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Introd uction 

Soit S un ensemble; pour la plus part du mémoire un ensemble fini. Un 
clone sur S est un ensemble d'opérations finitaires sur S fermé par rapport à 
la composition et contenant toutes les projections. Un clone C est minimal 
si le clone des projections est le setù clone proprement inclus dans C. Un 
clone sur S est un clone majorité s'il contient une operation majorité; c'est­
à-dire une opération ternaire m sur S satisfaisant m(x,x,y) = m(x,y,x) = 
m(y,x,x) = x pour tous x,y E S. Dans ce mémoire nous nous concentrons 
sur les clones majorité minimaux. 

Aux Chapitres 2 et 3 nous introduisons les faits nécessaires sur les clones 
et les clones minimaux, produisons des techniques de base pour déterminer 
si un clone est minimal ou non, et présentons un vol d'horizon sur les 
connaÎssances sur ce sujet. En grande partie ces deux chapitres sont basés 
sur les tours d'horizon de B. Csakany [4] et de R.W. Quackenbush [15]. 

En 1941 E.L.Post a complètement décrit tous les clones sur S à 2 éléments 
[16] et sa liste contient tous les clones majorité minimaux. En 1983 B. 
Csakany [4] a determiné les clones minimaux sur S à 3 éléments qui aussi ren­
ferment les clones majorité minimaux. Trois ans plus tard en [5] il a donné la 
description des clones majorité minimaux engendrés par une opération ma­
jorité conservatrice (c'est-à-dire m, telle que m(x,y,z) E x,y,z pour tous 
x, y, z E S). Finalement en 2000 T. Waldhauser [22] a trouvé tous les clones 
majorité minimaux sur S à 4 éléments. Nous présentons ces réswtats au 
Chapitre 4. 

De plus, pour une opération majorité sur S qui engendre un clone min­
imal nous présentons deux techniques différentes pour obtenir une telle 
opération sur tout S' de cardinalité plus grande que ISI. Les idées sont 
basées sur des arguments utilisés dans une de ses preuves. 

Le fait que tout· clone majorité C peut être décrit comme l'ensemble 
d'opérations sur S préservant une relation finitaire sur S est une conséquence 
d'un théorème bien connu de Baker-Pixley. Au Chapitre 5 nous trouvons 
telles relations pour les clones majorité minimaux si S a au plus 3 éléments. 
Il s'avère que à part une sewe exception, ces relations peuvent être choisies 
comme les 3eme graphiques des clones en question (voir 5.8 pour la défiriition 
du k eme graphique d'un clone). Pour le cas exceptionnel nous montrons que 
le 4eme graphique suffit. 

Ce fait implique que pour ISI = 3, il existe un clone non minimal qui ne 
conti~nt qu'un sew clone minimal; un fait qui n'était pas connu et qui n'est 
pas vrai pour ISI = 2. Finalement nous montrons que tout clone C sur S 
qtÙ contient une opération majorité conservatrice est le clone des opérations 
qtÙ préservent le 2lSI-graphique de C. 

Le candidat souhaite exprimer sa gratitude au département de mathématiques 
et de statistique ainsi qu'aux étudiants du département pour l'hospitalité 
montrée pendant son séjour bien agréable .à Montréal. 
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Chapter 1 

Introduction 

A clone is a set of operations on a set S that is closed under composition and 

contains the projections. If not stated otherwise, we always assume the set S on 

which the clones are defined to be finite. A minimal clone is a clone whose only 

proper subclone is the clone that contains only the projections (the smallest of 

all clones). In our work, we focus on a special kind of minimal clones, namely 

minimal clones generated by majority operations (i.e. a ternary operation m s.t. 

m(x,x,y) ~ m(x,y,x) ~ m(y,x,x) ~ x). In the sequel, we calI clones that contain 

a majority operation majority clones. 

In chapter two and three, we give an introduction to the fundamentals of clones 

and minimal clones. We provide ourselves with the basic techniques of determining 

whether a clone is minimal and give a brief overview over the current state of 

knowledge. Large parts of the chapters are based on the surveys of Csakany [4] and 

Quackenbush [Hi] and the results, if not stated otherwise, are common knowledge. 

In 1941, E.L. Post described the set of clones on a two-element set completely 

[1 ï]. Thus, the minimal majority clones on a two-element set are known. In 1983, 

Béla Csakany determined an minimal majority clones on the three-element set in 

[,1]. Three years later, he. gave a description of all conservative minimal majority 

clones in [D] (a clone is conservative if, for any operation f in the clone, we have 

f(xI, ... , xn ) E {Xl, ... , xn } for an Xl, ... , Xn ES). It was then Tamas Waldhauser 

who determined aH minimal majority clones on a four-element set in 2000 [2:.lJ. In 

chapter four, we present an the results in detail. 

Furthermore, for a given minimal majority operation on S, we describe two 

different techniques to obtain a minimal majority operation on an arbitrarily larger 

set S', 00 > [S'[ > [SI. The ideas are based on arguments that Waldhauser uses in 

one of his proofs. 
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It is a consequence of a well-known theorem of Baker and Pixley [1] that any 

majority clone on Scan be described as the set of operations preserving a single 

relation on the set S. In chapter five, we determine such relations for aU minimal 

majority clones on a two- and three-element set. It turns out that for aU except one 

of these minimal clones, the relation can be chosen to be the third graphie of the 

clone. For the remaining clone, we show that the fourth graphie is sufficient (see 

5.8 for a definition of the k-th graphie of a clone). 

That we need the fourth graphie for one minimal clone implies that, for ISI = 3, 

there is a non-minimal clone C that contains no minimal clone except one majority 

clone (something that is not the case for IBI = 2). 

We also give a bound for the number k such that the k-th graphie is enough to 

generate a majority clone on an n-element set S if one of its majority operations is 

conservative. Under these conditions, the 2n-th graphie is enough to generate C. 

We also show that, under these conditions, we have C = [C(2n)] (i.e. C is generated 

by its 2n-ary operations). 
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Chapter 2 

Clones 

2.1 The basics of clones 

We begin by giving sorne definitions. 

Definition 2.1: a) Let S be a finite fixed universe with ISI 2: 2. Denote by N 

the set {l, 2, .. } of natural numbers. For n E N, a map 1 : sn --+ S is an n-ary 

operation on S. Denote by O~n) the set of aU n-ary operations on S. Furthermore, 
o .- U O<n) s·- nEN S . 

b) Let 1 be an n-ary operation on S. The ith variable is caUed essential (or rele-

vant) ifthere are al, ... , an, b E S such that 1(al' ... , an) =1= 1(al' ... ai-l, b, ai +1 , ... , an)· 

CàU 1 essentially k-ary if it has exactly k essential variables. 

c) For k,n E N, the composition of 1 E O~k) and 91,92, ... ,9k E O~n) is the n-ary 

operation 1 (91, ... , 9k) on S defined by setting 

1(91, ···,9k)(al' ... , an) := 1(9l(al, ... , an), ···,9k(al' ... , an)) 

for aU ai E S. 

d) Denote by ef (1 ~ i ~ n, n E N) the n-ary operation on S that maps any 

(al, ... an) E sn onto ai. The operations ef are caUed projections. In the foUowing, 

we often refer to projections as trivial operations. Denote by Js the set of projections 

on S. 

In the foUowing, we will use:::::; to indicate that an identity holds for aU variables 

ranging over S (e.g. e~(x, y, z) :::::; x). 

We are now ready to define a clone. The notion of a clone generalizes a monoid 

to a set of operations (by a monoid we mean the set of selfmaps on a set S that is 

closed under composition and contains the identity mapping). 
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Definition 2.2: A clone on S is a subset of Os that is closed under composition 

and contains aIl the projections. 

Examples: Each of the foIlowing sets is a clone: 

(1) The set Os of aIl operations on the set S (the full clone). 

(2) The set Js of aIl projections on the set S (the trivial clone). 

(3) AlI continuous operations on a topological space. 

(4) AlI idempotent operations on the set S (f is caIled idempotent if f(x, ... , x) ~ x). 

(5) AlI operations monotone in each variable on a partiaIly ordered set (S, ~). 

(6) AlI conservative operations on the set S (f is caIled conservative if every subset 

of S is closed under f, i.e. f(al, .... am) E {al, ... , am} for aIl (al, ... , am) E sm). 

Lemma 2.3: A clone C is closed under identification and permutation of vari­

ables. 

Proof: Let C be clone on S and let f E Os be a k-ary operation. Set K := 

{l, ... , k}. Let p, q E K. Without loss of generality, we can assume p < q. Further­

more, let <p be a permutation on {l, ... , k}. Define 

fpq(XI, ... , Xk-l) := f(XI, ... , Xq-l, xp, Xq, Xq+l, ... , Xk-l), 

f",(XI, ... , Xk) := f(X"'(I)' ... , X"'(k))' 

But now 

fpq(XI, ... , Xk-l) = f(et, ... , e~_l' e;, e~, e~+l' ... , eLI)(xI, ""Xk), 

f",(XI, ... , xn) = f(e~(1)' ... , e~(k))(XI, ... , Xk) 

and thus f pq , f", E C. D 

Definition 2.4: Let (J" ç Sk be a k-ary relation on Sand mEN. We say that 

f E 01n) preserves (J" if for aIl (Vll, ",Vkl), (VI2, .... , Vk2).:., (VIn, ... , Vkn) E (J". 

To illustrate this definition it helps to think of a k x n-matrix whose columns 

(interpreted as k-tuples) are elements of the relation (J". If we then apply f to the 

rows of the matrix and interpret the k resulting values as a k-tuple, this has to be 

in (J" as weIl. 
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1111 1112 IIln f(II11,lIl2, ... ,lIln ) 

1121 1122 112n f(1I2l,1I22, ... ,1I2n) 

'* 
IIkl IIk2 IIkn f(lIkl,lIk2, ... ,lIkn) 
E·a Ea Ea Ea Ea 

Definition 2.5 Denote by Pol a the set of operations on S preserving a. 

RecaIl the example (5) from ab ove. Clearly, (5) is the set of aIl operations 

preserving the relation ~. 

Lemma 2.6: a) For a k-ary relation a on S the set Pol a is a clone. 

b) The intersection of a set of clones on S is a clone. 

(

1111) (1112) (lIln) ( ej(II11,lIl2, ... ,lIln)) (lIli) 
Proof: a) Let : , : , ... , : E a. Then : = : E a 

l/ml l/m2 l/mn ei(Vml, Vm 2, ... , Vmn )) Vmi 

for aIl 1 ~ i ~ n. Thus, any projection preserves a. It remains to show that the 

composition of operaÙons preserving a also preserves a. Let f E O~), gl, ... , gk E 

O~n) be such operations. Then, clearly, 9;(1I2l ,; .. ,V2n) E a for aIll ~ i ~ k since gi 
(

9,(1111, ... , IIln) ) 

9i(Vm l, ... ,Vmn ) 

preserves a for aIl i. But now, the assumption that f preserves a implies that we 

( 

f(9l (Vl1, ... , l'ln), ... , 9k(Vl1, ... , IIln)) ) 

must have f(9 l (V2l, ... ,V2n),: .. ,9k(V2l, ... ,1I2n )) E a, as required. 

f(9l (l'ml, ... , Vmn ), ... , 9k(Vml, ... , Vmn )) 

b) Let C be the clone obtained by the intersection of a set of clones C. Clearly, C 

contains the projections. Furthermore, if f E C(k), gl, ... gk E c(n), then they have 

to be in any clone in C. Thus, f (gl' ... , gk) has to be in any clone in C and hence in 

C. D 

Definition 2.7: For a set of relations R on S, set Pol R = n{pol a 1 a ER}. 

By Lemma 2.6, this is a clone. 

RecaIl the example (6) from above. This is n{pol a 1 0 f. a ç S}. We can 

generalize the examples (5) and (6) as foIlows: 

(7) AlI operations preserving a set R of (finitary) relations on a set S. 

In fact, aIl clones are of this form. This may be formulated as foIlows. 

Theorem 2.8: Preserving a relation indu ces a Galois correspondence between 

operations and relations, in which the closed classes of operations are exactly the 
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clones (see (l],(10]) 

'vVe learn more about the correspondence between operations and relalions in the 

fifth chapter. 

Alternatively to describing clones as sets of operations containing the projections 

and being closed under composition, there exists another way to define clones. The 

following description was done by Mal'tsev in [H]. vVe define three unary operations 

ç, T, 6. and one binary operation * on Os as follows: 

Let f E O~n). For all al, ... , an E 3 set 

• (U)(al' ... an) := f(a2, ... , an, ad (U := f if n = 1) 

• (TJ)(al, ... ,an):= f(a2,al,a3 .. ·,an) (Tf:= f ifn = 1) 

• (6.J)(al' ... , an-d := f(al, al, a2"" an) (6.f := f if n = 1) 

• For 9 E 0:;) and all al, ... , am+n-l E 3 

(J * g)(al' ... , am+n-d := f(g(al, ... , am), am+l, ... , am+n-d 

A set of operations is a clone if and only if it is closed under these procedures 

and contains ei. 

2.2 The clone lattices 

Definition 2.9: Let f, 9 E Os. We say that f generates 9 if 9 can be obtained from 

f and the projections by (finitely many) compositions. Obviously, all operations 

generated by f form a clone. Call it the clone generated by f and denote itby [I]. 
Extend the terminology by writing [F] for the clone generated by a set of functions 

F. Notice that [F] is the least clone on 3 containing F. 

It is easy to see that F 1-+ [F] is a closure operator on the partially ordered set 

(Os, Ç) (i.e. F ç [F], F ç G =} [F] ç [G], [[F]] = [F] for aH F, G ç Os). Thus, 

the clones on 3 form a lattice. 

Definition 2.10: Denote by Ls the set of clones on 3. Call LS := (Ls, Ç) the 

clone lattice on 3 with its greatest element Os and its least element ls. 

Post described the clone lattice on the two-element set completely in [17] (they 

are countably many). However, for 131 2: 3 it is known that there are continuum 

many clones and a full description of these lattices seems to be hopeless, even for 

131 = 3. Nevertheless, a few results are known. 
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Definition 2.11: Gall the atoms of .cs (F is an atom of .cs if its only proper 

subclone is the trivial clone Js ) minim.al clones and the dual atoms (F is a dual 

atom of .cs if it is properly contained only in the full clone Os) maximal clones. 

Note that it is not obvious that minimal clones or maximal clones have to exist 

in a given clone lattice. For all we know at this point, there could be a clone C =1= Js 
containing no minimal clone. 

A description of the maximal clones was given by lablonskiî [H] for the three 

element case and finally, for every set, by Rosenberg in 1965 [18]. Kuznetsov gave a 

short proof for the fact that each clone distinct from Os is contained in a maximal 

clone and that there are only finitely many maximal clones [1:3]. 

One may ask the same questions about minimal clones: Are they fully described? 

Does any clone contain a minimal clone? Are there only finitely many? We provide 

an overview of our knowledge about minimal clones in the next chapter. 
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Chapter 3 

Minimal Clones 

In this chapter, we explain sorne standard techniques to determine whether a clone 

is minimal and we answer the following questions: 

• What is known about the operations generating a minimal clone? 

• Are there finitely or infinitely many minimal clones on a given set 5? 
" 

• Does every clone contain a minimal clone? 

For the whole chapter, set 5 = {D, , .. , n - 1}. We st art by making an easy but 

very useful observation: 

Lemma 3.1: A clone C is a minimal clone if and only if each non trivial f E C 

(i.e. f is not a projection) generates any 9 E C; in other words, C = [il for all 

nontrivial f E C. 

Proof: "*" Let C be minimal and f E C nontrivial. Suppose [il =f. C. This 

implies Js ç [il ç C, a contradiction to the minimality of C. 

"{=" By contraposition let C be not minimal. Then there exists a nontrivial clone 

C', C' ct. C. But now, for any nontrivial f E C', [il =f. c. D 

This lemma gives a standard technique to prove that an operation f does not 

generate a minimal clone on 5: Show that there exists an operation 9 such that 

f generates 9 but 9 does not generate f. To show that an operation 9 does not 

generate f, it suffices to find a relation a such that 9 preserves a while f does not 

(since we know by Lemma 2.5 that if 9 preserves a, then any composition obtained 

from 9 and the projections has to preserve a, too). Many times, we choose the 

respective relation a to be a subset of 5. In the following, we use this technique 

very often. 
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Attributes of an operation f E Os can be extended to the algebra (8; 1). Call 

this algebra (essentially) k-ary if f is (essentially) k-ary and conservative if f is 

conservative. Furthermore, (8; 1) is termed minimal (i.e. its term algebra is mini­

mal) if and only if [f] is a minimal clone. This observation is useful because it allows 

us to look at (minimal) clones as term algebras which is helpful in sorne situations 

(to learn more about the correspondence between clones and term algebras see for 

example [8]). In terms of algebras, we can formulate another technique to show that 

an operation 9 do es not generate an operation f. 

Lemma 3.2: Let f, 9 E Os and let (A; g), (B; g) be isomorphic subalgebras of 

(8; g). Then 9 does not generate f if one of the following conditions hold: 

(i) One of (A; 1), (B; 1) is not a subalgebra of (8; 1) 
(ii) (A; 1) and (B; 1) are non-isomorphic subalgebras of (8; 1). 

Proof: By the way of contraposition, suppose f E [g]. 
(i) f E [g] implies that for a subalgebra (D; g) of (8; g), (D; 1) must be a subalgebra 

of (8; 1). In particular, this implies that (A; 1) and (B; 1) are subalgebras of (8; 1), 
a contradiction. 

(ii) f E [g] implies that the isomorphism between (A; g) and (B; g) is also an 

isomorphism between (A; 1) and (B; 1). D 

Definition 3.3: A k-ary f E Os such that [I] is a minimal clone while every 

nontrivial 9 E [I] is of arity at least k is called minimal operation. 

Clearly, every IlÙnimal clone is generated by a minimal operation (since, by 

Lemma 3.1, every nontrivial operation in a minimal clone C generates C). Thus, 

the set of all minimal operations deterIlÙnes the set of all minimal clones. This 

is useful, because we will see later that IlÙnimal operations can only be of certain 

types. The following lemma gives another technique to show that an operation is 

not minimal. 

Lemma 3.4: Let f be a minimal operation on 8. If f preserves a subset A ç 8, 

then flAn (the operation obtained by restricting f to the set An) is either trivial or 

minimal on A. In particular, for a conservative minimal operation f, the operation 

flAn is trivial or minimal on A for all A ç 8. 

Pro of: This can be deduced from the fact that composing functions and restrict­

ing functions commute. Another proof can be found in [El]. D 
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Definition 3.5: a) A ternary operation f on 8 is called a majority operation if 

, f(x,x,y) ç::;; f(x,y,x) ç::;; f(y,x,x) ç::;; Xo 

b) A ternary operation f on 8 is called a minority operation if 

f(x,x,y) ç::;; f(x,y,x) ç::;; f(y,x,x) ç::;; yo 

c) A k-ary operation f is called a semiprajection if, for a fixed i E {l, 00' k}, , 

f(xI,ooo,x"J = Xi whenever XI, ooo,Xk E 8 are not pairwise distincto 

Lemma 3.6 (The Swierczkowski Lemma): [20] Given an at least quaternary 

operation f, if every operation arising from f by identification of two variables is a 

projection, then f is a semiprojectiono 

Proof: This proof is sketched in [16]0 Other proofs can be found in [20], [4]0 

Let k 2:: 4 and let f(xI, 000, Xk) be a k-ary operationo We distinguish two cases: 

Case 1: For some i E {l, 000' k}, if we equate aH but the i-th variable, then 

f(~, Xi, ~ ç::;; Xio Without loss of generality, we can assume i = 1 so that 

i-l k-i 
f(x!,y, ooo,y) ç::;; Xlo But now, equating any two of X2, ooo,Xk yields Xlo Furthermore, 

this implies f(Xll X2, y, y, Xs, 000) Xk) ç::;; Xl so that f(XI) XI, y, y, Xs, 000, Xk) ç::;; Xlo Now 

set Xl = X2 and we must have f(xI, Xl, X3, 000' Xk) ç::;; X 1. f(XI' X2, Xl, X4, 000' Xk) ç::;; 

f(XI,X2,X3,XI,X5000,Xk) ç::;; 000 ç::;; f(XI,X2,X3,X4,000,Xk-I,XI)' ç::;; Xl follows in the 

same wayo Thus, f is a semiprojection sinee it coincides with er whenever Xl, 000) Xk 

are not pairwise distincto 

Case 2: f(XI,y,y,ooo,y) ç::;; f(y,X2,y,000,y) ç::;; 000 ç::;; f(y,ooo,y,Xk) ç::;; yo But 

then, for any i =1= j, setting Xi Xj forces f to reduce to Xi = Xj (since if f 

would reduce to Xl, l ~ {i,j}, we could equate aU but the l-th variable to obtain 

f(y, 000' y, Xl, yooo, y) ç::;; Xl)o However, this leaves no variable for f(x, X, y, y, Xs, 000' Xk) 

to equate too Thus, this case cannot occuro 0 

Definition 3.7 A ternary operation f on 8 is Mal 'tsev if 

f(x, y, y) ç::;; f(y, y, x) ç::;; X 

Lemma 3.8: Let f be a Mal'tsev operation on 80 If [fl is a minimal clone, 

then there exists Ct prime p and an elementary Abelian p-graup (8; +) such that 

f(x,y,z) ç::;;x-y+zo 

Praof: See [21]0 0 
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We are now ready to prove a very important result about minimal operations, 

namely Rosenberg's Classification Theorem [Hl]. 

Theorem 3.9 Rosenberg's Classification Theorem (RCT): Every minimal 

operation f on 8 is of one of the following types: 

(1) a unary operation that is either a retraction (i. e. p = f) 

or a cyclic permutation of prime order, 

(2) a binary idempotent op~ration, 

(3) a majority operation, 

(4) the minority operation f(x, y, z) = x + y + z where (8; +) 
2-group, 

(5) a k-ary semiprojection for some 3 ::; k ::; n. 

Proof: Let f be a minimal operation. 

is an elementary 

If f is unary but neither a retraction or a permutation, then we have P(8) ç f(8) 
which implies f ~ [P], hence f is not a minimal operation. Let f be a permutation 

of order q (i.e. c~r = et while P i et for i = 1, ... , q - 1). Suppose that q is not 

prime and let q = rs where r is a prime divisor of q. Let h := jB. Now h E [f] 

but f ~ rh], i.e. [f] is not minimal. Thus, f is permutation of prime order or a 

retraction. 

Now suppose that f is at least binary. f has to be idempotent sinee otherwise it 

generates (by identification of variables) the nonidentical unary operation f (x, ... , x), 
which cannot generate f. 
Now let us suppose that f is ternary. Since f is a minimal operation and hence of 

minimal arity, we must obtain a projection by any identification of two variables. 

This leaves us with eight possible cases: 

(1) (2) (3) (4) (5) (6) (7) (8) 

f(x, x, y) = x x x x y y y y 

f(x, y, x) = x x y y x x y y 

f(y,x,x) = x y x y x y x y 

In the cases (1) and (8), fis a majority, resp., minorityoperation. In the cases (2), 

(3) and (5), fis a ternary semiprojection. To show that the cases (4), (6) and (7) 

cannot occur we define 

f4(X,y,Z):= f(x,y,f(x,y,z)) 

f6(X,y,Z):= f(x,f(x,y,z),z) 

h(x,y,z):= f(J(x,y,z),y,z) 
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Clearly, 14,16, h E [I]. Furthermore, 14,16, h are majority operations in the cases 

(4),(6),(7), respectively. But now 1 ~ [14], rh], [16], respectively, because we will see 

later that any nontrivial ternary operationgenerated by a majority operation has to 

be a majority operation again (Lemma 4.4). This contradicts the minimality of f. 
It remains to show that if 1 is a minority operation, then it is necessarily x + y + z 

in an elementary 2-group. Since every minority operation is Mal'tsev" we can apply 

Lemma 3.8. Thus, there exists an elementary Abelian p-group (8; +) (p prime) with 

l(x, y, z) = x-y+z. But x-y+z is a minority operation only for p = 2 (otherwise, 

we have x, y E 8 such that 0 =1- 2y - 2x and hence x =1- 2y - x = 1 (y, x, y) ). 

Finany, let 1 be at least quaternary. By the same argument as ab ove , 1 turns into 

a projection by identification of any two variables. Then, by the Swierczkowski 

Lemma, these projection have to coincide. Thus, 1 is a semiprojection. D 

Note that any operation that fans under the cases (1)-(5) (even if it is not mini­

mal) can only generate nontrivial operations of equal or greater arity. This is implied 

by the fact that the operations listed in the RCT become trivial by an identifica­

tion of variables (except case (1) in which the claim is trivial). In particular, the 

nontrivial operations generated by a majority operation are at least ternary (a fact 

we use several times in the sequel). 

It can be shown that the classes (1) - (5) of minimal operations are disjoint. In 

the cases (1) and (4) the conditions ensure the minimality of 1, while in the other 

cases they do not. However, one can find examples to show that the classes (2), (3) 
and (5) are also non-empty: 

• For (2) consider any semilattice operation (e.g. max(x, y)). 

• For (4), consider the dual discriminator d of Fried and Pixley [9], defined by 

d( ) = {x, if x = y 
x,y,z . 

z, lfx=l-y 

(see 4.6 for a proof of the minimality). 

• For (5), consider any nearprojection s (a nearprojection is a seriliprojection 

defined by S(XI,X2, ... ,xn ) = Xl if Xl, ... ,Xn are not pairwise distinct). 

This means that in order to determine an minimal clones on an n-element set S 

it is enough to look at the operations of cases (1) to (5) and to determine which of 

them generate minimal clones. This is trivial for the case (1) and (4), but for the 

other cases, only partial results are known: 

• For n = 2, an the minimal clones are known sin ce - as mentioned before - the 

clone lattice was completely described by Post [17]. 
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• For n = 3, the set of minimal clones was determined by Csakany [4] . 

• For n = 4, the binary case was settled by' Szczepara in hisPh.D. thesis [22] 
(there are 2.182 binary minimal clones and 120 of them are essentially distinct) 

and all minimal clones generated by majority operations were determined by 

Waldhauser [23], see next chapter). Furthermore, sorne minimal conservative 

semiprojections were determined by Jezek and Quackenbush [12]. 

For n 2: 5 only very few results are known. 

We now have the knowledge to answer the questions raised at the beginning of 

the chapter: 

Corollary 3.10: There are onl,!! finitely many minimal clones on S. 

Prao f: The cases (1)- ( 4) of the RCT can only give us finitely many minimal 

operations (and thus only finitely many minimal clones). For case (5), consider a 

k-ary semiprojection s. If k > n, the number of variables exceeds the number of 

elements in Sand hence the variables cannot be distinct and s is a projection. Thus, 

it cannot generate a minimal clone. But, for k :'S n, the set of k-ary semiprojections 

is clearly finite. Thus, the set of minimal clones on S is finite. D 

Corollary 3.11: EV,ery nontrivial clone on S con tains a minimal clone.· 

Proof: Following the approach in [12], we call a nontrivial clone Bk-special if 

every nontrivial operation in B is at least k-ary and there exists a k-ary operation 

in B that generates B. Any nontrivial clone C on a finite set contains k-special 

clones for sorne k (any nontrivial operation of minimal arity in C generates such a 

clone). Let C' be a k-special subclone of C. Since the (k - l)-ary operations in C' 

have to be trivial, any identification of variables of a k-ary operation in C' gives us 

a projection. Rence, by the Swierczkowski Lemma, the k-ary operations in C'are 

semiprojections or k < 4. This implies that k cannot exceed max(4, n), because 

otherwise any k-ary operation in this clone would be a projection. This means that 

C contains only finitely many special clones. They are partially ordered by inclusion 

and a clone which is minimal with respect to this ordering is a minimal clone. D 

Note that Corollary 3.10 and 3.11 do not hold for infinite sets. In this case, it 

is obvious that there are. infinitely many minimal clones (alone the number of all 

retractions on an infinite set is infinite). Furthermore, an example for a clone not 

containing a minimal clone is the clone generated by the (unary) successor function 

on N. 
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Chapter 4 

Minimal majority clones 

In this chapter, we focus on the minimal clones on the n-element set S = {D, ... , n-l} 

of case (3) in the RCT, i.e. the clones generated by majority operations. For the 

sake of brevity, we calI clones that contain a majority operation majority clones in 

the sequel. Note that a minimal clone that contains a majority operation has to be 

generated by this operation by Lemma 3.1. First, we follow Csakany's work [4] to 

determine all minimal majority clones for n = 3. Then, we follow another paper of 

Csakany [5] to determine all conservative minimal majority clones for any n E N. 

We caU a clone C conservative if aU operations in C are conservative. Finally, 

we follow Waldhauser's approach [:2:1] to determine all minimal majority clones for 

n = 4. However, before we do so, we have to observe sorne facts that will be useful 

in the sequel. 

RecaU that in order to prove the non-minimality of a clone lf] it is sufficient to 

find an operation 9 E lf] such that f 1. [g]. To create 9 E [I] we will sometimes 

give terms t and apply them to f. 

Definition 4.1: Let fI and 12 be k-ary resp. l-ary operations on S such that 

fI E [12]· Then there exists a k-ary term (i.e. polynomial symbol) t of type (l) 

such that fI is the result of substituting 12 for the l-ary operation symbol in t, in 

sign: fI = t(12). In this case we say that we apply t ta h. The result of successive 

application oftwo terms t l , t 2 to an operation f is denoted by t2t l (J). Furthermore, 

denote by ti(J) the i-times successive application of t to f. 

When we give terms t of type (3) we may omit the sign of the ternary operation 

symbol. For example, we write t = (x, y, (xyz)) and for a 3-ary operation f we 

obtain t(J) = f(x, y, f(x, y, z)) and t2(J) = f(x, y, f(x, y,j(x, y, f(x, y, z)))). 
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Defini~ 4.2: Let f be a k-ary operation on S. Let CPI be a permutation on 

S and let~be a permutation on {1, ... , k}. Set 

f<P1 (Xl, ... , Xk) := CPl(f(CPl 1(xd, ... , CPl l (Xk))) f<p2(Xl, ... , Xk) := f(X<p2(1), ",X<p2(k))' 

CalI f<P1 an isomer of f and f<P2 a permutation of f. For F ç Os, extend definition 

by setting F<P1 = {f<P1If E F}. The map f f-+ f<P1 carries each clone C onto the clone 

we denote by C<P1. The algebra (S; F<P1) is the isomorphic image of (S; F) under CPI. 

Furthermore, note that 9 E [f] implies g<P1 E [f<P1] and, since clones are invariant 

under permutation, [f] = [f<p2]' Isomers and permutations of variables generate a ? 
permutation group Tk of or der 3!k! on the set of an k-ary operations on S. Two 

operations are said to be essentiaITy distinct if they have different arities, or belong 

to distinct orbits of Tk (where k is the arity of the two operations). Two clones Cl, 
C2 are said to be essentially distinct if Cl -=1= ct for aIl nontrivial permutations cp 
on S. 

Definition 4.3: Let k > 3. A k-ary operation f is called a near-unamity 

operation if 

f(y, X, ... , x) ::::::: f(x, y, x, ... , x) ::::::: ... ::::::: f(x, ... , X, y) ::::::: x. 

Lemma 4.4: If m is a majority operation on S, then any nontrivial f E [ml is 

a near-unamity operation. 

Proof: [S] We calI a term a term regular if it is nontrivial and no occurrence of the 

operation symbol in it has two graphically equal arguments. As mentioned ab ove , 

every nontrivial f E [ml can be expressed as t(m) where t is a term generated by 

a ternary operation symbol g. We prove the claim by induction on the length l(t) 

of t (i.e. the number of occurrences of 9 in t) For l(t) = 1, a nontrivial f clearly 

equals t(m) = m<p where cp is a permutation on {1, 2, 3} and f is a near-unamity 

operation. Now suppose k ~ 1 and assume that the claim is true for aIl regular 

terms of length at most k. Let a nontrivial p-ary f equal t(m) where l(t) = k + 1. 

We can express t( m) as m(tl (m), t2 (m), t3 ( m)) where l(ti ) ::S k (i = 1,2,3). By the 

way of contraposition, suppose that f is not a near-unamity operation. Then there 

exists 1 ::S r ::S p such that 

f(x, ... , X, y, X, ... , x) = y. 
~~ 

r-l p-r 

Now, by the induction hypothesis, each ti(m) is either trivial or a near-unamity 

operation. In the latter case we have t i (m) (x, ... , x, y, x, ... , x) = X and this can 
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happen only for at most one i E {l, 2, 3}. Were aU the ti(m) trivial, then t(m) would 

be oflength 1 and f(x, ... , x, y, x, ... , x) = x. Thus, exactly for one i, say i = 3, we get 

t3(m)(x, ... ,x,y,x, ... ,x) = x while t1 (m) and t2(m) are trivial, say t 1 (m) = r!Jl and 

t2 (m) = r!J2' Were jl =J j2 then we had ti(m)(x, ... , x, y, x, ... , x) = x for at least one 

i E {1,2}, say i = 1, which would implies f(x, ... , x, y, x, ... , x) = m(x, xh' x) = x. 

Thus, jl = j2 and f(x, ... ,x,y,x ... ,x) = m(xjl>Xjl>x) which makes f trivial. D 

Corollary 4.5: Let m be a majority operation on S. Any minimal subclone of 

[ml is again generated by a majority operation. 

ProoJ: Let f E [ml be a nontrivial, k-ary operation such that [I] is a minimal 

subclone of [ml. Since f is generated by m, it has to be at least ternary. From the 

RCT we can conclude that f is therefore a majority operation, a semiprojection 

or x + y + z in a boolean group. Furthermore, Lemma 4.4 implies that f is a 

near-unamity operation. A semiprojection that becomes e~ by any identification 

of variables maps (x, ... ,x,y,x ... ,x) to y which implies that it cannot be a near-
'-v-" '-v-' 

i-l k-i 

unamity-operation. Similarly, x+y+z in a boolean group cannot be a near-unamity 

operation since it maps (x, x, y) to y for aU x, y E S. Thus, fis a majority operation, 

as required. D 

This means that in order to prove the minimality of clone C generated by a ma­

jority operation, it suffices to show that any two majority operations in C generate 

each other, because if Chas a proper minimal subclone then this must be generated 

by a majority operation. 

RecaU that we have already seen a minimal majority clone in the last chapter. 

The clone generated by the dual discriminator d of Fried and Pixley (recaU that d 

is defined by d(x,y,z) = x if x = y and d(x,y,z) = z if x =J y). The minimality of 

d can be seen at foUows: d is a homogeneous operation (that is, an operation that 

preserves all permutations), so the same must be true for any nontrivial majority 

operation f E [dl· Thus, f and d are both homogeneous majority operations and 

hence have to coincide up to ordering of variables (see [:3]). Thus, dE [f]. Here, we 

present a different proof, not relying on the result in [:3]. 

Theorem 4.6: The dual discriminator d of Fried and Pixley is minimal. 

ProoJ: Let f be a nontrivial ternary operation in [dl. We have to show d E [I]. 

By Lemma 4.4, f is a near-unamity and hence a majority operation. Clearly, f can 

be represented by a rooted ternary tree whose leaves are labeUed by the variables 
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hence have to coincide up to ordering of variables (see Pl). Thus, cl E [f]. Here, we 

present a clifferent proof, not relying on the result in [;]. 

Theorem 4.6: The dual discrimàw.tor cl of Fried and Pi:1;ley is minim.al. 

Praof: Let f E [dl be a majority operation. We have to show d E lJ]. Clearly, 

f can be representecl by a rootecl ternary tree whose Iemres a.re labellecl by the 

va.riables :c, y, z; e.g. 

xyz zYx 

z 

represents the operation defined by f(x, y, z) := d(d(d(x, y, z), x, d(z, y, :1:)), y, z). 

Set x = a, y = b, z = c. Take a subtree with three leaves. If two leaves have 

the same value, say a, we can replace this subtree by a leaf with n.. If the three 

leaves have aIl tllree variables, then we can replace the subtrees by a leaf carrying 

the value of the rightmost leave. For the above tree, we get 

abc b a 

c 

vVe can repeat the procedure until we obtain a result for f (a, b, c). 

Clearly, the result (J (a, b, c) = c in our example) is independent of the ordered 

triplet (a, b, c) of distinct elemellts of 5 and thus f is one of the three operations 

obtained from cl by coorc1inate exchange. Thus, Il E [Il. 0 

Definition 4.7: Let f be a majority operation on 5. Set 

w := {(a, b, c) E 53 1 a =f b =f c =f a} and ~ := 53 \ w. 

CalI the set f (w) the range of f. 
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Lemma 4.8: Let f be a majority operation and let g E [I] be a nontrivial temary 

operation. Then g(w) ç f(w) 

Praof: [4] Suppose to the contrary that there exists a E g(w) \ f(w). Now 

a = g(u) for sorne u E w. As g E [I], we have g = t(J) where t is a term of minimal 

length. Clearly, g = f(gl,g2,g3) where gi = ti(J) E [f] is ternary such that the 

length of ti is less than k (i = 1,2,3, k" EN). Now 

As a ~ f(w), we must have (gl (u), g2( u), g3(U)) E ~ and hence two of the coordinates 

are equal, say gl(U) = g2(U). Then a = gl(U) since f is a majority operation. Now 

gl = tl(J) with l(t l ) < k. Continuing this argument we arrive at a = gi(U) where 

gi = ti(J) with l(t l ) = 1. Now ti(J) = f", where <p is a permutation on {l, 2, 3}. 

This implies a E f(w), a contradiction. 0 

This lemma gives us a minimal majority operation on S. Let cES and define 

the majority operation mc by setting mc(x, y, z) = c for all (x, y, z) E w. By 

CoroUary 4.5, we know that, in order the prave the minimality of mc, it is sufficient 

to show that any majority operation g E [mc] generates mc. By Lemma 4.8, g(w) ç 
mc(w) = {cl and hence g = mc. Thus, [mc] is minimal and another example for the 

non-emptiness of class (3) of the RCT. 

We can formulate an even st ronger result if f is minimal. 

Corollary 4.9: Let f be a majority operation and let g E [I] be a nontrivial 

temary operation. Then g(w) = f(w). 

Praof: g(w) ç f(w) by Lemma 4.8. By the minimality of f, we also have f E [g] 

and hence f(w) ç g(w). 0 

4.1 Minimal majority clones on a two-element set 

In the case S = {O, I} the values of a majority operation are all uniquely determined 

by the majority property. Thus, we have only one majority operation. It is the dual 

discriminator d of Ftied and Pixley [9] that we have already seen as an example for 

the non-emptiness of the corresponding class in the RCT. It is therefore the only 

minimal majority operation on S. Note that it coincides with the operations mc, 

CES, that we mentioned after Lemma 4.8. Thus, [dl is the only minimal majority 

clone on S. 
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{

X, 
d(x,y,z) = 

z, 

ifx=y 

if x # y 

4.2 Minimal majority clones on a three-element set 

In the following, fix n = 3 and denote by S the set {O, 1, 2}. If not stated otherwise, 

aIl results presented in this and the following section 4.3 are due to Béla Csâkany 

[4],[5]. 

Definition 4.10: Let f be a majority operation on S. CalI the number /-LU) 
defined by 

/-LU) = 35 f(O, 1,2) + 34 f(0, 2,1) + 33 f(1, 0,2) + 32 f(l, 2, 0) + 3f(2, 0,1) + f(2, 1,0) 

the man tissa of f. 

Note that a majority operation is uniquely determined by its values on w which 

are, in turn, uniquely determined by /-LU). Thus, a majority operation f is uniquely 

determined by /-LU). From now on, we denote by mi the majority operation on S 

with the mantissa i (e.g. m364 is the operation whose value is always 1 ori w). 

To determine aIl minimal majority operations f, we split the problem in two 

cases: 

• Case 1: If(w)1 = 3 

We have already seen a minimal operation with that property in the last chapter: 

The dual discriminator d of Fried and Pixley [lJ]. Note that, using our notation 

ab ove , d = m624. Now we show that, up to permutation of variables, any minimal 

majority operation f with If (w) 1 = 3 is, in fact, d. 

Lemma 4.11: Let f be a major-ity operation on S with range S. The binary 

relations preserved by f are p-rectangular relations (a relation (J is p-rectangular if 

for every pair G) ~ (J the set {(:) E (J 1 x = i or y = j} has at most two elements). 

Proof" Suppose to the contrary that there is a binary relation (J that is not p­

rectangular and preserved by f .. Without loss of generality (interchanging the two 

coordinates of (J if necessary), we can assume G) ~ (J but (:), G) , (;) E (J for 

sorne a, b, x E S where j # a # b # j, x # i. We assumed If(w)1 = 3, so we have 

j E f(w), and we may permute the variables of f so that f(a, b,j) = j. But then, 

we have (i)=(f(i,i,X))E (J, a contradiction. 0 
J f(a,b,J) 
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Lemma 4.12: The dual discriminator d of Pried and Pixley defined on an arbi­

trary set A preserves any p-rectangular relation on A. 

Praof: Suppose that d does not preserve a p-rectangular a relation on A. This 

means that there exist (Xl), (X2) , (X3) E a such that (d(XI,X2,X3)) ~ a. We have 
YI Y2 Y3 d(YI, Y2, Y3) 

four cases: 

(1) d(XI, X2, X3) = X3 and d(YI, Y2, Y3) = Y3 

(2) d(XI,X2,X3) = Xl = X2 and d(YI,Y2,Y3) ~ Y3 

(3) d(XI,X2,X3) = X3 and d(YI,Y2,Y3) = YI = Y2 

(4) d(XI,X2,X3) = Xl = X2 and d(YI,Y2,Y3) = YI = Y2 

Case (1) is a contradiction, because (::) E a by the assumption. In case (2) we 

must have YI =1 Y2 and hence (::) ~ a but (::), (:;) , (::) E a, a contradiction to 

the p-rectangularity of a. The same argument contradicts case (3) and, finally, case 

(4) is contradicted by the assumption (::) E a. D 

Combining the two results, we obtain that d preserves all binary relations pre­

served by f. We use this fact to apply the Baker-Pixley Theorem [1]: 

Theorem 4.13 (The Baker Pixley Theorem): If C is a majority clone on 

a set A, then every operation that preserves the set of ail binary· relations on A that 

are preserved by C is in C. 

Praof: We prove this theorem when we restate it in chapter 5 (see 5.4). For now, 

the pro of may be omitted. D 

If we apply the theorem to the clone [I], it follows that d is in [f]. Sinee we 

assumed that f is a minimal operation, we also have f E [dl· This implies [I] = [dl 

and, since we have already seen that [dl is a minimal clone, we can conclude the 

following theorem: 

Theorem 4.14: Ail minimal majority operations f on S with If(w)1 = 3 gen­

erate the same clone [dl (d = m624). 

• Case 2: If(w)1 < 3 

There are 3 * 26 
- 3 = 189 majority operations with that property and they 

belong to 10 distinct orbits of T3 (see Definition 4.2). The following table gives each 
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orbit represented by the operation having the least index (thenumber of operations 

in the respective or bit is given by the number in brackets) 

Table 4.1 
mo (3) ml3 (18) m109 (6) 
ml (36) m2S (36) ml20 (18) 

m4 (18) m39 (18) 

mlO (18) mss (18) 

Now, we prove that an minimal clones generated by majority operations j with 

Ij(w)1 < 3 are generated by the three operations in the orbit of mo, namely mo, 

m364(= (mo)(OI)), m72S(= (mo)(02)) and the six operations in the orbit of m109. 

However, to determine an distinct minimal clones among them, it is. enough to 

look at three operations in the orbit of m109, namely m109, m473(= (m109)(02)) and 

mSlO(= (m109)(12)), since the other operations in the orbit of m109 can be obtained 

from the listed ones by permutation of variables and hence do not generate further 

clones. 

Theorem 4.15: The clones [mo], [m364], [m72S], [m109], [m473], [mSlO] on Sare 

exactly the clones generated by minimal majority operations j with Ij(w)1 < 3. 

Table 4.2 

(x, y, z) mo(x, y, z) m364(x, y, z) m72s(x,y,z) m109(x, y, z) m473(x, y, z) mslO(x,y,Z) 

(0,1,2) 0 1 2 0 1 2 

(1,2,0) 0 1 2 0 1 2 

(2,0,1) 0 1 2 0 1 2 

(1,0,2) 0 1 2 1 2 0 

(0,2,1) 0 1 2 1 2 0 

(2,1,0) 0 1 2 1 2 0 

To prove the theorem, we first prove a simple but useful observation. 

Lemma 4.16: Let H ç G ç 1 where 1 is the set of all nontrivial special 

operations (i.e. the operations of the classes (1)-(5) in the ReT). Suppose that the 

following conditions hold: 

(1) [g] nI ç G for all 9 E G 

(II) [g] n H =1= 0 for all 9 E G 

(III) hl, h2 EH, hl =1= h2 =} hl ~ [h2] 

Then the clones generated by the operations in H are exactly the set of pairwise 

distinct minimal clones generated by 9 E G. 
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Praof: By H ç G, {[hllh E H} ç {[gllg E G}. The distinctness of the minimal 

clones generated by the operations in H follows trivially from (III). It remains to 

show that [hl is minimal for all hE H. Let us suppose that there exists a hE H such 

that [hl is not minimal. Then, [hl has to contain a minimal clone C S.t. C ç [hl. 
This implies that there has to exist a special operation f E l such that [f] ç [hl. 
By H ç G, h E Gand by (1), h does not generate a special operation in l \ G. 

It follows f E G. But now (II) makes sure that there exists h' E H such that 

h' E [I] n H ç [hl. It follows h' =1= h and h' E rh], a contradiction to (III). 0 

We use this lemma to prove our claim. This means that we have to show (I)-(III) 

for the set G containing all 189 majority operations f with If(w)1 < 3 and the set 

H = {mi 1 i = 0,364,728,109,473, 51O}. We conclu de (1) with the help of two 

Lemmas we have already proved: 

Let f E [g] nI where 9 E G. Since f is generated by g, it has to be at least 

ternary. Since f is also in 1, we can conclude that f is exactly ternary, because 

semi-projections of arity greater than 3 are trivial on a three-element set. But now, 

by Lemma 4.4, any nontrivial ternary operation that is generated by a majority 

operation is again a majority operation. Thus, f is a majority operation. It also 

follows by Lemma 4.8 that we have 1 f (w) 1 <. 3 and hence f E G. This proves (1). 

Now, we prove (II). Recall that we have noted 9 E [I] => g<l> E [I<I>] at the 

beginning of this chapter. In the virtue of this observation it is enough to show 

that, for each operation mi in Table 4.1, there is an mj E H such that mj E [mJ 

Set 

j:= f(J,f(123),f(132)) = f(J(x,y,z),f(y,z,x),f(z,x,y)). 

It is easy to see that if two of the three values f(a, b, c), f(b, c, a), f(c, a, b) equal d, 

then ](a,b,c) = ](b,c,a) = ](c,a,b) = d. This implies 

and 

as required: 

Finally, to prove (III), it remains to show that none of the operations in H is 

contained in the clone generatEid by another operation in H. There are 6 * 5 = 30 

pairs to be checked. However, we can reduce the problem by noting that the unique 

nontrivial permutation on S preserved by m109 and m728 is (01), that preserved 
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by m364 and m510 is (02) and that preserved by mo and m473 is (12). Bence, no 

operation of one of these three pairs is contained in the clone generated by an 

operation of another pair. Furthermore, we can use Table 4.2 to check that the 

ranges of m109 and m728, m364 and m51O, mo and m473 have no common entry, 

respectively. Thus, by Lemma 4.8, each operation of one of the threepairs is not 

contained in the clone generated by the other operation of the pair in question. This 

proves (III). 

We apply Lemma 4.16 and obtain the claim of Theorem 4.15. Combined with the 

result for case 1 (stated in Theorem 4.14), we can summarize the minimal majority 

clones on the three-element set S in· the table below. The clone standing at the 

meet of the row starting with [I] and the column marked by the permutation cp is 

[I]"'. The place of [I]'" is empty if [I]'" is equal to sorne clone appearing earlier in 

the table. We have seven minimal majority clones, three of which are essentiaIly 

distinct. 

Table 4.3 

The minimal majority clones on {O, 1, 2} 

(01 ) (02) (12) 

[mol [m364] [m728] 

[m109] [m473l [m51Ol 

[m624] (= rd]) 

Note that this table gives us aIl distinct minimal majority clones on S but not 

aIl minimal majority operations on this set. To determine aIl minimal majority 

operations, we need another lemma. 

Lemma 4.17: Set 

Mo := {mol, 

M109 := {m109, m255, m325, m39, m253, m327, mUI, m37}' 

M624 := {m44,m424,m624}. 

For a clone C denote by C* the set of majority operations fram C. Then 

a) [mo]* = Mo, 

b) [mI09]* = M I09 ' 

e) [m624]* = M624 , 

Prao!, a) The range of mo consists of 0 only, hence, by Lemma 4.8, the same 

holds for each nontrivial ternary operation in [mol. Thus, the set of nontrivial 

ternary operations in [mol is exactly {mol = Mo. 
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b) One one hand, {m109,m255,m325,m39,m253,m327,mlll,m37} = M109 ç [m109l 

since we have m255 = (m109)(12), m325 = m'lo9, m39 = (m325)(12), m253 = (m39)(23), 

m327 = (m39)(132), mm = (m39)(13)' m37 = (m39)(23)' On the other hand, the range 
of m109 is {0,1}. Since these operations are aIl minimal, we can apply Corollary 

4.9 and we obtain that the range of every nontrivial ternary operation in [m109l is 

also {D, 1}. At the same time, the operations in [m109l have to share the property 

of m109 to be invariant under the transposition (01) of S. One can check that under 

aIl 189 majority operations on S, only the majority operations in M109 have these 

two properties. Thus, [m109l* = M109' 

c) {m44, m424, m624} = M 624 ç [m624l since we have m44 = (m624)(13) and m424 = 

(m624)(23)' Furthermore, by the proof of Theorem 4.6, any majority operation in 

[m624l is one of the three operations obtained from m624 by coordinate exchange 

and this are exactly the operations in M 624 . D 

It follows directly that we have 

[m364l* = {m(Ol)lm E Mo} = {m364}' 

[m72sl* = {m(02) lm E Mo} = {m72S}, 

[m473l* = {m(02) lm E M109} = {m437,m619,m4S1,m611,m457,m643,m635,m449}, 

[m51Ol* = {m(12)lm E M109} = {m51O,m21S,m666,m62,mlS2,m702,m546,m26}' 

Analog to the notation ab ove, denote these sets by M 364 , M72S , M 473 , M 51O , respec­

tively. So the clones [mo], [m364l and [m72sl contain only one (minimal) majority 

operation each, while the clones [m109], [m473l and [m51Ol contain eight (minimal) 

majority operations each. [m624l contains three (minimal) majority operations. This 

means that there are 3 * 1 + 3 * 8 + 3 = 30 distinct minimal majority operations. 

We can now list the minimal majority operations of the three essentially distinct 

minimal clone [mo], [m51O], [m44l (the reason for choosing [m51Ol instead of [m109l 

as a representative will be seen later). 

Table 4.4 
The minimal majority operations on {D, 1, 2} (up to isomorphism) 

[ma] [mslO] [m624] 

(x, y,~) ma mSlO mS46 m26 m666 m218 m182 m702 m62 m624 m44 m424 

(0,1,2) 0 2 2 0 2 0 0 2 0 2 0 1 

(1,2,0) 0 2 0 2 2 0 2 0 0 0 1 2 

(2,0,1) 0 2 2 2 0 0 0 0 2 1 2 0 

(1,0,2) 0 0 2 0 0 2 0 2 2 2 1 0 

(0,2,1) 0 0 0 0 2 2 2 2 0 1 0 2 

(2,1,0) 0 0 0 2 0 2 2 0 2 0 2 1 
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4.3 Conservative minimal majority clones 

The operations we consider in this section may be defined on S = {O, ... , n -1 }. Note 

that a clone C is conservative if and only if C is generated by a set of conservative 

operations (this follows because an operation on S is conservative if and only if 

it preserves aU unary relations on S). Renee, aU clones generated by conservative 

operations are c onservat ive. In particular, in a minimal clone, either aU or none of 

the nontrivial operations are conservative. 

Note that a majority operation on S is neeessarily conservative for n :S 3. Thus, 

for n :S 3, any minimal majority clone is conservative. 

Definition 4.18: Denote the set of all k-element subsets of S by Pk(S). 

For a majority operation f on {O, 1,2} we use the notation of the last section (see 

Definition 4.10 and 4.2). In this section, we state our results in terms of algebras 

(see chapter 3 for a justification). We caU an algebra (A,1) minimal if its term 

algebra is minimal, which, as noted in chapter 3, is the case if and only if [f] is a 

minimal clone. Furthermore, we will caU (A,1) majority algebra if f is a majority 

operation. 

Clearly, a k-ary conservative algebra (S; 1) is uniquely determined by the set of 

its k-element subalgebras {(A; flAk) 1 A E Pk(S)}. 

Definition 4.19: Denote by M the set 

M = Mo U M624 U M510 

(M = {mi 1 i = 0,44,424,624,510; 218, 666, 62,182,702,546, 26}). 

Denote by R3 a set of representatives of isomorphism classes of aU 3-ary algebras. 

Assume in the foUowing that we have ({O, 1, 2}, g) E R3 for aU 9 E. M (note that 

this implies ({O, 1, 2}, g) ~ R3 for aU 9 E M364 U M728 U M109 U M473 ). For a 3-ary 

conservative operation f on S and an arbitrary A E P3 (S), there exists a unique 

3-aryalgebra({0,1,2};g) inR3 suchthat (A;fIA3) ~ ({0,1,2};g). Thesetofthese 

algebras ({O, 1, 2}; g) is caUed the spectrum of (S; 1). 

In the following, we use the spectrum to characterize conservative minimal alge­

bras. 

Lemma 4.20: (1) Each subalgebra of a minimal algebra is either minimal or 

trivial. 
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(2) The set of all 3-element minimal majority algebras is (up to isomorphism) 

{(3;mi)lmi E M}. 
(3) An essentially k-ary algebra (3; 1) is minimal if and only if 

(a) For every nontrivial g E [1] there exists an essentially k-ary g' E [g] 

(b) h E [1] and h essentially k-ary =? f E [hl 

(4) A conservative algebra (3; 1) is not minimal if there exists a nontrivial operation 

Let f be k-ary and g E [1] be l-ary. Let A, B ç 3 such that (A; glAI) ~ (B; gIBI), 

but (A; flAk) ~ (B; flBk) 

Praof: (1) This is Lernma 3.4 written in terrns of algebras. 

(2) We have proved in the last section, that the minimal majority clones on 

{a, 1, 2} are exactly [mo], [m44] and [m51Ol (up to isomorphism). Since M = Mo U 

M624 U M51O, this together with Lemma 4.17 (and the remarks made shortly after) 

gives the claim. 

(3) (a) and (b) are equivalent to the statement that any nontrivial g E [1] has 

to generate f. We have already noted that this is the case if and only if the clone 

[Il is minimal (see Lemma 3.1). 

(4) Note that (A;gIAI), (B;gIBI), (A;fIAk), (B;fIBk) are subalgebras of (3;1) 
resp. (3; g) since these two algebras are conservative. By Lernma 3.2, the second 

condition of the assumption implies f ~ [g] and this, together with g E [1], gives 

the non-minimality of the algebra. 0 

We are now ready to praye the main result of this section. 

Theorem 4.21: Let n ~ 3 (recall 3 = {a, ... n - 1}). A conservative majority 

algebra (3; m) is minimal if and only if 

3pec(3; m) ç {( {a, 1, 2}; mi) Imi E M} 

which contains at most one algebra fram each of {( {a, 1, 2}; mi) Imi E M624 } and 

{( {a, 1, 2}; mi) Imi EM51O}' 

Praof: In this proof, we need the following five terms of type (3) (we write (xyz) 

instead of g(x, y, z), where g is the operation symbol in the term; see Definition 4.1) 

p = ((xzy)(yzx)(zxy)), 

q = ((xyz)zy), 

r = (z(xyz)x), 

s = (x(yzx)y), 

u = (y(zyx)x). 
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"{=" Assume that Spec(S; m) satisfies the conditions above. Then there exist sets 

R, U, V and operations mi E Mo, mj E M 624 , mk E M510 such that P3(S) = RuUuV 

and 

if A E R, 

if A EU, 
ifAEV. 

We use .(3) of the Lemma above to prove that (S; m) is minimal. 

First, we have to show that, for each nontrivial 9 E lm], there exists an essentially 

ternary operation in [g]: The nontrivial operations in [g] are at least ternary (they 

are generated by m) and since [g] has to contain a minimal clone (see Corollary 3.10) 

there has to exist an operation h such that [hl ç [g] ç [ml is a minimal subcloneof 

[ml. By Corollary 4.5, a minimal subclone of [ml is a majority clone. Thus, h is a 

ternary (majority) operation. 

Now consider an arbitrary nontrivial ternary operation m' E [ml. Then there are 

mi' E Mo, mj' E M 624 and mk' E M510 such that 

(II) 
{ 

({0,1,2};mi') 

(A;m'IA3) ~ ({0,1,2};mj') 

({O, 1, 2}; mk') 

if A E R, 

if A EU, 
ifAEV. 

The isomorphism in (II) is the same as the one in (1). To show that m' generates 

mit is sufficient to show that thereis a term t of type (3) such that t(mi') = mi, 

t( mj') = mj and t( mk') = mk because then it follows that 

{ 

({O, 1, 2}; t(mi')) = ({O, 1, 2}; mi) if A E R, 

(A; t(m')IA3) = (A; t(m'IA3)) ~ ({O, 1, 2}: t(mj')) : ({O, 1, 2};. mj) if A EU, 
({O, 1, 2}, t(mk')) - ({O, 1, 2}, mk) if A EV. 

and hence t(m') = m and m E [m'] (the isomorphism above is again the same as in 

(1) and (II)). Since Mo = {ma}, it follows mi = mi' = ma and thus t(mo) = ma for 

any nontrivial ternary t. Renee, we have to take care of mj and mk only. We do so 

in two steps: First we find a term t l such that 

(III) tl(mj') = m44, tl(mk') = m51O, 

and secondly we find a term t2 su ch that 

(IV) t2(m44) = mj, t2(m51O) = mk 

so we can finish the proof by defining t = t2h. 
To find h for (III), it suffices to find two terms tu and h2 such that tU(mk') = m510 

for all mk' E M51O, tu (mj') = mj for all mj' E M 624 and also h2( m51O) = m51O, 

t I2 (m424) = m624, t I2 (m624) = m44. We can then choose 
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if j = 44, 

if j = 424, 

if j = 624. 

The construction of such terms is the most difficult and essential part of the pro of. 

Rere, we will skip the proeess of construction. It can be checked that tn = prqp 

and t 12 = p2 sare such terms. 

We can use the same ide a to find t 2 for (IV): It suffi ces to find two terms t 21 and 

t 22 such that t21(m51O) = mk, t21(m44) = m44 and t22(mk') = mk, t 22 (m44) = m424, 

if j = 44, 

if j = 424, 

if j = 624. 

Skipping the construction part again, it can be checked that the terms t 21 , t 22 given 

in the table below are appropriate: 

Table 4.5 

Terms t 21 , t 22 
k t 21 t 22 

510 p2s 

218 pqr p2s 

666 q qspqrp 

62 rs rp2s 

182 S2 Sp2 

702 qr qrp2s 

546 r rp2s 

26 s Sp2 

This completes the pro of of the minimality of (S; m). 
",*" A subalgebra of a minimal conservative majority algebra is either minimal 

or trivial by (1) of Lemma 4.20. Renee, the algebras in Spec(S;m) mustbe min­

imal, because they cannot be trivial sinee m does not become a trivial operation 

if we restrict it to the triplets of a three-element set. It follows from (2) of the 

same lemma that the spectrum of a minimal conservative algebra is a subset of 

{(S; mi) Imi E M}. Now suppose that Spec(S; m) contains two distinct algebras 

from {( {O, 1, 2}; mi) Imi E M624 }. This means that there have to exist two distinct 

three-element subsets A, Band two distinct majority operation mj), mh E M624 

such that (A;mIA3) ~ ({0,1,2};mj)) and (B;mIB3) ~ ({0,1,2};mh). One can 

check that we have u2 (mj) = m424 for any of the three mj E M624 . N ow we define 
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9 = u2(m) which is an operation that clearly belongs to [ml. We obtain (A;gIA3) ~ 

({O, 1,2};m424) ~ (B;gIB3) but (A;mIA3) ~ ({O, 1,2};mjl) ~ ({O, 1,2};m)2) ~ 

(B; mIB3). This is a contradiction to the minimality of (S;m) by (4) of Lemma 4.20. 

Similarly, we have already noted that, for any mk E M51O, we have prqp(mk) = m51O. 

Renee, we can use the same argument to conclude that Spec(S; m) also cannot con­

tain two distinct algebras from {({a, 1, 2}; mi) Imi E M51O}. D 

4.4 Minimal majority clones on a four-element set 

We will now determine the minimal majority clones on a four-element set. If not 

stated otherwise, all results in this section are due to Tamas Waldhauser [2:)]. Recall 

S={O, ... ,n-l}. 

Recall what we have noted in Lemma 3.4: If a k-ary operation f on S is minimal, 

then so is any nontrivial operation flAk for a subset A ç; S providing f preserves 

A. This is a useful observation, because it implies that if f is a minimal majority 

operation on S and A is a three-element subset of S preserved by f, then the (due 

to the majority property of J) necessarily nontrivial flA3 must be isomorphic to 

one of the operations we obtained in the second section in this chapter: Up to 

isomorphism, it must be listed in Table 4.4. 

Furthermore, we have already noted that in order to prove the minimality of 

a clone C generated by a majority operation m, it suffices to show that any two 

majority operations in C generate each other. 

Now, we formulate a theorem which helps us to reduce the number of operations 

that have to be checked in or der to find all minimal majority clones. 

Theorem 4.22: Let f be a majority operation on S. Then there exists a majority 

operation 9 E [f] which satisfies the following identity 

(0) g(g(x,y,z),g(y,z,x),g(z,x,y)) ~ g(x,y,z) 

Proof: We define f(k l (k ~ 1) recursively as follows: 

- f(ll(x, y, z) := f(x, y, z) 
- f(k+ll(X,y,z):= f(J(kl(X,y,z),f(kl(y,z,x),f(k)(z,x,y)) . 

We show by induction on k that the following identity holds for a fuced l ~ 1. 

f(k+ll(X, y, z) ~ f(kl(J(ll(x, y, z), f(ll(y, z, x), f(ll(z, x, y)) 
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The base case (k = 1) is trivial by definition. Now we assume k 2: 1 and that the 

daim is true for all 1, ... , k. We have 

j((k+l)+l) (x, y, z) 

~ j(J(k+l) (x, y, z), j(k+l) (y, z, x), j(k+l) (z, x, y)) 

~ j( j(k) (J(l) (x, y, z), j(l)(y, z, x), j(l)(z, x, y)), 

j(k) (J(l) (y, z, x), j(l)(z, x, y), j(l)(x, y, z)), 

j(k)(J(l)(z, x, y), j(l)(x, y, z), j(l)(y, z, x)) ) 

~ j(k+l) (J(I)(x, y, z), j(l)(y, z, x), j(l)(z, x, y)) 

Now we define * on D = {j(k)lk E fil} by 

(J(k) * j(l)) (x, y, z) = j(k) (J(I) (x, y, z), j(l)(y, z, x), j(l) (z, x, y)) 

Our daim shown above means that k f--t j(k) is a homomorphism from (fil; +) to 

(D; *). We will finish the proof by showing that (D; *) contains a unique idempotent 

element, say j(l), because then, j(l) * j(l) = j(l) and (0) follows for 9 = j(l) E [Il. 
D is dearly finite so we can assume D = {j(1), ... , j(r)}. Now there exists s > 0 

such that j(r+s) = j(r) and j(r+l) ,j(r+2) , ... ,j(r+s) are pairwise distinct. s must be 

a divis or of one of the numbers T + 1, ... , T + s, so one of these can be written as 
sq for sorne q E fil. But now, j(sq) * j(sq) = j(sq+sq) = j(sq). Thus, (D; *) has an 

idempotent element. Now suppose that there are two idempotent elements j(lI) and 
j(b). Then 

j(h) = j(lI) * ... * j(h) = j(llb) = j(b) * ... * j(l2) = j(l2). 
, -1 , .1 

V' v 
b II 

Thus, (D; *) contains a unique idempotent element. 0 

This means that any minimal majority clone is generated by a majority operation 

satisfying (0). Thus, in order to find all minimal majority clones on S it suffices to 

check all majority operations on S satisfying (0). 

Note that the uniqueness of the idempotent element in (D; *) is not needed to 

proof the claim. However, it is needed in the next definition. 

Definition 4.23: Let j be a majority operation on S. Set 

(abc) := {(a, b, c), (b, c, a), (c, a, b)}. 

Write 

JI(abc) == u whenever j(a,b,c) = j(b,c,a) = j(c,a,b) = u 
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and 

fl(abc) = pif f(a, b, c) = a, f(b, c, a) = b, f(c, a, b) = c. 

Furthermore, for a ternary operation f define f(k) as in the pro of of Theorem 4.22 

and denote by f the unique element in {f(l)ll E N} ç lf] that satisfies (0). 

Now we observe sorne of the properties that a majority operation satisfying (0) 
must have. RecaU that w := {(a, b, c) E S31a of- b of- c of- a}. 

Lemma 4.24: Let f be a majority operation satisfying (0) and let (a, b, c) E w. 

Let u = f(a,b,c), v = f(b,c,a) and w = f(c,a,b). Then l{u,v,w}1 of- 2 and 

fl(uvw) = p. 

Prao!, Suppose to the contrary that I{ u, v, w}1 = 2. Without loss of generality 

we can assume u = v of- w. We use the property (0) to obtain 

w = f(c, a, b) = f(J(c, a, b), f(a, b, c), f(b, c, a)) = f(w, u, u) = u, 

a contradiction. For the second part we use (0) agaih and we obtain 

f(u, v, w) = f(J(a, b, c), f(b, c, a), f(c, a, b)) = f(a, b, c) = u. 

f(v,w,u) = v and f(w,u,v) = w foUow in the same way. 0 

N ow we also assume that f is minimal. 

Lemma 4.25 Let f be minimal majority operation satisfying (0) and let (a, b, c) E 

w: Then fi (abc) = p'if and only if fi (bac) = p. 

Prao!, "::::}" Let fl(abc) = p. Define 9 by setting 

g(x, y, z) := f(J(x, y, z), f(x, z, y), x). 

Since fl(abc) = p, we get f(x,y,z) = x for (x,y,z) E (abc) and f(x,z,y) = x for 

(x, y, z) E (bac). Due to the majority property of f, this implies gl(abc) = p and 

hence 9 preserves the set {a, b, c}. Due to 9 E lf] and f minimal, f has to preserve 

{a, b, c} as weIl. Thus, the restriction fl{a,b,c}3 is a minimal majority operation on 

the three-element set {a, b, c}. But now we can look at the Table 4.4 that gives us 

(up to isomorphism) aU minimal majority operations on a three-element set. We 

note that there is only one operation, namely m44, satisfying fi (abc) = p. However, 

m44 also satisfies fl(bac) = p. Thus, fl(bac) = p. 

"~'~ Apply "::::}" to fl(bac)' 0 

32 



The last two lemmas prove the following theorem. 

Theorem 4.26: Let f be a minimal majority operation satisfying (0) and let 

(a, b, c) E w. Set u = f(a, b, c), v = f(b, c, a) and w = f(c, a, b). Then fl(uvw) = p 

and fl(vuw) = p 

Corollary 4.27 Every conservative minimal majority clone C is generated by 

an operation f that has the following propeny: 

(00) fl(abc) == u or fi (abc) = p for all (a, b, c) E w (where u depends on a, b, c) 

Prao!, By Theorem 4.22, C is generated by a conservative majority operation 

f satisfying (0). Setting u = f(a,b,c), v = f(b,c,a), w = f(c,a,b), we obtain 

(u,v,w) E {a,b,cp. Hence, Theorem 4.26 gives us fl(uvw) = p and fl(vuw) = p. 

Thus, fl(abc) = p (if u -=1- v -=1- w -=1- u) or fl(abc) == u (if u = v = w). 0 

Definition 4.28: Denote by Y the set of aIl majority operations on S for which 

the property (00) holds. 

Note that the a majority operation that satisfies (00) also satisfies (0). Hence, the 

majority operations in Y form a subset of the set of majority operations satisfying 

(0). 

By the proof of Corollary 4.27, a conservative minimal majority operation sat­

isfying (0) is in the set Y. U nfort unately, this is not true if the operation is not 

conservative. However, we can show that in the four-element case, there is essen­

tially only one exception (this means that, up to isomorphism, there is only one 

minimal majority operation on S that satisfies (0) but is not in Y). Before we 

start our work on proving that daim and determining the operation in question, we 

introduce sorne more notation. 

From now on until the end of this section, fix n = 4 and S = {O, 1,2, 3}. 

Definition 4.29: Denote by [p, q, r; s, t, u] the set of majority operations on S 

for which 

f(O, 1,2) = P 

f(l, 2, 0) = q 

f(2, 0,1) = r 

f(l, 0, 2) = s 

f(O, 2,1) = t 

f(2, 1,0) = u 

If we do not want to specify aIl these six values of f, then we use * to indicate 

an arbitrary element of S. For example, [0, *, *; *, 1, *] is the set of aIl majority 
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operations f such that f(O, 1,2) = ° and f(O, 2,1) = 1. 

Furthermore, let fx, f y, fz stand for the composite where the first, second resp. 

third variable of f is replaced by f itself. 

fx(x,y,z) := f(f(x,y,z),y,z) 

fy(x, y, z) := f(x, f(x, y, z), z) 

fz(x, y, z) := f(x, y, f(x, y, z)) 

Instead of (Jx)y we briefly write fxy. We also use the convention that the lower 

indices have priority to the upper ones. This means that fJ~) stands for (Jxy)(k) and 

not for (J(k»)xy' 

We now prove a lemma that helps us every time we have to calculate the values 

of fzy' Since we use the operation fzy very often in the sequel, this lemma is very 

useful for us. 

Lemma 4.30: Let f be a majority operation and a, b, c, d pairwise distinct el­

ements of S (i.e. {a, b, c, d} = {O, 1, 2, 3} J . . If f(a, b, c) i= d, then fzy(a, b, c) = 
f(a,b,c). If this is not the case, then fzy(a,b,c) = f(a,b,d) if the latter do es 

not equal d. If it does, then fzy(a, b, c) = f(a, d, c) if this is not b. If we have 

f(a, d, c) = b, then fzy = f(a, d, b). 

Prao!" We have 

fzy(a, b, c) = f(a, f(a, b, f(a, b, c)), f(a, f(a, b, f(a, b, c)), c)). 

Now 

f(a, b, c) = a =* fzy(a, b, c) = f(a, f(a, b, a), f(a, f(a, b, a), c)) 

= f(a, a, f(a, a, c)) = f(a, a, a) = a, 

f(a, b, c) = b =* fzy(a, b, c) = f(a,j(a, b, b), f(a, f(a, b, b), c)) 

= f(a, b, f(a, b, c)) = f(a, b, b) = b, 

f(a, b, c) = c =* fzy(a, b, c) = f(a, f(a, b, c), f(a, f(a, b, c), c)) 

= f(a, c, f(a, c, c)) = f(a, c, c) = c. 

Thus, fzy(a, b, c) = f(a, b, c) if f(a, b, c) i= d. Now suppose f(a, b, c) = d. Then 

fzy(a, b, c) = f(a, f(a, b, f(a, b, c)), f(a, f(a, b, f(a, b, c)), c)) 

= f(a, f(a, b, d), f(a, f(a, b, d), c)) 

and we have 

f(a, b, d) = a =* fzy(a, b, c) = f(a, a, f(a, a, c)) = f(a, a, a) = a, 

f(a, b, d) = b =* fzy(a, b, c) = f(a, b, f(a, b, c)) = f(a, b, d) = b, 
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f(a,b,d) = c => fzy(a,b,c) = f(a,c,f(a,c,c)) = f(a,c,c) = c. 

Thus, fzy(a,b,c) = f(a,b,d) if the latter does not equal d. Now suppose 

f(a, b, d) = d. Then 

fzy(a, b, c) = f(a, f(a, b, d), f(a, f(a, b, d), c)) = f(a, d, f(a, d, c)) 

and we have 

f(a, d,·c) = a=> fzy(a, b, c) = f(a, d, a) = a 

f(a, d, c) = c => fzy(a, b, c) = f(a, d, c) = c 
f(a,d,c) = d => fzy(a,b,c) = f(a,d,d) = d 

and finally 

f(a, d, c) = b => fzy(a, b, c) = f(a, d, b), as required. 0 

N ow we prove a series of lemmas that we will afterwards use to prove the first 

big result of this section. 

Lemma 4.31: Let f be a minimal major"ity operation on S satisfying (0) and let 

(a, b, c) E w. If f( (abc)) ç {a, b, c}, then one of the two following conditions hold: 

(i) fl(abc) = p and fi (bac) = P 

(ii) fl(abc) == u and fi (bac) == v for some u, v E s. 

PraoI fl(abc) has one or three elements by Lemma 4.24. If it has three elements, 

these three elements are necessarily {a, b, c} and we have fi (abc) = P and fi (bac) = P 

by Theorem 4.26. Now we suppose that fl(abc) contains only one element. Without 

loss of generality, we can assume that fl(abc) == a. Let d be the remaining element 

in S after taking away a, b, c. If d tf- f( (bac)), then f preserves {a, b, c} and we 

can again use Table 4.4 to check that aIl minimal majority operations on the three­

element set {a, b, c} that have the property fl(abc) == a (namely the operations mo, 

m510 and m218) also have the property fi (bac) == v for sorne v E {a, b, c}. N ow suppose 

d E f( (bac)) which means that f does not preserve {a, b, c}. If a E f( (bac)), then 

we can permute the variables cyclically to have f(b, a, c) = a. Now we can look at 

the superposition 

g(x,y,z) := f(f(x,y,z),f(x,z,y),x) 

that we have already used in the proof of Theorem 4.26. We can use the iden­

tities f(b,a,c) = a and fl(abc) == a to obtain that g(x,y,z) = a if (x,y,z) E 

{(a, b, c), (a, c, b), (b, a, c), (b, c, an. This implies 

g(2l(x,y,z) = g(g(x,y,z),g(y,z,x),g(z,x,y) = a 
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for all (x,y,z) where {x,y,z} = {a,b,c}. This means that g(2) E [I] preserves 

{a, b, c} and hence contradicts the minimality of f (since we assumed that f do'es 

not preserve this set and hence f tJ. [g(2)]). Finally, if a tJ. f((bac)) (but d E 

f((bac))), then f((bac)) = {b,c,d} or f((bac)) == d since f((bac)) it cannot contain 

two elements by Lemma 4.24. The second case finishes the proof, so we suppose 

f( (bac)) = {b, c, d}. We may suppose without loss of generality 

(i) f(b,a,c) = c, f(a,c,b) = d, f(c,b,a) = b or 

(ii) f(b,a,c) = b, f(a,c,b) = d, f(c,b,a) = c 

after a cyclic permutations of variables (if necessary). In the first case, we have 

(using the identities we have just listed and fl(abc) == a) 

g(x,y,z) ~ { ~ if (x,y,z) E {(a,b,c),(a,c,b),(b,a,c),(c,a,b)}, 

if (x, y, z) = (c, b, a), 
if (x, y, z) = (b, c, a). 

which implies g(2)(X,y,z) = a for all (x,y,z) such that {x,y,z} = {a,b,c}. Renee, 

g(2) preserves {a, b, c}. In the second case we have 

. g(x,y,z) ~ { ! if (x, y, z) E {(a, b, c), (a, c, b)}, 
if (x, y, z) E {(b, c, a), (b, a, c)}, 
if (x, y, z) E {(c, a, b), (c, b, a)}. 

and 9 preserves {a, b, c}. Both cases contradict the minimality of f. This finishes 

the proof. 0 

Lemma 4.32: Let f be a majority operation on S satisfying (0). In either of 

the following cases f is not minimal 

(a) fE [3,1,0;*,*,*] 

(b) f E [3,0,1;*,*,*] 

(c) f E [3,0,2;*,*,*] 

(d) f E [3,2,0;*,*,*]. 

Proof" (a) Suppose that f is minimal. We can use Theorem 4.26 to conclude from 

f(O, 1,2) = 3, f(l, 2, 0) = 1, f(2, 0,1) = ° that we have fl(31O) = p and fl(130) = p. 

We now use Lemma 4.30 to show that fzy preserves {O, 1, 2} (which contradicts the 

minimality of f since f obviously doesn't preserve this set) apart from very few 

exceptions. We have f(O, 1,2) = 3 and hence fzy(O, 1, 2) = f(O, 1,3) = O. Next, 

f(l, 2, 0) = ° and f(2, 0,1) = 2 imply fzy(l, 2, 0) = ° and fz y(2, 0,1) = 2. Also, 

fz y(l, 0, 2) = 3 is possible only if f(l, 0, 2) = 3 and f(l, 0, 3) = 3. Rowever, this is 

not possible since we know f(l, 0, 3) = 1. Similarly, fzy(O, 2,1) = 3 is possible only 
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if f(O, 2,1) = 3, f(O, 2,3) = 3 and f(O, 3,1) E {2,3}. Again, the latter is impossible 

since we have f(O, 3,1) = O. FinaIly, fz y(2, 1,0) = 3 is possible but only if 

(i) f(2, 1,0) = 3, f(2, 1,3) = 3, f(2, 3, 0) = 3 or 

(ii) f(2, 1,0) = 3, f(2, 1, 3) = 3, f(2, 3, 0) = 1, f(2, 3,1) = 3. 

So f must satisfy one of these two cases. We now try to examine the set f( (102)). 

We know that this set contains one or three elements by Lemma 4.24. If that 

set is {O}, {1} or {2}, then we have fl(102) == v for sorne v E {O, 1, 2} but we 

obviously do not have fl(012) == u for any u E {O, 1, 2}: This implies that f cannot 

be minimal by Lemma 4.31. If we have fl(102) == 3, then we can calculate (using 

aIl the identities above) fzy E [0,1,0; 1, u, 3], where u = fzy(O, 2,1) =1= 3. If we 

have u = 1, then fzy E [0,1,0; 1, 1,3] implies f~~) E [0,0,0; 1, 1, 1] ~hich means 

that f~~) preserves the set {O, 1, 2} and hence f cannot be minimal. For u = 2 

we can calculate g(x,y,z) := fzy(y,z,fzy(x,y,z)) E [1,0,0;2,2,1-] and hence 9 

preserves {O, 1, 2} and the minimality of f is contradicted. For u = ° we have 

fzy E [0,1,0; 1,0,3]. We can calculate f~~) E [0,0,0; 1,0,3] because fl(103) = p 

~plies fz yl(103) = p by Lemma 4.30. Thus, Eu E [0,0,0; 1,0,3]. This implies that 

fzy is not minimal by Lemma 4.31 and it follows that f is not minimal, too. Thus, 

the assumption that f( (102)) contains only one element was wrong and f( (102)) 

has to contain three elements. If they are {O, 2, 3}, then Theorem 4.26 implies 

fl(023) = p which contradicts our observation that f(2, 3, 0) is either 3 or 1. In 

the same way, f ( (102)) = {O, 1, 2} implies fi (012) = p which cannot be true since 

we know f(O, 1,2) = 3. Likewise, f( (102)) = {1, 2, 3} is also impossible because 

the implicated fl(213) = p is a contradiction to our observation that f(2, 1,3) = 3. 

Hence, f( (102)) can be nothing el se but {O, 1, 3}. Since we already know f(2, 1, 0) = 

3, there are only two possibilities left: f E [3,1,0; 0,1,3] or f E [3,1,0; 1,0,3]. In 

the first case we have fzy E [0,1,0; 0,1,3] and in the second case we have fzy E 

[0,1,0; 1,0,3]. It follows that we have Eu E [0,0,0; 0,1,3] in the first and Eu E 

[0,0,0; 1,0,3] in the second case, because fl(013) = p implies fz y l(013) = p by Lemma 

4.30 and we already know fzy 1 (103) = p. This contradicts the minimality of f by 

Lemma 4.31 in both cases and we have finished the pro of. 

(b) We can use the same arguments as in (a). The only difference is that in this 

case we have fzy E [1,1,2; *, *, *]. 
(c) The operation f(x, z, y) E [*, *, *; 0, 3, 2] is isomorphic to an operation which 

is not minimal by case (a), because for the permutation cP = (12) we have f(x, z, y)4> E 

[3,1,0; *, *, *l-
(d) Similar as in (c), for f(x, z, y) E [*, *, *; 2, 3, 0] we obtain f(x, z, y)4> E [3,0,1; 

*, *, *] which implies that f(x, z, y) is not minimal by (b). 0 
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As already used in the proof, this lemma obviously implies that a majority op­

eration that is isomorphic to an operation that falls under the cases (a)-(d) is not 

minimal. In the tables below we list majority operations f4> where f faIls under 

the cases (a)- (d) and <P is a permutation on S. These operations are therefore not 

minimal (providing they satisfy (0)). 

Table 4.6 

(a) (b) (c) (d) 

<P fE [3,1,0; *, *, *] [3,0,1; *, *, *] [3,0,2; *, *, *] [3,2,0; *, *, *J 
(01) f4> E [*, *, *j 3, 0,1] [*, *, *; 3,1,0] [*, *, *j 3, 1, 2] l*, *, *j 3, 2,1] 

(02) f4> E [*, *, *; 1,2,3] [*, *, *; 2,1, 3J [*, *, *; 2, 0, 3] [*, *, *; 0, 2, 3] 

(12) f4> E [*, *, *; 0, 3, 2] [*, *, *; 2, 3, 0] [*, *, *; 1,3,0] [*, *, *; 0, 3, IJ 

(012) f4> E [1,3,2; *, *, *] [2,3,1; *, *, *] [0,3,1; *, *, *] [1,3,0; *, *, *] 

(021) f4> E [0,2,3; *, *, *] [2,0,3; *, *, *] [2,1,3; *, *, *] [1,2,3; *, *, *] 

Lemma 4.33: Let f be a majority operation on S satisfying (0). If f E 

[3,2,1; *, *, *], then f is not minimal. 

Proof: Suppose that f is minimal. We can use Theorem 4.26 again to conclude 

from f(O, 1,2) = 3, f(l, 2, 0) = 2 and f(2, 0,1) = 1 that we have fl(321) = p 

and fl(231) = p. As in the previous lemma, we examine the set f( (102)). Once 

again, Lemma 4.24 implies that it has to contain exactly one or three elements. 

If f((102)) ç {0,1,2}, then Lemma 4.31 contradicts thé minimality of f; hence, 

f( (102)) cannot be {Dl, {1}, {2} or {D, 1, 2}. Thus, it is {3} or a three-element set 

containing 3. 

Case 1: f( (102)) ~ {3}. Define 

g(x,y,z) := f(z,y,f(x,y,z)) 

and we can calculate 9 E [2,2,1; u, 1, v]. Clearly, if none of u, v equals 3, then 

9 preserves {D, 1, 2} which contradicts the minimality of f (because f does not 

preserve that set). For u = 1 we have 9 E [2,2,1; 1, 1,3] which implies g(2) E 

[2,2,2; 1, 1, 1] which means that g(2) preserves {D, 1, 2}. For u = ° we have 9 E 

[2,2,1;0,1,3] and it foIlows for h(x,y,z) := g(g(x,y,z),z,x) that we have h E 

[2,1,1; 1, 1, *] and hence h(2) E [1,1,1; 1, 1, 1] preserves {D, 1, 2}. For u = 3 we have 

9 E [2,2,1; 3,1, *] which (using fl(321) = p and fl(231) = p) implies h E [2,1,1; 2, 2, *] 
and again h(2) E [1,1,1; 2, 2, 2] preserves {D, 1, 2}. It remains the case u = 2, v = 3. 

But then 9 E [2,2,1; 2,1,3] implies g(2) E [2,2,2; 3, 2,1], g(3) E [2,2,2; 1,3,2], g(4) E 

[2,2,2; 2,1,3] and hence 9 E [2,2,2; 1,3,2]. Now Lemma 4.31 implies that 9 E [I] 
is not a minimal operation which contradicts the minimality of f. 
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Case 2: f( (102)) #- {3}. Renee, f( (102)) is a three-element set containing 3. 

Suppose it is {O, 1, 3}. This implies f E [3,2, 1,0,1,3] or f E [3,2,1,1,0,3] because 

the other cases would give an operation that is listed in Table 4.6 and henee not 

minimal. In both cases, we can conclude from Theorem 4.26 that fl(013) = p. This, 

together with Lemma 4.30 and the identity fl(321) = p, implies that we have fzy E 

[0,2,1; 0,1,2] in the first and fzy E [0,2,1; 1,0,2] in the second case. In both cases 

fzy preserves the set {O, 1, 2}. Using Table 4.6 again, f( (102)) = {O, 2, 3} implies 

f E [3,2,1; 3, 0, 2] or f E [3,2,1; 3, 2, 0]. Lemma 4.30 gives us fzy E lu, 2, 1; v, 0, 2] 

in the first and fzy E lu, 2,1, v, 2, 0] in the second case. Furthermore, Theorem 4.26 

gives us fl(320) = p. Using this identity and Lemma 4.30, we obtain in both cases 

{ 

0, 

u = fzy(O, 1,2) = 1, 

2, 

{ 

0, 

v = fz y (l, 0, 2) = 1, 

2, 

if f(0,1,3) E {0,3}, 

if f(O, 1, 3) = 1, 

if f(O, 1,3) = 2. 

if f(l, 0, 3) = 0, 

if f(l, 0, 3) E {l, 3}, 

if f(l, 0, 3) = 2. 

and henee u, v#- 3. Thus, fzy preserves {O, 1, 2} in both cases. Finally, if f( (102)) = 

{O, 2, 3}, then it follows from Table 4.6 in the same way as above that we have 

f E [3,2,1; 2, 3,1] or f E [3,2,1; 1,3,2]. Now we use g(x, y, z) := f(z, y, f(x, y, z)) 

again. We use the identities fl(213) = p and fl(123) = p onee more to conclu de that 

we have 9 E [2,2,1; 2,1,:1.] in the first and 9 E [2,2,1; 1, 1,3] in the second case. 

In the first case, 9 preserves {O, 1, 2} and in the second case g(2) E [2,2,2; 1, 1, 1] 

preserves {O, 1, 2}. Both cases contradict the minimality of f and this finishes the 

pro of. 0 

Again, we can use isomers to create operations that are isomorphic to an oper­

ation f E [3,2,1; *, *, *] and therefore not minimal. This means that we can add a 

column to Table 4.6 and we obtain the following table of operations that are not 

minimal (providing they satisfy (0)). 

Table 4.7 
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4.32 (a) 4.32 (b) 4.32 (c) 4.32 (d) 4.33 

cp fE [3,1,0; *, *, *] [3,0,1; *, *, *] [3,0,2; *, *, *] [3,2,0; *, *, *] [3,2,1; *, *, *] 

(01) f<P E [*, *, *; 3, 0, 1] [*, *, *; 3,1,0] [*, *, *; 3,1,2] ". [*,*,*;3,2,1] [*, *, *; 3, 2, 0] 

(02) f<P E [*, *, *; 1,2,3] [*, *, *; 2,1,3] [*, *, *; 2, 0, 3J [*, *, *; 0, 2, 3] [*, *, *; 0,1,3] 

(12) f<P E [*, *, *; 0, 3, 2] [*, *, *; 2, 3, 0] [*, *, *; 1,3,0] [*, *, *; 0, 3,1] [*, *, *; 2, 3,1] 

(012) f1> E [1,3,2; *, *, *] [2,3,1; *, *, *] [0,3,1; *, *, *] [1,3,0; *, *, *] [2,3,0; *, *, *] 

(021) f<P E [0,2,3;*,*,*J [2,0,3; *, *, *] [2,1,3; *, *, *] [1,2,3; *, *, *] [1,0,3;*,*,*] 

Looking at this table carefully shows us that whenever we have a minimal major­

ity operation f E Os satisfying (0) and neither fl(012) = p nor fl(012) == u (implying 

. f((012)) rt. {O, 1, 2} by Lemma 4.31), then we must .have that on two of the three 

triplets of (012) the value of f equals the first variable, while on the third one f 
equals 3. Any other possibility can be found in the table (recall If( (012)) 1 i- 2 by 

Lemma 4.24). The same holds for the triplet (102). We can generalize this result 

by replacing 0,1,2 by any three distinct elements a, b, cES: If we have a triple· 

(a, b, c) E w and a minimal majority operation f E Os satisfying (0) such that 

neither f( (abc)) = p nor fl(abc) == u holds, then we must have that on two of the 

three triplets of (abc) the value of f equals the first variable, while on the third one 

f equals d (j. {a,b,c}. 

Lemma 4.34: Let f be a majority operation on S satisfying (0). If f E 

[3,1,2; 1,0,3] or f E [3,1,2; 3, 0, 2], then f is not minimal. 

Pro of: Suppose that f is minimal. In the first case, we can use Theorem 4.26 once 

again to conclu de from f(O, 1,2) = 3, f(l, 2, 0) = 1, f(2, 0,1) = 2 that fl(321) = p 

and from f(l, 0, 2) = 1, f(O, 2,1) = 0, f(2, 1,0) = 3 that fl(013) = p. With the help 

ofthis two identities we can calculate fAx, y, z) = f(x, y, f(x, y, z)) E [0,1,2,1,0,2]. 

Thus, fz preserves {O, 1, 2} which contradicts the minimality of f. In the second 

case, Theorem 4.26 gives us fl(321) = p and fl(203) = p which allows us to calculate 

fy E [0,1,2,1,0,2]. This means that fy preserves {O, 1, 2} and the minimality of f 

is contradicted. 0 

Lemma 4.35: Let f be a minimal majority operation on S satisfying (0). If 

f E [3,1,2; 1,3,2], then f = m4,44 where m4,44 is the majority operation defined as 

shown below (the reason for naming this operation m4,44 will be seen later). 
1 
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(x, y, z) 

(0,1,2) 

(1,2,0) 

(2,0,1) 

(1,0,2) 

(0,2,1) 

(2,1,0) 

{O, l, 3} 

{O, 2, 3} 

(3, l, 2) 

(1,2,3) 

(2,3,1) 

(1,3,2) 

(3,2,1) 

(2, 1,3) 

m4,44(X, y, z) 

3 

1 

2 

1 

3 

2 

3 

3 

3 

1 

2 

1 

3 

2 

The middle two rows mean that if 

{x,y,z} equals {O,l,3} or {O,2,3}, then 

m4,44(x, y, z) = 3. 

Pm of: As usual, we can apply Theore'm 4.26 to conclu de fi (312) = P and fi (132) = 
p. It remains to show that f(x,y,z) equals 3 whenever {x,y,z} = {O, 1,3} or 

{O, 2, 3}. Set 91 := fz and we can calculate 

91 = fz E [f(O, 1,3), 1,2; l, f(O, 2, 3), 2]. 

If none of f(O, 1,3), f(O, 2, 3) equals 3, then 91 preserves {O, l, 2} and f is not 

minimal. Suppose that exactly one of them equals 3. If f(O, 1,3) = 0, then 

91 E [0,1,2; 1; 3; 2] and 9i
2
) E [0, 1,2; i, 3, 2] since we obviously have 911(012) = P 

and fl(132) = p implies 911(132) = p. Renee, §i E [0,1,2; 1,3,2] which contra­

dicts the minimality of f because 91 is now not minimal by Lemma 4.31. If 

f(O, 1,3) = 1 or f(O, 1,3) = 2, then we have 91 E [1,1,2; 1,3,2] or [1,2,2; 1,3,2] 

and §i E [1,1,1; 1,3,2] or [2,2,2; 1,3,2] and in both cases Lemma 4.31 implies 

that 91 is not minimal. If f(O, 2, 3) = 0, then 91 E [3, 1,2; 1,0,2] and 9i
2

) E 

[3,1,2; 1,0,2] because we obviously have 911(102) = P and fl(312) = p implies 911(312) = 
p. Renee, §i E [3,1,2; 1,0,2] which contradicts the minimality of f as above. 

For f(O, 2, 3) = 1 or f(O, 2, 3) = 2 we get 91 E [3,1,2; l, 1,2] or [3,1,2; 1,2,2] 

and §i E [3, 1,2; 1, 1, 1] or [3, 1,2; 2, 2, 2] and in both cases Lemma 4.31 implies 

again that §i is not minimal. Thus, we must have f(O, 1,3) = f(O, 2, 3) = 3. 

Now we define 92(X, y, z) := f(y, x, f(x, y, z)) and we obtain in exactly the same 

way from 92 E [f(l, 0, 3),1,2; l, f(2, 0, 3), 2] that f(1, 0, 3) = f(2, 0, 3) = 3. For 

93 := fy we get 93 E [1(0,3,2),1,2; 1, f(O, 3,1),2] from which we can conclude 
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f(0,3,2) = f(0,3,1) = 3. For 94(X,y,Z) := f(z,f(x,y,z),x) we obtain 94 E 

[1(2,3,0),1,2; 1, f(1, 3, 0), 2] which gives us f(2, 3, 0) = f(1, 3, 0) = 3. For 95(X, y, z) := 

f(J(x, y, z), y, x) we get 95 E [1(3,1,0),1,2; 1, f(3, 2, 0), 2] and f(3, 1,0) = f(3, 2, 0) = 

3. Finally, for 96(X, y, z) := f(J(x, y, z), x, y) we get 96 E [f(3, 0,1),1,2; 1, f(3, 0, 2), 2] 

and f(3, 0,1) = f(3, 0, 2) = 3. [] 

Lemma 4.36: Let f be a minimal majority operation on S satisfyin9 (0). If 

f E [3,1,2; 3, 3, 3], then f is not minimal. 

Proof: Suppose to the contrary that f is minimal. We can use Theorem 4.26 

once again to obtain fl(312) = p and fl(132) = p. Now let us look at the operation 

fzy. We can calculate 

fzy E ru, 1,2; v, w, 2] 

for sorne u, v, w E S. We have (using Lemma 4.30): 

{ 

0, if f(1,0,3) = 0 

v = fzy(1, 0,2) = 1, ~f f(1, 0, 3) ~ {1, 3} 

2, If f(1,0,3) - 2 

and hence v of- 3. Suppose v = O. Then fzy E ru, 1,2; 0, w, 2]. We define 

9(x, y, z) := fzy(z, x, fzy(x, y, z)) 

and we obtain 9 E [r, 1,2; 2, *,2] for sorne r E S. This implies Si E [*, *, *; 2,2,2]. 

Since Si E [f] has to be minimal, It can't preserve {O, 1, 2} and it must meet the 

conditions in Lemma 4.31. Only the case Si E [3,3,3; 2, 2, 2] remains. Rowever, this 

is not the case for any r E S. Now suppose v of- 0 (i.e. v E {1, 2}). For u = 0 we have 

fzy E [0,1,2; v, w, 2]. Since v of- 3 we must have w = 3 sinee otherwise fzy preserves 

{O, 1, 2}. Thus, fzy E [0,1,2; v, 3, 2]. For v = 1 we obtain fzy E [0,1,2; 1,3,2] 

and consequently f~;) E [0,1,2; 1,3,2] because we obviously have fz yl(012) = p and 

fl(132) = p implies fz yl(132) = p by Lemma 4.30. Renee, Eu E [0,1,2; 1,3,2]. Now 

Lemma 4.31 implies that Eu is not minimal. If v ~ 2 we get fg) E [0,1,2; 2, 2, 2] 

and f~;) preserves {O, 1, 2}. For u = 1 we have fzy E [1,1,2; v, w, 2] and again we 

must have w = 3 so that fzy does not preserve {O, 1, 2}. Similarly as above, we 

get fg) E [1,1,1; 1,3,2] for v = 1 and f~;) E [1,1,1; 2, 2, 2] for v = 2. In the first 

case we have Eu E [1,1,1; 1,3,2] and Eu is not minimal because of Lemma 4.31 

and in the second case f~;) preserves {O, 1, 2}. The same argument can be used 

for u = 2. The only differenee is that f~;) E [2,2,2; *, *, *]. Only the case u = 3 

remains. We have fzy E [3,1,2; v, w, 2] where v of- 3. If v = 2 or w = 2, then we have 
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Izy E [3,1,2; 2, 2, 2] which means that hu is not minimal by Lemma 4.31. Thus, 

v = 1 (recall that we suppose v i= 0) and W E {O, 1, 3}. If w = 0, then we have 

Izy E [3,1,2; 1,0,2] and hu = [3,1,2; 1,0,2] which implies that hu is not minimal 

by Lemma 4.31. If w = 1, then we have hu E [3,1,2; 1, 1, 1] and the same follows. 

FinaIly, it remains the case v = 1 and w = 3. We have Izy E [3,1,2; 1, 3, 2] and we 

know from the last lemma that we have Izy = m4,44' But we will see later that the 

clone generated by m4,44 contains only 3 majority operations and 1 is not one of 

them. Rence, 1 rt. [m4,44] and 1 is not minimal. D ' 

We are ready to prove the first big result of this section. 

Theorem 4.37: Any minimal nonconservative majority operation on S which 

satisfies (0) is isomorphic to m4,44 or belongs to the set Y. 

Prao!" Let 1 be a minimal nonconservative majority operation on S which satis­

fies (0) and does not belong to Y. This implies that there exist a triple (a, b, c) E W 

such that neither Il (abc) = p nor Il (abc) == u holds. Recall what we have noted 

after Table 4.7: Raving this condition, it follows that on two of the three triplets 

of (abc) the value of 1 equals the first variable, while on the third one 1 equals 

d rt. {a, b, cl. We can suppose (after an isomorphism if necessary) that we have 

1(0,1,2) = 3, 1(1,2,0) = 1 and 1(2,0,1) = 2, i.e. 1 E [3,1,2; *, *, *]. Now we must 

have 3 E 1((102)) because otherwise Lemma·4.31 would contradict the minimality 

of 1. In the case 11(102) == 3 the minimality of 1 is contradicted by Lemma 4.36. 

Thus, 1( (102)) must be a three-element set containing 3 (it cannot be a two-element 

set by Lemma 4.24). Ifwe look at the Table 4'.7 (or use the ab ove argument) we can 

see that they are only three possible cases: 1 E [3,1,2; 1,0,3], 1 E [3,1,2; 3, 0, 2] or 

1 E [3,1,2; 1,3,2]. But now Lemma 4.34 eliminates the first two cases and in the 

third case Lemma 4.35 yields that 1 equals m4,44' D 

We have succeeded in determining aIl minimal majority operations on S satisfying 

( 0) that do not belong to the set Y. N ow, we have to find the minimal operations 

on S that are in Y. We have already described the conservative ones in the last 

section, so we can additionally limit or quest on nonconservative operations. We 

prove several properties of such operations, until we find that only. a few (essentially 

two) operations possess these properties and they happen to be minimal. 

Definition 4.38: A ternary operation 1 is called cyclically commutative if it is 

if).variant under cyclic permutations on the variables. In other words, 
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f(x, y, z) ~ f(y, z, x) ~ f(z, x, y). 

Lemma 4.39: Let f E Y be a minimal nonconservative majwity operation on 

S. Then f is cyclically commutative. 

Praof: Recall that f E Y implies that fi (abc) = p or fl(abc) == U E S for aIl 

triple (a, b, c) E w. For contradiction, let us suppose without loss of generality 

that fl(013) = p. Then, by Lemma 4.31 we must also have fl(103) = p. Sinee f is 

nonconservative, we may also suppose (without loss of generality) fl(012) == 3. We 

must have fl(102) == u for sorne u E Sor fl(102) = p. But, by Lemma 4.31, it follows 

from fl(012) == 3 that the latter is impossible. First let us suppose u =1= 3. Then 

fzy E [0, v, w; u, u, u] where fz yl(102) == u follows from Lemma 4.30. Clearly, fzy 

preserves {O, 1, 2} and hence contradicts the minimality of f if v =1= 3 and w =1= 3. 

We can use Lemma 4.30 to conclude that we have v = fz y(l, 2, 0) = 3 if and only if 

(i) f(l, 2, 0) = 3, f(l, 2, 3) = 3, f(l, 3, 0) = 3 or 

(ii)f(l, 2, 0) = 3, f(l, 2, 3) = 3, f(l, 3, 0) = 2, f(l, 3, 2) = 3. 

But neither of the cases is possible since we know that f(l, 3, 0) = 1. So we must 

have w = 3. Using Lemma 4.30 again, we can conclude that this is the case if and 

only if 

a) f(2, 0, 1) = 3, f(2, 0,3) = 3, f(2, 3,1) = 3 or 

b) f(2, 0,1) = 3, f(2, 0, 3) = 3, f(2, 3,1) = 0, f(2, 3, 0) = 3. 

In a) it follows from.f(2, 3,1) = 3 that we have fl(231) == 3 sinee f E Y. We can 

conclude that v = fz y (1 , 2, 0) equals 1 from Lemma 4.30 by using fl(231) == 3 and 

fl(013) = p. In b) we have fl(231) == ° and it follows v = O. Thus, we have two 

possible cases: fzy E [0,1,3; u, u, u] or fzy E [0,0,3; u, u, u]. In the first case we have 

J:; E [0,1,3; u, u, u] sinee fl(013) = p and Lemma 4.30 imply fz yl(013) = p. It follows 

that J:; is not minimal by Lemma 4.31. In the second case, J:; E [0,0,0; u, u, u] 

preserves {O, 1, 2}. This finish es the case u =1= 3. Now suppose u = 3. By the same 

argument as above, we have three cases: fzy( (012)) ç {O, 1, 2}, fzy E [0,0,3; *, *, *] 

or fzy E [0,1,3;*,*,*]. In the third case we have J:; E [0,1,3;*,*,*] and J:; 
does not belong to Y and is therefore isomorphic to m4,44 by Theorem .4.37. But 

then f tJ. [J:;], which contradicts the minimality of f (in fact, we will later see 

that the clone generated by m4,44 contains no operation from Y expect for the first 

projection). Thus, we have one of the following two cases: 

(1) fz y( (012)) ç {O, 1, 2}, (2) fzy E [0,0,3; *, *, *], 
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the latter implying f~~) E [0,0,0; *, *, *l- Now we deal with f( (102)). Suppose 

f( (102)) r:J;. {O, 1, 2}. We can conclude that fz y(l, 0, 2) equals 1 by using the identi­

ties f(l, 0, 2) = 3, f(l, 0, 3) = 1 and Lemma 4.30. It follows fzy E [*, *, *; 1, s, t]. As 

ab ove , we can use Lemma 4.30 to conclude that s = fzy(O, 2, 1) = 3 if and only if 

(i) f(O, 2,1) = 3, f(O, 2, 3) = 3, f(O, 3,1) = 3 or 

(ii) f(O, 2, 1) = 3, f(O, 2, 3) = 3, f(O, 3,1) = 2, f(O, 3, 2) = 3. 

But neither of the .cases is possible sinee we have f(O, 3,1) = O. Similarly, we obtain 

t = fz y(2, 1, 0) = 3 if and only if 

a) f(2, 1,0) = 3, f(2, 1,3) = 3, f(2, 3, 0) = 3 or 

b) f(2, 1,0) = 3, f(2, 1,3) = 3, f(2,3,0) = 1, f(2,3, 1) = 3. 

In a) we obtain from f(2, 3, 0) = 3 that we have fl(230) ::::::: 3 and we can conclude 

(using the same method as above) that s equals O. In b) we have fl(230) ::::::: 1 

and s equals 1. So we have fz y( (102)) ç {O, 1, 2} or fzy E [*, *, *; 1,1,3] or fzy E 

[*, *, *; 1,0,3]. In the third case we have ~ E [*, *, *; 1,0,3] and ~ does not belong 

to T, is therefore isomorphic to m4,44 by Theorem 4.37 and the minimality of f is 

contradicted as above. Thus, we must have one of the first two cases: 

(a) fzy( (102)) ç {O, 1, 2} (b) fzy E [*, *, *; 1,1,3], 

the latter implying f~~) E l*, *, *; 1,1,1]. But no matter how we combine the cases 

(1), (2) and (a), (b), we always obtain that f~~) preserv~s {O, 1, 2}. 0 

We have now limited the set of possible nonconservative minimal majority oper­

ations to the set of nonconservative cyclically commutative majority operations. In 

[7] these are determined by computer, here we do so by hand. 

Lemma 4.40: Let f E T be a minimal nonconse'f"Vative majoT"'ity operation on 

S. Suppose fl(012) ::::::: 3 (and hence f(102) ::::::: u ES). Then {O, 1, 2} is the only subset 

of S that is not preserved by f. 

Praof: By Lemma 4.39, f is cyclically commutative. 

Case 1: Suppose u -=f. 3. For contradiction suppose without loss of generality that f 
does not preserve {O, 1, 3}. Now f E T implies fl(103) ::::::: 2 or fl(013) ::::::: 2. Suppose 

fl(103) ::::::: 2. We define 

g(x,y,z):= f(y,x,f(x,y,z)) 

and we examine the values of 9 on the sets {O, 1, 2} and {O, 1, 3}. We deal with the 

case fl(013) ::::::: 2 later, so we can assume for now that fl(013) ::::::: v where v is not 2. 
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(x, y, z) g(x,y,z) (x,y,z) g(x,y,z) 

(0,1,2) 2 (0,1,3) f(l, 0, v) 

(1,2,0) f(2, 1, 3) (1,3,0) f(3,I,v) 

(2,0,1) f(0,2,3) (3,0,1) f(0,3,v) 

(1,0,2) f(O, 1, u) (1,0,3) 3 

(0,2,1) f(2, 0, u) (0,3,1) f(3, 0, 2) 

(2,1,0) f(I,2,u) (3,1,0) f(1, 3, 2) 

Now 9 equals von two of the three triplets in (013). This implies g(2)1(013) == v -# 2. 

Similarly, 9 equals u on two of the three triplets in (102) since we have u -# 3 

and hence g(2)1(102) == u -# 3. If one of the two values f(2, 1,3)(= f(l, 3, 2)) and 

f(0,2,3)(= f(3,0,2)) equals 2, then we have g(2) 1(012) == 2 and 9 preserves {O, 1,2}. 

Similarly, if one of the two values is 3, then we have g(2) 1 (103) == 3 and 9 preserves 

{O, 1, 3}. The same follows if both values are ° or both values are 1. Two cases 

remain: 

(1) f(2, 1,3) = 0, f(O, 2, 3) = 1 (2) f(2, 1,3) =:: 1, /(0,2,3) = O. 

In the first case we have 

g(2)(0, 1,2) = g(2, 0,1) = 1 

g(2)(1, 2, 0) = g(O, 1, 2) = 2 

g(2)(2, 0,1) = g(l, 2, 0) = ° 
which me ans that g(2)( (012)) ç {O, 1, 2} and thus g(2) preserves {O, 1, 2}. In the 

second case we have 

g(2)(0, 1,2) = g(2, 1,0) 

g(2)(I, 2, 0) = g(l, 0, 2) 

g(2)(2, 0,1) = g(O, 2,1). 

But we know that two of these three values are u which implies g(3) E lu, u, u; u, u, u] 

and hence g(3) preserves {O, 1, 2}. This finish es the case fl(013) == v where v -# 2. 

Now suppose v = 2. We can calculate fz E [2, f(1, 2, 3), f(2, 0, 3), u, u, u] (recall 

u -# 3). If neither f(l, 2, 3) nor f(2, 0, 3) equals 3, then fz preserves {O, 1, 2}. 

Otherwise we define h(x, y, z) := f(x, fAx, y, z), z) and we obtain 

hE [2, f(l, f(l, 2, 3), 0), f(2, f(2, 0, 3),1); u, u, u]. 

If f(l, 2, 3) = 3, the)1 h E [2,2, *; u, u, u] and thus h(2) E [2,2,2; u, u, u] and h(2) 

preserves {O, 1, 2}. If f(2, 0, 3) = 3, then 

hE [2, f(l, f(1, 2, 3), 0), f(2, 3,1); u, u, u]. 
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Note that f(2, 3,1) = f(l, 2, 3). We obtain 

hE 

[2,0,0; u, u, u], if f(2, 3,1) = 0, 

[2,1,1; u, u, u], if f(2, 3,1) = 1, 

[2,3,2; u, u, u], if f(2, 3,1) = 2, 

[2,2,3; u, u, u], if f(2, 3,1) = 3. 

In aIl cases it follows that h(2) preserves {O, 1, 2}. This finishes the pro of for the 

case u i= 3. 

Case 2: Suppose fl(102) == 3. For contradiction, let us again suppose that f does 

not preserve {O, 1, 3} i.e. fl(013) == 2 or fi (103) == 2. Let us abstract what we have just 

proved in case 1: If fi (abc) == d (a,b,c,d pairwise distinct) and fi (bac) == e E {a,b,c}, 
then f preserves the other three subsets of S (namely {a, b, d}, {a, c, d} and {b, c, d} ). 
But now, for {a, b, c} = {O, 1, 3} and d = 2 it follows that both of the identities 

fi (013) == 2 and fi (103) == 2 must be true (otherwise it would follow that f preserves 

aIl other three subsets including {O, 1, 2} which is obviously a contradiction). Fur­

thermore, we can use the same argument to conclude that whenever fl(123) == ° or 

fl(213) == ° (i.e. f do es not preserve {1, 2, 3}) it follows that both identities have to 

be true. In other words: fl(123) == ° if and only if fl(213) == O. In the same way we 

can also conclude that fl(023) == 1 if and only if fl(203) == 1. Now, we look at the 

operation fz and examine its values on the sets {O, 1, 2} and {O, 1, 3}. 

(x, y, z) fz(x, y, z) (X,y,z) fz(x, y, z) 
(0,1,2) 2 (0,1,3) 3 

(1,2,0) v = f(I,2,3) (1,3,0) s = f(l, 3, 2) 

(2,0,1) w = f(2,0,3) (3,0,1) T = f(3,0,2) 

(1,0,2) 2 (1,0,3) 3 

(0,2,1) T = f(0,2,3) (0,3,1) w=f(0,3,2) 

(2,1,0) s = f(2, 1,3) (3,1,0) v = f(3,1,2) 

Additionally, we know from above that v equals ° if and only if s equals O. Similarly 

T = 1 if and only if w = 1. Clearly, fz must not preserve {O, 1, 2} and {O, 1, 3} 

hence 3,2 E {v, W, T, s}. Furthermore, it can be seen that fP) preserves {O, 1, 2} if 

2 E {v, w} n {T, s}, because in this case we have f;2) E [2,2,2; 2, 2, 2]. Similarly fP) 

preserves {O, 1, 3} if 3 E {v, w} n {T, s}. This leaves us with 26 cases. 
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(1) fz E [2,3,2; 2, 0,1] 

(2) fz E [2,2,3; 2, 0,1] 

(3) fz E [2,3,0; 2, 2, l] 
(4) fz E [2,3,0; 2, 2, 2] 

(5) fz E [2,3,3; 2, 2,1] 

(6) fz E [2,3,3; 2, 2, 2] 

(7) fz E [2,2,0; 2, 3,1] 

(8) fz E [2,2,0; 2, 3, 3] 

(9) fz E [2,2,2; 2,3,1] 

(10) fz E [2,2,2; 2, 3, 3] (19) fz E [2,1,3; 2, 2, 2] 

(11) fz E [2,3,0; 2, 0, 2] (20) fz E [2,0,2; 2, 3, 0] 

(12) fz E [2,3,1;2,1,2] (21) fz E [2,1,2;2,3,1] 

(13) fz E [2,3,3; 2, 0, 2] (22) fz E [2,1,2; 2, 3, 3] 

(14) fz E [2,2,0; 2, 0, 3] (23) fz E [2,1,3; 2, 0, 2] 

(15) fz E [2,2,1; 2,1,3] (24) fz E [2,1,2; 2,0,3] 

(16) fz E [2,2,2; 2, 0, 3] (25) fz E [2,1,0; 2, 3, 2] 

(17) fz E [2,0,3; 2, 2, 0] (26) fz E [2,1,0; 2, 2, 3] 

(18) fz E [2,1,3; 2, 2,1] 

For each of this 26 cases we have one of the foIlowing eight cases: 

(a) fP) E [2,2,2; 2, 2, 3] 

(b) fP) E [2,2,2; 3, 2, 2] 

(c) fP) E [2,2,2; 2, 2, 2] 

(d) fP) E [3,3,3; 2, 2, 2] 

(e) fP) E [2,2,2; 3, 3, 3] 

(f) fP) E [0,0,0; 2, 2, 2] 

(g) fP) E [2,2,2; 0, 0, 0] 

(h) fP) E [1,1,1; 2, 2, 2] 

In the cases (a) and (b) we have f~3) E [2,2,2; 2, 2, 2], hence f~3) E [1] preserves 

{O, 1, 2}. In the cases (c),(f),(g),(h) we have that f~2) preserves {O, 1, 2}. Only 

the cases (d) and (e) remain. In case (d), the operation Îz E [3,3,3; 2, 2, 2]. Îz is 

not conservative and satisfies (0) but is clear ly not isomorphic to m4,44. Renee, by 

Theorem 4.37, it belongs to Y. But now, it faIls under case 1 ofthis pro of and hence 

it preserves {O, 1, 3}. We suppose that f does not preserve this set, so f tf. [lz]. The 

same argument can be used for (e) after a permutation of variables. Thus, the 

minimality of f is contradicted in all 26 cases. This finishes the proof. 0 

Let us summarize our latest results. We have seen that any minimal nonconser­

vative majority operation f E Y is cyclicaIly commutative and preserves aIl except 

one ofthe four three-element subsets of S. We supposed that this set is {O, 1, 2} and 

that we have fl(012) == 3 which implies fl(102) == u. We will now show that there are 

essentiaIly two operations satisfying this properties, depending on whether u equals 

3 or not. 

Lemma 4.41: Let f E Y be a minimal nonconservative majority operation such 

that fl(012) == 3. If fi (102) == u i- 3, then [I] ~ [m4,21S] where m4,21S is the majority 

operation defined as shown below. 
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(x,y,z) m4,218(X, y, z) 
(012) 3 

(102) 2 

{0,1,3} 3 

{0,2,3} 3 

(123) 3 

(213) 2 

Proof: Without loss of generality, we can suppose 11(102) == 2. With the help of 

Lemma 4.30, we can calculate Izy E [T, S, t; 2, 2, 2] where 

T = { 1(0,1,3), 
1(0,3,2), 

s = { 1(1,2,3), 
1(1,3,0), 

t = { 1(2,0,3), 
1(2,3,1), 

if 1 ( 0, 1, 3) E { 0, 1 } 

if 1(0, 1,3) = 3 

if 1(1,2,3) E {1, 2} 

if 1(1,2,3) = 3 

if 1(2, 0, 3) E {0,2} 

if 1(2, 0, 3) = 3 

Note that 1(0,1,3) = 2, 1(1,2,3) = ° and 1(2,0,3) = 1 are not possible sinee 

1 preserves the sets {O, 1, 3}, {1, 2, 3} and {O, 2, 3} by Lemma 4.40. Sinee 1 is 

cyclically commutative, we have 1(0,1,3) = 1(1,3,0), 1(1,2,3) = 1(2,3,1) and 

1(2,0,3) = 1(0,3,2). We can see that if at most one of the three values 1(0,1,3), 

1(1,2,3), 1(2,0,3) equals 3, then Izy preserves {O, 1, 2} and 1 is not minimal. If 

two of the three values equal 3 while the third equals v E {O, 1, 2}, then Izy E 

[3, v, v; 2, 2, 2] U [v, 3, v; 2, 2, 2] U [v, v, 3; 2, 2, 2] and it follows 1~;) E [v, v, v; 2, 2, 2] 

and 1~;) preserves {O, 1, 2}. Only the case 11(013) == 3, 11(123) == 3, 11(203) == 3 
remains possible. Now we define 

g(x,y,z) := l(y,x,l(x,y,z)) 

and we obtain 9 E [1(1,0,3),1(2,1,3),1(0,2,3); 3, 2, 2]. Suppose that none of the 

first three values equals 3. Then, by Lemma 4.40, we have 1(1,0,3) E {O, 1}, 

1(2,1,3) E {1,2}andl(0,2,3) E {0,2}. Ifthethreevaluesarenotpairwisedistinct, 

then g(2) E [0,0,0; 2, 2, 2] U [1, 1, 1; 2, 2, 2] U [2, 2, 2; 2,2,2] and g(2) preserves {O, 1, 2}. 

If the three values are pairwise distinct, then (1(1,0,3),1(2,1,3),1(0,2,3)) E (012). 

Now 3 tJ. g( (012)) implies that g(2) preserves {O, 1, 2}. Thus,3 E {j(I, 0, 3), 1(2,1,3), 

1(0,2,3)}. To eliminate other cases define 

h(x,y,z):= l(g(x,y,z),g(z,y,x),g(x,z,y)). 
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We examine the range of h completely by determining the range of g. 

(x, y, z) 
(0,1,2) 

(1,2,0) 

(2,0,1) 

(1,0,2) 

(0,2,1) 

(2,1,0) 

(0,1,3) 

(1,3,0) 

(3,0,1) 

(1,0,3) 

(0,3,1) 

(3,1,0) 

(0,2,3) 

(2,3,0) 

(3,0,2) 

(2,0,3) 

(0,3,2) 

(3,2,0) 

(1,2,3) 

(2,3,1) 

(3,1,2) 

(2,1,3) 

(1,3,2) 

(3,2,1) 

{
D, 

3, 

{ ,, 
3, 

g(x, y, z) 

f(1,0,3) 
f(2, 1,3) 

f(0,2,3) 
3 

2 

2 

f(1,0,3) 
3 

3 

f(1, 0, 3) 
If J(1,0,3) =0 

If J(l, 0, 3) E (l,3j 

If J(l, 0, 3) = 1 

If J(l, 0, 3) E (D, 3j 

f(0,2,3) 
{ 

2, If J(O, 2, 3) = :2 

3, If J(O, 2, 3) E {D, 3j 

{ 
0, If J(O, 2, 3) = 0 

3, If J(O, 2, 3) E {2, 3} 

{ ,, 
3, 

f 2, 

3, 

f(0,2,3) 
3 

3 

f(2, 1,3)· 

3 

3 

f(2,1,~) 
If J(2, 1, 3) = 1 

If J(2, 1,3) E (2, 3j 

If J(2, 1,3) = 2 

If J(2, 1,3) E (l,3j 

(x,y,z) 
(0,1,2) 

(1,2,0) 

(2,0,1) 

(1,0,2) 

(0,2,1) 

(2,1,0) 

(0,1,3) 

(1,3,0) 

(3,0,1) 

(1,0,3) 

(0,3,1) 

(3,1,0) 

(0,2,3) 

(2,3,0) 

(3,0,2) 

(2,0,3) 

(0,3,2) 

(3,2,0) 

(1,2,3) 

(2,3,1) 

(3,1,2) 

(2,1,3) 

(1,3,2) 

(3,2,1) 

h(x,y,z) 
2 

{ 
2 IfJ(2,1,3)=2 
3: If J(2, 1,3) E (l,3j 

{ 
2 If J(O, 2, 3) = 2 

3: If J(O, 2, 3) E lO,3} 

f(3,f(0,2,3),f(2,1,3) 
f(2,f(2,1,3),f(1,0,3) 
f(2,f(1,0,3),f(0,2,3) 

f(1,0,3) 
{ 

J(l, 0, 3j, 

3, 

{ J(l, 0, 3j, 

3, 

{ 
J(l, 0, 3), 

3, 

f J(l, 0, 3), 
3, 

{ 
J(O, 2, 3), 

3, 

{ J(O, 2, 3), 

3, 

If J(l, 0, 3) E (0,3j 

If J(l, 0, 3) = 1 

If J(l, 0, 3) E (l, 3j 

Ifj(I,0,3)=0 

3 
If J(!, 0, 3) = a 
If J(l, 0, 3) E (l, 3j 

If J{I,O, 3) = 1 

If J(l, 0, 3) E {D, 3j 

3 
If J(O, 2, 3) = :2 

If J(O, 2, 3) E (0,3j 

If J(O, 2, 3) = 0 

If J(O, 2, 3) E (2,3j 

f(0,2,3) 
{ 

J(O, 2, 3), If J(O, 2, 3) E p,3j 
3, lfJ(O,2,3)=O 

{ 
J(O, 2, 3), If J(O, 2, 3) E (0,3j 
3, IfJ(0,2,3)=2 

f(2,1,3) 
{ 

J(2, 1,3), 

3, 

{ J(2, 1,3), 

3, 

{ 
J(2, 1, 3), 

3, 

f J(2, 1, 3), 

3, 

If J(2, 1, 3j E (l, 3j 

If J(2, 1, 3) = 2 

If J(2, 1,3) E p,3j 

If J(2, 1,3) = 1 

3 
If J(2, 1,3) = 1 

If J(2, 1,3) E (2, 3j 

If J(2, 1, 3) = 2 

If J(2, 1, 3) E (l, 3j 

Again, note that f(O, 1,3) # 2, f(1, 2, 3) # 0 and f(2, 0, 3) # 1 because the sets 

{0,1,3}, {1,2,3} and {0,2,3} are preserved by f. We show that at least one of 

. the two values f(2, 1,3), f(O, 2, 3) has to equal 2. Let us suppose otherwise. We 

then have h(1, 0, 2) = f(3, f(O, 2, 3), f(2, 1,3)) = 3, because we either have that 

one of the two values f(O, 2, 3), f(2, 1,3) equals 3 or h(1, 0, 2) = f(3, 0,1) = 3. We 

can also observe that h(O, 2,1) can only equal 2 if f(2, 1,3) = 1 and f(1, 0, 3) = 0 

and, furthermore, h(2, 1,0) can only equal 2 if f(1, 0, 3) = 1 and f(O, 2, 3) = O. 

It is obvious that both conditions cannot be true at the same time, so we cannot 

have h(O, 2,1) = h(2, 1,3) = 2. This means that M2)( (102)) = h( (31's)) for sorne 

1', SES where rand S cannot both equal 2. But we can see in the table above that 
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h(r, s, t) =1- 2 whenever 3 E {r, s, t} and at most one variable of r, s, t equals 2 sinee 

2 1. {J(I, 0, 3), f(2, 1,3), f(O, 2, 3)}. Rence, 2 1. h(2)( (102)). Furthermore, we have 

h(2)1(012) == 3 because h(I,2,0) = 3 and h(2,0,1) = 3 sinee f(2,1,3),f(0,2,3) =1- 2. 
The remaining values of h(2) can be calculated easily by using the table of h ab ove 

(e.g. we have M2)I(013) == f(l, 0, 3) because it can be observed that h equals f(l, 0, 3) 

on at least two of the three triplets in (013)). We obtain 

(x, y, z) h(2)(X, y, z) 

(012) 3 

(1, 0, 2) =1-2 
(0,2,1) =1-2 
(2,1, 0) =1-2 
(013) f(I,0,3) =1- 2 

(103) 3 

(023) 3 

(032) f(O, 2, 3) =1- 2 

(123) 3 

(213) f(2, 1,3) =1- 2 

But now the fact that 2 is not in the range of h (2) E [I] is a contradiction to the fact 

that f is minimal by Lemma 4.8. Thus, 2 E {j(2, 1,3),1(0,2, 3)}. Recall that we 

already know 3 E {J(I, 0, 3), f(2, 1,3), f(O, 2, 3)} This leaves us with the following 

nine cases 

(1) g E [0,2,3; 3, 2, 2] (4) g E [1,2,3; 3, 2, 2] (7) g E [3,2,2; 3, 2, 2] 

(2) g E [0,3,2; 3, 2, 2] (5) g E [·3,1,2; 3, 2, 2] (8) g E [3,2,3; 3, 2, 2] 

(3) g E [1,3,2; 3, 2, 2] (6) g E [3,2, 0; 3, 2, 2] (9) g E [3,3,2; 3, 2, 2] 

We define l(x,y,z) := f(g(x,y,z),g(z,x,y),g(y,z,x) and we obtain for the cases 

(2) ,( 4) ,(5), (6) ,(7): 

(2) l E [2,2,2;2,2,2] (4) l E [2,2,2;2,2,2] (5) l E [1,1,1;2,2,2] 

(6) l E [0, 0, 0; 2, 2, 2] (7) l E [2,2,2; 2, 2, 2] 

Clearly, l E [I] preserves {a, 1, 2} in the listed cases and henee contradicts the 

minimality of J. For the case (1), define k(x,y,z) := g(g(x,y,z),y,g(y,z,x) and 

we obtain k E [0,2, 0; 3, 2, 2]. This implies k(2) E [0, 0, 0; 2, 2, 2] and henee k(2) E [I] 

preserves {a, 1, 2}. In the case (3), define k(x, y, z) := g(y, g(y, z, x), g(x, y, z)) and 

we obtain k E [1,2,1; 2, 2, 3]. Renee, k(2) E [1,1,1; 2, 2, 2] and again k(2) E [I] 

preserves {a, 1, 2}. Only the cases (8) and (9) are left. We determine f for these 

cases and also f<P, 1; = (01), for the case (9). 

51 



(8) (9) (9) 

(x, y, z) f(x,y,z) f(x,y,z) fr/>(x, y, z) 

(012) 3 3 2 

(102) 2 2 3 

(013) 3 3 3 

(103) 3 3 3 

(023) 3 2 3 

(203) 3 3 3 

(123) 3 3 2 

(213) 2 3 3 

In case (8) we have f = m4,21S and the daimfollows trivially. In case (9) we 

have [jr/>] = [m4,21S] because we can obtain fr/> from m4,21S (and vice versa) by 

interchanging the first and the second variable. Thus, [f] ~ [m4,21S]. This finishes 

the pro of. [J 

Lemma 4.42: Let f E Y be a minimal nonconservative majority operation such 

that fl(012) == 3, fl(102) == 3. Then f = m4,0 where m4,0 is the majority operation 

that equals 3 on triplets of distinct elements. 

Prao!" Note that f is cydically commutative by Lemma 4.39. We use fzy to 

prove the daim. Let us determine the values of fzy on the set {O, 1, 2} as far as we 

can by using the identities fl(012) == fl(102) == 3 and Lemma 4.30. 

(x, y, z) fzy(x, y, z) 

(0, 1,2) { j(O, 1, 3) if j(O, 1, 3) E {O, 1}, 

j(2,0,3) if j(0,1,3) = 3. 

(1,2,0) { j(1,2,3) ifj(1,2,3) E {1,2}, 

j(0,1,3) if j(1,2,3) = 3. 

(2,0,1) { j(2, 0, 3) if j(2, 0,.3) E {O, 2}, 

j(l, 2, 3) if j(2,0,3) = 3 

(1,0,2) { j(1,0,3) if j(l, 0, 3) E {O, 1} 

j(2, 1, 3) if j(l, 0, 3) = 3 

(0,2,1) { j(O, 2, 3) if j(O, 2, 3) E {0,2} 

j(l, 0, 3) if j(0,2,3) = 3 

(2,1,0) { j(2,1,3) if j(2, 1, 3) E {1,2} 

j(0,2,3) if j(2,1,3) = 3 

f(O, 1,3), f(1, 0, 3) =1= 2, f(O, 2, 3), f(2, 0, 3) =1= 1 and f(1, 2, 3), f(2, 1,3) =1= (1 because 

f preserves the sets {O, 1, 3}, {a, 2, 3}, {1, 2, 3} by Lemma 4.39. Let us distinguish 

cases by using the following sets: 

U = {J(O, 1,3), f(2, 0, 3), f(1, 2, 3)}, 
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v = {J(I, 0, 3), f(O, 2, 3), f(2, 1, 3)}. 

If U = {3}, then fzy E [3,3,3; *, *, *] and 1:;; E [3,3,3; *, *, *]. If 3 fj. U, then we 

have fzy E [0,1,2; *, *, *] (and 1:;; E [0,1,2; *, *, *]) or fzy E [1,2,0; *, *, *] (and 

again 1:;; E [0,1,2; *, *, *]) or two of the three values in U have to coincide (say 

they equal r) and we have 1:;; E [r, r, r; *, *, *]. If exactly one of the three values 

in U equals 3, say f(O, 1,3), then r = fzy(O, 1,2) = fzy(2, 0,1) = f(2, 0, 3) i= 3 

and we have fzy E [r, *, r; *, *, *] and hence 1:;; E [r, r, r; *, *, *]. If two of three 

values in U equal3, then the remaining value appears twice in fzy( (012)) and again 

1:;; E [r, r, r; *, *, *] for sorne r i= 3. Thus, 

1:;; 1 (012) { :; 
=ri=3 

if U = {3}, 

if U = {O, 1, 2}, 
otherwise. 

The same arguments can be used to show that , 

1:;;1(102) { :; 
=si=3 

if V = {3}, 

if V = {O, 1, 2}, 

otherwise. 

Let us combine possible cases. If U i= {3} and V i= {3}, then 1:;; preserves {O, 1, 2} 

and f is not minimal. If U = {3} and V = {O, 1, 2}, then we have 1:;;1(012) = 3 and 

1:;;1(102) = p. Now Lemma 4.31 implies that 1:;; is not minimal which contradicts 

the minimality of f. The same foUows for U = {O, 1, 2} and V = {3}. If U = {3} 

and V faUs under the third case, then 1:;;1(012) = 3 and 1:;;1(102) = u i= 3. But now, 

1:;; falls under the case handled in the last lemma. Thus, [1:;;] ~ [m4,218]. But, as 

we will see later, the clone [m4,21S] do es not contain an operation isomorphic to f, 
hence f fj. [1:;;], a contradiction. The same follows if U falls under the third case 

and V = {3}. Only the case U = V ~ {3} remains. But then we have f(x, y, z) = 3 

for aU (x, y, z) E w. Thus, f = 'm4,0' 0 

Let us summarize what we have done in this section. We have shown that a 

nonconservative minimal majority operation satisfying (0) on the four-element set 

S must be (up to isomorphism and permutation of variables) m4,44 (if f fj. T) or 

one of the two operations m4,0, m4,21S (if f ET). Now, we show that these three 

operations are indeed minimal operations. 

Lemma 4.43: If we restrict the operations m4,0, m4,21S, m4,44 on the set {1, 2, 3P, 
then they are isomorphic to the operations mo, m510 and m44, respectively (see Table 

4·4)· 
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Proof: We have already seen that aIl three operations preserve the set {l, 2, 3}. 

Renee, m4,ol{l,2,3P, m4,21SI{1,2,3P, m4,441{1,2,3P càn be considered as majority opera­

tions on the three-element set {l, 2, 3}. Now m4,ol{1,2,3P ~ mo, m4,441{1,2,3P ~ m44 

and m4,21SI{l,2,3P ~ m510 can be seen by renaming the elements 1,2,3 to 1,2,0. D 

Lemma 4.44: m4,O, m4,21S, m4,44 are minimal (majority) operations on S. 

Praof: The pro of is the same for aIl three operations, so let f be any of them. Let 

9 E [I] be an arbitrary majority operation. We have to show f E [g]. f preserves 

the equivalenee relation a whose blocks are {0,3}, {1}, {2} and its range does not 

contain the element o. By Lemma 2.5 and Lemma 4.8, this must also be true for g. 

We show that these two properties determine gl{O,1,2P whenever gl{1,2,3P is given: 

Let (r, s, t) E {a, 1, 2P. We can assume that r, s, t are pairwise distinct, because 

otherwise g(r,s,t) is determined by the majority rule. We can chose (u,v,w) E 

{l, 2, 3P such that (:), (:), (:) E a. Sinee 9 has to preserve a, we must have 

( g(T,s,t))E a. But now, ° tf. {g(r,s,t),g(u,v,w)} implies g(r,s,t) = g(u,v,w). 
g(u,v,w) 

Thus, gl{l,2,3P determines gl{O,1,2p. Since f preserves {l, 2, 3}, we can consider 

fl{l,2,3}3 as an operation on the set {l, 2, 3}. Now this operation is minimal sinee it 

is isomorphic to one of the operations mo, m51O, m44 by the last lerrlma and we have 

already seen that these are minimal. This implies that there has to exist h E [g] such 

that hl{l,2,3P = fl{l,2,3p. But now, h also has the two properties described above 

and hence hl{l,2,3P = fl{1,2,3P determines hl{o,1,2P uniq,uely: It can be nothing else 

but fl{o,1,2p. On the remaining two three-element subsets of S, namely {a, 1, 3} 

and {a, 2, 3}, f is always 3 which means that we must have the same thing for h. 

Thus, h = f and f E [g]. D 

Combining this lemma with our previous results gives us the main theorem of 

this section. 

Theorem 4.45: Up to isomorphism, we have exactly three nonconservative min­

imal majority clones on S: [m4,oL [m4,218] and [m4,44]. 

Lemma 4.43 clearly implies that the restriction to the set {l, 2, 3P gives us a 

one-to-one correspondenee between the majority operations in m4,i on S and mi on 

the three-element set {a, 1, 2}. Renee, our clones [m4,OJ, [m4,21S] and [m4,44] contain 

one, eight and three majority operations, respectively. We can easily determine aIl 

of them by using Table 4.4. They can be seen in the tables on the foIlowing page. 
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Table 4.8 

The nonconservative minimal majority operations on {a, 1, 2, 3} (up to 

isomorphism) 

[m4,O] [m4,44] 

(x,y,z) m4,O (x,y,z) m4,624 'm4,44 'm4,424 

(0,1,2) 3 (0,1,2) 2 3 2 

(1,2,0) 3 (1,2,0) 3 1 3 

(2, 0,1) 3 (2, 0,1) 1 2 1 

(1, a, 2) 3 (1,0,2) 2 1 3 

(0,2,1) 3 (0,2,1) 1 3 2 

(2,1, 0) 3 (2,1,0) 3 2 1 

{a, 1, 3} 3 {O, 1, 3} 3 3 3 

i {a, 2, 3} 3 {a, 2, 3} i 3 3 3 

(3,1,2) 3 

(1,2,3) 3 
(3,1,2) • 2 3 1 

(1,2,3) 3 1 2 

(2,3,1) 3 (2,3,1) 1 2 3 

(1,3,2) 3 (1,3,2) 2 1 3 

(3,2,1) 3 (3,2,1) 1 3 2 

(2,1,3) 3 (2,1,3) 3 2 1 

[m4,218] 

m4,62 1 (x,y,z) m4,510 m4,546 m4,26 m4,666 m4,218 m4,182 m4,702 

(0,1,2) 2 2 3 2 3 3 2 3 

(1,2,0) 2 3 2 2 3 2 3 3 

(2,0,1) 1 2 2 2 3 3 3 3 2 

(1,0,2) 3 2 3 3 2 3 2 2 

(0,2,1) 3 3 3 2 2 2 2 3 

(2,1,0) 3 3 2 3 2 2 3 2 

{0,1,3} 3 3 3 3 3 3 3 3 

{a, 2, 3} 3 3 3 3 3 3 3 3 

(3,1,2) 2 2 3 2 3 3 2 3 

(1,2,3) 2 3 2 2 3 2 3 3 

• (2,3, 1) 2 2 2 3 3 3 3 2 

i (1,3,2) 3 2 3 3 2 3 2 2 

1 (3,2,1) 3 3 3 2 2 2 2 3 

3 3 2 3 2 2 3 2 (2,1,3) 
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4.5 Extending minimal majority operations 

Arguments similar to the on es that Waldhauser used in Lemma 4.44 can be used to 

construct, for a given minimal majority operation f on S = {O, ... , n -1}, a minimal 

majority operation l' on S U {n}. The following two theorems give two different 

ways to do so: 

Theorem 4.46: Let f be a minimal majority operation on S = {O, ... ,n - 1}. 

, { } , _ {x, if xE S Set S := SUn and let a E S. For x E S set x = . . Define 
a, zfx = n 

1'(x, y, z) := f(x, y, Z). Then l' is a minima·l majority operation. 

Proof: For notational simplicity let a = o. It is easy to see that l' is a majority 

operation. Suppose g' E [J'] where g' is a majority operation. As usual, we have to 

show l' E [g']. Clearly, n is not in the range of l' (and hence l' preserves the set S) 
and one can check that l' preserves the equivalence relation (J on S' whose blocks 

are {O, n}, {1 }, ... , {n - 1}; hence, these two properties have to ho Id for g' as weIl. 

But now, similarly as in the proof of Lemma 4.44, the restriction g'I83 determines g': 

Let (r, s, t) E S'3. We can assume that r, s, tare pairwisedistinct, because otherwise 

g(r, s, t) is determined by the majority rule. We can chose (u, v, w) E S3 such that 

(r) , (s) , (t) E (J. Since g' has to preserve (J we must have (~'(r,s,t)) E (J. But now 
u v w 9 (u,v,w) 

n ~ {g'(r, s, t),g'(u, v, w)} implies g'(r, s, t) = g'(u, v, w). Thus, g'I83 determines g' 

uniquely. Since l' preserves S, we can consider 1'183 as an operation on the set 

S. Now 1'183 = f implies that 1'183 is minimal on S. This implies that there has 

to exist h' E [g'] such that h'I83 = 1'183. But now, h' also has the two properties 

described above and hence h'I83 = 1'183 determines h uniquely: It can be nothing 

else but J'. Thus, h' = J'and l' E [g'], implying that l' is minimal. D 

Theorem 4.47: Let f be a minimal majority operation on S = {O, ... ,n - 1}. 
Set S' := Su {n}. Define the operation l' on S'as follows: For all pairwise distinct 

x,y, z ES' 

f
' ( , ) - { f (x, y, z), ' if (x, y, z) E S3 

x,y,z - , 
n, otherwzse 

The remaining values may be defined by the majority rule. Then l' is a minimal 

majority operation on S'. 

Pro of: Suppose g' E [J'] where g' is a majority operation. Again, we have to show 

l' E [g']. For all pairwise distinct x, y, z where (x, y, z) E S'3 \ S3 (i.e. nE {x, y, z}), 
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we have l' (x, y, z) = n which means that l' preserves {x, y, z} and that the range 

of the restriction 1'1{x,y,z}3 consists of n only. Hence, g' also preserves {x, y, z} and 

the range of the restriction g'l{x,y,z}3 also consists of{n} only sin ce it is generated 

by 1'1{x,y,z}3 (see Lemma 4.8). As ab ove , 1'183 is a minimal operation on S. This 

implies that there has to exist h' E [g'] such that h'I83 = 1'183. Furthermore, 

h' E [g'] implies that the property described above must hold for h'. It follows 

h'(x, y, z) = 1'(x, y, z) for all (x, y, z) E S'3 \ S3. Hence, h'(x, y, z) = 1'(x, y, z) for 

all pairwise distinct (x, y, z) E S,3. On the remaining triplets, h' has to coincide 

with l' due to the majority property. Thus, h' = l' and l' E [g']. 0 

These two techniques allow us to extend a given minimal majority operation to 

an arbitrarily larger universe. In particular, they allow us to find nonconservative 

minimal majority operation on any finite set S. Note that both techniques can be 

generalized to work for all minimal operations. 

Example: We will use the two techniques given in the theorems above to ex­

tend the minimal operation m4,44 (see Lemma 4.41) on {a, 1,2, 3} to the minimal 

operation m~,44 on {a, 1, 2, 3, 4}. The result is stated in the table on the following 

page. 
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m~,44(x, y, z) m 4,44(x, y, z) 

as in Theorem 4.46 as in Theorem 4.47 

(X, y, z) (setting a = 0) 

(0,1,2) 3 3 

(1,2,0) 1 1 

(2,0,1) 2 2 

(1,0,2) 1 1 

• 

(0,2,1) 3 3 

(2,1,0) 2 2 

(0,1,3) 3 3 

(1,3,0) 3 3 

(3,0,1) 3 3 

(1,0,3) 3 3 . 
(0,3,1) 3 3 

(3,1,0) 3 3 

(0,2,3) 3 3 

(2,3,0) 3 3 

(3,0,2) 3 3 

(2,0,3) 3 3 

(0,3,2) 3 3 

(3,2,0) 3 3 
f----'-'--' 

(1,2,3) 1 1 

(2,3,1) 2 2 

(3,1,2) 3 3 

(2,1,3) 2 2 

(1,3,2) 1 1 

(3,2,1) 3 3 

(0,1,4) ° 4 

(1,4,0) ° 4 

(4,0,1) ° 4 

(1,0,4) ° 4 

(0,4,1) ° 4 

(4,1,0) ° 4 

(0,2,4) ° 4 

(2,4,0) ° 4 

(4,0,2) ° 4 

(2,0,4) ° 4 

(0,4,2) ° 4 

(4,2,0) ° 4 

(1,2,4) 1 4 

(2,4,1) 2 4 

(4,1,2) 3 4 

(2,1,4) 2 4 

(1,4,2) 1 4 

(4,2,1) 3 4 

(2,3,4) 3 4 

(3,4,2) 3 . 4 

(4,2,3) 3 4 

(3,2,4) 3 4 

(2,4,3) 3 

1 

4 

(4,3,2) 3 4 
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Chapter 5 

Majority clones and relations . 

We have already noted that for any clone C (on a finite set S) there exists a set 

of relations R such that the clone C is the set of aIl operations on S preserving 

all relations in R (i.e. C = Pol R). In fact, in this chapter, we will see that if 

C is a majority clone, then we can chose R to contain only one relation. After 

reproducing this well-known fact, our first goal will be to find such relations for the 

minimal majority clones on {D, 1} and {D, 1, 2}. 

Assume S to be the n-element set {D, ... , n - 1}. 

Definition 5.1: Denote by Rs the set of finitary relations on S. For a positive 

integer m, let R~m) denote the set of m-ary relations on S. For a set F of operations 

on S define 1 nv F to be the set of relations on S that are preserved by aIl J E F, 

i.e. 

Inv F = {O" ERs 1 J preserves 0" for aIl J E F}. 

For a single operation J, we write InJ J instead of Inv {J}. Furthermore, set 

Inv(m)F = (Inv F) n O~m). 

Recall that, for R ERs, Pol R is the set of operations on S preserving aIl 

relations in R (by Lemma 2.6, they form a clone). Set pol(m)R = (Pol R) n R~m). 

Tt is easy to see that, for two relations 0"1, 0"2 E 1 nv F(m), we must have 0"1 n 0"2 E 

Inv F. Furthermore, for an arbitrary mEN, the relation sm is obviously preserved 

by any set of operations. This justifies the following definition. 

Definition 5.2: Let C be a clone, 0" E R~m) and mEN. Denote by rc(O") the 

smallest relation in Inv(m)c (with respect to Ç) that contains 0", i.e. 

rc(O") = n{O"'IO" ç 0"',0"' E Inv(m)c}). 
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Clearly, f c is a closure operator on the partiaUy ordered set (R~ m) , Ç); i. e. for aU 

0'1,0'2: al ç fc(ad, al ç 0'2 =} fc(ad ç fc(a2) and fc(fc(ad) = fc(ad· Fur­

thermore, we introduce the foUowing notation. For a k-ary operation f and m-tuples 

Vi =(V;I)E sm (i'= 1, ... ,m)wewrite [Vl, ... ,Vk] for themxk-matrixwhose columns 
V. rn 

( 

f(V11, V2::, ... , Vkl) ) . 
are (in this order) VI, ... , Vk and f[Vl, ... , Vk] for the m-tuple 

f(Vlm, V2m, ... , Vkm) 

For example, if k = m = 2, VI = G), V2= G), then 

f[(l) (0)]= (f(l,O)) 
2 ' 1 f(2,1) 

Lemma 5.3: Let C be a clone, mEN and a E R~m). Then 

(a) fc(a) = {I[Vl, ... , Vk] 1 VI, ... , Vk E a, f E C(kl, kEN}. 

(b) If a = {VI, .... Vq}, then fc(a) = {g[Vl' ... , vq] 1 g E C(q)}. 

Proof: [15] (a) Denote by 8 for the right hand side of the equation. 

First, we show f c( a) ç 8. For aU V E a we have eHv] = v, thus a ç 8. Furthermore, 

we show that 8 E Inv C. Let l E N, f E C be l-ary and let Tl, ... , Tl E 8 be arbitrary. 

We have to show f[Tl, ... , Ttl E 8. As Ti E 8, we have Ti = fi [Vi,l, ... , Vi,kJ for some 

ki E N, fi E C(k.), Vi,j E a (i E {1, ... , l}, j E {1, ... , ki }). Set k := I:~=l ki and 

define the k-ary operation h by 

h := f(!I(e~, ... , e~J, h(e~I+l' ... , e~2)' ... , fl(e~L~:~ ki)+l' ... , e~)) 

(see Definition 2.1). Clearly, hE C. Now 

fh, ... , Tl] = f[Jdvl,l, ... , VI,k l ], ••. , fdvl,l, ... , Vl,kl]] 

= h[Vl,l, ... , Vl,k l , V2,1, ... , Vl,ktl E 8. 

Thus, 8 E Inv C. Now the minimality of fc(a) together with a ç 8 E Inv C 

implies fc(a) ç 8. 

Conversely, to show 8 ç fc(a), let T E 8. This means that there exist f E C(k) and 

VI, ... , Vk E a such that T = f[vI, ... , Vk]. But now VI, ... , Vk E fc(a) E Inv C implies 

T = j[Vl, ... , Vk] E fc(a). 

(b) First, {g[Vl' ... , Vq] 1 g E C(q)} ç fc(a) is obvious by (a). It remains to show 

that {g[Vl' ... , vq]1 g E C(q)} ~ fc(a). By (a), the latter equals 

{I[Bl , ... , Bk] 1 BI, ... , Bk E a, f E C(k), kEN}. 
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Let kEN, f E C Ck) and eI, ... , ek E a {VI, ... , vq }. Now, there exists a map 

rjJ: {l, .. ,k}......, {l, ... ,q} such that ei = V<jJ(i). Renee, 

J[e1, ... , e k] = J[e~(1) [VI, ... vq], ... , e~(k) [VI, ... Vq]] f( e~(1l' ... , e~(k))[VlJ ... , vq ] 

This, together with f(e~(l}' ... , e~(k») E c(q), finishes the proof. 0 

Example: Let C be the minimal majority clone [dl on {O, I} where d is the dual 

discriminator of Fried and Pixley. We know that the set of ternary operations in [dl 
. {3 3 3 d} IS e1,e2 , e3 , • 

0 

° 
° 

Let a = { ° 1 

1 

1 

1 

Then rc{a) 

0 
0 

1 

1 

° 
° 1 

1 

{ 

0 
1 

0 

1 }. 
° 1 
\ 

° 1 

eI(O,O,O) 

er(O,O,l) 

d(o, l, 0) 

eI(O,l,l) 

eÎ(l,O,O) 

ei(l, 0,1) 

er(l,l,O) 

eW,l,l) 

° 
° 
° 

° 
° 

{ ° 1 

° 
° 1 

1 

1 

1 1 

, 

° 1 

° 1 

° 1 

° 1 

e~(O, 0, 0) 

e~(O, 0,1) 

e~(O, 1,0) 

e~(O,l,l) 

e~(1, 0, 0) 

e~(l, 0,1) 

d(1,l,O) 

d(l,l,l) 

° 
° 
° 
° 1 

1 

1 

}. 

e5(0,0,0) d(O, 0, 0) 

e3(0, 0,1) d(O, 0,1) 

e~(O, l, 0) d(O,l,O) 

e5(0,1,1) d(O, l, 1) } , 
d(l,O,O) 

, 
d(l,O,O) 

e~(l, 0, 1) d(l,O,l) 

eW,l,O) d(l, l, 0) 

eW, l, 1) d(l,l,l) 

We are now ready to prove that any majority clone can be written as Pol a for 

a single relation a. We start with the Baker-Pixley Theorem that we have already 

used in the last chapter (see 4.13). We now have the tools to prove it. 

Theorem 5.4: (The Baker-Pixley Theorem) If C is a majority clone on S, 

then C Pol Inv(2)C. 

Praof: [15] Let mEC be a majority operation and f E Pol Inv(2lC. We have 

to show f E C. Let l be the arity of f. Set 
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M = {B ç 51 1 flB = glB for sorne 9 E C(l)}. 

It suffices to show that 51 E M (because then f = 9 E C). To do so, we prove 

BE M for aIl B ç 51 by induction over k = IBI. 

For the base case, let k = 2, i.e. B = {(Tl, ... , Tl), (T{, ... , Tf)}. Set aB = {(T~) , ... , (T~)}. 
. ~ ~ 

Then rC(aB) E Inv(2)C implies (J(T:, ... 'T~») E rC(aB) and, by Lemma 5.3, rc(aB) = 
J(T!, ... ,Tl) 

{g[(:J; ... ,(:Jll 9 E C(l)}. Thus, thereexistsg E C such that flB = giB' It follows 

B E M, as required. 

Now suppose k 2: 2 and that the claim is true for aU B' ç 51 with IB'I ::; k. Let 

IBI = k + 1 and let al, a2, a3 EBbe pairwise different (possible since k 2: 2). We 

define Bi = B\ {ai} (i = 1,2,3). By induction hypothesis, there exist gl,g2,g3 E C 

such that flBi = gilBi' Set 9 = m(gl,g2,g3)' We show that flB = giB' Let x E B. 

Due to IBI = k + 1 and Bi ç B, Bi = Ikl, clearly x belongs to at least two sets 

among BI, B 2, B 3, say BI and B 2. Hence, by the majority rule, 

Thus, B E M. This finishes the induction and for k = 1511 it follows 51 E M, as 

required. D 

Clearly, this theorem implies that for any majority clone C, we have a set of 

binary relations R such that C = Pol R. Since the set of binary relations on a finite 

set is finite, Ris finite. However, this implies that C can be written as Pol a for a 

single relation a as the following lemma shows. 

Corollary 5.5 Let C be a clone and let R be a finite set of (finitary) relations. 

If C = Pol R, then C = Pol a for a single relation a. 

Proof: If suffi ces to show this for IRI = 2. Let R = {6,6} where Çi is li-ary 

(i = 1,2). Set 

It can be checked directly that on one hand Pol R ç Pol a. On the other hand 

Pol a ç Pol 6 since 6 is the projection of a on the first ]1 coordinates. Similarly 

Pol a ç Pol 6 and so Pol a ç Pol R. D 

This implies that any majority clone can be written as Pol a for sorne a ERs. 
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We can deduce more from the Baker-Pixley Theorem. 

Corollary 5.6: Reeall that L8 denotes the set of clones on 8 (see Definition 

2.10). Let m be a majority operation on 8. Set Mm = {C E L8 1 mEC}. Then 

a) Mm is fini te. 

b) Eaeh C E Mm is finitely generated (i.e. there exist ft, ... , fk sueh that 

C [{fll ... , fk}]). 

Proof: a) 181 n implies that there are 2n2 binary relations on 8. According to 

the Baker-Pixley Theorem, each C E Mm is determined by a set of binary relations 

and so IMml :::; 
b) Let C E Mm. Suppose to the contrary that C is not finitely generated. For 

k 2:: 3, denote by C k the clone generated by C(k). Clearly m E Ca ç C4 ç ... ç C 

while Uk2:a C. Thus Ck E Mm for aIl k 2:: 3, contradicting a). 0 

Before we start dealing with the minimal majority clones, we introduce some 

more definitions. Recall that 8 = {D, ... , n - 1} 

Definition 5.7: Let mEN. Denote by Xm the nm x,m matrix over 8 whose 

i-th row is (am-lJ ... , ao) where am-l, ... , ao are the unique elements of 8 such that 

i 1 = am_Inm - 1 + ... + a1n + ao 

(Le. the rows are the elements of 8 m listed in the increasing lexicographie order). 

CalI Xm the m-th abscissa of 8. 

Example: 

0 0 0 

0 0 1 

X3 = 0 0 n 1 

0 1 0 

n-l n-l n-l 

Definition 5.8: Denote by /1,1, ... /1,m the columns of Xm. For a clone C on 8, the 

m- th graphie of C is the n m -ary relation r c( { /1,1, ... , /1,m} ). Denote it by ra. 

Using Lemma 5.3 (b), this means ra = {f[/1,1, ... , /1,ml 1 f E c(m)}. If we look 

back at the example given after Lemma 5.3, we may note that it determines qdJ 
for n 2, 8 = {D, l}. We may also note that any tuple f[/1,1, ... , /1,ml determines f 

uniquely (and vice versa). 
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Lemma 5.9: Let C be a clone on So Then C ç Pol fè and C(k) = Pol(k)fè 

for all k ::; mo 

Proof: [2], ['15] Clearly, fè E Inv C implies C ç Pol fèo This proves the 

first part and C(k) ç Pol(k)fèo It remains to show that Pol(k)fè is contained 

in C(k) for aU k ::; mo Let f E Pol(k)fèo We add m - k non-relevant variables 

to f obtaining l' E O~m) 0 Clearly, f E Pol(k)fè implies l' E pol(m)fè 0 Let 

/1;1'000' /1;m be the columns of Xmo Now the projections imply /1;1'000' /1;m E fè and 

hence 1'[/1;1'000' /1;ml E fèo By Lemma 503 there has to exist g' E c(m) such that 

1'[/1;1'000' /1;ml = g'[/1;1, 000' /1;ml which implies l' = g'o This means that g' is essentially 
thek-ary operation fo Thus, f E Pol(k)fè 0 D 

In fact, fè is the largest clone D such that D(m) = c(m) 0 

Definition 5.10: Let C be a clone on So Define 

')'(C) = min{i ENI C = Pol f~} 

and set ')'( C) = 00 if C =1= Pol f~ for all i E No 

We will see that ')'( C) < 00 holds for aIl majority clones Co 

Definition 5.11: Let C be a clone and let a, a' be relations of the same arityo 

We say that a' C -generates a if f c( a') = a 0 CalI a a C -independent relation if 

Il Ft. f c (a \ {II}) for aU Il E a 0 

Example: Let C = [ml where m is a majority operation with m(O, 1,2) = 00 

The relation a = {(~) , (~) , (~) , (~)} is not C-independent, because (~) E fc(a \ 

{G)}) = fc({(~), C), G)})o 
Note that any relation a contains a C-independent relation a' such that a ç 

fc(a')o In particular, any relation that is preserved by C is C-generated by a 

C-independent relationo 

Lemma 5.12: Let C be a clone on So Then Pol f~ preserves any relation 

a E Rs that is C-generated by a relation a' E Rs where la'i ::; ko 

Proof: Note that the fact that a is C-generated by a' implies that C preserves 

ao Let /1;1, ooo/1;k be the columns of Xko Let f be an arbitrary operation in Pol f~ 

and let l be the arity of fo We have to show that fh, 000' Td E a for aIl Ti E a 
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(i = 1, .. , l). By the assumption of the claim, there exists a C-independent relation 

{VI, ... , vd ç a such that r c( {VI, ... , VA;}) a (note that VI, ... Vk do not have to be 

distinct). Let q be the arîty of the relation a. We can construct the q x k matrix 

[VI, ... , Vkl by taking q (not necessarily distinct) rows of the matrix Xk = [KI, ... , Kk]' 

Let rI, ... , r q be the indices of these rows. Nowa = r c( {VI, ''', Vk}) implies that the 

remaining elements of a can be obtained by taking the positions rI, ... rq of some 

other tuples Ki, ... , KI<7I-1<711 that are also in r~. This means that we can construct 

h, ... , Tt] as the matrix we obtain by taking the rows number rI, "') rq of a matrix 

[Kil" .. ,KiJ where Ki; E {KI, ... Kk,K~, ... ,KI<7I-1<7II} ç r~ (j 1, ... ,l). Since 1 has 

to preserve r~, we must have a tuple 8 E r~ such that Ih, ... , Td = : where (
8r,) 
8Tq 

8ri is the ri-th position of 8. But now the fact that C preserves a implies that for 

any tuple 8 E r~ {g[Kl, ... , Kkl 1 9 E C(k)} we must have : E a, because the (
8,,) 
81q 

tuples obtained by taking the positions rI, ... ,rq of KI, ... , Kk give us VI, ... Vk and 

these elements form a subset of a. Thus, I[TI, "') Tzl E a, as required. D 

The following statement is an immediate consequence, 

Corollary 5.13: Let C be a clone on 8. Then, for k 2: n, Pol r~ preserves any 

subset that is preserved by C. ln particular, if C is conservative, then sa is Pol r~. 

Prao!, Let A ç 8 be a unary relation that is preserved by C. Obviously, 

lAI:::; n :::; k. By Lemma 5.12, the relation Ais preserved by Pol r~, D 

We can deduce the following lemma. 

Lemma 5.14: Let C be a clone on 8 containing a majority operation m. Set 

k max{lall a E R~) is C-independent and rc(a) =J. 8 2
}. 

Then C Pol 

Praof: Let KI, K2, ... , Kk be the k columns of Xk. For the sake of brevity, denote 

by C' the clone Pol r~. Notice that C ç Cf by Lemma 5.9. We have to show that 

C' ç C which is equivalent to lnv C ç lnv Cf. Since mEC n Cf, we can apply 

the Baker-Pixley Theorem (see 5.4) and it suffi ces to show that any binary relation 

on 8 that is preserved by C is also preserved by Cf. The full binary relation is 

trivially preserved by Cf, so it remains to show that any binary relation a =J. 8 2 

that is preserved by C is also preserved by C'. But now, by the assumption of the 
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claim, (J is C-generated by a (C-iildependent) relation (J' such that 1;/1 :S k. Thus, 

by Lemma 5.12, (J is preserved by C'. 0 

Now, the following corollary is immediate. 

Corollary 5.15: Let C be a majority clone on S. Then C = Pol r~2-1. In 

othei words, ')'( C) :S n 2 
- 1. 

In particular, this implies that any clone C on 5 = {O, 1} that contains a majority 

operation can be written as Pol rb. Thus, we have solved the problem for our 

minimal majority clone [dl on {O, 1} and hence for the case n = 2. Recall that d 
is the dual discriminator of Fried and Pixley and the only majority operation on 

5 = {O, 1}. 

Theorem 5.16: Let C be the minimal majority clone on 5 

C = Pol r(d]' 

We have already calculated r[d] in the example after Lemma 5.3. 

Table 5.1 

The two-element case 

Pol (J (J 

er(~1,~2,~3) = (0,0,0,0,1,1,1,1) 

[dl e~(~1,~2,~3) = (0,0,1,1,0,0,1,1) 
e~(~1,~2,~3) = (0,1,0,1,0,1,0,1) 
d(~l, ~2, ~3) = (0,0,0,1,0,1,1,1) 

Back to the case 5 = {O, ... , n :- 1} 

{0,1}. Then 

Lemma 5.17: If C is a minimal majority clone on 5 and k ~ max(3, n), then 

C is the single minimal clone contained in Pol r~. 

Praof: Suppose Cmin is a subclone of Pol r~ generated by a minimal operation 

f. Since the arity of any minimal operation on an n-element set cannot exceed 

max(3, n), we have f E C~~n for sorne l :S max(3, n) :S k. But now, c(l) = Pol(l) 

r~ (see Lemma 5.9) implies f E C. Thus, Cmin = C. 0 

This Lemma gives us a correspondence between the clone lattice on 5 and the 

value of ')'( C). If ')'( C) > max(3, n), then there must be a non-minimal clone in the 
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clone lattiee that contains exactly one minimal majority clone. There is no such 

clone in the clone lattice for n = 2 which is another argument to obtain the result 

stated in Theorem 5.16. To my knowledge, it is not known whether there exists 

such a clone in the clone lattice on a three-element set. 

5.1 The three-element case 

In this section, fix n = 3 and denote by 8 the set {a, 1, 2}. We will determine 'Y(C) 
for the three (up to isomorphism) minimal majority clones [mo], [m44], [m51O] on 8. 

We can use Lemma 5.14 to calculate bounds for 'Y(C) for C = [mo], [m51O], [m44]' 
To do so, it is neeessary to determine aIl C-independent subsets of 82

• For 181 = 3, 

this can be done by a straight-forward computer-calculation within a few seconds. 

We obtain the following results. 

'Y ([mo]) 

'Y([m51O]) 

'Y([m44]) 

Table 5.2 

:S 6 (i.e. [mol = Pol rfmol) 
:S 5 (i.e. [m51O] = Pol r[m 5101) 

:S 4 (i.e. [m44] = Pol rtn441) 

Note that, for a given clone C, the calculation of r~ is equivalent to the problem 

of determining aIl k-ary operations in the clone C. Even for clones generated by only 

one operation (such as .minimal clones) and for very small k, it can be practically 

impossible to do so by a straight-forward calculation sinee the number of cases to 

be checked can be enormous. However, these bounds a merely for information. We 

do not rely on them in any of the upcoming results. 

Theorem 5.18: [mol = Polrfmol' 

Praof: Suppose [mol f= Pol rfmol' By Lemma 5.9, this is equivalent to Pol rfmol rz 
[mol. This implies that there is a nontrivial operation f in Pol rfmol that is not 

generated by mo; i.e. [I] rz [mol· Sinee [I] has to contain a minimal clone, by Lemma 

5.17, this minimal clone has to be [mol. Thus, mo E [f]. This means that we can 

apply the Baker-Pixley Theorem and we obtain that [I] rz [mol implies Inv(2)mo rz 
Inv(2) f. Thus, it follows from our assumption that there is a binary relation a on 8 

that is preserved by mo but not by f. This means J[ (::) , (::) , ... , (::)] = ( :) w here 

(::), (::), ... , (::)E a and (:)~ a. By Corollary 5.13, f has to be conservative, 
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hence a E {Xl, ... , xd and b E {YI, ... , yd. Without loss of generality, we can 

assume Xl = ... = Xia = a and Xia+l, ... , Xk =f a and also Yia+l = ... = Yib = band 

YI, ... , Yia, Yib+1, ... , Yk =f b for sorne 0 < ia < k, 0 < ib ::; k. For an element X E S 
(x =f 0) we define x to be the remaining element in S after taking away 0 and x. 

For i E {1, ... , k}, we also define 1'i(X) and 8i(X) as follows . 

. ( )_{ 1, xiE{O,x} .( )_{ 1, YiE{O,x} 
T', X - 8, X -

0, Xi = X 0, Yi = X 

Furthermore, note that f has to preserve any relation that is [mol-generated by a 

relation of cardinality at most 3 by Lemma 5.12. In particular, this means that f 
has to preserve any three-element binary relation on S that is preserved by mo. We 

distinguish three cases. 

C~e 1: a =f 0, b =f O. The fact that mo preserves the relation {(~), (~), (~)} 
implies that f preserves this relation as well. This, together with f(XI, ... , Xk) = a, 

. l' f[(Xl) (Xia) (XiU+l) (Xk)l f[(a) (a) (XiU+l=1 a) (Xk=la)l lmp leS 0' .. " 0 ' 1 ' ... , 1 = 0' ... , 0 ' . 1 ' ... , 1 = 

(~). Renee, 

(b) 

(a) f~,~) = O. 
ia k-ia 

f(l, ... , 1,0, ... ,0,1, ... , 1) = O. 
~~~ 

ia ib-ia k-ib 

Combining (a) and (b), we can deduee 

whichcontradicts that f preserves {G) , G) , C)} which must be the case sinee 

mo preserves this three-element relation. 

Case 2: a = 0, b =f O. Suppose that we have G) E a and (!) E a simulta-

neously. Then, the fact mo[(:J, G) , (!)l =(~) implies (~) E a, a contradiction. 

Thus, there is a unique element X E S \ {O} such that (:) E a. This implies 
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XiaH = 000 = Xib = Xo Similar as above, ma and consequently f have to pre­

serves the relation {(~),(~),(~)}, which, together with f(XI,ooo,Xk) = 0, im-

plies that we must have f[ (Xl) '000' (Xia) , (X'a+l) '000' (Xib) , ( Xib+ l )'000' ( Xk ) 1 
1 1 ° ° Tib+I(X) Tk(X) 

J[ (0) '000' (0) , (X) , 000' (X) , (Xib+l '" 0) , 000' (Xk '" 0) 1 = (0) and consequently 
1 1 ° ° Tib+I(X) Tk(X) 1 

(a) f(l, 000, 1,0, 000,0, Tib+I(X); 000' Tk(X)) = l. 
"-v-' "-v-' 

ia ib-ia 

As in case 1, we also have 

(b) f(l, 000' 1,0, 000,0,1, 000' 1) = 00 
~ "-v-' "-v-' 

ia ib-ia k-ib 

Thus, combining (a) and (b), we obtain 

J[C) '000' C} (~) 'o .. , (~) (Tib+;(X)), "0' (Tk~X))l = G) 
'-v-''-v-' 

ia ib-ia 

w hich means that f does not preserve {( ~) , (~) , (~) }, w hich is a contradiction 

since this three-element relation is preserved by mao The case a i= 0, b = ° is clearly 

analogue 0 

CaBe 3: a = 0, b = 00 Suppose that we have G) E a and G) E ao Then, 

ma[(:J, G) ,G)l = (~) implies that we have (~)E a, a contradictiono In the 

same way, we can conclude that we cannot have (~) E a and (~) E a at the same 

timeo Thus, there exist two unique elements x, y E S \ {o} such that (~), (~) E ao 

Hence,' XiaH = 000 = Xib = x and YI = 000 = Yia = yo Let us suppose that we 

also have (:) E ao But then ma[G) , (~) , (:)l = (~) and hence (~) E a which is a 

contradiction 0 As in CaBe 2, we can conclude 

(a) f~'8' Tib+I(X), 000, Tk(X)) = l. 

ia ib-ia 

Furthermore, ma preserves the relation {(~), (~), (i)} and so does fo This, to­

gether with f(YI, 000, Yk) = 0, implies f[(YI) ,0'0, (Yia) , (Yia+l) , ... , (Yib) , ( Y'b+ l ) , ... , ° ° 1 1 Sib+I(Y) 

( Yk ) 1 = f[ (y) , ... , (y) , (0) , '0" (0) , (Yib+l '" 0) , "0' (Yk '" 0) 1 = (0) and hence 
Sk(Y) ° ° 1 1 Sib+I(Y) Sk(Y) 1 
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(b) f(O, ... , 0,1, ... , 1, Sib+l(Y)' ... , Sk(Y)) = 1. 
~~ 

ia ib-ia 

Combining (a) and (b), it follows that we have 

(1) f[(l) , ... , (1), (0) "'" (0), (r.b+1(X)) "'" (rk(X))] =(1). o 0 1 1 Sib+1 (y) sk(y) 1 
'-....-''-....-' 

Note that, for i E {l, ... ,k}, (::i:O=C) if and only if (::)E {(~), (~), (~), (:)}. 
But now, this cannot be true since we have shown that none of these elements 

belongs to cr. Thus, (r.(x)) E {(1), (0) , (o)} (i = ib + 1, .. , ik)' and the equation 
Si(Y) 0 1 0 

(1) is contradicted by the fact that mû and hence f have to preserve the relation 

{G), e), (~)}. 
This contradicts the assumption and finishes the pro of. 0 

Theorem 5.19: [m44] = Pol r[m44]' 
Prao!, Again, we suppose [m44] =f Pol r[m44]' implying that there ,is an operation 

f in Pol r[m44] that is not generated by m44. As explained in the proof of Theorem 

5.18, this implies that there is a binary relation cr = {(::) , .. " (::)} that is preserved 

by m44 but not by f. In the following we denote by cr(l) the set of elements {Tl, ... , Tt} 

and by cr(2) the set of elements {SI, ... , St}. m44 is conservative, so Corollary 5.13 

implies that the same is true for f. This also implies that any relation of the 

form A x B for two subsets A, B ç S is preserved by f. In the following, we 

denote by a, b, c and x, y, z three distinct elements in S. Again, note that f has 

to preserve any relation that is [m44]-generated by a relation of cardinality at most 

3 by Lemma 5.12. This contradicts the case Icrl ::; 3. Now, let us suppose that 

we have Icrl 2: 7. Suppose (:) ~ cr. Since Icrl 2: 7, at least one of the four sets 

{(:), (!), (;)}, {(:), (!), (;)}, {(;), (:), (:)}, {(!), (:), (:)} is a subset of 

cr. But now, each of these subsets [m44]-generates a relation containing (:) . Thus, 

(:) E cr, a contradiction. 

Now, let us suppose that we have Icri = 6. This implies S = cr(l), because otherwise 

cr can be nothing else except A x S for a two-element set A ç S, which we ruled out 

above. Similarly, S = cr(2). Denote by dl, d2 and w any (not necessarily distinct) 

elements in S that can also equal a, b, c resp. x, y, z. Without loss of generality, we 

have three cases for our relation cr: 
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In the first case, we must also have {( ~) , (d;)} ç 0' because 0'(2) S. Thus, 

{(:), (:), (:), (~), (~2)} ç 0'. Since 0' has to contain more than five elements, 

we can assume dl =J d2 • But now, this subrelation [m44]-generates the full bi­

nary relation, sa it follows that 10'1 exceeds 6 and the case (1) is contradicted. 

In the case (2), we have rlm44J({(:)' G), (~)}) {(:) , G), (;), (;)}. Thus, 

{(:) , (!), (:)} ç 0' and we are in case (1). In case (3), 0' also has ta contain 

another element (~). But now, {(:) , (:) , (:) , ( ~ )} [m44]-generates a relation 

containing the set {(:) , (~) , (:) }, implying that we are in case (1). Thus, the 

case 10'1 = 6 is contradicted. 

Now suppose 10'1 4. We must have S = O'{l) or S 0'(2), because otherwise 0' can 

be nothing else but A x B for two two-element sets A, B ç S, which is impossible, 

Without 10ss of generality we may suppose S = O'{l)' Again, we have the cases (1), 

(2), (3) listed above. The same arguments as above show that the cases (2) and 

(3) can be reduced ta case (1), so we can assume {(:) , (!) , (:)} ç 0'. Since 0' 

has to contain four elements by our assumption we must also have another element 

(~) E 0', Without loss of generality, we can assume dl a. But now, 0' is [m44]-

generated by its three-element subrelation {(:) , (!) , (:)} and therefore preserved 

by f, a contradiction. Thus, 10'1 = 4 is not possible. 

It remains the case 10'1 = 5. By the same argument as ab ove , we can suppose 

(without loss of generality) S = 0'(1)' Once again, we have the cases (1)-(3), but 

again we can show that they are essentially the same case. So we can suppose 

{ (:) , (:) , (:)} ç 0'. Without loss of generality, we can suppose that we also have 

(:) E 0'. If the fifth element of 0' is (;) or (:), then we must also have (~) E 0' 

(since (~)E r[m44](0')) and hence 10'1 > 5. Similarly, if the fifth element is (:) or 

(: ) , then we also have (;) E 0' and again 10'1 > 5. This means that the fifth element 

of 0' has to be (:) and we have 0' = {(:) , (:) , (:) , (:) , (:)}. 

Our assumption was that f do es not preserve 0', This means that, without 10ss of 
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generality, we can assume that f is a 5-ary operation s.t. 

Suppose f[(:), G), (:), (:), (:)] =(~). We define a ternary operation 9 on S 

by g(Ul, U2, U3) := f(Ul, U2, U3, Ul, Ul). Clearly, 9 E [f](3) ç; pol(3)rfm 441 and, by 

Lemma 5.9, 9 E [m44](3). This means that 9 is either a majOrity operation or 

a projection. FUrthermore, g(a, b, c) = f(a, b, c, a, a) = b implies that if 9 is a 

projection, then it is necessarily e~. In both cases it follows g(O, 1, 1) = 1 and hence 

f(O, 1, 1, 0, 0) = 1. This means that we have 1[(:) , G) , G) , G), (~)] =G) 
but the fact that the relation {(~) , G) , (~) , G)} is [m44]-generated by the three­

element relation {G) ~ (~) , (~)} implies that this relation is preserved by f, so we 

have a contradiction. The other possibilities can be handled in the same way. This 

finishes the pro of. 0 

We have seen that C = Pol rb (i.e. 'Y( C) = 3) holds for two out of the three 

classes of minimal majority clones on S. One rnight hope that the same holds for 

the minimal majority clone [m51O], but we now show that this is not the case and 

that 'Y([m51O]) is in fact 4. 

Lemma 5.20: [m51O] i- Pol r(mSlOl (i.e. 'Y([m51O]) ~ 4). 

Praof: [m51O] i- Pol rrmslOl is equivalent to Pol rrmslOl i [m51O] by Lemma 5.9. 

Hence, it is sufficient to find a nontrivial operation f such that f E Pol rfmSlOl but 

m510 does not generate f. [f] has to contain a minimal clone and, by Lemma 5.17, 

this clone can be nothing else but [m51O]. Thus, [m51O] ç; [I]. This means that our 

assumption that m510 do es not generate f is equivalent to [I] i [m51O], which, in 

turn, is equivalent to Inv(2)m510 i Inv(2) f by the Baker-Pixley Theorem. Thus, 

it is sufficient to show that there exist an operation f E Pol rrmslOl and a binary 

relation (J on S such that m510 preserves (J while f do es not. Now, we give such a 

relation and operation. 

ei( w, y, z), ifw=x 

ei( w, x, z), ifw = y 

f(w,x, y, z) = 
m218( w, x, y), if w = z 

e~(w, x, z), ifx=y 

m510(w, x, y), if x = z 

m51O(w, x, y), if y = z 
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Note that f is weIl defined since, on a three-element set, at least two variables of a 

quaternary operation have to coincide and the cases do not contradict each other if 

more than two variables coincide. It is the operation given in the following table. 

(w,x,y,z) f(w,x,y,z) (w,x,y,z) f(w,x,y,z) (w,x,y,z) f(w,x,y,z) 

(0,0,0,0) ° (1,0,0,0) ° (2,0,0,0) ° (0,0,0,1) ° (1,0,0,1) ° (2,0,0,1) ° (0,0,0,2) ° (1,0,0,2) ° (2,0,0,2) ° (0,0,1,0) ° (1,0,1,0) 1 (2,0,1,0) 2 

(0,0, l, 1) ° (1,0, l, 1) 1 (2,0, l, 1) 2 

(0,0, l, 2) ° (1,0, l, 2) 1 (2,0,1,2) ° (0,0,2,0) ° (1,0,2,0) ° (2,0,2,0) 2 

(0,0,2,1) ° (1,0,2,1) 2 (2,0,2,1) 2 

(0,0,2,2) ° (1,0,2,2) ° (2,0,2,2) 2 

(0,1,0,0) ° (l, l, 0,0) 1 (2,1,0,0) ° (0, l, 0, 1) ° (l, l, 0, 1) 1 (2,1,0,1) ° (0,1,0,2) ° (1,1,0,2) 1 (2,1,0,2) 2 

(0, l, 1,0) 1 (l, l, 1,0) 1 (2, l, 1,0) 1 

(0, l, l, 1) 1 (l, l, l, 1) 1 (2, l, l, 1) 1 

(0, l, l, 2) 1 (l, l, l, 2) 1 (2, l, 1,2) 1 

(0, l, 2,0) ° (l, l, 2,0) 1 (2, l, 2,0) 2 

(0, l, 2, 1) 2 (l, l, 2, 1) 1 (2, l, 2, 1) 2 

(0, l, 2, 2) 2 (l, l, 2, 2) 1 (2, l, 2,2) 2 

(0,2,0,0) ° (1,2,0,0) 2 (2,2,0,0) 2 

(0,2,0,1) ° (1,2,0,1) ° (2,2,0,1) 2 

(0,2,0,2) ° (1,2,0,2) 2 (2,2,0,2) 2 

(0,2, 1,0) 2 (1,2,1,0) 1 (2,2,1,0) 2 

(0,2,1,1) ° (1,2, l, 1) 1 (2,2, l, 1) 2 

(0,2, 1,2) ° (1,2, l, 2) 1 (2,2,1,2) 2 

(0,2,2,0) 2 (1,2,2,0) 2 (2,2,2,0), 2 

(0,2,2,1) 2 (1,2,2,1) 2 (2,2,2,1) 2 

(0,2,2,2) 2 (1,2,2,2) 2 (2,2,2,2) 2 

Now, we have 1[(~), (~), G), G)l =(~) hence f does not preserve the relation 

{(~) , (~), G), G)} which is preserved by m51O' This is our (J. Furthermore, it 

can be checked that f preserves the eleven-element relation r[mslOl' (i.e. f E Pol 

r[mslOl)' Thus, we have found an operation f and a relation (J as required. 0 [] 

Lemma 5.21: [m51Ol = Pol rfmslOl (i.e. 'Y([m51O]) ~ 4). 

ProoJ: Suppose [m51Ol i Pol rtnslOJ' By Lemma 5.9, this is equivalent to Pol 

rfmslOJ ct. [m51Ol· This implies that there is a nontrivial operation f in Pol rfmslOJ 
that is not generated by m51O' As seen in the proof of Theorem 5.18, it follows 

that there is a binary relation (J on S that is preserved by m510 but not by f. This 

means 1[(::), (::) "'0' (::)l =(:) where (::), (::) '000' (::)E (J and (:)~ (J. By 

Corollary 5.13, f has to be conservative, hence a E {Xl, ... , Xk} and b E {YI, 000' Yk}. 
As ab ove , we assume without loss of generality that we have Xl = ... = Xia = a 
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and Xia+1,000,Xk 1- a and also Yia+! = 000 = Yib = band Yl,000,Yia,Yib+1,000,Yk 1- b 

for sorne ° < ia < k, ° < ib ::; ko Here, for x E S (x 1- 1) we denote by x the 

remaining element in S after taking away 1 and Xo Furthermore, we define ri and 

Si (i = 1, 000' k) as followso 

ri = { 1, 
0, 

Xi = 1 

otherwise { 
1, Yi = 1 

Si = 0, otherwise 

Note that 1 has to preserve any relation that is [m51O]-generated by a relation of 

cardinality at most 4 by Lemma 50120 We distinguish three cases 0 

Case 1: a = 1, b = 1. Note that m510 preserves the relation {( ~) , C) , (~) } 

and hence 1 has to preserve this relation as weIl. Now 1(Xl, 000' Xk) = 1 implies 

n(xll),ooo,(X~a),(Xi;+l),ooo,(~k)l = nC),ooo,C), (Xia+~#l),ooo,(Xk:l)l = C) 

and 1(Yl,000,Yk) = 1 implies n(~l) ,000, (Y~a), (Yi~+l) '000' (Y~b), (Yi~+l) ,o~, (~k)] = 

(~) in the same wayo This implies 1(~,~) = 1 and 1~,~, 

8 = 1. It follows that we must have 

k-ib 

ia k-ia ia ib -ia 

w hich implies that 1 does not preserve {G) , (~) , (~) } 0 This is a contradiction, 

because m510 preserves this three-element relationo 

Case 2: ci = 1, b 1- 10 Suppose that we have (~) E a and (~) E a simultaneouslyo 

Then, m510 [ C) , G) , (X~b)] = G) or m510 [C) , (X~b) , G)] G) 0 This implies 

G) E a, a contradictiono Hence, there is a unique x E S such that G) E a (ioeo 

YI = 000 = Yi = x)o As in case 1, we have 1(1, 000' 1,0, 000,0) = 1. Thus, 
a ~~ 

ia k-ia 

J[(~) '000' (~), (~) ,000, (~), C.~+J '000' (~)] ~ (~). 
'-v-' '-v-" v • 

ia ib-ia k-ib 

This means that 1 do es not preserve the relation {( ~) , (~) , (~) , (~)} 0 This is a 

contradiction, because this four-element relation is preserved by m5100 This finishes 

the case a = 1, b 1- 1. CleaTly, the case a 1- 1, b = 1 is analogue 0 
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Case 3: a i= 1, b i= 1. Suppose that we have (~) E a and (~) E a simultaneously. 

Then, one of the two tuples m5IO [( ~) , (~) , (X~b ) l, m5IO [( ~) , (X~b ) , (~) 1 has to equal 

( : ). This implies (:) E a, a contradiction. Similarly, we can show that we cannot 

have G) E a and (~) E a at the same time. This leaves us with four cases. 

(a) (~), G)E a (i.e. Xia+I = ... = Xib = 1 and YI = ... = Yia = 1) 

(b) (~), (~)E a (i.e. Xia+! = ... = Xib = a and YI = ... = Yia = 1) 

(c) (i)' G)E a (i.e. xia+I = ... = Xib = 1 and YI = ... = Yia = li) 

(d) (~), (~) E a (i.e. Xia+I = ... = Xib = a and YI = ... = Yia = li) 

(a) Suppose (~) E a. We have m51O[(~)' G), (~)l E {(:) , (~)} or m51O[(~)' (~) , 
G)l E {(:), (~)} which implies that we then have (:)E a or (~)E a, a con­

tradiction. Thus, a ç {( ~) , (~) , (~) , (~) , (~) }. f has to preserve the relations 

{C) , (~) , (~)} and {C) , G) , (~)}. because they are preserved by m5IO' Renee, we 

must have n(~l) , ... ,_(X~a), (x'~+1) , ... , (X~b), (::::J, ... , (::)l = J[(~) ,.--, (~), C), 
... , C) , (::::J ' ... , (::) 1 =(~) and also n(~l) , .'" (Y~a) , (Yi~+1) , "" (Y~b) , (~::::) , ,." 

(~:)l = nC) " .. , C), (~) " .. , G), (~::::) "'" (~:)l =(~) . Thus, 

J[G) " .. , G). (~) "." G). (:::::) ,"', (::)l =(~). 
'-v-' '-v-" • . 

ta ib-ia k-ib 

But now, (::)=(~) if and only if (::)E {(:), (i)' (:), (~)} whichcannot betrue. 

Thus, f do es not preserve the relation { (~) , (~) , (~) } w hich is a contradiction since 

m5IO preserves this three-element relation. 

(b) We have G) tf- a because otherwise we would have m51O[(~) , (~), G)l E {(:) , 

(~)} or m51O[(~)' G), (:)l E {(:), (~)} which would be a contradiction to the 

fact that neither (:) nor (~) belong to a. As in case (a), we obtain f(~,~, 
ia ib-ia 
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) ° d 't C Il th t fl (Xl) (Xia) (Xia+l) (Xib) (Xib+l) Sib+ 1 , ... , Sk = an 1 10 ows a . 1 , ... , 1 ' 0 , ... , 0 ' Sib+
l 

, ... , 

(::)] = f[(:) , ... , (:), (~) , ... , (~), (:::::) , ... , (::)] =(~). Note that (::)=G) if 

and only if (::)E {G), G)} which is impossible. Thus, the equation implies that 

f do es not preserve the relation {( ~) , (~) , (~) , (~) }. This is a contradiction since 

m510 preserves this four-element relation. 

(c) This case is clearly analogue to case (b). 

(d) Supposethatwehave (~)E a and G)E aatthesametime. Then, m51O[(i), G), 

(~)l = (:) or m51O[(i), (~), G)l = (:) and hence (:) E a, a contradiction. In 

the same way we can conclu de that we cannot have (~) E a and (~) E a at the same 

time. This leaves us with two cases: 

or 

Hence, a has at most four elements or it is [m51O]-generated by the four-element 

relation {(i) , (~) , (~) , G)}· This means that our assumption that m510 preserves 

a implies that f preserves a as well, a contradiction. 

This finishes the pro of. 0 

Note that a from Lemma 5.20 falls under the case (3)( d) in the proof of Lemma 

5.21. In fact, all the other cases in the pro of could have been handled by supposing 

only f E rrmS101 since all the four-element relations in Pol [m51Ol that we used for 

contradiction are [m51O]-generated by three-element relations. 

We have proved the following theorem. 

Theorem 5.22: ')'([m51O]) = 4. 

We have also answer.ed the question whether there exists a clone C and a minimal 

majority clone [ml =1= C in .cs such that [ml is the single minimal clone in C. 

Corollary 5.23: It exists a non-minimal clone C and a minimal majority clone 

[ml on S such that [ml is the only minimal clone in C. 

Prao/: By the pro of of Lemma 5.20, we obtain the claim for m 

C = [I] w here f is defined as in the proof of the lemma. [J 
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Analog to the two-element case, Theorem 5.18 and Theorem 5.19 provide us with 

a very simple way to determine ai such that Pol ai = [mil for i = 0,44. 

Pol Œ Œ 

er(~1,~2,~3) = (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1, 1,1, 1,2,2,2,2,2,2,2,2,2) 

[mol e~(~1,~2,~3) = (0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2) 

e~(~1,~2,~3) = (0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2) 

mO(~1,~2,~3) = (0,0,0,0,1,0,0,0,2,0,1,0,1,1,1,0, 1,2,0,0,2,0, 1,2,2,2,2) 

ei(~1,~2,~3) = (0,0,0,0,0,0,0,0,0,1,1,1,1,1, 1,1, 1,1,2,2,2,2,2,2,2,2,2) 

e~(~1,~2,~3) = (0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2,0,0,0, 1,1, 1,2,2,2) 
. [m441 e~(~1,~2,~3) = (0,1,2,0, 1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2) 

m624(~I, ~2, ~3) = (0,0,0,0,1,2,0,1,2,0,1,2,1,1,1,0,1,2,0,1,2,0,1,2,2, 2, 2) 

m44(~1,~2,~3) = (0,0,0,0,1,0,0,0,2,0,1,1,1,1,1,1, 1,2,0,2,2,2, 1,2,2,2,2) 

m424(~1,~2,~3) = (0,0,0,0,1,1,0,2,2,0,1,0,1,1,1,2,1,2,0,0,2, 1, 1,2,2,2,2) 

Note that it is·not similarly easy to obtain the tuples in a = rtnslOl' Determining 

them is equivalent to determining aIl quaternary operation in [mslOl. Even by 

computer, this is a somewhat time-consuming calculation. However, it turns out 

that [mslOl contains 1892 quaternary operations and hence lai = 1892. 

Question: Denote by Mn the set of minimal majority clones on S = {O, ... , n-

1}. We have seen ,(C) ::; 4 for aIl C E Mn, n ::; 3. For a given n 2: 4, what is the 

sharp bound for b(C) 1 CE Mn}? It must exist since we know ,(C) ::; n 2 
- 1. 

5.2 The conservative case 

For a majority clone C on the n-element set S = {O, ... , n - 1}, we have seen the 

bound ,(C) ::; n 2 - 1 in CoroIlary 5.15. Now, we show that we can improve this 

bound significantly, namely to 2n, if one of the majority operations in the clone is 

conservative. 

Lemma 5.24: Let C be a clone on S containing a conservative majority opera­

tion m. Let a be a C -independent relation on S. Suppose that there exist pairwise 

distinct a, b, cES such that (:) , (!), (:)E a for some xE S. Then (m(a~b,C)) ~ a 

for all y of- x. 

Prao!" Since m is conservative, we may assume m(a, b, c) = a without loss of 

generality. Let us suppose that there exists y ES, x of- y such that (:) E a. Then 
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m((:), (!), (:)) =(:)E a which is a contradiction to our assumption that ais, 

C-independent, 0 

Now we are ready to prove the theorem that gives us the improved bound for 

clones containing a conservative majority operation. 

Theorem 5.25: Let C be a clone on S containing a conservative majority op­

eration m. Then ,( C) ~ 2n. 

Proof: By Lemma 5.14, it suffices to show that any C-independent binary relation 

a ç S x Scan have at most 2n elements. Let us visualize a binary relation a on 

S by an n x n matrix M with entries 0 and 1 w here M ( i, j) = 1 if and only if 

( ~ -1) E a. For example, 
)-1 

1 100 

100 1 

1 0 1 0 

1 000 

stands for the relation {(~) , (~) , G) , (~) , G) , G) , G)}· Suppose that we have 

three pairwise distinct elements a, b, cES such that (:), (!) , (:) E a for sorne 

x E S. It follows from Lemma 5.24 that (m(a~b,C)) r/:. a for aIl y =1 x, Since 

m(a,b,c) E {a,b,c}, this means that whenever we take three l's from the same 

column, at least one of them has to be the only one in its row. Similarly, we can 

conclu de that whenever we take three l's from the same row, at least one of them 

has to be the only one in its column (since, clearly, Lemma 5.24 also holds duaIly). 

For example, the diagram above do es not satisfy these conditions since we have 1 

at the places M(1, 1), M(2, 1) and M(3, 1) but none of these l's stands alone in its 

row. The following example satisfies thèse conditions: 

1 1 1 1 

1 1 0 0 

1 0 0 0 

1 0 0 0 

We prove that the number of l's in this matrix is maximal Le. the number of l's 

in an n x n matrix satisfying these conditions cannot exceed 2n. For that, we show 
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that ~he number of 1 's in an n x k matrix satisfying the two conditions above can 

be at most n + k by induction on ko 

The claim is obviously true for k = 1. Let r ~ 20 We can assume that the claim is 

true for aU n x k matrices where k :::; r - 1. Suppose that we have a n x r matrix 

satisfying the above conditions such that the number of 1 's is at least r + n + 10 

There has to be at least one row or colurnn that contains three 1 's (otherwise the 

number of l's can be at most 2 * min(r, n) :::; n + r)o Without loss of generality, we 

can assume that this is a roWo By the conditions mentioned ab ove , at least one of 

these three 1 's must be the only one in its colurnno We remove this colurnn from the 

matrix (this is possible since we have r ~ 2) and we obtain a n x (r -1) matrix that 

contains at least n + r + 1 - 1 = n + r 1 'so This is a contradiction to the induction 

hypothesiso 

For k = n it foUows that the matrix representing a can have at most 2n elementso 

This finishes the proofo 0 

There is another property of such clones C that we can proveo In order to do so, 

we need another Lemmao 

Lemma 5.26: Let C be a clone on S containing a majority operation mo Set 

k = max{lall a E R~2l is [m]-independent and f[m] (a) =1- S2}0 

Then [c(max(3,kll ] = Co 

Proof: For notational simplicity, denote by Ck the clone [c(max(3,kll ]0 Ck ç C is 

trivial. It remains to show C ç Cko Clearly, m E Ck ç Co Rence, by the Baker­

Pixley Theorem, it is sufficient to show that any binary relation on S preserved by 

Ck is also preserved by Co Suppose a E Inv(2lCko Since C trivially preserves the full 

binary relation, we can assume a =1- S20 For sorne Ck-independent relation a', we 

have a = fCk(a')o Since [ml ç Ck, a' is also [m]-independent and f[m] (a') ç a =1- S20 

But now, by the assumption, we have la'l :::; ko Rence, we can write a' as {VI, 000' vdo 

By Lemma 503, this implies 

and hence a E Inv Co 0 

Note that the number k in this lerrima is not the same as the one in Lemma 50140 

In fact, the value given in this lemma can be significantly higher. We are now ready 

to prove our last result: 
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Theorem 5.27: Let C be a clone on S containing a conservative majority op­

eration m. Then [C(2nl ] = C. 

Praof: We can suppose n > 1. In the proof of Theorem 5.25, we concluded that 

any C-independent binary relation a on Scan have at most 2n elements. Note 

that we only used m of all the operations in C, so we have actually shown that any 

[m]-independent binary relation can have at most 2n elements (which is a somewhat 
stronger result). Thus, by Lemma 5.26, [c(max(3,2nll ] = [C(2nl] = C. 0 

Note that the results in this section hold for conservative minimal majority clones 

in particular, but they are in fact more general: We have only required the clone C 

to contain a conservative majority operation. The whole clone do es not have to be 

conservative and it does not have to be generated by this majority operation (and, 

in particular, it do es not have to be minimal). 
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