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RÉSUMÉ 

Leishmania est un parasite membre des Trypanosomatidae qui cause la 

leishmaniose, une maladie à transmission vectorielle qui afflige des millions de personnes à 

travers le monde. Ces parasites comportent un grand nombre de processus cellulaires et 

moléculaires particuliers en raison de leur divergence ancienne dans l'évolution des 

eucaryotes. Dernièrement, une nouvelle famille de rétroposons courts intercalés et 

dégénérés CS/DER) a été identifiée dans le génome de Leishmania major. L'observation 

d'un grand nombre de SIDER dans les régions régulatrices et le fait que ces éléments 

peuvent déstabiliser l'ARNm démontrent l'assimilation apparente des éléments SIDER par 

le génome de Leishmania. Ces découvertes ont entraîné des analyses génomiques à grande 

échelle de la structure et de la fonction des SIDER. Dans la présente thèse, nous décrivons 

diverses approches comparatives dans le but de caractériser davantage ces répétitions 

intercalées. La première partie décrit une nouvelle méthode d'amélioration de la prévision 

des régions non traduites de l'ARNm chez Leishmania. La deuxième partie de la présente 

thèse détaille la création de profils statistiques élaborés pour l'optimisation de l'alignement 

de séquences et pour la représentation des sous-familles d'éléments SIDER. En combinant 

ces outils avec des recherches génomiques intraspécifiques et interspécifiques pour L. 

major, L. infantum et L. braziliensis, nous sommes en mesure de cibler des séquences 

fonctionnelles présumées pour des analyses in-silico additionnelles. Nous démontrons que 

deux classes de SIDER sont fragmentées et dispersées de façon disproportionnée à travers 

les génomes de trois espèces de Leishmanias. Les estimations antérieures de la distribution 

génomique des SIDER sont corrigées, tandis que des spéculations sont énoncées en ce qui a 

trait à la fonction évolutive de ces rétrotransposons assimilés. 

Mots clés: ARN non-codant, génomique comparative, Leishmania, polyadénylation, 

rétro transposons, trans-épissage. 
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ABSTRACT 

Leishmania is the trypanosomatid parasite that causes leishmaniasis, a vector-bome 

disease that afflicts millions of people worldwide. These parasites bear many distinctive 

cellular and molecular processes ensued by their early divergence in the evolution of 

eukaryotes. Recently, a novel family of short interspersed degenerated retroposons 

(SIDER) has been identified in Leishmania major. The apparent assimilation of SIDER 

elements by the Leishmania genome has been substantiated by the observation that SIDERs 

are largely abundant in regulatory regions and by the fact that these elements can reduce 

mRNA stability. These findings have prompted an in depth genomic analysis of SIDER 

structure and function. In this thesis, we convey various comparative approaches with the 

aim of further characterizing these interspersed repeats. The first part describes a novel 

method for improving the prediction of mRNA untranslated regions in Leishmania species. 

In addition, the second portion of this thesis details the creation of refined statistical 

profiles for the optimal alignment and profiling of SIDER elements. Combining these tools 

with intra- and inter-genomic scans in L. major, L. infantum, and L. braziliensis, we are 

able to target putative functional sequences for further in-silico analyses. We show that two 

SIDER classes are fragmented and unevenly scattered throughout the genomes of three 

Leishmania species. Previous distribution estimates are rectified and possible evolutionary 

functions of these assimilated retroposons are discussed. 

Keywords: comparative genomics, Leishmania, non-coding RNA, polyadenylation, 

retroposons, trans-splicing. 
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INTRODUCTION 

As DNA sequencing technology keeps progressing, the collection of sequenced 

genomes is rising at a staggering rate. Deciphering such copious amounts of genomic data 

undoubtedly requires sophisticated computational tools capable of high-throughput 

screening. The advent of bioinformatics is an outcome that now plays a crucial role in 

further understanding the concealed details and discrepancies of the genetic code. As a case 

in point, this work focuses on the application of particular computational tools to address 

specifie biological problems entailed by the recent genomic sequencing of Leishmania 

major, Leishmania infantum, and Leishmania braziliensis [1]. 

1. THE PROTOZOAN PARASITE LEISHMANIA 

The term protozoan originates from the Greek words protos (first) and zoon (living 

being). It designates a large group of single-ceUed eukaryotes that are members of Protista, 

one of the five kingdoms of life. Many ofthese organisms are among the most enigmatic of 

all known species, conspicuously at the level of cellular biology. A plethora of odd 

morphologies, specialized organelles, and purposeful structures substantiate their extensive 

evolution and environmental adaptation. The unusual genetics underlying such 

evolutionarily distant species make many protists ideal candidates for discovering novel 

mechanisms of genetic regulation. 

Not aU protozoa are free-living microorganisms, such as those that can be observed 

by examining pond water under a microscope. Indeed, the organisms spotlighted in this 

work form a strictly parasitic genus infamous for plaguing humans and other mammals in 

tropical and sub-tropical climates worldwide. The following subsections will present an 

overview of the epidemiology and molecular biology of the Leishmania genus; a member 

ofthe Trypanosomatida family and Kinetoplastea order. 



2 

1.1. Leishmaniasis, a vector-borne disease 

Leishmania parasites cause a diverse spectrum of disease resulting from their 

pathenogenicity and from the host's immune response [2]. It is estimated that nearly 2 

million children and adults develop symptomatic ailments, and the incidence of infection is 

considerable when considering asymptomatic infections [3]. Given that more than 90% of 

cases occur in third-world countries, leishmaniasis is considered a neglected disease as 

insignificant financial gain fails to encourage anti-Ieishmanial drug development [4]. 

Recent reports indicate that leishmaniasis is now an emerging zoonosis in the United States 

[5-7]. 

1.1.1. Historical considerations 

Dum Dum, India - 1901. A Scottish professor from Glasgow named Sir William 

Leishman examines a pathological specimen from the spleen of a deceased British soldier. 

The latter was experiencing bouts of fever, anemia, muscular atrophy, and a swollen spleen; 

symptoms of what was then termed 'kala-azar', the Hindi word for 'black fever'. Upon 

inspection, Sir Leishman discovers ovoid bodies in the sample and describes the associated 

illness as 'Dum Dum fever'. His findings were published in 1903, almost simultaneously 

with the similar yet independent discoveries of Irish physician Charles Donovan (Figure 

1). The parasitic species was dubbed Leishmania donovani and is now known as the 

causative agent ofvisceralleishmaniasis [8]. 

Figure 1. Sir William Leishman and Dr Charles Donovan 

Adapted from [8]. 
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Leishmaniasis presents a variety of pathologies, which range from spontaneously 

healing skin lesions, to horrific destruction of mucocutaneous membranes and deadly 

splenomegaly (Figure 2). Descriptions of les ions highly comparable to these symptoms are 

dispersed throughout historical records, the most ancient probably consisting of tablets 

from the library of the Assyrian King Ashurbanipal from the 7th century BC (which may in 

turn be derived from earlier texts dating back as early as 1500 to 2500 BC) [9]. 

Figure 2. Pathophysiology of leishmaniasis 

Typical pathological manifestations of Leishmania spp infection: visceral (left), cutaneous (middle), 

and mucocutaneous (right). Adapted from [10]. 

1.1.2. Life cycle 

Not before 1941 will the mode of transmission properly be identified as the bite of 

the hematophagous female Phlebotomus sand flies (male sand flies typically feed on plant 

nectar) [11]. These insects constitute the vector of the disease by transmitting the parasitic 

protozoa from one animal ho st to another, thus perpetuating its life cycle (Figure 3). 

Contaminated sand flies will inadvertently in je ct parasites into the tissue and/or 

b100dstream of the host when feeding. The extraneous protozoa are subsequently ingested 

by phagocytic leukocytes in which they will evade the host' s immune response for an 

uncertain time period . 
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Figure 3. Life cycle of Leishmania sp. 

Adapted from [10). 
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At this point, Leishmania cells experience acidic stress within the phagolysosome in 

addition to the temperature stress consequent to the change of canier (ambient temperature 

to body temperature). The typically toxic environment inside the phagolysosome will 

prompt massive restructuring of the parasite's molecular makeup, ensuing in its 

differentiation into what is tenned the amastigote stage. Remarkably, not only will the 

amastigote cells survive in such harsh environmental conditions, they will eventually 

multiply to a point where the enveloping cell will be breached, disseminating the 

pathogenic cells throughout the surrounding tissue. 

When a roaming phlebotome ingests blood from an infected animal, any 

amastigotes present in the meal will respond to the new environment by differentiating 

back into the flagellated promastigote fonn and migrating to the sand fly's salivary glands. 

Rence, the cycle is complete. 
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1.1.3. Treatments and emerging drug resistance 

There is hope for a vaccine against Leishmania based on the observed fact that 

successfully cured initial infections generally lead to protection against further infection 

[12]. However, current treatments are derived from chemotherapy and resistance to many 

drugs is approaching pandemie proportions [13]. The high-cost and toxicity of such drugs 

has propelled vaccine development for particular strains in humans and animaIs [14,15]. 

Hope for discovering novel drug and vaccine targets stems from the recently fully 

sequenced genomes ofthree Leishmania species. 

1.2. On the edge of eukaryota 

Given that an abundance of kinetoplastids are parasitic, inc1uding all 

trypanosomatids, these species are constantly subject to strong selection pressures in order 

to evade host resistance mechanisms. Evidently, parasitized host species must counter­

adapt to the invader's exploitation by increasing the speed or efficiency of pathogen 

recognition and eradication. The entailing mutual antagonism encourages coevolution of 

both species; one of the many facets of exploiter-victim dynamics (reviewed in [16]). In 

spite of this, single-celled parasites have a slight edge in the ensuing arms race which arises 

from their relative1y short generation time. Considering these facts, it cornes as no surprise 

that trypanosomatids exhibit faster evolutionary rates than non-parasitic or asymbiotic 

species. 

Leishmania and other members of the kinetoplastea order exhibit structural and 

biochemical peculiarities that alienate them from other eukaryotes (detailed in section 1.3). 

Phylogenetic analyses postulate that trypanosomatids and related species branch out near 

the base of the evolutionary tree of eukaryotes [17-19]. These dec1arations are derived from 

the consensus of multiple phylogenies, yet remain speculative in nature. The faster 

evolutionary rate of trypanosomatids may bias the construction of molecular phylogenies 

[20,21]. In fact, rooting the eukaryotic tree implies overcoming data sampling and 

methodological intricacies which may never truly elucidate the veritable branching point of 

ancestral eukaryotes [22,23]. Kinetoplastids are nonethe1ess generally considered to be an 
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ancient class of protozoa, an affirmation substantiated by organelles and molecular 

properties remnant of prokaryotic ancestors. 

1.3. A peek at trypanosomatid bi%gy 

The most distinctive feature oftrypanosomatids is the kinetoplast organelle; a dense 

mass of intermingled circular DNA contained within the single mitochondria of all 

Kinetoplastidae [24,25]. Trypanosoma brucei presents the only proven instance of genetic 

exchange in trypanosomatids. The species is also the only known eukaryote that inherits 

kinetoplast DNA (kDNA) from both parents via the poorly understood recombination of 

maxicircle kDNA [26]. Although the diploid nuc1ear genome of most trypanosomatids is 

reason for the existence of sexual reproduction [27], clonaI procreation is seemingly the 

regular form of proliferation [28]. Leishmania reproduces by binary fission. 

Trypanosomatids are model organisms for discovering and studying novel 

molecular, biochemical, and cellular mechanisms given their evolutionary standing. Many 

distinctive characteristics are shared between Leishmania and Trypanosoma, which differ 

mainly in the size of their average inter-CDS length at the genomic leve1 [29]. The 

following subsections de scribe biological mechanisms of Leishmania and of most 

trypanosomatids that are pertinent to this work. 

1.3.1. Directional gene clusters 

The foremost genomic characteristic that alludes to Leishmania's evolutionary 

seclusion is the tandem arrangement of genes (see chromosome maps at GeneDB website 

[30]), much like that of bacterial operons [31-33]. The L. major genome contains 133 

clusters oftens to hundreds of coding sequences on the same strand ofDNA, also known as 

DGCs, distributed throughout 36 chromosomes [34]. Resemblance to prokaryotes is 

striking when considering the virtual absence of introns. In fact, only four cases of genes 

containing introns have been reported to date in Leishmania major [34,35]. Albeit such 

resemblance, neighbouring genes generally display incongruent expression profiles in 

Leishmania. 



7 

1.3.2. Lack of transcription al control 

As a general conception, positive regulation of gene expression occurs mainly at the 

level of transcription initiation in higher eukaryotes (reviewed in [36]). Leishmania and 

other kinetoplastids are deviants of eukaryotic transcription with regards to this standard, as 

transcriptional control of protein-coding genes appears aberrant if not altogether absent 

[37,38]. Leishmania has homologues of all three RNA polymerase core sub-units, yet 

transcriptional activators, co-activators, basal transcription factors, and other polymerase 

components cannot be easily identified [34,39]. So far, no conserved promoters have been 

elucidated for trypanosomatid RNA polymerase II, which is accountable for synthesising 

mRNA [40,41]. Moreover, sorne experiments have demonstrated that transcription 

initiation is possible in the absence ofpromoters [38,42,43]. 

Transcription initiation, however, is not a random process in Leishmania protists. It 

has been shown that transcription initiation has a certain affinity for divergent strand switch 

regions; the 0.9- to 14-kb non-coding regions preceding opposite strand DGCs [32,44,45]. 

These locations display skewed sequence composition which may play a functional role in 

transcription initiation [46]. It has also been shown that convergent strand switch regions 

may be involved in transcriptional termination [44]. The RNA polymerase II complex 

transcribes DNA bidirectionally from these regions, generating long polycistronic RNA 
~ , 

transcripts which can attain half a chromosome in length [31,32]. Individual rnRNA 

transcripts are subsequently excised from the precursor RNA via trans-splicing (reviewed 

in section 1.3.3 and Figure 4). Although there is evidence for unspecific antisense 

transcription in Leishmania [38], nuclear run-on studies have demonstrated that 

transcriptional orientation is controlled by termination (i.e., RNA polymerase II aborts 

transcription promptly in anti-sense orientation) [47]. 

In light of these observations, it cornes as no surpnse that regulation of gene 

expression occurs largely at the post-transcriptional level. The discovery of many RNA­

binding domains [34,48], regulated processing of cytoplasmic RNAs [49], and conserved 

regions in 3'UTRs [50-54] are hard evidence that corroborates this statement. Several 

studies have shown that sequences within 3 'UTRs regulate differential expression of the 
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upstream gene mainly by modulating rnRNA stability [53-58] or translational efficiency 

[50,59-62], although other mechanisms may exist (reviewed in [51,58]). It is noteworthy to 

mention that RNAi machinery has been identified and is apparently functional in 

Leishmania braziliensis [1 ,51]. Conversely, RNAi is believed to be absent in other 

Leishmania species where most antisense approaches to reverse genetics seem to work 

poorly [63]. 

.... ~dm .. __ - ::OQ&RfE::-------AAAAA 
~~~~"""",,--AAAAA 
~~~""~·]JijJl,,---AAAAA 
r=w=- ORF ____ ---AAAAA 

Figure 4. Overview of rnRNA processing in Idnetop/astidae 

Following polycistronic transcription possibly mediated by strand-switch regions, (1) the intergenic 

region is targeted by the spliceosome complex, which binds to a poly-pyrimidine tract (YYY) and 

catalyses the ligation of a ncRNA downstream of an AG dinucleotide. (2) Once the -39 nt splice 

leader is added, the hypothetical polyadenylation complex cleaves sornewhere upstream and adds the 

poly(A) tail in a spliceosome-dependent manner. (3) The complexes free the trans-spliced rnRNA, the 

intergenic spacer is released for possible degradation, and rnRNA is exported to the cytoplasm. 

1.3.3. Trans-splicing of mRNA transcripts 

Trans-splicing consists of the joining of exons from two distinct RNA transcripts in 

order to yield a chimeric transcript. The process was fust discovered in Trypanosoma 

brucei, the causative agent of African trypanosomiasis (a.k.a. sleeping sickness) [64]. When 

studying the rnRNA transcripts of variant surface glycoproteins, the same 39 nt conserved 
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sequence was common to all 5' extremities of mRNA sequences. Subsequent discoveries 

showed that the conserved 5' sequence was present in all trypanosomatid mRNAs and that 

this leader sequence mapped to tandem c1usters on a single chromosome [65,66]. Only 

when a Y-branch intermediate molecule was identified during pre-mRNA maturation 

experiments was trans-splicing properly understood [67,68]. Since this discovery, trans­

splicing has been reported in many other species and is believed to carry out various 

biological functions, such as RNA processing irregularities, gene expression regulation, and 

generation of diversity (reviewed in [69]). 

The 39 nt miniexon originates from a small, highly abundant ncRNA referred to as 

the SL RNA. These 135-147 nuc1eotides (nt) long structured RNAs are transcribed by RNA 

polymerase II and withhold a hyper-modified cap structure referred to as cap-4 since four 

nuc1eotides after the 7-methylguanosine are methylated [70]. SL RNAs in Leishmania are 

characterized by three stem-Ioop structures (Figure 5). The first contains the mini-exon 

which is bounded by the canonical GU splice donor site. This region may be implicated in 

SL-specific methyltransferase binding, as mutations in Leptomonas seymouri inhibited 

trans-splicing and proper cap formation [71]. The other two stem-Ioops are part of the 

intronic sequence and bear structural similarity to the Sm-binding sequence of U-rich 

snRNAs, although they lack sequence conservation [72,73]. The Sm-binding sequence of 

snRNAs is recognized by core proteins of the spliceosome complex, namely Sm proteins 

(reviewed in [73]). The catalytic process of trans-splicing is much similar to cis-splicing, in 

which two consecutive transesterification reactions are catalyzed by a large 

ribonuc1eoprotein complex called the spliceosome [74]. The main difference between 

trans- and cis-splicing resides in the formation of a Y-branch instead of a loop intermediate 

resulting from the fusion of the exogenous RNA transcript (Figure 5). 

Several studies have demonstrated that polyadenylation is essentially linked to 

trans-splicing of the downstream gene [75-81]. When trans-splicing is inhibited, 3' end 

formation and polyadenylation are not observed [76]. Furthermore, a 'scanning' model has 

been proposed for 3' end formation and polyadenylation based on the discovery that the 

polyadenylation site moves in tandem with the trans-splicing position [75]. Together with 

the observation that polypyrimidine tracts are crucial for targeting both processes [77-82], 
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Figure 5. Structure of the SL RNA and trans-splicing in Kinetoplastidae 

(A) Consensus secondary structure of the SL RNA in kinetoplastids. The approximate position of the 

GU 5' splice site (5' SS) is identified by the arrow in the fust stem-Ioop (si 1). (B) Schematic, 2-step 

illustration of trans-splicing. The fust step (1) shows branch-point formation by spliceosomal 

transesterification of the 5' SS with the hydroxyl group on the 2' carbon of the ribose backbone, 

commonly an adenosine. The second step (2) illustrates the transesterification reaction that swaps the 

3' hydroxyl from the splice leader (SL) to the 3' end of the Y -structure intermediate, thus connecting 

the SL to the exon. The Y-structure intermediate will subsequently be cleaved before polyadenylation. 

Adapted from [73]. 
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These findings suggest that the spliceosome complex interacts with the polyadenylation 

machinery in trypanosomatids. Although little is known about the molecular perpetrators of 

this association, it has been shown that the UI snRNP is crucial to the coupling of cis­

splicing and polyadenylation in higher eukaryotes [83], hence suggesting that a similar 

process may exist in Leishmania. 

Contrasting with the AAUAAA cytoplasmic polyadenylation sequence in higher 

eukaryotes, trypanosomatids have no known consensus motif that drives polyadenylation 

downstream of coding regions [34]. Polyadenylation seems to occur within a specific range 

of the trans-splicing site [75], however there are reports that distant polypyrimidine tracts 

can drive polyadenylation further upstream [79,82]. 

2. REPETITIVE GENETIC SEQUENCES 

DNA repeats (homologous DNA fragments that are present in multiple copIes 

throughout the genome) have been subject to innumerable studies over the years. They 

were discovered 40 years ago via reassociation kinetics experiments and were immediately 

classified into two categories: 'highly' and 'middle' repetitive sequences [84]. These two 

groups bear analogy to the current classification of such elements as either tandemly 

repeated DNA or interspersed repeats. For sake of clarity, 

2.1. Tandemly repeated DNA 

Tandemly repeated sequences, commonly referred to as satellites, are relatively 

short and practically identical contiguous patterns ofDNA ranging in size from 2. The terrn 

satellite originates from the behaviour of DNA in caesium chloride density gradients. The 

distinct nucleotide composition of short repeats pro duces a secondary or 'satellite' band 

when separated from genomic DNA. Satellite DNA is usually confined to specific 

chromosome locations propagating by replicational slippage and recombination [85]. 

Minisatellites and micro satellites are relatively small repeats of 1-5 nt and 5-25 nt 

respectively whereas macro satellites are heavier repeats of 25 or more nucleotides. The 

classification of repeats gets taxonomically delicate when dealing with larger repeat units 
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which can also be replicated by gene converSion and transcriptional slippage [86], 

potentially duplicating regulatory regions and protein-coding segments as frequently 

observed in trypanosomatid genomes [1,29]. Tandemly repeated DNA is prone to slipped­

strand mispairing, a phenomenon that occurs when complementary regions are mispaired 

during RNA replication. This process causes high variability in the total length of the 

tandem repeats among different individuals of the same species, making them supreme 

candidates for genetic profiling. 

Repetitive DNA plays an important role in chromosome structure, namely by 

characterizing telomeric and centromeric regions. Telomeric regions consist of DNA 

tandem repeats located at chromosome extremities, which are essential for preventing loss 

of genetic information from incomplete DNA polymerase replication during the late S 

phase of mitosis. Interestingly, the reverse transcriptase (RT) domain of the telomerase 

enzyme encloses structural similarity to the RT ofretroposons [87]. This implies that either 

the telomerase enzyme is a retroviral gene that has been domesticated by a eukaryotic 

ancestor, or that the retro virus RT gene originated from a telomerase enzyme. Centromeres 

are important in cell division since they are responsible for proper chromosome pairing and 

kinetochore formation. The centromeres of higher eukaryotes are generally composed of 

large tracts of tandem repeats, although sorne exceptions in S. cerevisiae and parasitic 

protozoans indicate that centromeres are not necessarily satellites [88-90]. There is 

evidence that subtelomeric repeats may have centromeric properties in Leishmania [91,92]. 

2.2. Interspersed repeats 

A second class of repetitive DNA encompasses a much broader and complex group 

of genetic elements known as interspersed repeats. In contrast to tandem repeats, the repeat 

units of interspersed repeats are separated by varying stretches of genomic sequence. 

Interspersed repeats are in most cases known as transposable elements (TEs), although not 

all such repeats are of mobile nature. TEs were first discovered by Barbara McClintock in 

1950, three years before the molecular characterization of DNA by James D. Watson and 

Francis Crick [93,94]. Today, active TEs have been identified in almost every known 

species, with the possible exception of Plasmodium falciparum [87,95]. There are two great 
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categories of TEs: DNA transposons and retrotransposons. The latter is divided into two 

classes: long terminal repeat retro transposons and non long tandem repeat (LTR) 

retrotransposons (or retroposons). AlI TEs can be either fully autonomous, relying on their 

own encoded machinery to transpose, or non-autonomous, relying on proteins hijacked 

from related autonomous TEs to carry out their transposition. 

2.2.1. DNA transposons 

DNA transposons are mobile genetic elements that can propagate themselves 

throughout the genome. In their simplest form, DNA transposons comprise three 

components: target site duplications at their extremities, coding sequence for the 

transposase enzyme, and inverted repeats between these components [96]. Once transcribed 

and translated into its protein form, the transposase binds to either a specific sequence or to 

unspecific sequences (depending on the type of transposase) and to the termini of the 

transposon DNA. It then makes a staggered cut at the target site producing 'sticky ends', 

cuts out the transposon and ligates it to the target site [97]. Genomic DNA polymerase and 

ligases complete the process by repairing the target sites. This cut and paste mechanism 

does not directly produce multiple transposon copies; duplication may occur during the S 

phase of the cell cycle when the original site has been duplicated but the target site has not. 

There is a noticeable absence of DNA transposons from the sequenced nuclear 

genomes of five protozoan parasites (e.g., Leishmania major, Trypanosoma brucei, 

Trypanosoma cruzi, Giardia Lamblia, and Plasmodium falciparum) [90]. Although only 

five genomes were compared, it has been proposed that this DNA transposon deficiency 

may be a result of the tight control of cell membrane traffic in these species. Since 

mutations in transposon DNA directly affect their competence, frequent horizontal transfers 

to virgin genomes are important for transposons to maintain their function [98,99]. It is 

worth mentioning that there are additional varieties of DNA transposons in other 

eukaryotes which code for additional genes, such as DNA binding proteins. Sorne of these 

other DNA transposons include rolling-circle transposons named helitrons and complex, 

multi-gene encoding polintons (reviewed in [87]). 
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2.2.2. Retrotransposons 

The majority of TEs in eukaryotic genomes transpose via an RNA intennediate. 

LTR retro transposons are very similar to retroviral genomes in that they may encode three 

ORFs, including a reverse-transcriptase and/or integrase gene [100]. In general, upon 

transcription of the retrotransposon DNA from cellular polymerase Il, the rnRNA transcript 

is reverse-transcribed into cDNA that is subsequently inserted into the genome by an 

integrase [10 1]. These retrotransposons can fonn virus-like particles in which most of the 

transposition process takes place. No such retrotransposons have so far been identified in 

Leishmania species [1], although a class of LTR retroelements known as VIPER has been 

identified in sorne species of Trypanosoma [102,103]. 

2.2.3. Retroposons 

Non-LTR TEs are commonly referred to as retroposons or long interspersed 

elements (LINE). They may contain one or two ORFs, generally RT and endonuc1ease 

(EN) genes and a RNA polymerase promoter region upstream [96]. The mode ofreplication 

of non-LTR retrotransposons is weil studied and somewhat less intricate than that of LTR 

retrotransposons [104]. The EN protein cleaves a single strand of the target DNA that will 

be used as a primer for the direct reverse-transcription of the TE's rnRNA into the 

chromosome. A second single-strand nick is perfonned by the EN nearby on the opposite 

strand in order for the cell's DNA polymerase Il to synthesize the complementary strand, 

thus duplicating the genomic sequence between both nicks at each retroposon extremity. 

Target site duplication and the poly-A tail of the RNA intennediate, which is copied to the 

newly synthesised retroposon, are hallmark sequences ofnon-LTR retroelements. 

Trypanosomatids abound with various retroposons. It is estimated that -3% of the 

nuclear genomes of Trypanosoma brucei and Trypanosoma cruzi harbour TEs [105]. These 

active TEs generally display insertion site-specificity [106-108] and include SLACS/CZAR 

[108], ingilRIME [109,110], and L1TcINARTc [111,112] retroposons. Two other 

potentially active retroposons have also been identified in Leishmania braziliensis: a 

SLACS/CZAR homolog and the telomere-associated transposable element [1]. Leishmania 

major and Leishmania infantum are believed to lack active retroposons, but harbour 
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remnants of active transposons [53,113]. One of which, the SIDER element, represents the 

most abundant TE presently characterized in trypanosomatids. The extinct SIDERs do not 

display apparent site-specificity for genomic integration, yet they are preponderantly 

distributed in the intergenic regions of DGCs [53]. Figure 6 outlines the structural 

properties and similarities ofvarious trypanosomatid retroposons. 
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Figure 6. Trypanosomatid retroposons 
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Retroelement names underlined in bold represent autonomous elements, the others being non­

autonomous truncated elements. Grey boxes represent conserved sequence identity; hatched boxes 

correspond to a 79 nt conserved 'signature' sequence whereas white boxes correspond to A-rich 

sequences rernnant of a rnRNA intermediate. Tb = T. brucei, Tc = T. cruzi and Lm = L. major. 

Modified from [53]. 

2.3. Evolutionary and regulatory considerations 

The discovery of TEs and tandem repeats was somewhat ignored for many years 

due to the po or understanding of their features. They were initially called 'controlling 

elements' based upon their effect on phenotypic variation and were even speculated to 

modulate entire metabolic pathways by shuffling regulatory sequences [114,115]. However, 

little was known about their biological function prior to the era of DNA sequencing, and 

they were initially labelled as selfish DNA elements that survive by parasitizing genomes 
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[116, Il 7]. It is now recognized that a significant portion of eukaryotic genomes are 

composed of TEs: In humans, 40% of the genome is composed of characterized mobile 

genetic elements, while coding sequences are estimated to encompass only 1,5% [118,119]. 

Similar proportions have been reported in maize [120] and at least 15% of the Drosophiia 

genome contains TEs [121]. It is estimated that ~3% of the trypanosome genome consists 

of TEs [105], notwithstanding that initial experiments presaged over 30% of the genome to 

contain tandem and/or interspersed repeats [122]. The degenerated SIDER elements of 

Leishmania coyer ~3% of the genome alone, and their distribution strongly invokes 

functional assimilation [53]. The profusion of transposable elements in eukaryotes and 

increasing evidence that TEs supply novel regulatory and evolutionary material to genomes 

has altered the assumption that TEs are merely selfish genetic parasites [87,123]. 

The importance of TEs in forging eukaryotic genomes is highlighted by their 

contribution to gene regulation. In humans, there is strong evidence that thousands of 

fragments of mobile elements have undergone strong purifying selection in constrained 

non-exonic regions near genes involved in regulation of transcription and development 

[124]. It is evident that particular regions derived from interspersed repeats have been 

preferentially domesticated into cis-regulatory functions [124-126]. This evolutionary 

process seems to have also arisen in Leishmania species, where TEs are frequently located 

in 3'UTRs and regulate gene expression at the mRNA level [53]. Recent studies have also 

demonstrated that TEs conceal many transcription regulation signaIs in humans, such as 

transcription factor binding sites, that were not present in the original promoters of target 

genes [127]. Similar observations have been reported in Trypanosoma cruzi where the 

LI Tc (and the non-autonomous NARTc) retroposons drive transcription initiation via the 

mobile element's internaI RNA polymerase II promoter [128]. Interestingly, the promoter 

region is contained within the 79 nt signature sequence of trypanosomatid retroposons 

(Figure 6), yet there are no similar reports in Leishmania as yet. 

In addition to regulation of gene expression, repetitive DNA sequences are believed 

to perpetrate a variety of evolutionary phenomena, such as chromosome restructuring, 

somatic gene recombination, sexual determination, reproductive isolation, gene-silencing 
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mechanisms, and ev en host extinction through sex-ratio distortions (comprehensibly 

reviewed in [87,129]). 

3. COMPUTATIONAL TOOLS FOR SEQUENCE ANALYSIS 

The following sections cover sorne fundamenta1 notions underlying the 

computational methods and data representations inherent to this work (chapter II in 

particular). Multiple sequence alignrnent (MSA) and hidden Markov models (HMMs) are 

of central importance to this work. The former is used to emphasize the similarities and 

variations ofrelated genomic sequences (in this case, the Leishmania sp. SIDER elements), 

while the latter are employed for representing sequence data in MSAs and genomic se arch 

queries. In addition, this section presents a surnrnary of various RNA structure prediction 

tools ev en though they are not implicitly incorporated into this thesis. Their description is 

included since RNA structure predictions is an ideal objective and a logical succeeding of 

the work presented in the following sections. These tools are presented in a straightforward 

manner given the generally arduous mathematical, statistical, and algorithrnic concepts they 

embody. An overview of typical computational methods for prediction of rnRNA 

boundaries in trypanosomatids is discussed in Chapter 1. 

3.1. Multiple sequence alignment 

Arguably the most important tool for studying evolutionary relationships is the 

alignrnent of biological sequences. Certain genes can be conserved among divergent 

species, performing identical functions or acquiring novel characteristics in accordance 

with natural selection. The arrivaI of protein and nucleic acid sequencing enabled biologists 

to peer into the structure and composition of the molecules that carry out the fundarnental 

processes of life. By aligning a group of related genes or sequences, the patterns of change 

can be analyzed to gain structural, functional, and evolutionary information on their nature. 

On the whole, multiple sequence alignrnent algorithrns attempt to optimise the 

arnount of similar characters (usually nucleic or amino acid) in the same colurnn of an 

alignrnent. Sequence conservation directly influences the efficiency of multiple alignrnent 



18 

algorithms. Highly similar sequences can be easily aligned without computational 

assistance, whereas sequences displaying profuse variation consume much more resources. 

Indeed, poody conserved sequences require comparing massive amounts of combinations 

in order to pro vide an optimal alignment. 

Since the biological function of RNA and proteins depends on three dimensions of 

structure, a perfect MSA should take such structural considerations into account for these 

molecules (discussed in section 3.3.2.). Also, the evolutionary re1ationship between 

sequences should be considered in such a pro gram. Most MSA programs, however, only 

consider primary structure. 

3.1.1. Dynamic programming 

A global optimum can be obtained using multi-dimensional dynamic programming, 

however such algorithms are impractical for more than a few sequences as their complexity 

is exponential [130]. The MSA program implements such an algorithm which can be run on 

~ 7 protein (or nucleic acid) sequences less than 300 aa in length in reasonable time [131]. 

3.1.2. Progressive alignment 

Progressive alignment is probably the most popular MSA tool used by biologists, 

chiefly thanks to the CLUSTAL W pro gram [132]. These algorithms function by first 

pairing two sequences using pairwise alignment strategies. A third sequence, usually the 

most similar to the pair, is added to the fixed alignment represented as a nucleotide 

frequency matrix, otherwise known as a sequence profile [133]. This procedure continues 

until all sequences are aligned. Progressive alignment strategies are heuristic; the y produce 

an approximation of the optimal alignment, significantly speeding up the process as a 

consequence. In spite of this, the main caveat of these algorithms is that sub-alignments are 

fixed and cannot be modified as additional information is incorporated into the alignment. 

For the abovementioned reasons, progressive strategies generate rather poor alignments 

when sequence conservation is poor [134]. 



19 

3.1.3. Iterative refinement 

To circumvent the limitations of progressIve alignment strategies, iterative 

refinement strategies can additionally optimise sequence alignments. Once an initial 

alignment is obtained, typically from progressive methods, individual or groups of 

sequences are removed from the alignment and then re-aligned. This tactic is guaranteed to 

converge towards a local optimum because sequence space is finite [135]. A popular and 

accurate iterative refinement alignment program is MAFFT [136,137]. 

3.1.4. Probabilistic models 

In essence, probabilistic models are a thoughtful manner of representing sequence 

data. A multiple sequence alignment can be represented as a bi-dimensional matrix of 

character frequencies which, in tum, can be transformed into a hidden Markov model 

profile (see section 3.2. below). The same can be done from unaligned sequences by 

applying a variety of algorithms developed specifically for HMMs [138]. The simulated 

annealing algorithm is worth mentioning since it provides faster execution times than the 

more rigorous Baum-Welch expectation maximisation (EM) algorithm for the global 

optimisation problem. Simulated annealing finds random 'nearby' solutions to an alignment 

with a probability that decreases proportionately to a temperature factor, consequently 

ensuring that the system moves towards a global optimum [139]. The alignment produced 

from the simulated annealing heuristic can subsequently be refined via the use of Baum­

Welch EM [140]. 

3.2. Hidden Markov model profiles 

Multiple sequence alignments, e.g. a gene family, contain a wealth of comparative 

information: position-specific conservation, exon/intron lengths, consensus structure, base 

composition bias, codon usage, etc. The heterogeneous nature of su ch data requires 

comprehensive modeling in order to perform successful computational biology analyses. 

This can be achieved with hidden Markov models: statistical representations that provide a 

conceptual toolkit for building complex models from an intuitive outline of a process [141]. 
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HMMs consider aIl possible combinations of matches, mismatches and gaps in order to 

statistically characterize a multiple sequence alignment. Since they are fully probabilistic 

models, Bayesian probability theory can be used to manipulate their parameters and scores 

for a variety of analytical purposes. These properties justify why HMMs are integrated 

intoq several bioinformatics programs today. 

HMMs are aIl based on a Markov process, in which the probability distribution of 

the CUITent state is conditionally independent of the path ofpast states [142]. In a HMM, the 

state is not directly visible but the variables that influence the state are. In a MSA HMM 

profile, the different states are either 'match', 'insert' or 'deletion' (Figure 7). Each state 

has an emission probability for every possible outcome (i.e. a particular nuc1eotide residue). 

AIso, each state has a transition probability to every following state in the model. The 

model allows for any combination of states (i.e. residues) to be generated and a particular 

score will be assigned for each combination (generally a bit-score). 

A 
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Figure 7. Relationship between sequence alignment and hidden Markov models 

(A) A sample alignment of DNA nucleotides. (B) HMM profile model for MSA. Arrows indicate 

transition probabilities, and coloured boxes indicate states (M = match, 1 = insertion, D = deletion). 

Each state has its proper emission probability distributions, which deterruine the nature of the residue 

at a certain position. Interpreted from [143]. 

Besides their statistical features, HMMs are ideal computational models for 

biological sequences given their flexibility. Additional states, emission probabilities, and 

transition probabilities can be incorporated into a model, provided that the respective 

probabilities SUIn to one. However, since They are based on Markov chains, distant 



21 

correlations among non-consecutive residues are ignored. For example, HMMs are 

inappropriate for RNA secondary structure modelling since distant nucleotide pairings 

cannot be incorporated into the model [141]. 

3.3. RNA secondary structure prediction 

In molecular biology, RNA has long been seen as a simple intermediate between the 

hereditary information encoded in DNA and protein molecules that carry out the structural, 

regulatory and catalytic functions in a cell. This perception has long been known as the 

central dogma of molecular biology [144]. However, the discovery of self-splicing RNA 

led to the recognition of the catalytic capabilities of RNA molecules [145], and so opened 

the door to innovative hypotheses on the origin oflife [146]. There is now strong evidence 

that RNA is much more than a simple intermediate in the processing of genomic code, 

which has fuelled recent interest for non-coding RNA discovery (reviewed in [147,148]). 

The flexible ribose backbone and single-stranded nature of RNA cause its bases to 

form hydrogen bonds with other neighbouring bases. Such base-pairing instigates tertiary 

structure formation founded on secondary structure scaffolds. In addition to the Watson­

Crick and 'wobble' base-pairings (A=U, G=C ; G~ respectively), X-ray crystallography 

studies have identified many non-canonical structures in RNA molecules (reviewed in 

[149,150]). These distinctive structural motifs, tertiary interactions, and trans-acting 

molecules make precise 3D modeling unfeasible or at least extremely delicate. 

Another interesting property of ncRNAs is that they are not subject to the same 

evolutionary constraints as protein-coding genes. There are lots of characterized ncRNA 

molecules that, in sorne instances, bear little or no sequence identity among each other, yet 

share matching structures (tRNAs for example [151]). Drastic changes in sequence are 

often tolerated provided that compensatory mutations maintain base-pairing 

complementarity; an occurrence termed covariation. The inherent mutational flexibility of 

ncRNA allows for faster evolutionary rates than proteins, which complicates multiple 

alignment and prediction analyses. For instance, standard sequence-based alignment 

strategies completely ignore structural information content, hence proving to be rather futile 
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for sorne ncRNA sequences [152]. By considering positional covariation and structural 

predictions, certain computational tools attempt to surmount these shortcomings. 

3.3.1. Structural predictions from single sequences 

Since its origins in 1980 [153], secondary structure prediction has evolved from 

maximising base-pairing in a given sequence via dynamic programming, to incorporation 

of energy rules and probabilistic calculations [154]. The mFOLD pro gram predicts 2D 

structures by combining base-pair complementarity and experimentally acquired free­

energy values for precise RNA structures [155]. Complementary regions are evaluated by a 

dynamic programming algorithm to predict the most thermodynamically stable 

conformation. For example, stacked bases which form a helix structure will contribute to 

lower the free-energy of a molecule, whereas a destabilizing loop will contribute to raise 

the free-energy score [156,157]. Although this approach can emit sub-optimal structures, it 

does not compute aIl the possible structures within a given energy range [154]. 

A different approach to predicting ncRNA structures is to consider the probab ility 

. that each base-paired region will form based on princip les of thermodynamics and 

statisticai mechanics. Using the Boltzmann distribution to calculate the likelihood of aIl 

possible structures, the McCaskill algorithm can predict the most probable structure in 

addition to intermediate structures, base-pair opening and slippage, and temperature 

dependencies [158]. This methodology is implemented in the Vienna RNA software 

package [159,160] and can be used to create graphie al representations of RNA structures 

and energy dot-plots. As exemplified in Figure 8, these popular programs do not always 

produce correct structures. This drawback is more important when the amount of queried 

sequence increases, as this Iowers the probability that the correct structure is predicted. One 

way to surmount this problem is to con si der a comparative approach in order to maximise 

the information content of the queried sequences. 
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Figure 8. Graphical representation of RNA structural predictions 
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(A) Predicted secondary structure of a Leishmania major serine-tRNA using the RNAfold program 

from the Vienna RNA package [159]. The highlighted green box marks the GCU anticodon. (B) 

'True' biological structure of an E coli serine-tRNA obtained from the genomlc tRNA database [151]. 

The 5-stem serine-tRNA structure is highly conserved throughout the tree of life [161, 162]. Stems are 

marked as blue lines. (C) Dot-plot illustrating most probable structure (bottom half) and ail sub­

optimal structure probabilities as predicted by the McCaskill algorithm in the RNAfold program (top 

half) [160]. The bottom half corresponds to the structure in A. The size of the dots represents the 

probability of a specific base-pairing between two positions (the query sequence borders the graph). In 

this example, the optimal structure is not the true structure, yet the valid structure can be distinguished 

among the sub-optimal pairing probabilities (highlighted blue boxes correspond to potential helices). 

The anticodon position is highlighted in green along the bordering sequence of the plot. 

ç 

o 
~ 

· . · . · . 
o 

• n 
• < · ;: 

• 0 · . : ~ 
: ~ · ~ : ~ 
: . 
: i 

-
< 

· . 
• ft · . , < 



24 

3.3.2. Conserved structure predictions 

Another approach to predicting RNA structures is based on covariation analysis. Consider 

a group of related ncRNA sequences believed to share similar function and structure (i.e. a 

ncRNA gene family or cis-regulatory regions in a mRNA UTR). These sequences should 

therefore be subject to similar selection pressures. Covariation models inspect aligned 

ncRNA sequences for positions that vary together in order to form base-pairs in aU, or 

most, ofthe sequences. This targeting can aid discrimination between structural (e.g. helix) 

and non-structural (e.g. single-stranded) positions in an alignment. There are several 

programs available for performing such analyses that use different strategies and data 

representations [163-174]. A relatively simple yet effective method for identifying a 

consensus secondary structure is the RNAalifold pro gram [164,170], which integrates 

phylogenetic and thermodynamic information into a modified energy model. In a nutsheU, 

it calculates a consensus sequence for a given alignment and folds the consensus using the 

unique energy model. 

The majority of these tools emit predictions that strongly depend on the input 

alignments. Given that standard multiple alignment procedures focus on optimising 

sequence similarity, one can easily envision that ncRNA alignments may be distorted. This 

predicament is what motivates the use of structural alignment tools for identifying common 

ncRNA features. Recent implementations of the Sankoff algorithm for the simultaneous 

alignment of sequence and structure have proven to be quite successful at aligning poorly 

conserved RNA sequences [175-179]. LocaRNA [179] and FOLDALIGNM [178] are two 

very recent programs that align RNA sequences based on their structural properties by 

using the rich information content embedded in McCaskill probability matrices (c.f. Figure 

8). There also exist structural alignment programs that exploit graph theory to align ncRNA 

sequences represented as trees [180,181]. 
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4. OBJECTIVES 

It is apparent that a large family of degenerated retroposons is widespread 

throughout the genome of Leishmania species, with a notable preponderance in 3 'UTRs 

that are known to regulate gene expression [53]. These SIDER elements, subdivided into 

the SIDER! and SIDER2 groups, have only been partially characterized in Leishmania 

major and seem to have an effect on either mRNA stability or translation [50,52,53]. 

The prime objective of this work is to gain additional knowledge on the features of 

these interspersed repeats in order to elucidate their role in the developmental regulation of 

gene expression. To do so, computational tools will be applied to investigate sequence 

conservation and genomic distribution in the three Leishmania nucIear genomes sequenced 

to date. This will require constructing reliable SIDER alignment profiles for intra- and 

inter-species genomic scanning. 

Predicting structural motifs should facilitate the identification of underlying 

biological mechanisms. Given the abundance of SIDERs in the genome, discerning 

between potentially functional and non-functional sequences is fundamental for this 

purpose. To improve structural predictions, it is thus necessary to develop and/or refine 

tools that will improve the prediction of mRNA extremities with marked emphasis on the 

3'UTR. This constitutes the second objective ofthis study. 
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CHAPTERI 

1. ARTICLE PRESENTATION 

A method for predicting trans-splicing and polyadenylation sites from genomic 

sequences was required as an initial phase for the proper characterisation of conserved 

elements in 3 'UTRs. However, existing methods are not well suited for 3 'UTR prediction 

in Leishmania. A scrutiny of public sequence libraries was performed in order to reveal 

insightful genomic characteristics that can be incorporated into refined scoring models. 

Section 2 details the findings and describes how they can contibute to improving the 

prediction of mRNA extremities in the context of rapid, large-sc ale genomic annotation. 

The study also introduces a cut down 5'UTR predictor with similar accuracy to a published 

method. 

The manuscript was submitted for publication in the first week of November 2007 

to the journal BMC Bioinformatics. Author contributions are exposed on page 42. 
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Abstract 

Background: Leishmania and other members of the Trypanasamatidae family diverged 

early on in eukaryotic evolution and consequently display unique cellular properties. Their 

apparent lack of transcriptional regulation is compensated by complex post-transcriptional 

control mechanisms, inc1uding the processing of polycistronic transcripts by means of 

coupled trans-splicing and polyadenylation. Trans-splicing signaIs are often U-rich 

polypyrimidine (poly(Y)) tracts, which precede AG splice acceptor sites. However, as 

opposed to higher eukaryotes there is no consensus polyadenylation signal III 

trypanosomatid mRNAs. 

Results: We refine a previously reported method to target 5' splice junctions by 

incorporating the pyrimidine content of query sequences into a scoring function. We also 

investigate a novel approach for predicting polyadenylation (poly(A)) sites in-silica, by 

comparing query sequences to polyadenylated expressed sequence tags (ESTs) using 

position-specific scanning matrices (PSSMs). An additional analysis of the distribution of 

putative splice junction to poly(A) distances helped to increase prediction rates by limiting 

the scanning range. These methods were able to simplify splice junction prediction without 

loss of precision and to increase polyadenylation site prediction from 22% to 47% within 

100 nucleotides. 

Conclusion: We propose a simplified trans-splicing prediction tool and a novel poly(A) 

prediction tool based on comparative sequence analysis. We discuss the impact of certain 

regions surrounding the poly(A) sites on prediction rates and contemplate correlating 

biological mechanisms. This work aims to sharpen the identification of potentially 

functional untranslated regions (UTRs) in a large-scale, comparative genomics framework. 
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Background 

Leishmania is a unicellular eukaryote that belongs to the Trypanosomatidae family; a 

strictly parasitic order of kinetoplastida. Leishmania is the causative agent of 

leishmaniases, vector-bome parasitic diseases with a large spectrum of clinical 

manifestations in humans ranging from self-resolving skin lesions to life-threatening 

visceral diseases [1]. Leishmaniasis is endemic in 88 countries mainly in tropical and 

subtropical regions with an estimated 12 million people presently infected worldwide and at 

least 350 million people being at risk of infection [2]. 

Trypanosomatid protozoan parasites have diverged early on in eukaryotic evolution 

[3]. Their evolutionary closeness to bacterial ancestors is delineated by intrinsic cellular 

characteristics such as tandem arranged genes [4], polycistronic transcription [5, 6], 

mitochondrial RNA editing [7], lack of transcriptional control [8], infrequent introns [9], 

and trans-splicing [10]. The latter consists of the 5' cleavage of polycistronic RNA 

precursors into individual mRNA transcripts by addition of an exogenous 39 to 41 base 

long capped RNA fragment, namely the splice leader (SL) or mini-exon, provided by a 

highly ab und ant SL-RNA [11], yet similar processes have also been discovered in 

nematodes and even in mammals [12, 13]. This process is somewhat similar to cis-splicing 

in other organisms, as RNA is cleaved at an AG dinucleotide downstream of a 

polypyrimidine stretch. 

In addition to co-transcriptional trans-splicing, polyadenylation of the upstream 

transcript is also required in order to generate monocistronic mRNAs in these organisms. 

Trypanosomatid protozoa are believed to lack a conserved polyadenylation (poly(A)) 

signal, in contrast to other eukaryotes who generally require a cytoplasmic polyadenylation 

motif for successful polyadenylation [14]. Several studies support that polyadenylation is 

mechanistically coupled to trans-splicing and that it depends upon the presence of 

polypyrimidine tracts [15-19], thus leading to the belief that the spliceosome complex 

interacts with the polyadenylation machinery in trypanosomatids. It has also been reported 

that distant pyrimidine tracts may be responsible for polyadenylated positions further away 
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from the downstream 5' splice site in trypanosomes [17, 20]. These analyses also convey 

the non-specifie nature of poly(A) site selection in trypanosomatids, as polyadenylation 

seems to occur in a given region rather than at a specific position. 

The apparent heterogeneity of kinetoplastid mRNA polyadenylation and its 

dependence on successful trans-splicing make 3'-untranslated region (3'UTR) length 

predictions troublesome. Currently, there exists a 3'UTR prediction method for 

Trypanosoma brucei derived from the statistical analysis of mRNA transcript extremity 

lengths from expressed sequence tag (EST) data [20]. The prediction is essentially obtained 

by selecting the position located at an empirical distance (100 bases) upstream of the 

polypyrimidine tract c10sest to the open reading frame (ORF). The authors c1aim a 38% 

prediction rate within a 73-nuc1eotide window. These metrics are somewhat inappropriate 

for predictions in the Leishmania genus since the species flaunt larger intergenic (IR) 

sequences, higher average UTR lengths, and less stringent splice acceptors [4,21]. 

In addition to the statistical analysis of transcript length distributions for 3'UTRs, 

5'UTR prediction has been submitted to supplementary investigation [22-24]. Prediction 

algorithms that essentially focus on selecting the first AG dinucleotide after the longest 

polypyrimidine stretch can reportedly identify 62% of valid splice junctions in 

trypanosomes and 51 % in Leishmania [20,23]. For Leishmania, it has been shown that by 

fragmenting the non-coding sequence upstream of a start codon at every occurrence of AG, 

the AG following the longest fragment corresponds to a valid splice junction in 60% of the 

cases. When combining this method with a linear discriminant analysis of dinucleotide 

composition, the later method can obtain a prediction accuracy as high as 92% on selected 

high-scoring sequences [23]. 

Considering that regulation of gene expression in kinetoplastids occurs mostly at the 

post-transcriptional level, it has become apparent that UTRs bear essential regulatory tags 

[8, 25-29]. From the standpoint of computational motif discovery, it is imperative to 

discriminate between functional and non-functional sequences in order to successfully 

identify novel conserved regulatory regions. This premise is most important when dealing 

with non-co ding RNA as it is exposed to less stringent evolutionary pressure than open 
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reading frames [30]. It can be expected that limiting sequence and structure motif searches 

to legitimate mRNA, UTRs will generate more informative results while reducing the 

inherent computational co st of search algorithms. 

This paper aims to further improve the in-silica prediction of mRNA extremities in 

kinetoplastid organisms. We polish trans-splicing prediction in Leishmania by 

incorporating the pyrimidine content of intergenic regions into a previously developed 

scoring function, and propose a polyadenylation prediction method based on the global 

nucleotide composition observed in published expressed sequence tag (EST) data. The 

selection of different genomic regions surrounding the poly(A) site and their impact on 

prediction rates has validated the impact of adenosines and downstream polypyrimidines on 

trypanosomatid polyadenylation. 

Results 

Considering pyrimidine content increases splice-junction prediction accuracy 

Previously, the best method to predict splice acceptor sites in trypanosomatids 

combined statistical analysis of dinucleotide composition with inter-AG fragment length 

assessment [23]. We simplified the procedure by discarding the statistical discrimination of 

inter-AG fragments based on dinucleotide composition, thus only considering the inter-AG 

fragment size for predictions. This approach was compared to two pyrimidine-bias scoring 

functions that rate inter-AG segments in proportion to their pyrimidine content in addition 

to their size (see Methods). Both functions are such that inter-AG fragments displaying 

lower than average pyrimidine content are proportionately penalised whereas those with 

higher than average content are rewarded. 

Each scoring model's relative sensitivity with respect to a set of 214 known splice 

junctions is compared in Table 1. It appears that models that consider pyrimidine 

concentration can predict more valid splice junctions than those using the inter-AG length 

metric alone. The proportion of valid predictions is notably higher (+7%) when allowing a 

25-nucleotide margin of error. This is not surprising as it is common for more than one AG 

dinucleotide to be in close range of each other near splice acceptor sites (data not shown). 
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The pyrimidine-bias sconng functions were compared to the full inter-AG and linear 

discriminant analysis using the same reported search space (400 nt upstream of the splice 

junction). Both methods offer similar predictions although the pyrimidine bias functions 

display slightly higher rates (+2%). The linear pyrimidine scoring function was chosen for 

subsequent analyses given its accuracy and simplicity. 

Nucleotide composition shifts surrounding the genomic poly(A) site 

Of the 12,052 Leishmania EST sequences in GenBank, 81% correspond to L. 

infantum and 19% to L. major cDNA. We filtered the data to collect sequences harbouring 

significant poly-A or poly-T stretches near their extremities in order to search for 

polyadenylation signaIs. Only 850 sequences (7% of initial data) satisfied our search 

constraints (see Methods) of which a mere 218 (1.8%) were successfully mapped to 

genomic intergenic regions of L. infantum (the accession numbers for the 218 ESTs can be 

viewed in Additional File 1). The L. infantum EST data contains several flagrantly 

erroneous and repeated sequences. Comparing the pair-wise identity of mapped ESTs 

revealed 4 pairs of highly similar sequences which, once aligned, proved to be the only 

example of altematively polyadenylated sequence in our data (GenBank accession IDs: 

CV669949.1, CV670417.1, CV668181.1, CV665773.1, CV670284.1, CV668879.1, 

CV667130.1, CV661593.1). 

The position-specific nucIeotide frequencies of genomlc regIOns aligned and 

centered at the mapped poly(A) position reveals prominent trends in global sequence 

composition (Figure 1). Adenosine residues are bountiful near the poly(A) site and an 

elevated concentration of pyrimidines is perceptible 300 to 600 bases downstream of it. 

Interestingly, thymine bases are almost twice as abundant around 50 bases upstream of the 

poly(A) site and their higher overall concentration is synonymous with that of pyrimidine 

dinucIeotides. Not only are adenosine and pyrimidine nucIeotides more abundant in 

polyadenylated regions, they also fluctuate more than that of randomly selected genomic 

sequences (Table 2). When comparing the standard deviations of residues near poly(A) 

sites, pyrimidine dinucIeotides (YY) have a higher standard deviation than their individual 
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nucleotides alone. It is noteworthy to mention that the nucleotide frequencies tend to 

resemble that of the random control when extended further away from the poly(A) position. 

Capturing such blatant genomic signaIs in addition to more discrete parameters, like 

progressive shifts in nucleotide and dinucleotide compositions, could be an effective means 

of identifying poly(A) sites in unresolved sequences. Such a comparative approach is 

appealing since conserved sequence motifs sUITounding poly(A) sites in trypanosomatid 

species are not as common as in higher eukaryotes. Using motif detection programs such as 

MEME [31] did not yield conclusive results (data not shown). Indeed, the intergenic 

reglOns of Leishmania parasites are riddled with low-complexity regions (i.e., short 

consecutive repeats of 1-3 nucleotides) that can bias the scoring metrics of such programs. 

To surrnount this shortcoming, we investigated over-represented motifs in the regions 

directly sUITounding genomic poly(A) sites in Leishmania using the word enumeration 

program YNIF [32] in combination with FindExplanator [33]. Hexamers that are over­

represented in the regions directly flanking known genomic poly(A) sites were compared to 

those found in more distant regions (see Additional File 2 for details). The highest-ranking 

motifs are present in only a fraction of all known poly(A) sites and appear to be randomly 

distributed within their vicinity (data not shown). 

Poly(A) sites can be predicted using scanning matrices 

We converted the genomic alignment into a position specific scoring matrix (PSSM) 

that can subsequently be used to scan non-coding sequences. The PSSM is aligned to every 

position within the intergenic sequence and emits a bit-score for each position (see 

Methods). The higher the score, the closer the CUITent position in the intergenic sequence 

resembles the global composition of a polyadenylated region. We present the depicted 

prediction rates of a given PSSM as a measure of its sensitivity, or ability to detect valid 

poly(A) sites. Since the biological data is limited, sensitivity was deterrnined using tenfold 

cross-validation (see Methods) which allows for unbiased testing, as the testing data is 

excluded from the training data [34]. The position displaying the highest PSSM score is 

retained as the poly(A) candidate. Seeing as only non-coding sequences are scanned, we 

omitted specificity testing on additional control sequences. 
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Given that the molecular mechanisms of kinetoplastid polyadenylation have yet to 

be completely demystified, we tested multiple PSSM lengths in order to elucidate which 

regions surrounding the cleavage site have an effect on polyadenylation. Matrix sizes were 

limited to regions where a meaningful base composition pattern was observed. The most 

precise predictions are obtained with small PSSMs encompassing the adenosine rich region 

directly surrounding the aligned poly(A) sites (Figure 2A). Using a prediction tolerance of 

gO nucleotides, a PSSM of 25 bases upstream and 25 bases downstream of the poly(A) 

site (25A25) shows the highest sensitivity (21 % average after 15 mns of 10-fold cross­

validation), with a standard deviation of 1.1 %. At lower resolutions, the same small PSSMs 

still display the best predictions, however longer matrices such as the 300 upstream and 600 

downstream PSSM (300A600) offer similar sensitivities (Figure 2e). Overall, the surface 

plots show that the regions adjacent to the poly(A) site offer the highest close-range 

predictions when scanning entire intergenic regions, although larger matrices also display 

competitive detection rates provided that the margin of error is relaxed. 

Limiting PSSM scanning range increases poly(A) site prediction rates 

In order to maximize the sensitivity of poly(A) site targeting, we tested the impact 

of bounding the PSSM search space within a given confidence interval. To do so, the 

aforementioned refined splice-junction prediction method was applied to the intergenic 

sequences derived from the polyadenylated ESTs in order to obtain an approximation of the 

distances between both cleavage sites. The distribution of the putative intergenic spacers 

shows that 83% of the spacer sequences are shorter than 1500 bases (Figure 3), with a 

median value of 498. 

Based on these observations, it is clear that distance is an important factor to 

incorporate into an mRNA extremity prediction algorithm. We tested the effect of 

predicting 3'UTR extremities using splice junction prediction combined to a fixed distance 

as the prime metric. The highest prediction accuracies using this approach are obtained by 

selecting the median value of spacer sequence sizes as a scanning limit (Figure 4). When 

allowing predictions to be within 100 bases of the valid poly(A) site, this tactic predicts 
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22% of valid splice sites. At this resolution, scanning the entire IR with PSSMs yields a 

36% detection rate, more than double the distance-only value. 

We subsequently scrutinized the prediction rates for all PSSMs usmg vanous 

scanning distance limitations, a handful of which are compared amongst themselves 

(Figure 5). The impact of limiting the scanning distance directly upstream of the putative 

splice-junction site produces a notable increase in sensitivity for most PSSMs. The overall 

highest sensitivities are obtained by limiting the scanning distance to within 1000 bases of 

the SJ. This is most notable for the longer matrices, sorne of which gained over 5% 

sensitivity within the 10-nucleotide range (Figure 2B), thus competing with the shorter 

matrices for the best prediction rate. At the 100-nucleotide range, 1imiting the scanning 

distance to within 1000 bases increased the sensitivity from 36% to almost 45% (Figure 

2D). Curiously, matrices encoding the pyrimidine rich regions offer the highest sensitivities 

at this resolution whereas very small ones containing the A-rich region perform best within 

a 10 nucleotides error margin. When loosening the predictive resolution to within 250 

bases, certain PSSMs (most notably 30A600 and 300A600) can identify slightly more than 

60% of the mapped poly(A) sites (see Additional File 3 for aH sensitivities). 

We tested the effect of combining the high-resolution accuracy of the 25A25 matrix 

with the low-resolution accuracy of a larger matrix on prediction sensitivity. Two 

algorithms were tested. The first involves an initial scan with the large matrix, where the 

highest scoring position and its surrounding sequence are then re-scanned with the smaHer 

matrix. The highest score from this second scan is reported as the presumed poly(A) site. 

Similarly, the second algorithm combines the scores of both PSSMs but considers alliarge 

matrix positions instead of only the highest scoring one. This second algorithm 

(overviewed in Figure 6B) displays the best prediction rates when limiting the smaller 

matrix scanning to within 75 nt upstream and downstream of the larger matrix's position, 

with 2-4% higher sensitivity depending on the resolution (data not shown). Although 

similarly as effective as the 25A25 matrix within 10 nt, this approach displays a higher 

sensitivity when lowering the resolution to 100 nt (Figure SC). Predictions are nonetheless 

higher than using individual matrices at any resolution. Inc1uding such an approach in a 

poly(A) prediction pro gram is straightforward given its higher sensitivity. 
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In order to asses the selectivity of this approach, the highest scores obtained from 

annotated coding sequences (CDS) were compared to those of known splice-junction and 

poly(A) regions. The average highest score for poly(A) prediction in all 3789 Leishmania 

infantum CDS over 1500 nucleotides in length is 17.8 bits with a standard deviation of 7.8 

bits. Using the same data, the average high score for SJ prediction is 704.1 units with a 

standard deviation of 401.1 units. The inherent properties of normal distribution statistics 

stipulate that over 95% of the high scores are within two standard deviations of the mean 

[35]. Thresholds corresponding to these values (e.g., 34 for poly(A) and 1506 for SJ 

prediction) were incorporated to the prediction algorithm, which then scanned all datasets. 

The resulting false-positive and true-positive detection rates are presented in Table 3. 

Integrating the scoring thresholds limits false-positive predictions to less than 5% while 

only slightly affecting specificity (predictions drop 5-6% for SJ and 1-2% for poly(A) 

predictions). 

Discussion 

The 5' splice junction prediction methods disc10sed in this work were conceived to 

estimate trans-splicing sites for all input sequences using a simple and effective metric. 

Since pyrimidines play an important role in trans-splicing, inc1uding such a parameter into 

the inter-AG splice prediction model was forthright and can be warranted by the subsequent 

increase in sensitivity. Although rather effective, the inter-AG metric's principal hoodwink 

resides in its synthetic nature, as the underlying biological process is difficult to conceive. 

The assessment of polypyrimidine tract length was not considered in this work as it has 

been shown that the inter-AG metric is more powerful [23]. Even if our splice junction 

prediction results are encouraging, sorne uncertainty subsists when testing on unconfirmed 

sequences. This may potentially be a consequence of the parasitic nature of 

trypanosomatids, which coerces these protozoa to altemate between different life-stages 

depending on their insect and mammalian host. An additionallevel of complexity may be 

essential to improve in-siUco predictions in view of the fact that trans-splicing of certain 

transcripts is developmentally regulated in trypanosomes [36, 37]. 
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When compared to previously published trans-splicing prediction rates [23], the 

models we propose here appear to be just as effective at predicting known trans-splicing 

sites when tested on the same search space (Table 1). Their accuracy remains significant 

ev en when increasing the query sequence size (1.75x increase in search space at the cost of 

0.9x accuracy). The augmented search space is in order to ensure that the full inter-AG 

fragments upstream of putative splice sites are considered. Overlapping into the 

downstream coding sequence is vindicated by erroneous genome annotations; it is not 

uncommon that the furthest in-frame A TG is selected as a start codon. AIso, our scoring 

function rates aIl inter-AG fragments, unlike the previously proposed study that selects 

high-scoring fragments based upon their dinuc1eotide composition [23]. As shown in Table 

3, a scoring threshold can be implemented to ensure that few faise-positives are unsuitably 

identified as splice-junctions at the cost of slightly lower specificity. However, a threshold 

will necessarily neglect certain sequences, which may be objectionable when dealing with 

few or essential queries. Since our method is more dependent on correct annotations, it is 

conceivable that coupling it to linear discriminant analysis would generate ev en better 

predictions at the cost ofhigher complexity. 

Predicting poIy(A) sites with PSSM's have previously been shown to successfully 

predict poly(A) sites in humans [38]. Capturing the global nuc1eotide composition 

surrounding known poly(A) sites and utilizing it as a comparative predictor has also proven 

to be a successful prediction procedure in Leishmania. Albeit the public EST data appears 

to be of questionable quality, stringent screening has permitted to reveal specific 

polyadenylated sequence traits. Given the nature of the sequence data, smaller mRNA 

transcripts may be favoured and this should be considered when analyzing results. 

Nonetheless, PSSM scanning is more than 10 times more effective at identifying poly(A) 

sites than the distance-only approach when precision is fundamentai (Figures 2A and 4). 

This result can be interpreted as evidence that distance is not as powerful for targeting 

poly(A) sites in Leishmania than in trypanosomes. 

For Leishmania, precision may not be essential when predicting 3'UTR extremities 

given that several mappings display heterogeneous poly(A) positions [15]. This observation 

motivates the use of an error margin, which is interpreted as Iowering the resolution of 
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sensitivity testing in this work. Allowing correct predictions to be within a certain range of 

the mapped position emulates the identification of a polyadenylation region. We also tested 

a window scanning approach, where the cumulative bit-scores for a given range were 

averaged over the size of the window instead of considering each position independently. 

Such an approach yielded weaker overall predictions than the position-specific approach 

(data not shown), perhaps because· the extent of polyadenylation regions varies among 

different transcripts. 

The best 3'UTR predictions emanate from the grouping of distance limitation and 

scanning with dual PSSMs. Combining both metrics proved to be more effective than either 

one individually (Figures 2, 4, and 5), a result that hints at the importance of each factor 

when predicting poly-A sites in Leishmania. For restraining PSSM scanning, we tested 

various distances instead of using a specific confidence interval since spacer sequences 

display somewhat of a bias towards longer fragments. Although the data is partially derived 

from estimations, such a shift in the distribution supports the notion that polyadenylation 

does not occur randomly in Leishmania. Poly(A) sites further away from the splice junction 

may be an effect of distant polypyrimidine tracts, a situation that has already been observed 

in trypanosomes [20]. One must also consider that the longer non-coding regions in 

Leishmania may contain non-annotated genes or provide alternative stage-specific 

polyadenylation sites, which could explain the longer spacer sequences. These are 

considerations that motivated the exclusion of intergenic sequences longer than 5000 

nucleotides for sensitivity testing. 

To our knowledge, no other method can predict poly(A) sites as effectively in 

Leishmania spp. as the one described in this work. Even enforcing a highly-selective 

threshold only faintly affects this method's specificity (Table 3). The rather unusual and 

non-specific nature of kinetoplastid polyadenylation is a line of reasoning to substantiate 

low computational prediction rates. Although over-represented A-rich hexamer motifs are 

found (Addition al File 2), these are not however present in all the genomic poly(A) sites, 

which suggests that they may not play a central role in driving polyadenylation in 

Leishmania. In addition, the genomic alignment of polyadenylated EST mappings cannot 

be used to mark out a precise consensus sequence, as it is impossible to distinguish the 
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exact cleavage site among multiple consecutive adenosines on the unprocessed transcript. 

The heterogeneity of poly(A) sites in Leishmania mRNA transcripts is extra incentive for 

using PSSMs that embody a global trend in nucleotide composition. Furthermore, 

neglecting secondary structure and stage-specificity are additional factors that make it 

difficult to conceive obtaining higher prediction accuracies at this point. 

Notwithstanding the possibility that no consensus motif drives polyadenylation in 

kinetoplastids, there is evidence for a biological model based on sequence context. The low 

sensitivity obtained from a poly(A) prediction algorithm based on spacing metrics alone is, 

an evidence for a more dynamic biological model. AIso, the correlation between certain 

regions of the genomic alignment and their respective prediction rates is most interesting, 

as best illustrated by the sensitivity surface plots (Figure 2). The data is presented in order 

to asses the innate characteristics that have an impact on poly(A) targeting. 

Two main common sequence features appear to directly influence the prediction 

sensitivities. Firstly, the adenosine-rich region within close range to the mapped poly(A) 

site. Secondly, the pyrimidine-rich region 300 to 600 positions downstream. The latter, 

which represents the polypyrimidine tracts known to be crucial for trans-splicing, generates 

the best predictions when loosening the accuracy and bounding the search space. In tum, 

the A-rich region is responsible for the best predictions when precision is fundamental. 

Interestingly, the affluence of polypyrimidines (most notably thymines) in the -50 to -25 

region (Figure 1) may play a role in 3'UTR cleavage since its exclusion from scanning 

matrices reduces the sensitivity at close range (Figure 2). The matrix encoding the 

sequence information of zero upstream bases and 25 downstream (0A25) is somewhat futile 

at predicting poly(A) sites, a rather surprising observation seeing as the adenosine 

concentration is comparable. Upon closer inspection, it is apparent that adenosine-rich 

regions are not a fundamental marker because many sequences do not contain profuse 

adenosine residues at their poly(A) site. 

PSSMs can be regarded as a simplistic representation of the interaction between an 

enzymatic complex and a strand of nucleic acids. The highest scoring position corresponds 

to a region that is most similar to the consensus of all poly(A) sites, which relates to a high 
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affinity region for the polyadenylation complex. In this perspective and based on our 

results, it is enticing to contemplate a generic biological model where adenosine richness 

(possibly contrasted by a pyrimidine-rich upstream region) helps to direct the 

polyadenylation of specific positions downstream of polypyrimidine tracts in unprocessed 

rnRNA transcripts. Deletion studies directed at these features followed by mapping the 

modified transcript's poly(A) site could shed additional light into the biological process. 

Moreover, in-vitro UV cross-linking could help identifying novel ribonucleoproteins 

(RNPs) that might interact with the trans-splicing/polyadenylation complexes. 

The computational tools we describe in this work have been implemented in a small 

JAVA pro gram named PRED-A-TERM (PREDicting poly(A) sites and TERMinal splice 

junctions) that can be downloaded from Additional File 4. It emits poly(A) and trans­

splicing predictions from intergenic sequence input with partial co ding sequence overlap 

and allows end-us ers the possibility to select various prediction parameters. The pro gram is 

tuned for L. infantum but is suitable for other Leishmania species. Although trypanosomes 

have shorter average intergenic regions than Leishmania, both share similar trans-splicing 

machinery [39, 40]. Scanning Trypanosoma IRs will however, require additional sequence 

analysis and subsequent tuning of the model. 

Conclusions 

We present a simplified 5'UTR prediction function that can predict more than 65% 

of known trans-splicing sites within 25 nucleotides. This approach performs as good as 

previously published methods but it significantly reduces computational cost. We also 

present a novel 3'UTR prediction method for the trypanosomatid Leishmania that compares 

query sequences to known polyadenylated sequences using position specific scanning 

matrices. Such an approach is capable of predicting almost 50% of known poly(A) sites 

within 100 nucleotides, thus doubling the accuracy of the previous distance based approach. 

The final algorithm implemented in PRED-A-TERM is summarized in Figure 6. 

By increasing the precision of large-sc ale transcriptome predictions in 

trypanosomatids, the prospective identification of novel regulatory non-coding RNA 



structures is now within reach. The relatively recent fervour for investigating regulatory 

functions ofnon-coding RNA has propelled the emergence of multiple structural RNA 

detection algorithms [41, 42]. These modem computational methods combined with 

biological validation could facilitate the discovery of innovative targets for therapeutic 

treatments. 

Methods 

5' Splice junction prediction 
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After aligning the EST data to the genome, we extracted 500 nucleotides upstream 

of the coding sequence associated to the EST and the first 200 nucleotides downstream of 

the annotated start codon. Trans-splicing predictions are based upon the most recently 

published method [23]. Sequences are fragmented at every occurrence of "AG" and each 

fragment's size is calculated. In the simplest scoring scheme, the longest inter-AG fragment 

is retained and the sequence's final position is considered as a splice junction candidate. 

Linear and polynomial pyrimidine bias models calculate the relative pyrimidine 

concentration of inter-AG fragments and modify each fragment's score proportionately 

using the following functions: 

L = À + 150 • À • 6 

P = À + 150 • À • 63 

where Land P are the linear and polynomial model scores respectively, À is the inter-AG 

fragment length, and 6 corresponds to the difference between the pyrimidine concentration 

of the inter-AG fragment and the average intergenic concentration (55%). In both cases, the 

last position of the highest scoring inter-AG fragment is retained as the putative splice 

junction. Optimal coefficients were determined by trial and error testing. Sensitivity testing 

was performed on the same 214 EST sequences from Leishmania major as reported in that 

article. 
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Data collection 

Leishmania sequences for the po1y(A) ana1ysis were down10aded from GenBank's 

expressed sequence tag (EST) public database [43]. Data were filtered to retain sequences 

having at 1east 12 adenine (A) or thymine (T) residues at their 3' or 5' end, respective1y. 

Po1y-T sequences were subsequently reverse-comp1emented. Leishmania infantum 

sequences were a1igned to the genome (version 3 down10aded from 

http://www.GeneDB.org) using BLAST with 10w-comp1exity filtering disab1ed [44]. Hits 

over 100 nuc1eotides long that disp1ayed over 95% sequence identity were retained. We 

define an EST sequence as being po1yadeny1ated ifit satisfies the following criteria: (i) The 

last position of the best BLAST hit must immediate1y precede the po1y(A) stretch. (ii) 

There shou1d be no more than 9 "A" residues out of the next 12 genomic nuc1eotides 

following the BLAST hit. (iii) The 1ast a1ignment match must not be a "N" in the genomic 

or EST sequence. The polyadeny1ation site is defined as the 1ast non-"A" residue shared 

between the EST extremity and the genomic sequence. The fulIlist of po1yadeny1ated EST 

accession numbers can be viewed in the supp1ementary data (S 1). AlI filtering steps were 

achieved using ad-hoc JAVA scripts. 

Building poly(A) scanning matrices 

The genomic sequences of the po1yadenylated ESTs were aligned and anchored at 

the mapped po1y(A) site, as previous1y defined. From this alignment, we ca1cu1ated the 

specifie nuc1eotide composition for each position relative to the poly(A) site. The resulting 

nuc1eotide frequencies were divided by their corresponding average genomic frequency 

(A=20.1 %, T=20.2%, C=29.7%, G=30.0%) to create an odds matrix. The final position 

specifie scoring matrix (PSSM) was obtained by 10g-transforming the odds matrix to 

generate bit scores for each matrix entry. 
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Poly(A) prediction using scanning matrices 

The genomic intergenic regions (IRs) associated to the retained ESTs were extracted 

and extended 600 bases past the stop and start codons of the most recent L. infantum 

genome annotation (version 3). Only IRs inferior or equal to 5000 bases in length were 

retained. IRs of interest were scanned with PSSM sizes ranging from 1 to 300 upstream and 

1 to 600 downstream of the poly(A) location. When scanning the entire IR, query 

sequences are scanned such that the position corresponding to the anchored poly(A) site in 

the PSSM is aligned to the first non-coding position downstream of the stop codon; at this 

point, the upstream matrix positions overlap the ORF. A cumulative bit-score is emitted for 

each given position and this step is repeated for every position of the intergenic sequence 

(the positions downstream of the matrix's poly(A) position may overlap the ORF when 

scanning the last positions). The positions with the highest scores are retained as putative 

polyadenylation sites. When predicting a polyadenylation region instead of a single 

position, the cumulative individual bit-scores are averaged over the length of the region 

scanned. The optimal prediction algorithm is summarized in Figure 6. 

Ten-fold cross-validation sensitivity testing 

The prediction accuracies presented in this work arise from cross-validation sensitivity 

testing, where the polyadenyJated EST data are divided into 10 subsets. Nine of those are 

used as a training set (in this case, to build a PSSM) which are subsequently tested on the 

left-over subset. This step is repeated for aIl subsets and the results are averaged to obtain 

the mean sensitivity. The average and standard deviation of 15 mns of cross-validation 

were performed for PSSM scanning and 30 mns for distance-only predictions. AIl testing 

was performed using ad-hoc lA V A scripts. 
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Figure 1. 

Relative Position 

Nucleotide and pyrimidine dinucleotide frequencies surrounding the mapped polyadenylation site of 218 

expressed sequence tags from Leishmania infantum. 

Frequencies are averaged over an Il nucleotide sliding window in order to smooth out the graph. Negative positions are 5' of the poly(A) site and 

positive positions are towards the downstream gene. Pyrimidine dinucleotides are considered to be any occurrence of consecutive C or T residues. 
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Figure 2. Surface plots ofpoly(A) prediction sensitivities as a function ofvarious PSSMs 

(A) Predictions within 10 bases of sequenced poIy(A) site when scanning the entire intergenic region (IR) 

and (B) when lirniting scanning to 1000 bases upstream of the predicted splice junction. Predictions 

within 100 bases when scanning the whole IR (C) and within 1000 bases (D). Sensitivities are presented 

as the average of 15 runs of ten fold cross-validation for each PSSM. The 5' and 3' PSSM size axes 

correspond to the region upstream and downstream of the genornic alignment of mapped poly(A) sites, 

respectively. In order to amplify the resolution of regions directly surrounding the poly(A) sites, the scale 

for 5' and 3' mau'ix sizes inferior to 100 is decreased from 50 to 25. 
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Distribution of spacer sequences 

Distribution of the distance between the mapped polyadenylation site and the putative splice junction 

(spacer length) of 218 intergenic regions from Leishmania infantum. Trans-splicing positions were 

estimated using the linear pyrimidine bias function described in Methods. 
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Figure 4. Prediction sensitivities using fixed distances 

Sensitivity of poly(A) site predictions using fixed distances from the putative splice junction of 218 

intergenic regions mapped from polyadenylated ESTs in Leishmania infantum. The resolution 

corresponds to the distance allowed between the true poly(A) site and the predicted poly(A) site. Standard 

deviations are denoted as the bars above each column. 
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Figure 5. Comparison of poly(A) prediction sensitivities for chosen PSSMs using different scanning approaches 

Whol. IR 

The mean sensitivities after 15 runs of tenfold cross-validation are presented for whole intergenic region scanning and for 3 lirnited scanning 

ranges (from the putative splice-junction to 500, 1000, and 1500 positions upstream. (A) Mean sensitivities using a PSSM size of 25A25 (25 

bases upstream and downstream of the mapped poly(A) position). (B) Mean sensitivities using a PSSM size of 75A600. (C) Mean 

sensitivities using a combination ofboth PSSMs (see Results for details). 
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Figure 6. Summary ofPRED-A-TERM program 

(A) The putative trans-splicing site is first predicted by fragmenting 700 nuc1eotides at each occurrence of 

AG. The longest, pyrimidine rich inter-AG fragment is selected as the sequence upstream of the splicing 

site. (B) A large scanning matrix subsequently skims through 1000 nuc1eotides upstream of this position, 

identifying pyrimidine rich areas with adenosines upstream of them. For each large matrix position, a 

smaller matrix scans 75 positions in both directions from the larger matrix's hypothetical poly(A) site in 

order to pinpoint adenosine residues contrasted to pyrimidines. The position of the smaller matrix 

displaying the highest sum of bit-scores is retained as the putative poly(A) site. 
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Tables 

Scoring Function Exact <25 nt 

Longest Inter-AG Length 49.5 58.9 

Linear Y-bias 53.7 65.9 

Polynomial Y-bias 53.3 64.0 

Inter-AG Length + LDA* 58.6 72.1 

Linear Y-bias 
.. 

58.9 74.3 

Polynomial Y-bias •• 60.7 74.3 

* Interpreted from [23] 

** Using same search space as Inter-AG + Linear Discriminant Analysis 

Table 1. Splice junction prediction sensitivities ofthree different scoring models 

Values are the ratio (%) of correct predictions among the 214 sequences in the test set, for exact 

predictions and predictions within 25 bases of the sequenced 5' splice junction. The upper half displays 

values obtained using a search space of 700 whereas the lower half displays predictions using the same 

query size as the linear discriminant analysis. 



Average 

Median 

Genomic Poly(A) 

A T c G yy 

20.3 25.6 34.1 29.3 29.1 

20.8 25.7 34.0 28.6 29.6 

Standard Deviation 3.8 2.7 2.6 2.8 4.0 
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Random Genomic 

A T c G YY 

20.1 20.2 29.7 30.0 24.1 

20.0 20.4 29.7 30.0 24.2 

1.0 1.0 1.0 1.0 1.1 

Table 2. Global statistics of genomic sequences in Leishmania infantum 

Values are derived from 218 sequences of 1601 nuc1eotides and represent the canonical DNA bases in 

addition to pyrimidine dinuc1eotides (YY). The genomic poly(A) sequences encompass 800 nuc1eotides 

surrounding the mapped poly(A) site. As a control, 218 genomic regions were selected at random via an 

ad-hoc JA VA script. 
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Additional jiles 

Additional File 1 - Polyadenylted ESTs (available in Appendix 1) 

PDF document of aIl 218 polyadenylated EST accession IDs used to build scanning 

matrices in this work. 

Additional File 2 - Over-represented hexamers 

A Microsoft Word document containing the 10 highest scoring hexamers identified with 

YMF and FindExplanator programs. An alignment of 223 sequences was used to 

compare regions encompassing the [-125; + 125] of genomic poly(A) sites to the [-800; -

126] and [+ 126; +800] regions. 

Additional File 3 - PSSM Scanning Results for Different Matrix Sizes and 

Scanning Distances 

A Microsoft Excel spreadsheet containing aIl sensitivity results for single-matrix 

scanning approaches. 

Additional File 4 - PRED-A-TERM Program 

The prediction algorithm described in this manuscript has been implemented into a 

JAVA pro gram which can be used to scan query sequences using any operating system. 

Once extracted, detailed usage instructions can be viewed in the README.txt file. 
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CHAPTERII 

In a recent paper, we report the presence of a highly abundant family of extinct 

retroposons in Leishmania major [53]. The study centers on the characterization of the 

LmSIDER2 subgroup for which an exhaustive manual alignment was performed. 

However, the LmSIDER1 subgroup was somewhat ignored just the same as the 

incidence of SIDERs in other Leishmania species (albeit this was carried out for the 

related parasite Trypanosoma brucei). The following sections present various 

computational methodologies which further improve the representation of SIDER 

sequences in the context of full-scale comparative genomics. 

1. SIDER PROFILING 

The initial discovery of SIDERs was achieved by means of genome-wide local 

alignments and manual annotation [53]. The 79 nt signature sequence oftrypanosomatid 

retroposons (c.f. Introduction, Figure 6) was used as a query for BLAST se arches on the 

L. major genome [182]. The sequences downstream of relevant hits were aligned with 

CL USTALW [132], which enabled the detection ofretroposon-derived terminal poly(A) 

stretches. Significant sequences were then queried with BLAST, from which results were 

collected and re-submitted in an iterative manner. Any new, non-redundant hits were 

added to the resulting list of identified elements. Globally, the BLAST searches revealed 

two somewhat detached sets of results, thus giving way to a coarse labelling of the 

repeats into two subgroups: SIDER1 and SIDER2. 

1.1. Determining an optimal alignment strategy 

The initial dataset of degenerated interspersed repeats in L. major was quite 

difficult to align due to high sequence divergence and size polymorphism. Nonetheless, 

the MUSCLE program [183] was used to pro duce a workable MSA for SIDER2 

elements that was refined by extensive manual editing from the author [53 -

supplementary data]. However, this alignment contained 1 013 of the 1 073 identified 

LmSIDER2s and no alignment was produced for LmSIDER1 sequences given their 
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higher divergence. In the context of an investigation encompassing multiple genomes, 

an efficient and automated to01 for aligning multiple sequences is fundamental. This 

pro gram must be capable of processing hundreds of different sequences ranging from 

300 to 1000 nuc1eotides re1atively quickly. It should not faH short of producing reliable 

results when confronted with sequences displaying variable rates of conservation. 

Furthermore, it ought to be flexible enough to add new sequences into an existing 

alignment in order to quickly retrain a new alignment. 

Several available programs were tested in order to determine the best candidate. 

Many MSA programs do not perform weIl with sequences displaying mean pair-wise 

identities around 50%, which is ironically the case among SIDERs. The most important 

condition required to properly characterize the primary structure of SIDERs is multiple 

alignment quality. Seeing as evaluating this outcome is very subjective, it was necessary 

to devise sorne means of comparing the results of various MSA tools. At the time of the 

experiment, a selection of 15 representative sequences from the robust manual 

alignment was avai1able. This alignment was used as the 'gold standard' for 

benchmarking the quality of other alignments. De-gapped sequences were submitted to 

five programs, each based on different MSA algorithms, using their default parameters. 

The 40% consensus sequence (i.e. the sequence composed of the character that makes 

up 40% or more of each position) was calculated for each alignment with the BIOEDIT 

multiple alignment editor [184] and subsequently aligned with CLUSTALW [132]. The 

MEGA3 program [185] was then used to calculate a neighbour-joining phylogenetic tree 

from the alignment of consensus sequences (Figure 1). 

As foreseen, visual evaluation of the alignments obtained from each program 

proved to be tricky since MAFFT and HMMER produced alignments graphically similar 

to the manual reference. However, the tree in Figure 1 c1early shows that HMMER 

produces a multiple alignment that is more closely related to the reference. 
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Figure 1. Neighbour-joining tree of the aligned consensus of SIX multiple 

sequence alignrnents 
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Five different algorithms are compared to an exhaustive manual alignment: hmmt default simulated 

annealing and Viterbi HMM training implemented in HMMER [186J; Mafft iterative refinement 

algorithm [136J; ClustalW - progressive alignment algorithm [132J; Dialign segment pair graph­

based algorithm [187J; Stral - structural alignment algorithm employing a heuristic scoring function 

[188]. Branch common to two methods represent their shared identity. Bootstrap values after 500 

replicates are indicated above branching points. 

1.2. SIDER alignments 

Having elected a preferred alignrnent strategy, it was applied to aU published 

SIDER sequences spanning between 400 and 700 nt (Figure 2). The sequences are 

encoded into a HMM via the HMMER program and submitted to two rounds of 

optimisation: (i) an initial alignrnent round using simulated annealing; (ii) an 

enhancement round using Baum-Welch EM. For the initial step, a ramp value of 0.992 

is specified in order to ensure maximal iteration in simulated annealing or else Viterbi 

optimisation ensues, which would normally be desired. However the alignrnents 

produced with Viterbi optimisation were clearly erroneous due to either a software bug 

or to memory constraints from the large dataset (the program was executed in a 32-bit 

operating system). 

The resulting alignrnent was submitted to phylogenetic analysis in order to 

determine the evolutionary relationship among SIDER sequences. Any sequence 

displaying over 95% sequence identity to another is removed in order to reduce base 



Figure 2. Multiple alignment and phylogenetic relationship of annotated LmSIDERs 

The 1351 annotated SIDERs longer than 400 nt and shorter than 700 for Leishmania major were aligned with version 1.8.5 of the HMMER software 

package [186]. lnitiallignment was performed using the hmmt command and parameters -k JO -r 0.992. Sequences displaying over 95% pairwise 

identity were removed from the alignment. The subsequent alignment was then enhanced with the hmmt -b command (Baum-Welch expectation 

maximization). Columns with abundant insertionldeletion characters (indels) were removed to ease viewing. To colour correspondence of alignment 

residues is the following : green = A, red = T, orange = C, blue = G. A minimum evolution phylogenetic tree was performed on the alignment using 

MEGA3 [185]. Sequences are sorted from the order in the tree. The alignment was graphically pasted and precisely scaled to the tree illustration. 

92% of red tree branches are SIDER2s while 76% of blue braches are SIDERI s, black branches in the middle contain similar proportions of both. 
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composition bias. Using the minimum evolution algorithm from the MEGA3 program, 

we constructed a phylogeny based on the number of differences contained within 

parsimonious informative columns of the input alignment [185]. A similar methodology 

was supplied for the paper revealing the discovery of SIDERs [53]. Figure 2 ilIustrates 

the resulting tree scaled to the sorted alignment. From this perspective, it is quite 

obvious that SIDERs form two distinct groups when glancing at the global sequence 

composition of the 2 main clusters. It appears such grouping authenticates SIDER 

taxonomy as upon closer inspection, 92% of sequences in one cluster are annotated as 

SIDER2 whereas 76% of the other cluster is composed of sequences tagged as SIDER!. 

In spite of this, there is a sm aIl cluster of SIDERs that contains practically equal 

amounts of both subgroups. The original, un-normalized phylogenetic tree can be 

viewed in Appendix Il. 

·1.3. LmSIDERprojiles 

From the alignment disclosed in Figure 2, it appears that SIDERI elements are 

generalIy shorter than SIDER2s and regularly lack certain portions in the alignment. 

They also share lower pairwise sequence identity than the SIDER2 group. It can now be 

postulated with fair confidence that SIDERs form two separate subgroups. But what 

truly de fines each class of SIDER at the primary structure level? To answer this 

question appropriately, sequences from both main clusters in Figure 2 were split into 

distinct datasets. Improperly labelIed sequences were discarded to avoid uncertainty 

(e.g. a SIDER2 sequence in the SIDERI cluster). Both subgroups were subsequently de­

gapped and aligned using the same parameters as previously described. Any sequences 

displaying a pairwise identity over 90% to another sequence was discarded. AlI other 

alignments were produced using these specifications, unless mentioned otherwise. The 

initial SIDER2 alignment was govemed by a HMM profile modeled on the published 

manual alignment, however, in order to take advantage of its meticulous content. The 

resulting HMM profile was submitted to Baum-Welch EM for sake of consistency. 

An advantage of using the HMMER software package is that the HMM profiles 

intrinsic to the creation of multiple alignments can also be used to scan sequences. 
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Consequently, scanning the individual unaligned sequences with the profiles for both 

SIDER subgroups enabled the comparison of their relative scores (Figure 3). The 

formation of distinct point c1usters validates the selective nature of the HNfM profiles, 

since little high-scoring sequences seldom overlap. Based on this observation, it is 

possible to establish a cut-off for c1assifying SIDER sequences with regard to their 

relative score for both profiles. This is important because the SIDER1 profile assigns 

positive values to sorne SIDER2 sequences. Many sequences score poorly, which may 

be due to faulty annotation (e.g. the length of certain SIDERs may have been 

overestimated). When considering hits scoring over 100 bits, there is potential evidence 

for one improperly labelled SIDER2 and 29 falsely labelled SIDER1s in the training 

sets. The corresponding sequences were swapped into the proper subgroup and the 

profiles were realigned using the same methodology as described above. 
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Figure 3. Selectivity scatter-plot of initial SIDER profiles 

Unaligned input sequences were scanned with the initial HMM prome of 2 SIDER subgroups 

using the hmms global alignment command from HMMER. The bit-scores for each sequence are 

plotted in the bidimensional grid. 
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The final SIDER profiles expose additional information of the particularities of 

each subgroup. To illustrate these differences, the 40% consensus of both profiles was 

aligned using the global, pair-wise aligrunent tool in BIOEDIT (Figure 4). The SIDERl 

consensus displays a notable gap when compared to the SIDER2 consensus, which 

corresponds to the second 79 nt retroposon signature previously reported for SIDER2s. 

It may not be evident when only considering Figure 2, but homologous positions 

between both subgroups can be isolated when comparing it with Figure 4. The region 

corresponding to the OOt 79 signature appears to be weIl conserved among both 

subgroups, just the same as the central portion of the aligrunents. The A-rich tail and a 

few residues preceding it are also weIl conserved among both profiles. Conversely, the 

second half ofboth SIDER profiles is quite divergent. 
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Figure 4. Pairwise aligrunent of distinct SIDERl and SIDER2 subgroups 

The aligned sequences each correspond to the 40% consensus of their respective subgroup. Black 

bars indicate an identical consensus position. The corresponding nucleotide appears under it. 

Shaded boxes highlight the dual 79 nt signature sequences described for LmSIDER2 [53]. 

2. GENOMIC DISTRIBUTION 

As mentioned above, HMM profiles can be used to scan sequences with the 

purpose of identifying regions that are homologous to the model. The main advantage of 

using HMM profiles resides in their rich information content. Instead of comparing one 

sequence to another, a group of sequences is compared to the target. AB a consequence, 
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under-represented sequences can proportionately contribute to the search, hence 

increasing its sensitivity. Although the algorithms implemented in HMMER are much 

slower than search tools like BLAST, they are slightly less restrictive than the latter as 

BLAST requires that the query and target sequence share a small stretch of ungapped 

identity (usually 13 nt) [182]. These reasons justify the use of HMM profiles in the 

context of an iterative search strategy that aims to improve the identification and 

characterization of SIDERs in genomic data. 

2.1. Building optimal search profiles 

The SIDER profiles described in the previous section were used as a backbone to 

scan aIl three sequenced Leishmania genomes. We used the HMM fragment search 

command (hmmfs) inc1uded in the HMMER software package for all searches. This 

process returns a set of optimal, non-overlapping matches to a HMM in much the same 

way as the Smith-Waterman algorithm [186,189]. Since version 1.8.5 of HMMER does 

not provide expectation values (E-values) for search results, sorne means of testing the 

specificity of the search profiles was necessary. A 50 million base-pair synthetic 

genome was created randomly using nuc1eotide frequencies similar to that observed in 

the L. major genome (40% AIT; 60%GC). Both strands were scanned using the initial 

search profile for both SIDER subgroups. False positive statistics are displayed in 

Table 1. Results demonstrate that hits under 5 bits for the SIDER1 and the SIDER2 

profile can be potential false positives. To test if false positives were caused by 

discrepancies in the HMM profile, the distribution of false positive hits in relation to the 

profile consensus were plotted (Figure 5). It appears that the initial portion of the 

profile detects more false positives than the rest of the profile. Indeed, almost aH false­

positives are short sequences less than 50 nt long (data not shown). 

Table 1. False positive statistics for initial SIDER profiles 

SIDER 1 

SIDER2 

Hits 

67 

29 

Average 
Bit-Score 

1.25 

1.73 

Median 
Bit-Score 

1.10 

1.76 

Standard 
Deviation 

1.01 

1.40 

Maximum 
Value 

5.05 

5.36 
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To accurately estimate the genomic distribution of SIDERs, search results from 

a first hmmfs round were used to create refined species-specific HMM profiles for both 

subgroups. The foIlowing genome versions were considered: L. major 5.2, L. infantum 

3.0, L. braziliensis 2.0. Since hmmfs retums fragments of optimal matches, sorne hits 

are split into two or three results (large insertions in the target sequences are rejected by 

the algorithrn). A custom JAVA script [190] was developed to concatenate such results. 
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Figure 5. Position-specific profile susceptibility to false positives 

The amount of false-positives is plotted relative to the consensus of the initial SIDER1 profile. 

SIDER2 profile hits are within the 1-50 consensus region of the SIDER2 profile (data not shown). 

Three essential conditions were imposed for the incorporation of search hits into 

a species- and subgroup-specific refined HMM profile: (i) sequences must encompass 

90% or more of the search profile's consensus; (ii) sequences must share less than 90% 

pairwise identity with any other sequence in the set of results, with the purpose of 

reducing compositional bias for an optimal iterative search profile; (iii) score over 50 

bits. Empirical data suggests that subgroup discrimination based on the relative scores 

for each subgroup is reliable for overlapping hits over 50 (Figure 3). AIl hits were 

filtered and sorted using an ad-hoc JAVA script prior to being trained into the new 

refined HMM profiles. Table 2 lists the amount of sequences inc1uded in aIl six refined 

profiles. The 40% consensus sequences of the refined profiles were aligned in order to 

evaluate the evolutionary relationship of SIDERs among the three Leishmania species 

(Figure 6). 
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Figure 6. Inter-species SIDER similarity 

Neighbour-joining phylogeny of the 40% consensus of the species-specific refined HMM profiles 

aligned with CLUSTALW. Bootstrap values for 500 replicates are indicated above branching 

points. A 550 nt random sequence was used to root the tree. SI = SIDERl; S2 = SIDER2. 

Table 2. Amount of full-Iength sequences in refined HMM profiles 

L. major 

L. ;nfantum 

L. braziliens;s 

SIDERI 

214 

227 

161 

SIDER2 

587 

549 

458 

2.2. SIDERfragment distributions 

67 

The refined HMM profiles for both SIDERI and SIDER2 subgroups were used 

to retrain genomic datasets for all three species. Results were concatenated and sorted as 

detailed above, although all hits were considered this round. A summary of results is 

presented in Table 3. As could be expected, more SIDER-related sequences are 

predicted with the refined HMM profiles than previously reported (785 SIDERls, 1073 

SIDER2s in L. major [53]). 

Table 3. SIDER fragments in the genome of 3 Leishmania species 

Le;shman;a major 

Le;shman;a ;nfantum 

Le;shman;a braziliens;s 

SIDERI 

975 

767 

756 

SIDER2 

1278 

1284 

1467 
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Because a fragment search strategy was used, it is possible that certain profile 

portions are more abundant or conserved than others. The amount of hits per consensus 

position in the profile was studied to address this issue (Figure 7). It appears that 

SIDER2s are equally distributed throughout the genome in aH three species. On the 

other hand, there appears to be a significant amount of small SIDERl fragments bearing 

homology to the 400-450 region of the HMM profile in L. major and L. infantum, 

although not as abundant in the latter. This high copy number does not correlate with 

sequence conservation, as significantly fewer fragments remain when the threshold is 

raised. SIDERI fragments in L. braziliensis appear to be uniformly distributed. 

2.3. Genomic organization ofSIDERfragments 

It has been shown that LmSIDER2s are preponderantly positioned in the 

intergenic regions of DGCs [53]. Most of these elements (i.e. 73%) have been 

postulated to lie within 3 'UTRs. Such estimates are derived from mRNA extremity 

predictions based on an algorithm for the Trypanosoma genus [79]. By combining the 

more accurate algorithm described in chapter 1 with the search resuIts from section 2.2, 

the proportion of SIDERs potentially enc10sed in 3 'UTRs can be assessed more 

assertively. Figures 8, 9 and 10 detail the occurrence of SIDER fragments throughout 

the three genomes, consequently assigning them to specifie categories. On average, 58% 

of the SIDERs reported over the 5 bit threshold are predicted to be within the 3 'UTR of 

the upstream coding sequence, regardless of their subgroup. This value varies less than 

5% between both subgroups for an species. 

SIDERs are present in both orientations of DNA. For sake of c1arity, fragments 

in the same orientation as the CDS will be termed 'sense' (5'~3' in RNA), whereas 

'antisense' fragments will designate those in the opposite orientation (complement 

3'~5' in RNA). In L. major and L. braziliensis, there is roughly 10 times more sense 

SIDERs in predicted 3 'UTRs than antisense SIDERs. This proportion reaches 5x in L. 

infantum. In contrast to this, SIDERs predicted to be in the IR downstream of the 

poly(A) site occur up to 3x more often as antisense, except for the LmSIDER2 subgroup 

which presents equal proportions (figure 8). Interestingly, L. infantum intergenic 

SIDERs present the opposite ratios; 3x more sense fragments than antisense. 
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Figure 7. SIDER fragment distribution in the genomes of 3 Leishmania species 

The amount of SIDER fragments are plotted relative to their position in the HMM profile consensus. The colours correspond to the amount of hits above a 

certain threshold: Blue = 0 bits; green = 5 bits; red = 10 bits. 
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AIl SIDER fragments scoring over 5 bits are considered. UTR predictions made with the PRED-A-TERM 

program (c.f. Chapter 1). Absolute and relative nwnerical values are provided next to each slice. Legend 

indicates virtual position of SIDER fragments in genome: 3pUTR(s), 3pUTR(as) - in the predicted 

3'UTR, either in same orientation as mRNA (s) or in opposite orientation (as); Cleaved - poly(A) site 

predicted in the SIDER (any orientation); Divergent, Convergent - divergent or convergent 'strand­

switch' regions; 5pORF, 3pORF- overlapping the predicted ORF at 5' or 3' end respectively; ORF­

enclosed in predicted ORF; Subtel - in the subtelomeric region; IR(s) , IR(as) - predicted outside of 

3 'UTR, in the intronic intergenic region. 
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Five to seven percent of SIDERs are within 'strand-switch' regions. L. major 

has approximately 133 such regions in its genome [34], 87 of which contain SIDERs 

(Figure 8). Values are higher for L. infantum (11 0) and L. braziliensis (141). These 

'strand-switch' SIDERs are evenly distributed between convergent and divergent 

regions. Almost no SIDERs are present in subtelomeric regions; thus agreeing with 

previous reports [53]. There appears to be sorne occurrence of SIDERs in annotated 

coding sequences although the scores associated to these hits are weak. The upstream 

CDS are more often than not hypothetical proteins (data not shown). 

3. DISCUSSION 

The use of HMMs for optimizing multiple sequence alignments and conducting 

precise homology searches is very convenient for comparative analyses of biological 

sequences. Granted that HMM training is not the faste st method to align divergent 

sequences, it is seemingly the best approach to generate reliable SIDER alignments. The 

approach used to compare the effectiveness of the different alignment tools should not, 

however, be considered a rigorous benchmark of MSA quality. IdeaIly, entire 

alignments should be considered; not just the consensus. There do exist a handful of 

MSA benchmark tools (reviewed in [191]), but the intuitive nature of the presented 

analysis and its convincing outcome fulfil the problem at hand. 

The alignment of aIl LmSIDER sequences in Figure 2 provides additional 

evidence that there are two subgroups of these assimilated retroposons. Grouping 

SIDER elements strictly on the provided phylogeny is a somewhat credulous 

insinuation, as the exceedingly divergent nature of SIDER sequences provides little 

sturdiness to the tree (Appendix II). In fact, this observation hindered bootstrapping 

validation and diminished overall confidence in the precision of the tree. Conversely, 

sorting sequences in the alignment synchronously with the tree topology allows for 

visual substantiation of the proposed SIDER classification based on two factors: (i) the 

proportion of SIDERs in both c1usters; (ii) distinguishing patterns of sequence 

conservation. The first factor respects the initial subgroup annotation. The latter is 

validated by the abundance of indels in the top cluster. At this point, a rigorous 
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phylogenetic analysis was not deemed crucial to the analysis as the main purpose ofthis 

breakdown is for the construction of representative search profiles, a process that 

significantly reduces the amount ofretained sequences (Table 2). 

It was tempting to apply a purely statistical approach to SIDER subgroup 

modeling. For instance, this can be achieved by splitting sequences into two groups 

solely from phylogenetic data by the subsequent creation of optimal HMM profiles for 

both subgroups. Further isolation founded on the each sequence's relative score for both 

HMM profiles can yield discriminative profiles. Such an approach can be considered as 

an archetypal methodology for naïve sequences. On the other hand, since there is prior 

information on the nature of SIDER sequences in this experiment, the methodology 

described in the abovementioned sections attempts to combine established information 

with impartial statistical assessment of distinctive sequence traits. These considerations 

motivated the removal of incongruent sequences from both phylogeny-derived datasets. 

Based on the consensus of the initial HMM profiles and on the alignment of aH 

published LmSIDERs sequences (Figures 2 and 4), LmSIDERls appear to lack the 

second 79 nt signature motif of LmSIDER2. Representing the most conspicuous 

difference between subgroups, this deletion (or duplication) reveals a potential target for 

in-vivo functional studies. The 79 nt signature sequence is aU the more appealing since 

it is known to harbour transcription initiation factors in Trypanosoma [128]. However, 

seeing that the consensus is obtained from initial search profiles, it could be that the 

refined profiles tell a different story. Fortunately, the multiple alignment of the refined 

profile consensus used to build the tree displayed in Figure 6 exhibits very similar 

characteristics to Figure 4 (data not shown). Another region that contributes to the 

differentiation ofboth subgroups is the divergent region between the middle and the end 

of the alignment. It is conceivable that this region may also confer different functions to 

both SIDER subgroups. Figure 6 also suggests that SIDERl and SIDER2 possibly 

diverged before speciation events; however this insinuation may be biased since 

L. major sequences were used for the initial search. 

The overlapping hits observed when scanning the sequences in both training sets 

may appear problematic in that they cannot be associated to a particular profile 
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(Figure 3). The fact that almost all negative hits are overlapping hints to either the 

incorrect annotation of the associated SIDER elements or to the presence of large 

insertions or deletions. In fact, the scoring model used in the hmms pro gram implements 

a global alignment algorithm, therefore any sequences containing superfluous 

nuc1eotide stretches will be penalized. The hmmfs command used to accomplish 

genomic scans uses a local search algorithm which unmistakably discriminated both 

subgroups within the training sequences (data not shown). AlI full-Iength sequences 

were nonetheless retained in the initial profiles in order to loosen the stringency of the 

initial searches. This may account for the presence of false positives in the control scan 

(Table 1 and Figure 5). Nevertheless, these scores are not worrisome and their quantity 

may be over-represented as Leishmania genomes encompass ~32 million base-pairs. 

Since the refined search profiles consider only full-Iength results from the fragment 

search strategy, their specificity should definitely be stronger even though this was not 

tested (scanning 50 million base-pairs with hmmfs demands vast amounts of 

computation time). Doing so would provide custom threshold delineations for each 

speCles. 

Considering the observation that SIDERI sequences are largely characterized by 

the presence of only one 79 nt signature, the foremost portion of SIDERl profiles can 

potentially recognize SIDER2 sequences. Indeed, sorne SIDERls contain what can be 

considered as insertions after the first 79 nt signature, thus potentially aligning with the 

second signature motif of SIDER2s. In contrast, the more conserved nature of SIDER2s 

displays low incidence of deletions in the same region. Furthermore, since there are 

more SIDER2 sequences in the search profiles than SIDERIs, these regions are 

disproportionately represented. As a consequence, the SIDERl profile picks-up many 

SIDER2 sequences in genomic scans. A custom JAVA script was created to compare 

any overlapping hits for both profiles; the score ratio of both hits is weighted and hits 

are c1assified as SIDERl or 2 appropriately. Overlapping hits are almost always harshly 

unbalanced and scores are near null when this is not the case. 

Genomic scanning using fine-tuned HMM profiles reveals that SIDER elements 

are more abundant than previously reported. Straightforward genomes queries using 
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single sequences and speedy heuristic search tools indubitably lack the depth of profile­

based searches. Their use is most valuable for initial estimations of sequence homology 

and abundance, but their reliability weakens when precision is necessary. The fragment 

search tactic we employed identified ~20% more SIDER2-related sequences and ~30% 

more SIDERI-related sequences in the genome of L. major (Figure 8). 

A fragment search algorithm produces multiple hits when the genomic target contains 

large insertions, as this produces a higher score resulting from the low abundance of 

large insertions in the profile consensus. These regions may be neglected by global 

alignment strategies as they produce negative scores, whereas BLAST and related 

programs may overlook these regions altogether if the homologous regions do not share 

enough identity. A drawback of using the fragment search approach is that post­

processing is required to concatenate these interrupted hits in the genomic data. 

Insertions were rarely larger than 500 nt, so a JAVA script was conceived to concatenate 

interrupted hits from the HMM consensus (e.g. two matches spanning positions 1-200 

and 201-500 of the profile consensus separated by 150 nt are concatenate into one 650 

nt hit and their scores are combined). By filtering aIl search results with this script, the 

fragment-induced bias was significantly reduced from the projected quantities. 

An abundance of low-scoring SIDERI termini has been identified in L. major 

and L. infantum. As mentioned above, refined HMM profiles should flaunt higher 

specificity than that of the initial search profile. It therefore seems unlikely that these 

matches are false positives: a supposition that is reinforced by the sheer profusion of 

the hits (almost 1700 copies). Considering the abundance ofthis region in contrast to its 

low conservation (i.e. low bit-score), we speculate that his portion of the SIDER! 

consensus may harbour a conserved secondary structure. Granted profile specificity 

testing is required to ascertain this hypothesis, a conserved RNA structure may present 

weak primary structure conservation provided it forrns a functional secondary or tertiary 

structure. For instance, structural components that interact with other molecules are 

submitted to different selection pressure than scaffolding components (e.g. the 

anticodon in tRNAs vs. any helix). This potential discovery is significant as it has been 

shown that sorne genes containing SIDER! elements in their 3 'UTR are 

developmentaIly regulated by conserved regions in 3 'UTRs [50,52]. A similar 
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happening may take place 1. infantum which displays ~850 low-scoring copies of the 

same region. The marginal amounts of such fragments in 1. braziliensis can be 

explained by the exploitation of alternative regulatory mechanisms in this species. 

Indeed, RNA interference has been reported for this species which contains an apparent 

homolog of the Argonaut protein in its genome [34,51]. 

The most beneficial aspect of this thesis III regards to the functional 

characterization of SIDER elements is the improved accuracy of 3 'UTR prediction. 

Using the PRED-A-TERM program described in Chapter I, the approximate proportion 

of SIDERs contained in 3 'UTRs has been rectified to exclude potentially rubbish 

interspersed repeats. The initial estimate placed 73% ofSIDER2s in 3'UTRs. This work 

advocates that the proportion is closer to 58% in spite of the higher incidence of SIDER 

fragments. The previous mRNA processing site predictor was developed from cDNA 

statistics for the Trypanosoma genus which is known to have much shorter intergenic 

regions and for whom polyadenylation occurs much closer to the splice junction. The 

resulting approximations for Leishmania major are skewed toward Trypanosoma 

parameters, thus justifying the higher value. Moreover, it is now clear that SIDERs of 

aU genres are preferentially located in the 3 'UTR for aIl three Leishmania species. 

This work also reveals certain particularities concerning the orientation of 

SIDERs with regards to their genomic context. Most interestingly, the majority of 

reverse-complemented (or antisense) SIDERs are predicted to lie beyond the 3'UTR 

(Figures 8, 9, 10). In addition to the observation that 80-95% of SIDERs expected to 

reside in 3 'UTRs are in the same orientation as the coding-sequence, it appears that 

correct orientation may be required for proper regulatory function (assuming that 

SIDER elements carry out such a role). Another possibility is that SIDERs might impact 

polyadenylation either by the interference of the terminal adenosine stretch or by sorne 

other unknown mechanism. Poly(A) predictions do not appear to be over-represented 

near SIDER extremities therefore we can safely reject the first hypothesis (data not 

shown). There are no known reports of SIDER-related mechanisms affecting 

polyadenylation or trans-splicing. Obviously, the PRED-A-TERM pro gram does not 

emit perfect UTR predictions for reasons detailed in Chapter 1. Assuming that the 
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presence of SIDERs in the IR does not affect polyadenylation and/or the prediction 

pro gram, the UTR predictions made by PRED-A-TERM should not vary 

disproportionately to the true situation. 

Slightly more SIDERs have been identified in strand-switch reglOns than 

previously reported. About 65% of strand-switch regions contain SIDER elements in L. 

major. This proportion is estimated from a previous version of the genome annotation, 

yet should not vary significantly. Such a high proportion correlates with the observation 

that the 79 nt signature can promote transcription initiation is Trypanosoma [128], as 

strand-switch regions are the general transcription initiation sites for trypanosomatids. It 

is also conceivable that, due to their repetitive nature, SIDERs may be accountable for 

homologous recombination events. Unfortunately, the total proportion of strand-switch 

regions containing SIDERs was not verified for the other two Leishmania species. It 

should nevertheless be similar seeing as total SIDER proportions vary slightly among 

aIl three species. 
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4. CONCLUDING REMARKS AND PERSPECTIVES 

The short interspersed degenerated retroposons of Leishmania are abundant 

throughout all three sequenced genomes, yet present varying degrees of conservation 

and fragmentation. Such characteristics render in-silico analyses challenging and require 

accurate computational modeling to carry them out. The results set forth in this thesis 

convey the effectiveness of hidden Markov models towards surmounting this 

predicament. 

Statistical optimization of multiple sequence alignments combined with 

phylogenetic support facilitated the characterization of two SIDER subgroups. 

Independent search profiles were created from these subgroups in order to scan all three 

sequenced Leishmania species in an iterative manner. This approach resulted in an 

increased estimation of the amount of SIDER fragments in L. major while providing 

reliable estimates for L. infantum and L. braziliensis. 

Using a comparative approach, this work also presents a novel approach for 

predicting UTRs in Leishmania with more than double the accuracy of previous 

methods. This outcome is all the more commendable seeing as polyadenylation appears 

to be rather unspecific in trypanosomatids. Combined with the aforesaid search results, 

this tool allows for enhanced identification of SIDERs contained within mRNA 

transcripts. Given that the total amount of SIDER fragments is overwhelming for most 

structural motif detection programs, we can safely assert that, although not perfect, the 

PRED-A-TERM program helps target a subset of potentially functional SIDER 

elements. 

Regrettably, no further investigation of conserved motifs is accounted for in this 

work due to time constraints. However, most preliminary analyses and pertinent tools 

for this purpose have been expounded. Evidently, perspective work should focus on 

further characterization of SIDER sequences predicted to be within regulatory regions at 

the level of primary and secondary structure, ideally in both an in-silico and in-vivo 

framework. 
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APPENDIXI 

GenBank accession IDs of polyadenylated ESTs for Leishmania infantum 

CV670622 CV667147 CV669790 CV666576 CV664948 CV662751 
CV670278 CV667104 CV669752 CV666568 CV664863 CV662543 
CV670124 CV667102 CV669741 CV666518 CV664795 CV662518 
CV670078 CV667085 CV669706 CV666500 CV664644 CV662516 
CV670050 CV666990 CV669691 CV666454 CV664627 CV662488 
CV670037 CV666905 CV669653 CV666429 CV664599 CV662290 
CV670031 CV666863 CV669592 CV666427 CV664591 CV662231 
CV670015 CV666798 CV669583 CV666389 CV664588 CV662152 
CV670011 CV666794 CV669563 CV666323 CV664585 CV662127 
CV669673 CV666789 CV669476 CV666258 CV664554 CV661979 
CV669580 CV666769 CV669453 CV666121 CV664463 CV661923 
CV669553 CV666760 CV669387 CV666101 CV664400 CV661857 
CV665459 CV666735 CV669248 CV666093 CV664287 CV661842 
CV669548 CV666724 CV669211 CV666087 CV664282 CV661832 
CV669103 CV666719 CV669091 CV666084 CV664268 CV661828 
CV668879 CV666609 CV668957 CV666073 CV664255 CV661695 
CV668764 CV666605 CV668840 CV666071 CV664242 CV661552 
CV668103 CV664280 CV668518 CV666056 CV664154 CV661459 
CV667818 CV670675 CV668486 CV666038 CV664102 CV661168 
CV667706 CV670639 CV668435 CV665948 CV664094 CV660981 
CV667665 CV670623 CV668434 CV665911 CV664028 CV660962 
CV667646 CV670467 CV668356 CV665909 CV664006 CV660927 
CV667639 CV670463 CV668213 CV665901 CV663984 AJ276158 
CV667625 CV670444 CV668181 CV665859 CV663977 
CV667619 CV670436 CV668178 CV665846 CV663968 
CV667005 CV670417 CV668130 CV665815 CV663966 
CV666662 CV670284 CV668096 CV665766 CV663941 
CV666468 CV670279 CV668014 CV665702 CV663871 
CV662176 CV670119 CV667999 CV665682 CV663850 
CV667598 CV670097 CV667777 CV665566 CV663778 
CV667575 CV669957 CV667565 CV665540 CV663715 
CV667542 CV669949 CV667515 CV665362 CV663605 
CV667358 CV669922 CV667398 CV665328 CV663591 
CV667347 CV669890 CV667385 CV665288 CV663579 
CV667338 CV669846 CV667347 CV665232 CV663564 
CV667325 CV669835 CV667232 CV665225 CV663464 
CV667210 CV669821 CV666826 CV665041 CV663132 
CV667167 CV669819 CV666690 CV665020 CV662998 
CV667149 CV669799 CV666586 CV664992 CV662943 
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Minimum evolution phylogenetic tree corresponding to the topology of Chapter II -

Figure 2. See text for details. 




