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RÉSUMÉ EN FRA&AIS 

L'orchestration des médiateurs cellulaires et solubles du système 

immunitaire inné est essentielle pour le maintien de la santé. Les lymphocytes T 

contribuent de part leurs fonctions cytolytiques et la sécrétion de nombreux 

médiateurs solubles et à cet équilibre. 

L'interleukine-27 (IL-27) est composée de deux sous-unités, EBI3 et p28, qui 

sont liées à une façon non-covalente. Des effets pro- et anti-inflammatoires sur des 

cellules T murines ont été décrits pour cette cytokine. Toutefois, peu 

d'informations sont disponibles pour les cellules T humaines. 

L'impact potentiel de l'IL-27 sur les fonctions des cellules T humanes a été 

étudié en utilisant des cellules mononucléaires du sang périphérique (PB MC) des 

donneurs sains. Une petite quantité des cellules CD4 et CD8 exprimaient le 

récepteur de l'IL-27 (IL-27R), composé de deux chaines : TCCR et gp130, ex vivo, 

surtout les CD8, et cette proportion augmentait site à une activation in vitro. Des 

PBMC et des cellules T CD8 purifiées, naïves et mémoires, ont été activées 

brièvement in vitro et leur prolifération et production des médiateurs ont été 

étudiées par cytométrie en flux. L'ajout d'IL-27 à une stimulation polyclonale a 

augmenté de façon significative et dose-dépendante la prolifération et la 

production d'interféron-y et de granzyme B par les cellules T. De plus, une analyse 

par RT-PCR a démontré que les cellules CD8 humanes ne peuvent pas produire 

d'IL-27 même après activation. 

Ces résultats démontrent l'impact pro-inflammatoire de l'IL-27 sur des 

cellules T (CD8) humanes et leur plus grande susceptibilité aux effets de cette 

cytokine après activation via l'augmentation de l'expression de l'IL-27R. 

Mots clés: cytokine, interféron, cytométrie en flux, granzyme, récepteur de 

cytokine 



RÉSUMÉ EN ANGLAIS 

Orchestration of the innate and adaptive immune systems through 

numerous cell types and their secreted mediators is crucial to maintain health. 

Cytokines, soluble protein mediators, have crucial role in shaping immune 

responses. T lymphocytes through the secretion of soluble mediators and cytolytic 

functions are important players of the adaptive immune responses. 

Interleukin-27 (IL-27) consists of two non-covalently linked subunits: EBI3 

and p2S. This recently described cytokine has been shown to exert both pro- and 

anti-inflammatory effects, especially on mouse T cells. However, information on 

human T cells is lacking. 

The potential impact of IL-27 on human T cell functions was assessed using, 

peripheral blood mononuclear cells (PBMC) from healthy donors. Surface 

expression of both chains of IL-27 receptor (IL-27R) (TCCR and gp130) was 

assessed on ex vivo and in vitro activated PBMC. A small proportion of CD4 and 

CDS T cells expressed detectable IL-27R ex vivo, with the latter subset having a 

greater proportion and increased levels upon activation. PBMC or purified naïve 

and memory CDS T cells were shortly stimulated in vitro and then analyzed using 

flow cytometry~based assays assessing proliferation and mediators. Addition of 

IL-27 to anti-CD3 stimulated cells led to a significant dose-dependent increase of 

proliferation, interferon-y and granzyme B production by T cells. Moreover, in 

contrast to mouse ceIls, RT -PCR analysis showed that human CDS T cells can not 

be a source of IL-27. 

These results underscore the pro-inflammatory impact of IL-27 on human 

CDS T cells and their increased susceptibility upon activation. 

Key words: cytokine, interferon, flow cytometry, granzyme, cytokine receptor 
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The immune system comprises two complementary arms: the innate and the 

adaptive systems. The innate immune system acts as the first line of defence and 

consists of cells that recognize pathogen associated molecular patterns (PAMPs) 

through pattern recognition receptors (PRRs), for example Toll-like receptors 

(TLRs). Although it is rapidly activated in response to insult or pathogen, the 

innate system lacks the ability to improve the host' s resistance upon re-encounter 

of the same Ag (Ag). This immune system compartment is composed of mediators 

including the lysosyme, the complement, acute phase proteins, and cells such as 

phagocytes (dendritic cells (DC), macrophages (Mcp) and neutrophils) and natural 

killer cells (NK). When this first line of defence does not successfully get rid of the 

pathogen threat in the first few days, the innate immune system activates the 

adaptive immune system, which recognizes specific Ag of the infectious agent 

through the B cell receptor (BCR) and the T cell receptor (TCR) leading 

respectively to antibodies (Ab) secretion by B lymphocytes and cellular immune 

responses by T lymphocytes. The adaptive immune system through the activation 

and expansion of specifie B cells and T cells is responsible for the immunological 

memory towards the pathogen-derived Ag. 

1.0 T LYMPHOCYTES 

1.1 Distinct T lymphocyte subsets 

T lymphocytes are cells of the adaptive immune system ex pressing the cluster 

of differentiation (CD). marker CD3, which consists of the invariable signal 

transducing su bu nits (CD3y, CD30, CD3r and CD3~ [CD247]) (Lin and Weiss, 

2001; Werlen and Palmer, 2002; Risueno et a1., 2008). The CD3 chains have 

negatively charged acidic residues in their transmembrane domains which ensure 

interaction with the positively charged ligand-binding subunits (TCRa and TCR~) 

of the T cell receptor (TCR). The TCR of most T cells consists of an a- and a ~­

chains, whereas a min or population expresses an alternative form made of a y­

and a O-chains. These ligand-binding chains are immunoglobulin like and have a 

constant and a variable region. The a~TCR recognizes peptides presented by 
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major histocompatibility complex (MHC). a~TCR T lymphocytes fall into two 

classes based on distinct cell-surface co-receptors: CD4 and CD8, thus are called 

CD4 T lymphocytes or CD8 T lymphocytes. CD4 is a single chain molecule 

binding the classical MHC class II mole cule at a different site than the TCR. Thus, 

CD4 T lymphocytes, also named T helper cells (Th), recognize peptidic Ag 

presented by MHC class II molecule. The CD8 mole cules in most T lymphocytes is 

a heterodimer consisting of an a- and a ~-chains and interacts with MHC class 1 

molecules in a way similar to the interaction CD4 ~ MHC class II. Thus, CD8 T 

lymphocytes, also named cytotoxic T cells (Tc), recognize peptidic Ag presented 

by classical MHC class 1 molecules or non-classical ones such as HLA-G (Gomes et 

aL, 2007) and HLA-E (Godfrey et aL, 2008). However, T cells can also recognize 

glycolipids, complexed to CD1d molecule (Godfrey et aL, 2008). CD1 mole cules 

are cell surface glycoproteins expressed mainly by B lymphocytes, macrophages 

and dendritic cells. They consist of two chains: ~2 microglobulin (~2m), similarly 

to MHC class 1 molecules, and a heavy chain containing three extracellular 

domains (a1-a3). The a1-a2 super domain for ms the antigen-binding groove 

consisting of two ahelices (al and a2) whereas the membrane proximal a3 domain 

binds ~2m. Humans have five CD1 isotypes (CD1a-e). Many natural killer T cells 

are specifie for CD1d presenting several types of glycolipids (Zajonc and 

Kronenberg, 2007). 

Both classes of MHC mole cules are heterodimers anchored in the cell 

membrane and bear a groove where the presented peptide binds. The MHC class 1 

molecule consists of a larger a-chain spanning the membrane, and a smaller, non­

covalently linked ~2-microglobulin, which does not have a transmembrane 

domain. The peptide that fits in the groove is usually 8-10 amino acids (aa) long 

and gets anchored at both ends by its free amino- and carboxy- termini. The MHC 

class II molecule comprises two non-covalently associated chains (a- and ~-) both 

spanning the cytoplasmic membrane. The peptide-binding groove is more open 

than the cleft of the MHC class 1 molecule resulting in presentation of longer 

peptides (13-17 aa) and lack of anchoring at the ends of the peptide. Both classes of 
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MHC molecules are differentially expressed throughout the body: almost aIl 

nucleated ceUs express MHC class l molecules, whereas MHC class II molecules 

are restricted to professional Ag presenting cells (APC) (e.g. B lymphocytes, DC 

and Mer). MHC class land class II expression could be enhanced upon activation 

and inflammatory conditions. 

1.2 Transition from naïve to effector and memory T cells 

Based on experimental observations mainly obtained using mouse models of 

infection, the in vivo T cell response has been dissected into four main phases: 

i)initial activation ii) expansion phase iii) contraction phase, and iv) memory 

phase. 

The initial activation consists in the activation of rare naïve T ceUs specifie for 

the particular Ag into effector T cells. Three signaIs are required for initiation of a 

program leading to strong expansion, development of effector functiol1S, and 

survival of an efficient memory cell population. The first signal is the MHC­

peptide complex recognized by the TCR, the second signal isprovided by co­

stimulatory molecules (e.g. CD80 or CD86) concurrently provided with the MHC­

peptide complex on the surface of the APC. Cytokines present near-by the T ceIl­

APC interaction provide the third signal (Mescher et al., 2006; Hart y and 

Badovinac, 2008). Stimulation with these three signaIs synergize and cause the 

naïve T cells to enter an irreversible differentiation program through activation of 

specifie transcription factors (T-bet, GATA-3, Foxp3 or RORyt) Ieading to the 

acquisition of tissue homing receptors and distinct effector functions. Cytokines 

provided in the vicinity have a tremendous impact on the differentiation of T cells. 

Skewing towards different T ceIl responses will be described in more details 

below. 

The expansion phase consists in the proliferation and differentiation of specifie 

T cells, which will become effector or memory T cells that will then travel 

throughout the host' s body to find their specific cognate peptide-MHC complex. 

Chroma tin remodeling of effector cytokine genes can be inherited through mitosis 
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and can contribute to the maintenance of specifie states of gene activity between 

cell generations (Agarwal et al., 1998; Sallusto et al., 2004) through a process, 

called "cycling" in the absence of cognate Ag (demonstrated for memory CD8 T 

ceUs). 

The contraction phase describes the transition from a large effector population 

to a smaller population of memory T cells in order to maintain long-lasting 

immunologieal memory. This is necessary given the limited space and resources 

available for aIl T cells expanded throughout the host' s life. Moreover, protection 

front the highly active effector cells, which can turn into detrimental autoimmune 

weapon once the pathogen has been cleared (Hart y and Badovinac, 2008) is 

provided by this contraction phase. The mechanisms involved in this phase are 

not fully elucidated but could include apoptosis of Ag-specifie T ceUs and a 

balance between pro- and anti-apoptotic BCL-2 family members. In addition, after 

each division, chromos omal telomeres shorten determining the cellular lifespan 

and limiting the number of divisions that cells can undergo (Hart y and Badovinac, 

2008). 

The memory phase describes the long-term maintenance of memory T ceUs 

within the host. Cytokines play crucial roI es in this process especially the COlnmon 

y chain cytokines: lL-2, lL-7 and lL-15. lL-7 provides the second signal required for 

survival of both memory and naïve T ceUs, which makes it a limiting factor 

(Schluns et aL, 2000; Vivien et aL, 2001; Guimond et aL, 2005; Boyman et al., 2007; 

Prlic et al., 2007). The memory T ceUs are highly heterogeneous in terms of surface 

markers, cytokines they are able to produce as weIl as their lytic enzyme content. 

This heterogeneity could be ascribed to several factors including the signaIs 

provided during the priming (type of pathogen, presence of cytokine milieu, and 

APC) determining the bouquet of cytokines produced by the effectors and thus by 

the memory T cells (Seder et al., 2008), and survival signaIs received later on 

(including survival cytokines). 

Some of the markers used for phenotyping T cells according to their state of 

activation are shown in Table 1 including the function of these mark ers with (+) 
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and (-) representing the relative expression in a given subpopulation. Thus, (+) 

means that the marker is usually expressed by the entire subpopulation, (++1-) 

means that most cells in the subpopulation express the marker, whereas (+1--) 

means that most cens in the subpopulation do not express the marker, but that a 

sman subset do. One of these mark ers is CD45 which has two isoforms: CD45RA, 

expressed on naïve T celIs, and CD45RO typical for memory T celIs. A small 

subset of CD8 T cells called effector memory CD45RA+ (TEMRA) express CD45RA, 

are devoid of CCR7, and are characterized by the largest content of perforin 

among the memory subsets. The transition between both isoforms occurs upon T­

cell activation with a shift from RA to RO as this change is reversible. CD62L is a 

lymph node homing receptor, which in combination with the CC-chemokine 

receptor 7 (CCR7) is used for distinguishing the central memory (TCM, expressing 

CD62LhiCCR7hi) from the effector memory (T EM, expressing CD62UowCCR7Iow) 

subset. TCM represent the long-term memory cens which maintain the memory 

pool due to their good proliferative capacity. Human TCM express CD45RO, CCR7, 

and are found mainly in secondary lymphoid organs (lymph nodes, spleen) and 

tissues. They have high sensitivity to Ag stimulation, are less dependent on co­

stimulation than naïve T celIs, and up-regulate CD40L to a greater extent to 

provide more effective co-stimulatory feedback to DC and B cells. Upon activation 

they produce mainly IL-2, but after proliferation they differentiate into effector 

cells and produce large amounts of cytokines. The other subset (TEM) have less 

efficient proliferative capacity upon re-encounter of the Ag but can rapidly and 

efficiently respond to it via cytokine production (Sallusto et al., 2004). This 

compartment consists of effector memory T cells that have lost the constitutive 

expression of CCR7, are heterogeneous for CD62L, show different chemokine 

receptor and adhesion molecule expression that lead them to inflamed tissues. 

These cells reside mainly in the spleen, blood, and non-lymphoid tissues (lung, 

liver, and gut) but are not found in the lymph nodes and have rapid effector 

functions because are charged with great amounts of perforin. Both CD4 and CD8 

TEM produce cytokines very shortly after reactivation (Sallusto et a1., 2004; 
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Badovinac and Hart y, 2006). Other markers used are the co-stimulatory molecules 

CD27 and CD28. In addition, memory T cells are characterized by their effector 

functions including their cytokine profile and lytic enzyme content. Thus, to 

identify the memory phenotype a combination of multiple markers is used. 

However, regardless of their phenotype, good memory T cells: (i) persist and 

outnumber the naïve T cell repertoire; (ii) are able to rapidly respond to re­

infection by vigorous proliferation and various effector mechanisms (cytolysis and 

cytokine production) in an Ag dose-dependent manner; (iii) provide rapid 

protection after pathogen re-encounter (Badovinac and Hart y, 2006). 
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Table 1. Naïve and Inemorl/ svecifie markers for hwnan T cells 

CD4 CDS Functions 
• 

Marker 
T 

TCM TEM 
T 

TCM TEM TEMRA naïve naïve 

Chemokine receptor binding CCL19 and 
CD197 

(+) (+) (-) (+) (+) (-) (-) CCL21; Homing to lymph nodes; Down-
(CCR7) regulated upon naïve T cell activation; Re-

expressed after stimulation. 

CD45RA (+) 1 C\ (+ / --) (+ ) (-) (-) (+) high-molecular Transmembrane 
l ' , weight phosphate regulating the 

low-molecular TCR-CD3 complex 
weight, increases signalling; T-cell 

CD45RO (-) (+) (+ ) H (+ ) (+) (+ /-) activation leads to efficiency of TCR- a 

reversible shift from RA 
CD3 signalling toRO. 

Cellular adhesion molecule from selectin 
CD62L (+) (++ /-) (+ /-) (+ ) (++ /-) (+ / --) (+ / --) family, homing to lymph nodes via interaction 

with 6-sulpho-Lewis X, 

Binds CD70; Present on activated T cells and 

CD27 (+) (++ /-) (+ /-) (+) (++ /-) (+ /-) 
DC; Promotes effector functions and memory 

(+ /-) cell formation; CD70 engagement or prolonged 

stimulation leads to 10ss of CD27 expression; 

no re-exrressed uron activation. 

Binds CD80 and CD86 expressed by APC; 

CD28 (+) (+) (+) (+) (++/-) (+ /-) (+ /-) Potent transducer of co-stimula tory signaIs 

enhancing IL-2 production, proliferation, 

survival, and effector functions. 
Adapted from (Sallusto et al., 2004) and (van Lier et al., 2003) 
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1.3 Roles of cytokines in T œIl polarization and acquisition of effector functions 

The timing and the intensity of several signaIs (signal 1: TCR, signal 2: co­

stimulation, signal 3: cytokines) regulate the development of effector as weIl as 

memory T cells (Hart y and Badovinac, 2008). Cytokines produced by innate 

immune ceIls significantly contribute to shape subsequent T ceIl activation by 

regulating the expression of many genes in T lymphocytes promoting optimal 

proliferation, survival, commitment to a lineage (a summary of ThljTc1, Th2jTc2, 

and Th17 jTc17 lineages is shown in Table 2), effector functions, adhesion and 

trafficking (Meseher et al., 2006). The skewing of T cells towards type 1, type 2 or 

type 17 has been considerably studied for CD4 T cells but mueh less is known for 

CD8 T cell differentiation. Moreover, numerous publications suggest that factors 

dictating the activation, expansion, and development of memory differ between 

these two T cell subsets (Seder and Ahmed, 2003). Thus, the following description 

of lineage commitment has been mainly deseribed for CD4 T cells, but when 

appropriate information regarding CD8 T cells is mentioned. In addition to the 

ThljTc1, Th2jTc2, or Th17 jTc17 lineages, other T cell differentiation patterns can 

be observed. For example, presence of TGF-p during TCR activation can induce 

the expression of forkhead box transcription factor Foxp3 by CD4 T eeIls leading 

to the development of a T cell subset bearing regulatory functions (Shevach et al., 

2008), but these regulatory T cell subsets will not be discussed herein. 

Table 2. Different effector T celllineaçres 

LI' Cytokine profile Role in immunity 
Proinflammatory action against intracellular 

ThljTc1 IFN-y, TNF pathogens (e.g. viruses) 

Stimulate humoral immunity by activating B 

IL-4, IL-5, IL-ID, cells, contribute to fight extracell ular 

Th2jTc2 IL-13 pathogens 
• 

• Implicated 111 autoimmunity, inflammation, • 

IL-17 IL-17F, IL- cancer, protect from extracellular pathogenic 

Th17 jTc17 21, IL-22, bacteria 
, 



20 

Presence of IL-12 in the vicinity of CD4 T ceUs being activated and the 

signalling and induction of transcription factor 'T-box expressed in T ceUs' (T-bet) 

and STAT-4 (Signal Transducer and Activator of Transcription-4) lead to the 

development of Thl celIs (Seder and Ahmed, 2003). Similarly, it has been shown 

that naïve CD8 T cells exposed to their cognate Ag in the presence of co­

stimulation but in absence of IL-12 exp and but these celIs do not acquire cytolytic 

activity (Mescher et al., 2006), supporting the crucial role of IL-12 also in efficient 

CD8 T ceIl effector functions. In Table 2 are represented the basic T subsets 

according to their secreted cytokines. Type 1 T celIs (Thl/Tel) produce pro­

inflammatory cytokines such as IFN-y and TNF as weIl as lytic enzymes and are 

implicated in clearance of viral infections and extracellular pathogens. An 

uncontrolled expansion of Thl ceUs has been associated with the development of 

autoimmune diseases (Gonzalez-Rey and Delgado, 2006; Guilherme et al., 2007; 

Skurkovich and Skurkovich, 2007). 

In contrast, presence of IL-4 and signalling and induction of the transcription 

factor GATA-3 (the name cornes from the "GATA" DNA sequence recognized) 

and activation of ST AT -6 (Signal Transducer and Activator of Transcription-6) 

favour the development of Th2 cells. Type 2 T lymphocytes (Th2/Tc2) produce 

cytokines such as IL-4, - S, -10 and IL-13, suppressing pro-inflammatory Thl 

cytokines, and promoting humoral immunity and responses to intracellular 

pathogens. An uncontrolled expansion of Th2 ceUs has been linked with the 

development of allergy (Robinson, 2000; Bullens et al., 2004; Haczku, 2006). 

Differentiation of naïve CD4 T cells into Th17 occurs in different conditions in 

mouse and human (McGeachy and Cu a, 2008). Naïve mouse CD4 T cells activated 

in the presence of TGF-p and IL-6 up-regulate the transcription factor ROR-y 

(Retinoid-related orphan receptor-gamma) and adopt the Th17 lineage (Bettelli et 

al., 2006; Mangan et al., 2006; Veldhoen et al., 2006). Cytokines implicated in the 

differentiation of human CD4 T celIs into Th17 cells is not fully elucidated. 

Contradictory results have been published regarding the role of TGF-p and IL-6. 
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According to one group (Yang et al., 2008) Th17lineage results from stimulation in 

the presence of TGF-~ and IL-21, whereas others (Acosta-Rodriguez et al., 2007a; 

Wilson et al., 2007; McGeachy and Cua, 2008) observed that the combined action 

of IL-23 and IL-1 is necessary for the differentiation of human Th17 which can be 

further enhanced by IL-23 and/ or IL-6. Th17/Tc17 secrete IL-17, IL-17F, IL-21 and 

IL-22 and have been implicated in man y human diseases like multiple sclerosis, 

systemic lupus erythematosus, asthma, rheumatoid arthritis (Afzali et al., 2007; 

Aujla et al., 2007; Hirota et al., 2007; Kebir et al., 2007; Roark et al., 2007; McGeachy 

and Cua, 2008; Wong et a1., 2008). IL-22 and IL-17 have been related to bacterial 

protection in lungs and gut, and regulate immune responses of cells in non­

lymphoid tissues. IL-21 has been also implicated in humoral immunity in the 

lymph node germinal center reactions (Dong, 2008). It has been shown that Th17 

cells, especiaIly human Th17 ceIls ex pressing specific chemokine receptors (CCR6 

and CXCR3) can also pro duce IFN-y suggesting that the segregation of cytokine 

profile is not complete (Acosta-Rodriguez et a1., 2007b; McGeachy and Cua, 2008). 

There is extensive cross-talk between each T ceIl subsets through the secretion 

of cytokines that can negatively regulate the differentiation of other subsets. For 

example, IL-12, IFN-y or IL-4 can prevent the differentiation induced by IL-23 or 

TGF-~+ IL-6 of human or mouse Th17 respectively (Murphy et a1., 2003; 

Harrington et al., 2005; Annunziato et al., 2007; Wilson et al., 2007; McGeachy and 

Cua, 2008). 

Cytokines are also crucial in the survival and maintenance of naïve and 

memory T ceIls, but CD4 and CD8 T cells have different requirements, probably 

because each subset has intrinsic proliferative capacity (more prominent in the 

CD8 T ceIl compartment) (Se der and Ahmed, 2003). The homeostatic proliferation 

of both naïve CD4 and CD8 T ceIl populations is strongly reduced when 

transferred into IL-7-deficient mice (Schluns et al., 2000; Tan et al., 2001; Goldrath 

et al., 2002) demonstrating that this cytokine is crucial for the maintenance of these 

ceIls in mice. IL-15 deficiency selectively affects the homeostasis of naïve mouse 

CD8 T cells leading to a diminished expansion of these ceIls but does not affect 
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naïve CD4 T ceUs, supporting a selective role for IL-15 in the survival and 

proliferation of murine naïve CD8 T ceUs (Zhang et al., 1998; Tan et al., 2001; Judge 

et al., 2002; Tan et al., 2002; Berard et al., 2003). IL-7 and IL-15 have non-redundant 

roI es in murine naïve CD8 T ceU proliferation as treatment of IL-15 deficient mice 

with IL-7Ra blocking mAbs completely abolishes naïve CD8 T ceU division 

(Goldrath et al., 2002). Similarly, using in vitro studies, human naïve CD4 and 

CD8 T ceU subset survival and expansion are induced by IL-7, whereas IL-15 

favors mainly naïve CD8 T ceU (Geginat et al., 2001; Alves et al., 2003; Geginat et 

al., 2003). 

IL-7 has been shown to be important for the survival but not for the 

homeostasis proliferation of murine memory CD4 T ceUs (Lantz et al., 2000; Tan et 

al., 2002; Kondrack et al., 2003; Li et al., 2003; Seddon et al., 2003)~ Although IL-15 

is not crucial in the maintenance of this ceU subset, it can also promo te their 

survival (MueUer et al., 2003). On the other hand, homeostasic proliferation of 

murine memory CD8 T ceUs is induced by both IL-7 and IL-15, but IL-15 seems to 

play a more crucial role (Schluns et al., 2000; Goldrath et al., 2002; Judge et al., 

2002; Kieper et al., 2002; Tan et al., 2002). Homeostatic proliferation of human 

memory CD4 and CD8 T ceUs is driven by IL-7 and IL-15 respectively although IL-

7 can also affect human CD8 T ceUs (Alves et al., 2007). Furthermore, IL-15 

enhances cytotoxic T lymphocyte responses by inducing IFN-y, perforin and 

granzyme B, and up-regulating co-stimulatory receptors (Alves et a1., 2007). 

T lymphocytes can also acquire the capacity to kill target ceUs via two distinct 

ways: lytic enzymes (perforin-granzyme)-mediated and Fas-mediated (including 

FADD-recruitment, caspase-8, TNFR1 and TRAILR) mechanisms. The lytic 

enzyme-mediated pathway is mainly used by cytotoxic T lymphocytes (CD8 Tc) 

and NK cells (Russell and Ley, 2002). NK cells contain storage of lytic enzymes in 

specific granules, but naïve CD8 T cells lack such enzymes. However, upon 

complete activation (TCR, co-stimulation and cytokine activation such as IL-2) 

CD8 T ceUs express granule components, including perforin and granzymes. In 

human five types of granzymes are known. It has been demonstrated that upon its 
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release, perforin rapidly polymerizes in the presence of Ca2+ in a ring-like 

structure that is inserted into the target cell' s membrane. First, perforin-induced 

damage of the target cell' s membrane was thought to facilitate entry of 

granzymes. It was further clarified that perforin is needed not only for creating an 

entry pore for granzyme into the target cell' s membrane, but also to release lytic 

enzymes from the endocytosed membrane in the created endosome (Barry and 

Bleackley, 2002). Granzyme A and granzyme B are released by cytotoxic T 

lymphocytes bound to proteoglycans which protect it from inactivation (Russell 

and Ley, 2002). Granzyme H can enter target cell in a perforin-independent way, 

whereas granzyme K is dependent on perforin (Barry and Bleackley, 2002). 

2.0 ANTIGEN PRESENTING CELLS (APC) 

Although most nucleated cells have the capacity to present Ag from the 

translated polypeptides the y produce in the context of MHC class 1, they do not 

have the capacity to activate naïve CD8 T cells. However, professional Ag 

presenting ceUs (APC) have the capacity to take-up external Ag, process them, and 

then efficiently present them via the MHC class II molecules to naïve CD4 T cens 

and via MHC class l to naïve CD8 T cens leading to the activation of these 

adaptive immune cens. In addition to provide TCR stimulation, professional APC 

supply the necessary extra signaIs for a full activation of T cells: co-stimula tory 

molecules and cytokines. 

2.1 Monocytes and Macrophages (M<p) 

Monocytes are a subset of peripheral white blood cells that can be 

distinguished by their bean-shaped nucleus. They originate from a bone marrow 

myeloid progenitor common with neutrophils. They circulate for several days in 

the peripheral blood and then enter in different tissues to replenish local 

macrophage (Mcp) populations or De. Circulating monocytes and Mcp, which the y 

give rise to, are heterogeneous populations and different monocyte subsets appear 

to represent different developmental stages with distinct physiological roles 
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(recruitment to inflammatory sites or entry to normal tissues). Monocytes typically 

express the differentiation marker CD14, which is part of the receptor for 

lipopolysaccharide (LPS). Additional markers are used to distinguish different 

monocyte subsets: including CD16 (Fc receptor), chemokine receptors such as 

CD192 (CCR2 - receptor for CCL2, a chemokine involved in monocyte infiltration 

in inflamed sites), CXC3CR1 (receptor for the chemokine CX3CL1), CCR5 

(receptor for CCL3, CCL4, and CCL5) (Dorner et al., 2002». The classical 

monocytes (Strauss-Ayali et al., 2007) also called inflammatory monocytes by 

other authors (Gordon and Taylor, 2005) represent the vast majority of circulating 

monocytes and bear the following phenotype: CD14hiCD16-MHC class 

n+CCR2+CX3CR1 Io
. The second subset of monocytes, less abundant in the 

circulation is called the non-classical or resident monocytes and has the 

phenotypic profile CD14+CD16+MHCclassIlhiCCRZCX3CR1hiCCR5+, Both 

monocyte subsets can differentiate into DC or M<p in the presence of adequate 

stimuli. 

Recruitment of monocytes to peripheral sites can be enhanced by pro­

inflammatory (which activates them through the classical pathway) or anti­

inflammatory cytokines like IL-4 and lL-13 (this leads to their activation through 

the alternative pathway, leading to inflammation relief and persistence of 

infections with intracellular pathogens (Ruckerl et al., 2006», metabolic or immune 

stimuli leading to their differentiation into M<p and De. Tissue M<p are responsible 

for clearance of senescent ceUs, remodeling and repair of tissues after 

inflammation (Gordon, 1986; Gordon and Taylor, 2005). lt is still unknown 

whether tissue M<p are derived from random monocytes or from particular 

lineage-committed precursors (Gordon and Taylor, 2005). They are maintained 

both by entry of new monocytes and local proliferation. Heterogeneity within M<p 

results from the tissue specialization that these ceUs undergo upon each particular 

microenvironment (Gordon and Taylor, 2005). Tissue M<p include osteoclasts in 

bones, alveolar M<p in the lungs, microglia, perivascular and meningeal M<p in the 
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central nervous system (CNS), and Kuppfer ceUs in the liver (Gordon and Taylor, 

2005). 

2.2 Dendritic ceUs 

Dendritic cells (DC) are a heterogeneous population of specialized migra tory 

APC and are dispersed throughout the body. They belong to the myeloid 

phagocyte system together with Mcp, brain microglia and osteoclasts (Jung, 2004) 

or have a lymphoid origin like Langerhans' cells and plasmacytoid DC These cells 

are very mobile allowing them to carry Ag from peripheral tissues to lymphoid 

organs and thus becoming highly immunogenic. 

Immature DC very efficiently uptake Ag sample from their environment by 

phagocytosis, macro-pinocytosis, or receptor mediated endocytosis, without 

discrimination between foreign and self-Ag (Jung, 2004). These cells contain 

numerous intracellular MHC molecules in the non-Iysosomal compartments ready 

to be loaded with these processed Ag. Immature DC express a variety of sensors 

of inflammation and P AMPs, and upon stimulation via these sensors stop their Ag 

up-take activities and enter a maturation process leading to mature DC High 

expression levels of MHC molecules and co-stimula tory molecules of the B7 

superfamily characterize mature De, that will then migrate to draining lymph 

nodes in or der to very efficiently activate naïve T ceUs. In fact, mature DC are the 

only cells capable of fully activating naïve T ceUs by efficiently presenting MHC­

peptide complexes and co-stimlatory molecules. The initial stimulation of the 

latter is restricted to the tissue-draining lymph nodes. DC can be both Ag carriers 

and bystander stimulators and thus can prime directly, cross-prime or cause cross­

tolerance. Apart from being immunogenic in the context of complete maturation 

signalling in the presence of danger / foreign signalling, DC are also responsible 

for tolerance towards self-Ag. Whether DC will cause tolerization or 

immunostimulation depends on many factors including the maturation/ activation 

status of the DC such as the expression level of co-stimula tory molecules and 

tolerogenic cytokine production (such as TGF-~ and IL-10) (Jung, 2004), the 
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turnover of Ag and the amounts of ingested Ag. When low levels of Ag is 

uptaken, cross-tolerance could take place (Melief, 2003) depending on other 

conditions present. Fully activated mature DC upon dangerjforeign signaIs are 

the most efficient APC. 

2.3 B cells 

B ceUs originate from the bone marrow and their na me initiaUy came from the 

fact that they were found to mature in birds in a specific organ, called "Bursa of 

Fabricius". In human or mouse, after reaching a certain stage of maturation (a 

successful expression of p heavy chain with a concomitant expression of K or À 

light chain) in the bone marrow, the y migrate to the spleen where they reach their 

full mature state. Each B ceU has a unique receptor protein (B ceU receptor (BCR)) 

on its surface, which is an immunoglobulin by nature and binding with good 

affinity to Ag leads to B ceU activation. However, to become fuUy activated B ceUs 

need co-stimulation through CD40 provided by CD40L (CD154) on the surface of 

activated CD4 T ceUs (Rodriguez-Pinto, 2005). B ceUs can also serve as APC and 

though being less efficient than DC, can still be very effective APC upon 

appropriate stimulation (Banchereau and Steinman, 1998; Gagro et al., 2006). Ag 

ligation on the surface of naïve B cells induces signalling through the BCR, leading 

to the internalization of the complex through the endocytic pathway towards the 

MHC class II rich compartments where peptide-MHC class II complex is formed, 

leading to up-regulated MHC class II expression and peptide presentation. The 

BCR signal also leads to growth, proliferation, survival, and expression of co­

stimulatory molecules (e.g. CD86). CD40 signalling enhances the Ag processing 

(Faassen et al., 1995), increases the MHC class II expression and induces CD86 

(Ranheim and Kipps, 1993; Kennedy et al., 1994; Wu et al., 1995; Mackey et al., 

1998; Evans et al., 2000; Roy and Chaudhuri, 2008). Upon such activation, B cells 

can become efficient APC and subsequently activate T lymphocytes. FuUy 

activated B cells div ide and become plasma ceUs, producing different classes of 

antibodies through different splicing of mRNAs. It has been shown that cytokines 
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influence the class switching. In mouse, under Th1 conditions (IFN-y) isotype 

switching is from IgM to IgG2a and IgG3, in Th2 conditions (IL-4) the switch is 

towards IgG1 and IgE, while in the presence of TGF-~ the switch is towards IgG2b 

and IgA. 

3.0 INTERLEUKIN-27 (IL-27) 

Cytokines are soluble proteins released by cells acting as intercellular 

mediators in the generation of an immune response, and playing roles in cell and 

body homeostasis. The latter is the ability of the immune system to maintain 

normal cell counts following depletion or cell expansion. Cytokines include 

numerous pro teins coined lymphokines (produced by lymphocytes), monokines 

(produced by monocytes/Mcp), interleukins (first seen to be expressed by white 

blood cells (leukocytes, hence "leukin") as a means of communication ("inter-") 

and interferons. 

Several members of class 1 helical cytokines share little pnmary sequence 

identity but have a common tertiary structure. It is characterised by a bundle of 

four tightly packed a-helices arranged in an "up-up-down-down" fashion. In most 

of the class-I cytokines the helix bundle is stabilized by up to three disulphide 

bridges or in sorne cases - by hydrophobic interactions (Huising et al., 2006). This 

group includes: interleukins-2 to 7, -9, -11 to -13, -15, -27, granulocyte-macrophage 

colony-stimulating factor (GM-CSF), granulocyte-colony stimulating factor (G­

CSF), erythropoietin (EPO), ciliary neurotrophic factor (CNTF), leukaemia 

inhibitory factor (LIF), oncostatin M (OSM), cardiotropin-1 (CT-1), cardiotropin­

like cytokine (CLC), thrombopoietin (TPO), leptin and others. 

Class-I helical cytokines signal through surface receptors that share the same 

modular structure. The extracellular domain of the receptor includes at least one 

cytokine-binding domain of around 200 aa arranged in Fibronectin type -III 

domains (FnIII). Very often there is a second FnIII or immunoglobulin-like domain 

associated to the first one. The cytokine FnIII domain that is close to the membrane 

usually contains a characteristic WSXWS motif. Sorne of these receptors have long 
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signal trnsducing intracellular tails whereas others have short ones with reduced 

capacity for signalling. Thus, the class-I helical cytokine receptor complex contains 

at least one chain with long intracellular domain responsible for signalling 

(Huising et al., 2006). 

The multimerisation of the cytokine receptor upon ligand binding brings 

together the long intracellular tails of two receptor chains. Each intracellular 

domain is constitutively associated with a tyrosine kinase from the Janus Kinase 

(JAK) Family and upon dimerisation JAKs get activated via transphosphorylation. 

The mammalian JAK family consists of four members: JAK1, 2, 3 and TYK2 (Shuai 

and Liu, 2003). Phosphorylated JAKs phosphorylate sorne intracellular membrane­

distal tyrosine residues of the receptor chain. These phosphorylated tyrosines 

serve as docking sites for members of the signal transducer and activator of 

transcription (ST AT) family. It includes seven members in mammals: STAT1, 2, 3, 

4, Sa Sb and 6. Upon docking to a phosphorylated tyrosine, ST ATs get 

phosphorylated through their Src homology 2 (SH2) domains. This leads to their 

dissociation from the receptor chain, with consecutive formation of homo- or 

heterodimers and translocation into the nucleus to induce transcription (Huising 

et al., 2006). The types of genes targeted by STATs depend on the composition of 

the ST AT dimer. STATs can be divided into two groups. The first one comprises 

STAT-2, -4 and -6 which are implicated in the T cell development and in IFN-y 

signalling. The second group consists of STAT-l, -3 and -5 which are activated by 

different ligands playing role in IFN signalling and embryogenesis (Calo et al., 

2003). In mice, STAT-l mediates IFN-y signaling, STAT-2 pla ys anti-apoptotic role 

in IFN-y responses, STAT-3 mediates IL-10 effects (Matsukawa, 2007), STAT-4 

plays role in Thl differentiation (Matsukawa, 2007), whereas ST AT -5 is activated 

by yc cytokines, EPO, IL-3, IL-5 and different growth factors (Ross et al., 2007). 
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3.1 Charaderistics of IL-27 protein 

Interleukin-27 (IL-27) belongs to the IL-6jIL-12 family, together with IL-12 and 

IL-23. Cytokines of this family are composed of two distinct subunits not linked by 

a disulphide bond. This lack of covalent link theoretically permits production of 

the two subunits by different cells with a subsequent extracellular association 

(Batten and Ghilardi, 2007) or association with different partners. IL-27 subunits 

are named EBI3 and p28. 

The EBI3 subunit of IL-27 has been described for the first time in 1996 as a 

lymphocyte - specifie G-protein coupled receptor family member related to the IL-

12p40 subunit (Devergne et al., 1996) and ciliary neurotrophic factor receptor 

(CNTFR) (Becker et al., 2005). It was identified from Epstein-Barr virus (EBV) 

transformed B lymphocytes from which the name was coined Epstein-Barr 

Induced molecule 3. This secreted 34-kDa glycoprotein lacks membrane anchoring 

motif thus resembles a soluble cytokine receptor. Together with several other 

proteins involved in hematopoietic cell growth and differentiation, it is encoded 

on chromosome 19. EBI3 contains two pairs of conserved cysteine residues 

(positions 35, 46, 79, and 89), implicated in intramolecular disulfide linkage but 

lacks the cysteine that could mediate heterodimerization with other cytokine 

subunits. The mou se and human predicted aa sequences share 62% identity as 

estimated using BLAST from the NCBI webpage. 

mRNA encoding for EBI3 is expressed at low levels in human lymphoid 

tissues, in higher levels in placenta, but is undetected on resting PBMC but 

significantly expressed in the latter upon activation (Devergne et aL, 1996; Pflanz 

et aL, 2002). Murine APC (DC, M<p, and B lymphocytes) express basal levels of 

EBI3 mRNA, but such expression is strongly boosted by signalling through the 

TLRs, via MyD88 and NF-kB p50jp65 (Wirtz et aL, 2005). The promoter of EBI3 

con tains binding sites for the transcription factors NF-KB and PU-l, which have 

been shown to control its transcription (Wirtz et al., 2005). EBI3 association with 

IL-27p28 was demonstrated for the first time in 2002 (Pflanz et aL, 2002) and its 
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association with IL-12p35 subunit to form IL-35 has been reported (Devergne et 

al., 1997; Collison et al., 2007; Niedbala et al., 2007). 

The p28 subunit was identified computationally through search for IL-6 helical 

cytokine homologues (Pflanz et al., 2002) and was named according to its apparent 

molecular mass, determined by SDS-P AGE. By sequence comparison p28 is very 

close to IL-11, novel neurotrophin-1 (NNT-1), cardiotrophin-like cytokine (CLC), 

and ciliary neurotrophic factor (CNTF). It is also structurally related to IL-6, IL-

12p35 subunit (Molle et al., 2007), and IL-23p19 subunit. The human p28 (hp28) 

gene is located in chromosome 16 and encodes a 243 aa polypeptide with a 

calculated molecular mass of 24.5 kDa (the mouse gene encodes 234 aa and a 23.6 

kDa calculated molecular mass). Whereas there are several O-glycosilation sites 

and no N-glycosilation sites on hp28, there are several N-glycosilation sites on the 

mouse p28 (mp28), which share 73% identity with its human counterpart (Pflanz 

et al., 2002). Four SNPs have been determined so far in the IL-27p28 gene: one in 

the promoter region (g. -964 A>G), one in exon 2 (g.2905 T>G), one between exons 

3 and 4 (g.4603 G> A), and one in exon 4 (g.4730 T>C). The prevalence of the 

haplotype ATT to GGT in the regions of the g. -964 A>G, g.2905 T>G, and g.4730 

T>C has been associated with asthma. However, this polymorphism in IL-27p28 

gene is not related to changes in serum IgE lev el s, neither to counts of peripheral 

blood eosinophils (Chae et al., 2007) and remains to be confirmed by other 

groups. 

IL-27 is rapidly produced by APC (DC or monocytes, or activated microglia) 

after stimulation, as decribed in Table 3 (Sonobe et al., 2005). 
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Table 3: Stimuli inducin:z mRNA exvression ofboth subunits of IL-27 
! Stimuli (Monocyte derived -DC) EBI3mRNA 1 p28mRNA 

1 

E.coli ++ 1 ++ 

Flu strain PR-8 +/- -
Pam3Cys (TLR2) - -
PIC (TLR3) + + 

LPS (TLR4) + + 

R-848 (TLR7-8) + -
CpG (TLR9) - -

TNF, IL-1p, IL-6, PGE2 -
1 

- ! 

CD40L + -
1 

14-18 hours of stimulation (Schnurr et aL, 2005) 

APC including mouse microglia, do not express p28 under basal condition but 

upon stimulation with IFN-y, CD40L, LPS, or viruses quickly express the mRNA, 

such expression also rapidly declines (Pflanz et al., 2002). For example LPS­

stimulated human monocyte-derived DC express the maximal p28 mRNA levels 

after 3-6 h of stimulation and such expression rapidly disappears after 24h (Pflanz 

et al., 2002). The expression of mouse p28 mainly controlled at the mRNA levels 

(Liu et al., 2007) via multiple distinct pathways. Both LPS (the ligand of TLR4) and 

IFN-y can induce p28 expression with LPS having a stronger effect, but both can 

further synergize (Sonobe et al., 2005; Liu et al., 2007). Whereas LPS-induced p28 

expression is totally dependent on the TLR4-MyD88 (myeloid differentiation 

factor 88) pathway and partially dependent on the NF-kB c-Rel (nuclear factor kB 

c-Rel), the action of IFN-y on p28 expression is partially dependent on MyD88 and 

c-Rel-independent (Liu et al., 2007). The p28 promo ter contains at least two LPS 

response elements (Liu et al., 2007) and one interferon-stimulated response 
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element (ISRE), on which the transcription factor IRF-3 (interferon regulatory 

factor 3) binds. IFN-y needs the transcription factor IRF-l (the major IFN-y 

response element (IRE) is localized between -57 and -48) for p28 expression, LPS ls 

less dependent on it. IRF-3 was suggested to be a 'master switch' for p28 synthesis 

both in mou se and human myeloid cells (Molle et a1., 2007). 

IL-27p28 is not secreted by human cells in the absence of EBI3 (Pflanz et a1., 

2002). While mp28 can be secreted independently, hp28 requires the presence of 

EBI3 (Pflanz et al., 2002). Co-expression at both mRNA and protein levels of both 

subunits has been shown in DC (Pflanz et al., 2002; Coulomb-L'hermine et al., 

2007), mouse NK and NKT ceUs, mou se CD8 T ceUs and CD4+CD25+ regulatory T 

ceUs (Treg) (Villarino et a1., 2005). 

3.2 IL-27 expression in human tissues 

In situ histochemical staining showed that in normal lymph nodes, co­

expression of EBI3 and p28 was observed only in ceUs bearing a Mlf or an 

endothelial ceIl like morphology (Larousserie et al., 2004). However, ln 

granulomatous diseases of Thl type (tuberculosis, sarcoidosis, and Crohn's 

disease) cells positive for p28 and EBI3 were more abundant and had morphology 

consistent with epithelioid, multinucleate giant cells, endotheliaI, plasma ceUs, and 

Mlf (Larousserie et al., 2004). Stainings were not convincing in aIl cases and no co­

staining was performed to confirm any ceU type. The same group looked at the 

expression of IL-27 subunits in human fetai-maternai interface by looking at 

trophoblasts. They found that both subunits were detected in cells having the 

morphology of myeloid, endothelial, plasma ceUs and by the ceUs with fetal 

origin, that have direct contact with the maternaI immune system -

syncitiotrophoblasts and extravillous trophoblasts (Coulomb-L'hermine et al., 

2007). Syncitiotrophoblasts expressed highest levels of both subunits of IL-27 

during the first trimes ter of pregnancy and lower although detectable levels 

during the following stages (Coulomb-L'hermine et al., 2007). And while EBI3 and 

p28 mRNA are detected in the placenta through all gestational stages, in the 
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serum of pregnant women only EBI3 can be detected at the protein level (ELISA), 

but no significant levels of p28 protein could be detected (Coulomb-L' hermine et 

al., 2007), but appropriate tools may be lacking. The role of IL-27 during human 

pregnancy remains to be elucidated. Both IL-27 subunits have been detected at 

the mRNA in human and mouse retina (Amadi-Obi et al., 2007) suggesting a role 

for this cytokine in immunopriviledged organs or situations (su ch as pregnancy). 

3.3 Receptor of IL-27 

The typical type 1 cytokine receptor is a multimeric complex, usually consisting 

of several cytokine receptor chains: a ligand-binding a-chain, with or without 

intracellular signalling capacity, and a signal transducing p-chain, which is shared 

by multiple receptor complexes (Daniel G. Remick, 1997; Huising et al., 2006). The 

complete signalling receptor for IL-27 (IL-27R) consists of two membrane chains: 

TCCR (also named WSX-1) and gp130, as neither subunit is sufficient to transduce 

a signal (Pflanz et al., 2004). "WSX-1" cornes from the WSXWS protein motif found 

in the carboxyl terminus of many type 1 cytokine receptor and TCCR stands for T 

ceIl cytokine receptor. The complete signalling receptor (as it will be called here-in 

the heterodimer of TCCR and gp130) is expressed on NK cells, monocytes, De, T 

and B lymphocytes, mast cells and endothelial cells (Szabo et al., 2003; Pflanz et 

al., 2004; Li et al., 2005). 

The glycoprotein 130 receptor (gp130 or CD130) belongs to the structural 

family of IL-6jIL-12 signal transducing type 1 transmembrane pro teins together 

with WSX-1, granulocyte colony stimulating factor receptor (G-CSFR), IL-12RP1, 

IL-12R~2, Lymphocyte inhibitory factor receptor (LIFR), Oncostatin M receptor ~ 

(OSMR~) and gp130-like monocyte receptor (Pflanz et al., 2004). It is a 918 aa 

polypeptide with a single transmembrane domain (Hibi et al., 1990) and in human 

is encoded in chromosome 5 (Rodriguez et aL, 1995). The extracellular domain 

(597 aa) consists of six fibronectin type III modules, followed by a membrane 

spam1ing region of 22 aa, and a cytoplasmic region of 277 aa. There are four 

conserved cysteins (aa 134, 144, 172, and 182) and a WSXWS motif (aa 310-314). 
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The intracellular domain of gp130 contains the typieal protein kinase sequence 

Gly-X-Gly-X-X-Gly-X-Val without the usual catalytie domain motifs. gp130 is 

expressed by most cells in the body (Scheller et aL, 2005). Receptor association of 

JAKs (particularly JAKI and JAK2) to gp130 is mediated by the membrane­

proximal boxlfbox2 regions. Boxl is a proline-rich motif of eight aa residues 

essential for JAK association. Box2 is a cluster of hydrophobie aa residues 

followed by positively charged aa and is necessary for JAK association only with 

sorne receptors. In sorne cases the region between these two boxes can also be 

important for the signalling (Heinrich et a1., 1998). A naturally occurring soluble 

murine form (sgpI30) has been shown to bind to IL-6 and thus inhibit its 

signalling. However, this soluble chain does not inhibit IL-27 signalling (Scheller 

et al., 2005). 

TCCK a c1ass 1 cytokine receptor, has been described for the first time as a 

result of gpl30-sequence homology cDNA search (Sprecher et al., 1998). It is 

encoded in chromosome 19 (human) (like IL-12R~1 (Pflanz et aL, 2002» and has 

been identified in human infant brain after a search for the WSXWS motif. It 

encodes a receptor of 636 aa, consisting of a hydrophobie signal peptide, a 

conserved 200aa WSXWS-cytokine binding domain, three fibronectin type III 

domains, a 26 aa transmembrane domain and a 96 aa cytoplasmie domain. Apart 

from the conserved cysteine residues in the cytokine binding domain, there are 

other conserved resides (proline131, tryptophan151 and tyrosine202), as weIl as a box 

1 motif (Apolar-X-X-X-Aliphatic-Pro-X-Pro)ss4-561 whieh are important for 

association with JAKs, and conserved tyrosine residues in the cytoplasmic 

domain, 2 for the human receptor and 3 for the murine one, with 1 tyrosine 

residue (Y609 (Takeda et al., 2003», conserved between both species. The identity 

between the human and the murine WSX-l is 63% (Sprecher et aL, 1998). The only 

tyrosine-based phosphorylation motif in the cytoplasmic domain of this chain is 

GYEKHF which closely resembles the ST AT motif found in the cytoplasmic region 

of IFN-yR (GYDKPH) (Takeda et aL, 2003; Pflanz et al., 2004). However, this 

molecule is not capable of transducing a signal on its own (Pflanz et al., 2004). 
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TCCR mRNA is expressed at low levels in aIl tissues (including bone marrow and 

brain) but at much higher levels in the lymphoid tissues (thymus, spleen, lymph 

nodes and peripheral blood leukocytes). In mouse, higher levels of TCCR mRNA 

have been described in CD4 than in CD8 T lymphocytes especially following 

activation such as 7 day mixed leukocyte reaction (MLR) (Sprecher et a1., 1998). 

3.4 Downstream signalling of IL-27R 

The downstream signalling of IL-27R has been mainly studied in the mouse 

system. Like an cytokines that bind to type I family cytokine receptors, IL-27 

signaIs via the JAKjSTAT pathway. It causes phophorylation of JAK1 (through 

WSX-1 (Takeda et al., 2003)), JAK2, and TYK2 (tyrosine kinase 2) (Becker et a1., 

2005), which further activate STAT-1, -2, -3, -5, and to a lesser extent STAT-4 in 

mouse naïve CD4 (Hibbert et al., 2003; Lucas et al., 2003; Takeda et a1., 2003; 

Kamiya et al., 2004) and CD8 T cells (Morishima et al., 2005). It has been suggested 

that STAT-2 and STAT-5 activation depends on STAT-1 whereas STAT-3 is 

independent of that transcription factor (Kamiya et al., 2004). Downstream STAT-1 

in mouse T cells, the cascade continues with the induction of T-bet, IL-12R~2, 

granzyme Band perforin in naïve CD8 T cells (Morishima et al., 2005). Moreover, 

IL-27 synergizes with IL-12 to boost IFN-y production in a T-bet dependent 

manner while IL-27 alone does not induce much IFN-y production (Lucas et al., 

2003) in naïve (but not in memory) CD4 T cells (Pflanz et al., 2002; Takeda et al., 

2003). It has been shown that T-bet and TCCR are critical for the IFN-y production 

by CD8 T cells during infections such as influenza A virus and Toxoplasma gondii 

(Mayer et a1., 2008). CD8 T cells require both T-bet and IFN-yR for optimal IFN-y 

production in neutral conditions whereas the presence of IL-12 renders both 

molecules dispensable (Mayer et al., 2008), suggesting an important role for IL-27 

in CD8 T cell priming. Using chimeric models in which bone marrow derived cells 

from either IFN-yK/ -, T-bef/- or TCCK/- Yeti IFN-y reporter mice were 

transplanted into sub lethally irradiated wild type recipients, Mayer and 

colleagues dissected the contribution of each factor to IFN-y expression (at both 
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mRNA and protein levels) by CD8 T ceUs foUowing different infections (e.g. 

influenza virus, Sendai virus, 1. gondii) (Mayer et aL, 2008). They observed that T­

bet induced by TCCR is necessary, whereas IFN-yR-mediated signaIs are not 

essential for priming, expansion or dissemination of Ag-specifie CTLs in these 

infection models (Mayer et aL, 2008). In addition, other STAT-1 activating 

receptors (e.g. IFN-yR type l IFNRs) can not compensate for direct IL-27R signaIs 

(Mayer et aL, 2008). 

3.5 Effects of IL-27 on T lymphocytes 

Like aU other cytokines, IL-27 has effects on multiple cen types including NK 

NKT, and T ceUs. Most studies describing the impact of IL-27 on immune cens 

have been performed using mouse ceUs and very few studies on human cens are 

available. More than haH of murine NK and NKT cells from naïve mice express 

TCCR but upon activation such as an in vivo T. gondii infection, these ceUs lose 

TCCR surface expression (Villarino et aL, 2005). However, in the same infected 

animais TCCR surface expression on CD4 and CD8 T lymphocytes is enhanced 

compared to naïve mice and both effector and memory T cells express comparable 

levels of TCCR (Villarino et al., 2005). Similarly, TCR signalling (anti-CD3 cross­

linking antibodies) enhances the proportion of TCCR ex pressing T cells regardless 

of polarizing conditions (Villarino et al., 2005). TCR-ligation leads to IL-2 

production and proliferation of ceUs (at least one round is necessary for optimal 

expression of TCCR), which over a prolonged period of time leads to down­

regulation of TCCR (but not of gp130) on T cells. These observations suggest that 

immune cells can be distinctly affected by IL-27 depending on their activation 

status. 

Vpon binding to its receptor, IL-27 activates JAK1, JAK2, TYK2, STAT-1, -2 

slightly but constantly (Kamiya et al., 2004), -3 and STAT-5 in naïve murine CD4 T 

cells (Hibbert et aL, 2003; Lucas et aL, 2003; Kamiya et aL, 2004) . Further more, 

ST AT -2 and ST AT -5 (but not ST AT -3) activation depends on ST AT -1 as in ST AT-1 

deficient mice the activation of these transcription factors is greatly reduced 
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(Kamiya et al., 2004). IL-27 favours Th1 skewed response in the early stages of 

activation by synergizing with IL-12, secreted later than IL-27 by APC, and 

promoting IFN-y production (by phosphorylation of both STAT-1 and -3). 

However, IL-27 suppresses IFN-y production in fully activated mutine CD4 T cells 

(by preferentially activating ST A T -3) (Yoshimura et al., 2006). It has been 

suggested that IL-27 synergizes with TCR-signalling pathways as a co-stimulatory 

signal (Brender et aL, 2007). Presence of IL-2 decreases the enhancing eHect of IL-

27 on IFN-y production (Villarino et al., 2005). IL-27 has been related to Th1 

differentiation in the early stages of the immune response (Lucas et al., 2003; 

Takeda et al., 2003; Owaki et al., 2005; Owaki et al., 2006a) also by mediating a 

strong and rapid up-regulation of ICAM-1 (after a-CD3+a-CD28 stimulation) on 

naïve CD4 T cells via STAT-1-dependent but T-bet-, IFN-y-, and STAT-4-

independent mechanisms, even in the absence of IL-12 (Owaki et al., 2005). This 

rapid up-regulation of ICAM-1 leads to activation of ICAM-1/LFA-1/ERK 1/2 

signalling pathway, though IL-27 can also activate p38 MAPK/T-bet. The p38 

MAPK pathway is dependent on GADD45y and can lead either to T-bet induction 

or to STAT-4 activation, whereas ICAM-1/LFA-1 signalling pathway is 

downstream of STAT-1 phosphorylation (which also leads to T-bet expression) 

and up-regulation of IL-12R~2 chain as weIl as ERK 1/2 activation. Both pathways 

(ICAM-l/LFA-1 and T-bet) are involved in IL-27-mediated Th1 differentiation 

(Owaki et al., 2006a). 

The transcription factors T -bet and GATA-3 are responsible for the 

development of Th1 and Th2 subsets respectively and are mutually suppressive. 

Addition of IL-27 even to already developed murine Th2 cells converts these cells 

into Th1 cells via IL-12-independent up-regulation of T-bet and IFN-y­

independent suppression of IL-5 and IL-13 production (Shainheit et al., 2007; 

Yoshimoto et al., 2007). In a STAT-1 dependent manner, IL-27 induces SOCS-3 

expression by T cells after a-CD3+a-CD28 co-stimulation, which inhibits IL-2 

production (and its proliferative effect through STAT-5) without affecting CD25 

expression (Owaki et al., 2006b). However, other published data (Brender et al., 
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2007) have shown no difference in IL-2 production in the absence of SOCS-3, 

which suggests an IL-2 independent mechanism of SOCS-3 regulation of T -ceH 

responses. Yet, in the absence of SOCS-3, IL-27 induces prolonged STAT-l, STAT-3 

and STAT-5 activation (Brender et al., 2007). 

Like IL-6, IL-27 augments the allospecific murine CTL generation where the 

role of T-bet appears to be nonessential (Morishima et al., 2005). IL-27 can increase 

the expression of the transcription factor Eomesodermin (Eomes), which also 

enhances the expression of IFN-y, granzyme Band perforin (Pearce et al., 2003). 

Most probably, through Ag-specific stimuli, T-bet is activated, whereas through 

allogeneic stimuli, Eomes is activated (Morishima et al., 2005). As an overall, IL-27 

enhances the type 1 ceU-mediated immunity, related to IFN-y and IL-12 

production. 

IL-27 increases the production of IL-IO by murine CD4 and CD8 T ceUs in 

either ThljTc1 or Th2jTc2 but not in Th17 jTc17 conditions (Stumhofer et al., 

2007). Its effect is stronger on CD8 T ceUs according to one group (Fitzgerald et al., 

2007b), while according to another group (Stumhofer et al., 2007) CD4 T ceUs 

pro duce more IL-IO. This IL-27 mediated induction of IL-IO production can be 

further enhanced by TGF-~ (Awasthi et al., 2007), combination of TGF-~ and IL-6 

(which can induce IL-IO production independently) (Stumhofer et al., 2007), IL-IO 

or IL-12 (Fitzgerald et al., 2007b). TGF-~ and IL-27 cumulatively up-regulate the 

expression of T-bet transcription factor in murine naïve CD4 T ceUs (Awasthi et 

al., 2007) .. 

Although IL-27 does not change the number of murine IFN-l CD4 T ceUs, it 

modifies the percentage of IL-IO+IFN-l CD4 T ceUs in Thl conditions and 

increases the number of IL-IO+ CD4 T ceUs while reducing the number of IL-13+ 

and IL-IO+IL-13+ CD4 T ceUs in Th2 conditions (Stumhofer et al., 2007). In Th17 

conditions, there are three distinct subsets of ceUs: IL-IO+, IL-17+, and IL-IO+IL-17+. 

IL-27 inhibits the expression of IL-17 but does not increase the percentage of 

murine IL-IO+ CD4 T ceUs (Stumhofer et al., 2007). In line with these observations, 
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IL-27 has been shown to reduce the levels of IL-17 in murine T cells prior to their 

adoptive transfer to induce experimental autoimmune encephalomyelitis, without 

changing the levels of IL-12, IL-6 and TNF (Fitzgerald et al., 2007a). However, IFN­

V production was reduced (Fitzgerald et aL, 2007a; Shainheit et aL, 2007). 

Controversially, IL-27 has also anti-inflammatory effects as it negatively 

regulates the responses of murine Th17 pro-inflammatory immune ceUs in IFN­

VjSTAT-l - dependent, IL-I0-dependent and independent ways (Batten et aL, 

2006; Stumhofer et aL, 2006; Amadi-Obi et al., 2007; Fitzgerald et aL, 2007b). In 

addition, IL-27, like IL-10 but independently of it, suppresses murine lL-2 

production by activated mouse splenocytes (Fitzgerald et aL, 2007b). In non­

polarized murine cultures, it also suppresses granulocyte-macrophage colony­

stimulating factor, IL-l~, IL-3, CCL3, CCL4 and lymphotactin, without influencing 

the production of IL-4 (Lucas et aL, 2003; Owaki et al., 2005), IL-6, -7, and -18, 

CCL2, CCL7, macrophage colony-stimulating factor and matrix metaUoproteinase 

9 (Stumhofer et al., 2007). 

IL-27 alone inhibits the acquisition of Foxp3+CD25+CD152+ (CTLA-4) Treg 

phenotype and their suppressive function via a STAT-3 dependent mechanism 

(Hu ber et al., 2008). Contrary to TGF-p-induced Treg cells, murine CD4 T cells 

differentiated in the presence of TGF-~ and IL-27 are able to produce IL-2 and 

TNP. The inhibitory effect of IL-27 on Treg generation is at least partially STAT3-

dependent. ST AT3-dependent inflammatory effect and Treg inhibition of IL-27 

seem to be opposed by STATl signaIs. Conversely, TGF~ can block IL-27-induced 

Thl differentiation which suggests that IL-27 and TGF~ mutually control their 

effects (Huber et aL, 2008). 

IL-27 induces STAT-l and STAT-3 phosphorylation and activation in primary 

human T cells (Hibbert et aL, 2003; Lucas et aL, 2003; Takeda et aL, 2003). In 

contrast to IL-12, which shares structural homology with IL-27, the latter does not 

induce STAT-4 phosphorylation neither in human lymphocytes (Jurkat ceUs and 

peripheral blood lymphocytes), nor in human NK ceUs (Hibbert et aL, 2003). 

Further more, primary human naïve but not memory CD4 T cells prolifera te dose 
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dependently in response to IL-27 after a-CD3+a-CD28 stimulation in the presence 

of IL-2 blocking Ab (Pflanz et al., 2002). In the absence but not in presence of co­

stimulatory signal, IL-12 synergizes with IL-27 in inducing proliferation in naïve 

(but not in memory) CD4 T cells. This suggests that IL-27 effect on CD4 naïve T 

ceUs proliferation can be enhanced either through CD28 or through IL-12 receptors 

with IL-27 being a stronger proliferative stimulus than IL-12 (Pflanz et al., 2002). 

The main lines of IL-27 signalling are represented on Fig. 1. 
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Figure 1: Effects of IL-27 signalling 

IL-27 activates the JAK/STAT signalling pathway. The potential of IL-27 to activate many members of this pathway is 

responsible for its pleiotropic actions. Cytokines marked in grey can modulate IL-27 action. 
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3.6 Impact of IL-27 on monocytes, Mep and dendritic ceUs 

While IL-27 weakly activates STAT-I and STAT-3 in murine Mcp, in human 

monocytes it induces moderate sustained STAT-I and STAT-3 tyrosine 

phosphorylation, with predominant effect on STAT-I. IL-27 pre-treatment prior to 

TLR2 stimulation leads to increased TNF and IL-6 production (both on protein 

and mRNA levels), and IL-Ip and IL-12p40 on mRNA levels by a STAT-I 

dependent mechanism in human monocytes (Kalliolias and Ivashkiv, 2008). Such 

pre-treatment enhances also the production of cytokines, induced by TLR4 and 

TLR7/8 signaUing in the same cells. Another group has also reported that IL-27 

stimulation leads to STAT-I and -3 phosphorylation in human monocytes and 

then upregulation of mRNA for TNF, IL-Ip and IL-18 and IL-12p35 (last two only 

at 24 hours) (Pflanz et al., 2004). However, when IL-IO is added to IL-27-primed 

and TLR2-stimulated human monocytes, these ceUs secreted less TNF and IL-6. 

These results suggest the effects of IL-27 on human monocytes depend on the 

presence of other cytokines in the milieu, such as IL-IO. For example, signaUing 

through TLR4 strongly inhibits the downstream events of IL-27 ligation to its 

receptor in a p38-dependent manner through down-regulation of gpl30 mRNA 

lev el (KaUiolias and Ivashkiv, 2008). 

Studies performed using the pro-monocytic human ceUline THP-I have shown 

that IL-27 induces mRNA and surface expression of MHC class 1 and class II 

through IRF-I (IFN-regulatory factor-l) (Feng et al., 2008). Furthermore, pro­

inflammatory action of IL-27 is shown by the enhanced expression of co­

stimula tory molecules CD80 and CD86 and adhesion molecule CD54, class II 

transactivator (CIITA) isoforms III and IV (but not 1) transcripts in these ceUs 

(Feng et al., 2008). 
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3.7 Impact of IL-27 on B lymphocytes 

IL-27R expression varies throughout the differentiation and after activation of 

human B cells; while naïve and memory B cells show constitutive expression of 

the complete receptor, germinal center (GC) B cells express barely detectable levels 

of TCCR which means that TCCR is down-regulated during differentiation of 

naïve B cens into GC B cells with a following up-regulation during the transition 

from GC to memory B cens (Larousserie et aL, 2006). The IL-27R is up-regulated 

on an human B cen subsets upon in vitro stimulation through CD40 or surface 

IgG. And despite the similar expression levels of IL-27R on naïve and memory B 

cens, the former subset shows a stronger response to IL-27. Murine B cens express 

levels of TCCR comparative to those of naïve CD4 T cens (Yoshimoto et aL, 2004; 

Gagro et aL, 2006; Larousserie et aL, 2006). 

In naïve human B cens the signaning through IL-27R leads to phosphorylation 

of STAT-l and STAT-3, whereas in the memory subset this leads to moderate 

activation of STAT-l and low activation of STAT-3 (Larousserie et aL, 2006). In line 

with this, a stronger T -bet activation is observed in naïve human B cens compared 

to the memory subset, regardless of the activation mode, corresponding to an 

increased proliferation in naïve but not in memory B cens (Larousserie et aL, 2006). 

IL-27 has been also shown to increase the expression of IL-12~2 chain at both 

mRNA and prote in levels, after anti-Ig (but not ati-CD40) stimulation in tonsillar 

human B cens (Larousserie et aL, 2006). IL-27 enhances CD54 (ICAM-l), CD86 

(B7.2) and CD95 (Fas) expression in a CD40-independent but BCR activation 

dependent manner (Larousserie et aL, 2006). And while in T lymphocytes IL-27 

induces IFN-y production, no such effect is observed in the B cen population 

(Larousserie et aL, 2006). 

In murine B cens, IL-27 induces an IFN-y independent, STAT-l and T-bet -

dependent IgG2a class antibody switching (Yoshimoto et aL, 2004). It appears that 

this process of antibody switching is highly T-bet dependent when the stimuli are 

T-independent (e.g. LPS), and not that much T-bet dependent in the presence of T­

dependent stimuli (e.g. CD40) (Morishima et aL, 2005). However, in human B cens 
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different effects are observed for many reasons including the absence of the IgG2a 

isotype and the very low levels of TLR4 on human B ceUs, thus, human B cells 

respond very poorly to LPS stimulation (Larousserie et al., 2006). 

3.8 Impact of IL-27 on other ceIl types 

IL-27 has been shown to have impact on other immune ceUs. In mouse NK 

cells, IL-27 induces T-bet but that does not lead to IFN-y production or activation 

of cytolytic activity according to one group (Lucas et al., 2003) but according 

another, IL-27 increases the IFN-y production in NK ceUs in the presence of IL-2 

and IL-12 (Pflanz et al., 2002). Human mast ceUs express TCCR and gp130 at the 

mRNA levels and incubation with IL-27 leads to phosphorylation of STAT3 

(Pflanz et al., 2004). IL-27 also enhances inflammatory properties of these ceUs by 

enhancing the expression of IL-la, IL-lp, IL-18, TNF, proliferation inducing 

ligand, B lymphocyte stimulator, and T ceU-expressed activating specifie receptor 

ligand without changing the expression levels of lymphotoxins cr and p, CD40L 

and CD27L (Pflanz et al., 2004). 

In hum an umbilical endothelial ceUs, IL-27 has been shown to up-regulate both 

MHC cIass 1 and MHC cIass II through IRF-l and MHC cIass II transactivator 

(CUT A) isoforms III and IV with more prominent expression of isoform IV (Feng 

et al., 2007). 

Murine osteoblasts (ceUs responsible for the bone formation through 

production of collagen type 1 and its mineralization) express both chains of IL-27R 

at the mRNA level. IL-27 has been shown to induce phosphorylation of STAT-l 

and ST A T -3 in these cells but the consequences of this phosphorylation are 

uncIear. However, in the presence of exogenous IL-27 there is a reduced 

osteocIastogenesis but no change of osteoblast activity, as measured by alkaline 

phosphatase production, whieh is a marker of bone-formation (Kamiya et al., 

2007). 
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3.9 Roles of IL-27 in mouse models of hum an diseases 

Many studies attempting to decipher the roles of IL-27 during in vivo immune 

responses related to human diseases or conditions have compared the wild type 

mice to TCCR knockout (TCCK/-) mice. These mice (TCCK/) do not display 

obvious defect of their immune system as assessed by flow cytometry 

phenotyping of major lymphoid organs (Chen et al., 2000) and do not 

spontaneously develop autoimmune diseases. Although TCCR has been described 

as the specific IL-27R chain, one cannot completely rule out the possibility that this 

chain could pair with other receptor chains than gp130 and respond to other 

cytokines. With this concern in mind, the TCCR+ mice have been studied by 

many groups. T ceUs from TCCK/- mice show enhanced proliferation, impaired 

IFN-y and enhanced IL-4 production du ring the initial stages of activation both in 

vitro and in vivo (Hamano et a1., 2003; Artis et a1., 2004; Miyazaki et al., 2005). 

However, at la ter stages, the 1FN-y production is restored (Yoshida et a1., 2001), 

probably through other pathways than 1L-27 activation. Other groups have also 

either block IL-27 or injected 1L-27 or used EBI3 knockout mice to elucidate the 

contribution of IL-27. 

TCCK/- mice are highly susceptible to different pathogens like Leishmania 

rnajor (Yoshida et aL, 2001; Artis et a1., 2004), and Trypanosoma Cnlzi (Hamano et al., 

2003), compared to wild type controls due to an impaired Th1 response (Chen et 

al., 2000; Yoshida et a1., 2001). The absence of TCCR is also related to formation of 

poorly differentiated granulomas with dispersed accumulation of mononuc1ear 

cells, when bacillus Calmette-Guerin (BCG) infection is present (Yoshida et a1., 

2001). 

In several Th2 mediated diseases, like asthma (Miyazaki et al., 2005), infection 

with L major (Artis et al., 2004) and with Tric/1uris muris (Bancroft et al., 2004) 

similar observations have been made. Enhanced symptoms have been observed in 

TCCK/- mice compared to wild type due to enhanced Th2 responses. In the 

murine asthma mode} increased hyperplasia and pulmonary eosinophil 
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infiltration and elevated serum IgE levels were observed in TCCK!- deficient mice. 

This correlated with increased airway responsiveness after Ag sensitization and 

challenging, enhanced proliferation in the peribronchial lymph nodes, increased 

production of IL-4, and -13 at both protein and mRNA levels, as weIl as 

increased production of IFN-y but decreased expression of T-bet (Miyazaki et al., 

2005). 

mRN A coding for IL-27 (EBI3 and p28) and TCCR are expressed at low 

levels in normal mouse central nervous system (CNS) but during experimental 

autoimmune encephalomyelitis (EAE) (an animal model of multiple sclerosis,) 

such expression is dramatically up-regulated at the peak of the disease in CNS 

(microglia) and in lymph nodes but not in the spleen (Li et al., 2005; Fitzgerald et 

al., 2007a). IL-27 and TCCR expression is down-regulated during remission and 

again up-regulated du ring relapses (Li et al., 2005; Fitzgerald et al., 2007a). An 

anti-IL-27p28 antibody decreased multiple parameters: EAE clinical score, number 

of infiltrating parenchymal mononuclear cells in the spinal chord, Ag-specific 

proliferative response of T cells, IFN-y production (both in terms of amount, 

production per ceU, and number of ceUs producing this pro-inflammatory 

cytokine) (Goldberg et al., 2004). However, as Batten and Ghilardi highlighted, the 

polyc1onal serum used in this study has not been shown to specifically block IL-

27p28 and not the entire IL-27 molecule (Batten and Ghilardi, 2007). In contrast, 

using the same model (MOG 35-55-immunized C57BL/6), TCCK!- mice have 

been shown to be more susceptible to EAE induction suggesting that IL-27 

signalling is protective by dampening the detrimental Th17 cell development 

(Batten et al., 2006). Additional publications (Fitzgerald et al., 2007b; Stumhofer et 

a1., 2007) have shown that IL-27 mediates its suppressive effects on 

encephalitogenic T cells by inducing IL-10 production by T ceUs. 

TCCR has been shown to play a critical role in the induction of experimental 

autoimmune uveitis (EAU) as in its absence massive infiltra tes of lymphocytes, 

Mcp and neutrophils in the retina can be seen (Sonoda et a1., 2007). Following 
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immunization with the specific Ag causing the autoimmune disease, CD4 T cells 

in TCCK/- mice produce significantly lower levels of IFN-y, CXCLIO, RANTES 

and MCP-l, which normalize during the development of the disease. In addition, 

sub-retinal transplantation of immunized TCCK/- T cells fail to transfer the 

disease as they do not accumulate in the eye and are suspected to have sorne 

additional functional changes (Sonoda et aL, 2007). 

A murine model of colon inflammation (dextran sulfate sodium (DSS) -

induced colitis) was used to assess the role of IL-27 in inflammatory bowel 

diseases. TCCK/ - mice develop a less severe colitis than their wild type 

counterparts. These observations correlated with the reduced expression of T -bet 

in TCCK/- mice, reduced IFN-y production by lamina pro pria mononuclear cells 

and mesenteric lymph node cells, reduced IL-6 and TNF in serum (Honda et aL, 

2005). This study suggests that IL-27 contributes to boost the detrimental processes 

taking place in inflammatory bowel diseases. 

Concanavalin A (Con A) injection is used as a mouse model of human viral or 

autoimmune hepatitis. Activated lymphocytes, especially NKT cells, and 

inflammatory cytokines (e.g. IFN-y) play important role in this mode1. TCCK/­

mice demonstrated a more severe hepatitis than wild type mice, showing 

increased levels of alanine aminotransferase (as a marker of liver status) in serum, 

correlating with overproduction of IFN-y and IL-4 by liver and spleen NKT cells 

(Yamanaka et aL, 2004). 

Depending on the type of immune responses involved in the detrimental 

inflammatory and/ or autoimmune diseases, the absence of TCCR in the mouse 

model can abate or exacerbate the disease. Thus, in mouse models of Thl­

mediated autoimmune disease, knocking out the receptor will make the disease 

less severe. This is due to the fact that IL-27 promotes Thl immunity and in the 

absence of its signalling, the autoimmune disorder will be less severe. 

Injection of IL-27 suppresses Th2 cell development and Th2 cytokines 

production from polarized Th2 cells in an animal model of Th2-mediated allergic 
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inflammation (Yoshimoto et al., 2007). IL-27 mitigates asthma through 

suppression of the highly bronchogenic IL-13 (Yoshimoto et al., 2007). IL-13 and 

IFN-y have been shown to be implicated in fibrosis (IL-13 is a mediator, whereas 

IFN-y is an antagonist). IL-27 has been show to also reduce IL-13 in schistosome 

granulomatous inflammation and thus decrease the fibrosis in this model 

(Shainheit et al., 2007). 

ln another murine model, in which experimental peritonitis is induced through 

cecal ligation and puncture (CLP), increased IL-27 protein levels in blood and 

increased IL-27p28 and EBI3 mRNA in lungs and spleen were detected (Wirtz et 

al., 2006). EBI3-/- mice have been shown to be less susceptible to both CLP 

peritonitis and to intraperitoneal Escherichia coli induced disease having lower 

bacterial loads in the blood (Wirtz et al., 2006). Moreover, administration of 

exogenous IL-27 in EBI3-/- mice has overturned the protection given the increased 

mortality observed. AIso, in EBI3-/- mice granulocytes produce more reactive 

oxygen intermediates (ROI) as this process is controlled by IL-27 most probably 

upon TLR ligation (Wirtz et al., 2006). In the same model, reduced number of 

invariant NKT (iNKT) cells in liver and spleen has been reported. These cells share 

surface markers with both conventional T and NK cells and are important in the 

immune responses to tumours, infections and auto-Ag, in the induction of 

peripheral tolerance and hypersensitivity responses. However, the numbers of B 

and T cells were normal, as weIl as the ratios CD4 vs. CD8 and naïve vs. memory. 

EBI3-/- and EBI3+/- mice are almost completely protected from oxazolone-induced 

colitis, whereas wild type counterparts were not, suggesting that the threshold of 

susceptibility to tissue in jury (Nieuwenhuis et al., 2002) is mediated by different 

levels of EBI3 or IL-27. 

IL-27 has been shown to mediate growth inhibition and complete regression of 

murine neuroblastoma tumours through up-regulation of MHC dass 1 molecules 

specific CTL activity and IFN-y production (which is also implicated in up­

regulation of MHC-I) (Salcedo et al., 2004). In IL-27-expressing tumours, 
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splenocytes have enhanceq secretion of IFN-y and cytolytic activity of CD8 T cells 

upon restimulation with parent ceIl lines, which correlate with immunological 

memory against tumour cells (Hisada et al., 2004; Chiyo et aL, 2005). The enhanced 

cytotoxicity is STAT4 and IL-12p40-independent (Morishima et aL, 2005), 

suggesting that IL-27-induced CTL activity is IL-12-independent. Furthermore, IL-

27 suppresses tumour-induced neovascularisation by direct induction of 

antiangiogenic chemokines (IP-lO and MIG) by endothelial cells (Shimizu et aL, 

2006). And while gp130-1- mice develop gastric cancer (Tebbutt et aL, 2002), it has 

to be further clarified whether it is due to p28, EBI3, TCCR (Kastelein et aL, 2007) 

or other cytokines (including yet unidentified), signalling through this subunit. 

3.10 Roles of IL-27 in human disorders 

Few studies have addressed the potential l'oIes of IL-27 in human dise as es 

mainly looking first whether IL-27 is expressed during disorders such as viral 

infections, autoimmune diseases, inflammatory diseases and cancer. 

IL-27 can be triggered in response to viral and bacterial infections (see table 3) 

(Veckman et aL, 2004; Gafa et aL, 2006; O'Dwyer et aL, 2008) but the actual role of 

this cytokine in fighting these pathogens remains to be elucidated. In the context 

of HIV infection, IL-27 has been shown to inhibit both X4 (using the CXCR4 

chemokine receptor) and R5 (using the CCR5 chemokine receptor) tropic HIV-l 

replication through activation of anti-viral proteins like IFN-induced protein, IRF­

l, IRF-8, myxovirus resistance protein and 2'-5' -oligoadenylate synthetase 

(Fakruddin et aL, 2007). In human, severe sepsis has been correlated with higher 

mRNA levels of IL-27 than less severe (O'Dwyer et aL, 2008). In animal models of 

sepsis, gene deletion studies have shown that IL-23 is protective while IL-27 

impairs Mep function, which could explain the observations in human (O'Dwyer et 

a1.,2008). 

Inflammatory bowel diseases encompass multiple diseases with share but 

also distinct characteristics. In Crohn's disease (CD, which a Thl-mediated 

disorder) elevated levels of IL-27p28 and EBI3 mRNA have been detected, 
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whereas no changes have been observed in ulcerative colitis (UC), and specifie 

colitis (SC), which are Th2-mediated (Schmidt et al., 2005). IL-27p28 levels have 

been shown to normalize in CD patients after steroid treatment. Rheumatoid 

arthritis is another autoimmune disorder that has been long considered Th1-

induced. Like in many other diseases, since the discovery of Th17 subset, it is now 

considered a Th17-mediated disease at least in part. IL-27 was detected by 

immunohistological staining on the synovial membranes of patients with 

rheumatoid arthritis (Niedbala et al., 2008). 

EBI3 but not p28 expression has been detected in human EBV or Human l' -cell 

Leukemia Virus type 1 (HTLV-1) transformed ceIls, both in situ and in culture 

supernatants (Larousserie et al., 2005) suggesting that EBI3 could play other roI es 

in tumours. 

3.11 Interleukin-35: EBI3 + IL-12p35 

EBI3 has been described to form a heterodimer with IL-12p35 in the culture 

medium of COS7 and BJAB ceIls, co-transfected with both proteins (Devergne et 

al., 1997). This novel cytokine was later named IL-35 (Nied bal a et al., 2007) and 

has been shown to have anti-inflammatory properties. IL-35 expanded regulatory 

l' ceIls (CD4+CD25+Foxp3+IL-10+) and suppressed Th17 ceIl development 

(Niedbala et al., 2007). IL-35 preferentially polarized cells towards l'hl since it 

augmented the IFN-y production by CD4+CD25- (effector l' ceIls) (Niedbala et al., 

2007) for still unresolved reason. IL-35 significantly suppressed Th17 development 

when added from the start to a Th17 conditioned murine culture (TGF-~, IL-1~, 

IL-23) (Niedbala et al., 2007). IL-35 has been shown to reduce the incidence of 

rheumatoid arthritis in a mouse model which is known to be Th17-mediated. This 

effect was due to a preferential increase of IL-10 production without changing the 

levels of IFN-y, IL-6, IL-12, l'NF and IL-1Ra (Niedbala et al., 2007). EBI3 was 

highly expressed at the mRNA levels in CD4+CD25+ regulatory l' ceIls, as weIl in 

Foxp3+ thymocytes. However, it was absent in naïve TeH CD4 l' cells and 

essentially absent in Foxp3- and CD4+CD8+ thymocytes. This suggests that EBI3 is 
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a downstream target of Foxp3 and most probably IL-35 is potentiated during 

active suppression of naïve Teff cens. Furthermore, addition of recombinant IL-35 

to a-CD3+a-CD28 stimulated naïve Teff cens suppressed their proliferation while 

ectopie expression of this cytokine conferred regulatory functions to the same 

subset of cens (Collison et al., 2007). These recent publications place IL-35 in the 

group of inhibitory cytokines, produced by Treg cells and required for maximal 

suppressive activity (Collison et al., 2007). 
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HYPOTHESES AND OBJECTIVES 

HYPOTHESES 

IL-27, a recently identified cytokine, has been shown to influence mouse CD4 

and CD8 T cells by promoting type l immunity. It has been shown to enhance IFN­

y, perforin and granzyme B production. However, very few data have been 

published about its impact on human blood ceUs. Although the mouse model has 

been successfully exploited to understand the immune system, numerous 

differences have been reported between mouse and human immune responses. 

Thus, it is important to address the impact of this cytokine on human cells. In the 

light of the already acquired knowledge about the effects of IL-27 in the mouse 

system, we hypothesized: 

1) IL-27 has pro-inflammatory effects on human T lymphocytes, leading to 

increased production of effector molecules such as IFN-y and granzyme B. 

2) The IL-27R is expressed at different levels among human blood cells and is 

modulated upon cell activation. 

OBJECTIVES 

In order to prove our hypotheses right or wrong, we had the following 

objectives: 

1) To determine the levels of IL-27R expression on different cell types 

among human PBMC ex-vivo to be as close as possible to the in vivo 

situation. 

2) To evaluate the surface expression of IL-27R by human T lymphocytes 

upon activation. 

3) To assess the effects of IL-27 on human T cell proliferation and effector 

functions. 

4) To determine whether T lymphocytes could be a source of IL-27. 
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MATERIALS AND METHODS 



1.0 ISOLATION OF HUMAN BLOOD CELLS 

1.1 Peripheral mononuc1ear cell isolation 

54 

Peripheral blood from consenting healthy donors was collected in 10 cc 

ethylenediaminetetraacetic acid (EDTA) treated tubes V ACUT AINER® (Becton 

Dickinson, Oakville, ON, Canada). Peripheral blood mononuclear cells (PBMC) 

were isolated by density gradient using Ficoll-Paque Plus™ (Ficoll) (GE 

Healthcare Bio-Sciences AB, Uppsala, Sweden). Blood was mixed with an 

equivalent volume of Phosphate Buffered Saline (PBS) (137 mM NaCI (Wisent, 

Saint-Bruno, QC, Canada), 2.7 mM KCI (Wisent), 4.3 mM Na2HP04 (Wisent) and 

1.47 mM KH2P04 (Sigma-Aldrich, Oakville, ON, Canada), containing 2 mM EDT A 

(Wisent) [PBS-EDTA] in order to avoid aggregation of cells. Diluted blood was put 

in 50 ml sterile tubes (Corning, distributed by Fisher Scientific Ltd., Nepean, ON, 

Canada ) (35 mIl tube) and then Ficoll was under-layed at the bottom (14 

ml/ tube). Tubes were spun at 863 x g for 30 min with average acceleration but 

without brakes for deceleration. The most upper layer in the tube, which is the 

serum, was discarded and the layer of PBMC just underneath was collected and 

transferred to new 50 ml tubes in order to perform washes since Ficoll is toxie for 

cells. AIl washes were performed in PBS-EDTA; the first wash was spun at 624 x g 

for 15 min. After the first wash, supernatants were discarded, cell pellets were 

resuspended and tubes were filled up again with PBS-EDTA to perform two 

additional washes at 423 x g for 10 min. The amount of PBMC obtained was 

evaluated by counting under a hemacytometer using Trypan Blue 0.16% (v Iv in 

PBS) (Wisent) to exclude de ad cells. 

The formula used for cell number calculation was: 

Total cell number = N x dilution factor x V x 104 

N = Average number of cells (from at least two hematocytometer chambers) 

V = total volume of cell suspension 

PBMC were either resuspended in RPMI 1640 (Wisent) containing 10% (v Iv) 

fetal bovine serum (FBS) (Wisent), Penicillin (100 lUI ml), Streptomycin (Wisent) 
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(100 ~lg/ml), and L-glutamine (Wise nt) (2 mM) [complete RPMI] for culture or in 

MACS buffer for CDS T cell subset isolation (see below). 

1.2 Total CDS T cell isolation 

PB MC were resuspended in MACS buffer (PBS, 2 mM EDTA, 0.5% (v/v) FBS) 

(cold and freshly prepared), passed through a 70 um nylon mesh (BD) to remove 

cell aggregates, and were spun for 10 min at 216 x g to remove platelets which may 

clog the isolation co,lumn. Pellet was resuspended and cells were incubated with 

CDS Microbeads (magnetic beads coated with anti-human CDS antibodies 

(Abs))(Miltenyi Biotech Inc., Auburn, CA, USA) as for 100X106 cells were put in 

900 ]11 MACS buffer and incubated in the presence of 100 ]11 CDS Microbeads for 

15 min at 4 oc. One wash in MACS buffer was then performed to remove unbound 

Microbeads at 423 x g for 10 min. Meanwhile, the LS column was washed with 3 

ml MACS buffer. Cells were resuspended in 0.5 ml MACS buffer and put on the 

LS column. Cells not bound with CDS Microbeads were removed by performing 

three consecutive washes with MACS buffer. Column was then removed from the 

magnetic holder and MACS buffer was added and pushed-through to collect the 

positive fraction (CDS cells). In order to obtain a higher pu rit y (>95%), the 

positive fraction was resuspended again in 0.5 ml MACS buffer and was passed 

through a new LS column via the same procedure. Purity was assessed for each 

cell isolation by flow cytometry (see below). Isolated CDS T cells from the positive 

fraction were counted and resuspended in complete RPMI. 

1.3 Naïve CD45RA + CDS T ceIl isolation (negative selection) 

PBMC were resuspended in MACS buffer so that the total volume of cells and 

MACS buffer was 400 ]11 for 100 x106 PB MC. Cells were then incubated in the 

presence of 100 ]11 Ab-cocktail from a CDS T-cell isolation kit II (Miltenyi Biotech 

Inc) (cocktail of biotin-conjugated antibodies against CD4, CD14, CD16, CD19, 

CD36, CD56, CD123, TCR y /6, and CD235a). at 4°C for 10 min. MACS buffer (100 

ul) and (200 ]11) anti-biotin conjugated beads from the kit (CDS T-cell isolation kit 
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II from Miltenyi Biotech Inc.) were added and cells incubated for another 10 min at 

4°C. Then, 200 pl anti-CD45RO coated microbeads (Miltenyi Biotech Inc.) were 

added and incubated for 15 min at 4°C. To remove unbound Abs, cells were 

washed once with MACS buffer at 423 x g for 10 min. The pellet was resuspended 

in 1.2 ml MACS buffer and was passed through a pre-washed LS MACS column. 

The negative fraction was collected (the fraction that was not conjugated with 

beads). Purity was assessed each time cells were isolated by flow cytometry (see 

below) and in all cases purity was above 90% (contaminating cells were as follows: 

about 0.9% CD14+; 2.9% CD3+CDS-CD45RA+; 1.1 % CD3-CDS-CD45RA+ and 1.9% 

CD3-CDS-CD45RA-). Cells were counted and then resuspended in RPMI for 5-

(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) (from Molecular 

Probes, owned by Invitrogen, Burlington, ON, Canada) labelling. CFSE-Iabelled 

naïve CDS T cells were finally resuspended into complete Iscove' s medium 

[Iscove's medium (Gibco Invitrogen), 10% (v Iv) FBS, 1 mM sodium pyruvate 

(Wisent), 100 pM non-essential Amino Acids (Wisent) and 50 pM 2-

mercaptoethanol (Sigma-Aldrich)] and put in culture. 

1.4 Memory CD45RO+ CD8 T ceIl isolation 

Two protocols were used in order to compare the purity of isolated cells. The 

first one was a negative selection - same as for naïve CDS+ T cells, with the only 

difference that instead of anti-CD45RO Abs coated beads, anti-CD45RA Abs 

coated beads (Miltenyi Biotech Inc.) were used. 

The second protocol consisted in one negative selection of CD45RA- cells and 

then a positive selection of CDS T cells. PBMC (100x106) were put into SOO pl 

MACS buffer in the presence of 200 pl anti-CD45RA Microbeads (Miltenyi Biotech 

Inc.) and incubated for 15 min at 4°C and then washed with MACS buffer at 423 x 

g for 10 min. Pellet was resuspended in 1 ml MACS buffer and was passed 

through pre-washed LS column. The negative fraction was harvested, cells were 

pelleted at 423 x g for 10 min and then resuspended in MACS buffer (as for 



57 

100x106 cells -900 pl added) and then 100 pl anti-CDS Microbeads were added for 

a 15 min incubation at 4°C. Cells were then washed with 20 ml MACS buffer as 

previously described and pellet was resuspended in 0.5 ml MACS buffer prior to 

be added to a pre-washed LS MACS column. Positive fraction was collected (the 

push-trough from the LS column). Cells were counted and spun down, then 

resuspended in complete RPMI to perform CFSE labelling (the use of this medium 

decreased cell death during CFSE labelling due to its protein content). Final cell 

fraction was resuspended in complete RPMI and was put into cell culture. 

As for naïve CDS T celIs, each time cells were isolated, purity stain was 

performed and purity was about 75%. Contaminating cells were as follows: 10% 

CD3+CDS-CD45RO+CD45RA- (supposedly CD4 memory T celIs), less than 1 % 

CDS+CD45RA+, 2.3% CD14+ and 10% CD3-CDS-CD45RA-CD45RO-, which were 

also CD19-CD56-CD14-. 

2.0 FUNCTIONAL ASSAYS ON HUMAN T CELLS 

2.1 CFSE labelling 

PBMC were labelled with 1.25 pM CF SE for 10 min at 37°C in either RPMI or 

complete RPMI. Dye was quenched for few minutes with FBS (50% v/v) and cells 

were then washed twice with cold RPMI and spun down at 423 x g for 10 min, and 

finally resuspended in an appropriate complete medium. This green dye attaches 

non-specifically to proteins in the cytoplasm of the cells so at each round of cell 

division it is distributed evenly between daughter cells and thus its fluorescence 

diminishes by two, which allows following cell proliferation. 

2.2 Cell stimulation 

2.2.1 PB MC 

To determine modulation of IL-27R (gp130 and TCCR) expression, PB MC were 

put in culture in complete RPMI (2 X 106 cells/ml) in 5 ml snap cap tubes (1 ml per 

tube) in a C02 (5%) incubator at 37°C in the absence or presence of anti-CD3 (a­

CD3) (clone OKT3, grown and purified in house) Ab either at 17 and 340 ng/ml 
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(doses optimized at the beginning to provide about 50% or maximal proliferation 

of T cells respectively). Cells were harvested at day 2, 4, 6, and 8, spun down, 

resuspended in FACS buffer (PBS containing 1 % (v/v) FBS and 0.1 % (w/v) NaN3) 

at 1 X 106 celIs/50ul. Cells were stained as described below using the Abs listed in 

Table 5. 

To determine effects of IL-27 on effector functions, CF SE- labelled PB MC were 

put into culture (lxl06 ceUs/ml) in the presence or absence of a-CD3 antibody at 

different concentrations - from 8.5 to 17 ng/ ml in presence or absence of 

recombinant human interleukin-27 (IL-27) (1 - 250 ng/ ml) (R&D systems, 

distributed by Cedarlane Laboratories Ltd., Hornby, ON, Canada). The 

recombinant protein consists of EBI3 and p28 subunits, attached via a peptide 

linker. After 6 day-culture, supernatants were harvested and frozen for later 

ELISA tests and celIs were transferred into 96-round bottomed plate and 

stimulated with Phorbol 12-myristate 13-acetate (PMA; 20 ng/ml) (Sigma­

Aldrich), ionomycin (500 ng/ml) (Sigma-Aldrich) in the presence of brefeldin A 

from Penicillium Brefeldianum (BFA; 5 pg/ml) (Sigma-Aldrich), for 5 hours prior 

to surface and intracellular flow cytometry staining. 

2.2.2 Naïve CD8 T cens (plate-bound) 

Experiments with labelled naïve cells were performed on a fIat bottomed 

48-well plate, pre-incubated overnight (O/N) with a-CD3, diluted in PBS. Two 

concentrations were used: 3.4 pg/ml and 6.8 pg/ml (as determined by our 

optimisation assays for 50% proliferation). Before adding cells, the coating 

antibody was aspired to ensure complete removing. In each weIl 2x105 cens in 500 

ul of complete Iscove' s were put in the presence or absence of co-stimulating 

molecule anti-CD28 (1 ng/ ml) and in the presence or absence of IL-27 

(concentrations used: la, 100, 250 and 500 ng/ml) and were incubated for 6 days. 

Supernatants were harvested and frozen for later ELISA tests and cells were 

transferred into 96-round bottomed plate and stimulated with the combination 
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PMA+ ionomycin + BFA as described above prior to be stained for flow cytometry 

analyses. 

2.2.3 Memory CDS T cells (plate-bound) 

CFSE labelled memory cells were also incubated in 4S-flat bottomed well 

plates, coated with OKT3 Ab, but at lower concentration of stimulating antibody 

(490 ngj ml), a ED50 dose previously optimized in the laboratory. Cells were 

incubated for five days in the presence or absence of IL-27 (concentrations used: 

0.1, l, 10, 100, 250 and 500 ngjml). Cells were harvested and stained as described 

for naïve CDS T cells. 

2.3 Flow cytometry 

Prior to all flow cytometry stainings, cells (PBMC or isolated CDS+ T cell 

subsets) were blocked with normal mouse immunoglobulin (Caltag-Invitrogen) 

for at least 30 min at 4°C. Cells were then split into two wells of a V-bottom 96-

well plate: one used for appropriate labelling and the second one used for isotype 

control Abs (put at the same concentration than labelling Abs). Cells were stained 

using the Abs specific for human Ag listed in Table 5. Surface staining was 

performed for at least 30 min on ice in FACS buffer (PBS containing 1 % (v jv) FBS 

and 0.1 % (w jv) NaN3) in a total volume of 50pl To remove unbound Abs, cells 

were washed with the same buffer 2 times. For intracellular staining, cells were 

permeabilized and fixed in paraformaldehyde (PFA) -saponin buffer [Hank's 

Balanced Salt Solution (HBSS) (Wisent), containing 4% (wjv) paraformaldehyde 

(Sigma-Aldrich), 1 mM HEPES (Wisent), and 0.1 % (w jv) saponin from Quilla JA 

Bark (Sigma-Aldrich)] at room temperature for 10 min followed by two washes 

with saponin buffer (PBS containing 0.1 % (v jv) saponin, 1 % FBS and 0.1 % NaN3). 

Cells were stained for 30 min in saponin buffer, and unbound Abs were removed 

with 2 washes in saponin buffer. Cells were resuspended in staining buffer and 

were acquired on FACS LSR II (BD Biosciences). Controls used to set up the flow 

cytometer included: unstained cells, and cells stained with only one fluorochrome 
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at a time. Information regarding the laser used for exciting each flurochrome as 

weIl as the filters for photomultiplier tube is indicated in Table 4. Results were 

analyzed with software FlowJo (Treestar, San Carlos, CA). Percentages of cells 

ex pressing specifie markers were determined for each analysis and when required 

intensity of signal was calculated using the median fluorescent intensity from 

which the isotype control was deducted (see formula beIow). 

L\MFI = Median intensity of staining - Median intensity of isotype control. 

2.4 Ex-vivo expression of IL-27R (gp130 and TCCR) 

Expression of both chains (gp130 and TCCR) of IL-27R was assessed on freshly 

isolated PBMC or activated PBMC using flow cytometry. To ensure efficient 

reaction between gp130, TCCR and their staining antibodies, cells were incubated 

for 60 min in the dark on iee with the Ab staining mix whieh contained aiso Abs 

specifie for cell subset markers (CD8, CD14, and CD4). To reveal biotinylated-anti­

TCCR-Ab, a second staining step consisting of Streptavidin conjugated with APC 

was conseeutively performed for 30 min. 

Table 4. List of fluorochroms used for flow C1!tometru analtlsis 

1 Fh.lo~oehrome Abbreviation Laser used for Long Filters at 

excitation Pass thePMT 

(mu) 

• Fluorescein FITC 488 i 505 
1 

530/30 

Phyeoerythrin PE 488 550 575/26 
--

Pacifie Blue™ PB 405 440/40 

AIlophyeoeyanin APCy 633 660/20 

• AIlophyeoeyanin-Cy™7 APC-Cy7 633 735 780/60 
i 

1 Phyeoerythrin-Cy™7 PE-Cy7 488 735 780/60 

Alexa Fluor®700 A700 633 710 730/45 
• 

Alexa Fluor®647 A647 633 660/20 
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Tnble 5: List of antibodies used for flow cvtometrv analvsis 
Antibody (Ab) rg Isotype Distributor of Ab 

per and isotype 

stain 

CD3-A700 0.1 Mouse IgG1- A700 BD Biosciences 

CD4-PB 0.04 Mouse IgG1-PB 1 BD Biosciences 

CD8-APC-Cy7 0.024 Mouse IgG1-APC-Cy7 BD Biosciences 

1 CD14-FITC 0.1 Mouse IgG2a-FITC nr- n' sciences 

CD45RA-FITC • 0.1 Mouse IgG 2b-FITC BD Biosciences 

CD45RO-PE 0.05 Mouse IgG2a-PE BD Biosciences 

gp130-PE 0.25 Mouse IgG1-PE R&DSystems 

TCCR-biotin 0.25 Normal goat-biotin ems 

Streptavidin-APCy 0.1 BD Biosciences 

IFN-y - A700 0.04 Mouse IgG1-A700 BD Biosciences 

GranzymeB-A647 0.002 Mouse IgG1-A647 BD Biosciences 

2.5 ELISA for IFN-y 

Flat bottom immunoplate Maxisorp Nunc plates (96 wells) were coated at 4°C 

over night with capturing anti-human IFN-y monoclonal Ab (0.4 J-Lg/ ml) (Pierce 

Biotechnology, Rockford, IL, USA) in PBS. Plates were washed with PBS-Tween 

buffer [0.5% (v/v) Tween 20 (Fisher, Nepean, ON, Canada) in PBS] and then 

blocked for at least 30 min at room temperature with 5% (v/v) FBS in PBS. After 

one wash, samples or standards were added to plates concomitantly with 

detecting biotinylated antibody anti-IFN-y (0.2 J-Lg/ ml) (Pierce Biotechnology), 

diluted in PBS/FBS 5%, and incubated for 90 min at room temperature in the dark. 

Three washes were performed and streptavidin-horse radish peroxidase (0.25 

J-Lg/ ml) (Poly HRP20-streptavidin) (Fitzgerald Industries International Inc., 

distributed by Cedarlane) was added for 30 - 45 min at room temperature in the 

dark. After 3 washes, Enhanced K-blue 3, 3', 5, 5' tetramethylbenzidine (TMB) 

substrate (Neogen, distributed by Cedarlane) was added and after 5-10 min, the 
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reaction was stopped by ad ding 2N H 2S04 . Results were read on an ELISA reader 

EL800 from Bio-Tek at wave length 450 nm. 

3.0 DETERMINATION OF IL-27 rnRNA EXPRESSION BY REAL-TI ME PCR 

3.1 RNA extraction 

Cellular RNA was extracted using the RNeasy Mini Kit (Qiagen, Mississauga, 

ON, Canada) according to the manufacturer' s instructions. Harvested cells were 

disrupted by addition of RLT buffer (lysing buffer containing guanidinium 

thiocyanate, exact composition undisclosed) (350 pl for less than 5x106 cells and 

600 pl for 5x106 - 10x106cells). The lysa te was passed 5 - 6 times through a 1 ml 

RNase-free syringe (BD Biosciences) with a 20-gaugle needle (0.9 mm diameter). 

Then to the suspension was added the same volume (as the RLT buffer) of 70% 

ethanol and the total volume was pipetted up and down several times to 

homogenize. Samples (including aIl precipita tes) were transferred in RNase-free 

spin columns with a collection tube (provided by the kit) and were spun down for 

15 s at 8000 x g. If the volume was more than 700 pl, this step was repeated twice. 

RW1 buffer (700 pl) was added to each spin column to wash its membrane, and 

columns were spun again for 15 s at the same rate. The flow-through was 

discarded. The same procedure was performed with 500 pl of buffer RPE and the 

flow-through was again discarded. A second wash with RPE buffer followed, and 

columns were spun for 2 min at 8000 x g. To ensure complete removal of washing 

buffers, the spin columns were transferred to new collection tubes and were spun 

again for 1 min at full speed. Then spin columns were transferred into 1.5 ml 

RNase-free Eppendorf tubes. To each spin column membrane were added 35-40 pl 

RNase-free water and columns were spun for 1 min at 8000 x g to elute RNA. 

RNA concentration and purity were determined on a spectrophotometer 

Ultrospec 2100 pro at 260 nm. Purity of RNA as determined by ratio of the optical 

density at 260 over 280 nm was 1.7 - 2.0. RNA was either stored at -80°C or was 

subjected to a cDNA transcription. 



63 

3.2 Complementary DNA (cDNA) 

Complementary DN A was obtained using the Quantitect Reverse 

Transcription Kit (Qiagen) according to manufacturer' s instructions. In order to 

get rid of any potential contaminating genomic DNA, total RNA (1 ug) was 

incubated with gDNA Wipeout Buffer (exact composition undisclosed) in RNa se­

free water for 2 min at 42°C. RNA was then transcribed into cDNA in the 

presence of Omniscript® and Sensicript® Reverse Transcriptases (RT), RNase 

inhibitor, dNTPs, oligo-dT and random primers for 30 min at 42°C, and th en for 3 

min at 95°C to inactivate RT. 

3.3 Real time-Polymerase Chain Reaction. 

The real-time PCR approach used employs the 5' nuclease activity of the 

AmpliTaq Gold® DNA Polymerase to cleave a TaqMan probe during PCR. PCR 

amplification was performed in the presence of end and 3' end specific primers 

and an internaI primer used as a probe labelled with a reporter dye and a 

quencher dye. At the annealing step the internaI probe binds to the specific 

sequence and then during the elongation step as the DNA polymerase approaches 

the internaI probe it cleaves it leading to the separation of the reporter and 

quencher dyes thus aUowing the reporter dye to emit detectable fluorescence. This 

fluorescence intensity is proportional to the number of internaI probes cleaved at 

each cycle thus provides a direct readout of the accumulation of PCR products. 

Real-time PCR was performed for three genes: ribosomal18S RNA (as an internaI 

amplification control), EBI3, and p28 (aU from Applied Biosystems, Foster City, 

CA, U.s.A.). The amplification was performed in the presence of AmpliTaq Gold 

DNA Polymerase, AmpErase UNG, dNTPs with dUTP, Passive Reference (ROX), 

and optimized buffer components according to manufacturer' s instructions. For 

ribosomal18S amplification 200 nM of internaI probe conjugated to VIC™ dye and 

50 nM of the for ward and reverse primers were added whereas for EBI3 or p28 

TM 
12.5 nM FAM dye-Iabeled TaqMan® MGB probe and 45 nM of the forward and 

reverse primers were added (Applied Biosystems). TaqMan Ribosomal RNA 
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Control18S generated an amplicon of 187 bp in length, whereas a 75 bp amplicon 

for p28 (amplifying exon 3-4 boundary) and a 94 bp amplicon for EBI3 (amplifying 

exon 4-5 boundary). Transcribed cDNAs from LPS-treated dendritic cells (DC) 

(iDC) with duration of treatment 6 hours and 24 hours were used as positive 

controls for p28 and EBI3 respectively. These positive controls were prepared by a 

colleague. Two dilutions of positive controls were used - with a dilution factor 10 

and a dilution factor 100. RNase-free water was used as a negative control. Each 

sample was run in a 25 pl volume and in duplicate in a 96-PCR plate. Plate was 

spun at 624 x g for several seconds to ensure the proper position of the sample on 

the bottom of the well. AlI bubbles were removed for proper read-out. Plate was 

incubated in 7900 Fast Real Time PCR System (Applied Biosystems) for 2 min at 

50°C to activate the AmpErase UNG enzyme (ensures depletion of potential 

contamination from previous PCR) with a subsequent UNG deactivation at 95°C 

for 10 min. This is followed by 40 cycles of PCR, each consisting of two phases: 

denaturation of cDNA at 95°C for 15 sec and subsequent synthesis of a new brand 

DNA on the denaturated sample at 60°C for 1 min. CT, which is the PCR cycle at 

which the detected signal was significantly above background signal, was 

automatically determined by the Sequence Detection System (SDS) software. 

Ribosomal 18S gene was used as a reference gene. SeriaI 10-fold dilutions of 

cDNA from LPS activated monocyte-derived human DC were used as a calibrator 

to create a relative standard curve, since these cells were reported to express high 

levels of both p28 and EBI3 (Pflanz et al., 2002; Coulomb-LI hermine et al., 2007; 

Molle et al., 2007). The relative expression of each gene (p28 and EBI3) was 

compared to ribosomal 18S and calculated as l'lCT which is described as the 

difference in threshold cycles for target (p28 or EBI2) and reference (18S) using this 

formula: 

l'lC = C - C T T (target) T (reference) 
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The efficiency of the both target and reference amplification were 

approximately equal as the obtained L}.CT did not vary much in different cDNA 

dilutions of the same sample. 

The final step was to calculate L}.L}.CT which represents the difference between 

the L}.CT of the target gene in each sample, and the average L}.CT of the duplicates of 

the calibrator (the positive control for the same gene). 

q = any sample 

cb = calibrator 

L}.L}.CT = L}.CT,q - L}.CT,cb 

The am ou nt of target, normalized to an endogenous reference and compared 

to a calibrator, was calculated as being: 2 -MeT, a value of 1 meant that the target 

gene (p28 or EBI3) was expressed at very similar level than in the LPS-activated 

iDe, whereas value below one represented lower expression of such genes 

compared to our control. 

4.0 STATISTICAL ANALYSIS 

Data were analysed using GraphPad Prism software (San Diego, CA, USA). 

Results are shown as mean and standard error of the mean (SEM) and statistical 

analyses included paired students't test. 
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RESULTS 
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The activation paradigm selected to evaluate the functions of human T cells in 

vitro consisted of a polyclonal activation using a-CD3 monoclonal antibodies (Ab) 

causing the activation of T lymphocytes through the T cell receptor (TCR)-CD3 

complex, a weIl accepted model of TCR-induced activation. When using PBMC, a­

CD3 Ab were added directly to cell suspension as APC could present these 

activating Ab via their Fc receptors and thus induce the cross-linking of the TCR­

CD3 complex on T cells. Conversely, activation of isolated CD8 T lymphocyte 

population was achieved by pre-coating the a-CD3 Ab on plastic wells thus, 

forcing the cross-linking of the TCR-CD3 complex as the T cells are touching the 

bottom of the plate by gravity. 

1.0 OPTIMIZA TION OF ANTI-CD3 ACTIVATION OF HUMAN PBMC 

1.1 Proliferation of human T ceUs in response to a-CD3 Ab 

At first, a-CD3 antibody (Ab) was added to PBMC in various concentrations to 

establish the effective dose 50 (EDso) - e.g. concentrations at which 50% of 

maximal ceU proliferation was observed. , Most dose-dependent reactions can be 

represented by an S-curve where at low doses of the reagent its effect is not 

detectable, then at increasing doses, increasing effects take place whereas at even 

higher doses, the maximal effects are achieved and any increase in doses does not 

augment its effects (plateau). The EDso doses experimentally determined for 4 

donors were used in order to allow the detection of any modulation of the 

response by IL-27 addition be an increased or a decreased cell proliferation. The 

concentrations of a-CD3 Ab tested were: 340, 136, 68, 34, 17, 8.5 and 3.4 ng/ml 

(Fig. 2). 

CFSE labelled PBMC (lx106 cells/tube) were put in culture in 5 ml snap-cap 

tubes with a-CD3 Ab and after 5 days, cells were stained with Abs specific for 

human CD4 and CD8. Samples were acquired by flow cytometry and analyzed to 

determine proliferation levels in the CD4 and the CD8 compartments. Fig. 2 

illustrates pooled data obtained from two independent experiments each 
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Figure 2: Anti-CD3 Ab dose response by PBMC as assessed by proliferation 
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CFSE labelled PBMC (lxl06 cells/ml) were incubated in 5 ml snap-cap tubes in the presence of different 

concentrations of anti-CD3 Ab for 5 days. On the fifth day ceIls were stained for CD4 (panel A) and CD8 (panel B) 

markers to de termine proliferation levels in both T ceIl compartments. Samples were acquired on a Becton 

Dickinson LSRII flow cytometer. For each cell type a profile for three different conditions (unstimulated, a-CD3 [0.5 

ug/ml] and a-CD3 [2 ug/ml]) is shown above the corresponding dose-response curve. Data from 4 donors done in 

duplicates are presented as mean + SEM. 68 
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ex periment performed with PBMC from two healthy donors in duplicates. The a­

CD3 Ab concentration is represented on the X-axis on a 10g1o scale whereas the 

percentage of either gated CD4 (panel A) or CD8 (panel B) T lymphocytes that 

have proliferated in response to the corresponding concentration of a-CD3 is 

presented on the Y-axis. Few (6 - 7%) CD8 and CD4 T cells proliferated when 

stimulated with the lowest a-CD3 dose used (3.4 ng/ml). But 30-50% of CD8 and 

25-40% of CD4 T cells proliferated when stimulated with 8.4 ng/ ml and 60-70% of 

CD8 and 48-55% of CD4 T cells proliferated in the presence of 17 ng/ml of a-CD3 

Ab. At higher doses (34 ng/ml and 68 ng/ml) 60-83% of CD8 and 60-70% of CD4 

T cells proliferated reaching a plateau of the a-CD3 Ab doses. According to the 

obtained results, the doses of 8.5 and 17 ng/ml were chosen as EDso. 

Although we did not specifically test cell death (via 7aminoactinomycin D or 

Live/Dead® fixable dead cell stain) our FSC/SSC flow cytometry data are very 

similar for all cells activated with a-CD3, regardless of the addition of IL-27. These 

observations suggest thet IL-27 did not affect survival. According to our data, 

activated cells would undergo about five divisions. This is where we observed 

differences in the presence of IL-27. As it can be observed on Fig. 5, the cytokine 

increased the number of cells entering divisions 4 and 5, and sometimes affected 

the number of cells entering division 3. This effect is most prominent at high doses 

of IL-27. This suggests that IL-27 plays a role for increasing number of cell 

divisions. 

2.0 EXPRESSION OF IL-27 SIGNALLING RECEPTOR (IL-27R) BY HUMAN 

PBMC 

To evaluate which cell types could potentially be targeted by IL-27, the 

presence of both chains necessary for a functional signalling IL-27R: gp130 and 

TCCR was evaluated on human PBMC. 
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2.1 Ex vivo expression of IL-27R by human T lymphocytes and monocytes 

PBMC from 10 healthy donors were stained ex-vivo for CD14 (monocytes), 

CD3 (lymphocytes), CD4 and CD8 and both chains of the IL-27R (TCCR and 

gp130) and then acquired by flow cytometry. Obtained data were analysed for: i) 

percentage of ceIls (%), expressing both chains constituting the signalling receptor 

for IL-27 and ii) intensity of labelling detectable on expressing ceIl (represented by 

median fluorescence intensity (MFI)) for both TCCR and gp130. Data from aU 

donors are represented on Fig. 3. On the upper two panels are represented the 

percentage of ceUs expressing the complete IL-27R (panel A) or the gp130-chain 

only (panel B), whereas on the lower two panels are represented the /::.. Median 

Fluorescence Intensity for TCCR (panel C) and gp130 (panel D). Each dot 

represents one donor. 

The majority of monocytes (75% ±. 2.6%) expressed IL-27R. In the T ceIl 

compartment, a greater proportion of CD8 T (mean: 6.6 + 0.1 %) ceUs expressed the 

complete IL-27R, compared to CD4 T cells (mean 0.9 ±. 1.0%). In terms of number 

of TCCR chains as assessed by the /::..MFI, again highest levels were observed on 

the monocytes, whereas the expression was comparable between positive CD4 

and CD8 T cells. Concerning gp130 expression, the levels were comparable 

between monocytes and T lymphocytes, slightly lower in the CD8 T cell 

compartment. On the contrary, few monocytes (mean: 3.8 ± 1.2%) expressed only 

gp130 in absence of TCCR whereas a great proportion of CD4 T ceUs (mean: 63.8 ± 
3.7%) and an important, though lower proportion of CD8 T cells (mean: 29.9 ±. 

4.4%) did express gp130 in absence of TCCR, suggesting that these cells can 

respond to other cytokines using the gp130 as a co-receptor. Sorne ceUs expressed 

TCCR in absence of gp130 (less than 5% for both T ceUs and monocytes). As an ex­

vivo staining was repeated for sorne of the donors, it appeared that the levels of 

expression of both IL-27R chains are stable over time for each subject (data not 

shown). The greater number of ex-vivo CD8 T ceUs expressing IL-27R suggests 

that CD8 T cells could be more susceptible to IL-27 effects than CD4 T ceUs. 
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Figure 3: Expression of IL-27 receptor chains on ex-vivo monocx:tes (CD14)1 CD4 and CDS T cells 

PBMC (lxl06 per sample) were stained ex-vivo for both chains of the IL-27 receptor (TCCR and gp130) and analysed 

by flow cytometry. One representative donor is depicted (panel A). Graphs illustrate the percentage of ceUs, 

expressing both d'tains (panel B), gp130-chain only (panel C), and the L1 median fluorescence intensity (MFI) for 

TCCR-chain (panel D) and gp130-chain (panel E) obtained for 10 healthy donors. Each dot represents one donor. 

The middle line illustra tes the mean. 71 
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2.2 IL-27R expression upon activation 

To investigate whether T cen activation has an impact on the expression level 

of both chains of IL-27R, such expression was monitored fonowing in vitro T cen 

activation (Fig. 4). Anti-CD3 Ab was used at two different concentrations: 17 

ng/ ml, previously identified as EDso for T cen proliferation in bulk PBMC culture, 

and 340 ng/ ml, used to achieve maximal effect (see Fig. 2). Two (D2), four (D4) 

and six (D6) days after stimulation, surface staining for CD4, CD8, gp130 and 

TCCR was performed on 5 distinct donors. The percentage of CD4 (panel A) and 

CD8 (panel B) T cens ex pressing both IL-27R chains are represented on Fig. 4. On 

the X-axis three conditions were compared for each time point D2, D4 or D6: non­

stimulated cens (white bars); cens incubated with a-CD3 Ab (17 ng/ml) (black 

bars), and cells incubated with a-CD3 Ab (340 ng/ml) (bricked bars). The ex-vivo 

percentages are presented at the extreme left-hand si de (hatched bars). A 

significant up-regulation of both chains was already detectable at D2 and more 

prominent in the CD8 T cen compartment than in the CD4 T cen one (to facilitate 

comparison, both graphs are plotted on the same scale). The up-regulation of IL-

27R was the strongest at D2 and over days decreased. These data show that 

similarly to the ex-vivo observations, upon polyclonal activation, more CD8 T cens 

than CD4 T cens expressed IL-27R. 

Even at low doses of a-CD3 Ab the upregulation of both chains was almost 

maximal (14.6 .±. 4.4% CD8 T cens up-regulated the complete IL-27R at a-CD3 [17 

ng/ml] vs. 18.3 .±. 3.3% CD8 T cens at a-CD3 [340 ng/ml]) already at D2. At D4 

and D6 the effects of both doses of a-CD3 were comparable (D4: 12.4.±. 4.5% CD8 

T cens with a-CD3 [17 ng/ml] vs. 12.6.±. 3.5% - a-CD3 [340 ng/ml], D6: 13.1.±...4.2% 

[17 ng/ml] vs. 16.0 .±. 5.4% [340 ng/ml]). This suggests that even a non-maximal 

signal in conditions of inflammation is sufficient for CD8 T cens to up-regulate 

their IL-27R during the early phases and to influence their effector functions. 



A ~crL DnU .a-CD3 [17 ng/ml] mma-CD3 [340 ng/ml] 

+ 
~ 
~ 
,..J ,.... 
:::: 
Q) 
v 

E-< 

Ci 
U 
~ e 

D2 D4 D6 

B f:.§jCTl Dnil .a-CD3 [17 ng/ml] ~.::t-CD3 [340 ng/ml] 

+ 
~ 
t-.. 
N 

1 

>-l ,.... --Cl) 
u 

E-< 
00 
Cl 
U 
~ 

D2 D4 D6 

Figure 4: Expression of IL-27R on T ceUs upon activation 

PBMC (lx106) were incubated in the presence or absence of a-CD3 Ab (2 

different concentrations tested: 17 ng/ml and 340 ng/ml) for several days. On 

the second day (D2), four th day (D4) and the six th day (D6), ceUs were 

harvested and stained for CD4, CDS and bath chains of the IL-27 receptor 

(TCCR and gp130). Data were analysed by flow cytometry. Graphs illustrate the 

percentage of CD4 (panel A), and CDS (panel B) T ceUs, expressing bath chains 

of IL-27R at different days. Data are presented as mean + SEM for 5 healthy 

donors, * means p<O.05, when compared ta non-stimulated cells on the same 

day. 
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3.0 EFFECTS OF IL-27 ON T CELL FUNCTIONS. 

3.1 PBMC 
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Other groups have shown that IL-27 increases the production of IFN-y by 

human CD4 T ceUs (Matsui et aL, 2004) but no data were available on human CDS 

T ceUs. The effects of IL-27 on both CD4 and the CDS T ceUs were compared for 

distinct effector functions: proliferation, IFN-y production (as a prototypic pro­

inflammatory cytokine), and granzyme B production (as a prototypic lytic 

enzyme). 

CFSE-labelled PB MC were stimulated in the presence of two EDso a-CD3 Ab 

doses (8.5 and 17 ng/ml) in the presence or absence of IL-27 (0-250ng/ml). After a 

6-day culture, ceUs were shortly activated in the presence of PMA, ionomycin and 

BFA and th en stained for surface (CD4, CD8) and intracellular proteins (IFN-y and 

granzyme B). Although T cells have started to divide after three days, the number 

of divisions as well as the total percentage of cell proliferation were small. Thus 

longer time-points were optimal for read-out of both proliferation and effector 

molecule production. Our choice of effector molecules was based on publications 

in the mouse system. We also tried to detect IL-4 in human stimulated PBMC but 

since the results were negative (data not shown), we excluded the mentioned 

staining from the panel. Cells were acquired on a flow cytometer and analyzed for 

proliferation (CFSE low cells), granzyme Band IFN-y content for each T cell 

subsets: CD4 and CDS. Dot-plots obtained from one representative donor are 

illustrated on Fig. 5. CDS T cell-gated events are shown for CFSE fluorescence (X­

axis) and either IFN-y (panel A) or granzyme B (panel B) on the Y-axis. Cells that 

did not proliferate had the strongest CFSE fluorescence and are depicted in the 

lower-right and upper-right quadrants, whereas ceUs that did undergo 

proliferation are either in the upper-left quadrant (being also positive for either 

IFN-y or granzyme B) or in the lower-left quadrant (being negative for either IFN­

y or granzyme B). Some non-activated and some non-proliferating cells stained 

positive for IFN-y due to the stimulation with PMA 
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Figure 5: Illustration of IL-27 effects on the proliferation of, and IFN-y and granzyme B production by human CD8 T cells 

CFSE labelled-PBMC were cultured in the absence (Nil) or presence of anti-CD3 (15 ng/ml) with or without recombinant 

human IL-27 (D, 10 or 100 ng/ ml) for 6 days, and then shortly stimulated with PMA and ionomycin in the presence of 

BFA Surface (CD8) and intracellular (IFN-y (panel A) and granzyme B (panel B)) staining was performed. One 

representative donor out of 10 is depicted; dot plots from flow cytometry results illustrate gated events for CD8 T cells. 

Percentage of cells that proliferated (CFSE low) is indicated in appropriate quadrants either IFN-y+ or granzyme B+ 

(upper left quadrant), or IFN-y- or GranzymeB- (lower left quadrant). 75 
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(activa tes prote in kinase C) and ionomycin (boosts Ca2+ influx). This phenomenon 

is typically observed in human cells upon such activation (Arbour et a1., 2003). 

The impact of IL-27 on these T cell effector functions was tested on healthy 

don ors and pooled data are illustrated on Fig.6-7-8-9. The first parameter analyzed 

was the total proliferation (Fig.6). T cells minimally proliferated when put in 

culture in absence of stimuli « 5%) whereas a-CD3 Ab doses induced significant 

proliferation of both CD4 (panel A) and CD8 (panel B) T cells although CD8 T cells 

proliferation was more important than CD4 T cells. The addition of IL-27 had a 

minimal impact on CD4 T cell proliferation at the higher a-CD3 Ab dose tested, 

but at the lower dose of a-CD3 an IL-27 dose-response is visible and the maximal 

enhancement mediated by IL-27 was observed at 10 ngjml (mean 42.1 .:!=. 5.2%), 

reaching significance compared to a-CD3 Ab in absence of this cytokine (mean 

33.4.:!=. 4.7%). 

In the CD8 T cell compartment a proliferative dose-response to IL-27 was 

observed for both doses of a-CD3 used for stimulation. For the higher dose of 

stimulating antibody, maximal cell proliferation was observed in the presence of 

IL-27 at 100 ngj ml (mean 65.2 .:!=. 3.4 %) with a high statistical significance (p<0.005) 

when compared to stimulation with a-CD3 only (mean 56.7 .:!=. 3.9%). For the lower 

dose of a-CD3, IL-27 exerts a maximal effect at 10 ng/ml (mean 53.7 ~ 4.7%) again 

with a high statistical significance, when compared to stimulation in the absence 

of IL-27 (40.2 ~ 5.8%). 

The difference IL-27's impact on the T-cells (more obvious on CD8 T ceIls) 

could be due to the already strong proliferative signal provided by of the higher a­

CD3 dose [17 ng/ml] such that detection of IL-27-enhancing effects was hindered. 

It should be also mentioned that these results are obtained from bulk PBMC 

through gating on CD4 and CD8 T cells. Therefore, the observations made were a 

consequence of the action of IL-27 on aIl types of cells present in the culture, and 

the action of aIl types of cytokines, produced by these cells. These experiments 

were also representative of the in vivo situation while an cell types would be 

present when IL-27 will be released in the vicinity. 
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Figure 6: IL-27 boosts the proliferation of T cells 
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CF SE labelled-PBMC were cultured with a-CD3 (17 or 8.5 ng/ml) in the 

absence or presence of IL-27 (l, 10, 100 or 250 ng/ ml) as indicated on the X­

axis for 6 days. Supernatants were then collected and analyzed by ELISA for 

IFN-y and cells were shortly stimulated with PMA and ionomycin in the 

presence of BF A prior to surface and intracellular staining for flow 

cytometry analysis. Percentage of CD4 (panel A) and CD8 (panel B) T cells 

that have proliferated are illustrated for 8 healthy donors. Controls (cells 

al one) for aIl donors minimally proliferated < 5%. Data are presented as 

me an =- SEM; * me ans p<0.05, ** me ans <0.005 when compared to a-CD3 in 

absence of IL-27. 
77 
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The second response measured was the percentage of T cell that 

proliferated and could produce 1FN-y (Fig. 7). Graphs illustrating CD4 (panel A) 

and CD8 (panel B) T cell responses are put on the same sc ale to facilitate 

comparison. A similar trend to boosted levels of cells that have proliferated and 

produced 1FN-y in the presence of 1L-27 was observed in both subsets of T cells 

(CD4 and CD8). Consistent with the other observed effector functions, 1L-27 had 

slightly stronger effect on CD8 T cells than on CD4 T ceIls; in the presence of IL-27 

at 10 ng/mI15% of CD8 T cells (mean 15.5.±. 3.5%) proliferated and produced IFN­

y vs. only 7% of CD4 T cells (mean 7.2 .±. 1.9%) in the same conditions. Although 

the trend was very obvious for the CD8 T cell compartment, the results were not 

statistically significant, and the only conditions in which statistical significance 

was observed in the CD4 T cell compartment in the presence of a-CD3 [8.5 ng/ml] 

+ lL-27 [10 ng/ml]. Overall, the llMFI of IFN-y did not differ in the presence or 

absence of lL-27. This suggests that IL-27 effect is due to increased number of 

proliferated cells that are able to produce IFN-y but not to cytokine production on 

pel' ceIl basis. 

The effects of lL-27 on lytic enzyme content of human CD8 T cells was 

tested since this cytokine has been shown to boost these enzymes in murine CD8 T 

cells (Morishima et al., 2005). As shown on Fig. 8 (panel B), lL-27 increased in a 

dose-dependent manner granzyme B content of human CD8 T cells. The different 

incl'easing doses of lL-27 evoked responses, representing a bell-shaped curve with 

a maximal response in the presence of 1L-27 at [100 ng/ ml] for the higher dose of 

a-CD3, and [10 ng/ ml] of IL-27 for the lower dose of stimulating Ab. Statistical 

significance in the presence of IL-27 was reached at doses of [1 and 10 ng/ ml] 

when stimulating with a-CD3 [17 ng/ml] and at [10 ng/ml] lL-27 when 

stimulating with the lower dose of a-CD3. However, the impact of the lowest dose 
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Figure 7: IL-27 augments proportion of IFN-y producing T cells 

CF SE labelled-PBMC were cultured with a-CD3 (17 or 8.5 ng/ml) in the 

presence or absence of IL-27 (D, 1, ID, 100 or 250 ng/ ml) for 6 days 

Percentage of CD4 T cells (panel A) or CD8 T cells (panel B) that 

proliferated and produced IFN-y was determined by intracellular staining 

after short stimulation with PMA and ionomycin in the presence of BF A. 

Controls (cells onl y) minimall y prolifera ted « 2 % ). Da ta are presented as 

mean.:!=. SEM for 7 healthy donors, * me ans p<0.05 when compared to a­

CD3 in absence of IL-27. 
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Figure 8: IL-27 increases Granzyme B production by CD8 T cells 

labelled-PBMC were cultured with a-CD3 (17 or 8.5 ng/ml) in the 

presence or absence of IL-27 (0, l, 10, 100 or 250 ng/ ml) for 6 days and then 

stained for surface markers (CD4, CD8) and intracellular granzyme B. 

Percentages of proliferated CD4 (panel A) or CD8 (panel B) T cells containing 

granzyme B were determined by flow cytometry analysis. Controls (cells 

alone) minimally proliferated and produced granzyme B « 2%). Data are 

presented as mean ± SEM for 7 healthy donors; 

compared to a-CD3 in absence of IL-27. 

* means p<0.05 when 
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of IL-27 [1 ng/ml] reduced the a-CD3-induced granzyme B production. A similar 

analysis was performed on human CD4 T cells, but a smaller proportion of these 

cells produced granzyme B in comparison to CD8 T cells, as expected and IL-27 

had minimal impact on such expression (Fig. 8 panel A). Remarkably, the curves 

of the dose-response for IFN-y and for granzyme B for CD8 T cells were very 

similar in magnitude and shape whereas this was not the case for CD4 T cells for 

the reasons mentioned above. 

Finally, we investigated by ELISA the total IFN-y production in the cen 

culture medium of stimulated PBMC (Fig. 9). While the intracellular staining 

represents the actual capacity of T cens to produce cytokines, the ELISA assay 

represents the equilibrium between the production and consumption by an types 

of cells present in the culture. Addition of IL-27 increased IFN-y secretion in a 

dose-dependent manner for both concentrations of stimulating a-CD3 Ab use d, 

reaching statistical significance for a-CD3 [17 ng/ml] + IL-27 [100 ng/ml] and a­

CD3 [8.5 ng/ ml] + IL-27 [10 ng/ ml] when compared to stimulation only with a­

CD3 Ab. IL-27 effects were not observed at the same dose for the distinct a-CD3 

Ab doses used; when cens were stimulated in the presence of 17 ng/ml a-CD3 the 

100 ng/ml IL-27 led to the greatest IFN-y secretion (600 pg/ml), whereas the 

highest concentration of IFN-y was detected (400 pg/ml) in the presence of 10 

ng/ml IL-27 for the lower dose of a-CD3. 

The IL-27 dose-response curve as measured by the amount of IFN-y in the 

culture medium corresponded to the dose-response curve observed for the CD4 T 

cells proliferation+ IFN-l cens as assessed by flow cytometry (Fig. 7 panel A) 

with maximal response to stimuli a-CD3 [17 ng/ml] + IL-27 [100 ng/ml]. This 

might indicate that while in the presence of a-CD3 [17 ng/ml] + IL-27 [100 ng/ml] 

there is an equilibrium of production and consumption of IFN-y, the higher 

production of this cytokine seen in the CD8 T cen compartment in the presence of 

a-CD3 [17 ng/ml] + IL-27 [10 ng/ml] can be masked by the cytokine consumption 

by CD4 T cells and monocytes, thus leading to lower concentrations of IFN-y in 

the milieu. Moreover, CD4 T cens are twice as numerous as CD8 T cells amongst 
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Figure 9: IL-27 augments IFN-y production by anti-CD3 stimulated PBMC 

CFSE labeUed-PBMC were cultured with anti-CD3 (17 or 8.5 ng/ml) in the presence or absence of IL-27 (0, l, 

10, 100 or 250 ng/ ml) for 6 days. Supernatants were then coUected and analyzed by ELISA for IFN-y. Controls 

(ceUs alone) for aU donors minimaUy secreted IFN-y « 80 pg/ml). Data represents pooled results from 8 

healthy donors and are presented as mean.± SEM, * means p<0.05 when compared to anti-CD3 in absence of 

IL-27. 
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PB MC, thus, CD4 T cell contribution to overall IFN-y secretion could be twice the 

CD8 T cell contribution. 

3.2 Naïve CDS T cells 

To dissect the eHects of IL-27 on CD8 T cells according to their differentiation 

status, naïve and memory cells were purified from healthy donors and similar 

experiments were performed. The stimulation paradigm was slightly modified 

and naïve CD8 T cells were stimulated using plate-bound a-CD3 Ab in the 

presence or absence of anti-CD28 Ab. IL-27 (ID, 100,250 or 500 ng/ml) was added 

to assess the impact of this cytokine on the eHector functions of naïve CD8 T cells 

being activated in vitro. The results obtained from healthy donors are illustrated 

in Fig. 10 (proliferation) and Fig. 11 (IFN-y and granzyme B). 

CFSE labelled purified CD8 CD45RA+ T cells (2x105 ceUs/weIl) were incubated 

for 6 days in the presence of a-CD3 Ab (3.4 and 6.8 pg/ ml) and anti-CD28 (1 

ng/ ml) with or without IL-27; these doses were chosen as ED50 according to a 

dose-response performed by a colleague similarly to what was shown for PBMC 

(Fig. 2). Naïve CD8 T cells grown on plate bound a-CD3 Ab only did not 

significantly proliferate in comparison to cells left al one in adjacent wells as 

expected since naïve T cells necessitate two signaIs (activation (via TCR) and co­

stimulation) for their activation. Regarding naïve CD8 T cell proliferation (Fig. ID), 

when cells were stimulated only with a-CD3 in the absence of co-stimulation, IL-

27 increased in a dose-dependent manner from 10 to 500 ng/mL Despite this 

continuous enhancing effect of IL-27, doses higher than 500 ng/ml were 

considered non-physiological and were not tested. The effect of aIl IL-27 doses 

used reached statistical significance when compared to stimulation with a-CD3 

Ab only. In conditions of co-stimulation, the proliferation of naïveCD8 T cells was 

significantly greater than the a-CD3 Ab stimulation (Fig. 10). IL-27 significantly 

increased the proliferation of naïve CD8 T cells induced by the a-CD3+anti-CD28 

combination from 100 ng/ ml and continued to increase in a dose-dependent 

manner the proliferation of these cells up the 500 ng/ml tested. To our surprise, 



00 
0 u 
'ïj 

\'LI .... 
~ 
l-< 
\'LI ...... ..... ...... 
0 
l-< 
c.. 

?F-

o 

* 
* 

10 100 250 500 o 

a-CD3 

** 

10 100 250 500 

a-CD3 + a-CD28 

lL-27 
[nglml] 

Figure 10: IL-27 enhances naïve CD8 T ceIl proliferation upon anti-CD3 stimulation in the presence or absence of co-

Purified CFSE labelled CD45RA + CD45RO- CD8 T ceUs were incubated on plate bound anti-CD3 Ab (3.4 pg/ ml and 

6.8 pg/ ml) with or without soluble anti-CD28 in the presence or absence of IL-27 (ID, 100, 250 or 500 ng/ ml) for 6 days. 

On the sixth day, cells were shortly stimulated with PMA and ionomycin in the presence of BFA prior to surface (for 

CD8) and intracellular (for IFN-y and Granzyme B) staining for flow cytometry analysis. Pooled percentage of CD8 T 

ceUs proliferation for 6 healthy donors are illustrated. Data are presented as mean + SEM. * means p<0.05, ** means 

p<0.005 wh en compared to the same treatment (anti-CD3 + / - anti-CD28) in absence of IL-27. Controls (ceUs al one) 

minimally proliferated for aIl donors « 10%). 84 
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Figure 11: Effects of IL-27 on effector functions of naïve CD8 T cells 

Purified CFSE labelled CD45RA + CD45RO- CD8 T cells were incubated on 

plate-bound a-CD3 Ab (3.4 pg/ ml and 6.8 pg/ ml ) with or without soluble a­

CD28 in the presence or absence of IL-27 (10, 100, 250 or 500 ng/ ml) for 6 

days. Cells were then shortly stimulated with PMA and ionomycin in the 

presence of BFA prior to surface (for CD8) and intracellular (for IFN-y (panel 

A) and granzyme B (panel B)) staining for flow cytometry analysis. Pooled 

percentages of proliferation+ effector+ (IFN-y or granzyme B) CD8 T cells for 

6 healthy donors are illustrated. Controls (cells alone) for all donors minimally 

proliferated « 3%). Data are presented as mean ± SEM. * corresponds to 

p<0.05, ** means 

absence of IL-27. 

p<0.005 when compared to the same treatment in the 
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we could observe a certain level (up to 40% with [500 ng/ ml] of IL-27) of 

proliferation in the absence of co-stimulation but in the presence of IL-27. This 

could be due to the presence of contaminating cells able to provide co-stimulation, 

but in our purified naïve CD8 T cells only 0.9% were monocytes and less than 2% 

were non-T cells non-monocytes. Another reason could be the IL-27 signalling 

pathway as it has been already suggested that the cytokine can synergize with 

TCR signal in murine T cells (Brender et aL, 2007) and thus IL-27 could probably 

mimic the co-stimulatory a-CD28 signal. 

Similarly to PB MC experiments, IFN-y (Fig. 11, panel A) and granzyme B 

production (Fig. 11, panel B) were investigated. Graphs represent naïve CD8 T 

cells that have proliferated and produced either IFN-y or granzyme B (indicated 

on the Y-axes). The doses of IL-27 used are shown on the X-axes. Although the 

effect of IL-27 on IFN-y production by human naïve CD8 T cells was not strong in 

the absence of co-stimulation with a-CD28 Ab, it was still dose dependent and 

statistically significant for the 100 ng/ ml (mean 5.2 .±. 1.4 %) and 250 ng/ ml (5.6 .±. 

1.6%) doses when compared with stimulation with a-CD3 only (mean 2.7 .±. 

0.99%). The response in conditions of co-stimulation (a-CD3 + a-CD28) 

demonstrated a trend towards an increased of the percentage of proliferated and 

IFN-y producing cells by IL-27 but it did not reach statistical significance. 

IL-27 had significant effects also on granzyme B (Fig. 11, panel B) content 

by activated human naïve CD8 T cells. IL-27 exerted a boosting effect at low doses, 

[100 ng/ml] and continuously increased in a dose-dependent manner the 

percentage of granzyme B expressing cells till reaching statistical significance at 

[250ng/ml] (mean 9.7 .±. 3.3%) and [500 ng/ml] (mean 11.9 .±. 2.0%) when 

compared to treatment with a-CD3 only (mean 2.7 .±. 1.0%). A similar trend was 

observed in the presence of co-stimulation with a-CD3+a-CD28 leading to 

enhanced percentage of granzyme B expressing cells amongst the proliferated 

ones a continuously increasing dose-response, reaching a statistical significance at 

doses of IL-27 [250 ng/ml] (mean 17.5.±. 4.1 %) and 500 ng/ml (mean 25.2.±. 3.3%) 

when compared to stimulation with a-CD3 only (mean 10.0.±. 2.3%). 
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Of note, whereas 500 ng/ml of IL-27 added to a-CD3 Ab stimulation 

decreased IFN-y production, at the same concentrations it did boost the 

proportion of granzyme B ex pressing cells, suggesting that IL-27 distinctly 

modulates different effector functions of CTLs (cytokine vs. lytic enzyme). In 

contrast, IL-27 added in condition of stimulation + co-stimulation increased in a 

dose-dependent manner both effector functions: cytokine and lytic enzyme 

production. 

3.3 Memory CDS T ceUs 

We further proceeded with the same experiments on CD8 memory T cells. 

Purified CFSE labelled CD8+ CD45RO+ T cells were incubated for 5 days (2x105 

cell/well) in the presence or absence of stimulating a-CD3 Ab, and presence or 

absence of IL-27 (l, 10, 100, 250 and 500 ng/ml). Although memory celIs are 

known to produce effector molecules very fast (within hours), we left them in 

conditions of activation for 5 days to assess both proliferation and effector 

molecule production at the same time. In an attempt to circumvent the difficulty 

of obtaining pure memory human CD8 T celIs, two different protocols of CD8+ 

CD45RO+ isolation were used (described in chapter "Materials and Methods ll
). 

The contaminating celIs were CD3+CD4-CD8-CD56-, CD19+, very few CD14+, CD3-

CD56+, CD3-CD4-CD8-CD56-, sorne CD8-CD45RO+, but no naïve CD8 T celIs 

(CD45RA +CD8+) were detected. Thus, an results presented are gated on CD8 T cell 

compartment. 

The effect of IL-27 on the proliferation (Fig. 12), production of IFN-y (Fig. 

13 panel A) and granzyme B content (Fig. 13 panel B) of memory CD8 T cells 

isolated from 7 healthy donors are illustrated. On the X-axis Îs presented the 

concentration of IL-27. Memory CD8 T cells proliferated very weIl in the presence 

of a-CD3 Ab alone and such proliferation was boosted by the addition IL-27 with 

maximal effects for doses [10 ng/ml] (mean 35.2 + 9.1%) and [100 ng/ml] (mean 

36.6 ±. 7.2%) with a statistical signifîcance only in the presence of IL-27 at [1 
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Figure 12: IL-27 enhances memory CDS T cell proliferation upon anti-CD3 stimulation 
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Purified CFSE labeUed CD45RO+ CDS T ceUs were incubated on plate bound anti-CD3 Ab in the presence or 

absence of IL-27 (l, 10, 100, 250 or 500 ngj ml) for 5 days. Cells were then shortly stimulated with PMA and 

ionomycin in the presence of BF A prior to surface (for CDS) and intracellular (for IFN-y and Granzyme B) staining 

for flow cytometry analysis. Percentages of memory CDS T cells that proliferated are illustrated for 7 pooled 

healthy donors. Data are presented as mean + SEM, * means p<0.05 88 



Figure 13: Effects of IL-27 on effector functions of memory CD8 T cells 

Purified labelled CD45RO+ CD8 T cells were incubated on plate-bound 

a-CD3 [485.7 ng/ml] Ab for 5 days and then shortly stimulated with PMA 

and ionomycin in the presence of BF A prior to surface (for CD8) and 

intracellular (for IFN-y (panel A) and granzyme B (panel B)) staining for flow 

cytometry analysis. Graphs illustrate the percentage of memory CD8 T cells 

that proliferated and expressed IFN-y (panel A), or granzyme B (panel B) for 

7 healthy donors. Data are presented as mean ±. SEM, * means p<O.05 when 

compared to a-CD3 in absence of IL-27. 
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ng/ml]. Higher doses of IL-27 had less effect on human memory CD8 T cells 

proliferation. IL-27 addition during the a-CD3 Ab stimulation of the memory CD8 

T cells led to a bell-shaped dose-response curve as assessed by the increased 

percentage of IFN-y producing cells and granzyme B producing cells. IL-27 effects 

were more prominent on the production of IFN-y than on granzyme B content, 

reaching statistical significance during stimulation with a-CD3 + IL-27 [1 and 10 

ng/ ml] for IFN-y production. It is not possible to rule out the contribution of the 

contaminating cens on the memory CD8 T cen responses. Given the higher levels 

of granzyme B positive cens in a-CD3 Ab stimulated memory CD8 T cens than in 

the naïve CD8 T cens, it is possible that addition of IL-27 could not increase these 

levels further. 

4.0 CDS T CELLS AS A SOURCE OF IL-27 

A recent publication suggested that murine CD8 T cens can be a source of 

IL-27 (Brender et al., 2007). To evaluate whether human CD8 T cens also produce 

this cytokine, these cens were purified, activated and then total RNA was 

extracted for real-time PCR analysis. Given the absence of commerciany available 

ELISA kit for human IL-27 at the time of these experiments, only mRNA levels 

were evaluated. Purified CD8 T cens (purity > 98%) were incubated for 6 or 24 

hours in presence or absence of stimulating a-CD3 [3.4 pg/ ml] Ab and co­

stimulating a-CD28 Ab (5 pg/ml). Total RNA was extracted, transcribed into 

cDNA, and used for real-time PCR amplification for both IL-27 subunits. 

Expression levels of both subunits of IL-27 (EBI3 and p28) were compared to the 

internaI control18S RNA (Fig. 14). As a positive control were used DC stimulated 

with LPS for 6 hours (for p28 expression) and for 24h (for EBI3 expression). The 

choice was based on already published data on the kinetics of expression of both 

subunits of IL-27 (Pflanz et al., 2002). EBI3 was clearly up-regulated after 24h of 

stimulation in the presence of both a-CD3 and a-CD28, whereas p28 was not 

detected even after 40 PCR cycles. This suggests that human CD8 T cens can not 

be a source of IL-27. 
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Figure 14: IL-27 is not produced by human CD8 T ceUs upon stimulation 

Dp28 

_EBI3 

Purified CD8 T ceUs (5x106 ceUs/1.5 ml/weU) were incubated in the presence or absence of anti-CD3 antibody (3.4 

pg/ml) and anti-CD28 (5 pg/ml) for 6 or 24 hours. After indicated time, cells were coUected and disrupted for RNA 

extraction, which was consecutively converted in cDNA. The latter one was mixed with specifie primers and was 

subjected to real time- PCR. Purity of CD8+T ceUs > 98%. Data are presented as mean.± SEM of 3 healthy donors. 
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DISCUSSION 
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The immune protection of the organism depends on the orchestral action of an 

the components of the immune system. The innate arm and the adaptive arm, of 

the immune system communicate through cytokines and direct contact, where the 

point of interaction between two cells is called "immunological synapse". Because 

of their capacity to spread in their environment and thus to influence more cells, 

while the physical space for direct cell-cell interaction is limited, cytokines have a 

crucial role in the immune responses. These secreted mediators can direct the 

"immune symphony" by skewing the T cells towards pro-inflammatory Thl, anti­

inflammatory humoral Th2, and/or inflammatory/autoimmune Thl7 type 

responses. 

A recently discovered member of IL-6/IL-12 family, IL-27, has been shown to 

signal through two chains: TCCR and gp130. Like all cytokines (IL-6, 

cardiotrophin l (CT-1), leukemia inhibitory factor (LIF), ciliary neurotrophic factor 

(CNTF), oncostatin M (OSM), and IL-11) signalling through the gp130 chain (with 

IL-6 being the most studied among them), IL-27 has aiso this paradoxical 

characteristic of exerting both pro-and anti-inflammatory actions (Villarino et al., 

2004). A substantiai am ou nt of data has been published recently on IL-27 effects 

on different immune cell subsets mainly in the mouse system, but very little is 

known about its effects on their human counterparts. 

1.0 EXPRESSION AND MODULATION OF IL-27R 

1.1. Ex-vivo IL-27R expression 

The literature suggests that both human and mou se CD4 T ceUs and cells of the 

monocyte - M<p lineage express both chains of the IL-27R (TCCR and gp130) but 

most of these published data have reported mRNA levels (Pflanz et aL 2004; Li et 

al., 2005). Very few quantitative data exist concerning surface protein expression 

and most of them have been performed on mouse cells (Villarino et al., 2005). 

Among human mononuclear cells (which includes mainly T and B lymphocytes, 

monocytes, NK cells, and DC), in healthy conditions, about 10% have been shown 

to express TCCR, and about 40% express this receptor chain in conditions of acute 
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myeloid leukemia (Pradhan et aL, 2007). In human, tonsillar B ceIls have been 

shown to express barely detectable levels of both chains (no percentage of ceUs 

have been reported, neither the me an fluorescence intensity) (Larousserie et al., 

2006). More precise information has been published about human naïve B ceIls 

from cord blood, where 30% of these cells are TCCR+ and 26% are gp130+, though 

it lacks information regarding ceUs expressing both chains: TCCR+ gp130+. Splenic 

B ceIls also express distinct levels of TCCR and gp130 whereas the proportion of 

naïve B cells expressing each chain is 39% for TCCR+ and 40% for gp130+, the 

portion of memory cells expressing TCCR is 56% and gp130+ 58% (Boumendjel et 

aL, 2006). Moreover, expression levels between T ceIl and monocyte - Mcp subsets 

have not been compared (Pflanz et aL, 2002; Larousserie et al., 200.4; Pflanz et aL, 

2004; Coulomb-L'hermine et aL, 2007). 

Our study has assessed surface expression of the complete IL-27R (TCCR and 

gp130 chains) on monocytes and CD4 and CD8 T ceIl subsets (Fig. 3A). We also 

compared gp130 expression in absence of TCCR, as it is used by other cytokines 

(IL-6, IL-ll, OSM, and LIF) (Fig. 3B). We analyzed both percentage of positive cells 

as weIl as the proportional number of chains per cell (respectively Fig. 3C for 

TCCR and Fig. 3D for gp130). The ten healthy subjects studied for the surface 

expression of the complete IL-27R showed great homogeneity of chain expression 

among all cell subpopulations tested (Fig. 3), which was stable over time for the 

same donor (data not shown). Monocytes showed the greatest percentage (75% ±. 

2.6%) as weU as the highest expression of the complete IL-27R among the tested 

subsets. In the T cell compartment, a greater proportion of CD8 T cells (mean: 6.6 

±. 0.1 %) than CD4 T cells (mean 0.9 ±. 1.0%) expressed the complete IL-27R. It will 

be of great interest to further distinguish what type of CD8 T ceUs exactly express 

the IL-27R: what type of memory markers the y express and to which type of Tc 

cells the y belong (Tc1jTc2jTc17). Similarly, in the mouse model not aU T cells 

express the IL-27R. Villarino and colleagues have published data on the 

percentage of naïve mouse CD4 (21 %) and CD8 (22%) T cells expressing TCCR 
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and that the percentage of activated or memory T ceUs expressing such receptor 

was increased to 42-51 % in both compartments (Villarino et al., 2005). Our data 

suggests lower number of T ce Us expressing IL-27R in humans than in mice. The 

high level of IL-27R expression among APC could be explained as a mechanism 

for a negative feed-back loop and secretion control of this cytokine. APCs have 

been shown to both express the receptors for and secrete IL-6, IL-12 and IL-27 

(Rival et al., 2006) This suggests that these ceUs can affect the availability of the 

mentioned cytokines in their environment by secretion and uptake. Although APC 

express the receptors for other cytokines such as IFN-y, which is produced by T 

cells, they do not produce the cytokine itself. However, DC have also been shown 

to secrete IFN-y upon IL-4 stimulation (Suto et al., 2005)). 

A greater proportion of CD4 T cells expressed gp130 (65%) (Fig. 3, panel B) 

th an CDS T cells (30%), showing lower levels of expression of this receptor chain. 

This is consistent with other publications, showing that 77% of CD4 T cells in the 

peripheral blood express gp130 vs. 43% of CDS being gp130+ (Oberg et al., 2006), 

whereas 27% of Langherhan's ceUs (which belong to the monocyte -Mcp lineage) 

express gp130 (Larregina et al., 1996). As CD4 T cells play important roles for the 

generation of long-term memory CDS T ceUs, and that gp130 is also used by IL-6, 

which confers anti-apoptotic and proliferative signaIs (Kamimura et al., 2003), one 

can speculate that the higher gp130 levels on CD4 T ce Us compared to CDS T ce Us 

ensure a greater sensitivity to IL-6 survival effects on CD4 T cells than CDS T ceUs. 

While this the sis was in process, the TCCR-Ab producing company (R&D 

System™) sent new information regarding the antibody's specifications 

mentioning that their antibody was not suitable for flow cytometry analysis but 

only for Western blot analysis. To confirm the validity of the results obtained, 

CD14, CD4 and CDS cells were purified by MACS sorting, cells were lysed and 

proteins were subjected to Western blot analysis. The band observed had the 

expected size (74 kDa) (see appendix 1). The levels observed on T cells were quite 

high (see appendix) and similarly to the FACS data obtained, Western blot 

analysis confirmed that human CDS T ceUs express higher levels of TCCR prote in 
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than CD4 T cells. However, CD14 cells expressed much lower levels of TCCR than 

T cells by Western blot. These new data suggest that the flow cytometric data and 

the Western blot data are different. Since a goat polyclonal serum was used, it is 

possible that sorne Ab attached to a still unknown molecule different than TCCR 

on cell surface, especially on monocytes. Non-specific attachment to the surface of 

monocytes could be ruled out since cells were pre-blocked with normal mouse 

immunoglobulin and that the staining obtained was different than that of the 

isotype control (normal goat serum). Flow cytometry and Western blot techniques 

do not detect the same kind of information. As total cellular proteins are analyzed 

by Western blot, this raises the question whether the protein of inter est is in the 

intracellular compartment or on the surface. Flow cytometry, on the other hand, 

assesses surface expression unless cells are permeabilized. It is thus possible that 

both results are accurate. Sorne receptors have been shown to be retained in the 

Golgi apparatus or in the endos ornes after synthesis, and not to be fully expressed 

on the surface (e.g. lep tin receptor and CD95 (Fas)) (Haynes et al., 2002; Belouzard 

et al., 2004). By contrast, sorne receptors have shown more efficiently expressed on 

the surface in the presence of JAKs in the intracellular milieu (Haan et al., 2006). 

Moreover, differences observed between mRNA and protein levels for mouse cells 

(Pflanz et al., 2002; Villarino et al., 2003; Bancroft et al., 2004; Pflanz et al., 2004; Li 

et al., 2005; Villarino et al., 2005; Kamiya et al., 2007) suggest that the more 

appropriate method to determine TCCR expression should assess protein rather 

than mRNA expression. Additional experiments using multiple antibodies and 

methods (flow cytometry, immunocytochemistry) should determine the relative 

expression of 1L-27R among monocytes, CD4 and CDS T cells, since 1L-27R surface 

rather th an intracellular presence will dictate the susceptibility to 1L-27. 
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1.2 IL-27R modulation upon activation 

Using the flow cytometry approach with the potential caveat mentioned above, 

we observed that both chains of the IL-27R were up-regulated early after 

stimulation (already at D2) and their expression decreased over time (Fig 3). This 

up-regulation was observed in multiple donors (n=5) and was more important in 

the CD8 than in the CD4 T cell compartment. Although gp130 is known to be 

down-regulated upon activation in mouse T cells (Betz and Muller, 1998), we 

observed an up-regulation of this chain on the surface of human T cells early upon 

activation. Furthermore, in the mouse system, very little is known about gp130 

surface expression. Published data on mouse thymocytes suggested 10-30% of the 

CD8 and 40-50% of the CD4 expressed gp130 (Betz and Muller, 1998), and these 

percentages are close to our observations on human T cells. On the other hand, 

TCCR is up-regulated upon activation in murine cells (Villarino et al., 2005) 

similarly to what we observed on their human counterparts. New data should be 

generated to assess the expression of TCCR on CD4 and CD8 T cells upon 

activation comparing multiple techniques (see previous section) and multiple 

antibodies. 

Activation of both mouse CD4 and CD8 T cells via the TCR regardless of the 

skewing cytokines present led to a rapid induction of TCCR (Villarino et al., 2005). 

The authors also discussed that although TCR-signalling and proliferation are 

necessary for up-regulation of TCCR, continuous stimulation and cellular division 

leads to the opposite effect probably due to the inhibitory effects of IL-2, also 

induced upon TCR activation, on TC CR expression (Villarino et al., 2005). It will 

be necessary to assess TCCR expression on human T cells under different 

conditions to determine whether such differences between naïve and activated 

human T cells follow the same principles as observed in mouse system. 

Differences in expression of IL-27R on these cells would permit to asses their 

susceptibility to the action of IL-27 and to determine whether this cytokine exerts 

the same pro- and anti-inflammatory effects on human T cells. 
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2.0 EFFECTS OF IL-27 ON T CELL FUNCTIONS. 

In order to mimic inflammation in the body, stimulation of bulk PBMC was 

performed to assess the impact of IL-27. AlI kinds of cytokines as weIl as cells are 

present in this setup and can contribute to the overall observations and this 

situation is most representative of the real "in vivo" situation. Since a-CD3 

antibodies (e.g. OKT3) specifically stimulate T celIs, at first only these cells will be 

activated. However, after stimulation, they up-regulate co-stimula tory molecules 

such as CD137 (OX40) and CD40L. Cognate ligand or receptor of these molecules 

is expressed by APC. For example, activated CD4 T ceUs up-regulate CD40 ligand 

and can activate DC through CD40 (Lane, 2000). As CD40 is also present on Mcp 

and B ceUs, most probably a similar process can be observed in these subsets. 

Moreover, since APC present in the bulk culture (B ceUs and monocytes) have 

been shown to bear IL-27R on their surface, they could also respond to IL-27 when 

we added it to our in vitro culture. 

We used the advantage of CFSE labeling that allowed us to follow aIl cell 

divisions occurring during the incubation period over other methods (e.g. BrdU 

incorporation), which assess divisions only taking place during the last few hours. 

In addition, combining CFSE as say with intraceUular staining for granzyme Band 

IFN-y permitted the analysis of the acquired phenotype of cells that have 

proliferated. 

Addition of IL-27 to a-CD3 stimulation enhanced proliferation (Fig. 6), IFN-y 

(Fig. 7), and granzyme B production (Fig. 8) in a dose-dependent manner for both 

CD4 and CD8 T cells in bulk PBMC cultures. These phenomena were more 

prominent for CD8 T cells which correlate with the higher levels of expression of 

the two chains of IL-27R on CD8 than on CD4 T cells. Our results are in line with 

published data in the mouse system showing that IL-27 induces granzyme B in 

activated CD8 T cells (Morishima et aL, 2005) and IFN-y production in CD4 T cells 

and NK cells (Pflanz et aL, 2002; Lucas et aL, 2003; Takeda et al., 2003). Differences 

observed between the results obtained via intracellular staining for IFN-y (Fig. 7) 

and the ones obtained by ELISA (Fig. 9) of bulk PBMC are probably due to the 
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ongoing dynamics of production and consumption in the cell culture. Whereas 

according to the intracellular staining, IL-27 has maximal effect at [10 ng/ ml] for 

a-CD3 [17 ng/ml], our ELISA results showed a maximal IFN-y production at [100 

ng/ ml] of IL-27, which suggests that at lower doses of IL-27 more IFN-y is 

consumed by different cells like NK, Mep and T cells. In addition, we did not detect 

significant differences in the /:). MFI for IFN-y in our different cultures suggesting 

that the amount of IFN-y produced on a per ceH basis was not different. 

Interestingly, the results obtained with the lower dose of stimulating Ab are very 

similar for both intracellular staining and ELISA (Fig. 9). Remarkably, the beIl­

shaped curve of IFN-y production was preserved in all cultures tested: bulk PBMC 

(Fig. 7), naïve (Fig. llA) and memory (Fig. 13A) CD8 T ceIls, with the exception of 

the curve of a-CD3+a-CD28 stimulation of naïve CD8 T cells. But while for bulk 

PBMC and memory CD8 T cells the maximal effect of IL-27 on IFN-y production 

was at [10 and 100 ng/ ml], for naïve T cells it was at [10 and 250 ng/ ml] when 

stimulating only with a-CD3 and at [500 ng/ ml] in the presence of co-stimulation. 

The resemblance between the former two cultures might be due to the presence of 

contaminating APC in the memory subset isolated whereas for the naïve CD8 T 

ceIl.culture, the very few contaminating cells could not have had an impact on the 

overall outcome. This problem, with contamination of the memory subset, should 

be further resolved in future experiments by isolating very pure CD8+CD45RO+ 

subpopulation via F ACS-sorting. 

The different behavior of naïve (Fig. 10) and memory (Fig. 12) T cells upon 

stimulation in the presence of IL-27 probably represents the pro- and anti­

inflammatory effects of IL-27. While with increasing concentration of IL-27, the 

proliferation of naïve CD8 T cells augmented, in the memory CD8 T cell subset 

this process started to abate after [100 ng/ ml] IL-27. This might be due to 

differential expression of SOCS between naïve and memory T cells leading to the 

observed impact of the activation status of T cells on their responses to IL-27. 

Suppressors of cytokine signalling (SOCS) are a family of proteins, induced by 

cytokine stimulation that can inhibit the same cascade initiating their production 
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(a classical negative feedback mechanism) (Larsen and Ropke, 2002). It has been 

suggested that the action of IL-27 in the absence of SOCS-3 mimics the situation in 

naïve T cells (Brender et aL, 2007). SOCS-3 also regulates co-stimulatory signaIs 

from CD28 whereas SOCS-1 modulates the yc cytokines (Brender et aL, 2007) 

(including IL-2, -4, -7, -9, -15 and -21) (Alves et aL, 2007). The latter can be induced 

by a variety of cytokines (like IL-2, IL-6, IFN-a,~,y etc.), including those signalling 

through gp130 (Davey et aL, 2006). The absence of SOCS-3 leads to 

hyperproliferation, resulting from hypersensitivity to gp130 cytokines, and 

prolonged phosporylation of ST AT -l, -3 and -5 (Brender et aL, 2007). Concerning 

SOCS-l, one study on mouse CD4 T cells (Villarino et aL, 2006) showed that IL-27 

did not induce SOCS-1 mRNA. However, nothing has been published on CD8 T 

cells, and especially on human ones. 

Through ST AT -3, IL-27 enhances cell proliferation on one hand and on the 

other ST AT -3 activation indu ces SOCS3. However, after a-CD3+a-CD28 co­

stimulation of mouse naïve CD4 T cells, IL-27 induces SOCS3 in a ST AT1 

dependent manner, leading to abrogation of IL-2 production (and its proliferative 

effect through ST AT -5) (Owaki et aL, 2006b). Studies on mouse naïve CD4 T cells 

(Owaki et aL, 2006b) suggest that in the presence of a-CD3 + a-CD28, increasing 

doses of IL-27 decreases proliferation, but this is not what we observed in human 

naïve CD8 T cells (Fig. 10). This might be due to differences between the mouse 

and huma n, or might represent a difference between the effects of IL-27 on naïve 

CD4 vs. naïve CD8 T cells, as our results pertained to CD8 T cells. Alternatively, 

activated naïve T cells can differentiate into activated cells during the incubation 

period used in our experiment although the time used may have been insufficient 

for a complete naïve-memory transition but rather a naïve- activated transition. Of 

note, mouse memory T cells have been shown to express higher levels of TCCR 

than their naïve counterparts (Villarino et aL, 2005). We observed high levels on 

activated CD4 and CD8 T cells, which could lead to the speculation that on 

memory T cells, IL-27 can provide a different effect because of the higher TCCR 

levels while gp130 is down-regulated upon activation (Betz and Muller, 1998). 
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However, gp130 is up-regulated by IRF-1 (Erickson et aL, 2004) and IL-27 has been 

shown to induce this factor (Fakruddin et al., 2007) raising the question on how 

these two signaIs: TCR and IL-27 will dictate the final gp130 expression. 

According to observations made in the mouse model (Owaki et aL, 2006b), IL-

27 induces SOCS3 in the presence of co-stimulation, which further suppresses 

IFN-y and IL-2 production and th us proliferation. On one hand, IL-2 can be 

produced by CD4 and CD8 T cells, as weIl as by sorne APC (DC have been shown 

to produce small amounts which are considered essential for T ceIl proliferation) 

(GaHen and Liu, 2004). On the other hand, monocytes can be activated by 

cytokines such as IFN-y. We cannot rule out that the increased IFN-y production 

(Fig. 7) observed in our culture may have aHected monocytes. Furthermore, given 

that a-CD3 is a T-specific stimulation, the decrease of proliferation with increase of 

IL-27 concentration in bulk PBMC may be due to exhaustion of IL-2 sources under 

these conditions, thus IL-2 being a limiting factor. lt has been already described 

that by secreting IL-2, CD4 T cells enhance the proliferation of CD8 T celIs 

(Lanzavecchia, 1998; Cheng et aL, 2002) so this could explain why in the same 

conditions CD8 T cells proliferate more than CD4 T cells. Furthermore, while at 

different concentrations of a-CD3, both CD4 and CD8 T cell subsets had similar 

proliferation profiles (Fig. 2), IL-27 more prominently boosted the proliferation of 

CD8 T cells (Fig. 6) whereas at higher a-CD3 dose [17 ng/ml] detection of IL-27-

enhancing effects was hindered due to the already strong proliferative signaL 

Another hypothesis could be that the combination of both signaIs through TCR, 

induced by a-CD3, and the one delivered by IL-27 might activate different 

transcription factors, which have been shown for cells in different activation state, 

and thus lead to different results. It has already been suggested that IL-27 can 

synergize with TCR for signal transduction in mouse cells (Brender et aL, 2007). 

Interestingly, in bulk PB MC and in memory CD8 T cell culture, the IFN-y and 

granzyme B (Fig. 7B, 8B, 11 and 13) production in response to IL-27 followed the 

same trend, whereas naïve CD8 T cells showed a different profile. The IFN-y and 

granzyme B gene have been shown to be regulated by transcription factors NFAT 
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(Nuclear factor of activated T cells) and AP-1 (Activator protein-1), which work in 

tandem. Other genes regulated by the tandem NFAT:AP-1 are the genes of IL-2, 

GM-CSF, IL-4, -5, -13, CD40L, CD95 (FAS), CD25 (which is the a-chain of the IL-2 

receptor) and MIP-1a. To make the story more complicated, IFN-y and granzyme 

B can be driven also by Eomes, which is expressed in NK and CD8 T cells (but not 

by NKT cells), which probably compensates in the absence of T-bet (Glimcher et 

al., 2004). But while T-bet binds directly to the granzyme B promoter, the 

mechanism of action of Eomes is still unknown (Glimcher et al., 2004). The 

expression of granzymes can be induced by different cytokines such as IL-2, IL-12 

and IL-15, and IL-2 can further synergize with IL-12 to boost granzyme B levels 

(Glimcher et al., 2004). As SOCS3 has been shown to inhibit NF AT (Banerjee et a1., 

2002) and IL-2 (Owaki et a1., 2006b), it can potentially decrease granzyme B 

expression. One can speculate that our observations with human naïve CD8 T cells 

(increase of granzyme B expression with increasing dose of IL-27) is due to the 

absence of SOCS3. However, activation through TCR and CD28 induces AP-1 as 

well as NFAT and NF-KB transcription factors (Ward, 1996). AP-1 is regulated at 

the transcriptional and posttranslational levels of jun and fos genes (Angel and 

Karin, 1991). C-fos gene is induced by ERK1/2 kinases, whereas c-jun is induced 

by JNK-1/2 and p38 kinases. As IL-27 can activate both p38 MAPK and ERK 1/2 

signalling pathways with ERK 1/2 activation, leading to T-bet expression (Owaki 

et a1., 2006a), this suggests that IL-27 can potentially induce AP-1 as well. This 

could probably explain why in the absence of a-CD28 but presence of a-CD3 IL-27 

boosted granzyme B, whereas in the presence of CD28 signaIs (Fig. 11, panel B) IL-

27 synergized to increase granzyme B production, as previously suggested by 

others (Brender et a1., 2007). This could explain the increased IFN-y production by 

naïve CD8 T cells in the presence of co-stimulation and IL-27 (Fig. 11, panel A). As 

ERK 1/2 induce T-bet, but also AP-1, these two factors probably compensate or 

synergize with each other, so in the absence of co-stimulation, increasing doses of 

IL-27 decreased IFN-y production, while in the presence of a-CD28 and IL-27, 

there seems to be a continuous enhanced production of this cytokine. This could 
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also be the reason (lack of synergy with a stronger stimulus like CD2S) for the beIl­

shaped curve of response of both IFN-y and granzyme B production by memory 

CDS T cells (Fig. 13). 

Another hypothesis could be related to the suggestion that wh en the stimuli 

are allogenic, IL-27 induces the expression of Eomes, which further enhances the 

expression of IFN-y, granzyme Band perforin (Pearce et al., 2003), whereas with 

Ag-specific stimuli, IL-27 indu ces T -bet. The in vitro stimulation paradigm we 

used may be closer to the former situation as increasing doses of IL-27 have 

prominent enhancing effects on granzyme B production in naïve CDS T ceUs, 

whereas it is only a trend in memory CDS T cells. As memory T cells differentiate 

into effector cells faster than naïve T ceIls, it is possible that the plateau of the lytic 

enzyme production was reached faster, with very small doses of IL-27. To answer 

the question, concerning different effects of IL-27 via different transcription factors 

(T-bet and Eomes), further experiments should be done with allogeneic, Ag 

specific and polyclonal activation. Allogeneic stimulation (Mixed Leukocyte 

Reaction (MLR)) can be performed in the presence or absence of IL-27, in which 

purified T ceUs from one donor are mixed with APC from another donor. To 

mimic the Ag specific stimulation in the body, whole PBMC can be labeled with 

CF SE and can be incubated with viral Ag such as Influenza (as most people were 

infected at least once in their life) or Tetanus (as most people have been vaccinated 

for this Ag). However, the last experimental set-up would allow only analysis of 

memory cells as frequency of naïve T cells is too low to be studied in vitro. 

Polyclonal T lymphocyte stimulation can be induced with i) a-CD3 antibody as it 

cross-links the T cell receptor and indu ces signalling; ii) phytohemagglutinin 

(PHA), which glues together aIl surface molecules. 

The question that remains to be answered is what determines whether IL-6 

and IL-27 (both from the same family of cytokines) exert pro- or anti-inflammatory 

action. It would be of great interest to determine how these cytokines are balanced 

and under which hierarchy: which one gets silenced first and how it is determined 

when IL-27 and IL-6 will have either pro- or anti-inflammatory action. This 
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phenomenon might be dependent on several variables. The first variable might be 

the type of receptors and ligands recruited to the immunological synapse and the 

sum of aIl these distinct signaIs determining the final outcome. The second could 

be the spatial characteristics of IL-27 secretion; whether it is released or not in the 

immunological synapse, together with IL-12 and IFN-y it could affect the overall 

activation. This would further pose the question whether cytokines secreted 

together in the immunological contact could have interactions affecting each 

other' s accessibility to their cognate receptor. Additional complexity is added to 

the problem as cytokines such as IL-6 and IL-27 can compete for a common chain 

for signalling. What favours one cytokine' s attachment to this receptor over the 

other cytokine? Is it a matter of stronger affinity to the receptor or concentration of 

cytokine or both factors? The third variable concerns the type of APC and its 

cytokine production profile, as the combination of cytokines may result in 

different outcomes. The balance between cytokines is a very intriguing question in 

the light of the suggested redundancy between IL-27 and IFN-y on one hand, and 

IL-27 and IL-12 on the other. The other open question pertains to the threshold 

determining the effects of IL-27 toward pro or anti-inflammatory properties, if 

there is a threshold or rather combination with other cytokines dictating such 

outcome. 

In the light of the observations that IL-27 synergizes with IL-12 for inducing 

IFN-y production in a T-bet dependent manner (Pflanz et al., 2002; Takeda et al., 

2003), while IL-27 alone does not induce much IFN-y production (Lucas et al., 

2003) the results concerning IFN-y production by purified subsets of CDS T cells 

can be interpreted in two ways. One possibility is that in human, IL-27 does not 

need to synergize with IL-12 for IFN-y production or, even their small quantity, 

contaminating cells could contribute to the observed phenomena. Further 

experiments are needed to clarify the question of synergized action of IL-12 and 

IL-27 on human cells by addition of blocking Ab for IL-12 in the experimental set 

up. If the results obtained by blocking IL-12 differ significantly from the ones 

described here, this would mean that both cytokines synergize. 



105 

IL-27 and IFN-y have been suggested to have a redundant action on human 

monocytes though via different regulation mechanims (tighter regulation of IL-27 

signalling (Kalliolias and Ivashkiv, 2008)) to tune Mcp responses to the 

environment. This means, that given the different sources of these two cytokines 

(IL-27 is produced mainly by APC, while IFN-y is produced by NK, NKT and 

activated T cells (Kalliolias and Ivashkiv, 2008)) it would be easier for Mcp to 

switch off their own source of signalling than controlling a signal coming from 

another source and could bring a "different message". 

We have not looked at the signalling pathway induced upon IL-27 addition in 

our in vitro cultures. IL-27 has been reported to activate STAT-l, -2, -3, -S, and to a 

lesser extent STAT-4 in mouse naïve CD4 and CD8 T cells (Hibbert et al., 2003; 

Lucas et al., 2003; Takeda et al., 2003; Kamiya et al., 2004; Morishima et al., 2005). 

For cytokines with dual pro- and anti-inflammatory action, like IL-6, the final 

effect has been shown to be dependent on the relative balance of STAT-l and 

STAT-3 activation. Since STAT-l and -3 are the best studied transcription factors 

induced by IL-27, only they will be discussed here-in. Though STAT-l activation 

has been associated so far with promoting inflammation, inhibitory effect of this 

transcription factor has also emerged as type 1 and II IFNs can inhibit through this 

pathway IFN-y production and proliferation of T cells (Lee et al., 2000; Nguyen et 

al., 2000). ST AT -3 phosphorylation is also related to inhibitory events (Levy and 

Darnell, 2002; O'Shea et al., 2002). While STAT-l mediates inflammatory, 

proapoptotic and antiproliferative effects, STAT-3 has the opposite action 

(Kalliolias and Ivashkiv, 2008) in Mcp. Furthermore, IL-27 has been shown to 

suppress IL-2 production through induction of suppressor of cytokine signalling 3 

(SOCS3) (Owaki et al., 2006b). SOCS3 induction could probably explain the bell­

shaped curve of proliferation (as IL-2 is involved in this process) and in IFN-y 

production, as SOCS3 is a negative feed-back regulator of IL-2, which is also 

influenced in the same way by SOCS1. While SOCSl is low in naïve T cells and is 

up-regulated upon Ag-stimulation, SOCS-3 is highly expressed in resting T cells 

and is down-regulated in newly activated T cells (Brender et al., 2007). Of note, 
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more is known about SOCS expression in mouse than in human. However, some 

of the data in the mouse system have been confirmed in man as weIl. In mouse, 

SOCS-1 and 3 can be induced by different stimuli like granulocyte colony 

stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor 

(GM-CSF), macrophage-colony-stimulating factor (M-CSF), IFN-y, TNF-a, IL-2, IL-

6, IL-ll, IL-12, IL-27, oncostatin M (OSM) (Inoue and Kubo, 2004; Davey et aL, 

2006) and most of these SOCS inducers become their targets. This far, in human 

ceUs, IL-2, IL-ll and type 1 IFNs have been confirmed to induce SOCS proteins 

(Bren der et aL, 2005; Dimitriadis et aL, 2006; Zitzmann et al., 2007) though further 

quantitative comparison is needed between the two systems as the quantity of 

SOCS supposedly is important for the lev el of silencing of the cytokine signaUing. 

3.0 CD8 AS A SOURCE OF IL-27 

As CD8 T ceUs have been proposed to be a source of IL-27 (Brender et aL, 

2007), human CD8 T ceUs were purified, shortly stimulated in vitro, and then 

su bjected to real time PCR analysis for both subunit of IL-27 (EBI3 and p28) (Fig. 

14). Highly pure (>98%) human CD8 T ceUs did not show IL-27 expression at the 

mRN A level and thus were not considered a source of this cytokine. The 

difference between these results and the publication may be due to several 

reasons: i) the group has worked with purified T-ceUs but there might have been 

contaminating APC which have led to false positive results; ii) the published 

results were obtained from murine ceUs and the principle of secretion of IL-27 in 

human and mou se might be different. However, both subunits of IL-27 in human 

can be secreted by different ceU types and due to the lack of disulfide bond 

between the two subunits, theoreticaUy the cytokine can be formed in the 

extraceUular milieu, although not proven in physiological conditions (Batten and 

Ghilardi, 2007). Thus, human CD8 T ceUs can contribute to the increase of the 

extraceUular concentration of EBI3 (see Fig. 14), but not of p28. 
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4.0 FUTURE DIRECTIONS 

Apart from APC and T cells, IL-27 has effects on different other cell types. It 

been shown to induce IFN-y and IL-IO production in NK cells (Pflanz et a1., 2002; 

Grant et a1., 2008). In mast ceIls, IL-27 induces the production of pro-inflammatory 

cytokines like IL-la, IL-lp, IL-18, TNF-a (Pflanz et al., 2004). It would be 

interesting to understand the molecular mechanisms of switching between these 

pro- and anti-inf1ammatory effects of IL-27. In addition, it would be important to 

investigate the protein levels of this cytokine in serum of subjects with different 

health disorders and the effect of the cytokine on adhesion molecules, different 

than ICAM-l and homing receptors. Such effects on up- and down-regulation of 

adhesion molecules could elucidate the contribution of IL-27 in modulating cell 

trafficking in different organs like brain, pancreas, intestine, skin etc. This would 

help to further understand the mechanism of action of this pleiotropic cytokine in 

autoimmune diseases like Multiple sclerosis, diabetes, Crohn' s disease and colitis, 

rheumatoid arthritis, lupus erythematosus and others. Thl/Tel responses have 

been implicated for many years in man y autoimmune diseases (i.e. lupus 

erythematosus, rheumatoid arthritis, multiple sclerosis (Masutani et a1., 2001; 

Yamada et a1., 2007; Hedegaard et a1., 2008)). IL-27 promo tes type 1 immunity 

responses and upregulation of adhesion molecules on T cells. Thus, it will be 

highly relevant to compare the capacity of both CD4 and CD8 T cells at migrating 

across endotheliallayers following IL-27 treatment. In adition, cytokines from IL-6 

family, namely IL-6 and LIF, are involved in the recruitment of Mcp at the site of 

peripheral nerve in jury (Tofaris et a1., 2002) as LIF has been shown to attract Mcp 

and IL-6 to boot LIF production be denervated Schwann cells (Tofaris et a1., 2002). 

This creates a possibility for IL-27, which belongs to the same family and is 

produced by APC, to be involved in Mcp recruitment in the nervous system. 

Given that man y cytokines are involved in immune responses, and IL-27 has 

been shown to synergize with TGF-p, IL-6, IL-IO and IL-12 in IL-IO production 

(Awasthi et a1., 2007; Fitzgerald et a1., 2007b; Stumhofer et a1., 2007) and that IL-27 

synergizes with IL-12 in IFN-y production (Lucas et al., 2003) it would be of great 



108 

benefit to further reveal different partners of IL-27, as weIl as cytokines that get 

silenced in the presence of IL-27, so immune responses could be manipulated by 

changing the balance between the different cytokines. 

Despite there are many unresolved questions about the biology of IL-27, our 

work contributes to enrich the knowledge about this cytokine. This study shows 

for the first time levels of expression of both chains of IL-27R on human CD4 and 

CD8 T cells and modulation of this receptor upon cell activation. As more CD8 T 

lymphocytes showed IL-27R expression, the y were more susceptible to the action 

of this cytokine. Being a cytokine, produced by APC in the early stages of an 

infection (Pflanz et al., 2002), IL-27 plays a role in the skewing of the immune 

responses towards type 1 immunity very early on. This has been shown not only 

in vitro, but also in many mouse models of human diseases. T cells from TCCR/­

mice have shown impaired IFN-y and enhanced IL-4 production during the initial 

stages of activation (Hamano et al., 2003; Artis et al., 2004; Miyazaki et al., 2005), 

significantly reduced production of different chemokines like CXCL10, CCL2 and 

CCL5 in an Ag-specifie response (Sonoda et al., 2007). Thus, human IL-27 could 

modulate the outcome of diseases and play a central role in the orchestraton of 

detrimental vs. beneficial immune responses. It should not be forgotten that every 

process in an organism is a result of the joint action of many factors and thus is a 

result of their balance. However, further knowledge would allow us to modulate 

this action and thus to bring back the balance in cases of health disorders. Because 

the purpose of science is to give answers to questions and the most important one 

is the question of physical and mental health. 
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APPENDIXI 
Supplementary data: TCCR expression by different cell subsets via Western blot 

Figure 15. TCCR expression by different cell subsets via Western blot 

Purified CD4+ and CD8+ T cells and monocytes (CDI4+) were isolated and disrupted for protein 

extraction, which was consecutively subjected to gel electrophoresis and incubated with polyclonal 

biotinyalted anti-TCCR goat polyclonal antibody, followed by streptavidin-HRP and then revealed with 

ECL Plus. Experiments were performed by Diane Beauseigle. Purity of each subset > 98%. Data 

representative of 3 healthy donors. Numbers indicate position of ladder markers. 
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