
 



 

 

 

Université de Montréal 

 

 

 

Taxonomy, Biogeography and Phylogeny of Cretaceous Frog Crabs (Crustacea: 

Decapoda: Brachyura) from the Neotropics 

 

 

 

par 

Javier Luque 

 

 

Département de sciences biologiques 

Faculté des Arts et des Sciences 

 

 

 

Mémoire présenté à la Faculté Faculté des Arts et des Sciences 

en vue de l’obtention du grade de M.Sc. 

en sciences biologiques 

 

 

 

 

Decembre, 2011 

 

 

 

 

© Javier Luque, 2011 



 

 

 

Université de Montréal 

Faculté des études supérieures et postdoctorales 

 

 

 

 

Ce mémoire intitulé : 

 

Taxonomy, Biogeography and Phylogeny of Cretaceous Frog Crabs (Crustacea: 

Decapoda: Brachyura) from the Neotropics 

 

 

 

Présenté par : 

Javier Luque 

 

 

 

 

 

a été évalué par un jury composé des personnes suivantes : 

 

 

 

 

Patrick James,  
président-rapporteur 

 
Chris B. Cameron,  

directeur de recherche 
 

Rodney M. Feldmann,  
membre du jury 

 



 

 

 

i

Résumé 

Le but du présent travail est d’apporter la preuve paléontologique mettant en 

évidence que le clade Raninoida était bien établi dans le Néotropique durant la période 

Crétacée, où il était représenté par les plus anciennes familles ou par quelques-uns des plus 

anciens membres des plus anciennes familles. Je décris des taxa raninoïdiens ou similaires, 

incluant Archaeochimaeridae n. fam. et Archaeochimaera macrophthalma n. gen. n. sp., du 

Cénomanien supérieur (~95 Ma.) de Colombie (Chapitre 3), Planocarcinus n. gen., 

Planocarcinus olssoni (Rathbun, 1937) n. comb. et Notopocorystes kerri n. sp., de l’Aptien 

supérieur (~115 Ma.) de Colombie (Luque et al., accepté) (Chapitre 2). Ces taxa nouveaux, 

plus la présence de Cenomanocarcinus vanstraeleni Stenzel, 1945, dans l’Albien supérieur 

de Colombie (Vega et al., 2010), et d’Araripecarcinus ferreirai Martins-Neto, 1987, dans 

l’Albien du Brésil (Luque et al., en cours) (Chapitre 4), représentent certains des plus 

anciens signalements de quatre des sept familles raninoïdiennes, au moins, connues à ce 

jour. La nouvelle famile Archaeochimaeridae se présente comme le groupe frère du clade 

Raninidae + clade Symethidae. Cependant, la combinaison unique de caractères primitifs, 

dérivés et homoplasiques est inégalable chez les Raninoida, et, en fait, chez les autres 

sections de crabes podotrèmes. Alors que les taxa raninoïdiens du Crétacé sont bien connus 

aux latitudes élevées, les signalements en Amérique du Sud tropicale sont rares et épars, 

avec pour résultat de considérables distorsions pour traiter des importantes questions 

biogéographiques et phylogénétiques. Sur la base de données taxonomiques, 

paléobiogéographiques et cladistiques, une ré-appréciation des toute premières distributions 

spatio-temporelle des “crabes grenouilles” est proposée, avec pour objet de contribuer à une 

plus large compréhension de la diversité, phylogénie et évolution des premiers brachyoures 

au cours des âges. 

 

Mots-clés : Raninoida, phylogénie, taxonomie, paléobiogéographie, Néotropique. 
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Abstract 

The aim of the present work is to present new paleontological evidence that depicts 

the clade Raninoida well established in the Neotropics during Cretaceous times, as 

represented by the oldest, or some of the oldest members of its earliest families. I describe 

raninoid and raninoidid-like taxa including Archaeochimaeridae n. fam., and 

Archaeochimaera macrophthalma n. gen. n. sp., from the upper Cenomanian (~95 Ma.) of 

Boyacá, Planocarcinus n. gen., Planocarcinus olssoni (Rathbun, 1937) n. comb., and 

Notopocorystes kerri n. sp., from the upper Aptian (~115 Ma.) of Santander.  These newly 

described taxa, plus the occurrence of Cenomanocarcinus vanstraeleni Stenzel, 1945, in the 

upper Albian of Boyacá (Vega et al., 2010), and Araripecarcinus ferreirai Martins-Neto, 

1987, in the lower Albian of Brazil (Luque et al., in progress), represent the oldest records 

of, at least, four out of seven raninoidid families known to date.  The new family 

Archaeochimaeridae, stands as the sister taxon to Raninidae + Symethidae clade. However, 

its unique combination of primitive, advanced, and homoplasic traits is matchless within 

Raninoida, and in fact, with the remaining podotreme sections. While Cretaceous raninoid 

taxa from higher latitudes are well known, records from the tropical South America are 

scarce and sparse, resulting in considerable biases when attempting to address major 

biogeographic and phylogenetic questions.  Based on taxonomic, paleobiogeographic and 

cladistic information, some reconsideration of the early spatio-temporal distributions of 

frog crabs are proposed, with the aim of contributing to a broader understanding of the 

diversity, phylogeny, and evolution of early brachyuran crabs throughout time. 
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1. INTRODUCTION 

 

Raninoid crabs, also called “frog crabs”, are an unusual clade within the Infraorder 

Brachyura (true crabs). This group of fully marine podotreme crabs has been studied since 

Linnean times, but their particular body plan has merited them different systematic 

affiliations with different eubrachyuran groups (calappids, leucosiods), other podotreme 

sections (cyclodorippoids and dromiaceans), anomurans and macrurans, and even apterous 

insects  (Linnaeus, 1758; Lamarck 1801; 1837; Latreille, 1806; Milne Edwards, 1837; 

Dana, 1852; Ortmann, 1892; Alcock, 1896; Bourne, 1922; Glaessner, 1960, 1969; Števčić, 

1973, 1995, 1998). Their morphology is characterized by a fusiform and poorly ornamented 

body, a narrow sternum, and an exposed (rather than concealed beneath the carapace) 

abdomen (Fig. I). The legs are often flattened, and the fifth pair of walking legs is generally 

reduced and carried sub-dorsally (Bourne, 1922; Goeke, 1981; Poore, 2004; Števčić, 2005; 

Dawson and Yaldwing, 2000) (Figure 1.1). Once considered to be primitive traits, these 

features in raninoids have also been purported to be adaptations to a burrowing lifestyle, 

convergent between several non-related superfamilies of anomurans and brachyuran crabs 

(Glaessner, 1969; Števčić, 1973; Williams, 1984; Tucker, 1995; Gaten, 1998; Dawson and 

Yaldwin, 2000). 

 

Currently, five fossil and extant subfamilies are recognized within the family 

Raninidae De Haan, 1839: 1) Cyrtorhininae Guinot, 1993; 2) Lyreidinae Guinot, 1993; 3) 

Notopoidinae Serene and Umali, 1972; 4) Ranininae De Haan, 1841; and 5) Raninoidinae 

Lörenthey, 1929 in Lörenthey and Beurlen, 1929 (Guinot, 1993; Tucker, 1995; Števčić, 

2005; Ng et al., 2008; De Grave et al., 2009).  Symethidae Goeke, 1981, and 

Palaeocorystidae Lőrenthey, 1929 in Lőrenthey and Beurlen, 1929, once considered as 

subfamilies within Raninidae, have been granted full family status based on their 

considerably different morphologies  (Goeke, 1981; Guinot, 1993; Tucker, 1998; Guinot et 

al., 2008; Karasawa et al., 2011). 
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Figure 1.1. General morphology of a frog crab. A-D, Brachyura, Raninoidea, Raninidae, Raninoides benedicti 
(Rathbun, 1935), Panama (photos by Arthur Anker), male.  A, dorsal view, showing the smooth and 
unornamented dorsal carapace, the fronto-orbital margin, the chelipeds and pereiopods 2-5.  B, close-up of 
right cheliped showing the main parts.  C, pleon showing the unfused pleonites and the lack of uropods or 
uropodal plates.  D, ventral view showing the thoracic sternum, the third maxillipeds, and the gonopods.  A1: 
antennula; A2: antenna; Als: anterolateral spine; Ca: carpus; Da: dactulus; E: eye; Gp: gonopods; Me: merus; 
mn: manus; P1: cheliped or claw; P2-P5: pereiopods 2 to 5; Pl: pleon; Pl1-6: pleonites 1 to 6; Pr: propodus; 
Px: pollex; R: rostrum; S1-6: sternites 1 to 6; T: telson. 

 

Palaeocorystidae is exclusively known from the Cretaceous, and has been typically 

regarded as the rootstock of the clade Raninidae + Symethidae (Bourne 1922; Glaessner 

1960; Tucker 1998; Guinot et al., 2008).  However, the most ancient raninoid families 

(Camarocarcinidae Feldmann, Li, and Schweitzer, 2007, Cenomanocarcinidae Guinot, 

Vega, and Van Bakel, 2008, and Necrocarcinidae Förster, 1968) are morphologically very 

different from their fusiform relatives.  They are instead more reminiscent of other true crab 

body plans with very ornamented, wide carapaces, a wider thoracic sterna, and the 

abdomen pressed against the chest, usually assisted by locking mechanisms. 
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The scarce, sparse, and often fragmentary fossil record of ancient raninoids 

complicates our understanding of the phylogenetic and morphological relationships 

between the two principal raninoidid architectures.  Herein, based on new paleontological 

material from the Cretaceous of Colombia, South America, and the re-examination of some 

ancient raninoids from the equatorial Neotropics, I attempt to provide a comprehensive 

analysis of the morphologic diversity, the phylogenetic affiliations, and evolutionary trends 

of raninoid lineages throughout time. 

 

A comparison of stratigraphic data with phylogenetic and biogeographic data 

indicates that: 1) some of the oldest frog crabs (Chapter 2), including a new monotypic 

family of frog-like crabs (Chapter 3), have their oldest fossil records in the Neotropics; 2) 

there is a general trend of loss of carapace ornamentation and carapace elongation through 

time, from broad, heavily ornamented and sculpted carapaces during the Cretaceous, to 

fusiform, weakly ornamented and smooth carapaces in the Tertiary and modern times; and 

3) contrary to what might be expected from an 'incomplete' fossil record, extant raninoids 

are underrepresented in modern oceans, with only 2 families and 12 genera known from 

living species. 
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Abstract 

Raninoida, also known as “frog crabs," is a clade of extant true crabs (Brachyura) 

characterized by a fusiform carapace (raninid-type), narrow thoracic sternum, pleon 

partially exposed dorsally, and paddle-like limbs, all of which are well suited to their 

cryptic burrowing lifestyle. However, the most basal raninoids from the Cretaceous were 

morphologically different, with ornamented carapaces that were wider than long 

(necrocarcinid-type), a broader thoracic sternum, and the pleon fitting between the legs 

assisted by pleonal locking mechanisms. During Albian times (~112 to 99.6 Ma.) both body 

plans flourished worldwide. In contrast, pre-Albian (older than ~112 Ma.) fusiform families 

have not yet been reported. The discovery of Notopocorystes kerri n. sp., a fusiform crab 

from the upper Aptian (~115 Ma.) of Colombia, South America, and the re-examination of 

Planocarcinus olssoni (Rathbun, 1937) n. comb., a necrocarcinid-like crab from the same 

age and locality, extend the record of the two body plans back into the Aptian of the 
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equatorial Neotropics. Notopocorystes kerri is the oldest fusiform raninoid known to date, 

revealing that the morphological innovation of a fusiform carapace was already evolved in 

Raninoida before the rapid radiation experienced during Albian times. Our findings are 

suggestive of a still unresolved Palaeocorystidae, containing the rootstock for the post-

Aptian Raninidae/Symethidae clade, with the most basal palaeocorystids lying in proximity 

to, and possibly derived from, a necrocarcinid-like ancestor. 

 

KEY WORDS: Albian, Aptian, body plan, Brachyura, Cretaceous, Neotropics, raninoid 

crabs. 

 

Introduction 

The monophyletic Raninoida constitute one of the five major clades of extant true 

crabs within the Infraorder Brachyura Linnaeus, 1758 (Karasawa et al., 2011). They are a 

group of marine crabs adapted for inhabiting soft and sandy bottoms across a wide 

bathymetric range, and are distributed throughout the tropical to low-latitude temperate 

regions of the world.  Superfamily Raninoidea De Haan, 1839, is comprised of six families 

ranging in age from the Early Cretaceous to the present. Only two families, Raninidae De 

Haan, 1839 and Symethidae Goeke, 1981, have living representatives. Palaeocorystidae 

Lőrenthey (in Lőrenthey and Beurlen, 1929), is the only family restricted to the Cretaceous, 

and shares with raninids and symethids the characteristic ‘frog-like’ body plan, with an 

elongated, fusiform carapace and the lack of pleonal locking mechanisms (Karasawa et al., 

2011). In contrast, Camarocarcinidae Feldmann, Li, and Schweitzer, 2007; 

Cenomanocarcinidae Guinot, Vega, and Van Bakel, 2008; and Necrocarcinidae Förster, 

1968, known from the Cretaceous and Paleogene, possess a very different body plan with 

rounded to wide hexagonally shaped carapaces, usually very ornamented dorsally and 

laterally, and most having pleonal locking mechanisms. Despite this strong difference in 

carapace configuration, the similarities seen among some palaeocorystids, 
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cenomanocarcinids, and necrocarcinids are remarkable: the possession of a dorsal 

longitudinal ridge, the well-differentiated anterolateral margins bearing multiple spines, the 

distinct cervical groove, the bifid rostrum, and the very similar configuration of the sternal 

plates. These similarities have led to the formulation of three phylogenetic hypotheses of 

the palaeocorystids: 1) Palaeocorystidae closer to the ‘necrocarcinid-like’ stock due to their 

shared dorsal and ventral features (Guinot et al., 2008, in Karasawa et al., 2011, p. 533) 

(Figure 2.1A), 2) Palaeocorystidae allied with the ‘raninid-like’ families based on the shape 

of the carapace and the lack of pleonal locking mechanisms (Karasawa et al., 2011) (Figure 

2.1B), or 3) an unresolved polytomy within Palaeocorystidae, whereby the common 

ancestor of Raninidae/Symethidae might lie within Palaeocorystidae ‘pro parte’, but the 

most basal palaeocorystids (Notopocorystes McCoy, 1849) lying in proximity to, and 

possibly derived from, the clade of Cenomanocarcinidae/Necrocarcinidae (Glaessner, 1960; 

Förster, 1970; Guinot et al., 2008) (Figure 2.1C). 

 

During the Albian (~112-99.6 Ma), the two major raninoid morphological groups 

diversified and spread worldwide, with representatives of four families, ten genera, and 31 

species known from North America, northern Central America, northern South America, 

Europe, the Middle East, China, Japan, New Zealand, and Madagascar (Appendix: Table I) 

Although Early Cretaceous raninoids are well known from high latitudes, records from low 

latitudes are scarcely known, precluding a global understanding of its biogeographic 

distribution prior to their Albian diversification. Here we re-examine the type material of 

Dakoticancer olssoni Rathbun, 1937, from the upper Aptian (~115 Ma.) Paja Formation of 

Colombia, northern South America, and describe Notopocorystes kerri n. sp. from the same 

unit and age, extending considerably the geological and paleobiogeographic ranges of the 

two raninoid body plans into the Aptian of the Neotropics. Based on the new information, 

we address different hypotheses for the systematic placement of the oldest members of 

Palaeocorystidae, and discuss their plausible relationships with the ancient necrocarcinid-

type taxa and the more derived raninoid-like clade. 
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Locality and Stratigraphy 

The specimens of Planocarcinus olssoni n. comb. and Notopocorystes kerri n. sp. 

were discovered in Lower Cretaceous rocks of the Aptian Paja Formation, cropping out 

between the town of San Gil and the village of Curití, Department of Santander, Cordillera 

Oriental, Colombia, about 60 km south of the city of Bucaramanga, and approximately 125 

km northeast of the city of Tunja (Figure 2.2A). The Paja Formation was originally named 

by Wheeler (in Morales et al., 1958) to describe the packages of gray fossiliferous shales, 

with intercalations of yellow-grayish fine-grained sandstones, gray fossiliferous limestones, 

and calcareous concretions exposed along La Paja Creek between Bucaramanga and San 

Vicente de Chucurí, and overlain by the gray fossiliferous limestones and gray shales of the 

upper Aptian-lower Albian Tablazo Formation (Julivert, 1968; Etayo-Serna, 1979; Pulido, 

1979, 1995; Royero and Clavijo, 2001; Vega et al., 2010). In the area of study, the Paja 

Formation is largely covered by vegetation and agricultural crops, with poor and patchy 

exposure of rocks. 

 

The holotype of Notopocorystes kerri was recovered from shales of the upper 

portion of the Paja Formation along the San Gil/Bucaramanga main road, highway 45A, 

approximately 300 meters southwest of the junction with the road leading to Curití 

(Latitude 6.59621, Longitude −73.09146) (Figure 2.2B), in association with abundant 

bivalves and gastropods of small size (~4 mm to 50 mm) such as Corbula sp., Astarte sp., 

?Crassatella aequalis Gerhardt, 1897, Chenopus (Tessarolax) bicarinata var. evolutior 

Jaworski, 1938, ?Liopista (Psilomya) gigantea (Sowerby, 1818) in Woods, 1909, and 

?Clementia ricordeana Orbigny, 1845, in Woods, 1909 (Etayo-Serna, personal 

communication, 2011). The gastropod Turritella (Haustator) columbiana Jaworski, 1938, 

and the ammonite Acanthohoplites eleganteante Etayo-Serna, 1979, were recovered 

stratigraphically below the level bearing decapod remains, and indicate an upper Aptian age 

in Colombia (Etayo, 1979; Kakabadze et al., 2004; Cortés et al., 2006; Etayo-Serna,  
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Figure 2.1. Schematic cladistic trees for the Section Raninoida, showing the different hypotheses regarding 
the affiliation of the family Palaeocorystidae.  A, Palaeocorystidae allied to the Cenomanocarcinidae + 
Necrocarcinidae clade;  B, Palaeocorystidae allied to the Raninidae + Symethidae clade;  C, Palaeocorystidae 
in an unresolved polytomy between the Cenomanocarcinidae + Necrocarcinidae and the Raninidae + 
Symethidae clades. Base tree topology for the Raninoida clade after Karasawa et al. (2011: fig. 3). 

 

 
 

Figure 2.2. Locality maps.  A, generalized map of Colombia, South America, showing the location of the 
study area (white star) in the Department of Santander, Cordillera Oriental, where Planocarcinus olssoni n. 
comb., and Notopocorystes kerri n. sp. were recovered;  B, geological map of the study area between San Gil 
and Curití, Department of Santander, Cordillera Oriental, Colombia, where P. olssoni and N. kerri were found 
(white star).  Base map modified from INGEOMINAS Plancha 135 San Gil (after Pulido, 1985). 
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personal communication, 2011). In the case of P. olssoni, the exact stratigraphic position is 

not certain, since the only historical mention of its geographic provenance is “…near 

junction of branch road leading to the village of Curití, Eastern Cordillera, from the main 

auto road from San Gil to Bucaramanga” (Rathbun, 1937: p. 27) (Vega et al., 2010). 

Nevertheless, the only rock outcroppings near this junction are middle to upper Aptian 

shales of the upper Paja Formation, and upper Aptian limestones of the lower Tablazo 

Formation (Figure 2.2B), suggesting a middle to late Aptian age for P. olssoni. 

 

 

Systematics 

Illustrated specimens are deposited in the collection of INGEOMINAS, Museo 

Geológico José Royo y Gómez, Bogotá DC, Colombia, under the acronym IGM; the 

National Museum of Natural History, Smithsonian Institution, Washington, D.C., United 

States, under the acronym USNM; Natural History Museum, London, England, under the 

acronym BMNH; National Museum of Nature and Science, Tokyo, Japan (formerly 

National Science Museum, Tokyo), under the acronym NSM-PA; and Sedgwick Museum, 

Cambridge University, UK, under the acronym SM. 

 

Order Decapoda Latreille, 1802 

Infraorder Brachyura Linnaeus, 1758 

Section Raninoida De Haan, 1839  

[in De Haan, 1833-1850] 

Superfamily Raninoidea De Haan, 1839  

[in De Haan, 1833-1850] 

Family Necrocarcinidae Förster, 1968 
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Planocarcinus n. gen. 

 

Type species.—Dakoticancer olssoni Rathbun, 1937, by monotypy. 

 

Diagnosis.—Carapace subcircular in outline, slightly wider than long, with distinct 

cervical, postcervical, and branchiocardiac grooves; fronto-orbital margin as long as 

posterior margin; rostrum bilobate, spatulate, wider than long; orbits somewhat narrow, 

upturned, bearing two short orbital fissures; anterolateral margin concave, bearing at least 

five spines; posterolateral margin convex, lacking spines; posterior margin straight; hepatic 

region depressed; metabranchial region swollen, lacking nodules or ridges. 

 

Etymology.—The generic name is derived from the Latin word ‘planus’ (plane, flat), given 

its dorso-ventrally flattened carapace, and the Greek word ‘karkinos’ (crab). 

 

Occurrence.—Upper part of Paja Formation, upper Aptian, between the village of Curití 

and the town of San Gil, Cordillera Oriental, Department of Santander, Colombia. 

 

Remarks.—The specimen named by Rathbun (1937) as Dakoticancer olssoni, is herein 

ascribed to Planocarcinus n. gen., as it strongly contrasts from any known dakoticancroid 

crab in the general configuration of the rostrum and orbits, the carapace regions and dorsal 

grooves, the protogastric tubercles anterior to the cervical groove, and the presence of 

anterolateral spines (Weller, 1905; 1907; Rathbun, 1917; 1935; Kesling and Reimann, 

1957; Glaessner, 1969; Bishop, 1972; 1974; 1983b; 1986; 1988; Vega and Feldmann, 1991; 

Vega et al., 1995; Bishop et al., 1998; Artal et al., 2008; Karasawa et al., 2011) (Figure 

2.3A-C). Any affinity with the dakoticancroids, contrary to Rathbun (1937), is ruled out. 

 

Assignment of Planocarcinus to Necrocarcinidae is supported by exhibiting a 

carapace that is about as long as wide, with regions and grooves well defined, bearing  
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Figure 2.3. Raninoidea, Necrocarcinidae.  A-C, Planocarcinus olssoni (Rathbun, 1937) n. comb., holotype 
USNM 495104, upper Aptian, Colombia; A, carapace in dorsal view, showing the general roundish outline 
and dorsal carapace regions. Arrows indicate the three small tubercles on protogastric region;  B, frontal view, 
showing the orbitofrontal margin, and depressed intestinal region. Arrows indicate the three small tubercles 
on protogastric region;  C, lateral view. Specimen coated with ammonium chloride.  D, Necrocarcinus 
labeschei (Eudes-Deslongchamps, 1835), hypotype SM B 23152, dorsal carapace, lower Albian, England.  E, 
Necrocarcinus undecimtuberculatus Takeda and Fujiyama, 1983, holotype NSM-PA 12223, dorsal posterior 
carapace, upper Aptian, Japan. 
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tubercles on the protogastric region, the rostrum relatively narrow, sulcate, bilobate, and 

with small orbits (Schweitzer and Feldmann, 2000; Schweitzer et al., 2003; Karasawa et al., 

2011). Planocarcinus shares with Necrocarcinus Bell, 1863, and its type species 

Necrocarcinus labeschei (Eudes-Deslongchamps, 1835) (Figure 2.3D), the generally 

circular carapace nearly as wide as long, bearing complete and somewhat parallel cervical 

and branchiocardiac grooves, the relatively small, round, and upturned orbits directed 

forward, provided with two orbital fissures and small orbital spines (Bell, 1858; Carter, 

1898; Förster, 1968; Wright and Collins, 1972; Schweitzer et al., 2003). Such similarities 

suggest affinity to Necrocarcinus, as previously noticed by Feldmann et al. (1999). 

However, Planocarcinus strongly differs from Necrocarcinus in the flattened and smooth 

dorsal carapace, devoid of well-developed axial and metabranchial rows of tubercles or 

ridges, the shape, size, and width of the spinose and spatulate rostrum, and the straight 

posterior margin. Planocarcinus also differs from necrocarcinid genera as 

Corazzatocarcinus Larghi, 2004, Shazella Collins and Williams, 2004, Polycnemidium 

Reuss, 1845, and most Paranecrocarcinus Van Straelen, 1936, and Pseudonecrocarcinus 

Förster, 1968, in the roundish, convex nature of the anterolateral and posterolateral margins 

rather than concave or nearly straight, the dorsal carapace depleted of ridges or rows of 

tubercles, the lack of pustulose ornamentation, and the carapace flattened dorso-ventrally 

(Fritsch and Kafka, 1887; Larghi, 2004; Van Straelen, 1936; Stenzel, 1945; Roberts, 1962; 

Wright and Collins, 1972; Bishop, 1983a; Collins and Williams, 2004; Collins, 2010; Jagt 

et al., 2010; Breton and Collins, 2011). Planocarcinus also can be differentiated from 

Cristella Collins and Rasmussen, 1992, based on the subhexagonal outline, the rostrum 

narrow and pointed, and the strongly produced epibranchial spine that characterize the 

latter. 

 

Vega et al. (2010) synonymized Necrocarcinus olssoni with Orithopsis tricarinata 

Bell, 1863, but the distinctive metabranchial longitudinal ridges, the wider than long 

hexagonal carapace (Schweitzer et al., 2003; Števčić, 2005), with ‘concave’ anterolateral 
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and straight posterolateral margins (Vega et al., 2010), and the long, distinctive rostral and 

orbital spines (Schweitzer and Feldmann, 2000; Guinot et al., 2008) present in the 

monotypic Orithopsidae are not seen in the sole specimen of P. olssoni, precluding kinship 

with this family at this point. The systematic position of Orithopsidae is still unresolved, 

and has been traditionally associated with either the eubrachyuran Superfamily Dorippoidea 

MacLeay, 1838 (Glaessner, 1969; Schweitzer et al., 2003; 2010; De Grave et al., 2009); or 

the podotreme Superfamily Raninoidea, particularly Necrocarcinidae and 

Cenomanocarcinidae stocks (Schweitzer and Feldmann, 2000; Schweitzer et al., 2003; 

Guinot et al., 2008; Vega et al., 2010). Despite this, the well-preserved sterna referred to 

‘Orithopsis tricarinata’ by Guinot et al. (2008), from the upper Albian Greensand of 

England, and Vega et al. (2010), from the upper Albian Hudspeth Formation of Oregon, 

USA, are certainly reminiscent of the sterna seen in some camarocarcinids, 

cenomanocarcinids and necrocarcinids, advocating for a raninoid affinity. 

 

Planocarcinus olssoni (Rathbun, 1937) n. comb. 

Figure 2.3A-C 

 

Dakoticancer olssoni Rathbun, 1937: p. 26, pl. 5, fig. 6. 

Necrocarcinus olssoni (Rathbun, 1937); Feldmann, Villamil, and Kauffman, 1999: p. 91 

Necrocarcinus olssoni (Rathbun, 1937); Schweitzer, Feldmann, Garassino, and Schweigert, 

2010: p. 81. 

Necrocarcinus? olssoni (Rathbun, 1937); Schweitzer, Feldmann, González-Barba, and Vega, 

2002: p. 37. 

Necrocarcinus? olssoni (Rathbun, 1937); Guinot and Breton, 2006: p. 615. 

Orithopsis tricarinata (Bell, 1863); Vega, Nyborg, Kovalchuck, Etayo-Serna, Luque, Rojas-

Briceño, Patarroyo, Porras-Múzquiz, Armstrong, Bermúdez, and Garibay, 2010: p. 275, fig. 8.23. 

 

Emended Diagnosis.—As for genus. 
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Emended Description.—Carapace small, subcircular in outline, slightly wider than long, 

with maximum length about four-fifths maximum width, measured approximately at 

midlength. Cervical groove distinct, complete, more pronounced axially, and less distinct 

laterally, concave posterior to mesobranchial region, and gently convex posterior to 

protogastric region until reaching lateral margin. Postcervical groove well developed, deep, 

posteriorly in contact with branchiocardiac groove, and diverging anteriorly, flanking the 

metagastric and urogastric regions. Branchiocardiac groove well developed, deeper 

mesially, and shallowing toward lateral margin, subparallel to cervical groove, flanking the 

cardiac and branchial regions. Fronto-orbital margin as long as posterior margin, about two-

fifths maximum carapace width. Rostrum well developed, bilobate spatulate, wider than 

long, less than one-fifth carapace width, sulcate axially, distally downturned, tip broken, 

rostrum sides diverging posteriorly and forming the inner margin of the orbit, bearing one 

upraised and anteriorly directed spine. Orbits somewhat narrow, upturned, each orbit about 

one-fourth carapace maximum width, concave, roundish, bearing two very small, narrow 

orbital fissures; orbital fissure about the same length; outer orbital spine single, small, well 

produced, subtriangular, shorter than rostrum, with outer margins nearly straight, 

converging anteriorly; lower orbital margin visible in dorsal view. Anterolateral margin 

smoothly convex, approximately as long as posterolateral margin, about half the carapace 

maximum length, bearing five eroded spines, excluding outer orbital spine. Anteriormost 

spine small, subtriangular in shape, directed anteriorly. Posterolateral margin smoothly 

convex, as long as nearly half carapace length, lacking spines. Posterior margin nearly as 

long as fronto-orbital margin, two-fifths carapace width, straight, horizontal. 

 

Regions defined by grooves; protogastric region slightly inflated, bearing three 

small, very short, round nodules behind the orbital rim (Figure 2.3A, C, arrows); the two 

posterior tubercles positioned anterior of cervical groove, approximately at mid position of 

protogastric region, the most distal tubercle positioned near boundary between protogastric 
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and hepatic regions; the most anterior tubercle smaller than the other two, positioned 

behind outer orbital spine. Mesogastric region narrow, weakly defined anteriorly and 

swollen, well defined posteriorly, lacking tubercles or spines. Metagastric region V-shaped, 

swollen, bounded anteriorly by cervical groove, and laterally by postcervical groove. 

Urogastric region short, narrow, depressed, delimited laterally by postcervical groove. 

Cardiac region narrow, elongated, lacking tubercles or spines, wider anteriorly, delimited 

laterally and posteriorly by deep branchiocardiac groove. Intestinal region narrow, very 

depressed, lacking tubercles or spines. Hepatic regions depressed. Epibranchial region very 

inflated proximally, and subtly laterally, bounded by cervical and postcervical grooves, 

bearing a boss. Mesobranchial and metabranchial regions undifferentiated, bearing a faint, 

oblique ridge lacking nodules or tubercles. 

 

Material examined.—The holotype and sole specimen USNM 495104, deposited in the 

National Museum of Natural History, Smithsonian Institution, Washington, D.C., United 

States. 

 

Measurements.—Carapace maximum length: 20.5 mm; width, 24.0 mm; frontal-orbital 

margin: 9.8 mm. 

 

Occurrence.—Upper part of Paja Formation, upper Aptian, between the village of Curití 

and the town of San Gil, Cordillera Oriental, Department of Santander, Colombia. 

 

Remarks.—Among Necrocarcinidae, Planocarcinus appears closer to Necrocarcinus than 

to any of the other genera. The configuration of the protogastric tubercles, with a small 

node anterior to the other tubercles and posterior to the orbital region, near the 

protogastric/hepatic boundary (Figure 2.3A-B), is also visible on other necrocarcinid 

species such as Necrocarcinus labeschei, N. pierrensis Rathbun, 1917, N. davisi Bishop, 

1985, and N. rathbunae Roberts, 1962 (Rathbun, 1917; Förster, 1970; Bishop, 1985; 
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Bishop and Williams, 1991; Guinot et al., 2008). Necrocarcinus undecimtuberculatus 

(Figure 2.3E), from the upper Aptian of Japan (Takeda and Fujiyama, 1983; Fraaye, 1994; 

Schweitzer et al., 2003; Guinot et al., 2008), also suggested as possibly related to the genus 

Paranecrocarcinus Van Straelen, 1936 (Takeda and Fujiyama, 1983; Guinot et al., 2008), 

differs from P. olssoni n. comb. in the concave posterior margin, the less convex 

posterolateral margin, the branchial regions bearing three longitudinally spaced tubercles, 

and the developed eleven tubercles (Takeda and Fujiyama, 1983). 

 

Planocarcinus olssoni, together with Necrocarcinus inornatus Breton and Collins, 

2011, from the lower Cenomanian of France, and Paranecrocarcinus libanoticus Förster, 

1968, from the Cenomanian of Lebanon and France (Breton and Collins, 2011), are the 

least ornamented necrocarcinids. Planocarcinus olssoni differs from both taxa in lacking a 

vaulted carapace bearing faint dorsal grooves, the absence of well-developed protuberances 

along the axial ridge, the narrower metagastric and urogastric regions, and the 

posterolateral margin deprived of granules. 

 

The specimens illustrated in Vega et al. (2010: fig. 8.18-20) as ‘Orithopsis 

tricarinata’ differ from P. olssoni on the sub-hexagonal nature of the carapace, with 

straight to slightly concave posterolateral margins, the narrow and relatively long bifid 

rostrum with sub-parallel lateral margins, the orbits wider than the rostrum, and the broader 

metagastric, urogastric, and cardiac regions. One dorsal specimen (Vega et al., 2010: fig. 

8.22) appears neither to be conspecific with O. tricarinata, nor congeneric with Orithopsis. 

Based solely on the preserved right carapace, a resemblance to Planocarcinus appears more 

plausible given the convex nature of the posterolateral margin and the nearly straight 

posterior margin. Unfortunately, the anterior half of the carapace and the fronto-orbital 

margin are eroded, precluding an accurate comparison with P. olssoni. Under the 

hypothetical scenario of a taxonomic relationship with Planocarcinus, the spatial and 
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temporal range of the genus would be marked by its first appearance in the upper Aptian of 

Colombia, and its last appearance in the late Albian of Oregon. 

 

Family Palaeocorystidae Lőrenthey, in Lőrenthey and Beurlen, 1929 

Notopocorystes McCoy, 1849 

 

Notopocorystes McCoy, 1849: p. 169. 

Palaeocorystes Bell, 1863: p. 11, pl. II, figs. 8-13. 

 

Type species.—Palaeocorystes stokesii Mantell, 1844, by original designation. 

 

Included species.—Notopocorystes australis Secretan, 1964; N. bituberculatus Secretan, 

1964; N. callianassarum (Fritsch and Kafka, 1887); N. denisae Secretan, 1964; N. exiguus 

Glaessner, 1980; N. fritschi Glaessner, 1929; N. japonicus (Jimbó, 1894); N. normani (Bell, 

1863); N. parvus Rathbun, 1935; N. ripleyensis Rathbun, 1935; N. stokesii (Mantell, 1844) 

(type); N. xizangensis Wang, 1981, N. kerri n. sp. 

 

Geologic range.—Early Cretaceous (late Aptian) to Late Cretaceous (Campanian?). 

 

Notopocorystes kerri n. sp. 

Figure 2.4 A-B 

 

Diagnosis.—Carapace small, moderately elongate, ovate, wider at anterior third; dorsal 

carapace finely granulated; cervical groove complete, well developed; mesial longitudinal 

ridge present, not ornamented, narrow and shallow; two small and rounded tubercles on 

protogastric region; fronto-orbital region wide, slightly more than two-thirds carapace 
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maximum width, two shallow orbital fissures; anterolateral margin bearing three short, 

weakly pronounced spines; posterior margin as wide as half carapace greatest width, and 

about two-thirds the fronto-orbital region. 

 

Description.—Carapace small, elongate, ovate in outline, moderately vaulted transversely, 

less so longitudinally, with maximum width about four-fifths maximum length, located 

approximately at anterior third. Cervical groove well developed, deep, complete from side 

to side, only slightly interrupted axially by incipient mesial longitudinal ridge between 

mesogastric and metagastric regions, extending obliquely anterolaterally from axis, 

concave posterior to mesogastric region, less so posterior to protogastric region, and 

deflecting posterolaterally posterior to hepatic region. Postcervical grooves well developed, 

short, deep, arcuate, located at approximately medial portion of carapace, flanking the 

metagastric and urogastric regions. Branchiocardiac grooves shallow, faint, with muscle 

scars gently developed anterior to branchiocardiac and posterior to postcervical grooves. 

Mesial longitudinal ridge present, narrow, smooth, very shallow anteriorly, and slightly 

better developed posteriorly, non-tuberculate, excepting for a very small tubercle at 

metagastric region. Postfrontal region slightly lobate, gently sulcate postrostrally; dorsal 

carapace finely granulated; two small, distinct, rounded tubercles on protogastric region, 

located posterior to orbital rim and anterior to cervical groove. 

 

Rostrum tip missing; fronto-orbital region wide, slightly more than two-thirds 

carapace maximum width; orbits transverse, nearly one-third the fronto-orbital region 

width, bearing two shallow, closed orbital fissures; inner orbital margin missing; medial 

orbital spine small, truncated, straight, sloping posterolaterally, nearly as large as 

postorbital spine; postorbital spine single, small, weakly produced, truncated, straight, 

sloping posteromesially, outer postorbital margin straight, converging anteriorly. 
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Figure 2.4. Raninoidea, Palaeocorystidae.  A-B, Notopocorystes kerri n. sp. holotype IGM p881128, upper 
Aptian, Colombia;  A, carapace in dorsal view, with arrows indicating the distorted left posterolateral and 
posterior carapace margins;  B, mirror image of the well preserved right half of the dorsal carapace.  C, 
Notopocorystes stokesii (Mantell, 1844), hypotype (BMNH) In. 39366, dorsal carapace, lower Albian, 
England. 4: Notopocorystes xizangensis, digital image from Wang (1981, pl. 2, fig. 1a), Albian, Xizang, 
China. 
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Anterolateral margin slightly convex, positioned in carapace anterior third, bearing 

three short, weakly pronounced spines; anteriormost spine subtriangular, well developed, 

placed at the level of lateralmost orbital fissure, with outer margin diverging anteriorly;  

median spine the smallest, weakly developed, subrounded; posteriormost spine 

subtriangular, well developed, immediately above cervical groove, with outer margin 

diverging anteriorly. Posterolateral margin long, three times as long as anterolateral margin, 

gently convex, bearing at least two very small, faint, smooth spines anteriorly. Posterior 

margin incomplete, apparently concave, as wide as half carapace greatest width, and about 

two-thirds the fronto-orbital region. 

 

Etymology.—The trivial name honors Kecia Kerr, who greatly contributed to the discovery 

of the holotype. 

 

Material examined.—The holotype and sole specimen IGM p881128, deposited in the 

Geological and Paleontological Museum José Royo y Gómez, INGEOMINAS, Bogotá-

Colombia. 

 

Measurements.—Carapace maximum length: 11.2 mm; estimated width, 10.1 mm; 

estimated frontal-orbital margin: 7.0 mm. 

 

Occurrence.—Upper part of Paja Formation, upper Aptian, between the village of Curití 

and the town of San Gil, Cordillera Oriental, Department of Santander, Colombia. Latitude 

6.59621, Longitude −73.09146. 

 

Remarks.—The palaeocorystid affiliation of Notopocorystes kerri is supported based on the 

possession of a fusiform, ovate carapace, covered with fine granules, with a distinctive 

cervical groove, bearing a mesial longitudinal ridge, and with more than three anterolateral  
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spines. The genera Notopocorystes, Eucorystes Bell, 1863, and Cretacoranina Mertin, 

1941, ranging in age from early Albian to Campanian, have been typically included within 

Palaeocorystidae. The genus Heus Bishop and Williams, 2000, was included in 

Palaeocorystidae by De Grave et al. (2009), and Schweitzer et al. (2010). Nevertheless, 

based on the illustrations and description by Bishop and Williams (2000), the holotype and 

sole specimen of Heus appears to lack diagnostic palaeocorystid features, such as an 

anterolateral margin bearing multiple spines and the broad fronto-orbital margin, plus the 

different dorsal ornamentation and carapace groove development, therefore suggesting 

removal from Palaeocorystidae, and rather placement within Raninidae as originally 

proposed by Bishop and Williams (2000). Cenocorystes Collins and Breton, 2009, 

originally considered a palaeocorystid, has been recently allied with Raninoidinae 

Lőrenthey (in Lőrenthey and Beurlen, 1929) (De Grave et al, 2009; Schweitzer et al., 

2010). 

 

Schweitzer and Feldmann (2001) highlighted the different degree of ornamentation 

on the dorsal carapace among palaeocorystid genera. A mesial ridge is present in all genera, 

appearing more developed in some Notopocorystes, and less in most Eucorystes and 

Cretacoranina. In Notopocorystes, the cervical groove is deep, the anterior dorsal 

ornamentation consists of nodes and tubercles. In Eucorystes, the cervical groove is shallow 

and the anterior dorsal ornamentation is constituted by a unique strap-like sculpted pattern 

of flattened vermiform ridges separated by grooves (McCoy, 1854; Bell, 1863; Tucker, 

1998). Cretacoranina has an incipient or barely perceptible cervical groove, a smoother 

dorsal surface, and lacks nodes, tubercles, or strap-like ornamentation (Mertin, 1941; 

Tucker, 1998). The presence in Notopocorystes kerri of a deep cervical groove, a 

distinctive mesial longitudinal ridge, and two tubercle-like protuberances on the 

protogastric region, supports affiliation with the genus Notopocorystes within 

Palaeocorystidae. 
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Notopocorystes kerri differs from Albian notopocorystids in exhibiting a broader 

posterior third of the carapace, smaller anterolateral spines, lack of a postfrontal axial ridge 

or well developed lines of tubercles, and a subtle, non-tuberculate longitudinal ridge 

(Figure 2.4A-B). In N. stokesii (Mantell, 1844), from the Albian of England (Figure 2.4C),  

the posterior third of the carapace is narrower than in N. kerri, the spines on the 

anterolateral margin are better developed, the protogastric region possesses multiple 

tubercles, and the dorsal longitudinal ridge is well-developed and tuberculate, extending 

from the mesogastric to the urogastric region (McCoy, 1849; Glaessner, 1969; Collins, 

1996; Tucker, 1998; Karasawa et al., 2011). Notopocorystes bituberculatus Secretan, 1964, 

from the Albian of Madagascar, possesses a characteristic axial row of paired tubercles, and 

a more elongated carapace than N. kerri, whereas N. xizangensis Wang, 1981, from the 

Albian of China and Iran (Yazdi et al., 2009) (Figure 2.4D), shares with N. kerri the smooth 

longitudinal ridge lacking tubercles and with the postfrontal lobe ornamented only by two 

small protuberances on the protogastric region. However, the general carapace outline, the 

configuration of the orbital region and anterolateral and posterolateral margins, are different 

enough to warrant independent species assignation. 

 

Figure 2.5. Camera lucida line drawings of upper Aptian raninoids from Colombia, illustrated in figs. 3A and 
4A-B.  A, Planocarcinus olssoni n. comb., dorsal carapace.  B, Notopocorystes kerri n. sp. Mirror drawing of 
well preserved right half of dorsal carapace (fig. 4A). 
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Discussion 

Paleobiogeography 

Planocarcinus olssoni (Figure 2.5A) and Necrocarcinus undecimtuberculatus 

(Figure 2.3E), from the upper Aptian of Colombia and Japan, Paranecrocarcinus? kennedyi 

Wright, 1997, from the Barremian of South Africa, and P. hexagonalis Van Straelen, 1936, 

from the Neocomian of France (Appendix Table I; Figure 2.6A), are the oldest known 

raninoids and suggest that the earliest frog crabs belong to the necrocarcinid-type. It must 

be noted that the affiliation of P.? kennedyi to Necrocarcinidae has been questioned (Guinot 

et al. 2008; Collins, 2010), and that more precise chronostratigraphic information of the 

sole specimen of P. hexagonalis is still needed, since the Neocomian in France embraces 

from Berriasian, ~145.5 Ma., to Hauterivian, ~130 Ma, although a Hauterivian age has been 

suggested for the species (Wright and Collins, 1972; Guinot et al., 2008). Notwithstanding 

the age uncertainty, P. hexagonalis stands as the oldest raninoid known to date. The 

appearance of a fusiform carapace is not documented until the upper Aptian, as represented 

by the palaeocorystid Notopocorystes kerri n. sp. (Figures 2.5B, 2.7A). Given the scarce 

representation of pre-Albian raninoid taxa (2 fam., 4 gen., 5 spp.) few interpretations of 

their early paleobiogeographic patterns can be made, except that Raninoida was already 

distributed worldwide (Figure 2.6A, Figure 2.7A). In sharp contrast, the morphological 

diversity (4 fam., 10 gen., 31 spp.) (Appendix Table I) and cosmopolitan distribution 

reached during the Albian (Figures 2.6B, 2.7B), suggest the hypothesis of a rapid radiation 

of both body plans. 

 

During the mid-Cretaceous, the world was characterized by much warmer global 

temperatures than today, with a low equatorial-pole temperature gradient, high 

concentrations of greenhouse gases including CO2, and CH4 release from dissociation of 

methane clathrates (Barron, 1985; Barron and Washington, 1985; Berner, 1990; Wilson and 



 

 

 

28

Norris, 2001; Beerling et al., 2002; Jenkyns, 2003; Méhay et al., 2009). The production of 

oceanic crust and emplacement of Large Igneous Provinces (Tejada et al., 1996; Mahoney 

et al., 1993; Larson, 1997; Larson and Erba, 1999; Larson and Kincaid, 1996), together 

with an ice-free greenhouse world led to high global sea level, producing extensive large 

epicontinental seas (Herman and Spicer, 1996; Bice et al., 2003; Jenkyns et al., 2004; Hay, 

2008; in Hay, 2011). The separation of North America from northern South America led to 

the widening of the Caribbean Tethys, connecting to the Mediterranean Tethys to the east 

and the Central Pacific to the west (Figure 2.6, Figure 2.7). A Tethian Circumglobal 

Current (TCC), which separated northern from southern landmasses (Stanley, 1995; 

Poulsen et al., 1998), allowed the mixture of waters from different oceanic basins. 

Although the strength, stability, uniformity and direction of the Cretaceous TCC have been 

debated, there is evidence for a complicated circulation pattern (Poulsen et al., 1998) 

characterized by a westbound flow (Luyendyk et al., 1972; Berggren and Hollister, 1974; 

Gordon, 1973; Lloyd, 1982; Föllmi and Delamette, 1991; Bush, 1997), but also an eastward 

gyre along the northern margin of the Tethys (Barron and Peterson, 1989, 1990). The wide 

latitudinal distribution of mid-Cretaceous raninoid crabs may be the product of a shallow 

latitudinal temperature gradient combined with a system of oceanic currents connecting 

polar regions with the tropics (Hay, 2011). The Tethys Ocean is known to have acted as an 

important dispersal pathway for many groups of decapod crustaceans (Feldmann and 

Schweitzer, 2006), and Raninoida appears to follow this pattern. 

 

In addition to the occurrence of Planocarcinus and Notopocorystes in the Aptian of 

Colombia, Cenomanocarcinus Van Straelen, 1936 (Vega et al., 2010), from the Upper 

Albian of Colombia, and Araripecarcinus Martins-Neto, 1987, from the lower-middle 

Albian of Brazil (Karasawa et al., 2008; Luque et al., under study), suggest that Raninoida 

were well established in the Neotropics during the Early Cretaceous, and warrants 

considering the possible role of the Neotropics in the origin and diversification of frog 

crabs. 
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Figure 2.6. Paleobiogeographic distribution of the early Cretaceous raninoids with ‘necrocarcinid-like’ body 
plan, wider than long or about as wide as long.  A, Aptian, ~120 Ma;  B, Albian, ~110 Ma. ?Necrocarcinidae: 
Araripecarcinus Martins-Neto, 1987 (gradient circle). Necrocarcinidae: Necrocarcinus Bell, 1863 (white 
circle); Paranecrocarcinus Van Straelen, 1936 (black circle); Planocarcinus n. gen. (light gray circle); 
Pseudonecrocarcinus Förster, 1968 (dark gray circle). Cenomanocarcinidae: Cenomanocarcinus Van 
Straelen, 1936 (white hexagon). Taxa listed in Table I. Base maps modified after Scotese (2004). 
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Figure 2.7. Paleobiogeographic distribution of the early Cretaceous raninoids with ‘raninid-like’ body plan, 
longer than wide.  A, Aptian, ~120 Ma;  B, Albian, ~110 Ma. Palaeocorystidae: Cretacoranina Mertin, 1941 
(gray triangle); Eucorystes Bell, 1863 (black triangle); Notopocorystes McCoy, 1849 (white triangle). 
Raninidae: Lyreidinae: Hemioon Bell, 1863 (white rectangle). Ranininae: Raninella A. Milne Edwards, 1962 
(black rectangle). Taxa listed in Table I. Base maps modified after Scotese, 2004. 
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Systematic Issues 

The six families comprising Raninoida are united by two synapomorphies: an 

elongated buccal cavity, and the mxp3 lying in two planes (Karasawa et al., 2011). 

Therefore, these characteristics are expected to be present in the earliest common ancestor 

for the raninoidan body plans, which might have had its origins in the earliest Cretaceous, 

or even, the Late Jurassic (Wright and Collins, 1972; Collins, 1996). Still, the question of 

what body plan is the ancestral condition is still poorly understood. The hypothesis 

advanced by Glaessner (1960) and Guinot et al. (2008) envisions Palaeocorystidae 

proximate to Necrocarcinidae stock (Figure 2.1A), and is supported by such 

synapomorphies as a distinct cervical groove, a longitudinal ridge or row of tubercles, an 

anterolateral margin provided with multiple spines, similar configuration of the thoracic 

sternum, and particularly the coxae of the last pereiopods separated enough to allow the 

pleon to be pressed against the sternum (Stenzel, 1945; Wright and Collins, 1972; Collins, 

1996; Tucker, 1998; Karasawa et al., 2011). Under this scenario, Guinot et al. (2008) 

shared Glaessner’s (1960) point of view, which stated that the earliest palaeocorystid 

representatives (referring to Notopocorystes) “are closer to Necrocarcinus than to their 

living typical raninid descendants” (Glaessner, 1960: p. 46; Collins, 1996: p. 75; Guinot et 

al., 2008: p.700). For the clade Palaeocorystidae + (Cenomanocarcinidae + 

Necrocarcinidae) to be monophyletic, it must contain all the descendants of their latest 

common ancestor, and therefore Raninidae cannot be derived from Palaeocorystidae, 

contrary to what has been previously suggested (Bourne, 1922; Glaessner, 1960; Tucker, 

1998, Guinot et al., 2008). Since Raninidae + Symethidae is a monophyletic clade 

(Karasawa et al., 2011), the innovation of a fusiform carapace must have evolved twice 

within Raninoida. However, no current paleontological evidence supports such a scenario, 

and therefore the hypothesis of a monophyletic Palaeocorystidae + (Cenomanocarcinidae + 

Necrocarcinidae) clade is rejected. Nevertheless, if considering the inverse scenario, where 

the fusiform anatomy would be the primitive condition for Raninoida, then the 

necrocarcinid-type body plan would have appeared once in the Camarocarcinidae + 
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(Cenomanocarcinidae + Necrocarcinidae) clade, and probably derived from a 

palaeocorystid ancestor. This hypothesis, although plausible, is also not supported by any 

known paleontological evidence; therefore it is rejected. 

 

The hypothesis of a monophyletic Palaeocorystidae + (Raninidae + Symethidae) 

clade (Figure 2.1B) has been supported based on the shared fusiform carapace and the lack 

of pleonal locking mechanisms (Karasawa et al., 2011). Under the premise that the 

necrocarcinid-type body plan is the primitive condition for Raninoida, as suggested by its 

earliest fossil representatives, the later innovation of the fusiform carapace is expected to 

have occurred once (Figure 2.8). Regarding the pleonal locking mechanisms, none has been 

reported in the necrocarcinid-like Camarocarcinidae to date, and conversely, locking 

mechanisms are present in the raninid subfamily Lyreidinae Guinot, 1993 (Lyreidus De 

Haan, 1841, and Lysirude Goeke, 1985) (Guinot, 1993; Guinot and Bouchard, 1998), 

typical frog crabs with living representatives, casting uncertainty on the trait as an 

informative character to unite Palaeocorystidae with the modern raninoids. 

 

Although the hypothesis of a fusiform carapace appearing only once within 

Raninoida seems to be most parsimonious, given the unclear relationship among the 

principal body arrangements, plus the fragmentary fossil record of pre-Aptian raninoids, an 

unresolved polytomy is proposed (Figure 2.1C) placing Palaeocorystidae in between the 

(Cenomanocarcinidae + Necrocarcinidae) and the (Raninidae + Symethidae) clades, until 

new paleontological material and phylogenetic analysis are available. The most basal 

palaeocorystids (Notopocorystes) would be expected to be closer to a hypothetical 

necrocarcinid-like ancestor rather than to their living relatives, whereas the rootstock of 

Raninidae may lie closer to the most derived Palaeocorystidae, e.g., Cretacoranina. 
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Figure 2.8. Chronostratigraphic distribution of the six known fossil and extant families within the Section 
Raninoida, as indicated by their current First Appearance Datum (FAD) and Last Appearance Datum (LAD). 
Camarocarcinidae: Cretacocarcinus smithi Feldmann, Li and Schweitzer, 2007, Campanian, US (line 
drawing); Camarocarcinus obtusus Jakobsen and Collins, 1979, Paleocene (Danian?), Denmark. 
Cenomanocarcinidae: Cenomanocarcinus armatus (Rathbun, 1935), upper Albian, Texas; C. oklahomensis 
(Rathbun, 1935), upper Albian, Oklahoma; C. renfroae (Stenzel, 1945), upper Albian, Colombia; C. 
vanstraeleni Stenzel, 1945, upper Albian, Colombia (line drawing). Necrocarcinidae: Paranecrocarcinus 
hexagonalis Van Straelen 1936, Neocomian, France; Planocarcinus olssoni n. comb., upper Aptian, 
Colombia (line drawing); Necrocarcinus bispinous Segerberg, 1900, lower Paleocene, Antarctica; N. insignis 
Segerberg, 1900, Paleocene (Danian), Sweden and Denmark. Palaeocorystidae: Notopocorystes kerri n. sp., 
upper Aptian, Colombia (line drawing); Eucorystes eichhorni Bishop, 1983b, upper Campanian?, Montana. 
Raninidae: Lyreidinae: Hemioon cunningtonni Bell, 1863, upper Albian, England; H. elongatum (A. Milne 
Edwards), 1862, upper Albian, England, France, Czech, Germany, UK; H. novozelandicum Glaessner, 1980, 
upper Albian, New Zealand; H. yanini Ilyin and Alekseev, 1998 upper Albian, Crimea. Ranininae: Raninella 
armata Rathbun, 1935, upper Albian, Texas; R. atava Carter, 1898, upper Albian, England; R. mucronata 
Rathbun, 1935, upper Albian, Texas (line drawing from specimen of R. trigeri A. Milne-Edwards, 1862, 
illustrated in Waugh et al. (2009, fig.5.3)). Symethidae: Symethis coraliica Davie, 1989, recent; S. garthi 
Goeke, 1981, recent (line drawing modified after Hendrickx, 1997, fig. 49a); S. variolosa (Fabricius, 1793), 
recent. Base tree modified after Karasawa et al., 2011, fig. 3. Dotted line indicates the uncertain phylogenetic 
affiliation of Palaeocorystidae with the clade Raninidae + Symethidae. 
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Abstract 

A new family of enigmatic crabs, Archaeochimaeridae, is erected based on forty-

two specimens collected from crustacean-rich surfaces from the Cenomanian (~94 million 

years ago) Churuvita Group at the Nocuatá Section, Department of Boyacá, Colombia. The 

exceptional degree of preservation of Archaeochimaera macrophthalma n. gen. n. sp., 

permits the description of complete dorsal and ventral features, claws, all walking legs, 

muscular tissue, antennae, sexually dimorphic pleon and pleopods, mouthparts, and large 

compound eyes bearing facets, thus allowing comparison with fossil and extant decapods. 

A brachyuran affinity is supported by the possession of a folding symmetric pleon, an 

absence of articulated rings, short antennae and antennulae located between the eyes, only 

one pair of chelae, therefore pereiopods 2-5, or walking legs, are achelate, and the last 

pereiopod visible dorsally. However, the unusual body plan, including a unique sternal 

configuration, postfrontal ornamentation, aberrant optical characters, and a combination of 

primitive and advanced traits, is matchless among any known fossil or extant superfamily 

of true crabs, obscuring the animal’s phylogenetic position. Affiliation of 

Archaeochimaeridae with the Section Raninoida, particularly the Raninidae + Symethidae 

clade, is suggested by the elongated carapace, and a telson lying behind the base of the third 

pereiopods. However, similar fusiform body plans have evolved independently at least five 

times in burrowing Anomura and Brachyura, and many of the diagnostic traits of 

Archaeochimaeridae present a high degree of homoplasy within Brachyura. Functionally, 

its dorsal and ventral carapace, mouthparts, limbs and eyes, suggest an agile marine 

burrower and swimmer, well suited for predation and scavenging. Archaeochimaera 

macrophthalma is one of the most, if not the most, complete fossil brachyuran crabs 

discovered to date, enhancing our understanding of the role of the Neotropics in the origin 

and diversification of primitive crab lineages during Cretaceous times. 

 

Keywords: Archaeochimaera, body plan, Brachyura, Cretaceous, Neotropics, podotreme. 
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Introduction 

The Order Decapoda is one of the most diverse and widespread animal groups, 

exhibiting unmatched morphological disparity (e.g., Martin and Davis, 2001; Dixon et al., 

2003; Feldmann, 2003; Števčić, 2005). Decapod crustaceans account for more than 14,600 

extant species, and more than 3,200 known as fossils (De Grave et al., 2009; Feldmann and 

Schweitzer, 2010; Schweitzer et al., 2010). Among decapods, brachyuran crabs, also called 

‘true’ crabs, are the most derived clade, originating during the Early to Middle Jurassic 

(Schweitzer and Feldmann, 2010a), and rapidly diversifying during the Late Jurassic and 

Cretaceous (~161 to 65 M.y.) (Feldmann and Schweitzer, 2006), leading to a burst of 

morphological diversification and broader niche occupation than previously expected 

(Schweitzer and Feldmann, 2010b, 2011a; Karasawa et al., 2011). Unfortunately, while 

Jurassic and Cretaceous brachyurans and their distributions are well known for the northern 

Tethys and higher hemispheres, reported occurrences in the southern Tethys, especially in 

the tropical South America are few. 

 

The general lack of knowledge of crustacean paleontology from the equatorial 

Neotropics may result in considerable biases when attempting to address the origin, 

evolution and paleobiogeography of the group. This scarcity of reports could be related to 

the small number of researchers working on fossil decapods from tropical regions, the 

relatively low abundance of well-exposed outcrops in tropical areas, and the asymmetry of 

landmasses between the Northern and Southern hemispheres, restricting the area for 

potential outcrops with fossil crustaceans in the latter (Feldmann and Schweitzer, 2006). 

Such is the case of Colombia, South America, a tropical country with complex tectonic 

settings and outcrops that are usually poorly exposed. Despite this, Colombia has a very 

high paleontological richness but with a rather poor representation of fossil crustaceans. In 

particular, for podotreme crabs (i.e. those true crabs with sexual openings at the base of legs 

in both male and female), the only two genera recognized so far are: Cenomanocarcinus 

Van Straelen, 1936, and Planocarcinus Luque, Feldmann, Schweitzer, Jaramillo and 
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Cameron, in press, (Rathbun, 1937; Feldmann et al., 1999; Vega et al., 2007; 2010; Guinot 

et al., 2008; Luque et al., in press). 

 

An upper Cenomanian, middle Turonian fossiliferous locality, with excellent 

preservation of marine arthropod fauna from crustacean-rich surfaces, has been discovered 

in Central Colombia (Figure 3.1). This assemblage includes the first Cretaceous cumaceans 

(Gerken and Luque, in progress), a few penaeid and ?caridean shrimps, thalassinids, 

Cenomanocarcinus, and the enigmatic brachyuran crab Archaeochimaera macrophthalma 

n. gen. n. sp. (Figure 3.2). The preservation of the Archaeochimaera specimens is 

exceptional, permitting the description of virtually the entire organism, from complete 

dorsal and ventral features, to extraordinary large compound eyes bearing facets. The 

degree of preservation of these specimens allows for comparison with fossil and extant 

decapods, which supports a brachyuran podotreme affinity based on diagnostic traits. 

Functionally, its dorsal and ventral carapace, mouthparts, limbs and eyes, suggest an agile 

marine burrower and swimmer, well suited for predation and scavenging. Despite its small 

size (~7 mm to ~16 mm) Archaeochimaera is the largest macrofaunal element in the 

assemblage. The relatively high abundance of well-preserved archaeochimaerid crabs and 

cumaceans might be related to a combination of conditions which would increase the 

chance of preservation of remains, such as: high availability of food, sporadic mass 

mortality events, low scavenging and minimal bacterial decay of corpses and exuviae, and a 

benthic burrowing lifestyle. 

 

Among podotremes, affiliation of Archaeochimaeridae n. fam. with the Section 

Raninoida, particularly the Raninidae + Symethidae clade, is suggested based on the 

elongated carapace, principally. Nevertheless, the innovation of elongated carapaces is 

highly homoplasic, having evolved independently multiple times within Anomura and 

Brachyura, and cannot be used as a synapomorphy to unite Archaeochimaeridae with other 

fusiform crabs. In addition, Archaeochimaeridae lacks the two synapomorphies that unite 

members within the clade Raninoida; i.e. the triangular buccal cavity and the mxp3 with 



 

 

 

52

two planes. Furthermore, the complex set of diagnostic traits seen in Archaeochimaera’s 

body plan is matchless among any know fossil or extant presumed monophyletic clade of 

true crabs, but still shares synapomorphies and homoplasies with different brachyuran 

clades, profoundly obscuring its phylogenetic affiliation. 

 

The mid-Cretaceous age of the monotypic Archaeochimaeridae, and its ‘chimaeric’ 

phenotype, raises the question of whether the taxon represents a primitive podotreme 

lineage, basal to the non-dromiacean/homoloidean clades, or conversely, a very derived, 

highly specialized taxon endemic to the Neotropics. Therefore, different hypotheses 

regarding its phylogenetic affiliation are examined, and evidence for an independent origin 

of the fusiform body plan within the Cretaceous podotremes is discussed. 

 

 

Materials and Methods 

The type series of Archaeochimaera macrophthalma n. gen. n. sp. was collected 

from carapace-rich, appendage-rich, and scattered remains surfaces in light gray, micaceous 

fossiliferous claystones. Specimens are generally preserved compacted dorso-ventrally, 

however, the thoracic sternites, pleonites, dorsal carapaces, mandibles, and even internal 

optical structures often show tridimensionality. Given the softness of the rocks embedding 

the delicate remains, the specimens were exposed using fine tungsten carbide needles and 

pin vises, dissecting scalpel blades, and fine pneumatic pencils, under a Nikon Eclipse 80i 

microscope with camera lucida, and a Leica microscope with Spotflex digital camera. 

Broken or fragile samples were consolidated with the cyanoacrylate adhesive Paleo Bond™ 

PB40, and/or stabilized with Paraloid™ B72 and EtOH 95% as the solvent. Given the very 

small size (microns) of the external and internal optical features, specimens preserving fine-

detailed eyes were studied under Zeiss Scanning Electron Microscope (SEM) Evo 40vp 

under variable pressure, and Back-scattered Electron Detector (BSED) with acceleration 

voltages of 15 and 20kV. For regular photography, most specimens were coated with 
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sublimated NH4Cl prior to photographing, in order to enhance relief and fine ornaments. 

Sets of photographs at different focal points were taken with a Nikon Eclipse 80i + Nikon 

Digital Camera Dxm 1200f, Olympus SZX16® Research Stereomicroscope with a digital 

camera Qimaging Retiga 2000R Fast 1394, Leica with Spotflex digital camera, and a Nikon 

D3100 with MicroNikkor 60 mm lens. The resulting multi-layered stacks of photos were 

merged using the image stacking software Helicon Focus, in order to generate high-

definition. The photo editing was completed in Adobe® Photoshop CS5, and figure editing 

in Adobe® Illustrator CS5. 

 

Given the small size of the specimens, measurements of carapace and sclerites 

lengths/widths were taken in the open source software ImageJ64 1.46a, using a scale with 

tenths of a millimeter. In order to generate morphological reconstructions of 

Archaeochimaera, camera lucida line drawings were digitized using a Wacom® Intuos4 

Pen Tablet. Digital reconstructions and animations were performed using standard polygon 

and UV layout techniques with the software Autodesk Maya 2009. The structure, rendering 

and topology of the base mesh were edited in Pixologic's Zbrush 4.0 for digital sculpting 

and high frequency detailing of the carapace. 

 

A character-taxon matrix for 38 taxa and 74 dorsal and ventral characters was 

constructed and manipulated using the free source softwares MacClade 4.08 and Mesquite 

2.75 (Maddison and Maddison, 2005; 2007), and was modified directly from the 

phylogenetic analysis by Karasawa et al. (2011), which stands as the most complete and up-

to-date phylogenetic analysis incorporating all of the known superfamilies and families of 

fossil and extant podotreme crabs.  The phylogenetic analysis was conducted using the 

softwares PAUP* 4.0b10 (Swofford, 1999), and TNT (Goloboff et al., 2003). The analysis 

was performed following the same parameters utilized in Karasawa et al. (2011). Bremer 

support was calculated under traditional search, tree bisection reconnection (TBR) on the 

strict consensus retained in the software, and absolute support using all trees. All characters 

were equally weighted and unordered. 
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Locality and Stratigraphy 

The crustaceans were collected in the locality of Nocuatá, Pesca, Department of 

Boyacá, Eastern Cordillera of Colombia, 150 km northeast of Bogotá, 50 km southeast of 

Villa de Leiva, 5.58102˚ N, 73.05266˚ W (Figure 3.1). The Nocuatá Section is 95 m thick, 

and includes the uppermost part of the Churuvita Formation at the base (Segments A and 

B) and the lowermost part of the San Rafael Formation at the top (Segment C) (Figure 3.2). 

The lowermost Segment A (28 m) is composed at the base of 15.5 m of gray shales, and 

light gray, micaceous, fossiliferous claystones. Abundant cumaceans, some shrimps, and 

Archaeochimaera macrophthalma n. gen. n. sp. constitute the dominant macrofaunal 

elements in this segment (Figure 3.3). Occasional scattered fish remains are also present. 

The uppermost portion of Section A (12.5 m) is covered/weathered. The overlying Segment 

B is composed of 11 m of silty sandstones, and thick beds of white-yellowish, micaceous 

sandstones, representing the last occurrence of coarse-grained deposits along the section. 

 

 

Figure 3.1.—A, Paleogeographic map of Colombia during the upper Cenomanian (~94 M.y.), showing the 
NNE-SSW facing epicontinental sea where the sediments containing Archaeochimaera macrophthalma n. 
gen. n. sp., at Nocuatá Section, Pesca, Department of Boyacá, were deposited (base map modified after 
Villamil and Arango, 1998). The black star indicates the location of the stratigraphic section.  B, 
paleogeographic map showing the tropical setting of Colombia during Cenomanian times (base map modified 
after Blakey, 2006). 
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Figure 3.2. Stratigraphic column of the Cenomanian-Turonian Churuvita Group cropping out at the Nocuatá 
Section, Department of Boyacá, Colombian Eastern Cordillera. For each taxon, black and white columns 
indicate where macrofossils were recovered or not along the section, respectively. Dashed line indicates the 
tentative Cenomanian-Turonian boundary. Arrows denote horizons in which crustacean-rich surfaces (Tf-I), 
appendage-rich surfaces (Tf-II), and scattered debris surfaces (Tf-III) were found along the lowermost portion 
of Segment A. 
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Figure 3.3. Crustacean-dominated faunule at the Nocuatá Section. A, Archaeochimaera macrophthalma n. 
gen. n. sp. A, cumaceans-rich surface (Tf-I), sample IGM p881226, showing the high density and random 
orientation of the specimens. B, sample IGM p881224, cumacean specimens showing details of the 
thoracopods and the pleon. C, Archaeochimaera-rich surfaces, sample IGM p881212, showing several 
specimens randomly orientated, mostly with the pereiopods attached. D, Appendage-rich surface, sample 
IGM p881192, showing the concentration of pereiopods 2 and 3, and a few cheliped remains. One 
disarticulated ventral carapace bearing the left eye is associated with the abundant appendages. E-F, shrimps 
indeterminate. 
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Segment C lies above these thick layers of sandstone and is composed of 56 m of gray 

fossiliferous shales with occasional indurated, gray, fossiliferous shale beds in the lower 

portion, interbedded at the top with a fine-grained, silty sandstone lens and non-calcareous 

nodules (Figure 3.2).  The lowermost portion of Segment C (25 m) is not exposed. The 

uppermost Segment C (31 m) contains invertebrate assemblages typical of the lower-

middle Turonian San Rafael and La Frontera formations in Colombia (Villamil and 

Arango, 1998; Feldmann et al., 1999; Vega et al., 2007) and of the Eagle Ford Group 

equivalent strata in Coahuila, Mexico (Vega et al., 2007; Guinot et al., 2008). Abundant 

globulose foraminifera, teleosteii fish remains, Hoplitoides spp., Glyptoxoceras sp., 

Collingnoniceras sp., ?Coilopoceras sp., and ?Romaniceras sp. (Etayo-Serna, personal 

communication, 2011), diverse and abundant decapod crustaceans such as 

Cenomanocarcinus vanstraeleni Stenzel, 1945 (Vega et al., 2007; Guinot et al., 2008; Vega 

et al., 2010), and several shrimp and thalassinid remains, also occur within Section C. The 

San Rafael Formation has been dated as lower to middle Turonian and the Churuvita 

Formation as Cenomanian in age using ammonites (Etayo-Serna, 1968b, 1979), and 

foraminifera (Sánchez-Quiñonez and Tchegliakova, 2005). A regional transgressive surface 

separates the Churuvita and San Rafael formations, indicating the end of a relatively 

shallow-water, coarse clastic sedimentation during the Cenomanian and the initiation of a 

deeper-water, fine-grained sedimentation at the beginning of the Turonian (Etayo-Serna, 

1968a; Villamil and Arango, 1998; Feldmann et al., 1999). 

 

 

Systematic Paleontology 

Illustrated specimens of the type series are deposited in the collection of 

INGEOMINAS, Museo Geológico José Royo y Gómez, Bogotá DC, Colombia, under the 

acronym IGM. 

Order Decapoda Latreille, 1802 

Infraorder Brachyura Linnaeus, 1758 
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Section ?Raninoida De Haan, 1839  

[in De Haan, 1833-1850] 

Superfamily ?Raninoida De Haan, 1839  

[in De Haan, 1833-1850] 

Archaeochimaeridae n. fam. 

 

Included genera.—Archaeochimaera new genus. 

 

Diagnosis.—Crabs with carapace longer than wide, fusiform; cervical groove and 

branchiocardiac groove distinct; mesial longitudinal ridge and postfrontal ridges present. 

Sternites 1 to 4 fused axially, forming a large and narrow sternal crown; sternites 4 to 7 

unfused, sulcate axially by linea media; sternite 5 very wide; all sternites very different in 

shape and size; suture 5/6 complete, irregular, sinuous, rather defined by a deep groove; 

lack of true sterno-pleonal cavity; absence of evident thoracic sexual openings in both male 

and female; female spermatheca paired in sternite 7, positioned posterior to pereiopod 3 

coxa; broad episternites 5-6. Pleon symmetrical, sexually dimorphic, pleonites unfused, 

lacking articulated rings and uropods, bearing dorsal median tubercle, with pleonites 1 to 4 

exposed subdorsally; absence of pleonal, sternal, or appendicular pleon locking 

mechanisms. Antennae and antennulae small, between the eyes; eyes very large, nearly as 

wide as long, bearing short eyestalk, lack of orbits and orbital fissures; mxp3 pediform, 

elongate, bearing a crista dentata; length of ischio + merus slightly longer than length of 

palp, mxp3 merus positioned far from anterior ventral carapace or basal antennal segments. 

P2-P3 large, wide, with propodus and dactylus paddle-like; coxa of P2-P3 small; P4-P5 

short, narrow, with a longitudinal keel, not subchelate or modified to carry objects, neither 

flattened or paddle-like; pereiopod 5 the smallest, carried dorsally. 

 

Etymology.—The family and generic name are derived from the Greek ‘arkhaios’ 

(ancient), and ‘khimaira’ (chimaera), the mythological creature composed of parts of 
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different animals, alluding to the unique combination of primitive and derived traits 

present in many brachyuran clades seen in the described organism. 

 

Remarks.—The affiliation of Archaeochimaeridae with the Infraorder Brachyura, rather 

than the Anomura MacLeay, 1838, is supported by the possession of a symmetric folding 

pleon lacking uropods, the absence of articulated rings between pleonites, the short 

antennae and antennulae located between the eyes, the possession of only one pair of chelae 

(P1), therefore P2-P5 achelate; and P5 invariably visible (Figure 3.4-7). However, this 

taxon displays a unique combination of primitive and derived morphological characters 

that, if considered independently, may advocate for different systematic affiliations within 

the known podotreme clades. Dromiacea is the oldest and most primitive brachyuran 

section, with fossil records extending back to the Early to Middle Jurassic (Schweitzer and 

Feldmann, 2010a). The superfamilies Homolodromioidea Alcock, 1900, Koniodromitoidea 

Karasawa, Schweitzer and Feldmann, 2011, and Glaessneropsoidea Patrulius, 1959, differs 

from Archaeochimaeridae in the possession of subchelate P4 and P5, eyes protected by 

well-defined orbits and an augenrest (except in Glaessneropsoidea), a subhepatic region 

that is usually inflated, the postcervical groove usually present, the pleon retaining the 

uropods or uropodal plates, and pleon in males close to the coxae (Alcock, 1900; Števčić, 

2005; Schweitzer and Feldmann, 2009; Schweitzer and Feldmann, 2010c; Karasawa et al., 

2011). 

 

Similarly, the superfamily Dromioidea De Haan, 1833, is distinguished by its well-

developed orbits, the inflated subhepatic regions, usually developed postcervical groove, a 

narrow sternum bearing sternal projections, the presence of a sterno-coxal depression, 

pleonite 6 usually bearing triangular epimeres, the possession of uropodal plates, and last 

pair of pereiopods usually prehensile, carried subdorsally (Ortmann, 1892; Wright and 

Collins, 1972; McLay, 1993; 1999; Guinot, 2008; Guinot and Tavares, 2003; Schweitzer 

and Feldmann, 2010c; Karasawa et al., 2011). Furthermore, the possession of small mxp3 

coxae that never touch, sternites 1-3 distinct ventrally, and the absence of a postcervical  
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Figure 3.4. Archaeochimaera macrophthalma n. gen. n. sp. Specimens coated with ammonium chloride. A-C, 
holotype IGM p881215, ventral view: A, thoracic sternum, limbs and mouthparts. B, close-up of the thoracic 
sternum showing sternites, sternal sutures, and episternites; arrow pointing to the posterior spine. C, close-up 
of sternal crown and mouthparts. D-E, paratype IGM p881196, ventral view: D, thoracic sternum and limbs. 
E, close-up of thoracic sternum, showing sternites, episternites, sternal sutures, and sternal-episternal sutures. 
F-G, paratype IGM p881206, ventral view: F, thoracic sternum and limbs. G, close-up of thoracic sternum 
showing sternites, episternites, sternal sutures and sternal-episternal sutures.  Ca: carpus; cd: crista dentata; 
cxP1: coxa cheliped; Da: dactylus; Es5-Es6: episternites 5 to 6; Exg: exognath; Is: ischium; lm: linea media; 
Ma: mandibula; Me: merus; Mxp2-Mxp3: maxillipeds 2 to 3; P1: cheliped or claw; P2-P5: pereiopods or 
walking legs 2 to 5; Pr: propodus; S1-S7: sternites 1 to 7. 
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Figure 3.5. Archaeochimaera macrophthalma n. gen. n. sp. Specimens coated with ammonium chloride. A, paratype IMG 
p881203, dorsal view. Note the distinct dorsal grooves and the mesial, branchial, and postfrontal ridges. White arrows 
point to the position of the two protrusions that might correspond to orbital and/or anterolateral spines. B, paratype IGM 
p881204, dorsal counterpart showing the fine granulation at the median portion of the carapace. C, paratype IMG 
p881217, dorsal view showing the limbs and the pleonites bearing dorsal tubercles. D, paratype IMG p881218, 
moderately preserved dorsal view showing the limbs, a narrow pleon, cervical and branchiocardiac grooves, and the 
postfrontal ridges. E, G-H, paratype IGM p881214, ventral view: E, thoracic sternum, limbs and pleon. G, P2-P3. Note the 
similar shape and size, and the paddle-like condition of distal sclerites. H, P4-P5. Note the similar shape, P5 shorter, both 
legs keeled mesially, and the narrow and slender condition of distal sclerites. G, paratype IGM p881185, showing the 
strong angle formed between the palm and the pollex or immovable finger. Note the multiple teeth restricted to the 
occlusal surface of the pollex.  Ba: basis; Bcg, branchio-cardiac groove; Blr, branchial longitudinal ridge; Ca: carpus; Cg, 
cervical groove; Da: dactylus; Is: ischium; Lr, mesial longitudinal ridge; mn: manus, or palm; Me: merus; Mtg, 
metagastric/urogastric pits; Or, orbital ridge; P1: cheliped or claw; P2-P5: pereiopods or walking legs 2 to 5; Pcr, pre-
cervical ridge; Pfr, post-frontal ridge; Pr: propodus; Px: pollex. 
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groove (except for Diaulacidae Wright and Collins, 1972, and Xandarocarcinidae Karasawa 

et al., 2011), ensures separate phylogenetical affiliation from the most primitive 

brachyurans. Archaeochimaeridae can also be differentiated from members within the 

Section Homoloida by the lack of an evident ‘linea’, the ‘homolid press-button’, a telson 

projecting between the coxae of maxillipeds, the absence of an augenrest (except in 

Latreillidae Stimpson, 1858), and the lack of sterno-coxal and sterno-pleonal depressions 

(Guinot, 1991; Števčić, 2005; Scholtz and McLay, 2009; Karasawa et al., 2011). 

 

Two synapomorphies unite Archaeochimaera with the remaining podotreme and 

eubrachyuran ingroup: the well developed sutures 4/5 and 5/6 (Figure 3.4). Despite the 

resemblance of the Archaeochimaera carapace to that of some corystids, and of the sternal 

architecture to that of some dorippids (Ng et al., 2000; Feldmann et al., 2007; Ng et al., 

2008), the absence of male-female thoracic sexual openings excludes any eubrachyuran 

(Heterotremata + Thoracotremata) affinity. Among the remaining podotremes, kinship with 

the Section Torynommoida Karasawa et al., 2011, is ruled out based on the lack of broad 

and forward-directed orbits bearing a short intraorbital spine, the presence of a crista 

dentata in mxp3, and the telson never reaching the coxae of P1 (Glaessner, 1980; 

Feldmann, 1993; Karasawa et al., 2011; Schweitzer and Feldmann, 2011b). The elongated 

carapace bearing a bifid rostrum, the lack of sterno-pleonal depression, the pediform mxp3, 

and P4 and P5 carried subdorsally, prevent affiliation to the Section Etyoida Karasawa et 

al., 2011 (Bell, 1863; Guinot and Tavares, 2001; Karasawa et al., 2011) (Figures 4-6). 

Archaeochimaera contrast with the Section Dakoticancroida (Karasawa, Schweitzer and 

Feldmann, 2011), based on their subquadrate to nearly circular carapaces, narrow and 

bilobate rostra, the retractable eyes protected by well-developed orbits, with sternites 

relatively similar in shape, the wide pleon of the males, and the presence of pleon locking 

mechanisms (Rathbun, 1917; Glaessner, 1969; Artal et al., 2008; Karasawa et al., 2011). 

 

The affiliation of Archaeochimaeridae to the sections Raninoida and 

Cyclodorippoida is more complicated to interpret, since different traits demonstrate either 
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affinity with one, both, or neither of the sections.  Affiliation with Cyclodorippoida appears 

to be supported by the possession of short coxae of pereiopods, the absence of a sterno-

pleonal depression, the wide thoracic sterna lacking pleonal locking mechanisms, and the 

inner orbital angle not defined. However, Archaeochimaeridae differs from any 

cyclodorippoid family based on the fusiform carapace, the dorsal longitudinal ridges, and 

the reduced posterior sternites (Ortmann, 1892; Bouvier, 1897; Tavares, 1998; Karasawa et 

al., 2011). Similarly, Archaeochimaeridae possesses a complete suture 6/7, a fusiform 

carapace, reduced posterior sternites (or at least smaller than the others), and the location of 

the anterior end of the telson behind coxa of P3. All of these traits are shared with most 

raninoid families, giving phylogenetic support to the affiliation of Archaeochimaeridae 

with the clade Raninidae + Symethidae. Notwithstanding, kinship with Raninoida is 

uncertain since the two synapomorphies that unite the clade; the triangular buccal cavity 

and the mxp3 with two planes, are unknown or inconclusively preserved in the new family. 

 

Archaeochimaeridae is provisionally included within the Section Raninoida, as 

suggested by the phylogenetic analyses, albeit with strong reservation given the 

inconclusively recognized synapomorphies that unite the clade Raninoida, the high degree 

of homoplasy seen in some of its diagnostic characters, especially the fusiform nature of the 

carapace, and the few tree-steps that separate Archaeochimaeridae from the 

Cyclodorippoida. For these reasons, different evolutive scenarios for this unusual body 

plan, as well as the phylogenetic implications for an assumed raninoid affiliation, are 

presented and discussed below. 

 

Archaeochimaera n. gen. 

Included species.—Archaeochimaera macrophthalma new species, by monotypy. 

 

Diagnosis.—As for family. 
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Archaeochimaera macrophthalma n. sp. 

Figure 3.4 - Figure 3.8 

 

Raninidae 1 indet; Vega, Nyborg, Rojas, Patarroyo, Luque, Porras-Múzquiz and 

Stinnesbeck, 2007, p. 418-419, figs. 9.9, 9.11. 

 

Diagnosis.—As for family. 

 

Description.—Carapace relatively small (~0.7 to ~1.6 cm maximum length), elongate, 

fusiform, longitudinally sub-ovate in outline, with maximum width two-thirds maximum 

length of carapace, widest at posterior two-fifths carapace length, at level of sternite 5; 

cervical groove well developed, shallow anteriorly, and more pronounced posteriorly at 

medial portion, interrupted axially by mesial longitudinal ridge, and ending at anterolateral 

margin; branchiocardiac groove developed, shallow at middle portion of carapace, and 

more pronounced toward the anterolateral margin; dorsal carapace finely granulated; two 

short, postero-orbital ridges arise at base of rostrum and deflect posterodistally, apparently 

continuing longitudinally as pre-cervical ridges, apparently delimiting protogastric and 

mesogastric region; main mesial longitudinal ridge prominent, more or less continuous, 

extending from mesogastric region, approximately at first anterior quarter of carapace 

length, to cardio-intestinal regions, interrupting axially the cervical groove, and bearing a 

row of few low-relief tubercles along its length; lateral branchial ridges present, 

unornamented (Figure 3.5A-B, D). 

 

Rostrum semi-rectangular, bifurcated, depressed axially, slightly longer than wide, 

broader at the base, with sides almost parallel, represents one-tenth the maximum carapace 

length; fronto-orbital margin short, about one-third maximum carapace length; absence of 

true orbits, and lack of orbital fissures, bearing only one short, blunt spine-like 

protuberance, presumably homologous to a postorbital spine. Anterolateral margin sinuous, 

slightly concave anteriorly and convex posteriorly, sloping posterolaterally from the 
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?postorbital spine, bearing one short, blunt spine-like protuberance approximately at mid-

length of postfrontal margin, then deflecting posterior until reaching anterolateral 

expression of branchiocardiac groove, and extending convexly posterolaterally at level of 

metagastric region; posterolateral margin convex at middle portion of carapace and straight 

posteriorly, with a small, slender and acute posterior distal spine, generally obscured by P4-

P5; posterior margin concave, slightly less than half the maximum carapace width. 

 

Thoracic sternum wide anteriorly, narrow posteriorly; sternites 1 to 4 forming an 

elongated sternal crown (Figure 3.4A-E); sternites 1 to 3 distinctive ventrally, fused, 

forming a triangle, with straight, convergent anterior lateral margins, nearly as long as 

sternite 4; sutures 1/2 and 2/3 not clear; sternite 4 semi-rectangular, slightly wider than 

long, width one-fourth carapace width, length one-eighth carapace length, not mesially 

depressed or furrowed, lateral margins smoothly concave, anterior portion nearly equal to 

posterior, strongly concave posterior margin mesially; suture 3/4 distinct only on the sides; 

sternite 5 the broadest, maximum width at anterior portion, approximately two-thirds 

maximum carapace width, maximum length near sternum axis, one-fourth the maximum 

carapace length, depressed mesially by linea media, with lateral margins straight, 

convergent posteriorly, and bearing long and prominent longitudinal ridge on each side, 

extending along maximum length portion, parallel to main axis; suture 4/5 complete, rather 

well defined by a deep sinuous groove, with anterior mesial portion of sternite 5 

articulating into sternite 4 posterior margin concavity (Figure 3.4); episternite 5 semi-

rectangular in outline, articulating laterally with sternite 5; sternite 6 very different in shape 

and size to sternites 5 and 7, maximum width at anterior portion, approximately half as 

wide as maximum carapace width, maximum length approximately one-sixth as long as 

carapace length, strongly depressed mesially by a deep cleft, occasionally bearing a subtle 

ridge on each side, almost parallel to main axis, with anterior margin irregular, extending 

obliquely posterior from main axis, producing a sinuous concavity posteriorly near where 

sternite 5 longitudinal ridge ends (Figure 3.4A-B, D-G), and describing a convex, arcuate 

loop ending at lateral margin, which is straight, converging posteriorly, suture 5/6 
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complete, rather well defined by a deep groove; episternite 6 semi-rectangular in outline, 

articulating laterally with sternite 6; sternite 7 reduced, very different in shape and size to 

sternites 5 and 6, maximum width at posterior portion, nearly parallel to carapace posterior 

margin, approximately one-sixth maximum carapace width, maximum length near carapace 

axis, approximately one-seventh carapace maximum length, inverted V-shaped, strongly 

depressed mesially, with margins non-parallel, diverging posteriorly, suture 6/7 complete, 

rather well defined by a deep groove; sternite 7 in one female specimen (Figure 3.6A-B) 

bearing a paired spermatheca axially; sternite 8 not seen. Thoracic sexual openings not 

recognized. 

 

Male and female pleon symmetrical, short, lacking articulated rings and uropodal 

plates, sexually dimorphic; female pleonites sub-rectangular in outline, pleonites 1 to 3 

exposed dorsally, pleonite 1 reduced, pleonites 2 to 5 similar in shape and size, epimeres 

with a longitudinal depression, separate from the tergum; each pleonite bearing dorsal axial 

tubercle, that may be distinctly spiniform in small specimens; in one specimen (Figure 

3.5C), pleonite 4 tergum bearing a notch, extending antero-laterally to postero-mesial 

portion; pleonites 5-6 and telson ventrally exposed in one specimen (Figure 3.6A-B), 

pleonite 5 similar in shape to pleonites 2-4 but smaller; pleonite 6 the smallest, with a 

concave posterior margin articulating with telson; telson short, wider than long, strongly 

convex anteriorly. Male pleonites narrower than in females, pleonite 6 and telson ventrally 

exposed in one male specimen (Figure 3.6E-F); pleonite 6 longer than wide, semi-

rectangular in outline, posteriorly arcuate, concave, articulating with telson; telson small, 

lanceolate, longer than wide, approximately two-thirds as long as pleonite 6 length. 

 

Eyes extremely large, approximately as long as wide, round to semi-ovate in 

outline; length one-fifth the maximum carapace length in small specimens to one-seventh in 

large specimens, always exposed and lacking any protective structure; compound eye facets 

predominantly hexagonal in hexagonal arrangements, through most of the outer- 
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Figure 3.6. Archaeochimaera macrophthalma n. gen. n. sp. Specimens coated with ammonium chloride. A-B, 
paratype IGM p881206, female: A, ventral view showing the limbs, posterior sternites and pleon. B, close-up, 
showing pleonites and telson, coxae of P2-P3, and paired spermatheca positioned in S7. C-D, paratype IGM 
p881209b, female, ventral view: C, specimen showing the unfolded pleon and limbs. D, close-up of female 
pleon. Arrows indicating the pleopods. E-F, paratype IGM p881202, male, ventral view: E, specimen showing 
the limbs and pleon. F, close-up showing the male’s last pleonal somites and telson. Arrows indicate 
sclerotized gonopods. G-H, paratype IGM p881217, male, ventral view: G, specimen of small size showing 
limbs and pleon bearing gonopods. H, close-up showing the first pleonites bearing an acute protuberance 
dorso-mesially. Arrows indicate sclerotized gonopods.  cxP2-cxP3: coxae of P2 and P3; P1: cheliped or claw; 
P2-P5: pereiopods or walking legs 2 to 5; Pl: pleon; Pl1-Pl6: pleonites 1 to 6; S6-S7: sternites 6 to 7; st: 
spermatheca; T: telson. 
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middle portion; squarish facets in square-like arrangement at anterior portion are present in 

one specimen with well-preserved eyes (Figure 3.7B); three retinal layers are recognizable 

in one specimen (Figure 3.7E-G); eyestalk short and stout, one-third eye length; antennae 

and antennulae short and slender, between the eyes, antenna as long as eye maximum 

length, first segment broad, one-fourth the length of rostrum. 

 

Third maxillipeds pediform-like, articulating with postero-distal portion of sternite 

3; endognath ischium elongate, semirectangular in outline, as long as sternite 4 width, two-

fifths as wide as long, bearing a crista dentata armored with four to five small, acute, evenly 

spaced spines on internal margin; merus elongate, semi-rectangular in outline, slender, 

somewhat shorter than ischium, more than twice as long as broad; palp (carpus-dactylus) 

slightly shorter than ischium + merus, directed forward; merus of endognath never reaching 

anterior carapace, ischium + merus length approximately one-fifth carapace maximum 

length; exognath slender, nearly as long as endognath ischium, as wide as one-third 

endognath ischium width, with nearly straight outer margin; mxp2 endognath very small, 

pediform; mandibulae as long as half the endognath ischium length, robust, slightly 

asymmetrical, left mandible describing a different curvature on occlusal surface than right. 

 

Chelipeds (P1) isochelous, ischio-merus semi-rectangular, about one-fourth as long 

as carapace length; carpus sub-trapezoidal, as long as two-thirds the length of merus; 

propodus-carpus articulation subparallel to merus long axis; propodus height as long as 

ischio-merus length, with a blunt tooth-like projection at outer distal corner, close to 

articulation with dactylus; manus stout and inflated, maximum width two times carpus 

width in large specimens, often tuberculate; fixed finger deflected ~90˚, three times longer 

than carpus length, broad, with 10 to 15 small, sharp, and irregular, well-developed 

denticles on occlusal surface, distal denticle upturned; dactylus slender, with distal denticle 

downturned, slightly shorter than fixed finger, smooth edentulous occlusal surface, except 

occasional one or two small, fine denticles near junction with propodus; P2 the longest of 

all pereiopods, usually as long as, or slightly longer than maximum carapace length; ischio-



 

 

 

69

merus subrectangular, slightly convex forward, bearing a small spine at upper distal 

margin, close to articulation with carpus; carpus length one-third the length of ischio-

merus, trapezoidal in outline, narrow at articulation with merus, may bear small spines on 

outer margin; propodus elongate, ovoid, twice the length of carpus, or two-thirds as long as 

ischio-merus length, may be serrated, sometimes with one to three small, acute, spiniform 

projections at anterior edge close to articulation with dactylus, narrow at articulation with 

carpus; dactylus broadly lanceolate, as long as propodus length, narrow at articulation with 

propodus; P2 segments bearing a fine rim of evenly spaced setal pits; P3 almost identical in 

shape and size to P2, but slightly shorter; P4 slender, half the length of P2-P3, with a 

median carina along all sclerites; ischio-merus subrectangular, often finely granulated, 

broader posteriorly; carpus half the size of ischio-merus, subquadrate, narrow at articulation 

with merus; propodus subrectangular, one-third longer than carpus length, and similar in 

size to ischio-merus; dactylus sharp, slender and acute, similar in length to propodus, but 

two-thirds the width, weakly serrate, narrow at articulation with propodus; P5 the smallest 

pereiopod, one-third length of P3, slender, with median carina along all the segments, very 

different in shape and size from P2 and P3, more similar to P4, but considerably smaller 

and carried subdorsally, without paddle-like dactylus; ischio-merus fused, sub-

perpendicular to main carapace axis, as long as P4 dactylus; carpus length half the ischio-

merus length, narrow at junction with ischio-merus; propodus as long as ischio-merus 

length, narrow at junction with carpus; dactylus slender and acute, as long as propodus. 

Male first two pairs of pleopods (gonopods) slender and slightly arched, sclerotized (Figure 

3.6E-F); female pleopods small, slender, similar in shape and size (Figure 3.6C-D). 

 

Etymology.—The trivial name derives from the Greek ‘makros’ (large) and from the Latin 

‘ophthalmos’ (eyes). Gender feminine. 

 

Material examined.—The series of 42 type specimens: Holotype IGM p881215; Paratypes 

IGM p881184 to IGM p881214, and IGM p881216 to IGM p881221, are deposited in the  
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Figure 3.7. Archaeochimaera macrophthalma n. gen. n. sp. Specimens coated with ammonium chloride, except for SEM 
images. A-B, paratype IGM p881220, ventral view: A, specimen showing eyes and limbs. B, SEM image of left eye 
showing hexagonal facets in hexagonal arrangement at medial-posterior portion, and squarish facets in squarish 
arrangement at anterior portion. C, paratype IGM p881219, ventral view showing appendages, eyes and rostrum. D-G, 
paratype IGM p881209a, dorsal view: D, specimen lacking dorsal carapace, preserving internal remains, antennae and 
compound eye. E, close-up of anterior portion, showing the antennula, antenna, left eye, and rostrum. F, dorsal view of 
left eye showing three well-preserved retinal layers. G, oblique view of retinal layers, the external layer preserving 
ommatidial insertion spots arranged hexagonally. H-J, paratype IGM p881210, ventral view: H, specimen showing the 
limbs, mouthparts, antennae and compound eye. I, SEM image of anterior portion, showing the mxp3’ merus, carpus and 
propodus, the antennae and left compound eye. J, SEM image showing left compound eye bearing facets.  A1: antennula; 
A2: antenna; Ca: carpus; Le-Re: left and right eyes; Me, merus; P1: cheliped or claw; P2-P5: pereiopods 2 to 5; Pr: 
propodus; R: rostrum. In figures F-G, green, blue and red regions represents external, medial and internal retinal layers, 
respectively. 
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Figure 3.8. Archaeochimaera macrophthalma n. gen. n. sp. Specimens coated with ammonium chloride, 
except for SEM images. A-C, paratype IGM p881208, ventral view :  A, specimen showing the large eyes and 
the rostrum bifid.  B, close-up of left eye.  C, close-up of right eye.  D-F, paratype IGM p881207.  D, 
specimen showing the limbs and right eye.  E, SEM image of right eye.  F, SEM close-up of the same eye, 
showing the facets.  G, paratype IGM p881211, showing the right eye.  Le : left eye; R : rostrum; Re : right 
eye. 

 

Geological and Paleontological Museum José Royo y Gómez, INGEOMINAS, Bogotá-

Colombia. 

 

Measurements.—Measurements (in millimeters) taken on Archaeochimaera 

macrophthalma holotype IGM p881215, and paratypes IGM p881196, IMG p881206, IGM 

p881215, IGM p881219, and IMG p881220, are given in Table II (Appendix). 

 

Occurrence.—Segment A, Nocuatá Section, Upper part of Churuvita Group (upper 

Cenomanian), Cordillera Oriental, Department of Boyacá, Colombia. Latitude 5.58102, 

Longitude -73.05266.  
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Remarks.—The Section Raninoida and its sole Superfamily Raninoidea, as currently 

defined, comprises six families of extinct and extant crabs that fit within two principal body 

plans: the ‘raninid-type’, grouping the families Palaeocorystidae Lőrenthey (in Lőrenthey 

and Beurlen, 1929), Raninidae De Haan, 1839, and Symethidae Goeke, 1981, sharing a 

fusiform carapace and absence of pleonal locking mechanisms; and the ‘necrocarcinid-

type’, comprising the families Camarocarcinidae Feldmann, Li, and Schweitzer, 2007, 

Cenomanocarcinidae Guinot, Vega, and Van Bakel, 2008, and Necrocarcinidae Förster, 

1968, sharing a broader, non-fusiform carapace, with wider thoracic sterna, and the 

possession of pleon locking mechanisms (Karasawa et al., 2011; Luque et al., in press).  

The possession of posterolateral spines is only known for Camarocarcinidae and 

Cenomanocarcinidae + Necrocarcinidae, whereas bifid rostra, well-developed cervical 

and/or branchiocardiac furrows, and longitudinal ridges or nodes in the dorsal carapace, are 

diagnostic for necrocarcinid-type and Palaeocorystidae ‘pro-parte’, the latter being the most 

basal and ancient of the fusiform families (Luque et al., in press, fig. 8). Despite these 

shared synapomorphies with the necrocarcinoids, Palaeocorystidae appears 

phylogenetically closer to the clade Raninidae + Symethidae (Karasawa et al., 2011) 

(Figures 3.9-3.10), united by the elongated carapace, and the lack of pleon locking 

mechanisms. Palaeocorystidae, or part of it, is deemed as the rootstock of the Raninidae + 

Symethidae. In the case of Archaeochimaera, a similar situation occurs. The fusiform 

carapace and the absence of pleonal locking devices unite Archaeochimaera with 

Palaeocorystidae + (Raninidae + Symethidae), while the reduced posterior sternites and the 

telson lying behind the coxa of P3 places it in between Palaeocorystidae and the clade 

Raninidae + Symethidae (Figure 3.10A). Conversely, the cervical and branchiocardiac 

grooves, the longitudinal axial and branchial ridges, bifid rostrum, and posterolateral 

spines, would support kinship with the most basal necrocarcinid-type and Palaeocorystidae. 

Furthermore, the pediform mouthparts with crista dentata, the markedly different P2-P3 

from P4-P5, the unusual pattern of sternal sutures, the shape and size of the sternites, and 

the orbital and optical configuration, are discrepant with the diagnostic characters for the 
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Superfamily Raninoidea. For the Raninoidea to be monophyletic, the clade must contain all 

the descendants derived from the same last common ancestor. 

 

 

Discussion 

Phylogenetic Analysis 

In order to assess the phylogenetic relationships of the new taxon, I have followed 

the methodology, selected taxa, and character state scoring from Karasawa et al. (2011), 

plus inclusion of Archaeochimaeridae n. fam. (Figure 3.9), and re-evaluation of some 

raninoid character states (Appendix Table III, IV). Herein, as in Karasawa et al. (2011), the 

clade Raninoidea stands as sister to the Dakoticancroida and Cyclodorippoida (Karasawa et 

al., 2011: p. 533). However, the internal topology of Raninoida differs in the collapsed 

clade Cenomanocarcinidae + Necrocarcinidae into a soft polytomy, given that the character 

that united them; i.e. longitudinal ridge or tubercles on branchial region (Appendix Table 

III, Character 19: (1)) (Karasawa et al., 2011: fig. 3), is present in Archaeochimaeridae, and 

polymorphic in Palaeocorystidae. 

 

Camarocarcinidae still appears basal to the superfamily, although the possession of 

spines on the posterolateral margin (Ch. 6: (1), four steps) is shared with several 

cenomanocarcinids, necrocarcinids, and Archaeochimaeridae (Figure 3.10A). The clade 

Cenomanocarcinidae + (Necrocarcinidae + (Palaeocorystidae +(Archaeochimaeridae + 

(Raninidae + Symethidae)))) is united by the possession of a complete suture 6/7 (Ch. 33: 

(1), three steps). This trait appears to have evolved independently in the sections 

Homoloida and Cyclodorippoida. The raninoid families Palaeocorystidae + 

(Archaeochimaeridae + (Raninidae + Symethidae), sharing a fusiform body plan, typically 

lack any pleonal locking mechanism (Character 50: (2), six steps) clade (Figure 3.10A). 
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However, as discussed by Luque et al. (in press), this character is polymorphic within 

Raninidae, since sternal projections in the fifth sternite, engaged in locking the pleon, are 

well-developed in two genera within the subfamily Lyreidinae Guinot, 1993: Lyreidus De 

Haan, 1841, and Lysirude Goeke, 1985 (Guinot, 1993; Guinot and Bouchard, 1998; Luque 

et al., in press). Furthermore, pleonal locking mechanisms are still unconfirmed for the 

basal necrocarcinid-like Camarocarcinidae, casting doubts on whether the presence of 

sternal holding devices is the ancestral condition for Raninoida, lost in Palaeocorystidae + 

(Archaeochimaeridae + (Raninidae + Symethidae)), and reversed in the Lyreidinae, or 

rather absent in the last raninoidid common ancestor, and gained twice in the 

Cenomanocarcinidae + Necrocarcinidae and the Lyreidinae.  The elongated dorsal carapace 

(Ch. 1: (0), 5 steps), is the ancestral condition for Brachyura, changing once in the 

Glaessneropsoidea Patrulius, 1959, once in the Dromioidea, and once in the branch that 

unites the clade Torynommoida with the remaining podotremes + Eubrachyura (Figure 

3.9). In Raninoidea, the innovation of a fusiform carapace is assumed to have occurred 

once in the Palaeocorystidae + (Archaeochimaeridae + (Raninidae + Symethidae)), 

therefore a reversal to the ancestral state derived from a necrocarcinoid-like ancestor.  Also, 

a carapace longer than wide is scored for several dromiaceans and Homoloida. The clade 

Archaeochimaeridae + (Raninidae + Symethidae) is united by the synapomorphies of 

posterior sternites reduced (Ch. 27: (1), two steps), and a telson lying behind the coxae of 

P3 (Ch. 54: (3), 3 steps). Outside the raninoidid clade, the trait is convergent with the clade 

Cyclodorippidae Ortmann, 1892 + Cymonomidae Bouvier, 1897. 

 

One autapomorphy, the united spermatheca (Ch. 42: (1), one step), supports the 

Raninidae + Symethidae (Figure 3.10A), also suggested by four synapomorphies: a straight 

posterior margin (Ch. 7: (1), five steps), indistinct cervical (Ch. 16: (1), six steps) and 

branchiocardiac grooves (Ch. 18: (1), eleven steps), and the palp of mxp3 lying in a mesial-

inner position (Ch. 64: (1), two steps) (Figure 3.10A). The straight posterior margin is 

polymorphic in Cenomanocarcinidae (Guinot et al., 2008: fig. 1B; Collins, 2010: fig. 1.4), 

and has been recently documented for the necrocarcinid Planocarcinus olssoni (Rathbun, 
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1937), from the Aptian of Colombia, and a putative planocarcinid specimen from the 

Albian of US (Rathbun, 1937; Vega et al., 2010, fig. 8.22; Luque et al., in press). 

 

Interpreted as a derived brachyuran condition, straight posterior margins appear 

independently at least twice, in Dakoticancroida and eubrachyurans. Distinct cervical and 

branchiocardiac grooves are the ancestral conditions for podotremes, becoming 

indistinctive in Dromioidea ‘pro parte’ and Raninoida. In all necrocarcinoid-like families, 

this character is polymorphic. In the raninoid-like families, it is only polymorphic in 

Palaeocorystidae, reversing in Archaeochimaeridae to the ancestral states, and gained again 

in Raninidae + Symethidae. 

 

The family Archaeochimaeridae is separated from the Raninidae + Symethidae by 

eleven traits (Figure 3.10A). In the superfamily Raninoidea, the possession of spines in the 

posterolateral margin (Ch. 6: (1), four steps) is restricted to the families with a 

necrocarcinid-type body plan plus Archaeochimaera. The absence of spines appears as the 

ancestral state, being gained once in the last common ancestor for Camarocarcinidae, 

Cenomanocarcinidae, and Necrocarcinidae, reversed in Palaeocorystidae, re-gained in 

Archaeochimaeridae, and reversed a second time in Raninidae + Symethidae. The 

remaining ten characters are autapomorphies for Archaeochimaeridae within the Clade 

Raninoida, but outside the clade they are homoplasic among most podotreme groups, and 

even with some eubrachyurans. Undefined orbits (Ch. 9: (0), four steps) are the primitive 

condition for Brachyura, becoming defined in the clade Konidromitioidea + 

(Glaessneropsoidea + Dromioidea), and at the clade C + (D + (E + (F + (G + H)))) (Figure 

3.9). This character is not present in the cyclodorippoid Cymonomidae, nor in 

Archaeochimaeridae, therefore it is interpreted as a reversal. An undefined internal orbital 

angle (Ch. 12: (0), seven steps) is the ancestral condition for Brachyura, and becomes 

defined in Etyoida, Raninoida, and polymorphic in Cyclodorippoida and Eubrachyura. In 

Archaeochimaeridae, the character is not defined, so the primitive condition is considered a 

reversal. The lack of upper orbital fissures (Ch. 13: (0), six steps) is the primitive state, 
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Figure 3.9. Strict consensus tree showing the character states that unite the different podotreme sections, with 
Archaeochimaeridae n. fam. as sister taxon of Raninidae + Symethidae. Treelength (TL)=240 steps; 
consistency index (CI)=0.57; retention index (RI)=0.78; rescaled CI (RC)=0.45. Diagnostic character states 
(in brackets) indicated vertically below branches. Clades constituting podotreme sections indicated by capital 
letters at the left of the branch. Bremer support for major branches indicated at the right. Taxa indicated by † 
known as both extant and fossil species, and †† only known as fossil. A tree for Clade E Raninoida with 
characters mapped is provided in Figure 3.10A. Base tree resulting from the phylogenetic analysis herein 
presented, following the work of Karasawa et al. (2011) with a modified character matrix (see Appendix). 
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Figure 3.10. Trees for the clade Raninoida resulting form the phylogenetic analysis.  A, tree with branches 
length proportional to changes.  B, cladistic tree for the clade Raninoida showing Archaeochimaeridae 
standing as sister taxon for Raninidae + Symethidae. The clade Cenomanocarcinidae + Necrocarcinidae 
collapsed into a soft polytomy.  Base tree resulting from the phylogenetic analysis herein presented, following 
the work and a modified character matrix after Karasawa et al. (2011). 

 

evolving from absent to present in Glaessneropsoidea, and the clade D + (E + (F + (G + 

Eubrachyura)))). Within the latter, this trait appears to reverse four times, in 

Archaeochimaeridae, Dakoticancridae, Cymonomidae, and the eubrachyurans.  Wide 

thoracic sternites (Ch. 25: (1), four steps) is a derived condition from a brachyuran ancestor 

with narrow sternites, appearing three times in Poupinidae + (Latreilliidae + Homolidae), 

Archaeochimaeridae, and Cyclodorippoida + Eubrachyura. The character is polymorphic in 

Dakoticancridae. It must be noted that, although the posterior sternites in 

Archaeochimaeridae are reduced, uniting the taxon with Raninidae + Symethidae, the broad 

and keeled sternite 5 is not seen in any raninoid nor in closely related podotreme sections 

(Figure 3.11). The episternites clearly defined by grooves (Ch. 29: (1), two steps), is not 

present in any podotreme section but Archaeochimaeridae, and is convergent with 

Eubrachyura.  The absence of the sterno-abdominal depression (Ch. 37: (0), five steps) is 

the ancestral outgroup condition, appearing in Brachyura, and reversing/convergent in 

Archaeochimaeridae and Cyclodorippoida + Eubrachyura, and polymorphic in Raninidae 
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Figure 3.11. Sternal configuration of sternites 1-5 in Archaeochimaeridae n. fam., and representatives of the 
six known families comprising the Superfamily Raninoida.  A, Archaeochimaeridae, Archaeochimaera 
macrophthalma n. gen. n. sp.,  B, Camarocarcinidae, Camarocarcinus arnesoni Holland and Cvancara, 1958.  
C, ?Camarocarcinidae, Araripecarcinus ferreirai Martins-Neto, 1987 (Luque et al., in progress).  D, 
Necrocarcinidae, Necrocarcinus labeschei (Eudes-Deslongchamps, 1835).  E, N. labeschei (Eudes-
Deslongchamps, 1835). F, Cenomanocarcinidae, Cenomanocarcinus vanstraeleni Stenzel, 1945.  G. 
Palaeocorystidae, Eucorystes broderipi (Mantell, 1844).  H. Raninidae, Raninoides benedicti Rathbun, 1935b.  
I, Symethidae, Symethis sp. P1: cheliped; P2: pereiopod 2. Circles indicating the approximate location of 
coxae of P1 and P2. Line drawings D-E, G, after specimens illustrated in Karasawa et al., 2011. 
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and Dakoticancridae. 

 

The pediform mxp3 (Ch. 59: (0), five steps), is only seen in the outgroup, the most 

primitive dromiaceans (Homolodromioidea), the clade Poupinidae + (Latreilliidae + 

Homolidae), and Archaeochimaeridae, whereas in the most derived Dromioidea, and the 

clade D + (E + (F + (G + Eubrachyura))) is operculiform. Pediform maxilliped 3 is 

polymorphic in Homolidae. The presence of crista dentata on maxilliped 3 (Ch. 62: (0), 

four steps), is the ancestral condition for the outgroup and Brachyura, disappearing once in 

Latreilliidae, polymorphic in Homolidae, and lost again in C + (D + (E + (F + (G + 

Eubrachyura)))). The presence of crista dentata in Archaeochimaeridae might represent a 

reversal to the ancestral state. The reduced P4-P5 (Ch. 69 (2), eleven steps), is the ancestral 

condition for Brachyura, not shared with the outgroup, deriving to P4 of normal size and P5 

reduced in Longodromitidae, Dynomenidae, Diaulacidae, the clades Homoloida and 

Raninoida, and in Dakoticancroidea, and deriving once again to P4 and P5 of normal size in 

Xandarocarcinidae, some Raninidae, and most Eubrachyura. The reduced size of P4-P5 in 

Archaeochimaeridae would represent a reversal to the ancestral state. The last character, 

short coxa of pereiopods (Ch. 70: (1), 2 steps), is a derived condition from a brachyuran 

ancestor, and evolved twice in Archaeochimaeridae and the clade F + (G + Eubrachyura). 

 

 

Phylogenetic Remarks 

The general discrepancy of morphological traits between Archaeochimaeridae n. 

fam. and the Superfamily Raninoidea reflects the poorly resolved internal phylogeny for the 

clade Raninoida, casting doubts on its monophyletic status. Given this marked disparity, 

three phylogenetic scenarios including Archaeochimaeridae within Raninoida are depicted: 

 

1) Section Raninoida monophyletic, Superfamily Raninoidea monophyletic: all of 

the taxa grouped within Raninoida and Raninoidea are descendent from a single common 
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ancestor, and both clades include all of its descendants. Then, Archaeochimaeridae stands 

as a true raninid-type crab, constituting the clade Palaeocorystidae + (Archaeochimaeridae 

+ (Raninidae + Symethidae)), and sister taxon to the Raninidae + Symethidae. 

Archaeochimaeridae characters represent multiple reversals, either to an ancestral 

necrocarcinid-type condition (Ch. 6), or a non-raninoidid primitive condition (Ch. 9, 12, 13, 

59, 62, 69). Further, many traits were independently gained in this group and are 

convergent with other higher podotremes, or even Eubrachyura (Ch. 25, 29, 37, 70). Thus, 

the fusiform carapace, narrow posterior sternites, and telson lying back to coxa of P3, 

would represent synapomorphies that warrant affiliation of Archaeochimaera n. gen. with 

the fusiform clade. 

 

2) Section Raninoida monophyletic, Superfamily Raninoidea polyphyletic: all of the 

taxa grouped within Raninoida are descendent from a single last common ancestor, and the 

clade includes all of its descendants, but those within Raninoidea do not include the most 

recent common ancestor for all of its members. A polyphyletic Raninoidea containing 

Archaeochimaeridae is grouped based on homoplasic traits such as the position of the 

anterior end of the telson, also seen in Cyclodorippidae + Cymonomidae, and the fusiform 

carapace, a highly homoplasic trait that has evolved independently multiple times (Bourne, 

1922; Števčić, 1973) in at least five superfamilies and ten families of Anomura and 

Brachyura (Figure 3.12, Table V). Hence, abandonment of a typical crab-like body form 

may have occurred twice within a monophyletic Section Raninoida, once in the primitive 

archaeochimaeroid lineage, and independently in the clade Palaeocorystidae + (Raninidae + 

Symethidae), the latter deemed as originating from a necrocarcinid-like ancestor. In 

addition, the shared archaeochimaeroid and necrocarcinoid traits (i.e. Ch. 6, 16, 18, 19) 

may have been already present in the last common ancestor for the Section Raninoida. 

Under this scenario, the diagnostic non-raninoid characters seen in Archaeochimaeridae 

(e.g. Ch. 9, 12, 13, 59, 62, 69) would represent its ancestral condition, basal for raninoidids, 

and more related with most dromiaceans and homolids, instead of indicating multiple 
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reversals in a single taxon within the non-necrocarcinoid Raninoidea clade. The remaining 

non-raninoid traits (e.g. Ch. 25, 37, 70) appear convergent with Cyclodorippoida. 

 

3) Section Raninoida polyphyletic, Superfamily Raninoidea polyphyletic: the most 

recent ancestor for at least one taxon within Raninoidea, therefore for Raninoida, is not a 

member of the clade. The affiliation of Archaeochimaeridae to the Section Raninoida is 

uncertain since the two synapomorphies that unite the clade; i.e. the triangular buccal cavity 

and the mxp3 with two planes, are unknown or inconclusively preserved in the new family. 

Therefore, grouping Archaeochimaeridae with Raninidae + Symethidae based on 

homoplasies such as the elongated carapace, and anterior end of telson lying behind coxa of 

P3, makes Raninoida a polyphyletic section. Furthermore, the cervical grooves, 

branchiocardiac grooves, and the dorsal longitudinal ridges, although scored as ‘present’ as 

in most necrocarcinoid and some palaeocorystid crab, are unlike any other brachyuran crab, 

particularly the very long, thin and non-tuberculate branchiocardiac ridges, and the short 

longitudinal ridges of the postfrontal region that end at the anterior cervical groove (Figure 

3.5A-B, D). The primitive characters shared with other podotreme clades (e.g. Ch. 9, 12, 

13, 59, 62, 69) reflect its origins rooted in a different node within the clade Brachyura. 

Herein, Archaeochimaera has been scored as having narrow posterior sternites (Ch. 27: 

(1)). However, the character as originally envisioned by Karasawa et al. (2011), is scored 

for sternites 6 to 8, and in Archaeochimaera, S7 is somewhat reduced, whereas S6 is broad. 

The female abdomen is narrower than S6, leaving the lateral parts of the sternite visible. 

This is even more evident in males, where pleonite 6 and the telson are one-fourth the 

width of S6. Thus, the character for Archaeochimaera must be scored as 0 & 1.  Further and 

detailed cladistic analyses examining the internal relationships among raninoids would shed 

lights on the matter. 

 

By re-running the phylogenetic analysis by Karasawa et al. (2011: fig.2) including 

Archaeochimaeridae as sister taxon for Raninidae + Symethidae, and by re-scoring two 
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Figure 3.12. Convergent morphologies of some superfamilies and families of anomuran and brachyuran crabs. A-C, 
Anomura. Hippoidea. A, Hippidae, Hippa marmorata (Hombron and Jacquinot, 1846) Taiwan (Photo by Tin Yam Chan). 
B, Blepharipodidae, Blepharipoda occidentalis Randall, 1840, (photo by Christopher Boyko). C, Albuneidae, Albunea 
occulta Boyko, 2002, Taiwan (Photo by Tin Yam Chan). D, Galatheoidea, Porcellanidae, Euceramus panatelus Glassell, 
1938, Panama (photo by Arthur Anker). E, Brachyura, Raninoidea, Raninidae, Raninoides benedicti (Rathbun, 1935), 
Panama (photo by Arthur Anker). F, Symethidae, Symethis sp., Panama (photo by Arthur Anker). G, Corystoidea, 
Corystidae, Corystes cassivelaunus (Pennant, 1777), Belgium (photo by Hans Hillewaert). H, Jonas distinctus (De Haan, 
1835), Taiwan (Photo by Tin Yam Chan). I, Portunoidea, Thiidae, Thia scutelata (Fabricius, 1793), Belgium (photo by 
Hans Hillewaert).  All photos used with permission of the photographers. 
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raninoid characters (Ch: 7, 50), the treelength (TL) increased from 224 steps to 240 steps. 

This is interpreted as related with the multiple reversals necessary to evolve the ancestral, 

homoplasic and convergent traits that distinguish Archaeochimaeridae from any other 

raninoidid crab.  Furthermore, given the broad sternites 5 and 6 and the relatively reduced 

sternite 7 (8 is unknown) seen in Archaeochimaera, the character 27 as originally scored by 

Karasawa et al. (2011, 527) should be re-scored in the new taxon as 0 (i.e. posterior sternite 

6 wide, S7 narrow-reduced, and S8 unknown, respectively). By re-scoring this character, 

TL increases to 241, CI=0.57, RI=0.78, and RC=0.45, supporting Archaeochimaeridae with 

the same number of steps as sister taxon for clades as Raninidae + Symethidae, G 

(Cyclodorippoida), Eubrachyura, or G + Eubrachyura, and only one step shorter from being 

sister for clade B (Homoloida), or even clade C (Torynommoida) + rest of ingroup. 

However, the strict consensus tree would set Archaeochimaeridae laying in a polytomy 

with Clade F (Dakoticancroida), Raninidae + Symethidae, Camarocarcinidae, 

Cenomanocarcinidae, Necrocarcinidae, Palaeocorystidae, Cyclodorippidae + 

Cymonomidae, Phyllotymolinidae, and Eubrachyura. Consequently, ascription of 

Archaeochimaeridae to any known Brachyura superfamily or section deemed as 

monophyletic is unwarranted. 

 

 

Systematic Issues 

Third maxillipeds equipped with serrated or spinose ischium (crista dentata) are 

known from adult and juvenile forms among many brachyuran and non-brachyuran 

decapods, including, but not exclusive to, some astacideans (e.g., Harlioglu, 2003, 2008), 

achelates (e.g., Suthers and Anderson, 1981; Guerao et al., 2006), anomurans (e.g., Martin 

and Felgenhauer, 1986; Ahyong and Baba, 2004; Hoyoux et al., 2009; McLaughlin and 

Lemaitre, 2009), dromiaceans (e.g. McLay, 2001; Guinot and Tavares, 2003; McLay and 

Ng, 2007), and eubrachyurans (e.g., Caine, 1974; Williams, 1978; Scholtz and Richter, 

1995; Skilleter and Anderson, 1986; Marquez et al., 2003). Nonetheless, whether the 
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spiniform structures found in some eubrachyurans, and the ‘crista dentata’ sensu stricto are 

homologous is still unclear (Ng et al., 2008).  Scholtz and McLay (2009: 425) stated that: 

“the crista dentata (…) is a plesiomorphic reptant character that is present in the 

homolodromioids, dromiids, dynomenids, and homolids (except latreilliids)”, but lost once 

in the most recent common ancestor for the clade that unites Raninoida, Cyclodorippoida, 

and Eubrachyura. The crista dentata-like structure present in Archaeochimaera is 

constituted by four to five acute spines, positioned in the inner border of the mxp3 ischium 

(Figure 3.13A-B). Crista dentata and mxp3 bearing a long palp are traits absent in any 

fossil or extant adult raninoid, male or female, of any family (Figure 3.13C-F), a feature 

that obscures a presumed affinity with the known Raninoidea.  In Archaeochimaera, the 

length of mxp3 ischium + merus (Is + Me) accounts for slightly more that half the 

endognath maximum length, and the palp (carpus + propodus + dactylus) the remaining 

(Figure 3.13A-B), whereas in extant raninoids the palp is considerably shorter than the Is + 

Me length.  In the extant Raninoidea families, the mxp3’s Is + Me account for a large 

portion of the ventral carapace length, with the merus practically reaching the anterior 

portion and the base of the antennae (Figure 3.13E-F), whereas in A. macrophthalma the 

merus lies far from the anterior portion of the ventral carapace, and the Is + Me length 

barely accounts for one-fifth, of the carapace maximum length. 

 

The presence of large eyes has been previously recognized in fossil brachyurans, 

e.g., the dromiacean Ekalakia exophthalmops Feldmann, Schweitzer and Wahl, 2008, and 

the eubrachyuran Macrocheira yabei (Imaizumi, 1957) (Imaizumi, 1965; Glaessner, 1969). 

Some species of the extant corystid genus Jonas Hombron and Jacquinot, 1846 [in 

Hombron and Jacquiton, 1842-1854], exhibit relatively large eyes as seen in 

Archaeochimaera (e.g., Ng et al., 2000; Ng et al., 2008) (Fig.12H). Members of the 

Raninoidae typically possess small eyes, particularly in Symethidae (Figure 3.13E-F). 
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Figure 3.13. Comparison among Mxp3 of Archaeochimaeridae n. fam., and representatives of different raninoidid 
families. A-B, Archaeochimaeridae, Archaeochimaera macrophthalma n gen. n. sp., holotype IGM p881215, upper 
Cenomanian, Colombia.  A, mirror image of the pediform right mxp3.  B, close-up to the buccal appendages, showing 
Mxp2-Mxp3 and mandibulae.  C, Camarocarcinidae, Camarocarcinus arnesoni Holland and Cvancara, 1958, hypotype 
USNM 103624, upper Cretaceous, US.  D, Cenomanocarcinidae, Cenomanocarcinus sp., specimen 320032_014, lower 
Turonian, Colombia (photo by Rod Feldmann) (Luque et al., in progress).  E, Raninidae, Notosceles ecuadorensis 
(Rathbun, 1935), recent, Panama.  F, Symethidae, Symethis sp., recent, Panama (photo by Arthur Anker).  Ca: carpus; cr: 
crista dentata; Da: dactylus; Exg: exognath; Is: ischium; Lm: left mandibula; Me: merus; Mxp2-Mxp3: maxillipeds 2-3; 
Pr: propodus; Re: right eye; Rm: right mandibula. 
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Taphonomy 

Three taphofacies in Segment A of the Nocuatá Section were recognized, with 

crustaceans overwhelmingly dominating the fossil assemblage: crustacean-rich surfaces 

(Tf-I), appendage-rich surfaces (Tf-II), and scattered debris surfaces (Tf-III) (Feldmann et 

al., 1999) (Figure 3.2, Figure 3.3). The crustacean-rich surfaces (Tf-I) contain abundant 

cumaceans, some penaeid? shrimps, and juvenile and adult articulated Archaeochimaera 

macrophthalma. n. gen. n. sp. In this taphofacies, low post-mortem reorientation, low 

disarticulation of skeletal elements, and low fragmentation predominate. Among the 

samples collected, cumaceans (~0.2 to 0.3 cm in length) are the most abundant element, 

being found in high density on crustacean-rich surfaces (Figure 3.3A-B). Shrimp corpses 

(~1 cm), on the other hand, are uncommon (Figure 3.3E-F). Both cumaceans and shrimps 

are preserved with pereiopods, pleopods, and pleon attached to the body. Archaeochimaera 

macrophthalma is the largest macrofaunal element (~0.7 to 1.8 cm in length) with 

specimens occurring throughout the first 15 m (Figure 3.2), where remains are often found 

close to one another, preserving fine and delicate ornamentation of the carapace and limbs, 

and often laterally relaxed locomotory appendages (Feldmann et al., 1999). In this 

taphofacies, no exuviae in Salter’s, or molting position, nor corpses preserved in traumatic 

or escape positions were recognized (Schäfer, 1951; Bishop, 1986). On the contrary, 

Archaeochimaera corpses are often preserved in relaxed normal or non-traumatic postures, 

with chelae closed and held along the anterior portion of the carapace and with walking 

legs along the sides (Figures 3.5E, 3.6A, E). The burrowing behavior and fine-grained 

sediment preference displayed by cumaceans, and probably A. macrophthalma, are 

expected to increase the likelihood of complete organism preservation, under low 

scavenging, minimal bacterial decay, and low energetic settings. It has been suggested that 

the combination of upwelling, high primary productivity, potentially resulting in anoxic 

conditions in bottom-waters, and mass mortality events in the Colombian epicontinental 

seas, led to an unusual abundance of crustacean corpses in the upper Churuvita Group, 

increasing the possibility of preservation (Feldmann et al., 1999). 

 



 

 

 

87

In the appendage-rich surfaces (Tf-II) (Figure 3.3D), Archaeochimaera carapaces 

are often dislocated, but it remains uncertain whether they belong to exuviae and/or re-

worked carcasses. Nevertheless, the process of molting in a sheltered location such as 

within the sediment is expected to increase the chance of preserving exuviae (Schäfer, 

1972). The carapaces, when complete, are preserved in traumatic positions, with P1 turned 

outwards, pereiopods interlaced, and mouthparts open (Figure 3.4A, F). Archaeochimaera 

remains dominate the assemblage, occasionally associated with fish remains (scales, 

vertebrae, spines), with no preferential orientation, but carapaces are mainly parallel to the 

lamination layers. Largest limbs are most common (Ch, P2, P3). Occasional low 

hydrodynamic periods of bottom currents would facilitate accumulation of fragmented 

appendages, segments, and carapaces, following decay and disarticulation, with 

fragmentation near the site of deposition. In both Tf-I and Tf-II, the thoracic sternum, Ch, 

P2-P3 and mouthparts of A. macrophthalma, are highly sclerotized and well preserved, 

strongly contrasting with the poorly sclerotized and badly preserved anteriormost portion of 

the ventral carapace (e.g. pterygostomian region, buccal cavity). 

 

Scattered debris surfaces (Tf-III) are the most common along Segment A (Figure 3.2), and 

are characterized by the presence of scarce, single detached limbs and/or limb-segments of 

Archaeochimaera, mainly appendicular elements of the Ch, P2 and P3. In this taphofacies, 

the disarticulation/fragmentation of remains is high, suggesting high-energy conditions. 

The preservation of fine delicate remains such as eyes, antennae, mouthparts and pleopods, 

appears not to be taphofacies-related. The only evident difference among taphofacies is the 

density and completeness of the accumulated remains. 

 

The Churuvita Formation, at its type locality, has been calculated to be 405 m thick, 

and to be deposited approximately between 100-93.5 M.y (Etayo, 1979). Assuming 

constant sedimentation rates, the unit would be deposited at a rate of 61.54 m/M.y. If we 

assume a similar rate for the Churuvita Formation at the Nocuatá section, the approximate 

time-interval represented in the 15.5 m of shales bearing Archaeochimaera would be near 



 

 

 

88

252,000 years; or one centimeter every 162.5 years, suggesting that the crustacean-rich 

surfaces (Tf-I) might represent sporadic mass mortality surfaces and condensed sections 

that preserved the crustaceans. 

 

 

 

Figure 3.14. Reconstruction of Archaeochimaera macrophthalma n. gen. n. sp. A-B, composite line drawings in camera 
lucida, showing the appendages, carapace, pleon and sternum.  A, dorsal view.  B, ventral view.  C-D, preliminary digital 
reconstructions. C, dorsal view. D, ventral view.  Two preliminary three-dimensional reconstructions of Archaeochimaera 
are presented in Videos 1-2 (see Appendix) (digital reconstructions and animations by Alex Duque). 
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Paleobiology and Paleoecology 

Raninoida is an extant clade containing tropical and temperate, marine-restricted 

crabs principally adapted to burying in sand or soft sediments (Borradaile, 1903; Bourne, 

1922; Gordon, 1966; Abele and Felgenhauer, 1982; Števčić, 2005). Extant raninoids are 

abundant and widespread around the world but due to their cryptic lifestyle and subtidal 

range (from ~5 to 1000 m depth) (Tucker, 1995), little is known about their behavior and 

ecology. Frog crabs remain buried in the substratum during the day, emerging at night to 

search for food (Skinner and Hill, 1986). Skinner and Hill (1987) noted that Ranina ranina 

display a rapid emerging response towards food. The flattened paddle-like pereiopods 

possessed by most Raninids allow them to dig rapidly backward into the sediment 

(Bellwood, 2002), and occasionally swim. Some inherent advantages of burying are to 

avoid visual detection by predators, as well as from prey allowing ambush predation.  

Gaten (1998) suggested that in Ranina Lamarck, 1801, the relatively small size of the eyes 

reflects an adaptation to its burrowing habit. Raninoids have orbits that are usually 

ornamented with spines, protecting the eyes when they are retracted. The lack of true orbits 

and protective structures associated with the large Archaeochimaera eyes, would have 

prevented the animal from retracting them even under times of stress. 

 

During Cenomanian times, approximately 94 million years ago, Archaeochimaera 

inhabited shallow, micaceous clayish bottoms at the eastern margin of Colombia’s 

epicontinental sea, at paleolatitudes between 5 to 10 degrees North (Feldmann et al., 1999), 

and depths close to 50 m (Villamil, 1998). A NNE-SSW facing epicontinental sea, limited 

on the west by a volcanic arc-trench-system (part of what is today the Central Cordillera), 

and on the east by the Guayana Craton (Mann et al. 1994), covered most of what is today 

the emerged Andean Eastern Cordillera (Villamil, 1998; Villamil and Arango, 1998; 

Cáceres et al., 2005) (Figure 3.1A). Large swarms of small cumaceans inhabited the surface 

of the seabed and buried below the sediment-water interface (Figure 3.3A-B). Extant 

shallow water cumaceans remain buried during the day, and are active at night (Schram, 

1986). Due to their small size, they usually prefer soft bottoms at depths where wave action 
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does not affect them. In addition to the cumaceans and Archaeochimaera, small shrimps 

also dwelled in this benthic habitat, where small fish remains (vertebrae, scales, and spines) 

sporadically enriched the fine-grained sediment. 

 

Although Archaeochimaera would be expected to display burrowing behavior, its 

enlarged paddle-like pereiopods 2 and 3 (Figures 3.4A, D-E; 3.5C, E, G), associated with 

broad sternites 5 and 6 (Figure 3.4A-B, D-G; 3.5E), and dorsally and ventrally keeled body 

(Figures 3.4; 3.5, 3.14), indicates both an agile burrower and active swimmer, while its 

strong P1, spinose mouthparts and specialized eyes appear well suited for predatory 

purposes. The last pereiopods 4-5, reduced, narrow and keeled (Figure 3.5C, E, H), would 

be of low utility for digging, being more useful for steering when swimming by mean of the 

large and flattened first pairs of pereiopods.  It is possible that Archaeochimaera would 

have remained burrowed in the sediment waiting for prey to ambush, and/or that it swam or 

crawled over the sediment by mean of its paddle-like pereiopods. Whatever its lifestyle 

was, Archaeochimaera is expected to have used its large compound eyes actively out of the 

sediment. Given that Archaeochimaera is the largest macrofaunal element found in the 

crustacean-rich layers, the new taxon might have preyed on the abundant small cumaceans. 

Shrimps also may have been included in its diet, but their relatively large size and low 

population density would make them a less frequent prey item, although a larger meal. 
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Conclusions 

The relatively high abundance of well-preserved cumaceans and archaeochimaerid 

crabs might be related to the availability of food, sporadic mass mortality events, low 

scavenging and minimal bacterial decay of corpses, and/or with their benthic burrowing 

lifestyle, increasing the chance of preservation of carcasses and exuviae. It is possible that a 

limited supply of clastic sediments to the basin may have enhanced the accumulation of 

organic remains over short stratigraphic intervals. 

 

The functional morphology of Archaeochimaera macrophthalma n. gen. n. sp., 

particularly the dorsally and ventrally keeled carapace, the broad sternites 5-6, and their 

associated enlarged paddle-like pereiopods 2-3, indicate a lifestyle of agile burrower and 

swimmer that inhabited soft bottoms in relatively shallow, low energy subtidal settings. 

The large and unprotected eyes of Archaeochimaera macrophthalma likely remained above 

the sediment while the animal was buried, and/or were used when swimming to locate food 

items, predators, and conspecifics. The robust and strongly bent chelipeds, and the spinose 

ischium of the pediform Mxp3, are characters well suited for predatory purposes. Both the 

large eyes and pediform Mxp3 might represent neotenic traits retained in the adulthood, as 

specializations for certain dietary habits and/or local ecological pressures.  The longitudinal 

keels on sternite 5 are unique among fossil or extant brachyuran crabs, leaving the question 

of their functionality open but they may have assisted in holding the abdomen against the 

chest, or enhanced the hydrodynamics of the animal. 

 

The early burst of morphological diversification experienced by brachyurans during 

late Jurassic and the Cretaceous times, led to a broader niche occupation than previously 

expected (Schweitzer and Feldmann, 2010b, 2011a; Karasawa et al., 2011). Episodes of 

high global sea levels during the Mesozoic may have promoted the evolution and 

diversification of different burying clades. It is conceivable that within the podotreme 

crabs, the innovation of a fusiform carapace may have evolved more than once (e.g. in 



 

 

 

92

Raninoidea and Archaeochimaeridae), just as it has within Anomura and Brachyura (Figure 

3.11, Table V). This is likely related to their infaunal burrowing lifestyles, with similar 

selective forces acting on the phenotypes and selecting for similar adaptative traits. Other 

examples of trait convergence associated with a burrowing lifestyle may include paddle-

like limbs, reduced posterior sternites and pereiopods, closer coxae of posterior pereiopods 

axially, and an abdomen forced backwards.  Given this scenario and the phylogenetic 

remarks discussed, hypothesis 3 is supported, with Archaeochimaeridae representing an 

independent brachyuran lineage, envisioned as more related to the branch that includes 

clades E, F, and G than to the most primitive podotremes. However, given the many 

diagnostic traits shared with the basal raninoidids, hypothesis 2 is supported to some extent, 

with Archaeochimaeridae interpreted as an early offshoot within the Section Raninoida, and 

standing as sister to the monophyletic superfamily Raninoidea. The fusiform carapace may 

have evolved parallel in distantly related raninoidid taxa sharing similar underlying genetic 

toolkit that permitted to evolve similar traits, probably triggered by similar niche 

occupancy. Therefore, despite the morphological completeness of the new chimaeric taxon, 

its phylogenetic affinity remains uncertain, and further paleontological material and 

cladistic analyses are expected to enhance the phylogenetical resolution. 
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4. CONCLUSIONS 

 

The relatively abundant fossil record of frog crabs displaying strong phenotypic 

disparity permits the examination of general trends in their evolution and diversity 

throughout time. The stratigraphic and paleontological information herein presented 

provides additional evidence that supports the hypothesis of a raninoid-type architecture 

derived from a necrocarcinoid-type ancestor. The former is thus a highly specialized clade 

of advanced podotreme crabs well adapted for a fossorial lifestyle, with an early fossil 

record extending back into the Aptian of the Neotropics, falsifying the hypothesis that 

modern frog crabs represent a primitive brachyuran group reminiscent of an anomuran 

ancestor. 

 

The occurrence of Notopocorystes kerri n. sp. in Aptian rocks (Chapter 1) suggest 

that the evolutionary innovation of elongated carapaces in frog crabs might be rooted in the 

early Cretaceous, or even the late Jurassic. Furthermore, the discovery of the new enigmatic 

family Archaeochimaeridae (Chapter 2), presumably related to the fusiform clade within 

Raninoida, might actually represent an independent evolution of a fusiform body plan 

within early podotreme crabs, convergent with many other anomurans and brachyuran 

clades adapted to similar burrowing habits. It is also plausible that the new taxon represents 

an early raninoidid lineage in which the general morphology evolved in a parallel way to 

the advanced and fusiform raninoid-type clade. 

 

The early Neotropical presence of frog crabs during Cretaceous times is represented 

by the Aptian Planocarcinus olssoni n. comb., (Necrocarcinidae), and Notopocorystes kerri 

n. sp. (Palaeocorystidae) from Colombia. Planocarcinus is one of the oldest known 

necrocarcinids, and N. kerri the oldest known palaeocorystid. In addition, the Albian 

Cenomanocarcinus vanstraeleni Stenzel, 1945, (Cenomanocarcinidae) from Colombia 

(Vega et al., 2010), and Araripecarcinus ferreirai Martins-Neto, 1987 (?Necrocarcinidae) 

from Brazil (Luque et al., in progress), account for some of the oldest, or the oldest, 

occurrences of their families.  The aforementioned taxa, plus the new monotypic family  
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Figure 4.1. Albian raninoids from Northern South America.  A-C, ?Camarocarcinidae, Araripecarcinus 
ferreirai Martins-Neto, 1987, ventral view, lower Albian, Brazil.  A, holotype GP-1T 1477 (photo by Paula 
Sucerquia).  B-C, cast of holotype.  B, specimen showing the roundish carapace outline, the limbs and the 
thoracic sternum (photo by Rodney Feldmann).  C, close-up to the thoracic sternum and the pereiopods.  D, 
Cenomanocarcinidae, Cenomanocrcinus vanstraeleni Stenzel, 1945, hypotype INGEOMINAS-JCR-1, 
upper Albian, Colombia (photo by Francisco Vega).  Body parts in C as follow:  yellow: Mxp3 coxae 
associated to S3;  orange: P1 associated to S4;  blue: P2 associated to S5;  purple: P3 associated to S6;  green: 
P4 associated to S7;  red: P5 associated to S8.  LP1: left cheliped;  P2-P5: pereiopods 2 to 5;  Pl6?: pleonite 
?six;  RP1: right cheliped. 

 

Archaeochimaeridae, from the Cenomanian of Colombia, indicate that many lineages of 

frog crabs and frog-like podotremes were well established, and possibly originated, in 

Cretaceous equatorial Neotropics. 
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As a whole, the morphological diversity held by frog crabs during Early Cretaceous 

times is considerably broader than previously envisioned, and their pre-Albian 

paleogeographic distribution was already extensive. The evolution and diversification of 

Raninoida appears to be coincident with some of the major environmental disturbances in 

the last ~130 My., including high sea levels, Oceanic Anoxic Events, and warmer 

temperatures worldwide. However, correlation does not necessarily proves causation, and 

still little is known about the phenotypic response of most brachyuran crabs to ecological 

pressures associated with particular environmental disturbances during Cretaceous times. 

The problem of understanding the evolution of the group will be accessible with continued 

investigations into their stratigraphic record, phylogenetic affiliations and 

paleobiogeographic patterns. 
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Appendix 

Table I. Updated list of Early Cretaceous families, genera and species within the Section Raninoida Ahyong et al., 2007 (modified after Schweitzer et al., 2010; 
Karasawa et al., 2011). Taxa arranged alphabetically. Ber: Berriasian (~145 to 140 My.). Val: Valanginian (~140 to 136 My.). Hau: Hauterivian (~136 to 130 My.). Bar: 
Barremian (~130 to 125 My.). Apt: Aptian (~125 to 112 My.). Alb: Albian (~112 to 99.6 My.). X: taxon stratigraphic range known for the Early Cretaceous. X?: taxon 
stratigraphic range uncertain. 

 
FAMILY GENUS SPECIES LOCALITY Ber Val Hau Bar Apt Alb 

Cenomanocarcinidae 
Guinot, Vega and 
Van Bakel, 2008 

Cenomanocarcinus 
Van Straelen, 1936 

C. armatus (Rathbun, 1935) Texas, USA      X 

  C. oklahomensis (Rathbun, 1935) Oklahoma, USA      X 
  C. renfroae (Stenzel, 1945) Texas, USA; Colombia      X 
  C. vanstraeleni Stenzel, 1945 Texas and New Mexico, 

USA; Mexico; Colombia 
     X 

Necrocarcinidae 
Förster, 1968 

Araripecarcinus 
Martins-Neto, 1987 

A. ferreirai Marrins-Neto, 1987 Brazil      X 

 Necrocarcinus Bell, 
1863 

N. bedrakensis Levitski, 1974 Crimea      X 

  N. labeschei (Eudes-
Deslongchamps, 1835) 

Great Britain; France      X 

  N. tauricus Ilyin and Alekseev, 
1998 

Crimea      X 

  N. texensis Rathbun, 1935 Texas, USA      X 
  N. undecimtuberculatus Takeda 

and Fujiyama, 1983 
Japan     X  

  N. woodwardi Bell, 1863 Great Britain      X 
 Paranecrocarcinus 

Van Straelen, 1936a  
P. graysonensis (Rathbun, 1935) Texas, USA      X 
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  P. hexagonalis Van Straelen, 
1936 

France X? X? X?    

  P. kennedyi Wright, 1997 South Africa    X   
  P. moseleyi (Stenzel, 1945) Texas, USA      X 
 Planocarcinus n. gen. P. olssoni (Rathbun, 1937) Colombia     X  
 Pseudonecrocarcinus 

Förster, 1968 
P. scotti (Stenzel, 1945) Texas, USA      X 

  P. stenzeli Bishop, 1983 Texas, USA      X 
Palaeocorystidae 
Lőrenthey, in 
Lőrenthey and 
Beurlen, 1929 

Cretacoranina Mertin, 
1941 

C. punctata (Rathbun, 1935a) Texas, USA      X 

 Eucorystes Bell, 1863 E. broderipii (Mantell, 1844) England; France; Swiss 
Jura 

     X 

  E. carteri (M'Coy, 1854) Egland      X 
  E. mangyshlakensis Ilyin and 

Pistshikova in Ilyin, 2005 
Kazakhstan      X 

  E. oxtedensis Wright and Collins, 
1972 

England      X 

  E. platys Schweitzer and 
Feldmann, 2001 

Oregon, USA; British 
Columbia, Canada 

     X 

 Notopocorystes M'Coy, 
1849 

N. bituberculatus Secretan, 1964 Madagascar      X 

  N. kerri n. sp. Colombia     X  
  N. parvus Rathbun, 1935a Texas, USA      X 
  N. stokesii (Mantell, 1844) England      X 
  N. xizangensis Wang, 1981 Lhasa, China; Iran      X 
Raninidae De Haan, 
1839 [in De Haan, 
1833-1850] 

Hemioon Bell, 1863 H. cunningtonni Bell, 1863 England      X 

  H. elongatum (A. Milne 
Edwards), 1862 

England, France, Czech, 
Germany, UK  

     X 
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  H. novozelandicum Glaessner, 
1980 

New Zealand      X 

  H. yanini Ilyin and Alekseev, 
1997 

Crimea      X 

 Raninella A. Milne 
Edwards, 1862 

R. armata Rathbun, 1935 Texas, USA      X 

  R. atava Carter, 1898 England      X 
  R. mucronata Rathbun, 1935 Texas, USA      X 
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Table II. Measurements (mm) of specimens of Archaeochimaera macrophthalma n. gen. n. sp. Maximum 
lengths (L), and maximum widths (W) of chelipeds (P1), pereiopods 2 to 5 (P2-P5), sternal crown (S1-4), 
sternite 5 (S5), sternite 6 (S6), and left and right eyes (Le, Re). 

 
SPECIMEN 

 

P1 P2 P3 P4 P5 S1-4 S5 S6 Le Re 

(L) (L) (L) (L) (L) (L) (W) (L) (W) (L) (W) (L) (W) (L) (W) 

Holotype 

IGM p881215 

9.8 11.1 10.8   2.8 1.8 2.5 2.4 1.6 1.8     

Paratype IGM 

p881196 

7.2 9.5  4.4  2.1 1.4 2.0 2.3 1.2 1.5     

Paratype IGM 

p881206 

10.8 13.4 12.7 6.7 4.7     2.1 2.1     

Paratype IGM 

p881214 

10.6 16.8 15.1 8.6 7.6 3.3 1.9 3.4 4.4 2.7 2.9     

Paratype IGM 

p881219 

 10.2 9.9 5.5 4.0       1.9 2.0 2.0 2.1 

Paratype IGM 

p8812202 

 7.3 7.3   1.2 10.9     1.3 1.1 1.3 1.1 
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Table III. Characters list for 74 morphological characters scored for 2 taxa in outgroup and 36 taxa in ingroup, 
including Archaeochimaeridae n. fam.. (see Appendix Table IV). Character scores: undetermined or not 
preserved (?), inapplicable characters states (-). Base character list provided by Hiroaki Karasawa, and 
modified after Karasawa et al. (2011). 

 
1. Carapace proportions: elongate (0); as long as 
wide or wider (1) 
2. Anterolateral margins: indistinct (0); distinct (1) 
3. Spines or teeth on anterolateral margins: absent 
(0); present (1) 
4. Carapace with well differentiated anterolateral 
and posterolateral margins: absent (0); present (1) 
5. Posterolateral margins: rounded, not defined 
(0); defined (1) 
6. Spines on posterolateral margin: absent (0); 
present (1) 
7. Posterior margin: concave (0); straight (1) 
8. Re-entrants on posterior margin: absent (0); 
present (1) 
9. Orbit: not defined (0); defined (1) 
10. Augenrest:  absent (0); present (1) 
11. Augenrest, if present: shallow (0); deep (1) 
12. Inner orbital angle: not defined (0); defined 
(1) 
13. Upper orbital fissures: absent (0); present (1) 
14. Subhepatic swelling: present (0); absent (1) 
15. Antennal groove: present (0); absent (1) 
16. Cervical groove: distinct (0); indistinct (1) 
17. Postcervical groove: present (0); absent (1) 
18. Branchio-cardiac groove: distinct (0); 
indistinct (1) 
19. Longitudinal ridge or tubercles on branchial 
region: absent (0); present (1) 
20. Cervical or branchio-cardiac groove: reaching 
ventral carapace (0); ending anterolateral margin 
(1) 
21. Intestinal region: very narrow, limited by 
branchio-cardiac grooves (0); wide (1) 
22. Lateral lineae: absent (0); present (1) 
23. Epistominal spine: absent (0); present (1) 
24. Buccal cavern: wide (0); elongated, triangular 
(1) 
25. Thoracic sternum:  narrow (0); wide (1) 
26. Sternites 1-3: indistinct ventrally (0); distinct 
ventrally (1) 
27. Posterior sternites: wide (0); narrow, reduced 
(1) 
28. Lateral position of posterior sternites: not 
visible (0); visible (1) 
29. Episternites: not clearly defined (0); clearly 
defined by grooves (1) 

30. Episternites 4-5: process-like (0); wide (1) 
31. Suture 4-5: only lateral position (0); well 
developed (1) 
32. Suture 5-6: only lateral position (0); well 
developed (1) 
33. Suture 6-7: incomplete (0); complete (1) 
34. Sternite 4 with anteriorly protruded plate: 
absent (0), present (1) 
35. Median line on sternite 8: absent (0); present 
(1) 
36. Sterno-coxal depression: present (0); absent 
(1) 
37. Sterno-abdominal depression: absent (0); 
present (1) 
38. Sterno-abdominal cavity in male: absent (0); 
present (1) 
39. Homolid press-button: absent (0); present (1) 
40. Sella turcica: absent (0); present (1) 
41. Spermatheca: absent (0); present (1) 
42. Spermatheca: if present, paired (0); united (1) 
43. Spermatheca position: if present, back or P3 
coxa (0); anterior to P3 coxa (1) 
44. Aperture of spermatheca: if present, margins 
not raised (0); raised (1) 
45. Abdomen: not folding (0); folding (1) 
46. Abdominal somites: visible dorsally (0); not 
visible (1) 
47. Abdominal pleura: well developed (0); 
reduced (1) 
48. Articulating rings of abdomen: present (0); 
absent (1) 
49. Fusion of abdominal somites and telson in 
male: absent (0); present (1) 
50. Abdominal locking: coxal spine (0); sternal 
lobe (1); absent (2) 
51. Abdominal somite 6 with triangular lateral 
lobes: present (0); absent (1) 
52. Socket on sternite 6: absent (0); present (1) 
53. Telson of male: elongate, much longer than 
wide (0); about as long as wide or wider than long 
(1) 
54. Anterior end of telson, if folding present: 
between Mxp 3 (0); anterior sternite 4 (1); 
posterior sternite 4 (2); behind coxa pereiopods 
(3) 
55. Uropodal plate: absent (0); present (1) 
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56. Male gonopore position: coxal (0); sternal (1) 
57. Female gonopore position: coxal (0); sternal 
(1) 
58. Renal opening of 2nd antennal coxa with 
beak-like structure: absent (0); present (1) 
59. Maxilliped 3: pediform (0); operculiform (1) 
60. Maxilliped 3 much longer than wide: present 
(0); absent (1) 
61. Maxilliped 3 with two plains: absent (0); 
present (1) 
62. Maxilliped 3 with crista dentata: present (0); 
absent (1) 
63. Maxilliped 3 coxa: large, touched (0); small, 
not touched (1) 
64. Palp of maxilliped 3 merus: distal position (0); 
inner-mesial position (1) 
65. Palp of maxilliped 3 merus: different plane 
(0); same level to merus (1) 

66. Pereiopods 2-4 form: normal (0); wide, 
flattened (1) 
67. Pereiopods 4-5 condition: normal (0); P5 
dorsal (1); P4-5 dorsal (2) 
68. Pereiopods 4-5 condition: normal (0); P5 
chelate (1); P4-5 chelate (2) 
69. Pereiopods 4-5 size: normal (0); P5 reduced 
(1); P4-5 reduced (2) 
70. Coxae of pereiopods: elongate, large (0); short 
(1) 
71. Male coxa P5: not modified (0); modified (1) 
72. Male coxa P5: penial tube absent (0); penial 
tube present (1) 
73. Pleopods on segments 3-5 in male: present 
(0); absent (1) 
74. Male second pleopod with exopod: present 
(0); absent (1) 
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Table IV. Character data matrix of brachyuran clades included in the phylogenetic analysis. Taxa indicated by † known as both extant and fossil species, and †† only 
known as fossil. The remaining taxa are only known from extant species. Base character data matrix provided by Hiroaki Karasawa, and modified after Karasawa et al. 
(2011). 

 Character States 

Family 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-74 

Astacidea 0000000000 -000000000 0000001-0-     ---0-10000 0---000002   000-000000     0000000000 0010 

††Eocarcinidae 0000000000  -000000000  000????-??   ?????????? ????00000?   1??-??????   ?????0000?   ???? 

††Archaeochimaeridae 0???110000 -001?01011 ?0??11101(01) 1110?1000? 100?101102 1?030???00 ?010?(01)1021 ???? 

†Homolodromiidae  0000000101 1000000000 0000000000 0000001000 1001100100 0011000100 0000002220 1001 

††Bucculentidae 0000000101 1000000000 000??????? ?????????? ?????????? ?????????? ?????????? ???? 

††Goniodromitidae (01)(01)(01)(01)000101 1000000000 000?0???00 00???010?? ?????0???? ?????????? ?????????? ???? 

††Prosopidae 0000000101 1000000000 000??????? ?????????? ????1?110? 001?0????? ?????????? ???? 

††Tanidromitidae 0000000101 0000000000 000??????? ???0?????? ?????????? ?????????? ?????????? ???? 

††Glaessneropsidae 0000000010 -010000000 000??????? ?????????? ?????????? ?????????? ?????????? ???? 

††Konidromitidae 0000000010 -000000000 000??????? ?????????? ?????????? ?????????? ?????????? ???? 

††Lecythocaridae 1000000010 -010000000 000??????? ?????????? ?????????? ?????????? ?????????? ???? 

††Longodromitidae 0000000001 0000000000 0000000000 0000?0100? ????101100 10110?0?00 0?0??01?10 ???? 

†Dromiidae 1111(01)00010 -000(01)00000 1000000000 0001001000 1011101100 10(01)1(01)00111 0000002220 01(01)1 

†Dynomenidae 1111100010 -001100(01)00 10000(01)0000 0000001000 100110110(01) 0001100111 00(01)0001110 1000 

†Sphaerodromiidae 1111(01)00010 -0011(01)(01)(01)00 1000000000 0001001000 1001101100 0011100111 0000002220 1000 

††Diaulacidae 1111000010 -001101(01)00 1000010000 000000100? 100?10110? 100?0????? ?????01?10 ???? 

††Xandarocarcinus  1111100010 -001101100 10000100?? ???0??100? ????111100 1?11000?11 0?0??00000 ???? 

††Basinotopidae  0111000010 -000000000 1000000000 000100100? 1001100100 000?1?0?10 000??02?20 ???? 

†Homolidae 0000000101 0000001000 (01)110110001 0010101010 1000101100 11(01)00000 (01)00(01)10001110 0011 

Latreilliidae 0000000000 -000001000 1010110001 0010101010 1000101100 1100000000 0110001110 0011 

†Poupiniidae  0000000001 0000001000 1010110001 0010101010 1000101100 1100000000 0010001000 0011 
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Mithracitidae 0100000001 0000001000 10100100?? ???0?0101? ????101100 11000???11 001??01?10 ???? 

††Etyidae 1111000010 -111101000 1000010001 110001100? 1000101101 1002000?11 0110102?20 0??? 

††Dakoticancridae 1101101010 -001101(01)01 1000(01)10101 110001(01)(01)0? 1000101101 1002000?11 0110101?11 0??? 

††Ibericancridae 1101101010 -011101001 1000010101 110001100? 1000101101 1002000?11 0110102?21 0??? 

†Raninidae 01(01)0101010 -111111101 1001011(01)01 111011(01)000 110010110(12) 1(01)03000010 11111110(01)0 0011 

Symethidae  0100101010 -111111101 1001011101 1110111000 1100101102 1003000010 1111111010 0011 

††Camarocarcinidae 1111110010 -1111(01)1(01)0(01) 1001010?01 110001100? ?????0???? ?0???0??10 111??????? ???? 

††Cenomanocarcinidae 11111(01)(01)010 -1111(01)1(01)11 1001010001 111001100? 1000101101 1002000?10 11101(01)1010 ???? 

††Necrocarcinidae 11111(01)(01)010 -111101(01)1(01) 1001010001 111001100? ????101101 1002000?10 111???1??0 ???? 

††Palaeocorystidae 0111100010 -1111(01)1(01)(01)(01) 1001010001 111001100? 1000101102 1002000?10 1110111010 0??? 

†Cyclodorippidae 11(01)(01)000010 -(01)11101001 1001110101 1110010100 1000101112 1003000010 1111102221 0011 

†Cymonomidae 10(01)(01)000000 -001101001 1001110101 1110010100 1000101112 1003000010 1111102221 0011 

Phyllotymolinidae  1111(01)00010 -(01)11101001 1000110101 1110010100 1000101102 1002000010 1111102221 0011 

††Torynommidae 1000000010 -000101000 1000010001 110001100? ????10110 ?10020?0?? ??11???2?20 ???? 

††Goniochelidae 1111100010 -111101011 1000110?11 11?0?101?? 0--?101102 1?0?0?1?1? 011??02?2? ???? 

†Carcinidae 1111101010 -111111101 1000110111 1100110101 0---111102 1102001011 0110100001 0011 

†Varunidae 1111101010 -001111101 1000110111 1100110101 0---111102 1101011011 0110100001 0011 
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Table V. Convergent superfamilies and families of extant anomurans and brachyurans. Systematic 
arrangement following the works of De Grave et al., 2009, and Schweitzer et al., 2010. Taxa indicated by † 
are known as both extant and fossil species. 

 
Infraorder Anomura MacLeay, 1838.  

SUPERFAMILY GALATHEOIDEA † Samouelle, 1819  
Family Porcellanidae † Haworth, 1825  
 

SUPERFAMILY HIPPOIDEA † Latreille, 1825a 
Family Albuneidae † Stimpson, 1858d  
Family Blepharipodidae † Boyko, 2002  
Family Hippidae Latreille, 1825a  

 
Infraorder Brachyura Linnaeus, 1758 

SUPERFAMILY RANINOIDEA † De Haan, 1839 [in De Haan, 1833-1850]  
Family Raninidae † De Haan, 1839 [in De Haan, 1833-1850]  
Family Symethidae Goeke, 1981 

 
SUPERFAMILY CORYSTOIDEA † Samouelle, 1819  

Family Corystidae † Samouelle, 1819  
 

SUPERFAMILY PORTUNOIDEA † Rafinesque, 1815  
Family Thiidae † Dana, 1852c



 
 

 

 


