

Direction des bibliothèques

AVIS

Ce document a été numérisé par la Division de la gestion des documents et
des archives de l’Université de Montréal.

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

This document was digitized by the Records Management & Archives
Division of Université de Montréal.

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal

Rule-based Quality Heuristics Formalization and Identification

Par

Fan Yang

Département d'Informatique et de Recherche Opérationnelle

Faculté des Arts et des Sciences

Mémoire présenté a la Faculté des Études Supérieures

en vue de l'obtention du grade de

Maître ès Science (M. Sc.)

en Informatique

Juin, 2007

© Fan Yang, 2007

1 0 JAN. 2008

Université de Montréal

Faculté des Études Supérieures

Ce mémoire intitulé

Rule-based Quality Heuristics Formalization and Identification

Par

Fan Yang

A été évalué par un jury composé des personnes suivantes:

Yann-Gaël Guéhéneuc
président rapporteur

Houari Sahraoui
directeur de recherche

Nadia EI-Mabrouk
membre du jury

Mémoire accepté le:

23 novembre 2007

Il

III

Résumé

L'évaluation d'une conception par objects est habituellement effectuée p~ des experts

en logiciel à travers une liste d'heuristiques basées sur leurs années d'expérience. Le

logiciel qui satisfait cette liste est considéré comme acceptable. Cependant, cette

démarche est rarement documentée pour être utilisée par des spécialistes novices, et

même si elle l'est, il n'y a aucun consensus sur ce qui est considéré comme

acceptable. De plus, l'analyse manuelle des logiciels de grande taille est au mieux

fastidieuse, souvent infaisable.

Cette thèse propose une solution au problème de l'évaluation de conception, basée

sur les règles. Nous rassemblons et raffinons en particulier un ensemble d'heuristiques

de qualité de la littérature. Par la suite, nous définissons une approche pour formaliser

ces heuristiques de qualité et les mettons en application sous forme de règles

spécifiques aux conceptions décrites dans un méta-modèle de type UML. Ces règles

sont automatiquement appliquées à l'information extraite à partir du code en

recherchant des conformités aussi bien que des violations de bonnes pratiques.

Nous implantons notre solution dans un outil prototype. Nous avons appliqué cet

outil au code source de logiciels industriels et académiques pour réaliser plusieurs

études de cas. Ces expériences montrent que notre approche peut automatiquement

détecter des conformités et des violations dans des logiciels à objects.

Mots-clés: Heuristiques de conception logiciel, heuristiques de qualité, retro ingénierie, le
SDG et le moteur de règle.

IV

Abstract

The evaluation of object-oriented design is usually made by software experts using a

list of heuristics based on their years of experience. Software that satisfies the se

heuristics is considered as acceptable. However, expert's heuristics are rarely

documented to be used by inexperienced software specialists and even if so, there is

no consensus on what is considered as acceptable. Moreover, the manual artalysis of

large-scale software is fastidious at best and often infeasible.

This thesis de scribes a rule-based solution to evaluate the object-oriented design

automatically. We particularly collect and refine a set of quality heuristics from the

literature. Then, we propose an approach for formalizing these quality heuristics and

implement them in the form of rules specific to software designs modeled in a UML

meta-model. These rules are automatically applied to information extracted from the

code by searching conformances as weIl as violations.

We present our solution into a prototype tool. We applied the tool in existing source

code taken from industrial and academic fields for several case studies. These

experiments show that our approach can automatically detect conformances and

violations of the quality heuristics from the object-oriented systems.

Keywords: design heuristics, quality heuristics, reverse engineering, SDG and rule engine.

v

Acknowledgements

First and foremost 1 wish to thank my supervisor, Professor Houari Sahraoui, for his

valuable courses during my studies at Université de Montréal and for his clear advice

and encouragement during this project. 1 would not have been able to do this thesis

without his support.

1 also want to thank El Hachemi Aklicacem, for his constant guidance. 1 benetited

greatly from formaI and informaI discussion with him at CRIM (Centre de recherche

informatique de Montréal).

1 thank CRIM which provided a wonderful research environment and tinancial

support for this thesis.

1 wish to thank the "Département d'informatique et recherche opérationnelle",

Université de Montréal for the graduate courses and the research environment, and

Mariette Paradis for easing the procedure of dealing with Department.

1 would especially like to thank my wife Hong Hong and my son Hongyue, for their

constant encouragement and support.

Finally, thanks to my parents, for everything.

VI

Table of contents

1 INTRODUCTION .. 1

1.1 MOTIVATION ... 1

1.2 GENERAL METHODOLOGY .. 3

1.3 OUR ApPROACH .. 4

1.4 STRUCTURE OF THE THESIS ... 7

2 STATE OF THE ART .. 9

2.1 LITERATURE SURVEY .. 9

2.2 RELATED WORK .. 10

2.2.1 MeTHOOD .. 10

2.2.2 GOOSE .. 11

2.2.3 KT .. 11

2.2.4 OMT .. 12

2.2.5 SAD ... 13

3 QUALITY HEURISTICS .. 15

3.1 DESIGN HEURISTICS .. 16

3.1.1 Human Factors .. 17

3.1.2 Relation to Design Metrics .. 18

3.2 DESIGN PATTERN .. 18

3.3 ANTI-PATTERN ... 23

3.4 RELATION BETWEEN DESIGN HEURISTIC, PATTERN ANDANTI-PATTERN 27

4 QUALITY HEURISTICS FORMALIZATION AND IDENTIFICATION

USING PRODUCTION SYSTEM ... 33

4.1 PRODUCTION SYSTEMS ... 33

4.1.1 Working Memory .. 34

4.1.2 Production Rules ... 34

4.1.3 Conflict Resolution .. 35

4.1.4 Applications and Advantages .. 35

4.2 QUALITY HEURISTICS FORMALIZATION .. 36

4.2.1 Meta-model : ... 36

Vil

4.2.2 Automation Degree ... 38

4.2.3 Formalization ... 39

4.3 QUALITY HEURISTICS IDENTIFICATION .. .44

4.3.1 General Mechanism of the Method .. .44

4.3.2 Definitions ofWorking Memory Elements .. .44

4.3.3 Quality Heuristic Rules .. .47

4.3.3.1 Design Heuristics Rules48

4.3.3.2 Design Patterns Rules .. 49

4.3.3.3 Anti-pattern Rules ... 51

4.3.3.4 Coalesce Rules .. 53

5 IMPLEMENTATION ... 54

5.1 IMPLEMENTATION ARCHITECTURE .. 54

5.1.1 Design Discovery .. 55

5.1.2 Facts Generation .. 61

5.1.3 Rule Engine Abstraction Layer ... 62

5.1.4 Quality heuristics Editor .. 63

5.1.5 00 Design Analysis .. 64

5.2 GU!. .. 65

5.3 IMPLEMENTATION ISSUES ... 72

6 EVALUATION .. 75

6.1 EVALUATION PROCEDURE ... 75

6.1.1 Example Selection ... 76

6.1.2 Non-example Selection ... 77

6.1.3 Evaluation Results ... 77

6.2 RESULTS ANALYSIS .. 82

6.2.1 Positive results ... 83

6.2.2 Negative results ... 85

6.2.2.1 Ambiguous Results .. 85

6.2.2.2 Failed Results .. 87

6.3 CASE STUDY ... 90

7 CONCLUSION AND FUTURE WORK ... 96

viii

7.1 FUTURE WORK .. 96

7.2 CONCLUSION ... 96

REFERENCES .. 98

APPENDIX A PARTIAL ANTLR JAVA GRAMMAR 103

APPENDIX B - JESS RULE DTD .. 105

APPENDIX C JESS RULE XSLT ... 106

APPENDIX D - QUALITY HEURISTIC JESS RULES ... I08

\
IX

List of Figures

Figure 1 Design Architecture ,. ... 6

Figure 2 Observer instance and corresponding fragment structure 13

Figure 3 Observer Design Pattern ... 22

Figure 4 Blob Anti-pattern .. ; 26

Figure 5 Beverage Class Diagram ... 27

Figure 6 Improved Beverage Class Diagran;t ... 30

Figure 7 UML Meta-Model ... 37

Figure 8 Independent Rule Representation .. .40

Figure 9 the design pattern Abstract Factor pictured as (1) a UML c1ass diagram and

(2) as an independent pattern definition .. .41

Figure 10 Observer pattern in meta-modeL43

Figure Il the Singleton design pattern43

Figure 12 Implementation architecture ... 54

Figure 13 SDG Graph .. 58

Figure 14 Design Discovery Diagram ... 59

Figure 15 Main Window of the Prototype ... 65

Figure 16 Submenu of Design Recovery .. 65

Figure 17 the SDG Graph Viewer ... 66

Figure 18 the Submenu of F acts Generation ... 66

Figure 19 the Facts Viewer ... 67

Figure 20 Meta-model templates viewer.. ... 68

Figure 21 the submenu of Knowledge Base .. 68

Figure 22 Quality heuristics viewer window .. 69

Figure 23 Rule Editor Window ... 70

Figure 24 the submenu of Design Analysis ... 70

Figure 25 Analysis Configuration ... 71

Figure 26 Analysis Results .. 72

Figure 27 Strategy Design Pattern ... 86

x

Figure 28 State Design Pattern .. 86

Figure 29 Bridge Design Pattern ... 87

Figure 30 Adapter irnplernentation variants .. 89

Figure 31 Anti Cornrnon-code Private Function ... 89

List of Tables

Table 1 Quality Heuristics Detection Results ... 79

Table 2 Validation ofthe Detection Results ... 80

Table 3 Case Study Results ... 91

Table 4 Case Study Results Analysis .. 92

1 Introduction

1 Introduction

The demand for quality software continues to intensify due to our society's increasing

dependence on software systems and the often devastating effect that a software error

can have in terms of life loss, financialloss or time delays. Today' s software systems

must ensure consistent and error-free operation every time they are used. This

demand for increased software quality has resulted in quality being more of a

differentiator between products than it ever has been before. In a marketplace of

highly competitive products, the importance of delivering quality is no longer an

advantage but a necessary factor for companies to be successful.

1 . 1 Motivation

While there is uniform agreement that we need quality software, the question of how

to measure and assure quality is far from a settled issue. Software metrics have been

used to address this issue for several decades; many measures have been proposed in

the literature to capture the structural quality of object-oriented code and design, e.g.,

[McCabe, 1976], [Fenton, 1991], [Chidamber and Kemerer, 1991], [Chidamber and

Kemerer, 1994], [Li and Henry, 1999], and [Lorenz and Kidd, 1994]. These measures

are being used to address not only different aspects of software quality such as

maintainability, reliability, reusability and so forth, but also on the finer granularity of

object-oriented properties such as cohesion, coupling and complexity. Once the

necessary measurement instruments are in place, the assessment of even large

software systems can be thus done very fast, at a low cost, with little human

involvement. However, commercial software developers have made relatively little

use of them. One of the main drawbacks of metrics is that results are provided in

numeric value and are thus less intuitive than the guidelines derived from the

practical experience of skilled developers for common software engineers to

understand problems and how to locate and fix those problems. Another reason for

this is that understanding and applying metrics can be very complicated and is

generally only recommended to experienced developers. In addition, there is a lack of

1 Introduction 2

association between the proposed metrics for evaluating the object-oriented design

and the daily decisions made by developers.

Consequently, software developers are more inclined to rely on their intuition about

the complexity of a system, rather than on sorne quantified metrics. The process of

code or design review is accepted naturally by the majority of software engineers;

many organizations execute design reviews by expert designers to improve the design

of a large system and to avoid design flaws [Haynes, 1996].

For instance, once an object-oriented developer had completed a design regardless of

the methodology used, the developer's main question was, "Now that l have my

design, is it good, bad, or somewhere in between?" In asking an object-oriented guru,

the developer was often told that a design is good when "it feels right." While this is

of little use to the developer, there is a kemel of truth in such an answer. The guru

runs through a subconscious list of heuristics, built up through his or her design

experience, over the design. If the heuristics pass, then the design feels right, and if

they do not pass, then the design does not feel right.

However, there are several concems about the process of evaluating a design by

consulting the object-oriented gurus. First, expert designers are hard to find and

expensive to use. Second, this process, the identification of good or problematic 00

software constructions, is very difficult to do manually for large systems. We can

highlight the following reasons for this difficulty:

• Software systems that need to be reengineered are usually medium / large in

size, making manual search for problems unfeasible.

• Systems are developed by different developers or teams. Design problems can

be spread across several subsystems and thus cannot be detected locally.

• In most cases, the only reliable source for design information is the source

code. Models, when available, either are out of date or are too superficial to

support a design analysis. However, the manual analysis of source code limits

1 Introduction 3

the scope of the problems that can be found in a timely and economically

way.

• Developers often do not know what kind of problems they should be 100 king

for when they have to evaluate their designs. A common knowledge-base

containing potential design problems can provide a valuable support in this

case.

• Expertise of gurus is generally designed to be used by human beings not for

automated CASE tools.

1.2 General Methodology

To address the aforementioned problems, the general methodology is to analyze the

legacy code, specifying frequent design problems or reusable designs as queries and

locating the occurrences of these problems or reusable designs in a model derived

automatically from source code.

The first step in the methodology is to parse the source code and to produce high­

level design information. Doing so leaves the concrete implementation behind and

moves towards a higher level of abstraction at which specifications of those problems

or reusable designs are given. To be able to express and interpret the information

gathered from source code, a meta-model for object-oriented systems has to be set up.

This meta-model defines the different entities and relations that may occur in the

design of an object-oriented program. The model of a legacy system that conforms to

the meta-model can be stored as a graph, as entities and relations, or as predicates.

This makes it possible to query and manipulate the model using different query

languages.

To detect problematic or reusable structures in the design of a system, the second step

in the methodology is to search for certain patterns representing those problematic

and reusable designs in the meta-model buiIt from the target system. This means that

the methodology has to be able to specify problematic or reusable designs and to

J Introduction 4

query the model for the existence of a specified problematic or reusable design. The

result of such a query is a piece of design specifying the location of the problematic

. or reusable design in the system. Such a piece of design in the meta-model is often

referred to as a design fragment.

Several ways to specify queries on a design model exist in terms of the ways for

representing the design model as aforementioned. A model can be understood as a

typed graph, and the queries become algorithms working on this graph. A model can

be specified by sets and relations. Queries then take the form of relational algebraic

expressions. A model can also be expressed by logical propositions and be queried

using predicate calculus, e.g., using alogie programming language.

1.3 Our Approach

The three above-mentioned approaches represent different viewpoints about the same

meta-model. Although they are equivalently powerful in a sense and the

corresponding models and queries can be converted into each other, each ofthem has

its advantages and shortcomings in certain tasks.

For our specifie problem, we adopted the logic prograrnming language approach,

expert systems in other words. The reason is that expertise in design problems and

reusable designs expressed in our model is mostly captured in literature in the form of

natural languages and is primarily designed to be used by human beings. Expert

systems, rule-based computer programs that capture the knowledge of human experts

in their own fields of expertise, were a perfect solution for this problem. Though

many expert systems have several major practicallimitations such as a lack of causal

knowledge 1 and a knowledge-acquisition bottleneck2 [Giarratano and Riley, 1998],

expert systems have been successful in dealing with real-word problems that

conventional programming methodologies have been unable to solve, especially those

1 Causal knowledge describes the expert systems do not really have an understanding of the underlying
cause and effects in a system.
2 Knowledge-acquisition bottleneck describes the problem oftransferring human knowledge into an
expert system, which is a time-consuming and labor-intensive task.

1 Introduction 5

dealing with uncertain or incomplete information. According to a rule-based system's

definition, Rule-based systems, or often called expert systems, are "software systems

(or subsystems) that simulate as closely as possible the output of a highly

knowledgeable and experienced human functioning in a problem-solving mode

within a specific problem domain" [Lane, 1986]. The three main components of an

expert system are the knowledge base (i.e., the expertise in a specific domain), the

inference engine (i.e., the controlling mechanism), and the user interface (e.g.,

explanation facilities). In general, the inference engine applies the rules in the

knowledge base on the facts in working memory to construct an agenda. The list of

rules that could potentially be fired is stored on the agenda. The execution engine

fires the rules from the agenda, thereby changing the contents of the working memory

and restarts the cycle.

Thus using predicates is easy to map the expertise and easy to simulate experts

decision making. Our approach is to build a rule-based tool that detects good and bad

00 design constructions, i.e., constructions corresponding to standard solutions to

recurring design problems (design patterns), or constructions that can result in future

maintenance and reuse problems (design heuristics, anti patterns). Using this aid, it is

possible to identify structures in a system that need to be modified to make it more

flexible and reusable, and, by identifying existing design patterns, to facilitate the

understanding system as a whole, including that of the badly documented systems.

Figure 1 shows the architecture of our approach. The whole process can be divided

into the following steps:

• Expertise acquisition

• Design extraction

• Design facts generation

• Design analysis

The design-extraction process will parse source code and generate an intermediate

representation of the source code - SDG (Semantic Directed Graph); then the design

facts generation process will traverse SDG graph and produce facts representing

I Introduction 6

design information; those facts are then loaded into the working memory or saved

into a repository to be used later on. These facts are stated in predicates

corresponding to the constructions defined in the meta-model for object-oriented

software. This definition of this meta-model was based on the UML semantic meta-

model [UML, 1997].

Rule Based Expert System--------------~--------_

Source code

Design
Information

Facts Generation

Working M ory---,

Design Analysis

Common
Knowledge

Knowledge
Acquisition

Knowledge Base: uality Heuristi

Design heuristic
and

Design Pattern

Results

Figure 1 Design Architecture

Quality heuristics compose the knowledge base in ourapproach, which are confined

from design heuristics, design patterns and anti-patterns (we name them as common

1 Introduction 7

knowledge). The common knowledge, which shows what a good object-oriented

system should look like, exists in the literature. Originally these guidelines were

meant to be followed by a human developer when creating a new design, rather than

by an automatic tool detecting violations of design rules in a given design of a legacy

system. Quality heuristics are manually examined to see whether they could be used

for automatically detecting problems in the CASE too1. Those proven quality

heuristics are formalized into production rules and saved into the rule repository.

Finally the design analysis process will apply quality heuristics rules' to facts

representing design information and will pro duce a report of violations and

conformances found in the target system.

We have implemented a prototype tool according to our approach and have evaluated

the prototype tool on several open-source systems. The results show that our

approach can provide the following benefits to software engineers:

• Use the approach has been accepted and used naturally by software engineers.

• Define and formalize quality heuristics into the knowledge base.

• Show the location of a problem directly instead of showing a flood of metrics

values that require further interpretation.

• Illustrate what kind of problem it belongs to.

• Comprehend the source code.

• Define a rule engine abstraction layer that allows us to develop our rules in a

vendor-neutrallanguage.

• Give a promising solution to the problem.

1.4 Structure of the thesis

The thesis consists of 7 chapters as follows.

Chapter l, Introduction: talks about the motivation of our work and the general

methodology; depicts architecture of our prototype; introduces main components in

the prototype and finally shows the advantages of our approach.

1 Introduction 8

Chapter 2, State of the Art: lists related work, discusses similarities and differences

between their work and ours.

Chapter 3, Quality heuristics: presents the concepts and relationships of design

heuristics, design patterns and anti-patterns; quality heuristic are refined from those

raw sources.

Chapter 4, Quality heuristics formalization and identification: introduces

production systems; defines selected UML constructs in production terms; and

formalizes and identifies design quality heuristics rules in the production system.

Chapter 5, Implementation: describes the design architecture of our prototype tool

and its design details; illustrates the functionalities and GUI of our prototype tool;

and discusses key implementation issues.

Chapter 6, Evaluation: presents an evaluation procedure and shows evaluation

results on selected open-source projects that have applied our prototype too1. Finally,

this chapter presents a case study of the different versions of an open-source project.

Chapter 7, Conclusion and Future work: gives additional ideas outside the scope of

the present thesis for future work with CASE tool and pro vides a conclusion for the

work presented.

2 State of the Art 9

2 State of the Art

This chapter discusses related work; at first it provides a literature survey of works

surrounding reverse engineering and research into quality heuristics formalization

and identification, and presents a more detailed comparison of the se with the work

provided in this thesis.

2.1 Literature survey

Object-oriented methodology has dominated software development area for several

decades. Along with this trend, a considerable number of methods have been

introduced to help software engineers design and develop 00 products such as

[Rumbaugh et al. 1991] and [Booch, 1994] etc. Along with these methods, several

tools became available (e.g., [Rational Rose, 1997], [Together, 2006]). The emphasis

of these methods and tools has been on how to develop semantically correct 00

models regarding the constructions available in modeling languages such as UML

[UML, 1997], for example.

However, a correct model does not necessarily mean that it is flexible and reusable.

The expertise of 00 gurus and related research have bridged the gap between correct

models and quality design, and have been captured in the literature on heuristics

[Riel, 1996], [Martin, 2000], [Lieberherr, 1996] and design patterns [Gamma et al.,

1995], etc. The heuristics coyer important topics ranging from classes and objects

with emphasis on their relationships to physical object-oriented design3
. Heuristics

can highlight a problem in one facet of a design while design patterns can provide the

solution.

Although design heuristics and design patterns were originally supposed to be used

by hum an developers, works introduced in [Brown, 1996], [Grotehen and Dittrich,

1997], [Bar and Ciupke, 1998], [Prechelt and Kramer, 1998], [Correa et al., 2000]

3 Physical object-oriented design [Riel, 1996] involves the techniques used to map logical design
(abstract constructs such as classes and relationships) onto given software and hardware platforms.

2 State of the Art 10

and [Wenzel, 2006] have demonstrated how to use them in an automatic manner, that

is, how to integrate the expert's knowledge and thinking patterns into CASE tools.

There are two main approaches to doing heuristics or pattern detection; one is by

using graph matching, and the other way is by using production system.

2.2 Related work

Several works related to the reengineering of legacy object-oriented systems and the

detection of design heuristics and design patterns have appeared in the last ten years.

In this section, we compare them with our work in more detail.

2.2.1 MeTHOOD
MeTHOOD [Grotehen and Dittrich, 1997] is a framework that enables a design

process that allows designers to review and improve object-oriented designs on the

meta-model level. It consists of a design-knowledge base (containing definitions of

measures, heuristics, and transformation rules) that works on a specification database

containing conceptual design schemas. It applies the heuristics rule on conceptual

design schemas to discover design flaws; it then uses transformation rules to create a

proposaI for an alternative design. Measures are used to deal with conflicts when two

or more heuristic rules (as weIl as transformation rules) are possible in a given

context at the same time.

The overall design of MeTHOOD is that of an object-oriented database system. It

uses an object-query language to express a design knowledge base. The targeted

design models are presented as records in the database. Moreover, it uses measures to

overcome heuristic rules conflicts manually. MeTHOOD's design meta-model has to

be entered by using a special editor and cannot be discovered from source code

automatically. So far, only a few rules are given formaIly. In addition, MeTHOOD is

more general in the sense that is provides concepts for transforming designs and for

resolving problems. Comparing MeTHOOD with our approach, we use a production

system to represent the design knowledge base and the targeted design models; a

production system (expert system) is originally designed to capture the human

2 State of the Art Il

knowledge and to simulate human thinking ability; solving rule conflict is an integral

part of a production system. Another difference is that our approach can read a model

from source code and cornes with a set of formally defined rules that can be applied

for problematic and reusable structures' detection.

2.2.2 GOOSE

GOOSE [Bar and Ciupke, 1998] is a reengineering tool set that helps the user to

detect design problems in a legacy source code. It formalizes design heuristic rules,

extracts design information from legacy source code and searches for violations of

these rules automatically. It mainly provides a set of design heuristic rules that can be

used in CASE tools automatically as weIl as those that not be. It uses the term

"testability" to judge how precisely these design heuristics can be used as an

automated search for violations.

The differences between GOOSE and our prototype are that the goal of GOOSE is to

detect design problems; the design heuristic rules are mainly retrieved from [Riel,

1996]; its implementation uses Prolog. Our prototype not only detects design

problems, but it also detects well-known good design structures to help end-us ers

comprehend the designs. Both detected structures will ultimately be used as inputs to

evaluate overall software quality. Quality· heuristics are gathered from design

heuristics, design patterns and anti-patterns, which are much broader than GOOSE.

FinaIly, we use Jess [Jess, 2006] as our production system; it is reputed to be more

efficient than the Prolog system.

2.2.3 KT

The first attempt to automatically detect design patterns was performed by Brown

[Brown, 1996]. In this work, SmaIltalk code was reverse-engineered in order to detect

four well-known patterns from the catalogue by [Gamma et al., 1995]. The algorithm

was based on information retrieved from class hierarchies, association relationships

2 State of the Art 12

and aggregation relationships, as weIl as the messages exchanged between classes of

the system.

The KT tool focused on searching for Composite, Decorator, Template Method and

the Chain of Responsibility. It noted that Strategy, State and Cornmand would

potentially be detectable, but that they would be ambiguous; so much so, that it would

potentially be easy to obtain a false positive. Moreover, the KT tool is restricted to

detecting design patterns in Smalltalk, since it regards only flows in VisualWorks for

Smalltalk.

Our prototype is capable of detecting design patterns as weIl as design problems

according to design heuristics and anti-patterns mIes. Our prototype can detect more

design patterns than the KT tool does. Also our prototype is a mle-based system that

uses UML meta-model-based predicates to uniformly express software design

information as weIl as the knowledge of design patterns, anti-patterns and design

heuristics. Our prototype shares the same shortcoming as does the KT tool, which is

a false positive result for the detection of Strategy and State design patterns.

2.2.4 OMT

OMT [Florijn, 1997] supports working with design patterns when developing or

maintaining object-oriented programs. This tool provides three integrated views of a

program: the source code view, design view and occurrences of design patterns in the

program. The tool assists developers using patterns in three ways:

• Generating program elements (e.g., classes, hierarchies) for a new instance of

a pattern, taken from an extensible collection of "template" patterns

• Integrating pattern occurrences with the rest of the pro gram by binding

program elements to a role in a pattern (e.g., indicating that an existing class

plays a particular role in a pattern instance)

• Checking whether occurrences of patterns still meet the invariants governing

the patterns and repairing the program in case of problems

2 State of the Art 13

Subiecr'
10

Attach(Observer)
observers

".., Observer 'i
DeJach(Ob,erver)

1 UpdaJeu' 1 NoJifyO

~ h
subOact

ConcrSubjecl • ObserverA' ObserverB'

GetstateO UpdateO' Update(),
sUbjectState

~ observerState observerState

subleCI

Figure 2 Observer instance and corresponding fragment structure

The tool proposed a mechanism for representing patterns as a set of fragments, called

"The Fragment Model." This breaks down the pattern in terms of what it must

provide: relationships with other classes (including inheritance), methods that must

be present, and how they are connected with one another. Each one of these

requirements is a fragment, and a collection of fragments together under one 'root'

fragment defines a pattern. The aim of the fragment model is to provide a definition

of the design patterns that can be used in a practical tool to allow the developer to

instantiate patterns from scratch or from existing code. An example of a fragment is

shown in Figure 2.

Our prototype is a rule-based system, it uses UML meta-model-based predicates to

express software design information instead of "The Fragment Model" in OMT. It

will detect design problems as weIl as well-known good design structures. OMT does

not offer support for the automatic search of design patterns; it can generate source

code when a user selects a pattern template and does refactorings, a suite of

transformations that restructure and extend the program on a design level according

to designated patterns.

2.2.5 SAD

2 State of the Art 14

SAD [Moha and Gueheneuc, 2006], proposes a language (Rule Card) and a

framework (SAD) to express design defects synthetically and to generate detection

algorithms automaticaIly.

Rule card specifies design defects syntheticaIly. Rule cards are expressed using a

BNF grammar. A rule card is identified by the keyword RULE_CARD, followed by a

name and a set of rules specifying this specific design defect as a set of code smells.

A rule describes a code smell as a list ofproperties (metrics, structural, or semantics).

The automated generation of detection algorithms relies on the SAD framework.

SAD provides the building blocks common to aIl detection algorithms. It includes the

PADL and SADDL meta-models, which represent object-oriented programs and

provide constituents related to design defects to de scribe models of rule cards

respectively.

FinaIly, SAD includes algorithms to visit models of rule cards and to generate

detection algorithms from these models.

Our prototype is a rule-based system; it detects design problems as weIl as weIl­

known good design structures. Their meta-model and our meta-model are quite

similar. The rule card is interesting for us; we can use it in our knowledge-acquisition

process to automatically generate quality heuristic rules from common knowledge.

3 Quality Heuristics 15

3 Quality Heuristics

Designing object-oriented software is difficult; designing reusable object-oriented

software is even more difficult. You must find pertinent objects, factor them into

classes at the right granularity, define class interfaces and inheritance hierarchies, and

establish key relationships among them. Your design should be specific to the

problem at hand but also general enough to address future problems and

requirements.

Experienced object-oriented designers do make good designs. Experienced design~rs

evidently know something that inexperienced designers do not. What is it that they

know? One thing expert designers are aware of is a list of guidelines for good or bad

designs based on their years of experience. These guidelines help them develop good

design and improve design quality. These guidelines are called design heuristics.

Experts also know not to solve every problem from first principles. Rather, they reuse

solutions that have worked for them in the past. When they find a good solution, they

use it again and again. Such experience is part of what makes them experts.

Consequently, recurring patterns of classes and communicating objects are found in

many object-oriented systems. These patterns solve specific design problems and

make object-oriented designs more flexible, elegant, and ultimately reusable. Design

pattern is the name of these reusable good solutions or recurring patterns. The

knowledge of experts not only includes the patterns related to good design, but also

the patterns related to design problems, such as reusable resistant structures, good

patterns applied in wrong contexts, etc. Anti-pattern is the name of these bad

solutions. Quality heuristics are developed from design heuristics, design patterns and

anti-patterns, which are the core of our prototype. We discuss design heuristics first

and, thereafter, we talk about design patterns and anti-patterns. At the end of this

chapter, we explain relations among three ofthem.

3 Quality Heuristics 16

3.1 Design Heuristics

Experienced 00 . developers can look at source code or UML diagrams directly and

identify design heuristics that influence the system's design. They then exert

judgement regarding the balance of these design heuristics to form an opinion about

the quality of the component or system in question. This process is largely influenced

by the opinions of individual developers and involves a number of aesthetic

components.

Many publications have attempted to capture the expertise of skilled 00 developers,

such as [Meyer, 1988], [Martin, 1996a], [Martin, 1996b], [Martin, 1996c], [Riel,

1996], and [Lieberherr, 1996], etc. As explained in [Meyer, 1988] and [Martin,

1996a]. F or instance, "Classes should be open for extension, but closed for

modification." The goal of this design heuristic is to allow classes to be easily

extended to incorporate new behaviour without modifying existing code. In other

words, designs should be resilient to change and flexible enough to take on new

functionality to meet changing requirements. In addition, Riel, for example,

documented 61 golden mIes of OOP [Riel, 1996]. Every mIe links to a potential

problem in the design where the mIe was violated. He describes them in the

following way: "not hard and fast mIes that must be followed under penalty of

heresy. Instead, they should be thought of as a series of waming bells that will ring

when violated. The waming should be examined, and if warranted, a change should

be enacted to remove the violation of the heuristic. It is perfectly valid to state that

the heuristic does not apply in a given example for one reason or another." He

classified aIl the heuristics into 8 categories: Classes and Objects, Topologies of

Action-Oriented Versus Object-Oriented Applications, Relationships Between

Classes and Objects, Inheritance Relationship, Multiple Inheritance, Association

Relationship, Class-Specific Data and Behaviour and Physical Object-Oriented

Design.

Another example is K. Beck and M. Fowler's collection of code smells [Fowler,

1999]. Code smells are used to help software developers identify problematic code

3 Quality Heuristics 17

and to decide when this code needs to be improved by refactoring. The authors'

choice ofthe term "smeIls" emphasises the vague and subjective nature of heuristics.

There are several possible types of relationships between heuristics. The most

important two are implication and contradiction [Bar and Ciupke, 1998]. The term

"implication" is used to mean that the conformance to one heuristic indicates the

conformance to another. For example, Riel's Heuristic RH2.1 "AlI data should be

hidden within its class" implies the Information Hiding Principle. This principle

suggests that the details of an object that are most likely to change, or "do not

contribute to its essential characteristics" [Booch, 1994], should be hidden.

Many contradicting heuristics are derived from differing opinions about good 00

design. For example RH5.7, "AlI base classes should be abstract" discourages

concrete base classes; however satisfying this heuristic could result in a Lazy Class

Smell. Other contradictions result from conflicting forces of design. The simple st

example is RH5.4 and RH5.5, which state, "in theory, inheritance hierarchies should

be deep - the deeper the better" and, "in practice, inheritance hierarchies should be no

deeper than an average person can keep in his or her short-term memory. A popular

value for this number is 6", respectively.

When faced with contradicting heuristics, the developer should examine the design

further to determine whether or not both of them are applicable in their particular

situation, and if they are, decide which one "plays the more important role" [Riel,

1996].

3.1.1 Human Factors

Heuristics are expressed in natural language, and, thus, the process of evaluating 00

designs with respect to these heuristics can be very subjective. Human factors, such

as experience, role, and knowledge of the design in question, aIl contribute to an

individual's interpretation. As Beck and Fowler put it: "in our experience, no set of

metrics rivals informed human intuition" [Fowler, 1999]. From this, it is apparent that

3 Quality Heuristics 18

automated heuristics cannot supplant the judgement processes of experienced

developers, but instead, should be used to facilitate developers' work (novice or

experienced).

3.1.2 Relation to Design Metrics

"A heuristic is not a metric" [Gibbon and Higgins, 1996]. Heuristics are rules and

guidelines derived from the practical experience of skilled developers. They are

expressed using natural language and conventionaHy have very vague, subjective

definitions. Metrics, on the other hand, are very formaI and precisely defined

measures of software. They are typicaHy, but not always, derived from sound

conceptual and theoretical information.

It is common for metric results to be in the form of data values that can be displayed

using appropriate measurement scales. Examples of such scales include: nominal,

ordinal, interval, and ratio. These results can be effectively used in identifying

problem areas in code; however, once a problem has been detected, metrics fail to

provide developers with the guidance required to resolve the problem.

3.2 Design Pattern

In order to avoid redesigning, or at least to minimize it, experienced object-oriented

designers explain you that a reusable and flexible design is difficult if not impossible

to get "right" the first time. 'Before a design is finished, they usuaHy try to reuse it

several times, modifying it each time.

Meanwhile, new designers are overwhelmed by the options of design methodologies

available; those designers who come from a procedure-oriented background tend to

faH back on non-object-oriented techniques they have used before. It takes a long

time for novices to leam what good object-oriented design is aH about.

3 Quality Heuristics 19

We all know the value of design experience. How many times has one had design

déjà-vu-that feeling that one has solved a problem before but not knowing exactly

where or how? If one could remember the details of the previous problem and how it

was solved, then the experience could be reused. Design experience helps designers

reuse successful designs by basing new designs on prior experience. A designer who

is familiar with such patterns can apply them immediately to design problems without

having to rediscover them. An analogy helps illustrate the point. Novelists and

playwrights rarely design their plots from scratch. Instead, they follow patterns like

"Tragically Flawed Hero" (Macbeth, Hamlet, etc.) or "The Romantic Novel"

(countless romance novels). In the same way, object-oriented designers follow

patterns like the pattern of "represent states with objects" and "decorate objects so

you can easily addlremove features." Once you know the design pattern, many design

decisions follow automatically.

Design patterns have been one of the most significant developments in software

engineering in the past decade. The aim of this field is to identify and catalogue the

knowledge and expertise that has been built up over many years of software

engineering. Design patterns can be identified in aIl parts of the development process:

architecture, analysis, design, coding, reengineering, as weIl as in specifie application

areas such as real-time programming or in user-interface construction. Design

patterns are in no way invented; they are discovered or "mined" from existing

systems. The motivation is to uncover proven designs that experts have already used

and reused and to distil from these the essence of the solution with domain-specifie

detail removed. The resulting nugget of design wisdom can then be documented and

made generally available. This pattern can be assimilated by other designers and

applied in other domains.

The notion of a design pattern in software was borrowed from the work of the

architect Christopher Alexander, who described the process of architecting living

space (be it the corner of a room or an entire city) in terms of patterns. He defined the

notion of a pattern in the following way:

3 Quality Heuristics 20

Each pattern is a three-part rule, which expresses a relation between a certain

context, a problem, and a solution.

Varying definitions of the term pattern abound, but this "three-part" version suits our

CUITent purposes. Gabriel puts the Alexandrian definition into a software context in

this way:

Each pattern is a three-part rule, which expresses a relation between a

certain context, a certain system of forces which occurs repeatedly in

that context, and a certain software configuration which allows these

forces to resolve themselves [Gabriel, 1995].

In contrast to the design heuristic, the available design patterns today in the

literature are described in explicit and organized form. In a general way, all

descriptions of a design pattern must contain the following information:

• Pattern Name and Classification: Gives the pattern a name that

becomes part of the designer's vocabulary and conveys the essence of

the pattern succinctly.

• Intention: Explains what the design pattern does and what particular

design problem it addresses to.

• Also Known As: Gives other names used for this pattern.

• Motivation: Illustrates the design problem and how the classes and

object structures solve the problem.

• Applicability: Talks the design pattern can be applied in, in which

situations, and how to recognize these situations.

• Structure: Presents a graphical representation of the participating

classes in the pattern, using a graphie notation similar to OMT. It also

describes the sequences of requests and collaborations among objects

by means of interaction diagrams.

• Participants: Describes the classes and objects participating and their

responsibilities.

• Collaborations: Describes how the participants collaborate to carry out

their responsibilities.

3 Quality Heuristics

• Consequences: Describes how the design pattern supports its objective

and what aspects of the systems structure it lets vary independently.

• Implementation: Explains what techniques should be taken into

consideration during the implementation period.

• Sam pie Code: Illustrates how to implement the pattern III C++ or

SmaIltalk.

• Known Uses: Presents a short enumeration of the existing designs

where the pattern has been used.

• Related Patterns: Shows what design patterns are closely related to

this one, what their differences are, and which other patterns this

pattern could be used with.

21

As the number of discovered design patterns grows, it make sense to partition them

so that we can organize them, narrow our searches to a subset of aIl Design patterns,

and make comparisons within a group of patterns. The most well-known scheme,

which was used by the first pattern catalogue, partitions the patterns into three distinct

categories based on their purposes [Gamma et al., 1995]:

• Creational patterns involve object instantiation and provide a way to decouple

a client from the objects it needs to instantiate, such as Singleton, Abstract

Factory, Factory method, ...

• Behavioural patterns are concerned with how classes and objects interact and

distribute responsibility, such as Visitor, Observer, State, Iterator, etc.

• Structural patterns allow for composing classes or objects into larger

structures, for example, Adapter, Composite, Decorator and Façade are in this

category.

Design patterns in [Gamma et al., 1995] are more abstract and focus on problems in

object-oriented software in general. For example, The Observer pattern de fines a one­

to-many dependency between objects, so that when one object changes state, aIl of its

dependents are notified and updated automatically. Its structure is shown in Figure 3.

The clients use Subject interface to register observers and also to remove observers;

observer interface has one method, updateO, that gets called up when the subject's

state changes; a concrete subject always implements the Subject interface. Concrete

3 Quality Heuristics 22

observers can be any c1ass that implements the Observer interface. Each observer

registers with a concrete subject to receive an update. It provides an object design

where subjects and observers are loosely coupled, that is, they can interact, but have

very little knowledge of each other. It is the building block of the well-known MVC

(Model, View and Controller) pattern.

«interface» Subject
Observers «interface» Observer -

+registerObserverO ...
+removeObserverO +updateO
+notifyObserversO ~

1
ConcreteSubject

-subjectState Subject ConcereteObserver
+registerObserverO

-observerState +removeObserverO
+notifyObserversO +updateO
+getStateO
+setStateO

Figure 3 Observer Design Pattern

The present thesis focuses on the automatic detecting of occurrences of design

patterns as weIl as of the design problems. We choose to work with patterns at the

design level for two reasons:

• It is a ri cher set than the program-Ianguage specific patterns found at the

co ding level.

• They are more concrete than those found at the analysis level, so that

detecting the occurrences of these design-Ievel patterns automatically from

source code is realistic.

The notions of formalization and automation are not generally welcomed in the

patterns community. James Coplien expressed this distaste c1early in [Coplien, 1996]:

"Patterns are not designed to be executed or analyzed by computers, as one might

imagine to be true for rules: patterns are to be executed by architects with insight,

taste, experience, and a sense of aesthetics." We have to agree his c1aim in terms of

the first two p~s of Gabriel's definition. How it is decided that a context is

appropriate for the application of a pattern and that assess the forces acting in this

context will be resolved by the pattern is a matter of "insight, taste, experience, and a

3 Quality Heuristics 23

sense of aesthetics." However, the third part of the pattern definition, that of applying

the software configuration that resolves the forces, is c1early a potential candidate for

automation.

In Chapter 4, we will present amethodology for the development of automated

design pattern transformations where the designer defines the context to which the

pattern is to be applied and the actual application of the software structure is

automated. Other work in the area of automated pattern application is considered in

that chapter as well. Thus in this chapter we focus on other uses of formalization and

automation in the context of design patterns.

Since software systems are progressively becoming larger and more complex, the

task of understanding while developing and especially while maintaining software is

becoming more and more difficult. Therefore, the use of patterns has become a

helpful methodology to develop software in a more structured and understandable

way. A key reason for using a pattern is that it helps describe the system, as weIl as

implement it. Thus, when a pattern is used (and documented) in a code base, it aids

other developers looking to extend the system.

3.3 Anti-Pattern

A design pattern gives a general solution to a recurring problem in a particular

context; the universe just would not be complete if we only had positive parts and no

negative part. The complementary part is anti-pattern, which tells you how to go from

a problem to a BAD solution. Brown et al. give the expression "anti.-pattern" the

formaI definition of "a literary form that describes a commonly occurring solution a

problem that generates decidedly negative consequences. An anti-pattern describes a

general form, the primary causes which led to the general form; symptoms of the

general form; and a refactored solution describing how to change the Anti-pattern

into a healthier situation" [Brown et al., 1998].

The concept of anti-pattern was first formally introduced from "Antipattern Session

Notes" presented in the Object World West conference in 1996 by Michael Akroyd.

3 Quality Heuristics 24

The discussion of the usefulness of anti-patterns began almost in parallel with the

introduction of patterns. Similar work on providing software guidance based on

dysfunctional behaviour and refactoring a solution has been documented by B.

Webster [Webster 95], and J. Coplien [Coplien, 1996] and [Brown et al., 1998].

Like design patterns, there are many types of anti-patterns:

• Development anti-patterns that comprise technical problems and solutions that

are encountered by programmers.

• Architectural anti-patterns that identify and resolve common problems in how

systems are structured.

• Managerial anti-patterns that address common problems in software processes

and development organizations.

As we are concentrating on automated design knowledge identification, we will focus

only on developing anti-patterns. The number of catalogued anti-patterns is still

small, if compared with the amount of available design patterns in the literature.

[Koenig, 1995] claims that it is more difficult to classify anti-patterns than their

counterparts because people are more likely to expose their successes than their

failures.

Analog to design patterns, anti-patterns are also described in a standardized structure.

This structure is a little different from the structure of the design patterns due to the

nature of the anti-pattern. Instead of a problem and a solution, an anti-pattern

possesses two solutions: the first one generates negative consequences, whereas the

second is a migration or refactoring of the first one, aiming to eliminate or at least to

reduce its negative impacts.

[Brown et al., 1998] considers a structure for the description of anti-patterns,

composed of the following sections:

• Name: analogous to the form of the design patterns. The philosophy of giving

names to the anti-patterns aims at creating a common terminology that

3 Quality Heuristics 25

facilitates the communication arnong the members of development tearns. An

anti-pattern can also be known by other narnes (synonymous).

• General form: this section identifies the main characteristics of the anti­

pattern, being able to include diagrams. The refactored solution resolves the

problem described in this section.

• Symptoms and consequences: this section lists symptoms and resultant

consequences of this anti-pattern. The symptoms supply indications of where

the anti-pattern can be detected. The consequences mention the problems if

this bad solution is applied to a real problem.

• Typical causes: they identify the main reasons that lead to the appearance of

this type of solution.

• Known exceptions: anti-pattern behaviour and procèsses are not always

wrong; often there are specific occasions when this is the case.

• Refactored solution: this section explains a refactored solution that resolves

the forces in the anti-pattern identified in the "General form" section. The new

solution is structured in terms of solution steps.

• Variations: this section lists the possible major variations of this anti-pattern.

If there are alternative solutions, they are described here as well.

• Related solutions: any closely-related anti-patterns are listed and the

differences are explained.

By documenting anti-patterns, we help others to recognize bad solutions before they

implement them.

Figure 4 provides an example of anti-patterns named Blob, which is listed in [Brown

et al., 1998]. It is presented in the form described above as shown in Figure 4.

Name: The Blob

Also Known As: The God Class

General Form: The key problem is that the majority of the responsibilities are aUocated to a single
class. One class monopolizes the processing; other classes primarily encapsulate data. The Blob is a
procedural design even though it may be represented using object notations and implemented in
object-oriented languages. That is why this anti-pattem frequently is found in designs or
implementations made by former C programmers. The B10b is also frequently a result of iterative
development where proof-of-concept code evolves over time into a prototype, and, eventually, a

3 Quality Heuristics 26

production system. This is often caused by GUI-centric programming languages, such as Visual Basic.
This kind of language is often used for rapid prototyping. The Blob is often accompanied by
unnecessary code, making it hard to differentiate between the useful functionality of the Blob Class
and no-Ionger-used code.

Symptoms and Consequences:

• Single class with a large number of attributes, operations, or both. A class with 60 or more
attributes and operations usually indicates the presence of The Blob.

• A single controller class with associated simple, data-object classes.
• The Blob Class is typically too complex for reuse and testing.

Typical Causes:

• Lack of an object-oriented architecture. The designers may not have an adequate understanding of
object-oriented principles or the team may lack appropriate abstraction skills.

• Lack of any architecture. The absence of definition of the system components, their interactions,
and the specific use of the selected programming languages. The programming languages are not
intended for use in this kind of task.

• Too limited intervention. In iterative projects, developers tend to add Iittle pieces of functionality
to existing working classes, rather than add new classes, or revise the class hierarchy for more
effective allocation of responsibilities.

Known Exceptions: The Blob AntiPattem is acceptable when wrapping a legacy system. A final layer
of code makes the legacy system more accessible.

Refadored Solution: A refactored solution means that we must fmd a way to rebuild our program.
We must move behavior away from the Blob c1ass in a way that makes the Blob less complex and it is
supporting classes more capable. The method for refactoring responsibilities is described below.

1. IdentifY or categorize related attributes and operations according to contracts. For example:
everything in The Blob Class that deals with sorting (Sort_Catalog, Search_Catalog) is grouped
together. So is everything that deals with printing, etc.

2. Now we look for "natural homes" for these contract-based collections and migrate them there. In
this example, we can move everything that in volves sorting operations on a catalog to the Catalog
Class. We do the same thing with the other groups of operations that can be migrated.

3. The third step is to remove ail "far-coupled", or redundant, indirect associations.

4. Next, where appropriate, we migrate associates to derived classes to a common base class.

5. Finally, we remove ail transient associations, replacing them as appropriate with type specifiers to
attributes and operations arguments.

Variations: Sometimes too much hard work is done to refactor The Blob Class. There is another way
to do it, but it provides an "80%" solution. Instead of a bottom-up refactoring of the entire class
hierarchy, it may be possible to reduce the Blob cIass from a controller to a coordinator.

Figure 4 Blob Anti-pattern

Knowing the Blob anti-pattem, you can get the following benefits:

• An anti-pattem tells you why a bad solution is attractive: no one would

choose a bad solution if there was not something attracting people. One of the

biggest jobs of the anti-pattem is to let you be aware of the attractive aspect of

the solution.

3 Quality Heuristics 27

• An anti-pattern tells you why, in the long term, that solution is bad: in order to

understand why it is an anti-pattern, you must understand how it is going to

have negative effects down the road. The anti-pattern describes where you

will get into trouble by using the solution.

• An anti-pattern suggests other applicable patterns that may provide good

solutions: to be truly helpful an anti-pattern needs to point in the right

direction; it should suggest other possibilities that may lead to good solutions.

Anti-patterns can be seen as an extension of patterns, since they represent traps and

pitfalls concerning the patterns. They can also be seen as a learning tool that helps

people to learn from other people's mistakes and to recognize early on where one

starts to go wrong.

3.4 Relation between Design Heuristic, Pattern and Anti-Pattern

As Riel said, "Design heuristics can highlight a problem in one facet of a design

while design patterns can provide the solution" [Riel, 1996]. Anti-patterns are

complementary to design patterns; moreover, design heuristics and design patterns

are the sources of new anti-patterns.

Beverage

-description
-milk
-soy
-mocha
-whip

+getDescriptionO
+costO
+hasMilkO
+setMilk()
+hasSoy()
+setSoyO
+hasMochaO
+setMochaO
+hasWhipO
+setWhipO

~
HouseBlend DarkRoast Decaf Espresso

+cost() +costO +costO +cost()

Figure 5 Beverage Class Diagram

3 Quality Heuristics 28

We use an example, a beverage ordering system, to show how this relationship

works. In addition to ordering different types of coffee such as HouseBlend,

DarkRoast, Decaf, and Espresso, etc., consumers can also ask for several condiments

like steamed milk, soy, and mocha (otherwise known as chocolate), and have it aU

topped off with whipped milk. As depicted in Figure 5, the Beverage class diagram

has a beverage base class with instance variables to represent whether or not each

beverage has milk, soy milk, mocha and whip. Different kinds of beverages are

created by inheriting from base beverage class. The costO function in Beverage can

calculate the costs associated with the condiments for a particular beverage instance.

Subclasses will override costO, but they will also invoke the super version so that

they can ca1culate the total cost of the basic beverage plus the costs of the added

condiments. Using this design, the system seems to pro duce different coffees with

different topping without any problem.

Before we examine the design further, we are going to introduce two fundamental

design heuristics:

• Open-Closed Principle: Classes should be open for extension, but closed for

modification.

• Prefer Composition to Inheritance: favour object composition over class

inheritance on reuse.

"Open" means that one should feel free to extend the classes with any new desired

behaviour. If needs or requirements change (and they will), just go ahead and make

your own extensions. "Close" tells that we spent a lot of time getting this code correct

and bug free, so we can not let you alter the existing code. It must remain closed to

modification. The goal is to allow classes to be easily extended to incorporate new

behaviour without modifying existing code. Designs that comply with this heuristic

are resilient to change and flexible enough to take on new functionality to meet

changing requirements. Even "open-close" heuristic sounds very contradictory. As it

turns out, though, many of the design patterns give us time-tested designs that protect

source code from being modified by supplying a means of extension. Thinking about

the Observer pattern whose class diagram is shown in Figure 3, we can extend the

3 Quality Heuristics 29

Subject by adding new Observers at any time, without adding code to the Subject.

There are quite a few more ways of extending behaviour with other 00 design

techniques.

The rationality of the second heuristic is that when inheriting behaviour by

subclassing, that behaviour is set statically at compile time. In addition, aIl subclasses

must inherit the same behaviour. If, however, we extend an object's behaviour

through composition, then we can change the object's behaviour dynamically at

runtime. By dynamically composing objects, we can add new functionality by writing

new code rather than by altering existing code. In other word, because we are not

changing existing code, the chances of introducing bugs or causing unintended side

effects in pre-existing code are reduced.

Bearing the aforementioned two heuristics in mind, if we think about how the design

might need to change in the future, we will find 'some potential problems deriving

from the design of the beverage ordering system:

1. Price change for conçliments will force us to alter the base class code.

2. New condiments will force us to add new methods and alter the cost method

in the base class.

3. We may have new beverages. For sorne of these beverages (iced tea?), the

condiments may not be appropriate, yet the Tea subclass will still inherit

methods like hasWhipO.

4. What if a customer wants a double mocha?

We have se en that representing our beverage plus condiment pricing scheme with

inheritance has not worked out very weIl - we get rigid designs because it violates the

"open-close" heuristic, or we add functionality to the base class that is not appropriate

for sorne of the subclasses. That is why we "prefer composition to inheritance".

To follow the Open-Closed principle and the Composition-over-Inheritance"

principle, we will apply the Decorator design pattern in the design of the beverage

ordering system. We will start with a beverage and "decorate" it with the condiments

3 Quality Heuristics 30

at runtime. For example, if the customer wants a Dark Roast with Mocha and Whip,

then we will: Take a DarkRoast object; Decorate it with aMocha object; Decorate it

with a Whip object; CalI the costO method and rely on delegation to add on the

condiment costs. The new design is shown in Figure 6.

Beverage

·description

+getDescription()
+cost()()

HO""B~ ondlmentDecorator ~
/'

+cost()() +cost()
+getDescription()

./ 1
Oecaf BPM~O~

+cost() +cost()

Milk Mocha Soy milk Whip

·Beverage beverage ·Beverage beverage -Beverage beverage -Beverage beverage

+cost() +cost() +cost() +cost()
+getDescription() +g etDescri ption () +getDescription() +getDescription()

Figure 6 Improved Beverage Class Diagram

The Decorator pattern dynamically attaches additional responsibilities to an object.

Decorators provide a flexible alternative to subc1assing for extending functionality.

We have got the following benefits from applying the decorator design pattern:

• Decorators have the same supertype as the objects they decorate.

• You can use one or more decorators to wrap an object.

• Given that the decorator has the same supertype as the object it decorates, we

can pass around a decorated object in place of the original (wrapped) object.

• To do the rest of the job, the decorator adds its own behaviour either before

and/or after delegating to the object it decorates.

An anti-pattern describes a solution to a recurrent problem that generates negative

consequences for to a project that, normally, violates one or more design heuristics.

An anti-pattern can be the result of either not knowing abetter solution, or using a

design pattern (theoretically, a good solution) in the wrong context. One possible way

3 Quality Heuristics 31

to search for problematic solutions in 00 software design is by looking at design

pattern catalogues. These catalogues not only de scribe good solutions applicable in a

particular context, but also informally discuss bad solutions that could have been used

instead. Those bad solutions can be formalized and catalogued, composing a database

of 00 design problems.

The Singleton pattern [Gamma et al., 1995] can be taken as an example. It ensures

that the designated class has only one instance at runtime and provides a global

access point for the instance. It can be used when multiple instances of a class are

prohibited in a system, or it can be used preclude the unnecessary object

instantiations of a class. The unfamiliarity of this design pattern can be implemented

with a bad solution. For example, a global variable of the system or a static attribute

with public visibility is used instead of using singleton pattern. Because aIl the clients

have direct access to this global instance, maintenance problems can occur, especially

if the system is large.

Design heuristics can be another source for anti-patterns. Known forms of the

breaking of a design heuristic can be interpreted as anti-pattern. As Riel said, "the

heuristics are not written as hard and fast rules; they are meant to serve as waming

mechanisms which allow the flexibility of ignoring the heuristic as necessary" [Riel,

1996]. A breaking of a design heuristic does not correspond necessarily to a design

problem. That is perfectly compatible with the philosophy of anti-patterns. Its

description allows identifying situations where this breaking would be acceptable.

As an example, the base class depends on its derived classes is a resultant anti-pattern

of the breaking of the design heuristic of that "Derived classes must have knowledge

of their base class by definition, but base classes should not know anything about

their derived classes" (RH 5.2 [Riel, 1996]). If base classes have knowledge of their

derived classes, then it is implied that if a new derived class is added to a base class,

the code of the base class will need modification. This is an undesirable dependency

between the abstractions captured in the base and in the derived classes.

3 Qualifj! Heuristics 32

In such a way, we conc1ude that, although design heuristic, design pattern and anti­

pattern appear separately in the literature, the concepts of design heuristic, design

pattern, and anti-pattern are c10sely related. They complement each other.

4 Quality Heuristics Formalization and Identification Using Production System 33

4 Quality Heuristics Formalization and Identification Using
Production System

We have introduced design heuristics, design patterns and anti-patterns, and quality

heuristics that are derived from them. In this chapter, we propose a solution for

identifying these quality heuristics automatically. In particular, we will focus on those

quality heuristics introduced in Chapter 3.

First, we introduce production systems, algorithms, and applications. Next, we define

the UML constructs and quality heuristic rules using production system language.

Finally, we demonstrate the application of production system techniques on a design

example.

4.1 Production Systems

A production system is a reasoning system that uses forward-chaining derivation

techniques. It uses rules, called production rules or productions in short, to represent

its general knowledge, and keeps an active memory of facts (or assertions) known as

the working memory (WM).

A production rule is usually written in the following form:

IF conditions Then actions

The antecedent conditions, also known as patterns, are tests that are applied against

the current state of the WM. They are partial descriptions of working memory

elements. If the conditions are satisfied by sorne elements, the consequent actions are

fired to modify the WM. The basic operation of a production system is a cyclic

application in order of the following three steps, until no more rules can be applied:

1. Recognize: identify applicable rules whose antecedent conditions are satisfied

by the current WM;

2. Resolve conflict: among aIl applicable rules (known as the conflict set),

choose one to execute;

4 Quality Heuristics Formalization and Identification Using Production System 34

3. Act: modify the WM by applying the action given in the consequent of the

executed rule.

More efficient algorithms that perform the basic operations of production systems

include RETE [Jess, 2006]. RETE matches applicable rules by setting up a network

that allows new working memory elements to pass incrementally for testing.

4.1 .1 Working Memory
Working memory consists of a set of working memory elements (WMEs). Each has

the following form:

(type attribute1:value1 ... attribute
n
:value

n
)

where type, attributei> and value; are aIl atoms. Each WME can be interpreted as an

existential sentence:

::lx· [type(x) 1\ attribute1 (x) = value] 1\ . .. 1\ attributen (x) = valuen]

4.1.2 Production Rules

The antecedent of a production rule is a set of conditions. Each condition can be

either positive or negative. A negative condition is of the form ---, cond. The body of a

positive condition is composed of the following tuple:

(type attribute1: specification1 ... attribute
n

: specificaiton
n

)

where each specification can be one ofthe following:

• an atom, including a string within " ", a word, a numeral;

• a variable, denoted in italic letters;

• an evaluation expression, within [J, including arithmetic, string manipulation;

• a test, within 0, including <, >, =, j.

• the conjunction (1\), disjunction (v), or negation (---,) of a specification.

A rule is applicable if aIl of the variables can be evaluated using the WMEs in the

CUITent WM such that the conditions are met. A positive condition is satisfied if there

is a matching WME in the WM; a negative condition is satisfied if there is no

matching WME in the WM. Production rules are stored in the production memory of

the system.

4 Quality Heuristics Formalization and Identification Using Production System 35

4.1.3 Conflict Resolution

To resolve conflicts among aIl applicable rules, there are two general approaches. In a

data-directed context, aIl applicable rules can be fired to obtain aIl consequences. In a

goal-directed context, only one rule is selected to fire, allowing a single goal to be

pursued.

There are a number of standard ways for selecting a rule:

1. Randomness: select a rule at random.

2. Order: choose the first rule in order of presentation. (This can be modified to

use a priority scheme for the selection.)

3. Specificity: select a rule who se conditions are most specific. Rule A is said to

be more specific than rule B if the conditions of B are a subset of those of A.

4. Recency: choose a rule based on how recently it has been used.

5. Hierarchical: a combination of a few of the above selection schemes in

hierarchicallevels because after applying a single scheme, more than one rule

may still be applicable.

4.1.4 Applications and Advantages

Production systems are commonly used in practice to solve complex problems. WeIl­

known applications include MYCIN and XCON. MYCIN was developed at Stanford

with approximately 500 production rules for recognizing about 100 infections in

assisting physicians in the diagnosis of such bacterial infections. XCON was·

developed by researchers at Carnegie-Mellon for Digital Equipment Corporation and

is used in configuring computers.

Among other major advantages of production system, we wish to present the

following key advantages. These advantages are the following: modularity, because

each rule works independently of the others in the system; simple control structures

because the controls are embedded in the productions rules, not in the algorithm;

transparency because terminology used to describe the production rules are usually

4 Quality Heuristics Formalization and Identification Using Production System 36

derived from expert knowledge or based on observations of expert behaviour, making

it easy for humans to interpret; dynamics because production rules can be added,

deleted, or modified by one another on the fly, and they can be chained to achieve

combinations of checks and actions. These are the main reasons why we choose to

use this approach to solve inconsistency problems in software designs.

4.2 Quality Heuristics Formalization

Nearly all design heuristics and design patterns were originally intended to give hints

to a human developer for creating an object-oriented design when developing a new

system (forward engineering). They are given in natural language and tell software

engineers what to do and how to do it. By contrast, we need the rules that can be

checked on existing systems within a reengineering process. We need rules that can

be checked automatically by a too1. This implies having an exact formaI definition for

design heuristics, design patterns, and anti-patterns.

Our approach is to express them in a more generic and more independent way which

is based on a UML meta-model, that is, structural info plus 'some constraints. As

design information recaptured from source code is represented in this way, we can

definitely search occurrences of design heuristics, design patterns and anti-patterns in

design information, we have to express design heuristic, design pattern and anti­

pattern in meta-mode1. We, thereafter, use the expression "quality heuristic" to name

those design heuristics, design patterns and anti-patterns that can be formalized and

used in automation.

4.2.'1 Meta-model

The UML meta-model defines the complete semantics for representing object models

using UML [UML, 1997]. It de fines class structures and their relationships. Because

both design information reengineered and quality heuristics are represented in a meta­

model, the meta-model must hold sufficient information to detect design heuristics,

design patterns and anti-patterns in recovered software design information. That

4 Quality Heuristics Formalization and Identification Using Production System 37

infonnation composes the meta-model that describes the basic elements on which our

system constructs.

The meta-model used in our work is evolved from a UML semantic model [UML,

1997] and other works described in [DEMEYER et al., 1998] and [KELLER et al.,

1999]. A meta-model defines the main entities of an object-oriented design, which

includes static parts (package, classifier, attribute, operation, and parameter),

relationships among them (dependence, accomplishment, inheritance), as weIl as

dynamic parts such as object instantiation, object destruction, operation invocation

and attribute access.

O.:

1
.1

-supplier
Package PackageDependency

-PackageName : string "f'Iient O.:
-PackageClient : string

-Stereotype: string -PackageSupplier : string

~.
1 O .. "

1 VisibilitylnPacage

---------------~
-PackageName : string
-ClassifierName : string
-Visibility : enmVisibiiity

"
-generic

Classifier InherilsFrom

-Package: string -?pecific
O.:

-ClassifierName : string
-Stereotype: string " O.:

" -Type: enmClassifier
-Abstract/Concrete : enmAbstract Realizes
-Leal/Root : enmRoot

-type " "
~

1
" O.:

1 -cla,. -type
O.: O.: o " 1 1 O.:

1

Altribute Operation Destroys
-AltributeName : string -OperationName : string -Caller: string
-Scope : enmScope 1 -Scope : enmScope 1 O.: -Classifier: string 1-
-Visibility : enmVisibility -Visibility : enmVisibiiity -Constructor : string

- -Type: string -Stereotype: enmOpertion 1-- O.:

-Modifiability : enmModification -Polymorphism : enmPolymorphism
-Multiplicity : string -Abstract : enmAbstract

1--Aggregation : enmRelation -Const : enmModification Creates
"

-Caller: string
-Classifier: string 1-

Parameter " 1 1 1 -Destructor : string .. O.:

-Operation r-o.: O.:
ParameterName : string

-Order: int O.:

-Direction: enmOirection
Invocation

-ParameterType : string Access -Caller: string

-AttributeName : string
O.: -Classifier: string '--

O.: -Operation: string
-AccessType : string -AccessType O.:

O.:

Figure 7 UML Meta-Model

4 Quality Heuristics Formalization and Identification Using Production System 38

Figure 7 illustrates the main entities of the meta-model in UML notation [UML,

1997] with the basic constructions.

4.2.2 Automation Degree

Our preliminary research has revealed that not aIl heuristics have the same degree of

automation. In fact, sorne heuristics cannot be automated at aIl. A number of

heuristics that fall into this category require specific knowledge and understanding of

the do main modeled. Examples include RH3.6, "Mo deI the real world whenever

possible" and RH2.11, "Be sure that abstractions that you model are classes and not

simply the roles objects play." Other heuristics are relatively straight forward, such as

RH5.6, "AlI abstract classes must be base classes". However, the degrees of

automation for many of the heuristics occur between these extremes. Where the

heuristic itself may not be directly measurable, it is still possible to measure aspects

of the software that might indicate whether the heuristic is being folIowed. RH2.8, "A

class should capture one and only one key abstraction", for example, is hard to

measure directly, as it is difficult to identify key abstractions. We can, however,

relate this to other heuristics that can be quantifie d, for example RH4.6 "Most of the

methods defined in a class should be using most of the data members most of the

time". Additionally, we can measure indirect quantities su ch as LCOM [Chidamber

and Kemerer, 1991], which, like RH4.6, might suggest whether the initial heuristic is

being followed or not.

In general, design patterns and anti-patterns have a higher degree of automation than

do design heuristics because patterns are described in explicit and organized form;

they both have a graphical representation of the classes in the pattern using a notation

based on UML as weIl as collaborations among them. Although design patterns gain

a higher degree of automation than do design heuristics in general, the rest of design

heuristics are easier to recognize than design patterns if we separate those design

heuristics that can not be automated from aIl the other design. heuristics. That is

because design patterns are more like micro architectures and have more complex

elements and collaborations than design heuristics. Therefore, the ways of

4 Quality Heuristics Formalization and Identification Using Production System 39

fonnalizing design heuristics, design patterns, and anti-patterns are the same no

matter what kind of structures they are and how complex they are.

4.2.3 Formalization

In order to fonnalize quality heuristics, we describe and express them in tenns of a

meta-mode l, which are independent from any specific quality heuristics. As explained

in a previous section, design heuristics are simpler than design patterns. We will

mainly explain how to fonnalize design patterns, and we will explain design

heuristics if there are exceptions.

Detached from the pattern type, the solution part of a structural pattern defines an

arrangement of software elements to solve a particular problem. Since the problem

itself is not of interest here, the arrangement of software elements is formalized for

the search in a neutral manner regarding the pattern type.

As this arrangement is in fact rather a template than a combination of concrete

software elements, the se template elements are called roles. Roles are placeholders

that can be taken from concrete elements in the instance of the pattern. Each role has

a type (e.g., classifier or association meta-model elements) to detennine the kind of

software elements that can act as the role. Since software elements allow the nesting
L

of other elements, each role may contain several subroles, representing nested

elements.

However, the existence of roles and their nesting relations in between is not sufficient

to express complex arrangements of software elements, so roles are enhanced by

constraints. These constraints enforce certain properties of the concrete elements

acting as the role. They define, for example, visibility or stereotype properties of

meta-model's elements.

Furthennore they may refer to other roI es to express particular relations like

inheritance or parameter types. By default every role must be played exactly once in a

4 Quality Heuristics Formalization and Identification Using Production System 40

pattern, but it is possible to define multiplicities to give limitations for the amount of

elements acting as a role in a pattern. The multiplicity provides a lower and an upper

range as it is done for association ends in UML. A lower range of zero makes a role

optional and an infinite upper range allows as many elements to act the role as

possible.

In one word, a role has a base meta-ciass in the UML meta-modeI, and is pIayed by

instances of the meta-c1ass that satisfy the properties specified in the role

Class Role - RoleA -AssocRole Class Role - RoieB

-Value: int -
1 . .* 1 .. 1 +Behv(in 0 : Class Role - RoleA)

Figure 8 Independent Rule Representation

In Figure 8, there are two class roles RoleA and RoieB whose base is the Class meta­

c1ass (as denoted above their name), which constrains that only instances of the Class

meta-class can play the roles.

RoleA has a structural feature role Str whose data type is integer. This further

restricts the instances that can play" RoleA in that they must possess a structural

feature with integer data type. RoieB has a behavioural feature role Behv with a

parameter role 0 whose type is RoleA. The c1ass roles are connected by association

role AssocRole that has two association end roles EndA and EndB. Each role defines

a role multiplicity constraining the number of elements that can play the role. For

example, RoleA has 1.. * role multiplicity constraining that there can be one or more

elements playing the role.

A role is associated with a set of meta-model level constraints. Meta-model level

constraints specialize the UML meta-model by restricting the type of model elements

that can play the role. They are represented graphically in diagram or textually in the

Object Constraint Langu~ge (OCL). For example, in Figure 9 RoleA has three meta­

model level constraints represented graphically: 1) the base meta-c1ass constraint

Class requires that a model element playing the RoleA role must be a c1ass (an

4 Quality Heuristics Formalization and Identification Using Production System 41

instance of the Class meta-class), 2) the structural feature constraint Str demands that

a model element playing the RoleA role must have one or more structural features

playing the Str role, 3) the role multiplicity constraint 1 postulates that there must be

exactly one class playing RoleA. It also has the following OCL metamodel-Ievel

constraints:

1) AbstractFactory 1
1

Client
1

+createProductAO 1 AbstractProductA
+createProductBo

't ~
1 1

1 1

ï----)j ConcreteProductA2 ~ 1 ConcreteProductA1 ~_J :

1 1
ConcreteFactory1 ConcreteFactory2 1 1 1

1 AbstractProductB 1 1 1 1

~
1

+createProductAO 1
+createProductAO

--ï
1

1 : 1
+createProductBO 1 +createProductBO

1 1 : 1 1
1 1

1 concreteproduct81jE--~ 1 1----31.. ConcreteProductB21
1
1 1
1 ______ ---____________ 1

2)

.--~-------- _Name:~:t~:::i;:dUCtA
: Classifier :---------~-------- -Abstract

1 ~~~--------~

Parameter
1
1 , ______ - ----1- ___________ ,

1 1
1 1

r-~~~~I ~----, r--~~~~----,
InheritanceFrom InheritanceFrom

:- - f----,-:;--,.---"c::-I
1
1 1 __________________ ,

~:: 1:
1 1 InheritanceFrom InheritanceFrom t
1 1 1

: : -Generic:Strategy -Generic:Strategy:
: : -Specific:ConcreteStrategyA -Specific'ConcreteStrategyA :

-Generic'AbstractProductA -Generic:AbstractProductA
-SpeClfic:ConcreteProductA2 -Spedfic.ConcreteProductA 1

Classifier 1 1 Classifier 1

-Name:ConcreteProductA2 1 I-Name:ConcreteProductA1 JE--
1 1 1

I~·': J i i E]i : : ovenides

: : 1 Classifier 1 Classifier Il 1 1

T

: : I-Name ConcreteFactory1 1 -Name:ConcreteFactory2 1: :
1 1 1 J 1 1 1

l----t----/-----~,!---------, l' 1 ~ l i
,/ / ~--------7-----1~---------~---,---

1 Operation 1 1 Operation 1 1 Operation 1 1 Operation 1

1 Il 1 1 1 1 1
l+<:reateProductAO 1 l+createProductBO 1 l+createProductAO 1 l+createProductBO 1

l' Ir Il
1

Parameter
parameter

1 1-Type:ConcreteProductB1
I-Type:ConcreteProductB2 1

1

\ 1

Parameter
1

1-Type:ConcreteProductA 1 1

1 1

1

1
1
1
1
1
1
1
1
1

1 1

L Parameter
1

I-Type:ConcreteProductA2 1

1 1

: : -j
~-------------- .. -----------.::=====~ isoftype

Classifier

-Name:AbstractProductB
-Abstract

1 ___________ 1 __________ _
1 1
1 1

InheritanceFrom

Generic:AbstractProductB
-Specific:ConcreteProductB2

InheritanceFrom

-Generic:AbstractProductB
-Specific:ConcreteProductB1

1 Classifier 1

I-Name:ConcreteProductB2 1

Classifier 1

1 1
1
1
1
1 _____ J

-Name:ConcreteProductB1 1

1
1
1
1
1

1

____________________________ J

Figure 9 the design pattern Abstract Factor pictured as (1) a UML c1ass diagram and (2) as an
independent pattern definition.

4 Quality Heuristics Formalization and Identification Using Production System 42

• Classes playing RoleA must be concrete:

context 1 Ro1eA inv: self.isAbstract = false

• Association ends playing EndA must have a multiplicity of 1 :

context 1 EndA inv: self.lowerBoundO = 1 and self.upperBoundO = 1

• Association ends playing EndB must have a multiplicity in the range of 1.. *:
p

context 1 EndA inv: self.lowerBoundO = 1 and self.upperBoundO = *
A more complicated example for the neutral representation of a design pattern

[Gamma et al., 1995] is shown in Figure 9. Each element of the UML class diagram

is translated to a role. The type of the UML element determines the type of the role.

Child elements (e.g., parameters of operations) bec orne subroles and properties of

elements (e.g., abstraction or inheritance) are replaced by constraints for the

corresponding role.

The graphical notation for the pattern definitions usedin this article is a UML object

·diagram extended by sorne features of UML class diagrams. Object nodes represent

roles - labelled with the name and the type of the role, separated by a colon.

Aggregations express c;ontainments of subroles and constraints are represented by

notation elements. For dependencies between roles dashed arrows are used.

Classifier Attribute

----------~ -Name:Subject -- -Type:Observer
-Abstract ~ -Agregation

1

1 ~
Operation Operation , ,

-Name:registerObserver -Name:removeObserver , , ,

1i /)'l" , , ,
~

,
,

Parameter
, ,

Parameter , , , , , , ,
-Type:Observer

,
-Type:Observer

InheritsFrom

-General:Subject
-Specific:ConcreteSubject

1
1
1

Classifier Altribute

-Name:ConcreteSubject -Type:Subject

-8
Classifier

- - - is of type ____ -Name:Observer
-Abstract

~~:/ ", ~.---=--'
",'" // 1

1 ;'d,"" /J/ 0".'''"
"'...... -Name:update

, -Polymorphism

///' -Abstract

1

1
1

InheritsFrom

E -General:Observer

1
1

1

Operation

-Name:update
-Concrete

1

-Specific:ConcreteObserver

Classifier

Name:ConcreteObserver

~. 1T
1

Altribute

-Name:observerState

4 Quality Heuristics Formalization and Identification Using Production System 43

Figure 10 Observer pattern in meta-model

Figure 10 shows the neutral representation of another example, the design pattern

Observer [Gamma et al., 1995], whose original structure diagram is depicted in

Figure 4 at previous section.

Likewise we can forrnalize anti-patterns; for example, AntiSingleton anti-pattern is

forrnalized from the Singleton design pattern [Gamma et al., 1995]. The Singleton

design pattern is an object creational pattern as in Figure Il. It ensures that the

designated class has only one instance and is able to provide a global access point to

the instance. It can be used when multiple instances of a class are prohibited in a

system, or to preclude the unnecessary object instantiations of a class.

Singleton

-uniguelnstance : Singleton
-singletonData

+getinstanceO : Singleton
+getSingletonDataO
+singletonO(1eration(}

getlnstance returns uniquelnstance

Note: static attributes and operations
are underlined.

Figure Il the Singleton design pattern

This Singleton pattern is violated if a Singleton class is used in the design, and other

classes hold reference of Singleton's uniquelnstance object. Such a violation is an

AntiSingleton anti-pattern. For example, a software engineer wanted, who was not

familiar with the Singleton pattern, wanted to use an instance of a Singleton class

inside a function; he passed the instance of the Singleton class to the function as one

of this function's parameters. He did not know that he could use the instance of the

Singleton inside the function directly, for instance, SingletonName.InstanceO.

Another kind of Anti-Singleton will be found when multiple instances of the class are

instantiated by other classes or passed into several functions as parameters. If the

software engineer who made this bad implementation is aware of the Singleton

pattern, he will implement the class of "multiple instances" as a Singleton. Such a

violation ofthe Singleton pattern is a ManyPointsoflnstantiation anti-pattern.

4 Quality Heuristics Formalization and Identification Using Production System 44

4.3 Quality Heuristics Identification

In this section, we present the details of the application of the production system on

automating quality heuristics identification from UML design models. First, we

introduce the general mechanism of the method. Next, we define working memory

elements for UML constructs and quality heuristics elements.

4.3.1 General Mechanism of the Method

First, when legacy source codes undergo a reverse engineering process, their design

information is recovered according to a meta-model that defines the concepts needed

according to the facts in the deductive database generation, then the artefacts, which

will be presented in the next subsection, are generated and inserted into the WM.

When changes are made in the working memory, the antecedent conditions of aIl of

the rules are tested for applicability. Among aIl the applicable rules in the conflict set,

one is selected each time for execution. According to the consequent action of the

selected rule, matched quality heuristics are shown to the end user.

4.3.2 Definitions of Working Memory Elements

We saw previously that a general WME is represented as the following:

(type :value1 ... attributen:valuen)

In order to represent specifie knowledge of the UML meta-model, we have added the

following additional notations. A pair of < > brackets enclose the acceptable values or

types of values. If the text in the < > brackets is in italic, it simply describes the

requirement of the value for the given attribute. If the text in the < > brackets is

regular, it provides the actual values that are available for the attribute, and choices

among different values are separated by 1.

Moreover, the notation of the UML meta-model elements is represented in terms of

object-oriented design primitives in a predicate-like format. Each design element

consists of two parts: Type and Argument. The type part contains the name of an

4 Quality Heuristics Formalization and Identification Using Production System 45

entity or a relation in object-oriented design, such as class, inheritance, etc. The

argument part contains general information about an entity or a relation such as the

information on the participants of an inheritance relation. In the following, we present

the syntax and the meaning ofthe design primitives used in this paper:

• Package: Represents a package definition. A package is a general mechanism

used for organizing model elements in groups. These packages group

elements show strong cohesion with each other and loose coupling with

elements in other packages.

(package
name:<string> stereotype:<string> parentName:<string»

• PackageDependency: represents a dependency relationship between two

packages; one is a client and the other is a supplier.

(packageDependency
packageClient:<string> packageSupplier:<string»

• Classifier: indicates a class, interface or basic data type definition.

(classifier
package:<string> classifierName:<string>
stereotype: <string>

type: <class/interface/primitive>
abstractOrConcrete:<abstract/concrete>
isLeaf:<leaf/notleaf> isRoot:<root/notroot»

• VisibilitylnPackage: represents the classifier visibility (public, protected,

private) in a package.

(visibilitylnPackage
package:<string> classifier:<string>
visibility:<public/protected/private»

• Realizes: Represents the existence of a realization relationship between two

classifiers as, for example, a class implementing the operations defined by an

interface.

(realizes
classifier:<string> realizedClassifier:<string»

• InheritsFrom: Represents an inheritance relationship between two classifiers.

(inheritsFrom
specificClassifier:<string> genericClassifier:<string»

4 Quality Heuristics Formalization and Identification Using Production System 46

• Attribute: indicates the presences of an attribute or a pseudo-attribute (an

association with a classifier) in a c1ass definition; itcarries association and

dependency relationships. It also captures the attribute scope (c1ass or

instance), its visibility (public, protected or private), if its value can be

modified or not, its type, multiplicity (1 or many), and the semantic of the

association with the attribute type (association, aggregation or composition).

(attribute
classifier:<string> attributeName:<string>
scope:<class/instance>
visibility:<public/protected/private>
type:<string> modifiability:<const/nonconst>
multiplicity:<l/many>
aggregation:<association/aggregation/composition»

• Operation: represents an operation defined in a class, indicating its scope

(c1ass or instance), its visibility (public, protected, private), stereotype

(constructor, destIÙctor, read accessor, write accessor, other), if the operation

can be redefined by subc1asses, if it modifies the object state, and wh ether it is

only a dec1aration (Abstract) or a method implementation (Concrete).

(operation
Classifier:<string> operationName:<string>
Scope:<class/instance>
visibility:<public/protected/private>
stereotype: <string>

polymorphism:<string>
abstractOrConcrete:<abstract/Concrete>
modifiability:<Const/NonConst»

• Parameter: represents a parameter expected by an operation. The direction

indicates whether it is an input, output, input/output or a return value.

(parameter
operationName:<string> parameterName:<string>
order:<string> parameterType:<string>
direction:<input/output/inputoroutput/return»

• Creates: represents the invocation of a class constructor resulting in an object

instantiation. This predicate indicates which operation is responsible for the

invocation (caller).

(creates
classifierCaller:<string> caller:<string>

4 Quality Heuristics Formalization and Identification Using Production System 47

classifierCallee:<string> constructor:<string»

• Destroys: represents the invocation of an object destructor. This predicate

indicates which operation is responsible for this invocation.

(destroys
classifierCaller:<string> caller:<string>
classifierCallee:<string> destructor:<string»

• Invokes: represents the invocation of an operation. Caller corresponds to the

method where this invocation occurs; Classifier is the type of the called

object. Operation is the name of the called operation and AccessType tells

how the called object is known in the caller method. AccessType can be the

object itself (self), a parameter, an object created in the caller method (local

object), a global scope object or an attribute of the caller object.

(invokes
classifierCaller:<string> operationCaller:<string>
classifierCallee:<string> operationCallee:<string>
accessType:<self/parameter/local/remote/attribute»

• Access: indicates that an operation accesses a particular attribute. This access

can be value retrieval or modification, an operation calI or even passing this

attribute as an argument in sorne operation calI.

(access
Operation:<string> attribute:<string>
accessType:<valueAccess/operationCall/Argument»

4.3.3 Quality Heuristic Rules

Now that we have shown how to populate the working memory, we will develop a

knowledge base. The knowledge base is the collection of rules that make up a rule­

based system. We are going to define production rules for the quality heuristics

identified in Chapter 3. Each rule has a description in text and formalization in a

production system language as defined above. Th~ description of each rule

characterizes the intension of a quality heuristic, but the formalization of the

antecedent condition of a rule captures the distinct structures and relationships of the

quality heuristic. The consequent action of a rule usually adds elements that include a

4 Quality Heuristics Formalization and Identification Using Production System 48

message about the recognized quality heuristic and each of the modeling elements

involved.

4.3.3.1 Design Heuristics Rules

A) Ali data sbould be bidden witbin its class

1. Description: The violation of this heuristic effectively throws maintenance out

the window. The consistent enforcement of information hi ding at the design and

implementation level is responsible for a large part of the benefits of the object­

oriented paradigm. If data is made public, it becomes difficult to determine

which portion of the system's functionality is dependent on that data.

2. Rule: ail data should be hidden within its class.

IF (classifier classifierName:?cn)

THEN

(attribute
classifierName:?cn
attributeName:?attrName
visibility:Public)

(assert: ClassDataShouldHidden(?cn))

B) Classes sbould not contain more objects tban a developer can fit in bis or ber

sbort-term memory. A favorite value for tbis number is six.

1. Description: The rationale behind this heuristic is that most of the methods

defined on a class should use most of the data members most of the time.

Assuming this is true, the implementors of a method will need to think about aIl

of the data members while writing the method. If the developer cannot keep ail of

the data in his or her short-term memory, then items will be omitted and bugs will

creep into the code. The standard number of seven plus or minus two is widely

accepted in the world of psychology as the number of items most people can keep

in their short-term memory. We choose six to take into considération people with

poor short-term memories and the fact that most methods take an argument or

two, which must be considered in addition to the data members.

2. Rule: A class should not contain more than six objects

IF (classifier classifierName:?cn)

4 Quality Heuristics Formalization and Identification Using Production System 49

THEN

(attribute classifierName:?cn attributeName:?attrName)
(attribute listSize(»= 6)

(assert:ClassContainMT60bjects(?cn, listAttributeNames))

C) Law of Demeters

1. Description: A weIl known object-oriented design standard is the Law of

Demeter, which states that, "The methods of a class should not depend in any

way on the structure of any class, except the immediate (top-level) structure of

their own class. Further, each method should send messages to objects

belonging to a very limited set of classes only."

2. Rule: A design model should obey the Law of Demeters

IF (sequenceMessage id:ml return:b pid:p)
(sequenceObject name:b type:L pid:p)

(sequenceMessage id:m2 /\ { ::f. ml} to:L return:c pid:p)

(sequenceObject name:c type:K pid:p)

(sequenceMessage id:m3 /\ {::f. ml } /\ { ::f. m2 } to:K pid:p)

THEN

4.3.3.2

(Msg:"Violation of the Law of Demeter."
(pid:s location:ml type:sequenceMessage)
(pid:s location:m2 type:sequenceMessage)
(pid:s location:m3 type:sequenceMessage)
(pid:s location:b type:sequenceObject)
(pid:s location:c type:sequenceObject))

Design Patterns Rules

A) Decorator Pattern

3. Description: A Decorator consists of four classes: the component top class with

a concrete component subclass and a decorator subclass; the latter has one or

several further subclasses called concrete decorators.

4. Rule:

IF (classifer
classifierName: ?clsnmCpnt type:class)
abstractOrConcrete:abstract)

(classifer
classifierName:?clsnmConcrCpnt
type:class abstractOrConcrete:concrete)

(classifer

classifierName: ?clsnmDeco /\ {::f. ?clsnmCpnt }
type:class abstractOrConcrete:abstract)

(classifer

4 Quality Heuristics Formalization and Identification Using Production System 50

classifierName: ?clsnmConcrDeco/\ {f. ?clsnmConcrCpnt}
type:class abstractOrConcrete:concrete)

(inheritanceFrom
specificClassifier:?clsnmConcrCpnt
genericClassifier:?clsnmCpnt)

(inheritanceFrom
specificClassifier:?clsnmDeco
genericClassifier:?clsnmCpnt)

(inheri tanceFrom
specificClassifier:?clsnmConcrDeco
genericClassifier:?clsnmDeco)

(operation
classifier:?clsnmCpnt :?opnmCpnt
Scope:class abstractOrConcrete:abstract)

(operation
classifier: ?clsnmConcrCpnt operationName: ?opnmCpnt
scope:class abstractOrConcrete:concrete)

(operation
classifier: ?clsnmDeco operationName:?opnmCpnt
scope:class abstractOrConcrete:abstract)

(operation
Classifier:?clsnmConcrDeco : ?opnmCpnt)
scope:class abstractOrConcrete:concrete)

(attribute
classifier:?clsnmDeco attributeName: ?attrnm
Scope:class visibility:public t

.multiplicity:l aggregation:
(invokes

classifierCaller: ?clsnmDeco
classifierCallee: ?clsnmCpnt

THEN

(assert: Decrator(?clsnmCpnt,
?clsnmDeco, ?clsnmConcrDeco))

B) Adapter Pattern

:?opnmCpnt
lee: ?opnmCpnt)

1. Description: A Decorator consists of four classes: the component top class with a

concrete component subclass and a decorator subclass; the latter has one or

several further subclasses called concrete decorators.

2. Rule:

IF (classifer
classifierName:?clsnmTarget type:classl
abstractOrConcrete:abstract)

(classifer
classifierName:?clsnmAdapter
type:class abstractOrConcrete:

(classifer
classi f ierName: ?clsnmAdap tee /\ {f. l:iHllU"i.UCl.!-.J ter}
type:class abstractOrConcrete:concrete)

4 Quality Heuristics Formalization and Identification Using Production System 51

(inheritanceFrom
specificClassifier:?clsnmAdapter
genericClassifier:?clsnmTarget)

(operation
classifier: ?clsnmTarget operationName:?opnmTarget
scope:class abstractOrConcrete:abstract)

(operation
classifier: ?clsnmAdapter operationName:?opnmTarget
scope:class abstractOrConcrete:concrete)

(operation
classifier: ?clsnmAdaptee operationName:?opnmAdaptee
scope:class abstractOrConcrete:concrete)

(attribute
classifier:?clSnmAdapter attributeName:?attrnm
scope:class visibility:public type:?clsnmAdaptee
multiplicity:l aggregation:association)

(invokes

THEN

classifierCaller: ?clsnmAdapter
operationCaller:?opnmTarget
classifierCallee: ?clsnmAdaptee
operationCallee: ?opnmAdaptee)

(assert: Adapter(?clsnmTarget, ?clsnmAdapter, ?clsnmAdaptee))

4.3.3.3 Anti-pattern Rules

Description: The antecedent condition of a pattern recognition rule formalizes one

distinctive characteristic of the pattern and describes the violation of its usage.

Rule 1: When a Singleton pattern is used in a design, no other class objects should

keep a reference to the singleton object. (Note that a Singleton pattern is recognized if

the class has a static method returning an instance of the class and a static attribute

that stores instances of this class.)

IF

THEN

iii defining singleton design pattern
(classifier name:?cnl)
(operation

classifierName:?cnSingleton
operationName:?optcnSingleton
returnType:?typecnSingleton
scope:Class)

(a:ttribute
classifierName:?cnSingleton
attributeName:?attrcnSingleton
type:?typecnSingleton
scope:Class)

define violation part
(classifier (classifierName:?cnVoilation))
(attribute

classifierName:?cnVoilation
attributeName :?attrVoilationName
type 1\ { f-} type: ?typecnSingleton)

(assert: AntiSingleton(?cnSingleton,
?cnVoilation, ?attrVoilationName))

4 Quality Heuristics Formalization and Identification Using Production System 52

Rule 2: When multiple classes in a package are accessed from outside the package, a

Façade pattern can be used and a Façade class should be placed as a common

interface to the package.

IF
(classifier classifierNarne:?cnl package:?pnl)
(classifier

classifierName: ?cn2/\ { i- ?cnl}
package: ?pn2 /\ { i- ?pnl})

(attribute classifierNarne:?cn2 type:?cnl)
(classifier classifierNarne:?cn3/\ { i-?cnl} package:?pnl)
(classifier

classifierName: ?cn4/\ { i- ?cn2}
package: ?pn3 /\ { i- ?pnl})

(attribute classifierNarne:?cn4 type:?cn3)
THEN

(assert: AntiFacade(
classesInaPackage(?cnl, ?cn3) ,
classesFromOtherPackage(?cn2, ?cn4)))

Rule 3: Anti Common-code Private Function detects the definition of methods in the

public interface of a class that are used only as auxiliary methods for the

implementation of other methods of this class. This contradicts the design heuristic,

"Do not put implementation details such as common-code private functions into the

public interface of a class" [Riel, 1996].

IF
(classifier classifierNarne : ?clsTarget)
(operation classifier : ?clsTarget visibility public

operationName : ?optNarneTarget)
;Internal Client
(operation classifier : ?clsInternal

operationName ?optNameInternal)
;Same Hierarchy
(sarneHierarch classifier : ?clsInternal classifier ?clsTarget)
(invokes classifierCaller : ?clsInternal

operationCaller : ?optNameInternal
classifierCallee : ?clsTarget
operationCallee : ?optNarneTarget)

(?optNarneTarget == ?optNarneInternal)

;External Client
(not (and (and

(and (operation classifier : ?clsExternal
operationNarne : ?optNameExternal)

(operation classifier : ?clsTarget
operationNarne : ?optNarneTarget))

;Not Sarne Hierarchy .
(not (sameHierarch classifier : ?clsInternal

classifier : ?clsTarget)
(invokes classifierCaller : ?clsExternal

operationCaller : ?optNameExternal
classifierCallee : ?clsTarget)
operationCallee : ?optNarneTarget)))

THEN
(assert: (antiCommoncodePrivateFunction

(classifier ?clsTarget) (operation ?optNarneTarget))))

4 Quality Heuristics Formalization and Identification Using Production System 53

4.3.3.4 Coalesce Rules

The rules we have written so far can sometimes generate multiple facts for the same

rule. We could complicate aIl the previous rules such that they would not generate the

duplicate recommendations, or we could simply aIlow them to be created and then

c1ean them up at the end. We have chosen to take the latter route. A single rule

coalesce rules combine multiple facts for the same rule.

Rule 1: Coalesce Abstract Factory Facts will query on aIl abstract factory facts,

merge them into a new fact when it is found that two facts are different and delete

those two facts.

IF

THEN

?rl<-(abstractFactory-pattern
abstractFactory : ?clsAF
concreteFactories : $?clsCFl
abstractProducts : $?clsAPl
concreteProducts : $?clsCP1)

?r2<-(abstractFactory-pattern
abstractFactory : ?clsAF
concreteFactories : $?clsCF2
abstractproducts $?clsAP2
concreteProducts : $?clsCP2)

(test (neq ?rl ?r2))

(retract ?rl ?r2)
(assert (abstractFactory-pattern (abstractFactory ?clsAF)

(concreteFactories =(union$ $?clsCFl $?clsCF2))
(abstractProducts =(union$ $?clsAPl $?clsAP2))
(concreteProducts =(union$ $?clsCPl $?clsCP2)))))

Appendix D - Quality Heuristic Jess Rules - Quality Heuristics Jess Rules lists aIl

quality heuristics Jess mIes that are implemented in our prototype tool.

5 Implementation 54

5 Implementation

In this chapter, we de scribe the CUITent prototype implementation. First, we describe

, the architecture, the functionalities of the system, and the implementation details. The

subsequent sections contain the description of the graphical user interface.

5.1 Implementation Architecture

Our prototype is a Java implementation. It uses Jess [Jess, 2002] - an off-the-shelf

Java Rule Engine that implements the RETE algorithm, to execute production rules.

It also use AntIr [Antlr, 2003], which is a language tool that provides a framework for

constructing recognizers, compilers, and translators from grammatical descriptions

containing Java, C#, C++, or Python actions, to reverse engineering source code.

Moreover, its GUI is developed by using SWT with the help of WindowBuilder Pro.

The architecture of our prototype system is ilIustrated in Figure 12.

~ __ mmg ~""' ... _ frnn System Boundary

End User

~' -------
End User

.------------. , 1 --------1

,­,
~ ___________ 1

Rule Engine Abstraction Layer

, , ,
1 Jess Rule

Engine

Figure 12 Implementation architecture

There are five components in our prototype system:

End User

1. The Design Discovery component parses source code and generates a SDG

(Semantic Directed Graph) graph which caITies the design information of the source

code.

2. The Facts Generation component traverses pre-generated the SDG graph and

generates knowledge facts representing recovered design information based. on

predefined meta-model templates.

5 Implementation 55

3. The Rule Engine Abstraction Layer component allows replacing Jess by another

rule engine.

4. The Rule Editor component provides a user-interface that allows the user to

manage the rule base. The user can display the status of rules and add/delete/modify

rules.

5. The Design Analysis component applies a knowledge base to facts holding design

information and reports the deduced results of good and problematic constructs.

Next we will introduce the implementation details ofthose components.

5.1 .1 Design Discovery

The outputs of the design discovery process supply the fundamental data for other

components sitting atop of it; it must provide aIl essential raw values, not only the

structural information, but also the information related to the methods

implementation. Otherwise, the deduced results from a rule engine will be inaccurate

or wrong. Based on the information retrieved by this extraction, it is possible to know

the following: the attributes manipulated by a particular method; how these attributes

are manipulated (read, write, parameter, operation invocation); a method stereotype

('constructor" "destructor" "read accessor" "write accessor" among others) and , , , , ,

which collaborations are necessary for the implementation of a particular method.

The analysis of method invocations is done to gather information about dependencies

between types and not between objects, since the latter would require a run-time

analysis ofthe system.

In our prototype, we have built the design recovery component that accumulates

complete symbol table information using a Java parser generated by the ANTLR

[Antlr, 2003] parser generator. There are two main components in the design

recovery component: a parser and a symbol table. There is a partial Antlr Java

grammar in Appendix A.

Java programs are composed of definitions and references. You define classes,

methods and variables and reference them in statements and other definitions. Each

class, method and variable has a name. When used in a parser, these names are called

5 Implementation 56

symbols. A symbol represents one specific entity defined in your program. Multiple

symbols might appear to be the same, but are separate definitions based on their

location in the source files. A Design-recovery component needs to keep track of

every symbol that is defined and where those symbols are referenced. A parser tracks

symbol information in a data structure called a symbol table. The symbol table

contains a list of all the Java packages it has encountered, a table of all unique strings,

and a Stack of scoped-definitions that represent the CUITent parse state. The design­

recovery component uses a class called SymbolTable to represent the symbol table.

Every symbol is defined within a certain scope. A sc ope is a section of code in which

a definition is visible and usable. Scopes can be nested. For example, a class defines

a scope that contains all the variables and methods defined in that class. A method

defines a scope that contains all its parameters and local variable definitions. A stack

is commonly used to represent this scope nesting. The innermost scope, containing

the text being parsed, is always at the top of the stack. As the parse proceeds into

new scopes, the new scopes are pushed onto the stack. As the parse exits scopes, the

scope definition is popped from the stack. One of the key elements of name lookup is

the examination of each element of the stack, starting at the top, to see if that scope

contains the requested name.

The design recovery component performs its processing in three phases: parse the

source code to determine definitions and references; resolve references in the contents

of the symbol table; and build up SDG (System Dependency Graph). Here are the

phases described in more detail:

1. Determine Definitions and Note References: The first phase of the design­

recovery component walks through all the source code in the specified

directories and their subdirectories. The parser collects information on the

following constructs:

• Package Definitions

• Class Definitions

• Interface Definitions

5 Implementation 57

• Method Definitions

• References to other syrnbols

For each of the above definitions found, a new syrnbol is created. Sorne

syrnbols, like classes, reference other syrnbols such as a superclass that is

being extended as part of a class definition. During the first pass, these

references rnight not yet be' available; they could be defined later in the sarne

source file or in another file that has yet to be parsed. Because of this, any

references to superclasses, irnplernented interfaces, return types for rnethods

and parameter types are stored as placeholders according to their names only.

These placeholders are he Id in an instance of the DumrnyClass class. These

will also be resolved during phase two.

2. Resolve Definition References: The result of the source-code parse is a

syrnbol table that lists aIl constructs defined in the source files. Sorne of these

definitions reference other definitions, for superclasses, variable types and so

on. This second phase will walk through aIl definitions in the syrnbol table

and resolve those references. Most of the syrnbol table classes irnplernent a

rnethod called resolveTypes that is used to perform this resolution.

At the conclusion of this pass, the syrnbol table contains aIl syrnbols defined

in the parsed source files and proper resolutions to defined syrnbols.

3. Build SDG: This final phase looks at the data contained in the syrnbol table

and Build up SDG graph which include calI and variable reference graph. At

this tirne the syrnbol table looks like what is depicted in Figure 13; it is

actually a kind of graph whose edges are function caUs and variable

references. DM rneans Data Mernber, MF me ans Mernber Function in the

diagram.

5 Implementation

remolemst

SDG Graph Indication

Figure 13 SnG Graph

58

Edge Type

~ Conteln

-----Ii>- FuncIJon cali

-> Funcllon Overridlng

Implementation

Inheritenœ

InstantÎate

Having covered the background infonnation, Figure 14 shows the design-recovery

component class diagram. The functionality of each class and the relationships

between these classes are as follows:

• SymbolTable: This is the main class III the design recovery component. It

provides a list of all packages that have been parsed, a stack representing the

CUITent lexical scope, and a table of unique Strings that have been read during

the parse. This is the source of all symbol lookups; when resolving references,

the requester asks the SymbolTable to look for a name, and it then searches

the scope stack and the parsed packages to find the name. The SymbolTable

also provides several methods to create instances of the other classes used in

the symbol table package.

5 Implementation 59

1 SymbolTable
~activeScopes

~
......

-names 1 StringTabl.

1
1 1 1

1+lookup() : Definition
~Names 1 1 Occurenc. 1 1 Stack 1 l+pushScopeO

1 1 1 1 l+pcpScopeO
+resolveTypesO : void 1 String 1 1 1 1

-Pack

1

: _rOI.r.:.1 ages 1 -Elements

-names
1 -qualifiedScope -d finition

Definition

-referenceUst
rentScope

+addReference(Jn occ : Occurence) : void

r- +Iookup(in name : string) : Deftnition
+lookup(in name : string, in numParams int) Deftnition

1
~ 4-

1

-Type -Typ -Type -El ment 1

1 LabelDef VariableDef 1 1 ArrayDef 1 1 MultiDef 1 1 ScopeDef 1

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

~ ~ 1

-Typi -Paramelers

1 MethodDeI 1 1 Haslmports 1 1 BlockDef 1
1 1 1 1 1 1
1 1 1 1 1 1

1

-Impom 1

L::.
-Exceptions •

1 Pack.geDel

1 1 1

1 1
11 1 1 ·Implementors -supel1nterfaces

-superClasses ClassDef InterlaceDeI
1

1
1

1 1
-suointefTaces

-subClasses

1
-Interfaces 1

PrimÎtiveDef
1

1 1

1 1

Figure 14 Design Discovery Diagram

• StringTable: When parsing a source file, the same strings usually occur again

and again_ Rather than store these Strings as separate String instances, we

store each unique String in the StringTable for more efficient use of memory.

• Stack: This is a java.util.Stack that keeps track of the nested scopes

containing the current parse position. As Java constructs such as classes,

methods and packages are recognized, the parser asks the SymbolTable to

push a new containing scope on the stack. This stack provides an appropriate

lookup mechanism for most names. When a name is read, the SymbolTable's

5 Implementation 60

lookup method checks each scope on the stack (from the most-nested scope to

the outermost scope) to see if the name is found inside that scope.

• Occurrence: This class identifies a line in a source file. It is used to store the

location of the definition for a class, interface, package, method or variable,

and references to those constructs.

• Definition: Every Java construct stored in the symbol table is a Definition.

This class provides a common base for all symbol definitions, and includes

information such as an Occurrence to track the location where the symbol was

defined, a list of references to the symbol, and its name.

• ScopedDef: Sorne symbols can actually contain definitions of other symbols.

For example, a class can contain definitions for variables and even other

classes. These types of symbols are grouped into a common base class called

a ScopedDef. ScopedDef keeps a list of other constructs that were defined

within it. ScopedDef objects are the objects that are stored in the scope Stack

for name lookup.

• Haslmports: A further extension of a ScopedDef is one that HasImports. A

HasImports object is one that makes use of Java's import statements to access

names in other packages. HasImports keeps a list of packages and classes that

are names in Java import statements. Classes and interfaces are the constructs

that are grouped under this base class.

• ClassDef: This is the definition of a Java Class. Classes can have a superclass

(a reference to another ClassDef), a list of interfaces that it implements, and a

list of other classes that extend it.

• InterfaceDef: This represents a Java interface. Interfaces can have several

super-interfaces, a list of classes that implement it, and a list of other

InterfaceDefs that extend it.

• PrimitiveDef: Java has several primitive types, such as int, long and boolean.

When variables or constants of these types are passed to a method, widening

conversions can be performed to make the actual parameters match the formaI

parameters of the method. This behaviour is very similar to the process in

which objects can be widened to their superclass type to match a formaI

5 Implementation 61

parameter type. To take advantage of this similarity, PrimitiveDef is a

subclass of ClassDef, and each primitive type is made a subclass of a

primitive type to which it can widen.

• BIockDef: This is a wrapper for an unnamed { } delimited block of

statements. It pro vides a scope for nested variable definitions.

• PackageDef: A package in Java is a collection of classes and interfaces. The

contents of a package may be spread across several files, each with the same

"package" statement at the top. Our SymbolTable collects PackageDef objects

into a list of aU packages that have been parsed or referenced. In addition,

PackageDef objects can be referenced from import statements (which will be

searched when a class is not found in any other context during symbol

lookup.)

5.1.2 Facts Generation

The facts generation component cornes into action, generating a deductive database

that represents the facts captured from this design information after the design

information carried by SDG graph becomes available as the result of a reverse

engineering process performed by the design-recovery component.

These facts are represented in predicates corresponding to the constructions defined

in the meta-model for object-oriented software; the meta-model defines the entities

and relationships that are relevant to design patterns and apti-patterns identification,

including not only structural elements, but also dynamic elements such as object

instantiation and method calIs, for instance. The details of the meta-model are

explained in section 3.5.1, and its UML diagram is drawn in Figure 7.

From a structural point of view, the facts generation component generates a set of

facts that describe aIl the classifiers found in a model (classes, interfaces, and basic

data types), how those classifiers are organized into packages, their attributes and

operations, including detailed information about each one (visibility, type, scope,

parameters, among others). The associations, aggregations, and compositions are

5 Implementation 62

captured as pseudo-attributes [UML, 1997], i.e., the pseudo-attribute may be used in

the same way as an attribute of a classifier. The inheritance relationships between

classifiers and the realization of a classifier are also captured by specifie predicates.

From a behavioural point of Vlew, this module generates facts about the

implementation of each method. Each object instantiation and destruction, method

invocation (of the same c1ass or not), and attribute access (read or write) is captured

as a predicates. The capture of these behavioural elements is essential for the

identification of many design problems, such as those related to object coupling.

The information generated by the facts generation component is the source for pattern

detection, representing the result of the analysis of structural and behavioural

elements of an 00 design.

5.1.3 Rule Engine Abstraction Layer

Although our prototype uses Jess as rule engine currently, it is better to avoid being

locked into using one vendor's product. Each rule engine has its own strengths and

weaknesses. Unfortunately, no standard rule language is supported by aIl (or even

sorne) of the major rule-engine vendors. That is why we defined a rule-engine

abstraction layer which aIlows us to develop our rules in a vendor-neutrallanguage.

In the Jess language, rules are represented as defrule constructs. Other rule engines

have their own ways of representing rules. In general, a core of common concepts can

be expressed in aIl rule languages. Although each language represents these concepts

differently, they aIl represent the same underlying information. If rules that only this

common core of concepts are developed in a neutral, flexible representation, then

they can easily be translated into the native format supported by a specifie rule engine

as needed.

We select XML as this neutral, flexible representation in our prototype too1. It brings

tremendous benefits to dealing with rule storage, editing, and retrieval at ease. In the

5 Implementation 63

prototype quality heuristic rules, facts and meta-model template are an expressed in

XML format. For example, a rule like this:

(defrule AnimalRule2
?animal <- (animal (has-hair TRUE))

=>
(modify?animal (type mammal)))

can be represented as the following XML document

<?xml version="1.0"?>
<lDOCTYPE rulebase SYSTEM "jess.dtd">
<rulebase>

<rule name="AnimalRule2"
<lhs>

"10">

<pattern name="animal"
<slot name="has-hair">

<constant>TRUE</constant>
</slot>

</pattern>
</lhs>
<rhs>

<function-call>

"animal">

<head>modify</head>
<variable>animal</variable>
<constant> (type mammal)</constant>

</function-call>
</rhs>

</rule>
</rulebase>

The XML rule format can be transformed back to its original format using an XSL T

script. XSLT programs are declarative rather than procedural-just like rules in Jess.

In fact, an XSLT program is precisely a list of rules for transforming specific parts of

an XML document into sorne desired result format. In the Appendix C, it lists an

XSLT script that is used in our prototype to translate XML Jess rules into Jess rules.

5.1.4 Quality heuristics Editor

Although it is called the quality heuristics editor component, it actually is a

knowledge-base management component combined with a GUI to manipulate that

knowledge. This component stores quality heuristics, which are refined from design

heuristics, design patterns, and anti-patterns, as Jess deductive rules. Since each

quality heuristic is captured by rules, the knowledge base component allows the

5 Implementation 64

definition of new rules so that new quality heuristics can be detected. Therefore, the

knowledge base can evolve as a result of the organization experience in developing

and maintaining 00 systems. These rules are expressed using the same predicates

employed in the 0.0 design facts representation, as described earlier.

Because the editor of our prototype is just a simple text editor, we use Jess rule DTD

(Data Type Definition) to check that the end users' modifications are valid. The detail

of Jess rule DTD is listed in Appendix B.

5.1 .5 00 Design Analysis

Our last prototype component, the design analysis module, is responsible for

analyzing the facts deductive database corresponding to the 00 design being verified

and fro trying to find sorne match with the constructions captured by the quality

heuristics component, using the Jess inference machine.

The user selects one or more problem categories, and one or more problems classified

in the selected category. This module identifies all the design fragments that satisfy

the Jess rules defined for the detection ofthose problems.

A report is generated indicating each problem found, the elements responsible for its

occurrence, and also possible ways to overcome it. A solution section of the report

will gives possible solutions corresponding to the violations of quality heuristics

information captured by the expertise capture module. For example, if the· tool finds

the violation of ClassDataShouldBeHidden quality heuristic, it will generate a report

with information of the attribute and the class where it occurs. The report will also

show the solution section that a possible solution would be to move the attribute to

the private area of the class, and to create accessor methods (get and set methods) for

retrieving and modifying this attribute. Another result that can be achieved with this

module is the identification of design patterns used in the evaluated design. By

selecting the desired design patterns, the user obtains as a result, a report indicating

the design patterns found and also all the elements matching each participant role in

5 Implementation 65

the pattern. For example, if the tool detects an instance of the AbstractFactory design

pattern, it shows not only the presence of this pattern in the design but aIso all classes

corresponding to the Abstract Factory, Concrete Factories, Abstract Products and

Concrete Product participants found in this design pattern instance.

5.2 GUI

In this section, the graphical user interface (GUI) of the tool is described. Figure 15

shows the main window of our prototype too1. There are "Design Recovery", "Facts

Generation", "Knowledge Base" and "Design Analysis" menu items on the main

menu, which are the main functionaIities described in the previous section.

Figure 15 Main Window of the Prototype

Design Recovery's submenu is shown in Figure 16. The end user can select an

Eclipse Java project with "Open project" menu. It will mainly setup a class path

according to Eclipse project's settings. "Recover" will actuaIly parse aIl the java files

in the project and generate an SDG graph. The new generated SDG graph will be

shown in the SDG graph viewer window as depicted in Figure 17.

Figure 16 Submenu of Design Recovery

The SDG graph viewer window consists of two panes: the left pane shows the SDG

graph in a tree structure; the end user can view the graph by clicking on each node to

5 Implementation

(

8 CLASS_DEF

8 - MODIFIERS

~ 'publc

:- dass
l- IDENT ChIcagoPizzaStore
~ EXTENDS_CLAUSE

. IDENT PiZzaStore

-EMPLEMENTS_ClAUSE

ËJ- OBJBLOCK
, METHOD_DEF

MODIFIERS
è TYPE

IDENT PiZza
IDENT aeatePiZza

(
- PARAMETERS
-)

B SUST
s i

te
El- EXPR

e METHOD_CAI.L

1 - IDENTlem
'. IDENT equals

~ EUST

Figure 17 the SDG Graph Viewer

66

expand or collapse subtrees. In the right pane the corresponding source code file will

be displayed; the view of the source code will be automatically synchronized to "File

Scope" change in the left pane. "View SDG" allows the end user to view the previous

generated SDG graph and its source code.

Figure 18 the Submenu of Facts Generation

The "Facts Generation" menu includes three submenus, which are: "Generate",

"View Facts" and "View Meta-model Templates". The screen shot of the submenus

5 Implementation 67

of "Facts Generation" is shown in Figure 18. "Generate" menu will input SDG graph

in and

DesIgn Recovery FactsGeneratbn KnowIedge Base DeslgnAnalysts ~

Facts
<?xml version='1.0' encodi'lg='US·ASCII'?>
<rulebase xmns='http://\WIW.jessrules.com/JessMLjl.0'>
<facts>

<name>MAIN: :pizzastore</name>
<fact>
< name> MAIN: :dassiIer</name>
<SIot>
<name>pad(age</name>
<vakJe type='SYMBOL'>Defaut</value>

</sbt>
<sbt>

<name>dasstierName</name>
<vakJe type='SYMBOL' > f'iZza</VakJe>

</sbt>
<sbt>
<name>type</name>
< k.!! =:5Yti~~w >

;;Facts
(deffacts pizzastore
(dasstier (package Default)(dassifierName Pizza)(stereotype ni)
(type ClassXisAbstraCt AbstractXisLeaf NotLeaf)(isRoot Root»

(classfer (package DefautX classferName CheesePizza X stereotype ni)
(type Class)[5Abstract Concrete)(lsLeaf t eaf)(isRoot NotRoot))

(inhertsFrom (specfcClasslier CheesePizza)(generlcClassfier Pizza»
;abstract factory
(classifier (package Defauk)

(ciassifierName PlzzaIngredientFactory)
(stereotype ni)(type ClassXisAbstract Abstract)
(isLeaf NotLeaf)(isRoot Root»

(operatbn (dasstier PizzaIngredientFactory)
(operatbnName createOoughXscope Instance)
(visiJity PublcXstereotype ni)(poIymorphism Vlrtual)
abstractOrConcrete AbstractX constOrNonConst NonConst»

Figure 19 the Faets Viewer

y

produce facts in the form of XML. As shown in Figure 19, the facts viewer window

shows the newly generated facts, the upper window shows an XML style of facts; the

lower window shows the same facts but in plain text. We have explained in the

previous section that types of all generated facts are defined in the meta-model; those

types can be browsed in the meta-model template viewer window (in the current

implementation, we do not allow the end user to modify the meta-model). As in the

case of the facts viewer window, the facts viewer window has two windows which

are XML and plain text forms of the meta-model templates. Figure 20 is the screen

shot of the meta-model view window.

5 Implementation

De9gn Recovery Fads Generaliln KnowIedge Base De!itgn AnaIysIs ~

Meta-modeI tem \lle.wer
<?xml versbn= 'l.O' encodng='U5-ASClI'?>
<rulebase xmlns=.http://www.jessrules.com/JessMLjl.O.>
<ternplate>
<name>MAIN::package</name>
<sIot>

<name>packageName</name>
<valle type='5YMBOL' >nl</vaUe>

</sbt>
<rot>

<name>stereotype</narne>
<vaue type='SYMBOL'>nl</value>

</sbt>
<sIot>

<name> parentName</name>
<vaue type='SYMBOl'>nl</va!ue>

</sbt>
>

(deftemplate package
(siot packageNarne)
(siot stereotype)
(sbt parentNarne»

(defternplate packageDependency
(siot packageOent)
(sbt packageSuppier»

(defternplate visbltyInPackage
(sbt package)
(sbt dassfler)
;; < pubic/protectedipriVate>
(sbt visiblity»

deftern te cBssfIer

Figure 20 Meta-model templates viewer

Figure 21 tbe submenu of Knowledge Base

68

" ,

Figure 20 shows the submenu of the Knowledge Base; our knowledge base consists

of quality heuristics which in turn contains design heuristics, design patterns and anti­

pattern rules. The end users can add, modify and deI ete those rules by using the Rule

Editor window as shown in Figure 22 and Figure 23. The editor window is a sash

container (one of the Eclipse SWT container widgets), which contains two windows:

tree view and tab; the sash container makes it possible for the user to expand one

window and reduce another one dynamically. The tree view at the left holds aU the

5 Implementation 69

quality heuristic rules in the hierarchy of Design heuristics, Design patterns, and

Anti-patterns. Tabs in the right pane contain the contents of a quality heuristic and its

production rule respectively; it also has several buttons to allow the end user to

manipulate those quality heuristics.

DesIgn Recovesy

l_ Avoid multiple inhprr.m,,.p

i - Avoid hliing a base-dass
~ Design patterns

!~ Composte
r Si1Qleton
t- Strategy
i Observer
1

}- Template Method

1 r- Brldge
VlSItor

~Adapter
, Facade

. Antl patterns

r BIob
r Gbbal Scope Object

! -HoId Silgleton, Instance
r- Anti Facade
1 Many Points Of Tn<f>mti>llDl

Abstract Factory

Name

Abstract Factory Design Pattern, Structural
Object

Intention

Provide an interface for creating families of
related or dependent objects without specifying
their concrete classes.

Motivation

Consider a user interface toolkit that supports
multiple look-and-feel standards, such as Motif ---.G
n~;J l)..n~n~"n";n~ 1\1f,.,~,.,,..n .. n;«n.-n~" lnnl- ,., 1êdtJ 1 save 1 ~

Figure 22 Quality heu ris tics viewer window

In the Figure 22, the Content tab shows the detail of a quality heuristic, such as

name, description, diagrams, and implementation etc. which are explained in Chapter

3. The end user can view it like using a web browser. The Edit button allows the end

user to modify the contents of quality heuristics, the Save and Cancel buttons allow

the end user to keep their changes or not, respectively. The Rule Tab in Figure 23

shows the production rule associated with the selected quality heuristic.

It has the XML style and plain text style windows. The XML style window allows the

end user to modify the rule, save and cancel their changes, but a plain text window

5 Implementation 70

will allow the end user only to view the plain text style rule. Plain text style rule is

actually

13 DesIgn heur'6tlcs

1 ~
AI data ShO. uld be hidden

• Spin off nonrelated intor
A dass should IlOt contain
AI data in a base dass S

-AI base dass should be a
- Avoo multiple inheritance.

Avoid hiding a base-cIass
DesIgn patterns

~=
l-=:MethOO
- Bridge

VlSitor
-Adapter
Facade

9- Anll patterns

f- Blob
t Gbbal Scope Ob)ect
, HoId Singleton Instance
~- Ant! FaCilde
L Many Points Of InstantiatlO

<?xml versbn='1.0' encoding='US·ASCU'?>
< ruJebase xmJns= 'http://\WM.jessruJes.com/)essMl/l.0' >
<ruJe>

<name>MAIN::abstractFactory</name>
1 <comment>recognize abstract factory pattern</comment>

<115>
1 <group>

<name>and</name>
<pattern>

< name> MAIN::cIassifier </name>
<:Sbt>

< name>dassifierName</name>
<test>

< type>eq </type>
<vaiJe type= VARIABLE' >dsAbsFac </value >

<,'test>
</~>

;;Abstract Factory Design Pattern Recognitbn RuJes
(detrule abstractFactory

l "recogniZe abstract factory pattern"
;abstract: tactory

1

(dasstJer (dassferName ?dsAbsFac)[lSAbstract Abstract»
(operation (dasstler ?dsAbsFac)(operationName ?optAbsFac»
(parameter (operation =(sym-cat ?clsAbsFac : ?optAbsFac»

(a .. ectiOn Return) (parameterType ?paraAbsFacType»
;concrete factory
(dassi:'ier (dasstlerName ?dsConcFacXisAbstract Concrete»
(operation (dasstler ?dsConcFacXoperationName ?optConcFac»
(parameter (operation =(sym-ca{ ?dsConcFac : ?optConcFac»

(a .. ectiOn Return) (parameterType ?paraConCFacType»
1 ;relatlOnship between abstract and concrete tactory

~~~~:~~~r;~\dsC __ oncF ___ ac_) __________________________ ~y 

Figure 23 Rule Editor Window 

ln real Jess rule style; it is much simpler than the verbose XML style rule. The 

rationale is that we can verify XML style rule based on quality heuristic rule DTD. 

Figure 24 the submenu of Design Analysis 

Finally, we introduce the submenu of design analysis; it inc1udes Analyze and 

Configuration items as shown in Figure 24. "Analyze" will apply all the quality 



5 Implementation 71 

heuristics in the knowledge base by default to the target system and report the found 

design patterns and problematic constructs to the end user. If the end user do es not 

want to apply aIl the quality heuristics, the "Configuration" menu aIlows the end user 

to select whatever desired at a fine grain level. As shown in Figure 25, the "Analysis 

Configuration" window supplies a quality heuristics tree with a check box for each 

node, which allows the end user to freely compose the selection of the quality 

heuristics of interest. 

8 . ~ Desig n heuristics 
, .. ~ AI data should be hidden within its c1ass 
-~ Spin off nonrelated information into another cIass. 
-~ A c1ass should not contain more than six objecgts . 
. . ~ AI data ln a base dass should be private . 
. _ .~ AI base dass should be abstact classes. 
~ Avold multiple inheritance . 

•.... ~ Avold hiding a. base-class fundton in a derived class. 
8 ~ Design patterns 

1-~ Abstract factory 

+~ Composite 
:-i~ Singleton 
~.~ Strategy 

l-·~ Observer 
:.~ Template ~1ethod 
_.~ Bridge 

-~ VlSitor 

i ~ Adapter 
i L Facade 

El ~ 

Figure 25 Analysis Configuration 

Figure 26 shows an example of analysis results; that is, an abstract factory design 

pattern is found. Figure 26 also shows all classes that participate in the abstract 

factory design pattern and their file names and locations. 



5 Implementation 

DesIgn Rec:Dvery Fac:ts Generat10n KnowIedge Base DesIgn AnaIy5Is ~ 

AnaIy5Is resuts 
Design Patterns: 
Abstract Factory: 

1) Abstract factory: 
PiZZaIngredientFactory 

Fie: c:\test\Sr\factory\pizzaaf\PiZZaIngredientFactory.java 
Concrete factories: 

NYPiZZaIngreOlentFactory 
Fie: c: \test\Sr\factory\pizzaaf\NYPiZZaIngredientFactory. java 

ChicagoPiZzaIngredientFactory 
fie: c: \test\Sr\factory\pizzaaf\CbicagoPiZZaIng redlentFactory. Java 

Abstract products: 
Dough 

Fie: c:\test\Sr\factory\pizzaaf\Dough.lava 
sauce 

Fie: c:\test\Sr\factory\pizzaaf\Sauce.java 
Cheese 

Fie: c:\test\Sr\factory\pizzaaf\Cheese.java 

Concrete products: 
ThickCrustDough 

fie: c:\test\Sr\factory\pizzaaf\ThickCrustOough.java 
ThnCrustDough 

fie: c:\test\Sr\factory\pizzaaf\ThnCrustDough.java 
PUmTomatosauce 

fie.: c:\test\Sr\factory\pizzaaf\PUmTornatosauœ.java 
Mamarasauce 

Fie: c:\test\Sr\factory\pizzaaf\Mamarasauce.java 
MozzarelaCheese 

Fie: c:\test\Sr\factory\pizzaaf\MozzarelaCheese.Java 

Figure 26 Analysis Results 

5.3 Implementation Issues 

72 

A number of issues must be considered in the implementation of the prototype too1. 

They are briefly discussed below. 

• Jess Performance 

Jess uses a special algorithm called Rete to match the mIes to the facts. The 

Rete algorithm is implemented by building a network of interconnected nodes. 

Every node represents one or more tests found on the LHS of a mIe. Each 

node has one or two inputs and any number of outputs. Facts that are being 

added to or removed from the working memory are processed by this network 

of nodes. Thus, a Rete network ultimately determines the Jess performance. 

The performance of a Rete-based system depends not so much on the number 

of mIes and facts but on the number of partial matches generated by the mIes. 

The classic example ofwriting efficient mIes looks like this: this mIe 



5 Implementation 

(defrule match-l 
(item ?x) 
(item ?y) 
(item ?z) 
(item ?w) 
(find-match ?x ?y ?z ?w) 
=> ) 

73 

will consume lots memory (Jess will throw the OutofMemory exception in the 

worst case scenario) and mn a long time to generate a result, because it must 

form aIl possible permutations of 'item' facts before finding the one 

permutation that matches the 'find-match' fact. If there are 10 'item' facts, 

this is 10x10x10x10 = 10,000 partial matches that are sent to the last join 

node. If the mIe is rewritten like this: 

(defrule match-2 
(find-match ?x ?y ?z ?w) 
(item ?x) 
(item ?y) 
(item ?z) 
(item ?w) 
=> ) 

Then there is one and only one partial match sent to the last join node; 

actually only one is sent to each join node. Whereas the first mIe might take 

several minutes to generate a result on a slow machine, the second mIe 

generates the result instantaneously. Bearing in mind that patterns that match 

fewer facts should be put toward the beginning of a mIe, building a mIe in this 

way will reduce the number of partial matches and limit memory 

consumption. 

• Improvement of the parser 

The parser provides a cmcial functionality in the design extraction module. 

Although the CUITent parser implementation works weIl, it can be extended or 

improved in several places. First, the CUITent parser implements a Java 1.3 

grammar compliant, not Java 1.5 grammar. That means it could not parse 

generic types, enumerated types, and annotation etc. Second, the parser can be 

modified to use Java's Class.forName method to read class information for 

classes whose source is unavailable but in the class path. For example, if your 

source code references java.awt.Color, use Class.forName("java.awt.Color") 

to read information about the Color class. A new Definition subclass can be 



5 Implementation 74 

defined that adapts a java.lang.Class object to a ClassDef object, allowing the 

parser to reference compiled classes as easily as source. 



6 Evaluation 75 

6 Evaluation 

6.1 Evaluation Procedure 

It is necessary to use real-world examples of design heuristics, design patterns, and 

anti-patterns to test our prototype tool's ability of detecting what quality heuristics are 

specified. To this end, it is necessary to obtain: 

• Java classes that implement design heuristics, design patterns and anti­

patterns from existing external source code; 

• Java classes that do not implement any design heuristics, design patterns and 

anti-patterns. 

The most obvious source of design heuristics, design patterns and anti-patterns would 

be to choose sorne of the 'standard texts' of design heuristics and patterns, such as 

[Brown et al., 1998], [Gamma et al., 1995] and [Riel, 1996]. However, most ofthese 

books were written using Smalltalk and C++ as their examples, and do not show any 

Java examples since they were written prior to the development of Java. However, 

subsequent books have been written specifically for the Java platform, such as Head 

First Design Pattern [Eric and Elisabeth, 2004] that was published by O'Reilly and 

Applied Java Patterns [Stelting and Maassen, 2001] that was developed by Sun 

Microsystems, specifically to provide Java examples of design patterns. As a result, 

this book provided one of the key sets of examples for testing our prototype tool. 

It is also important that our prototype tool be capable of detecting constructions 

according to quality heuristics from real-world examples, and be extensible to allow 

new quality heuristics to be defined in the future. There are many open-source or 

source-available projects that are written in Java and could be used. We select 

ArgoUML, Azureus, J2SE (Java 2 Platform, Standard Edition 6 Development Kit) 

[J2SE, 2005], and JHotDraw. 

Evaluation was performed on the following sources: 

1. AJP Applied Java Patterns [Stelting and Maassen, 2001]. 



6 Evaluation 76 

2. ArgoUML [ArgoUML, 2007] is the leading open source UML modeling tool 

and includes support for all standard UML 1.4 diagrams. 

3. Azureus [Azureus, 2007] is a Java-based BitTorrent client, with support for 

I2P and Tor anonymous communication protocols. Azureus allows users to 

download multiple files in a single graphical user interface (GUI). 

4. JHotDraw [JHotDraw, 2007] is a two-dimensional graphics framework for 

structured drawing editors that is written in Java. It is based on Erich 

Gamma's JHotDraw. 

5. J2SE Java 2 Platform [J2SE, 2005t, Standard Edition 6 Development Kit, a 

development environment for building applications, applets, and components 

using the Java programming language. 

These projects have been selected because 

• They rely heavily on sorne well-known design patterns serving perfectly the 

aim of evaluating a design pattern detection algorithm. 

• The authors explicitly indicate the implemented design patterns III the 

documentation and in this way it was possible to evaluate the results of the 

proposed methodology. 

• They are all open-source projects with their source code publicly available. 

• They vary in size enabling the scalability test ofthe proposed methodology. 

6.1 .1 Example Selection 

To verify that quality heuristics were detected correctly, it was necessary to search 

the sources for design heuristics, design patterns and anti-patterns that were either 

explicitly or implicitly documented, or were considered by other developers to be a 

clear example of a pattern. The AJP and HFDP books provided a list of examples of 

Java patterns along with a description of the pattern itself, which therefore 

immediately provided a source that could be used to test our prototype too1. 

4 Due to the limitation of our Java parser, we have to manually modify J2SE's source code in order to 
parse them correctly. 



6 Evaluation 77 

To find a set of patterns from ArgoUML, JHotdraw and J2SE libraries, a manual 

search of the source code and its document was performed. Sorne patterns (such as 

Abstract Factory and Observer) were obviously implemented in classes such as 

java.awt.Toolkit and java.util.Observer; J2SE and ArgoUML, etc.; document 

comments and class namès gave sufficient clues to be able to de duce this. However, 

for source files without such obviously identifying marks, it was necessary to make a 

judgement about whether individual classes implement a pattern or not. 

In particular, design heuristics are more explicit and less documented than design 

patterns and anti-patterns; we have to create sorne examples by modifying 

implementations of selected examples. 

6.1.2 Non-example Selection 

To ensure that our prototype tool was not reporting design heuristics, design patterns 

and anti-patterns where none existed, it was also run against a selection of other 

classes. For design patterns, non-examples were created by "breaking" 

implementations of design patterns from [Eric and Elisabeth, 2004] and [Stelting and 

Maassen, 2001], by removing methods or fields that played a part in the pattern. For 

design heuristics and design patterns, non-examples were created by modifying 

implementations of selected examples. 

6.1.3 Evaluation Results 

The classification of the results has been performed by manually inspecting the 

source code and referring to the internaI and external documentation of the projects. 

The results shown in Table 1 and Table 2 are based on the categories where quality 

heuristics are refined from. The results are broken down into the quality heuristics 

name, testing component. Table 1 shows how many instances are detected. Table 2 

shows the analysis results by comparing the tool-generated results with the manual 

code inspection results. There are four possible outcomes in Table 2: 

• True positive (v+): the prototype tool detected an instance of the quality 

heuristics, and the instance exists in the target system. 



6 Evaluation 78 

• True negative CV-): the prototype tool did not detect an instance of the quality 

heuristics, and there is no instance in the target system. 

• False positive (x+): the prototype tool detected an instance of the quality 

heuristics, but no instance exists in the target system or there is a kind of 

ambiguous results. 

• False negative (x_): the prototype tool did not detect any instance of the 

quality heuristics, but an instance exists in the target system. 

A false negative (x-) result and a false positive result (x+) are not a success. A false 

negative result is harder to verify than a false positive result because we must have 

knowledge of the occurrences of the quality heuristics in the target system through 

manual inspection of the source code. It is a time-consuming task. There are 19 

quality heuristic rules implemented in our prototype tool: 8 design heuristics rules, 8 

design pattern rules from creational, structural and behavior categories and 3 anti­

pattern rules. 

Quality Heuristics AJP ArgoUML Azureus JHotDraw J2SE 

Parsed classes 898 2884 554 1375 

BaseClassShouldBeAbstract 1 10 42 4 31 

CommonPrivateFunction5 1 870 883 474 . 542 

ClassDataShouldBeHidden 1 290 664 39 385 

Design ClassDataShouldBePrivate 1 23 144 8 67 

Heuristics BaseClassKnowDerive 1 8 18 1 36 

LawOfDemeter6 1 483 4540 350 244 

MoreThanSixObjects 1 67 214 9 56 

UnusedAttribute 1 92 365 10 203 

Abstract Factory 1 124 16 18 

Singleton 1 3 16 1 14 

Adapter 1 42 642 28 57 

5 The value unit of CommonPrivateFunction in the Table 1 is function not class. 
6 The value unit of LawOfDemeter in the Table 1 is function not class. The unit of the rest values in 
the Table 1 is class. 



6 Evaluation 79 

Quality Heuristics AJP ArgoUML Azureus JHotDraw J2SE 

Design Bridge 1 0 Il 4 14 

Pattern Decorator 1 3 6 2 6 

Visitor 1 0 0 0 0 

Observer 1 2 65 3 22 

Strategy/State 1 42 439 39 49 

Anti Anti-Singleton 1 0 7 2 15 

Pattern God Class 1 15 63 2 26 

Global Scope Object 1 628 404 30 578 

Table 1 Quality Heuristics Detection Results 

To save space, sorne quality heuristic,s appearing in Table 1, Table 2, Table 3 and 

Table 4 are given as an abbreviated narne. Their full names, detailed descriptions and 

rationale are listed here. 

Quality Heuristics AJP ArgoUML Azureus JHotDraw J2SE 

BaseClassShouldBeAbstract ..J+ ..J+ ..J+ ..J+ ..J+ 

CommonPrivateFunction ..J+ x+ x+ x+ x+ 

, 
..J+ ..J+ ..J+ ..J+ ..J+ ClassDataShouldBeHidden 

Design ClassDataShouldBePrivate ..J+ ..J+ ..J+ ..J+ ..J+ 

Heuristics BaseClassKnowsDerive ..J+ ..J+ ..J+ ..J+ ..J+ 

LawOfDemeter ..J+ ..J+ ..J+ ..J+ ..J+ 

MoreThanSixObjects ..J+ ..J+ ..J+ ..J+ ..J+ 

UnusedAttribute ..J+ ..J+ ..J+ ..J+ ..J+ 

Abstract Factory ..J+ ..J+ ..J+ ..J+ ..J+ 

Singleton ..J+ ..J+ ..J+ ..J+ ..J+ 

Adapter ..J+ ..J+ x+ x+ ..J+ 

Design Bridge ..J+ ..J+ ..J+ ..J+ ..J+ 

Pattern Decorator ..J+ ..J+ ..J+ ..J+ ..J+ 



6 Evaluation 80 

Visitor -J -J- -J- -J-

Observer -J+ x- x- . x- x-

Strategy/State -J+ x+ x+ x+ x+ 

Anti Anti-Singleton -J+ -J+ -J+ -J+ -J+ 

Pattern God Class -J+ -J+ -J+ -J+ -J+ 

Global Scope Object -J+ -J+ -J+ -J+ -J+ 

Table 2 Validation of the Detection Results 

1. BaseClassShouldBeAbstract [Riel, 1996] 

Name: AlI base classes should be abstract classes. 

Rationale: Every dependency in the design should target an interface, or an 

abstract class. No dependency should target a concrete class. Concrete things 

change a lot, abstract things change much less frequently. Moreover, abstractions 

are "hinge points"; they represent the places where the design can bend or be 

extended, without being modified. 

2. CommonPrivateFunction [Riel, 1996] 

Name: Common-code private functions should be hidden. 

Rationale: This heuristic is designed to reduce the complexity of the class 

interface for its users. The basic idea is that users of a class do not want to see 

members of the public interface that they are not supposed to use. These items 

belong in the private section of the class. A common-code private function is . 

created when two methods of a class have a sequence of code in common. It is 

usually convenient to encapsulate this common code in its own method. This 

method is not a new operation; it is simply an implementation detail of two 

operations of the class. Since it is an implementation detaH, it should be placed in 

the private section of the class, not in the public section. 

3. ClassDataShouldBeHidden [Riel, 1996] 

Name: AlI data should be hidden within its class. 

Rationale: The violation of this heuristic will make the source code harder to 

maintain. The consistent enforcement of information hiding at the design and 

implementation level is responsible for a large part of the benefits of the object-



6 Evaluation 81 

oriented paradigm. If data is made public, it becomes difficult to deterrnine which 

portion of the system's functionality is dependent upon that data. 

4. ClassDataShouldBePrivate [Riel, 1996] 

Name: AlI data in a base class should be private. Do not use protected data. 

Rationale: It is similar to using public data which will be a weakening of data 

hiding, and it should be ~voided. 

5. BaseClassKnowsDerive [Riel, 1996] 

Name: Derived classes must have knowledge oftheir base class by definition, but 

base classes should not know anything about their derived classes. 

Rationale: If base classes have knowledge of their derived classes, then it is 

implied that if a new derived class is added to a base class, the code of the base 

class will need modification. This is an undesirable dependency between the 

abstractions captured in the base and derived classes. 

6. LawDemeter 

Name: Law of Demeter. The methods of a class should not depend in any way on 

the structure of any class, except the immediate (top-Ievel) structure of their own 

class. Further, each method should send messages to objects belonging to a very 

limited set of classes only. 

Rationale: A void traversing multiple links or methods. A method should have 

limited knowledge of an object model. A method must be able to traverse links to 

obtain its neighbors and must be able to calI operations on them, but it should not 

traverse a second link from the neighbor to a third class. 

7. MoreThanSixObjects [Riel, 1996] 

Name: A class should not contain more than six objects. 

Rationale: Most of the methods defined on a class should use most of the data 

members most of the time. Assurning this is true; implementors of a method will 

need to think about aIl of the data members while writing the method. If the 

developer cannot keep aIl of the data in his or her short-terrn memory, then items 

will be omitted and bugs will creep into the code. 

8. UnusedAttribute: 

Name: avoid unused attributes of a class. 



6 Evaluation 82 

Rationale: Object-oriented applications may contain data members that can be 

removed from the application without affecting the pro gram behaviour. Such 

"dead" data members may occur due to unused functionality in class libraries or 

due, to the programmer losing track of member usage as the application changes 

over time. It will lead to the waste of memory resources and will downgrade 

applications' maintainability. 

9. God Class [Riel, 1996] 

Name: also called Blob. 

Rationale: The behavioral form of the god class problem is caused by a common 

error among action-oriented developers in the process of moving to the object­

oriented paradigm. These developers attempt to capture the central control 

mechanism so prevalent in the action-oriented paradigm within their object­

oriented design. The result is the creation of a god object that performs most of 

the work, leaving minor details to a collection of trivial classes. Implementation 

code becomes complex and unstructured. Future changes are hard to 

accommodate. 

10. Anti-Singleton 

Name: Do not use a global variable 

Rationale: A global variable can potentially be modified from anywhere, and any 

part of the program may depend on it. A global variable therefore has an 

unlimited potential for creating mutual dependencies and for adding mutual 

dependencies increases complexity. We should use a Singleton pattern instead of 

using a global variable. At the same time when a Singleton pattern is used in a 

design, no other class objects should keep a reference to the singleton class 

object. Otherwise it introduces global variable again. 

Analysis of the results is in the following section. 

6.2 Results Analysis 

The results show that our prototype tool is capable of recognizing a number of quality 

heuristics implemented not only in small code examples, but also in real Java 

systems~ The results also reveal the lack of implementations of sorne quality 



6 Evaluation 83 

heuristics in sorne systems; indeed, the reason why [Stelting and Maassen, 2001] and 

[Eric and Elisabeth, 2004] coyer them all is due to the fact that it is a superset of 

design patterns defined by [Gamma et al., 1995]. Thus, not all quality heuristics tum 

up in certain large systems; rather, sorne (like Singleton) occur frequently, whereas 

others (like Visitor) occur infrequently. 

To sorne extent this discrepancy can be related to the size of the quality heuristic. 

Smaller single class quality heuristics (such as Template Method, 

DataShouldBeHidden and Singleton) are relatively common, as opposed to larger 

multi-class quality heuristics (such as Visitor, CommonPrivateFunction and Bridge), 

which tend to be used for specific cases where it is necessary to link together many 

classes. They occur less frequently. 

AIso, multi-class quality heuristics are usually more specialized (the Visitor pattern is 

used for traversing ASTs inside compilers, for example) and so are likely to be used 

in fewer situations. 

More examples were found in [Stelting and Maassen, 2001] and [Eric and Elisabeth, 

2004] since both of them were books specifically aiming at educating the user 

towards using design patterns in Java. Their pattern implementations were 

successfully detected in our prototype tool, except State and Strategy patterns which 

are detected; but our prototype tool could not distinguish them because quality 

heuristic rules of State and Strategy are ambiguous in terms of rule definitions. 

Generally speaking, there are sorne features of quality heuristics that our prototype 

tool can easily detect: 

• Small quality heuristics consisting of one or a small number of classes (the 

problem becomes more difficult as the number of classes increases) 

• Quality heuristics that are defined by their structure or relationships. 

6.2.1 Positive results 



6 Evaluation 84 

In addition to AJP and HFDP test cases, we have found many design pattern 

instances in J2SE framework that comply with its internaI and external 

documentations. For example, Decorator pattern was detected by our prototype too1. 

Here is a set of objects that use decorators to add functionality to reading data from a 

file: LineNumberInputStream is a concrete decorator. It adds the ability to count the 

line numbers as it reads data. BufferedlnputStream is a concrete decorator. 

BufferedlnputStream adds behavior in two ways: it buffers input to improve 

performance, and also augments the interface with a new method readLineO for 

reading character-based input, one line at a time. FilelnputStream is the component 

that is being decorated. The Java IIO library supplies several components, including 

FilelnputStream, StringBufferInputStream, ByteArraylnputStream and a few others. 

AlI of these give us a base component from which to read bytes. BufferedlnputStream 

and LineNumberInputStream both extend FilterInputStream, which acts as the 

abstract decorator class. 

Examining the results shown in Table 1, we know that the violations of design 

heuristics and anti-pattern quality heuristics are detected in ArgoUML and J2SE 

frameworks. J2SE, especially, is a well-designed and developed framework, which 

has been evolving from Version 1.0 to Version 1.6 in a decade. Why does such a 

framework have so many flaws? 

First, as explained in Section 3.1, the design heuristics are not law; they are not 

written as hard and fast rules; they are meant to serve as waming mechanisms that 

allow the flexibility ofignoring the heuristic as necessary. 

Second, design heuristics include a lot of contradicting design heuristics. The 

contradicting design heuristics are derived from different opinions about good 00. 

They pursue certain design goals that can conflict with each other, e.g., with the 

design goals simplicity and adaptability. So they will be used in a specific situation. 

For example, for the correct use of inheritance, one heuristic demands inheritance 

hierarchies to be deep and narrow in theory while another one demands that they not 



6 Evaluation 85 

be too deep in practice. When faced with contradicting heuristics, the developer 

should examine the design further to determine whether or not both of them are 

applicable in their particular situation, and if they are, to decide which one "plays the 

more important role" 

For those two reasons, we can not say that J2SE or ArgoUML has many flaws. 

On the other hand, anti-patterns are more precise than design heuristics rules in term 

of working as a quality indicator. If traces of anti-patterns occurrences are found, it 

will indicate the system design does indeed suffer from flaws. After inspecting 

java.awt.Toolkit source code, we found that Toolkit c1ass has 93 functions and 13 

attributes, which are much higher than the threshold value of 60 (the sum of both 

functions and attributes) in our Blob quality heuristic definition. At least from a 

maintenance point ofview,java.awt.Toolkit is not easy to maintain. 

6.2.2 Negative results 

There are two kind of negative results in the Table 2. One is the ambiguous results, 

and the other is the failed results. We first talk about the cause of ambiguous results, 

and afterward state the rationale for the failed results. 

6.2.2.1 Ambiguous Results 

A key reason for using a design pattern is that it helps describe the system, as weIl as 

implement it. Thus, when a pattern is used (and documented) in a code base, it aids 

other developers Iooking to extend the system. Many patterns have a high-level intent 

in the way in which they are applied; patterns such as Command, for example, have a 

very light structure but the intent of the pattern is clearly visible. Similarly, patterns 

such as Visitor have a great deal of intent; and it is this intent that sets it apart from a 

class hierarchy with a number of methods. 

From both an implementation and a structural point of view, the State pattern 

depicted in Figure 28 and the Strategy patterns shown in Figure 27 can look very 



6 Evaluation 86 

similar. Both of them have a class\(Context) that defines the interface of interest to 

clients and maintains an instance of a Concrete subclass that inherits from a class that 

defines the CUITent state or algorithrn. 

Context Strategy 
..... 

+ContextlnterfaceO 
1 +AlgorithmlnterfaceO 

+RegisterStrategy(s: Strategy)O 

~ 1 
1 

~ 1 1 1 

1 ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC 
strategy->AlgorithmlnterfaceO 

+AlgorithmlnterfaceO +AlgorithmlnterfaceO +AlgorithmlnterfaceO 

Figure 27 Strategy Design Pattern 

Context State 
..... ..... 

+RequestO 1 +HandleO 

st 

1 ~ 1 ,:/ 
1 1 1 

Î 
ConcreteStateA ConcreteStateB ConcreteStateC 

ate->HandleO 

+HandleO +HandleO +HandleO 

Figure 28 State Design Pattern 

However, their intent is very different; the intent of the Strategy pattern is to enable 

several related algorithrns to be encapsulated into their own respective classes, so that 

a client can be dynamically configured with an object of one of these classes. 

Whereas the intent of the State pattern is to enable an object to undergo a qualitative 

'change in behavior when its internaI state changes. Rather than an expressing this as 

extensive and similar case analysis in each method, this pattern de fines a class that to 

represent each possible state the object may be in. There is no clear-cut distinction 

between a simple state and an algorithrn; it depends on where (and how) the y are 

used. 

It would therefore be difficult to create a quality heuristic definition that would 

capture a Strategy but would not capture a State, and vice versa. It would also be 

difficult to construct the quality heuristic definition in a way that would not also 



6 Evaluation 87 

admit many ambiguous, which would devalue the bene fit of such a quality heuristic 

definitio~. 

We obtained another ambiguous result from J2SE's java.awt.Component test case; 

our prototype tool correctly recognized a Bridge pattern, but it also reported a 

State/Strategy pattern for the same structure. If we compare the Bridge design pattern 

in Figure 29 with the State in Figure 27 and the Strategy design patterns in Figure 28, 

we can figure out that the structures of a Bridge design pattern are the same as a 

State/Strategy design pattern except for the RefinedAbstraction subc1ass. We did not 

find any indication that the Bridge design pattern uses the Strategy design pattern 

from [Gamma et al., 1995]; thus we put it into the ambiguous category. 

Abstraction Implementor 

+OperalionO -: 1,.----__ ---,. 
1 

'- - Imp->OperationlmpO 

RefinedAbstraction ConcretelmpA ConcretelmpB 

+OperationlmpO +OperationlmpO 

Figure 29 Bridge Design Pattern 

To distinguish aState from a Strategy, the quality heuristic definition has to know 

whether the abstract c1ass represents a state or an algorithm. There is a recent 

approach that attempts to distinguish State and Strategy employing the new syntax 

elements of UML 2.0 for sequence diagrams; we are going to adapt the methodology 

explained in [Wendehals, 2004] in our future version prototype too1. 

6.2.2.2 Failed Results 

The quality heuristic definitions (shown in Appendix D) of the Observer pattern and 

Composite pattern defines a relationship between the observer/composite (container) 

c1ass and the generic type of data to be added. It also adds the requirement that it 

must be possible to navigate from the container c1ass to its child components; and that 



6 Evaluation 88 

there must be a way of adding (and removing) components from the container 

classes. 

In line with standard Java practice, the methods for adding and removing items from 

the container should be prefixed "add" and "remove" respectively, to fit in with the 

JavaBeans naming conventions. Of course, this introduces a possible source for failed 

results, since other implementations may choose to avoid this standard naming 

convention. Our prototype tool did not recognize the Observer pattern implemented 

in our HFDP [Eric and Elisabeth, 2004] test case - Weather station, because the 

prefixes are "register" and "unregister" instead of "add" and "remove". 

There are several possible causes of the failed results although we did not encounter 

them during our prototype tool evaluation. The first possible scenario is quality 

heuristic implementation variants. Quality heuristics are defined by static structures 

and their associated constraints. In the real world, static structures and constraints 

may have diverse implementations. If the quality heuristics do not encompass all of 

those diversities, those are missing will not be detected by the quality heuristic rule. 

Thus failed resultsare introduced. For example, the Adapter design pattern mainly 

has two different implementations; one of them is called the Class Adapter which 

uses multiple inheritances to adapt one interface to another; another one is called the 

Object Adapter, which relies on object composition. Both of Class and Object 

Adapters are shown in Figure 30. Likewise, the Singleton design pattern has a classic 

implementation named PublicSingleton along with PrivateSingleton and 

LazySingleton variants. 

Target Adaptee Target Adaptee 

-
+requestO +specialRequestO +requestO +specialRequestO 

f f 
1 

-adaPt • 1 

Adapter Adapter 

speci 
+requestO - --- alRequestO adaptee->speciaIRequest 

+requestO ------- o 

A) Class Adapter B) Object Adapter 



6 Evaluation 89 

Figure 30 Adapter implementation variants 

The second cause is that the design-recovery module did not supply enough 

information for the rule engine to deduce the results. Losing information may be 

caused by parsing source code errors, having only binary code instead of source code 

whilst our prototype can not discover class information in bytecodes or if there is no 

source code and binary code at aIl. Losing information will break the quality heuristic 

rules to function as what they expected. For instance, the Anti Common-code Private 

Function is used to detect the definition of methods in the public interface of a class 

that are used only as auxiliary methods for the implementation of other methods of 

this class. This contradicts the design heuristic, "Do not put implementation details 

such as common-code private functions into the public interface of a class" [Riel, 

1996]. To get a more real-world feel for common-code private functions, consider the 

class X to be a linked list as Figure 31 shows, fI and f2 to be the functions insert 

and remove, and the common-code private function fpub to be the operation for 

finding the location in the linked list for an insertion or removal. As Figure 31 

depicts, the fpub function appeared in public section and there is no any external 

function invocation; fpub is violated with Common-code Private Function rule; our 

Anti Common-code Private Function anti-pattern rule will pick it up immediately. If 

external function invocations exist in another file, and the system only has its binary 

code (.class or .jar) or if, even worse, those source codes are missing, Anti Common­

code Private Function quality heuristic rule will report it. Thus it is a fail result. 

Class X 

-Private Section fpub() { 
+fpubO ~---
+f10 

------- code Y 

+f20 

/ 
/ 

/ 

IL 

/ 

/ 
/ 

/ 

flO{ 

/ code Y fpub() 

r-:""" f20{ 

" code Y fpub() 

Figure 31 Anti Corn mon-code Private Function 



6 Evaluation 90 

Actually we can improve the design-recovery module to employ a Java byte code 

manipulation framework that provides detailed information concerning the static 

structure of the target system. Thus we can partially fix two aforementioned causes of 

the failed results. 

In the current prototype tool, it should be noted that the applied methodology detects 

only quality heuristics in which all roles corresponded to classes within the system 

boundary. As a result, pattern instances involving classes that do not belong to the 

system (e.g., classes in Java or external APIs) have not been considered. 

6.3 Case Study 

In this section, we present a case study to which we have applied our approach and 

prototype too1. The aim of this case study is to demonstrate the applicability and 

usability of our prototype too1. We select open source project - ArgoUML 

[ArgoUML, 2007] as the test case. Its first version emerged in 2002, and it has 

evolved from Version 0.1 to current Version 0.24. ArgoUML has a total of 8 versions 

now. We want to test whether the quality heuristics implemented in the prototype tool 

are good indicators of software quality. Do software engineers bear those quality 

heuristics in mind when they are developing and maintaining software? What kind of 

benefits will software engineers get by using the prototype too1. 

Table 3 shows the quality heuristic results of 8 ArgoUML versions (from 0.10 to 

0.24). It also shows how many parsed classes there are in each version. In order to 

better understand the results, we have calculated the Pearson correlation coefficient 

on two data sets which are 0.1 to 0.16 and 0.18 to 0.24; the results are shown in Table 

4. 

Quality Heuristics 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 

Parsed classes 898 984 1288 1269 1295 1417 1467 1524 

BaseClassShouldBeAbstract 10 Il Il 12 9 8 8 8 

CommonPrivateFunction 870 941 886 908 847 893 768 748 



6 Evaluation 91 

Quality Heuristics 0.10 0.12 0.14 0.16 0.18 0.20 0.22 

ClassDataShouldBeHidden 290 296 381 376 112 III 105 

Design ClassDataShouldBePrivate 23 25 28 28 14 15 14 

Heuristic BaseClassKnowsDerive 8 8 4 3 1 1 0 

LawOfDemeter 481 481 535 539 544 624 731 

MoreThanSixObjects 67 74 86 84 68 73 70 

UnusedAttribute 92 III 265 297 243 250 246 

Anti Anti-Singleton 0 0 0 2 4 1 1 

Pattern God Class 15 16 21 22 17 20 15 

Global Scope Object 628 653 769 885 172 202 198 

Abstract Factory 0 2 3 4 3 4 5 

Singleton 3 27 36 41 24 21 17 

Adapter 42 47 41 46 21 30 38 

Design Bridge 0 0 0 0 0 1 1 

Pattern Decorator 3 3 2 2 2 2 2 

Visitor 0 0 0 0 0 0 0 

Observer 2 2 2 3 3 4 4 

Strategy/State 42 21 19 19 17 22 22 

Table 3 Case Study Results 

Table 3 shows the absolute values of the quality heuristic results. While Column 4 

and 5 of Table 4 illustrate relative values of the quality heuristic results, whose value 

is the total number of each quality heuristic divided by the total of parsed classes for 

each version. 

0.24 

103 

14 

0 

685 

72 

252 

1 

19 

204 

8 

17 

35 

0 

2 

0 

4 

23 

Quality Heuristics 0.10 - 0.16 0.18 - 0.24 vO.l0 (%) vO.24 (%) 

Parsed classes 4439 5703 898 1524 

BaseClassShouldBeAbstract 0.764389 -0.89389 1.11 0.52 

CommonPrivateFunction -0.00135 -0.67471 96.88 49.08 



6 Evaluation 92 

Quality Heuristics 0.10 - 0.16 0.18 - 0.24 vO.l0 (%) vO.24 (%) 

ClassDataShouldBeHidden 0.991742 -0.89932 32.29 6.76 

Design ClassDataShouldBePrivate 0.98622 -0.05982 2.56 0.92 

Heuristic BaseClassKnowsDerive -0.9654 -0.82594 0.89 0 

LawOfDemeter 0.993094 0.881718 48.88 44.95 

MoreThanSixObjects 0.987326 0.665595 7.46 4.72 

UnusedAttribute 0.981237 0.802827 10.24 16.54 

Anti Anti-Singleton -0.89389 0 0.07 

Pattern God Class 0.986065 0.135277 1.67 1.25 
/ 

Global Scope Object 0.896428 0.908503 69.93 13.39 

Abstract Factory 0.836784 0.894043 0 

Singleton 0.889616 -0.95441 0.33 

Adapter -0.09714 0.918153 4.68 

Design Bridge 0 

Pattern Decorator -0.9834 0.33 . 
Visitor 0 

Observer 0.535802 0.893892 0.22 

Strategy/State -0.76886 0.949249 4.68 

Table 4 Case Study Results Analysis 

In total, 19 quality heuristics are divided into two groups. One group is of poor design 

indicators, which includes design heuristics and anti-patterns rules. Another group is 

for reusable design indicators including design patterns rules. Let us look first at the 

poor design indicators group. The trend is that the numbers of detected violations 

de cline as the version numbers increase. The numbers of violations of sorne quality 

heuristics, such as GlobalScopeObject, ClassDataShouldBeHidden, 

ClassDataShouldBePrivate, Base Class Knows Derive, drop significantly to almost 

half of the initial values of the older versions. For example, BaseClassKnowsDerive 

is a rather bad design because, if base classes have knowledge of their derived 

0.52 

1.12 

2.30 

0 

0.13 

0 

0.26 

1.51 



6 Evaluation 93 

classes, then it is implied that, if a new derived class is added to a base class, the code 

of the base class will need modification. This is an undesirable dependency between 

the abstractions captured in the base classes and the derived classes. Looking at Table 

3, the value gets lower and lower, and the violation has been eliminated in the latest 

version. Although the numbers of detected violations of the rest of the quality 

heuristics show fewer changes or even no changes, the newer version has 200 more 

classes than the older version on average; the Iatest version has almost double the 

number of classes as the first version. If this factor is taken into account, the detected 

violations are declining relatively. This conclusion can be observed easily by 

comparing the values of Column 4 (version 0.1) and the values of Column 5 (version 

2.4) in Table 4, the values of Column 4 and Column 5 represent a percentage of 

violations; the latest version (2.4) is much lower than the oldest version (0.1). 

By examining Table 3, we realize that the violations in Version 0.18 and the newer 

versions have dropped dramatically. This is accordance with what ArgoUML 

documents c1aimed, "The release 0.24 was described as a bug fix release solving the 

most serious prablems in version 0.22, for a total of 172 bug fixes". We can also 

prave our observation by analyzing the Pearson correlation coefficients in Table 4's 

Column 0.1-0.16 and Column 0.18-0.24. In probability theory and statistics, 

correlation, also called correlation coefficient, indicates the strength and direction of a 

linear relationship between two random variables. In general statistical usage, 

correlation refers to the departure of two variables from independence. In this braad 

sense there are several coefficients, measuring the degree of correlation, adapted to 

the nature of the data. A number of different coefficients are used for different 

situations. The best known is the Pearson correlation coefficient, which is obtained by 

dividing the covariance of the two variables by the praduct of their standard 

deviations. The correlation is 1 in the case of an increasing linear relationship, III 

the case of a decreasing linear relationship, and sorne value in between in aIl other 

cases, indicating the degree of linear dependence between the variables. The c10ser 

the coefficient is to either -1 or 1, the stronger the correlation between the variables. 



6 Evaluation 94 

We select parsed classes as one variable and the number of violations as the other one 

to ca1culate Pearson correlation, so our Pearson correlation represents the linear 

dependence between the classes and the violations for the two data sets (one set is 

Version 0.1 to Version 0.16 and results are recorded in Column 0.1-0.16; another one 

is version 0:18 to 0.24 and the results are listed in colurnn 0.18-0.24). Most of the 

Pearson correlations of Colurnn 0.1-0.16 are close to 1, which me ans the violations 

increase along with the increase of the parsed classes when ArgoUML evolves from 

Version 0.1 to Version 0.16. While looking at Column 0.18-0.24,5 ofthem are close 

to -1, meaning that the violations are decreasing as the classes in the project are 

increasing. 2 of them are close to 0, meaning there is no obvious correlation between 

violations and the project complexity. 3 of them are close to 1, but the values are 

lower than their counterparts in Column 0.1-0.16. It proves that the design was 

improved significantly from Version 0.18 on. We can conclude that the newer 

versions are more reusable and maintainable than the oIder versions. In one word, the 

quality of ArgoUML is improving along with the evolution of the versions. 

We can also draw a conclusion from the results that software engineers did not pay 

enough attention to some of the quality heuristic rules, even if those quality heuristics 

are good quality indicators such as God Class, Law Of Demeter and Class has More 

Than Six Objects etc., because the numbers of detected violations are quite high in 

the newer versions. For example, there are 685 detected violations of The Law of 

Demeter in the latest version. The Law of Demeter c~ be succinctly summarized as, 

"Only talk to your immediate friends." The fundamental notion is that a given object 

should assume as little as possible about the structure or properties of anything else. 

The advantage of following the Law of Demeter is that the resulting software tends to 

be more maintainable and adaptable. Since objects are'less dependent on the internaI 

structure of other objects, object containers can be changed without reworking their 

calIers. Software engineers should work on those points of design where high values 

of violations are generated. 



6 Evaluation 95 

On the other hand, the numbers of detected reusable designs in the different versions 

of ArgoUML are smaller but relatively stable. There are several reasons for causing 

such lower values. First, a design pattern is domain oriented, such as Visitor - it is 

originally designed for graph node traversing. There was no any detection of Visitor 

pattern in aIl 8 versions of ArgoUML. Second, complicated design patterns that 

involve more classes are appearing less and less in the system. However, the main 

reason IS that the intrinsic complexity of design patterns preventing software 

engmeers from apply design pattern intensively. Although design patterns are 

popular, developers need to be really comfortable with many patterns and gain a good 

understanding of the design of the target system before taking advantage of their 

knowledge. 

With the help of our prototype, software engineers can IQcate and fix design problems 

more quickly and more easily. That is because quality heuristics specify the problem 

precisely and provide developers with the guidance required to solve it. The 

prototype tool also shows design pattern occurrences in the target systems; it will 

help software engineers to comprehend the source code and quickly grasp the 

collaborations between various parts of the program. It will help them make program 

implementations more flexible and reusable. 



7 Conclusion and Conclusion and 96 

7 Conclusion and Future work 

7.1 Future work 

We built a prototype tool that can be used for fonnalizing quality heuristics and 

identifying them on Java applications. At the same time, more work remains to be 

done. In particular, the prototype tool can use a fuzzy-like evaluation mechanism to 

recognize not only entire patterns but also incomplete instances. The main objective 

is to detect design constructions with structures similar to a particular pattern but with 

sorne sort of variation that makes it undetectable on a perfect matching algorithm 

using the Jess inference machine. To achieve this goal, we are using a fuzzy ruie. 

engine based on works such as [Wenzel, 2006]. Second, we have to extend our 

quality heuristic collection; the heuristics automated in our work are a small 

. collection of those that exist in the literature. The most challenging part of our 

research was reviewing heuristics to detennine whether or not they could be 

automated effectively. Due to the subjectivity and expressive nature in the description 

of a heuristic, it was difficult to precisely detennine what the heuristic was involved. 

The extension of this collection would improve the level of infonnation that we are 

able to provide developers, thereby, in turn, enabling our prototype to be more useful 

in practice. Eventually, we anticipate that our research approach will enable 

developers to propose, automate, and evaluate their own heuristics along side those 

that already exist. 

7.2 Conclusion 

In this thesis, we have demonstrated not only how to fonnalize quality heuristics 

refined from the literature and software engineers experiences but also detect 

constructs, which are in confonnance with, or in violation of, quality heuristics, from 

legacy source codes automatically in a rule-based system. 

The whole process includes capturing knowledge about good and bad 00 

constructions, generating a deductive database of quality heuristics that are refined 

from design heuristics, design patterns and anti-patterns, parsing source code and 



Conclusion and Future work 97 

generating an SDG graph carrying design infonnation of the source code, traversing 

pre-generated a SDG graph and generating knowledge facts representing recovered 

design infonnation based on predefined meta-model templates, and applying 

knowledge base on facts holding design infonnation and report deduced results of 

good and problematic constructs. 

We implemented a prototype tool that is based on this the ory and demonstrated with 

case studies that the theory of quality heuristics fonnalization and identification can 

be efficiently applied to a Java application. By using JESS rules to define the 

constructions detected by our prototype tool, it is easier to expand the scope of 

detection. It is possible to add new heuristics, patterns, and problematic constructions 

as new reports in the technicalliterature appear and developers gain more experience. 



References 98 

References 

[Antlr, 2003] Antlr v2.7.5, ''http://www.antlr.org,'' 2003 

[ArgoUML, 2007] ACE v2.4, ''http://argouml.tigris.org,'' 2007 

[Azureus, 2007] ACE v3.0, ''http://azureus.sourceforge.net,'' 2007 

[Bar and Ciupke, 1998] Holger Bar, Oliver Ciupke, "Exploiting design heuristics for 

automatic problem detection," Germany, 1998 

[Booch, 1994] G. Booch, "Object Oriented Analysis and Design with applications," 

2nd ed., Addison-Wesley, 1994. 

[Brown, 1996] K. Brown, "Design Reverse-Engineering and Automated Design 

Pattern Detection in Smalltalk," Technical Report TR-96-07, Dept. of 

Computer Science, North Carolina State Univ., 1996 

[Brown et al., 1998] W. Brown, R., Malveau, McCormick III, H., Mowbray, T., 

"Anti-patterns - Refactoring Software, Architectures, and Projects in Crisis," 

Wiley Computer Publishing, 1998 

[Chidamber and Kemerer, 1991] S.R. Chidamber, C.F. Kemerer, "Towards a Metrics 

Suite for Object Oriented design", in A. Paepcke, (ed.) Proc. Conference on 

Object-Oriented Programming: Systems, Languages and Applications 

(OOPSLA'91), October 1991. Published in SIGPLAN Notices, 26 (11), 197-

211, 1991 

[Chidamber and Kemerer, 1994] S.R. Chidamber, C.F. Kemerer, "a Metrics Suite for 

Object Oriented design", IEEE Transaction on Software Engineering, 20(6) : 

476-493, June 1991 

[Correa et al., 2000] Alexandre L. Correa, Claudia M. L. Werner and Gerson 

Zaverucha, "Object Oriented Design Expertise Reuse: An Approach Based on 



References 99 

Heuristics, Design Patterns and Anti-patterns", Springer Berlin / Heidelberg, 

2000 

[Coplien, 1996] James Coplien, "Patterns Software," 1 ed., SIGS Books, 1996 

[DEMEYER et al., 1998] S. Demeyer, S. Tichelaar, P. Steyaert, "FAMOOS -

Definition of the Common Exchange Model," http://www.iam.unibe.ch 

/~famous /InfoExchFormat/ 

[Eric and Elisabeth, 2004] Eric Freeman and Elisabeth Freeman, "Head First Design 

Patterns," O'Reilly, Octorber 2004. 

[Ernest, 2003] Ernest Friedman-hill, "Jess in action: Rule-Based System in Java". 

Manning, 2003 

[Fenton, 1991] Norman Fenton, Software Metrics: A Rigorous Approach, Chapman 

& Hall, London, UK, 1991 

[Florijn, 1997] Gert Florijn, Marco Meijers, and Pieter van Win sen, "Tooi support in 

design patterns," In M. Aksit and S. Matsuoka, editors, Proceedings of the 

European Conference on Object-Oriented Programming, pages 472--495. 

LNCSv 01. 1241, June 1997 

[Fowler, 1999] M. Fowler, "Refactoring: Improving the Design of Existing Code," 

AddisonWesley Longman Publishing Co., Inc, 1999 

[Gabriel, 1995] Richard Gabriel, "Pattern definitions," Available from: 

http://hillside.netlpatterns/definition.html, 1995+. 

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John 

Vlissides, "Design Pattern Elements of Reusable Object Oriented Software," 

Addison-Wesley, 1995 

[Gibbon and Higgins, 1996] C. Gibbon and C. Higgins, "Teaching object-oriented 

design with heuristics," SIGPLAN Not., 31 (7): 12-16, 1996 



References 100 

[Giarratano and Riley, 1998] Joseph Giarratano and Gary Riley, "Expert Systems: 

principles and prograrnming," PWS Publishing Company, 1998 

[Grotehen and Dittrich, 1997] Thomas Grotehen and Klaus R. Dittrich, "The 

MeTHOOD approach: Measures, transformation mIe, and heuristics for object­

oriented design," Technical Report ifi-97.09, University of Zurich, Switzerland, 

August 27, 1997 

[Guéhéneuc, 2005] Yann-Gaël Guéhéneuc, "Ptidej: Promoting Patterns with 

Patterns," In Proceedings of the $l/\{st}$ ECOOP workshop on Building a 

System using Patterns, Springer-Verlag, July 2005. 

[Haynes, 1996] P. Haynes, "Detection an Prevention of Software Cancer in 00 

Systems". Presented at OOPSLA 1996 Metrics Workshop, San Jose, 1996 

[J2SE, 2005] J2SE JDK 6.0, ''http://java.sun.com/,'' 2005 

[Jess, 2006] Jess v7.0, ''http://herzberg.ca.sandia.gov/jess/,'' 2006 

[JHotDraw, 2007] ACE v7, ''http://sourceforge:netlprojects/jhotdraw,'' 2007 

[KELLER et al., 1999] R. Keller, R. Schauer, S. Robitaille, P. Page, "Pattern-Based 

Reverse-Engineering of Design Components", International Conference on 

Software Engineering - ICSE'99, pp. 226-235, Los Angeles, CA, 1999 

[Koenig, 1995] A. Koenig, "Patterns and antipatterns," Journal of Object Oriented 

Prograrnming, 8(1), Marco, 1995 

[Lane, 1986] N.E. Lane, "Global Issues III Evaluation of Expert Systems" in 

Proceedings of the 1986 IEEE International Conference on Systems, Man, and 

Cybernetics, IEEE Computer Society Press, Piscataway, New Jersey, 1986 

[Lieberherr, 1996] K. J. Lieberherr, "Adaptive Object Oriented Software. The 

Demeter method with propagation patterns," PWS Publishing Company, 1996 



References 101 

[Lakos, 1996] John Lakos, "Large-Scale C++ Software Design," Addison-Wesley, 

1996 

[Li and Henry, 1999] Wei Li and Sallie Henry, "Maintenance Metrics for the Object­

Oriented Paradigm", Proceedings of the First International Software Metrics 

Symposium, May 1993b 

[Lorenz and Kidd, 1994] Mark Lorenz and Jeff Kidd, "Object-Oriented Software 

Metrics," Prentice Hall, Englewood Cliffs, NJ, 1994 

[Martin, 2000] Robert C. Martin, "Design Principles and Design Patterns," 

http://www.objectmentor.com. 2006 

[Martin, 1996a] Robert C. Martin, "The Open-Close Principle," 

http://www.objectmentor.com. 2006 

[Martin, 1996b] Robert C. Martin, "The Dependency Inversion Principle," 

http://www.objectmentor.com. 2006 

[Martin, 1996c] Robert C. Martin, "The Interface Segregation Principle," 

http://www.objectmentor.com. 2006 

[Meyer, 1988] Bertrand Meyer, "Object Oriented Software Construction," Prentice 

Hall, 1988 

[McCabe, 1976] T. J. McCabe, "A complexity measure," IEEE Transactions on 

Software Engineering, SE-2(4):308-320, 1976 

[Moha and Gueheneuc, 2006] N. Moha and Y. Gueheneuc, "Automatic Generation of 

Detection Algorithms for Design Defects," 21st IEEE International Conference 

on Automated Software Engineering (ASE'06) pp. 297-300, 2006 

[Moha et al. 2006] N. Moha, D. Huynh and Y. Gueheneuc, "Une taxonomie et un 

metamodele pour la detection des defauts de conception," In actes du 12e 



References 102 

colloque Langages et Modeles a Objets, pages 201-216. Hennes Science 

Publications, March 2006 

[Prechelt and Kramer, 1998] L. Prechelt and C. Kramer, "Functionality versus 

Practicality: Employing Existing Tools for Recovering Structural Design 

Patterns," J. Univers al Computer Science, vol. 4, no. 12, pp. 866-882, Dec. 

1998 

[Rational, 2005] IBM Rational Software Corp. ..www.ibm.com/software/rational ... 

2005 

[UML, 1997] Rational Software Corp. "UML Semantics". Version 1.1, 1997 

[Riel, 1996] Arthur J. Riel, "Object-Oriented Design Heuristics". Addison-Wesley, 

1996 

[Rumbaugh et al. 1991] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, & W. 

Lorensen, "0 bj ect -Oriented Modeling and Design," Prentice-Hall, 1991. 

[Stelting and Maassen, 2001] Stephen Stelting and Olav Maassen, "Applied Java 

patterns," Java series. Prentice Hall, December 2001. 

[Together, 2006] Borland Together, .. http://www.borland.com/us/products/together .. 

Together Version 2006,2006 

[Wendehals, 2004] L. Wendehals, "Specifying Patterns for Dynamic Pattern Instance 

Recognition with UML 2.0 Sequence Diagrams," Proc. Sixth Workshop 

Software Reeng. (WSR '04), pp. 63-64, May 2004. 

[Wenzel, 2006] Sven Wenzel, "Automatic Detection of Incomplete Instances of 

Structural Patterns in UML Class Diagrams," Tampere University of 

Technology, Finland, 2006 



Appendix A - Partial An tir Java Grammar 

Appendix A - Partial Antlr Java Grammar 

class JavaRecognizer extends Parseri 
options { 

ASTLabelType = "RefPNode"i 
k = 2i Il two token lookahead 

Il CalI its vocabulary 
Il Some optimizations 

103 

"Java" exportVocab=Javai 
codeGenMakeSwitchThreshold = 2i 
codeGenBitsetTestThreshold = 3i 
defaultErrorHandler = falseillDon't 
buildAST = truei 

generate parser error handlers 

tokens { 

} 

BLOCKi MODIFIERSi OBJBLOCKi SLISTi CTOR_DEFi METHOD_DEFi 
VARIABLE_DEFi INSTANCE_INITi STATIC_INITi TYPEi CLASS_DEFi 
INTERFACE_DEFi PACKAGE_DEFi ARRAY_DECLARATOR; EXTENDS_CLAUSEi 
IMPLEMENTS_CLAUSEi PARAMETERSi PARAMETER_DEF; LABELED_STATi 
TYPECASTi INDEX_OPi POST_INCi POST_DEC; METHOD_CALLi EXPRi 
ARRAY_INITi IMPORTi UNARY_MlNUSi UNARY_PLUSi CASE_GROUPi ELISTi 
FOR_INITi FOR_CONDITIONi FOR_ITERATORi EMPTY_STATi FINAL="final"i 
ABSTRACT="abstract"i 

Il Compilation Unit: In Java, this is a single file. This is the 
Il start rule for this parser 
compilationUnit : 

Il A compilation unit starts with an optional package definition 
(packageDefinitionl/* nothing */) 
Il Next we have a series of zero or more import statements 
(importDefinition)* 
(typeDefinition )* 
EOF! i 

Il Package statement: "package" followed by an identifier. 
packageDefinition options {defaultErrorHandler = truei}: 

p:"package""" {#p->setType(PACKAGE_DEF) i} 
identifier SEMli 

Il Import statement: import followed by a package or class name 
importDefinition options {defaultErrorHandler = truei}: 

i:"import""" {#i->setType(IMPORT)i} 
identifierStar SEMli 

Il A type definition in a file is either a class or interface 
definition. 
typeDefinition options {defaultErrorHandler = truei}: 

m:modifiers! (classDefinition[#m] 1 interfaceDefinition[#m]) 
1 SEMI! 

Il A declaration is the creation of a reference or primitive-type 
variable 
declaration! : 

m:modifiers 
t:typeSpec[false] 
v:variableDefinitions[#m,#t] {#declaration #Vi}i 

modifiers: 
( modifier )* 



Appendix A - Partial Antlr Java Grammar 

{#modifiers = # ([MODIFIERS, "t;rODIFIERS"], #modifiers);}; 

Il A type specification is a type name with possible brackets 
Il afterwards (which would make it an array type). 
typeSpec[bool addlmagNode] : 

classTypeSpec[addlmagNode] 
1 builtlnTypeSpec[addlmagNode]; 

104 

Il A class type specification is a class type with possible brackets 
afterwards 
Il (which would make it an array type). 
classTypeSpec[bool addlmagNode] 

identifier (lb:LBRACK A {#lb->setType(ARRAY_DECLARATOR);} RBRACK)* 
{ 

if ( addlmagNode ) { 
#classTypeSpec = #(#[TYPE,"TYPE"], #classTypeSpec); 

Il A builtin type specification is a builtin type with possible 
brackets afterwards (which would make it Ilan array type). 
builtlnTypeSpec[bool addlmagNode] : 

builtlnType (lb:LBRACK A {#lb->setType(ARRAY_DECLARATOR);} RBRACK)* 
{ 

if ( addlmagNode ) { 

} 
} ; 

#builtlnTypeSpec = # (# [TYPE, "TYPE"], #builtlnTypeSpec); 



Appendix B - Jess Rule DTD 

Appendix B - Jess Rule DTD 

<!-- XML DTD for Jess rules -> 
<!ELEMENT rulebase ( *> 
<!ELEMENT rule (lhs,rhs» 
<!ATTLIST rule narne CDATA #REQUIRED priority CDATA HH> 
<!ELEMENT rhs (function-call)*> 
<!ELEMENT lhs (group 1 pattern)*> 
<!ELEMENT group (group 1 pattern)*> 
<!ATTLIST group name CDATA #REQUIRED> 
<!ELEMENT pattern (slot*» 
<!ATTLIST pattern narne CDATA #REQUIRED binding CDATA ""> 
<!ELEMENT slot (variable 1 constant 1 function-call)*> 
<!ATTLIST slot narne CDATA #REQUIRED> 
<!ELEMENT variable EMPTY> 
<!ATTLIST variable name CDATA #REQUIRED> 

105 

<!ELEMENT function-call (head, (constant 1 variable 1 function-call) *» 
<!ELEMENT head (#PCDATA» 
<!ELEMENT constant (#PCDATA» 



Appendix C - Jess Rule XSLT 106 

Appendix C - Jess Rule XSLT 

://www.w3.org/1999/XSL/Transform"> 
"no"/> 

<xsl:stylesheet xmlns:xsl= 
<xsl:output method="text" 
<xsl:strip-space elements="*"/> 
<!-- Top-level rule template --> 
<xsl:template match="rule"> 

<xsl:text>(defrule </xsl:text> 
<xsl:value-of select="@name"/> 
<xsl:text>&#xA;</xsl:text> 
<xsl : if test=" @priority! 1 l "> 

<xsl:text> (declare (salience </xsl:text> 
<xsl:value-of select="./@priority"/> 
<xsl:text»)&#xA;</xsl:text> 

</xsl:if> 
<xsl:apply-templates select="./lhs"/> 
<xsl:text> =&gt;</xsl:text> 
<xsl:apply-templates select="./rhs"/> 
<xsl:text»&#xA; </xsl:text> 

</xsl:template> 

<!-- Rule left hand sides --> 
<xsl:template match="lhs"> 

<xsl:for-each select="./group ./pattern"> 
<xsl:text> </xsl:text> 
<xsl:apply-templates select="."/> 

<xsl:text>&#xA;</xsl:text> 
</xsl:for-each> 

</xsl:template> 
<xsl:template match="group"> 

<xsl:text> «/xsl:text> 
<xsl:value-of select="./@name"/> 
<xsl:text> </xsl:text> 
<xsl:apply-templates/> 
<xsl:text»</xsl:text> 

</xsl:template> 
<xsl:template match="pattern"> 

<xsl: if test="@binding! 1 1 "> 
<xsl:text>?</xsl:text> 
<xsl:value-of select="@binding"/> 
<xsl:text> &lt; </xsl:text~ 

</xsl:if> 
<xsl:text> «/xsl:text> 
<xsl:value-of select="./@name"/> 
<xsl:apply-templates select="./slot"/> 
<xsl:text»</xsl:text> 

</xsl:template> 
<xsl:template match="slot"> 

<xsl:text> «/xsl:text> 
<xsl :value-of select=" ./@name"/> 
<xsl:for-each select="./*"> 

<xsl:if test="position() 1"> 
<xsl:text>&amp;</xsl:text> 

</xsl:if> 
<xsl:apply-templates select="."/> 

</xsl:for-each> 
<xsl:text»</xsl:text> 

</xsl:template> 
<xsl:template match="slot/function-call"> 

<xsl:text>:</xsl:text> 
<xsl:call-template name::o"funcall"/> 



Appendix C - Jess Rule XSLT 

</xsl:template> 

<!-- Rule right hand sides --> 
<xsl:template match="rhs/function-call"> 

<xsl:text>&#xA; </xsl:text> 
<xsl:call-template narne="funcall"/> 
<xsl:text></xsl:text> 

</xsl:template> 

<!-- Function calls --> 
<xsl:template match="function-call"> 

<xsl:call-ternplate narne="funcall"/> 
</xsl:ternplate> 
<xsl:template name="funcall"> 

<xsl:text> «/xsl:text> 
<xsl:apply-templates select="./*"/> 
<xsl:text»</xsl:text> 

</xsl:template> 
<xsl: template match=;" function-call/function-call 'ô> 

<xsl:text> </xsl:text> 
<xsl:call-template narne="funcall"/> 

</xsl:template> 

<!-- Miscellaneous --> 
<xsl:template match="variable"> 

<xsl:text> ?</xsl:text> 
<xsl:value-of select:="@name"/> 

</xsl:template> 
<xsl:template match="constant"> 

<xsl:text> </xsl:text> 
<xsl:value-of select="."/> 

</xsl:template> 
</xsl:stylesheet> 

107 



Appendix D - Quality Heuristic Jess Ru/es 108 

Appendix 0 - Quality Heuristic Jess Rules 

;;;;;;;;iiiiiii;i;iii;;iiiiiiiiiiiiiiiii;iiiiiiiiiiiiiiiiiiiiiiii;i; 

;;Rules for design heuristics 

(defrule ADsbHwiC 
"aIl data should be hidden within its class· 

(classifier (classifierName ?clsName)) 
(attribute (classifier ?ClsName) (visibility ?attrVisiblity)) 
(test (neq private ?attrVisiblity)) 
(test (neq protected ?attrVisiblity)) 
;> 

(assert (dataShouldHidden (class ?clsName)))) 

(defrule CsnCmtSO 
"a class should not contain more than six objects" 

(classifier (classifierName ?clsName)) 
?total <- (accumulate 
(bind ?count 0) i initializer 
(bind ?count (+ ?count 1)) ; action 
?count i result 
(attribute (classifier ?clsName) 
(typeName ?typeName&-int&-long&-boolean&-String))) 

(test (> ?total 6)) 
=> 

(assert (moreSixObjects (class ?clsName)))) 

(defrule ADiBCsbP 
"aIl data in a base class should be private" 

(classifier (classifierName ?clsName) (isRoot root)) 
(attribute (classifier ?clsName) 
(visibility?attrVisiblity&-private)) 

(inheritsFrom (specificClassifier ?clsSpec) 
(genericClassifier ?clsName)) 

=> 
(assert (baseDataShouldPrivate (class ?clsName)))) 

(defrule ABCsbAC 
"aIl base class should be abstract classes· 

(classifier (classifierName ?clsName) (isRoot root) 
(isAbstract ?clsIsAbstract&-abstract)) 

(inheritsFrom (specificClassifier ?clsSpec) 
(genericClassifier ?clsName)) 

=> 
(assert (baseShouldAbstract (class ?clsName)))) 

iiiiiii;;;;i;;iiiiiiii;;iiii;;;;;i;;;;iiiiiiii;;;;;;;iiiiiiiiiiiiiii 

1 1 

iiRules for anti patterns 
; i anti singleton 
(defrule anti-singleton "recognize anti-singleton anti-pattern" 

(singleton-pattern (singleton ?clsSingleton)) 
(classifier (classifierName ?clsAS)) 
(attribute (classifier ?clsAS) 

=> 

(attributeName ?attrName) 
(typeName ?clsSingleton)) 

(assert (anti-singleton 
(singleton ?clsSingleton) (violations ?clsAS)))) 

; ianti-facade 



Appendix D - Quality Heuristic Jess Ru/es 

(defrule anti-facade "recognize anti-facade anti-pattern" 
(classifier (classifierName ?cls1) (package ?pkg1)) 
(classifier (classifierName ?c1s2&-?cls1) 

(package ?pkg2&-?pkg1)) 
(attribute (classifier ?cls2) (attributeName ?attr2) 

(typeName ?cls1)) 
(classifier (classifierName ?cls3&-?cls1) 

(package ?pkg1)) 
(classifier (classifierName ?cls4&-?cls2) 

(package ?pkg3&-?pkg1)) 
(attribute (classifier ?cls4) (attributeName ?attr4) 

(typeName ?cls3)) 
=> 
(assert (anti-facade 

(package ?pkg1) (classes ?cls1 ?cls3) 
(otherPackages ?pkg2 ?pkg3) 
(classesFromOtherPackages ?cls2 ?cls4)))) 

i iblob 
(defrule blob "recognize blob anti-pattern, 

than 60 attributes and methods" 
(classifier (classifierName ?clsName)) 
?totalAttrbutes <- (accumulate 

a class contains more 

(bind ?count 0) , 
(bind ?count (+ ?count 1)) action 

i result 
?clsName) ) ) 

?count 
(attribute (classifier 

?totalMethods <- (accumulate 
(bind ?count 0) , 
(bind ?count (+ ?count 1)) action 
?count i result 
(operation (classifier ?clsName))) 

(test (> (+ ?totalMethods ?totalAttrbutes) 60)) 
=> 

(assert (blob (class ?clsName)))) 

initializer 

initializer 

(defrule globalScopeObject "Global Scope Object anti-pattern" 
(classifier (classifierName ?clsName)) 
(attribute (classifier ?clsName) (unqualifiedName ?attrUName) 

(visibility public) 
(typeName ?type&-int&-long&-boolean&-String)) 
=> 
(assert (globalScopeObject(class ?clsName) 

(attribute ?attrUName)))) 

(defrule antiCommoncodePrivateFunction 
(classifier (classifierName ?clsTarget)) 
(operation (classifier ?clsTarget) 

(operationName ?optNameTarget) (visibility public)) 

ilnternal Client 
(operation (classifier ?clslnternal) 

(operationName ?optNamelnternal)) 
iSame Hierarchy 
(or (or (descendant (ancestor ?clslnternal) 

(descendant ?clsTarget)) 
(ancestor (ancestor ?clsTarget) 

(descendant ?clslnternal))) 
(test (eq ?clslnternal ?clsTarget))) 

(invokes (classifierCaller ?clslnternal) 
(operationCaller ?optNamelnternal) 
(classifierCallee ?clsTarget) 
(operationCallee ?optNameTarget)) 

(test (neq ?optNameTarget ?optNamelnternal)) 

109 



Appendix D - Quality Heuristic Jess Ru/es 

iExternal Client 
(not 

=> 

(and 
(and 

(and (operation (classifier ?clsExternal) 
(operationNarne ?optNarneExternal)) 

(operation (classifier ?clsTarget) 
(operationName ?optNameTarget))) 

iNot Sarne Hierarchy 
(not 

(or (or (descendant (ancestor ?clsExternal) 
(descendant ?clsTarget)) 

(ancestor (ancestor ?clsTarget) 
(descendant ?clsExternal))) 

(test (eq ?clsExternal ?clsTarget))))) 
(invokes (classifierCaller ?clsExternal) 

(operationCaller ?optNarneExternal) 
(classifierCallee ?clsTarget) 
(operationCallee ?optNameTarget)))) 

(assert (antiCommoncodePrivateFunction 
(classifier ?clsTarget) (operation ?optNameTarget)))) 

110 

. .. .. .. '" .. .. .. .. .. .. ~ . . .. .. .. . .. .. .. .. .. " .. .. .. .. .. .. .. .. .. .. .. .. .. .. '" " ,. .. .. .. ,. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ,. .. .. .. .. .. .. .. 
Il fIl 1 1 l' " l"" 1 1 ",1111 ", 1 """" 1 1 1 1 1 1 1 1 1 " " '" 1 1 1 1 " 1 J 1 1 1 1 1 1 1 

, , 
iiRules for design patterns 
iiiiiiCreational patterns 

iiAbstract Factory pattern rule 
(defrule abstractFactory "recognize abstract factory pattern" 

iAF is abstract and has a function whose return type is AP 
iit's better to check AF has abstract method because it's 
ipossible that AF is not abstract but it has abstract method. 

(classifier (classifierNarne ?clsAF) (isAbstract abstract)) 
(operation (classifier ?clsAF) 

(unqualifiedNarne ?optUNarneAF) (operationName ?optAF)) 
(pararneter (operationNarne ?optAF) 

(direction return) (pararneterType ?clsAP)) 
jCF is concrete, has a function whose return type is AP 
(classifier (classifierNarne ?clsCF) (isAbstract concrete)) 
(operation (classifier ?clsCF) 

(unqualifiedNarne ?optUNarneAF) (operationNarne ?optCF)) 
(pararneter (operationNarne ?optCF) 

(direction return) (pararneterType ?clsAP)) 

optA and optB have the same signature 
(and 

(pararneter (operationNarne ?optAF) 
(order ?orderAF) (parameterType ?typeParamAF)) 

(pararneter (operationNarne ?optCF) 
(order ?orderAF) (parameterType -?typeParamAF)))) 

iCF subtype AF 
(inheritsFrom (specificClassifier ?clsCF) 

(genericClassifier ?clsAF)) 
iAP is abstract and narne is AF/CF's funtion return type 

(classifier (classifierName ?clsAP) (isAbstract abstract)) 
jCP subtype AP 

=> 

(inheritsFrom (specificClassifier ?clsCP) 
(genericClassifier ?clsAP)) 

(assert (abstractFactory-pattern (abstractFactory ?clsAF) 
(concreteFactories ?clsCF) (abstractProducts ?clsAP) 
(concreteProducts ?clsCP)))) 



Appendix D - Quality Heuristic Jess Rules III 

iiSingleton pattern rule 
(defrule singleton "recognize singleton pattern" 

iTo prevent clients instantiating singleton class 
(or 

iabstract class 
(classifier (classifierName ?clsSingleton) (isAbstract abstract)) 
iconstructor is private or protected 
(operation (classifier ?clsSingleton) 

(unqualifiedName -constructor-) (visibility private))) 
ilazySingleton's attribute should be private static 
ibut not final. public and private singletion should be final 
(attribute (classifier ?clsSingleton) (scope class) 

(visibility private) (typeName ?clsSingleton)) 
(operation (classifier ?clsSingleton) 

(unqualifiedName ?optUNameSingleton) 
(operationName ?optSingleton) 
(scope class) (visibility public) ) 

(parameter (operationName ?optSingleton) 
(direction rèturn) (parameterType ?clsSingleton)) 

=> 
(assert (singleton-pattern (singleton ?clsSingleton)))) 

iiiiiiStructural patterns 
iiAdapter pattern rule 
(defrule adapter "recognize adapter pattern" 

ithere is a class adapter, l didn't implement it here. 
iTarget 
(classifier (classifierName ?clsTarget) (isAbstract abstract)) 
(operation (classifier ?clsTarget) (operationName ?nameOptTarget) 

(unqualifiedName ?unameOptTarget)) . 

iAdapter 
(classifier (classifierName ?clsAdapter)) 
(attribute (classifier ?clsAdapter) (typeName ?clsAdaptee)) 
(operation (classifier ?clsAdapter) (operationName ?nameOptAdapter) 

(unqualifiedName ?unameOptAdapter)) 

iAdaptee 
(classifier (classifierName ?clsAdaptee)) 
(operation (classifier ?clsclsAdaptee) 

(operationName ?nameOptAdaptee) 
(unqualifiedName ?unameOptAdaptee)) 

iAdapter's instance invokes adaptee's interface 
(invokes (dlassifierCaller ?clsAdapter) 

(operationCaller ?nameOptAdapter) 
(classifierCallee ?clsAdaptee) 
(operationCallee ?nameOptAdaptee)) 

iAdapter inheritance Target 
(inheritsFrom (specificClassifier ?clsAdapter) 

(genericClassifier ?clsTarget)) 
(test (eq ?unameOptTarget ?unameOptAdapter)) 
iTarget and Adaptee have to different ? 
(test (neq ?clsAdaptee ?clsTarget)) 
=> 
(assert (adapter-pattern (target ?clsTarget) 

(adapter ?clsAdapter) (adaptee ?clsAdaptee)))) 

iiBridge pattern rule 
(defrule bridge "recognize bridge pattern" 

iAbstraction may or may not be abstract class 
(classifier (classifierName ?clsAbs)) 



Appendix D Quality Heuristic Jess Ru/es 

(attribute ( fier ?clsAbs) (typeName ?ClSlmp» 
(operation (classifier ?clsAbs) (unqualifiedName ?unameOptAbs) 

(operationName ?nameOptAbs)) 

;Refined Abstraction 
(classifier (classifierName ?clsRA) (isAbstract concrete)) 
(operation (classifier ?clsRA) (unqualifiedName ?unameOptRA) 

(operationName ?nameOptRA)) 

iRA inheritance Abs 
(inheritsFrom (specificClassifier ?clsRA) 

(genericClassifier ?clsAbs)) 
(test (eq ?unameOptRA) 

; Implementor 
(classifier (classifierName ?clslmp) (isAbstract abstract) 
(operation (classifier ?clslmp) (unqualifiedName ?unameOptlmp) 

( ?nameOptlmp» 

;Abstraction's instance invokes implement's interface 
(invokes (classifierCaller ?clsAbs) (operationCaller ?nameOptAbs) 

(classifierCallee ?clslmp) (operationCallee ?nameOptlmp) 

iConcrete Implemntor 
(classifier (classifierName ?clsCI) (isAbstract concrete») 
(operation (classifier ?clsCI) (unqualifiedName ?unameOptCI) 

(operationName ?nameOptCI) 

iCI inheritance Imp 
{inheritsFrom ( icClassifier ?clsCI) 

( fier ?clslmp» 
(test (eq ?unameOptlmp ?unameOptCI» 
=> 
{assert (abstraction ?clsAbs) 

( ?clsRA) (implementor ?clslmpl 
(concretelmplementors ?clsCI»») 

i;Decorator pattern rule 
(defrule decorator "recognize decroator pattern" 

;AC 
(classifier (classifierName ?clsAC) 

(isAbstract abstractl (isRoot root») 
(operation (classifier ?clsAC) (unqualifiedName ?unameOptAC) 

(operationName ?nameOptAC» 
;CC 
(classifier (classifierName ?clsCC) (isAbstract concrete» 

( (classifier ?clsCC) 
(unqualifiedName ?unameOptAC) (operationName ?nameOptCC» 

iCC inheritance AC 
(inheritsFrom ( 

( 
;AD 

ficClassifier ?clsCC) 
ier ?clsAC» 

(classifier (classifierName ?clsAD» 
(operation (classifier ?clsAD) (unqualifiedName ?unameOptAD) 

(operationName ?nameOptAD») 
;AD inheritance AC 
(inheritsFrom ( ficClassifier ?clsAD) 

( ifier ?clsAC») 

(or iAD calls method of AC, Decorator Variantl: AJP 

112 

(invokes (classifierCaller ?clsAD) (operationCaller ?nameOptAD) 
(classifierCallee ?clsAC) (operationCallee ?nameOptAC» 

(and 
;Decorator Variant 2: HFDP, CD calls method of AC 

(invokes (classifierCaller ?clsCD) (operationCaller ?nameOptCD) 



Appendix D - Quality Heuristic Jess Ru/es 

(classifierCallee ?clsAC) ( lee ?nameOptAC» 
;CD 
(classifier (classifierName ?clsCD) (isAbstract concrete» 
(operation (classifier ?clsCD) 

(unqualifiedName ?unameOptCD) 
(operationName ?nameOptCD»» 

iCD inheritance AD 
(inheritsFrom (specificClassifier ?clsCD) 

(genericClassifier ?clsAD» 
(test (neq ?clsCC ?clsAD» 
(test (neq ?clsAC ?clsAD» 
=> 
(assert (decorator-pattern (abstractComponent ?clsAC) 

(concreteComponents ?clsCC) (abstractDecorator ?clsAD) 
(concreteDecorators ?clsCD»» 

;;iiiiBehavioral patterns 
;;Visitor pattern rule 
(defrule visitor "recognize visitor pattern" 

;AV 
(classifier (classifierName ?clsAV) (isAbstract abstract» 
(operation (classifier ?clsAV) (unqualifiedName ?unameOptAV) 

(operationName ?nameOptAV}) 
(parameter (operationName ?nameOptAV) (direction -return) 

(order ?orderParaAV) (parameterType 
;CV 
(classifier (classifierName ?clsCV) (isAbstract concrete» 
(operation (classifier ?clsCV) (unqualifiedName ?unameOptAV) 

(operationName ?nameOptCV» 
(parameter (operationName ?nameOptCV) (order ?orderParaAV) 

(parameterType ?typeParaAV» 

;CV inheritance AV 
(inheritsFrom (specificClassifier ?clsCV) 

. (genericClassifier ?clsAV» 

;AN 
(classifier (classifierName ?clSAN) (isAbstract abstract» 
(operation (classifier ?clsAN) (unqualifiedName ?unameOptAN) 

(operationName ?nameOptAN» 
(parameter (operationName ?nameOptAN) (direction -return) 

(order ?orderParaAN) (parameterType ?typeParaAN») 
;CN 
(classifier (classifierName ?clsCN) (isAbstract concrete)) 
(operation (classifier ?clsCN) (unqualifiedName ?unameOptAN) 

(operationName ?nameOptCN)) 
(parameter (operationName ?nameOptCN) (order ?orderParaAN) 

(parameterType ?typeParaAN)) 
iCN inheritance AN 
(ancestor (ancestor ?clsAN) (descendant ?clsCN») 
iCV'S visit method take AN as one of its parameter type 
iCN's accept method take AV as one of its parameter type 
(test (eq ?typeParaAV ?clsCN» 
(test (eq ?typeParaAN ?clsAV)) 
=> 
(assert (visitor-pattern (abstractVisitor ?clsAV) 

(concreteVisitors ?clsCV) (abstractNode ?clsAN) 
(concreteNodes ?clsCN)))) 

;iObserver pattern rule 
(defrule observer "recognize observer pattern" 

iAS 
(classifier (classifierName ?clsAS) (isRoot root» 
iHyphosis operation name has "add" or "register" prefix 

113 



Appendix D - Quality Heuristic Jess Ru/es 114 

=> 

iit has the parameter whose type is AO type 
(operation (classifier ?clsAS) (unqualifiedName ?unameOptAddAS&: 
(or (and (>= (str-length ?unameOptAddAS) 3) 

(= 0 (str-compare (sub-string 1 3 ?unameOptAddAS) "add"))) 
(and (>= (str-length ?unameOptAddAS) 8) 

(= 0 (str-compare (sub-string 1 8 ?unameOptAddAS) "register"))))) 
(operationName ?nameOptAddAS)) 

(parameter (operationName ?nameOptAddAS) 
(direction nil) (parameterType ?clsAO)) 

iHyphosis operation name has "remove" or "unregister" prefix 
iit has the parameter whose type is AO type 
(operation (classifier ?clsAS) (unqualifiedName ?unameOptRemoveAS&: 

(or (and (>= (str-length ?unameOptRemoveAS) 6) 
(= 0 (str-compare 

(sub-string 1 6 ?unameOptRemoveAS) "remove"))) 
(and (>= (str-length ?unameOptRemoveAS) 10) 
(= 0 (str-compare 
(sub-string 1 10 ?unameOptRemoveAS) "unregister"))))) 

(operationName ?nameOptRemoveAS)) 
(parameter (operationName ?nameOptRemoveAS) 

(direction nil) (parameterType ?clsAO)) 
iAS's notify function 
(operation (classifier ?clsAS) (operationName ?nameOptNotifyAS) 

(unqualifiedName 
?unameOptNotifyAS&-?unameOptAddAS&-?unameOptRemoveAS)) 

iAO 
(classifier (classifierName ?clsAO) 

(isAbstract abstract) (isRoot root)) 
iAO's update function 
(operation (classifier ?clsAO) (unqualifiedName ?unameOptUpdateAO) 

(operationName ?nameOptUpdateAO)) 

iAS's notify function invokes AO's update function 
(invokes (classifierCaller ?clsAS) 

(operationCaller ?nameOptNotifyAS) 
(classifierCallee ?clsAO) 
(operationCallee ?nameOptUpdateAO)) 

iAS can navigate to AO, that is, AS is associate with AO 
iAS has an (vector) attribute(s) whose type is AO 
i (navigable (classifierSubject ?clsAS) (classifierObject ?clsAO)) 

iCS 
(classifier (classifierName ?clsCS)) 
(or iCS and AS can be one class 

(test (eq ?clsCS ?clsAS)) 
iCC inheritance AC 

(inheritsFrom (specificClassifier ?clsCS) 
(genericClassifier ?clsAS))) 

iCO 
(classifier (classifierName ?clsCO)) 
iCO inheritance AO 
(inheritsFrom (specificClassifier ?clsCO) 

(genericClassifier ?clsAO)) 

(assert (observer-pattern (abstractSubject ?clsAS) 
(concreteSubject ?clsAS) (abstractObserver ?clsAO) 
(concreteObservers ?clsCO)))) 

iiStrategy, State and Command 
(defrule Strategy "recognize strategy, state and Command pattern" 

iContext 
(classifier (classifierName ?clsContext) (isAbstract concrete)) 



Appendix D - Quality Heuristic Jess Ru/es 

(attribute (classifier ?clsContext) (typeName ?clsStrategy)) 
(operation (classifier ?clsContext) (operationName ?nameContext) 

(unqualifiedName ?unameContext)) 

iStrategy 
(classifier (classifierName ?clsStrategy) (isAbstract abstract)) 
(operation (classifier ?clsStrategy) 

(unqualifiedName ?unameOptStrategy) 
(operationName ?nameOptStrategy)) 

iAbstraction's instance invokes implement's interface 
(invokes (classifierCaller ?clsContext) 

(operationCaller ?nameOptContext) 
(classifierCallee ?clsStrategy) 
(operationCallee ?nameOptStrategy)) 

iConcrete strategies 
(classifier (classifierName ?clsCS) (isAbstract concrete)) 
(operation (classifier ?clsCS) (unqualifiedName ?unameOptCS) 

(operationName ?nameOptCS)) 

iConcrete Strategy inheritance Strategy 
(inheritsFrom (specificClassifier ?clsCS) 

(genericClassifier ?clsStrategy)) 
ibetter to test if both have the same signature 
(test (eq ?unameOptCS ?unameOptStrategy)) 
=> 
(assert (strategy-pattern (context ?clsContext) 

(strategy ?clsStrategy) (concreteStrategies ?clsCS)))) 

(defrule same-signature 
"two method have the same signatures" 

(classifier (classifierName ?clsA)) 
(operation (classifier ?clsA) (operationName ?optA) 

(unqualifiedName ?uqnameOptA) 
(numberparameters ?paraANumber)) 

(classifier (classifierName ?clsB)) 
(operation (classifier ?clsB) (operationName ?optB) 

(unqualifiedName ?uqnameOptA) 
(numberparameters ?paraANumber)) 

(not (and (parameter (operationName ?optA) 
(order ?orderA) (parameterType ?typeParamA)) 

(parameter (operationName ?optB) 
(order ?orderA) (parameterType -?typeParamA)))) 

(ancestor (ancestor ?clsA) (descendant ?clsB)) 
=> 
(assert (sameSignature (methodA ?optA) (methodB ?optB))) 

115 


