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Résumé 

Les suppresseurs de signalisation des cytokines (SOCS) sont une famille des protéines 

qui contrôlent la signalisation des cytokines par l'inhibition des JAK/STATs. Ils fonctionnent 

comme un adapteur pour la formation d'une ligase E3. De cette façon, des protéines SOCS aident 

à la dégradation des JAK et d'autres cibles, incluant d'autres SOCS. SOCS 1 est la protéine la plus 

étudiée de la famille. Elle a été identifiée comme étant nécessaire pour la fonctiori normale du 

développement des lymphocytes. Aussi SOCS 1 est hyperméthylé dans beaucoup des cancers et 

fonctionne comme un suppresseur de tumeurs. Les mécanismes précis de SOCS 1 comme 

suppresseur de tumeurs ne sont pas connus. La plupart des études se concentrent sur Je rôle de 

SOCS 1 dans la dégradation des kinases JAK et l'inhibition de la voie de signalisation de 

JAKISTAT. 

Dans cette étude, nous avons démontré que la surexpression de SOCS 1 induit un arrêt 

permanent dans le cycle cellulaire par l'induction des mécanismes de sénescence. SOCS] 

prévient la formation de colonies dans la lignée de cancéreuse des U20S et rend active la voie de 

signalisation de p53, peut-être par des interactions directes. Nous avons découvert un résidu 

nécessaire, le N 198, qui reste dans le « Cul box» de SOCS 1. Quand ce résidu a subi une mutation 

ou une perturbation, ceci inhibe la capacité de SOCS] à induire l'arrêt de croissance. Le résidu 

N 198 est impliqué dans la capacité de recrutement des cullins, ceci suggère que des séquences 

différentes dans le« Cul box» de SOCSI peuvent lui donner la capacité de se lier avec d'autres 

protéines ce qui lui donne la capacité d'induire un arrêt de croissance et de rendre active la voie 

de p53. D'autres membres de la famille des SOCS ne sont pas capables d'induire un arrêt de 

croissance, alors que SOCS5 semble fonctionner comme oncogène. 

Mots Clés: SOCS: suppresseur de signalisation par les cytokines, JAK : kinase Janus, STA T : 
capteur de signal et activateur de transcription 
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Abstract 

The suppressors of cytokine signaling are a powerful family of proteins shown to 

negatively regulate cytokine signaling by inhibiting the JAKIST AT pathway. By acting as 

adaptor proteins and recruiting the modules of an active E3 ligase, SOCS proteins can degrade 

JAKs and a variety of other target substrates including other SOCS molecu les. SOCS 1 has been 

the most studied ofthe family and has been shown to be vital to normal lymphocyte development. 

As weil it has shown to be silenced via hypermethylation in a variety of cancers and been shown 

to contain the properties ofa tumor suppressor. The exact mechanisms ofSOCSI as a tumor 

suppressor are not known though most theories focus on the degradation of JAK's and inhibition 

of JAK/ST A T signaling. 

Here we demonstrate SOCS 1 overexpression is able to induce permanent cell cycle arrest 

in primary cells by induction of the senescence machinery. It also prevents colony formation in 

the U20S sarcoma line and leads to activation of the p53 pathway, possibly through direct 

interactions. Also we have identified an essential residue, N 198, which when mutated or deleted 

leads to loss of ability to promote growth arrest. This residue is unique to SOCS 1 and lies within 

the Cul box domain of SOCS 1 and is involved in Cullin recruitment. This suggests that 

differential sequences in the Cul box of SOCS 1 compared to other SOCS family proteins may 

allow it to bind to different cullins or other proteins that give it the ability to promote growth 

arrest in a variety of cells and activate the p53 pathway. They also hint towards the fact that 

SOCS 1 induced senescence and growth arrest is independent of its actions on the JAKIST A T 

pathway. Other members of the SOCS family investigated were not able to induce premature 

senescence, while sorne such as SOCS5 promoted cell proliferation. 

Key words: SOCS: suppressor of cytokine signaling, JAK: Janus kinase, ST A T: Signal 
transducer and activator of transcription 
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Cytokine Signaling & Janus kinases 

Cytokines are powerful signaling ligands used to communicate a signal from one 

cell to another and are capable of commencing multiple signaling cascades within a cell 

(1]. Cytokine signaling has been shown to play a large role in growth and differentiation 

though it is largely known for its role in immune responses such as wound healing and 

inflammation. They have also been demonstrated to play roles in development of the 

nervous system, and development during embryogenesis. Cytokines act in a similar 

manner to hormones as they are secreted and pass signais from one cell to the next, 

binding to a membrane bound receptor to commence their cascade within that cell. Most 

cytokines are sm aIl water-soluble proteins or glycoproteins and can be secreted by many 

different cell types. Four groups of cytokines have been classitied based on structure. 

The tirst group is classified as having a four a-helix bundle and can be further divided 

into subfamilies. The three subfamilies are; the interferons (IFN), activated in viral 

response, the interleukin-2 (IL-2) subfamily, which mediates signais to activate 

lymphocytes, and the interleukin-l 0 (IL-l 0) subfamily, which acts as an inhibitory 

molecule and prevents activation of other cytokine pathways such as the IFN and IL-2 

pathways (2-7]. The a-helix bundle group makes up the largest and most weil known 

group of cytokines. The other three groups include the interleukin-l group (among the 

tirst cytokines discovered), interleukin-7 group and a group of cytokines simply classified 

as chemokines (8-11]. 

Each specifie cytokine has its own receptor that in tum is associated with a 

tyrosine kinase from the Janus kinase family (JAKs) [12-15]. The JAK family of kinases 



consists of JAKl, JAK2, JAK3, and a fourth member, TYK2 [12, 13].lt is the JAKs that 

are responsible for downstream activation of aIl other kinases seen involved in cytokine 

signaling. AlI JAKs are similar in size, 120-130Kda. They are characterized by having a 

carboxy terminal kinase domain and pseudo kinase domains that precedes it. JAKs are 

almost ubiquitously expressed except for JAK3, which is found primarily in 

haematopoietic ceIls. 

JAK binding to cytokine receptors can take a variety offorms, which are 

generaIly c1assified into three patterns. JAK2 can bind constitutively, or in response to 

ligands, to single-chain receptors which then aggregate and cause a subsequent 

aggregation of JAK2 [16, 17]. This leads to transphosphorylation of the kinase activation 

loops, activating the JAKs and increasing their catalytic activity. The now activated 

JAK2 is able to phosphorylate the receptor and target substrates recruited by the receptor, 

as well as autophosphorylate itself. A second model involves a pc_chain associated with a 

ligand binding a-chain, JAK2 associated with the pc_chain, which leads to its activation 

and signal transduction [17-19]. This is commonly seen in the lL-3 and 1L-6 families. 

The interferons and 1L-2 family require two chains to induce JAK signaling [20-24]. IFN­

a & p have a p-chain, which associates with JAK2 and a a-chain that associates TYK2 

[21-24]. IFN-y has an a-chain that associates with JAKI and a p-chain that associates 

with JAK2 [23]. This is similar to the 1L-2 receptor, where JAK2 binds to either a ligand 

specific a-chain or the proximal region of the p-chain and JAK3 binds to a shared Yc 

chain, the receptor aggregates bring the two JAKs together [20]. 

Though the mechanisms may vary slightly, the end goal of cytokine binding to a 

receptor is to cause aggregation of the JAKs which leads to their subsequent cross 
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activation and commences the signaling cascade [l, 12, 13, 18, 20]. JAKs can activate 

many signaling cascades by means of recruitment using SH2 domains oftarget 

molecules. Such target molecules include RAS, phosphatidylinositol-3-0H-kinase 

(PI3K), as weIl as the signal transducers of activation and transcription (STA TS). 

STATS 

The ST A TS make up a well-known family of transcription factors heavily linked 

to cytokine/JAK signaling. ST A TS act upon target genes through different mechanisms 

as weB. The first mechanism was found in studies involving INF-a/~, these showed 

ST A Tl was phosphorylated in response to IFN and bound in a complex with p48 [25]. 

This caused ST A TIto enter the nucleus and cause transcription of genes containing IFN 

response elements (lSRE). Later it was shown IFN-y caused phosphorylation of ST A Tl 

which caused it to form a dimer which th an moves into the nucleus and binds to gamma 

activated sequences (GAS) in target genes and drives transcription [26]. As more ST A T 

molecules were cloned, this model became the widely accepted model for ST AT 

activation, and it has since been shown that that almost aIl cytokines activate at least one 

STAT [13]. 

AlI ST AT members contain conserved SH2 domains as weIl as an SH3-like 

domain and a DNA binding domain [13, 27]. Phosphorylation of tyrosine residues in the 

carboxy terminus mediates both hetero and homo di mer formation via the SH2 domains 

[28]. Dimer formation leads to entry into the nucleus where transcription follows [26, 28] 
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ST A TS can also be activated by other serine/threonine kinases and have been linked to 

MAPK and the RAS signaling cascade [26,28-32]. 

Discovery of a SOCS Family of pro teins 

Obviously, cytokines are involved in a variety of important signaling cascades 

and therefore must be carefully regulated. Constitutive activation of any growth or 

proliferation signal, as w~ll as a chronic inflammation response, can have dire 

consequences for the cell, the worst being malignant transformation. As such, another 

family ofproteins known as the suppressors of cytokine signaling (SOCS) exist to 

negatively regulate the em~cts of cytokines through a variety ofmechanisms including 

direct inhibition oftheir receptors or the JAKs which activate them [33-37]. The first 

protein ofthis family was discovered in 1995 and named cytokine induced suppressor 

(CIS) [35]. 

Currently, there are eight known members of the SOCS family in humans 

(SOCSI-7 and CIS) [38]. By studying the primary amino acid sequences of the SOCS 

family members it has been revealed that there exists a high degree of similarity between 

pairs of proteins. For example, SOCS 1 is very similar to SOCS3 and thus they form a 

pair, SOCS2 and CIS make another, while SOCS6&7 and SOCS4&5 round out the 

pairings. SOCS family members a11 share a SH2 domain as well as conserved C-terminal 

SOCS box motif, but have variable N-terminals. The SOCS box domain has since been 

found in a variety of non-SOCS family proteins, over twenty so far [39]. The mechanisms 
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of inhibition by SOCS proteins varies from protein to protein, sorne ev en display multiple 

mechanisms. 

SOCS 1 has become the most studied of the group. It was cloned and described by 

three different groups under different studies, which speaks of its versatility as a negative 

regulator of cytokine signaling. Naka et al. were trying to find other STA T family 

members using an antibody for a sequence in the ST A T3 SH2 when they identified both 

CIS and a new gene, which they cloned and named Stat-induced ST A T inhibitor-1 or 

SSI-1 [37]. SSI-1 showed a 36% homology to the SH2 domain ofCIS, but none to 

ST A T3 or ST A T6, except for the phospho-tyrosine recognition site. A second group, 

looking for proteins that could bind to the JAKs directly through the JH1 domain, also 

managed to clone SOCS1, which they at the time had named JAB for Janus kinase 

binding protein·[34]. They too reported a protein with a SH2 domain sharing simi1arity to 

that of CIS (35%). A third group named the protein SOCS 1 after finding it by screening 

for genes encoding proteins that could inhibit IL-6 signa1ing [33]. They performed a 

screen of library of genes from the factor dependent cellline FDC-P 1. Upon infecting Ml 

cells with a retrovirus containing the cDNAs from the FDC-P 1 cells they found a 1.4 Kbp 

insert that rendered the Ml cells unresponsive to the IL-6 signal. They cloned the insert 

and also found it to be a relative of CIS and named it the suppressor of cytokine signaling 

1 (SOCS1). 

The early studies on SOCS 1 alllead to similar results that helped e1ucidate its role 

in cytokine signaling and shed sorne light on the mechanisms through which it works. 

The SOCS1 gene rests on a single exon and is located in mice on chromosome 16, close 

to the protamine gene cluster [33, 34]. It shares no homology to any of the protamine 
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genes, but rather corresponded to what was a then unknown ORF at the 3' ofthese genes 

[34]. It encodes a 212 amino acid prote in in mi ce and rats, 211 in humahs [33,34,37]. 

The human, mouse and rat copies of the protein are highly homologous sharing a 95-99% 

amino acid sequence [33]. SOCSI contains a SH2 domain at amino acids 79-167 and a 

SOCS Box domain at its C-terminus [33,34]. Using the sequence from SOCSI and 

expressed sequence tags (ESTs) Starr et al., were able to clone the first two other related 

SOCS proteins SOCS2 and SOCS3, which have similar SH2, and SOCS box domains as 

SOCS] [33]. SOCS1 expression is ubiquitous in most tissue types though it has been 

repeatedly shown to have higher levels of expression in the thymus, spleen, testes and 

lung [33, 37]. 

Role of SOCS! 

Investigations into the role of SOCS l in cytokine signaling clearly show its role 

as a negative regulator. When expressed in myeloid leukemia (M 1) cells that also 

expressed a Thrombopoietin receptor, SOCS 1 conferred a general resistance to cytokine 

signaling [33]. Furthermore these cells continued to grow and proliferate when 

expressing SOCS 1, even when treated with a variety of cytokines including IL-6, IFN, 

Leukemia inhibitory factor (LIF) and Thrombopoietin (in Ml.mpl cells). Such treatment 

caused parental Ml cells to stop proliferation and form differentiated colonies [33, 37]. 

Treatment with dexamethasone did lead to differentiation in cells expressing SOCS 1, 

implying it acted only in the cytokine signaling pathways, and not the general 

differentiation process [33]. Expressed in NIH3T3 cells, SOCSI was able to block many 
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of the antiviral activities ofIFN [34]. Since SOCS 1 seemed to inhibit cytokine signaling, 

it was suspected that it acted as a negative feedback rnechanism so the effects of cytokine 

signaling on SOCS 1 induction were studied. In growth factor dependent celllines such as 

Ml and the hybridoma MH60 cellline, SOCSl was induced in response to treatment with 

IL-6 and soluble IL-6 receptor [37]. This was repeated in the IL-4 dependent line CT4S 

after treatment with IL-4 as weIl as the G-CSF dependent NFS60 line with G-CSF 

treatment. Bone marrow ce Ils stirnulated with different cytokines are capable of not only 

inducing SOCS1, but also a variety of SOCS family members, depending on the cytokine 

[33]. Also sorne cytokines are capable of inducing certain SOCS genes in specific cell 

lines but not others. IL-3 and activation of the erythropoietin receptor (EPO) are unable 

to induce SOCS1 in Tf-l and NFS60 cells. IL-6 induces CIS, SOCSl-3, in mi ce liver cells 

but only C1S and SOCS1 in Ml ceIls, displaying a cell specific cytokine response in the 

induction of SOCS family members. 

Since SOCSI inhibits many cytokines, and most cytokine signaIing cascades 

signal through the JAKISTAT pathway, the interactions between SOCS 1 and the 

JAKISTA T pathway were further studied. IL-6 and IL-4 are inhibited by SOCS l and are 

both capable of inducing SOCSl. Both act through the JAKIST A T pathway, IL-6 through 

ST A T3 and IL-4 through ST A T6. Studies of the SOCS l promoter revealed binding 

sequences for ST A T3 and ST A T6, implicating SOCS1 as a target gene for ST AT 

signaling. It has since been shown that SOCS1 also has binding sites for ST A T5 as weIl 

in its promoter. Ml cells transfected with SOCSl and STAT3 show induction ofSOCSI 

rnRNA in response to IL-6. However when SOCS 1 is co-expressed with a ST A T3 

mutant, in which a tyrosine reside phosphorylated by a JAK (Y705) is replaced with a 
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phenylalanine, no induction takes place, showing a requirement for activated ST AT 

signaling as a requirement for the induction of SOCS] [37]. 

Tyrosine phosphorylation ofSTAT3 and the Gp130 protein, which is part of the 

cytokine receptor and is phosphorylated by JAKs, were both reduced in Ml cells 

expressing SOCS]. IL-6 treatment is able to phosphorylate both STAT3 and Gp130 in 

normal Ml cells, though expression of SOCS] reduces this .. STAT3 and STAT5 tyrosine 

phosphorylation was also reduced in 293 cells expressing SOCS]. General ST AT 

activation in response to many cytokines is greatly inhibited by SOCS 1; ST A T5 

activation by EPO and ST A T3 activation by IL-6 is almost completely aboli shed in 

SOCS] expressing Ml cells [34]. As well several STAT target genes su ch as the 

immunoglobin fragment Fcy recptor (FcyR) show a large reduction in expression in 

SOCS] Ml cells. 

SOCS 1 also pre vents ST AT molecules from forming dimers that enter the 

nucleus, preventing their activation ofDNA transcription [33]. In Ml cells treated with 

IL-6, the most common dimers observed are the SIF-A (STAT3 homodimer) and SIF-B 

(STATl/STAT3 heterodimer), the formation ofthese complexes is observed using 

electrophoretic mobility shift assays. In SOCS] expressing cells IL-6 treatment fails to 

induce formation ofthese dimers, as well it also blocks formation of the SIF-C STATI 

homodimer induced by IFN-y. Hence SOCSI is able to prevent tyrosine phosphorylation 

of ST A Ts, preventing them from forming an active heterodimer and blocking 

transcription of ST AT target genes in the process. 

SOCS 1 does not directly bind and inhibit the ST AT transcription factors. Instead 

it targets the JAKs that activate them and inhibits their signaling cascade. SOCS 1 directly 

8 



interacts with the JH 1 domain of JAK2 via its SH2 domain and has been shown to 

interact with TYK2 as well [34,37]. However, JAK activity is needed for this interaction 

as SOCS 1 does not interact with a K882D kinase defective mutant copy of JAK2. When 

co-expressed in 293 cells JAK2 tyrosine phosphorylation levels are much lower than in 

control 293 cells not overexpressing SOCS]. However, phosphorylation at a key residue 

YI 007, is necessary to activate the JAK2 and needs to occur before SOCS 1 can bind. 

This implies that upon activation of the JAK2, SOCS 1 is able to binds to JAK2 and 

inhibit its autophosphorylation and subsequent phosphorylation of cytokine receptors, 

ST AT molecules and their target genes. Therefore, it is through inhibition of the activity 

of the JAKs that SOCS 1 confers a resistance to cytokines and negatively regulates their 

signaling cascades. 

When JAK2 and ST A T3 are co-expressed in 293 cells, ST AT3 undergoes a rise in 

tyrosine phosphorylation. The same occurs when STAT5 is co-expressed with JAK2. If 

JAK2, SOCS 1 and STAT3/STAT5 are aIl expressed together, no phosphorylation of 

ST A T3 or ST AT5 occurs. Furthennore, SOCS 1 is capable of preventing phosphoryIation 

of JAK 1 and JAK3 in 293 cells as weil, indicating SOCS 1 is capable of regulating a 

broad spectrum of JAKISTAT signaling pathways other thanjust JAK2. SOCSl is able to 

inhibit IL-2 and IL-3 activation of the c-fos promoter as well [34]. Since STATS are not 

required to activate c-fos but JAKS are, it demonstrates that SOCS 1 directly targets the 

JAKs not the ST A Ts themselves [34, 40]. 

The inhibitory mechanisms of SOCS 1 seem to be restricted specifically to the 

JAKISTAT pathway. Whereas SOCSl inhibits 1L-2 and lL-3 activation ofc-fos, it does 

nothing to prevent c-fos activation by cAMP (which follows a non cytokine activation 
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and does not involve the JAKs) [34]. When expressed in NII-l3T3 cells SOCSl does not 

alter tyrosine-phosphorylation of Erk2 and Shc in response to fibroblast growth factor 

(FGF). SOCS 1 binds the kinase domain of c-kit in yeast cells but fails to inhibit c-kit or 

the epidermal growth factor receptor. This demonstrates that SOCSl targets specifically 

the JAK tyrosine kinase activity and not tyrosine kinases in general. 

SOCS] and the immune system 

SOCS1 plays a central role in the deve10pment of the immune system. SOCS1 

knockout mice show many phenotypes, among them T -cell associated lyrnphoma and 

large scale infiltration of macrophages, lymphocyte and eosinophils [41-43]. These mice 

die very young due to overactive IFNy signaling, the majority coming from T-cells [43]. 

They have been shown to suffer symptoms such as liver necrosis, myocarditis, 

polymyositis and fatty degeneration. SOCS1 has been shown to induce resistance to IFNy 

when overexpressed [44]. In SOCS 1 knockout mice lacking T -cells or containing a knock 

out ofIFNy, the same rates of young lymphocyte-dependent lethality are not seen as they 

are in normal SOCS 1 -1- mice [43,45]. Macrophages isolated from SOCS 1 -1- rnice 

require little IFNy to bec orne activated, as compared to normal wild type mice [46]. As 

weB these rnice show higher levels ofnatural killer T-cells (NKT), which are implicated 

in the necrosis of the liver [42]. 

Regulation of T cell developrnent has been shown to be controlled directly by 

SOCS 1. SOCS 1 has been shown to be expressed in the thymus, especially during 

thyrnocyte development [33, 34, 37, 47, 48]. Expression ofSOCS1 is critical for the 
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proper development of CD4+ T cells [49]. Deficiencies of SOCS 1 lead to increases in 

CD8+ CD4- ceUs and CD4+CD8+ double positive cells, but leads to decreases in 

CD4+CD8- cells [47,49]. This is caused through increased levels in IL-7 signaling, which 

protects double positive cells, and IL-5 which stimulates the proliferation of CD8+ CD4-

celIs, both cytokines are usually negatively regulated by SOCSl [47,50,51]_ The 

number of total T lymphocytes in SOCSl deficient mice is also increased [52]. 

SOCS3 has also been shown to play a large role in regulation of macrophages and helper 

T~cells, placing the SOCS family ofproteins in the middle ofT-celI development and 

regulation of normal immune system development [53, 54]. 

Other immune cells such as dendritic cells are also under SOCS 1 control. Dendritic cells 

deficient in SOCS 1 are hypersensitive to interferon signaling and promote aberrant B-cell 

proliferation leading to the production of autoreactive T-cel1s [55, 56]. Silencing of 

SOCS 1 can enhance dendritic cell response and antigen presentation, this is beneficial for 

anti-tumor responses by enhancing cytotoxic t-cell responses [55-57] 

SOCS 1 also helps in signaling within the innate immune system. Many foreign 

proteins such as v-E7 and bacterial LPS strongly induce SOCSl [58,59]. SOCSl 

induction helps curtail the levels of inflammatory cytokines and chemokines secreted by 

activated antigen-presenting cells as weIl as negatively regulating LPS-induced 

macrophage activation. SOCS 1 deficient mice have been shown to be unable to form a 

tolerance to LPS which can be lethal to them in certain cases [60]. Tumor necrosis factor 

alpha (TNF-a) is also regulated by SOCSl, giving SOCSl another branch of control over 

inflammation responses, such as TNF -a induced apoptosis, and regulation of cells within 

the immune system [61]. 
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Regulation oftheimmune system is therefore dependant on SOCSI at many 

levels. SOCS 1 plays a central role in the development of T -cells as weil as their 

homeostasis. It also plays a role in reducing macrophage activation due to extemal 

stimuli and reduces dendritic cell activation and their ability to present antigens, thereby· 

inhibiting autoimmune responses. As weil SOCS 1 directly controls the levels of many 

inflammatory signaling pathways su ch as TNF-a giving it direct control over 

inflammation and innate immune responses. 

SOCS! acts through its SH2 domain 

SOCS 1 acts through multiple mechanisms to inhibit the activity of JAKs. There 

are multiple lines of evidence supporting different mechanisms, which make use of the 

different structural domains of SOCS 1. Such diversity of mechanisms may seem 

redundant but is perhaps necessary to ensure proper regulation of signaling cascades that 

control growth and proliferation as weil as many components of the immune system. It is 

also known that the different SOCS family member act through different mechanisms 

from each other. For example CIS inhibits cytokine signaling in a mechanism different 

from that of SOCS 1 and does not bind directly to the JAKs [36, 62]. 

One of the mechanisms through which SOCS 1 exerts control over JAKs is 

through direct binding to the autophosphorylation site through interactions with the JH 1 

domain of JAK2 and the SH2 domain of SOCS 1 [34, 63]. Once cytokines bind to their 

receptors they induce phosphorylation of JAK2 at YI 007, a critical step in JAK2 

activation [64]. Subsequent downstream JAK2 signaling in tum induces SOCSl, which 
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regulates the pathway in a negative feedback manner. SOCS I is able to bind to JAK2 

phosphorylated at YI 007 with a high affinity but does not bind to unphosphorylated 

JAK2 or JAK2 mutants which contain mutations in the JHI domain (K882D) [34, 63]. 

Mutational analysis of SOCS I has revealed 3 regions necessary for complete binding and 

inhibition of JAK2 [63]. In order for SOCS I to bind to Y 1007 of JAK2 the SH2 domain, 

specifically a phospho-tyrosine-binding residue Arg 105, and a stretch of twelve amino 

acids (l68-G79) immediately N-terminal to the SH2 subdomain, dubbed the extended 

SH2 subdomain, are both required. A second set of twelve amino acids just N-terminal 

before the extended SH2 subdomain (N 56-67) are required for SOCS I to bind to JH I 

with high affinity and are necessary to inhibit JAK2 signaling. This region has been 

named the kinase inhibitory region (KIR). 

The extended SH2 subdomain contains three aminoacid residues 168, L 75 and 

G79, which are highly conserved throughout the SOCS family and appear at the same 

position relative to the SH2 domain of STATs as weIl. Similarity between the SH2 

domains of SOCS and ST A T family members may be important in SOCS I inhibition of 

JAK/STAT signaling as perhaps SOCS I could compete directly with STATs for binding 

sites with JAKs to reduce ST AT signaling. Mutating these conserved residues in (l68E 

and L75E) is enough to prevent the interaction between SOCSI and JHI and YI007 as 

weIl as reduce EPO-dependant ST A T5 signaling. Crystal structures of ST A T molecules 

show these conserved residues are involved in phospho-tyrosine binding in the SH2 

domain [65]. 

The Kinase inhibitory region is not important to binding to YI 007 but is essential 

for inhibition of JAK2 signaling and mutations to the region greatly hamper JHI binding 
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[63]. Mutations to individual amino acids in the region prevented SOCSI from inhibiting 

EPO-dependent ST A T5 signaling. Furthermore eight of the twelve amino acids are also 

present in SOCS3, which can also bind JH1 domains and inhibits the JAKs, further 

implying their importance in SOCS/JAK interactions [63, 66]. Among these conserved 

amino acids were F56, F59, D64 and Y65. Mutations to these residues in particular 

greatly hampered SOCS 1 from binding to JH1. Mutations to F59 showed the greatest 

effect suggesting it is perhaps the more critical residue [63]. 

The current mechanism for SOCS 1 interaction with JAK2 involves the SH2 of 

SOCS1 recognizing the phosphorylated Y1007 of JAK2. The c1assical SH2 domain is 

involved in binding to this region. The extended SH2 subdomain aids in further binding 

to JAK2. Binding to Y 1007 allows the KIR to bind to the JH1 with high affinity and 

disrupt Jak2 signaling. 

A 12 mer synthetic tyrosine kinase inhibitor peptide (Tkip) is able to mimic 

SOCS 1 by also inhibiting JAK2 signaling through binding of the autophosphorylation 

site [67]. Tkip is able to bind to JAK2 at YI 007 with a higher affinity than SOCS 1 and 

can bind to unphosphorylated JAK2 as weIl. Its binding to JAK2 is able to suppress IFN­

y activity, su ch as the upregulation ofMHC Class 1 molecules, induction of growth arrest, 

and EGFR autophosphorylation. Tkip actually acts much like the KIR region of SOCS 1 

[68]. By acting in a mechanism very similar to that ofSOCS1 Tkip is also able to inhibit 

constitutive ST A T3 and IL-6 activated ST A T3 in prostate cancer cells (LN CaP and 

DU145) [69]. Injecting mice with Tkip also reduces allergic responses by inhibiting 

overactive cytokine signaling [70]. 
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SOCS! as an E3 Ligase 

Another mechanism commonly used to control cellular signaling is the 

degradation of cellular receptors or other proteins involved in the cascade. Targeting of 

specifie proteins for degradation is a tightly controlled pro cess that requires complexes of 

enzymes working in unison. One of the better known pathways to protein degradation is 

the ubiquitin-proteasome pathway, which uses long chains ofubiquitin molecules to mark 

proteins for degradation [71]. Degradation is a two-step process. The first step requires 

the target protein to be covalently flagged with a long chain ofubiquitin, usually 

accomplished by a complex ofproteins. The second step is the actual degradation of the 

protein by the 26 proteasome. The actual attachment of ubiquitin to a target substrate is a 

three-step process and involves many proteins. The first is an El activating enzyme, 

which activates the ubiquitin molecules. Once activated an E2 ubiquitin carrier or 

ubiquitin conjugating enzyme (UBe), of which there are several, facilitates the transfer of 

the activated ubiquitin from the El to one of the E3 protein ligases. The substrate usually 

contains specifie sequences to ensure proper and specifie binding to the E3 ligase. The E3 

ligase is responsible for completing the process and creating the covalent bond between 

the ubiquitin and the target protein. Usually, the first moiety is attached to a NH2 group 

on a lysine residue, generating an isopeptide bond. Once the first moiety is attached the 

rest can attach to the proceeding moiety via its Lys48 residue. This allows the formation 

of a long poly-ubiquitin chain that serves as a flag, marking the prote in for later 

degradation by the 26S proteasome or lysosome. The number of E3 ligases are unknown 
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as many more proteins and/or protein complexes that have E3 ligase activity are still 

being discovered. 

Though the SH2 domain of SOCS 1 is responsible for binding to Jak2, it alone is 

not enough to inhibit JAK signaling [34]. A mutant copy ofSOCS1 lacking both C- and 

N- terminal domains also has no inhibitory affects on cytokine signaling demonstrated by 

its inability to inhibit c-fos activation by IL-2 or IL-3, which suggests that one or both of 

these domains is necessary for complete SOCS 1 activity. The C-terminus of SOCS l, like 

aIl SOCS family members, contains a domain known as the SOCS box [33, 34, 37, 39, 

72-76]. The SOCS box was once thought to be a unique domain to SOCS family 

members but has since been shown to be present in the C-terminal of a variety of 

different protein families inc1uding the Ras, WD-40 repeat, ankyrin repeat families and 

SPRY domain containing families [39, 77]. 

Within the SOCS box, there is a T/SLlMxxxC/SxxxVIL/I Elongin BC binding 

consensus sequence named the BC Box [77]. Elongin BC is a heterodimer protein 

complex made up of the ubiquitin like Elongin B, and Elongin C, a protein that resembles 

the adaptor protein Skp in sequence [78, 79]. Elongin BC was first shown to be an 

activator of the RNA Pol II elongation factor A (Elongin A) [80]. It has since been shown 

to also take part in the von Hippel-Lindau tumor suppressor complex (VHL) [81]. 

Mutations within, or deletions of the consensus sequence render Elongin A and VHL 

unable to bind Elongin BC [81-83]. Elongin BC is much more abundant in the cell than 

either Elongin A or VHL, which means it must have other activity or possible binding 

partners unrelated to the two [77]. It is now known that the Elongin BC complex can bind 
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not just SOCS l, but the BC box of ail proteins containing a SOCS box and that deletions 

or point mutations of the BC box inhibit the interaction [76, 77]. 

Endogenous levels ofElongin Band C can be immunoprecipitated from the 

1ysates of cells stimulated with interferon and IL-6 against antibodies for the C- and N­

tenninals of SOCS l, proving that this is a physiological interaction [77]. As well 

expressed Elongin Band C can be can be immunoprecipitated with antibodies against 

JAK2 and SOCS 1 in cells co-expressing JAK2 and SOCS 1. This Proves that Elongin BC 

is part of the SOCS 1 complex that binds to JAK2 and inhibits its signaling. Only a fonn 

of SOCS 1 with an intact BC box is capable of making the Elongin BC-JAK2 complex, 

although mutations in the BC Box do not disrupt SOCS 1-JAK2 binding. 

The VHL tumor suppressor acts as an active E3 1igase [84]. In this complex 

Elongin BC acts as an adaptor to link VHL to a Cullin and a RIN G finger-containing 

protein (Rbx). The cullins are a family ofproteins that assemble with an Rbx molecule to 

fonn a module capable of catalyzing the transfer of ubiquitin from an E2 ubiquitin 

conjugating enzyme to the target substrate [85, 86]. There are currently five known cullin 

members in mammals (CuI1-5) [87]. The VHL protein acts as a subunit of a multi-protein 

complex able to recognize substrates for ubiquitination [84]. The VHL tumor suppressor 

shows similarity to the SKP-Cul1-F-box E3 ligases (SCF), and both show sorne similarity 

to an Elongin BC-CuI2-S0CS 1 complex. SOCS 1 also binds to Elongin BC, Elongin B is 

an ubiquitin like molecule, and Elongin C shares sequence similarity to the adaptor 

protein SKP1 [78, 79]. The F- box is a similar domain to the SOCS box. Studies into 

SOCS 1 showed that it too was able to bind to a Cullin/Rbx module [88]. This Elongin 

B/C-CuI2-S0CS 1 complex is capable of fonning GST -polyubiquitin chains by the E2 
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GST-ubiquitin conjugating enzyme Ubc5 when ATP, El activating enzyme Uba1 and 

GST-ubiquitinK48R are present, proving it acts as an active E3 ligase. The crystallized 

structures of a similar complex involving SOCS2 also defined an E3 ligase [75]. As weIl 

SOCS3 also forms such a complex, and upon activation with IL-6 sees its protein 

expression peak within 60 minutes only to be near depleted by 120 minutes [76]. This 

drop off in SOCS3 levels is aboli shed by treatment with proteosomal inhibitors such as 

LLnL. This suggests that SOCS proteins form active E3 ligases that play a role in their 

subsequent degradation after induction. 

The specificity of the cullin binding is said to be due to a small stretch of amino 

acids located at the C-terminal of the SOCS box known as the Cul box [89]. Differences 

in the Cul box between VHL and SOCS family members lead VHL to specifically bind to 

endogenous Cul2-Rbx1 while SOCS-box proteins bind to endogenous CuI5-Rbx2. These 

differences allow VHL and SOCS family members to be grouped accordingly according 

to their Cul Box. VHL has a Cul2 box while the members of the SOCS family ofproteins 

contain a Cul5 box; the y bind to endogenous Cul5-Rbx2 and not CuI2-Rbx1. 

A specific conserved amino acid sequence of LPxP within the Cul5 box appears 

necessary for Cul5 binding as mutating it abolishes it. While aIl SOCS members have a 

Cul5 box, SOCS1 oddly has an incompletely conserved Cul5 box. The Cul box of 

SOCS 1 contains the amino acid sequence IPLN instead of LPxP; this leads SOCS 1 to 

bind to CuI2-Rbx1, not CuI5-Rbx2, making it an exception within the SOCS family as 

the only member to do so. Changes in Cul5 expression cause no change in the 

degradation ofVHL target substrate HIF-2a, however reducing Cul2 expression by usage 

of shRNA cause increases of HIF -2a. This suggests that each Cul member has a distinct 
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purpose or possibly has the ability to recognize different substrates. Ifthis is the case 

there could be sorne unique function conferred upon SOCS 1 as the only SOCS member 

that binds to Cu12. 

There is plenty of evidence to suggest that the mechanism by which SOCS 

proteins inhibit cytokines lies in their ability to form ECS E3 ligases. SOCS 1 localizes to 

the microtubule organizing complex that is associated with the 20 S proteasome itself in a 

manner dependent on the SH2 domain [90]. SOCS 1 also binds directly to the microtubule 

organizing complex (MTOC). Such a direct link to the proteasome suggests SOCS 1 may 

help localize targets to the proteasome for degradation. SOCS 1 does in fact cause JAK 1 

and VAV1 to localize to the MTOC and MTOC-associated 20S proteasome. 

Many studies have suggested that SOCS 1 directly targets proteins for 

degradation. SOCS 1 was shown to bind to the N- terminus of the guanine nucleotide 

exchange factor V AV, and reduce the formation of V AV -induced foci in NIH 3T3 cells 

[91]. SOCS1 also diminished the levels ofVAV within NIH 3T3 and COS celllines, and 

was ultimately found to induce ubiquitination ofVAV and onco-VAV. IFN-y induces 

expression of SOCS 1 and leads to a degradation of the viral oncogene E7 in HeLa and 

CaSki tumor lines [59]. E7 mRNA levels remain the same when SOCS 1 al one is 

expressed in these cells though E7 protein levels are diminished. SOCS 1 co-Iocalizes 

with E7 in the nucleus and can immunopreciptate with E7, suggesting a physical 

interaction. This interaction is dependent on the SOCS Box, but is uninterrupted by 

mutations of the SH2 domain. Like the interaction of SOCS 1 and VAY, tyrosine 

phosphorylation does not seem to play a role. SOCS 1 is also seen to promote 

ubiquitination of the viral oncogene E7 upon interaction and inhibits HPV -E7 mediated 
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transfonnation by leading to E7 degradation. JAK kinases su ch as JAK2 are sometimes 

involved in oncogenic fusions, su ch as the fusion protein TEL-JAK2 [74]. In Ba/F3 cells 

transfonned with TEL-JAK2 expression of SOCS 1 or induction of SOCS 1 by treatment 

oflL-3leads to apoptosis. This response is not seen however in Ba/F3 cells transfonned 

with p21 0 Bcr-Abl, showing SOCS 1 activity to be specific to JAKs. SOCS 1 mutants 

lacking the SOCS box cannot suppress the growth ofTEL-JAK2 cells, despite the SOCS 

box not being necessary to bind to JAK2, suggesting that the SOCS box still plays a role 

in inhibition of JAKs [74, 92]. In 293 cells fulllength, WT SOCS 1 can reduce the levels 

of TEL-JAK2 and suppress TEL-JAK2 activation of ST A Ts. Treatment of proteasome 

inhibitors MG 132 and lactacystin protected TEL-JAK2 from SOCS 1 induced 

degradation, suggesting it is proteasome dependent. Further studies showed that 

phosphorylation of the JHl domain led to binding with SOCSI and led to de gradation of 

JAK2 preceded by SOCS 1 induced ubiquitination of TEL-JAK2. The SH2 domain of 

SOCS 1 is necessary for degradation ofTEL-JAK2. The SOCS box domain can be 

replaced with that of the protein CIS, but not the SOCS3 SOCS box. SOCS3 binds and 

inhibits TEL-JAK2, but does not induce its degradation, this is odd as both SOCS3 and 

CIS contain a different CulS box from SOCSI [66,89]. A dominant negative Cul-2 

inhibits the Tel-JAK2 degradation, suggesting SOCS 1 induced degradation must work in 

an E3 ligase manner. 

SOCS 1 also acts in the insulin signaling pathway and degrades insulin receptor 

substrates (lRS). In HEK293 cells, SOCS 1 associates with IRS 1 and IRS2 via 

interactions that are significantly increased in response to insulin signaling. SOCS2 and 

SOCS3 were also found to interact with IRSI and IRS2. Interactions between SOCSI and 
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IRS leads to subsequent falls in the levels ofIRS 1 and IRS2 in HEK293, MCF7 breast 

cancer cells and ETE-LI adipocytes. Induction of SOCS 1 by treatment with 

proinflammatory cytokines such as IL-6, TNFa, and IFN-y also led to reductions in 

levels of IRS 1 and IRS2. Expression of SOCS 1 in the liver of mice via adenovirus 

infection causes IRS 1 and IRS2 levels to fall until the infection is no longer detectable at 

which point IRS levels retum to normal. A SOCS 1 mutant missing the SOCS box is 

unable to regulate the same control over IRS 112 as can wild type SOCS 1. Mutations to 

key residues of the BC box cause a decrease in degradation of IRS but do not prevent 

SOCS 1 binding. This led Rui et al. to search for ubiquitination ofIRS 112. They found 

that SOCS 1 was indeed able to lead to ubiquitination ofIRS 112, although this could be 

prevented with treatment of MG 132 or lactcystin. 

Colony formation induced by the granulocyte-colony stimulating factor, G-CSF, 

as weIl as its activation of ST A T3 and ST A T5, are also suppressed by SOCS 1 and 

SOCS3. However, both ~SOCS Box mutants of SOCS 1 and SOCS3 fail to cause any 

changes to colony formation or ST A T activation in response to G-CSF [94]. This also 

suggests a possible role of SOCS box mediated degradation of G-CSF or its downstream 

targets as weIl. Stabilization of phospho-ST AT5 by proteasomal inhibitors supports this 

model. The Apoptosis signal-regulating kinase 1 (ASK 1) is also a target of SOCS 1 

induced degradation [95]. ASK 1 binds to SOCS 1 through its SH2 domain and is both 

ubiquitinated and degraded. It is known that TNF signaling stabilizes ASKI levels and 

prevents degradation while SOCS 1 acts as a negative regulator of TNF and promotes 

ASK 1 degradation. 
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These results have shown two powerful properties of SOCS 1. The first is to act on 

target substrates by fonning an E3 ligase with Elongin BC and a Cul-Rbx subunit in the 

SOCS box domain [76, 77, 88, 89]. It suggests the SH2 domain is used to recognize 

substrates which it than marks for proteosomal dependent degradation [59, 74, 91, 96]. 

Localization with the MTOC associated with the 20S proteasome only strengthens this 

argument [90]. It also shows another important property of SOCS l, the property of a 

tumor suppressor. It has already been established that SOCS 1 inhibits the JAK, a family 

of tyrosine kinases. Receptor tyrosine kinases are implicated in many cancers as 

mutations which confer constitutive activity to them cause an over stimulation in many 

signaling cascades that promote growth and proliferation. However the results mentioned . 

above also show SOCS1 's ability to directly target other oncogenes su ch as EP7, onco-

V A V and the TEL-JAK2 fusion protein and directly lead to their destruction by targeting 

them for proteosomal degradation. 

SOCS! in Cancer 

Receptor tyrosine kinases have been identified as being proto-oncogenes. The 

JAKs as weIl can serve as oncogenes should their signaling go astray, or should they 

become involved in fusion proteins. SOCS 1 meanwhile demonstrates tumor suppressor 

properties [97]. Tumor suppressors are often inactivated in a variety of cancers either 

through gene silencing or mutations that encode a non-functioning protein. SOCS1 can 

actually prevent transformation of Ba/F3 ceIllines caused by Tel-JAK2 by inhibiting 

JAK2 and leading to its degradation [92]. Gene methylation of CpG islands and other 
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epigenetic modifications are seen in a variety of cancers, this often leads to silencing of 

tumor suppressor genes. SOCS1 methylation was first demonstrated in HCC cell lines 

(65%) [98]. Several groups have since repeated similar studiesshowing a high level of 

SOCS1 methylation in HCC, corresponding to a low level of expression and 

accompanied with constitutive JAK2 activation [99-102]. Since th en it has been shown 

that SOCS1 is methylated in a variety of cancers. In 2003, it was shown that over halfthe 

patients sampled (53%) with newly diagnosed acute myeloid leukemia (AML) showed 

methylation of the promoter region of SOCS1 [103]. Multiple myeloma ceIllines such as 

the IL-6 dependant XG 1 and U266 lines show a low level of SOCS1 expression even in 

the presence ofIL-6 compared to controllines [104]. These ceIllines showed high levels 

of ST A T3 phosphorylation and a higher sensitivity to a chemical JAK inhibitor, AG490, 

which induced apoptosis. Samples taken from primary tumors of multiple myeloma also 

confirmed the results shown in cell culture as one study showed 62.9% of patients 

sampled to have SOCS1 methylation. This is also confirmed by the fact that SOCS 1 

deficient mice die within 3-4 days due to a lymphoma [41,42]. Many human pancreatic 

cancers have also shown reductions in expression of SOCS1 [105]. This usually 

correlated with a methylation of the 5' promoter region for SOCS1. While one group 

showed methylation of the SOCS1 promoter region in tumor samples, they found no 

mutations to markers within SOCS1. Breast and ovarian cancer displayed SOCS1 

methylation as weIl but showed a pattern of di fferenti al hypermethylation between other 

members of the SOCS family [106]. SOCS1 was found to be hypermethylated in 4 out of 

6 studied ovarian cancer cell lines and 8 out of Il breast cancer lines. Wh en actual 

tumors were studied, 23% of ovarian cancers had hypermethylated SOCS1 CpG islands, 
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while only 9% of the breast cancers showed the same result. Cells from the colorectal 

cancer line Hep3B, which have methylated DNA, also do not express SOCS] [107]. Also, 

SOCS 1 deficient mice showed a higher rate of developing tumors within their colon due 

to over inflammation in response to uninhibited IFN-y/Stat1 signaling [108]. Other 

groups have shown that SOCS 1 hypermethylation and subsequent loss of SOCS 1 

expression confers growth-promoting effects in pancreatic cancers su ch as pancreatic 

ductal adenocarcinomas and intraductal papillary mucinous neoplasms [109]. Silencing 

of SOCS] can occur due to loss ofheterozygosity (LOH) and can lead to an increase of 

carcinogenesis in mice livers [110]. Hypermethylation of SOCS] in ail these cancers 

leads to a large reduction in expression, this effectively allows for constitutive 

JAK/ST AT signaling. Constitutive signaling of both the Janus kinases and ST A T 

molecules has been largely linked to the formation of cancers in the past [111]. Silencing 

of SOCS] in these tumors can often be reversed by introducing agents that reverse DNA 

methylation, su ch as 5-azadeoxycytidine (5-aza-dC), mimic SOCS1 activity (Tkip), or 

directly inhibit the JAKs [69, 104, 106, 112]. Restoration of SOCS] expression or 

overexpression of SOCS] in these cancers often leads to growth inhibition or induction 

apoptosis. SOCS] mutations have been found in a significant number of tumors from 

Hodgkin, Reed-Stemberg, Hodgkin and classical Hodgkin tumors as weil as in primary 

mediastinal B-celllymphomas [113]. Mutations can range from out of frame mutations 

which lead to premature stop codons cutting off the SOCS box domain, to deletions in 

amino acids of the SH2 domain. These mutations lead to 10ss offunction of SOCS] and 

allow JAK2 signaling to persist, eventually resulting in an accumulation of active 

phospho-ST A T5 in the nucleus. In primary mediastinal B-celllymphoma (PMBL) cell 
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lines, MedB-1 and KaJ-pas11 06P, biallelic mutations to the coding region of SOCS 1 

allow JAK2/STAT5 signaling to go unchecked [114,115]. In this cancer, JAK2 remains 

constitutively active although it shows only a normal physiologicallevel of expression. 

Instead JAK2 degradation is greatly impaired, hence the JAK2/ST A T5 signaling cascade 

is allowed to persist. Overexpressing SOCS 1 in MedB-1 celllines with this mutation 

leads to growth inhibition [114]. 

Our 1ab focuses on the study of premature senescence and growth arrest. 

Premature senescence is a permanent cell cycle withdrawl that can act as a tumor 

suppressor mechanism [116-118]. Senescence can be induced in response to oncogenic 

stress as a barrier to transformation. Previously, our 1ab demonstrated that a constitutively 

activated form ofSTAT5 (STAT5A1 *6) can induce premature senescence [119]. SOCS1 

is highly upregulated in STAT5 senescent cells, implicating its involvement in 

senescence. Other SOCS1 activators such as ~-IFN can also induce senescence [120]. 

Members of our lab have demonstrated that overexpression of SOCS1 in the IMR90 

. fibroblast line Induces premature senescence. It is established that SOCS 1 is able to 

induce a growth arrest in cells. However, the mechanisms by which it acts are completely 

unknown. SOCS 1 can indu ce p53 and SOCS 1 induced senescence in the IMR90 cellline 

was shown to be p53 dependent. SOCS 1 has the ability to bind to and inhibit JAKs and 

can form E3 ligases. Whether either ofthese functions is necessary for the induction of 

senescence or growth arrest is unknown. AIso, the role of the different domains of 

SOCS 1 is unknown at this time. 
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Regulation of SOCSl 

The mechanisms by which SOCS 1 is regulated are not weil known. While many 

different stimuli for SOCS 1 induction are weil known and documented, the negative 

regulation of SOCS 1 remains for the most part a mystery. Tt is known that SOCS 1 can be 

targeted by other SOCS family proteins for degradation [121]. SOCS2 has been shown to 

have the ability to bind and inhibit SOCS 1 by targeting it for proteosomal degradation. 

Both SOCS6 and SOCS7 were later shown to have the ability to interact with aIl other 

SOCS molecules. Other reports suggest that SOCSI leads to its own auto degradation and 

that binding to the machinery of its E3 ligase such as the Elongin BIC complex lead to 

reductions in SOCS1 protein stability [76, 122]. However other reports have shown it is 

necessary to have binding of SOCS 1 to the Elongin BIC to promote stability and that 

interruptions in binding lead to proteasomal degradation [77, 123, 124]. The 

interconnecting web of a family of SOCS proteins, each capable offorming active E3 

ligases acting on one another and each with the ability to potentially self-regulate makes 

the exact mechanisms of regulation by means of how SOCS 1 is regulated by proteasomal 

degradation hard to elucidate, especially considering how little is known about the 

majority of the other SOCS family members. Other groups have pointed to protein 

kinases that may regulate SOCS 1. The Pim family of prote in kinases was shown to 

phosphorylate SOCSl which 1eads to stabilization ofprotein levels [122]. It is possible 

that SOCS 1 undergoes other modifications which are used to regulate it at the protein 

level, including phosphorylation by other kinases, however as ofyet the se mechanisms 

remain mostly unknown. 
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Materials and methods: 

Cel! culture 

AlI IMR90 primary ceIllines and U20S sarcoma ceIllines were cultured in Dulbecco's 

Modified Eagle Media (DMEM) (GIBCO) supplemented with 10 % FBS (GIBCO) and 

1 % Penicillin G-streptomycin sulfate (GIBCO). 

Retroviral vectors and gene transfer 

The foIlowing retroviral vectors were used, pLPC and its derivatives expressing SOCS1, 

SOCS3, SOCS5, SOCS6, SOCS1 &Jax, SOCS1 &JC, SOCS1 ,dCul, SOCS1 LW 198 and 

SOCS1 N198P as weIl as the retroviral vector in pBABE and its derivatives hRAS and 

STA T5A 1 *6. Phoenix ceIls were plated to a density of2.5x104 ceIls / ml in a 10 mm 

culture plate (Coming) (l0 ml total volume) and transfected with retroviral vectors (20 

/lg) and treated with 200 /lI of 5 mg/ml sodium butyrate the next day. Medium was 

changed 12 hours after sodium butyrate addition. 12 hours after the medium was changed 

and retro viral soups were coIlected and supplemented with 10% FBS and 4 mg/ml 

polybrene. The supplemented soups were immediately added to primary ceIls which had 

been previously plated to a density of 8.0 x 105 cells / ml in 10 cm culture plates 

(Coming). Cells were treated with new retroviral soups every 6 hours for a total of 3 

infections. Infected cells were selected in puromycin 2.5 /lg/ml (Bioshop) for 2 days. 
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SA fJ-Gal activity 

IMR90 cells were infected as described above. Cells were given 3 days recovery period 

after selection and plated at a density of 2.5 xl 05 cells / ml 6 days post selection. Cells 

were than incubated in 5-bromo-4-chloro-3-indolyl-~-D-galctopyranoside (X-Gal) at pH 

6.2 at 37°C until the negative control showed approximately 10% positive staining. The 

percentage of cells expressing SA-~-Gal was quantified by inspecting 100 cells per 10 

mm plate three times. 

Immunojluorescence microscopy 

IMR90 cells were plated on cover slips in a 6-well plate at a density of2.5x104 cells / ml 

and fixed using 4% paraforrnaldehyde (Fisher Scientific) in PBS for 15 minutes at room 

temperature. Cells were washed several times in PBS and perrneabilized using 0.2% 

Triton X-100 (Fisher Scientific) in PBS with 3% bovine serum albumin (BSA) on ice for 

5 minutes. Cells were than washed again several times with PBS/BSA and than treated 

with the primary antibody, anti-PML (Rabbit) prepared by Marie-France Gaumont­

Leclerc for 1 hour at room temperature in a humidified chamber. After three more 

PBS/BSA washings cells were stained with Alexa-Flora Red, anti-rabbit secondary 

antibody (l :2000) (Molecular Probes) for 1 hour in a humidified chamber. Cells were 

than washed several times with PBS/BSA and counterstained with 4,6-diamidino-2-

phenylindole (DAPI) at a concentration of 0.1 ~g/ml in PBSIBSA. Fluorescence 

microscopy was perforrned using an inverse fluorescence microscope (Nikon TE2000) 

and the Metamorph software (Molecular Devices). Images were prepared using 

Metamorph and Canvas X (Deneba). 
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SOCS1 mutagenesis 

The SOCS1 L1Box construct had already been prepared by Vivianne Calabresse. The rest 

of the SOCS1 mutants were made using PCR techniques. Ali reactions were performed in 

a Biometra T-gradient PCR Machine. Reactions were performed in 100 /lI total volume 

using 50 ng ofpLPC SOCS] as a template, 200 /lm dNTP, 50 !-lM ofboth primers, and 

5% DMSO and Deep Vent Polymerase O'Jew England Biolabs) and it's Thermopol 

Buffer O'Jew England Biolabs). SOCS1,(jCul was created using a PCR using a sense 

primer (referred to as SOCS 1 sense primer) of 

5 'GCGAA TTCTGA TGGTA GCACGCAACCA GGTG3 ' and an antisense primer 

5 'GCGGGCTCGAGTCAGTTCTCGCGACCCACGGC3' that introduced a premature 

stop codon before the Cul Box. 

SOCS L1BC was created using a two step process. First two small fragments were 

made. Fragment A was created using the SOCS 1 sense primer as used for SOCS1,(jCul 

and an anti-sense fragment that started at the beginning of the BC Box and contained a 15 

bp overlap for fragment B, 5 'ACCCACGGCGGC CACCCGCACGCGGCGCTG3 '. 

Fragment B was created using a sense primer that had a ] 5 bp overlap to the tail of 

Fragment A and started after the BC Box, 

5 'CAGCGCCGCGTGCGGGTGGCCGCCGTGGGT3 ' and a normal antisense primer for 

SOCS1, 5 'CGCTCGA GTTCA GA TCTGGAAGGGGAAGGA3 '. The two fragments were 

than used as a template for a reaction using the normal SOCS 1 sense and antisense 

pnmers. 

SOCS1 LfN198 and SOCS1 N198P were made in a similar fashion. First a fragment 

was made using the aforementioned SOCS 1 sense primer and an antisense primer 
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introducing a deletion of the 198P residue, 5 'GTCACGGAGTACCGGAAGAGG 

GATGCGCGC3' this fragment was not fulliength SOCSl. A second fragment was made 

using a forward primer that contained a 15 bp overlap to the first fragment and introduced 

a sense strand deletion mutation to the 198 P residue, 

5 'GCGCGCATCCCTCTTCCGGTACTCCGTGAC3' and an antisense primer that started 

after the SOCS 1 insert in the pLPC vector back bone, to produce a larger in sert th an 100 

bp to facilitate cloning, 5 'CAGCTG TTCCATCTGTTCTTGGGC3 '. The two fragments 

were than used as template for a PCR reaction using the normal SOCS 1 sense primer and 

a second SOCSI antÏsense primer (as the first did not work well with this reaction) 

5 'GGGCCTCGA GTCA GA TCTGGA AGGGGAAGGA3' to give a fulIlength SOCSI 

product with the ~N198 mutation. The N198P mutant was made in similar fashion using 

the SOCS 1 sense primer and aN 198P antisense primer 

5 'GTCACGGAGTACCGGGGGAAGAGGGATGCGCGC3 J. Fragment B was generated 

using a sense primer of 5 'GCGCGCA TCCCTCTTCCCCCGGTA CTCCGTGAC3 ' and the 

pLPC antisense primer mentioned above. AlI mutants were sequenced at l'Institut de 

Recherche en Immunologie et en Cancérologie (IRIC) to make sure mutants were in the 

right places and that no other errors were introduced by the PCR process. 

Colonyassays 

U20S cells were transfected with 15 )lg ofDNA using the calcium phosphate method. 

Transfected cells were selected in puromycin l)lg 1 ml for 6 days. After which cells were 

given a 2 day recovery period for colonies to grow. Cells were then stained in 0.5 % 

Crystal violet to show colony formation. Cells were de-stained using 10% Acetic acid. 
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100 !lI of each sample was loaded to a 96 weIl plate and measured for absorbance at the 

960 nm wavelength in a plate reader. Values were plotted on a bar graph and normalized 

to the control to show relative differences in growth. Standard error represents 1 standard 

deviation from the mean value. 

Prote in analysis 

Immunoblots were preformed using whole-celllysates obtained by first making cell 

pellets and than boiling them in Laemmli sample buffer. Samples of20 !lg ofprotein 

were resolved in SDS-polyacrylamide gel electrophoresis and transferred using the wet­

transfer method to Immobilion-P membranes (Millipore). Antibodies used in the 

immunoblots inc1ude anti-SOCS 1 (4H 1; 1: 1 000 Upstate), anti-p53 (catalog number 9282 

1:1000 Cell Signaling Technology), anti-PS-15p53 (catalog number 9284 1:1000 Cell 

Signaling Technology), anti-p21 (catalog number 2949 1:1000 Cell Signaling 

Technology), anti-RB (C-19, 1:250 Santa Cruz Biotechnology), anti-Mdm2 (2AI0; 

1 :250; donated by A. Levine), anti-Tubulin (B-5-1-2; 1 :2,000; Sigma). Western blot . 

assays were performed using ECL detection (Amersham) or Lumilight detection system 

(Roche Applied Science). 
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Results: 

We were interested in exploring the full extent and mechanisms of SOCS 1-

mediated growth arrest. First, we explored SOCS 1 growth arrest in primary cells. When 

infected into IMR90 fibroblasts SOCS 1 induces a permanent cell cycle aire st known as 

premature senescence. Senescent SOCS1 cells show a larger, flatter morphology and 

stain positive for the senescence associated ~-galactosidase akin to oncogenes such as 

RAS and STAT5A1 *6 (Figure lA) [125]. As well these cells show accumulation ofPML 

bodies within the nucleus (Figure lB). Accumulation ofPML bodies in the nucleus is 

often used as a marker of senescence [125]. 

Since premature senescence is a tumor suppressor pro gram it was interesting to 

see the effects of SOCS 1 on the growth of cancer cells directly. The sarcoma ceIlline 

U20S was transfected with SOCS1 and an empty vector. As shown in Figure 2 SOCS1 

expression abolishes the ability ofU20S cells to form colonies and greatly hinders their 

growth. Hence SOCS 1 is also able to lead growth arrest within tumor ceIllines as weIl as 

inducing permanent cell cycle arrest in primary cells. 

Members of the SOCS family ofproteins exist in similar pairs, SOCS1 

and SOCS3 for example are more similar to each other than to other family members 

[38]. Sorne other SOCS members such as SOCS3 have also been demonstrated to play 

roles within a variety of cancers as weIl [106]. We wanted to see the effects of other 

SOCS family members on growth arrest so we repeated the colony assay in U20S using 

SOCS3, SOCS5, CIS4/S0CS6 as weIl. As demonstrated above SOCS1 completely 
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abolishes the ability ofU20S cells to fonn colonies as the SOCS1 transfected cells didn't 

fonn colonies as did the control plate (Figure 3B). 

Although very similar in sequence to SOCS1, SOCS3 does not inhibit colony 

fonnation in the U20S cell line. Though the number of relative colonies is slightly lower 

than that of the control plate, it is significantly higher than that of the SOCS1 plate 

(Figure 3B). Surprisingly, SOCS5 over-expression actually causes a near two fold 

increase in the number of colonies fonned (Figure 3B). This result was repeatable and 

suggests SOCS5 may actually play the role of an oncogene. The full role of SOCS5 is 

largely unknown though it may function by actually interacting with the activity of other 

SOCS moJecules, as sorne crosstalk and interference between SOCS family members has 

been previously shown. [121]. SOCS6 was the only other member tested that showed the 

ability to prevent colony fonnation that was significantly similar to SOCS1 (Figure 3A & 

3B). When tested in primary cells however, SOCS6 is unable to induce premature 

senescence (Figure 4). This suggests that SOCS6 maybe capable ofinducing growth 

arrest, but unable to induce a pennanent cell cycle arrest such as SOCS 1 through 

induction of the senescence program.SOCS2 and SOCS7 as weil as CIS constructs were 

unavailable at this time. 

Many roles of SOCS 1 are dependent on its SOCS box domain and its ability to 

fonn an active E3 ligase [73, 74, 91, 93]. E3 ligase activity ofSOCS1 requires an intact 

SOCS box to assemble the E3 ligase machinery. We wanted to investigate whether 

SOCS1 induced growth arrest was dependent on the SOCS Box as weIl. We made a 

series of SOCS box mutant lacking both the BC and Cul box subdomains, labelled as 

SOCS1 LillC and SOCS1 fjCul respectively. As weil a SOCS construct lacking the entire 
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SOCS box, SOCS1 Lillox, was donated to our lab and sub-cloned into a pLPC vector. 

These mutants were then transfected into U20S cells (Figure 5). 

Deletions of the entire SOCS box have only minor effects on SOCS1 induced 

growth arrest in U20S (Figure 5). This points to a possible role of SOCS 1 in growth 

arrest that independent of its SOCS box and its E3 ligase activity. SOCS1 constructs 

containing deletions of the BC and Cul box also show little effect on growth arrest 

(Figure 5). However these mutants provide no real infonnation to this regard as the levels 

of SOCS 1 in the cells are poorly expressed and cannot be detected through western blots 

(Figure 6A). 

Sorne studies have shown SOCS 1 can target itself for auto degradation or that 

binding to the Elongin BC complex is necessary for stability ofSOCSl [77,123,124]. 

To see ifthis is the case with our SOCS mutants we treated transfected U20S cells with 

MG 132, a proteasome inhibitor, before collecting extracts. In these cells SOCS 1 levels 

are greatly enhanced compared to that ofuntreated cells (Figure 6B). This indicates that 

SOCS 1 lacking functional BC box and Cul box domains are targeted for proteasomal 

degradation whereas it appears SOCS1 constructs lacking the entire SOCS box domain 

are not (Figure 6A & B). SOCS1 LillC and SOCS1 LJCUL mutants still retain parts of the 

SOCS box and possibly still able to present epitopes or potential binding sites for other 

E3 ligases (such as other SOCS molecules) to recognize them and mark them for 

degradation (Figure 7 A). The SOCS1 LJbox mutant lacks the entire SOCS box and may 

present no epitope and could be therefore protected from degradation (Figure 7B). 

It had previously been demonstrated in our lab that SOCS 1 induces the p53 

pathway in fibroblasts and that SOCS1 senescence was p53 dependent (Malette et. al 
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Unpublished). We wanted to see if SOCS 1 regulated p53 in a similar manner in U20S 

and to see if the SOCS box mutants had any effect on p53 activity. As was shown by 

other members of our lab in primary cells, SOCS1 expression does lead to an induction of 

p53 (Figure 6A). As well SOCS 1 expression lead to an increase in the level of 

phosphorylation at Serine 15 on p53 and an increase in the levels of p21 (Figure 6A). 

These results show activation of the p53 signaling pathway by SOCSI in U20S. The 

activation of p53 by SOCS 1 seems to be a general part of its activity in inducing growth 

arrest. The Rb pathway showed no activation by SOCS 1 indicating that SOCS1 growth 

arrest though p53 dependant, does not seem to engage the Rb pathway (Figure 6A). 

The transcription factor p53 is regulated by many E3 ligases, including MDM2, 

COPI and Pirh2 [126]. One possible mechanism by which p53 levels could be stabilized 

and increased is by degradation or inhibition ofMDM2, a negative regulator of p53. 

SOCS 1 does not lead to any changes in MDM2 levels meaning there must be another 

mechanism by which SOCS1 expression leads to increases in p53 levels (Figure 6A). The 

effects of SOCS 1 on COP 1 and Pirh2, other E3 ligases that regulate p53 were not tested. 

The SOCS1 mutants did not show any increases in p53, p53 serI 5 or p2I (Figure 

6A). However as mentioned before the SOCS1 L1BC and SOCS1 L1CUL mutants are 

poorly expressed thus we cannot interpret anything from their results (Figure 6A). The 

SOCS1 L1BOX is relatively stable however its failure to activate the p53 pathway suggests 

the SOCS box or subdomains within the SOCS .box could be required for p53 activation, 

though not necessarily in a manner dependent on E3 ligase activity. 

Since large domain mutations of SOCS 1 lead to instability of SOCS 1 we tried a 

different approach to determine the role of the SOCS box in SOCSI induced growth 
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arrest. Kamura et al. had previously shown that SOCS 1 shares a unique sequence in its 

Cul box that allows to it to bind to Cul2/Rbx 1 whereas aIl other SOCS family members 

bind to Cul5/Rbx2 complex (Figure 8). Specifically SOCS 1 has an Asparagine residue at 

position 198, whereas aIl other SOCS proteins have a proline. Using site directed 

mutagenesis we created two more SOCSI mutants, SOCSJ NJ98P and SOCSJ L1NJ98, 

containing specifie mutations to this sequence. These mutants change the IPLN sequence 

ofSOCSl to IPLP, which resembles the LPxP consensus site for Cu15 binding. Therefore 

these mutants should allow SOCS 1 to bind to Cu152/Rbx2 like aIl other members of the 

SOCS family, thus altering its usual E3 ligase activity. 

We again used the colony assay in U20S to study the effects ofthese mutants on 

cell growth. As seen in Figure 9 both mutants abolished the usual growth inhibition of 

SOCS1 (Figure 9A). While cells transfected with both of the Cul box mutants resembled 

those transfected with the control vector, the SOCSI ~N198 construct had the largest 

effect with a relative growth of 1.56 times that of the control (Figure 9B). The SOCS 1 

N198P mutant showed slightly less growth relative to the control (0.76) but mu ch more 

than SOCS 1 (Figure 9B). 
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Figure 1 SOCS l-induced senescence in the fibroblast line IMR90. (a) Cells were 
infected with a control vector pLPC, pL PC SOCS 1, or two positive controls pBABE 
STAT5Al *6 and pBABE RAS. Cells were fixed and stained 6 days post selection for 
senescence associated ~-galactosidase, (SA-~-gal). Differences in morphology of cells 
can be seen. Percentages of cells that stained positive after 2 counts of 100 cells in 2 
separate plates are labeled. (h) Immunodetection of PML bodies: cells were infected with 
a control vector, pLPC, pLPC SOCS 1 or the positive control pBABE ST A T5A 1 *6. Cells 
were plated to a density of 2.5x 1 04 cells / plate in a 6 weIl plate at 6 days post selection 
and fixed the day afteL PML was detected using an anti-PML antibody manufactured in 
our labo Nuclei were counterstained with DAPI. 
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Figure 2 SOCS 1 growth arrest in U20S cell line. Cells were transfected with a control 
vector pLPC or its derivative pLPC SOCS 1. After transfection cells were selected for 6 
days with puromycin followed by a 2 day recovery period for colonies to grow. Colonies 
were stained with 0.5% Crystal violet solution. 

39 



Figure 2 

pLPC pLPCSOCS-1 

40 



Figure 3 SOCSI growth arrest in U20S cellline. (a) Cells were transfected with a 
control vector pLPC or derivatives containing SOCS family members. After transfection, 
ceUs were selected for 6 days with puromycin followed by a 2 day recovery period for 
colonies to grow. Colonies were stained with 0.5% Crystal violet solution. Untransfected 
cells are demonstrated as a negative killing control. (b) Relative growth of cells when 
norrnalized to control vector, pLPC. CeHs stained with crystal violet were destained with 
10% glacial acetic acid. 2 100 ul volumes from each plate were transferred to a 96 weIl 
plate and measured for absorbance at 600 nm. A verages are obtained from 2 counts per 
plate from two plates of each condition. 
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Figure 4 SOCS6 fai1s to induce senescence in the fibroblast 1ine IMR90. Cells were 
infected with a control vector pLPC, pLPC SOCS 1, pLPC SOCS6 or the positive control 
pBABE RAS. Cells were fixed and stained 6 days post selection for senescence 
associated p-galactosidase, (SA-p-ga1). Differences in morphology of cells can be seen. 
Percentages of cells that stained positive after 2 counts of 100 cells in 2 separate plates 
are labeled. 
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Figure 4 
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Figure 5 SOCS 1 domain mutant affects on growth arrest in U20S cellline. Cells were 
transfected with a control vector pLPC or derivatives containing wild-type SOCS 1 or 
SOCS 1 domain mutants. After transfection cells were selected for 6 days with puromycin 
followed by a 2 day recovery period for colonies to grow. Colonies were stained with 
0.5% Crystal violet solution. 
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Figure 6 SOCS 1 domain mutant affects on cell cycle regulators. (a) U20S cells were 
transfected with a control vector pLPC or derivatives containing wild-type SOCS 1 or 
SOCS 1 domain mutants. Cell ex tracts were prepared from cells collected a day after 
transfection. 20flg of protein from total ceIllysate was used for SDS-PAGE gels and 
individual proteins were detected with immunoblotting using specific antibodies. (b) 
SOCS 1 domain mutants have low stability due to protein degradation. U20S cells were 
transfected as in (a) but treated with MG132 (+) or untreated (-) for 8 hrs before being 
collected for lysate preparation. Levels of SOCS 1 proteins were detected after 
immunoblotting with the 4Hl anti-SOCSI antibody (Upstate). A Ioading error occurred 
during preparation of the ~Cul box Iane so that the treated sample (+) was loaded before 
the untreated (-). In aIl other samples, treated samples follow untreated controls. 
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Figure 7 Depiction of SOCS 1 marked for degradation by polyubiquitin chains (a) Both 
SOCS 1 f..BC and SOCS 1 f..Cul present epitopes allowing them to be marked by other E3 
ligases, possibly other SOCS molecules. (b) SOCS 1 f..Box presents no epiptopes and is 
protected from degradation. 
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Figure 8 Clustal W alignment of SOCS 1 protein sequences. (a) Alignment of sequences 
from the SOCS Box domains of the SOCS family members. Cul box binding sequences 
are highlighted in yellow. (b) Alignment demonstrating changes in Cul box binding in 
SOCSI ~N198 and SOCSI N198P mutants. 
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Figure 9 Effects of Cul box binding mutants on growth arrest in U20S cells. (a) Cells 
were transfected with a control vector pLPC or SOCSI derivatives including wild-type 
SOCSl, SOCSI fJ.N198, SOCSI N198P and a SH2 domain mutant, SOCSI RI05E. After 
transfection cells were selected for 6 days with puromycin followed by a 2 day recovery 
period for colonies to grow. Colonies were stained with 0.5% Crystal violet solution. 
Untransfected cells are demonstrated as a negative killing control. (b) Relative growth of 
cells when normalized to control vector, pLPC. Cells stained with crystal violet were 
destained with 10% glacial acetic acid. 2 100 ul volumes from each plate were transferred 
to a 96 well plate and measured for absorbance at 600 nm. Averages are obtained from 2 
counts per plate from two plates of each condition. 
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Discussion: 

Senescence is a pennanent cell cycle arrest that protects cells against oncogenic 

transfonnation and has been linked to aging [116-118]. Senescence usually signaIs 

through the p53 or Rb pathway or both. The p53 protein is a transcription factor which 

regulates apoptosis and many of the genes involved in senescence [127]. It is mutated in 

over half of ail cancers and has been linked to aging. Retinoblastoma (Rb) protein is also 

highly mutated in a large number of cancers and exerts control over E2F responsive 

genes [128]. Premature senescence was first described in response to oncogenic RAS 

[129]. Since then other stimuli inc1uding DNA damage, over expression ofPML, 

oncogenes such as STAT5 and prolonged IFN-~ exposure have been shown to induce the 

senescence program [119, 120, 130]. SOCS1 is induced both by IFN-~ and STAT5 

hinting at its involvement in the senescence pro gram [131]. 

Here we show that overexpression of SOCS 1 in primary cells is able to induce a 

pennanent cell cycle arrest showing several senescent markers including accumulation of 

PML bodies and a high number of cells that stain positive for senescence associated ~­

galactosidase. PML bodies are foci that fonn in the nucleus of senescent cells and help 

recruit p53 to nuclear bodies [132, 133]. Furthennore SOCS 1 is able to directly inhibit 

the growth of cancer cell lines such as U20S. Inhibition of growth in U20S cells is 

accompanied by an induction in p53 and phosphorylation at serine 15 as well as an 

induction in its downstream target p21, indicating activation of the p53 pathway. This 

coincides with earlier reports in which SOCS 1 has been previously described as having 

tumor suppressor activity, as well as the numerous studies showing that SOCS is 

methylated in a variety of cancers [97,106]. Previously the tumor suppressor activity of 
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socs 1 has been credited by blocking transformation through inhibition of the 

JAK/STAT pathways. The involvement of SOCS1 in directly inducing growth arrest and 

cellular senescence independently of inhibition of JAKIStats, perhaps by acting directly 

on the p53 pathway is a novel concept explored in our labo 

Despite the fact that aIl SOCS molecules can inhibit JAKISTAT signaling, only 

SOCS 1 was shown to be able to induce both growth arrest in cancer celllines and cellular 

senescence in primary cells in our limited study. SOCS6 was able to induce growth arrest 

but failed to induce premature senescence. Even SOCS3, the most similar of SOCS 

family members to SOCS1 (and often methylated in many cancers as weil), lacked this 

abilîty in our study. This is a limited study however as SOCS2, and SOCS7 and CIS were 

unavailable and therefore not studied. However, it is worth nothing that not ail SOCS 

proteins are known to have negative effects on their targets. SOCS2 for example, though 

known to negatively regulate GH in low levels, can actually lead to increases in GH 

signaling when overexpressed [134]. It was also shown that SOCS2 (as weIl as SOCS6) 

can antagonize SOCS 1 signaling and lead to the degradation of SOCS l, so it would seem 

unlikely that SOCS2 overexpression would induce growth arrest [121]. The roles of 

SOCS7 and CIS in growth arrest are unknown and their interactions with other SOCS 

molecules less clear. It is known that SOCS7 can interact with ail SOCS molecules 

though it has yet to be shown that SOCS 7 negatively regulates SOCS 1. Why only SOCS 1 

is capable of inducing a permanent cell cycle arrest is unknoWn at this point. Although it 

shares a close similarity with SOCS3, there are still differences, among them a different 

sequence in the Cul box of SOCS 1 that allows it differential Cullin binding [89]. We 

have shown that mutating this sequence to resemble those of other SOCS molecules can 
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prevent SOCS 1 trom inducing growth arrest in U20S cells. Perhaps this unique Cul box 

sequence allows SOCS 1 to bind to other proteins involved in growth arrest pathways that 

other SOCS family proteins cannot, or perhaps the binding of Cul2 gives SOCSl a 

different group of substrate targets for degradation compared to other SOCS molecules 

which bind Cu15. It is also possible that other sequences in or near the SH2 domain of 

SOCSI allow it to target unique molecules. Or alternatively perhaps one or more of the 

specifie cytokines, JAKIStat pathways or other target proteins under control of SOCS 1 

happen to be the only ones under SOCS control that are involved in growth arrest 

pathways as weIl. 

Interestingly enough, sorne SOCS family members such as SOCS5 seern to 

actually promote cell growth. The mechanisms for this are unknown though it may be 

possible that SOCS5 acts as an oncogene. If SOCS5 targets proteins that inhibit growth, 

or shares a dual function as does SOCS2 with GH, it could be possible that SOCS5 

overexpression would promote growth, as we have demonstrated. Another explanation 

could lie in interactions between SOCS proteins. As rnentioned above SOCS family 

members have been previously shown to have overlapping functions which may interfere 

with one another [121J. SOCS2 expression in HEK293-T cells abolished SOCSl and 

SOCS3 inhibition of GH signalingpathway. SOCS2 mutants lacking a functional SOCS 

box failed to do so. The role and mechanisms by which SOCS molecules interact on one 

another is not c1ear, though the SOCS box and ability to fonn E3 Iigases seerns to be 

heavily involved. In low concentrations SOCS2 is able to reduce p-IFN Ievels in 

HEK293-T cells, a molecule typically inhibited by SOCS l, in higher concentrations 

SOCS2 leads to increases in p-IFN levels. This dual effect clouds the mechanisms of 
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SOCS2 interactions with SOCS1 and SOCS3. SOCS6 has been shown to directly lead to 

proteasomal degradation of SOCS 1, and its inhibition of SOCS 1 is interrupted by 

proteasomal inhibitors like cycloheximide. Furthermore it requires the recruitment of the 

Elongin BC complex to SOCS6. In this model SOCS family members are able to 

recognize the SOCS box domains of other SOCS molecules and regulate them via 

targeting them for proteasomal degradation. Degradation of SOCS 1 by other SOCS 

family members could erase the growth arrest pro gram initiated by SOCS 1. If the net 

effect of SOCS5 over expression favors SOCS 1 degradation or reduction of SOCS 

signaling, preventing the induction of growth arrest, than it may actually promote growth 

and proliferation, much in the same way SOCS2 overexpression does in the GH signaling 

pathway [121]. More study is required to determine if SOCS5 and SOCS 1 interact, and if 

SOCS5 negatively regulates the other SOCS molecules. As weIl further investigations 

into the roles of aIl SOCS molecules on growth arrest need to be explored further. At this 

time the exact outcome of interacting SOCS molecules and the effects on growth arrest 

are not weIl known, hence overexpression of one SOCS molecule at a time may not be 

the best way to elucidate their function. For this study we chose to focus solely on the 

involvement of SOCS 1 in growth arrest. 

We attempted to show dependency ofSOCS1 activity on the BC and Cul 

boxes, subdomains of the SOCS Box, since many functions ofSOCS1 require the SOCS 

box domain. There is currently much debate as to whether or not SOCS 1 binding to the 

Elongin BC complex actually leads to prote in stabilization or to proteasomal degradation 

of SOCS 1 [76, 77, 123, 124]. The results ofthis study offer no clear conclusion. When 

overexpressed the prote in levels of ~BC and ~Cul mutants are lower than wild-type 
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SOCS l though this is not seen with the ~Box mutants. Perhaps the formation of an 

in complete E3 ligase through binding to only the Elongin BC complex or the Cul/Rbx 

complex leads to degradation. The SOCS l ~Box mutant without any SOCS box perhaps 

has no recognition site for other SOCS molecules to bind and target it for proteasomal 

whereas epitopes may remain within the ~BC box and ~Cul box mutants to allow normal 

recognition and subsequent degradation. 

SOCS l has been shown to act as an adaptor protein linking the modules of an E3 

ligase together. This E3 ligase activity has been attributed to its negative regulation of the 

JAK/Stat signaling cascades. The results of this study show that SOCS l not only induces 

activity of the tumor suppressor p53 as weIl as its phosphorylation but also its 

downstream target p2I. Direct degradation of p5 3 would not lead to the growth arrest 

accompanied with over expression of SOCS l, so SOCS l must either target a negative 

regulator of p53 for degradation or act upon p53 in a way previously undescribed that 

leads to its activation. MDM2 levels remain unchanged in SOCS l transfected U20S 

cells, though it is possible SOCSI targets other E3 ligases regulating p53 such as COPI 

and Pirh2, this possibility needs to be explored before ruling out the obvious E3 ligase 

activity of SOCS 1 in leading to p53 activation. Cullin based E3 ligases are also capable 

ofmany other post transductional modifications such as neddylation and sumoylation 

[135-138]. Another Cullin based E3ligase, FBXOll, was recently shown to directly 

neddylate p53, leading to an increase in its transcriptional activity [139]. As weIl the role 

of SUMO upon p53 has begun to come under more intense study [140]. The possibility of 

SOCSI based E3 ligases regulating p53 through direct post transductional modification 

has not been explored in this study. Yet more and more ex amples ofneddylation and 
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sumoylation appearing to play important roles in regulating proteins, and important 

pathways, even the cell cycle, have begun to appear in recent literature [141, 142] . This 

dictates that the roles of these modifications and the enzymes that pro duce them require 

more study. 

While we were unable to directly demonstrate the dependency of the BC or Cul 

box domains for SOCS 1 induced growth arrest, we have identified a necessary residue 

within the Cul box domain of SOCS 1 for this activity. Kumara et al., originally 

identified a stretch of amino acids within the Cul box of SOCS 1 that differs from a 

conserved sequence found in aIl other SOCS family members [89]. Specifically deletion 

or mutation to the N198 residue aIt ers the IPLNP sequence in the Cul box of SOCS 1 to 

resemble the LPxP sequence found in aIl other SOCS family proteins. As weIl, both these 

modifications abolish the ability of SOCS 1 to induce growth arrest in the U20S ceIlline 

we studied. The Cul box of SOCS 1 resembles that of the VHL tumor suppressor, and 

both have been shown to bind to a Cul2/Rbxl complex. [74, 89]. Other SOCS members 

bind to Cul 51 Rbx 2 complex. VHL has also been shown to bind directly to p53 and 

stabilize p53 levels upon activation by both blocking MDM2 induced degradation and 

recruiting p53 modifying proteins [143]. Other students in our lab have demonstrated that 

SOCS 1 can form direct interactions with p53 (Calabresse et al. unpublished). AIso, VHL 

can induce growth arrest in different ceIllines [143]. Both SOCSI and VHL share a 

similar Cul box, unique from that of other SOCS 1 members, alteration of the Cul box of 

SOCS 1 to that of other SOCS proteins through mutations to N198 abolishes growth 

arrest. Hence, SOCS 1 can be acting in a manner very similar to VHL and can be acting as 

an adaptor prote in to recruit proteins to modify p53. This could explain the 
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phosphorylation of p53 at serine 15 seen in U20S cells overexpressing SOCS 1. The 

binding site for p53 is unknown but it could be likely that SOCS 1 can act as an adaptor 

protein for many complexes aside from an E3 ligase. 

1t is possible however that other proteins that protect p53 from ubiquitination or 

activate it through modifications bind to this region. In this model, the componehts of the 

E3 ligase could be in competition for binding sites within SOCS 1 with p53 and p53 

modifying proteins. However, the binding of p53 to SOCS 1 must be further explored. 

Another model would be SOCS 1 binding to Cul5IRbx2 allows it to degrade different 

targets than other SOCS molecules binding to Cul2/Rbx 1. This would give SOCS 1 a 

unique advantage and possibly allow it to degrade proteins which promote growth or 

proteins that act as a negative regulator of p53, inducing a growth arrest. Switching the 

Cul box sequence in theory would alter SOCS 1 so that it binds to Cul2/Rbx 1, not 

CuI5/Rbx2, preventing normal SOCS 1 function. We were unable to show Cul2 binding 

with SOCS 1 or the SOCS 1 mutants with the antibodies available to us, therefore we 

cannot assume that this is indeed the case with the SOCS 1 ôN198 or SOCS 1 N198P 

mutants. 
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Conclusion: 

We have shown that SOCSl appears to be the only member of the SOCS family 

of proteins capable of inducing a growth arrest phenotype. In primary cells, the growth 

arrest is manifested as premature senescence, this implicates SOCS 1 in a powerful anti­

tumor rriechanism, coinciding with its role as a tumor suppressor. Other members of the 

SOCS family do not share this ability and sorne appear to have roles as an oncogene. 

Furthermore, we have shown SOCS 1 can activate the p53 pathway. The exact 

mechanisms of this are not known and must be further explored. As weIl, we have shown 

a residue within SOCS 1 that is necessary for the growth arrest phenotype of SOCS 1. 

Since others in our lab have shown that SOCS 1 can bind p53 directly, we suggest that 

alternative binding to Cu15/Rbx2 or a differential binding domain within SOCS 1 allows 

SOCS 1 to bind to p53 and stabilize it directly. Possibly, p53 binds to SOCS 1 at one site 

and other proteins are recruited to SOCS] to modify and stabilize p53 through another 

site, which possibly contains the N198 residue. These results, although only preliminary, 

demonstrate the role of SOCS 1 in senescence as a possible role of SOCS] as a tumor 

suppressor which could act independent of its role in regulating JAK/Stat pathways. The 

activation ofp53 makes SOCS] an important protein ofinterest. Its widespread 

methylation in a variety of cancers further illustrates its importance. We suggest the full 

function of SOCSI remains a mystery and that it may have other roI es and functions 

independent of its E3 ligase activity. We conclude that further studies on the mechanisms 

of p53 activation by SOCS l, and on the role played by the Cul box and the Nl98 residue 

on growth arrest, are required. 
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