SU(6) x U(l) 

E7(-5) ! 

SOC 12) x SU(2) 1 

63 

which is consistent with the classification [3]. Observe that to go from the second element from 
the left of the sequence to the third element we use the r-map. This is universal for the whole 
magic square. 

4.3. Es quaternionic space 

Our next exceptional global symmetry that we want to study here is Es. This is straightfor­
ward (modulo sorne subtlety that we mention below) from aIl the considerations of the previous 
sections. The extended Dynkin diagram is now given by: 

From here the relevant allowed maximal subalgebras are 

e7 EB su(2), so(16), sueS) EB su(S), su(3) EB e6, su(9), (4.47) 

out of which only two of them, namely, so(16) and e7 EB su(2) are also symmetric subalgebras. 
We can now easily ignore the SOC 16) subgroup because we are looking for constrained instantons 
associated with the SU (2) group. Again constrained instantons exist because Jl'3 (~~) = 1. The 

248 of Es then decomposes as28 : 

248 = (1,3) + (133, 1) + (56, 2), (4.48) 

under E7 x SU(2) subgroup. Once we give an expectation value to (56,2) we can break both 
the local and global SU(2)s to give us an unbroken global SU(2). Therefore the final symmetry 
group E7 x SU(2) is completely global and we can now gauge the SU(2) subgroup. Constrained 
instantons can exist for the SU(2) theory, and they are fibered over the base manifold: 

Es 
E7 x SU(2)' 

(4.49) 

which gives us the quatemionic Kahler manifold associated with Es global symmetry. 
There are few other details we cou Id consider parallei to the details associated with other En 

groups studied above. First is the existence of Seiberg-Witten curve for Es global symmetry that 
could be described here by deforming the E7 curve (4.40). This deformation is simple and is 

2S Observe that 248 is the dimension of the adjoint representation of Eg. This is the smallest representation of Eg. There 
is no smaller fundamental representation. This would mean-from our earlier analysis of the potential in (3.1 )-we can 
no longer use the argument of the quaternion li being in fundamental of the global Es. However since there is no simple 
Lagrangian formulation of this the ory, an absence of fundamental representation may not pose an issue in constructing 
the vacuum manifold. lndeed as we will show below, there is a possible alternative way to verify that the moduli space 
of these instantons do not change when we work with the adjoint representation of Es. We will deal with this issue in 
more details in the se quel to this pa·per. 
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explained in [47]. The curve therefore is: 

y: =;3 _ (z2T2 + O(Z2)); - [2 Z5 + Z4( T6 + T26
T
4 + ... ) + O(Z3) l ( 4.50) 

where ~ are S0(16) Casimirs. For more details the readers can refer to [47]. The manifest 
subalgebra that one gets from analysing the curve is neither so(16) not e7 EB su(2) rather it is: 

su(7) EB su(2) EB LI (1), (4.51 ) 

w hi ch in turn means that the breaking pattern of E7 global symmetry is not directly to (4.51) but 
through an intermediate su(8) subalgebra. In terms of the corresponding groups this is: 

E7 ---+ SU(8) ---+ SU(7) x U(l), (4.52) 

under which S6 and 133 should be decomposed. The associated monodromy matrix containing 
the same dyonic point is: 

(-3 -5) 
-1 -2 ' 

(4.53) 

under the decomposition (4.52). Using this monodromy matrix one can construct the other gen­
erators of E7 non-perturbatively. 

As before the quaternionic manifold of interest is not quite (4.49). We have to look for the 
non-compact version of this. This is given by: 

ES(-24) 

E7 x SU(2) 
(4.54 ) 

and is known as V (l, 8) manifold in the classification of Alekseevskii [3]. The associated Kahler 
manifold should have the necessary U (l) coset as predicted in (4.5). Gauging the U (1) will 
correspond to the semilocal strings. The Kahler manifold therefore is: 

E7(-25) 

E6 x U(l)' 
(4.55) 

which under c-map will reproduce (4.54). Similarly (4.55) should come from the r-map of a real 
coset space according to (4.5). The final sequence therefore should be: 

F4 
E6(-26) E 7(-25) ES(-24) 

F4 E6 x U(1) E7 x SU(2) 

which is again consistent with the existing classification [3]. In addition to the above scheme, 
observe that the generators of the En exceptional groups appearing in the magic square can be 
alternatively formulated in the following way [45]: 

E6 = SO(8) + SU(3) + 6 x 7 = 28 + 8 + 6 x 7 = 78, 

E7 = SO(8) + Sp(3) + 12 x 7 = 28 + 21 + 12 x 7 = 133, 

Es = SO(8) + F4 + 24 x 7 = 28 + 52 + 24 x 7 = 248, (4.56) 

where the existence of SO(8) = Spin(8) has to do with the underlying triality symmetry [45] and 
the Lie groups in (4.56) are precisely the F4, C3 and A2 groups appearing in the magic square. 
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Finally, before ending this section, let us come back to the issue of Es representation that 
we discussed briefly at the beginning. An alternative way to verify that we have the correct one­
instanton moduli space is to use the adjoint hypermultiplets of N = 2 gauge theory. The Es 
global symmetry can be enhanced to Es gauge symmetry by changing the Seiberg-Wittencurve 
(4.50) to a new one. The curve for this case takes the following general form [59]: 

Î 
/1-

Y+-+Pn(x;Uj)=O, 
y 

(4.57) 

where Pn is a polynomial in x of order dim (R), and Ris the adjoint representation of Es; Y in 
(4.50) and y differ at most by the polynomial Pn. The other terms occuring in (4.57) are defined 
as follows: 11 == Ah where h is the dual Coxeter number of Es and A is the Pauli-Villars scale. 
The functions U j, j = l, 2, ... , 8 are the fundamental Casimirs of Es with the top Casimir us 
has degree h. By changing (4.50) to (4.57) we have actually enhanced the susy to N = 4. Now 
it is well known that for Es small instantons in N = 4 gauge theory the moduli space is indeed 
given by (4.49), thus confirming our above analysis. 

4.4. F4 quaternionic space 

The final example of exceptional global symmetry is F4 whose propertie~ are not very dif­
ferent from ail the other En examples that we have been studying so far. In fact F4 symmetry is 
very close to the exceptional E6 symmetry. One hint cornes from the folding relation between 
the Dynkin diagrams of E6 and F4: 

fulJlI1g ,. • 

Such similarity between the Dynkin diagrams is also reflected in the corresponding Seiberg­
Witten curves near z = 0 point. The curves for F4 and E6 have the following structures: 

group k(z) lez) h(z) fez) g(z) 

F4 z2 z z2 z3 z4 

E6 z2 z z2 z3 z5 

where we have referred to only the highest order polynomials for a given coefficient. Clearly the 
singularity structures of both the curves would then be very similar. Indeed the discriminant of 
F4 curve is given by: 

(4.58) 

which is identical to the E6 curve (4.11). The distinction between the two curves come from 
analysing points z =1= O. The fundamental representation of F4 is 26-dimensional whereas üie 
fundamental representation of E6 is 27, so they differ by a singlet. The maximal subalgebras of 
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F4 can be extracted from the extended Dynkin diagram of F4: 

1 3 4 

c-------o-------e e 

by cutting the diagram at various points. This will give rise to the following subalgebras: 

so(9) , su(3) EB su(3), su(2), sp(3) EB su(2), g2 E9 su(2), (4.59) 

out of which we will only keep sp(3) E9 su(2) subalgebra because we want to keep the symmetric 
subgroups. Clearly the group G2 x SU(2) corresponding to the maximal subalgebra g2 E9 su(2) 
is not symmetric, and therefore we will not quotient F4 by this subgroup. Under Sp(3) x SU(2) 

subgroup the 26 of F4 decomposes as 

26 = (6,2) + (14,1). (4.60) 

Giving VEV to (6,2) we can break the global and local SU(2)s to have an unbroken SU(2). 
Since JT3 (sJc\») = 1, the constrained instantons will be fibered over the following quaternionic 
manifold: 

Sp(3) x SU(2) , 
(4.61) 

which is a compact manifold by construction. The manifold that we are concerned about is the 
non-compact version of(4.61). This is given by: 

Sp(3) x SU(2) , 
(4.62) 

which is also known as V (l, 1) manifold in the classification of Alekseevskii [3]. The Sp(3) part 
of the subgroup Sp(3) x SU(2) used for quotienting F4 is ungauged. To construct the relevant 
Kahler manifold associated with (4.62) we need the symmetric subgroup of Sp(3). From [38] 
we see that there is one unique subgroup: SU(3) x U (1) == U (3) containing a U (1). This means 
that for a theory with Sp(3) global symmetry semilocal strings can exist by gauging the U (l) 
subgroup. This immediately gives us the corresponding Kahler manifold associated with (4.62): 

Sp(3, R) 
(4.63) 

SU(3) x U(1) 

from which (4.62) can be generated by a c-map. The real manifold associated with (4.63) can 
be similarly constructed by looking into the symmetric subgroup of SU(3) that does not have 
an U (1) factor. This subgroup is SO(3) [38], and therefore the magic square sequence for F4 
symmetry will be: 

SO(3) 
SL(3, R) Sp(3, R) F4(+4) 

SO(3) U(3) Sp(3) X SU(2) 

where SL(3, R) is the non-compact group associated with the compact group SU(3). The Kahler 
manifold (4.62) is the real image of the second coset from the left of the magic square. 1t is also 
interesting to note that the 52 of F4 can be connected to spin(8) == SO(8) in the following way: 

F4 = SOCS) + SO(3) + 3 x 7 = 28 + 3 + 3 x 7 = 52, (4.64) 
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which is much like (4.56) described earlier. Finally, to determine the sigma-model description of 
the quatemionic manifold (4.61) or (4.62) we will need the F function that describes the metric 
of the Kahler manifold (4.63). This will be deterrnined in Section 4.5.2. 

4.5 .. Other examples of quaternionic spaces 

After describing the complete magic square in terros of constrained instantons and possible 
other semilocal solitons, let us now use the same procedure to study other coset spaces in string 
theory. 

4.5.1. Example 1: U (p) local symmetry and SU(n + p) global symmetry 
Our first exarnple is for aU (p) gauge theory with a global symrnetry SU (n + p). The extended 

Dynkin diagram for such a symrnetry is 

2 3 n+p-I n+p 

which will give us a syrnmetric subgroup of SU(n) x SU(p) x U(I) [38]. The existence of the 
extra U (1) factor commuting with SU (n) group can be directly explained from the corresponding 
gauge theory dynamics (see [34] for details). 

The above theory can also be realised in the Seiberg-Witten setup by slightly modifying the 
present scenario. First of aIl we need a genus g = p - 1 curve instead of genus one curves that 
we have been studying so far. The construction of such a curve is very weIl known [60] so we 
will be brief. The curve for N = 2 U (p) gauge theory with SU(n + p) global symmetry is [60]: 

[ 

p n]2 l= x P + LSiXP-i +AP-nLgixn-i _AP-nxn+p , 

;=2 ;=0 

(4.65) 

where A is the Pauli-Villars scale and (Si, gi) are sorne constants that depend on the pararneters 
of the theory. The exponent of A is evaluated as: 

AI(RA)-I(RM) , (4.66) 

where I(RA ), I(RM) are the Dynkin indices of the adjoint representations of vector multiplet 
and representations of matter hypermultiplets respectively [61]. 

The vacuum manifold of this theory will be a Stiefel manifold V n+p,p [25] which is a space 

of p-frames in Cn+p . This is isomorphic to S~t(~r). At low energy the sigma model target space 
. therefore will be given by the following manifold: 

CG n = SU(n + p) 
( ,p) - SU(n) x SU(p) x U(I)' 

(4.67) 

which is nothing but the manifold constructed by modding out U (p) gauge orbits from the Stiefel 
manifold. This irnmediately implies: 

Vn+p,p ~ U(p) ®f CG(n, p), (4.68) 

where the subscript f irnplies non-trivial fibration. Thus the Stiefel manifold is a U(p) bundle 
.over a Grassmanian manifold. The quatemionic extension of the above case is to consider the 
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complex Grassman manifold CG(n, 2). This is denoted as Gr2(Cn+2) in (1.1). For our purpose, 
however, we need the non-compact version of this space. This is given by: 

SU(n, 2) 
(4.69) 

SU(n) x SU(2) x U (1)' 

The constrained instantons will be non-trivially fibered over (4.69) in the theory. The manifold 
(4.69) can be mapped to the corresponding Kahler space by gauging a VO) subgroup of the 
unbroken group. The Kahler space corresponding to (4.69) is: 

U(n - 1,1) 

U(n-l)xV(1)' 
(4.70) 

where (4.70) and (4.69) are related by a c-map as expected. Observe that the unbroken subgroup 
in (4.70) is U(n - 1) == SU(n - 1) x V(l). To get the corresponding real manifold-that could 
be related to (4.70) by an inverse r-map--we need a subgroup of V(n - 1) that does not have a 
SV(2) or an V (1) factor. This is not possible, so our simple role tells us that there could be no 
non-zero-dimensional real space associated with (4.70). This can be confirmed (see for example 
[23]). The sequence therefore is: 

0 0 
V(n-l,l) SV(n,2) 

V(n-l) x V(1) SVen) x V(2) 

which fits into Alekseevskii classification [3] as weU as the recent completion [23]. Notice that 
for n = 1 there is no Kahler space. 

4.5.2. Example 2: SU(2) local symmetry and SO(p + q) global symmetry 
Our next ex ample is almost self-explanatory. This is a SU(2) Seiberg-Witten theory with 

SO(p +q) global symmetry. The symmetric subgroup of SO(p +q) from any of the two extended 
Dynkin diagrams (related to Bn and Dn): 

x 

x 

is SO(p) x SO(q). Therefore taking SO(7) global symmetry, or more appropriately, SO(3,4) 
global symmetry we can easily find constrained instantons in the theory that are fibered over the 
following quatemionic space: 

SO(3,4) 
(4.71) 

SU(2) x SU(2) x SV(2) . 

The steps to generate Kahler space associated with semilocal strings is also evident: we have 
to mod the non-compact version of SOC 4) global symmetry by V (1) x U (1) symmetry. The 
manifold therefore is . 

[
SU(l, })J2 

UO) , 
(4.72) 
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so that gauging one of the U(1) we can get semilocal strings in our theory. Manifolds (4.72) 
and (4.71) are related by a c-map. The real manifold associated with (4.72) is clearly 500, 1). 
The sequence therefore is: 

2 

rUCl,oj 
50(3,4) 

0 50(1,1) 
[SU(2)1 3 U(l) 

which fits consistently with the de Wit-Van Proeyen completion [23] of Alekseevskii's classifi­
cation [3]. 

Let us consider one more example that is in the same vein as our previous example. For 
this case we take p = q = 4 so that our non-compact global symmetry is 50(4,4). Clearly 
the maximal (and symmetric) ·subgroùp is 50(4) x 50(4) :: [5U(2)]4, so that the constrained 
instantons are fibered over the following quaternionic manifold: 

50(4,4) 
(4.73) 

50(4) x 50(4) 

where we have, as usual, gauged a 5U(2) subgroup of the maximal group. The ungauged sub­
group therefore is 50(4) x 5U(2) :: [5U(2)]3 whose non-compact version would be [5U(1, 1)]3. 
To determine the Kahler manifold we have to gauge an U(l) subgroup of [5U(1, 1)]3 so that we 
are studying semilocal strings. The Kahler manifold will have more or less the same coset struc­
ture as (4.72) discussed above because the ungauged subgroups are of the same form as above. 
Following this trend, the sequence of manifolds that we now expect are: 

0 [SO(1,I)] 2 [SU(l,l)j ~ SO(4,4) 

U(1) SO(4) x SO(4) 

which again fits perfectly with the classification of [23]. The zero-dimensional manifold in the 
last box of the sequence is expected because the real manifold does not have a coset structure. 
In fact so long as p ~ 4, q ~ 4 we do not expect to get a non-zero-dimensional manifold. This 
should give us a hint that if we choose a more generic global symmetry from the start, then maybe 
we could get a non-trivial manifold in the last box of the corresponding sequence. This is indeed 
the case if we choose p = P + 4, q = 4 with P any integer. The sequence of manifolds are rather 
straightforward to determine and they are of the following form: 

SO(P,l) SO{P+l,ll x SO(1,1) SU(l,I} x. SO(P+2,21 SO(P+4,4) 
SO(P+l) U(l) SO(P+2) x SO(2) SOCP+4) x SOc 4) 

where we see that we .do get a manifold in the last box from which we can get the real, Kahler 
and quaternionic manifolds by various possible mappings. Needless to say, the above sequence 
fits with the classifications of [3,23]. 

4.5.3. Example 3: New sequence of Kiihler manifolds in the magic square 
Our final example is a ratlier curious one. Let us look at the third row of the magic square 

containing the elements associated with E7, etc.: 

Sp(3,R) SU(3,3) SO*(12) E7(-25) 

SU(3) x U(1) SU(3) x U(3) SU(6) x U(l) E6 X U(l) 
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By construction these are aH Kahler manifolds that are related to the corresponding semilocal 
strings (observe the V(1) quotients). An inverse r-map to each of these cosets will give us the 
corresponding real manifolds that we studied in the earlier sections. For example for the unbroken 
E6 subgroup of (4.55) has the following symmetric subgroups: 

SV(6) x SV(2), S0(10) x V(1), Sp(4) , (4.74) 

out of which we have used F4 to construct the real manifold E6~~26) • The other subgroup SV (6) x 
SV(2) was used in a different example to construct a quatemionic manifold (which is of course 
unrelated to this sequence of magic square). So we can ask the following question: what if instead 
of(4.55) we want to construct coset space associated with SO(10) x V (1) symmetry? This would 
mean that we are again looking for semilocal strings for a V(1) gauge theory with E6 global 
syrnmetry. For such a case the associated coset space will be: 

E6(-14) 
(4.75) 

S0(10) x V (1) , 

which was first conjectured by [4]. Here we see that there is a natural way to justify29 the exis­
tence of such coset space! But this is not the end of the story. Let us look at the next element in 
the above row of the magic square. The symmetric subgroups of SV (6) are: 

Sp(3), SU(4) x SU(2) x U(l), SU(4), SU(3) x U(3) (4.76) 

where Sp(3) was used earlier to build a real space sg~~~) whereas SU(3) x U (3) was used in a 
different sequence of the magic square to construct a Kahler manifold (4.32). Out of the remain­
ing ones we can build a new non-compact coset space: 

SV(4,2) 
(4.77) 

SU(4) x SU(2) x U(1)' 

which in fact does exist in supergravity literature as target space of sorne sigma model of N = 2 
supergravity. Thus a new sequence, not realised directly in the magic square, will be: 

SU(2,1) SU(2,1) x SU(2,1) SU(4,2) E6(- I41 
U(2) SU(2) x U(2) SU(4) x U(2) SO(lO) x U(l) 

which could in principle be embedded in the magic square using the Rozenfeld-Tits construc­
tions [7]. For sorne more details about these U(1) quotients the readers may want to look up [26]. 

4.6. A 'note on holomorphie F -funetions 

In the previous subsections we discussed the issue of F -functions that could be used to de­
termine the metric on the quaternionic Kahler manifolds. In this section we will complete the 

29 One can view the coset (4,75) as a plane in the sense of projective geometry. The elements of this plane belong to 
certain Jordan pair such that one can define points and lines along with an incidence relation among them. It turns out 
that the group E6(-14) acts transitively on points and the stability group ofa fixed point is SO(lO) x U(l), thus realising 
the correspondence between the plane and the coset space (4.75) (see [62] for details). 
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Table 2 
Rank 2 homogeneous special real spaces and their corresponding rank 3 and rank 4 Kahler and quatemionic spaces 
respectively associated with the magic square 

X(P, q) Real H(P, q) Kahler V(P, q) Quatemionic 

X(l,I) SL(3, R)/SO(3) H(l,I) Sp(3)/ U (3) V(I,I) F4/Sp(3) x SU(2) 
X (1,2) SL(3, C)/ SU(3) HO,2) SU(3, 3)/SU(3) x SU(3) x U(I) V(l,2) E6/SU(6) x SU(2) 
X (\,4) SU*(6)/Sp(3) H(1,4) SO*(\2)/SU(6) x U(Il " V (l, 4) E7/S0(12) x SU(2) 
X(l,8) E6/ F4 H(1,8) E7/ E6 xU(I) V(l,8) Es/ E7 x SU(2) 

analysis by postulating the procedure to determine the F -function for any given Kahler mani­
folds. Although the following analysis is standard (see for example [5,23]) the F -functions for 
En and F4 cases have not been explicitly presented anywhere.30 

Throughout this section, we use the canonical parametrization introduced by [23] and the third 
reference of [16] but where all indices are shifted by one unit in order to fit our notation. The 
indices A, B, C = 2, ... , n + 1 have been decomposed into indices 2, 3, J.L and m, where J.L and 
m take respectively q + 1 and r values. 

From [23], we know the form of the cubic functions C(h) in terms of scalar fields hA associ­
ated to the real manifolds of rank 1 and 2: 

C(h) = dABChAhBh c = (h 2)3 _ ~h2(ha)2 
2 

+ ~{ (h3)3 _ 3h3((h/L)2 _ ~(hm)2) + ~j)(Y/L)mnh/Lhmhn}, (4.78) 

with a E {3, ... ,n + 1} and where the gamma matrices (Y/L)mn are viewed as r x r matrices 
generating a (q + l)-dimensional Clifford algebra denoted C(q + 1,0). 

The coefficients dABC can also be used to describe Kahler manifolds.31 By imposing the 
following conditions on the symmetric tensor dABC [23]: 

1 
d333 = ~' (4.79) 

we construct the holomorphic functions F(X
'
), in terms of complex variables X', associated to 

Kahler manifolds that are in the image of an r-map: 

XAXBXC 
F(X' ) = idABC Xl 

. { 11} = ;1 (X2? - 2"X2(Xa )2 + ~(X3)3 + 3(Y/L)mn X /L XmXn . (4.80) .. 

As explained in the third reference of [16], these conditions constrain the allowed values of q to 
1,2,4 and 8. Since r = 2q and n = 3(q + 1) for Kahler manifolds, these are exactly the spaces 
corresponding to the magic square with n = 6,9, 15,27 [4]. 

These Kahler manifolds are respectively associated to the Jordan algebras J 3(R), J3(C), 
J\H), and J 3(0). They were classified in [5]: the Kahler H(P, q) spaces generate quatemionic 

30 See however Eqs. (3.38) to (3.42) in the recent paper [63]. We thank Sergio Ferrara for pointing this ta us. It will be 
interesting to relate these values to the ones that we determine here. 

31 Note that the use of the canonical parametrisation defines the tensor dABe up to arbitrary O(n ...: Il rotations. 
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Table 3 
C (q + 1,0) represents real Clifford algebras, K (n) are n x n matrices with en tries over the field 
K and D q+ 1 represents the real dimension of an irreducible representation of the Clifford algebra 

q C(q+l,O) 

1 R(2) 

2 C(2) 

4 H(2) x H(2) 

8 R(16) x {R x R} 

Table 4 
Classification of generating matrices of Clifford algebras 

Algebra Matrix dimensions 

C2 2x2 

C3 2x2 

C4 4x4 

Cs 4x4 

C6 8x8 

C7 8x8 
Cg 16 x 16 

C9 16 x 16 

Dq+l 

2 
4 
8 

16 

Generating matrices 

iO'2, iO'3 

0'1,0'2,0'3 

iYI, iY2. irJ. iY4 
iljJj,}=1.2,3 .... ,6 
r/>j.}=1.2,3 .... ,7 
wi·j=1,2,3, ... ,8 
iWj.}=1.2,3 .... ,9 

V(P, q) spaces [3] under c-map. This in tum emerge from the real X(P, q) manifolds under the 
r-map [23] (see Table 2 for a list of relevant coset spaces). 

The trivial case q = 0 with n = 3, which is also generated by the above restriction, is part 
of the Kahler K(P, ft) space and is associated with W(P, ft) quatemionic manifolds. P and ft 
represents the multiplicity of each irreducible representations of the Clifford algebras which are 
listed in Table 3: 

We restrict our study to q > 0 cases. In order to classify aIl F -functions associated to H (P, q), 
one needs to considér aIl gamma matrices generating a (q + l)-dimensional real Clifford algebra 
with positive metric. This classification was done in [64], see Table 4 above for the relevant 
cases. 

Solutions are characterised by specifying the multiplicities P and ft of each irreducible rep­
resentations of the Clifford algebras. In all cases we will discuss, we will consider ft = 0 and 
P = 1. The generating matrices ai used in the above table are simply the Pauli matrices: 

al = (~ ~), 0'2= (~ ~i), 0'3 = (~ ~1)' (4.81) 

The Yi matrices are the Dirac Gamma matrices made out of the sigma matrices in the standard 
way. The ifJi matrices are in tum made of the Yi matrices in the following way: 

( 
0 

ifJ' = 
J -iYj 

j=1,2,3,4,5. 

(4.82) 
Finally the IDj are similarly constructed using the ifJj matrices in exactly the same way as above 
with j running from j = 1, 2, ... , 7. The other two matrices IDg and ID9 are constructed by 18 
like ifJ6 and ifJ7, respectively. 

We associate Cn with C(q+2). Hence, C3 is associated to R(2) E C(q + 1, O)q==l, C4 to C(2), 
etc. This association allows us to generate a (q + 1)-dimensional Clifford algebra with r x r 
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basis that satisfy simultaneously the condition imposed in (4.79) on the gamma matrices, i.e., 
(YJl)mm = O. Thus, say we have al, aZ, a3 and we impose the condition (aJl)mm = 0, the term 
(aJl)mn will therefore be equal to zero when it cornes to a3 and we will be Jeft with two (2 x 2) 
matrices, i.e., al, aZ to span R(2) as required. 

We are now ready to construct the F(X I ) holomorphic functions for each Kahler spaces 
associated to the magic square. For the Kahler space associated with Gzcoset we already gave 
the F -function in (3.27), and for the coset associated with Sp(n + 1) we know that there is !l0 
Kahler space (see Section 3.1 for details). 

• Kahler space H(l, 1): 
For H(l, 1), q = l, r = 2 and n = 6. Hence A, B, C = 2, ... ,7. In addition, JL E {4, ... , 7} 
and takes exactly q + 1 values say JL = 4, 5 whereas m E {4, ... , 7} and takes r values for 
instance m = 5, 6. The quantity a takes all values in {3, ... , 7}. The matrices generating the 
Clifford algebra R(2) E C3 would be al, aZ according to the previous argument and we shaH 
rename them ail' Furthermore F(X I ) == -iX I F(X I ): 

F(XI) = (XZ)3 _ ~XZ(X3)Z _ ... _ ~XZ(X7)Z + _1 (X3)3 
2 2 ~ 

+ 3(a4)mn X4Xm Xn + 3(as)mn Xs Xm Xn. (4.83) 

• Kahler space H(l, 2): 
For H(l, 2), q = 2, r = 4, n = 9, JL E {4, ... , 1O} and takes 3 values say 4,5,6 and mE 
{4, ... , 1O} takes 4 values say 7,8,9, 10. a E {3, ... , 1O} and the Clifford algebra would be 
generated by Y2, Y3, Y4 which we rename YJl: 

F(XI) = (XZ)3 _ ~XZ(X3)Z _ ... _ ~X2(XlOf + _1 (X3)3 
2 2 ~ 

+ 3(Y4)mn X4 Xm Xn + 3(Ys)mn Xs Xm Xn + 3(Y6)mn X6Xm Xn. (4.84) 

• Kahler space H(l, 4): 
For H(l, 4), q = 4, r = 8, n = 15, JL E {4, ... , 16} and takes 5 values say 4,5,6,7,8 and 
mE {4, ... , l6} takes 8 values say 9,10, Il, 12, 13,14,15,16. a E {3, ... , l6} and the Clif­
ford algebra would be generated by five (8 x 8) elements of C6, i.e., i1Jj with j = 1, ... ,5 
which we rename i1JJl: 

F(X I) = (x 2)3 7 ~X2(x3)2 _ ... _ ~XZ(XI6)2 + _1 (X 3)3 
2 2 ~ 

+ 3i(1J4)mn X4Xm X n + ... + 3i(1JS)mn X8 X m Xn. (4.85) 

• Kahler space H(l, 8): 
For H(l, 8), q = 8, r = 16, n = 27, JL E {4, ... , 28} and takes 9 values and mE {4, ... , 28} 
takes 16 values. a E {3, ... , 28} and the Clifford algebra would be generated by nine (16 x 
16) elements of C9, i.e., üJj with j = 1, ... ,9 which we rename üJJl: 

F(XI) = (XZ)3 _ ~X2(X3)2 _'" _ ~X2(X28)2 + _1 (X3)3 
2 2 ~ 

+ 3(üJ4)mn X4 Xm Xn + ... + 3(üJ IZ)mn X 12 Xm Xn. (4.86) 
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The above analysis therefore summarises aIl the F -functions that we need to determine the 
Kahler spaces. To get the corresponding quatemionic spaces, we use the metric given in (3.29) 
for each of the four cases. With this therefore we have the complete picture of aIl the quatemionic 
and the Kahler manifolds in the magic square. 

5. Summary, discussions and future directions 

In this paper we hopefully gave a new way to study the magic square in mathematics and 
string theory that is not based on the dimensional reduction of supergravity theories. Our method 
relies on the existence of constrained instantons in certain N = 2 gauge theories with excep­
tional global symmetries. These theories are no! asymptotically free and are at strong coupling. 
This means that a simple Yang-Mills description may not suffice and we might even lack a La­
grangian description of the se theories. Nevertheles~ we have ample evidence that these theories 
exist: via Seiberg-Witten curves, F-theory and possible quatemionic formulations of low energy 
descri ptions. 

Viewing them as sectors of Seiberg-Witten theories, the exception al global symmetries form 
non-trivial fixed points of renormalisation group flows. This is weIl known and they lead to the 
following sequence of theories: 

(5.1) 

Our idea of sequential gauging is partiallY motivated by the above sequence. The SU(2) con­
strained instanton which is also a semilocal instanton for our case is constructed by gauging 
an SU(2) subgroup of the global group. The U(l) part of ungauged global group--that also 
contains the monodromy associated with a dyonic point-is then further gauged to construct 
semilocal strings in the mode!. These two process give us quatemionic and Kahler spaces that 
are related by a c-map. Once we have these spaces, the real space associated to the Kahler space 
can be easily constructed. 

Our whole analysis therefore depends on the existence of one instanton moduli space in these 
theories. In the absence of a proper Lagrangian description we cannot give a concrete construc­
tion of these instantons solutions of course, but moduli space can still be constÎucted. Existence 
of Seiberg-Witten curves also means that we have added aIl the instanton contributions in the 
path-integral. Recall that the instanton contributions to the Seiberg-Witten prepotential Fsw can 
be written as: 

1 00 f Fsw = Fclassical + Fone-Ioop + 2Jri L we-s A k
(4-NF), 

k=lMk 

. (5.2) 

where Mk is the moduli space of k-instantons, w is the volume form, S is the instanton action, 
NF is the number of flavors and A is the same Pauli-Villars scale that we used earlier. It is 
therefore an interesting question to ask how instantons in these gauge theories with En, F4 global 
symmetries give us the right Seiberg-Witten curves. Note however that if one breaks the En 
symmetry by giving masses to quarks and keeping the gauge coupling finite, one may hope to 
get a convergent expression for the instanton partition function. However, to show that an analytic 
continuation to the En symmetric point would make sense, requires more work.32 We leave this 
aspect for future work. 

32 We thank Nikita Nekrasov for comments on this. 
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Another interesting direction is to look for theories with exceptional gauge symmetries. lnci­
dentally one instanton moduli spaces will be the same for these theories-its just an embedding 
of SU(2) in exceptional gauge groups33_but the corresponding curves will be different. We gave 
one example before. Another ex ample would be a theory with F4 gauge symmetry. Such a theory 
with one massless hypermultiplet has the following Seiberg-Witten curve34 [61]: 

(5.3) 

where bi are the projections of the weights: (1000), (-1100), (0-111) and (00-11). It would be 
interesting to study these theories with more than one massless hypermultiplets. 

One final issue is the classification of de-Wit and Van-Proeyen [23] that completes Alek­
seevskii's classification of quatemionic manifolds [3]. We have shown that we can reproduce aIl 
of Alekseevskii's symmetric manifolds and few more of de-WH and Van-Proeyen aIso. However 
we have not investigated enough to see whether we could reproduce aIl other manifolds in the 
classification of [23]. In tàct its an interesting question to ask whether these manifolds have a 
coset structure like the other manifolds in the classification. We leave this for future work. 
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Chapter 5 

CONCLUSION 

In this work, we classified aH symmetric non-compact quaternionic manifolds us­

ing SU(2) gauge theory with global symmetries. We reproduced the results of 

previous classifications and found a new set of Kahler manifolds. Future directions 

involve a detailed analysis of how the group SU(2) is embedded in 9 = Sp(n+ 1) 

and in the exceptional global symmetry groups. In a sequel to this paper, we 

will also be studying the fibration of semilocal defects on Kahler manifolds. In 

addition to confirming the new set of Kahler manifolds we proposed, Ferrara's 

paper [35] also suggested several other new sequences of manifolds beyond the 

magic square that we would like to reproduce using our method. The new se­

quence of Kahler manifolds that both Ferrara and us found has different physical 

meanings. In Ferrara's case, these spaces represent moduli spaces of non-BPS 

attractors with vanishing central charge whereas in our case they are related to 

the moduli spaces of semilocal defects. We are looking forward to explore if a 

possible gaugejgravity correspondence exists between the two models. 
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Appendix A 

COMMENTS ON THE DERIVATION OF 

HOLOMORPHIC FUNCTIONS FOR MAGIC 

KAHLER MANIFOLDS 

Non-linear sigma models corresponding to real (n-1) dimensional spaces in five 

space time dimensions are characterized by cubic polynomials C (h) in n real 

variables 

(A.O.1) 

where A, E, C = 2, ... , n + 1 and the scalar fields hA are restricted by C(h) = 

1. One can dimensionally reduce such a theory to four space-time dimensions 

and find non-linear sigma models corresponding to Kahler spaces of complex 

dimensions n, characterized by a homogeneous holomorphie function F(X) of 

second degree, depending on n + 1 complex variables 

XAXBXC 

F(X) = idABc Xl (A.O.2) 

where Xl and X A are complex variables. In three space-time dimensions, one 

finds a non-linear sigma model corresponding to a quaternionic manifold of quater­

nionic dimension n+ 1. There exists a class of quaternionic manifolds whose struc­

ture is encoded in the homogeneous holomorphie function of the special Kahler 

manifold. The map between special Kahler manifolds of complex dimension n and 

certain quaternionic manifolds of quaternionic dimension n+ 1 is called the c-map. 

The map between Kahler manifolds and real manifolds is denoted the 'T'-map [25]. 



A-ii 

In [25], De \Vit and Van Proeyen classify all homogeneous quaternionic spaces 

that are in the image of the cor map. Their analysis if performed completely at 

the level of the real spaces, and amounts to classifying all the cubic polynomials 

C(h). To do so, they first classify aH dABC tensors for real manifolds. These 

tensors are completely symmetric and satisfy the relation 

r abcd Da.bc;d (A.O.3) 

where a, b, . .. take n - l values {3, ... , n + l} and where we have the following 

definitions 

r abcd I I À -

( e(abdcd)e iU(abOcd) 

Dabc;d de(abAc)e;d 

vVe define the canonical parametrization as 

1 

o 

(A.OA) 

(A.O.5) 

(A.O.6) 

(A.O.7) 

(A.O.8) 

In the case of Kahler manifolds, the tensors dABC satisfy a similar relation than 

the one for real spaces, namely 

rabcd 

o 

where the canonical parametrization is still applied. 

(A.O.9) 

(A.O.IO) 

For the real and Kiihler manifolds, the authors of [25, 21] argue that it is 

always possible ta bring the tensors dabc into a form such that 

(A.O.ll) 

(A.O.12) 

where the indices run over tt E {4, ... ,n+ l} and mE {5, ... ,n+ l} where 

ft =1= m. \Ve let ft take q + 1 indices and m take r indices. The Kiihler case needs 



A-iii 

to satisfy the additional property d abb O. In particular, it differs of the real case 

by the fact that 

dabb = 1 (r 2q) dp,bb = d l1mm (A.O.13) 

with T = 2q, so that n 3(q + 1), and dwmm 0 [25]. Having split the indices 

{3, ... , n + 1} into {3, p, m}) we find that b =1= 3 runs over p and m, thus we get 

the conditions daiL1L = 0 and damm O. 

In the case of real manifolds, De Wit and Van Proeyen find that the only 

non vanishing value of dabc lS d,Lmn' Using the fact that the tensors d abc can be 

concisely summarized by the cubic pol:ynomial [25, 21] 

(A.O.14) 

we can collect aIl the non vanishing values of the real manifold tensor we find 

Y(X) (A.O.15) 

where cl iLwn satisfies the defining relation of the generators of a Clifford algebra 

and can thus be expressed as gamma matrices according to 

(A.O.16) 

Considering the above cubic polynomial and adding the canonical parametriza­

tion, one can construct in a straightforward way the C (h) functions characterizing 

the real manifolds 

C(h) (A.O.17) 

~J3bl1)mnhl1hmhn } (A.G.18) 

where the gamma matrices ("fl1)mn are viewed as T x r matrices generating a 

(q + 1 )-dimensional Clifford algebra [25J. 

Playing the same game for Kahler manifolds, we can construct the associated 

Y(x) polynomial from the conditions listed above. We find 

Y(x) = ~x.~ + 3diLmn.'DI1XmXn (A.G.19) 



A-iv 

Adding to this the canonical parametrization, the F(X) functions take the form 

The conditions imposed for Kahler manifolds severely constrain the dimensions 

of the Clifford algebra. In fact, [25, 21] show that the only allowed values are 

q = 1,2,4,8. Since this theory has the relation n = 3(q + 1), this leads to 

n = 6,9,15,27 which are exactly the dimensions of a special kind of Kahler man­

ifolds called magic Kahler manifolds. These manifolds are found in the magic 

square. 

Hence, what is left in order to complete our classification of the F(X) func­

tions of magic Kahler manifolds is to consider r x r gamma matrices generating a 

(q + 1 )-dimensional Clifford algebra. Such a classification already exists and can 

be found in [49, 50]. Recall however that for the Kahler cases we also need to 

respect the additional property that r = 2q. 

Lets consider an example in detail. Take for instance H(l, 1) = Sp(3)jU(3). 

We know in this case that q = 1 since H(P, q) = H(l, 1). Recall from Section 4.6 

of [24] that the index P indicates the multiplicity of the irreducible representation 

of the Clifford algebra. Since q = 1 we use the relation r = 2q and n == 3( q + 1) 

to find that r = 2 and n = 6. Since a E {3, ... , n + l}, a runs from 3 to 7. 

Implementing this information into (A.O.20) we find 

_ (X2)3 _ ~X2(X3)2 _ ~X2(X4)2 _ ~X2(X5)2 
222 

~X2(X6)2 - ~X2(X7)2 + 3( rIL)mnXIL X m X n 

(A.O.2l) 

(A.O.22) 

where F(X I ) = -iF(X I
). Next we look for 2 x 2 matrices generating a certain 

2-dimensional Clifford algebra. We find them in a higher dimension al algebra, 

namely C3 (see Section 4.6 of [24]) and show that we can set one of the matrix to 

zero so that it respects the conditions (A.O.13). Thus, we get two Pauli matrices 



Î 

and find the final form of F(X 1) 

F(X I ) (X 2)3 ~X2(X3)2 - ~X2(X4f 
2 2 

1 

~X2(X6f ~X2(X7f + 
2 2 

+ 3(cr4)mnX4xmxn + 3(cr5)mnX5 X mX 71 

A-v 

(A.O.23) 

(A.O.24) 

(A.O.25) 

where ft takes q + 1 values 

4 and 5. 

2, amongst {4, ... , 7} that were chosen here to be 

THE END 




