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Abstract

We are the first to introduce incomplete information to centralized many-

to-one matching markets such as those to entry-level labor markets or college

admissions. This is important because in real life markets (i) any agent is un-

certain about the other agents’ true preferences and (ii) most entry-level match-

ing is many-to-one (and not one-to-one). We show that for stable (matching)

mechanisms there is a strong and surprising link between Nash equilibria under

complete information and Bayesian Nash equilibria under incomplete informa-

tion. That is, given a common belief, a strategy profile is a Bayesian Nash

equilibrium under incomplete information in a stable mechanism if and only if,

for any true profile in the support of the common belief, the submitted profile is

a Nash equilibrium under complete information at the true profile in the direct

preference revelation game induced by the stable mechanism. This result may

help to explain the success of stable mechanisms in these markets.

JEL Classification: C78, D81, J44.

Keywords: Many-To-One Matching Market, Stability, Incomplete Information.
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1 Introduction

Both empirical and theoretical studies of two-sided matching markets have been use-

ful in applications. Many such markets have developed centralized market clearing

mechanisms (in response to various failures of the decentralized market) to match

the agents from the two sides: the institutions (firms, colleges, hospitals, schools,

etc.) and the individuals (workers, students, medical interns, children, etc.).1 The

National Resident Matching Program is the most well-studied example of this kind

of two-sided matching markets. Each year around 20,000 medical students look for

a four-years position in American hospital programs to undertake their medical in-

ternships.2 In many countries, each year thousands of students seek for positions in

colleges,3 six years old children have to be assigned to public schools,4 8th graders

high school students to high schools,5 as well as civil servants to similar jobs in public

positions scattered in different cities across a country.

All of these entry-level matching markets share two specific features. The first one

is the many-to-one nature of the problem: the workers enter the market by cohorts

(often once per year) and each worker has to be matched to at most one firm while

each firm might be matched to many workers. The second one is the centralized

way of reaching a solution: a centralized institution (clearinghouse) collects, for each

participant, a ranked list of potential partners and proposes, after processing the

profile of submitted ranked lists, a final matching between firms and workers.

1Roth and Sotomayor (1990) give a masterful overview of two-sided matching markets.
2See Roth (1984a), Roth and Peranson (1999), and Roth (2002) for a careful description and

analysis of this market. Roth (1991), Ehlers (2002), Kesten (2004), and Ünver (2005) describe and

analyze the equivalent UK markets.
3Romero-Medina (1998) studies the case of Spain.
4Chen and Sönmez (2006) and Ergin and Sönmez (2006) study the case of public schools in

Boston. Abdulkadiroğlu and Sönmez (2003) studies the cases of public schools in Boston, Lee

County (Florida), Minneapolis, and Seattle.
5Abdulkadiroğlu, Pathak, and Roth (2005) studies the case of public high schools in New York

City.
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Yet, and in order to survive, the proposed matching has to be stable (relative

to the true preference profile) in the sense that all agents have to be matched to

acceptable partners and no unmatched pair of a firm and a worker prefer each other

rather than the proposed partners. Stability constitutes a minimal requirement that

a matching has to fulfill if the assignment is voluntary rather than compulsory. The

literature has considered stability of a matching to be its main characteristic in order

to survive.6 Indeed, many of the successful mechanisms are stable. This is puz-

zling because there exists no stable mechanism which makes truth-telling a dominant

strategy for all agents (Roth, 1982). Therefore, an agent’s (submitted) ranked lists

of potential partners are not necessarily his true ones and the implemented matching

may not be stable for the true profile. As a consequence, the literature has studied

intensively Nash equilibria of direct preference revelation games induced by different

stable mechanisms for a given true preference profile.7 Not only that, there is also a

fair amount of agreement that these studies have provided us with a very good un-

derstanding of the strategic incentives that participants face in these markets under

complete information.

Nevertheless all this strategic analysis might be marred by the assumption that the

true profile of preferences is both certain and common knowledge among all agents;

the very definition of Nash equilibrium under complete information requires it. In-

deed, participants in these markets perceive the outcome of the mechanism as being

uncertain because the submitted preferences of the other participants are unknown.

To model this uncertainty and to overcome the limitation of the complete informa-

tion set up, we follow the Bayesian approach by assuming that participants share a

common belief; namely, nature selects a preference profile according to a commonly

known probability distribution on the set of profiles. Since matching markets require

to report ranked lists and not their specific utility representations, we stick to the

6See, for instance, Roth (1984a) and Niederle and Roth (2003).
7See Dubins and Freedman (1981), Roth (1982, 1984b, 1985a), Gale and Sotomayor (1985), Shin

and Suh (1996), Sönmez (1997), Ma (1995, 2002), and Alcalde (1996).
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ordinal setting and assume that probability distributions are evaluated according to

the first-order stochastic dominance criterion. Then, a strategy profile is an ordinal

Bayesian Nash equilibrium if, for every von Neumann-Morgenstern utility function of

an agent’s preference ordering (his type), the submitted ranked list maximizes his ex-

pected utility in the direct preference revelation game induced by the common belief

and the mechanism.8

Investigating many-to-one matching markets under incomplete information is im-

portant for applications because in real life markets (i) any agent is uncertain about

the other agents’ true preferences and (ii) most entry-level matching is many-to-one

(and not one-to-one). More precisely, we study in many-to-one matching markets

direct preference revelation games under incomplete information induced by a stable

mechanism. Our main result shows that there is a strong and surprising link between

Nash equilibria under complete information and ordinal Bayesian Nash equilibria un-

der incomplete information. More precisely, Theorem 1 states that, given a common

belief, a strategy profile is an ordinal Bayesian Nash equilibrium under incomplete

information in a stable mechanism if and only if for any profile in the support of the

common belief, the submitted profile is a Nash equilibrium under complete informa-

tion at the true profile in the direct preference revelation game induced by the stable

mechanism.

Theorem 1 has many important consequences and applications. The most im-

portant consequence of this result is that it points out that, after all, the former

strategic analysis under complete information is meaningful, relevant, and essential

to undertake the corresponding analysis under incomplete information. Furthermore,

for determining whether a strategy profile is an equilibrium under incomplete infor-

mation, we only need to check whether for each realization the submitted preference

8This notion was introduced by d’Aspremont and Peleg (1988) who call it “ordinal Bayesian

incentive-compatibility”. Majumdar and Sen (2004) use it to relax strategy-proofness in the

Gibbard-Satterthwaite Theorem. Majumdar (2003), Ehlers and Massó (2004), and Pais (2005)

have already used this ordinal equilibrium notion in one-to-one matching markets.
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orderings are a Nash equilibrium under complete information. This also implies that

for any stable mechanism, the set of ordinal Bayesian Nash equilibria is identical for

any two common beliefs with equal support. Therefore, any equilibrium is robust to

perturbations of the common belief which do not change the support of the common

belief and agents may have different beliefs with equal support.

Another important consequence is that the set of ordinal Bayesian Nash equilibria

for common beliefs with full support remain equilibria for any common belief. We

show that full support equilibria provide a foundation why any agent submits only

preference orderings which rank acceptable only partners which are acceptable ac-

cording to his true preference relation and the reported ranking over the acceptable

partners is truthful. This may help to explain why in markets using stable mech-

anisms most agents truthfully reveal their preferences over their partners reported

acceptable (Roth and Peranson, 1999). It also gives some insight into the success of

stable mechanisms since exactly these equilibria are robust to arbitrary changes of

the (non-)common belief. Furthermore, we apply our main result to obtain conclu-

sions about the stability of the outcomes realized under any ordinal Bayesian Nash

equilibrium and when truth-telling is an ordinal Bayesian Nash equilibrium.9

The paper is organized as follows. Section 2 describes the many-to-one matching

market with responsive preferences. Section 3 introduces the incomplete information

framework to the many-to-one matching market and the notion of ordinal Bayesian

Nash equilibrium. Section 4 states our main result, Theorem 1, and its applications.

Section 5 concludes with some final remarks and the Appendix contains the proof of

Theorem 1.

9We will describe these conclusions in detail later in the main text.
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2 Many-To-One Matching Markets

2.1 Agents, Quotas, and Preferences

The agents of a college admissions problem (or many-to-one matching market) consist

of two disjoint sets, the set of firms F and the set of workers W . A generic firm will

be denoted by f , a generic worker by w, and a generic agent by v ∈ V ≡ F ∪ W .

While workers can only work for at most one firm, firms may hire different numbers of

workers. For each firm f , there is a maximum number qf ≥ 1 of workers that f may

hire, f ’s quota. Let q = (qf )f∈F be the vector of quotas. To emphasize the quotas

of a subset of firms S ⊆ F we sometimes write (qS, q−S) instead of q. Each worker

w has a strict preference ordering Pw over F ∪ {∅}, where ∅ means the prospect of

not being hired by any firm. Each firm f has a strict preference ordering Pf over

W ∪{∅}, where ∅ means the prospect of not hiring any worker. A profile P = (Pv)v∈V

is a list of preference orderings. To emphasize the preference orderings of a subset

of agents S ⊆ V we often denote a profile P by (PS, P−S). Let Pv be the set of all

preference orderings of agent v. Let P = ×v∈V Pv be the set of all profiles and let P−v

denote the set ×v′∈V \{v}Pv′ . Since agent v might have to compare potentially the same

partner, we denote by Rv the weak preference ordering corresponding to Pv; namely,

for v′, v′′ ∈ V ∪{∅}, v′Rvv
′′ means either v′ = v′′ or v′Pvv

′′. Momentarily fix a worker

w and his preference ordering Pw. Given v ∈ F ∪{∅}, let B(v, Pw) be the weak upper

contour set of Pw at v; i.e., B(v, Pw) = {v′ ∈ F∪{∅} | v′Rwv}. Let A(Pw) be the set of

acceptable firms for w according to Pw; i.e., A(Pw) = {f ∈ F | fPw∅}. Given a subset

S ⊆ F ∪ {∅}, let Pw|S denote the restriction of Pw to S. Similarly, given Pf ∈ Pf ,

v ∈ W ∪ {∅}, and S ⊆ W ∪ {∅}, we define B(v, Pf ), A(Pf ), and Pf |S. A college

admissions problem (or many-to-one matching market) is a quadruple (F, W, q, P ).
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2.2 Stable Matchings

The assignment problem consists of matching workers with firms keeping the bilateral

nature of their relationship, complying with firms’ capacities given by their quotas,

and allowing for the possibility that both workers and firms may remain unmatched.

Formally, given a college admissions problem (F, W, q, P ), a matching μ is a mapping

from the set V into the set of all subsets of V such that:

(m1) for all w ∈ W , either |μ (w)| = 1 and μ (w) ⊆ F or else μ (w) = ∅;

(m2) for all f ∈ F , μ (f) ⊆ W and |μ(f)| ≤ qf ; and

(m3) μ (w) = {f} if and only if w ∈ μ (f).

Abusing notation, we will often write μ(w) = f instead of μ(w) = {f}. If μ(w) = ∅
we say that w is unmatched at μ and if |μ(f)| < qf we say that f has qf − |μ(f)|
unfilled positions at μ; f is unmatched at μ when it has qf unfilled positions at μ.

Let M denote the set of all matchings. A college admissions problem (F, W, q, P )

in which qf = 1 for all f ∈ F is called a marriage market or a one-to-one matching

market.

Not all matchings are equally likely. Stability of a matching is considered to be its

main characteristic in order to survive. A matching is stable if no agent is matched to

an unacceptable partner (individual rationality) and no unmatched worker-firm pair

mutually prefers each other to (one of) their current assignments (pair-wise stability).

That is, given a college admissions problem (F, W, q, P ), a matching μ ∈ M is stable

(at P ) if

(s1) for all w ∈ W , μ(w)Rw∅;

(s2) for all f ∈ F and all w ∈ μ(f), wPf∅; and

(s3) there is no pair (w, f) ∈ W ×F such that w /∈ μ(f), fPwμ(w), and either wPfw
′

for some w′ ∈ μ(f) or wPf∅ if |μ(f)| < qf .
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Notice that this definition declares a matching to be stable if it is not blocked (in

the sense of the core) by either individual agents or unmatched pairs. Gale and

Shapley (1962) established that all college admissions problems have a non-empty

set of stable matchings and Roth (1985b) showed that larger coalitions do not have

additional (weak) blocking power because the set of stable matchings coincides with

the core. We denote by C(F, W, q, P ) the non-empty core of the college admissions

problem (F, W, q, P ). Since sometimes everything but P remains fixed we will often

write P instead of (F, W, q, P ); then, for instance, C(P ) denotes the set of stable

matchings at P (or the core of P ).

2.3 Matching Mechanisms

Whether or not a matching is stable depends on the preference orderings of agents, and

since they are private information, agents have to be asked about them. A mechanism

requires each agent v to report some preference ordering Pv and associates a matching

with any reported profile P . Namely, a mechanism is a function ϕ : P → M mapping

each preference profile P ∈ P to a matching ϕ [P ] ∈ M. Then ϕ [P ] (v) is the match

of agent v at preference profile P under mechanism ϕ. Note that, for all w ∈ W ,

ϕ[P ](w) ∈ F ∪ {∅} and, for all f ∈ F , ϕ[P ](f) ∈ 2W . A mechanism ϕ is stable if for

all P ∈ P , ϕ [P ] ∈ C (P ).

2.4 Responsive Extensions

The notion of a mechanism in which firms (like workers) only submit rankings on in-

dividual agents fits with most of the mechanisms used in real life centralized matching

markets. But a mechanism matches each firm f to a set of workers, taking into ac-

count only f ’s preference ordering Pf over individual workers. Thus, to study firms’

incentives in direct preference revelation games induced by a mechanism, preference

orderings of firms over individual workers have to be extended to preference order-

ings over subsets of workers. But a firm f may have different rankings over subsets
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of workers respecting its quota qf and the ranking Pf over individual workers. For

instance, let W = {w1, w2, w3, w4} be the set of workers and let Pf be such that

Pf : w1w2w3w4∅10 and qf = 2. While it is reasonable to assume that, under the ab-

sence of very strong complementarities among workers, the set {w1, w2} is preferred

by f to the set {w3, w4} or to the set {w1, w3}, firm f ’s preference between the sets

{w1, w4} and {w2, w3} is ambiguous since Pf does not convey this information. Fol-

lowing the literature,11 we will only require these extensions to be responsive in the

sense that replacing a worker in a set (or an unfilled position) by a better worker

(or an acceptable worker) makes a set more preferred; for example, in all extensions

{w1, w2} is preferred to {w1}, to {w3, w4} and to {w1, w3} but for some extensions

{w1, w4} is preferred to {w2, w3} while for other extensions {w2, w3} is preferred to

{w1, w4}.

Definition 1 (Responsive Extensions) The preference extension P ∗
f over 2W is

responsive to the preference ordering Pf over W ∪ {f} if for all S ∈ 2W , all w ∈ S,

and all w′ /∈ S:

(r1) S ∪ {w′}P ∗
f S if and only if |S| < qf and w′Pf∅.

(r2) S ∪ {w′}P ∗
f S\{w} if and only if w′Pfw.

Given a responsive extension P ∗
f of Pf , let R∗

f denote its corresponding weak

preference ordering on 2W . Moreover, given S ∈ 2W , let B(S, P ∗
f ) be the weak upper

contour set of P ∗
f at S; i.e., B(S, P ∗

f ) = {S ′ ∈ 2W | S ′R∗
fS}. Given Pf ∈ Pf , we

denote by resp(Pf ) the set of responsive extensions of Pf .

2.5 Properties of the Core

The core of a college admissions problem has a special structure. The following well-

known properties will be useful in the sequel:12

10We will use the convention that Pf : w1w2w3w4∅ means w1Pfw2Pfw3Pfw4Pf∅.
11See for instance, Roth and Sotomayor (1990).
12See Roth and Sotomayor (1990) for a detailed presentation of these properties.
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(P1) For each profile P ∈ P, C(P ) contains two stable matchings, the firms-optimal

stable matching μF and the workers-optimal stable matching μW , with the property

that for all μ ∈ C(P ), μW (w)Rwμ(w)RwμF (w) for all w ∈ W , and for all f ∈ F ,

μF (f)R∗
fμ(f)R∗

fμW (f) for all P ∗
f ∈ resp(Pf ). The deferred-acceptance algorithms

(DA-algorithms), introduced by Gale and Shapley (1962) and denoted by DAF :

P → M and DAW : P → M, are two stable mechanisms that select, for each profile

P , μF and μW , respectively; i.e., for all P ∈ P , DAF [P ] = μF and DAW [P ] = μW .13

(P2) For each profile P ∈ P and any responsive extensions P ∗
F = (P ∗

f )f∈F of PF =

(Pf )f∈F , C(P ) coincides with the set of group stable matchings at (PW , P ∗
F ), where

group stability corresponds to the usual cooperative game theoretical notion of weak

blocking14. This is important because it means that the set of group stable matchings

(relative to P ) is invariant with respect to any specific responsive extensions of PF .

(P3) For each P ∈ P , the set of unmatched agents is the same for all stable matchings

and if a firm does not fill all its positions at some stable matching, then this firm is

matched to the same set of workers at all stable matchings; namely, for all μ, μ′ ∈
C(P ), and for all w ∈ W and all f ∈ F , (i) μ(w) = ∅ if and only if μ′(w) = ∅, (ii)

|μ(f)| = |μ′(f)|, and (iii) if |μ(f)| < qf , then μ(f) = μ′(f).

3 Incomplete Information

Clearly any mechanism and any true profile define a direct (ordinal) preference reve-

lation game under complete information.

Definition 2 (Nash Equilibrium) A profile P ′ is a Nash equilibrium (NE) un-

13Strictly speaking, the DA-algorithm is an algorithm that finds the matching chosen by the “DA-

mechanism”. However, most of the matching literature uses the term DA-algorithm when referring

to both the algorithm and the mechanism. We follow this convention.
14A matching μ is weakly blocked by coalition S ⊆ V under (PW , P ∗

F ) if there exists a matching

μ′ such that (b1) for all v ∈ S, μ′(v) ⊆ S, (b2) for all w ∈ W ∩ S, μ′(w)Rwμ(w), and (b3) for all

f ∈ F ∩ S, μ′(f)R∗
fμ(f), with strict preference holding for at least one v ∈ S.
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der complete information P in the direct preference revelation game induced by the

mechanism ϕ if for all w ∈ W , ϕ[P ′](w)Rwϕ[P̂w, P ′
−w](w) for all P̂w ∈ Pw, and for all

f ∈ F and all P ∗
f ∈ resp(Pf ), ϕ[P ′](f)R∗

fϕ[P̂f , P
′
−f ](f) for all P̂f ∈ Pf .

A large literature on matching studies Nash equilibrium and its refinements un-

der complete information in direct preference revelation games induced by stable

mechanisms; in particular, for the mechanisms DAF and DAW . However, for many

applications the assumption that the true profile is common knowledge is extremely

unrealistic. We depart from it and consider the Bayesian direct preference revelation

games induced by a mechanism and a belief about the true profile, which is shared

among all agents. A common belief is a probability distribution P̃ over P . Given a

profile P and the common belief P̃ , Pr{P̃ = P} is the probability that P̃ assigns to

the event that the true profile is P . Given v ∈ V , let P̃v denote the marginal dis-

tribution of P̃ over Pv. Observe that, following the Bayesian approach, the common

belief P̃ describes agents’ uncertainty about the true profile before agents learn their

types. Now, given a common belief P̃ and a preference ordering Pv (agent v’s type),

let P̃−v|Pv denote the probability distribution which P̃ induces over P−v conditional

on Pv. It describes agent v’s uncertainty about the preferences of the other agents,

given that his preference ordering is Pv. This formulation does not require symmetry

nor independence of beliefs; conditional beliefs might be very correlated if agents use

similar sources to form them (i.e., rankings, grades, recommendation letters, etc.).

An agent with incomplete information about the others’ preference orderings

(more importantly, about their submitted lists) will perceive the outcome of a mecha-

nism as being uncertain. A random matching μ̃ is a probability distribution over the

set of matchings M. Given a matching μ and the random matching μ̃, Pr{μ̃ = μ}
is the probability that μ̃ assigns to matching μ. But the uncertainty important for

agent v is not over matchings but over v’s set of potential partners. Let μ̃(w) denote

the probability distribution which μ̃ induces over worker w’s set of potential partners

F ∪ {∅} and let μ̃(f) denote the probability distribution which μ̃ induces over firm

12



f ’s set of potential partners 2W . Namely, for w ∈ W and all v ∈ F ∪ {∅},

Pr{μ̃(w) = v} =
∑

μ∈M:μ(w)=v

Pr{μ̃ = μ}

and for f ∈ F and all S ∈ 2W ,

Pr{μ̃(f) = S} =
∑

μ∈M:μ(f)=S

Pr{μ̃ = μ}.

A mechanism ϕ and a common belief P̃ define a direct (ordinal) preference rev-

elation game under incomplete information as follows. Before submitting a list to

the mechanism, agents learn their types. Thus, a strategy of agent v is a function

sv : Pv → Pv specifying for each type of agent v, Pv, a list that v submits to the mech-

anism, sv(Pv). A strategy profile is a list s = (sv)v∈V of strategies specifying for each

true profile P a submitted profile s(P ). Given a mechanism ϕ : P → M and a com-

mon belief P̃ over P , a strategy profile s : P → P induces a random matching ϕ[s(P̃ )]

in the following way: for all μ ∈ M, Pr{P̃ = P | ϕ[s (P )] = μ} is the probability

of matching μ. However, the relevant random matching for agent v, given his type

Pv and a strategy profile s, is ϕ[sv(Pv), s−v(P̃−v|Pv)] (where s−v(P̃−v|Pv) is the prob-

ability distribution over P−v which s−v and P̃ induce conditional on Pv). But again,

the relevant uncertainty that agent v faces is given by ϕ[sv (Pv) , s−v(P̃−v|Pv)] (v), the

probability distribution which the random matching ϕ[sv (Pv) , s−v(P̃−v|Pv)] induces

over v’s set of potential partners.

Definition 3 (First-Order Stochastic Dominance) (fo1) A random matching μ̃

first-order stochastically Pw−dominates a random matching μ̃′, denoted by μ̃ (w)�Pw

μ̃′ (w), if for all v ∈ F ∪ {∅} ,

∑

v′∈F∪{∅}:v′Rwv

Pr{μ̃ (w) = v′} ≥
∑

v′∈F∪{∅}:v′Rwv

Pr{μ̃′ (w) = v′}.

(fo2)15 A random matching μ̃ first-order stochastically Pf−dominates a random match-

15Observe that this definition requires that μ̃ first-order stochastically dominates μ̃′ according to
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ing μ̃′, denoted by μ̃ (f) �Pf
μ̃′ (f), if for all P ∗

f ∈ resp(Pf ) and all S ∈ 2W ,

∑

S′∈2W :S′R∗
f S

Pr{μ̃ (f) = S ′} ≥
∑

S′∈2W :S′R∗
f S

Pr{μ̃′ (f) = S ′}.

All mechanisms used in centralized matching markets are ordinal. In other words

the only information available for a clearinghouse are the agents’ ordinal preferences

over potential partners. In such an environment a strategy profile is an ordinal

Bayesian Nash equilibrium whenever, for any agent’s true ordinal preference, sub-

mitting the ranked list specified by his strategy maximizes his expected utility for

every von Neumann-Morgenstern (vNM)-utility representation of his true preference.

This requires that an agent’s strategy only depends on the ordinal ranking induced

by his vNM-utility function (if any). Moreover, ordinal strategies are meaningful if an

agent only observes his ordinal ranking and may have (still) little information about

his utilities of his potential partners.

Definition 4 (Ordinal Bayesian Nash Equilibrium) Let P̃ be a common belief.

Then a strategy profile s is an ordinal Bayesian Nash equilibrium (OBNE ) in the

mechanism ϕ under incomplete information P̃ if and only if for all v ∈ V and all

Pv ∈ Pv such that Pr{P̃v = Pv} > 0,

ϕ[sv(Pv), s−v(P̃−v|Pv)](v) �Pv ϕ[P ′
v, s−v(P̃−v|Pv)](v) for all P ′

v ∈ Pv.
16 (1)

Observe that, given a common belief P̃ , the set of OBNE in a stable mechanism is

non-empty. For instance, the strategy profile in which all agents declare that no agent

in the other side of the market is acceptable is an OBNE under any common belief

all responsive extensions of Pf . Note that this requirement is meaningful since the clearinghouse

observes firms’ rankings over individual workers only and not which responsive extension they use

to compare sets of workers.
16In the definition of OBNE optimal behavior of agent v is only required for the preferences of v

which arise with positive probability under P̃ . If Pv ∈ Pv is such that Pr{P̃v = Pv} = 0, then the

conditional belief P̃−v|Pv cannot be derived from P̃ . However, we could complete the belief of v in

the following way: let P̃−v|Pv
put probability one on a profile where all other agents submit lists

which do not contain v.
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since a stable mechanism selects, at all profiles P and (P−v, P
′
v), the empty matching.

Furthermore, any matching μ can be connected to an OBNE sμ in a stable mechanism

in the following way: for any v ∈ V and any Pv ∈ Pv, let A(sμ
v (Pv)) = μ(v) ∩ A(Pv).

Then sμ is an OBNE in a stable mechanism under any common belief because for

any true preference relation, agent v reports acceptable exactly the partner(s) which

are both specified by μ and are acceptable under his true preference relation. If

information is complete, then any sμ is a Nash equilibrium in ϕ and the outcomes of

the strategies sμ is the set of all individually rational matchings (Roth, 1985a). Both

under complete and incomplete information there is a multiplicity of OBNE and the

existence of OBNE is guaranteed.

4 The Main Result and Its Applications

The support of a common belief P̃ is the set of profiles on which P̃ puts a positive

weight; namely, profile P belongs to the support of P̃ if and only if Pr{P̃ = P} > 0.

We will show that for stable mechanisms there is a strong and surprising link

between equilibria under incomplete information and equilibria under complete in-

formation. Note that this link holds for any stable mechanism and not only for the

deferred-acceptance algorithms.

Theorem 1 Let P̃ be a common belief, s be a strategy profile, and ϕ be a stable mech-

anism. Then, s is an OBNE in the stable mechanism ϕ under incomplete information

P̃ if and only if for any profile P in the support of P̃ , s(P ) is a Nash equilibrium

under complete information P in the direct preference revelation game induced by ϕ.

Theorem 1 has several important consequences and applications. One immedi-

ate consequence is that for determining whether a strategy profile is an OBNE, we

only need to check whether for each realization of the common belief the submitted

preference orderings constitute a Nash equilibrium under complete information. This

means that the uniquely relevant information for an OBNE is the support of the

15



common belief. Therefore, no calculations of probabilities are necessary. This conse-

quence is very important for applications because we need to check equilibrium play

only for the realized (or observed) profiles. Furthermore, by Theorem 1, we can use

properties of NE (under complete information) to deduce characteristics of OBNE.

Below we turn to the applications of Theorem 1.

4.1 Application I: Structure of OBNE

By Theorem 1, a strategy profile is an OBNE if and only if the agents play a Nash

equilibrium for any profile in the support of the common belief. Therefore, (i) the set

of OBNE is identical for any two common beliefs with equal support and (ii) the set

of OBNE shrinks if the support of the common belief becomes larger.

Corollary 1 (Invariance) Let s be a strategy profile and ϕ be a stable mechanism.

(a) Let P̃ and P̃ ′ be two common beliefs with equal support. Then, s is an OBNE

in the stable mechanism ϕ under P̃ if and only if s is an OBNE in the stable

mechanism ϕ under P̃ ′.

(b) Let P̃ and P̃ ′ be two common beliefs such that the support of P̃ ′ is contained in

the support of P̃ . If s is an OBNE in the stable mechanism ϕ under P̃ , then s

is an OBNE in the stable mechanism ϕ under P̃ ′.

Now by (a) of Corollary 1, for stable mechanisms any OBNE is robust to per-

turbations of the common belief which leave its support unchanged. Therefore, any

OBNE remains an equilibrium if agents have different beliefs with equal support, i.e.

each agent v may have a private belief P̃ v but all private beliefs have identical (or

common) support.17 This consequence is especially important for applications since

for many of them, the common belief assumption might be too strong.

17Then in Definition 4 of OBNE P̃ is replaced by P̃ v for each agent v. Theorem 1 and its proof

show that for any OBNE s, each agent’s strategy sv chooses a best response to the other reported

preferences for any profile belonging to the support of his private belief. If all private beliefs have
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By (b) of Corollary 1, the set of OBNE with full support (i.e. all common beliefs

which put positive probability on all profiles) is contained in the set of OBNE of

any arbitrary common belief (or support). It turns out that OBNE with full support

provide a foundation of why any agent submits only rankings which according to

his true preference relation (i) contain only acceptable matches and (ii) report the

true ranking over the reported acceptable matches. For the firms (ii) requires an

inessential modification: because we consider only stable mechanisms it is irrelevant

for a firm in which order it ranks its first qf acceptable matches. For OBNE with

full support any firm submits only rankings which are essentially truthful: the first

qf reported workers are the qf truthfully most preferred workers among all workers

reported acceptable and the reported ranking over the remaining workers reported

acceptable is truthful.

Formally, given v ∈ F and Pv, P
′
v ∈ Pv, we call P ′

v|A(P ′
v) essentially Pv-truthful

if |A(P ′
v)| ≤ qv or for the qv most preferred workers under P ′

v, say w1, . . . , wqv , we

have for all w′ ∈ A(P ′
v) and all w ∈ A(P ′

v)\{w1, . . . , wqv}, P ′
v|{w,w′} = Pv|{w, w′}.

For example, if qv = 2 and Pv : w1w2w3w4∅ . . ., then P ′
v : w3w2w4∅ . . . and P ′′

v :

w2w1w4∅ . . . are essentially Pv-truthful. Observe that condition (i) above will require

in addition that A(P ′
v) ⊆ A(Pv) and A(P ′′

v ) ⊆ A(Pv).

Corollary 2 (Essential Truthfulness for Full Support) Let P̃ be a common be-

lief with full support, s be a strategy profile, and ϕ be a stable mechanism. Then, s is

an OBNE in the stable mechanism ϕ under P̃ only if for all v ∈ V and all Pv ∈ Pv,

(i) A(sv(Pv)) ⊆ A(Pv) and (ii) sv(Pv)|A(sv(Pv)) = Pv|A(sv(Pv)) (if v ∈ W ) and

sv(Pv)|A(sv(Pv)) is essentially Pv-truthful (if v ∈ F ).

Proof. Let s be an OBNE in the mechanism ϕ under P̃ . Let v ∈ V and Pv ∈ Pv.

Assume v ∈ F (if v ∈ W the proof follows a similar argument).

equal support, then it follows that a strategy profile s is an OBNE with private beliefs (with common

support) if and only if for any profile P in the common support, s(P ) is a Nash equilibrium under

complete information P in the direct preference revelation game induced by ϕ.
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First we show that A(sv(Pv)) ⊆ A(Pv). Suppose that A(sv(Pv))\A(Pv) �= ∅.
Let w ∈ A(sv(Pv))\A(Pv) and P−v ∈ P−v be such that A(Pw) = {v} and for all

v′ ∈ V \{v, w}, A(Pv′) = ∅. Let P = (Pv, P−v). Because P̃ has full support, we

have Pr{P̃ = P} > 0. Thus, by Theorem 1, s(P ) must be a NE in ϕ for P . But

then for all v′ ∈ V \{v, w}, A(Pv′) = ∅ implies ϕ[s(P )](v′) = ∅. This and w /∈ A(Pv)

implies ϕ[s(P )](v) = ∅ and ϕ[s(P )](w) = ∅. Hence, by stability of ϕ, we have

v /∈ A(sv′(Pv′)) for all v′ ∈ A(sv(Pv)). But now w profitably deviates by reporting

P ′
w ∈ Pw such that A(P ′

w) = {v} because by w ∈ A(sv(Pv)), ϕ[P ′
w, s−w(P−w)](w) = v

and vPw∅ = ϕ[s(P )](w). This means that s(P ) is not a NE in ϕ for P , a contradiction.

Second we show that sv(Pv)|A(sv(Pv)) is essentially Pv-truthful. If |A(sv(Pv))| ≤
qv, then nothing has to be shown. Let |A(sv(Pv))| > qv and w1, . . . , wqv be the qv most

preferred workers under sv(Pv). Let W ′ = {w1, . . . , wqv}. By A(sv(Pv)) ⊆ A(Pv), if

(ii) does not hold, then for some w′ ∈ A(sv(Pv)) and some w ∈ A(sv(Pv))\W ′,

w′sv(Pv)wsv(Pv)∅ and wPvw
′Pv∅.18 Without loss of generality, let w′ ∈ W ′ (if

w′ /∈ W ′, then the proof is analogous). Let P−v ∈ P−v be such that (a) A(Pw) =

{v}, (b) A(Pw′) = {v}, (c) for all w′′ ∈ W ′, A(Pw′′) = {v}, and (d) for all v′ ∈
V \({v, w, w′} ∪ W ′), A(Pv′) = ∅. Let P = (Pv, P−v). Because P̃ has full support,

we have Pr{P̃ = P} > 0. Thus, by Theorem 1, s(P ) must be a NE in ϕ for P .

But then for all v′ ∈ V \({v, w, w′} ∪ W ′), A(Pv′) = ∅ implies ϕ[s(P )](v′) = ∅.
Furthermore, because P̃ has full support and s is an OBNE in ϕ under P̃ , it is

easy to verify that v ∈ A(sw′′(Pw′′)) for w′′ ∈ W ′ ∪ {w}. Then by stability of ϕ,

w′sv(Pv)wsv(Pv)∅, W ′ ⊆ A(Pv), A(Pw′) = {v}, and the fact that s(P ) is a NE in ϕ

for P , we must have ϕ[s(P )](v) = W ′. Since v ∈ A(sw(Pw)), now v profitably deviates

by reporting P ′
v ∈ Pv such that A(P ′

v) = (W ′\{w′})∪{w} because by v ∈ A(sw(Pw)),

ϕ[P ′
v, s−v(P−v)](v) = (W ′\{w′}) ∪ {w} and both wPvw

′ and responsiveness imply

(W ′\{w′}) ∪ {w}P ∗
v W ′ = ϕ[s(P )](v) for all P ∗

v ∈ resp(Pv). This means that s(P ) is

not a NE in ϕ for P , a contradiction. �
18Observe that if v ∈ W the contradiction hypothesis would be that for some f, f ′ ∈ A(sv(Pv)),

f ′sv(Pv)fsv(Pv)∅ and fPvf ′Pv∅.
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Note that any OBNE for a common belief with full support is an OBNE for any

arbitrary belief. Hence, such OBNE are invariant with respect to the common belief

and remain OBNE if the agents’ beliefs are not necessarily derived from the same

common belief. Of course, by Corollary 2, those OBNE are robust to changes of

the common belief(s) only if each agent’s strategy ranks acceptable only matches

which are acceptable according to the true ranking and the reported ranking over the

acceptable matches is essentially truthful.

4.2 Application II: Realized Matchings

The previous application described properties of strategy profiles which constitute

an OBNE in a stable mechanism. For real-life environments we are also interested

in which outcomes will be observed. Or in other words, for a given OBNE which

matchings are realized ex-post, i.e. after each realization of a profile and its submitted

rankings. Since we consider stable mechanisms, any realized matching is stable for

the submitted profile. It turns out that all agents unanimously agree that the realized

matching is truthfully most preferred among all matchings which are stable for the

submitted profile.

Corollary 3 (Ex-Post Unanimity) Let P̃ be a common belief, s be a strategy pro-

file, and ϕ be a stable mechanism. Then, s is an OBNE in the stable mechanism

ϕ under P̃ only if for all profiles P belonging to the support of P̃ , all μ ∈ C(s(P ))

and all v ∈ V , ϕ[s(P )](v)Rvμ(v) (if v ∈ W ) and ϕ[s(P )](v)R∗
vμ(v) for all responsive

extensions P ∗
v of Pv (if v ∈ F ).

Proof. Let P ∈ P be such that Pr{P̃ = P} > 0. Without loss of generality, let v ∈ F

(the proof for v ∈ W is analogous and easier). Suppose that for some μ ∈ C(s(P )) we

have μ(v)P ∗
v ϕ[s(P )](v) for some P ∗

v ∈ resp(Pv). Since the number of filled positions is

identical for all firms for any two stable matchings (property (P3) of the core and sta-
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ble matchings), we have |μ(v)| = |ϕ[s(P )](v)|. Then μ(v)\ϕ[s(P )](v) �= ∅ and by The-

orem 4 of Roth and Sotomayor (1989), for all w ∈ μ(v) and all w′ ∈ ϕ[s(P )](v)\μ(v),

wPvw
′. Let P ′

v ∈ Pv be such that A(P ′
v) = μ(v). Then it is easy to check that

μ ∈ C(s(P )) implies μ ∈ C(P ′
v, s−v(P−v)). By stability of ϕ and A(P ′

v) = μ(v),

ϕ[P ′
v, s−v(P−v)](v) = μ(v). Since μ(v)P ∗

v ϕ[s(P )](v), s(P ) is not a NE in ϕ for P and

by Theorem 1, s is not an OBNE in ϕ under P̃ , a contradiction. �

Ehlers and Massó (2004, Theorem 2) showed Corollary 3 for one-to-one matching

markets. Note that they could not rely on our general result Theorem 1 which allows

the use of simple arguments to show that whenever the agents do not unanimously

agree that the realized matching is most preferred in the core of the reported profile,

then the agents do not play a NE at this profile.

In the above corollary the core of the submitted profile and the realized matching

were related in terms of the true profile. Below we give for one-to-one matching

markets a necessary and sufficient condition for all realized matchings to belong to

the core of the true profile. Then all realized matchings are ex-post stable, i.e. for any

profile in the support of the common belief, the matching chosen for the submitted

rankings is stable for the true profile.

A profile P ′ ∈ P is a strong Nash equilibrium (SNE) under complete informa-

tion P in the direct preference revelation game induced by the mechanism ϕ if for

all coalitions S ⊆ V there exists no P ′′
S ∈ PS such that (i) for all w ∈ S ∩ W ,

ϕ[P ′′
S , P ′

−S](w)Pwϕ[P ′](w), and (ii) for all f ∈ S ∩ F , ϕ[P ′′
S , P ′

−S](f)P ∗
f ϕ[P ′](f) for

some P ∗
f ∈ resp(Pf ).

Corollary 4 (Ex-Post Stability for Marriage Markets) Let qf = 1 for all f ∈
F , P̃ be a common belief, s be a strategy profile, and ϕ be a stable mechanism. Let s

be an OBNE in ϕ under P̃ . Then, s is ex-post stable (for all P in the support of P̃ ,

ϕ[s(P )] ∈ C(P )) if and only if for all P in the support of P̃ , s(P ) is a SNE under

complete information P .
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Proof. Follows directly from Theorem 1 and the fact that for any profile P and any

NE s(P ) in ϕ under complete information P , ϕ[s(P )] ∈ C(P ) if and only if s(P ) is a

SNE in ϕ under complete information P (Shin and Suh, 1996; Sönmez, 1997). �

For college admissions problems, under complete information it is known that the

outcome of a SNE might not be stable under the true profile (Ma, 2002, Example 1).

Therefore, in general the requirement that for any profile in the support the agents

play a SNE is not sufficient for an OBNE to be ex-post stable. However, since the

set of stable matchings coincides with the core, in college admissions problems this

condition remains necessary for OBNE to be ex-post stable.

4.3 Application III: Truth-Telling

When agents’ preferences are private information, we would like to design a mecha-

nism which elicits the true preferences from the agents. In order to guarantee that

agents truthfully report their preferences, incentive-compatible mechanisms make it a

(weakly) dominant strategy to report truthfully. Incentive-compatibility is equivalent

to the requirement that for any profile truth-telling is a NE under complete informa-

tion. Therefore, incentive-compatibility is equivalent to truth-telling being an OBNE

for all common beliefs.

Since incentive-compatibility is a strong condition, our incomplete information

environment allows a weaker (but still natural) condition. Given a common belief

and a mechanism, Bayesian incentive-compatibility requires that all agents truthfully

reveal their preferences at any profile belonging to the support of the common be-

lief. By our powerful result Theorem 1, in many-to-one matching markets for stable

mechanisms Bayesian incentive-compatibility is equivalent to the requirement that

truth-telling is a NE under complete information for any profile belonging to the sup-

port of the common belief. Now it follows directly from Corollary 3 that truth-telling

is an OBNE only if the core is singleton at any realized profile.
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Corollary 5 Let P̃ be a common belief. Then, truth-telling is an OBNE in a stable

mechanism under incomplete information P̃ only if the support of P̃ is contained in

the set of all profiles with a singleton core.

Since in college admissions problems incentive compatibility is equivalent to Bayesian

incentive-compatibility for a common belief with full support, Roth’s (1982) result

(there exists no mechanism which is both stable and incentive-compatible) follows

from Corollary 5 because there exist profiles with non-singleton core.

By Theorem 1, singleton cores would be sufficient for truth-telling to be an OBNE

if at any profile belonging to the support of the common belief, truth-telling is a NE

under complete information. By Roth (1985a) we know that this is not the case since

he provides an example with singleton core where truth-telling is not a NE under

complete information. Specifically, in his example a firm with more than one position

profitably manipulates.

If each firm has exactly one position, then Ehlers and Massó (2004) show that

singleton core is sufficient for truth-telling to be a NE in any stable mechanism under

complete information. Therefore, we obtain the principal result of Ehlers and Massó

(2004) as a corollary from Theorem 1.

Corollary 6 [Theorem 1 in Ehlers and Massó (2004)] Let qf = 1 for all f ∈ F and

P̃ be a common belief. Then, truth-telling is an OBNE in a stable mechanism under

incomplete information P̃ if and only if the support of P̃ is contained in the set of all

profiles with singleton core.

5 Final Remarks

In many-to-one matching markets Theorem 1 provides for stable mechanisms a strong

link between OBNE under incomplete information and NE under complete informa-

tion. The following peculiarities of college admissions problems are important for the

main result: (p1) any firm fills the same number of positions under any two stable
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matchings; and (p2) starting from any college admissions problem and its workers-

optimal matching, when new workers become available all firms weakly prefer any

matching, which is stable for the enlarged problem, to the workers-optimal matching

of the original problem.19

It is clear that the link in Theorem 1 is in general not true for BNE. For instance, in

the two-player game of matching pennies we may interpret each agent’s pure strategies

(heads and tails) as his possible types. Now if the common belief comes from two

independent marginal beliefs that put probability 1
2

on each type, and hence, the

common belief puts probability 1
4

on each strategy profile (as in the unique NE in

mixed strategies), then truth-telling is a BNE under this common belief whereas the

game does not have any NE (in pure strategies) under complete information.

It would be interesting to identify other economic environments where a similar

link between BNE under incomplete information and NE under complete information

holds. In those environments the strategic analysis under complete information is

essential to undertake the corresponding analysis under incomplete information. For

determining whether a strategy profile is an equilibrium under incomplete informa-

tion, we only need to check whether for each realization the submitted preference

orderings are a Nash equilibrium under complete information. Furthermore, if this

link holds, then any BNE is robust to perturbations of the common belief which do

not change the support of the common belief and agents may have private beliefs

with equal support.
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APPENDIX

Before we prove Theorem 1, we recall the following properties of the core of a

college admissions problem. These properties will be used frequently in the proof. It

will be convenient to write (F, W, P ; q) for any college admissions problem (F, W, q, P )

in which qf = 1 for all f ∈ F .

A.1 Properties of the Core

(I) For each P ∈ P , the set of unmatched agents is the same for all stable matchings

(see Roth and Sotomayor, 1990, Theorems 5.12 and 5.13); namely, for all μ, μ′ ∈ C(P ),

and for all w ∈ W and f ∈ F , (i) if μ(w) = ∅, then μ′(w) = ∅; (ii) |μ(f)| = |μ′(f)|;
and (iii) if |μ(f)| < qf , then μ(f) = μ′(f).

(II) Given (F, W, q, P ), split each firm f into qf identical copies of itself (all having

the same preference ordering Pf ) and let F ′ be this new set of
∑

f∈F qf splitted firms.

Set q′f ′ = 1 for all f ′ ∈ F ′ and replace f by its copies in F ′ (always in the same order)

in each worker’s preference relation Pw. Then, (F ′, W, P ; q′) is a marriage market for

which we can uniquely identify its matchings with the matchings of the original college

admissions problem (F, W, q, P ), and vice versa (Roth and Sotomayor, 1990, Lemma

5.6). Then, and using this identification, we write C(F, W, q, P ) = C(F ′, W, P ; q′).

(III) Consider a marriage market (F, W, P ; q) and suppose that new workers enter the

market. Let (F, W ′, P ′; q) be this new marriage market where W ⊆ W ′ and P ′ agrees

with P over F and W . Let DAW [P ] = μW . Then, for all f ∈ F , μ′(f)R′
fμW (f) for

all μ′ ∈ C(F, W ′, P ′; q) (Gale and Sotomayor, 1985; Crawford, 1991).

A.2 Proof of Theorem 1

Theorem 1 Let P̃ be a common belief, s be a strategy profile, and ϕ be a stable mech-

anism. Then, s is an OBNE in the stable mechanism ϕ under incomplete information

P̃ if and only if for any profile P in the support of P̃ , s(P ) is a Nash equilibrium

under complete information P in the direct preference revelation game induced by ϕ.
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Proof. Let P̃ be a common belief, s be a strategy profile and ϕ be a stable mecha-

nism.

(⇐) Suppose that for any profile P in the support of P̃ , s(P ) is a Nash equilib-

rium under complete information P in the direct preference revelation game in-

duced by ϕ. Let v ∈ V and Pv ∈ Pv be such that Pr{P̃v = Pv} > 0. By

the previous fact, then we have for all P ′
v ∈ Pv and all P−v ∈ P−v such that

Pr{P̃−v|Pv = P−v} > 0, ϕ[s(P )](v)R∗
vϕ[P ′

v, s−v(P−v)](v) for all P ∗
v ∈ resp(Pv) (if

v ∈ F ) and ϕ[s(P )](v)Rvϕ[P ′
v, s−v(P−v)](v) (if v ∈ W ). Hence,

ϕ[sv(Pv), s−v(P̃−v|Pv)](v) �Pv ϕ[P ′
v, s−v(P̃−v|Pv)](v),

and s is an OBNE in ϕ under P̃ , the desired conclusion.

(⇒) Let s be an OBNE in the stable mechanism ϕ under incomplete information P̃ .

First we show that for all P ∈ P such that Pr{P̃ = P} > 0,

ϕ[s(P )](v) ⊆ A(Pv) for all v ∈ V. (2)

If for some P in the support of P̃ and for some v ∈ V , ϕ[s(P )](v) �⊆ A(Pv), then

choose P ′
v ∈ Pv such that A(P ′

v) = A(Pv) ∩ A(sv(Pv)) and P ′
v|A(P ′

v) = sv(Pv)|A(P ′
v).

By the stability of ϕ and our choice of P ′
v, we have ϕ[P ′

v, s−v(P
′
−v)](v) ⊆ A(Pv) for

all P ′
−v ∈ P−v. Let v ∈ F (the case v ∈ W is analogous and easier). We choose

a responsive extension P ∗
v of Pv such that for all W ′ ∈ 2W , W ′R∗

v∅ if and only

if W ′ ⊆ A(Pv). Hence, by ϕ[P ′
v, s−v(P−v)](v) ⊆ A(Pv) and ϕ[s(P )](v) �⊆ A(Pv),

ϕ[P ′
v, s−v(P−v)](v)R∗

v∅P ∗
v ϕ[s(P )](v). Since Pr{P̃−v|Pv = P−v} > 0, it follows that

Pr{ϕ[P ′
v, s−v(P̃−v|Pv)](v) ∈ B(∅, P ∗

v )} = 1 > Pr{ϕ[sv(Pv), s−v(P̃−v|Pv)](v) ∈ B(∅, P ∗
v )},

which means that s is not an OBNE in the stable mechanism ϕ under P̃ , a contra-

diction. Hence, (2) holds.

Second suppose that there is some P ∈ P such that Pr{P̃ = P} > 0 and s(P )

is not a Nash equilibrium under complete information P in the direct preference
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revelation game induced by ϕ. Then (w.l.o.g.) there exist f ∈ F , P ′
f ∈ Pf , and a

responsive extension P ∗
f of Pf such that

ϕ[P ′
f , s−f (P−f )](f)P ∗

f ϕ[s(P )](f). (3)

The case where a worker has a profitable deviation is analogous to the case where a

firm with quota one has a profitable deviation.

Let ϕ[P ′
f , s−f (P−f )] = μ′ and ϕ[s(P )] = μ. Furthermore, let μ′(f) = {w′

1, w
′
2, . . . , w

′
|μ′(f)|}

where w′
1Pfw

′
2Pf · · ·Pfw

′
|μ′(f)| and μ(f) = {w1, w2, . . . , w|μ(f)|} where w1Pfw2Pf · · ·Pfw|μ(f)|.

Case 1: There exists k ∈ {1, . . . , |μ′(f)|} such that w′
kPfwk and wlRfw

′
l for all

l ∈ {1, . . . , k − 1}.
Note that w′

k ∈ A(Pf ) because w′
kPfwk and by (2), wk ∈ μ(f) ⊆ A(Pf ). Let

P ′′
f ∈ Pf be such that A(P ′′

f ) = B(w′
k, Pf ) and P ′′

f |A(P ′′
f ) = P ′

f |A(P ′′
f ).

First we show that ϕ[P ′′
f , s−f (P−f )](f) contains at least k workers. Note that any

profile implicitly specifies the set of agents of the matching problem. For the time

being, below we specify both the profile and the quota of the matching problem.

Because ϕ is stable and ϕ[P ′
f , s−f (P−f )] = μ′, we have μ′ ∈ C(P ′

f , s−f (P−f ); q). Let

μ′′ be the matching for the problem (F, W\{w′
k+1, . . . , w

′
|μ′(f)|}, (k, q−f ),

(P ′
f , s−{f}∪{w′

k+1,...,w′
|μ′(f)|}(P−{f}∪{w′

k+1,...,w′
|μ′(f)|}))) such that μ′′(f) = {w′

1, . . . , w
′
k} and

μ′′(f ′) = μ(f ′) for all f ′ ∈ F\{f}. Then from μ′ ∈ C(P ′
f , s−f (P−f ); q) it follows that

μ′′ ∈ C(P ′
f , s−{f}∪{w′

k+1,...,w′
|μ′(f)|}(P−{f}∪{w′

k+1,...,w′
|μ′(f)|}); k, q−f ). (4)

By our choice of P ′′
f , we have μ′′(f) ⊆ A(P ′′

f ) and P ′′
f |A(P ′′

f ) = P ′
f |A(P ′′

f ). Hence, we

also have by (4),

μ′′ ∈ C(P ′′
f , s−{f}∪{w′

k+1,...,w′
|μ′(f)|}(P−{f}∪{w′

k+1,...,w′
|μ′(f)|}); k, q−f ). (5)

Thus, by μ′′(f) = {w′
1, . . . , w

′
k} and the fact that any firm is matched to the same

number of workers under all stable matchings, firm f is matched to k workers for

all matchings belonging to C(P ′′
f , s−{f}∪{w′

k+1,...,w′
|μ′(f)|}(P−{f}∪{w′

k+1,...,w′
|μ′(f)|}); k, q−f ).
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Now if firm f is matched to fewer than k workers in some matching belonging to

C(P ′′
f , s−{f}∪{w′

k+1,...,w′
|μ′(f)|}(P−{f}∪{w′

k+1,...,w′
|μ′(f)|}); q), then this matching is also stable

for the problem (P ′′
f , s−{f}∪{w′

k+1,...,w′
|μ′(f)|}(P−{f}∪{w′

k+1,...,w′
|μ′(f)|}); k, q−f ), a contradic-

tion to the previous fact. Hence, f is matched to at least k workers in any sta-

ble matching belonging to C(P ′′
f , s−{f}∪{w′

k+1,...,w′
|μ′(f)|}(P−{f}∪{w′

k+1,...,w′
|μ′(f)|}); q). Now

when considering the worker optimal matching in this core, we may split firm f

into qf copies (all having the same preference P ′′
f ) and each copy of firm f weakly

prefers according to P ′′
f any matching in C(P ′′

f , P−f ; q) to this matching. Since at

least k copies of f are matched to a worker under the worker optimal matching in

C(P ′′
f , s−{f}∪{w′

k+1,...,w′
|μ′(f)|}(P−{f}∪{w′

k+1,...,w′
|μ′(f)|}); q), at least k copies of f must be

also matched to a worker under any stable matching in C(P ′′
f , s−f (P−f ); q). There-

fore, by ϕ[P ′′
f , s−f (P−f )] ∈ C(P ′′

f , s−f (P−f ); q), ϕ[P ′′
f , s−f (P−f )](f) contains at least k

workers.

Second we choose a responsive extension P ∗∗
f of Pf . Let W ∗ ⊆ B(w′

k, Pf ) be

such that W ∗ consists of the k lowest ranked workers (according to Pf ) in the set

B(w′
k, Pf ), i.e. |W ∗| = k and for all w ∈ B(w′

k, Pf )\W ∗ and all w∗ ∈ W ∗, wPfw
∗.

Let P ∗∗
f be the responsive extension of Pf be such that for all W ′′ ∈ 2W , W ′′P ∗∗

f W ∗

if and only if the following three conditions hold: (i) W ′′ ⊆ A(Pf ), (ii) |W ′′| ≥ k,

and (iii) if W ′′ = {w′′
1 , w

′′
2 , . . . , w

′′
|W ′′|} where w′′

1Pf · · ·Pfw
′′
|W ′′| and W ∗ = {w∗

1, . . . , w
∗
k}

where w∗
1Pf · · ·Pfw

∗
k, then w′′

l Rfw
∗
l for all l ∈ {1, . . . , k}. Since ϕ[P ′′

f , s−f (P−f )](f)

contains at least k workers and A(P ′′
f ) = B(w′

k, Pf ), our construction implies that

ϕ[P ′′
f , s−f (P−f )](f)P ∗∗

f ϕ[s(P )](f). More precisely, for Case 1 the set ϕ[s(P )](f) vio-

lates (iii) and our choice of P ∗∗
f and W ∗ yields

ϕ[P ′′
f , s−f (P−f )](f)R∗∗

f W ∗P ∗∗
f ϕ[s(P )](f). (6)

Third we show that for all (Pf , P
′
−f ) in the support of P̃ , if ϕ[sf (Pf ), s−f (P

′
−f )](f) ∈

B(W ∗, P ∗∗
f ), then ϕ[P ′′

f , s−f (P
′
−f )](f) ∈ B(W ∗, P ∗∗

f ). This then completes the proof

for Case 1 because by Pr{P̃−f |Pf
= P−f} > 0, and (6), it follows that

Pr{ϕ[P ′′
f , s−f (P̃−f |Pf

)](f) ∈ B(W ∗, P ∗∗
f )} > Pr{ϕ[sf (Pf ), s−f (P̃−f |Pf

)](f) ∈ B(W ∗, P ∗∗
f )},
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which means that s is not an OBNE in ϕ under P̃ .

Suppose that ϕ[sf (Pf ), s−f (P
′
−f )](f)R∗∗

f W ∗. By our choice of P ∗∗
f , then

ϕ[sf (Pf ), s−f (P
′
−f )](f) ∩ B(w′

k, Pf ) must contain at least k workers. (7)

If ϕ[P ′′
f , s−f (P

′
−f )](f) contains at least k workers, then all these workers belong to

B(w′
k, Pf ). Thus, by our choice of P ∗∗

f and W ∗, ϕ[P ′′
f , s−f (P

′
−f )](f)R∗∗

f W ∗, the desired

conclusion.

Suppose that ϕ[P ′′
f , s−f (P

′
−f )](f) contains fewer than k workers. Let μ̂ =

ϕ[sf (Pf ), s−f (P
′
−f )]. Let μ̂(f) = {ŵ1, . . . , ŵ|μ̂(f)|} where ŵ1Pf · · ·Pf ŵ|μ̂(f)|. By (7),

μ̂(f) ∩ B(w′
k, Pf ) contains at least k workers. Thus, k ≤ |μ̂(f)|. For the time

being, below we specify both the profile and the quota of the matching problem.

Then we have μ̂ ∈ C(sf (Pf ), s−f (P
′
−f ); q). Let μ̂′ be the matching for the problem

(F, W\{ŵk+1, . . . , ŵ|μ̂(f)|}, (k, q−f ), (sf (Pf ), s−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|μ̂(f)|})) such

that μ̂′(f) = {ŵ1, . . . , ŵk} and μ̂′(f ′) = μ̂(f ′) for all f ′ ∈ F\{f}. Then, from

μ̂ ∈ C(sf (Pf ), s−f (P
′
−f ); q) it follows that

μ̂′ ∈ C(sf (Pf ), s−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}); k, q−f ). (8)

Let ŵ ∈ μ̂′(f) be such that μ̂′(f) ⊆ B(ŵ, sf (Pf )) (in other words, ŵ is the worker

who is least preferred in μ̂′(f) according to sf (Pf )). Let P̂f ∈ Pf be such that

A(P̂f ) = B(ŵk, Pf ) ∩ B(ŵ, sf (Pf )) and P̂f |A(P̂f ) = P ′′
f |A(P̂f ). Then we must have

μ̂′ ∈ C(P̂f , s−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}); k, q−f ) (otherwise there would

exist a blocking pair for μ̂′;20 then by (8) and the fact that only firm f ’s preference

changed from sf (Pf ) to P̂f , firm f needs to be part of this blocking pair; thus, (w, f)

blocks μ̂′ which implies w /∈ μ̂′(f) and w �= ŵ, and w ∈ A(P̂f ) = B(ŵk, Pf ) ∩
B(ŵ, sf (Pf )); therefore, w ∈ B(ŵ, sf (Pf ))\μ̂′(f) and (w, f) must also block μ̂′ under

(sf (Pf ), s−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}); k, q−f ), a contradiction to (8).)

Thus, since |μ̂′(f)| = k, firm f is matched to k workers for all matchings belonging

to C(P̂f , s−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}); k, q−f ). Now if firm f is matched

20Note that μ̂′ is individually rational because both μ̂′(f) ⊆ B(ŵk, Pf ) and μ̂′(f) ⊆ B(ŵ, sf (Pf ))

(by our choice of ŵ).
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to fewer than k workers for some μ̃ ∈ C(P̂f , s−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}); q),

then μ̃ is also stable under (P̂f , s−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}); k, q−f ), a

contradiction to the previous fact. Hence, f is matched to at least k workers in

any stable matching belonging to C(P̂f , s−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}); q).

Now when considering the worker optimal matching in this core, we may split firm

f into qf copies (all having the same preference P̂f ) and each copy of firm f weakly

prefers according to P̂f any matching in C(P̂f , s−f (P
′
−f ); q) to this matching. Since

at least k copies of f are matched to a worker under the worker optimal matching in

C(P̂f , s−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}(P
′
−{f}∪{ŵk+1,...,ŵ|μ̂(f)|}); q),

at least k copies of f are matched to a worker in any matching in C(P̂f , s−f (P
′
−f ); q).

(9)

On the other hand, ϕ[P ′′
f , s−f (P

′
−f )](f) contains fewer than k workers. Let μ̃ =

ϕ[P ′′
f , s−f (P

′
−f )]. Let μ̃′ be the matching for the problem (F, W\(μ̃(f)\A(P̂f )), q,

(P ′′
f , s−{f}∪(μ̃(f)\A(P̂f ))(P

′
−{f}∪(μ̃(f)\A(P̂f ))

))) such that μ̃′(f) = μ̃(f)∩A(P̂f ) and μ̃′(f ′) =

μ̃(f ′) for all f ′ ∈ F\{f}. Since μ̃ ∈ C(P ′′
f , s−f (P

′
−f ), q) and μ̃(f) contains fewer than

qf workers, we must have μ̃′ ∈ C(P ′′
f , s−{f}∪(μ̃(f)\A(P̂f ))(P

′
−{f}∪(μ̃(f)\A(P̂f ))

); q). Thus, by

μ̃′(f) ⊆ A(P̂f ) and P̂f |A(P̂f ) = P ′′
f |A(P̂f ), we also obtain

μ̃′ ∈ C(P̂f , s−{f}∪(μ̃(f)\A(P̂f ))(P
′
−{f}∪(μ̃(f)\A(P̂f ))

); q). Hence, in any matching belonging

to this core firm f is matched to |μ̃′(f)| = |μ̃(f)∩A(P̂f )| workers. Now when consider-

ing the worker optimal matching in this core, we may split each firm f ′ ∈ F\{f} into

qf ′ copies (all having the same preference sf ′(P ′
f ′)) and each copy of firm f ′ weakly

prefers according to sf ′(P ′
f ′) any matching in C(P̂f , s−f (P

′
−f ); q) to this matching.

Thus, in total all the copies of all firms f ′ ∈ F\{f} receive at least the same number

of workers in C(P̂f , s−f (P
′
−f ); q) as they did previously. Since exactly |μ̃(f)\A(P̂f )|

new workers are available and f was matched to |μ̃′(f)| = |μ̃(f) ∩ A(P̂f )| workers

before, firm f can be matched to at most |μ̃(f)| workers under any stable matching

in C(P̂f , s−f (P
′
−f ); q). Since |μ̃(f)| is smaller than k, this contradicts (9) and the fact

that under responsive preferences, firm f is matched to the same number of work-
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ers for any two matchings in C(P̂f , s−f (P
′
−f ); q). Hence, ϕ[P ′′

f , s−f (P
′
−f )](f) cannot

contain fewer than k workers.

Case 2: Otherwise.

Then we have wlRfw
′
l for all l ∈ {1, . . . , min{|μ(f)|, |μ′(f)|}}. Let k = |μ(f)|. If

|μ′(f)| ≤ μ(f), then by responsiveness of P ∗
f and μ(f) ⊆ A(Pf ), we have μ(f)R∗

fμ
′(f),

which contradicts (3). Hence, we must have |μ′(f)| > |μ(f)| = k, qf > k, and w′
k+1 ∈

A(Pf ). Let P ′′
f ∈ Pf be such that A(P ′′

f ) = B(w′
k+1, Pf ) and P ′′

f |A(P ′′
f ) = P ′

f |A(P ′′
f ).

Since μ(f) ⊆ B(w′
k+1, Pf ) = A(P ′′

f ) and μ(f) does not fill the quota of firm f , we

must have μ ∈ C(P ′′
f , s−f (P−f ); q). Hence,

firm f is matched to k workers under any matching in C(P ′′
f , s−f (P−f ); q). (10)

On the other hand, let μ′′ be the matching for the problem (F, W\{w′
k+2, . . . , w

′
|μ′(f)|}, (k+

1, q−f ), (P
′′
f , s−{f}∪{w′

k+2,...,w′
|μ′(f)|}(P−{f}∪{w′

k+2,...,w′
|μ′(f)|}))) such that μ′′(f) = {w′

1, . . . , w
′
k+1}

and μ′′(f ′) = μ′(f ′) for all f ′ ∈ F\{f}. Then from μ′ ∈ C(P ′
f , s−f (P−f ); q) it fol-

lows that μ′′ ∈ C(P ′
f , s−{f}∪{w′

k+2,...,w′
|μ′(f)|}(P−{f}∪{w′

k+2,...,w′
|μ′(f)|}); k + 1, q−f ). Thus, by

μ′′(f) ⊆ B(w′
k+1, Pf ) = A(P ′′

f ) and P ′′
f |A(P ′′

f ) = P ′
f |A(P ′′

f ),

μ′′ ∈ C(P ′′
f , s−{f}∪{w′

k+2,...,w′
|μ′(f)|}(P−{f}∪{w′

k+2,...,w′
|μ′(f)|}); k + 1, q−f ). Now if firm f is

matched to fewer than k + 1 workers in some matching belonging to

C(P ′′
f , s−{f}∪{w′

k+2,...,w′
|μ′(f)|}(P−{f}∪{w′

k+2,...,w′
|μ′(f)|}); q), then this matching is also stable

for the problem (P ′′
f , s−{f}∪{w′

k+2,...,w′
|μ′(f)|}(P−{f}∪{w′

k+2,...,w′
|μ′(f)|}); k + 1, q−f ), a contra-

diction to the previous fact. Hence, f is matched to at least k +1 workers in any sta-

ble matching belonging to C(P ′′
f , s−{f}∪{w′

k+2,...,w′
|μ′(f)|}(P−{f}∪{w′

k+2,...,w′
|μ′(f)|}); q). Now

when considering the worker optimal matching in this core, we may split firm f into

k + 1 copies (all having the same preference P ′′
f ) and each copy of firm f weakly

prefers according to P ′′
f any matching in C(P ′′

f , s−f (P−f ); q) to this matching. Since

at least k + 1 copies of f are matched to a worker under the worker optimal match-

ing in C(P ′′
f , s−{f}∪{w′

k+2,...,w′
|μ′(f)|}(P−{f}∪{w′

k+2,...,w′
|μ′(f)|}); q), at least k + 1 copies of f

must be also matched to a worker under any matching in C(P ′′
f , s−f (P−f ); q), which

contradicts (10) and the fact that firm f is matched to the same number of workers
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under any matching in C(P ′′
f , s−f (P−f ); q). Hence, Case 2 cannot occur. �
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