

Direction des bibliothèques

AVIS

Ce document a été numérisé par la Division de la gestion des documents et
des archives de l’Université de Montréal.

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

This document was digitized by the Records Management & Archives
Division of Université de Montréal.

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal

Identification of Behavioral and Creational Design Patterns through
Dynamic Analysis

par
Janice Ka-Yee Ng

Département d'informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures
en vue de l'obtention du grade de Maître ès sciences (M.Sc.)

en informatique

Avril, 2008

© Janice Ka-Yee Ng, 2008.

Université de Montréal
Faculté des études supérieures

Ce mémoire intitulé:

Identification of Behavioral and Creational Design Patterns through
Dynamic Analysis

présenté par:

Janice Ka-Yee Ng

a été évalué par un jury composé des personnes suivantes:

Pierre Poulin
président-rapporteur

Yann-Gaël Guéhéneuc
directeur de recherche

Julie Vachon
membre du jury

Mémoire accepté le

RÉSUMÉ

Les patrons de conception proposent une solution à la fois simple et élégante aux

problèmes récurrents en programmation orientée objet lors de l'implantation des

programmes, car ils contribuent à améliorer la conception. Cependant, à l'usage,

ces patrons sont disséminés dans le code source des programmes et, par conséquent,

ne sont plus disponibles au moment de la maintenance. Pourtant, ils aideraient à

comprendre leur implantation et conception, et à assurer la qualité des programmes

après la maintenance.

Dans les travaux antérieurs, la structure et l'organisation des classes servent

principalement de source de données pour l'identification des occurrences de pa­

trons de conception. Il est toutefois intéressant de considérer la responsabilité des

objets participant à l'exécution des programmes, puisque deux types de patrons de

conception (comportementaux et créationnels) se caractérisent principalement par

la distribution des responsabilités et la collaboration entre les objets à l'exécution.

Ce mémoire propose un méta-modèle et des algorithmes pour identifier auto­

matiquement des occurrences de patrons comportementaux et créationnels dans le

code source. Nous utilisons la méta-modélisation pour décrire les patrons de concep­

tion et les programmes Java, et l'analyse dynamique pour capturer le comporte­

ment des programmes au moment de l'exécution. La méta-modélisation permet

d'expliciter la collaboration entre les participants impliqués dans l'exécution d'un

programme (les messages) et de préciser leurs propriétés (condition d'exécution

d'un message, répétition d'un message). Enfin, elle conduit à traduire les patrons

en systèmes de contraintes avec explications et à identifier les occurrences similaires,

formes complètes et approchées, par la résolution de problèmes de satisfaction de

contraintes.

Mots clés: identification de patrons de conception, analyse dyna­

mique, diagrammes de scénarios, programmation par contraintes, rétro­

conception.

ABSTRACT

The use of design patterns is a simple and elegant way to solve problems when

designing object-oriented software systems because it leads to well-structured de­

signs. However, after application, design patterns are lost in the source code, and

are thus of litt le help during program comprehension and subsequent maintenance.

In previous work, the structure and organization among classes were the pre­

dominant source of data used for the identification of occurrences of design pat­

terns. Yet, the responsibility of each participating object at runtime should not be

neglected, as two types of design patterns, behavioral and creational, are mainly

concerned with the assignment of responsibilities and the collaboration among ob­

jects at runtime.

This thesis proposes a metamodel and algorithms to automatically identify be­

havioral and creational design patterns in the source code. We use metamodelling

to describe design patterns and software systems in Java, and dynamic analysis to

capture the behavior of the systems at the moment of execution. The proposed

metamodel allows the representation of interactions among the participants that

take part in the execution of a system (messages) and their properties (conditions

under which a message is executed, repetition of a message). Using this metamodel,

the problem of behavioral and creational pattern identification can be translated

into an explanation-based constraint satisfaction problem. Solving such kind of

problems leads to exact or approximate occurrences of a design pattern.

Keywords: design pattern identification, dynamic analysis, scenario

diagram, constraint programming, reverse engineering.

CONTENTS

RÉSUMÉ iii

ABSTRACT iv

CONTENTS v

LIST OF TABLES. viii

LIST OF FIGURES. ix

LIST OF ALGORITHMS xi

LIST OF APPENDICES. . . xii

LIST OF ABBREVIATIONS xiii

NOTATION .. xiv

DEDICATION .. xv

ACKNOWLEDGEMENTS xvi

CHAPTER 1: INTRODUCTION 1

1.1 Context: Reverse Engineering and Design Patterns 1

1.2 Motivations: Identification of Behavioral and Creational Patterns 1

1.3 Contributions 2

1.4 Outline.... 5

CHAPTER 2: RELATED WORK 6

2.1 Structural Pattern Identification. 7

2.2 Dynamic Data for the Identification of Patterns 9

2.3 Recovery of Sequence Diagrams 12

VI

2.4 Conclusion................................ 16

CHAPTER 3: SCENARIO DIAGRAM AND DESIGN PATTERN

DESCRIPTION

3.1 Scenario Diagram Notation and Metamodel

3.2 Modelling Behavioral and Creational Patterns

3.2.1 Builder ..

3.2.2 Command

3.2.3 Memento

3.2.4 Observer.

3.2.5 Visitor

3.3 Conclusion. .

CHAPTER 4: REVERSE ENGINEERING OF SCENARIO DIA-

GRAMS

4.1 Reverse Engineering Technique Using Dynamic Analysis

4.1.1 Format of the Execution Trace

4.1.2 Instrumentation

4.1.3 Instantiation of Scenario Diagram .

20

20

23

24

25

26

27

29

30

31

31

33

34

40

4.2 Conclusion.................. 41

CHAPTER 5: IDENTIFICATION OF DESIGN PATTERNS. 42

5.1 Explanation-based Constraint-Programming 42

5.1.1 Explanations

5.1.2 Computing Explanations .

5.1.3 Using Explanations

5.2 Application to the Problem of Design Pattern Identification

5.2.1 A Library of Specialized Constraints

5.2.2 Solver

5.3 Conclusion..

43

44

44

46

48

53

54

CHAPTER 6: EVALUATION.

6.1 JHotDraw Case Study ...

6.1.1 Step 1: Description of the Visitor Pattern

6.1.2 Step 2: Reverse Engineering of Scenario Diagram

6.1.3 Step 3: Constraint Satisfaction Problem

6.2 Accuracy on Several Systems

6.3 Threats to Validity ...

6.3.1 InternaI Validity

6.3.2 External Validity

6.4 Conclusion........

vii

56

56

56

57

58

60

63

64

64

67

CHAPTER 7: CONCLUSION 68

BIBLIOGRAPHY .. 70

LIST OF TABLES

6.1 Precision and recall calculated on particular scenarios of software

systems for which the uses of design patterns are known. 61

LIST OF FIGURES

Class diagram notation . . .

Sequence diagram notation .

1.1 A 3-step approach for the identification of design patterns through

xiv

xiv

dynamic analysis .. 3

2.1 The Composite pattern described as Prolog facts and rules by Wuyts

[Wuy98] . 8

2.2 A design pattern metamodel proposed by Guéhéneuc et al. [GJ01] 9

2.3 Structural representation of the Decorator pattern by Tsantalis et

al. [TCSH06] 10

2.4 The Observer pattern described statically by Heuzeroth et al. [HLM03] 11

2.5 Validation of the behavior of methods by Heuzeroth et al. [HLM03] 11

2.6 Canonical four-dimensional event space by De Pauw et al. [PKV94] 13

2.7 Inter-class calI cluster by De Pauw et al. [PKV94] 14

2.8 Inter-class calI matrix by De Pauw et al. [PKV94] 15

2.9 Histogram of instances by De Pauw et al. [PKV94] 15

2.10 CFG for a method m and its corresponding reverse engineered sce-

nario diagram by Routnev et al. [RVR05] 16

2.11 Scenario diagram metamodel by Briand et al. [BLM03] 17

2.12 Execution trace metamodel by Briand et al. [BLM03] . 17

2.13 Consistency rules for the mapping between two metamodels by Briand

et al. [BLM03] 18

3.1 Scenario diagram metamodel . 21

3.2 Scenario diagram notation .. 22

3.3 Description of the Builder pattern in terms of collaboration 25

3.4 Description of the Command pattern in ter ms of collaboration 26

3.5 Description of the Memento pattern in terms of collaboration . 27

x

3.6 Description of the Observer pattern in terms of collaboration 28

3.7 Description of the Visitor pattern in terms of collaboration . 29

4.1 Execution trace of a toy system implementing the Memento pattern 35

4.2 Partial source code of class Memento 36

4.3 Constructor bytecode before instrumentation . 36

4.4 Constructor bytecode after instrumentation 36

4.5 Source code of class TestRepeti tion. 38

4.6 Bytecode of method main (String []) before instrumentation. 38

4.7 Bytecode of method main (String []) after instrumentation. 39

4.8 Textual representation of the scenario diagram after that the execu-

tion trace of Figure 4.1 has been processed 40

6.1 Description of the Visitor pattern in terms of collaboration 57

LIST OF ALGORITHMS

1 Constraint caller(classifier1, message2) (respectively callee) 49

2 Constraint creator (classifier1, message2) (respectively cre-

ated). 51

3 Constraint follows(message1, message2) 51

4 Constraint parameterCalleeSameType (messagel, message2) 52

LIST OF APPENDICES

Appendix 1: Design Patterns G lossary 78

BCEL

CSP

eCSP

JIKES RVM

OCL

UML

LIST OF ABBREVIATIONS

Byte Code Engineering Library

Constraint Satisfaction Problem

Constraint Satisfaction Problem with Explanations

JIKES Research Virtual Machine

Object Constraint Language

U nified Modelling Language

NOTATION

t
li CDncreleSubcl-:.!

Class diagram notation

~=-.~~~.,---

1
o anolherObh~C1 : Oblect

~ ~ .. . ·1
'---~--""

1

~-

Sequence diagram notation

*M~~'~~'~~'*m~~fflo
To Guillaume.

ACKNO~EDGEMENTS

First, 1 would like to express my sin cere gratitude to my greatly appreciated super­

visor, Yann-Gaël Guéhéneuc, for giving me the chance to accomplish such a signifi­

cant project, and supporting me unconditionally all along my studies. 1 would not

have make it through without your sound advice! AIso, 1 would like to say thank

you to each and every member of the GEODES team who contributed directly

or indirectly to the success of my graduate studies. In particular, thank you the

valuable professors of the team, Houari Sahraoui, Julie Vachon, and Petko Valt­

chev, whose words of wisdom are my source of inspiration. Moreover, thank you

to Gerardo Cepeda, Simon Denier, Karim Dhambri, Sébastien Jeanmart, Foutse

Khomh, Guillaume Langelier, Naouel Moha, Viet Thang Pham, Yousra Tagmouti,

and Stephane Vaucher, with whom 1 had amusing discussions in the so-caIled 'salle­

qu'il-ne-faut-pas-nommer' pantry, and above aIl, who made my life greedier than

ever thanks to our regular visits to tasteful restaurants. U ndeniably, 1 gained a

few pounds with aIl those exquisite meals. However, 1 shared so many pleasant

moments with the team !

Furthermore, 1 would like to express my deepest gratitude to Guillaume Ra­

berge, who walked beside me since the beginning of my graduate studies, and

believed in me under any circumstances. Your words of encouragement and perse­

verance inspired me to achieve passionately and assiduously my project. Without

you, the road to graduation would have seem much more longer. Thank you for

bearing with the unbearable me aIl these years !

m1~ , ~::fm::ffm-i:~m)L\~~3t~~~~Â 0 ftÈ1r~~tf1f~~1f~~~~

aql1.J1J 0 ~~ , ~~1ff\:@:M$~*aq~JL\~:l:ti~~!~J:.aq3tfl: ' ~::f~~m.*Yi

~M1J*~:@:m.wo •• '.~~~~.XH~X~~~.o ' •• ~

mmsend~1~*~IIIJ~ 0 *~J3. ' •• 1ff\~~JHJ~Mlf.®~ ,W~~~ 1i!~!tliiMI

Mo~ffl'~~~li~m~.'~*~w~m~1f.~MoYi~~~~rr.~M

~3t.':@:.~~::f~M*~~o~~~m.~!

CHAPTER 1

INTRODUCTION

1.1 Context: Reverse Engineering and Design Patterns

Software maintenance is a crucial phase of the software development process, as

it consumes as mu ch as 90% of the total resources dedicated to a software system

[ErlOO]. The main activity during maintenance is program comprehension, during

which maintainers analyze the structure and organization of code artifacts with

the help of re-engineering tools, to perform maintenance tasks such as debugging

or adding new features. The recovery of the design and architecture is relevant to

the maintainers, as they provide insights on the original choices made during the

initial phase of conception.

Since their inception in 1994, design patterns [GHJY94] have been increasingly

used to design and obtain well-structured systems. Design patterns are solutions

to recurrent problems in object-oriented systems. Their recovery during the main­

tenance should consequently make the task easier. However, in reality, design

patterns are lost in the source code of the systems due to their complexity and

lack of documentation. It is difficult or impossible to manually recover design pat­

terns applied during system design and implementation, which impedes program

comprehension and increases the cost of its maintenance [ACdPF01].

1.2 Motivations: Identification of Behavioral and Creational Patterns

While organizing the catalog of design patterns, Gamma et al. [GHJY94] divided

their patterns into three families of related patterns. Following the criterion of pur­

pose, which indicates what the pattern does, patterns can either have a structural,

behavioral, or creational purpose (cf Annexe 1 for the classification). Structural

patterns deal with the organizationjcomposition of classes or objects. Behavioral

2

patterns characterize the ways in which objects interact and share responsibility.

Creational patterns are concerned with object creation.

Several approaches have been proposed to identify design patterns in source

code using static analysis, for example [KP96,SvG98,Wuy98,KSRP99,Nie02,PL06,

TCSH06]. The fundamental idea of these approaches consists in analyzing the class

structure of a system to identify micro-architectures that are similar to the known

structure of a design pattern. These approaches are limited when recovering pure

behavioral and creational patterns because the responsibilities and the collabora­

tion among objects at runtime cannot be easily and completely determined using

static analysis. Moreover, behavioral and creational design patterns can hardly be

described only by their structure.

Thus, to provide a better view of the system to be reverse engineered, previous

work suggested to combine static and dynamic analyses, because the dynamic as­

pect can provide data to complement those related to the structure of a system (as

shown in [HHL02,HLM03]). First, static analysis is performed to find pattern can­

didates that have the structure of the searched pattern; then, dynamic analysis is

conducted to remove false positives, and thus to confirm pattern candidates. How­

ever, the limitation still remains: behavioral and creational patterns, which cannot

aIl be uniquely identified by structural means, risk not to be recovered during static

analysis.

Therefore, in this thesis, we propose a pure dynamic approach that directly

analyzes the collaboration among objects by making use of dynamic analysis for

the recovery of behavioral and creational patterns.

1.3 Contributions

Although the domain of design pattern identification is well-established, we

contribute to this domain with an approach that identifies behavioral and creational

design patterns. Using existing sequence diagram recovery and explanation-based

constraint programming techniques, our approach can identify pure behavioral and

Design Pattern
(Source f-----"---->I

System) (2)

Identlfied Design
Patterns ln Target
Scenario Dlagram

CONSTRAINT SATISFACTION PROBLEM

Source
Scenario
Dlagram

Target
Scenario
Dlagram

00 Software
(Target System)

REVERSE ENGINEERING OF SCENARIO DIAGRAM

3

Figure 1.1: A 3-step approach for the identification of design patterns through dynamic
analysis

creational patterns, unlike other previous work which focused on structural patterns

recovery.

We propose a 3-step approach (as illustrated in Figure 1.1, Steps 1, 2, and 3)

to identify behavioral and creational design patterns in source code using dynamic

analysis. First, we describe behavioral and creational patterns in terms of UML­

like sequence diagrams. In our approach, UML sequence diagrams are obtained

from the execution of a use case. Therefore, these diagrams will be referred to as

scenario diagrams in the rest of this thesis: they are only partial UML sequence

diagrams describing one scenario corresponding to a use case, instead of aIl possible

alternatives for the exercised use case [BLL06].

Second, using dynamic analysis, we reverse engineer a dynamic model-again,

in the form of scenario diagrams-of the collaboration among objects of a sys­

tem for a given scenario. In this context, we are interested in discovering the

exact collaboration among runtime objects to find real occurrences of a design

pattern (as opposed to potential ones). Therefore, we favored dynamic analysis

4

over static analysis to obtain dynamic data. Previous work (even the currently

most powerful ones [RC05]) showed that interaction diagrams, such as UML col­

laboration or scenario diagrams generated from static analysis, result in possi­

bly highly inaccurate diagrams and, in the worst case, describe impossible behav­

iars, depending on the technique used to determine object references in the source

code [TP03, RC05, RVR05]. Furthermore, it is not conceivable for any large, com­

plex systems to perform coarse-grained and sophisticated analysis of the source

code to determine the dynamic types of object references [GJM91]. In contrast,

dynamic ânalysis is more accurate because it reports precisely the interactions be­

tween objects without symbolic representation. By tracing the execution of a use

case, we easily obtain data that can be used to reverse engineer a scenario diagram.

However, its main limitation is that it depends on the executed scenario. We plan

to address, in future work, the building of a complete sequence diagram for a given

use case from a set of scenario diagrams. This building requires triggering as many

scenarios as possible through multiple executions of a system, and their analysis to

merge them into one sequence diagram.

Finally, as in previous work [GAAOl], we translate the problem of design pat­

tern identification into a constraint satisfaction problem with explanations (eCSP),

which consists in assigning concrete objects and messages from the scenario dia­

gram of the executed scenario, to the roles in the scenario diagram of a design

pattern. Solving the eCSP consists in matching, one against the other, the objects

and messages of the scenario diagram of a design pattern with the ones of the

executed scenario. We chose to use explanation-based constraint programming to

solve the problem of pattern identification because it allows both the identification

of complete and approximate occurrences of design patterns, and allows interaction

guidance.

We can resume the contributions of this thesis in the following points:

• An approach to automatically identify pure behavioral and creation al design

patterns through dynamic analysis;

5

• A technique based on metamodelling and intermediate code instrumentation

to reverse engineer the scenario diagrams of an object-oriented system;

• The building of a library of specialized constraints to describe the collabora­

tion among objects in terms of concepts introduced by our scenario diagram

metamodel.

Last but not least, we had the opportunity to publish the results of our research

in [NG07].

Hypothesis

Using dynamic analysis, is it possible to identify behavioral and creational de­

sign patterns in object-oriented software systems?

1.4 Outline

This thesis is structured as follows: Chapter 2 presents the related work. Chap­

ter 3 introduces our metamodel to capture the collaboration among objects at

runtime. This metamodel is similar to the UML metamodel for scenario diagrams.

It is used to describe behavioral and creational design patterns, as weIl as scenario

diagrams from any scenario of a system. Chapter 4 describes our technique to re­

verse engineer sequence diagrams of an object-oriented system. Chapter 5 presents

the technique used to identify behavioral and creational design patterns. Chap­

ter 6 illustrates our identification approach using one scenario of JHOTDRAW, a

drawing editor for technical and structured graphics, then reports results related to

the identification of the Builder, Command, and Visitor patterns in five systems, and

finally discusses the approach. We conclude and present future work in Chapter 7.

CHAPTER 2

RELATED WORK

The identification of design patterns in object-oriented systems has been the subject

of many work. In particular, the identification of structural design patterns has

been investigated as early as 1998 (Wuy981. However, we are not aware of work

dedicated to the identification of behavioral and creational patterns (without any

structural data). Thus, we present work related to the identification of structural

design patterns in Section 2.1, and to the use of dynamic data during structural

design pattern identification in Section 2.2. These identification approaches are

compared one against the other according to the following criteria:

• The types of recovered design patterns (structural, behavioral, and creational);

• The possibility to get explanations on the obtained occurrences;

• The degree of automation of the identification technique;

• The accuracy of the precision and recall measures of the identification tech­

nique;

• The performance of the identification technique;

• The ability to deal with variants/approximations of the design patterns.

The necessity for identification approaches to de al with variants/approximations

of patterns originates from the fact that the implementation of a design pattern

in most systems, although true to their original intention in [GHJV94], does not

always strictly match the solution as described in theory. In this chapter, we

explore the different techniques of pattern identification in this respect, among

others. Finally, we dedicate Section 2.3 to work related to the recovery of sequence

diagrams, providing guidance for our own reverse engineering approach of scenario

diagrams.

7

2.1 Structural Pattern Identification

Since their inception in 1994, design patterns have been the subject of many

work related to their recovery in software systems. We present here four char ac­

teristic contributions that aIl use static data, but distinguish themselves by their

identification technique: Prolog, queries, eCSP, and matrices similarity.

For example, Wuyts [Wuy98] published a precursor work on structural design

pattern identification. His approach consisted in representing object-oriented sys­

tems as Prolog facts and predicates: facts describe the structure of object-oriented

systems, such as inheritance and acquaintance relations, while predicates are used

to formulate queries for reasoning about facts and to identify occurrences of design

patterns.

Facts were extracted using static analysis. The Composite pattern is expressed

manually using the predicates depicted in Figure 2.1. Briefly, a composite pattern

consists in the definition of a certain structural relationship between the variables

of component ?comp and composite ?composi te. Also, there is an aggregation

relationship between these two. The composi teStructure rule defines that ?comp

is a class, and that ?composi te is a subclass, direct or indirect, from the compos­

ite. The composi teAggregation predicate expresses that the composite should

override at least one method of the component, and in this overridden method, it

should do an enumeration over the instance variable that holds these composites

and recursively apply the method ?msg to each of the composites. This approach

had performance limitations due to the use of a Prolog engine. It could not deal

with variants automatically, and showed limited precision and recall according to

subsequent studies.

This previous work was followed by many other approaches to improve on its

performances. These following approaches use different data and different represen­

tation and detection techniques. For example, Quilici et al. [QYW97] established

a relationship between plan recognition and program comprehension. Plan recog­

nition makes use of structural events and actions to determine "the best unified

8

context which causally explains a set of perceived events as they are observed". The

authors derived a new approach to program plan recognition by augmenting exist­

ing AI plan recognition algorithms. In particular, their experimentations check the

presence of instances of a given plan in the system source code using constraint pro­

gramming, while improving the performance of plan recognition. However, poor

performances are again an issue: results show that constraint checks, i.e., their

measure of efficiency, deteriorates with the number of lines of code.

Guéhéneuc et al. [GJOl] drew inspiration from previous work to propose an

approach for structural design pattern identification. This problem is represented

as a constraint satisfaction problem, for which the authors introduced the use of

explanation-based constraint programming, and a dedicated metamodel capturing

structural representation of both design patterns and systems [AAG01] as depicted

in Figure 2.2. It includes the modelling of binary class relationships such as associa­

tions, aggregations, and compositions [GAA04] to improve both the representation

and the handling of variants.

Recently, Tsantalis et al. [TCSH06] introduced a measure of similarity between

matrices representing either systems or patterns to improve performance and deal

with a wide range of structural design patterns, as weIl as their modified versions.

RULE

RULE

head: compositePatternC?comp,?composite,?msg)
body: compositeStructureC?comp,?composite)

compositeAggregationC?comp,?composite,?msg)

head: compositeStructure(?comp,?composite)
body: class(?comp)

hierarchy(?comp,?composite)
RULE

head: compositeAggregation(?comp,?composite,?msg)
body: commonMethods(?comp,?composite,?M,?compositeM)

methodSelector(?compositeM,?msg)
oneToManyStatement(?compositeM,?instVar,?enumStatement)
containsSend(?enumStatement,?msg)

Figure 2.1: The Composite pattern described as Prolog facts and rules by Wuyts [Wuy98]

9

rranom trospoctor F siiVOr]
1 1 1
l 1--1

targetAssoc:

1

Figure 2.2: A design pattern metamodel proposed by Guéhéneuc et al. [GJOl]

The structure of systems or patterns is modelled using matrices, because the au­

thors consider that a class diagram is fundamentally "a directed graph that can

be perfectly mapped into a square matrix". Each kind of information such as as­

sociations, generalizations, abstract classes, object creations, or abstract method

invocations is represented in an individual graphjmatrix. Figure 2.3 shows such a

representation for the Decorator pattern.

2.2 Dynamic Data for the Identification of Patterns

Sorne work suggested to improve the precision and recall of previous approaches

by combining static and dynamic identifications.

For instance, Heuzeroth et al. [HLM03] proposed an approach that uses both

static and dynamic data to identify interaction patterns. On the one hand, the

static specification of a pattern is a collection of Prolog predicates that describe

the relations between the elements, as illustrated in Figure 2.4. On the other hand,

the dynamic aspect is also represented by Prolog predicates, following the tempo­

ral logic of actions. Static analysis of the system source code is performed under

the form of Prolog query corresponding to the static predicates, to suggest a set

Association G<aph Assodation lIatrhl.

Ci Ib/
~o b -- _[0 0 0 0]

~Ctrl~OOOO

o.znar , 0 0 0

0== ~ 0 000

Generallzatlon Graph GenerallzaUon Matrlx

AbstnIct ete Grlph Abab1lct Clau .. Matrb:

~o
Ib/

Ç()"""""'" _[' 0 00-
... CtrlO'llte~ 0000

o.:-.br 0 0 1 0

0:::. c..r.:.~ 0 0 0 0

Slmllar Abstract Method Invocation SIm1Iar Abstracl Method Invocation

=0 \---=[r1(
Qg::: ~.u. 0 0 0 0

10

Figure 2.3: Structural representation of the Decorator pattern by Tsantalis et al.
[TCSH06]

of candidate pattern instances conforming to the static structure of the searched

pattern. Then, dynamic analysis monitors the execution of the candidates, and

validates their behavior according to the dynamic specifications of the searched

pattern, as shown in Figure 2.5. Finally, a dedicated validator confirms or rejects

the candidates. The proposed approach was exemplified with the Observer, Com­

posite, and Decorator patterns, and evaluated on their own analysis tool system.

However, the authors did not provide details about the measures of precision and

recall. It is therefore difficult to determine the impact of false negatives omitted

during the static analysis on the results of the experimentations, and possible al-

observer(Vattach. Vattachee. Vdetach. Vdeteachee. Vlistener,
Vnotify, Vsubject, Vupdate):-
listener(Vlistener. Vupdate),
subject(Vattach, Vattachee, Vdetatch. Vdetachee, Vlistener,

Vnotify, Vsubject, Vupdate).

subject(Vattach, Vattachee, Vdetach, Vdetachee, Vlistener,
Vnotify, Vsubject, Vupdate):-

notify(Vnotify, Vsujbect, Vupdate),
attach(Vattach, Vattachee, Vlistener, Vsubject),
detach(Vdetach, Vdetachee, .Vlistener, Vsubject),
class(Vsjubect).

attach(Vattach, Vattachee, Vlistener, Vsujbect):-
attachee(Vattachee, Vlistener).

assignAttachee(Vattachee, Vstatement15),
member(Vattach. Vsubject).
method(Vattach),
parameter(Vattachee, Vattach),
statement(Vstatement15, Vattach

11

Figure 2.4: The Observer pattern described statically by Heuzeroth et al. [HLM03]

watch('attach', Vattach, Arguments):­
observer (Vattach, Vattachee. _, _,
Arguments = ['this', Vattachee].

onMethodEntry('attach', Vattach, [Vsubject, Vattachee]):­
dynamicConformTyped(Vattachee. VattacheeClass),
containingTyped(VattacheeName, VattacheeClass).
dynamicConformTyped(Vsubject. VsubjectClass),
dynamicObserver(VNo, Vattach, VattacheeName, _. _. VsubjectClass, _),
request(assert(attached(VNo, Vsubject, Vattachee))),
fail.

Figure 2.5: Validation of the behavior of methods by Heuzeroth et al. [HLM03]

ternatives to deal with. AIso, it is unclear how this approach can be generalized to

pure behavioral and creational design patterns. Finally, as the proposed approach

uses a Prolog engine for querying facts, it had the same performance limitations as

Wuyts.

Shawky et al. [SAEHES05] proposed a similar approach to improve the preci­

sion and recall of a static identification approach. During the static analysis that

determines the pattern candidates fulfilling the static characteristics of a pattern,

12

the authors introduced two constraints, i.e., a method delegation constraint and

a key method constraint, to reduce the number of pattern candidates that the

dynamic analysis must validate. On the one hand, the method delegation con­

straint statically checks for specifie method invocations. On the other hand, the

key method constraint checks whether the objective and behavior of a pattern at

runtime are fulfilled. Only pattern candidates satisfying the aforementioned static

constraints are provided as inputs to the dynamic analysis. However, it is unclear

which dynamic constraints a pattern candidate should satisfy to be validated. AIso,

this approach uses a customized debugger to manuaIly inspect the dynamic behav­

ior of a key method, which decreases considerably the degree of automation of its

dynamic analysis.

Most of the previous work on the identification of structural design patterns uses

data related to method caIls, which can be considered as dynamic data. For exam­

pIe, Antoniol et al. [ACdPF01] used delegation constraints to further reduce the

set of pattern candidates satisfying the structural specification of a design pattern.

Guéhéneuc et al. [GJ01], as mentioned in the previous section, recovered, among

other binary relationships, composition relationships between classes [GAA04] by

tracing three specifie events when a system is executed: assignment events, finalize

events, and system-end events.

2.3 Recovery of Sequence Diagrams

The recovery of scenario diagrams has been tackled by several authors. An

important contribution to this domain is the work of De Pauw et al. [PKV94],

which describes a model to visualize data about the execution of object-oriented

systems. In representing the dynamic behavior of the systems, the authors have

chosen to use a canonical four-dimensional event space to conceptually model object

construction and destruction, and method invocation and return, as illustrated in

Figure 2.6. Each point in the space is described by the coordinate quadruple (class,

instance, method, time), and corresponds to an event during system execution.

13

classes

Figure 2.6: Canonical four-dimensional event space by De Pauw et al. [PKV94]

However, the implementation of such a model is impractical, as a typical system

can generate many hundreds of thousands of construction, destruction, enter, and

leave events. To overcome this limitation, the authors made a correlation between

this event space and the notion of call frames to store combinat ions of events, to

ensure that execution data is stored compactly and information retrieval is efficient.

From there on, users can navigate and visualize the event space respectively using

queries and the proposed visualizing tool, allowing the exploration of the different

perspectives, as illustrated in Figures 2.7, 2.8, and 2.9. On the one hand, the inter­

class calI cluster provides a dynamic overview of communication patterns between

classes. On the other hand, the inter-class calI matrix gives cumulative and more

quantitative information. FinalIy, the histogram of instances displays aIl instances

of each class. Later, in 2002, De Pauw et al. [P JM+02] designed a tool to visualize

many facets of system behavior. In particular, a technique for pattern extraction is

proposed to simplify the views by eliminating repetitions of messages. However, it

is not clear whether a detected repetition of messages distinguishes the execution

of a loop from the incidental execution of identical method sequences in different

contexts.

Rountev et al. [RVR05] described a first algorithm to reverse engineer UML 2.0

sequence diagrams by control-ftow analysis of Java code. One of their objectives was

to represent the intraprocedural behavior of the systems, such as conditional and

14

·SolulfOrï' b1Vlub1eiU'
-*,!I!Mi!"jj'''~'''.!llj''!IIill!llm'!!lfI!!!II!IIIIJ!!U"mJJ[JJJTJJIJW

Figure 2.7: Inter-class call cluster by De Pauw et al. [PKV94]

iterative behaviors, in the reverse engineered sequence diagram. As a result, they

extended UML 2.0 by generalizing the break fragment to allow breaking out multiple

enclosing fragments and by defining the return fragment to model multiple exit

nodes. For each method qf a system, the approach transforms its control flow graph

into a partial sequence diagram. Then, a single multi-method diagram is generated

by combining these partial diagrams. Figure 2.10 shows such a transformation.

Their approach does not consider data obtained by dynamic analysis, and thus

solely depends on the accuracy of the control-flow analysis.

Briand et al. [BLM03] proposed a method to reverse engineer scenario diagrams

from execution traces. In particular, they proposed two metamodels, one describing

•
• •• ••••

• • •• • •••
•

• • •
• •• • • • C'l • •• •• • • • • • •• • • • • •• •• •

"mUnUIfIUllltflMl'+"II1Ullllllillllll"UlfllllillllllllllillmUIIUIUIltil

Figure 2.8: Inter-class caU matrix by De Pauw et al. [PKV94]

. ..

...
= q
-)

.................... :-=.: --......... -... ~ _-... _ -
I,~~=~=~ -_ I! -:

~..:::t _ _ ..
.................................... --......... _---.........
-J
-..-........ :

_WhI IlIIIJU 1111 IIIllIyMUIi III 1J!IIIJOli 1 1111If!1II1!1I111Il 1111 1 OlllllllllllllllliiJ

Figure 2.9: Histogram of instances by De Pauw et al. [PKV94]

15

1

311
[c7)

m6()

--- F-,----
[k:7] rm9()

I~I
1
1 T

1

~

1

16

Figure 2.10: CFG for a method m and its corresponding reverse engineered scenario
diagram by Routnev et al. [RVR05]

scenario diagrams, and the other describing execution traces. A mapping estab­

Iished between the two metamodels, illustrated by Figures 2.11 and 2.12, defines

how to derive a scenario diagram from a recovered execution trace. This mapping

is defined by a set of consistency rules in OeL, like the ones shown on Figure 2.13.

Later, in 2006, Briand et al. [BLL06] introduced a complete approach to recover

scenario diagrams using execution traces. Their work inspired our own recovery

approach.

2.4 Conclusion

In this chapter, we covered related work of three important fields that inspired

our behavioral and creational pattern identification approach. First, we presented

work on structural pattern identification. Second, we reviewed approaches that

0 .. 1. Message

-OOjecllD: Int
-nodaID: inl

~ -signature: String
~ -ijmestampSourœ: lm

foliowingMessages i -timestampOest Int
'---------' (ordered) II

y

Destroy 1 Create

Figure 2.11: Scenario diagram metamodel by Briand et al. [BLM03]

nestedStatemen! ,----______ --,

{Ofdefed} ExecutionStatement
o.,'

-slalement: Slring
'--__ 0_,,1-.1 4imeslamp: in!

r----;:--"---::--" nestingStatement -nodalD: int

.-__ ~ ____ --,tfgg~s
MethodExecutlon O ...

clause

-clause :Stfing~n

Repetition _ ... '
-kind: RepelitionKind
-forLoopVar. String

0,,' -forLooplnc Strin

Instance

context
1.: 1

«enumeratlon:»
RepelltlonKind

for
white
doWhOe

callee
{ordered} '--""~_--'

-isCreata: boolean
-isDestro : boolean

Figure 2.12: Execution trace metamodel by Briand et al. [BLM03]

17

1 methodCall. alllnotanooo->forAll (ml. m2: MethodCall 1 ml. callee->inoludoo (m2)
2 impliell
3 rnethodMeooage.alllnotancoo->oxioto(mm:MethodMeooage
4 mm. content = m2 .. statement
5 and
6 if ml.context.ocIType a InotanceTRACE thon (1/ checking the caller
7 mm.callerObject.addrecoID aml.context.id and
a mm.callerObject.theClaoo.narne a rn1.context.theClaos.name
9 .. 100 (

10 mm.callerObject.narne = rn1.context.name
11

12 and
13 if .m2.context.ocIType a InotanceTRACE th .. n (Il check~ng the callee
14 mm.calleeObject.addreooID = m2.context.id and
15 mm.calleeObject.theClaco.name a m2.context.theClaoo.name
16 0100 (

17 mm.calleeObject.name a rn2.context.name
la
19 and
20 mm.returnType a m2.returnType and
21 mm.pararneterSEQD->forAll(index:lnteger 1/ checking the parametera
22 mm.pararneterSEQD->at(index).name = m2.parameterTRACE->at(index) .name and
23 mm.pararneterSEQD->at(index).type = m2.pararneterTRACE->at(index) . type
24 and mm.parameterSEQD->oizo = m2.pararneterTRACE->oizo
25 and Il checking the conditions
26 if rn2.precedentStatement.ocIType a ConditionStatement thon
27 mm.clauoe->forAII(index:lnteger 1
28 mm.clause->at(index).clauseStatement =

29 m2 .precedentStatement. claucec->at (index) . clauseSt.atement and
30 mm.clauoe->at(index).clauoeKind a

31 m2.precedentStatement.clauoeo->at(indexJ.clauoeKind
32 and mm.clauoe->oizo a m2.precedentStaternent.clauoeo->oizo
33 and
34 Il checking repeated executiono
35 if (m2.precedentStaternent.ocIType = ConditionStatement and
36 m2.precedentStatement.ioLoop = true and
37 rn2.precedentStatement.followingMeooage->oizo =1) thon
38 mm.tirneoOfRepeat a methodCall.alllnlltancoo->ooloct(rn3:MethodCaII1
39 m3.otatement a m2.statement and rn3.returnType a rn2.returnType and
40 m3.caller = m2.caller and
41 m3·.parameterTRACE->forAll (index: Integer 1
42 m3.parameterTRACE->at(index).name a m2.parameterTPACE->at(index).name and
43 rn3.parameterTRACE->at(index).type a rn2.parameterTRACE->at(index).type
44 and
45 m3.parameterTRACE->oizo = m2.parameterT~CE->oiz .. and
46 m3.precedentStatement.oclType a ConditionStatement and
4·7 m3. precedentStatement . c laUDes - > forAl1 (index: integer 1
4a m3.precedentStatement.clauoeo->at(index).clauoeStatement =
49 m2.precedentStatement.clauseo->at(index).clauoeStaternenrJ and
50 m3.precedentStatement.clauceo->at(index).claUDeKind a

51 m2.precedentStatement.clauoea->at(index) .clauoeKindJ

18

52 and m3.precedentStatement.clauseo->size a m2.precedentStatement.clauses->size
53) ->oizo
54 and
55 mm. followingMesoage->forAll (mml: Meosage 1 mm1. callerObject a mm. calleeObject)
56 J
57

Figure 2.13: Consistency rules for the mapping between two metamodels by Briand et
al. [BLM03]

19

combined static and dynamic data. Finally, we presented different techniques for

the recovery of sequence or scenario diagrams from execution traces.

This thesis do not pretend to provide a new approach for the recovery of struc­

tural patterns in legacy systems, which is already a well-established domain of

research. Instead, we gather existing techniques for sequence diagram and pattern

recovery, and propose a dynamic approach that is complementary to design pattern

identification approaches based on static analysis. Our dynamic approach focuses

primarily on pure behavioral and creational patterns that cannot be recovered by

most of the previous approaches because dynamic data is mandatory for their iden­

tification. Furthermore, if a static analysis must be performed afterwards to reduce

the number of pattern candidates suggested by our dynamic analysis, a much less

heavy structural analysis is required since the only things left to verify are the

inheritance and binary class relationships among classes, as opposed to previous

approaches on the identification of structural patterns.

In the next chapter, we will tackle the problem of modelling interactions between

objects in an object-oriented software, by providing the description of a metamodel

that we will use to model object responsibilities and interactions. This metamodel is

fundamental for the modelling of the objects' collaboration suggested by behavioral

and creational patterns, as well as for the modelling of the various system scenarios.

CHAPTER3

SCENARIO DIAGRAM AND DESIGN PATTERN DESCRIPTION

In this chapter, we first present the conventional UML notation adopted in liter­

ature to describe scenario diagrams (Section 3.1). We also introduce the scenario

diagram metamodel (based on the UML metamodel), which we use to express the

dynamic aspects of the design solutions advocated by behavioral and creational

design patterns. Then, Section 3.2 provides the description of behavioral and cre­

ational patterns as suggested by [GHJV94].

3.1 Scenario Diagram Notation and Metamodel

UML 2.0 proposes the use of interaction diagrams to describe how the objects

of a system handle operations and behaviors. Usually, one comprehensive inter­

action diagram is built for each use case to describe the sequences of messages

and operations that realize the system overall functionality. A scenario diagram is

an interaction diagram that describes how messages ftow from one object to an­

other. They show the order in which requests between objects get executed by

means of objects, lifelines, and messages among objects-respectively correspond­

ing to boxes, vertical Hnes, and arrows. This type of diagram may also contain

additional information about the ftow of control during the collaboration, such as

if-then conditions ("if c then send message m") and loops ("send message m multiple

times").

Time ftows from top to bot tom in a scenario diagram. A solid vertical line

indicates the lifetime of a particular object. The objects are named a : aSomething,

where a is the object name, and aSomething is the class of the object. If an object

is dynamically created during a scenario then its lifeline starts at the vertical point

indicating the time at which the object was created.

~ao;;~~
• -Slmg

- desUnetioACID.,ffier 0 .. 1

1

........ __ 1 ____ _
eoass

Arlltlment

• typo: StriIlI
• VWe. S!1tIg

0 •• 1 soul"CeClassifter

é Scena,loDlaR,am

• c""'l>Qll<l'U: C"""""""

1 •• 11

• com e .. to
---_. .ope<-

l
é Component I,(è------------

1..2 ._-
(

, __ ~I ___ .
1 elftStaRc.

Figure 3.1: Scenario diagram metamodel

22

r-e ~CnrlJd~n;rr;:I:~Cr;a-tl-;;;;To-~ï

1 '----..,.--_ r-~-G .-U-neS-hape -:-Ü~~Sh8n;-

·······1
'------,,,.----' ~··························~···i········

~
~)

--:;:=:J
rafre&h()

".>0()

Figure 3.2: Scenario diagram notation

A vertical rectangle on a lifeline shows that the corresponding object is active;

that is, it is handling a request. An object can send requests to other objects

through method invocations; these are indicated with a horizontal arrow pointing

to the receiving object. The name of the request is shown above the arrow. If an

object send a message to itself, the message arrow points to the same lifeline.

Figure 3.2 is a simple scenario diagram that shows how a shape gets added to

a drawing. It shows that the first request is issued by aCreationTool to create

aLineShape. Later, aLineShape is added to aDrawing, which prompts aDrawing

to send a refresh request to itself. Note that aDrawing sends a draw request to

aLineShape as part of the refresh operation.

Following closely the described notation, we now consider the metamodel pro­

posed by [BLL06], which captures the dynamic semantic concepts used to express

the design solutions proposed by behavioral and creational patterns. This meta­

model, illustrated in Figure 3.1, does not capture what a pattern is in general, but

how it is used in one specific case, i.e., its dynamic view.

A scenario diagram (class ScenarioDiagram) is composed of an ordered list

of components (class Component) that can either be messages (class Message), or

combined fragments (class CombinedFragment).

23

Messages can be of three different types: an operation calI (class Operation),

a destruction calI (class Destroy), or a creation calI (class Create). Messages have

a sourceClassifier and a destinationClassifier to represent the concept of

caller and callee. Caller and callee are of type Classifier, and are specializèd as

either an Instance or a Class, the latter applying to cases where the message in

relation to the caller or callee is a class method. If appropriate, messages include

arguments (class Argument) of different types: either data types or class types.

The return value of messages is represented by class ReturnValue.

Class CombinedFragment is inspired by a previous notation [Obj04] to group

sets of messages to show conditional fiows in scenario diagrams. Although [Obj04]

provides 11 interaction types of combined fragments, a thorough study of [GHJV94]

shows that only the combined fragments loop and alternative are necessary to the

identification of behavioral and creational design patterns. Consequently, combined

fragments are specialized into two types: either loops (class Loop) to illustrate

repetitions of messages, or alternatives (class AIt) to designate mutually exclusive

choices among sequences of messages. To account for nested loops and alternatives,

we introduce composition links: the composition relationships operand between

classes Loop and Component, and between classes AIt and Component. A loop

has one and only one operand, while an alternative has one or more operands.

For instance, the classic alternative if-then-else has two operands: operand if, and

operand else (our metamodel is extensible, and it is thus possible to add new

constructs if new interaction types are needed in the future).

3.2 Modelling Behavioral and Creational Patterns

In [GHJV94], the authors expressed the elements that make up the collabo­

ration in the solution advocated by a pattern in terms of a graphical notation

similar to the aforementioned scenario diagram notation. Throughout this catalog

of patterns, five out of the total 23 design patterns, i.e., the Builder, Command, Me­

mento, Observer, and Visitor patterns, are documented with this type of notation,

24

which describes how the participants collaborate to carry out their responsibilities.

Although only five patterns have such a graphical notation, our approach is not

limited to their identification. Users can provide their own description of what they

define as a pattern.

According to our approach (illustrated in Figure 1.1, Step 1), behavioral and

creational design patterns are described by manually transforming the graphical

notations of collaboration into an instance of the scenario diagram metamodel. In

turn, this instance is used as the source system to identify design patterns in a

target system, as explained in Chapter 5.

We now provide details of the aforementioned design patterns in terms of col­

laboration, and their translation into instances of the scenario diagram metamodel.

3.2.1 Builder

The Builder pattern separates the construction of a complex object from its

representation so that the same construction process can create different represen­

tations. Figure 3.3 illustrates how Builder and Director cooperate with a client.

The client creates the Director object and configures it with the desired Builder

object. Director notifies the builder whenever a part of the product should be

built. Builder handles requests from Director and adds parts to the product.

The client retrieves the prod uct from the builder.

For each message involved in the sequence of messages in Figure 3.3, i.e.,

ConcreteBuilder 0, Director 0, construct 0, buildPartA 0, buildPartB 0,

buildPartC 0, and getResul t 0, we instantiate an object Operation that is

added to the ordered list components of an instance of ScenarioDiagram rep­

resenting the Builder pattern. The participants collaborating in the pattern, i.e.,

aClient, aDirector, and aConcreteBuilder, are instantiated as instances of

Instance, and are set to be the sourceClassifier or destinationClassifier

of their corresponding messages. For example, the sourceClassifier of

ConcreteBuilder 0 and getResul t 0 is aClient, while aConcreteBuilder is

their destinationClassifier.

25

G .Oiànt: Oiànl

Figure 3.3: Description of the Builder pattern in terms of collaboration

3.2.2 Command

The Command pattern is most commonly used for encapsulating a request as

an object, thereby parameterizing client with different requests, queues, or log re­

quests, and support undoable operations. Figure 3.4 shows the interactions between

the different collaborators. It illustrates how Command de couples the invoker from

the receiver (and the request it carries out). The client creates a ConcreteCommand

object and specifies its receiver. An Invoker object stores the ConcreteCommand

object. The invoker issues a request by calling the execute 0 operation on the

commando When commands are undoable, ConcreteCommand stores the state of

the receiver for undoing the command prior to invoking execute o. The

ConcreteCommand object invokes operations on its receiver to carry out the request.

For each message involved in the sequence of messages in Figure 3.4, i.e.,

Command(Receiver), storeCommand(Command), execute(), and action(), wein­

stantiate an object Operation that is added to the ordered list components of an

instance of ScenarioDiagram representing the Command pattern. Given message

setSubjectState(String) takes an object of type String as argument, we in-

26

r .
! e .Recalver: Reœlver e aOlent: OIenl, e. anlnvolœr: Invoker

l'e .c.,mmand: Comm.~d
1 ~"";""oR"","" ..)

i ~l [)
1 0 ~N.C~C:~

1
1 1 •• _.()

O~~------~~~I~-------Q'
1 1

Figure 3.4: Description of the Command pattern in terms of collaboration

stantiate an object Argument which attribute type points to String. This object

Argument is added to the ordered list arguments of message

setSubj ectState CString). The participants collaborating in the pattern,

aConcreteSubject, aConcreteObserver, andanotherConcreteObserver, are in­

stantiated as instances of Instance, and are set to be the sourceClassif ier

or destinationClassifier of their corresponding messages. For example, the

sourceClassifier of setSubjectStateCString) and getSubjectStateO is

aConcreteObserver, while aConcreteSubject is their destinationClassifier.

3.2.3 Memento

Without violating encapsulation, the Memento pattern captures and external­

izes an object's internaI state so that the object can be restored to this state later.

Figure 3.5 is a scenario diagram illustrating how the participants of this pattern

collaborate. A caretaker requests a memento from an originator, holds it for a

time, and passes it back to the originator. Sometimes the caretaker does not pass

the memento back to the originator, because the originator might never need to

revert to an earlier state. Mementos are passive. Only the originator that created

a memento can assign or retrieve its state.

e aCaretake, : Caret.Im, " è,

Ct-...otlD(l_ 1

:O'lql •• fti;

r ~~~

e .Mem" •• o : ."menlo

''''''l._

~
setSt<le(S!fr(I "el

L ,
1

1) ,
1

Figure 3.5: Description of the Memento pattern in terms of collaboration

27

For each message involved in the sequence of messages in Figure 3.5, i.e.,

createMemento(),Memento(),setState(),setMemento(Memento),andgetState(),

we instantiate an object Operation that is added to the ordered list components of

an instance of ScenarioDiagram representing the Memento pattern. Given message

setMemento(Memento) takes an object of type Memento as argument, we instantiate

an object Argument which attribute type points to Memento. This object Argument

is added to the ordered list arguments of message setMemento (Memento). The par­

ticipants collaborating in the pattern, aCaretaker, anOriginator, and aMemento,

are instantiated as instances of Instance, and are set to be the

sourceClassifier or destinationClassifier of their corresponding messages.

For example, the sourceClassifier of createMemento 0 and setMemento (Memento)

is aCaretaker, while anOriginator is their destinationClassifier.

3.2.4 Observer

The Observer pattern defines a one-to-many dependency between objects so that

when one object changes its state, aIl its dependents are notified and updated auto­

matically. The scenario diagram in Figure 3.6 illustrates the collaboration between

a subject and two observers. A ConcreteSubject notifies its observers whenever a

1

1

1

1

1

1

1

1
1

1

~
1

IJ

Figure 3.6: Description of the Observer pattern in terms of collaboration

28

change occurs that could make its observers' state inconsistent with its OWn. After

being informed of a change in the ConcreteSubject, a ConcreteObserver object

may query the subject for information. ConcreteObserver uses this information

to reconcile its state with that of the subject.

For each message involved in the sequence of messages in Figure 3.6, i.e., set­

SubjectState(), notifyObservers(), update(), getSubjectState(),

updateO, and getSubjectStateO, we instantiate an object Operation that is

added to the ordered list components of an instance of ScenarioDiagram repre­

senting the Observer pattern. The participants collaborating in the pattern,

aConcreteSubject, aConcreteObserver, and anotherObserver, are instantiated

as instances of Instance, and are set to be the sourceClassifier or

destinationClassifier of their corresponding messages. For example, the

sourceClassifier of setSubjectStateO and getSujbectStateO is

aConcreteObserver, while aConcreteSubject is their destinationClassifier.

29

1 1

Figure 3.7: Description of the Visitor pattern in terms of collaboration

3.2.5 Visitor

The Visitor pattern represents an operation to be performed on the elements of

an object structure. Visitor allows defining a new operation without changing the

classes of the elements on which it operates. Figure 3.7 illustrates the collaboration

among an object structure, a visitor, and two elements. A client that uses the

Visitor pattern creates a ConcreteVisi tor object and then goes through the object

structure, visiting each element using the visitor. When an element is visited, it

calls the visitConcreteElement (ConcreteElement) operation that corresponds

to its class. The element supplies itself as an argument to this operation to let the

visitor access its state, if necessary.

For each message involved in the sequence of messages in Figure 3.7, i.e.,

accept(Visitor), visitConcreteElementA(ConcreteElement), operationA(),

accept(Visitor),visitConcreteElementB(ConcreteElement),andoperationB(),

we instantiate an object Operation that is added to the ordered list components of

an instance of ScenarioDiagram representing the Visitor pattern. Given message

accept (Visi tor) takes an object oftype Visi tor as argument, we instantiate an

object Argument which attribute type points to Visi tor. This object Argument

is added to the ordered list arguments of message accept (Visitor). The par-

30

ticipants collaborating in the pattern, anObjectStructure, aConcreteElementA,

aConcreteElementB, and aConcreteVisi tor, are instantiated as instances of

Instance, and are set to be the sourceClassifier or destinationClassifier

of their corresponding messages. For example, the sourceClassifier of

visitConcreteElementAO is aConcreteElementA, while aConcreteVisitor is its

destinationClassifier.

3.3 Conclusion

In this chapter, we provided a way to formalize design patterns using a set of

elements. These elements are defined in the core of a metamodel dedicated to the

representation of patterns. The proposed metamodel provides means to describe

behavioral aspects of design patterns. It establishes the conceptual machinery

required to identify behavioral and creational design patterns in source code. Then,

following the proposed metamodel, we described the Builder, Command, Memento,

Observer, and Visitor patterns in terms of collaboration among objects as shown

in [GHJV94], and showed how these collaboration is translated into instances of

the scenario diagram metamodeL

In the next chapter, we will show how to reverse engineer a system's use case

scenario into an instance of the same metamodel, with the view to perform the

identification of sorne given design pattern collaborations (Chapter 5).

CHAPTER4

REVERSE ENGINEERING OF SCENARIO DIAGRAMS

To extract scenario diagrams from software systems, we can choose to capture

their behavior either by static analysis or dynamic analysis. Both strategies have

their own advantages and limitations. On the one hand, even if static analysis can

provide a complete picture of what can happen at runtime, it does not show what

actually happens. Using static analysis to retrieve dynamic data requires to analyze

the source code, and to determine the dynamic types of object references, which is

not conceivable for large, complex systems [GJM91]. On the other hand, reverse

engineered scenario diagrams obtained by dynamic analysis represent only part of

the whole behavior of a system. Yet, they describe precisely the collaboration

among objects.

In this thesis, we chose to use dynamic analysis because we favor precision

over completeness. To cope with the incompleteness of the reverse engineered

scenario diagrams, we shall consider in future work the merging of sever al execution

traces, each reporting one observed behavior according to one scenario (or use

case). The merging of scenario diagrams to generate a sequence diagram is clearly

a difficult problem as stated in [HLBAL05], and calls for more research studying

the synergy between static and dynamic approaches, similar to what has recently

been suggested in [GZ05]. AIso, the use of sorne test coverage tools could help in

defining the scenarios that need to be executed to possibly recover aIl the design

patterns applied during the design and implementation of a system.

4.1 Reverse Engineering Technique U sing Dynamic Analysis

There are several techniques to retrieve data using dynamic analysis. These

techniques include, for example, source code instrumentation [JSB97,RD99,BLM03],

virtual machine instrumentation [WMFB+98, P JM+02], or the use of a customized

32

debugger [8KMOl, 0802]. In this thesis, we first tried to instrument the Java

virtual machine JIKES RVM [Jik08]-JIKES Research Virtual Machine--which is

designed to execute Java systems and to prototype new virtual machine technolo­

gies. However, the amount of time and work required to achieve successfully the

necessary instrumentation quickly exceed the scope of this thesis. Therefore, we

chose to use intermediate code instrumentation (bytecode instrumentation in the

context of Java systems). To avoid having to maintain a "dean" version and an

instrumented version of the same source code, and to avoid handling possible in­

consistencies between the two versions, we choose to instrument the intermediate

code, an operation which is less intrusive than virtual machine instrumentation

and debugger customization. Nevertheless, sorne difficulties arise. First, delays

due to the insertion of new instructions may be introduced while executing the in­

strumented system, with respect to the execution of the non-instrumented version.

Yet, unless the instrumented system is a real-time system with hard synchroniza­

tion constraints, the instrumentation should not change the intended behavior of

the system. AIso, there are threads and timing issues when the analyzed system is

distributed. Generating a dynamic model showing distributed objects interactions,

such as scenario diagrams, requires that messages be ordered, within or between

threads execution on a computer, but also between threads execution on different

computers. However, in a distributed system, there is often no global dock that

could be used to order messages gathered from different computers. In the scope

of this thesis, we only deal without concurrency. Therefore, the threads and timing

issues are not relevant in the context of our instrumentation strategy.

The main limitation of the chosen strategy is its specificity to the target lan­

guage. This strategy is tightly bonded to a particular runtime environment. How­

ever, the form and the contents of the dynamic data retrieved are not affected.

Regardless of the language (as long as it is object-oriented) and the runtime envi­

ronment of the system, a method execution is traced in such a way that its entry

and exit are recorded in our approach.

33

In the literature, many approaches have been proposed to reverse engineer dy­

namic models of object-oriented systems using intermediate code instrumentation.

Following [BLL06], we define a reverse engineering approach that consists in 5 steps

(cf. Figure 1.1 on page 3, Steps 2i, 2ii, 2iii, 2iv, and 2v), adapted to systems written

in Java. This approach could be generalized for any other object-oriented language,

except for Step 2ii.

First, we compile the source files of a system to obtain their corresponding in­

termediate code. Second, we instrument the intermediate code. Third, we choose

a scenario to be executed. The choice of the scenario is guided by the documen­

tation of the system, where a list of functionalities is described, possibly including

terms found in the description of design patterns (in the intent and motivation de­

scriptions principaIly). Fourth, we execute the instrumented system following the

chosen scenario to automatically produce an execution trace. FinaIly, we create an

instance of the scenario diagram metamodel corresponding to the execution trace.

In the following, we illustrate the proposed instrumentation approach on a toy

system that we implemented in Java according to the solution advocated by the

Memento pattern in [GHJV94] (cf. Figure 3.5 on page 27). It will be used as a run­

ning example in Sections 4.1.1, 4.1.2, and 4.1.3. First, in Section 4.1.1, we present

the execution trace format, which is required to achieve pattern identification. Our

instrumentation strategy was developed to produce traces in this specifie format,

as explained in Section 4.1.2. FinaIly, we depict the instantiation of a scenario

diagram from an execution trace (Step 2v) in Section 4.1.3.

4.1.1 Format of the Execution Trace

Each execution trace complies with the following syntax:

An execution trace contains a set of events. Each event corresponds to either the

start or the end of a message. Each event also records the name of the message,

its formaI arguments, as weIl as the unique ID of the callee (receiver object). Traces

are independent of the programming language, system, and application, and could

be generated for any object-oriented programming language, in addition to Java

34

presented here. The execution trace corresponding to the running example of the

Memento pattern that complies with the described format is shown in Figure 4.1.

4.1.2 Instrumentation

Intermediate code instrumentation is specifie to the target language and the run­

time environment of the analyzed system. In this thesis, we chose to instrument

Java bytecode generated by the widely used Java 2 Platform, Standard Edition

version 1.4.2 with BCEL-the Byte Code Engineering Library [Apa06]. BCEL is a

Java library that gives users the possibility to create, analyze, and easily manip­

ulate Java c1ass files. In this section, we will discuss the instrumentation strategy

proposed to trace the execution of constructors and methods, as well as control

flow and repetitions of messages.

4.1.2.1 Constructor and Method Executions

To identify design patterns in the scenario diagram of a system, we instrument

constructor executions as weIl as method executions. Although requiring different

means, the execution instrumentation of constructors is very similar to the one

of methods. Therefore, we only present here the instrumentation of constructor

executions.

(trace) --> (event) 1 (event) (trace)

(event) --> (message...type) (state) (message...signature) callee (class_identifier) {(id)} 1 (repetitio1Ltype) (state)

(message...type) --> operation 1 constructor 1 destructor

(repetitio1Ltype) --> loop 1 aIt

(state) --> start 1 end

(message...signature) --> {(visibility)} {static} (retur1Ltype) (message...identifier) ({(argument)))

(visibility) --> public 1 private 1 protected

(message...identifier) --> name of the message being called

(argument) --> (argumenUype) (argumenLidentifier) {, (argument)}

(argumenLtype) --> type of the argument

(argumenLidentifier) --> name of the argument

(class_identifier) --> name of the class to which belongs the message being called

(id) --> unique number of the instance object to which belongs the message being called

1: operation start public static void main(String[] args) callee ModelMementoTest -1
2: constructor start public void <init>() callee Caretaker 14613018
3: constructor start public void <init>() callee Originator 12386568
4: constructor end public void <init>() callee Originator 12386568
5: constructor end public void <init>() callee Caretaker 14613018
6: operation start public void callCreateMemento() callee Caretaker 14613018
7: operation start public Memento createMemento() callee Originator 12386568
8: constructor start public void <init>() callee Memento 17237886
9: constructor end public void <init>() callee Memento 17237886

10: operation start public void setState(String state) callee Memento 17237886
11: operation end public void setState(String state) callee Memento 17237886
12: operation end public Memento createMemento() callee Originator 12386568
13: operation end public void callCreateMemento() callee Caretaker 14613018
14: operation start public void undoOperation() callee Caretaker 14613018
15: operation start public void setMemento(Memento m) callee Originator 12386568
16: operation start public String getState() callee Memento 17237886
17: operation end public String getState() callee Memento 17237886
18: operation end public void setMemento(Memento m) callee Originator 12386568
19: operation end public void undoOperation() callee Caretaker 14613018
20: operation end void public static void main (String[] args) callee ModelMementoTest -1

Figure 4.1: Execution trace of a toy system implementing the Memento pattern

35

In the Java Virtual Machine, every constructor appears as an instance llll­

tialization method that has the special name <ini t>. Figure 4.2 illustrates the

constructor of class Memento from the Memento pattern shown in Figure 3.5 on

page 27. Its bytecode instructions before instrumentation are shown in Figure 4.3.

To produce dynamic data when constructors start executing, we insert bytecode in­

structions after the invocation of the superclass constructor, to enforce the writing

of a constructor start event in the execution trace. These bytecode instructions

are illustrated by the lines 3-5 in Figure 4.4. For tracing the corresponding con­

structor end event, we identify every return bytecode instruction and every caU

to System. exit (int) (the only way in Java to exit a method normally). Then,

before each such instruction, we insert bytecode instructions to write a construc­

tor end event in the execution trace, as illustrated by the lines 19-21 in Figure

4.4. Each time a constructor start event or constructor end event is traced,

bytecode instructions to trace a constructor destinationClassifier class name

and identity code are also added to the original instructions. To uniquely identify

each instance object in the system, we use the object identity hash-code. These

36

public elass Memento { 1 : aload_O
2: invokespeeial Objeet.<init> OV

public Memento (String state) { 3: aload_O
this.setState(state); 4: Ide "state"

} 5: putfield Originator.state String;
} 6: return

Figure 4.2: Partial source code of class
Memento

Figure 4.3: Constructor bytecode be­
fore instrumentation

1: aload_O
2: invokespeeial Objeet.<init> ()V
3: Ide "Memento_GOF_EVALUATION.traee"
4:
5:
6:
7:

Ide
invokestatie
Ide
new

8: dup
9: aload_O

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

invokestatie
invokespeeial
invokestatie
Ide
Ide
invokestatie
aload_O
Ide
put field
Ide
Ide
invokestatie
Ide
new
dup
aload_O
invokestatie
invokespeeial
invokestatie
Ide
Ide
invokestatie

32: return

"eonstruetor st art <init> CALLEE Originator"
LogToFile.write (Objeet;)V
"Memento_GOF_EVALUATION.traee"
<Integer>

System.identityHashCode (Objeet;)I
Integer.<init> (I)V
LogToFile.write (Objeet;)V
"Memento_GOF_EVALUATION.traee"
'I\n"
LogToFile.write (Objeet;)V

"state"
Originator.state Ljava/lang/String;
"Memento_GOF_EVALUATION.traee"
"eonstruetor end <init> CALLEE Originator"
LogToFile.write (Objeet;)V
"Memento_GOF_EVALUATION.traee"
<Integer>

System.identityHashCode(Objeet;)I
Integer.<init> (I)V
LogToFile.write(Objeet;)V
"Memento_GOF_EVALUATION.traee"
"\n ll

LogToFile.write(Objeet;)V

Figure 4.4: Constructor bytecode after instrumentation

37

bytecode instructions are illustrated by the lines 10-15 and 26-31 in Figure 4.4.

The sourceClassifier of a constructor is determined only while instantiating the

scenario diagram, as discussed in Section 4.1.3. Multithreading has not been an

issue so far for the design pattern identification, so we do not distinguish threads.

4.1.2.2 Control Flow and Repetitions

The instrumentation strategy produces an execution trace that provides aIl the

necessary data to generate scenario diagrams to perform design pattern identifica­

tion. The data may include the conditions corresponding to the flow of control,

and the repetitions of messages-referred to as loop start and loop end in our

execution trace-which are used to instantiate class Loop in the scenario diagram

metamodel.

BCEL allows users to manipulate Java bytecode easily, so we have also chosen

to instrument the methods bytecode to obtain control-flow structures, instead of

discovering patterns of executions in the execution trace or the source code, as in

previous work [DHKV93, JSB97, RD99, SKM01]. Tracing conditions is similar to

tracing repetitions of messages, so we only describe the latter.

We produce dynamic data indicating when loops st art and end. Every message

that appears between dynamic data loop start and loop end is considered as a

message called in the loop. Figure 4.5 depicts an example of source code involv­

ing repetition of message ml 0, which is positioned inside the loops for (line 11)

and while (line 14). Before instrumentation, the bytecode instructions of method

main(String[]) are shown ln Figure 4.6. Our approach to instrument loop start

and loop end is as follows. Given a method of a class, we locate bytecode instruc­

tions specifie to control-flow structures, such as for and while.

To trace a loop start, we identify every branch instruction whose target is

indexed before its own position. For instance, in Figure 4.6, branch instructions

at lines 19 and 25 have targets that are positioned at an index inferior to their

positions, respectively at lines 8 and 3. Then, previous to the instruction in relation

1: public class TestRepet1t1on {
2:
3: public static void ml ()

{ 4:
5:
6:
1:
8:
9:

10:
11:
12:
13:
14:
15:
16:
11:
18:
19:
20:
21:
22:
23:
24:
25:
26: }

a++;
}

public static void main (String args [])
{

}

int eounter;
for(counter = 0; counter < 5; eounter++)
{

}

a == 0;
while (a < 2)
{

}

if(counter == 1)
break ;

else if (a < 2)
m10;

if(counter == 2)
return ;

Figure 4.5: Source code of class TestRepeti­
tion.

38

1: iconst_O
2: istore_l
3: iload_l
4: iconst_5
5: iCicmpge #26
6: iconst_O
1: putstatic Loops.a 1
8: getstatic Loops.a 1
9: iconst_2

10: iCicmpge #20
11: lload_l
12: 1const_l
13: iCicmpne #15
14: goto #20
15: getstatic Loops.a 1
16: iconst_2
11: iCicmpge #8
18: invokestatie Loops.ml OV
19: goto #8
20: iload_l
21: iconst_2
22: iCiempne #24
23: return
24: iine %1 1
25: goto #3
26: return

Figure 4.6: Bytecode of method
main (String []) before instrumen­
tation

to the branch instruction target, we insert bytecode instructions to write a loop

start in the execution trace, as shown in Figure 4.7 at lines 3-6.

Tracing a loop end requîres that we locate every bytecode instruction that

may cause a loop iteration to end. In particular, in the range of a loop scope,

we locate every if or goto bytecode instruction whose target 's index is positioned

outside the loop scope. Then, we insert before the corresponding target instruction,

bytecode instructions to write a loop end. For example, in Figure 4.6, bytecode

instruction at line 5 is an if instruction positioned inside the loop defined at line

25. In addition, the if target instruction, positioned at line 26, is outside the

loop scope. Therefore, we insert dynamic data before line 26 to indicate a loop

end. The corresponding bytecode newly inserted is shown in Figure 4.7 at Hnes

50-53. As a result, if an iteration of the loop starts and ends, the corresponding

notifications appear in the execution trace.

39

1: ieonst_O
2: istore_l
3: Ide "ControIFlow.traee"
4: Ide "loop st art #l\n"
5: invokestatle LogToFile.write(String;Objeet;)V
6: iload_l
7: ieonst_5
8: lCiempge #50
9: ieonst_O

10: putstatie Loops.a l
11: Ide "ControIFlow.traee"
12: Ide "loop st art #2\n"
13: invokestatie LogToFile.write(String;Objeet;)V
14: getstatie Loops.a l
15: ieonst_2
16: iCiempge #32
17: iload_l
18: ieonst_l
19: if_iempne #23
20: goto #32
21: getstatie Loops.a l
22: ieonst_2
23: iCiempge #12
24: invokestatie Loops .ml Ov
25: Ide "ControIFlow.traee"
26: Ide "loop end #2\n"
27: invokestatie LogToFile.write(String;Objeet;)V
28: goto #12
29: Ide "ControIFlow.traee"
30: Ide "loop end #2\n"
31: invokestatie LogToFile.write(String;Objeet;)V
32: iload_l
33: ieonst_2
34: iCiempne #44
35: Ide "ControIFlow.traee"
36: Ide "aIl loops exit\n"
37: invokestatie LogToFile.write(String;Objeet;)V
38: return
39: iinc %1
40: Ide "ControIFlow.traee"
41: Ide "loop end #l\n"
42: invokestatie LogToFile.write(String;Objeet;)V
43: goto #3
44: Ide "ControIFlow.traee"
45: Ide "loop end #l\n"
46: invokestatie LogToFile.write(String;Objeet;)V
47: return

Figure 4.7: Bytecode of method main(String[]) after instrumentation

<OPERATION> public static void main (String[] args)
<CALLEE> ModelMementoTest <CALLER> nonexistent

<CREATE> public void <init>()
<CALLEE> Caretaker 14613018

<CREATE> public void <init>()
<CALLER> ModelMementoTest

<CALLEE> Originator 12386568 <CALLER> Caretaker 14613018
<OPERATION> public void callCreateMemento()

<CALLEE> Caretaker 14613018 <CALLER> ModelMementoTest
<OPERATION> public Memento createMemento()

<CALLEE> Originator 12386568 <CALLER> Caretaker 14613018
<CREATE> public void <init>()

<CALLEE> Memento 17237886 <CALLER> Originator 12386568
<OPERATION> public void setState(String state)

<CALLEE> Memento 17237886 <CALLER> Originator 12386568
<OPERATION> public void undoOperation()

<CALLEE> Caretaker 14613018 <CALLER> ModelMementoTest
<OPERATION> public void setMemento(Memento m)

<CALLEE> Originator 12386568 <CALLER> Caretaker 14613018
<OPERATION> public String getState()

<CALLEE> Memento 17237886 <CALLER> Originator 12386568

40

Figure 4.8: Textual representation of the scenario diagram after that the execution
trace of Figure 4.1 has been processed

4.1.3 Instantiation of Scenario Diagram

After the execution of an instrumented system, we obtain an incomplete execu­

tion trace for one use case. There is one important data that was left out during

the instrumentation: the caller of each message (i.e., sender object). We identify

the sourceClassifier of a message by determining the callee (receiver) of the

occurrence of an event in the execution trace positioned just before the currently

analyzed message, and specifying a message execution start. In Figure 4.1, the

preceding message of Message createMemento 0 is

Message callCreateMemento 0 at line 6. The sourceClassifier of

createMementoO is then set as the destinationClassifier of

callCreateMemento().

Once the sourceClassifier of each message is identified, the execution trace

is processed to determine the corresponding scenario diagram. This pro cess is

independent of the target language of the system, as long as the execution trace

has the aforementioned format.

41

Figure 4.8 is a textual representation of the scenario diagram corresponding to

the execution trace in Figure 4.1. For each execution trace event such as

operation start or constructor start, a message of type Operation or

Create is respectively instantiated1 , while an object CombinedFragment of type

Loop or Alt is instantiated for each execution trace event loop start or alt

start. In both cases, the component corresponding to the event currently ana­

lyzed in the execution trace is referred to as the CUITent component. If the current

component is of type CombinedFragment, we add the subsequent objects Message

or CombinedFragment to its ordered li st operands, until the corresponding end

event is met. Otherwise, they are added to the ordered list components of object

ScenarioDiagram. Each time an object Message is instantiated, its corresponding

sourceClassifier and destinationClassifier of type Classifier are also in­

stantiated (if needed). The set arguments of a message is determined by processing

the data positioned between the parentheses of the corresponding event.

4.2 Conclusion

In this chapter, we showed how to instrument intermediate code to obtain the

order in which constructors and methods are executed, and control flow data (in

particular, the repetition of messages) for a given use case of a Java system. In

addition, we explained how to instantiate the scenario diagram metamodel from

the execution trace produced by the execution of an instrumented system.

We will now perform the identification of behavioral and creational design pat­

terns using two instances of the scenario diagram metamodel, one resulting from

the description of the searched design pattern (i. e., the source system), and the

other, from the execution of sorne use case of a system (i. e., the target system).

1 Explicitly, we do not refer to type Destroy here because of the nature of Java, as Java has no
destructor or similar concept. However, the scenario diagram instantiation pro cess is not limited
to Java, sin ce the format of an execution trace complies with other object-oriented programming
languages.

CHAPTER 5

IDENTIFICATION OF DESIGN PATTERNS

Using the pro cess and techniques described in the previous chapt ers , we obtained

two scenario diagrams: one instance models the sequence of messages of the searched

design pattern (i.e., the source system), while the other models the sequence of mes­

sages for the executed scenario (i.e., the target system). The approach we follow

to identify behavioral and creational design patterns consists in identifying occur­

rences of the scenario diagrams of the source system in the scenario diagram of the

target system, i.e., in matching exactly the collaboration of the searched design

pattern with those of the executed scenario of a software system. As illustrated in

Figure 1.1, Step 3, we translate this identification process into an eCSP, as in previ­

ous work [GAAOl], in terms of variables, constraints among variables, and domains

of the variables. The eCSP represents the problem that the explanation-based con­

straint solver JCHOCO [JBOO] solves to identify in the target system, sequences

of messages that are identical or similar to the one defined in the searched design

pattern.

As in the previous chapter, we will illustrate the translation of the identification

process into an eCSP using the running example that we implemented following

the solution of the Memento pattern in [GHJV94] (cf. Figure 3.5 on page 27).

5.1 Explanation-based Constraint-Programming

Explaining and suggesting possible architectural modifications is an interest­

ing way to improve object-oriented source code. These explanations can not only

ease program comprehension, but also help improve the quality of the system.

Explanation-based constraint programming already proved to be of interest in many

applications [JBOCl].

43

5.1.1 Explanations

ln the following, we consider a CSP (V, D, C). Decisions made during the

enumeration phase (variable assignments) correspond to adding or removing con­

straints from the current constraint system (e.g., upon backtracking).

A contradiction explanation (a.k.a. nogood [SV94]) is a subset of the current

constraint system of the problem that, left alone, leads to a contradiction (no

feasible solution contains a nogood). A contradiction explanation is divided into

two parts: a subset of the original set of constraints (C' C C in Equation 1) and a

subset of decision constraints introduced so far in the search.

(1)

ln a contradiction explanation composed of at least one decision constraint, a

variable Vj is selected and the previous formula is rewritten as2 :

Cf- C' 1\ /\ (Vi = ai) -+ Vj =1= aj (2)
iE[l..klV

The left hand side of the implication constitutes an eliminating explanation for

the removal of value aj from the domain of variable Vj and is noted expl (Vj =1= aj).

Classical CSP solvers use domain-reduction techniques (removal of values).

Recording eliminating explanations is sufficient to compute contradiction expla­

nations. Indeed, a contradiction is identified when the domain of a variable Vj is

emptied. A contradiction explanation can easily be computed with the eliminating

explanations associated with each removed value:

Cf- --, (/\ expl(vj =1= a))
aEd(vj)

(3)

2 A contradiction explanation that does not contain such a constraint denotes an over­
constrained problem.

44

There exist generally several eliminating explanations for the removal of a given

value. Recording aIl of them leads to an exponential space complexity. Another

technique relies on forgetting (erasing) eliminating explanations that are no longer

relevant3 to the current variable assignment. This way, the space complexity re­

mains polynomial. We keep only one explanation at a time for a value removal.

5.1.2 Computing Explanations

Minimal (w. r. t. inclusion) explanations are the most interesting. They provide

very precise details about possible dependencies among variables and constraints

that are identified during the search. Unfortunately, computing such explanations

is time-consuming [JunOl]. A good compromise between size and computability

is the use of the knowledge that is inside the sol ver: constraint solvers always

know (although not often explicitly) why values are removed from the domain of

variables. Precise and interesting eliminating explanations can be calculated by

explicitly stating such information.

5.1.3 Using Explanations

Explanations can be used in several ways [JDBOO, JBOO, JLOO]. Debugging pur­

poses are the most obvious: to explain clearly failures, to explain differences be­

tween intended and observed behavior for a given problem.

Explanations can also be used to determine direct or indirect effects of a given

constraint on the domain of the variables of the problem, and for dynamic constraint

removal. This is the case with the justification system used in [Bes91] for solving

dynamic CSP. This justification system is actually a partial explanation system.

Moreover, being able to explain failure and to dynamically remove a constraint

facilitate the building of dynamic over-constrained problem solver [JB97].

3 A nogood is said to be relevant if all the decision constraints in it are still valid in the current
search state [BM96].

45

Other less direct applications exist as weIl: in particular, using explanation to

guide the search. Indeed, classical backtracking-based se arches only proceed when

encountering failures (by backtracking to the last choice point). Contradiction ex­

planation can be used in several ways to improve standard backtracking and to

exploit data gathered to improve the search, by providing intelligent backtrack­

ing [GJPOO], replacing standard backtracking with a jump-based approach à la

Dynamic Backtracking [Gin93, JDBOO], or even developing new local searches on

partial instantiations [JLOO].

ln the context of design pattern identification, what is most interesting in using

explanation systems is the ability to:

• Explain why no solution is found for a given problem. As stated before,

a contradiction explanation that does not contain any decision constraints

denotes an over-constrained system (i. e., a system with no possible solutions).

Such explanations are recursively obtained after having tested aIl possible

values for a given variable [JBOO].

• Provide insights on the available variants/approximations of patterns (i. e.,

on the constraint relaxations that would lead to more occurrences, if the

associated constraints were relaxed): a contradiction explanation justifies

why there are not more solutions for the current problem. Selecting and

relaxing a constraint given by the explanation aIlows the discovery of new

solutions (approximate solutions for the original problem). In this thesis,

the selection is left to the developer who knows which constraint to relax,

without deviating from behavioral specification of the design pattern being

searched for. However, in future work, we will consider allowing the user to

give his inputs regarding the constraints suggested by the solver that should

be removed from the system.

46

5.2 Application to the Problem of Design Pattern Identification

The identification of behavioral and creation al design patterns using explanation­

based constraint programming consists:

1. In modelling a set of design patterns as a set of eCSPs: the dynamic solution

advocated by a design pattern is modelled as a set of constraints. A variable is

associated with each participant in the scenario diagram defined for a design

pattern. The collaboration among classes (caller/callee, messages order, etc.)

is represented by constraints between the variables.

2. In modelling the execution of a scenario of the target system, to keep only the

data needed to apply the constraints: the messages sent during the execution

of the chosen scenario, and the caller/callee of each message are modelled.

3. In solving the eCSP to se arch for exact and approximate solutions-solutions

for which one or several constraints specified by the design pattern are re­

laxed: when aIl the complete solutions of the eCSP are found, the search

is dynamically guided by the user to find interesting approximate solutions.

Information (explanations of contradiction) provided by the constraint solver

helps the user.

More precisely, in our design pattern identification approach based on the sce­

nario diagram metamodel proposed in Chapter 3, the different constituents of the

eCSP are defined as follows:

Variables. The set of variables of the eCSP corresponds to the scenario diagram

metamodel instances of Classifier and Message modelling the scenario di­

agram of a design pattern (the source system). The variables of our model

are integer-valued.

Domain. The domain of each variable of the eCSP corresponds to a set of integers,

each corresponding to a scenario diagram metamodel instance of Classifier

47

or Message in the scenario diagram of a target system. Each instance of

Classifier or Message is identified by a unique integer.

Constraints. The set of constraints among the variables of the eCSP corresponds

to the relation expressed among the scenario diagram metamodel instances

of Classifier or Message contained in the scenario diagram of a design pat­

tern. We use a binary constraint in the form

constraint (variable1, variable2) to express the existence of a collab­

oration between variable1 and variable2. It is worth noting the eCSP

that we define can involve constraints among variables of different entities in

the scenario diagram metamodel, as opposed to previous work using eCSP,

which allows only the definition of constraints among the same type of enti­

ties. For instance, in this thesis, these variables denote Classifier instances

or Message instances.

In the case of the running example, the Memento pattern shown in Figure 3.5

on page 27 is the source system. The corresponding eCSP is expressed by as­

sociating a variable with each of its instances of Message (var_createMemento,

var_newMemento, var_setState, var_setMemento, var_getState), and its in­

stances of Classifier (var_aCaretaker, var_anOriginator, and var_aMemento).

The domain of each variable of the eCSP corresponds to the scenario diagram

metamodel instances of Classifier or Message in the target system. In the case

of the running example, the scenario diagram of the target system in which we

want to identify the Memento pattern is shown in Figure 4.8, and comprises ten

instances of Message (main (String []), public void <ini t> 0,

public void <init>(),public void callCreateMemento(),createMemento(),

public void <init>(),setState(),undoOperation(),setMemento(aMemento),

and getState 0), and four instances of Classifier (ModelMementoTest, Care­

taker, Originator, and Memento). Therefore, the domain of variables var_aCaretaker,

var _anOriginator, var _aMemento, and variables var _createMemento,

48

var _newMemento, var _setState, var _setMemento, var _getState are respectively

each of size four and ten.

5.2.1 A Library of Specialized Constraints

From the collaboration among classes defined in [GHJV94], we built a library of

constraints. Specialized constraints express the caller/callee, messages order, etc.

relationships. These constraints involve variables representing one and only one

cIass or message, because the tools we use do not manage (yet) constraints on sets.

We use a simple trick to handle constraints on sets: variables representing sets of

classes are not enumerated during the problem solving.

To the best of our knowledge, in previous work in which CSP is used to identify

design patterns, constraints are only defined among variables of the same type, for

example [QYW97] or [GAAO:l]. In our approach, constraints can be defined among

variables of different types (Classifier and-or Message). It leads to a greater

precision while describing a design pattern because a relationship can be expressed

among instances of Message, Classifier, or between an instance of Message and

an instance of Classifier.

The set of constraints used in our approach to express the relations between

variables, which can be combined to form more complex constraints, includes:

Constraint caller (classifier!. message2) (respectively callee) defines the

relation dassifier1 is the sourceClassifer of message2 (respectively

classifier1 is the destinationClassifier of message2) between

classifier! and message2. As shown in Aigorithm 1, the domain of vari­

able classifier! corresponds to the instances of Classifier in the target

system. The domain of variable message2 corresponds to the instances of

Message in the target system. For each value taken by message2, there must

be a corresponding value taken by classifier! so that classifier! is the

sourceClassifier of message2. Conversely, for each possible value taken

by classifier!, there must be a corresponding value taken by message2 so

49

Algorithm 1 Constraint callerCclassifierl, message2) (respectively callee)

1: toBeRemoved +- true
2: domain1 +- Domain (classifier 1)
3: for i = 0 to Size(domain1) and toBeRemoved = true do
4: classifier +- ElementAt(domain1, i)
5: listOfMessages +- Messages WhoseCaller Is(classifier)
6: for j = 0 to Size(listOfMessages) and toBeRemoved = true do
7: aMessage +- ElementAt(listOfMessages, j)
8: domain2 +- Domain(message2)
9: if ContainsMessage(domain2, message2) then

10: toBeRemoved +- faIse
11: end if
12: end for
13: end for
14: toBeRemoved +- true
15: domain2 +- Domain(message2)
16: for i = 0 to Size(domain2) and toBeRemoved = true do
17: message +- ElementAt(domain2, i)
18: caller +- CallerOf(message)
19: if ContainsClassifier(domain1, caller) then
20: toBeRemoved +- faIse
21: end if
22: end for

50

that the sourceClassifier of message2 is a Classifier in the domain of

classifier1. Any value of classifierl and message2 failing to comply to

this collaboration is removed from the corresponding domain.

Constraint creatorCclassifierl, message2) (respectively created) is simi­

lar to constraint callerCclassifierl, message2), except that message2

is an instance of Create instead of Operation (cf. Figure 3.1 on page 21).

For each possible value of message2, there must be a corresponding value

of classifierl so that classifierl is an instance of Create, and is the

sourceClassifier of message2

Constraint notEqual Cclassifierl, classfier2) (respectively (messagel,

message2)) defines the relation dassifier is not equal to dassifier2

(respectively message1 is not equal to message2).

Constraint follows (messagel) message2) defines the relation message2 is ex­

ecuted after message1. The domain of variables messagel and message2

corresponds to the instances of Message in the scenario diagram of the tar­

get system. For each possible value taken by message2, there must be a

corresponding value taken by messagel so that message2 is called after mes­

sage1. Conversely, for each possible value taken by messagel, there must be

a corresponding value taken by message2 so that messagel is called before

message2. Any value of message1 and message2 failing to comply to this

collaboration is removed from the corresponding domain.

Constraint parameterCalleeSameType (messagel) message2) defines the rela­

tion Parame ter of message1, if any, is of same type as the callee of

message2. The do main of variables messagel and message2 corresponds to

the instances of Message in the scenario diagram of the target system. For

each possible value taken by message2, there must be a corresponding value

taken by messagel so that the callee of message2 is of same type as a pa­

rameter of message1. Conversely, for each possible value taken by messagel,

51

Algorithm 2 Constraint creator (classifier1, message2) (respectively cre­
ated)

1: toBeRemoved +- true
2: domainl +- Domain (classifierl)
3: for i = 0 to Size(domainl) and toBeRemoved = true do
4: classifier +- ElementAt(domainl, i)
5: listOfMessages +- MessagesWhoseCallerIs(classifier)
6: for j = 0 to Size(listOfMessages) and toBeRemoved = true do
7: aMessage +- ElementAt(listOfMessages, j)
8: domain2 +- Domain(message2)
9: if ContainsMessage(domain2, message2) and IsOIType(aMessage,"Create")

then
10: toBeRemoved +- faise
11: end if
12: end for
13: end for
14: toBeRemoved +- true
15: domain2 +- Domain(message2)
16: for i = 0 to Size(domain2) and toBeRemoved = true do
17: message +- ElementAt(domain2, i)
18: caller +- CallerOf(message)
19: if ContainsClassifier(domainl, caller) and IsOIType(message2, "Create") then
20: toBeRemoved +- faise
21: end if
22: end for

Algorithm 3 Constraint follows (message1, message2)

1: toBeRemoved +- true
2: domainl +- Domain(messagel)
3: for i = 0 to Size(domainl) and toBeRemoved = true do
4: aMessagel +- ElementAt(domainl, i)
5: if IsCalledBeforeEveryMessageOf(aMessagel, domain2) then
6: toBeRemoved +- faise

. 7: end if
8: end for
9: toBeRemoved +- true

10: domain2 +- Domain(message2)
11: for i = 0 to Size(domain2) and toBeRemoved = true do
12: aMessage2 +- ElementAt(domain2, i)
13: if IsCalledBeforeEveryMessageOf(aMessage2, domainl) then
14: toBeRemoved +- faise
15: end if
16: end for

Algorithm 4 Constraint parameterCalleeSameType (messagel, message2)

1: toBeRemoved f- true
2: domain1 f- Domain(message1)
3: domain2 f- Domain(message2)
4: for i = 0 to Size(domain1) and toBeRemoved = true do
5: aMessage1 f- EIementAt(domainl, i)
6: for j = 0 to Size(domain2) do
7: aMessage2 f- EIementAt(domain2, j)
8: callee f- CalleeOf(aMessage2)
9: for each argument of aMessage1 and toBeRemoved = true do

10: if IsOIType(argument, TypeOf(callee)) then
11: toBeRemoved f- false
12: end if
13: end for
14: end for
15: end for
16: toBeRemoved f- true
17: for i = 0 to Size(domain2) and toBeRemoved = true do
18: aMessage2 f- EIementAt(domain2, i)
19: for j = 0 to Size(domainl) do
20: aMessagel f- EIementAt(domainl, j)
21: callee f- CalleeOf(aMessage2)
22: for each argument of aMessagel and toBeRemoved = true do
23: if IsOIType(argument, TypeOf(callee)) then
24: toBeRemoved f- false
25: end if
26: end for
27: end for
28: end for

52

53

there must be a corresponding value taken by message2 so that the param­

eter of message1 is of same type as the caller of message2. Each value of

message1 and message2 failing to comply to this collaboration are removed

from the corresponding domains.

In the case of the running example, the collaboration among the entities of the

scenario diagram are translated into constraints as:

1. follows(var_createMemento, var_newMemento)
2. follows(var_newMemento,var_setState)
3. follows(var_setState, var_setMemento)
4. follows(var_setMemento, var_getState)
5. caller (var_aCaretaker, var_createMemento)
6. callee(var_anOriginator, var_createMemento)
7. creator (var_anOriginator, var_newMemento)
8. created(var_aMemento, var_newMemento)
9. caller(var_anOriginator, var_setState)

10. callee(var_aMemento, var_setState)
11. caller (var_aCaretaker, var_setMemento)
12. callee(var_anOriginator, var_setMemento)
13. caller (var_anOriginator, var_getState)
14. callee(var_aMemento, var_getState)

5.2.2 Solver

Explanation-based constraint programming [JusOl] is the key tool for identi­

fying complete and approximate solutions without having to describe aIl possible

variants, as shown in previous work [GAAO:l.]. First, complete occurrences are com­

puted. This computation ends by a contradiction (there are no more occurrences).

Explanation-based constraint programming provides a contradiction explanation:

the set of constraints justifying that any other combination of entities do not verify

the constraints describing the design pattern. A contradiction explanation provides

insights on the available approximate occurrences, i.e., on the constraint relaxations

that would lead to more occurrences, if the associated constraints were relaxed.

Removing a constraint suggested by the contradiction explanation does not

necessarily lead to a new solvable CSP, but the constraints are relaxed recursively

until a solvable CSP is obtained, or no constraints remain. The solutions of a

new solvable CSP are approximate occurrences of the design pattern. Yet, while

54

representing a design pattern that does not follow the theoretical definition pro­

posed in [GHJV94], we only consider relaxing constraints that do not change the

semantics of the original collaboration characterizing the pattern. Design pattern

representations may be different from one system to another, but we do not adapt

our representations to each one. Constraints suggested by the solver can be relaxed

only if they verify the criteria expressed by the two main forms of approximate de­

scriptions, as described in the next chapter.

In the case of the running example, the occurrences identified when solving the

CSP are in the form:

<Sol.#>.var_createMemento = <an entity>
<Sol.#>.var_newMemento = <an entity>
<Sol.#>.var_setState = <an entity>
<Sol.#>.var_setMemento = <an entity>
<Sol.#>.var_getState = <an entity>
<Sol.#>.var_caretaker = <an entity>
<Sol.#>.var_or1ginator = <an entity>
<Sol.#>.var_memento = <an entity>

and applying the solver to the set of constraints defining the Memento pattern, the

CSP provides one and only one solution, without relaxations:

1.var_createMemento
1.var_newMemento
1.var_setState
1.var_setMemento
1.var_getState
1.var_caretaker
1.var_originator
1.var_memento

= createMemento()
= new Memento 0
= setState(String state)
= setMemento 0
= getStateO
= Caretaker [14613018]
= Originator [12386568]
= Memento [17237886]

Since the running example has been implemented rigorously following the solution

of the Memento pattern as proposed in [GHJV94], no approximate occurrences

different from the complete occurrence were found by the solver.

5.3 Conclusion

In this chapter, we explained the use of constraint programming in our approach

to identify complete and approximate occurrences of behavioral and creational de­

sign patterns in software systems. Since explanation-based constraint programming

55

provides contradiction explanations when no more solution is found to a given prob­

lem, it is therefore possible to find approximate occurrences of a design pattern.

CHAPTER 6

EVALUATION

In this chapter, we first illustrate our approach using a case study on the identifica­

tion of occurrences of the Visitor pattern in one particular scenario of JHOTDRAW.

Then, we study the accuracy of our approach on several design patterns imple­

mented in a set of Java systems in terms of precision and recall. Finally, we discuss

threats to the validity of the evaluation of our approach.

6.1 JHotDraw Case Study

We already showed how to identify the Memento pattern in a simple toy sys­

tem as a running example. Now, following the process in Figure 1.1, we show

step-by-step identification of occurrences of the Visitor pattern in one scenario of

JHOTDRAW v6.0b1. JHOTDRAW4 is a Java GUI framework for the drawing of

technical and structured graphies, letting a user create and manipulate figures.

It has originally been developed by Erich Gamma-one of the co-authors of the

book [GHJV94]-as a "design exercise". Its design strongly relies on sorne well­

known design patterns. Among others, the application's user interface displays the

documentation of the Visitor pattern when the copy and paste functionalities are

activated by a user. The case study is based on these two functionalities.

6.1.1 Step 1: Description of the Visitor Pattern

Figure 6.1, inspired by [GHJV94], describes the scenario diagram of the Visitor

pattern, based on our metamodel, as interactions between objects. A client that

uses the Visitor pattern creates a ConcreteVisi tor object and then goes through

the object structure, visiting each element with the visitor. When an element is

visited, it caUs the visi tConcreteElement 0 operation that corresponds to its

4http://www.jhotdraw.org/

57

G anOblactS'ruclura : ObiectStruclura It G .Conas'_ElaMant : Cona.leElaMant l G eConaetaViaitor : ConcrateVblto. G .Partlclpant: Participant'

1
1 1 1 1
1 1 1 1
1 1 1 1
1 lIX tdor) 1 VlSltCmcreœBement(Conc:reteBemont) 1 1

0 '0 .Q 1
1

1 1 1
1 1 1 1
1 1 -"1 1
1 O' IJ 1 1
1 1
1 1
1 1

Figure 6.1: Description of the Visitor pattern in terms of collaboration

class. The element supplies itself as an argument to this operation to let the

visitor access its state, if necessary. In other words, the Visitor pattern is a way

of separating an algorithm from an object structure by using double dispatch,

giving the possibility for software developers to add new operations to existing

object structures without modifying those structures. A typical example where the

Visitor pattern is implemented is the case of a compiler that represents programs as

abstract syntax trees for static analysis like checking that aU variables are defined.

It will also need to generate code. So it might define operations for type-checking,

code optimization, flow analysis, checking for variables being assigned values before

they are used, and so on.

6.1.2 Step 2: Reverse Engineering of Scenario Diagram

As described in Figure 1.1, Step 2i, JHOTDRAW bytecode is the output from a

Java compiler. Once aU Java class files are instrumented (Figure 1.1, Step 2ii), a

chosen scenario (Figure 1.1, Step 2iii) of JHOTDRAW is executed (Figure 1.1, Step

2iv). We chose to test our identification approach on a scenario that is commonly

executed by any user of JHOTDRAW, and which exercises the Visitor pattern, i.e.,

Cut and paste a figure in a document:

58

1. Create a new document on which figures can be drawn;
2. Select the 'Draw Rectangle' tool from the menu;
3. Draw a rectangle figure in the newly created document;
4. Select the rectangle figure drawn at step 3;
5. Select the 'Cut' command from the menu;
6. Select the 'Paste' command from the menu.

6.1.3 Step 3: Constraint Satisfaction Problem

Following Figure 1.1, Step 3, we translate the description of the Visitor pattern

into an eCSP.

Each instance of Classifier or Message III the scenario diagram instance of

our metamodel in Figure 6.1, the source system, is associated with a variable in

the eCSP bearing a similar name, i.e., var_anObjStruct, var_aConcreteElement,

var_aConcreteVisitor,var_aParticipant, var_accept, var_visit ConcreteElement,

and var_operation. The respective domain of variables var_anObjStruct,

var _aConcreteElement, var _aConcreteVisi tor, and var _aParticipant corre­

sponds to the instances of Classifier appearing in the scenario diagram of the

target system, where as the respective do main of variables var _accept,

var_visitConcreteElement, and var_operation is the instances of Operation

of the same scenario diagram.

The set of constraints among the entities is described below:

1. notEqual(var_anObjStruct, var_aConcreteElement)
2. notEqual(var_anObjStruct, var_aConcreteVisitor)
3. notEqual(var_aConcreteVisitor, var_aConcreteElement)
4. notEqual(var_aConcreteElement, var_aParticipant)
5. follows(var_accept, var_visitConcreteElement)
6. follows(var_visitConcreteElement, var_operation)
7. follows(var_accept, var_operation)
8. caller (var_anObjStruct, v_accept)
9. callee(var_accept, v_aConcreteElement)

10. caller (var_aConcreteElement, var_visitConcreteElement)
11. callee(var_visitConcreteElement, var_aConcreteVisitor)
12. caller (var_aParticipant, var_operation)
13. callee(var_operation, var_aConcreteElement)
14. parameterCalleeSameType(var_accept, var_visitConcreteElement)
15. parameterCalleeSameType(var_visitConcreteElement, v_accept)
16. isContainedln(var_operàtion, var_visitConcreteElement)

When solving the eCSP, we obtain three occurrences of the Visitor pattern.

According to the documentation of JHOTDRAW, two are complete occurrences,

whereas the other is an approximate occurrence.

Solution 1 is:

1.var_accept
1.var_visitConcreteElement
1.var_operation
1.var_objectStructure
1.var_concreteElement
1.var_concreteVisitor
1.var_aParticipant

Solution 2 is:

2.var_accept
2.var_visitConcreteElement
2.var_operation
2.var_objectStructure
2.var_concreteElement
2.var_concreteVisitor
2.var_aParticipant

Solution 3 is:

3.var_accept
3.var_visitConcreteElement
3.var_operation
3.var_objectStructure
3.var_concreteElement
3.var_concreteVisitor
3.var_aParticipant

= visitCFigureVisitor visitor)
= visitFigureCFigure hostFigure)
= removeFromContainerCFigureChangeListener c)
= CutCommand [11197591]
= AnimationDecorator [24934792]
= DeleteFromDrawingVisitor [12741398]
= BouncingDrawing [6626965]

= visit CFigureVisitor visitor)
= visitFigure CFigure hostFigure)
= setZValue Cint z)
= ZoomDrawingView [5819561]
= AnimationDecorator [12839271]
= InsertIntoDrawingVisitor [2554341]
= BouncingDrawing [6626965]

= visit CFigureVisitor visitor)
= visitFigure CFigure hostFigure)
= addToContainer CFigureChangeListener c)
= ZoomDrawingView [5819561]
= AnimationDecorator [12839271]
= InsertIntoDrawingVisitor [2554341]
= BouncingDrawing [6626965]

59

The value of the variables provided in Solution 1 and Solution 3 corresponds

to the participants and messages involved in a complete occurrence of the Visi­

tor pattern, respectively when the functionalities eut a figure and paste a figure

are performed by the user of JHOTDRAW. In contrast, the value of variable

var_operation in Solution 2, public void setZValue(int), is involved in the

sequence of messages corresponding to an approximate description of the Visi­

tor pattern. A manual inspection of the source code revealed that addToCon­

tainer (FigureChangeListener c) and public void setZValue(int) are both

triggered while visiting a figure that is to be added in a document.

60

6.2 Accllracy on Several Systems

We now evaluate our approach on a set of software systems using the measures of

precision and recall typically used in the domain of information retrieval (FBY92].

Precision assesses the proportion of true occurrences of a design pattern among aIl

the occurrences identified by our analysis given a scenario of a system, while recall

assesses the proportion of true occurrences of a design pattern identified by our

analysis among aIl the ones really existing in the given scenario:

precision
I{ existing occurrences} n {identified occurrences }I

1 {identi f ied occurrences} 1

recall
"'--'=:';;'::':'="'--'-=-iT-~~"""""''-''-'-'':'':'=.:..:.n--'-==-:...~:..::...L.l, if 1{ existing occurrences}1 =t 0

otherwise

Table 6.1 reports the precision and recall of our approach for five systems eval­

uated on three design patterns. The tests were made on an AMD Athlon 64bit x

2 Dual machine at 2.41GHz. The set of software systems written in Java includes:

DRESDEN OCL v1.l, JHOTDRAW v6.0bl, JREFACTORY v2.6.24, PMD v1.8., and

QUICKUML 2001. DRESDEN OCL5 is a modular OCL (Object Constraint Lan­

guage) toolkit that parses and type-checks OCL constraints and instruments Java

code for runtime verification. It is also integrated into various CASE-tools and

provides an SQL-code generator. JREFACTORy6 is a refactoring tool for the Java

programming language that includes a pretty printer, a UML class diagram viewer,

a coding standards checker, and computes system metrics. PMD7 is a Java source

code analyzer that finds unused variables, empty catch blocks, unnecessary object

creation, and so forth. Finally, QUICKUML8 is a class-diagram graphie editor that

5http:j j dresden-ocLsourceforge.net j
6http:j jjrefactory.sourceforge.netj
7http://pmd.sourceforge.net/
8http://www.excelsoftware.com/quickumlwin.html

~RN BUILDER COMMAND VISITOR
SYSTEM / SCENARIO

DRESDEN OCL Transform GCL into SQL 5/5 - 100% (5/5 - 100%)
- -

100%

Cut and paste a rectangle - 100% 3/3 = 100% (2/3 e! 66,7%)
100%

Align figures - 1/2 - 50'10 ~~~3 e! 33,3'10)
100% -

JHOTDRAW Bring figures to front -
1/1 - 100'1o(y4 - 25'10)

100%
-

Send figures to back -
1/1 - 100'10 (y4 - 25'10)

100% -

Group figures - 1/1 - 100'10 (lj8 e! 33,3'10)
100% -

JREFACTORY Calculate a set of metrics of a class - -
11/13 e! 84,6% (11/13 e! 84,6%)

100%

PMD Find variables with short names - -
1/1 - 100% (1/1 - 100%)

100%

Resize a diagmm - - 2/2 = 100% (2/2 = 100%)
100%

QUICKUML Enable toggle refresh from the menu 100% 1/2 - 50%. ~lj~3 :: 33,3%)
100% -

Build a class from UML 1/1 - 100'10 (1j2 - 50'10) 100% -
100%

AVERAGE PRECISION 100% (75%) 80% (30%) 96,2% (87,8%)

Table 6.1: Precision and recall calculated on particular scenarios of software systems for which the uses of design patterns are
known. (For each row, the first line shows two different ways ofmeasuring precision: the first one takes into account approximate
descriptions of the design pattern, while the precision in parenthesis considers only complete occurrences of the design pattern.
The second line is the recall.)

62

tightly integrates a core set of UML models. We chose these systems because they

are open-source, and thus one can reproduce our experimentations without being

limited by proprietary source code.

Typically, in our experiments, the size of an execution trace varies from 450 Ko

(2310 messages executed) to 5.5 Mo (19620 messages executed), depending on the

size of the system, and the complexity of the executed scenario. The average time

of calculation of solutions, from the moment that an execution trace is transformed

into an instance of the scenario diagram metamodel, to the computation of design

pattern occurrences, varies from a few minutes to seven days. The larger the size

of an execution trace is, the more computation time the backtracking mechanism

behind the constraint solver requires to find occurrences matching a design pattern.

During our experimentations, while studying the accuracy of the new solutions

found by relaxing constraints of the original problem suggested by the solver, i.e.,

the approximate occurrences of a design pattern, we categorized into two types

the possible approximate descriptions that still kept the principle of the design

pattern after constraint relaxation. First, we observe that it is a corn mon practice

to add intermediate participants and messages to its original collaboration while

implementing a design pattern. Second, sorne collaborating messages are often

represented by more than one operation during implementation. For example,

regarding the representation of the Command pattern in Figure 3.4 on page 26, the

ConcreteCommand object invokes operations modelled by message actionO on its

receiver to carry out a request. Clearly, during implementation of a real-world

system, it is uncommon to see only one message carrying out the request of the

invoker. Instead, a set of messages is called to complete the request.

Therefore, results of precision are reported in Table 6.1 in two different ways:

the first one takes into account approximate descriptions of the design pattern,

while the precision in parenthesis considers only complete occurrences of the design

pattern.

In average, we observe that precision and recall are both very high for each pair

of scenario/design pattern when the evaluation concerns approximate descriptions

63

of the design pattern, as opposed to poor results in certain cases (33%, 25%) for

complete occurrences of the design pattern. After manual inspection of the pat­

tern occurrences suggested by our tool versus those documented, we can explain

these contrasting precisions as a result of non-exact implementations of the doc­

umented patterns by the software. By relaxing certain constraints as suggested

by the JCHOCO solver following the aforementioned criteria, precision drastically

increases.

We also applied the identification approach on a subset of scenario/design pat­

tern of Table 6.1, for which the corresponding design pattern is known to not be

implemented. Results show that no occurrence of the searched design patterns was

identified for the specific scenarios. Therefore, for these evaluated scenarios, no

false positives were found by our approach. Following the specified definition of

recall, results appear as 100% in Table 6.1, without any measures of recall and

precision in parenthesis.

In conclusion, our approach works for sever al systems and various design pat­

terns, without providing many false positive occurrences and missing many true

positive occurrences. Although the executed scenarios for each evaluated system

are not an exhaustive list of aIl the possible scenarios, the current results are good

predictors of the accuracy of the proposed approach for the identification of be­

havioral and creational design patterns using dynamic analysis. In future work, we

will assess the precision and recall on other design patterns and software systems.

6.3 Threats to Validity

Despite its interesting results, our approach must be considered in the light of

threats to validity. In this section, we explain how valid our results are, following

the classification schemes of Campbell and Stanley [CS63] for two types of threats

to the validity of an experiment: threats to internaI validity and threats to external

validity.

64

6.3.1 InternaI Validity

If a relationship is observed between the treatment and the outcome, we must

make sure that it is a causal relationship, and that it is not a result of a factor over

which we have no control or which we have not measured. Threats to internaI va­

lidity concern issues that may indicate a causal relationship, although there should

be none.

In this thesis, these issues include the accuracy of the complete and approximate

occurrences of a design pattern that o~r approach identifies: are they occurrences

that are as a matter of fact implemented in the evaluated system'? To counter this

threat, we specifically evaluated systems that are known in the community to have

very clear implementations of the design patterns in [GHJV94]. Among them, some

systems even have explicit class and method names of the implemented patterns

(yet, one shouid note: our identification approach is independent of the class and

method names). Evaluating systems for which the presence of a design pattern is

known is mandatory, because the measures of precision and recall are calculated

with the number of existing occurrences of the searched design pattern. Since the

set of evaluated systems are weIl documented and have already been the subjects of

evaluation in previous design pattern identification appro aches , they form a good

benchmark for the evaluation, and eliminate a threat to the internaI validity of our

results.

6.3.2 External Validity

The external validity is concerned with generalization. If there is a causal

relationship between the construct of the cause, and the effect, can the result

of the study be generalized outside the scope of our study? ls there a relation

between the treatment and the out come? Threats to external validity concern

the ability to generalize experiment results outside the experiment setting. In our

experimentations, factors that impact on the external validity are how the systems

and scenarios are chosen.

65

In our experiments, these issues include four aspects that are explained in the

subsequent four sections.

6.3.2.1 Choice of the Systems

The systems on which we apply our identification approach are aIl in Java.

This fact represents a threat to external validity: can our identification approach

be generalized for other programming languages apart from Java'? As previously

discussed in Chapter 4, the target language influences only how an execution trace

is obtained, but does not affect the scenario diagram, since our metamodel cap­

tures the dynamic semantic of design patterns, and can therefore accommodate any

mainstream object-oriented programming language. Furthermore, the fundamental

principles that we proposed in Chapter 4 to instrument the execution of a system

can be generalized to most object-oriented programming languages.

6.3.2.2 Choice of the Scenarios

The choice of scenarios that are executed for each evaluated system is another

threat to external validity: are the executed scenarios representative enough for the

generalization of the accuracy of our results'? While evaluating our approach, we

chose a subset of scenarios to be executed. They were chosen in terms of their

representativeness of the underlying software system. An ideal evaluation requires

to trigger as many scenarios as possible, to evaluate the design pattern identification

approach on aIl of the functionalities of a system. However, due to the limited time

for the complet ion of this thesis, we only used a subset of the scenarios representing

the most commonly used functionalities, whose description is generaIly available in

the documentation. Future work includes the merging of several scenario diagrams

to obtain one sequence diagram.

66

6.3.2.3 Performance

One of the key challenges of dynamic analysis is to cope with the large amount

of data generated by system monitoring. As the size of the target system grows,

execution traces also grow, and the computation time required to solve eCSPs

increases.

To cope with high data volume, we chose to use start and end markers to specify

respectively the start and end of the action primary to a particular scenario. For

example, in the eut and paste a figure in a document scenario described in Section

6.1.2, the two principal actions involved are actions eut and paste. We thus placed

two markers in the execution trace of the corresponding scenario to specify the

start and end of action eut, just before and after the user executes eut from the

menu of JHOTDRAW. In the same manner, two markers are specified respectively

for the start and end of action paste. Method and constructor executions that are

positioned outside each pair of st art and end markers can be omitted. Results after

applying our identification approach, both on the original and the shorten execution

trace, return identical occurrences of the Visitor pattern. The marker mechanism

reduces the volume of dynamic data, but still needs sorne more refinement to assure

that no occurrences of a design pattern are omitted because sorne method and

constructor executions are eliminated from the original execution trace.

We also consider using an abstraction mechanism, such as summarizing an

execution trace to extract only its main content. Such strategy removes from the

trace implementation details like calls to utility methods, which have no obvious

use for the identification of behavioral and creational design patterns. Sorne work

has already been done in that direction, for example [HLBAL05, HLL06], and we

plan to reuse such an approach to further decrease the size of execution traces, and

thus improve performances.

67

6.3.2.4 Description of Design Patterns

As explained in Chapter 3, we describe design patterns in terms of collaboration

among objects given in [GHJV94]. However, as classes participating in a design

pattern need not be collaborating precisely according to the proposed collaboration,

the design pattern description could be done in such a way that users could easily

describe the collaboration among participants to characterize their own patterns of

interest. Then, its translation into an eCSP can be automated.

6.4 Conclusion

In this chapter, we provided a case study showing in detail how to concretely

perform the Visitor pattern identification over one scenario of JHOTDRAW following

our approach. Then, we evaluated our approach on chosen scenarios taken from five

different systems written in Java, by providing precision and recall results. Finally,

we discussed threats to the validity of the evaluation.

In the next chapter, we will first provide a summary of the work achieved in

this thesis, and then suggest future work.

CHAPTER 7

CONCLUSION

The problem of identifying design patterns in software systems has been the subject

of several work in the past few years. In particular, authors think that the recovery

of design patterns applied during the phases of conception and implementation can

facilitate software comprehension, and thus, maintenance. Most of the work focused

on the use of static analysis to recover the elements, structures, and relationships

describing the system. Work done in this domain of research demonstrated the

accuracy of their approach on structural pattern identification. However, results are

not as interesting when authors chose to identify behavioral and creational patterns

with static analysis: too many false positives were generated. The reason is that

behavioral and creational patterns are typically characterized by the interactions

between the participants of the design pattern, and consequently, structural data

alone do not provide sufficient significant information. Therefore, we proposed a

3-step approach to identify behavioral and creational design patterns in source code

using dynamic anaIysis.

We presented other approaches that combined dynamic data with static anal­

ysis for the recovery of structural patterns. Inspired by the work of Briand et

al. [BLL06], we proposed a partial metamodel composed of meta-entities partially

modelling UML sequence diagram elements. Among others, messages of type op­

eration caIIs, creation caIls, and destruction caIls, as weIl as combined fragments of

type loops and alternatives are meta-entities used to model interactions between

participants of a scenario diagram when a scenario of a system is executed. Then,

for each behavioraI and creational design pattern in [GHJV94] for which a descrip­

tion of the interactions between participants is available, i.e., the Builder, Command,

Memento, Observer, and Visitor patterns, we showed how to de scribe it with its dy­

namic properties, by instantiating the scenario diagram metamodel. To reverse

engineer scenario diagrams from a given system over which we want to perform

69

pattern identification, we first proceeded with the instrumentation of the system

to obtain execution traces recording the messages sent for each executed scenario.

In particular, we emphasized on the instrumentation strategy to trace constructor

and method executions, as weIl as on control flow and repetition of messages. In

turn, these dynamic data "gathered in one execution trace are transformed into an

instance of the scenario diagram metamodel, the same one used to describe a design

pattern. However, the execution trace is limited in tracing only one particular sce­

nario of the system. Finally, we performed the concrete pattern identification using

explanation-based constraint programming by identifying, in the scenario diagram

of an executed scenario of a system, objects and messages in conformity with the

set of constraints derived from the scenario diagram of the searched design pattern.

We evaluated our approach on DRESDEN OCL TOOLKIT, JHOTDRAW, JREFAC­

TORY, PMD, and QUIcKUML with the Builder, Command, and Visitor patterns to

show its precision and recall. We showed that using dynamic analysis, results are

promising for the identification of behavioral and creational design patterns.

Therefore, in this thesis, we showed that it is possible to identify pure behavioral

and creational design patterns using dynamic analysis only. Tt will be interesting

to do more research studying the synergy between static and dynamic approaches,

to see how they complement each other.

Future Work

Future work includes evaluating our approach on more behavioral and creational

design patterns and software systems; merging scenario diagrams to obtain se­

quence diagrams; using abstraction and summarization mechanisms that can reduce

the size of an execution trace without the loss of data relevant to the identifica­

tion of design patterns, to address performance and scalability issues; adding new

constraints and improving the eCSP of the design patterns to obtain higher pre­

cision without impacting recaIl; combining our approach with previous structural

approaches.

[AAG01]

BIBLIOGRAPHY

Hervé Albin-Amiot and Yann-Gaël Guéhéneuc. Meta-modeling de­

sign patterns: Application to pattern detection and code synthesis. In

Pim van den Broek, Pavel Hruby, Motoshi Saeki, Gerson Sunyé, and

Bedir Tekinerdogan, editors, Proceedings of the pt ECOOP Work­

shop on Automating Object-Oriented Software Development Meth­

ods. Centre for Telematics and Information Technology, University

of Twente, October 2001. TR-CTIT-0l-35.

[ACdPFOl] Giuliano Antoniol, Gerardo Casazza, Massimiliano di Penta, and

Roberto Fiutem. Object-oriented design patterns recovery. Journal

of Systems and Software, 59:181-196, November 2001.

[Apa06] Apache Jakarta Project. Byte Code Engineering Library, June 2006.

[Bes9l] Christian Bessière. Arc-consistency in dynamic constraint satisfac­

tion problems. In Thomas L. Dean and Kathleen McKeown, editors,

Proceedings of the 9th National Conference on Artificial Intelligence,

pages 221-226. AAAI Press / The MIT Press, July 1991.

[BLL06] Lionel Briand, Yvan Labiche, and Johanne Leduc. Towards the re­

verse engineering of UML sequence diagrams for distributed Java soft­

ware. Transactions on Software Engineering, 32(9):642-663, Septem­

ber 2006.

[BLM03]

[BM96]

Lionel Briand, Yvan Labiche, and Y. Miao. Towards the reverse engi­

neering of UML sequence diagrams. Proceedings of the lOth Working

Conference on Reverse Engineering, pages 57-66, November 2003.

Roberto J. Bayardo Jr. and Daniel P. Miranker. A complexity analysis

of space-bounded learning algorithms for the constraint satisfaction

problem. In Dan Weld and Bill Clancey, editors, Proceedings of the

[CS63]

71

13th National Conference on Artificial Intelligence, pages 298-304.

AAAI Press / The MIT Press, August 1996.

Donald T. Campbell and Julian C. Stanley. Experimental and Quasi­

Experimental Designs for Research. Rand McNally College Publish­

ing, 1963.

[DHKV93] Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides.

[ErlOO]

[FBY92]

[GAA01]

[GAA04]

An architecture for visualizing the behavior of object-oriented sys­

tems. Proceedings of the Conference on Object-Oriented Program­

ming, Systems, Languages, and Applications, 1993.

Len Erlikh. Leveraging legacy system dollars for e-business. IT Pro­

fessional, 2(3):17-23, 2000.

William B. Frakes and Ricardo A. Baeza-Yates. Information Re­

trieval: Data Structures f:j Algorithms. Prentice-Hall, 1992.

Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Using design patterns

and constraints to automate the detection and correction of inter­

class design defects. In Quioyun Li, Richard Riehle, Gilda Pour, and

Bertrand Meyer, editors, Proceedings of the 39th Conference on the

Technology of Object-Oriented Languages and Systems, pages 296-

305. IEEE Computer Society Press, July 2001.

Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Recovering binary

class relationships: Putting icing on the UML cake. In Doug C.

Schmidt, editor, Proceedings of the 19th Conference on Object­

Oriented Programming, Systems, Languages, and Applications, pages

301-314. ACM Press, October 2004.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns - Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1 st edition, 1994.

[Gin93)

[GJ01)

[GJM91)

[GJPOO)

[GZ05)

- [HHL02)

72

Matthew L. Ginsberg. Dynamic backtracking. Journal of Arlificial

Intelligence Research, 1:25-46, 1993.

Yann-Gaël Guéhéneuc and Narendra Jussien. Using explanations for

design-patterns identification. In Christian Bessière, editor, Proceed­

ings of the l st IJCAI Workshop on Modeling and Solving Problems

with Constraints, pages 57-64. AAAI Press, August 2001.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of

software engineering. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1991.

Christelle Guéret, Narendra Jussien, and Christian Prins. Using in­

telligent backtracking to improve branch and bound methods: An

application to open-shop problems. European Journal of Operation al

Research, 127(2):344-354, December 2000.

Yann-Gaël Guéhéneuc and Tewfik Ziadi. Automated reverse-

engineering of uml v2.0 dynamic models. In Serge Demeyer, Stéphane

Ducasse, Kim Mens, and Roel Wuyts, editors, Proceedings of the

6th ECOOP Workshop on Object-Oriented Reengineering. Springer­

Verlag, July 2005.

Dirk Heuzeroth, Thomas Holl, and Welf Lowe. Combining static and

dynamic analyses to detect interaction patterns. In Hartmut Ehrig,

Bernd J. Kramer, and Atila Ertas, editors, Proceedings of the 6th In­

ternational Conference on Integrated Design and Process Technology.

Society for Design and Process Science, June 2002.

[HLBAL05) Abdelwahab Hamou-Lhadj, Edna Braun, Daniel Amyot, and Timo­

thy Lethbridge. Recovering behavioral design models from execution

traces. In CSMR '05: Proceedings of the 9th European Conference on

[HLL06]

[HLM03]

[JB97]

[JBOO]

[JDBOO]

73

Software Maintenance and Reengineering, pages 112-121, Washing­

ton, DC, USA, 2005. IEEE Computer Society.

Abdelwahab Hamou-Lhadj and Timothy Lethbridge. Summariz­

ing the content of large traces to facilitate the understanding of

the behaviour of a software system. In ICPC '06: Proceedings of

the 14th IEEE International Conference on Program Comprehension

(ICPC'06), pages 181-190, Washington, DC, USA, 2006. IEEE Com­

puter Society.

Dirk Heuzeroth, Welf Lowe, and Stefan Mandel. Generating design

pattern detectors from pattern specifications. In 18th IEEE Interna­

tional Conference on Automated Software Engineering (ASE) 2003,

pages 245-248. IEEE, 2003.

Narendra Jussien and Patrice Boizumault. Best-first search for prop­

erty maintenance in reactive constraints systems. In International

Logic Programming Symposium, pages 339-353, Port Jefferson, N.Y.,

USA, October 1997. MIT Press.

Narendra Jussien and Vincent Barichard. The PaLM system:

Explanation-based constraint programming. In Nicolas Beldiceanu,

Warwick Harvey, Martin Henz, François Laburthe, Eric Monfroy, To­

bias Müller, Laurent Perron, and Christian Schulte, editors, Pro­

ceedings of TRICS: Techniques foR Implementing Constraint Pro­

gramming Systems, pages 118-133. School of Computing, National

University of Singapore, Singapore, September 2000. TRA9/00.

Narendra Jussien, Romuald Debruyne, and Patrice Boizumault.

Maintaining arc-consistency within dynamic backtracking. In Rina

Dechter, editor, Proceedings of the 6th Conference on Principles and

Practice of Constraint Programming, pages 249-261. Springer-Verlag,

September 2000.

[Jik08]

[JLOO]

[JSB97]

[JunOl]

[JusOl]

[KP96]

[KSRP99]

[NG07]

74

Jikes RVM. Jikes RVM, 2008.

Narendra Jussien and Olivier Lhomme. Local search with constraint

propagation and conftict-based heuristics. In Henry A. Kautz and

Bruce Porter, editors, Proceedings of the 17'h National Conference

on Artificial Intelligence, pages 169-174. AAAI Press / The MIT

Press, July-August 2000.

Dean Jerding, John T. Stasko, and Thomas BalI. Visualizing inter­

actions in program executions. Proceedings of the 1997 International

Conference on Software Engineering, pages 360-370, May 1997.

Ulrich Junker. QUICKXPLAIN: Conftict detection for arbitrary con­

straint propagation algorithms. Technical report, Ilog SA, 2001.

Narendra Jussien. e-Constraints: Explanation-based constraint pro­

gramming. In Barry Ü'Sullivan and Eugene Freuder, editors, pt CP

Workshop on User-Interaction in Constraint Satisfaction, December

2001.

Christian Kramer and Lutz Prechelt. Design recovery by automated

search for structural design patterns in object-oriented software. In

Linda M. Wills and Ira Baxter, editors, Proceedings of the 3rd Work­

ing Conference on Reverse Engineering, pages 208-215. IEEE Com­

puter Society Press, November 1996.

Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick

Pagé. Pattern-based reverse-engineering of design components. In

David Garlan and Jeff Kramer, editors, Proceedings of the 2pt Inter­

national Conference on Software Engineering, pages 226-235. ACM

Press, May 1999.

Janice Ka-Yee Ng and Yann-Gaël Guéhéneuc. Identification of be­

havioral and creational design patterns through dynamic analysis.

[Nie02]

[Obj04]

[OS02]

[PKV94]

[PL06]

75

In Andy Zaidman, Abdelwahab Hamou-Lhadj, and Orla Greevy, edi­

tors, Proceedings of the 3rd International Workshop on Program Com­

prehension through Dynamic Analysis, pages 34-42. Delft University

of Technology, October 2007. TUD-SERG-2007-022.

Jorg Niere. Fuzzy logic based interactive recovery of software design.

Presented at the ICSE Doctoral Symposium, May 2002.

Object Management Group. UML 2.0 Superstructure Specification,

October 2004.

Rainer Oechsle and Thomas Schmitt. Javavis: Automatic program

visualization with object and sequence diagrams using the java de­

bug interface (jdi). In Revised Lectures on Software Visualization)

International Seminar, pages 176-190, London, UK, 2002. Springer­

Verlag.

Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John M.

Vlissides, and Jeaha Yang. Visualizing the execution of java pro­

grams. In Revised Lectures on Software Visualization) International

Seminar, pages 151-162, London, UK, 2002. Springer-Verlag.

Wim De Pauw, Doug Kimelman, and John M. Vlissides. Modeling

object-oriented program execution. In Proceedings of the 8th Euro­

pean Conference on Object-Oriented Programming, volume 821, pages

163-182. Springer-Verlag, July 1994.

Niklas Pettersson and Welf Lowe. Efficient and accurate software pat­

tern detection. In Proceedings of the XIII Asia Pacifie Software En­

gineering Conference, pages 317-326, Washington, DC, USA, 2006.

IEEE Computer Society.

[QYW97]

[RC05]

[RD99]

[RVR05]

76

Alex Quilici, Quing Yang, and Steven Woods. Applying plan recog­

nition algorithms to program understanding. Journal of Automated

Software Engineering, 5(3):347-372, July 1997.

Atanas Rountev and Beth Harkness Connell. Object naming analysis

for reverse-engineered sequence diagrarns. In ICSE '05: Proceedings

of the 27th International Conference on Software Engineering, pages

254-263, New York, NY, USA, 2005. ACM.

Tamar Richner and Stéphane Ducasse. Recovering high-Ievel views of

object-oriented applications from static and dynamic information. In

Hongji Yang and Lee White, editors, Proceedings of 7th International

Conference on Software Maintenance, pages 13-22. IEEE Computer

Society Press, August 1999.

Atanas Rountev, Olga Volgin, and Miriam Reddoch. Static control­

flow analysis for reverse engineering of UML sequence diagrams. Pro­

ceedings of the 6th Workshop on Program Analysis for Software Tools

and Engineering, pages 96-102, September 2005.

[SAEHES05] Doaa M. Shawky, Salwa K. Abd-EI-Hafiz, and Abdel-Latif EI-Sedeek.

[SKM01]

[SV94]

A dynamic approach for the identification of object-oriented design

patterns. Proceedings of the 2nd International Conference on Software

Engineering, pages 138-143, February 2005.

Tarja Systa, Kai Koskimies, and Hausi Muller. Shimba-an environ­

ment for reverse engineering java software systems. Software Practice

and Experience, 31(4):371-394, 2001.

Thomas Schiex and Gérard Verfaillie. Nogood recording for static

and dynamic constraint satisfaction problems. International Journal

of Artificial Intelligence Tools, 3(2):187-207, February 1994.

[SvG98]

[TCSH06]

[TP03]

77

Jochen Seemann and Jürgen Wolff von Gudenberg. Pattern-based de­

sign recovery of Java software. In Bill Scherlis, editor, Proceedings of

5th International Symposium on Foundations of Software Engineer­

ing, pages 10-16. ACM Press, November 1998.

Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides,

and Spyros Halkidis. Design pattern detection using similarity SCOf­

ing. Transactions on Software Engineering, 32(11), November 2006.

Paolo Tonella and Alessandra Potrich. Reverse engineering of the

interaction diagrams from C++ code. In ICSM '03: Proceedings of

the International Conference on Software Maintenance, pages 159-

168, Washington, DC, USA, 2003. IEEE Computer Society.

[WMFB+98] Robert J. Walker, Gail C. Murphy, Bjorn Freeman-Benson, Darin

Wright, Darin Swanson, and Jeremy Isaak. Visualizing dynamic soft­

ware system information through high-level models. SIGPLAN Not.,

33(10):271-283, 1998.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure of object­

oriented systems. In Joseph Gil, editor, Proceedings of the 26th Con­

ference on the Technology of Object-Oriented Languages and Systems,

pages 112-124. IEEE Computer Society Press, August 1998.

Appendix 1

Design Patterns G lossary

Creational Patterns

Abstract Factory Provide an interface for creating families of related or depen­

dent objects without specifying their concrete classes.

Builder Separate the construction of a complex object from its representation so

that the same construction pro cess can create different representations.

Factory Method Define an interface for creating an object, but let subclasses de­

cide which class to instantiate. Factory Method lets a class defer instantiation

to subclasses.

Prototype Specify the kinds of objects to create using a prototypical instance,

and create new objects by copying this prototype.

Singleton Ensure a class only has one instance, and provide a global point of

access to it.

Structural Patterns

Adapter Convert the interface of a class into another interface clients expect.

Adapter lets classes work together that could not otherwise because of incom­

patible interfaces.

Bridge Decouple an abstraction from its implementation so that the two can vary

independently.

79

Composite Compose objects into tree structures to represent part-whole hier­

archies. Composite lets clients treat individual objects and compositions of

objects uniformly.

Decorator Attach additional responsibilities to an object dynamically. Decorator

provides a flexible alternative to subcIassing for extending functionality.

Facade Provide a unified interface to a set of interfaces in a subsystem. Facade

defines a higher-Ievel interface that makes the subsystem easier to use.

Flyweight Use sharing to support large numbers of fine-grained objects efficiently.

Proxy Provide a surrogate or placeholder for another object to control access to

it.

Behavioral Patterns

Chain of Responsibility A void coupling the sender of a request to its receiver

by giving more than one object a chance to handle the request. Chain the

receiving objects and pass the request along the chain until an object handles

it.

Command Encapsulate a request as an object, thereby parameterizing clients

with different requests, queue or log requests, and support undoable opera­

tions.

Interpreter Given a language, define a representation for its grammar along with

an interpreter that uses the representation to interpret sentences in the lan­

guage.

Iterator Provide a way to access the elements of an aggregate object sequentially

without exposing its underlying representation.

80

Mediator Define an object that encapsulates how a set of objects interact. Medi­

ator promotes loose coupling by keeping objects from referring to each other

explicitly, and their interaction can be varied independently.

Memento Without violating encapsulation, capture and externalize an object's

internaI state so that the object can be restored to this state later.

Observer Define a one-to-many dependency between objects so that when one

object changes state, aIl its dependents are notified and updated automati­

caIly.

State Allow an object to alter its behavior when its internaI state changes. The

object will appear to change its class.

Strategy Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from clients

that use it.

Template Method Define the skeleton of an algorithm in an operation, deferring

sorne steps to subclasses. Template Methed lets subclasses redefine certain

steps of an algorithm without changing the algorithm's structure.

Visitor Represent an operation to be performed on the elements of an object

structure. Visiter allows defining a new operation without changing the classes

of the elements on which it operates.

