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Introduction

Soit S un ensemble; pour la plus part du mémoire un ensemble fini. Un
clone sur S est un ensemble d’opérations finitaires sur S fermé par rapport a
la composition et contenant toutes les projections. Un clone C est minimal
si le clone des projections est le seul clone proprement inclus dans C. Un
clone sur S est un clone majorité s’il contient une operation majorité; c’est-
a-dire une opération ternaire m sur S satisfaisant m(z,z,y) = m(z,y,z) =
m(y,z,z) = z pour tous z,y € S. Dans ce mémoire nous nous concentrons
sur les clones majorité minimaux.

Aux Chapitres 2 et 3 nous introduisons les faits nécessaires sur les clones
et les clones minimaux, produisons des techniques de base pour déterminer
si un clone est minimal ou non, et présentons un vol d’horizon sur les
connaissances sur ce sujet. En grande partie ces deux chapitres sont basés
sur les tours d’horizon de B. Csdkany [4] et de R.W. Quackenbush [15].

En 1941 E.L.Post a complétement décrit tous les clones sur S a 2 éléments
[16] et sa liste contient tous les clones majorité minimaux. En 1983 B.
Csékany [4] a determiné les clones minimaux sur S & 3 éléments qui aussi ren-
ferment les clones majorité minimaux. Trois ans plus tard en [5] il a donné la
description des clones majorité minimaux engendrés par une opération ma-
jorité conservatrice (c’est-a-dire m, telle que m(z,y,z) € z,y,z pour tous
z,y,z € §). Finalement en 2000 T. Waldhauser [22] a trouvé tous les clones
majorité minimaux sur S a 4 éléments. Nous présentons ces résultats au
Chapitre 4.

De plus, pour une opération majorité sur S qui engendre un clone min-
imal nous présentons deux techniques différentes pour obtenir une telle
opération sur tout S de cardinalité plus grande que |S|. Les idées sont
basées sur des arguments utilisés dans une de ses preuves.

Le fait que tout clone majorité C peut étre décrit comme 1’ensemble
d’opérations sur S préservant une relation finitaire sur S est une conséquence
d’un théoreme bien connu de Baker-Pixley. Au Chapitre 5 nous trouvons
telles relations pour les clones majorité minimaux si S a au plus 3 éléments.
Il s’aveére que a part une seule exception, ces relations peuvent étre choisies
comme les 3°™¢ graphiques des clones en question (voir 5.8 pour la définition
du k*™¢ graphique d’un clone). Pour le cas exceptionnel nous montrons que .
le 4¢™€ graphique sulffit.

Ce fait implique que pour |S| = 3, il existe un clone non minimal qui ne
contient qu’un seul clone minimal; un fait qui n’était pas connu et qui n’est
pas vrai pour |S| = 2. Finalement nous montrons que tout clone C sur S
qui contient une opération majorité conservatrice est le clone des opérations
qui préservent le 2|S|-graphique de C. '

Le candidat souhaite exprimer sa gratitude au département de mathématiques
et de statistique ainsi qu’aux étudiants du département pour ’hospitalité
montrée pendant son séjour bien agréable & Montréal.
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Chapter 1
Introduction

A clone is a set of operations on a set S that is closed under composition and
contains the projections. If not stated otherwise, we always assume the set S on
which the clones are defined to be finite. A minimal clone is a clone whose only
proper subclone is the clone that contains only the projections (the smallest of
all clones). In our work, we focus on a special kind of minimal clones, namely
minimal clones generated by majority operations (i.e. a ternary operation m s.t.
m(z,z,y) ~ m(z,y,z) =~ m(y,z,z) ~ z). In the sequel, we call clones that contain

a majority operation majority clones.

In chapter two and three, we give an introduction to the fundamentals of clones
and minimal clones. We provide ourselves with the basic techniques of determining
whether a clone is minimal and give a brief overview over the current state of
knowledge. Large parts of the chapters are based on the surveys of Csdkany [4] and

Quackenbush [165] and the results, if not stated otherwise, are common knowledge.

In 1941, E.L. Post described the set of clones on a two-element set completely
[17]. Thus, the minimal majority clones on a two-element set are known. In 1983,
Béla Csakany determined all minimal majority clones on the three-element set in
[1]. Three years later, he gave a description of all conservative minimal majority
clones in [5] {a clone is conservative if, for any operation f in the clone, we have
f(z1,.yzn) € {z1,...,2,} for all z,...;2, € S). It was then Tamas Waldhauser
who determined all minimal majority clones on a four-element set in 2000 [23]. In

chapter four, we present all the results in detail.

Furthermore, for a given minimal majority operation on S, we describe two
different techniques to obtain a minimal majority operation on an arbitrarily larger
set S’, 00 > |S’] > |S|. The ideas are based on arguments that Waldhauser uses in

one of his proofs.



It is a consequence of a well-known theorem of Baker and Pixley [I] that any
majority clone on S can be described as the set of operations preserving a single
relation on the set S. In chapter five, we determine such relations for all minimal
majority clones on a two- and three-element set. It turns out that for all except one
of these minimal clones, the relation can be chosen to be the third graphic of the
clone. For the remaining clone, we show that the fourth graphic is sufficient (see
5.8 for a definition of the k-th graphic of a clone).

That we need the fourth graphic for one minimal clone implies that, for [S| = 3,
there is a non-minimal clone C that contains no minimal clone except one majority

clone (something that is not the case for S| = 2).

We also give a bound for the number k such that the k-th graphic is enough to
generate a majority clone on an n-element set .S if one of its majority operations is
conservative. Under these conditions, the 2n-th graphic is enough to generate C.
We also show that, under these conditions, we have C = [C®*V)] (i.e. C is generated

by its 2n-ary operations).



Chapter 2

Clones

2.1 The basics of clones

We begin by giving some definitions.

Definition 2.1: a) Let S be a finite fixed universe with |S| > 2. Denote by N
the set {1,2,..} of natural numbers. For n € N, a map f : S* — S is an n-ary
operation on S. Denote by Og") the set of all n-ary operations on S. Furthermore,
Os = Unen Og’n)-

b) Let f be an n-ary operation on S. The ith variable is called essential (or rele-
vant) if there are ay, ..., an, b € S such that f(ay,...,a,) # f(a1,...ai—1,b, 11, ..., an).
Call f essentially k-ary if it has exactly k essential variables.

c) For k,n € N, the composition of f € ng) and ¢1,92,...,9% € Ogn) is the n-ary
operation f(g,...,gx) on S defined by setting

f(g17 "')gk)(ah X3 an). = f(gl (0,1, "‘70‘77-)7 '“7gk(a17 ) an))

for all a; € S.

d) Denote by e (1 < ¢ < n, n € N) the n-ary operation on S that maps any
(a1, ...a,) € S™ onto a;. The operations €} are called projections. In the following,
we often refer to projections as trivial operations. Denote by Jg the set of projections

on S.

In the following, we will use & to indicate that an identity holds for all variables
ranging over S (e.g. €3(z,y, z) = z).
We are now ready to define a clone. The notion of a clone generalizes a monoid

to a set of operations (by a monoid we mean the set of selfmaps on a set S that is

closed under composition and contains the identity mapping).



Definition 2.2: A clone on S is a subset of Og that is closed under composition

and contains all the projections.

Examples: Each of the following sets is a clone:
1) The set Og of all operations on the set S (the full clone).

2) The set Jg of all projections on the set S (the trivial clone).

4) All idempotent operations on the set S (f is called idempotent if f(z,...,z) = z).

(1)

(2)

(3) All continuous operations on a topological space.

(4)

(5) All operations monotone in each variable on a partially ordered set (S, <).
(6)

6) All conservative operations on the set S (f is called conservative if every subset
of S'is closed under f, i.e. f(a1,....an) € {a1,...,an} for all (ay, ...,anm) € S™).

Lemma 2.3: A clone C'is closed under identification and permutation of vari-

ables.

Proof: Let C be clone on S and let f € Og be a k-ary operation. Set K :=
{1,...,k}. Let p,q € K. Without loss of generality, we can assume p < ¢q. Further-
more, let ¢ be a permutation on {1,...,k}. Define

fra(T1, o, Tk—1) == f(Z1, -y Tgm1, Tp, Tq, g1, - Th=1),
f¢(.’L‘1, ceny .’L‘k) = f(.’L‘¢(1), ...,.’L‘¢(k)).
But now
Soa(@1y -y Thor) = fleh, ek eb ek ek, ek Wz, zi),
f¢(xla 7xn) - f(eg(l)’ ety eg(k))(xla "‘axk)
and thus fu,, fp € C. O

Definition 2.4: Let o C S* be a k-ary relation on S and m € N. We say that-

fe O(Sn) preserves o if for all (vyy, ...vk1), (V12 -or, Uk )2, (Viny ooy Vin) € O

(f(l/l]_, ceny V]n)7 f(V21, -'-V2n); cery f(Vkl; veey an)) e o.

To illustrate this definition it helps to think of a & x n-matrix whose columns
(interpreted as k-tuples) are elements of the relation o. If we then apply f to the
rows of the matrix and interpret the k resulting values as a k-tuple, this has to be

in o as well.




M1 Y2 .. Uln fln,viz,evin)

w1 U2 e U2p flv21,v22,...,020)
. : . . - .

Ukl Vk2 . Vkn Fvr1, Vk2seWEn)

€0 €0 €0 €0 €0

Definition 2.5 Denote by Pol o the set of operations on S preserving o.

Recall the example (5) from above. Clearly, (5) is the set of all operations
preserving the relation <.

Lemma 2.6: a) For a k-ary relation o on S the set Pol o is a clone.

b) The intersection of a set of clones on S is a clone.

v11 V12 Vin 6?(1/11, V12, .y Vln) Vii
Proof: a)Let | : |,| : |,..| ¢ [€o. Then : =| : |eo
! Ym1 Vm2 Vmn e?(”mh Ym2, ...y an)) VUmi

for all 1 < i < n. Thus, any projection preserves ¢. It remains to show that the

composition of operations preserving o also preserves . Let f € ng), g1, .- gk €

g,(l/u, veny Vln)

gi(”21,-~-,V2n)

Og") be such operations. Then, clearly, € o foralll <¢ < ksince g;

gi(Um1, <o, Vmn)
preserves ¢ for all . But now, the assumption that f preserves ¢ implies that we
f(g1(l/11, weey l/1n), veey gk(Vll, aeny U1n))

flgr1(var, -y van), o, gu(vat, - v2n))

must have € o, as required.

flg1(¥m1s oy Vmn), ooy gi(Vmi, ooy Vmn))

b) Let C be the clone obtained by the intersection of a set of clones C. Clearly, C
contains the projections. Furthermore, if f € C*®), g;,...gx € C™, then they have

to be in any clone in C. Thus, f(g,...,gx) has to be in any clone in C and hence in
c. O

Definition 2.7: For a set of relations R on S, set Pol R = (\{Pol ¢ | o € R}.
By Lemma, 2.6, this is a clone.

Recall the example (6) from above. This is [{Pol ¢ | 0 # ¢ C S}. We can
generalize the examples (5) and (6) as follows: '

(7) All operations preserving a set R of (finitary) relations on a set S.

In fact, all clones are of this form. This may be formulated as follows.

Theorem 2.8: Preserving a relation induces a Galois correspondence between

operations and relations, in which the closed classes of operations are ezactly the

6



clones (see [Z],[11])

We learn more about the correspondence between operations and relations in the
fifth chapter.

Alternatively to describing clones as sets of operations containing the projections
and being closed uncer composition, there exists another way to define clones. The
following description was done by Mal’tsev in [L4]. We define three unary operations

£, 7, and one bi'nary operation * on Og as follows:
Let f € O(S"). For all a,,...,a, € S set
o (€1)(@r,an) = (a2, n, ) (6 = f ifn = 1)
o (7f)(a1,-..,an) := flag,a1,0a3...,a,) (7f = fifn=1)
o (Af)ar,...,an-1) = f(a1,a1,0z...,a,) (Af = f ifn=1)
e For g € O(Sm) and all ay, ..., @pmyn_1 € S
(f *QA)(ala-~~7am+n—1) = fg(ay, ..., am), amt1, -, Gngn-1)

A set of operations is a ¢lone if and only if it is closed under these procedures

and contains e?.

2.2 The clone lattices

Definition 2.9: Let f,g € Og. We say that f generates g if g can be obtained from
f and the projections by (finitely many) compositions. Obviously, all operations
generated by f form a clone. Call it the clone generated by f and denote it by [f].
Extend the terminology by writing [F'] for the clone generated by a set of functions
F. Notice that [F] is the least clone on S containing F'.

It is easy to see that '+ [F] is a closure operator on the partially ordered set
(0s,C) (ie. FC[F], FCG = [F]CIG] [[F]] = [F] for all F,G C Og). Thus,

the clones on S form a lattice.

Deﬁrﬁtion 2.10: Denote by Lg the set of clones on S. Call Ls := (Ls, C) the

clone lattice on S with its greatest element Og and its least element Js.

Post described the clone lattice on the two-element set completely in [17] (they
are countably many). However, for |S| > 3 it is known that there are continuum
many clones and a full description of these lattices seems to be hopeless, even for

|S| = 3. Nevertheless, a few results are known.

{




Definition 2.11: Call the atoms of Lg (F' is an atom of Lg if its only proper
subclone is the trivial clone Jg) minimal clones and the dual atoms (F is a dual
atom of Lg if it is properly contained only in the full clone Og) mazimal clones.

Note that it is not obvious that minimal clones or maximal clones have to exist
in a given clone lattice. For all we know at this point, there could be a clone C # Jg
containing no minimal clone.

A description of the maximal clones was given by lablonskii [11] for the three
element case and finally, for every set, by Rosenberg in 1965 [18]. Kuznetsov gave a
short proof for the fact that each clone distinct from Og is contained in a maximal
clone and that there are only finitely many maximal clones [13].

One may ask the same questions about minimal clones: Are they fully described?
Does any clone contain a minimal clone? Are there only finitely many? We provide

an overview of our knowledge about minimal clones in the next chapter.



Chapter 3

Minimal Clones

In this chapter, we explain some standard techniques to determine whether a clone

is minimal and we answer the following questions:
o What is known about the operations generating a minimal clone?
o Are there finitely or infinitely many minimal clones on a given set S7

e Does every clone contain a minimal clone?

For the whole chapter, set S = {0,...,n — 1}. We start by making an easy but

very useful observation:

Lemma 3.1: A clone C is a minimal clone if and only if each nontriviel f € C
(i.e. f is not a projection) generates any g € C; in other words, C = [f] for all
nontrivial f € C. ’

Proof: "=". Let C be minimal and f € C nontrivial. Suppose [f] # C. This
implies Js C [f] € C, a contradiction to the minimality of C.
"«<” By contraposition let C be not minimal. Then there exists a nontrivial clone
C’, C' ¢ C. But now, for any nontrivial f € C', [f] # C. O

This lemma gives a standard technique to prove that an operation f does not
generate a minimal clone on S: Show that there exists an operation ¢ such that
f generates g but ¢ does not generate f. To show that an operation ¢ does not
generate f, it suffices to find a relation o such that g preserves ¢ while f does not
(since we know by Lemma 2.5 that if g preserves ¢, then any composition obtained
from g and the projections has to preserve o, too). Many times, we choose the
respective relation o to be a subset of S. In the following, we use this technique

very often.



Attributes of an operation f € Og can be extended to the algebra (S; f). Call
this algebra (essentially) k-ary if f is (essentially) k-ary and conservative if f is
conservative. Furthermore, (S, f) is termed minimal (i.e. its term algebra is mini-
mal) if and only if [f] is a minimal clone. This observation is useful because it allows
us to look at (minimal) clones as term algebras which is helpful in some situations
(to learn more about the correspondence between clones and term algebras see for
example [8]). In terms of algebras, we can formulate another technique to show that
an operation g does not generate an operation f. '

Lemma 3.2: Let f,g € Os and let (A;g),(B;g) be isomorphic subalgebras of
(S;g). Then g does not generate f if one of the following conditions hold:

(i) One of (A; f), (B; f) is not a subalgebra of (S; f)

(1) (A; f) and (B; f) are non-isomorphic subalgebras of (S; f).

Proof: By the way of contraposition, suppose f € [g].
(i) f € [g] implies that for a subalgebra (D; g) of (S;¢), (D; f) must be a subalgebra
of (S; f). In particular, this implies that (A; f) and (B; f) are subalgebras of (S; f),
a contradiction.
(ii) f € [g] implies that the isomorphism between (A;g) and (B;g) is also an
isomorphism between (A; f) and (B; f). O

Definition 3.3: A k-ary f € Og such that [f] is a minimal clone while every
nontrivial g € [f] is of arity at least k is called minimal operation.

Clearly, every minimal clone is generated by a minimal operation (since, by
Lemma 3.1, every nontrivial operation in a minimal clone C generates C). Thus,
the set of all minimal operations determines the set of all minimal clones. This
is useful, because we will see later that minimal operations can only be of certain
types. The following lemma gives another technique to show that an operation is

not minimal.

Lemma 3.4: Let f be a minimal operation on S. If f preserves a subset A C S,
then f|an (the operation obtained by restricting f to the set A™) is either trivial or
minimal on A. In particular, for a conservative minimal operation f, the operation

flar s trivial or minimal on A for all AC S.

Proof: This can be deduced from the fact that composing functions and restrict-
ing functions commute. Another proof can be found in [19]. O

10



Definition 3.5: a) A ternary operation f on S is called a majority operation if

~

o flzyz,y) = fz,y,2) = fly,z,2) ~ .

b) A ternary operation f on S is called a minority operation if

flz,z,9) = f(z,y,2) = fly,z,7) = y.
‘c) A k-ary operation f is called a semiprojection if, for a fixed ¢ € {1,..,k},"

f(zy,...,Tk) = x; whenever zi,...,z4 € S are not pairwise distinct.

Lemma 3.6 (The Swierczkowski Lemma): [20] Given an at least quaternary
operatron f, if every operation arising from f by identification of two variables is a

projection, then f is a semiprojection.

Proof: This proof is sketched in [16]. Other proofs can be found in [20], [4].

Let k > 4 and let f(z,,...,z«) be a k-ary operation. We distinguish two cases:
Case 1: For some ¢ € {1,...,k}, if we equate all but the i-th variable, then
Y T Yy s ) &= . Without loss of generality, we can assume ¢ = 1 so that

Hy, -y i,y y) g y

i-1 k—i
f(z1,y, -, y) = z;. But now, equating any two of z, ..., 75 yields z;. Furthermore,

this implies f(x), %2, ¥, ¥, Zs5, ..., Tx) = 1 so that f(z1,z1,v,9,25,...,Tk) = 1. Now
set £; = z3 and we must have f(z1,z,23,....2%) ® T — L. f(21, 22,21, L4, ..., Tk) &
f(z1, 22,3, 21, L5, k) & .. R f(zl,x2,$3,a:4,...,xk_l,xl). ~ x, follows in the
same way. Thus, f is a semiprojection since it coincides with ¥ whenever z,, ..., zi
are not pairwise distinct.

Case 2: f(z1,9,9,-¥) =~ fly, 22,9, ..,%) ~ ... = f(y,..,y,2x) ~ y. But
then, for any ¢ # j, setting x; = z; forces f to reduce to z; = z; (since if f
would reduce to z;, [ ¢ {i,5}, we could equate all but the {-th variable to obtain
fly, ..y, 21, y...,y) = z;). However, this leaves no variable for f(z,z,y,y, s, ..., Z¢)

to equate to. Thus, this case cannot occur. O
Definition 3.7 A ternary operation f on S is Mal’tsev if
flayy) = flyy,2) =z

Lemma 3.8: Let f be a Mal’tsev operation on S. If [f] is a minimal clone,
then there erists a prime p and an elementary Abelian p-group (S;+) such that
flz,y,2) =z —y+ =z

Proof: See [21]. O

11



We are now ready to prove a very important result about minimal operations,
namely Rosenberg’s Classification Theorem [19].

Theorem 3.9 Rosenberg’s Classification Theorem (RCT): Every minimal
operation f on S is of one of the following types:
(1) a unary operation that is either a retraction (i.e. f?= f)
or a cyclic permutation of prime order, _ , L Ciliciy
(2) a binary idempotent operation,
(8) a majority operation,
(4) the minority operation f(x,y,z) = x +y + z where (S;+) is an elementary
2-group,
(5) a k-ary semiprojection for some 3 < k < n.

Proof: Let f be a minimal operation.
If f is unary but neither a retraction or a permutation, then we have f2(S) C f(S)
which implies f ¢ [f?], hence f is not a minimal operation. Let f be a permutation
of order q (i.e. §7 = e! while f* # el for i = 1,...,¢ — 1). Suppose that ¢ is not
prime and let ¢ = rs where r is a prime divisor of q. Let h := f°. Now h € [f]
but f ¢ [h], ie. [f] is not minimal. Thus, f is permutation of prime order or a
retraction. o
Now suppose that f is at least binary. .f has to be idempotent since otherwise it
generates (by identification of variables) the nonidentical unary operation f(z, ..., ),
which cannot generate f. |
Now let us suppose that f is ternary. Since f is a minimal operation and hence of
minimal arity, we must obtain a projection by any identification of two variables.
This leaves us with eight possible cases:

(1) [ (2) | (3) | (4) | (5) | (6) | (7) | (8)
f(z,z,y) = z |z oz Yy |y | Y|y
f@yz)=|z |z |y |y |z = | y|y
fly,z,2) = y |z |y z]ly =]y

In the cases (1) and (8), f is a majority, resp., minority operation. In the cases (2),
(3) and (5), f is a ternary semiprojection. To show that the cases (4), (6) and (7)
‘cannot occur we define '

f4(.’L‘,y,Z) : f(l';y,f(x,y,z))
fﬁ(xayaz) : f(.’I:,f(.’L‘,y,Z),Z)
f7(.’L',y,Z) = f(f(xaya z),y, Z)



Clearly, fy, fs, fr € [f]. Furthermore, fi, fe, f7 are majority operations in the cases
(4),(6),(7), respectively. But now f ¢ [f4], [fs], [fe], respectively, because we will see
later that any nontrivial ternary operation generated by a majority operation has to
be a majority operation again (Lemma 4.4). This contradicts the minimality of f.
It remains to show that if f is a minority operation, then it is necessarily z +y + z
in an elementary 2-group. Since every minority operation is Mal’tsev, we can apply
Lemma 3.8. Thus, there exists an elementary Abelian p-group (S; +) (p prime) with
f(z,y,2) = x—y+2z But z—y+2is a minority operation only for p = 2 (otherwise,
we have z,y € S such that 0 # 2y — 2z and hence z # 2y — z = f(y, z,y)).

Finally, let f be at least quaternary. By the same argument as above, f turns into
a projection by identification of any two variables. Then, by the Swierczkowski

Lemma, these projection have to coincide. Thus, f is a semiprojection. [

Note that any operation that falls under the cases (1)-(5) (even if it is not mini-
mal) can only generate nontrivial operdtions of equal or greater arity. This is implied
by the fact that the operations listed in the RCT become trivial by all identifica-
tion of variables (except case (1) in which the claim is trivial). In particular, the
nontrivial operations generated by a majority operation are at least ternary (a fact

we use several times in the sequel).

It can be shown that the classes (1) - (5) of minimal operations are disjoint. In
the cases (1) and (4) the conditions ensure the minimality of f, while in the other
cases they do not. However, one can find examples to show that the classes (2), (3)
and (5) are also non-empty:

e For (2) consider any semilattice operation (e.g. maz(z,y)).

e For (4), consider the dual discriminator d of Fried and Pixley [9], defined by

d(z,y,2) = {

(see 4.6 for a proof of the minimality).

z, fz=y
z, ifxs#y

e For (5), consider any nearprojection s (a nearprojection is a serhiprojection

defined by s(zy, s, ..., z,) = 2 if 21, ..., T, are not pairwise distinct).

This means that in order to determine all minimal clones on an n-element set S
it is enough to look at the operations of cases (1) to (5) and to determine which of
them generate minimal clones. This is trivial for the case (1) and (4), but for the
other cases, only partial results are known:

e For n =2, all thé minimal clones are known since - as mentioned before - the

clone lattice was completely described by Post [17].
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e For n = 3, the set of minimal clones was determined by Csdkdny [4].

e For n = 4, the binary case was settled by Szczepara in his Ph.D. thesis [22]
(there are 2.182 binary minimal clones and 120 of them are essentially distinct)
and all minimal clones generated by majority operations were determined by
Waldhauser [23], see next chapter). Furthermore, some minimal conservative
semiprojections were determined by Jezek and Quackenbush [12].

For n > 5 only very few results are known.

We now have the knowledge to answer the questions raised at the beginning of
the chapter:

Corollary 3.10: There are only finitely many minimal clones on S.

Proof: The cases (1)-(4) of the RCT can only give us finitely many minimal
operations (and thus only finitely many minimal clones). For case (5), consider a
k-ary semiprojection s. If & > n, the number of variables exceeds the number of
elements in S and hence the variables cannot be distinct and s is a projection. Thus,
it cannot generate a minimal clone. But, for k¥ < n, the set of k-ary semiprojections
is clearly finite. Thus, the set of minimal clones on S is finite. O

Corollary 3.11: Every nontrivial clone on S contains a minimal clone.-

Proof: Following the approach in [12], we call a nontrivial clone B k-special if
every nontrivial operation in B is at least k-ary and there exists a k-ary operation
in B that generates B. Any nontrivial clone C on a finite set contains k-special
clones for some k (any nontrivial operation of minimal arity in C generates such a
clone). Let C' be a k-special subclone of C. Since the (k — 1)-ary operations in C’
have to be trivial, any identification of variables of a k-ary operation in C’ gives us
a projection. Hence, by the Swierczkowski Lemma, the k-ary operations in C’ are
semiprojections or k < 4. This implies that k cannot exceed maz(4,n), because
otherwise any k-ary operation in this clone would be a projection. This means that
C contains only finitely many special clones. They are partially ordered by inclusion
and a clone which is minimal with respect to this ordering is a minimal clone. O

Note that Corollary 3.10 and 3.11 do not hold for infinite sets. In this case, it
is obvious that there are infinitely many minimal clones (alone the number of all’
retractions on an infinite set is infinite). Furthermore, an example for a clone not

containing a minimal clone is the clone generated by the (unary) successor function
on N
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Chapter 4
Minimal majority clones

In this chapter, we focus on the minimal clones on the n-element set S = {0, ...,n—1}
of case (3) in the RCT, i.e. the clones generated by majority operations. For the
sake of brevity, we call clones that contain a majority operation majority clones in
the sequel. Note that a minimal clone that contains a majority operation has to be
generated by this operation by Lemma 3.1. First, we follow Csékdny’s work [4] to
determine all minimal majority clones for n = 3. Then, we follow another paper of
Csékany [5] to determine all conservative minimal majority clones for any n € N.
We call a clone C conservative if all operations in C are conservative. Finally,
we follow Waldhauser’s approach [23] to determine all minimal majority clones for
n = 4. However, before we do so, we have to observe some facts that will be useful

in the sequel.

Recall that in order to prove the non-minimality of a clone [f] it is sufficient to
find an operation g € [f] such that f ¢ [g]. To create g € [f] we will sometimes
give terms t and apply them to f.

Definition 4.1: Let f) and f, be k-ary resp. l-ary operations on S such that
fi € [f2]. Then there exists a k-ary term (i.e. polynomial symbol) ¢ of type (I)
such that f, is the result of substituting f, for the l-ary operation symbol in ¢, in
sign: f; = t(f2). In this case we say that we apply t to fo. The result of successive
application of two terms ¢, ¢, to an operation f is denoted by 5t (f). Furthermore,

denote by #*(f) the i-times successive application of t to f.

When we give terms ¢ of type (3) we may omit the sign of the ternary operation
symbol. For example, we write ¢ = (z,y, (zyz)) and for a 3-ary operation f we

obtain t(f) = f(z,y, f(z,y,2)) and t*(f) = f(z,y, f(z,y, f(z, ¥, f (2,9, 2))))-

15



Definition 4.2: Let f be a k-ary operation on S. Let ¢, be a permutation on
S and letbe a permutation on {1,...,k}. Set

f¢1 (-'131, "'7:1:/0) = ¢1(f(¢1_1(.’131), 7¢1_1(xk))) f¢2(.’L‘1, "-7xk) = f(xtbz(l)? "'xtbz(k))'

Call f%* an isomer of f and f4, a permutation of f. For F C Og, extend definition
by setting F'*t = {f#1|f € F'}. Themap f — f? carries each clone C onto the clone
we denote by C?'. The algebra (S; F'*!) is the isomorphic image of (S; F) under ¢;.
Furthermore, note that g € [f] implies g** € [f%'] and, since clones are invariant
under permutation, [f] = [fs,]. Isomers and permutations of variables generate a
permutation group Tj of order 3!k! on the set of all k-ary operations on S. Two
operations are said to be essentm distinct if they have different arities, or belong
to distinct orbits of Ty (where k is the arity of the two operations). Two clones Cj,
Cs are said to be essentially distinct if C; # C’g for all nontrivial permutations ¢
on S.

Definition 4.3: Let £ > 3. A k-ary operation f is called a near-unamity

operation if

fly,z,..,z) = f(z,y,z,..,2) = ... = f(z,...,z,y) = .

Lemma 4.4: If m is a majority operation on S, then any nontrivial f € [m] is

a near-unamity operation.

Proof: [5] We call a term a term regular if it is nontrivial and no occurrence of the
operation symbol in it has two graphically equal arguments. As mentioned above,
every nontrivial f € [m] can be expressed as t(m) where ¢ is a term generated by
a ternary operation symbol g. We prove the claim by induction on the length [(¢)
of t (i.e. the number of occurrences of g in t) For [{t) = 1, a nontrivial f clearly
equals t(m) = mg where ¢ is a permutation on {1,2,3} and f is a near-unamity
operation. Now suppose £ > 1 and assume that the claim is true for all regular
terms of length at most k. Let a nontrivial p-ary f equal t(m) where I(t) = k + 1.
We can express t(m) as m{ti(m), t2(m),t3(m)) where I(¢;) < k (i = 1,2,3). By the
way of contraposition, suppose that f is not a near-unamity operation. Then there
exists 1 < r < p such that

f@ . wzyz,.z)=y
r-1 p—r

Now, by the induction hypothesis, each ¢;(m) is either trivial or a near-unamity

operation. In the latter case we have t;(m)(zx,...,z,y,z,...,2) = z and this can
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happen only for at most one ¢ € {1,2,3}. Were all the ¢;(m) trivial, then ¢(m) would
be of length 1 and f(z, ...,z,y, z, ...,x) = z. Thus, exactly for one %, say 1 = 3, we get
ts(m)(z, ..., z,9,%, ...,x) = = while t,(m) and t5(m) are trivial, say ¢,(m) = ¢}, and
ta(m) = €f,. Were j) # jp then we had t;(m)(z, ..., z,¥,, ...,x) = z for at least one
i € {1,2}, say ¢ = 1, which would implies f(z,...,z,9,%,...,z) = m(z,z,,2) = z.
Thus, j1 = j» and f(z,...,z,y,2...,x) = m(z;,, z;,,z) which makes f trivial. O

Corollary 4.5: Let m be a majority operation on S. Any minimal subclone of

[m] is again generated by a majority operation.

Proof: Let f € [m] be a nontrivial, k-ary operation such that [f] is a minimal

subclone of [m]. Since f is generated by m, it has to be at least ternary. From the

' RCT we can conclude that f is therefore a majority operation, a semiprojection

or £ + 1y + z in a boolean group. Furthermore, Lemma 4.4 implies that f is a

near-unamity operation. A semiprojection that becomes e¥ by any identification

of variables maps (z, ..., 2, ¥, Z...,z) to y which implies that it cannot be a near-
—— T~

i-1 k=i
unamity-operation. Similarly, z4y+z in a boolean group cannot be a near-unamity

operation since it maps (z,z,y) toy for all z,y € S. Thus, f is a majority operation,

as required. OJ

This means that in order to prove the minimality of clone C generated by a ma-
jority operation, it suffices to show that any two majority operations in C' generate
each other, because if C has a proper minimal subclone then this must be generated

by a majority operation.

Recall that we have already seen a minimal majority clone in the last chapter.
_ The clone generated by the dual discriminator d of Fried and Pixley (recall that d
is defined by d(z,y,2) =z if x = y and d(z,y, 2) = z if  # y). The minimality of
d can be seen at follows: d is a homogeneous operation (that is, an operation that
preserves all permutations), so the same must be true for any nontrivial majority
operation f € [d]. Thus, f and d are both homogeneous majority operations and
hence have to coincide up to ordering of variables (see [3]). Thus, d € [f]. Here, we

present a different proof, not relying on the result in [3].

Theorem 4.6: The dual discriminator d of Fried and Pizley is minimal.

Proof: Let f be a nontrivial ternary operation in [d]. We have to show d € [f].
By Lemma 4.4, f is a near-unamity and hence a majority operation. Clearly, f can
be represented by a rooted ternary tree whose leaves are labelled by the variables
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hence have to coincide up to ordering of variables (see [1i]). Thus, d € [f]. Here, we
[

present a different proof, not relying on the result in [3].

Theorem 4.6: The dual discriminator d of Fried and Pizley is minimal.

Proof: Let f € [d] be a majority operation. We have to show d € [f]. Clearly,
f can be represented by a rooted ternary tree whose leaves are labelled by the

variables x, y, 2; e.g.

represents the operation defined by f(z,y,2) := d(d(d(z,y, 2), z,d(z,y, %)), y, 2).

Set x = a, y = b, z = ¢. Take a subtree with three leaves. If two leaves have
the same value, say @, we can replace this subtree by a leaf with a. If the three
leaves have all three variables, then we can replace the subtrees by a leaf carrying

the value of the rightmost leave. For the above tree, we get

ab ¢ cha

3 c a a

We can repeat the procedure until we obtain a result for f(a, b, c).

c a a
KT/ -)E\IIJ/

Clearly, the result (f(a,b,¢) = ¢ in our example) is independent of the ordered
triplet (a, b, c) of dlistinct elements of S and thus f is one of the three operations

obtained from d by coordinate exchange. Thus, d € [f]. O

Definition 4.7: Let f be a majority operation on S. Set
w:={(a,b,c) € S3 |a#b+#c#a} and 1 :== S\ w.

Call the set f(w) the range of f.
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Lemma 4.8: Let f be a majority operation and let g € [f] be a nontrivial terndary
operation. Then g(w) C f(w)

Proof: [4] Suppose to the contrary that there exists a € g{w) \ f(w). Now
a = g(u) for some v € w. As g € [f], we have g = t(f) where t is a term of minimal
length. Clearly, g = f(g1,g2,93) where g; = t;(f) € [f] is ternary such that the
length of ¢; is less than k (: = 1,2,3, k'€ N). Now

a = g(u) = f(g1(u), g2(u), g3(u)).
Asa ¢ f(w), we must have (g1(u), g2(u), gs(u)) € ¢ and hence two of the coordinates

are equal, say g1(u) = g2(u). Then a = g;(u) since f is a majority operation. Now
g1 = t1(f) with {(¢;) < k. Continuing this argument we arrive at a = g;{u) where
gi = t;(f) with I(t;) = 1. Now ¢;(f) = f, where ¢ is a permutation on {1,2,3}.
This implies a € f(w), a contradiction. O

This lemma gives us a minimal majority operation on S. Let ¢ € S and define
the majority operation m, by setting m.(z,y,2) = c for all (z,y,2) € w. By
Corollary 4.5, we know that, in order the prove the minimality of m,, it is sufficient
to show that any majority operation g € [m,| generates m.. By Lemma 4.8, g(w) C
me(w) = {c} and hence g = m.. Thus, [m,.| is minimal and another example for the

non-emptiness of class (3) of the RCT.

We can formulate an even stronger result if f is minimal.

Corollary 4.9: Let f be a majority operation and let g € [f] be a nontrivial
ternary operation. Then g(w) = f(w).

Proof: g(w) C f(w) by Lemma 4.8. By the minimality of f, we also have f € [g]
and hence f(w) C g(w). O

4.1 Minimal majority clones on a two-element set

In the case S = {0, 1} the values of a majority operation are all uniquely determined
by the majority property. Thus, we have only one majority operation. It is the dual
discriminator d of Fried and Pixley [9] that we have already seen as an example for
the non-emptiness of the corresponding class in the RCT. It is therefore the only
minimal majority operation on .S. Note that it coincides with the operations m,
c € S, that we mentioned after Lemma 4.8. Thus, [d] is the only minimal majority

clone on S.
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z, fe=y
z, ifx#y

d(.’l?, Y, Z) = {

4.2 Minimal majority clones on a three-element set

In the following, fix n = 3 and denote by S the set {0,1,2}. If not stated otherwise,
all results presented in- this and the following section 4.3 are due to Béla Csadkany

[4],[5]-

Definition 4.10: Let f be a majority operation on S. Call the number u(f)
defined by

u(f) =3°£(0,1,2) +31£(0,2,1) + 3°f(1,0,2) + 3°f(1,2,0) + 3f(2,0,1) + f(2,1,0)

the mantissa of f.

Note that a majority operation is uniquely determined by its values on w which
are, in turn, uniquely determined by p(f). Thus, a majority operation f is uniquely
determined by u(f). From now on, we denote by m; the majority operation on S
with the mantissa i (e.g. magq is the operation whose value is always 1 on w).

To determine all minimal majority operations f, we split the problem in two

cases:
e Case 1: |f(w)|=3

We have already seen a minimal operation with that property in the last chapter:
The dual discriminator d of Fried and Pixley [9]. Note that, using our notation
above, d = mgy4. Now we show that, up to permutation of variables, any minimal

majority operation f with |f(w)| = 3 is, in fact, d.

Lemma 4.11: Let f be a majority operation on S with range S. The binary

relations preserved by f are p-rectangular relations (a relation o is p-rectangular if
for every pair (1) ¢ o the set {(z) €o|xz=1ory=7j} has at most two elements).
J y
Proof: Suppose to the contrary that there is a binary relation o that is not p-
rectangular and preserved by f.. Without loss of generality (interchanging the two
coordinates of ¢ if necessary), we can assume (z)gé o but (1) , (Z) . (”')e o for
J a J

some a,b,z € S where j # a # b # j, x # i. We assumed |f(w)| = 3, so we have
j € f(w), and we may permute the variables of f so that f(a,b,j) = 7. But then,
we have (1) =(f(i’i’z_)) € o, a contradiction. [J

j fla,b,7)
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Lemma 4.12: The dual discriminator d of Fried and Pizley defined on an arbi-

trary set A preserves any p-rectangular relation on A.

Proof: Suppose that d does not preserve a p-rectangular ¢ relation on A. This
means that there exist (Zl) , (12) , (13)6 o such that (d(zl’zz’u))gé o. We have

9 y2) \Vs d(y1,y2,y3)
four cases:
(1) d(z1, z2,23) = z3 and d(y1, y2,¥3) = y3
(2) d(z1,22,73) = 21 = 2 and d(y1,y2,¥3) = ¥s
(3) d(z1, 2, 23) = z3 and d(y1, y2,¥3) = 41 = ¥2
(4) d(zy, 72, 73) = 21 = 22 and d(y1,Y2,¥3) = y1 = 2
Case (1) is a contradiction, because | “®|€ ¢ by the assumption. In case (2) we

Y3
must have y; # y» and hence (zl)¢ o but (zl),(zl),(u)e o, a contradiction to
Y3 n Y2 Y3
the p-rectangularity of 0. The same argument contradicts case (3) and, finally, case

(4) is contradicted by the assumption (zl) €o0. 0
n

Combining the two results, we obtain that d preserves all binary relations pre-
served by f. We use this fact to apply the Baker-Pixley Theorem [1]:

Theorem 4.13 (The Baker Pixley Theorem): If C is a majority clone on
a set A, then every operation that preserves the set of all binary relations on A that

are preserved by C is in C.

Proof: We prove this theorem when we restate it in chapter 5 (see 5.4). For now,
the proof may be omitted. [

If we apply the theorem to the clone [f], it follows that d is in [f]. Since we
assumed that f is a minimal operation, we also have f € [d]. This implies [f] = [d]
and, since we have already seen that [d] is a minimal clone, we can conclude the

following theorem:

Theorem 4.14: All minimal majority operations f on S with |f(w)| = 3 gen-

erate the same clone [d] (d = me2a).

e Case 2: |f(w)| <3

There are 3 * 2 — 3 = 189 majority operations with that property and they
belong to 10 distinct orbits of T3 (see Definition 4.2). The following table gives each

21



orbit represented by the operation having the least index (the number of opérations

in the respective orbit is given by the number in brackets)

(
my (18)  mgy (18
mio (18) mgs (18)

Now, we prove that all minimal clones generated by majority operations f with
|f(w)| < 3 are generated by the three operations in the orbit of mg, namely my,
masa(= (mo)©V), mrag(= (mo)®?) and the six operations in the orbit of mjgg.
However, to determine all distinct minimal clones among them, it is enough to
look at three operations in the orbit of mig9, namely Mo, Maz3(= (M109)®?) and
ms10(= (mM109)!?), since the other operations in the orbit of 7,09 can be obtained
from the listed ones by permutation of variables and hence do not generate further

clones.

Theorem 4.15: The clones [my), [maga], [mras], [Mios], [Mars], [msi0] on S are '
ezactly the clones generated by minimal majority operations f with |f(w)| < 3.

Table 4.2
(z,Y,2) | mo(z,y,2) | msea(z,u,2) | mrs(z,9,2) | mios(x,9,2) | mars(z,y,2) | msro(xy.2)
0,1,2)| o 1 2 0 1 2
(1,2,0) | 0 1 2 0 1 2
2,01) | 0 1 2 0 1 2
1,02 | o 1 2 1 2 0
©0,2,1)| 0 1 2 1 2 0
(2,1,0) | 0 1 2 1 2 0

To prove the theorem, we first prove a simple but useful observation.

Lemma 4.16: Let H C G C I where I is the set of all nontrivial special
operations (i.e. the operations of the classes (1)-(5) in the RCT). Suppose that the
following conditions hold:

(I) [g)NI CG forallge G
(II) [g) N H #0 forallg e G
(III) hy,hy € H, hy # hy = hy ¢ [ho]
Then the clones generated by the operations in H are ezactly the set of pairwise

distinct minimal clones generated by g € G.
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Proof: By H C G, {[h]|h € H} C {[g]lg € G}. The distinctness of the minimal
clones generated by the operations in H follows trivially from (III). It remains to
show that [h] is minimal for all A € H. Let us suppose that there exists a h € H such
that [h] is not minimal. Then, [A] has to contain a minimal clone C s.t. C ¢ [h].
This implies that there has to exist a special operation f € I such that [f] C [A].
By H C G, h € G and by (I), h does not generate a special operation in I \ G.
It follows f € G. But now (II) makes sure that there exists b’ € H such that
W e [f]NH S [h]. Tt follows h' # h and K € [h], a contradiction to (IT). O

We use this lemma to prove our claim. This means that we have to show (I)-(III)
for the set G containing all 189 majority operations f with |f(w)| < 3 and the set
H = {m; | i = 0,364,728,109,473,510}. We conclude (I) with the help of two

Lemmas we have already proved:

Let f € [g] NI where g € G. Since f is generated by g, it has to be at least
ternary. Since f is also in I, we can conclude that f is exactly ternary, because
semi-projections of arity greater than 3 are trivial on a three-element set. But now,
by Lemma 4.4, any nontrivial ternary operation that is generated by a majority
operation is again a majority operation. Thus, f is a majority operation. It also
follows by Lemma 4.8 that we have |f(w)| < 3 and hence f € G. This proves (I).

Now, we prove (II). Recall that we have noted g € [f] = ¢® € [f?] at the
beginning of this chapter. In the virtue of this observation it is enough to show
that, for each operation m; in Table 4.1, there is an m; € H such that m; € [my].
Set

f = f(f7 f(l23)a f(132)) : f(f(zu y,Z),f(y,Z,.’l?),f(Z,.’l?,y)).

It is easy to see that if two of the three values f(a,b,c), f(b,c,a), f(c,a,b) equal d,
then f(a,b,c) = f(b,c,a) = f(c,a,b) = d. This implies

mo = My = Ty = Mg = iz = Mo € [M1], [ma], [Mao], [M120]
and
Mige = (M13)12) = Mas = (Mae)(12) = Mas = Mige € [Mas], [Mas], [Masg), [Mas],
as required.

Finally, to prove (III), it remains to show that none of the operations in H is
contained in the clone generated by another operation in H. There are 6 * 5 = 30
pairs to be checked. However, we can reduce the problem by noting that the unique

nontrivial permutation on S preserved by mige and myeg is (01), that preserved
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by maes and msy is (02) and that preserved by mg and myr3 is (12). Hence, no
operation of one of these three pairs is contained in the clone generated by an
operation of another pair. Furthermore, we can use Table 4.2 to check that the
ranges of mygg and mireg, Mags and msg, Mg and my73 have no common'entry,
respectively. Thus, by Lemma 4.8, each operation of one of the three pairs is not
contained in the clone generated by the other operation of the pair in question. This
proves (III). '

We apply Lemma 4.16 and obtain the claim of Theorem 4.15. Combined with the
result for case 1 (stated in Theorem 4.14), we can summarize the minimal majority
clones on the three-element set S in the table below. The clone standing at the
meet of the row starting with [f] and the column marked by the permutation ¢ is
[f]®. The place of [f]? is empty if [f]? is equal to some clone appearing earlier in
the table. We have seven minimal majority clones, three of which are essentially

distinct.
Table 4.5
The minimal magority clones on {0,1,2}
() (02) (1)
[mo] [m364] [m728]
[mlog] [m473] [mslo]
[me2a] (= [d])

Note that this table gives us all distinct minimal majority clones on S but not
all minimal majority operations on this set. To determine all minimal majority

operations, we need another lemma.

Lemma 4.17: Set
My = {mo},
Mg := {m109, Mass, M325, Mag, Mas3, Maa7, Ma11, Ma37 },
Meaq := {m44, My24, m624}-
For a clone C denote by Cx the set of majority operations from C. Then
a) [mo|* = My,
b) [maoe]* = Migy.

C} [m624]* = Mpgoa,

Proof: a) The range of my consists of 0 only, hence, by Lemma 4.8, the same
holds for each nontrivial ternary operation in [mp]. Thus, the set of nontrivial

ternary operations in [my] is exactly {mo} = Mp.
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b) One one hand, {mlog,mzss,mszsymsg,m2537m327,m111,m37} = Mg C [mmg]
since we have myss = (mlog)(lz), M35 = Mgy, M3g = (mszs)(lz), Mas3 = (msg)(23)7
Maz7 = (Mag)(132), Ma11 = (M39)(13), Ma7 = (M30)(23). On the other hand, the range
of migg is {0,1}. Since these operations are all minimal, we can apply Corollary
4.9 and we obtain that the range of every nontrivial ternary operation in [mjgo] is
also {0,1}. At the same time, the operations in [myge] have to share the property
of mygg to be invariant under the transposition (01) of S. One can check that under
all 189 majority operations on S, only the majority operations in Mjge have these
two properties. Thus, [mig9]* = Mioe.

c) {ma4, Ma2a, Me24} = Meas C [Mi24] since we have mas = (mg24)13) and mygy =
(Mg24)(23). Furthermore, by the proof of Theorem 4.6, any majority operation in
[meaa) is one of the three operations obtained from mga4 by coordinate exchange

and this are exactly the operations in Mgz4. [

It follows directly that we have

[maea]x = {m®|m € Mo} = {msea},

[mass]x = {m®m € Mo} = {mas},

[m473]* = {m(02)|m € Mg} = {maar, Me19, Mag1, Me11, Mas7, Mea3, Me35, Mads ),

[ms10]* = {m(12)|m € Moo} = {msi0, Mma1s, Mess, Me2, Mgz, 702, Misas, M6 }-
Analog to the notation above, denote these sets by Mzgq, M7os, My73, Ms10, respec-
tively. So the clones [myg], [masgs] and [myg] contain only one (minimal) majority
operation each, while the clones [migg], [ma473] and [ms0] contain eight (minimal)
majority operations each. [mgp4] contains three (minimal) majority operations. This
means that there are 3 x 1 + 3 * 8 + 3 = 30 distinct minimal majority operations.
We can now list the minimal majority operations of the three essentially distinct
- minimal clone [my], [ms10], [maa] (the reason for choosing [msio] instead of [mig9]

as a representative will be seen later).

Table 4.4
The minimal magjority operations on {0,1,2} (up to isomorphism)
[mo] [ms10] [me2d]
(zy Y, ‘é) mo msio Ms4a6 Mg me66 moaig mig2 mz7o2 me2 mMe24 m44 m424
0,1,2) | © 2 2 0 2 0 0 2 0 2 0 1
(1,2,0) | 0 2 0 2 2 0 2 0 0 0 1 2
(2,0,1).| 0 2 2 2 0 0 0 0 2 1 2 0
(1,0,2) | 0 0 2 0 0 2 0 2 2 2 1 0
(0,2,1) | 0 0 0 0 2 2 2 2 0 1 0 2
(2,1,0) | © 0 0 2 0 2 2 0 2 0 2 1

25



4.3 Conservative minimal majority clones

The operations we consider in this section may be defined on S = {0, ...,n—1}. Note
that a clone C' is conservative if and only if C is generated by a set of conservative
operations (this follows because an operation on S is conservative if and only if
it preserves all unary relations on S). Hence, all clones generated by conservative
operations are conservative. In particular, in a minimal clone, either all or none of
the nontrivial operations are conservative. »

Note that a majority operation on S is necessarily conservative for n < 3. Thus,
for n € 3, any minimal majority clone is conservative.

Definition 4.18: Denote the set of all k-element subsets of S by Pi(S).

For a majority operation f on {0,1,2} we use the notation of the last section (see
Definition 4.10 and 4.2). In this section, we state our results in terms of algebras
(see chapter 3 for a justification). We call an algebra (A, f) minimal if its term
algebra is minimal, which, as noted in chapter 3, is the case if and only if [f] is a
minimal clone. Furthermore, we will call (A, f) majority algebra if f is a majority
operation.

Clearly, a k-ary conservative algebra (S; f) is uniquely determined by the set of
its k-element subalgebras {(A; f|ax) | A € Pu(S)}.

Definition 4.19: Denote by M the set

M = My U Megas U Ms1o
(M = {m, | i = 0,44, 424,624,510, 218, 666, 62, 182, 702, 546, 26 }).

Denote by R3 a set of representatives of isomorphism classes of all 3-ary algebras.
Assume in the following that we have ({0,1,2},¢) € Rj for all ¢ € M (note that
this implies ({0,1,2}, g) ¢ Rs for all g € Magq U Myog U Migg U Muzs). For a 3-ary
conservative operation f on S and an arbitrary A € P;(S), there exists a unique
3-ary algebra ({0,1,2}; g) in Rz such that (A; f|as) = ({0,1,2}; g). The set of these
algebras ({0, 1,2}; g) is called the spectrum of (S; f). '

In the following, we use the spectrum to characterize conservative minimal alge-

bras .

Lemma 4.20: (1) Each subalgebra of a minimal algebra is either minimal or
trivial.
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(2) The set of all 3-element minimal majority algebras is (up to isomorphism)
{{(S;m;)|m; € M}.

(8) An essentially k-ary algebra (S; f) is minimal if and only if

(a) For every nontrivial g € [f] there exists an essentially k-ary ¢' € [g]
(b) h € [f] and h essentially k-ary = f € [h]

(4) A conservative algebra (S; f) is not minimal if there exists a nontrivial operation
Let f be k-ary and g € [f] bel-ary. Let A, B C S such that (A; g|a) = (B;g|pt),
but (A; flar) 2 (B; flpr)

Proof: (1) This is Lemma 3.4 written in terms of algebras.

(2) We have proved in the last section, that the minimal majority clones on
{0,1,2} are exactly [mo)], [mas] and [mso] (up to isomorphism). Since M = My U
Mea4 U M0, this together with Lemma 4.17 (and the remarks made shortly after)
gives the claim.

(3) (a) and (b) are equivalent to the statement that any nontrivial g € [f] has
to generate f. We have already noted that this is the case if and only if the clone
[f] is minimal (see Lemma 3.1). '

(4) Note that (4; glu), (Bigla), (4; flac), (B; flaw) ave subalgebras of (S; f)
resp. (S;g) since these two algebras are conservative. By Lemma 3.2, the second
condition of the assumption implies f ¢ [g] and this, together with g € [f], gives

the non-minimality of the algebra. O
We are now ready to prove the main result of this section.
Theorem 4.21: Let n > 3 (recall S = {0,..n — 1}). A conservative majority
algebra (S;m) is minimal if and only if
Spec(S;m) C {{{0, 1,2}, ms)|m; € M}

which contains at most one algebra from each of {{{0,1,2};m;)|m; € Mgas} and
{<{07 17 2}7 mi)lmi € MSIO}-

Proof: In this proof, we need the following five terms of type (3) (we write (zy2)
instead of g(z,y, z), where g is the operation symbol in the term; see Definition 4.1)

= ((@)(y=2)(2ay)),



7<” Assume that Spec(S; m) satisfies the conditions above. Then there exist sets
R,U,V and operations m; € Mo, m; € Megpa, mi € Ms10 such that P3(S) = RUUUV
and
({0,1,2};m;) if A€ R,
(I) (Aymlas) =< ({0,1,2};my) A€,
({0,1,2};my) fAcV.
We use (3) of the Lemma above to prove that (S;m) is minimal.
First, we have to show that, for each nontrivial g € [m], there exists an essentially
ternary operation in [g]: The nontrivial operations in [g] are at least ternary (they
are generated by m) and since [g] has to contain a minimal clone (see Corollary 3.10)
there has to exist an operation h such that [h] C [g] C [m] is a minimal subclone of
[m]. By Corollary 4.5, a minimal subclone of [m] is a majority clone. Thus, h is a
ternary (majority) operation.
Now consider an arbitrary nontrivial ternary operation m’ € [m]. Then there are
my € My, mj € Mgaa and my € Ms)o such that

({0,1,2};my) if A€ R,
(D) (A;m|as) =< ({0,1,2};my) ifAeU,
({0,1,2};mk:) ifAeV.

The isomorphism in (II) is the same as the one in (I). To show that m' generates
m it is sufficient to show that there is a term t of type (3) such that t(my) = m;,
t(my) = m; and t(myg) = my because then it follows that
| 0,125 8(me)) = ({0,1,2};my)  if A€ R,
(A t(m)|as) = (A t(m/]s)) = § ({0,1,2};8(my)) = ({0,1,2};my)  if A€,
({0,1,2}; t(mw)) = ({0,1,2};my) f A€ V.
and hence t(m’) = m and m € [m/] (the isomorphism above is again the same as in
(I) and (IT)). Since My = {myg}, it follows m; = my = mg and thus t(mg) = mg for
any nontrivial ternary £. Hence, we have to take care of m; and m; only. We do so

in two steps: First we find a term t; such that

(III)  t1(mj) = Maa, t1(me) = Ms10,
and secondly we find a term ¢, such that

(IV) t2.(m44) = mj, ta(ms10) = My

so we can finish the proof by defining t = ¢5¢;.
To find ¢; for (IIT), it suffices to find two terms t;; and t;5 such that ¢;,(mg) = msyo
for all My € M510, tll(mj:) = m; for all m; € M624 and also tlg(m510) = Ms10,

tlg(m424) = Me24, tlg(m624) = My4. We can then choose
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b1 if 7 = 44,
(t1p)%t1n  if j = 424,
t12t11 lfj = 624.

t1=

The construction of such terms is the most difficult and essential part of the proof.
Here, we will skip the process of construction. It can be checked that ¢1; = prgp
and ¢, = p?s are such terms.

We can use the same idea to find ¢, for (IV): It suffices to find two terms ¢ and
top such that t21(msi0) = Mk, to1(Mas) = mug and tx(mpy) = Mk, taa(Mag) = Moy,

to2(My24) = Meaq, tao(Me2s) = Myq since we can then choose

to1 if j = 44,
t2 = t22t21 lfj = 424,
(t22)2t21 if j = 624.

Skipping the construction part again, it can be checked that the terms ¢y, t2o given

in the table below are appropriate:

Table 4.5
Terms toy, to2
k | ta (2}
510 p?s
218 | pgr  p°s
666 | ¢ gspgrp
62 | rs  Tp’s
182 | s sp?
702 | gr  qrp’s
546 | T rp*s
26 | s sp?

This completes the proof of the minimality of (S;m).

"=" A subalgebra of a minimal conservative majority algebra is either minimal
or trivial by (1) of Lemma 4.20. Hence, the algebras in Spec(S;m) must be min-
imal, because they cannot be trivial since m does not become a trivial operation
if we restrict it to the triplets of a three-element set. It follows from (2) of the
same lemma that the spectrum of a minimal conservative algebra is a subset of
{(S;m;)|m; € M}. Now suppose that Spec(S;m) contains two distinct algebras
from {({0,1,2};m;)|m; € Mez4}. This means that there have to exist two distinct
three-element subsets A, B and two distinct majority operation m;, ,m;, € Mg
such that (A;m|as) = ({0,1,2};m;,) and (B;m|gs) = ({0,1,2};m;,). One can
check that we have u?(m;) = myp4 for any of the three m; € Mgos. Now we define
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g = u?(m) which is an operation that clearly belongs to [m]. We obtain (A; g|4s) =
(0,1, 2} mans) = (Biglse) but (Asmlas) & ({0,1,2my) 2 ({0,1,2};my,) =
(B;m|ps). This is a contradiction to the minimality of (S;m) by (4) of Lemma 4.20.
Similarly, we have already noted that, for any my € Mz, we have prgp(myi) = ms1o-
Hence, we can use the same argument to conclude that Spec(S;m) also cannot con-
tain two distinct algebras from {({0,1,2}; m;)|m; € Ms1o}. O

4.4 Minimal majority clones on a four-element set

We will now determine the minimal majority clones on a four-element set. If not
stated otherwise, all results in this section are due to Tamds Waldhauser [23]. Recall
S=A{0,..,n -1}

Recall what we have noted in Lemma 3.4: If a k-ary operation f on S is minimal,
then so is any nontrivial operation f|4r for a subset A C S providing f preserves
A. This is a useful observation, because it implies that if f is a minimal majority
operation on S and A is a three-element subset of S preserved by f, then the (due
to the majority property of f) necessarily nontrivial f|4s must be isomorphic to
one of the operations we obtained in the second section in this chapter: Up to

isomorphism, it must be listed in Table 4.4.

Furthermore, we have already noted that in order to prove the minimality of
a clone C generated by a majority operation m, it suffices to show that any two

majority operations in C generate each other.

Now, we formulate a theorem which helps us to reduce the number of operations
that have to be checked in order to find all minimal majority clones.

Theorem 4.22: Let f be a majority operation on S. Then there exists a majority

operation g € [f] which satisfies the following identity
(o) glg(=,y,2),9(y,2,%),9(2,7,9)) = 9(z,y, 2)
Proof: We define f® (k > 1) recursively as follows:

- fO(z,y,2) = f(z,y,2)
- f(k+l)(xay7 Z) = f(f(k)(.flf,y, z),f(k)(y,z,x),f(’”)(z,x,y)) .

We show by induction on & that the following identity holds for a fixed [ > 1.

f(k_H)(xa Y, Z) ~ f(k)(f(l) (.TL', Y, Z), f(l)(y7 Z,.CL'), f(’)(z,x, y))
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The base case (k = 1) is trivial by definition. Now we assume k£ > 1 and that the

claim is true for all 1,..., k. We have

f((k+l)+l) (x, v, z)
~ f(fED(z,y,2), FE(y, 2, z), fED (2, 2,9))
~ f( OO, y,2), Oy, 2,2), FO(2,2,y)),
fOFOy, 2,2), fO(2,2,y), fO(z,y, 2))
fEFO(z,2,y), fO(z,y,2), [Oy, 2,7))
~ fED(fO(z,y, 2), fO(y, 2,2), fO(2,2,7))

Now we define * on D = {f®|k € N} by
(f® % fO)(z,y,2) = FO(FO (2,9, 2), FOy, 2,2), [O(2,2,9))

Our claim shown above means that k& — f®* is a homomorphism from (N;+) to

)

)

(D; ). We will finish the proof by showing that (D; *) contains a unique idempotent
~element, say f(), because then, f¥ x fU = f and (o) follows for g = f¥ € [f].
D is clearly finite so we can assume D = {f1), ..., f(}. Now there exists s > 0
such that f+9) = (M and fr+D f+2) - f+9) are pairwise distinct. s must be
a divisor of one of the numbers r + 1,...,7 + s, so one of these can be written as
sq for some g € N. But now, f9 x fl0 = flsatsa) — f(s9)  Thys, (D; %) has an
idempotent element. Now suppose that there are two idempotent elements f**) and
f&). Then

f(ll) = f(ll) " f(ll) = f(lll2) — f(l2) " f(l2) — f(lz).
—— —_—_—

l2 (51

Thus, (D; *) contains a unique idempotent element. [

This means that any minimal majority clone is generated by a majority operation
satisfying (0). Thus, in order to find all minimal majority clones on S it suffices to

check all majority operations on S satisfying (o).

Note that the uniqueness of the idempotent element in (D; ) is not needed to

proof the claim. However, it is needed in the next definition.

Definition 4.23: Let f be a majority operation on S. Set
(abe) := {(a,b,¢),(b,c,a), (c,a,b)}.
Write |

fliabey = u whenever f(a,b,c) = f(b,c,a) = f(c,a,b) =
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and

f|(abc) =piff(a,b,c) = q, f(bac7a) =b, f(c,a,b) =C

Furthermore, for a ternary operation f define f*) as in the proof of Theorem 4.22
and denote by f the unique element in {f!)|l € N} C [f] that satisfies (o).

Now we observe some of the properties that a majority operation satisfying (o)
must have. Recall that w := {(a,b,c) € S®|a # b # c # a}.

Lemma 4.24: Let f be a majority operation satisfying (o) and let (a,b,c) € w.
Let u = f(a,b,¢), v = f(bc,a) and w = f(c,a,b). Then |{u,v,w}| # 2 and
Flewwy = P

Proof: Suppose to the contrary that |{u,v,w}| = 2. Without loss of generality
we can assume u = v 7 w. We use the property (o) to obtain

wzf(c,a,b) =f(f(c,a,b),f(a,b,c), f(b7c7a)) =f(w;uau) =1,

a contradiction. For the second part we use (0) again and we obtain

f(u,v,w) = f(f(avba C),f(b, c,a), f(caO':b)) = f(aﬂb’ c) =u.

fv,w,u) =v and f(w,u,v) = w follow in the same way. O
Now we also assume that f is minimal.

Lemma 4.25 Let f be minimal majority operation satisfying (o) and let (a,b,c) €
w. Then flaeey = p if and only if f| ke = p-
Proof: "=" Let f|(abey = p. Define g by setting

g(m,y,z) = f(f(m)yaz)>f($: zay)7$)'

Since f|bey = p, we get f(z,y,2) = x for (z,y,2) € (abc) and f(z,2,y) = z for
(z,y,2) € (bac). Due to the majority property of f, this implies g|py = p and
hence g preserves the set {a,b,c}. Due to g € [f] and f minimal, f has to preserve
{a,b,c} as well. Thus, the restriction f|(,4c)s is a minimal majority operation on
the three-element set {a,b,c}. But now we can look at the Table 4.4 that gives us
(up to isomorphism) all minimal majority operations on a three-element set. We
note that there is only one operation, namely mu4, satisfying f|(sey = p. However,
myy also satisfies f|pac) = p. Thus, f|pa = p-

"<=" Apply "="to f(bac)- O
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The last two lemmas prove the following theorem.

Theorem 4.26: Let f be a minimal majority operation satisfying (o) and let
(a,b,c) € w. Setu = f(a,b,c), v= f(b,c,a) and w = f(c,a,b). Then fluw) =p
and fl(vuw) =D

Corollary 4.27 Every conservative minimal majority clone C is generated by

an operation f that has the following property:

(00) fliabey = u 07 fl(abe) = p for all (a,b,c) € w (where u depends on a,b,c)

Proof: By Theorem 4.22, C is generated by a conservative majority operation
f satisfying (o). Setting u = f(a,b,¢), v = f(b,c,a), w = f(c,a,b), we obtain
(u,v,w) € {a,b,c}. Hence, Theorem 4.26 gives us f|uww) = p and fluuw) = P.
Thus, flaeey =p (fu#v#w#u)or flag =u (ifu=v=w). O

Definition 4.28: Denote by T the set of all majority operations on S for which
the property (0o) holds.

Note that the a majority operation that satisfies (0o) also satisfies (o). Hence, the
majority operations in T form a subset of the set of majority operations satisfying
(0) |

By the proof of Corollary 4.27, a conservative minimal majority operation sat-
isfying (o) is in the set Y. Unfortunately, this is not true if the operation is not
conservative. However, we can show that in the four-element case, there is essen-
tially only one exception (this means that, up to isomorphism, there is only one
minimal majority operation on S that satisfies (o) but is not in T). Before we
start our work on proving that claim and determining the operation in question, we

introduce some more notation.

From now on until the end of this section, fix n = 4 and S = {0,1, 2, 3}.

Definition 4.29: Denote by [p,q,7;s,t,u] the set of majority operations on S
for which
f(0,1,2)=p f(1,0,2)=s
f(2,0,1)=r f(2,1,0)=u
If we do not want to specify all these six values of f, then we use * to indicate

an arbitrary element of S. For example, [0, *,*;*,1,%] is the set of all majority
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operations f such that f(0,1,2) =0 and f(0,2,1) = 1.
Furthermore, let f;, f,, f. stand for the composite where the first, second resp.
third variable of f is replaced by f itself.

fz(x,y,z) = f(f(xayvz)ayvz)
fy(x,y,z) = f(.’L‘,f(.’L‘,y,Z),Z)
fz(xa y:'Z) = f(x,y,f(x,y,z))

Instead of (f,), we briefly write f,,. We also use the convention that the lower
indices have priority to the upper ones. This means that fz(l;) stands for ( fzy)(k) and
not for (f*),,,.

We now prove a lemma that helps us evefy time we have to calculate the values
of f,,. Since we use the operation f,, very often in the sequel, this lemma is very

useful for us.

Lemma 4.30: Let f be a majority operation and a,b,c,d pairwise distinct el-
ements of S (i.e. {a,b,c,d} = {0,1,2,3}). If f(a,b,c) # d, then f,(a,b,c) =
f(a,b,c). If this is not the case, then f,,(a,b,c) = f(a,b,d) if the latter does
not equal d. If it does, then f,,(a,b,c) = f(a,d,c) if this is not b. If we have
f(a,d,c) =b, then fy, = f(a,d,b).

Proof: We have
fzy(a’ b7 C) = f(a7 f(a) b’ f(a7 b7 C))? f(a7 f(a7 b7 f(a7 b7 C))7 C))'

Now

f(aﬂb)c) =a= fzy(a‘>bac) = f(a‘ (a‘ b a):f(a7f(a b a‘) )) .
= f(a,qa, f(a,a,c)) = f(a,a,a) = a,
fla,b,c) =b= fz(a,b,c) = f(a, f(a,b,b), f(a, f(a,b,b),c))
= f(a,b, f(a,b,c)) = f(a,b,b) =,
f(a‘:b>c)=C=>fzy(a"bac)_f(a‘ (abc) ( (abc) ))
= f(a,c, f(a,c,c)) = f(a,c,c) =c.
Thus, f;,(a,b,¢c) = f(a,b,c) if f(a,b,c) # d. Now suppose f(a,b,c) = d. Then

fzy(a‘7b7c) = f(a‘vf(a‘a b:f(a‘7 b, C))af(aa f(a‘a b:f(a‘vb?C)),C))
= f(a‘7f(a‘abvd)af(aaf(a7b7d)7c))

and we have

f(ayb;d) =a = fzy(aub,c) = f(aaa,f(aaaac)) = f(a;a;a) = a,
f(a7bad) =b= fzy(a)bac) = f(a,b,f(a,b,c)) = f(a7b7d) =b,
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f(aabvd) =c= fzy(aabyc) = f(a,c,f(a,c,c)) = f(a,c,c) =C.
Thus, f.,(a,b,c) = f(a,b,d) if the latter does not equal d. Now suppose
f(a,b,d) = d. Then

fzy(a7b7 C) = f(av f(a7ba d)a f(aa f(a7bad)7c)) = f(a7d7f(aa d’ C))

and we have

fla,d,)c) =a = f,(a,bc)= fla,d,a)=a
f(a7d7c) =c= fzy(a7bac) = f(a,d,c) =¢c
fla,d,c) = d = foyla,b,c) = f(a,d,d) =d

and finally
fla,d,c) =b= f,,(a,b,c)= f(a,db), as required. O

Now we prove a series of lemmas that we will afterwards use to prove the first

big result of this section.

Lemma 4.31: Let f be a minimal majority operation on S satisfying (o) and let
(a,b,¢) € w. If f({abc)) C {a,b,c}, then one of the two following conditions hold:

(3) fliabey = P and fliac) = p

(1) fliabey = v and f|ipaey = v for some u,v € S.

Proof: f|(abey has one or three elements by Lemma 4.24. If it has three elements,
these three elements are necessarily {a,b,c} and we have f|up = p and flpeey = p
by Theorem 4.26. Now we suppose that f|(ay contains only one element. Without
loss of generality, we can assume that f|s = a. Let d be the remaining element
in S after taking away a,b,c. If d ¢ f((bac)), then f preserves {a,b,c} and we
can again use Table 4.4 to check that all minimal majority operations on the three-
element set {a,b,c} that have the property fls = a (namely the operations my,
ms10 and mp1g) also have the property f|secy = v for some v € {a, b, c}. Now suppose
d € f({bac)) which means that f does not preserve {a,b,c}. If a € f({(bac)), then
we can permute the variables cyclically to have f(b,a,c) = a. Now we can look at
the superposition

9(z,9,2) = F(f(z,9,2), f(z,2,Y), 7)

that we have already used in the proof of Theorem 4.26. We can use the iden-
tities f(b,a,c) = a and f|y = a to obtain that g(z,y,2) = a if (z,y,2) €
{(a,b,¢),(a,c,b),(b,a,c),(bc,a)}. This implies

93z, y,2) = 9(9(%,9,2),9(y, 2,2), 9(2,3,y) = a
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for all (z,y,z) where {z,y,2} = {a,b,c}. This means that ¢ € [f] preserves
{a,b,c} and hence contradicts the minimality of f (since we assumed that f does
not preserve this set and hence f ¢ [¢?]). Finally, if a ¢ f({(bac)) (but d €
f({bac))), then f((bac)) = {b,c,d} or f({bac)) = d since f({bac)) it cannot contain
two elements by Lemma 4.24. The second case finishes the proof, so we suppose
f({bac)) = {b, c,d}. We may suppose without loss of generality

(i) f(b,a,c) =c¢, f(a,c,b) =d, f(c,b,a) =bor

(ii) f(b,a,c) =b, fla,c,b) =d, f(c,b,a) =c
after a cyclic permutations of variables (if necéssary). In the first case, we have
(using the identities we have just listed and f|ase) = a)

a if (z,9,2) € {(a,b,¢),(a,c,b), (b, q,c¢),(c,a,b)},
9(z,y,2) = ¢ ¢ if (z,9,2) = (¢,b,a),
d i (5,5,7) = (b,,a).

which implies ¢®(z,y,z) = a for all (x,y, 2) such that {z,y,z} = {a,b,c}. Hence,
g'? preserves {a, b, c}. In the second case we have

a if (a:,y,z) € {(G"bv C): (a7c7 b)}7
g(z,y,2) =< b if (z,y,2) € {(b¢c,a),(b,a,c)},
¢ if (z,y,2) € {(¢c,a,b),(c,b,a)}.

and g presefves {a,b,c}. Both cases contradict the minimality of f. This finishes
the proof. O

Lemma 4.32: Let f be a majority operation on S satisfying (o). In either of
the following cases f is not minimal
(a) f € [3,1,0; %, %, %]
(b) f €[3,0,1; %, %, ]
(c) f€3,0,2;%, %, x|
(d) f €[3,2,0; %, %, .

Proof: (a) Suppose that f is minimal. We can use Theorem 4.26 to conclude from
f(0,1,2) = 3, f(1,2,0) = 1, f(2,0,1) = 0 that we have f|g10y ='p and f|x30y = p-
We now use Lemma 4.30 to show that f,, preserves {0, 1,2} (which contradicts the
minimality of f since f obviously doesn’t preserve this set) apart from very few
exceptions. We have f(0,1,2) = 3 and hence f,,(0,1,2) = f(0,1,3) = 0. Next,
£(1,2,0) = 0 and f£(2,0,1) = 2 imply £,,(1,2,0) = 0 and £,,(2,0,1) = 2. Also,
f2,(1,0,2) = 3 is possible only if f(1,0,2) = 3 and f(1,0,3) = 3. However, this is
not possible since we know f(1,0,3) = 1. Similarly, f,,(0,2,1) = 3 is possible only
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if £(0,2,1) =3, f(0,2,3) =3 and f(0,3,1) € {2,3}. Again, the latter is impossible
since we have f(0,3,1) = 0. Finally, f,,(2,1,0) = 3 is possible but only if
(1) f(2,1,0) =3, f(2,1,3) =3, f(2,3,0) =3 or
(i) f(2,1,0) =3, f(2,1,3) =3, f(2,3,0) =1, f(2,3,1) = 3.

So f must satisfy one of these two cases. We now try to examine the set f((102)).
We know that this set contains one or three elements by Lemma 4.24. If that
set is {0}, {1} or {2}, then we have f|uoz = v for some v € {0,1,2} but we
obviously do not have f|12) = u for any v € {0,1,2}. This implies that f cannot
be minimal by Lemma 4.31. If we have f|02y = 3, then we can calculate (using
all the identities above) f,, € [0,1,0;1,u,3], where u = f,,(0,2,1) # 3. If we
have u = 1, then f,, € [0,1,0;1,1,3] implies f,g) € [0,0,0;1,1,1] which means
that f,g) preserves the set {0,1,2} and hence f cannot be minimal. For u = 2
we can calculate g(z,y,2) = fu(y,2, fo(z,y,2)) € [1,0,0;2,2,1] and hence g
preserves {0,1,2} and the minimality of f is contradicted. For v = 0 we have
fzy € 10,1,0;1,0,3]. We can calculate fg) € [0,0,0;1,0,3] because flqo3y = p
implies f,y|(103y = p by Lemma 4.30. Thus, j/t;, € [0,0,0;1,0,3|. This implies that
]/‘;, is not minimal by Lemma 4.31 and it follows that f is not minimal, too. Thus,
the assumption that f({102)) contains only one element was wrong and f((102))
has to contain three elements. If they are {0,2,3}, then Theorem 4.26 implies
flio2zsy = p which contradicts our observation that f(2,3,0) is either 3 or 1. In
the same way, f((102)) = {0,1,2} implies f|12) = p which cannot be true since
we know f(0,1,2) = 3. Likewise, f((102)) = {1,2,3} is a,lso‘impossible because
the implicated fl(213y = p is a contradiction to our observation that f(2,1,3) = 3.
Hence, f({102)) can be nothing else but {0, 1,3}. Since we already know f(2,1,0) =
3, there are only two possibilities left: f € [3,1,0;0,1,3] or f € [3,1,0;1,0,3]. In
the first case we have f,, € [0,1,0;0,1,3] and in the second case we have f,, €
[0,1,0; 1,0,3]. It follows that we have ]/‘;, € [0,0,0;0,1,3] in the first and _ﬂ; €
[0,0,0;1,0,3] in the second case, because f|(13y = p implies fz,|(013y = p by Lemma
4.30 and we already know f,, |03y = p. This contradicts the minimality of f by
Lemma 4.31 in both cases and we have finished the proof.

(b) We can use the same arguments as in (a). The only difference is that in this
case we have f, € [1,1,2;*, *,*].

(c) The operation f(z,z,y) € [*,*, *;0,3, 2] is isomorphic to an operation which
is not minimal by case (a), because for the permutation ¢ = (12) we have f(z, z,)? €
[3,1,0; %, %, *|.

(d) Similar as in (c), for f(z, z,y) € [*, ¥, *;2, 3, 0] we obtain f(z, 2,3)? € [3,0, 1;
*, %, ] which implies that f(z, z,y) is not minimal by (b). O
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As already used in the proof, this lemma obviously implies that a majority op-
eration that is isomorphic to an operation that falls under the cases (a)-(d) is not
minimal. In the tables below we list majority operations f¢ where f falls under
the cases (a)-(d) and ¢ is a permutation on S. These operations are therefore not
minimal (providing they satisfy (o)).

Table 4.6
(a) (b) (c) (d)

O | € BL0xx* [3,0,1;%,%% [3,0,2%,% % [3,2,0%* %]
©1) | f € [5%%3,01 [5%%3,1,00 [5%%3,1,2] [x%=321]
©) | fP€ [nnxl23 (656213 [hexn20,3 [5%x023)
12) | fé € [4%+0,3,2] [x%%23,0 [4%%1,3,0 [+*+0,3,1]
012) | f¢ € [1,3,2%%%4 (23 Lixx54] [0,3,1%54 [1,3,0%%4]
021) | f® € (0,23 %54 (20,3554 [21,3% %4 [1,2,3;%% 4 |-

Lemma 4.33: Let f be a majority operation on S satisfying (o). If f €

[3,2,1; %, %, %], then f is not minimal.

~ Proof: Suppose that f is minimal. We can use Theorem 4.26 again to conclude
from f(0,1,2) = 3, f(1,2,0) = 2 and f(2,0,1) = 1 that we have f|@zy = p
and flsy = p. As in the previous lemma, we examine the set f((102)). Once
again, Lemma 4.24 implies that it has to contain exactly one or three elements.
If £({102)) C {0,1,2}, then Lemma 4.31 contradicts the minimality of f; hence,
F((102)) cannot be {0}, {1}, {2} or {0,1,2}. Thus, it is {3} or a three-element set
containing 3.

Case 1: f((102)) = {3}. Define

9(z,y,2) = f(2,9, f(z,y,2))
and we can calculate g € [2,2,1;u,1,v]. Clearly, if none of u,v equals 3, then
g preserves {0,1,2} which contradicts the minimality of f (because f does not
preserve that set). For u = 1 we have g € [2,2,1;1,1,3] which implies ¢? €
[2,2,2;1,1,1] which means that ¢‘® preserves {0,1,2}. For u = 0 we have g €
[2,2,1;0,1,3] and it follows for h(z,y,z) = g(g(z,y,2),2,z) that we have h €
[2,1,1;1,1, %] and hence h® € [1,1,1;1,1,1] preserves {0, 1,2}. For u = 3 we have
g € (2,2,1;3,1, «] which (using f|(s21y = p and f|(231) = p) implies h € [2,1,1;2,2, #]
and again h{® € [1,1,1;2,2,2] preserves {0, 1,2}. It remains the case u = 2,v = 3.
But then g € [2,2,1;2,1,3] implies ¢® € [2,2,2;3,2,1], ¢® € [2,2,2;1,3,2], g¥ €
2,2,2;2,1,3] and hence § € [2,2,2;1,3,2]. Now Lemma 4.31 implies that g € [f]

- is not a minimal operation which contradicts the minimality of f.
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Case 2. f((102)) # {3}. Hence, f((102)) is a three-element set containing 3.
Suppose it is {0,1,3}. This implies f € [3,2,1,0,1,3] or f € [3,2,1,1,0,3] because
the other cases would give an operation that is listed in Table 4.6 and hence not
minimal. In both cases, we can conclude from Theorem 4.26 that f |<013) = p. This,
together with Lemma 4.30 and the identity f|(s21) = p, implies that we have f,, €
[0,2,1;0,1,2] in the first and f,, € [0,2,1;1,0,2] in the second case. In both cases
[y preserves the set {0,1,2}. Using Table 4.6 again, f((102)) = {0, 2,3} implies
f€13,21;3,0,2 or f € [3,21;3,2,0]. Lemma 4.30 gives us f,, € [u,2,1;v,0,2]
in the first and f., € [u,2,1,v,2,0] in the second case. Furthermore, Theorem 4.26
gives us f|(s20) = p. Using this identity and Lemma 4.30, we obtain in both cases

4

0, if £(0,1,3) € {0,3},
u=f,(0,1,2) =< 1, if f(0,1,3) =1,
| 2, if £(0,1,3) =2
(0, if f(1,0,3) =0,
v=f,(1,0,2) =< 1, if £(1,0,3) € {1,3},
| 2, if £(1,0,3) =2.

and hence u,v # 3. Thus, f,, preserves {0,1,2} in both cases. Finally, if f({102)) =
{0,2,3}, then it follows from Table 4.6 in the same way as above that we have
f€13,21;2,31 or f€[3,21;1,3,2]. Now we use g(z,y, 2) := f(z,v, f(z,y,2))
again. We use the identities f|213 = p and f|(123y = p once more to conclude that
we have g € [2,2,1;2,1,1] in the first and ¢ € [2,2,1;1,1,3] in the second case.
In the first case, g preserves {0,1,2} and in the second case ¢ € [2,2,2;1,1, 1]
preserves {0, 1,2}. Both cases contradict the minimality of f and this finishes the
proof. O

Again, we can use isomers to create operations that are isomorphic to an oper-
ation f € [3,2,1;*,*, %] and therefore not minimal. This means that we can add a
column to Table 4.6 and we obtain the following table of operations that are not

minimal (providing they satisfy (0)).
| Table 4.7 -
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432 (a)  4.32(b)  432(c)  4.32(d) 433
O | fE€ [B1L,0x%% [3,0 1%+
©1) | f® € [%#%+3,01] [+*+31,40]
0 | f€ [hax1,23 [k*x2,13
(12) | fO € [%%%0,3,2] [+ * %230
012) | f® € [1,3,2%,%,%]  [2,3, L;%,%,%]  [0,3,1;%,%,%] [1,3,0;%,%,%]  [2,3,0;x, %]
(021) f¢ € [0,2,3;%,%,%x]  [2,0,3;%,%,%] [2,1,3;%,%, %] [1,2,3;*,*,*] [1,0,3;*,*,*]

3,0,2;%,%,%]  [3,2,0;%,%, %] [3,2,1;% %, %|

*7*7*;3)172] ) [*7*)*;3727 1] [*7*7*;37270]

[
[
[*,%,%;2,0,3]  [*,%,%,0,2,3] [+,%,%;0,1,3]
[

*,%,%1,3,0]  [x,%,%0,3,1]  [%,%,%2,3,1]

Looking at this table carefully shows us that whenever we have a minimal major-
ity operation f € Og satisfying (o) and neither f|12) = p nor f|12y = v (implying
- f({012)) ¢ {0,1,2} by Lemma 4.31), then we must have that on two of the three
triplets of (012) the value of f equals the first variable, while on the third one f
equals 3. Any other possibility can be found in the table (recall |f({012))| # 2 by
Lemma 4.24). The same holds for the triplet (102). We can generalize this result
by replacing 0,1,2 by any three distinct elements a,b,c € S: If we have a triple-
(a,b,¢) € w and a minimal majority operation f € Og satisfying (o) such that
neither f({abc)) = p nor flse) = v holds, then we must have that on two of the
three triplets of (abc) the value of f equals the first variable, while on the third one

f equals d ¢ {a,b,c}.

Lemma 4.34: Let f be a majority operation on S satisfying (o). If f €
[3,1,2;1,0,3] or f € [3,1,2;3,0,2], then f is not minimal.

Proof: Suppose that f is minimal. In the first case, we can use Theorem 4.26 once
again to conclude from f(0,1,2) = 3, f(1,2,0) = 1, f(2,0,1) = 2 that f|@1) = p
and from f(1,0,2) =1, f(0,2,1) =0, f(2,1,0) = 3 that f|013y = p. With the help
of this two identities we can calculate f,(z,y, 2) = f(z,y, f(z,y,2)) € [0,1,2,1,0,2].
Thus, f, preserves {0,1,2} which contradicts the minimality of f. In the second
case, Theorem 4.26 gives us f|321) = p and f|(203y = p which allows us to calculate
fy, €10,1,2,1,0,2]. This means that f, preserves {0, 1,2} and the minimality of f
is contradicted. [ : '

Lemma 4.35: Let f be a minimal majority operation on S satisfying (o). If
f€103,1,2;1,3,2], then f = maqss where maaa s the majority operation defined as

shown below (the reason for naming this operation mya4 will be seen later).
| ,
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m4,44(:r7 Y, Z)

3

1

2

1

3

2 The middle two rows mean that if

3 {z,y, 2} equals {0,1,3} or {0,2,3}, then
{0,2,3} 3 mau(z,y,2z) = 3.

3

1

2

1

3

2

Proof: As usual, we can apply Theorem 4.26 to conclude f l@312y = pand fl|aszy =
p. It remains to show that f(z,y,z) equals 3 whenever {z,y,z} = {0,1,3} or
{0,2,3}. Set g; := f, and we can calculate

g1 = fz € [f(07 173)7 L,2; 1af(072a3)72]

If none of f(0,1,3), f(0,2,3) equals 3, then g; preserves {0,1,2} and f is not
minimal. Suppose that exactly one of them equals 3. If f(0,1,3) = 0, then
g1 € 10,1,2;1;3;2] and g§2) € [0,1,2;1,3,2] since we obviously have gi|12) = P
and f|u3z = p implies g1|qsz) = p. Hence, § e [0,1,2;1,3,2] which contra-
dicts the minimality of f because g, is now not minimal by Lemma 4.31. If
f(0,1,3) = 1 or f(0,1,3) = 2, then we have g; € [1,1,2;1,3,2] or [1,2,2;1,3,2]
and ¢ € [1,1,1;1,3,2] or [2,2,2;1,3,2] and in both cases Lemma 4.31 implies
that ¢; is not minimal. If £(0,2,3) = 0, then ¢; € [3,1,2;1,0,2] and giz) €
[3,1,2;1,0, 2] because we obviously have g;|102) = p and f|312) = p implies g1|312) =
p. Hence, i € [3,1,2;1,0,2] which contradicts the minimality of f as above.
For f(0,2,3) = 1 or f(0,2,3) = 2 we get ¢ € [3,1,2;1,1,2] or [3,1,2;1,2,2]
and ¢ € [3,1,2;1,1,1] or [3,1,2;2,2,2] and in both cases Lemma 4.31 implies
again that §; is not minimal. Thus, we must have f(0,1,3) = f(0,2,3) = 3.
Now we define go(z,vy,z2) := f(y,z, f(z,y,2)) and we obtain in exactly the same
way from g» € [f(1,0,3),1,2;1, f(2,0,3),2] that f(1,0,3) = f(2,0,3) = 3. For
g3 = f, we get g3 € [f(0,3,2),1,2;1, f(0,3,1),2] from which we can conclude
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f(0,3,2) = f(0,3,1) = 3. For g4(z,y,2) := f(z, f(z,y,2),z) we obtain g, €
[f(2,3,0),1,2;1, f(1,3,0), 2] which gives us f(2,3,0) = f(1,3,0) = 3. For gs(z,y, 2) :=
f(f(z,y, 2),y,z) weget gs € [f(3,1,0),1,2;1, f(3,2,0),2] and f(3,1,0) = f(3,2,0) =
3. Finally, for g¢(z,y, 2) := f(f(z,y,2),z,y) weget g6 € [f(3,0,1),1,2;1, £(3,0,2),2]
and £(3,0,1) = £(3,0,2) = 3. O

Lemma 4.36: Let f be a minimal majority operation on S satisfying (o). If
f€103,1,2;3,3,3], then f is not minimal.

Proof: Suppose to the contrary that f is minimal. We can use Theorem 4.26
once again to obtain f|i10y = p and f|(13y = p. Now let us look at the operation
fzy- We can calculate

foy € [4,1,20,w,2]
for some u,v,w € S. We have (using Lemma 4.30):

0, if £(1,0,3)=0
U:fzy(17012): 1) lff(17073) € {173}
- 2, if £(1,0,3) =2

and hence v # 3. Suppose v = 0. Then f,, € [u,1,2;0,w,2]. We define

g(x,y,z) = fzy(z’x’ fzy(xay)z))

and we obtain g € [r,1,2;2, %,2] for some r € S. This implies g € [*,*,%;2,2,2].
Since g € [f] has to be minimal, it can’t preserve {0,1,2} and it must meet the
conditions in Lemma 4.31. Only the case § € [3, 3, 3;2, 2, 2] remains. However, this
is not the case for any r € S. Now suppose v # 0 (i.e. v € {1,2}). For u = 0 we have
fey €10,1,2;v,w,2]. Since v # 3 we must have w = 3 since otherwise f,, preserves
{0,1,2}. Thus, f,, € [0,1,2;v,3,2]. For v = 1 we obtain f;, € [0,1,2;1,3,2]
and consequently f @) ¢ [0,1,2;1,3,2] because we obviously have f, |12 = p and
flas2) = p implies fzy|(132) = p by Lemma 4.30. Hence fzy €10,1,2;1,3,2]. Now
Lemma 4.31 implies that fzy is not minimal. If v = 2 we get fzy) €10,1,2;2,2,2]
and fzy preserves {0,1,2}. For u = 1 we have f,, € [1,1,2;v,w,2]| and again we
must have w = 3 so that f,, does not preserve {0,1,2}. Similarly as above, we
get f(z) €[1,1,1;1,3,2] for v = 1 and f(z) € [1,1,1;2,2,2] for v = 2. In the first
case we have fz\y €[1,1,1;1,3,2] and fzy is not minimal because of Lemma 4.31
and in the second case fz(g) preserves {0,1,2}. The same argument can be used
for ©w = 2. The only difference is that f§§),e [2,2,2; %,%,%]. Only the case u = 3
remains. We have f,, € [3,1,2;v,w, 2] where v # 3. If v = 2 or w = 2, then we have
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j/tz\y € [3,1,2;2,2,2] which means that fz\y is not minimal by Lemma 4.31. Thus,
v = 1 (recall that we suppose v # 0) and w € {0,1,3}. If w = 0, then we have
fey € 13,1,2;1,0,2] and fz\y =[3,1,2;1,0,2] which implies that j/fz\y is not minimal
by Lemma 4.31. If w = 1, then we have fz\y € [3,1,2;1,1,1] and the same follows.
Finally, it remains the case v = 1 and w = 3. We have f,, € [3,1,2;1,3,2] and we
know from the last lemma that we have f,, = m444. But we will see later that the
clone generated by my444 contains only 3 majority operations and f is not one of

them. Hence, f ¢ [ma444] and f is not minimal. O
We are ready to prove the first big result of this section.

Theorem 4.37: Any minimal nonconservative magjority operation on S which

satisfies (0) is isomorphic to maas or belongs to the set T.

Proof: Let f be a minimal nonconservative majority operation on S which satis-
fies (0) and does not belong to T. This implies that there exist a triple (a,b,c) € w
such that neither f|as = p nor flasey = u holds. Recall what we have noted
after Table 4.7: Having this condition, it follows that on two of the three triplets
of (abc) the value of f equals the first variable, while on the third one f equals
d ¢ {a,b,c}. We can suppose (after an isomorphism if necessary) that we have
f(0,1,2) =3, £(1,2,0) = 1 and f(2,0,1) =2, i.e. f € [3,1,2;%,%,+]. Now we must
have 3 € f((102)) because otherwise Lemma-4.31 would contradict the minimality
of f. In the case f|(02y = 3 the minimality of f is contradicted by Lemma 4.36.
Thus, f({102)) must be a three-element set containing 3 (it cannot be a two-element
set by Lemma 4.24). If we look at the Table 4.7 (or use the above argument) we can
see that they are only three possible cases: f € [3,1,2;1,0,3], f € [3,1,2;3,0,2] or
f€3,1,2;1,3,2]. But now Lemma 4.34 eliminates the first two cases and in the
third case Lemma 4.35 yields that f equals my44. O

We have succeeded in determining all minimal majority operations on S satisfying
(0) that do not belong to the set T. Now, we have to find the minimal operations
on S that are in T. We have already described the conservative ones in the last
section, so we can additionally limit or quest on nonconservative operations. We
prove several properties of such operations, until we find that only. a few (essentially
two) operations possess these properties and they happen to be minimal.

Definition 4.38: A ternary operation f is called cyclically commutative if it is

invariant under cyclic permutations on the variables. In other words,
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f@,y,2) = fly,z,7) = f(2,2,9)-

Lemma 4.39: Let f € T be a minimal nonconservative majority operation on
S. Then f s cyclically commutative.

Proof: Recall that f € T implies that flqeey = p or fliaeey = u € S for all
triple (a,b,c) € w. For contradiction, let us suppose without loss of generality
that f|oi3y = p. Then, by Lemma 4.31 we must also have f|i03y = p. Since f is
nonconservative, we may also suppose (without loss of generality) fl|12) = 3. We
must have f|102) = u for some u € S or fl(i02) = p. But, by Lemma 4.31, it follows
from f|i2) = 3 that the latter is impossible. First let us suppose u # 3. Then
fey € [0,v,w;u,u,u] where f,y|n02y = u follows from Lemma 4.30. Clearly, f,,
preserves {0, 1,2} and hence contradicts the minimality of f if v # 3 and w # 3.
‘We can use Lemma 4.30 to conclude that we have v = f,,(1,2,0) = 3 if and only if

(i) f(1,2,0) =3, f(1,2,3) =3, f(1,3,0) =3 or

(i) f(1,2,0) = 3, f(1,2,3) =3, f(1,3,0) =2, f(1,3,2) = 3.
But neither of the cases is possible since we know that f(1,3,0) = 1. So we must
have w = 3. Using Lemma 4.30 again, we can conclude that this is the case if and
only if

a) f(2,0,1) =3, f(2,0,3) =3, f(2,3,1) =3 or

b) f(2,0,1) =3, f(2,0,3) =3, f(2,3,1) =0, f(2,3,0) = 3.
In a) it follows from. f(2,3,1) = 3 that we have f|31y = 3 since f € T. We can
conclude that v = f,,(1,2,0) equals 1 from Lemma 4.30 by using f|31) = 3 and
fliowsy = p. In b) we have f|31y = 0 and it follows v = 0. Thus, we have two
possible cases: fo, € [0,1,3;u,u,u] or f,, € [0,0,3;u,u,u]. In the first case we have
fzy [(], 1,3;u,u,u] since f|p13 = p and Lemma, 4.30 imply fzy|(013 = p. It follows
that fzy is not minimal by Lemma 4.31. In the second case, fzy € [0,0,0; u, u, ul
preserves {0, 1,2}. This finishes the case u # 3. Now suppose u = 3. By the same
argument as above, we have three cases: f,,((012)) C {0, 1,2}, fay €00,0,3; , *, *]
or fuy € [0,1,3;%,%,%]. In the third case we have fzy [0,1,3; %, ,%| and fzy
does not belong to T and is therefore isomorphic to m444 by Theorem 4.37. But
then f ¢ [fz\y], which contradicts the minimality of f (in fact, we will later see
that the clone generated by my44 contains no operation from T expect for the first

projection). Thus, we have one of the following two cases:

(1) £,((012)) € {0,1,2}, (2) foy € [0,0,3;%, *, %],
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the latter implying fz(f,) € [0,0,0;*,,%]. Now we deal with f((102)). Suppose
F((102)) € {0,1,2}. We can conclude that f,,(1,0,2) equals 1 by using the identi-
ties f(1,0,2) = 3, f(1,0,3) = 1 and Lemma 4.30. It follows f,, € [*,*,*;1,s,t]. As
above, we can use Lemma 4.30 to conclude that s = f,,(0,2,1) = 3 if and only if

(if) f(0,2,1) =3, £(0,2,3) =3, f(0,3,1) =2, f(0,3,2) = 3.
But neither of the cases is possible since we have f(0,3,1) = 0. Similarly, we obtain
t = f(2,1,0) = 3 if and only if

a) f(2,1,0) =3, f(2,1,3) =3, f(2,3,0) =3 or

b) f(2’1’0) = 3’ f(27173) = 37 f(27370) = ]" f(2’37 1) = 3'
In a) we obtain from f(2,3,0) = 3 that we have f|.30 = 3 and we can conclude
(using the same method as above) that s equals 0. In b) we have fln3g = 1
and s equals 1. So we have f,,((102)) C {0,1,2} or f,, € [*,%,%;1,1,3] or f,, €
[*,%,%;1,0,3]. In the third case we have f,, € [*, *,%;1,0, 3] and f,, does not belong
to T, is therefore isomorphic to my 44 by Theorem 4.37 and the minimality of f is

contradicted as above. Thus, we must have one of the first two cases:
(a) fy((102)) ©{0,1,2} (b) foy € [*,%,%1,1,3],

the latter implying fz(z) € [*,*,%;1,1,1]. But no matter how we combine the cases
(1), (2) and (a), (b), we always obtain that f\' preserves {0,1,2}. O

We have now limited the set of possible nonconservative minimal majority oper-
ations to the set of nonconservative cyclically commutative majority operations. In

[7] these are determined by computer, here we do so by hand.

Lemma 4.40: Let f € T be a minimal nonconservative majority operation on
S. Suppose flo12) = 3 (and hence fuopy =u € S). Then {0,1,2} is the only subset
of S that is not preserved by f.

Proof: By Lemma 4.39, f is cyclically commutative.
Case 1: Suppose u # 3. For contradiction suppose without loss of generality that f
does not preserve {0,1,3}. Now f € T implies f|03) = 2 or f|(o13 = 2. Suppose
Fliozy = 2. We define
9(z,y,2) = f(y, =z, f(z,y,2))
and we examine the values of g on the sets {0,1,2} and {0,1,3}. We deal with the

case f|13) = 2 later, so we can assume for now that f|(13 = v where v is not 2.
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(z,9,2) | 9(z,y,2) (z,9,2) | 9(z,y,2)
(0,1,2) 2 (0,1,3) | £(1,0,v)
(1,2,0) | f(2,1,3) (1,3,0) | f(3,1,v)
(2,0,1) | f(0,2,3) (3,0,1) | £(0,3,v)
(1,0,2) | £(0,1,) (1,0,3) 3

(0,2,1) | £(2,0,u) (0,3,1) | £(3,0,2)
(2,1,0) | £(1,2,v) (3,1,0) | £(1,3,2)

Now g equals v on two of the three triplets in (013). This implies ¢'¥|o13) = v # 2.
Similarly, g equals u on two of the three triplets in (102) since we have u # 3
and hence g@ |02y = u # 3. If one of the two values f(2,1,3)(= f(1,3,2)) and
£(0,2,3)(= £(3,0,2)) equals 2, then we have 9|12 = 2 and g preserves {0, 1,2}.
Similarly, if one of the two values is 3, then we have g(2)|(103) = 3 and g preserves
{0,1,3}. The same follows if both values are 0 or both values are 1. Two cases

remain:
(1) f(2,1,3) =0, f(0,2,3) =1 (2) f(2,1,3) = 1,_f(0, 2,3)=0.
In the first case we have
9?(0,1,2) = ¢(2,0,1) =1

9@(1,2,0) = g(0,1,2) = 2
g®(2,0,1) = ¢(1,2,0) =0
which means that ¢®((012)) C {0,1,2} and thus g® preserves {0,1,2}. In the .
second case we have
9(0,1,2) = 9(2,1,0)
9®(1,2,0) = ¢(1,0,2)
9%(2,0,1) = 9(0,2,1).
But we know that two of these three values are u which implies ¢'*) € [u, u, u; u, u, u]
and hence g® preserves {0,1,2}. This finishes the case f|o13 = v where v # 2.
Now suppose v = 2. We can calculate f, € [2, f(1,2,3), f(2,0,3),u,u,u] (recall
u # 3). If neither f(1,2,3) nor f(2,0,3) equals 3, then f, preserves {0,1,2}.
Otherwise we define h(z,y, 2) := f(z, f.(z,y, ), 2) and we obtain
h e 2, f(1, f(1,2,3),0), f(2, £(2,0,3),1); u,u, u].
If £(1,2,3) = 3, then h € [2,2,*;u,u,u] and thus h® € [2,2,2;u,u,u] and h?
preserves {0, 1,2}. If f(2,0,3) = 3, then

h €2, f(1,£(1,2,3),0), £(2,3,1); u,u, u].
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Note that f(2,3,1) = f(1,2,3). We obtain

(2,0,0;u,u,u], if f(2,3,1)
(2,1, ;u,u,u], if f(2,3,1)
(2,3,2;u,u,u], if f(2,3,1)
[2,2,3;u,u,ul, if f(2,3,1)

3

7

0
1
2,
3

Il

In all cases it follows that h(? preserves {0,1,2}. This finishes the proof for the
case u # 3.

Case 2: Suppose f|q102y = 3. For contradiction, let us again suppose that f does
not preserve {0,1,3} i.e. f|13) = 2 or f|03) = 2. Let us abstract what we have just
proved in case 1: If f|(pe) = d (a, b, ¢, d pairwise distinct) and f|pge = € € {a, b, ¢},
then f preserves the other three subsets of S (namely {a, b, d}, {a, ¢,d} and {b,c, d}).
But now, for {a,b,c} = {0,1,3} and d = 2 it follows that both of the identities
flio13) = 2 and f|q103y = 2 must be true (otherwise it would follow that f preserves
all other three subsets including {0, 1,2} which is obviously a contradiction). Fur-
thermore, we can use the same argument to conclude that whenever f|23 =0 or
fli21i3 =0 (i.e. f does not preserve {1,2,3}) it follows that both identities have to
be true. In other words: f|q23 = 0 if and only if f|.13y = 0. In the same way we
can also conclude that f|93 = 1 if and only if f|e3 = 1. Now, we look at the
operation f, and examine its values on the sets {0, 1,2} and {0, 1,3}.

(z,9,2) | [z, y,2) (z,9,2) | [fu=,y,2)
(0,1,2) 2 (0,1,3) 3

(1,2,0) | v=f(1,2,3) (1,3,0) | s = f(1,3,2)
(2,0,1) | w= f(2,0,3) (3,0,1) | = £(3,0,2)
(1,0,2) 2 (1,0,3) 3

(0,2,1) | = £(0,2,3) (0,3,1) | w=f(0,3,2)
(2,1,0) | s = f(2,1,3) (3,1,0) | v=f(3,1,2)

Additionally, we know from above that v equals 0 if and only if s equals 0. Similarly
r = 1 if and only if w = 1. Clearly, f, must not preserve {0,1,2} and {0, 1,3}
hence 3,2 € {v,w,r,s}. Furthermore, it can be seen that f(z) preservés {0,1,2} if
2 € {v,w}N{r, s}, because in this case we have fz( € [2,2,2;2,2,2]. Similarly f(z)
preserves {0, 1,3} if 3 € {v,w} N {r, s}. This leaves us with 26 cases.
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(1) f: €12,3,2;2,0,1] (10) f. € [2,2,2;2,3,3] (19) f. € [2,1,3;2,2,2]
(2) f. €[2,2,3;2,0,1] (11) f. € [2,3,0,2,0,2] (20) f. € [2,0,2;2,3,0]
(3) f. €12,3,0;2,2,1] (12) f. € [2,3,1;2,1,2] (21) f. € [2,1,2;2,3,1]
(4) f. € 2,3,0;2,2,2] (13) f. € [2,3,3;2,0,2] (22) f. €[2,1,2;2,3,3]
(5) f- €[2,3,3;2,2,1] (14) f. € [2,2,0;2,0,3] (23) f. € [2,1,3;2,0,2]
6) f: €[2,3,3;2,2,2] (15) f, € [2,2,1;2,1,3] (24) f. €[2,1,2;2,0,3]
(7) f. €12,2,0;2,3,1] (16) f. € [2,2,2;2,0,3] (25) f. €[2,1,0;2,3,2]
(8) f.€(2,2,0;2,3,3] (17) f.€[2,0,3;2,2,0] (26) f. € [2,1,0;2,2,3]

]
(9) fZ e [27 27 2; 2737 1] (18) fZ [2) 1)37 2) 2) 1]
For each of this 26 cases we have one of the following eight cases:

@) f?e2,2,22,23 @) P e3,3,3222 (g f? 222000
) £P €2,2,2;3,2,2] (e) £ €[2,2,2:3,3,3] (h) f! 9 €1,1,1;2,2,2]
(c) ® ¢ 2,222,229 (£) ® ¢ [0,0.0:2,2,2

In the cases (a) and (b) we have 9 e € 12,2,2;2,2,2], hence 9 e [f] preserves
{0,1,2}. In the cases (c),(f),(g),(h) we have that 1P preserves {0,1,2}. Only
the cases (d) and (e) remain. In case (d), the operation f, € 3,3,3;2,2,2|. f, is
not conservative and satisfies (o) but is clearly not isomorphic to m444. Hence, by
Theorem 4.37, it belongs to T. But now, it falls under case 1 of this proof and hence
it preserves {0, 1,3}. We suppose that f does not preserve this set, so f ¢ [ﬁ] The
same argument can be used for (e) after a permutation of variables. Thus, the

minimality of f is contradicted in all 26 cases. This finishes the proof. [

Let us summarize our latest results. We have seen that any minimal nonconser-
vative majority operation f € T is cyclically commutative and preserves all except
one of the four three-element subsets of 5. We supposed that this set is {0, 1, 2} and
that we have f|( 12y = 3 which implies f|(102y = u. We will now show that there are
essentially two operations satisfying this properties, depending on whether u equals

3 or not.

Lemma 4.41: Let f € T be a minimal nonconservative majority operation such
that flio12) = 3. If flaozy = u # 3, then [f] [ma 218] where myz1s s the magority

operation defined as shown below.
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(r,9,2) M4,218 Ty, 2)
(012)
(102)

{0,1,3}

{0,2,3}
(123)
(213)

R W W|lWw|N W

Proof: Without loss of generality, we can suppose f|(02y = 2. With the help of

Lemma 4.30, we can calculate f,, € [r,s,t;2,2,2] where

_} £(0,1,3), if f(0,1,3) € {0 1}
] £(0,3,2), if f(0,1,3) =
S:{ A1L23), 10,29 € {1,2]
f(1,3,0), if f(1,2,3) =
_J f(2,0,3), if f(2,0,3) € {0,2}
] £(2,3,1), if £(2,0,3) =3

Note that f(0,1,3) = 2, f(1,2,3) = 0 and f(2,0,3) = 1 are not possible since
f preserves the sets {0,1,3}, {1,2,3} and {0,2,3} by Lemma 4.40. Since f is
cyclically commutative, we have f(0,1,3) = f(1,3,0), f(1,2,3) = f(2,3,1) and
f(2,0,3) = f(0,3,2). We can see that if at most one of the three values f(0,1,3),
f(1,2,3), f(2,0,3) equals 3, then f,, preserves {0,1,2} and f is not minimal. If
two of the three values equal 3 while the third equals v € {0,1,2}, then f,, €
[3,v,v;2,2,2| U [v,3,1;2,2,2] U [v,7,3;2,2,2] and it follows fz(z) € [v,v,v;2,2,2]
and fz(z) preserves {0,1,2}. Only the case f|o13 = 3, fla2s) = 3, flosy = 3
remains possible. Now we define

g(a:,y, Z) = f(y,:c, f(x,y, 2))

and we obtain g € [f(1,0,3), f(2,1,3), f(0,2,3);3,2,2]. Suppose that none of the
first three values equals 3. - Then, by Lemma 4.40, we have f(1,0,3) € {0,1},
f(2,1,3) € {1,2} and f(0,2,3) € {0,2}. If the three values are not pairwise distinct,
then ¢@ € [0,0,0;2,2,2]U[1,1,1;2,2,2]U[2,2,2;2,2,2] and g* preserves {0, 1,2}.
If the three values are pairwise distinct, then (f(1,0,3), f(2,1,3), f(0,2,3)) € (012).
Now 3 ¢ g((012)) implies that ¢(® preserves {0,1,2}. Thus, 3 € {f(1,0,3), f(2,1,3),
f(0,2,3)}. To eliminate other cases define

h(z,y,2) := f(9(z,y,2),9(2,9,%),9(x, 2,9))
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We examine the range of h completely by determining the range of g.

(;1:’ Y, z) g(g_';’ Y, z) ("1:7 Y, Z) h(a’:a Y, Z)
(0,1,2) £(1,0,3) (0,1,2) 2

(2,0,1) £(0,2,3) (2,0,1) 1 {3 Heidis
(1,0,2) 3 (1,0,2) | f(3,£(0,2,3), f(2,1,3)
(0,2,1) 2 (0,2,1) | f(2,£(2,1,3),£(1,0,3)
(2,1,0) 2 (2,1,0) | f(2,7(1,0,3), f(0,2,3)
(0,1,3) £(1,0,3) (0,1,3) - f(1,0,3)
(1,3,0) | 3 (1,3,0) | { goom jpraome o
(3,0,1) 3 (3,0,1) | { gemoor jpiboy et
(1,0,3) f(1,0,3) (1,0,3) 3

0,3,1) | { & w8zt (0,3,1) | {4+ Ea3 ks
(31,00 {3 sy | = | BLO) | [ Bt
(0,2,3) £(0,2,3) (0,2,3) 3

(2,3,0) | { & Hor ity (2,3,0) | { s B i
(3,0,2) | (& wsomo=e (3,0,2) | { goror prozo=e
(2,0,3) £(0,2,3) (2,0,3) £(0,2,3)
(0,3,2) 3 (0,3,2) {;fo,z,a), £10.23 € (2.3}
(3,2,0) 3 (3,2,0) | {yemo prommc o
(1,2,3) f(2,1,3)- (1,2,3) £(2,1,3)
(2,3,1) 3 (2,3, 1) {’1(2,1,3), ::;22,1,3353,3)
(3,1,2) (3,1,2) {1(2,1,3), 1:;22,1,3;5{2,3}
(2,1,3) £(2,1,3) 2,1,3) 3
(1’3’2; { 1o € (2,91 (1,3,2) {;’0»1,3), r@Ln=a

WN W

if £(2,1,3) =2
if f(2,1,3) € {1,3} (

1 1,3), £7(2,1,3)=
3,2’1) {1(213) if f(2,1,3) =2

{ 3, if f£(2,1,3) € {1,3} f
Again, note that f(0,1,3) # 2, f(1,2,3) # 0 and f(2,0,3) # 1 because the sets
{0,1,3}, {1,2,3} and {0,2,3} are preserved by f. We show that at least one of
. the two values f(2,1,3), f(0,2,3) has to equal 2. Let us suppose otherwise. We
then have h(1,0,2) = f(3, f(0,2,3), f(2,1,3)) = 3, because we either have that
one of the two values f(0,2,3), f(2,1,3) equals 3 or h(1,0,2) = f(3,0,1) = 3. We
can also observe that h(0,2,1) can only equal 2 if f(2,1,3) =1 and f(1,0,3) =0
and, furthermore, h(2,1,0) can only equal 2 if f(1,0,3) = 1 and f(0,2,3) = 0.
It is obvious that both conditions cannot be true at the same time, so we cannot
have h(0,2,1) = h(2,1,3) = 2. This means that h{®({(102)) = h((3rs)) for some

r,8 € S where r and s cannot both equal 2. But we can see in the table above that
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h(r,s,t) # 2 whenever 3 € {r,s,t} and at most one variable of 7, s, equals 2 since
2 ¢ {f(1,0,3), f(2,1,3), £(0,2,3)}. Hence, 2 ¢ h#((102)). Furthermore, we have
h(2)|<012> = 3 because h(1,2,0) = 3 and h(2,0,1) = 3 since f(2,1,3), f(0,2,3) # 2.
The remaining values of A2 can be calculated easily by using the table of h above
(e.g. we have h(¥| 13, = f(1,0, 3) because it can be observed that h equals f(1,0, 3)
on at least two of the three triplets in (013)). We obtain

(z,y,2) | BP(z,y,2)
(012) 3
(1,0,2) 42
0,2,1) 42
(2,1,0) #2
(013) | £(1,0,3) #£ 2
(103) 3
(023) 3
(032) | £(0,2,3) #£ 2
(123) 3
(213) | £(2,1,3) #£2

But now the fact that 2 is not in the range of A® € [f] is a contradiction to the fact
that f is minimal by Lemma 4.8. Thus, 2 € {f(2,1,3), f(0,2,3)}. Recall that we
already know 3 € {f(1,0,3), f(2,1,3), f(0,2,3)} This leaves us with the following

nine cases

(1) 9€00,2,3;3,2,2] (4)g€l1,2,33,2,2] (7)g€[3,223,2,2]
(2) g€1[0,3,23,2,2] (5) g€ 3,1,%3,2,2] (8)g€3,23;3,2,2
(3) 9€11,3,2;3,2,2] (6)g€[3,2,0;3,2,2] (9)g€ 33,2322

We define I(z,y, 2) = f(g(z,v, 2),9(2,2,v),9(y, 2,z) and we obtain for the cases
(2),(4),(5),(6),(7):
2)1€1(2,2,2,2,2,2] (4)1€[2,22222 (6)le[1,1,1;2272
(6)1€10,0,0;2,2,2] (7)1€][2,2,2;2,2,2]

Clearly, | € [f] preserves {0,1,2} in the listed cases and hence contradicts the
minimality of f. For the case (1), define k(z,y, 2) := g(¢(z,y, 2),y,9(y, z,z) and
we obtain k € [0,2,0;3,2,2]. This implies k@ € [0,0,0;2,2,2] and hence k? € [f]
preserves {0, 1,2}. In the case (3), define k(z,y, 2) = g(y,9(y, z,2), 9(z,y, 2)) and
we obtain k € [1,2,1;2,2,3]. Hence, ¥® € [1,1,1;2,2,2] and again k@ € [f]
preserves {0,1,2}. Only the cases (8) and (9) are left. We determine f for these
cases and also f%, ¢ = (01), for the case (9).
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In case (8) we have f = my213 and the claim follows trivially. In case (9) we
have [f?] = [mayz21s] because we can obtain f? from myo1s (and vice versa) by
interchanging the first and the second variable. Thus, [f] 2 [m421s]. This finishes
the proof. [J '

Lemma 4.42: Let f € T be a minimal nonconservative majority operation such
that f|(012> = 3, f|(102> = 3. Then f = mao where myy is the majority operation
that equals 3 on triplets of distinct elements.

Proof: Note that f is cyclically commutative by Lemma 4.39. We use f,, to
prove the claim. Let us determine the values of f;, on the set {0, 1,2} as far as we
can by using the identities f|12) = f|(102) = 3 and Lemma 4.30.

(2,9, 2) fa(,Y, 2)

(0 1 2) f(0a113) iff(07173) € {Oal}a
T f(2,0,3) if £(0,1,3) = 3.
(1,2,0) f,2 3) if £(1,2,3) € {1,2},

T f(0,1 if £(1,2,3) =3.

(2,0,1) { f(2,0, 3) if £(2,0,3) € {0,2},

F(1,2,3) i £(2,0,3)=3
£(1,0,3) if £(1,0,3) € {0,1}
f(2,1,3) if £(1,0,3)=3
(0,2,1) £(0,2,3) if £(0,2,3) € {0,2}
Y £(1,0,3) if £(0,2,3) =3
2,1 b) F(2,1,3) if £(2,1,3) € {1,2}
o £(0,2,3) if £(2,1,3) =3

(1,0,2)

£(0,1,3), £(1,0,3) # 2, £(0,2,3), £(2,0,3) £ 1 and f(1,2,3), £(2,1,3) # 0 because
f preserves the sets {0, 1,3}, {0,2,3}, {1,2,3} by Lemma 4.39. Let us dlstmgulsh
cases by using the following sets:

U= {f(ov 173)af(2:0a3)7f(1’ 2, 3)}7
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V ={f(1,0,3), f(0,2,3), f(2,1,3)}.

If U = {3}, then f,, € [3,3,3;%,%,%| and f., € [3,3,3; % 4. If 3 ¢ U, then we
have f,, € [0,1,2;%,%,%| (and fz\y € [0,1,2;%,%,%]) or f,, € [1,2,0;%,% % (and
again fz\y € [0,1,2;%,%,%]) or two of the three values in U have to coincide (say
they equal 7) and we have fz\y € [r,r, 7%, %,x|. If exactly one of the three values
in U equals 3, say f(0,1,3), then r = f,,(0,1,2) = f£,,(2,0,1) = f(2,0,3) # 3
and we have f,, € [r,*,T;%,% % and hence fz\y € [r,r,r;*, %, *]. If two of three
values in U equal 3, then the remaining value appears twice in f,,((012)) and again
fz\y € [r,r,7; %, %, x| for some 7 3 3. Thus,

=3 if U = {3},

fzy|(012) =Pp tU = {07172}7
=r1# 3 otherwise.

The same arguments can be used to show that
=3 if V= {3},

Fayloozy § =p if V ={0,1,2},
= s # 3 otherwise.

Let us combine possible cases. If U # {3} and V # {3}, then fz; preserves {0,1,2}
and f is not minimal. If U = {3} and V = {0, 1, 2}, then we have fz\y|(012) = 3 and
_fz\yl @02y = p- Now Lemma 4.31 implies that fz\y is not minimal which contradicts
the minimality of f. The same follows for U = {0, 1, 2} and V = {3}. If U = {3}
and V falls under the third case, then fzy| o12) = 3 and fzy|(102 = u # 3. But now,
fzy falls under the case handled in the last lemma. Thus, | fzy] & [myg1s]. But, as
we will see later, the clone [mg4215] does not contain an operation isomorphic to f,
hence f ¢ [fz\y], a contradiction. The same follows if U falls under the third case
and V = {3}. Only the case U = V = {3} remains. But then we have f(z,y,2) =3
for all (z,y,2) € w. Thus, f ="myo. O

Let us summarize what we have done in this section. We have shown that a
nonconservative minimal majority operation satisfying (o) on the four-element set
S must be (up to isomorphism and permutation of variables) mg44 (if f ¢ T) or
one of the two operations m;,o, mao1s (if f € T). Now, we show that these three

operations are indeed minimal operations.

Lemma 4.43: If we restrict the operations ma o, My 218, Masa 0n the set {1,2,3},
then they are isomorphic to the operations mg, msyg and myy, respectively (see Table

44)-
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Proof: We have already seen that all three operations preserve the set {1, 2, 3}.
Hence, maol{1,2,:3)3, Ma218/{1,2,3}3, Ma,44/{1,2,335 can be considered as majority opera-
tions on the three-element set {1,2,3}. Now mypl12,33 = Mo, Maaa|q12,33 = Mug
and my 218{1,2,338 = Ms10 can be seen by renaming the elements 1,2,3 to 1,2,0. O

Lemma 4.44: myg, Ma21s, Maaa are minimal (magjority) operations on S.

Proof: The proof is the same for all three operations, so let f be any of them. Let
g € [f] be an arbitrary majority operation. We have to show f € [g]. f preserves
the equivalence relation o whose blocks are {0,3}, {1}, {2} and its range does not
contain the element 0. By Lemma 2.5 and Lemma 4.8, this must also be true for g.
We show that these two properties determine gl(o12ys Whenever g|(; 23s is given:
Let (r,s,t) € {0,1,2}3. We can assume that r,s,t are pairwise distinct, because
otherwise g(r,s,t) is determined by the majority rule. We can chose (u,v,w) €

{1,2,3}3 such that (r) . (S> , (t)e o. Since g has to preserve ¢, we must have

u v w

(;}S’j’:))e o. But now, 0 ¢ {g(r,s,t),g(u,v,w)} implies g(r,s,t) = g(u,v,w).
Thu’s,,g|{1,2,3}a determines g|{o,12ys. Since f preserves {1,2,3}, we can consider
fl{1,2,33¢ as an operation on the set {1,2,3}. Now this operation is minimal since it
is isomorphic to one of the operations mg, Mms10, Mas by the last lemma and we have
already seen that these are minimal. This implies that there has to exist & € [g] such
that hl{123y3 = fl{1,232. But now, h also has the two properties described above
and hence h|{1 2335 = fl{1,2,3)5 determines h|(o,1,23s uniquely: It can be nothing else
but flo1,2ys. On the remaining two three-element subsets of S, namely {0, 1,3}
and {0,2,3}, f is always 3 which means that we must have the same thing for h.
Thus, h = f and f € [g]. O

Combining this lemma with our previous results gives us the main theorem of

this section.

Theorem 4.45: Up to isomorphism, we have exactly three nonconservative min-

imal majority clones on S: [mag], [Mmaz21s] and [Maa4].

Lemma 4.43 clearly implies that the restriction to the set {1,2,3}3 gives us a
one-to-one correspondence between the majority operations in mg; on S and m; on
the three-element set {0, 1,2}. Hence, our clones [mqg|, [ma215] and [my4 44] contain
one, eight and three majority operations, respectively. We can easily determine all

of them by using Table 4.4. They can be seen in the tables on the following page.
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Table 4.8

The nonconservative minimal magjority operations on {0,1,2,3} (up to

isomorphism)
[m4,0} [m4’44}
(z,9,2) | map (Z,y,2) | Mag2a Maga Maan
(0,1,2) 3 (0,1,2) 2 3. 2
(1,2,0) 3 (1,2,0) 3 1 3
(2,0,1) 3 (2,0,1) 1 2 1
(1,0,2) 3 (1,0,2) 2 1 3
(0,2,1) 3 (0,2,1) 1 3 2
(2,1,0) 3 (2,1,0) 3 2 1
{0,1,3} 3 {0,1,3} 3 3 3
{0,2,3} 3 {0,2,3} 3 3 3
(3,1,2) 3 (3,1,2) 2 3 1
(1,2,3) 3 (1,2,3) 3 1 2
(2,3,1) 3 (2,3,1) 1 2 3
(1,3,2) 3 (1,3,2) 2 1 3
(3,2,1) 3 (3,2,1) 1 3 2
(2,1,3) 3 (2,1,3) 3 2 1
[m4,218}
l‘,y,z) My4,510 m;1,546 My26 Mases  Ta218 Mqas2 Ma702 TMq.62
0,1,2) 2 2 3 2 3 3 2 3
1,2,0) | 2 3 2 2 3 2 3 3
2,0,1) 2 2 2 3 3 3 3 2
1,0,2) 3 2 3 3 2 3 2 2
0,2,1) 3 3 3 2 o2 2 2 3
2,1,0) 3 3 2 3 2 2 3 2
{0,1,3} 3 3 3 3 3 3 3 3
{0,2,3} 3 3 3 3 3 3 3 3
3,1,2) 2 2 3 2 3 3 2 3
1,2,3) 2 3 2 2 3 2 3 3
2,3,1) 2 2 2 3 3 3 3 2
1,3,2) 3 2 3 3 2 3 2 2
3,2,1) 3 3 3 2 2 2 2 3
2,1,3) 3 3 2 3 2 2 3 2
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4.5 Extending minimal majority operations

Arguments similar to the ones that Waldhauser used in Lemma 4.44 can be used to
construct, for a given minimal majority operation f on S = {0,...,n—1}, a minimal
majority operation f' on S U {n}. The following two theorems give two different
ways to do so:

Theorem 4.46: Let f be a minimal majority operation on S = {0,...,n — 1}.
z, ifres
a, ifr=n
f(z,y,2) = f(%,9,%). Then f' is a minimal majority operation.

Set 8’ :=SU{n} andleta € S. Forz € S set T = Define

Proof: For notational simplicity let a = 0. It is easy to see that f’ is a majority
operation. Suppose ¢’ € [f'] where ¢’ is a majority operation. As usual, we have to
show f’ € [¢']. Clearly, n is not in the range of f’ (and hence f’ preserves the set S)
and one can check that f’ preserves the equivalence relation ¢ on S’ whose blocks
are {0,n},{1},...,{n — 1}; hence, these two properties have to hold for ¢’ as well.
But now, similarly as in the proof of Lemma 4.44, the restriction ¢'|gs determines g':
Let (r,s,t) € S”. We can assume that r, s, ¢ are pairwise 'distinct, because otherwise
g(r, s,t) is determined by the majority rule. We can chose (u,v,w) € S® such that

"1.(°].{ )€ o. Since g has to preserve o we must have | 7 ™58 Ve o, But now
U v w g'(u,v, w)

n ¢ {g'(r,s,t),9'(v,v,w)} implies ¢'(r,s,t) = ¢'(u, v, w). Thus, ¢'|ss determines g’
uniquely. Since f’ preserves S, we can consider f’|gs as an operation on the set
S. Now f’|ss = f implies that f’|gs is minimal on S. This implies that there has
to exist &’ € [¢'] such that A'|gs = f’|gs. But now, A’ also has the two properties
described above and hence h'|ss = f’|gs determines h uniquely: It can be nothing
else but f'. Thus, b’ = f’ and f’ € [¢'], implying that f’ is minimal. O

Theorem 4.47: Let f be a minimal magority operation on S = {0,...,n — 1}.
Set S := SU{n}. Define the operation f' on S" as follows: For all pairwise distinct
z,y,z €S8

f(z,y,2), if (z,y,2) € S
otherwise

f’(i,y,Z) = { o

7

The remaining values may be defined by the majority rule. Then f' is a minimal

magjority operation on S'.

Proof: Suppose ¢’ € [f'] where ¢’ is a majority operation. Again, we have to show

f' € [¢]. For all pairwise distinct z,y, z where (z,y,2) € S®\S® (ie. n € {z,y, 2}),
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we have f'(z,y,2) = n which means that f’ preserves {z,y,z} and that the range
of the restriction f’|;;,.}3 consists of n only. Hence, g’ also preserves {z,y,z} and
the range of the restriction g'|{;, .}s also consists of {n} only since it is generated
by f'lizy,:ys (see Lemma 4.8). As above, f’|gs is a minimal operation on S. This
implies that there has to exist A’ € [¢'] such that h'|gs = f'[gs. Furthermore,
h' € [¢'] implies that the property described above must hold for A’. It follows
W(z,y,2) = f'(z,y,z) for all (z,y,z) € S\ S3. Hence, h'(z,y,2) = f'(z,y,z) for
all pairwise distinct (z,y,z) € S”. On the remaining triplets, A’ has to coincide
with f’ due to the majority property. Thus, ¥’ = f' and f' € [¢]. D

These two techniques allow us to extend a given minimal majority operation to
an arbitrarily larger universe. In particular, they allow us to find nonconservative
minimal majority operation on any finite set S. Note that both techniques can be

generalized to work for all minimal operations.

Example: We will use the two techniques given in the theorems above to ex-
tend the minimal operation mg 44 (see Lemma 4.41) on {0,1,2,3} to the minimal
operation mj 4, on {0,1,2,3,4}. The result is stated in the table on the following

page.
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(z,y,2)

m;,qq(a’» i’ Z)
as in Theorem 4.46

(setting a = 0)

ma,44(zvyv z)
as in Theorem 4.47

(0,1,2)
(1,2,0)
(2,0,1)
(1,0,2)
(0,2,1)
(2,1,0)

3

{0,1,3)
(1,3,0)
{3,0,1)
(1,0,3)
(0,3,1)
(3,1,0)

(0,2,3)
(2,3,0)
(3,0,2)
(2,0,3)
(0,3,2)
{3,2,0)

(1,2,3)
(2,3,1)
(3,1,2)
(2,1,3)
(1,3,2)
(3,2,1)

(0,1,4)
(1,4,0)
(4,0,1)
(1,0,4)
(0,4,1)
(4,1,0)

(0,2,4)
(2,4,0)
(4,0,2)
(2,0,4)
(0,4,2)
(4,2,0)

(1,2,4)
(2,4,1)
(4,1,2)
(2,1,4)
(1,4,2)
(4,2,1)

{2,3,4)
(3,4,2)
(4,2,3)
(3,2,4)
(2,4,3)
(4,3,2)
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Chapter 5
Majority clones and relations

We have already noted that for any clone C (on a finite set S) there exists a set
of relations R such that the clone C is the set of all operations on S preserving
all relations in R (i.e. C = Pol R). In fact, in this chapter, we will see that if
C is a majority clone, then we can chose R to contain only one relation. After
reproducing this well-known fact, our first goal will be to find such relations for the

minimal majority clones on {0, 1} and {0, 1, 2}.

Assume S to be the n-element set {0,...,n — 1}.

Definition 5.1: Denote by Rg the set of finitary relations on S. For a positive
integer m, let ngm) denote the set of m-ary relations on S. For a set F' of operations
on S define Inv F to be the set of relations on S that are preserved by all f € F,

ie.
Inv F = {o € Rg | f preserves ¢ for all f € F}.
For a single operation f, we write Inf f instead of Inv {f}. Furthermore, set
Inv™F = (Inv F)N Ofgm).
Recall that, for R € Rg, Pol R is the set of operations on S preserving all
relations in R (by Lemma 2.6, they form a clone). Set Pol™R = (Pol R) N Rém).

It is easy to see that, for two relations oy, o3 € Inv F(™ we must have o1Noy €
Inv F. Furthermore, for an arbitrary m € N, the relation S™ is obviously preserved

by any set of operations. This justifies the following definition.

Definition 5.2: Let C be a clone, o € ngm) and m € N. Denote by I'c(c) the

smallest relation in Inv(™C (with respect to C) that contains o, i.e.

To(o) = N{o'|e C o', 0’ € Inv™C}).
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Clearly, I'¢ is a closure operator on the partially ordered set (Rgm), Q); i.e. for all
o1, 02: 01 € T¢(o1), 01 C o9 = I'e(o1) C Te(oq) and T'e(T'e(01)) = (o). Fur-
thermore, we introduce the following notation. For a k-ary operation f and m-tuples

Vim

1 2%} .
v; = ( : ) € S™ (i =1,...,m) we write [v1, ..., ] for the m X k-matrix whose columns

f(V11,V21,---,Vk1)
are (in this order) v, ..., v and f[u, ..., v for the m-tuple : )

f(Vlm., Vam,y .oy Vkm.)

For example, if k =m =2, v, =(;), v2'=((1)>, then
1 0. (f(1,0)
1) (= (7)

Lemma 5.3: Let C be a clone, m € N and o € Rgm). Then
(a) Te(o) = {flv1, -] | Y1, ..., € 0, f € C®) K € N}.
(b) If 0 = {11, ...}, then Tc(o) = {g[v1, ..., v] | g € C@}.

Proof: [15] (a) Denote by § for the right hand side of the equation.
First, we show 'c(0) C §. For all v € o we have el[v] = v, thus ¢ C 4. Furthermore,
we show that § € Inv C. Let | € N, f € C bel-ary and let 74, ..., 7; € § be arbitrary.
We have to show f[m,...,7] € 8. As 7; € 8, we have 7, = fi[vi1, ..., Vik,]| for some
kieN fieC® vy €0 (e{l,.,1},5€{1,.,k}). Setk:=3'_ k and
define the k-ary operation h by

h:= f(fi(e¥, ...,efl),fg(eflﬂ, ...,e’,§2), ...,f[(e&:i;} k1) e €X))
(see Definition 2.1). Clearly, h € C. Now

Flm,y om] = flA, o ik s oo filUi1s - Vi ]]
= RAU1 1y ey Vigyy V2,1, oy Vi € 0.

Thus, § € Inv C. Now the minimality of I'c(c) together with ¢ C § € Inv C
implies I'c(o) C 4.
Conversely, to show § C I'c(0), let 7 € 8. This means that there exist f € C*) and
V1, ..., Vg € o such that 7 = flu,...,vk]. But now v, ..., € Tc(o) € Inv C implies
T = flv1, .., ] € Tc(o).
(b) First, {g[v1,..-,vg] | g € C@} C T'¢(0) is obvious by (a). It remains to show
that {g[v1, ..., ] | g € C@} D T¢(0). By (a), the latter equals

{fl61,....6k] | 61,....,60k € 0, f € C®) kK € N}.
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Let k € N, f € C® and 6,,...,06 € 0 = {v1,...,15}. Now, there exists a map.
¢:{1,..,k} — {1,...,q} such that ; = vy). Hence,

flb1,.., 0] = f[ei(])[ul, ...yq],...,eg(k)[ul,...uq]] = f(e;(l),...,e‘;(k))[u],...,vq}

This, together with f(e . e(‘;(k)) € C), finishes the proof. O

q
1)

Example: Let C be the minimal majority clone [d] on {0, 1} where d is the dual
discriminator of Fried and Pixley. We know that the set of ternary operations in [d]

is {e, €}, €3, d}.

0 0 0
0 0 1
0 1 0
0 1 1
Let 0 ={ ol . }.
1 0 1
1] |1] |o
1 1 1
€3(0,0,0) €3(0,0,0) €3(0,0,0) d(0,0,0)
£3(0,0,1) €3(0,0,1) £3(0,0,1) d(0,0,1)
£3(0,1,0) €3(0,1,0) €3(0,1,0) d(0,1,0)
Then Te(o) = { eZ(o,1,1) ’ eE(O,l,l) 7 e§(0,1,1) , d(0,1,1) }
€3(1,0,0) €3(1,0,0) €3(1,0,0) d(1,0,0)
e3(1,0,1) €3(1,0,1) €3(1,0,1) d(1,0,1)
€3(1,1,0) e3(1,1,0) e3(1,1,0) d(1,1,0)
e(1,1,1) e3(1,1,1) e3(1,1,1) d(1,1,1)
0 0 0 0
0 0 1 0
0 1 0 0
_(lo 1 1 1 }
={ 1'lo]’ o] o
1 0 1 1
1 1 0| |1
1 1 1 1

We are now ready to prove that any majority clone can be written as Pol o for
a single relation o. We start with the Baker-Pixley Theorem that we have already
used in the last chapter (see 4.13). We now have the tools to prove it.

Theorem 5.4: (The Baker-Pixley Theorem) If C is a majority clone on S,
then C = Pol Inv®@C.

Proof: [15] Let m € C be a majority operation and f € Pol Inv@C. We have
to show f e C. Le_et ! be the arity of f. Set
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M={BCS"| f|g = g|p for some g € CV}.

It suffices to show that S' € M (because then f =g € C). To do so, we prove
B € M for all B C §' by induction over k = |B.

For the base case, let k = 2,1.e. B = {(71,...,7), (71, .., 7))} Set op = {(T‘) ,...,(T‘)}.
. T

! ’
1

ThenT¢(op) € InvdC implies (ﬁ gfj’ ”,;) € I'c(op) and, by Lemma 5.3, T'¢(05) =
T1y-3T1

{g[(:}),,(:,)] | g € CW}. Thus, there exists g € C such that f|s = g|p. It follows
B € M, as required.

Now.suppose k > 2 and that the claim is true for all B’ C S! with |[B’| < k. Let
|B| = k + 1 and let a1, a2,a3 € B be pairwise different (possible since & > 2). We
define B; = B\ {a:} (¢ = 1,2,3). By induction hypothesis, there exist g1, 92,93 € C
such that f|g, = gi|p,- Set ¢ = m(g1, g2,93). We show that f|p = g|p. Let z € B.
Due to |B] = k+ 1 and B; C B, B; = |k|, clearly = belongs to at least two sets
among By, B;, Bs, say B; and B;. Hence, by the majority rule,

9(z) = m(g1(z), 92(z), 93(z)) = m(f(z), (), g3(x)) = f(z).

Thus, B € M. This finishes the induction and for k¥ = |S| it follows S' € M, as
required. [

Clearly, this theorem implies that for any majority clone C, we have a set of
binary relations R such that C = Pol R. Since the set of binary relations on a finite
set is finite, R is finite. However, this implies that C can be written as Pol ¢ for a

single relation o as the following lemma shows.

Corollary 5.5 Let C be a clone and let R be a finite set of (finitary) relations.
If C = Pol R, then C' = Pol ¢ for a single relation o.

Proof: 1f suffices to show this for |R| = 2. Let R = {&;,&} where &, is ji-ary

(1=1,2). Set
a a1 G541
o:={| : || [€&, i e &}
@j1+472 ajq Qj1+j52

It can be checked diréctly that on one hand Pol R € Pol ¢. On the other hand
Pol o C Pol & since & is the projection of ¢ on the first j; coordinates. Similarly
Pol o C Pol & and so Pol 0 C Pol R. O

This implies that any majority clone can be written as Pol ¢ for some o € Rg.

62



We can deduce more from the Baker-Pixley Theorem.

Corollary 5.6: Recall that Lg denotes the set of clones on S (see Definition
2.10). Let m be a majority operation on S. Set My, = {C € Lg | me C}. Then

a) M,, is finite.

b) Each C € M,, is finitely generated (i.e. there exist fi, ..., f such that

C=[{f1, fi}l)-

Proof: a) |S| = n implies that there are 2** binary relations on S. Acéording to
the Baker-Pixley Theorem, each C' € M,, is determined by a set of binary relations
and so |M,,| < 92"

b) Let C' € M,,. Suppose to the contrary that C is not finitely generated. For
k > 3, denote by Cy the clone generated by C®. Clearlym e C3 ¢ C4 € ... C C
while | )3 = C. Thus Cx € M, for all k > 3, contradicting a). O

Before we start dealing with the minimal majority clones, we introduce some
more definitions. Recall that S = {0,...,n — 1}

Definition 5.7: Let m € N. Denote by x,, the n™ x m matrix over S whose

i-th row is (am-1, ..., ap) Where a,,_1, ..., ap are the unique elements of S such that
i—1=ann™ '+ ... +an+ap

(i.e. the rows are the elements of S™ listed in the increasing lexicographic order).

Call x,, the m-th abscissa of S.

Example:
0 0 0
0 0 1
X3 = 0 0 n-1].

o
FR—
(=]

n—-1 n—-1 n-1

Definition 5.8: Denote by k1, ...k, the columns of x;,. For a clone C on S, the
m-th graphic of C' is the n™-ary relation To({k1, ..., km }). Denote it by I'.

Using Lemma 5.3 (b), this means T'% = {f[k1,..., 6m] | f € CT}. If we look
back at the example given after Lemma 5.3, we may note that it determines F[sd]
for n =2, S = {0,1}. We may also note that any tuple f[&1,..., k] determines f

uniquely (and vice versa).
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Lemma 5.9: Let C be a clone on S. Then C C Pol T'Z and ck) = Pol(")Fg
forall k <m.

Proof: [2], [15] Clearly, I'Z € Inv C implies C C Pol I'Z. ‘This proves the
first part and C®) C Pol(")l"g. It remains to show that Pol(")Fg is contained
in C®) for all k < m. Let f € Pol®*)T%. We add m — k non-relevant variables
to f obtaining f' € OT. Clearly, f € Pol®I'Z implies f' € Pol™T%Z. Let
K1, ..., km be the columns of x,,. Now the projections imply &;,...,5, € ' and
hence f'[Ky1, ..., km] € T®. By Lemma 5.3 there has to exist ¢ € C™ such that
K1, ooy Bm) = ¢'[K1, ..y Km] Which implies f' = ¢’. This means that ¢ is essentially
the k-ary operation f. Thus, f € Pol(")l"’("}. O

In fact, ' is the largest clone D such that DM = ¢,

Definition 5.10: Let C be a clone on S. Define
¥(C) =min{i € N | C = Pol T}
and set y(C) = 00 if C # Pol T, for all i € N.

We will see that v(C) < oo holds for all majority clones C.

Definition 5.11: Let C be a clone and let o, 0’ be relations of the same arity.
We say that o' C-generates o if I'c(0') = 0. Call 0 a C-independent relation if
véTlo(o\{v}) forallv € o.

Example: Let C = [m] where m is a majority operation with m(0,1,2) = 0.

The relation o = {(g , ((1)) : (1 , (f)} is not C-independent, because ((1)) eTc(o\

e ()G

Note that any relation ¢ contains a C-ivndependent relation ¢’ such that o C
Tc(o’). In particular, any relation that is preserved by C is C-generated by a

C-independent relation.

Lemma 5.12: Let C be a clone on S. Then Pol T preserves any relation
o € Rg that is C-generated by a relation o' € Rg where |o'| < k.

Proof: Note that the fact that o is C-generated by ¢’ implies that C preserves
o. Let k1,...¢ be the columns of x,. Let f be an arbitrary operation in Pol T'%
and let [ be the arity of f. We have to show that f[r,...,7] € o for all 7; € ¢
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(i =1,..,1). By the assumption of the claim, there exists a C-independent relation
{1, -, vk} € o such that Te({v, ..., 4 }) = o (note that vy, ...x do not have to be
distinct). Let ¢ be the arity of the relation . We can construct the ¢ x & matrix
(b1, ..., V] by taking ¢ (not necessarily distinct) rows of the matrix xx = [k1, ..., fik)-
Let 7y, ..., be the indices of these rows. Now o = I'¢({v), ..., vx }) implies that the
remaining elements of o can be obtained by taking the positions ry,...r; of some
other tuples i, ..., rﬁa‘_‘ o that are also in T'%. This means that we can construct
(71, ..., 71 as the matrix we obtain by taking the rows number 7y, ...,7, of a matrix
[Kiys ooy K] Where &, € {m,...mk,n"l,...,rifg‘_‘g,‘} CT% (5 =1,..,1). Since f has

dry
to preserve I'4, we must have a tuple § € T% such that f[r,..., 7] =( : ) where

5.,
&y, is the 7;-th position of §. But now the fact that C preserves ¢ implies that for
by
any tuple § € T% = {g[x1,..., 5] | ¢ € C®} we must have ( : ]e o, because the
&,

tuples obtained by taking the positions 7y,...,7; of ky,..., kg give us vy, ..z and
these elements form a subset of 0. Thus, f[m, ..., 7| € o, as required. O

The following statement is an immediate consequence.

Corollary 5.13: Let C be a clone on S. Then, for k > n, Pol T% preserves any

subset that is preserved by C. In particular, if C is conservative, then so is Pol T%,.

Proof: Let A C S be a unary relation that is preserved by C. Obviously,
|A] € n < k. By Lemma 5.12, the relation A is preserved by Pol I¥,. O

We can deduce the following lemma.

Lemma 5.14: Let C be a clone on S containing a majority operation m. Set
k=maz{lo] | o € ngz) is C-independent and T'c(co) # S2}.

Then C = Pol T%.

Proof: Let k), ko, ..., kx be the k columns of . For the sake of brevity, denote
by C’ the clone Pol T'X. Notice that C C C’ by Lemma 5.9. We have to show that
C' C C which is equivalent to Iny C C Inv C'. Since m € C N C’, we can apply
the Baker-Pixley Theorem (see 5.4) and it suffices to show that any binary relation
on S that is preserved by C is also preserved by C’. The full binary relation is
trivially preserved by C’, so it remains to show that any binary relation ¢ # S2
that is preserved by C is also preserved by C’. But now, by the assumption of the
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claim, o is C-generated by a (C-independent) relation ¢’ such that |o’| < k. Thus,
by Lemma 5.12, ¢ is preserved by C’. [

Now, the following corollary is immediate.

Corollary 5.15: Let C be a majority clone on S. Then C = Pol 1"2.2_'1. In
other words, v(C) < n? — 1.

In particular, this implies that any clone C on S = {0, 1} that contains a majority
operation can be written as Pol I'S. Thus, we have solved the problem for our
minimal majority clone [d] on {0,1} and hence for the case n = 2. Recall that d
is the dual discriminator of Fried and Pixley and the only majority operation on
S ={0,1}.

Theorem 5.16: Let C be the minimal majority clone on S = {0,1}. Then
C = Pol P?d].

We have already calculated P|3d] in the example after Lemma 5.3.

Table 5.1
The two-element case
Pol o ' ol
e3(k1, Ko, 53) = (0,0,0,0,1,1,1,1)
[d] e3(k1, Ko, k3) = (0,0,1,1,0,0,1,1)
e3(k1, k2, k3) = (0,1,0,1,0,1,0,1)
d(k1, k2, k3) = (0,0,0,1,0,1,1, 1)

Back to the case S = {0,...,n — 1}

Lemma 5.17: If C is a minimal majority clone on S and k > maz(3,n), then

C is the single minimal clone contained in Pol T%,.

Proof: Suppose Cpn is a subclone of Pol I'%, generated by a minimal operation
f. Since the arity of any minimal operation on an n-element set cannot exceed
maz(3,n), we have f € CU for some | < maz(3,n) < k. But now, C¥ = Pol®

I'% (see Lemma 5.9) implies f € C. Thus, Cppyn = C. O

This Lemma gives us a correspondence between the clone lattice on .S and the
value of v(C). If v(C) > maz(3,n), then there must be a non-minimal clone in the
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clone lattice that contains exactly one minimal majority clone. There is no such
clone in the clone lattice for n = 2 which is another argument to obtain the result
stated in Theorem 5.16. To my knowledge, it is not known whether there exists
such a clone in the clone lattice on a three-element set.

5.1 The three-element case

In this section, fix n = 3 and denote by S the set {0,1,2}. We will determine y(C)
for the three (up to isomorphism) minimal majority clones [my), [ma4], [Ms10] On S.

We can use Lemma 5.14 to calculate bounds for v(C) for C = [my], [ms10], [Maa).
To do so, it is necessary to determine all C-independent subsets of S2. For |S| = 3,
this can be done by a straight-forward computer-calculation within a few seconds.

We obtain the following results.

Table 5.2
<6 (ie [mo]=PolT] )
’Y([mslo]) S 5 (1e [mslo] = POl F[s'mslo])
<4

(1e [m44] = Pol F?m44])

Note that, for a given clone C, the calculation of I'§, is equivalent to the problem
of determining all k-ary operations in the clone C. Even for clones generated by only
one operation (such as minimal clones) and for very small k, it can be practically
impossible to do so by a straight-forward calculation since the number of cases to
be checked can be enormous. However, these bounds a merely for information. We
do not rely on them in any of the upcoming results.

Theorem 5.18: [mg] = Pol.I‘f’mO].

Proof: Suppose [myg] # Pol I‘fmo]. By Lemma 5.9, this is equivalent to Pol Ffmo] Z
[mg]. This implies that there is a nontrivial operation f in Pol I‘f’mo] that is not
generated by mo; i.e. [f] € [mg]. Since [f] has to contain a minimal clone, by Lemma
5.17, this minimal clone has to be [mg]. Thus, my € [f]. This means that we can
apply the Baker-Pixley Theorem and we obtain that [f] € [mo] implies Inv®@mg ¢
Inv® f. Thus, it follows from our assumption that there is a binary relation o on S

that is preserved by mg but not by f. This means f[(zl) , (”) (z")] = (Z) where
n Y2 Yk

(zl) , (12) (z")e o and (Z)gé o. By Corollary 5.13, f has to be conservative,
i Y2 Yk
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hence a € {z),...,zx} and b € {y1,...,yx}. Without loss of generality, we can
assume z, = ... = x;, = a and Z; 41, ...,Tx 7 a and also y;,41 = ... =y, = b and
YLy s Yias Yip+1, > Yk # b for some 0 < i < k, 0 < 4y < k. For an element z € S
(z # 0) we define T to be the remaining element in S after taking away 0 and z.
For i € {1, ..., k}, we also define r;(z) and s;(z) as follows.
1, z;€{0,7 1, y, € {0,z
T‘Z((E) — I T € { x} SZ(:I:) — yl € { x}
0, z; =z 0, =2
Furthermore, note that f has to preserve any relation that is [mg]-generated by a
relation of cardinality at most 3 by Lemma 5.12. In particular, this means that f
has to preserve any three-element binary relation on S that is preserved by my. We
distinguish three cases.
Case 1: a # 0, b # 0. The fact that mg preserves the relation {(g) ) ((1)) : (?)}
implieé that f preserves this relation as well. This, together with f(z,,...,z¢) = q,

e )53 (5 (010 ()

®]. Hence,
0

(a) f(0,...,0,1,...,1) = 0.

a k_ia

In the same way, it follows from f(yi,...,yx) = b and the fact that mg preserves

{( (3) , (‘;) , @} that we have f[(y;) (y;) , (%;;1) - (yg) , (yl) (y;)] -
b
0

and hence

Combining (a) and (b), we can deduce

1) 06 G- =

ia t1p—ia k—1yp

which contradicts that f preserves {((1)) , (?) , C)} which must be the case since
myg preserves this three-element relation.

Case 2: a = 0, b # 0. Suppose that we have ; € ¢ and i € o simulta-

neously. Then, the fact mo[(o) , (ll)) , (i)] =(2) implies (2) € o, a contradiction.
un

Thus, there is a unique element = € S\ {0} such that (Z’)e o. This implies
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Tiy+1 = ... = Tz, = x. Similar as above, my and consequently f have to pre-

serves the relation {(z) (1) , f)}, which, together with f(zi,...,zx) = 0, im-

plies that we must have f[(zll) (zi“) , (I‘B“) (z(;") ; (r::’:“(;)) (r:(’;))] -
f[(?) (?) , (z) (z) , (?f:‘lé)o) (zr’;é)o)] :((1)) and consequently
(a) f(1,..,1,0,..,0, ry1(2), ..., mi(z)) = 1.
ia ib—ia
As in case 1, we also have
(b)  f(1, ,1,0 0L 1) =0.
zb ia k—zb
Thus, combining (a) and (b), we obtain
1 1 0 0 T.'b+1(1‘) Tk(l‘) _ 1
G -() ()6 (1) (7= )

iq ip—iq

0
since this three-element relation is preserved by mg. The case a # 0, b = 0 is clearly

which means that f does not preserve {(1) : (0) : ((1)) }, which is a contradiction

analogue.
Case 3: a = 0,b = 0. Suppose that we have ((l))e o and (i)e o. Then,

mo[(o) , ((1)) , (i)] = (g) implies that we have (g)e o, a contradiction. In the
Y1 '

same way, we can conclude that we cannot have (1) € ¢ and (g) € o at the same

time. Thus, there exist two unique elements z,y € S \ {0} such that (z) , (0) €o.
Y

Hence, z;,4+1 = ... = 2, = z and y; = ... = y;, = y. Let us suppose that we

also have (f) € 0. But then mo[(o) , (z) , (?)] = (O) and hence (0) € o which is a
y y 0 g 0 0

contradiction. As in case 2, we can conclude

(a) f(1, ,1,0 50, Ti1(@), ooy Ti(z)) = 1.

'Lb ia

Furthermore, mq preserves the relation { é’ , 0 , ?)} and so does f. This, to-

1
gether with f(yy,...,yx) = 0, implies f[(lg) (y(;“) , (y“‘l“) (y;b) , (sy‘:(;))

(sm))] =7 [( ) (?.’) ’ (2) (2) , (ys:z;o) (y:kz)o)] =® and hence
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(b) f(O, cesy 0, ]., ceey ]., Sib+1(y)a ceny Sk(y)) =1.
ia ip—ia

Combining (a) and (b), it follows that we have

® AG) - 6) () C)- Cz) - G -C)

ta 1b—1ia

Note that, for i € {1, ..., k}, (T‘EzD:(i) if and only if (zi) € {(g) , (2) , (i) , (?) }
sily Yi Y 7

But now, this cannot be true since we have shown that none of these elements
belongs to ¢. Thus, (r‘(z)) € {((1]) , (O) : (O)} (¢t =4+ 1,..,1) and the equation

s:(y) 1 0
(I) is contradicted by the fact that mgy and hence f have to preserve the relation

(l)-C)- G

This contradicts the assumption and finishes the proof. O

Theorem 5.19: [mas] = Pol T}, .

Proof: Again, we suppose [maa] # Pol I‘f‘m“], implying that there is an operation
fin Pol I‘fmm that is not generated by ma44. As explained in the proof of Theorem

1

5.18, this implies that there is a binary relation ¢ = { . | |} that is preserved
St

81

by mas but not by f. In the following we denote by o1y the set of elements {ry, ..., 7}
and by o(2) the set of elements {si,...,5:}. 44 is conservative, so Corollary 5.13
implies that the same is true for f. This also implies that any relation of the
form A x B for two subsets A, B C S is preserved by f. In the following, we
denote by a,b,c and z,y, z three distinct elements in S. Again, note that f has
to preserve any relation that is [ma4]-generated by a relation of cardinality at most
3 by Lemma 5.12. This contradicts the case |o| < 3. Now, let us suppose that

we have |o| > 7. Suppose (a)gé o. Since |o| > 7, at least one of the four sets
T

(G- ()P G G- Q- C)- () )Gy o e

o. But now, each of these subsets [ma4]-generates a relation containing [ *| . Thus,
. x

(a) € o, a contradiction.

x
Now, let us suppose that we have |o| = 6. This implies S = 0(;), because otherwise

o can be nothing else except A x S for a two-element set A C S, which we ruled out
above. Similarly, S = (3. Denote by di,d; and w any (not necessarily distinct)
elements in S that can also equal a, b, ¢ resp. x,y, 2. Without loss of generality, we

have three cases for our relation o:
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i@ e @) ((hse o) e

In the first case, we must also have { & , da } € o because gz = S. Thus,
y z

{(a> . (b) . (r) , (d‘) , (dz)} C 0. Since ¢ has to contain more than five elements,

T T T y z
we can assume d; # dy. But now, this subrelation [my4)-generates the full bi-

nary relation, so it follows that |o| exceeds 6 and the case (1) is contradicted.

In the case (2), we have I‘[m“,({(::) , (:) ) (;) hH = {(Z) , (i) , (:) , (;)} Thus,

{(a A8 (e } C o and we are in case (1). In case (3), ¢ also has to contain
&T xI T

another element (d’). But now, {(a) , (b> , (r) , (d‘)} [7144]-generates a relation
w x w

Yy z
b

containing the set {[“],
w w

, (;) }, implying that we are in case (1). Thus, the
case |o| = 6 is contradicted.

Now suppose |0| = 4. We must have S = oy or § = 0(3), because otherwise o can
be nothing else but A x B for two two-element sets A, B C S, which is impossible.
Without loss of generality we may suppose S = o(;). Again, we have the cases (1),
(2), (3) listed above. The same arguments as above show that the cases (2) and
(3) can be reduced to case (1), so we can assure {( ) : (b) : ; } € 0. Since ¢

a
T T

has to contain four elements by our assumption we must also have another element
(dl) € 0. Without loss of generality, we can assume d) = a. But now, o is [ma4)-
y

b

generated by its three-element subrelation {(a) , ( ) , (r)} and therefore preserved
y T

by f, a contradiction. Thus, |o| = 4 is not possible.

&

It remains the case 0| = 5. By the same argument as above, we can suppose
(without loss of generality) S = o(;). Once again, we have the cases (1)-(3), but

again we can show that they are essentially the same case. So we can suppose
{(a) . (b) , (c)} C ¢. Without loss of generality, we can suppose that we also have
T

I T

(G) € o. If the fifth element of ¢ is (b) or (C), then we must also have (c) €Eo
Yy Y z Yy
)€ T'imyy(0)) and hence |o| > 5. Similarly, if the fifth element is (C) or
y Yy

(since

b , then we also have e o and again |o| > 5. This means that the fifth element
¥4 Yy .

(
of o has to be (“) and we have o = {@ , C) , (x) , (j) , (‘:) }.

Our assumption was that f does not preserve ¢. This means that, without loss of
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generality, we can assume that f is a 5-ary operation s.t.

() -0 C)-Che©)-0)-C) B

Suppose f[(a) , (b) , (C) , (a), (a)] =(b). We define a ternary operation g on S
T T T y z y .
by g(ul y U2, Ug) = f(ul) Uz, Ug, U1, ul)- Cle&ﬂ% g € [f] ® g POl(B)F:[am44] and: by

Lemma 5.9, g € [my]®. This means that g is either a majority operation or
a projection. Furthermore, g(a,b,¢) = f(a,b,c,a,a) = b implies that if g is a

projection, then it is necessarily €3. In both cases it follows g(0,1,1) = 1 and hence

£(0,1,1,0,0) = 1. This means that we have f] (g)(i)(i)(z) (0)] :@

but the fact that the relation {(0) : (1) : (O) , (0)} is [ma4]-generated by the three-
z z y z

0

Y
have a contradiction. The other possibilities can be handled in the same way. This

finishes the proof. O

element relation {(1) , (0)} implies that this relation is preserved by f, so we
T z

We have seen that C = Pol ', (i.e. v(C) = 3) holds for two out of the three
classes of minimal majority clones on S. One might hope that the same holds for
the minimal majority clone [ms;o], but we now show that this is not the case and
that y([msyo)) is in fact 4.

Lemma 5.20: [mso] # Pol I‘fmsw] (i.e. ¥([msyo)) > 4).

Proof: [ms10] # Pol I‘fmm] is equivalent to Pol I'} ¢ [ms10) by Lemma 5.9.

[ms10]

Hence, it is sufficient to find a nontrivial operation f such that f € Pol I‘fmm] but
ms10 does not generate f. [f] has to contain a minimal clone and, by Lemma 5.17,
this clone can be nothing else but [ms0]. Thus, [msio] C [f]. This means that our
assumption that mso does not generate f is equivalent to [f] € [ms10], which, in
turn, is equivalent to Inv®@msyg ZI nv@ f by the Baker-Pixley Theorem. Thus,
it is sufficient to show that there exist an operation f € Pol I‘fmm] and a binary
relation ¢ on S such that msg preserves o while f does not. Now, we give such a
relation and operation.

(e3(w,y, 2), fw=zx

ed(w,z, z), ifw=y

mog(w,z,y), fw=z

Jw,z,y,2) = 9 eg(w,(a:,z), | ifr=y
mso(w,z,y), fzx=z

\ mSIO(waxay)7 if y==z
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Note that f is well defined since, on a three-element set, at least two variables of a
quaternary operation have to coincide and the cases do not contradict each other if

more than two variables coincide. It is the operation given in the following table.

(w,2,y,2) | fwzv,2) (w,2,9,2) | flw,z,y,2) (w,2,9,2) | f(w,z,,2)
(0,0,0,0) 0 (1,0,0,0) 0 (2,0,0,0) 0
(0,0,0,1) 0 (1,0,0,1) 0 (2,0,0,1) 0
(0,0,0,2) 0 (1,0,0,2) 0 (2,0,0,2) 0 .
(0,0,1,0) 0 (1,0,1,0) 1 (2,0,1,0) 2
(0,0,1,1) 0 (1,0,1,1) 1 (2,0,1,1) 2
0,0,1,2) 0 (1,0,1,2) 1 (2,0,1,2) 0
(0,0,2,0) 0 (1,0,2,0) 0 (2,0,2,0) 2
(0,0,2,1) -0 (1,0,2,1) 2 (2,0,2,1) 2
(0,0,2,2) 0 (1,0,2,2) 0 (2,0,2,2) 2
(0,1,0,0) 0 1,1,0,0) 1 (2,1,0,0) 0
(0,1,0,1) 0 (1,1,0,1) 1 (2,1,0,1) 0
0,1,0,2) 0 1,1,0,2) 1 (2,1,0,2) 2
0,1,1,0) 1 (1,1,1,0) 1 (2,1,1,0) 1
(0,1,1,1) 1 (1,1,1,1) 1 (2,1,1,1) 1
0,1,1,2) 1 (1,1,1,2) 1 (2,1,1,2) 1
0,1,2,0) 0 (1,1,2,0) 1 (2,1,2,0) 2
(0,1,2,1) 2 (1,1,2,1) 1 (2,1,2,1) 2
0,1,2,2) 2 (1,1,2,2) 1 (2,1,2,2) 2
(0,2,0,0) 0 (1,2,0,0) 2 (2,2,0,0) 2
(0,2,0,1) 0 1,2,0,1) 0 (2,2,0,1) 2
(0,2,0,2) 0 (1,2,0,2) 2 (2,2,0,2) 2
0,2,1,0) 2 (1,2,1,0) 1 (2,2,1,0) 2
(0,2,1,1) 0 (1,2,1,1) 1 (2,2,1,1) 2
(0,2,1,2) 0 (1,2,1,2) 1 (2,2,1,2) 2
(0,2,2,0) 2 (1,2,2,0) 2 (2,2,2,0), 2
(0,2,2,1) 2 (1,2,2,1) 2 (2,2,2,1) 2
0,2,2,2) 2 (1,2,2,2) 2 (2,2,2,2) 2

Now, we have f [(g) , (2) , (1) , (2)] =(g) hence f does not preserve the relation

0/ \1/ ' \2
{(g) , (3) , i) , (z)} which is preserved by msig. This is our o. Furthermore, it

can be checked that f preserves the eleven-element relation F[Smm]" (i.e. f € Pol

F[Smm])- Thus, we have found an operation f and a relation ¢ as required. [

Lemma 5.21: [ms;] = Pol I“[lmm] (i.e. y([ms10]) < 4).

Proof: Suppose [ms10] # Pol I‘?mm]. By Lemma 5.9, this is equivalent to Pol
i ngio] & [msi0]. This implies that there is a nontrivial operation f in Pol I'f
that is not generated by msi0. As seen in the proof of Theorem 5.18, it follows
that there is a binary relation ¢ on S that is preserved by ms1g but not by f. This
means f[(zl) , (12) (I")] =(a) where (zl) , (zz) (z")e o and (a)¢ o. By

4 Y2 Yk b 9 Y2 Yk b
Corollary 5.13, f has to be conservative, hence a € {z1,...,zx} and b € {y1, ..., Yx }-

As above, we assume without loss of generality that we have z; = ... = z;,, = a
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and Zj,41,...,%x # ¢ and also y;,41 = ... = y;, = b and Y1, ..., Yio, Yip+1> - Yk #F b
for some 0 < 4, < k, 0 < 4 < k. Here, for z € S (z # 1) we denote by T the
remaining element in S after taking away 1 and z. Furthermore, we define r; and

s; (1 =1,...,k) as follows.

1, z;=1 1, yi=1
i = §; = .
0, otherwise 0, otherwise
Note that f has to preserve any relation that is [msio]-generated by a relation of

cardinality at most 4 by Lemma 5.12. We distinguish three cases.

Case 1: a = 1, b = 1. Note that ms;o preserves the relation {(g) , (1) , ((2))}

and hence f has to preserve this relation as well. Now f(z,...,zx) = 1 implies

f[(zf)"“’ (1)(0) (zok)] _ f[(i)’-"’ (i) (07&1) ( O#l)] _ G)
S0 = e 1(5) = (5). () - (3) ()= () -

1Y) . C e
th . Th 1 1,..,1,0,..,0) = 1 and f(0,...,0,
(1) in the same way. is implies f( . > ) and f ‘

0,...,0) = 1. Tt follows that we must have

k—iy

1,..,1
N e’

iy—ia

ia ip—ia k—iy

0

which implies that f does not preserve {((1)) , ((1)) , (0

because mso preserves this three-element relation.

)} This is a contradiction,

Case 2: d =1, b5 1. Suppose that we have i € o and % € o simultaneously.

o () ) (2) - () () 5) (1 () 1t

ll))e o, a contradiction. Hence, there is a unique z € S such that e o (i.e.
. T

1 =..=y, =x). Asin case 1, we have f(1,...,1,0,...,0) = 1. Thus,
1 1\ (o 0 0 0}, (1
1)) 6) i) - (= 6)
iq ip—ig k—1p

. This means that f does not preserve the relation {(1) , (2) , ((1)) , (g) }. Thisis a
. T

contradiction, because this four-element relation is preserved by ms;o. This finishes
the case a = 1,b # 1. Clearly, the case a # 1, b = 1 is analogue.
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Case 3: a £ 1, b # 1. Suppose that we have (‘11) € o and ; € o simultaneously.

Then, one of the two tuples m510[(‘11) , (;) : (zl:”)], mSIO[(?) : (z:) , (%)] has to equal

(:) This implies (: € o, a contradiction. Similarly, we can show that we cannot
have (ll)) € o and (b) € o at the same time. This leaves us with four cases.
() (ll))e (ie Tjgy1=..=zy,=landy;=...=y, =1)
(1>, (b)e (ie. zjoq1=...=zp=dand y1 = ... =y, = 1)
(g), (z)e (ie Tjy1=..=zjy,=landy, = .. =y, =b)
(g), (i) (ie. Tiyp1=..=24 =Gand y; = ... = y;, = b)

a) Suppose

TN

e o, We have msm[(“) () (e d(z) (¢ or manl(). ).

(ll,)] € { b)’ ~|} which implies that we then have : € o or g € o, a con-

tradiction. Thus, o C {( ) , (1) ; (1) , (E) , ( )} f has to preserve the relations

b b

{(i)( ) ( )}and{() () ( )}becausethey are preserved by ms;o. Hence, we

oo 1(5)(5) (- 3 () - ) 9):

o) () (o =(6) s o A(3) (). (7)) () -
P =16) o G ) () () (2 =) - o
-0 006 (-0

1a ip—ia

But now, (T") ( ) if and only if (z’) € {( ) (g) : (i) : (;)} which cannot be true.
Si i :

Thus, f does not preserve the relation {(0) , ((1)) ) G) } which is a contradiction since

ms1o preserves this three-element relation.
(b) We have (;)) ¢ o because otherwise we would have m510[(‘11) : (Z) , G))] € {(Z) ,

(;)} or m510[(‘11) : (%) , (i)] € {(:) (g)} which would be a contradiction to the

fact that neither (a) nor (f) belong to o. As in case (a), we obtain f(1,...,1,0,...0,
b b N’ N e’

ia 1p—ia
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Siy+15 - Sk) = 0 and it follows that f[(xll) x{“ , xi:)H) x(;") , (“””)
Sip41

1= ) -6 () -G v ()

and only if (L) € {(11;) , (%)} which is impossible. Thus, the equation implies that
Y

0/ k1
ms1o preserves this four-element relation.

f does not preserve the relation {(‘;) ) (a) , (1) (?) }. This is a contradiction since

(c) This case is clearly analogue to case (b).

(d) Suppose that we have (T) € o and (i) € o at the same time. Then, m510[(g) , G) ,

(?)} - (‘11) or msw[(%) , (?) , (i)] = ((11) and hence (‘;) € o, a contradiction. In

the same way we can conclude that we cannot have % € o and G) € o at the same
time. This leaves us with two cases:

S GE R RS ORWAWROREL

Hence, o has at most four elements or it is [msio]-generated by the four-element

relation {(%) , (i) , (?) , (%) }. This means that our assumption that ms;o preserves
o implies that f preserves ¢ as well, a contradiction.

This finishes the proof. [0

ol @l

Note that ¢ from Lemma 5.20 falls under the case (3)(d) in the proof of Lemma
5.21. In fact, all the other cases in the proof could have been handled by supposing

only f € I‘fmm] since all the four-element relations in Pol [ms1o] that we used for

contradiction are [ms;o]-generated by three-element relations.

We have proved the following theorem.
Theorem 5.22: v([ms0]) = 4.

We have also answered the question whether there exists a clone C' and a minimal

majority clone [m] # C in Lg such that [m] is the single minimal clone in C.

Corollary 5.23: It ezists a non-minimal clone C and a minimal majority clone

[m] on S such that [m)| is the only minimal clone in C.

Proof: By the proof of Lemma 5.20, we obtain the claim for m = ms;9 and
C = [f] where f is defined as in the proof of the lemma. [
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Analog to the two-element case, Theorem 5.18 and Theorem 5.19 provide us with

a very simple way to determine o; such that Pol o; = [m;] for i = 0,44.

Pol o o ‘
e(k1, K2, 83) = (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2)
[mo] e3(k1, k2, k3) = (0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2)
e3(r1, Ko, 53) = (0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2)
mo (K1, K2, k3) = (0,0,0,0,1,0,0,0,2,0,1,0,1,1,1,0,1,2,0,0,2,0,1, 2,2,2,2)
e (r1, k2, 83) = (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2)
e3(k1, ke, 83) = (0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2)
‘[mad] eg(nl,ng,m) =(0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2)
meaa(K1, K2, 83) = (0,0,0,0,1,2,0,1,2,0,1,2,1,1,1,0,1,2,0,1,2,0,1,2,2, 2, 2)
maa(k1, k2, k3) = (0,0,0,0,1,0,0,0,2,0,1,1,1,1,1,1,1,2,0,2,2,2,1,2,2,2,2)
mao4(K1, K2, K3) = (0,0,0,0,1,1,0,2,2,0,1,0,1,1,1,2,1,2,0,0,2,1,1,2,2, 2, 2)

Note that it is not similarly easy to obtain the tuples in o = I‘?msm]. Determining
them is equivalent to determining all quaternary operation in [msjo]. Even by
computer, this is a somewhat time-consuming calculation. However, it turns out

that [mso] contains 1892 quaternary operations and hence |o| = 1892.

Question: Denote by M,, the set of minimal majority clones on S = {0, ...,n —
1}. We have seen v(C) < 4 for all C € M,,, n < 3. For a given n > 4, what is the
sharp bound for {y(C) | C € M,}? It must exist since we know v(C) < n? — 1.

5.2 The conservative case

For a majority clone C on the n-element set S = {0,...,n — 1}, we have seen the
bound v(C) < n? — 1 in Corollary 5.15. Now, we show that we can improve this
bound significantly, namely to 2n, if one of the majority operations in the clone is

conservative.

Lemma 5.24: Let C be a clone on S containing a conservative majority opera-

tion m. Let o be a C-independent relation on S. Suppose that there exist pairwise
distinct a,b,c € S such that (a) , (b) , (C>€ o for somex € S. Then (m(a’ b C)) ¢o
T T T Yy
for ally # x.
Proof: Since m is conservative, we may assume m(a,b,c) = a without loss of

generality. Let us suppose that there exists y € S,  # y such that (a) € 0. Then
y
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m((a) , (b) : (C)) z(a)e o which is a contradiction to our assumption that o is.
T

Y b b

C-independent. []

Now we are ready to prove the theorem that gives us the improved bound for

clones containing a conservative majority operation.

Theorem 5.25: Let C be a clone on S containing a conservative majority op-
eration m. Then v(C) < 2n.

Proof: By Lemma 5.14, it suffices to show that any C-independent binary relation
o C S x § can have at most 2n elements. Let us visualize a binary relation ¢ on
S by an n x n matrix M with entries 0 and 1 where M (7, 5) = 1 if and only if

(z - i) € o. For example,
-

e e
o O O =
O = O O
o O = O

stands for the relation {(g) , ((1)) , ((2)) , (3) , (2) , (2) , (;) }. Suppose that we have

three pairwise distinct elements a,b,c € S such that |}, b [ €€ o for some
T T T
z € S. It follows from Lemma 5.24 that (m(a’b’c))gé o for all y # z. Since
y .

m(a,b,c) € {a,b,c}, this means that whenever we take three 1’s from the same
column, at least one of them has to be the only one in its row. Similarly, we can
conclude that whenever we take three 1’s from the same row, at least one of them
has to be the only one in its column (since, clearly, Lemma 5.24 also holds dually).
For example, the diagram above does not satisfy these conditions since we have 1
at the places M(1,1), M(2,1) and M(3,1) but none of these 1's stands alone in its
row. The fqllowing example satisfies thése conditions:

e
[ e
[en BN en N e N
[en BN en N e N

We prove that the number of 1's in this matrix is maximal i.e. the number of 1’s’

in an n x n matrix satisfying these conditions cannot exceed 2n. For that, we show
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that the number of 1’s in an n x k matrix satisfying the two conditions above can
be at most n + k by induction on k.

The claim is obviously true for k = 1. Let r > 2. We can assume that the claim is
true for all n x k matrices where k < r — 1. Suppose that we have a n x r matrix
satisfying the above conditions such that the number of 1’s is at least r + n + 1.
There has to be at least one row or column that contains three 1’s (otherwise the
number of 1’s can be at most 2 * min(r,n) < n+ 7). Without loss of generality, we
can assume that this is a row. By the conditions mentioned above, at least one of
these three 1’s must be the only one in its column. We remove this column from the
matrix (this is possible since we have r > 2) and we obtain a n x (r —1) matrix that
contains at least n +7+1—1=n+r 1’s. This is a contradiction to the induction
hypothesis. |
For k = n it follows that the matrix representing ¢ can have at most 2n elements.
This finishes the proof. O

There is another property of such clones C' that we can prove. In order to do so,

we need another Lemma.

Lemma 5.26: Let C be a clone on S containing a majority operation m. Set
k=max{|o| | o € Rg) is [m]-independent and Tjmy(0) # S?}.
Then [C(me=(34)] — C.

Proof: For notational simplicity, denote by Cj, the clone [C(™a=3*)] C, C C is
trivial. It remains to show C C Cy. Clearly, m € Cy C C. Hence, by the Baker-
Pixley Theorem, it is sufficient to show that any binary relation on S preserved by
Cy is also preserved by C. Suppose o € Inv@Cy. Since C trivially preserves the full
binary relation, we can assume ¢ # S%. For some Ci-independent relation o', we
have o = I'¢, (0'). Since [m] C Cy, ¢’ is also [m]-independent and Ijyy(0') C o # S2.
But now, by the assumption, we have |¢’| < k. Hence, we can write o’ as {v1, ..., 4 }

By Lemma 5.3, this implies
0 =Tc,(0") = {glv1, .., us] | g € CP} = {gl1, .., ws] | g € C¥)} = Tg(")

and hence o € Inv C. O

Note that the number k in this lemma is not the same as the one in Lemma 5.14.
In fact, the value given in this lemma can be significantly higher. We are now ready-

to prove our last result:
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Theorem 5.27: Let C be a clone on S containing a conservative majority op-
eration m. Then [CY] = C.

Proof: We can suppose n > 1. In the proof of Theorem 5.25, we concluded that
any C-independent binary relation ¢ on S can have at most 2n elements. Note
that we only used m of all the operations in C, so we have actually shown that any
[m]-independent binary relation can have at most 2n elements (which is a somewhat
stronger result). Thus, by Lemma 5.26, [C(Ma=(3.20)] = [CC™] = C. O

Note that the results in this section hold for conservative minimal majority clones
in particular, but they are in fact more general: We have only required the clone C
to contain a conservative majority operation. The whole clone does not have to be
conservative and it does not have to be generated by this majority operation (and,
in particular, it does not have to be minimal).
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