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Résumé 
 

La protéine AID (déaminase induite par l’activation) joue un rôle central dans la 

réponse immunitaire adaptative. En désaminant des désoxycytidines en désoxyuridines au 

niveau des gènes immunoglobulines, elle initie l’hypermutation somatique (SHM), la 

conversion génique (iGC) et la commutation isotypique (CSR). Elle est essentielle à une 

réponse humorale efficace en contribuant à la maturation de l’affinité des anticorps et au 

changement de classe isotypique. Cependant, son activité mutagénique peut être oncogénique et 

causer une instabilité génomique propice au développement de cancers et de maladies 

autoimmunes. Il est donc critique de réguler AID, en particulier ses niveaux protéiques, pour 

générer une réponse immunitaire efficace tout en minimisant les risques de cancer et d’auto-

immunité. Un élément de régulation est le fait qu’AID transite du cytoplasme vers le noyau 

mais reste majoritairement cytoplasmique à l’équilibre. AID est par ailleurs plus stable dans le 

cytoplasme que dans le noyau, ce qui contribue à réduire sa présence à proximité de l’ADN. 

Le but de cette thèse était d’identifier de nouveaux partenaires et déterminants d’AID 

régulant sa stabilité et ses fonctions biologiques. Dans un premier temps, nous avons identifié 

AID comme une nouvelle protéine cliente d’HSP90. Nous avons montré qu’HSP90 interagit 

avec AID dans le cytoplasme, ce qui empêche la poly-ubiquitination d’AID et sa dégradation 

par le protéasome. En conséquence, l’inhibition d’HSP90 résulte en une diminution 

significative des niveaux endogènes d’AID et corrèle avec une réduction proportionnelle de ses 

fonctions biologiques dans la diversification des anticorps mais aussi dans l’introduction de 

mutations aberrantes. Dans un second temps, nous avons montré que l’étape initiale dans la 

stabilisation d’AID par la voie de chaperonnage d’HSP90 dépend d’HSP40 et d’HSP70. En 

particulier, la protéine DnaJa1, qui fait partie de la famille des protéines HSP40s, limite la 

stabilisation d’AID dans le cytoplasme. La farnésylation de DnaJa1 est importante pour 

l’interaction entre DnaJa1 et AID et moduler les niveaux de DnaJa1 ou son état de farnésylation 

impacte à la fois les niveaux endogènes d’AID mais aussi la diversification des anticorps. Les 

souris DNAJA1-/- présentent une réponse immunitaire compromise en cas d’immunisation, qui 

est dûe à des niveaux réduits d’AID et un défaut de commutation de classe. Dans un troisième 

temps, nous avons montré que la protéine AID est intrinsèquement plus instable que ses 
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protéines paralogues APOBEC. Nous avons identifié l’acide aspartique en seconde position 

d’AID ainsi qu’un motif semblable au PEST comme des modulateurs de la stabilité d’AID. La 

modification de ces motifs augmente la stabilité d’AID et résulte en une diversification des 

anticorps plus efficace. 

En conclusion, l’instabilité intrinsèque d’AID est un élément de régulation de la 

diversification des anticorps. Cette instabilité est en partie compensée dans le cytoplasme par 

l’action protective de la voie de chaperonnage DnaJa1-HSP90. Par ailleurs, l’utilisation 

d’inhibiteurs d’HSP90 ou de farnésyltransférases pourrait être un outil intéressant pour la 

modulation indirecte des niveaux d’AID et le traitement de lymphomes/leucémies et de 

maladies auto-immunes causés par AID. 

 
Mots-clés : Déaminase induite par l’activation (AID); hypermutation somatique; commutation 

de classe; lymphocyte B; diversification des anticorps; protéines de choc thermique (HSP40 

/HSP90); stabilité protéique; 
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Abstract 

 

Activation induced deaminase (AID) plays a central role in adaptive immunity. AID 

deaminates deoxycytidine to deoxyuridine in defined regions of the immunoglobulin (Ig) genes 

and initiates somatic hypermutation (SHM), gene conversion (iGC) and class switch 

recombination (CSR). While being essential for an effective immune response by underpinning 

antibody affinity maturation and isotype switching, the mutagenic activity of AID can also be 

oncogenic and causes genomic instability leading to the development of cancer, or exacerbate 

autoimmune diseases. Therefore, AID regulation, including the control of its protein level, is 

central to balancing effective immunity with cancer/autoimmunity. Notably, AID shuttles 

between the cytoplasm and the nucleus but is predominantly cytoplasmic at steady-state, with 

cytoplasmic AID being much more stable than nuclear AID. These regulatory steps contribute 

to limit the exposure of the genome to AID but their mechanisms are unknown. 

This thesis aimed at identifying AID partners and intrinsic determinants regulating its 

stability and modulating its biological functions. Firstly, we identified AID as a novel HSP90 

client protein. We demonstrated that HSP90 interacts with AID in the cytoplasm and prevents 

its polyubiquitination and subsequent proteasomal degradation. Consequently, HSP90 

inhibition results in a significant reduction of endogenous AID levels and correlates with a 

proportional reduction in both AID-mediated antibody diversification and off-target mutations. 

Secondly, we showed that the first step in the HSP90 molecular chaperoning pathway and 

stabilization is the interaction of AID with the HSP40 and HSP70 system. In fact, a specific 

HSP40 protein, DnaJa1, is the limiting step in cytoplasmic AID stabilization. DnaJa1 

farnesylation is required for DnaJa1-AID interaction and modulation of DnaJa1 levels or its 

farnesylation impacts endogenous AID levels and antibody diversification. In vivo, DnaJa1-

deficient mice display compromized response to immunization, resulting from reduced AID 

protein levels and isotype switching. Thirdly, we found that AID is intrinsically less stable 

than its APOBEC paralogs. We identified the AID N-terminal aspartic acid residue at position 

two and an internal PEST-like motif as destabilizing modulators of AID protein turnover. 

Disruption of these motifs increases AID protein stability and antibody diversification. 
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We conclude that AID’s intrinsic instability directly contributes to regulating antibody 

diversification. This intrinsic instability is at least partially compensated for in the cytoplasm by 

the protective action of the DnaJa1-HSP90 molecular chaperoning pathway. Pharmacologically 

targeting AID in an indirect way, by using HSP90 or farnesyltransferase inhibitors, could be 

relevant for treating some AID-associated lymphomas/leukemias and/or autoimmune diseases. 

 

Keywords : Activation-Induced Deaminase (AID); B-lymphocyte; Antibody gene 

diversification; Somatic hypermutation; Class switch recombination; Humoral immunity; 

HSP90; HSP40/DnaJa1; protein stability. 
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 CHAPTER 1: INTRODUCTION



2 

 

 

1.1. Antibody diversification during B cell development 

The immune system is composed of both an innate and adaptive arms that together 

protect the body from infections (bacterial, parasitic, fungal, and viral) and from the 

development of tumour cells [1]. While the innate immune system is programmed to detect 

invariant features of invading pathogens, therefore considered as non-specific, the adaptive 

immune system, which is composed of both T (Thymus-derived) and B (Bursal or Bone 

marrow–derived) lymphocytes, uses antigen (Ag)-specific receptors and is highly specific. We 

are mainly interested in B lymphocytes, which are a cell lineage characterized by the presence 

of cell surface immunoglobulin (Ig) receptors, also called antibodies, recognizing specific 

antigenic epitopes [2]. Plasma B cells can secrete antibodies to neutralize and eliminate 

invading pathogens. This antibody-mediated immune response is known as the humoral 

immune response.  

 

1.1.1. Immunoglobulin gene organization and antibody structure 

An antibody molecule is composed of four polypeptide chains: two identical heavy 

(IgH) chains and two identical light (IgL) chains that are linked through disulfide bonds [3]. 

The IgH and IgL chains contain distinct structural domains of ~110 amino acids in length. The 

IgL chain is composed of two of these domains while the IgH chain can display up to five 

different domains. The N-terminal domain of each chain is unique in that it contains three 

highly variable regions in length and sequence and is therefore designated as the variable (V) 

region. Together, the two IgH and IgL chains display six hypervariable loops, termed 

complementary determining regions (CDRs), which form a unique surface for recognition and 

binding to specific antigenic epitopes [4]. Each Ig molecule contains two identical Ag-binding 

sites. 

The C-terminal domain(s) of each IgH and IgL are constant, and those of the IgH define 

the antibody isotype. Two different C-terminal domains can be found in IgL, termed lambda (λ) 

and kappa (κ). However, each single B lymphocyte can only express one type of IgL chain. In 

humans, IgLκ and IgLλ are encoded on two different loci (chromosome 2 and 22 respectively). 



3 

 

 

 

The κ/λ ratio has a potential clinical value, as the kappa-IgL is usually preferred over lambda 

(2:1) in healthy adults [5] and an irregular ratio is an indicator of autoimmune disease, multiple 

myeloma or B-cell lymphoma [6-8].  

The class and the effector functions of an antibody molecule are defined by the 

structure of its IgH C-terminus. Five major classes of IgH exist and define nine different 

isotypes in humans: μ (IgM), δ (IgD), γ (IgG1, 2, 3 and 4), α (IgA1 and 2), and ε (IgE) (Figure 

1.1). The IgH locus is found on chromosome 14 in humans. Mice differ from humans in that 

they have only one IgA isotype and their IgG nomenclature is slightly different (IgG1, 2a, 2b 

and 3). B cells that have successfully rearranged their Ig genes (see section 1.1.2.) initially 

express membrane IgM and/or IgD. IgM molecules can be secreted as oligomers (pentamers or 

hexamers): they are formed through the generation of inter-molecular disulfide bonds and can 

be found in complex with the J chain, which is required for the secretion of IgM pentamers in 

the mucosa. IgM is the main class of Ig secreted during a primary immune response. Its 

oligomeric state confers high avidity to IgM (up to 12 antigenic binding sites) and is 

particularly important in activating the complement system. On the other hand, IgD is only 

found in a monomeric state and its functions are enigmatic. Recent evidence suggests that 

circulating IgD is important in the immune surveillance of the upper respiratory mucosa by 

modulating basophil function [9]. IgG is the most abundant class of antibodies in the serum and 

the most versatile with regards to its functions. In fact, it is the main Ig secreted during a 

secondary immune response. IgGs are found as monomers and cross easily the placenta (except 

IgG2), conferring protection to the foetus in utero. They usually display high affinity for a 

specific antigenic epitope and are primarily implicated in opsonisation, neutralization of 

pathogens and activation of the complement. Despite their close similarity in amino acid 

sequence, IgG subclasses display specific features which have been attributed to their selective 

binding to Fc receptors [10-12]. IgA plays a major role in mucosal immunity and can exist as a 

dimer in complex with the J chain, called secretory IgA (sIgA) [13]. In its polymeric form, IgA 

is the main Ig found in mucosal secretions, milk, colostrum, tears and saliva. Monomeric IgA 

(mainly IgA1) is also found in the serum. IgA, by preventing the invasion of pathogens through 

the mucosal-associated lymphoid tissues (MALT), has been intensively studied to develop 
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news of ways of vaccination. Finally, IgE is a monomeric antibody, prominently found in 

epithelia and mucosa, where it binds to specific receptors on highly potent effectors cells [14]. 

IgE is implicated in the immune response against helminths through the recruitment of 

eosinophils and monocytes. IgE antibodies can also cause an immediate hypersensitivity 

syndrome via the activation of mast cells and basophils. Therefore, IgE is a central player in 

allergic reactions such as asthma.   

 

1.1.2. V(D)J recombination 

To achieve nearly universal Ag recognition, vertebrates have developed a series of 

genetic alterations that target the Ig genes. During B cell development in the bone marrow, the 

variable region of the IgH and IgL is assembled from a large number of variable (V), diversity 

(D), and joining (J) gene segments, a process called V(D)J recombination (Figure 1.1). This 

reaction is catalyzed by the recombination-activating genes 1 and 2 (RAG1 and RAG2), which 

together form the RAG endonuclease and are sufficient in vitro [15, 16] and necessary in vivo 

[17, 18] for the cleavage step of V(D)J recombination. The joining of V, D and J segments is 

achieved through the generation of a site-specific DNA double-strand break (DSB) at the 

border of two coding segments in their flanking recombination signal sequences (RSSs). The 

RSSs contain two well-conserved DNA elements (heptamer and nonamer) separated by a 

spacer region. They are recognized by the RAG endonuclease complex that cleaves the DNA 

between the coding sequence and the RSS, thus creating DNA DSBs. V(D)J recombination is 

achieved by the repair of these DSBs through the non-homologous end-joining pathway 

(NHEJ) (reviewed in [19]).The final stage of B cell development is characterized by the 

expression of a functional Ag receptor (B cell receptor; BCR) at the B cell surface surface 

(Figure 1.2). This immature B cell only expresses surface IgM molecules and undergoes 

negative selection by testing its capacity to recognize self-molecules present in the bone 

marrow. Immature B cells activated by self-Ags are eliminated through clonal deletion. Non-

self reactive B cells can then migrate in the peripheral lymphoid organs and become mature B 

cells (Figure 1.2). V(D)J recombination generates the diversity of the primary repertoire of 

antibodies in different ways. Firstly, the large number of gene segments and their random 

joining give rise to a consequent combinatorial diversity. Secondly, additional diversity can 
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arise from nucleotidic processing of the DNA ends occurring during the recombination events 

which bring the V next to the J or D segment. This junctional diversity, combined to the 

insertion of a series of nucleotides between the D and J segments catalyzed by the terminal 

deoxynucleotide transferase (TdT), also contributes to the diversification of the antibody 

repertoire [20, 21]. Thirdly, the association of different IgH and IgL chains also contributes to 

the diversity of combinations.  

 

1.1.3. Antibody diversification during the germinal-center reaction 

Mature B cells continuously circulate through the secondary lymphoid organs and 

encounter Ags in the lymphoid follicles. The first cognate antibody-Ag recognition of naïve B 

cells is usually not of high affinity. This endows the immune system with enough flexibility to 

recognize almost any possible Ag using a large but limited primary repertoire. By contrast, high 

affinity antibody-Ag interactions are critical for neutralizing or disposing of Ags. Thus, there 

are additional mechanisms to change the antibody genes. Upon activation by a cognate Ag, 

follicular B cells initiate the germinal center (GC) reaction (Figure 1.2). This reaction is 

considered to be the starting point of a T-cell dependent humoral immune response, although 

certain reports suggest that GCs may also be formed during T-cell independent responses [22, 

23]. However, in general, non-protein Ags, including polysaccharides, glycolipids, and nucleic 

acids, induce a T-cell independent antibody response, consisting mainly in the activation of 

marginal zone B cells (MZ) and the subsequent secretion of low affinity IgM and IgG3 

antibodies [24, 25].  

Upregulation of the chemokine receptor CCR7 on activated B cells is the starting point of the 

GC reaction [26], leading to the migration of activated B cells from primary follicles to the T 

zone where they become distributed along the B/T border [27]. This facilitates the interaction 

between follicular helper T cells (TH) and B cells and results in an extensive B cell 

proliferation and the formation of GCs [28]. In fact, GCs are composed of proliferating Ag-

specific B cells, Tfh cells and specialized follicular dendritic cells [29]. The costimulatory 

molecule CD40, which is constitutively expressed at the B cell surface, and its ligand CD40L 
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(CD154), which is expressed on activated TH cells, play a crucial role in the formation of GCs 

[30, 31]. During the GC reaction, B cells undergo diversification of the genes encoding for IgH 

and IgL by the mechanisms of somatic hypermutation (SHM) and antibody class switch 

recombination (CSR), which underpin antibody affinity maturation and isotype switching. 

Furthermore, GC B cells differentiate into high-affinity antibody-secreting plasma cells as well 

as into memory B cells, which ensure a sustained immune protection and a rapid response 

against previously encountered Ags. 

 

1.1.3.1. Somatic hypermutation  

SHM consists in the introduction of point mutations in the Ig variable exon (VDJ or VJ 

region) [32-34] (Figure 1.1). The mutations introduced are predominantly single base pair 

changes, although insertions and deletions have also been reported [35]. All four bases (A, T, G 

and C) are targeted for mutation; A:T and C:G pairs are targeted with comparable frequencies, 

at least in humans and mice. Nevertheless, neither the targeting of individual bases nor the 

nature of the substitution are random: mutations at A:T pairs preferentially occur if the A is 

present in the coding strand and transition mutations (A to G or C to T) usually occur twice as 

frequently as transversions (reviewed in [36, 37]). Furthermore, a high proportion of the 

mutations occurs in the hotspot motif DGYW (where D=A/G/T, Y=C/T, W=A/T) or its reverse 

complement sequence WRCH (R=A/G, H=T/C/A) [38-40]. Finally, specific domains in the 

IgV region encoding the amino acids constituting the Ag binding sites (CDR domains) are 

more targeted than others [41].   

This mutagenic process depends on a B cell specific factor, activation-induced 

deaminase (AID), which initiates SHM by deaminating deoxycytidine into deoxyuridine in the 

IgV region [42-45] (Figure 1.3). The introduction of a uracil, which is a foreign base for DNA, 

can be processed in two ways [36, 37]. The introduced uracil can either be replicated over to 

produce C to T transitions or processed by components of the base excision repair pathway 

(BER) (Figure 1.3). The uracil can be excised by uracil-DNA glycosylase UNG, leaving an 

abasic site that is repaired in an error-prone manner through the recruitment of translesion 

polymerases [46, 47]. 
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Figure 1.1. Human IgH gene organization. The IgH locus is composed of several V, D and J 

segments that encode part of the functional IgV region of an antibody molecule after RAG-

catalyzed VDJ recombination. The IgH region is composed of several constant region (C) exon 

sets, each coding for a different isotype: Cμ (IgM), Cδ (IgD), Cγ3 (IgG3), Cγ1 (IgG1), Cγ2 

(IgG2), Cγ4 (IgG4), Cε (IgE) and Cα (IgA). Each C region is preceded by a switch region (S), 

where transcription takes place to generate AID ssDNA substrate. The AID-catalyzed dC>dU 

are processed by DNA repair enzymes resulting in DNA double-strand breaks that are 

intermediates for class switch recombination. CSR occurs between the Sμ region and a 

downstream S region (f.i. here Sγ1), which results in the switching from IgM to IgG1. The 

intervening DNA region that is eliminated upon CSR is predominantly released as a circular 

episome called a switch circle. Somatic hypermutation consists in the introduction of point 

mutations in the rearranged IgV region. Gene conversion is an alternative IgV diversification 

process that is used by birds and cattle species, consisting in the transfer of random stretches of 

adjacent pseudo-genes into the rearranged IgV region. SHM, CSR and iGC are initiated by 

AID. 
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This process produces both transition and transversion mutations. Alternatively, the U:G 

mistmatch can be recognized by components of the mismatch repair pathway (MMR), notably 

MSH2 and MSH6, that recruits the exonuclease EXO1 and DNA polymerase η, which 

preferentially generates mutations at A:T pairs (Figure 1.3). Inactivation of BER components 

(f.i. UNG [48-50] and XRCC1 [51]), of certain error prone DNA polymerases [52-56], or of 

key players in the MMR system [57-66] affect the pattern or frequency of SHM. A:T 

mutagenesis during the diversification of the IgV region also requires the ubiquitination of the 

proliferating cell nuclear antigen protein (PCNA) [67-69] and both the UNG- and the MSH2-

dependent pathways seem to depend on this intermediate [70]. Although many details are still 

unclear, SHM of the IgV region is achieved through DNA deamination, processing of the uracil 

and introduction of point mutations during the repair of abasic sites or single-stranded DNA 

tracts.  

During the GC reaction, antibody variants produced by SHM are selected for improved 

Ag recognition. This selection process underlying affinity maturation consists in a stepwise re-

entry model, where the B cell undergoing cell division and SHM in the dark zone of the GC can 

migrate to the light zone, where it interacts with Ag-presenting dendritic cells and TH cells. B 

cells expressing high-affinity antibodies at their surface are preferentially selected and can re-

enter the cycle of proliferation, mutation and subsequent selection. A large number of cells fail 

this selection, enter into apoptosis and are eliminated by a subset of macrophages that reside in 

the GCs [29] (Figure 1.2). 

 

1.1.3.2. Gene conversion 

In many farm animals, diversification of the antibody repertoire is achieved by both SHM and a 

process called IgV gene conversion (iGC). The best model to study iGC is the chicken Ig loci. 

Chicken have a single functional light chain V segment (Vλ), which recombines with a single 

Jλ segment, thus limiting the primary repertoire of antibodies generated by RAG-mediated VDJ 

recombination [71-74]. However, during B cell development in the bursa of Fabricius of avian 

species, the rearranged IgV undergoes an additional step of diversification, the iGC [71, 75]: 

during iGC, random stretches of adjacent pseudo-genes are recopied onto the rearranged IgV 
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region by homologous recombination (Figure 1.1). Indeed, the chicken Ig loci are composed of 

a large number of pseudo-gene segments that precede the rearranged IgV region [71]. In this 

case AID also contributes to the primary diversification of the antibody repertoire by initiating 

iGC (Figure 1.1) [76, 77]. Pseudo-genes that are more homologous, closer, or in the opposite 

orientation to the IgV segment, are usually preferred as donors [71, 78]. The IgV region is 

subsequently diversified by both iGC and SHM during the GC reaction in chicken [79, 80].    

iGC has been extensively studied in the chicken DT40 B cell lymphoma line, which 

continuously diversifies its Ig loci by iGC in vitro. Disruption of the AID gene (Aicda) in this 

cell line completely blocks iGC [76, 77]. Thus, although iGC and SHM are two distinct 

processes, they are both initiated through a common intermediate (i.e. AID-catalyzed 

deamination of deoxycytidine into deoxyuridine) and share similarities [81]. UNG mediates the 

major pathway to create abasic sites which in some way trigger homologous recombination [76, 

77, 81] (Figure 1.3). In contrast to SHM [49], UNG inactivation almost completely abrogates 

iGC in the DT40 cell line [82]. Completion of iGC requires the RAD51 paralogs XRCC2 and 

XRCC3 or RAD51B and BRCA2 to promote the transfer of sequence information from an 

upstream donor pseudogene to the IgV region [83, 84] (Figure 1.3). Several lines of evidence 

also suggest that the MRE11-RAD50-NBS1 complex (MRN) is implicated in iGC [85, 86]. 

Chicken B cells not only diversify their IgV region by iGC but also accumulate untemplated 

mutations during the GC reaction in peripheral lymphoid organs.  

 

1.1.3.3. Class switch recombination 

Activated B cells, which express IgM and/or IgD at their surface, also undergo class 

switch recombination (CSR) during the GC reaction. CSR consists in the exchange of the 

default Cμ constant region to another downstream constant region (γ, ε or α) and results in the 

expression of a different isotype of antibody (IgG, IgE or IgA) with different effector functions 

(Figure 1.1). AID also initiates CSR [42, 43] through deamination of deoxycytidines in switch 

regions, which are repetitive sequences preceding each constant region (except Cδ). Switch 

regions are enriched in AID hotspot motifs and are preferentially targeted by this enzyme. AID- 
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Figure 1.2. The germinal center reaction. Rearrangement of the IgV region takes place in the 

bone marrow and results in the expression of functional IgM and IgD molecules at the B cell 

surface. Low expression of AID has been reported in this compartment, which plays a role in 

central tolerance. In the peripheral lymphoid organs, antibody gene diversification in mature B 

cells takes place in the GC in the form of somatic hypermutation (SHM), which underpins 

affinity maturation, and class switch recombination (CSR), which changes the isotype of the 

antibody. Upon presentation of an Ag by specialized Ag presenting cells (APC), mature B cells 

are activated and undergo the GC reaction, controlled by follicular helper T cells (TH). B cells 

proliferate extensively and are subsequently selected for a better Ag affinity by APC. B cells 

that fail this positive selection die by apoptosis. The selected B cells can undergo additional 

rounds of diversification or differentiate into memory or plasma cells.  
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generated uracils are subsequently removed by UNG [48, 49, 87] and the apurinic/apyrimidinic 

endonucleases APE1 and APE2 [88], leading to DNA DSBs (Figure 1.3). Alternatively, uracils 

can be recognized as U:G mismatches by the MMR pathway (Figure 1.3). The MSH2/MSH6 

complex in collaboration with MLH1/PMS2 recruits the exonuclease Exo1, which can also 

generate a DSB intermediate [89]. Indeed, disruption of genes involved in BER (ung, ape1 or 

ape2) [48-50, 87, 88] or in MMR (Msh2, Msh6, Mlh1, Pms2, Exo1) [59, 63, 90-94] inhibits 

CSR. In absence of both UNG and MSH2, CSR is in fact completely abolished [95], indicated 

that both the BER and MMR pathways contribute to CSR. 

Early sensors of DNA DSBs are required to coordinate the downstream repair pathways leading 

to CSR. The MRN complex, which travels along DNA and scans for DNA breaks, is present 

within seconds at the site of DSBs [96]. As expected from its central role in sensing DNA 

damage and CSR, mutations affecting MRE11 and NBS1 cause immunodeficiency, 

chromosomal instability and a high incidence of lymphoid malignancies, which are 

characteristics of the Nijmegen breakage syndrome [97]. Patients affected by this syndrome 

exhibit reduced levels of CSR to IgA in vivo, which is recapitulated in Nbs1-haploinsufficient 

mice that display a two- to three-fold reduction in CSR in vitro [98, 99]. Once bound to the 

DSB, the MRN complex recruits the ataxia telangiectasia mutated kinase (ATM), which 

becomes activated and phosphorylates several substrates including NBS1, MRE11, 53BP1, 

MDC1 and γ-H2AX [100]. Ablation in mice of ATM, or its interactor protein ATMIN, 

compromise CSR in vitro [101-103], and results in patients in a rare immunodeficiency 

disorder as well as a predisposition to cancer (ataxia–telangiectasia syndrome) [104]. 

Moreover, mice deficient in 53BP1, H2AX, MDC1, or the ubiquitination machinery 

RNF8/RNF168, which is critical to propagate the DNA damage signal [105], display 

compromised CSR in vitro [106-110]. Interestingly, most of these sensors are abundantly 

expressed in a constitutive manner in the B cell lineage [111, 112]. This is thought to contribute 

to a repair-prone environment that renders activated B cells less susceptible to DNA damage-

induced apoptosis. The DNA DSBs are resolved by a “region-specific” recombination process 

involving the donor and acceptor S regions. It occurs through the recruitment of ubiquitous 

proteins from the classical non-homologous end-joining pathway (C-NHEJ), including  
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Figure 1.3. Differential processing of AID-catalyzed dU lesions leads to SHM, iGC or CSR. 

AID deaminates deoxycytidines in the Ig loci leading to U:G mismatches that can be either 

replicated over, processed by the uracil-DNA glycosylase (UNG) or recognized by the 

mismatch repair proteins MSH2/6. UNG or MSH2/6 cooperate with distinct sets of DNA repair 

factors that will result in mutations for SHM and IgV gene conversion or DNA double-strand 

breaks and repair for CSR. SHM can be divided into several pathways, depending on the type 

of mutations introduced. Similarly, DNA DSBs can be repaired by either the classical (C-) or 

alternative (A-) non-homologous end-joining pathways (NHEJ). Adapted from [36]. 
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Ku70/80, DNA-PKcs, XRCC4 and DNA ligase IV (Figure 1.3). Studies in mice have shown 

that Ku70 and Ku80 are essential for CSR [113, 114], while XRCC4 is important but not 

essential for CSR [115]. DNA-PKcs is also implicated in CSR [116-119], but has a redundant 

role with ATM [120]. The fact that the Ku70/80 complex is essential for CSR, but not XRCC4 

or DNA ligase IV, suggested the contribution of an alternative pathway for the resolution of the 

DSBs [115, 121-123]. In fact, Ku70 collaborates with the DNA end-processing factor CtIP, 

ATR (ATM and Rad3-related protein) and the DNA damage sensor PARP1 to promote an 

alternative end joining pathway (A-NHEJ) that makes more frequent use of microhomology at 

the ends for resolving the DSB [124-126] (Figure 1.3). The factors composing the A-NHEJ 

pathway are still under investigation. Resolution of the DSB by C-NHEJ or A-NHEJ ensures 

IgH loci functionality and allows the expression of an antibody with the same specifity but a 

new isotype with different effector functions. 

GC B cells are particularly interesting since they have to balance extensive DNA 

damage and apoptosis. B cells upregulate or express at high levels a series of proteins 

implicated in the MMR, BER and DNA damage sensing to be protected from DNA damage-

induced apoptosis [111, 127-129]. Activated GC B cells also express a transcriptional 

repressor, BCL6 [130, 131], which negatively regulates DNA damage response and check point 

genes [132-136]. Altogether, GC B cells generate an anti-apoptotic environment to favour the 

diversification of the Ig loci and limit DNA-damage induced apoptosis. Nonetheless, they 

become more susceptible to extrinsic apoptosis induced by negative selection in order to 

eliminate non-productive mutations [137].    

 

1.2. AID and its physiological functions 

1.2.1. The AID/APOBEC family 
AID is a member of a family of cytidine deaminase-related enzymes comprising 

APOBEC1, APOBEC2, the APOBEC3 group, APOBEC4 and the recently identified 

APOBEC5 (Figure 1.4) [138, 139]. The AID/APOBEC proteins have the unique capacity of 
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deaminating (deoxy)cytidine in DNA and/or RNA, thus converting it into (deoxy)uridine 

(reviewed in [140]). They also exhibit diverse physiological functions. AID and its paralogs 

APOBEC share the structural and catalytic backbone of the zinc-dependent deaminases that are 

involved in the metabolism of purines and pyrimidines (Figure 1.4). It is composed of two 

motifs H(A/V)E and PCxxC (where x is any amino acid) separated from each other by 24-36 

amino acids [140]. The histidine (H) and the two cysteines (C) coordinate a zinc atom and form 

the catalytic core of the deaminase. During the deamination reaction, the cytidine is bound in 

this pocket and a nucleophilic attack on the NH2 in its carbon 4 occurs. The nearby glutamic 

acid residue (E) serves as the proton donor while a water molecule serves as an activator in this 

reaction [141]. 

The AID/APOBEC group appeared with the vertebrate lineage and the evolution of 

adaptive immunity. AID and APOBEC2 are thought to be the ancestral members of the 

AID/APOBEC group, although the RNA-editing APOBEC1 enzyme was the first member to 

be discovered and characterized [142] (Figure 1. 4).  

APOBEC2 and APOBEC4 functions remain elusive. APOBEC4 is primarily expressed 

in testis but its function is unknown [143]. APOBEC2 has been reported to be expressed 

specifically in skeletal and cardiac muscle [144, 145], although broader analysis suggested a 

low but ubiquitous expression of APOBEC2 in human and mouse [146]. Little is known about 

APOBEC2 substrates or its physiological functions. Its deamination activity is in fact 

controversial [145, 147] and Apobec2-deficient mice display no developmental, survival or 

fertility problems [147]. There is genetic evidence supporting a role of APOBEC2 in muscular 

development [148]. Knockdown of Apobec2 in zebrafish embryos led to a dystrophy in skeletal 

musculature and impaired heart function. The chaperone UNC45B is essential for APOBEC2 

folding in zebrafish and disruption of Unc45b recapitulates the phenotype observed in 

APOBEC2-knockdown zebrafish embryos [149]. 

On the other hand, APOBEC1 mRNA editing functions are well characterized. This enzyme is 

mostly expressed in the human small intestine and in the liver in rodents [142, 150], and is the 

only known RNA-editing enzyme of the AID/APOBEC group. Functionally, APOBEC1 

generates a premature stop codon in apolipoprotein B mRNA that leads to the expression of a 

tissue-specific truncated apolipoprotein B polypeptide chain (ApoB48). Beside abnormalities in 
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lipoprotein metabolism, Apobec1-/- mice are viable and do not display any particular phenotype 

[151, 152]. Conversely, hepatic overexpression of APOBEC1 in mice and rabbits is oncogenic 

and results in liver hyperplasia and the development of hepatocellular carcinomas [153]. These 

could result from aberrant editing of hepatic mRNAs [154], but could also reflect the ability of 

APOBEC1 to mutate DNA [155]. Thus, APOBEC1 activity needs to be tightly regulated. This 

is in part achieved by the APOBEC1 complementation factor (ACF) that targets specifically 

APOBEC1 to an AU-rich motif in the apolipoprotein B mRNA and restrict deamination to a 

specific cytosine (C6666). Despite acting in the nucleus, APOBEC1 is a nucleo-cytoplasmic 

shuttling protein [156]. It contains a poorly characterized nuclear localization signal (NLS) and 

a carboxy-terminal nuclear export signal (NES) [157, 158]. Restricting nuclear access to 

APOBEC1 may be an additional way to limit its biological activity.  

The APOBEC3 subgroup plays a central role in the intrinsic immunity to retroviruses 

[159, 160], and protects against the transposition of endogenous retroelements [161-163]. 

Mouse encodes for only one APOBEC3 protein, whereas humans have at least eight different 

APOBEC3 members, named APOBEC3A to H. Ablation of APOBEC3 in mouse does not 

impact development, survival or fertility [147]. However, APOBEC3 proteins can restrict 

retroviral infection. Indeed, APOBEC3G is packaged into HIV virions and deaminates 

deoxycytidine in deoxuridine on the nascent first cDNA strand produced by the reverse 

transcriptase in the newly infected cell [159, 160]. Consequently, the viral genome is heavily 

mutated and becomes non functional. HIV encodes an accessory protein, the viral infectivity 

factor (Vif), that overcomes APOBEC3G restriction by recruiting the E3 Ub ligase Cullin5 and 

ElonginB/C proteins, thus targeting APOBEC3G for proteasomal degradation [164-166]. Anti-

retroviral functions have been attributed to several other human and primate APOBEC3 

proteins [167]. Additionally, APOBEC3G restriction may also occur through a deamination-

independent mechanism [168, 169]. APOBEC3G activity is regulated notably by post-

translational phosphorylation. Two APOBEC3G residues have been found to be 

phosphorylated in vitro and in vivo: Thr32 and Thr218 [170, 171]. These residues are 

evolutionary conserved in AID. Phosphorylation of Thr32 by protein kinase A (PKA) promotes 

APOBEC3G antiviral activity by reducing the binding of APOBEC3G to Vif and its  
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Figure 1.4. Phylogenetic organization of the zinc-dependent cytidine deaminase family. The 

AID/APOBEC subgroup shares the structure and catalytic backbone of the zinc-dependent 

deaminases. Cytidine deaminases (CDA) are not likely the ancestors of the AID/APOBEC 

subgroup because of the differences in gene organization and catalytic domain. The gene 

structure of most AID/APOBEC is reminiscent of the genetic organization of dCMP 

deaminases (DCDT) and tRNA adenosine deaminases (Tad/ADAT2). AID and APOBEC2 are 

the oldest members of the AID/APOBEC family, which exhibit diverse physiological functions. 

AID has a high similarity and a conserved 3D structure with its APOBEC paralogs. The tRNA 

adenosine deaminase ADAT1 and the mRNA adenosine deaminases (ADARs) are thought to 

originate from the Tad/ADAT2 family independently of the AID/APOBECs. Adapted from 

[140].  
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subsequent polyubiquitination and degradation [170]. On the other hand, phosphorylation at 

Thr218 inhibits APOBEC3G biological activity ex vivo by reducing its catalytic activity but its 

role and importance in vivo are unknown [171]. Furthermore, APOBEC3G proteins can be 

entrapped in high-molecular-mass ribonucleoprotein complexes found in cytoplasmic structures 

called P-bodies and stress granules [163, 172, 173], where APOBEC3G catalytic activity is 

greatly inhibited, or in low-molecular-mass complexes important for retroviral restriction [174]. 

Recently, an additional member of the AID/APOBEC subgroup, named APOBEC5, has been 

identified in non-placental animals. It has been suggested that APOBEC5 may be a functional 

homologue of the APOBEC3 proteins in non-placental animals [175]. 

Despite their great biological divergence, AID/APOBEC proteins share reasonably high 

level of primary sequence and structural similarities. The crystal and NMR structures of 

APOBEC2 and the C-terminal domain of APOBEC3G confirmed the structural conservation 

between the members of this family and revealed the active-site loops implicated in substrate 

binding [176-178]. Furthermore, APOBEC2 and APOBEC3G crystal structures suggest that 

AID/APOBEC proteins may dimerize/oligomerize, which could be relevant for their biological 

functions [179, 180]. 

 

1.2.2. AID in antibody diversification 

The AID gene Aicda is composed of 5 exons and has been found in all vertebrates. Its 

chromosomal localization is syntenically conserved at least among mammals [138]. 

Furthermore, its genomic structure is well conserved among chimpanzee, mouse, cattle, 

chicken, urodele amphibian, frog, fugu and zebrafish, particularly in the last three exons [138, 

181-185]. The full-length mammalian AID is composed of 198 amino acids but splice variants 

of AID in both normal human and mouse B cells have been described [181]. As expected from 

its central role in antibody diversification, loss of function mutations affecting AID cause an 

immunodeficiency syndrome called hyper-IgM syndrome type 2 (HIGM-2). HIGM2 is 

characterized by the absence of switched antibody isotypes, recurrent infections and lymphoid 

tissue hyperplasia [42], which is recapitulated in Aicda-/- mice [43]. Due to its close similarity 
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with APOBEC1, AID was initially hypothesized to be a RNA-editing cytidine deaminase 

(RNA-editing hypothesis) [43, 139]. Alternatively, Michael Neuberger’s group postulated a 

model where AID directly deaminates DNA [45], and several studies confirmed this DNA 

deamination model [45, 49, 50, 186-192]. 

In this thesis, we are mainly interested in the amount of AID protein necessary for an 

efficient antibody diversification. In fact, AID levels are limiting for antibody diversification as 

indicated by studies in Aicda+/- mice. AID haploinsufficient mice have ~40% of AID mRNA 

and protein levels compared to wt [193, 194] and several groups have found reduced CSR and 

SHM in Aicda+/- mice [193-196]. The decrease in CSR and SHM is roughly proportional to 

the decrease in AID levels. But in vivo, the effect is greatly compensated by selection [193, 

194]. Conversely, higher levels of AID protein translate into more CSR and SHM. Indeed, AID 

overexpression increased the rate of SHM in human B cell lines [197, 198]. Mouse models with 

modified AID expression levels also provided evidence for a rate-limiting role of AID in 

antibody diversification. First, several transgenic mice overexpressing AID have been made, 

which all show increased CSR and SHM [199-202]. The two transgenic lines in which AID 

was expressed from a ubiquitous promoter showed a significant but modest effect on antibody 

diversification [199, 200, 202]. In contrast, transgenic AID under the control of the Igκ 

enhancer, which showed maximal expression in GC B cells, displayed a very high increase in 

CSR and SHM levels [201]. Secondly, upregulation of AID expression in B cells by removing 

the negative post-transcriptional regulation of AID by microRNA miR-155, also leads to higher 

levels of CSR [203, 204] (see section 1.4.2). Nonetheless, none of these mice showed an 

increase in switched serum Ig levels. This may be regulated at another level (selection, 

homeostatic proliferation) and does not necessarily reflect the intrinsic CSR capacity of the B 

cells. Interestingly, mice in which higher levels of AID were achieved by removing the miR-

155 negative post-transcriptional regulation showed compromised affinity maturation but no 

differences in quantity or quality of SHM at the IgV region [203].  

 

1.2.3. AID expression profile  
Initially, AID was thought to be a B cell-restricted factor. In fact, high AID mRNA 

levels have been reported in the spleen, in MALT (Peyer’s patches, mesentery lymph nodes, 
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auxiliary lymph nodes) and in the chicken bursa, in line with AID functions in antibody 

diversification [76, 139, 205]. Aicda transcription is induced by cytokines and cell-cell 

interactions in the context of Ag-triggered B cell activation during the immune response 

(reviewed in [206]). Thus, Aicda is highly transcribed in GC cells but repressed in plasma and 

memory B cells [207, 208], and this correlates with measurements of AID mRNA and protein 

levels in the B cell lineage as well as with the analysis of an AID-GFP reporter mouse [139, 

207, 209, 210]. However, the original belief of AID being exclusively expressed in GC B cells 

has been now revised. 

AID is expressed outside of the B cell compartment in normal conditions. One example 

is the ovaries, in which basal AID mRNA levels are ~50-70% of those found in spleen [211, 

212]. Furthermore, Aicda is induced by estrogens which increases AID mRNA a few fold in the 

spleen but by >20-fold in the ovaries [213]. Breast tissue also expresses AID when stimulated 

with estrogens [213] and several human breast cancer cells express AID mRNA [214], but the 

basal levels in normal breast tissue have not been reported. AID expression was reported in 

other normal non-lymphoid cells, including prostate, heart and lung [211, 212, 215]. It is 

unclear whether AID expression in these tissues has any physiological role. Furthermore, 

infectious agents like Epstein-Barr virus, Abelson murine leukemia virus and Moloney murine 

leukemia virus are able to induce AID in the infected cells, which has been proposed as the 

result of an ancestral function in restricting retroelements [211, 216-219]. 

 Low AID mRNA levels have also been measured during B cell development [220, 

221]. Convincing evidence suggests that AID plays a role in B cell tolerance by eliminating 

autoreactive B cells [220, 221] but the mechanism of AID-mediated B cell tolerance is 

unknown. Genetic evidence suggested that AID expression during B cell development results in 

mutations in the IgV region [222, 223]. This is reminiscent of what is observed in sheep, 

rabbits, and cattle, where SHM or iGC contribute to the diversity of the primary antibody 

repertoire [224-226], and could be an evolutionary relic or may contribute to tolerance by 

mutating autoreactive clones, thus changing their specificity. Similarly, extremely low levels of 

AID mRNA (~1/10 of AID mRNA levels in immature B cells) have been measured in a subset 

of CD4+ T cells [227], but the biological significance of AID expression in T cells in unclear. 
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SHM on the T-cell antigen receptor loci was reported [228], however, it is difficult to imagine that 

the 103-104-fold lower levels of AID expressed in immature B and T cells when compared to 

GC B cells [221] could contribute to SHM, given the relative proportionality between AID 

protein levels and SHM in GC B cells. 

AID has also been detected in cell types such as oocytes, spermatocytes, primordial 

germ cells (PGCs) or embryonic stem cells [211-213, 229-232]. As mentioned, oocytes express 

AID mRNA to comparable levels as B cells [211, 212]. AID mRNA is very low in testis [207, 

211, 212] but AID protein has been detected by IF in spermatocytes [230], which would 

suggest higher levels. The timing of AID expression in PGCs is controversial, although there is 

agreement that AID mRNA levels are substantially lower than in B cells (5-10%) [212, 229, 

232]. Similarly, AID mRNA levels in stem cells are ~5-10% of those found in B cells [212, 

231]. Furthermore, AID is expressed during early development in Danio rerio [233], Xenopus 

laevis [234] and Pleurodeles waltl [183], which could suggest a role of AID during cellular 

differentiation and development. 

 

1.2.4. AID demethylation activity 
  Evidence is accumulating to suggest that AID could be part of a mechanism to 

demethylate methylated cytidine (5-mC) at CpG sites in the genome, thereby influencing gene 

expression [212, 231, 232]. In fact, AID and its paralogs APOBEC can convert 5-mC to 

thymidine with similar efficiency in vitro [212, 235]. Functionally, cytosine methylation is a 

major covalent DNA modification in mammals and plays important roles in transcriptional 

regulation [236]. Its main function is to stabilize or lock-in transcriptional silencing. It 

participates in tissue-specific gene expression, gene imprinting, nuclear reprogramming, X 

chromosome inactivation, but also in the suppression of retrotransposons. DNA methylation 

patterns are established early during cell development and maintained in adult somatic cells. 

Nevertheless, changes in methylation pattern occur during mammalian development and cell 

differentiation, as reported in mice where significant waves of demethylation/remethylation 

occur in germ lines and early embryos [237]. Genome-wide demethylation has also been 

observed in PGCs around embryonic days 11.5-12.5, followed by a gamete-specific 

methylation [238-240].  
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Consistent with a role of AID in epigenetic reprograming during development, AID 

mRNA has been detected in cell types such as oocytes, spermatocytes, PGCs or embryonic 

stem cells [211-213, 229-232]. In interspecies heterokaryons of mouse embryonic stem cells 

and human fibroblasts, AID downregulation results in a hypermethylated state of oct4 and 

nanog promoters [231]. Furthermore, genetic evidence supports a role for AID in 

demethylating the genome of PGCs. AID-deficient PGCs are up to three times more methylated 

than their wt counterparts. In Danio rerio, AID downregulation results in hypermethylation of 

the neurod2 promoter in embryos and a severe defect in neurogenesis [233]. Mechanistically, 

AID may collaborate with a group of proteins previously implicated in demethylation, Gadd45 

and the T:G glycosylate MBD4, to target specific genomic regions for demethylation [241]. But 

the amount of AID required for its proposed role in epigenetic programming seem to be 

considerably lower than that required for antibody diversification. Furthermore, the absence of 

any additional phenotype in AID-deficient humans and mice, beside a severe 

immunodeficiency syndrome, tends to favor a model where AID is redundant with other 

APOBEC deaminases in demethylation.  

 

1.3. Pathological consequences of AID 

Due to AID mutagenic activity, secondary antibody diversification is accompanied by a 

higher incidence of potentially transforming genomic lesions. The fact that AID is limiting for 

antibody diversification may be a consequence to its pathological side effects. Mice 

overexpressing AID have demonstrated its oncogenic capacity. Ubiquitous transgenic 

overexpression of AID leads to the development of T cell lymphomas and lung adenomas and 

adenocarcinomas, but not B cell malignancies [202]. In accordance with its role in central and 

peripheral tolerance, AID levels also influence antibody-mediated autoimmune diseases [195, 

242-244]. 
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1.3.1. Off-targets mutations 

AID can introduce mutations outside of the Ig loci. Several genes such as Bcl6, Cd95, 

Pim1, Pax5, RhoH, Cd79a, and Cd79b, have been reported to be hypermutated in post-GC B 

cells from healthy human donors, although at a significantly lower frequency than the IgV 

region [245-250]. In vitro-stimulated human primary B cells or human B cell lines displayed 

mutations in non-Ig genes, including Bcl6 and c-myc [251, 252]. AID is directly responsible for 

these mutations [253] (Figure 1.5). In fact, overexpression of AID in B and non-B cell lines 

results in off-target mutations in Aicda and a GFP reporter genes [254, 255], and as indicated 

before, AID-transgenic mice develop T-cell lymphomas characterized by the presence of point 

mutations in the T cell receptor, c-myc, and Pim1 genes [202, 256]. Indeed, increased levels of 

AID in B cells lead to a higher mutation rate in some non-Ig targets [201, 203, 257], although 

this does not always have oncogenic consequences in vivo [200, 204].  

Extensive sequencing of the GC-B cell genome demonstrated that AID is mistargeted to 

a larger extent than initially hypothesized [253]. AID is recruited to 5910 genes in activated B 

cells and mutates ~25% of the genes transcribed in GC-B cells [257]. AID preferentially targets 

actively transcribed genes where RNA polII and trimethylated histone H3 Lys4 (H3K4me3) are 

present and AID occupancy correlates with the localization of transcription elongation factor 

SPT5 [257]. Nonetheless, only a reduced number of genes (~23) displayed a high rate of 

mutations ressembling Ig SHM. Bcl6 is the primary AID off-target in activated B cells with a 

rate of mutation about 25-fold lower than the IgV region [253, 257]. Interestingly, some genes, 

such as c-myc or Pim1, which are frequently hit by AID in Ung-/- Msh2-/- B cells, display a 

significantly lower rate of mutations in wt B cells [253]. These results indicate that AID off-

target activity is in some cases counteracted by faithful repair to prevent the accumulation of 

mutations. Still, more than 50% of the GC-derived diffuse large B cell lymphomas (DLBCL) 

display aberrant hypermutation in Bcl6, Pim, Btg1, RhoH, and Pax5 [258]. Moreover, AID can 

be a disease progression factor by accelerating leukemia clonal evolution in Ph+ ALL 

(Philadelphia chromosome-positive B cell acute lymphoblastic leukemia) [259] and by 

mutating the BCR-ABL1 oncogene in CML (chronic myelogenous leukemia) and ALL [129, 

259, 260], thus underpinning resistance to the therapeutic drug imatinib [129].  
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1.3.2. Chromosomal translocations 

AID oncogenicity is probably in large part a consequence of its capacity to produce 

DNA breaks, thus initiating chromosomal translocations at a number of locations in normal B 

cells [261-265] (Figure 1.5). In fact, a recurrent hallmark in B cell lineage tumors is the 

presence of chromosomal translocations involving Ig loci and another partner. AID initiates 

DSBs in the IgH loci that lead to chromosomal translocations in activated B cells, and 

artifically increased levels of AID in B cells lead to a large increase in the frequency of IgH-

cMyc translocations [201, 204], a characteristic of Burkitt’s lymphomas. In addition, 

endogenous AID levels contribute to chromosomal translocations of multiple partners with the 

Ig locus, such as the IgH-Igβ [266] or IgH-Pax5 [264, 265], a hallmark of lymphoplasmacytic 

lymphoma. It can even occur between two non-Ig genes [201, 264, 265]. Indeed, most of the 

translocations occurring in a p53-deficient background involve c-Myc and miR-142 [201], a 

molecular hallmark of acute prolymphocytic leukemia [267]. Normally, apoptotic control 

eliminates cells with AID-induced translocations [261] and prevents B cell lymphomas in the 

AID-Igκ transgenic model [201]. In absence of p53, AID-Igκ induced B cell lymphomas with 

high frequency, even outpacing the T cell lymphomas that usually kill p53-deficient mice 

[201]. Curiously, GC B cells have reduced levels of p53 to allow for the necessary DNA 

damage that accompanies antibody gene diversification [134] so there are probably other 

mechanisms to prevent AID-initiated lymphomagenesis. For instance, AID-catalyzed lesions 

are more frequent in the absence of a number of DNA repair pathways, even with normal 

endogenous AID levels [253, 257, 268].  

It does not seem that AID overexpression is necessary for lymphomagenesis, as 

demonstrated in the Balb/Bcl-xL mouse model of plasmacytoma. In this model, AID is required 

for most pristane-induced plasmacytomas, where it underpins the oncogenic IgH-cMyc 

translocation [34, 39]. AID haploinsufficient mice show reduced incidence of lymphoma 

compared to Aicda+/+ but still significantly higher than the Aicda-/- [193], demonstrating that 

50% lower than normal levels of AID can be oncogenic in combination with another 

predisposing condition. Similarly, AID haploinsufficient B cells still display IgH-cMyc 

chromosomal translocations, albeit at a reduced frequency compared to wt [193, 194].  
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Figure 1.5. AID-mediated off-target mutations and chromosomal translocations. Although 

AID preferentially acts at the Ig loci, other genes (f.i. c-myc, p53, BCR-Abl, etc) can be 

targeted at a lower but significant frequency, leading to oncogenic mutations and chromosomal 

translocations. The DNA double-stranded break (DSB) generated after AID deamination and 

processing can be resolved through the joining of switch regions in the Ig loci but can also lead 

to the joining of the Ig locus with a non-Ig gene (illustrated here with c-myc), resulting in a 

chromosomal translocation.  
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Altogether, AID levels are critical in modulating the extent of off-target mutations and 

chromosomal translocations. Still, these are inherent to AID activity and contribute to cancer 

development. 

 

1.3.3. AID expression in B-derived cancer cells 
AID expression has been reported in several B lymphoid malignancies and endogenous 

levels of AID initiate B cell transformation, albeit infrequently. AID expression outside the 

GCs, f.i. in interfollicular large B lymphocytes, may give rise to precursors of mature B-cell 

malignancies [269]. Interestingly, the etiological role of AID in B cell lymphomas originating 

from GC B cells was demonstrated using the IµHABCL6 transgenic oncogene model, which 

deregulates BCL6 in B cells and results in mature B cell lymphomas. In an AID-deficient 

background, these transgenic mice did not develop mature B cell lymphomas [258]. 

IµHABCL6 lymphomas are akin to human DLBCL, which shows the highest prevalence of 

AID expression [210, 270-273], strongly suggesting an etiological role for endogenous AID in 

this lymphoma. In general, DLBCL but also follicular lymphoma samples show similar or 

lower AID levels than GC B cells [210, 270-272]. Near to normal AID levels are also 

expressed in Ph+ ALL and CML [129, 259, 260]. In these cases, BCR-ABL1 oncogene itself 

could be involved in inducing Aicda. Chronic lymphocytic leukemia is another B cell 

malignancy expressing variable levels of AID due to population heterogeneity where a defined 

subpopulation of cells can express most of the AID mRNA [274, 275]. The presence of this 

subpopulation correlates with a worsa prognosis but AID mRNA levels in these cells are not 

higher than in normal B cells [274, 275]. 

 

1.3.4. Ectopic expression of AID: link with inflammation 
AID expression is induced in several malignant epithelial cells including colonic 

epithelium [276], hepatocytes [277, 278], biliary cells [279] and gastric cells [280]. This 
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ectopic AID expression is usually associated to chronic inflammation, and there is often an 

underlying infection such as with hepatitis C virus [277, 281], Helicobacter pylori [280, 282], 

or human immunodeficiency virus [218, 283]. It is likely that NF-κβ is involved, given that it is 

an important transcription factor in B and other cells for Aicda induction [277, 280, 284] (see 

section 1.4.1). Solid tumors originating from epithelial cells are usually associated with genetic 

alterations in p53, which appears to be an early event during tumorigenesis. Genetic evidence 

supports a role for AID in the pathogenesis of inflammation-associated carcinogenesis. As 

mentioned previously, AID overexpressing mice develop T cell lymphomas but also lung 

adenomas and hepatocellular carcinomas [202]. Disruption of Aicda in the IL-10−/− mouse 

model, which recapitulates human inflammatory bowel disease (IBD), reduces the frequency of 

mutations in p53 and correlates with a reduced incidence of colon cancer. Thus, AID may play 

a central role in chronic inflammation-associated cancers by mutating non-Ig genes. 

 

1.3.5. AID and autoimmunity 
AID also influences antibody-mediated autoimmune diseases. AID is important in 

determining the severity of the pathology as demonstrated in mouse models of lupus and 

arthritis in which AID deficiency, or even haploinsufficiency, results in a more moderate 

disease [195, 242-244]. In keeping with this, increased levels of AID correlate with higher 

levels of autoantibodies in the MRL/faslpr/lpr and BXD2 mouse models of lupus and rheumatoid 

arthritis (RA), respectively [242, 285-287]. Interestingly, AID-deficient mice also have 

autoimmune disorders albeit of a different nature [288]. This fits well with the predisposition to 

autoimmune disorders noted in AID-deficient human patients [289]. The recent finding that low 

AID expression levels during B cell development play a role in establishing B cell tolerance 

could explain these findings [220, 221]. Although, like in cancer, there are predisposing 

conditions beyond AID for developing autoimmunity, here again AID levels are important in 

balancing an efficient immune response with disease. Several autoimmune diseases, including 

rheumatoid arthritis and lupus, feature chronically inflamed tissues, where ectopic GC-like 

structures are present [290]. These structures express high levels of AID and can produce 

autoantibodies in a RA-SCID mouse chimera model [291]. It is therefore unclear whether high 
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AID expression plays an etiological role in the development of autoimmune diseases, or 

whether it is a consequence of the chronic inflammation associated with these diseases and thus 

a disease progression factor.   

 

1.3.6. AID and allergies 

AID is required for switching to the IgE isotype, which is the main antibody isotype 

involved in atopic allergy. Local expression of AID and antibody diversification was reported 

in the nasal musoca of rhinitis patients [292], in the bronchial mucosa of asthma patients [293], 

and within the oesophageal mucosa of chronic oesophagitis patients [294], which could be 

driven by the local presence of the allergen [295]. Furthermore, gene expression pattern 

analysis from patients affected by chronic rhinosinusitis with nasal polyps suggests a central 

role of AID in the etiology of this disease [296]. However, there is no direct genetic evidence 

for a link between abnormal AID expression and the development of allergies.  

 

1.4. AID regulation 
The data summarized above illustrates how the optimal expression levels of AID in GC 

B cells reflect a compromise between being able to mount an effective adaptive immune 

response and delaying the onset of cancer or autoimmune diseases. A strikingly complex 

network of regulatory mechanisms exist to ensure that the optimal amount of biologically 

active AID protein gets to the Ig locus much more preferentially than to any other genomic 

location. Any alteration in the performance of these mechanisms could predispose to 

immunodeficiency, autoimmunity, or B cell lymphomas. This thesis studies aspect of AID post-

translational regulation. These will be introduced in greater details than the transcriptional 

regulation of AID.  
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1.4.1. Transcription regulation and cell-type specific expression 

A combination of promoter, enhancers and silencers, which are located within four 

evolutionary-conserved regulatory regions, determines AID expression in GC B cells of the 

spleen and MALT (Peyer’s patches, tonsils, lymph nodes) [206, 297]. These regulatory 

elements are found within 9kb upstream of the first exon and 25kb downstream of the last exon 

of the AID gene. The 5’ most region of the Aicda locus contains binding motifs for NF-κβ, 

STAT6, C/EBP and SMAD3/4 proteins. This region is responsive to cytokines, co-stimulatory 

molecules, and stimulation through the NF-κβ pathway [297]. The second region, located 1kb 

upstream of the transcription start site (TSS), contains a ubiquitously active promoter and 

binding sites for NF-κβ, STAT6, SP proteins, and HOXC4-OCT [284, 298-300]. It may also 

contain a PAX5-binding site but its location is controversial [299, 300]. The third portion is 

located in the intronic region between exons 1 and 2 of Aicda and contains sites for NF-κB, E 

proteins (E-box) and PAX5 [297, 299-301]. Regions 1 and 3 cooperate to restrict AID 

expression to Ag-activated GC B cells. Finally, the fourth regulator region is located about 6kb 

in mouse and 25kb in human downstream of exon 5. It plays an enhancer role and is required 

for normal AID expression [207].  

AID expression is also controlled by ubiquitous silencer proteins. For instance, region 1 

contains binding motifs for c-MYB and E2F proteins, which can function as transcriptional 

repressors [297]. Furthermore, the inhibitor of differentiation (Id) proteins ID1, ID2 and ID3 

repress Aicda transcription by binding to PAX5 and other stimulatory factors and preventing 

their association to DNA [299, 301]. Indirect repressors such as the transcription factor Blimp-1 

or the DSBs-initiated ATM/LKB1 signaling pathway, which inhibits the transcription factor 

CRTC2, can also limit AID expression to the GC compartment [208, 302].  

 

1.4.2. Post-transcriptional regulation 

AID is post-transcriptionally regulated by micro-RNAs (miR). miR are short (20-23 

nucleotides), noncoding RNAs that bind to complementary sequences in mRNAs and are key 

post-transcriptional regulators of gene expression. They are part of an active RNA-induced 

silencing complex (RISC) that contains the RNase III-type endonuclease Dicer and the 
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Argonaute proteins (Ago), which are important for mRNA silencing. The latter occurs either by 

mRNA degradation or by preventing mRNA from being translated. MiR-155 and miR-181b 

bind to conserved sites in the 3’untranslated region of AID mRNA and regulate its levels. This 

results in lower AID protein levels and reduced antibody diversification [203, 204, 303]. The 

different miR-155 and -181b expression patterns suggest two ways of regulating and restricting 

AID mRNA expression. MiR-155 is induced along with AID after B cell activation, and is 

expressed in GC B cells [203]. On the other hand, miR-181b is highly expressed in 

unstimulated B cells, decreases after B-cell activation and reaches its normal levels 3 days post-

stimulation [303]. Therefore, miR-181b may restrict AID expression to the GC B cell 

compartment while miR-155 may limit AID levels during antibody diversification.  

 

1.4.3. Post-translational modifications 

AID activity is modulated at the post-translational level by phosphorylation. Five AID 

residues, for the most part conserved throughout evolution, have been found to be 

phosphorylated in B cells: Ser3, Thr27, Ser38, Thr140 and Tyr184 [196, 304-308]. The 

biological significance of Tyr184 remains unknown. On the other hand, phosphorylation of 

Thr27 inhibits AID deamination and CSR in vitro, suggesting it modulates AID specific 

activity [304, 305, 309] but whether this is used in vivo to regulate AID is unknown. 

Phosphorylation at Ser3 reduces AID biological activity ex vivo but does not impact its 

catalytic activity and again its role and importance in vivo are unknown [306]. Phosphorylation 

at Ser3 is controlled by the serine/threonine phosphatase PP2A in vitro. Conversely, 

phosphorylation of Ser38 and Thr140 are not essential for AID catalytic activity in vitro but 

both significantly increase AID biological activity in vivo [196, 304, 307, 310, 311]. Ser38 is 

phosphorylated by PKA in the chromatin, which allows AID interaction with RPA and greatly 

facilitates CSR and SHM [196, 304, 305, 307, 311, 312]. The effect of mutating Ser38 and 

Thr140 in vivo was much more pronounced when combined with AID haploinsufficiency [196, 

310], thus suggesting that even if important, these modifications are not limiting for AID 

activity.  
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1.4.4. AID Subcellular localization  

AID nuclear exclusion is an additional step of regulating its mutagenic activity. AID is 

predominantly cytoplasmic at steady-state, as first reported for AID-GFP in Ramos B cells 

[313] and confirmed by subcellular fractionation and immunohistochemistry in primary B cells 

[87, 209, 210]. In fact, AID subcellular localization is dynamic and reflects the equilibrium 

between active nuclear import [314, 315], active nuclear export [314, 316, 317], and 

cytoplasmic retention  (see annexe 1 for ref.[315]). The deletion or mutation of the C-terminal 

10 amino acids of AID led to its nuclear accumulation, thus identifying this region as a nuclear 

export signal (NES). This demonstrated that AID is a nuclear-cytoplasmic shuttling protein 

[316, 318, 319]. This leucine-rich NES is a typical recognition motif for the CRM1 exportin, as 

was demonstrated by using the CRM1-specific inhibitor leptomycin B [316, 319] and by 

coimmunoprecipitation [315, 320]. 

The mechanism by which AID gains access to the nucleus is still unclear. Due to its 

small size (24 kDa), AID could in principle diffuse passively through the nuclear pores. 

However, it is actively imported into the nucleus, as demonstrated by its capacity to confer 

nuclear localization to large proteins, which requires energy [315]. The nuclear localization 

signal (NLS) of AID has not been completely defined. AID N-terminal region (roughly 

residues 5-50) contains multiple basic residues, a characteristic of many NLS, and it is clearly a 

major part of it [315, 319]. However, it is not by itself sufficient to mediate nuclear import of 

heterologous proteins, which actually requires the first 181 out of the 198 AID amino acids 

[315]. So, there are other residues elsewhere in the protein that form part of and/or are critical 

in displaying the NLS, which prompted the suggestion that AID has a conformational NLS 

[315]. The factors mediating AID nuclear import are even less defined. AID binds in vitro to 

several importin-αs, which are dedicated nuclear import factors, but their functionality in AID 

import has only been indirectly inferred [315]. AID also interacts with CTNNBL1, a nuclear 

protein presumed to work in mRNA splicing, which binds to NLS through an armadillo-like 

domain [321, 322]. Nuclear accumulation of an AID variant with mutated NES is partially 

compromised in DT40 CTNNBL1-/- cells, suggesting a role for CTNNBL1 in AID nuclear 

import [322]. Still, CH12 CTNNBL1-/- cells did not show any reduction in CSR, demonstrating 

that it is at least redundant with another mechanism for importing AID into the nucleus [323]. 
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Since CTNNBL1 interacts with importin-αs [322], they could be part of the same pathway. 

GANP, a protein associated with the RNA shuttling machinery and induced in GC B cells, has 

also been proposed to mediate active nuclear import of AID [324]. 

AID seems to be actively imported into the nucleus to counteract cytoplasmic retention, 

which prevents its diffusion [315]. Indeed, a motif in AID C-terminal region, overlapping with 

but distinct from the NES, is able to limit the passive diffusion of GFP into the nucleus [315]. 

Separation of function mutations exist to corroborate that these two signals are distinct and 

mediate different protein-protein interactions [315]. The translation factor eEF1α could 

participate in retention at least in part since it is stoichiometrically associated with AID in the 

cytoplasm and mutating the proposed AID cytoplasmic retention motif can disrupt this 

interaction [315, 325].  

Any modification in the balance of forces determining AID subcellular distribution 

should impact antibody diversification. Whether this is regulated (f.i. to increase diversification 

after some signaling event, at a particular cell cycle stage [326]), or whether the proportion of 

AID in the nucleus is constant at all times [206, 327], is unresolved. Drastic alterations or 

truncation of AID NES abolish CSR, most likely because this region also contains a domain 

mediating interactions required for CSR [316, 319, 328, 329]. Nevertheless, the relocalization 

of AID into the nucleus by mutating or deleting the NES increases SHM and immunoglobulin 

gene conversion [319, 328, 329]. This could partially be explained by a higher catalytic activity 

of nuclear AID variants [316, 328, 330], although these latter are less expressed [316, 329, 

331]. Nevertheless, mutating the C-terminal cytoplasmic retention signal of AID led also to 

faster nuclear import and higher SHM and CSR [315, 329]. Therefore, nuclear exclusion limits 

the biological activity of AID.  

 

1.4.5. AID stability 
The stability of AID is directly linked to its subcellular localization. Cytoplasmic AID 

is much more stable than nuclear AID [331]. The ~8 h half-life of AID in B cells represents in 

fact a rough average of its ~2.5 h nuclear and 18-20 h cytoplasmic half-life [331]. Indeed, 
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inhibition of AID nuclear export with leptomycin B and mutation or deletion of the NES, as 

well as disruption of AID cytoplasmic retention, increase the nuclear fraction of AID and 

correlate with a decrease in its half-life [315, 325, 329, 331, 332]. On the other hand, restricting 

AID to the cytoplasm resulted in increased AID half-life [315, 331]. The mechanistic 

explanations for this difference in stability are unclear.  

Inside the nucleus, AID seems to be constantly targeted to the proteasome by ubiquitin 

(Ub)-dependent and -independent pathways [331, 333]. Proteasomal inhibition suffices to 

detect an important increase in polyubiquitinated nuclear AID [331]. The Ub ligases modifying 

nuclear AID are unknown. The murine double minute 2 (MDM2) E3 ubiquitin ligase interacts 

with AID and could be one of them [334]. However, DT40 cells deficient in or overexpressing 

MDM2 show very modest increase and decrease in Ig gene conversion, respectively [334]. 

Thus, MDM2 is either redundant with some other Ub ligase or not relevant for AID. 

Interestingly, AID with no internal lysine residues is still significantly polyubiquitinated [331], 

suggesting either N-terminal ligation or a non-canonical pathway of polyubiquitination for 

AID. A proportion of AID interacts with and is targeted for degradation by the nuclear protein 

REG-γ, which brings proteins for proteasomal degradation in Ub- and ATP-independent 

fashion [333] (see section 1.6.1 and figure 1.8). In fact, REG-γ deficiency results in higher AID 

steady-state levels, increased nuclear AID stability, and increased CSR in mice, demonstrating 

the physiological role of this protein in reducing nuclear AID levels [333]. Thus, modulating 

AID stability seems to be one more way of limiting AID expression and yet another mechanism 

restraining antibody diversification. It remains unclear whether cytoplasmic AID is protected 

from this active degradation process. 

 

1.4.6. Targeting specificity to the Ig loci 

AID gets to the Ig locus much more preferentially than to any other genomic location. 

The reasons for this preferential targeting are still unclear. AID activity is highly dependent on 

transcription in vitro and in vivo, which transiently exposes unpaired bases in the transcription 

bubble [186-192, 254, 255, 335-340]. However, transcription alone cannot account for the 

preferential targeting of AID to the Ig loci. Indeed, AID contains a domain (residues 113-123) 
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that contributes to the preferential deamination at WRCH motifs, which are highly enriched in 

the switch and the IgV regions and therefore function as mutational hot-spots [341, 342]. AID 

equally deaminates both the transcribed and non-transcribed strands [343], due to its interaction 

with the RNA exosome complex [344]. Given the abundance of actively transcribed genes 

containing RGYW/WRCY motifs, the substrate specificity of AID cannot fully explain the 

preferential targeting to the Ig loci. 

Epigenetic modifications of histones, which control the chromatin architecture, may 

contribute in defining a window where AID can be preferentially recruited. Histone 

modifications are associated with CSR and SHM, although the nature of these modifications 

may differ between CSR and SHM [345-350]. They may play a role in AID targeting by 

modulating the structure of the chromatin and/or providing binding motifs for factors 

implicated in antibody diversification. Indeed, a proportion of nuclear AID interacts with 

KRAB domain-associated protein 1 (KAP1) and the heterochromatin protein 1 (HP1) and is 

targeted to H3K9me3 (trimethylated histone H3 at lysine 9) present at the Sμ region [351]. 

KAP1 deficiency results in impaired binding of AID to the Su region and reduced CSR in mice 

[351]. Still, KAP1 is dispensable for SHM and therefore cannot account alone for the specific 

targeting of AID to the Ig loci. 

Genetic evidence supports a contribution of the transcription machinery in AID 

targeting. The most promising targeting factor is the transcription elongation factor SPT5, 

which associates with stalled RNA polIIand recruits AID near the transcription start site [352]. 

In fact, RNA polII behaves differently in the Ig loci than in other genes and appears to stall and 

accumulate due to the high frequency of R-loops in that region [345, 353]. AID occupancy at 

transcribed regions depends on SPT5 and RNA polII. Problematically, SPT5 occupancy 

correlated with both the Ig loci and off-targets genes. Selective recruitment of AID to the 

variable and switch regions may in part depend on the polypyrimidine tract binding protein 2 

(PTBP2) and the 14-3-3 scaffold proteins. Normally, PTBP2 inhibits RNA splicing by binding 

to the polypyridimidine RNA tracts. In B cells, PTBP2, which preferentially binds RNA 

transcribed from the Sμ region, interacts with AID and promotes its specific recruitment to Sμ 

and Sγ1 regions [354]. On the other hand, the 14-3-3 scaffold proteins can bind dsDNA regions 
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that contain AID hotspot motifs and associate with transcribed switch regions in activated B 

cells [355]. They interact directly with AID through its C-terminus and may contribute to the 

preferential recruitment of AID to switch regions.     

As mentioned previously, PKA is present in switch regions in an AID-independent 

fashion but can interact with AID in the Ig loci, thus phosphorylating and enabling the local 

association of AID with the single-stranded binding protein RPA [311, 312]. In fact, RPA plays 

a role in SHM, CSR and iGC [196, 304, 305, 310, 312]. Nonetheless, neither PKA nor RPA are 

required for physically recruiting AID to DNA [311]. In conclusion, the preferential targeting 

of AID to the Ig loci results from the contribution of several elements including AID’s intrinsic 

substrate specificity, AID’s association with the transcription machinery, epigenetic 

modifications, and local post-translational modifications of AID. 

 

1.4.7. AID co-factors 

It is clear that AID interacts with co-factors critical for either SHM or CSR. 

Deletion/mutation of the amino-terminal domain of AID abolishes SHM without drastically 

affecting CSR [356]. On the other hand, deletion/mutation of AID C-terminal NES leads to 

defective CSR but retains SHM [357-359]. Nonetheless, the nature of the interactions mediated 

by AID’s N- and C-terminal domains and their functional importance remain to be determined. 

Beside the 14-3-3 adaptor proteins that recruit AID to the switch regions, AID C-terminus 

binds to the Ub ligase MDM2 [334] and DNA-PKcs [360], but the functional relevance of these 

interactions are unclear.     

In this thesis, we will show that AID interacts with several members of the HSP90 

molecular chaperoning pathway. Therefore, we will introduce the important points of this 

pathway that are relevant to our work. 

 

1.5. The HSP90 molecular chaperoning pathway 

 AID is predominantly cytoplasmic at steady-state and requires nuclear translocation 

for proper activity [361]. Consistent with the fact that cytoplasmic AID is more stable than its 
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nuclear counterpart, it was suggested that AID is protected and/or retained in the cytoplasm by 

specific chaperones [362]. Indeed, the heat shock 70-kDa protein HSC70 was 

coimmunoprecipitated with AID from HeLa cell extract [360], but the functional relevance of 

this interaction in B cells remains unclear. HSC70 is a ubiquitous molecular chaperone, which 

is mainly implicated in the folding of nascent proteins and the refolding of denatured 

proteins.Two major forms of this chaperone have been identified: the constitutive form, named 

HSC70, and the stress- and heat shock-induced form, HSP70. Both are often considered to have 

similar cellular functions. Indeed, HSC70/HSP70 play a central role in protein triage and 

controls the balance between (re)folding and degradation of denaturated proteins (reviewed in 

[363]). HSC70 is also part of the HSP90 molecular chaperoning pathway, which includes the 

HSP40 and HSP90 chaperones, as well as additional cofactors. These heat shock proteins 

(HSPs) are highly conserved throughout evolution and their role extends beyond de novo 

protein folding and protection in stressful situations. In fact, HSP90 participates in the 

stabilization and the activation of a large range of proteins, referred to as HSP90 clients, rather 

than interacting with unfolded proteins to facilitate their (re)folding. The best characterized 

HSP90 clients are involved in cell signalling and transcriptional regulation (i.e. kinases and 

steroid hormone receptors) [364-366], but recent proteomic and genetic studies suggest that the 

HSP90 molecular chaperoning pathway may be implicated in broader cellular processes [367-

369].  

 

1.5.1. HSP90 
HSP90 is highly conserved throughout evolution and is present in four different 

isoforms in humans [370]: two cytosolic (HSP90α and β), one mitochondrial (TRAP1), and one 

in the endoplasmic reticulum (GRP94). HSP90 functions as a flexible dimer and each monomer 

is constituted of three domains: an N-terminal domain which possesses an ATP-binding pocket 

and catalyzes ATP hydrolysis; a flexible and highly charged linker sequence which connects 

the N-terminal domain to the middle (M) region; and a C-terminal dimerization domain [370]. 

Genetic evidence indicates that the M region plays a key role in the binding of many HSP90 
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clients. It also modulates ATP hydrolysis [371, 372]. HSP90 interacts with the co-chaperone 

AHA1 (activator of HSP90 ATPase homologue 1), that promotes the association of the N- and 

the M-domains, thus accelerating the ATP-hydrolysis rate [373, 374] (see section 1.5.3.). The 

ability of HSP90 to recognize and stabilize a large repertoire of clients depends on its intrinsic 

flexibility and on highly dynamic conformational shifts catalyzed by ATP hydrolysis. These 

structural rearrangements are essential for client maturation and are modulated by certain co-

chaperones, including AHA-1 and p23 (reviewed in [375]).  

Little is known about the molecular basis of HSP90 client recognition. All the known 

HSP90 clients are different in structure and even close variants of the same protein do not 

necessarily depend on HSP90 stabilization in the same way. The two SRC kinase variants, the 

cellular form (c-SRC) and the viral form (v-SRC), are the perfect example. Although both are 

almost identical (95%), v-SRC requires HSP90 stabilization while c-SRC is largely 

independent of this chaperone [376-378]. This may partially be explained by the differential 

intrinsic instability of the two forms, with v-SRC being highly instable. But it remains unclear 

whether the requirement for the HSP90 chaperoning pathway is dictated by a specific motif or 

general biophysical properties of the client.  

 

1.5.2. HSP40/DnaJ proteins 

The specific recognition of client proteins for stabilization by the HSP90 pathway may 

be controlled by the HSP40/DnaJ proteins. In fact, they are the most diverse family of co-

chaperones and consist of 41 members in humans, while there are only 11 different HSC70 

isoforms and 4 different HSP90 isoforms. The canonical role of HSP40/DnaJ proteins is to 

present clients to HSC70 and stimulate HSC70 ATP hydrolysis [379]. This latter process is 

dependent on a highly conserved 70 amino acid J-domain, which is the defining feature of all 

HSP40/DnaJ proteins [380, 381]. Indeed, the J domain contains a histidine–proline–aspartic 

acid (HPD) motif that is essential for the stimulation of ATP hydrolysis by HSC70 [382]. 

HSP40/DnaJ proteins are structurally divided into three subclasses based on the presence or 

absence of conserved domains: type I (DnaJa/DjA), type II (DnaJb/DjB), and type III 

(DnaJc/DjC) [379] (Figure 1.6). In this thesis, we are primarily interested in type I HSP40/DnaJ 
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proteins (DnaJa1–4), which are orthologues of E. coli DnaJ and yeast YDJ1. DnaJa1, -a2 and –

a4 are cytoplasmic proteins, while DnaJa3 is found in the mitochondria (reviewed in [383]), 

and cytosolic DnaJa1 and –a2 are ubiquitously expressed [384]. Besides the conserved J 

domain, HSP40/DnaJ may contain a Gly/Phe-rich (G/F) linker and a C-terminal substrate-

binding region (Figure 1.6). The G/F rich region contributes to the interaction with HSC70 but 

is not involved in stimulating the ATPase activity of HSC70 [385-390] (Figure 1.6). The C-

terminal substrate-binding region can be subdivided into a hydrophobic pocket that can confer 

substrate binding specificity (CTDI), a cysteine-rich region, also known as the zinc finger 

(CTDII), and a dimerization domain, at least for type I-DnaJ proteins [391, 392] (Figure 1.6). 

Substrate specificity of type I and II-DnaJ proteins is considered to be dependent on their C-

terminal domain [393-395]. In fact, type I-DnaJs and their yeast ortholog YDJ1 are farnesylated 

at their C-terminus [396, 397]. Farnesylation is a posttranslational modification catalyzed by a 

farnesyltransferase (FTase), which consists in the addition of a 15-carbon isoprenoid group 

(farnesyl group) at the carboxyl terminus of a protein containing a CAAX motif (C=cysteine, 

A=aliphatic, and X=any amino acid) (reviewed in [398]). FTase, which catalyzes the formation 

of a thioether bond between the farnesyl group and the thiol group of cysteine, is a heterodimer 

but its substrate specifity is unclear. In fact, ~300 proteins terminate with a CAAX motif in the 

human proteome, but only a small fraction is actually post-translationally modified [398]. 

Nevertheless, farnesylation plays an important role in membrane association and protein-

protein interaction of a number of proteins. In the case of type-I DnaJ proteins, farnesylation 

largely contributes to protein-protein interactions [399] and is functionally important for the 

interaction between YDJ1 and HSP90 clients [400, 401]. The diversity of HSP40/DnaJ proteins 

and their implications in a large range of biological functions suggest a functional 

specialization and the recognition of a specific subset of substrates (see section 1.5.4.).     

 

1.5.3. Stabilization of HSP90 client proteins: the maturation process 

HSP90 and its co-chaperones HSP40/DnaJ and HSC70 interact with clients in an 

ordered ATP-dependent pathway. This maturation process has been extensively characterized  
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Figure 1.6. HSP40/DnaJ proteins. Schematic structure of the three types of J-proteins 

indicating their different domains (except for type IIIs, which do not share a common 

organization). They all share a highly conserved J domain, which is important of the ATPase 

activity of HSC70. Type I- and type II-HSP40/DnaJ proteins contain a glycine/phenylalamine-

rich domain (G/F), which is involved in the binding to HSC70. The C-terminal domain of 

HSP40/DnaJ protein varies largely depending on the subtype. Carboxyl-terminal domain I 

(CTDI) can confer substrate specificity; CTDII contains a zing-finger domain, and CTDIII 

encompasses a dimerization domain. CAAX indicates the farnesylation motif present in type I 

J-proteins.  
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in the context of steroid hormone receptors, and consists in the initial recognition of the newly 

synthesized or misfolded client by HSP40/DnaJ and HSC70/HSP70 [363, 402] (Figure 1.7). 

When bound to ATP, HSC70 has a low affinity for client proteins. Stimulation of HSC70 

ATPase activity by the J-domain of HSP40/DnaJ increases the affinity of HSC70 for its 

substrate and promotes the formation of a stable HSC70-client complex [402]. HSC70 

 

1.5.4. Limiting step of the HSP90 chaperoning pathway 

Consistent with the view that the HSP90 molecular chaperoning pathway stabilizes a 

functions as a monomer but can be associated with several co-chaperones beside HSP40/DnaJ 

proteins. Transfer of the client from HSC70 to HSP90 is mediated by HOP/STI, which 

simultaneously binds HSC70 and HSP90 through two distinct tetratricopeptide repeat (TPR) 

domains [403] (Figure 1.7). It remains unclear how the client is transferred from HSC70 to 

HSP90. For the progression of the maturation cycle, HSC70 and HOP/STI are replaced by 

other TPR-containing co-chaperones including p23 [404-406]. This latter step promotes ATP-

binding and the formation of a closed conformation of HSP90 with its client (Figure 1.7). The 

closed conformation of HSP90 maintains its client in a metastable state (Figure 1.7; reviewed in 

[407]). ATP hydrolysis results in the reopening of HSP90 and the dissociation of the client 

from HSP90. The client can then undergo additional maturation until it reaches a stable 

conformation (Figure 1.7). In the context of the steroid hormone receptors, hormone binding 

leads to a conformation change in the receptor [407]. Chaperone components are released and 

the steroid hormone receptor bound to its specific hormone can be translocated to the nucleus to 

perform as a transcription factor. Similarly, post-translational modifications (f.i. 

phosphorylation, acetylation or s-nitrosylation) of both HSP90 and its clients influence their 

association [375, 408, 409].broad range of proteins, HSP90 is implicated in several cellular 

processes, f.i. protein activation, translocation across membranes, and quality control in the 

endoplasmic reticulum or immunogenic peptide processing. HSP90 is very abundant, 

representing up to 2% of the cytosolic proteins, and is required for cellular viability in 

eukaryotes [410, 411]. This chaperone rarely functions alone and requires the help of other co-
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chaperones. For instance, HSP40/DnaJ proteins are less abundant and limiting in the 

chaperoning pathway. Although dnaJ and the HSP70 orthologue dnaK genes are both 

transcribed from the same strong promoter in E. coli, DnaJ proteins are 10 times less abundant 

than DnaKs [412]. Similarly, YDJ1 (HSP40/DnaJ orthologue) is estimated to be present in 

yeast at a 1:2:4 ratio relative to SSA1 (HSP70 orthologue) and HSP82 (HSP90 orthologue), 

respectively [413]. HSP40/DnaJ proteins are also functionally limiting in mammalian systems 

[390, 414, 415]. HSP40/DnaJ binding to the client is not only the first step in the maturation 

cycle; it is also the only co-chaperone that binds intrinsically to these clients without assistance 

of other co-factors [416-418]. Since HSP40/DnaJ proteins are the largest and most diverse 

family of co-chaperones, they could be indirect regulators of the HSP90 molecular chaperoning 

pathway by selecting specific client proteins. In line with this, in vitro studies indicate a certain 

level of functional specialization for HSP40/DnaJ proteins, despite some redundancy [416, 419-

423]. In vivo, all the HSP40/DnaJ-deficient mice show different phenotypes. DNAJA1-/- mice 

have a defect in spermatogenesis with aberrant androgen receptor signalling [424]. DNAJA3 

deficiency results in embryonic lethality [425] and heart-specific DNAJA3 deletion causes 

dilated cardiomyopathy [426]. DNAJB1 disruption compromises thermotolerance in mice 

[427]. DNAJB6-deficient mice are embryonic lethal and show defects in placental development 

[428]. DNAJC3-/- mice develop diabetes [429]. Finally, DNAJC5 deficiency results in 

progressive neurodegeneration [430]. These genetic evidences suggest substrate specialization 

of HSP40/DnaJ proteins. But the identity of these in vivo substrates and the mechanistic details 

beyond their specific recognition by DnaJ proteins are largely unknown. 

 

1.5.5. Pharmacological interventions 

The HSP90 pathway is not only involved in normal cellular processes but can also 

contribute to the development of cancer by stabilizing oncogenic proteins. Indeed, several 

HSP90 clients are implicated in cellular proliferation (f.i. HER-2, RAF-1, CDK4) [431-433], in 

immortalization (telomerase TERT) [434, 435], or in the prevention of apoptosis (AKT) [436], 

and the list is expanding. HSP90 also stabilizes specific B cells transcription factor such as 

BCL6 [437], which is oncogenic in DLBCL. Moreover, HSP90 stabilizes the constitutively  
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Figure 1.7. The HSP90 maturation process: pharmacological intervention. HSP90 modulates 

the function of proteins by stabilizing a meta-stable intermediate. HSP40/DnaJ protein initiates 

this maturation pathway by recognizing the client protein. Subsequently, HSP40/DnaJ transfers 

the substrate to HSC70 and stimulates HSC70 ATPase activity. HSC70 can associate with 

HSP90 via the co-chaperone HOP. The client protein is stabilized in a metastable complex with 
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HSP90. p23 locks HSP90 in a closed conformation until AHA-1 stimulates HSP90 ATPase 

activity. This results in the release of the client protein. This latter can be stabilized by post-

translational modifications or the presence of its substrate (f.i. steroid hormone), becomes 

activated, or undergoes an additional round of maturation. HSP90 chaperone activity depends 

on ATP hydrolysis, which can be inhibited by the drug geldanamycin (GA) and its derivatives 

17-AAG, leading to polyubiquitination and degradation of its clients. 
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active tyrosine kinase BCR-ABL in CML [438, 439]. Mutations in BCR-ABL that can arise 

during treatment with tyrosine kinase inhibitors (f.i. imatinib) result in a stronger dependence 

toward HSP90 [440]. In fact, HSP90 has been proposed to act as a capacitor in cancer by 

stabilizing mutated proteins that otherwise would not be functional [441, 442]. 

Increased expression of one or more HSP proteins is also a common feature of both 

solid tumors and haematological malignancies [408, 409]. Thus, targeting HSP90 for cancer 

therapy has been an expanding area of research and HSP90 is now considered to be a bona fide 

anti-cancer drug target. The N-terminal ATP-binding pocket of HSP90 can also bind natural 

products such as geldanamycin (GA) and radicicol [443] (Figure 1.7). These compounds 

interact with greater affinity with HSP90 N-terminus than ATP and prevent the chaperone from 

cycling between its open and closed states. Synthetic GA derivatives such as 17-AAG have 

been developed and are currently in clinical trials [444]. HSP90 inhibition results in the 

recruitment of E3 Ub ligases such as CHIP (carboxy-terminus of HSP70-interacting protein) 

[445-447]. HSP90 clients are therefore destabilized by polyubiquitination and targeting for 

proteasomal degradation (Figure 1.7). It is unlikely that CHIP is the only E3 Ub ligase involved 

in the degradation of HSP90 clients [447, 448]. Genetic evidence suggests that Cullin5 may be 

one alternative E3 ligase [449].  

The identification of a specific substrate for a given HSP40/DnaJ protein may also be a 

promising avenue of research in targeting this pathway for therapy. Unfortunately, there is 

limited information on the expression and function of most HSP40/DnaJ in cancer [379, 450], 

and very few specific substrates are known. Of note, there are currently 8 different 

HSP40/DnaJ proteins that have been implicated in the development of cancer and metastasis 

[379], but how mechanistically they play a role in influencing cancer properties is unknown. 

DnaJa1, a type-I HSP40/DnaJ protein, is an interesting example. Modulation of DnaJa1 levels 

in a human glioblastoma cell line modulates its resistance to radiation [451]. As mentioned 

previously, DnaJa1 is farnesylated at its C-terminus, which is important for its association with 

client proteins. Use of farnesyltransferase inhibitors (FTI) that are currently in clinical trials led 

to the accumulation of non-farnesylated DnaJa1 and correlated with increased radiosensitivity 

[451]. Although FTI may affect other farnesylated proteins, the use of these drugs may be an 
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interesting tool to target substrates recognized by a farnesylated HSP40/DnaJ proteins. 

 

1.6. Instrinsic motifs dictating protein turnover 

The differential stability between cytoplasmic and nuclear AID may also result from its 

intrinsic biochemical properties or the presence of degradation motifs in AID that may be more 

relevant in one subcellular compartment than another. AID is targeted by both an Ub-dependent 

and independent degradation pathway in the nucleus [331, 333], and one could speculate that 

specific motifs may direct AID to one or the other pathway.  
 

1.6.1. Ubiquitin-dependent and –independent degradation pathways 

The proteasome performs the majority of the proteolysis in higher eukaryotic cells and 

therefore plays a central role in protein homeostasis. It is found in both the cytoplasm and the 

nucleus and contributes in the destruction of abnormal/unwanted proteins but also to the 

maturation of polypeptide precursors [452, 453]. It is also involved in the generation of 

peptides presented by MHC class I molecules, which is crucial for initiating an immune 

response. The proteasome is composed of a proteolytic core, the 20S proteasome, which is 

highly conserved throughout evolution [452]. The 20S proteasome has a typical barrel-shape 

that results from the assembly of 28 subunits in 4 heptameric rings [454, 455]. The two inner 

rings form the catalytic sites while the outer rings associate with a variety of regulatory 

complexes. Substrates access the central catalytic sites through axial ports at the end of the 20S 

proteasome [456]. But these pores are closed in absence of the regulatory complexes. Three 

activators of the 20S proteasome have been characterized: the 19S regulatory complex (PA700) 

[457-460], the 11S activating complex (REG activator PA28) [461, 462], and the proteasome 

activator P200 [463]. Two inhibitory proteins, PI31 [464] and Pr39 [465], have also been 

described. Their mechanism of action is still under investigation but it is clear that the 19S 

complex is necessary for the processing of ubiquitinated proteins, although it has also been 

implicated in a Ub-independent pathway [466]. The 20S proteasome can associate with two 

19S regulatory complexes to form the 26S proteasome [467] (Figure 1.8A), which is directly  
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Figure 1.8. The ubiquitin-dependent and -independent proteasome system. (A) Conjugation 

of ubiquitin (Ub) is catalyzed by the RING/U-box or the HECT E3 ligase. Ub is activated in an 

ATP-dependent manner by the Ub-activating enzyme, E1. The activated Ub is subsequently 

transferred to the Ub-conjugating enzyme E2. In the case of a RING/U-box E3 ligase, Ub-

charged E2 binds to E3 and transfers the activated Ub moiety directly to the substrate that is 

also bound to E3. For the HECT E3 ligase, the Ub is transferred from E2 to a cysteine residue 

in E3 and then to the substrate .The conjugated substrate is degraded into short peptides by the 

26S proteasome, composed of the core 20S proteasome and the 19S activator subunits. (B) 
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Alternatively, a substrate can be directly recognized by the REG complex (also called 

PA28/11S), which acts as an activator of the 20S proteasome and can initiates the degradation 

of intact proteins through an Ub- and ATP-independent pathway. 
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involved in the degradation of ubiquinated proteins. Nevertheless, this complex is not 

necessarily the most abundant proteasomal complex in the cell. It is also unclear what the 

subcellular distribution of all these complexes is and how they manifest substrate specificity. 

The Ub-dependent proteasome degradation pathway requires the initial conjugation of 

single or polymeric Ub moieties to the substrate. This most often occurs through the formation 

of an isopeptide bond between the C-terminal group of Ub and the ε-amino group of an internal 

lysine residue. Ubiquitination can also occur at alternative sites, including the N-terminal group 

of a protein [468-470] or unconventional non-lysine residues (cysteine, serine or threonine) 

[471-475]. Importantly, this process is reversible through the action of deubiquitylases (DUB) 

[476]. Protein ubiquitination is carried out by an enzymatic cascade, where Ub is first activated 

by a Ub-activating enzyme (E1) in an ATP-dependent manner (Figure 1.8A) [453, 470]. A 

thioester bound is formed between the C-terminus of Ub and a cysteine residue in E1. 

Activated Ub is subsequently transferred to a Ub-conjugating enzyme (E2/UBC). Despite 

partial redundancy, E2 can confer some specificity to substrate ubiquitination. However, in 

most cases, the E3 Ub ligase provides the layer of specificity for a substrate. HECT E3 ligases 

form a thioester bond with activated Ub before transferring it to the substrate [477]. On the 

other hand, RING/U-box E3 ligases facilitate the transfer of the Ub moiety from the E2 to the 

substrate [478]. Ub moieties can then bind efficiently and specifically to the 19S regulatory 

complex, thus targeting the protein substrate for degradation. 

 Interestingly, there are a number of proteins that can be degraded in a Ub-independent 

(Figure 1.8B) manner but still require the proteasome, including ornithine decarboxylase 

(ODC) [479, 480], cyclin-dependent kinase inhibitor p21 [481, 482], or c-JUN [483]. The fact 

that p21 or c-Fos can be degraded by both a Ub-dependent and –independent pathways [476] 

suggest that both pathways can contribute to the protein turnover of a specific substrate and 

may be selected depending on the context or subcellular localization. However, it remains 

unclear what are the intrinsic protein determinants that dictate this choice. Absence of an Ub 

acceptor NH2 group on the substrate may be an obvious element, although proteins that have 

lysine redisues, including AID [484], are also subjected to this pathway (reviewed in [476]). 
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Furthermore, the proteasomal subunits involved in this pathway are still controversial. The REG 

complex (11S/PA28), which is an ATP- and Ub-independent proteasome activator, strongly 

enhances the catalytic activity of the proteasome in vitro [485]. In particular, REGγ resides 

primarily in the nucleus and can directly interact with intact protein substrates for targeting to the 

20S proteasome in an ATP- and Ub-independent manner [452] (Figure 1.8B). But the determinants 

implicated in the recruitment of REG-γ are unclear. In vitro studies have shown that proteins 

containing intrinsically unstructured regions undergo degradation by the 20S proteasome. In 

fact, up to 20% of all cellular proteins can be degraded or cleaved at unstructured domains by a 

Ub-independent 20S-dependent proteasomal pathway [476, 486-488]. However, the REGγ-20S 

proteasome seems to be highly selective and its recruitment may require additional structural or 

sequence motifs for substrate degradation [489, 490] .  

1.6.2. The N-end rule 

Although the general steps implicated in protein turnover are defined, it is less clear 

what are the actual signals dictating protein stability and whether they influence an Ub-

dependent or –independent proteasomal targeting. Several biochemical and biophysical 

properties of proteins have been described as determinants of protein turnover, including 

molecular weight [491], isoelectric point [492, 493], hydrophobicity [494, 495], and the 

presence of certain motifs [496-499]. The simplest degradation motif, the N-degron, has been 

extensively studied and illustrates that the nature of a protein’s N-terminal amino acid 

determines its half-life [499, 500]. Newly synthesized proteins contain an N-terminal 

methionine which is considered as a stabilizing residue according to the N-end rule, but 

proteins can be enzymatically modified at their N-terminus to reveal a primary, secondary or 

tertiary destabilizing residue depending on the number of steps required before 

polyubiquitination [500]. 

 There are two cytosolic methionine aminopeptidases in mammals, MetAP1 and 

MetAP2, which remove the initial methionine, thus exposing the secondary residue of a 

protein. Interestingly, MetAP2 is highly expressed in GC B cells and its inhibition led to 

suppression of T-cell dependent Ag-specific antibody response by disrupting GC formation 

[501, 502]. Indeed, N-terminal cleavage is quite a common post-translational modification that 

can affect between 55 and 70% of the proteins depending on the organism and the subcellular 
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compartment [503]. Processed proteins that contain an N-terminal cysteine residue are 

subsequently modified by an arginyl-tRNA protein transferase (ATE1) to introduce an arginine, 

which targets it to the N-end rule pathway. ATE1 can actually modify several proteins without 

necessarily creating a N-degron, suggesting that multiple determinants could influence the half-

life of a protein. In fact, high-throughput analysis suggested that the half-life of a protein is 

influenced by multiple factors (f.i. structural disorder) in vivo [504]. 

 

1.6.3. PEST and other degradation motifs 

Other degrons predisposing a protein to increased instability have been identified, 

including the PEST motifs (P=proline, E=glutamic acid, S=serine, T=threonine) [498, 505]. 

These regions are enriched in proline, aspartic/glutamic acid, serine and threonine, and are 

generally flanked by positive residues. They have been predicted to be solvent-exposed regions, 

which would make them more susceptible to proteolysis [505]. In fact, PEST motifs are 

abundant in intrinsically unstructured proteins [506, 507]. Most of the proteins containing a 

PEST motif are short-lived [508-511], which could result from the contribution of both the Ub-

dependent and independent proteasomal degradation pathway [512]. However, whether PEST 

motifs interact with specific E3 Ub ligases or substrate recognition proteins for the Ub-

independent proteasome is unknown. 

 Beside PEST motifs, additional degrons have been characterized such as the APC/C-

dependent D- and KEN boxes [497, 513-516] and the TrCP recognition box (DSGXXS) [470, 

517-519]. These motifs seem to be present in more defined and smaller subsets of proteins. The 

D- and KEN boxes are recognized by the anaphase-promoting complex/cyclosome (APC/C), an 

E3 Ub ligase involved in the polyubiquitination of regulatory proteins such as securin, cyclin A 

and geminin [520]. Proteasomal degradation of these proteins through the action of APC/C is 

important for cell-cycle progression. On the other hand, the DSGXXS motif is recognized by β-

transducin repeats-containing proteins (β-TrCP), which serve as a substrate recognition for the 

SCFβ-TrCP E3 Ub ligases [521]. This motif is mainly found in phosphorylated proteins and plays 

a role in the regulation of cell division and signal transduction. For instance, the regulatory 
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protein Iκβ and the E-cadherin-associated β-catenin protein contain such a motif and can be 

targeted to the proteasome through the action of the β-TrCP-SCFβ-TrCP complex. The D/Ken box 

and the β-TrCP motifs are highly dependent on Ub for their substrate degradation, which makes 

them improbable candidates for targeting to the other pathway.  

In summary, the rate of degradation of a protein results from the combination of 

multiple factors, including the presence of one or several degradation motifs as well as intrinsic 

domains of disorders. Whether these degradation motifs may influence the targeting of a 

substrate to the Ub-dependent or –independent proteasome remains unclear.        

 

1.7. Rationale of the research 

Given that AID is limiting for antibody diversification, and that ectopic and normal 

expression of AID results in off-target mutations which contribute to cancer/autoimmune 

diseases, it is critical to precisely define the post-translational regulations that determine the 

optimal levels of AID. Since AID is found at steady-state in the cytoplasm, where it is more 

stable than in the nucleus, we asked whether cytoplasmic AID could be protected by binding to 

specific factors in this compartment. A pull-down assay, using AID as bait, revealed 

interactions with several molecular chaperones, including DnaJa1, HSC70 and HSP90. Our 

hypothesis is that the HSP90 molecular chaperoning pathway protects AID from degradation in 

the cytoplasm. We first investigated the role of HSP90 in cytoplasmic AID stabilization and its 

biological importance in antibody diversification (Chapter 2). Analysis of the role of DnaJa1 

revealed a limiting step in the stabilization of cytoplasmic AID by the HSP90 molecular 

chaperoning pathway (Chapter 3).  This may influence the optimal levels of AID required for 

antibody diversification. Finally, we investigated whether AID stability is only linked to its 

subcellular localization or whether there is a direct contribution of intrinsic protein motifs to 

AID stability, in the context of the regulation of antibody diversification (Chapter 4). 

 
 
 
 
 



 

 

 

 
 
 
 
 
 
 
 
 

CHAPTER 2: REGULATION OF ACTIVATION-INDUCED 
DEAMINASE AND ANTIBODY GENE DIVERSIFICATION BY 

HSP90 
 
 
 
Alexandre Orthwein, Anne-Marie Patenaude, El Bachir Affar, Alain Lamarre, Jason C. Young 

and Javier M. Di Noia 

 
 
This article has been published in the Journal of Experimental Medicine (2010), 207(12):2751-
65 
 
 



52 

 

 

2.1. Authors contribution 
Alexandre Orthwein designed and performed most of the experiments. Anne-Marie 

Patenaude performed the immunofluorescence experiments. Dr Bachir El Affar contributed to 

the AID-FLAG/HA purification and provided with useful advice. Dr Alain Lamarre provided 

patients samples for the purification of human B cells and useful advice. Dr Jason C. Young 

contributed in the conception of the project, the design of experiments and provided useful 

advice. Dr Javier M. Di Noia conceived the project and wrote the paper. All authors discussed 

and interpreted the data and contributed to the final manuscript. 

 

2.2. Abstract 
Activation-induced deaminase (AID) is the mutator enzyme that initiates somatic 

hypermutation and isotype switching of the antibody genes in B lymphocytes. Undesired 

byproducts of AID function are oncogenic mutations. AID expression levels seem to correlate 

with the extent of its physiological and pathological functions. In this study, we identify AID as 

a novel HSP90 (heat shock protein 90 kD) client. We find that cytoplasmic AID is in a dynamic 

equilibrium regulated by HSP90. HSP90 stabilizes cytoplasmic AID, as specific HSP90 

inhibition leads to cytoplasmic polyubiquitination and proteasomal degradation of AID. 

Consequently, HSP90 inhibition results in a proportional reduction in antibody gene 

diversification and off-target mutation. This evolutionarily conserved regulatory mechanism 

determines the functional steady-state levels of AID in normal B cells and B cell lymphoma 

lines. Thus, HSP90 assists AID-mediated antibody diversification by stabilizing AID. HSP90 

inhibition provides the first pharmacological means to down-regulate AID expression and 

activity, which could be relevant for therapy of some lymphomas and leukemias. 
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2.3. Introduction 
Antibody genes are first rearranged by V(D)J recombination during B lymphocyte 

development and then further diversified in the periphery after encountering cognate Ag. The 

latter is achieved by the mechanism of somatic hypermutation (SHM), which introduces 

random mutations over the exon that encodes the antibody variable region. Coupled to 

phenotypic selection during the GC reaction, SHM results in the overall maturation of the 

antibody response. SHM is initiated by activation-induced deaminase (AID), which deaminates 

dC to dU in the Ig loci. Processing of the dU by specific DNA repair enzymes produces the full 

spectrum of SHM (Di Noia and Neuberger, 2007; Peled et al., 2008). In addition, AID also 

targets the DNA immediately preceding the constant exons that encode for the different 

antibody isotypes in the IgH locus. Processing of the dU in these switch regions leads to the 

DNA breaks necessary for class switch recombination (CSR; Stavnezer et al., 2008). 

AID being a mutator enzyme sufficient to cause cancer in transgenic models (Okazaki 

et al., 2003; Pasqualucci et al., 2008), there has been a well-deserved emphasis in studying its 

regulation. Gene expression regulation is an important step during normal B cell development, 

with AID being mostly restricted to GC B cells (Muramatsu et al., 1999; Crouch et al., 2007). 

However, AID can normally be expressed outside of the B cell compartment, the exact 

physiological relevance of which is still unclear, although it may influence the expression of 

many genes by affecting DNA methylation (Morgan et al., 2004; Macduff et al., 2009; Pauklin 

et al., 2009; Bhutani et al., 2010; Popp et al., 2010). Importantly, there is ample evidence that 

AID is expressed in a variety of human lymphomas (Greeve et al., 2003; Pasqualucci et al., 

2004) and leukemias (Albesiano et al., 2003; Feldhahn et al., 2007; Klemm et al., 

2009; Palacios et al., 2010). In fact, AID plays a role in malignant transformation by initiating 

DNA double-strand breaks at various non-Ig loci, most prominently c-Myc, which in murine 

experimental plasmacytoma, and therefore most likely also in human Burkitt’s lymphoma, 

leads to the hallmark oncogenic c-Myc–IgH chromosomal translocation (Ramiro et al., 

2004, 2006; Robbiani et al., 2008,2009). A role for AID in the etiology of diffuse large B cell 

lymphoma is also very likely (Pasqualucci et al., 2001, 2004, 2008). In chronic myeloid 

leukemia (CML), AID mutates the BCR-ABL1 oncogene, leading to resistance to the tyrosine 
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kinase inhibitor imatinib, the main therapeutic drug (Klemm et al., 2009). Moreover, AID 

expression in nonlymphoid tumors has also been shown (Endo et al., 2008). Therefore, it is 

important to understand AID posttranslational regulation, which may differ between normal 

and transformed cells and have important and varied implications in the several cell types that 

can express AID. 

Multiple mechanisms seem to contribute to restrain AID protein. Subcellular 

localization is an important step in regulating AID that also impinges on its stability because 

AID has a significantly shorter half-life in the nucleus than in the cytoplasm (Aoufouchi et al., 

2008). In steady-state, the bulk of AID is cytoplasmic as a result of the integration of three 

mechanisms: nuclear import (Patenaude et al., 2009), nuclear export (Ito et al., 2004; McBride 

et al., 2004), and cytoplasmic retention (Patenaude et al., 2009). However, it is unknown 

whether AID stability is regulated in the cytoplasm. Several studies, including the analysis of 

AID-haploinsufficient mice (Sernández et al., 2008;Takizawa et al., 2008) or mice with altered 

AID levels resulting from manipulating microRNA regulation (de Yébenes et al., 2008; Dorsett 

et al., 2008; Teng et al., 2008) or enforcing transgenic overexpression (Robbiani et al., 2009), 

have suggested that AID protein levels are limiting for and correlate with the efficiency of 

antibody diversification but also B cell lymphomagenesis. Therefore, any mechanism 

impinging on the overall AID steady-state levels is important for balancing an efficient humoral 

immune response with the associated risk of B cell transformation. 

We report the physical and functional interaction of AID with the HSP90 (heat shock 

protein 90 kD) molecular chaperone pathway. HSP90 is thought to be more selective of its 

range of substrates than other chaperones, playing a prominent role in the structural 

stabilization and functional modulation of many of its client proteins, rather than in their initial 

folding (Pratt and Toft, 2003; Whitesell and Lindquist, 2005; Pearl and Prodromou, 

2006; Picard, 2006; Wandinger et al., 2008). Indeed, the interaction with HSP90 prevents 

proteasomal degradation of AID in the cytoplasm, thereby determining the steady-state levels 

of functional AID. 
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2.4. Results 

2.4.1. AID specifically interacts with HSP90 
Immunopurification of AID-Flag/HA from cell extracts of Ramos B cells produced a 

complex but reproducible pattern of copurifying proteins (Fig. 2.1 A). Of note, we used a stable 

cell line expressing only 2.5-fold the amount of endogenous AID (Fig. S2.1 A). After 

identification of the associated proteins by mass spectrometry, we noticed the presence of 

several members of the HSP90 molecular chaperone pathway (Whitesell and Lindquist, 2005), 

including the two major isoforms of HSP90 (α and β), the HSP90 cochaperone AHA-1, 

HSP70/HSC70, and one HSP40 cochaperone (DnaJa1), as well as several proteasome subunits 

(Table 2.1). The HSP90, HSP70, and HSP40 proteins are known to cooperate in a 

multichaperone system (Picard, 2006; Wandinger et al., 2008). Given the importance of HSP90 

in regulating the function of many signal transduction and nucleocytoplasmic shuttling 

proteins, we decided to further explore this interaction. We confirmed the binding of AID to 

endogenous HSP90 by coimmunoprecipitation of AID-GFP from stably expressing Ramos 

cells (Fig. 2.1 B). We also confirmed that AID coimmunoprecipitated similarly with tagged 

versions of HSP90-α and HSP90-β (Fig. 2.1 C). Both isoforms are constitutively expressed in 

the B cell lines we used, although HSP90-β is the predominant form in resting primary mouse 

B cells, with HSP90-α increasing after cytokine activation (Fig. S2.1, B and C). These results 

are in keeping with various studies indicating that mitogenic and cytokine stimuli up-regulate 

HSP90-α, whereas HSP90-β is constitutively expressed (Hansen et al., 1991; Metz et al., 

1996; Csermely et al., 1998;Sreedhar et al., 2004). HSP90-α and HSP90-β share ∼90% 

similarity, and although they may have some nonoverlapping roles, for most functions, they are 

largely equivalent (Csermely et al., 1998; Sreedhar et al., 2004). 

We then characterized the interaction between HSP90 and AID. Notably, the AID 

paralogue proteins APOBEC1, APOBEC2 (A2), and APOBEC3G, which share ∼50–60% 

similarity with AID (Conticello et al., 2005), did not coimmunoprecipitate with Myc–HSP90-β 

(Fig. 2.1 D). This is consistent with a recent study showing that zebra fish A2 interacts with the  
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Figure 2.1. AID interacts with HSP90. (A) Ramos B cells stably expressing AID-Flag/HA 

were subjected to consecutive immunoprecipitation with anti-Flag and anti-HA. Precipitated 

material was eluted with the specific peptides and separated by SDS-PAGE. Proteins were 

identified by mass spectrometry of tryptic peptides. The proteins relevant to this work are 

indicated next to the bands from where they were identified. One of two independent 

experiments is shown. MMM, molecular mass marker. (B) GFP and AID-GFP were 

immunoprecipitated from extracts of stably expressing Ramos cells and analyzed by Western 

blot (WB) to detect coimmunoprecipitated endogenous HSP90. One of three independent 

experiments is shown. (C) APOBEC2 (A2)-GFP and AID-GFP were immunoprecipitated with 

anti-GFP from transiently expressing HEK293T cells cotransfected with Flag–HSP90-α and/or 

Myc–HSP90-β. Immunoprecipitates (IP) were probed with anti-Flag and anti-Myc in Western 
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blots. The filters were then probed with anti-HSP90, which recognizes both isoforms, to verify 

that the overall HSP90 level was similar after transfection. Anti-GFP confirmed similar 

immunoprecipitation of the bait. One of two independent experiments is shown. (D) Lysates 

from HEK293T cells cotransfected with Myc–HSP90-β and Flag-tagged versions of AID or the 

indicated APOBECs or vector alone (V) were immunoprecipitated using anti-Flag and 

analyzed by Western blot with anti-Myc to verify the presence of HSP90-β and anti-Flag to 

confirm the immunoprecipitation of the baits. One of four independent experiments is shown. 

(E) Lysates from HEK293T cells cotransfected with Myc–HSP90-β and either vector only (V) 

or Flag-tagged AID, A2, or AID-A2 chimeras (#1–5, described below in schematic form) were 

immunoprecipitated with anti-Flag. Immunoprecipitates were analyzed by Western blot using 

anti-Myc and anti-Flag antibodies. One of three independent experiments is shown. In 

schematics, horizontal green lines between dashed lines identify the fragments of AID replaced 

by the homologous region of A2 in each construct. Based on experimental A2 (Prochnow et al., 

2007) and predicted AID (Patenaude et al., 2009) secondary structures, blue rectangles 

indicate α helixes, and red arrows indicate β sheets. Where indicated, aliquots (5%) of the 

whole cell lysates were probed to control for expression. 
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Table 2.1. Proteins copurifying with AID-Flag-HA from Ramos B cells identified by mass 
spectrometry 

HUGO name Mascot 

Scorea 

Coverage 

(%) 

Description 

HSP90AB1* 2178 44 Heat shock 90 kDa protein 1, beta 

 300 8  

HSP90AA1* 1668 35 Heat shock 90 kDa protein 1, alpha 

 151 6  

HSPA8 1338 39 Heat shock 70 kDa protein 8 isoform 1 

HSPA6 327 8 Heat shock 70 kDa protein B 

AHSA1* 81 3 AHA1, Activator of heat shock 90kDa  

 27 9 protein ATPase homolog 1 

DNAJA1 212 26 HSP40 homolog, subfamily A, member 1 

PSMD2 242 14 Proteasome 26S non-ATPase subunit 2 
PSMD1 105 2 Proteasome 26S non-ATPase subunit 1 
PSMD6* 105 5 Proteasome 26S non-ATPase subunit 6 

 46 6  

PSMC2 75 3 Proteasome 26S ATPase subunit 2 

* Proteins identified in two independent experiments. 

A threshold Mascot score of 50 was used as cut-off, indicating a 95% confidence of being a true 
identification. For AHSA1 in the second experiment the MS profile was manually examined to 
confirm the reliability of the observation. 
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chaperone Unc45b but not with HSP90-α (Etard et al., 2010). The region of AID interacting 

with HSP90-β could be  mapped  to the  N-terminal half of the molecule by using AID-A2 

chimeric proteins (Fig. 2.1 E). An AID mutant showing impaired oligomerization (Patenaude et 

al., 2009) was still recognized by HSP90 (Fig. S2.1D). Phosphorylation can modulate client 

binding to HSP90 (Dickey et al., 2007), but the known protein kinase A (PKA) sites within the 

N-terminal region of AID, Thr27, and Ser38, were not essential for the interaction (Fig. S2.1 

D). These results suggest that HSP90 specifically binds to AID by its N-terminal region in an 

oligomerization- and phosphorylation-independent fashion. 

 

2.4.2. HSP90 maintains the steady-state level of AID 
The chaperone activity of HSP90 depends on an ATP hydrolysis cycle, which is 

inhibited by geldanamycin (GA) and its derivatives, like 17-allylamino-17-

demethoxygeldanamycin (17-AAG; Prodromou et al., 1997; Stebbins et al., 1997; Panaretou et 

al., 1998; Young and Hartl, 2000). Treating Ramos cells with GA prevented the interaction of 

AID-GFP with HSP90, as indicated by the lack of coimmunoprecipitation (Fig. 2.2 A). More 

importantly, treatment of human, chicken, and mouse B cell lymphoma lines with GA caused a 

clear reduction in the levels of endogenous AID at 12 and 24 h. We probed for the known 

HSP90 client kinase LCK, which was also reduced, as positive control (Giannini and 

Bijlmakers, 2004). Other enzymes involved in antibody diversification, including UNG (uracil-

DNA N-glycosylase) and MSH6, were not sensitive to HSP90 inhibition (Fig. 2.2 B). Finally, 

endogenous AID in stimulated human primary B cells from multiple donors was also sensitive 

to HSP90 inhibition (Fig. 2.2 C), confirming that the functional interaction between AID and 

HSP90 is physiologically relevant. 

To use a more sensitive assay to monitor AID decay at shorter times and to be able to 

compare AID variants, we established stable Ramos transfectants expressing various AID-GFP 

constructs from a heterologous promoter. The levels of AID-GFP could thus be monitored over 

time and accurately quantified by flow cytometry. We confirmed that AID-GFP but not GFP 

was destabilized upon HSP90 inhibition in these cell lines with kinetics consistent to that                                                             
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Figure 2.2. HSP90 actively maintains the steady-state levels of AID. (A) Ramos cells stably 

expressing AID-GFP or GFP alone were treated with 2 µM GA (+) or DMSO (−) for 2 h. Anti-

GFP immunoprecipitates (IP) were fractionated on SDS-PAGE, and blots were probed with 

anti-HSP90 and anti-GFP. Aliquots (5%) of the whole cell lysates were probed to control for 

HSP90 expression. One of two independent experiments is shown. (B) Human Ramos, mouse 

CH12F3-2 (pretreated for 16 h with IL-4, TGF-β1, and anti-CD40 to induce AID expression), 

and chicken DT40 B cell lines were treated with 2 µM GA (+) or DMSO (−) and harvested at 

the indicated time points after GA. The expression level of the indicated proteins was analyzed 

by Western blot (WB) in total or nuclear (where indicated) extracts. Identical effect was 

observed with 17-AAG in all cell lines (not depicted). Representative panels from one of two or 

three independent experiments (depending on the antibody) are shown. (C) Resting B cells 

purified from blood of three donors were activated with IL-4 and anti-CD40 and 4 d later 

treated and analyzed as in B except that the HSP90 inhibitor 17-AAG (+) was used instead of 

GA. (D) Ramos cells stably expressing GFP, AID-GFP, or chimeras AID-A2 #1 or #2 were 

treated in triplicate with 2 µM GA or DMSO. The GFP mean fluorescence intensity (MFI) was 
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monitored by flow cytometry and normalized to t0 = 100%. MFI ± SD is plotted over time. One 

of three independent experiments is shown (**, P < 0.01). (E) AID-GFP was monitored as in D 

except that Ramos cells were pretreated with 100 ng/ml CHX for 30 min before HSP90 

inhibition. One of five independent experiments is shown (**, P < 0.01). (F) Purified naive B 

cells from Aicda−/− mice were activated and retrovirally transduced with mouse AID-GFP or 

GFP control. Cells were analyzed as in D 2 d after transduction. One of three independent 

experiments is shown (**, P < 0.01) 
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observed for endogenous AID (Fig. 2.2 D). This indicated a direct action on AID protein rather 

than on Aicda transcription, which was confirmed by Northern blot of Aicda in Ramos cells 

(unpublished data). As would be expected, the AID-A2 chimeras that did not interact with 

HSP90 were insensitive to GA treatment (Fig. 2.2 D). Treatments inhibiting or exacerbating 

PKA activity had no effect on the sensitivity of AID-GFP to GA, further suggesting that these 

two pathways are not connected (Fig. S2.2). We then measured the decay kinetics of AID-GFP 

after pretreating the cells with cycloheximide (CHX) so as to follow the pool of AID that had 

already been synthesized and not the nascent AID that might be more sensitive to folding 

requirements. CHX caused the expected decay of AID-GFP (compare control DMSO-treated 

AID-GFP levels in Fig. 2.2, D vs. E), which was clearly accelerated by GA (Fig. 2.2 E), 

indicating a role for HSP90 in stabilizing fully synthesized AID. We confirmed that both mouse 

and human AID-GFP were similarly sensitive to HSP90 inhibition when expressed in AID-

deficient mouse primary splenic B cells (Fig. 2.2 F and not depicted), thus ruling out any effect 

of the transformed cell environment of Ramos on our observations. We conclude that 

functional HSP90 is necessary to stabilize and maintain the steady-state levels of AID in vivo 

in primary as well as in transformed cells. 

 

2.4.3. HSP90 protects cytoplasmic AID from being degraded 
Binding to HSP90 can regulate protein subcellular localization (DeFranco, 1999;Galigniana et 

al., 2004). Indeed, our results could be explained by increased AID nuclear import after HSP90 

inhibition and therefore AID destabilization in the nucleus (Aoufouchi et al., 2008). However, 

we did not observe any changes in AID localization after HSP90 inhibition, even when 

combined with a proteasome inhibitor to prevent degradation of nuclear AID (Fig. S2.3). So, 

we compared the effects on AID-GFP of inhibiting HSP90 versus inhibiting nuclear export 

with leptomycin B (LMB), which enriches AID-GFP in the nucleus (Ito et al., 2004; McBride 

et al., 2004), in the stable Ramos transfectants. The kinetics of AID-GFP decay after GA or 

LMB treatment were different (Fig. 2.3 A). Combined GA and LMB treatment showed an 

apparently additive effect (Fig. 2.3 A). Similar results were obtained using DT40 and HeLa 

cells stably expressing AID-GFP (Fig. S2.4). The lack of detectable nuclear translocation of 

AID after HSP90 inhibition, together with the different decay kinetics after GA and LMB, 

http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#F2�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#F2�
http://www.jem.org/cgi/content/full/jem.20101321/DC1�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#F2�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#F2�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#F2�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#ref-15�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#ref-23�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#ref-23�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#ref-2�
http://www.jem.org/cgi/content/full/jem.20101321/DC1�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#ref-28�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#ref-37�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#ref-37�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#F3�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#F3�
http://www.jem.org/cgi/content/full/jem.20101321/DC1�


63 

 

 

 

raised the possibility that AID degradation after each of these treatments happened in different 

compartments and therefore would involve different pathways. To test this, we used Ramos 

cells expressing GFP-AID because the N-terminal GFP fusion blocks nuclear import of AID 

(Patenaude et al., 2009) but not its binding to HSP90 (Fig. S2.1E). Consistently, with its 

exclusively cytoplasmic localization, GFP-AID did not respond to LMB, but it was still 

sensitive to GA (Fig. 2.3 B). HSP90 clients are in dynamic equilibrium with proteasomal 

degradation (Pearl and Prodromou, 2006). Indeed, the proteasome inhibitor MG132 prevented 

the HSP90 inhibition–induced degradation of AID-GFP as well as of endogenous AID in 

Ramos and DT40 cells (Fig. 2.3, C and D; and Fig. S2.4 A). We obtained identical results using 

lactacystin, another proteasome inhibitor (unpublished data). A reproducible ∼3.5-fold increase 

in AID polyubiquitylation was observed in Ramos and primary mouse B cells after combined 

HSP90 and proteasome inhibition versus inhibiting only the proteasome (Fig. 2.3 E). This was 

not particular to B cells because it was also true for AID-GFP in stably transfected HeLa cells 

(unpublished data). These experiments show that HSP90 stabilizes cytoplasmic AID by 

protecting it from proteasomal degradation. 

The E3 Ub ligase CHIP (C terminus of HSC70-interacting protein) is physically 

associated with HSP90 and triages many HSP90 clients (McDonough and Patterson, 2003). Of 

note, CHIP is constitutively expressed in Ramos and induced upon activation in primary mouse 

B cells (Fig. S2.1, B and C). Furthermore, CHIP coimmunoprecipitated with AID-GFP from 

extracts of stably transfected HeLa cells (Fig. 2.4 A). The interaction was only apparent when 

the cells were pretreated with a proteasome inhibitor, which allows the accumulation of this 

rapid turn over interaction (Li et al., 2004). We reasoned that if HSP90 was normally 

stabilizing AID in B cells, the overexpression of CHIP could reduce AID levels by shifting the 

equilibrium of the pathway from stabilization to degradation. Indeed, all subclones from three 

independent transfectants of Ramos B cells overexpressing Myc-CHIP showed a significantly 

reduced steady-state level of AID (Fig. 2.4, B and C) but not of ATM (ataxia telangiectasia 

mutated), which is not an HSP90 client. Altogether, these results indicate that cytoplasmic AID  
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Figure 2.3. Cytoplasmic ubiquitination and proteasomal degradation of AID after HSP90 

inhibition. (A) Ramos cells stably expressing AID-GFP were treated in triplicate with DMSO, 

2 µM GA, and/or 50 ng/ml LMB, and the GFP signal was monitored over time by flow 

cytometry. The MFI normalized to t0 = 100% ± SD is plotted for each treatment (**, P < 0.01). 

One of five independent experiments is shown. (B) Ramos cells stably expressing GFP-AID, 

which is completely impaired for nuclear import (Patenaude et al., 2009), were analyzed as in 
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A. One of three independent experiments is shown. (C) Ramos cells stably expressing AID-GFP 

were pretreated or not for 30 min with 10 µM MG132 before adding DMSO or 2 µM 17-AAG 

and analyzed as in A (**, P < 0.01). One of five independent experiments is shown. (D) Human 

Ramos and chicken DT40 B cell lines were treated with 2 µM GA. Where indicated, 10 µM 

MG132 was added only during the last 12 h of incubation to avoid excessive cell death. Cells 

were harvested at different time points, lysed, and analyzed by Western blot (WB). One of two 

independent experiments is shown for each cell line. (E) Ramos B cells stably expressing 

human AID-GFP or primary mouse B cells transduced with mouse AID-GFP were pretreated 

with 10 µM MG132 for 30 min before a d ditio n o r n o t of 2 µM GA for 5  h .  Anti-GFP 

immunoprecipitates (IP) were analyzed by Western blot using anti-ubiquitin (Ub) and anti-

GFP. Polyubiquitinated AID was quantified by densitometry, and the relative means ± SD were 

plotted for three independent experiments for each cell type. 
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Figure 2.4. The HSP90-associated E3 ubiquitin ligase CHIP can destabilize AID. (A) HeLa 

cells stably expressing AID-GFP were transfected with Myc-CHIP and 48 h later treated for 5 

h with DMSO (−), 2 µM GA, 50 ng/ml LMB, and/or 10 µM MG132 (30 -min pretreatment) in 

the indicated combinations. Anti-GFP immunoprecipitates (IP) were analyzed by Western blot 

(WB) with anti-GFP and anti-Myc. Aliquots (5%) of the total cell lysates were used to control 

for Myc-CHIP expression. One of two independent experiments is shown. (B) Endogenous AID 

was analyzed by Western blot in single cell subclones from untransfected control or three 

independent Myc-CHIP Ramos transfectants (CL11, CL24, and CL25) after expansion. ATM 

was used as an HSP90-independent control, antiactin as loading control, and anti-Myc to 

confirm the expression of CHIP. Three representative subclones from each transfectant are 

shown. The vertical black line indicates that intervening lanes have been spliced out. (C) AID 

protein levels in all control or Myc-CHIP Ramos subclones (distinguished by different symbols) 

were estimated from nonsaturated Western blots. The signal was normalized to each 

corresponding actin signal obtained from equivalent exposures and plotted. Median values are 

indicated (**, P < 0.01).  
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requires constant stabilization by HSP90 and that altering the balance of this reaction, either by 

inhibiting HSP90 or favoring the degradative side of this pathway through CHIP 

overexpression, leads to greatly diminished AID protein levels through proteasomal 

degradation in the cytoplasm. 

 

2.4.4. Inhibition of HSP90 results in reduced antibody diversification 
We first used the chicken B cell lymphoma line DT40 to monitor AID-dependent 

antibody diversification by gene conversion. The frequency of Ig gene conversion is estimated 

by using a DT40 line with a frameshift mutation in the IgVλ gene that prevents surface IgM 

expression. Some gene conversion events correct this frameshift, restoring IgM expression. The 

median percentage of IgM+ cells generated during expansion of several initially 

IgM− populations is proportional to the rate of Ig gene conversion (Arakawa et al., 2002). The 

problem is that HSP90 is essential for eukaryotic cells (Borkovich et al., 1989;Cutforth and 

Rubin, 1994), which precludes its genetic ablation or complete inhibition. However, we 

observed that AID decay after HSP90 inhibition was dose dependent (Fig. S2.4 C for GA and 

not depicted for 17-AAG). We used 17-AAG for these assays because we found it to be less 

toxic than GA for lymphocytes (unpublished data). Low doses of 17-AAG had minimal impact 

on DT40 cell growth but still caused a robust decrease in AID protein levels (Fig. 2.5 A). This 

partial reduction in AID levels was proportional to a reduction in Ig gene conversion (Fig. 2.5 

A). In similar experiments using a DT40 line that diversifies the IgVλ by SHM (Arakawa et al., 

2004), we could also confirm a reduction in SHM (this time by monitoring the appearance of 

sIgM-loss cells from originally sIgM+populations but also by direct IgVλ sequencing) that was 

proportional to the decrease in AID protein levels (Fig. 2.5, B and C). We then analyzed the 

effect of HSP90 inhibition on CSR by using the mouse CH12F3-2 cell line, which efficiently 

switches from IgM to IgA after cytokine stimulation (Nakamura et al., 1996). Because these 

assays take place over a few days, we used CFSE staining to monitor cell proliferation. Thus, 

we could compare the efficiency of switching between cells that have undergone the same      

number of cell divisions, accounting for any cell growth defect that continuous exposure to 17-
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AAG could cause. There was a clear and dose-dependent reduction in CSR caused by 17-AAG, 

overall and for each cell division tested (Fig. 2.5 D). Alternatively, we performed a 12-h 

treatment with higher doses of 17-AAG, after which the drug was removed (Fig. 2.6 A). A 

drastic reduction in CSR to IgA was observed when the CH12F3-2 cells were treated with 17-

AAG at day 1 after stimulation, coincident with the time when the peak of AID protein was 

observed (Fig. 2.6, B and C). As would be expected, 17-AAG treatment at day 2 had a less but 

still statistically significant effect on CSR. Importantly, we obtained identical results in 

switching assays using normal mouse splenic B cells (Fig. 2.6 D). A drastic decrease of CSR to 

IgG1 was observed when cells were treated with 17-AAG at day 1 after stimulation. This 

higher dose of 17-AAG delayed growth of primary B cells, but the effect on CSR was 

nevertheless very clear when comparing the efficiency of switching per cell division. Again, 

treating the cells at day 2 after stimulation caused a smaller but statistically significant effect. 

As expected, treating the cells at day 3 had no effect on the efficiency of CSR measured at day 

4 (unpublished data). We conclude that cytoplasmic AID degradation after HSP90 inhibition 

has a direct and proportional effect on all antibody diversification mechanisms. 

 

2.4.5. HSP90 inhibition prevents off-target mutation by AID 
We assayed AID off-target mutation using the recently described role of AID in 

generating resistance of the oncogenic kinase BCR-ABL1 to the drug imatinib in CML cells 

(Klemm et al., 2009). We transduced the BCR-ABL1+ K562 cell line with AID-ires-GFP or 

GFP control retroviruses and, for each construct, prepared mixed populations with uninfected 

(GFP−) cells at a defined ratio. Mutations in BCR-ABL1 that confer resistance are selected by 

culturing the cells in the presence of imatinib. This is readily observed by flow cytometry as an 

increased ratio of GFP+/GFP− cells over time. Indeed, we observed a higher proportion of 

GFP+ cells within 2–3 wk only in AID-expressing cells that were growing in the presence of 

imatinib (Fig. 2.7 A). This was AID dependent as it was not observed in GFP control cultures, 

and the imatinib-resistant cells appeared earlier in cultures expressing higher levels of AID 

(Fig. 2.7, A and B). More relevant to our purpose, the AID-dependent change in the 
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Figure 2.5. Reduced antibody diversification in chicken and mouse B cells chronically 

treated with HSP90 inhibitors. (A) The rate of Ig gene conversion in DT40 cells was estimated 

from the proportion of sIgM-gain cells arising from sIgM− populations after 3 wk of expansion 

in the presence of DMSO (Ctrl) or two different concentrations of 17-AAG. The proportion of 

sIgM+ cells for each population and the median values are indicated (left). The level of AID 

protein was quantified by densitometry from nonsaturated Western blots for each population at 

the end of the experiment and normalized to actin levels. Mean ± SD values for all populations 
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grown in each condition are plotted (middle). The effect of 17-AAG on DT40 growth was 

monitored by calculating the total number of cells in a culture originating from 105 cells 

(right). Mean ± SD of triplicate cultures are plotted over time. (B) SHM was monitored in 

analogous experiments to A except that a sIgM+ ψV− AIDR DT40 cell line, which cannot 

undergo gene conversion and instead uses SHM to diversify the Ig genes, was used. IgM-loss 

cells arise as a consequence of SHM with a certain frequency, and so the proportion of sIgM-

loss cells arising over time provides an estimate of SHM rate (Arakawa et al., 2004). (C) DNA 

was extracted from control or 0.1 µM 17-AAG–treated unsorted cultures from B after equal 

expansion. The IgVλ was PCR amplified and sequenced. The fraction of sequences containing 

the indicated number of mutations is plotted in the pie chart with the number of sequences 

analyzed indicated in the center. The calculated mutation frequency (mutations/base pair) is 

indicated under each pie chart. (D) CH12F3-2 mouse B cells stimulated with IL-4, TGF-β1, 

and agonist anti-CD40 were cultured with DMSO (Ctrl) or the indicated concentrations of 17-

AAG. The cells were stained with CFSE before activation to follow cell divisions. 

Representative plots of the proportion of IgA+ cells in each population after 3 d (left) and 

CFSE profiles (middle) are shown. For each cell division, the proportion of sIgA+ cells was 

calculated, and the results from four independent experiments are summarized in the plot as the 

mean ± SD values (right). In all panels: *, P < 0.05; **, P < 0.01. 
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Figure 2.6. Acute inhibition of HSP90 impairs CSR in mouse B cells. (A) Scheme of the 

experimental strategy fort treatment of CH12F3-2 B cells or primary naive mouse splenic B 

cells. D, day; FC, flow cytometry. (B) Kinetics of AID protein expression in CH12F3-2 mouse 

B cells determined by Western blot (WB) at different times after stimulation. One of two 

independent experiments is shown. (C) CH12F3-2 B cells were stained with CFSE and 

stimulated with IL-4, TGF-β1, and anti-CD40 to switch to IgA. Either at day 1 or 2 after 

activation, the cells were treated for 12 h with 2 µM 17-AAG and then returned to normal 

medium. The proportion of sIgA+ cells per cell division determined by flow cytometry is plotted 

under each cell division in the corresponding CFSE plot for a representative experiment (left). 

The mean proportions of sIgA+ cells for each cell division ± SD from four independent 

experiments are plotted (right; **, P < 0.01). (D) Purified mouse naive splenic B cells were 

loaded with CFSE and stimulated with IL-4 and LPS to induce switching to IgG1. Either at day 

1 or 2 after activation, the cells were treated with 17-AAG and then returned to normal 

medium. The proportion of sIgG1+ cells per cell division was determined and presented as in 

C. Data from one representative mouse are shown (left), and pooled data from five mice are 
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plotted (right). To be able to compare all the mice accounting for the inter assay variability, 

data points were normalized with the percentage of IgG1+ cells in cell division 3 of the control 

set as 1 (*, P < 0.05; **, P < 0.01). Ctrl, control. 
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GFP+/GFP− ratio was fully prevented by a very low dose of 17-AAG (Fig. 2.7 A). Treatment 

with this dose of 17-AAG visibly reduced AID but not BCR-ABL1 protein levels by day 7 

(Fig. 2.7 C). We confirmed that 17-AAG prevented the AID-mediated increase in imatinib 

IC50 (Fig. 2.7 D). We also directly checked for mutations by sequencing BCR-ABL1. An 

increase in point mutations (many of them known to induce imatinib resistance; Klemm et al., 

2009) could be detected in AID-expressing K562 cells growing in imatinib. In contrast, the 

mutation level in AID-expressing cultures that were jointly treated with imatinib and 17-AAG 

was indistinguishable from the GFP control (Fig. 2.7 E and Table 2.2). 
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Figure 2.7. HSP90 inhibition reduces AID off-target mutations. (A) BCR-ABL1+ K562 cells 

were transduced with GFP control (insets) or AID-ires-GFP retroviral vectors. Mixed 

populations of transduced (GFP+) and uninfected (GFP−) cells were cultured in the presence of 

DMSO, 2 µM imatinib, 2 µM imatinib plus 0.1 µM 17-AAG, or 0.1 µM 17-AAG, and the 

proportion of GFP+ cells was determined periodically by flow cytometry. Data are plotted as 

the mean GFP+/GFP− ratio from triplicate populations ± SD, relative to the initial ratio set as 
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1. Two independent experiments are shown differing only in AID protein level expression from 

having or not a consensus Kozak sequence before the AID start codon. (B) Western blot (WB) 

of parental K562 cells (−) and sorted GFP + populations transduced with pMX-AID-ires-GFP 

vectors differing only in the presence of the Kozak sequence. AID was detected using anti-AID, 

and antiactin was used as loading control. (C) Sorted GFP+ cells transduced or not with pMX-

KozakAID-ires-GFP vectors as in A were cultured with 0.1 µM 17-AAG for the indicated times. 

The levels of the indicated proteins were analyzed by Western blot in total extracts using anti-

AID and anti-ABL1. One of two independent experiments is shown. (D) GFP+ K562 

populations were sorted after expansion from A. Cell viability after culture for 2 d with 

different concentrations of imatinib was determined using an MTS reduction colorimetric 

assay. The relative mean OD at 490 nm ± SEM of duplicate wells (untreated cells = 100%) is 

plotted for each concentration for cell populations transduced with pMXs-KozakAID-ires-GFP 

that had been treated in A with DMSO, imatinib, imatinib plus 0.1 µM 17-AAG, or 17-AAG. 

The parental K562 cells were included in this assay. One of two independent experiments is 

shown. (E) BCR-ABL1 (exon 13 of BCR and exon 9 of ABL1) was PCR amplified from cells 

expressing GFP control or AID-ires-GFP and expanded under the indicated conditions. 

Mutations, determined relative to the consensus of all sequences, are indicated on schemes of 

the ∼700-bp ABL1 region that was directly sequenced from the PCR product. Thin vertical 

bars represent mutations at A:T bp, whereas thick bars represent mutations at C:G pairs. 

Mutations previously described to confer imatinib resistance (Branford and Hughes, 2006) are 

identified by an asterisk and indicated below the sequence stack.  
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Table 2.2. BCR-ABL1 mutations in K562 cells  

 

  

The BCR-ABL1 kinase domain (exon 13 of BCR and exon 9 of ABL1) was PCR amplified 
from single cell clones and a fragment of ~700 bp in the ABL1 domain was directly sequenced. 
The number to the left of the mutation indicates the mutated position respect to the ABL1 open 
reading frame. The mutated base is indicated underlined within the affected codon. Mutations 
at C:G pairs and amino acid substitutions previously described to confer clinical imatinib 
resistance are highlighted in bold. 
  

Construct 
transduced Treatment BCR-ABL1 sequence 

analysis 
Number of 
clones/total 

Amino 
acid 

change 

GFP Imatinib Unmutated 6/8 No 
changes 

  894 CTA to CTG  1/8 Silent 
  1062 CTA to CTG  1/8 Silent 

AID-ires-GFP Control Unmutated 7/9 No 
changes 

  894 CTA to CTG  1/9 Silent 
  1062 CTA to CTG  1/9 Silent 

AID-ires-GFP Imatinib Unmutated 2/10 No 
changes 

  894 CTA to CTG  3/10 Silent 
  944 ACT to ATT 4/10 T315I 
  1062 CTA to CTG  2/10 Silent 
  1334/1335 CGT to CTG 1/10 R445L 
  1356 CTA to CTG  2/10 Silent 
  1375 GAG to AAG 3/10 E459K 

AID-ires-GFP Imatinib + 
17-AAG Unmutated 6/9 No 

changes 
  894 CTA to CTG  1/9 Silent 
  1062 CTA to CTG  2/9 Silent 
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2.5. Discussion 
We identify and characterize herein the constitutive stabilization of AID by the HSP90 

chaperone pathway. Our results show that HSP90 largely determines the overall steady-state 

levels of functional AID protein. Although HSP90 may also contribute to the biogenesis of 

AID, its key function appears to be the stabilization of the protein. This is well in accordance 

with the major role of HSP90 in protecting the functional competence of many of its clients, 

beyond simply assisting with their de novo folding (Jakob et al., 1995; Nathan et al., 

1997; Whitesell and Lindquist, 2005; Pearl and Prodromou, 2006;Picard, 2006; Wandinger et 

al., 2008). This is a new mechanism positively regulating AID-mediated antibody 

diversification that seems evolutionarily conserved, as we find it in chicken, mouse, and human 

B cells. 

The molecular details of AID stabilization in the cytoplasm are likely incomplete 

because many proteins modulate the HSP90 pathway (Young et al., 2004; Wandinger et al., 

2008). However, our experimental evidence, together with the identification of members of the 

HSP90 chaperone pathway that consistently copurified with AID (Table 2.1), suggests a 

working model in which AID would be regulated similarly to the steroid hormone receptors 

(Picard, 2006). These receptors first form an early complex with the HSP70/HSP40 

chaperone/cochaperone, to which HSP90 and other factors are then recruited. Consecutive 

cycles of chaperoning are in dynamic equilibrium with proteasomal degradation unless the 

receptor is stabilized by ligand binding and translocates to the nucleus (Whitesell and 

Lindquist, 2005; Picard, 2006). Consistent with this model, we found HSPA8, the major 

constitutively expressed form of HSP70, among the AID-Flag/HA–interacting partners in 

Ramos B cells. The same isoform has been found using tagged AID expressed in HEK293 cells 

(Wu et al., 2005). HSP40 proteins are the first agents in the HSP70/HSP90 chaperone pathway 

(Kimura et al., 1995; Hernández et al., 2002). We identified and have confirmed the functional 

interaction of AID with a defined subset of HSP40 proteins, which will be reported elsewhere 

(unpublished data). AID stabilization requires the ATP hydrolysis cycle of HSP90, and the 

cochaperone AHA-1, which stimulates the ATPase activity of HSP90 (Panaretou et al., 

2002; Lotz et al., 2003), also copurified with AID. As is the case for steroid hormone receptors, 
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we show that cytoplasmic AID exists in a dynamic equilibrium between stabilization and 

proteasomal degradation. Indeed, inhibiting HSP90 or overexpressing the HSP90-associated 

ubiquitin ligase CHIP (Connell et al., 2001; McDonough and Patterson, 2003) can shift the 

balance toward AID degradation. Stabilization seems to be the predominant pathway because 

simultaneous inhibition of the proteasome and HSP90 leads to the accumulation of much higher 

levels of polyubiquitinated AID than only proteasome inhibition. However, it remains possible 

that the destabilizing side of this pathway contributes to limit AID levels, which we are 

exploring. It is interesting that AID seems to be uniquely dependent on HSP90 when compared 

with its paralogue proteins, the APOBEC family. The intrinsic instability of uncomplexed AID 

probably helps to limit its mutagenic potential. This fits nicely with a study showing that the 

half-life of AID is highly reduced in the nucleus compared with the cytoplasm (Aoufouchi et 

al., 2008). We speculate that AID, just as the steroid hormone receptors (Whitesell and 

Lindquist, 2005; Picard, 2006), might undergo some conformational change to dissociate from 

HSP90. An attractive possibility is that oligomerization stabilizes AID, thus emancipating it 

from HSP90. In line with this, the HSP90-interacting domain of AID comprises most of its 

proposed dimerization interface (Prochnow et al., 2007; Patenaude et al., 2009), and an 

oligomerization-deficient AID mutant can still bind to HSP90. We have proposed that 

dimerization/oligomerization of AID is important for its cytoplasmic retention and nuclear 

import (Patenaude et al., 2009). However, at variance with the estrogen receptor, HSP90 does 

not seem to play a major role in AID cytoplasmic retention. We must hypothesize that AID 

forms part of another cytoplasmic complex that fulfills this role. This HSP90-independent 

fraction of AID might explain the slower kinetics of AID degradation in Ramos cells after 

HSP90 inhibition compared with other HSP90 clients such as LCK (Giannini and Bijlmakers, 

2004). 

The interaction of AID with HSP90 has major functional consequences. HSP90 

stabilizes many proteins, and part of the effect observed on antibody diversification after 

inhibiting HSP90 could formally be indirect. However, there is a negative dose–response 

relationship between AID protein levels and HSP90 inhibition, which correlates with a 

proportional decrease in antibody diversification. This observation argues for a direct effect. 

Furthermore, HSP90 inhibition affected all AID-dependent pathways: SHM, CSR, and Ig gene 
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conversion as well as off-target mutation. All of these pathways are initiated by DNA 

deamination by AID followed by uracil processing by either UNG or MSH2/MSH6, which 

were not affected by HSP90 inhibition. Downstream from there, these pathways diverge (i.e., 

translesion synthesis for mutations, homologous recombination for gene conversion, and 

nonhomologous end joining for CSR), so a direct effect on AID is much more likely than an 

independent effect on each of these pathways. By stabilizing the bulk of AID, the HSP90 

pathway determines the availability of functional AID. Indeed, AID-catalyzed DNA 

deamination at the Ig loci was directly proportional to the overall level of AID protein 

remaining after HSP90 inhibition. This is in agreement with the previously reported AID dose 

effect on the efficiency of antibody diversification (de Yébenes et al., 2008; Dorsett et al., 

2008; Sernández et al., 2008; Takizawa et al., 2008; Teng et al., 2008). Together with our 

findings, these observations suggest that the ratio of nuclear to cytoplasmic AID is constant. 

Thus, decreasing the overall level of AID would lead to a proportional decrease in the nuclear 

fraction and biological activity of AID. Otherwise, if AID were particularly abundant in the 

nucleus at any stage, a 50% decrease in total AID protein caused by partial HSP90 inhibition 

(or by haploinsufficiency) would not necessarily lead to a proportional decrease in antibody 

diversification. Our work highlights the intimate relationship between the mechanisms of AID 

subcellular localization and protein stability (Aoufouchi et al., 2008; Patenaude et al., 2009). 

Finally, the HSP90-mediated mechanism stabilizing AID is operative in lymphoma-

derived cell lines as well as in cells with ectopic overexpression of AID. The relative HSP90 

dependence of AID in transformed versus normal cells remains to be studied. Nevertheless, our 

findings offer the first possibility of pharmacologically manipulating AID protein levels to 

prevent off-target mutation. We provide proof of principle that this is possible in a CML cell 

line model. A very low dose of HSP90 inhibitor completely abrogated BCR-ABL1 mutations 

and imatinib resistance. AID-generated lesions in non-Ig genes are widespread but much less 

frequent than at the Ig genes (Liu et al., 2008;Robbiani et al., 2009). Indeed, the AID-generated 

breaks in c-Myc seem to be limiting for the oncogenic c-Myc–IgH chromosomal translocations 

(Robbiani et al., 2008, 2009). Therefore, it might be possible that very low doses of HSP90 

inhibitors have a disproportionate effect on the frequency of oncogenic lesions versus antibody 
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diversification. It would be worth exploring whether the HSP90 inhibitors that are currently 

being tested in the clinic could be useful in treating those cancers in which AID contributes to 

disease progression (Matsumoto et al., 2007; Pasqualucci et al., 2008;Klemm et al., 2009).
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2.6. Materials and methods 

2.6.1. DNA constructs 
The pEGFP-N3–based (Takara Bio Inc.) expression vectors for human AID-GFP, AID 

FYRN-GFP, AID-Flag/HA, APOBEC2, and AID-APOBEC2 chimeras have been described 

previously (Patenaude et al., 2009). Rat APOBEC1 and human APOBEC3G cloned in pEGFP-

C3 as well as human AID T27A/T38A, which was subcloned into pEGFP-N3, were gifts from 

S. Conticello (Istituto Toscano Tumori, Florence, Italy; Conticello et al., 2008). To construct 

N-terminally Flag-tagged versions of APOBEC1, APOBEC2, and APOBEC3G, enhanced GFP 

(EGFP) was excised NheI–XhoI from pEGFP-C3 and replaced by the annealed 

oligonucleotides AO1 and AO2. To construct C-terminally Flag-tagged versions of some of the 

proteins, EGFP was excised EcoRI–NotI from pEGFP-N3 and replaced by the annealed 

oligonucleotides OJ215 and OJ216. AID was subcloned as an NheI–NotI fragment under the 

weaker EF1-α promoter in pEF. AID-APOBEC2 chimeras #1 and #2 were excised from 

pTrc99a (Patenaude et al., 2009) by partial digestion with NotI and EcoRI and subcloned into 

the pMXs retroviral vector. Untagged hAID in pMXs-ires-GFP has been described previously 

(Patenaude et al., 2009). Mouse AID (from R. Harris, University of Minnesota, Minneapolis, 

MN) was subcloned EcoRI and NotI into pMXs. Flag-human HSP90-α was inserted as a KpnI–

NotI fragment into pcDNA3.1. Myc-human HSP90-β in pCMV-3Tag2 was a gift of J.-.P 

Gratton (Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada). Construct 

names throughout the manuscript indicate the actual order of the fragments in fusion proteins. 

 

2.6.2. Reagents and antibodies. 
Stock aliquots of 2 mM GA, 2 mM 17-AAG, 5 mM H-89, and 25 mM forskolin (LC 

Laboratories) as well as 50 mM IBMX (3-isobutyl-1-methylxanthine; Sigma-Aldrich) were 

made in DMSO. Stocks of 5 mM MG132 (EMD) and 25 µg/ml LMB (LC Laboratories) were 

made in ethanol. CHX (Sigma-Aldrich) was freshly prepared before each experiment 100 

mg/ml in ethanol. Stock of 2 mM imatinib (Gleevec; Novartis) in PBS was a gift of T. Moroy 

http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#ref-51�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#ref-10�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#ref-51�
http://jem.rupress.org/content/early/2010/10/27/jem.20101321.full#ref-51�


82 

 

 

and C. Khandanpur (Institut de Recherches Cliniques de Montréal). All drugs were stored at 

−20°C protected from light. Antibodies and dilutions used were as follows: 1:3,000 anti–

EGFP–horseradish peroxidase (HRP; Miltenyi Biotec), 1:3,000 anti–Myc-HRP (Miltenyi 

Biotec), 1:3,000 anti–Flag-HRP (Sigma-Aldrich), 1:3,000 anti-HSP90 (sees both isoforms; 

BD), 1:1,000 anti–HSP90-α and 1:1,000 anti–HSP90-β (StressMarq), 1:1,000 anti-AID (Cell 

Signaling Technology) for human and chicken AID and 1:500 anti-mAID (a gift from F. Alt, 

Harvard University, Boston, MA) for mouse AID, 1:3,000 antiactin (Sigma-Aldrich), 1:1,000 

anti-monoubiquitinated and -polyubiquitinated conjugates antibody (Enzo Life Sciences, Inc.) 

for endogenous ubiquitin, 1:1,000 mAb anti-CHIP (Sigma-Aldrich), 1:2,000 anti-UNG2 

(specific for nuclear isoform; Abcam), 1:2,500 anti-MSH6 (Bethyl Laboratories, Inc.), 1:5,000 

anti-PCNA (PC-10; Abcam), 1:1,000 anti–DNA-PK (Santa Cruz Biotechnology, Inc.), 1:1,000 

anti-LCK (gift of A. Veillette, Institut de Recherches Cliniques de Montréal), and 1:1,000 anti–

c-abl (EMD). Secondary antibodies were used according to the species of the primary antibody: 

1:5,000 goat anti–mouse-HRP and 1:10,000 anti–rabbit-HRP (Dako) and 1:5,000 goat anti–rat-

HRP (Millipore). 

 

2.6.3. Mice and cell lines. 
HeLa cells stably expressing AID-GFP were generated by transfecting with pEF-AID-

EGFP and selecting with 2.5 µg/ml puromycin. Ramos cell lines stably expressing GFP, AID-

GFP, and AID-Flag/HA have been described previously (Patenaude et al., 2009). Ramos cells 

expressing Myc-CHIP were generated by transfecting with pcDNA3.1 Myc-CHIP (a gift of L. 

Petrucelli, Mayo Clinic, Jacksonville, FL) and selecting with G418. Subclones from three 

independent Myc-CHIP Ramos transfectants and controls were obtained by single cell 

deposition. Populations of Ramos cells stably expressing chimeras AID-A2 #1 or #2 and DT40 

cells stably expressing GFP or AID-GFP as well as the CML cell line K562 (a gift of T. 

Moroy) stably expressing AID-ires-GFP or GFP control were obtained by retroviral delivery of 

these genes cloned in pMXs vectors. The supernatant of HEK293T cells cotransfected with 

pMX and vectors expressing MLV Gag-Pol and VSV-G envelope (3:1:1 ratio) was used to 

infect 106 cells by spin-infection at 600g for 1 h at room temperature in the presence of 16 

µg/ml polybrene and 20 mM Hepes. Infected cells were sorted to obtain GFP+ homogeneous 
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populations. Primary B cells from Aicda−/−  mice (obtained from T. Honjo, Kyoto University, 

Sakyo-ku, Kyoto, Japan) were prepared and infected as described previously (Patenaude et al., 

2009). Experiments using mice followed the guidelines of the Canadian Council on Animal 

Care and were approved by the Animal Protection Committee at the Institut de Recherches 

Cliniques de Montréal. Primary human B cells were purified from PBMC obtained by Ficoll 

gradient centrifugation of voluntary donor blood samples. Resting B cells were isolated using a 

B cell isolation kit (Miltenyi Biotech) and activated with 5 ng/ml recombinant hIL-4 

(PeproTech) and 5 µg/ml recombinant human sCD40L. Work with human samples was 

performed according to the guidelines of the Institut de Recherches Cliniques de Montréal and 

Institut National de la Recherche Scientifique–Insitut Armand-Frappier Ethics Committees for 

Research with Human Samples. 

 

2.6.4. Identification of AID-interacting proteins. 
5 × 109 Ramos B cells expressing AID-Flag/HA or empty vector were pelleted, 

incubated on ice for 10 min, and resuspended in hypotonic buffer I (1 mM Tris-HCl, pH 7.3, 10 

mM KCl, 1.5 mM MgCl2, and β-mercaptoethanol). Cells were centrifuged at 2,500 rpm for 10 

min at 4°C and lysed by adding hypotonic buffer II (1 mM Tris-HCl, pH 7.3, 10 mM KCl, 1.5 

mM MgCl2,  1 mM tricho statin A,  5 0 µM β-mercaptoethanol, 0.5 mM PMSF, and protease 

inhibitors [Sigma-Aldrich]). The lysate was centrifuged at 3,900 rpm for 15 min at 4°C, and the 

supernatant was recentrifuged at 35,000 rpm for 1 h and dialyzed against 20 mM Tris-HCl, pH 

7.3, 20% glycerol, 100 mM KCl, 50 µM β-mercaptoethanol, and 0.5 mM PMSF. The dialyzed 

lysate was incubated with anti-Flag M2 affinity gel (Sigma-Aldrich) overnight at 4°C and then 

extensively washed and eluted using 3× Flag peptide (Sigma-Aldrich). The eluate was 

incubated with anti-HA beads (Santa Cruz Biotechnology, Inc.) overnight at 4°C and then 

washed and eluted using HA peptides (PEP-101P; Covance). Protein was concentrated using 

StrataClean Resin (Agilent Technologies) before loading on a 4–12% gradient gel (Invitrogen) 

for SDS-PAGE. The gel was silver stained, each lane was divided into 20 slices, and the slices 

were submitted for tryptic digestion and peptide identification by mass spectrometry to the 
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Institut de Recherches Cliniques de Montréal Proteomics service using a linear quadrupole IT 

Orbitrap hybrid mass spectrometer (Thermo Fisher Scientific). Peak generation and protein 

identification were performed using the MASCOT software package (Perkins et al., 1999) 

 

2.6.5. Coimmunoprecipitation and Western blot. 
HEK293T cells cotransfected at a 1:1 ratio with GFP and Myc or Flag-tagged proteins 

were homogenized in lysis buffer (20 mM Tris, pH 8.0, 137 mM NaCl, 10% glycerol, 2 mM 

EDTA, 1% Triton X-100, and 20 mM NaF) 48 h after transfection and immunoprecipitated 

with anti-Flag M2 affinity gel as described previously (Patenaude et al., 2009). 

Immunoprecipitation of GFP-tagged proteins were performed using the μMACS GFP Isolation 

kit (Miltenyi Biotech) according to the manufacturer’s instructions. Where indicated, cells were 

treated with 10 µM MG132 for 30 min and/or 2 µM GA or DMSO for 5 h before lysis. The 

eluates and lysates were analyzed by Western blot developed with SuperSignal West Pico 

Chemiluminescent substrate (Thermo Fisher Scientific). 

 

2.6.6. AID stability assays. 
The GFP signal of cell lines expressing AID-GFP variants was measured by flow 

cytometry at various time points after the indicated treatments. Dead cells were excluded by 

propidium iodide staining. For endogenous AID, 5 × 106 Ramos, DT40, or K562 cells in 5 ml 

of culture medium were treated with GA or 17-AAG, and aliquots of 1.5–2 × 106cells were 

harvested at various time points. Alternatively, 2 × 106 CH12F3-2 cells (a gift of T. Honjo 

through A. Martin [University of Toronto, Toronto, Ontario, Canada]; Nakamura et al., 1996) 

were stimulated with 2 ng/ml recombinant human TGF-β1 (R&D Systems), 20 ng/ml 

recombinant murine IL-4 (PeproTech), and 5 µg/ml functional grade purified anti–mouse CD40 

(BD) for 16 h before GA treatment. Human primary B cells at 2 × 106/ml were treated with 2 

µM 17-AAG 72 h after activation, and aliquots of 106 cells were harvested at various time 

points. Cells were washed once with PBS and lysed in SDS-PAGE sample buffer. Lysates were 

analyzed by Western blotting. 
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2.6.7. Monitoring antibody diversification. 
AID-mediated Ig gene conversion was estimated in DT40 cre1 cells by scoring the 

frequency of sIgM-gain phenotype, which is directly proportional to the frequency of repair of 

a frameshift in the IgVλ by gene conversion (Arakawa et al., 2002). DT40 sIgM− cell 

populations were FACS sorted, and confluent cultures were grown in 24-well plates with 

HSP90 inhibitors. This method was favored over using single cell clones because of the effect 

of HSP90 inhibition on single cells growth. Cells were grown for 3 wk at 41°C in the presence 

of the inhibitors, and the surface IgM phenotype was measured by flow cytometry as described 

previously (Di Noia and Neuberger, 2004). AID-mediated SHM was monitored using the 

sIgM+ DT40 line ψV− AIDR, in which the IgV pseudogenes have been ablated (gift of H. 

Arakawa and J.-M. Buerstedde, Institute for Molecular Radiobiology, Neuherberg, 

Germany; Arakawa et al., 2004). IgM+ cell populations were FACS sorted and expanded for 3 

wk in 24-well plates, and the IgM phenotype was analyzed by flow cytometry. Mutations were 

scored as described previously (Di Noia and Neuberger, 2004) in Vλ sequences PCR amplified 

from unsorted populations after expansion. To analyze CSR, CH12F3-2 cells were 

preincubated with CFSE (Invitrogen) according to manufacturer’s instruction before activation 

with 1 ng/ml TGF-β1, 10 ng/ml recombinant murine IL-4, and 1 µg/ml functional grade 

purified anti–mouse CD40 (BD). For chronic HSP90 inhibition, 17-AAG was added 4 h after 

activation and kept for 3 d. For acute HSP90 inhibition, 17-AAG was added to the medium for 

12 h, and then the cells were washed twice with PBS and resuspended in fresh normal medium. 

IgA expression was monitored at day 3 after stimulation using PE-conjugated anti–mouse IgA 

antibody (eBioscience). Resting B cells from AID-deficient mice were purified by MACS 

CD43 depletion (Miltenyi Biotech) from total splenic lymphocytes (Patenaude et al., 2009). 

Cells were loaded with CFSE, and 106 cells/well were seeded in 24-well plates with 25 µg/ml 

LPS (Sigma-Aldrich) and 50 ng/ml mouse IL-4. At different times after activation, 17-AAG 

was added and washed away 12 h later with PBS, and fresh culture medium was replenished. 

Isotype switching was analyzed 4 d after activation by flow cytometry after staining with anti–

IgG1-biotin (BD), followed by APC-conjugated antibiotin antibody (Miltenyi Biotech) and 

propidium iodide. 
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2.6.8. Imatinib resistance assay. 
K562 cells stably expressing AID-ires-GFP or GFP control were mixed with the 

parental cell line at a fixed ratio. The ratio of GFP+ to GFP− cells was measured by flow 

cytometry every 2 d for populations under the different treatments indicated in the figure (2 µM 

DMSO, 2 µM imatinib, and 0.1 µM 17-AAG). GFP+ cells were FACS sorted at the end of the 

experiments for the relevant conditions. Relative imatinib resistance of these populations was 

determined using Celltiter 96 Aqueous nonradioactive cell proliferation assay (Promega) 

according to manufacturer’s instruction. For mutation analysis of the BCR-ABL1 gene, single 

GFP+ CML cells expressing AID or not were sorted at the end of the treatments and expanded 

to obtain a clone in 96-well plates. RNA was extracted with TRIZOL (Invitrogen), and cDNA 

synthesis was performed using M-MULV first strand cDNA synthesis kit (New England 

Biolabs, Inc.). A 1540-bp fragment of the BCR-ABL1 cDNA was PCR amplified using specific 

primers for BCR (in exon 13) and ABL1 (in exon 9; Klemm et al., 2009) with KOD Hot Start 

Polymerase (EMD). PCR products were purified and directly sequenced using an ABL1-

specific primer. 

 

2.6.9. Statistical analysis. 
The unpaired two-tailed Student’s t test was used. 
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2.9. Supplementary material 
                     

 

Figure S2.1. Expression levels of AID, HSP90, and CHIP in various B cells and interaction 

of HSP90 with various AID variants. (A) Total extracts from parental Ramos B cells and its 

derived cell lines stably expressing AID-Flag/HA and AID-GFP were analyzed by Western blot 

(WB) with anti-AID to compare the protein level of each transgenic AID with the endogenous 

enzyme. Bands were quantified using ImageQuant, and the ratio (R) of tagged to endogenous 

AID is indicated. One of two independent experiments is shown. (B) Expression of HSP90 

isoforms and of the HSP90-associated E3 ubiquitin ligase CHIP (Fig. 2.4) in human Ramos 

and chicken DT40 B cell lines. Total cell lysate lines were analyzed by Western blot using anti–

HSP90-α, anti–HSP90- β, anti-CHIP, and antiactin. Apparent differences in expression 

between Ramos and DT40 cells most likely reflect variations in the chicken epitopes because 

anti–HSP90-α and anti-CHIP are mAbs raised against human proteins. One of two 
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independent experiments is shown. (C) Kinetics of HSP90 isoforms and CHIP expression in 

purified naive mouse B cells activated with IL-4 and LPS. Cells were harvested at different time 

points, lysed, and analyzed by Western blot using anti–HSP90-α, anti–HSP90-β, anti-CHIP, 

and antiactin. One of two independent experiments is shown. (D) AID oligomerization or 

phosphorylation is not necessary for HSP90 interaction. Interaction of HSP90 was tested by 

coimmunoprecipitations with AID mutants carrying the F46A/Y48A/R50G/N51A simultaneous 

mutations (FYRN), previously shown be defective for oligomerization (Patenaude et al., 2009), 

or the T27A and T38A phospho-null mutations (T27/38A). (E) The position of the tag on AID 

does not affect the association with HSP90-β. HEK293T cells were cotransfected with Myc–

HSP90-β and GFP-AID, AID-GFP, A2-GFP, or GFP. Anti-GFP immunoprecipitates (IP) were 

analyzed by Western blot with anti-Myc and anti-GFP. One of three independent experiments is 

shown. 
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Figure S2.2. AID dependence on HSP90 is unaffected by PKA inhibition or activation. (A 

and B) Ramos cells stably expressing AID-GFP were treated with 10 μM of PKA inhibitor H-89 

(A) or 50 μM of adenylate cyclase activator forskolin (Fsk) in combination with 100 μM of 

phosphodiesterase inhibitor IBMX to boost cAMP levels (B) before treating the cells with 2 μM 

GA or DMSO. AID-GFP was followed by flow cytometry and the MFI (normalized to the t = 0 

signal) plotted at different times for each treatment. Note that Fsk + IMBX equally increases 

the level of GFP and AID-GFP in Ramos cells. The reasons behind this increase are unknown, 

but although GFP control increases also in the presence of HSP90 inhibition, a similar 

increase in AID-GFP is totally prevented by GA, confirming the dependence of AID on HSP90. 

Mean ± SD of triplicates is plotted. One of three independent experiments is shown. Ctrl, 

control. 
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Figure S2.3. HSP90 inhibition does not affect AID compartmentalization. HeLa cells were 

transiently transfected with untagged AID and 48 h later treated as indicated (control [Ctrl] = 

DMSO, 2 μM GA, 50 ng/ml LMB, and 10 μM MG132). AID localization was monitored by 

immunofluorescence using anti-AID antibody. Treatments GA 2 h + LMB 2 h and GA + LMB 2 



99 

 

 

 

h differ in the time of addition of LMB; in the first case, cells were pretreated with GA before 

adding LMB, whereas in the latter, both drugs were added simultaneously. Simultaneous 

inhibition of HSP90 and nuclear export may have a small effect on the speed with which AID 

accumulates in the nucleus. One possibility is that a proportion of the HSP90-bound AID might 

be nuclear import competent. So, release of AID from HSP90 by GA treatment at the same time 

of nuclear export inhibition could allow nuclear import to compete with cytoplasmic AID 

degradation, leading to an apparent enrichment of AID in the nucleus. However, HSP90 on its 

own has no effect on AID subcellular distribution, indicating that it is not retaining it in the 

cytoplasm. C, cytoplasmic; N, nuclear. Bar, 10 μm 

     
 
 
 



100 

 

 

                                         

Figure S2.4. The effect of HSP90 inhibition on AID stability is conserved in chicken B cells 

and human non-B cells and is dose dependent. (A and B) DT40 Aicda-/- (A) and HeLa cells 

stably expressing AID-GFP (B) were treated with the indicated combinations of DMSO (Ctrl), 

2 μM GA, 50 ng/ml LMB, and/or 10 μM MG132 (30-min pretreatment). The GFP signal was 

monitored over time by flow cytometry, and the MFI was normalized to the signal at t0 = 100% 

for each treatment. Means ± SD of triplicates are plotted (**, P < 0.01). One of three 

independent experiments is shown in each case. (C) Ramos cells stably expressing AID-GFP 

were treated with DMSO (Ctrl) or the indicated concentrations of GA, and the GFP signal was 

monitored by flow cytometry. Means ± SD of triplicates are plotted. One of three independent 

experiments is shown. 
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3.2. Abstract 
The enzyme activation-induced deaminase (AID) deaminates deoxycytidine at the 

immunoglobulin genes, thereby initiating antibody affinity maturation and isotype class 

switching during immune responses. In contrast, off-target DNA damage caused by AID is 

oncogenic. Central to balancing immunity and cancer is AID regulation, including the 

mechanisms determining AID protein levels. We describe a specific functional interaction 

between AID and the HSP40 DnaJa1, which provides insight into the function of both proteins. 

Although both major cytoplasmic type I HSP40s, DnaJa1 and DnaJa2, are induced upon B-cell 

activation and interact with AID in vitro, only DnaJa1 overexpression increases AID levels and 

biological activity in cell lines. Conversely, DnaJa1, but not DnaJa2, depletion reduces AID 

levels, stability and isotype switching. In vivo, DNAJA1-deficient mice display compromised 

response to immunization, AID protein and isotype switching levels being reduced by half. 

Moreover, DnaJa1 farnesylation is required to maintain, and farnesyltransferase inhibition 

reduces, AID protein levels in B cells. Thus, DnaJa1 is a limiting factor that plays a non-

redundant role in the functional stabilization of AID. 
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3.3. Introduction 
Antibody genes  Naive B lymphocytes display the prediversified primary repertoire of 

antibodies. Antibody responses are initiated when a few of them recognize their cognate Ag 

and proliferate. To be effective, the antibodies produced by the selected B-cell clones still need 

to undergo affinity maturation to better recognize the Ag; as well as isotype switching to 

change the default IgM isotype for IgG, IgE or IgA. Antibody affinity maturation and isotype 

switching absolutely depend on activation-induced deaminase (AID) (Muramatsu et al, 2000; 

Revy et al, 2000). 

AID deaminates deoxycytidine to deoxyuridine at defined regions of the 

immunoglobulin (Ig) genes, which initiates somatic hypermutation or gene conversion, the 

molecular pathways underpinning antibody affinity maturation, as well as class switch 

recombination (CSR) (Di Noia and Neuberger, 2007; Peled et al, 2008; Stavnezer et al, 2008). 

AID deficiency compromises the antibody response resulting in a Hyper-IgM 

immunodeficiency syndrome (Revy et al, 2000). On the other hand, AID contributes to 

antibody-mediated autoimmune diseases (Zaheen and Martin, 2011) as well as to cancer 

(Okazaki et al, 2003; Pasqualucci et al, 2008). The latter ensues from AID mutating tumour 

suppressor and (proto)-oncogenes as well as from initiating chromosomal translocations as 

byproducts of CSR (Pasqualucci et al, 2001; Ramiro et al, 2004; Liu et al, 2008; Robbiani et al, 

2008; Yamane et al, 2011). A number of regulatory pathways enforcing an appropriate AID 

expression pattern, optimal AID mRNA and protein levels as well as modulating its access to 

the nucleus, favour AID physiological functions over its pathological effects (reviewed in 

Stavnezer, 2011; Storck et al, 2011). 

AID post-translational regulation is important for two reasons. First, because upwards 

and downwards variations in AID levels impact the frequency of both antibody diversification 

and pathological byproducts (Sernández et al, 2008; Teng et al, 2008; Robbiani et al, 2009; 

Orthwein et al, 2010). Second, because physiological and pathological expression of AID 

outside germinal centre B cells is well documented (Morgan et al, 2004; Pasqualucci et al, 

2004; Matsumoto et al, 2007; Macduff et al, 2009; Pauklin et al, 2009; Kuraoka et al, 2011). 
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Prominent among AID regulation are subcellular localization and protein stability, which are 

linked mechanisms that limit AID access to the genome. Indeed, AID is a nucleo-cytoplasmic 

shuttling protein but most of AID is in the cytoplasm in steady state because nuclear export 

plus cytoplasmic retention outcompete nuclear import (Brar et al, 2004; Ito et al, 2004; 

McBride et al, 2004; Patenaude et al, 2009; Patenaude and Di Noia, 2010). In turn, cytoplasmic 

AID is more stable than nuclear AID (Aoufouchi et al, 2008; Orthwein et al, 2010). We have 

shown that AID is stabilized in the cytoplasm by the chaperone HSP90, which helps explaining 

the differences in AID stability depending on its localization (Orthwein et al, 2010). We now 

describe a key role for the HSP40 DnaJa1 in determining AID protein levels and stability. 

The prototypical HSP40 is Escherichia coli DnaJ, a cochaperone of the bacterial HSP70 

DnaK (Langer et al, 1992). DnaJ is but one member of a large protein family characterized by 

the J-domain, which stimulates the ATPase activity of HSP70 as part of a chaperoning cycle 

that allows folding, conformational changes, degradation and transport across membranes 

(Walsh et al, 2004; Qiu et al, 2006; Kampinga and Craig, 2010). The human genome encodes 

for 41 J-domain proteins, which can be divided into three groups (Qiu et al, 2006; Kampinga 

and Craig, 2010). Type I J-proteins or DjAs (DnaJa1–4) are orthologues of E. coli DnaJ and 

yeast YDJ1. DjAs have an N-terminal J-domain separated by a Gly/Phe-rich linker from the C-

terminal substrate-binding region. This region contains three distinct structural domains 

revealed by the YDJ1 crystal structures (Li et al, 2003; Wu et al, 2005) (Supplementary Figure 

S3.1): CTDI, has a hydrophobic pocket that binds certain peptides found in a subset of YDJ1 

substrates; CTDII, is made of two Zn-fingers; and CTDIII, which contains most residues 

involved in DjA dimerization. Additionally, like YDJ1, cytoplasmic DjAs have a short C-

terminal extension ending in a farnesylation motive (Kanazawa et al, 1997). Type II J-proteins 

or DjBs (13 members in humans) are orthologues of yeast SIS1 and have CTDI and CTDIII 

structurally homologous to DjA's (Sha et al, 2000) but lack Zn-fingers. Type III J-proteins are 

very heterogeneous in structure, size and function sharing only the J-domain. Only DjAs and 

some DjBs behave as HSP70 cochaperones similarly to DnaJ, YDJ1 or SIS1 (Qiu et al, 2006; 

Kampinga and Craig, 2010). Some DjAs additionally work in the HSP90-mediated stabilization 

pathway (Caplan et al, 1995; Kimura et al, 1995; Hernández et al, 2002). 

The expansion and divergence of J-protein paralogs during evolution contrast with the 
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conservation of many orthologues across vertebrate species (f.i. DnaJa1 is >95% identical 

between most vertebrates). This is likely to reflect functional specialization and presumably 

some specific subset of substrates in vivo, the mechanistic details of which as well as the 

identity of the substrates are largely unknown (Kampinga and Craig, 2010). In-vitro folding 

experiments have shown some redundancy but also clear functional differences between the 

major mammalian cytosolic HSP40s (DnaJa1, DnaJa2, Dnaja4, DnaJb1) (Terada and Mori, 

2000; Bhangoo et al, 2007; Tzankov et al, 2008; Walker et al, 2010). The different phenotypes 

of mice deficient for DnaJa1 (Terada et al, 2005) and DnaJb1 (Uchiyama et al, 2006) support 

this view but have not provided yet the identity of any substrates that would depend on one 

particular HSP40. Here, we identify DnaJa1 as a specific limiting factor in determining AID 

protein levels and biological activity during the immune response in mice. 
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3.4. Results 

3.4.1. AID interacts with a subset of HSP40 cochaperones and with 

HSC70 
Several results pointed to the interaction between AID and type I HSP40/DjAs. A yeast 

two-hybrid screening using AID as bait (described in Conticello et al, 2008) yielded DnaJa2 

(Figure 3.1A). Mass spectrometry then identified DnaJa1 among the proteins copurifying with 

AID–Flag/HA through two consecutive immunopurifications using agarose-conjugated 

antibodies (Orthwein et al, 2010), which we confirmed here by coimmunoprecipitation (coIP) 

(Figure 3.1B). Finally, DnaJa1, a2 and a3 were pulled down with AID–GFP using anti-GFP-

coated magnetic beads from extracts of stably transfected Ramos B cells (Table 3.1). We 

verified the DnaJa1–AID interaction by coIP (Figure 3.1C). CoIP also confirmed the 

preferential association of AID with cytoplasmic DjAs compared with DnaJb1 and DnaJb11, 

two of the DjB members most similar to DnaJa1 (Figure 3.1D and E). We focused on DnaJa1 

and DnaJa2, which are highly induced upon B-cell activation, excluding DnaJa4, which was 

undetectable (Figure 3.1F) and DnaJa3 because it is mitochondrial (Qiu et al, 2006). DjAs have 

Zn-fingers and E. coli J-proteins non-specifically bind to DNA (Gur et al, 2005) but nuclease 

treatment confirmed that AID interaction with DjAs was not mediated by nucleic acids (Figure 

3.1G). 

We previously showed that AID interacts with HSP90 while the AID paralogs 

APOBECs do not despite being up to 60% similar to AID (Orthwein et al, 2010). Also here, 

AID but not APOBEC1, 2 or 3G, interacted with DnaJa1 and DnaJa2 by coIP (Figure 3.2A and 

B). The major cytosolic HSP70 isoform, HSC70 (encoded by HSPA8) was identified in our 

three pull-down experiments (Table 3.1). Again, HSC70 coIP with AID but not with any of the 

APOBECs from transfected cells (Figure 3.2C). Interestingly, the binding of DnaJa1 or DnaJa2 

to AID was not equivalent. We used AID–APOBEC2 chimeras, in which 30–50 amino acids 

long AID regions were replaced by the homologous APOBEC2 residues (Figure 3.2D) 

(Conticello et al, 2008), to probe the interaction between AID and DjAs. Most chimeras                                                                                      

partially or completely lost interaction with DnaJa1 while they all interacted with DnaJa2 just  

http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#B9�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#f1�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#B41�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#f1�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#t1�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#f1�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#f1�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#f1�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#B50�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#B15�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#f1�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#f1�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#f1�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#B41�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#f2�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#f2�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#t1�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#f2�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#f2�
http://www.nature.com/emboj/journal/vaop/ncurrent/full/emboj2011417a.html#B9�


107 

 

 

 

Table 3.1. (Co)chaperones identified by mass spectrometry copurifying with tagged AID from 
Ramos B cell extracts  

HUGO 

name 
Description 

AID-

Flag/HA 

Pull down1 

AID-GFP Pull down 

Peptide 

number 

Mascot 

Score 

Coverage 

(%) 

DNAJA1 HSP40 homolog, subfamily A, 

member 1 
× 47 1232 65 

DNAJA2 HSP40 homolog, subfamily A, 

member 2 

 39 1003 60 

DNAJA3 HSP40 homolog, subfamily A, 

member 3 

 9 207 14 

HSPA8 Heat shock 70 kDa protein 8 isoform 1 × 19 517 19 

HSP90AA1 Heat shock 90 kDa protein 1, alpha × 39 1101 25 

HSP90AB1 Heat shock 90 kDa protein 1, beta × 81 2010 48 

AHSA1 AHA1, Activator of heat shock 90kDa 

protein ATPase homolog 1 
× 19 480 28 

BAG2 BCL2-associated athanogene 2 

(HSP70-cochaperone) 

 16 327 39 

TCP1 T-complex polypeptide 1 × 5 154 6 

CCT6A T-complex protein 1 subunit zeta × 1 84 3 

CCT4 T-complex protein 1 subunit delta × 3 60 7 

CCT7 T-complex protein 1 subunit eta  1 56 5 
1 Data from ref [332]. 
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Figure 3.1. AID interacts with type I J-proteins. (A) Yeast two-hybrid assay showing the 

interaction of AID with DnaJa2 (truncated clone starting at codon 198). The AID-interacting 

protein CTNNLB1, isolated in the same screening from a human spleen library (Conticello et 
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al, 2008), was used as positive control. GAL, galactose; GLU, glucose; MET, methionine. (B) 

AID–Flag/HA was sequentially immunoprecipitated using anti-Flag and then anti-HA from 

extracts of stably expressing Ramos cells and analysed by western blot after each step to detect 

endogenous DnaJa1. One of the two independent experiments is shown. (C) GFP or AID–GFP 

were immunoprecipitated from extracts of stably expressing Ramos cells and analysed as in 

(B). (D) Schematic structure of type I (DjA) and type II (DjB) J-proteins. Similarity values (%) 

for each structural domain, calculated from the alignment between DnaJa1 and DnaJb1, are 

indicated. (E) Lysates from HEK293T cells cotransfected with Flag-tagged AID or APOBEC2 

(A2) and Myc-tagged versions of the indicated DnaJ proteins were immunoprecipitated with 

anti-Flag and analysed by western blot. One of the two independent experiments is shown. (F) 

Expression of selected DnaJ proteins in total cell lysates of mouse naive primary splenic B cells 

purified by CD43 depletion (>97% CD43− B220+) either resting (0) or after 1–3 days 

stimulation with IL-4 and LPS, analysed by western blot using antibodies against DnaJa1, 

DnaJa2, DnaJa4, DnaJb1 and actin. The CD43-enriched fraction (a heterogeneous mixture 

including T, B and other leukocytes) was included as an additional control. Exposure times 

vary between panels and do not accurately reflect relative abundances. (G) AID–GFP or AID–

Flag/HA were immunoprecipitated in the presence of 1 mg/ml DNase and/or 0.5 mg/ml RNase 

using the corresponding anti-tag antibodies from lysates of HEK293T cell contransfected with 

Flag–DnaJa1 or Myc–DnaJa2, respectively, and analysed by western blot. 
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Figure 3.2. AID but not the APOBECs interacts with DnaJa1, DnaJa2 and HSC70 in vitro. 

(A) GFP-tagged versions of AID, the indicated APOBECs or GFP control were transiently 

cotransfected with Flag–DnaJa1 into HEK293T cells and immunoprecipitated with anti-GFP. 

Immunoprecipitates were probed by western blot. (B) As in (A) but using Flag-tagged versions 

of AID and the APOBECs cotransfected with Myc–DnaJa2 and immunoprecipitated with anti-

Flag. (C) As in (B) but cotransfected with GFP–HSC70. One of the two independent 

experiments is shown for (A–C). (D) Schematic representation of AID–APOBEC2 chimeric 

proteins (AID–A2ch1–5) in which either one of the regions from A2 indicated between dotted 

lines was substituted into the homologous AID region. (E) Flag-tagged versions of AID, A2 or 

the AID-2 chimeras were immunoprecipitated using anti-Flag from HEK293T cell lysates 

cotransfected with Myc–DnaJa1 and analysed by western blot. (F) Flag-tagged versions of 

AID, A2 or the AID-2 chimeras were immunoprecipitated using anti-Flag from HEK293T cell 

lysates cotransfected with GFP–DnaJa2 and analysed by western blot. 
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 as well as AID (Figure 3.2E and F). We can conclude that there is a specific association of 

AID to DjAs and the HSP40–HSP70 chaperoning machinery, which is not detected for the 

APOBEC enzymes. 

 

3.4.2. DnaJa1 determines the protein levels and activity of AID in 

B-cell lines 
The ability of both DnaJa1 and DnaJa2 to bind to overexpressed AID may not be 

surprising since they share ~70% similarity (Supplementary Figure S3.1). Notwithstanding this, 

several reports suggest that they are not completely redundant in their functions (Terada et al, 

2005; Bhangoo et al, 2007; Tzankov et al, 2008). We thus tested whether DnaJa1 and/or 

DnaJa2 were functionally relevant for AID biology, first through overexpression. We used the 

mouse B-cell line CH12F3 in which stimulation with anti-CD40, TGF-β1 and IL-4 induces 

AID and isotype switching to IgA (Nakamura et al, 1996; Muramatsu et al, 1999). Retroviral 

delivery led to ~2-fold overexpression of DnaJa1 or DnaJa2 in CH12F3 cells (Figure 3.3A and 

B). Only DnaJa1 overexpression was associated with higher AID protein levels (~1.6-fold) and 

a significant increase in CSR (Figure 3.3B and C). We obtained similar results in the chicken 

B-cell lymphoma line DT40, which constitutively expresses AID and undergoes Ig gene 

conversion (Arakawa et al, 2002). Overexpression of DnaJa1, but not of DnaJa2, correlated 

with increased levels of endogenous AID (Figure 3.3D and E). This was accompanied by a 

similar increase in the rate of Ig gene conversion as measured by a surface IgM-gain fluctuation 

assay (Figure 3.3F). In this assay, a proportion of AID-dependent gene conversions in the DT40 

CL18 line reverses a frameshift in the IgVλ, thus rescuing IgM expression (Arakawa et al, 

2002). The median proportion of IgM+ cells arising during clonal expansion of multiple 

populations is proportional to the Ig gene conversion activity. In contrast, overexpression of 

HSC70 or HSP90 had no effect on AID or Ig gene conversion in DT40 (Figure 3.3D–F). 

We then asked whether depletion of DnaJa1 would have the predicted opposite effect to 

its overexpression. We transduced CH12F3 cells with different shRNAs targeting murine 

DnaJa1. Each of them decreased DnaJa1 protein to a different extent (from ~70 to 30% of the 
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control; Figure 3.4A and B), which was mirrored by a proportional decrease in isotype 

switching to IgA (Figure 3.4C and D). Importantly, the relative reductions in CSR and in 

DnaJa1 were linearly correlated (Figure 3.4E). Depletion of DnaJa1 reduced AID protein levels 

(Figure 3.4F) but did not affect Aicda or Iα germline transcription, nor did it impact cell growth 

kinetics or HSC70 or HSP90 levels (Supplementary Figure S3.2). In contrast, efficient 

knockdown of DnaJa2 in CH12F3 cells had no effect on CSR or AID protein levels (Figure 

3.4G–J). Finally, DnaJa2 depletion had no effect on AID half-life while DnaJa1 depletion 

reduced it by half (Figure 3.4K and L). Altogether these results suggest a non-redundant and 

limiting role for DnaJa1 in determining the levels of functional AID partaking in its 

stabilization. 

 

3.4.3. Compromised antibody immune response in DnaJa1-deficient 

mice 
The only phenotype observed so far in DNAJA1−/− mice is a defect in spermatogenesis 

likely due to abnormal androgen receptor signalling (Terada et al, 2005). Our findings 

prompted the analysis of the antibody response in these mice. Flow cytometry analysis of 

lymphocyte populations showed little difference between DNAJA1−/− and control mice 

lymphocyte populations. The only statistically significant changes were a 10% decrease in the 

proportion of follicular B cells and an ~2-fold increase in marginal zone B cells in the spleen 

(Supplementary Figure S3.3). In contrast, there was a consistent 50% deficiency in isotype 

switching to IgG1 in splenic naive B cells from DNAJA1−/− mice stimulated ex vivo compared 

with their DNAJA1+/+ or DNAJA1+/− controls (Figure 3.5A and B). The defect in CSR was also 

clear when comparing cells that have undergone the same number of cell divisions without any 

sign of increased cell death in DNAJA1−/− cells (Figure 3.5C; Supplementary Figure S3.4). In 

fact, there were no differences in proliferation, Aicda, Iμ or Iγ1 germline transcription in 

DNAJA1−/− versus control activated B cells (Supplementary Figure S3.4). Western blots 

showed a consistent 50% decrease in AID protein levels in activated B cells from each 

DNAJA1−/− mouse compared with their littermate controls (Figure 3.5D). DnaJa1-deficient 
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Figure 3.3. DnaJa1 overexpression increases AID levels and antibody gene diversification. 

(A) CH12F3 mouse B cells transduced with pMX-ires–GFP vector either empty (GFP) or 

encoding untagged DnaJa1 or DnaJa2 were sorted for GFP-expressing cells, lysed and 

analysed by western blot using anti-DnaJa1 or anti-DnaJa2 and anti-PCNA as loading control. 

P, parental cells. (B) Endogenous AID from transduced and parental CH12F3 cells was 

analysed by western blot using the indicated antibodies before (−) and 24 h after ( +) 

stimulation with agonist anti-CD40, IL-4 and TGF-β1 (CIT). (C) Proportion of IgA+ CH12F3 

cells at day 3 post-CIT. The mean proportion of IgA+ cells determined by flow cytometry±s.d. 
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from six independent stimulations is plotted for each population relative to the GFP controls 

set as 100%. (D) Endogenous AID was analysed by western blot using anti-AID on cell lysates 

from two representative, independently derived stable DT40 cell clones transfected with empty 

vector (Ctrl) or plasmids encoding myc–DnaJa1, myc–Dnaja2, myc–HSP90 or GFP–HSC70. 

Specific antibodies against each protein detected the transfected (triangles) and endogenous 

(circles) proteins. PCNA was used as loading control. (E) Endogenous AID levels quantified by 

densitometry from unsaturated western blots similar to those shown in (D) and normalized to 

the corresponding PCNA level. The mean value for AID in control samples set as 1 was used to 

normalize all values in each experiment. Data expressed as mean values±s.d. of multiple 

subclones for each construct are plotted (myc–DnaJa1 n=15 and myc–DnaJa2 n=21 versus 

controls n=18; myc–HSP90β n=11 versus controls n=11; GFP–HSC70 n=12 versus controls 

n=12). (F) Ig gene conversion frequency in transfected DT40 cells was estimated as the median 

proportion of IgM+ cells arising from multiple IgM− subclones after 4 weeks of clonal 

expansion. The proportion of sIgM+ for each subclone and median values are plotted. Different 

symbols indicate subclones obtained from independent transfectants. In all panels, P-values 

from unpaired, one-tailed t-test are indicated only for significant differences (P<0.05). 
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Figure 3.4. Reduced AID levels and CSR in DnaJa1-depleted CH12F3 cells. (A) CH12F3 

cells were transduced with a lentiviral vector carrying control shRNA (Ctrl) or one of five 
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different mouse DnaJa1-specific shRNAs (#1–#5), selected on puromycin and analysed by 

western blot for DnaJa1 and PCNA as loading control. Populations obtained from two 

independent infections are shown. (B) DnaJa1 protein levels were estimated by densitometry 

from western blots of three independently infected populations and normalized to each 

corresponding PCNA signal. Data expressed as mean values±s.d. for each DnaJa1 shRNA are 

plotted relative to DnaJa1 levels in control shRNA cells set as 100% (*P<0.01, **P<0.0005, 

paired one-tailed t-test). (C) Proportion of IgA+ cells at day 3 post-CIT as determined for flow 

cytometry for the same populations used for (B). Data expressed as mean values±s.d. from six 

independent inductions are plotted relative to the IgA+ proportion in control shRNA cells set as 

100% (*P<0.005, **P<0.0005 in paired one-tailed t-test). (D) Representative flow cytometry 

profiles of transduced CH12F3 stimulated with CIT for 3 days or not (no CIT) and stained with 

anti-IgA. The proportion of IgA+ cells is indicated in each histogram. (E) The mean reduction 

in CSR versus the mean reduction in DnaJa1 protein for each shRNA was plotted for two 

independent experiments (circles and squares) and analysed by linear regression. The 

correlation coefficients (R2) are indicated. (F) Western blots from two independent experiments 

measuring AID in CH12F3 cells transduced with control or DnaJa1 shRNAs, 24 h post-CIT. 

(G) CH12F3 cells transduced with control shRNA (ctrl) or one of three different mouse 

DnaJa2-specific shRNAs (#1–#3) were analysed as in (A). One of the two independent 

experiments is shown. (H) DnaJa2 protein levels were estimated and plotted as in (B). (I) The 

proportion of IgA+ cells at day 3 post-CIT in control versus DnaJa2-depleted cells was 

determined and plotted as in (C). (J) Western blot measuring AID in CH12F3 cells transduced 

with control or DnaJa2 shRNAs, 24 h post-CIT. (K) AID levels were measured by western blot 

24 h post-CIT in CH12F3 cells transduced with shRNA control, DnaJa1 shRNA#3 or DnaJa2 

shRNA#2 at 0, 4 and 8 h after treatment with 100 ng/ml CHX. PCNA is used as a loading 

control. One of the two independent experiments is shown. (L) AID protein levels after CHX 

treatment were estimated by densitometry from western blots of two independent experiments, 

normalized to each corresponding PCNA signal. Data expressed as mean values±s.e.m. for 

each time point are plotted with AID levels at t=0 h set as 100%. AID protein half-lives were 

calculated and are indicated. 
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mice had similar IgM and IgG1 serum levels than controls (Figure 3.5E). This was expected 

since the long lifespan of plasma cells and Ag-mediated selection allow substantial 

accumulation of switched Ig isotypes in the serum of AID haploinsufficient or MSH2−/− mice, 

which have defects of similar magnitude in AID levels and/or CSR as those we observe (Rada 

et al, 2004; Sernández et al, 2008; Takizawa et al, 2008). DnaJa1-deficient mice had impaired 

response to immunization with the T-cell-dependent Ag 4-hydroxy-3-nitrophenylacetyl-

conjugated chicken γ globulin (NP-CGG). There was a significant decrease in the titre of total 

as well as high affinity anti-NP IgG1 during the primary response in all six DNAJA1−/− mice 

analysed (Figure 3.5F), demonstrating a CSR defect in vivo. By the secondary response anti-NP 

titres remained lower than controls in only half of them so only a non-significant trend was 

apparent when analysing the group (Figure 3.5F). Unlike androgen signalling defects and 

slightly reduced body weight, which are only found in DNAJA1−/− males (Terada et al, 2005), 

there was no sex bias for the phenotypes reported here. We conclude that DnaJa1 deficiency 

causes a B-cell intrinsic defect in CSR, most likely by reducing AID protein levels, thus 

delaying antibody immune responses. 

 

3.4.4. DnaJa1-mediated stabilization of AID depends on its 

farnesylation 
Since we have shown that AID is an HSP90 client (Orthwein et al, 2010) and HSP40s 

partake in the HSP90 molecular chaperoning pathway (Kimura et al, 1995; Young et al, 2004), 

we sought some evidence linking DnaJa1 to HSP90, in addition to the decrease in AID stability 

observed after Dnaja1 depletion (see Figure 3.4L). Molecular details about the link between 

HSP40 and HSP90 in vivo are scarce but it has been shown that YDJ1 farnesylation is 

necessary for maintaining the protein levels of HSP90 clients in yeast (Flom et al, 2008). We 

first determined which domains of DnaJa1 mediated interaction with AID. CoIP of AID with 

DnaJa1 truncated variants showed that the CTDI, an YDJ1 substrate-binding site (Li et al, 

2003), as well as the Zn-fingers domain were dispensable for the interaction. Indeed, deletion 

of the N-terminal 160 amino acids of DnaJa1 destroys the structure of both these domains 
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(Figure 3.6A and B) but still allowed AID interaction (Figure 3.6C). Mutating the farnesyl 

group acceptor Cys (Caplan et al, 1992) abolished the interaction of DnaJa1 with AID (Figure 

3.6D). Thus, the CTDIII and farnesylation are the minimal requirements for DnaJa1 binding to 

AID. More importantly, while DnaJa1 expression was able to complement the CSR defect in 

DNAJA1−/− B cells, expression of the DnaJa1-C394S was not able to; nor was DnaJa2 further 

suggesting a specific role for DnaJa1 (Figure 3.6E–G). To confirm that the AID levels were 

dependent on farnesylated DnaJa1, we treated the Ramos human B-cell line and mouse primary 

B cells with the farnesyltransferase inhibitor FTI-277. Increasing doses of FTI-277 correlated 

with the accumulation of non-farnesylated DnaJa1 and a concomitant decrease in AID protein 

levels in both cases (Figure 3.6H) without affecting Aicda transcription (Supplementary Figure 

S3.5). Furthermore, FTI treatment was able to decrease ex-vivo isotype switching to IgG1 in 

mouse B cells (Figure 3.6I–K). Confocal microscopy of cotransfected cells showed that AID 

shuttled independently of DnaJa1 localization, which was not obviously affected by the C394S 

mutation (Figure 3.6L). In fact, DnaJa1 depletion in CH12F3 cells had no effect on AID 

localization or shuttling (Supplementary Figure S3.5).  

Taken together, these results indicate that AID biological activity levels depend on 

farnesylated DnaJa1 through a mechanism that determines AID protein levels in the cytoplasm. 
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Figure 3.5. Reduced AID protein levels and isotype switching in DNAJA1−/− mice. (A) 

Proportion of IgG1+ cells in purified splenic B cells from five DNAJA1−/− and control (+/+ or 
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+/−) mice 4 days post-IL-4 and LPS stimulation, measured by flow cytometry. Two 

independent experiments are plotted in the same graph. A line links littermate pairs, with 

females (triangles) and males (circles) distinguished. (B) The data from (A) were compiled by 

normalizing the IgG1+ B-cell proportion from each of the DNAJA1−/− mice to its paired control 

set as 100%. The mean relative CSR±s.d. value for DNAJA1−/− mice is plotted. (C) Splenic 

naive B cells from DNAJA1−/− mice and littermate controls were loaded with CFSE, activated 

with IL-4 and LPS for 4 days and the proportion of IgG1+ cells for each cell division 

determined by flow cytometry. One representative out of four mice pairs analysed is plotted. 

(D) DnaJa1, AID and PCNA protein levels were analysed by western blot in lysates from 

resting (R) or LPS + IL-4-activated (A) splenic B cells purified from three DNAJA1−/− and their 

matched control littermates (pairs separated by dashed lines). AID levels in each mouse were 

quantified by densitometry, normalized to PCNA levels and the mean±s.d. AID levels for 

DNAJA1−/− mice relative to their corresponding littermate are plotted in the right-hand panel. 

(E) Concentration of IgM and IgG1 in sera from 3- to 5-month-old DNAJA1−/− or littermate 

control mice determined by ELISA. Each dot represents an individual mouse with females 

(triangles) and males (circles) distinguished. Horizontal lines indicate median values. (F) Six 

littermate pairs of control and DNAJA1−/− mice were immunized with NP15-CGG and serum 

samples collected at day 11 post-immunization (primary response). The mice were boosted at 

day 30 and sera collected again at day 37 (secondary response). Anti-NP IgG1 titres were 

determined by ELISA using plates coated with NP26-BSA (NP26 column, total anti-NP 

antibodies) or NP4-BSA (NP4 column, high affinity anti-NP antibodies). The value for each 

mouse is indicated, distinguishing females (triangles) and males (circles) with lines indicating 

median values. In all panels, P-values from paired, one-tailed Student's t-test are indicated 

only for statistically significant differences (P<0.05). 
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Figure 3.6. DnaJa1 farnesylation is necessary to maintain AID levels and for CSR. (A) 

DnaJa1 domains illustration indicating the deletions and single point mutation variants used. 

CaaX indicates the farnesylation motif where Cys394 was mutated to Ser in DnaJa1ΔF. (B) 

Crystal structure of the yeast DnaJa1 orthologue YDJ1 substrate-binding domain using the 

same colour scheme as in (A). Residues homologous to those truncated in DnaJa1ΔN2, which 

destroy CTDI and II, are in grey. A YDJ1 substrate peptide, which cocrytstalized bound to 
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CTDI, is shown as filled model. Data are from pdb1NLT (Li et al, 2003). (C) Flag-tagged AID 

or A2 were immunoprecipitated using anti-Flag from lysates of HEK293T cells cotransfected 

with the indicated GFP-tagged DnaJa1 variants and analysed by WB. One of the two 

independent experiments is shown. (D) Similar experiment to (C) but using Myc-tagged 

DnaJa1 variants. One of the two independent experiments is shown. (E) Splenic B cells purified 

from DNAJA1+/+ and DNAJA1−/− mice activated with LPS and IL-4, transduced with 

retroviruses expressing control (GFP), DnaJa1–, DnaJa1ΔF– or DnaJa2-ires–GFP and 

analysed at day 4 post-infection by flow cytometry. Histograms show GPF-gated cells stained 

with anti-IgG1 indicating the proportion of IgG1+ cells for one representative out of three mice 

analysed. (F) Compilation of ex-vivo CSR data from three DNAJA1−/− mice complemented as 

in (E). The proportion of IgG1+ cells for the DNAJA1−/− B cells expressing each transduced 

protein is shown relative to the value obtained for the corresponding DNAJA1+/+ littermate B 

cells infected with control GFP vector, set as 100%. Paired, two-tailed t-test was used to 

evaluate significance (P<0.05). (G) Transduced splenic B cells were analysed by western blot 

with anti-DnaJa1 and anti-DnaJa2 using anti-GFP as loading control. (H) Ramos B-lymphoma 

cells and purified mouse splenic B cells were treated with the indicated concentrations of the 

farnesyltransferase inhibitor FTI-277 for 72 h and the levels of AID and farnesylated (circle) 

and non-farnesylated (triangle) DnaJa1 analysed by western blot. PCNA was used as loading 

control. (I) Experimental strategy used for assaying CSR in mouse splenic B cells after 

farnesyltransferase inhibition. D, day. (J) Relative proportion of IgG1+ cells measured by flow 

cytometry in mouse splenic B cells treated with the farnesyl transferase inhibitor FTI-277 or 

solvent control as in (I). (K) CFSE staining profile of the cells used for (I) with the proportion 

of IgG1+ cells for each cell division plotted below. (L) Hela cells cotransfected with GFP-

tagged DnaJa1 or DnaJa1ΔF and untagged AID were treated with leptomycin B or heat 

shocked for 90 min at 43°C, fixed, stained with anti-AID and anti-mouse Alexa-680 and imaged 

by confocal microscopy. Representative confocal images are shown, scale bar=10 μm. The 

cellular localization of each protein was classified and the proportion of cotransfected cells 

showing each distribution is plotted as bars with the number of cells counted indicated (n). C, 

cytoplasmic; N, nuclear. 
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3.5. Discussion 
We have previously identified AID as an HSP90 client, with this interaction being 

critical for AID stability (Orthwein et al, 2010). We now show the interaction of AID with the 

HSP40–HSC70 system and with DnaJa1 in particular. The remarkable specificity of the 

functional interaction between AID and DnaJa1 in vitro and in vivo provides insight not only 

on AID biology but also into the functional specialization of HSP40s. 

The HSP40–HSP70 system delivers a subset of its substrates to the HSP90 molecular 

chaperoning pathway for their functional stabilization (Young et al, 2004; Hartl et al, 2011). 

Indeed, AID folding and stabilization shows similarities with the stabilization cycle of steroid 

hormone receptors (Picard, 2006; Hartl et al, 2011) and our results suggest the identity and 

function of many of the molecules involved (Orthwein et al, 2010 and this work). DnaJa1 could 

act as cochaperone of HSC70 by stimulating its ATPase activity to initiate a folding cycle that 

is completed by HSP70 nucleotide exchange factors (Young et al, 2004; Kampinga and Craig, 

2010; Terada and Oike, 2010). We speculate BAG2 could be the HSC70 nucleotide exchange 

factor in this cycle since it was the only one that copurified with AID (Table 3.1). HSP40–

HSP70 and HSP90 are coupled by STI1/HOP, which has been copurified with AID (Okazaki et 

al, 2011) and may link the ternary AID–HSP40–HSP70 complex to HSP90. 

Although DnaJa1 may well be an HSC70 cochaperone during AID folding, the fact that 

different HSP40s can at least partially substitute for each other in this role (Johnson and Craig, 

2001; Cintron and Toft, 2006), combined with the non-redundant function that DnaJa1 has in 

determining AID cellular levels in vivo, suggest that DnaJa1 may have another, more specific 

function. There is considerable genetic and biochemical evidence showing that HSP40 is a 

functional component of some of the complexes during the HSP90 cycle (Caplan et al, 1995; 

Kimura et al, 1995; Dittmar et al, 1998; Kosano et al, 1998; Hernández et al, 2002; Wegele et 

al, 2006; Flom et al, 2008). Three observations suggest that DnaJa1 has a specific role in AID 

stabilization and link this activity to HSP90. First, AID is less stable in cells depleted of 

DnaJa1. Second, DnaJa1 farnesylation is required for binding to and optimal CSR activity of 

AID just as YDJ1 farnesylation is required for its interaction with HSP90 clients (Flom et al, 
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2008). Cytoplasmic type I HSP40s are isoprenylated (Caplan et al, 1992; Kanazawa et al, 

1997). Although farnesylation targets a minor proportion of YDJ1 to intracellular membranes 

(Caplan et al, 1992), this seems to be in no small part by contributing to protein–protein 

interactions (Marshall, 1993). Indeed, the farnesylated CTDIII domain of DnaJa1 mediates AID 

binding instead of the CTDI, a characterized YDJ1 substrate-binding domain (Li et al, 2003). 

Coincidently, the YDJ1 mutant found to compromise HSP90 client stability in yeast had a 

single point mutation in CTDIII (Kimura et al, 1995). Third, DNAJA1−/− mice can only make 

50% of the normal AID protein levels, indicating that no other J-protein is fully redundant with 

DnaJa1. DnaJa2 would be the obvious backup in DNAJA1−/− cells since it is very similar to 

DnaJa1, well expressed in B cells and interacts with AID in vitro. However, this is not the case 

since AID and CSR are reduced proportionally to DnaJa1 depletion in CH12F3 cells (despite 

abundant DnaJa2 expression) while DnaJa2 depletion or overexpression do not change AID 

levels, nor can DnaJa2 rescue CSR in DNAJA1−/− B cells. An analogous specificity was 

observed for the potassium channel HERG with depletion of DnaJa1, but not DnaJa2, reducing 

the intracellular trafficking of HERG (Walker et al, 2010). Interestingly, like AID, HERG 

stability depends on HSP90 (Ficker et al, 2003). It is interesting that most AID–APOBEC2 

chimeras disrupt DnaJa1 binding while they all bind to DnaJa2. One could speculate that 

DnaJa1 recognizes a certain structure, which would be easily altered in the chimeras, while 

DnaJa2 may recognize less specific hydrophobic motifs present in earlier folding intermediates. 

Our results are compatible with some specialization of DnaJa1 to work in the HSP90 pathway 

but defining this will require further work. The experiments with HERG were done in 

transfected HeLa cells and there is in fact hardly any data about protein levels of endogenous 

HSP90 clients in the absence of a particular DjA in any system. In yeast, the STE11 kinase 

levels are reduced by YDJ1 deficiency (Flom et al, 2008). In DNAJA1−/− mice, the androgen 

and glucocorticoid receptors were increased (Terada et al, 2005) while AID is reduced. This 

nicely illustrates the existence of different subpathways for folding/stabilization of HSP90 

clients. To the best of our knowledge, AID is the first HSP90 client identified in higher 

eukaryotes that requires a specific HSP40 to maintain its physiological levels in vivo. 

If DnaJa2 is not able to complement DnaJa1 deficiency and DnaJa4, the only other 

cytoplasmic DjA, is not expressed, it is interesting to speculate how the residual AID is folded 
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and stabilized in vivo in DNAJA1−/− lymphocytes. Whichever pathway forms AID in 

DNAJA1−/− B cells, it is clearly not fully redundant with DnaJa1. At least in yeast, the DjB Sis1 

can partially substitute for YDJ1 (Lu and Cyr, 1998; Johnson and Craig, 2001). Thus, a DjB 

like DnaJb1 or even DnaJa2 could substitute for DnaJa1 in early HSP70-assisted AID folding; 

and/or it could proceed via the CCT chaperonin (Young et al, 2004; Hartl et al, 2011). The end 

result is anyhow much less efficient. Therefore, we hypothesize that a later DnaJa1 role must 

exist in vivo, probably by linking AID to the HSP90 pathway, and/or helping in assembling 

some AID complexes. This role would be more specific than, and thereby limiting, compared 

with protein biogenesis. 

The fact that the response of DNAJA1−/− mice to immunization is so similar to the one 

observed in AID haploinsufficient mice (Sernández et al, 2008; Takizawa et al, 2008) suggests 

that the defect in CSR in vivo reflects the 50% reduction in AID rather than any other unknown 

defect on immune cell function. Beyond any small differences, the phenotypes of Aicda+/− and 

DNAJA1−/− mice indicate that AID can be limiting for antibody diversification and that reduced 

AID levels, no matter their cause, are detrimental for antibody responses, which could be 

exploited for therapy. We have shown that HSP90 inhibitors could be used in this way 

(Orthwein et al, 2010). DnaJa1 now offers alternative possibilities by linking AID protein 

levels to protein farnesylation. Farnesyltransferase inhibitors have promising anti-cancer 

activity but their relevant targets are incompletely understood (Sebti and Der, 2003). We show 

that it is indeed possible to reduce AID levels and function by using farnesyltransferase 

inhibitors, which could have therapeutic value to modulate AID. 

HSP40s are limiting components in chaperone networks. In E. coli, DnaJ is present in a 

1:10 ratio with respect to DnaK (HSP70) (Bardwell et al, 1986). In yeast, the relative molecular 

proportion of HSP82 (HSP90), SSA1 (HSP70) and YDJ1 can be estimated at ~4:2:1, 

respectively (Ghaemmaghami et al, 2003). HSP40s can also be functionally limiting in 

mammalian systems (Minami et al, 1996; Dittmar et al, 1998; Heldens et al, 2010). We indeed 

see a modest increase in AID levels upon DnaJa1 overexpression. We would not expect a 

dramatic increase since DnaJa1 surely has many substrates and is distributed among all of them 

and so would be any excess DnaJa1. Considering that we achieve ~2-fold increase in DnaJa1 
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levels, the fact that we can see an increase in AID levels and activity is significant and suggest 

that DnaJa1 is indeed limiting for AID folding and/or stabilization. This raises the question of 

whether DnaJa1 overexpression in certain cases, such as EBV infection (Young et al, 2008) or 

its association with antibody-mediated autoimmune diseases (Ramos et al, 2011) could 

contribute to disease by increasing AID levels. 
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3.6. Materials and methods 

3.6.1. Cell lines and drug treatments 

The Ramos Burkitt's B-cell lymphoma lines stably expressing GFP, AID–GFP or AID–

Flag/HA have been described (Patenaude et al, 2009; Orthwein et al, 2010). Chicken DT40 B-

lymphoma cells stably expressing myc–DnaJa1, myc–DnaJa2 or myc–HSP90β were obtained 

by electroporation as described (Sale et al, 2001). GFP–HSC70 was introduced by retroviral 

infection. CH12F3 mouse B cells stably expressing DnaJa1, DnaJa2, AID–GFP or empty 

vectors were generated by retroviral delivery of pMXs-ires–GFP or pMXs constructs and 

sorted for GFP-expressing cells. FTI-277 (Sigma-Aldrich) was diluted in water at 1 mM and 

stored at −20°C. Cycloheximide (CHX) (Sigma -Aldrich) was freshly prepared before each 

experiment and diluted in EtOH at 100 μg/ml. 

 

3.6.2. Identification of AID partners 

The yeast two-hybrid screening has been described (Conticello et al, 2008). Ramos B 

cells stably expressing AID–GFP were lysed on ice in 50 mM Tris–HCl pH 8, 150 mM NaCl, 

1% Triton X-100, 5 mM MgCl2, 100 μg/ml RNase, 100 μg/ml DNase and complete protease 

inhibitors cocktail (Roche) at 3 × 108 cells/ml. AID was immunoprecipitated using anti-GFP-

coated magnetic microbeads and MACS separation columns (Miltenyi Biotec) following the 

manufacturer's instructions. Eluted proteins were separated by SDS–PAGE and silver stained. 

Differential bands compared with the pattern obtained from Ramos cells expressing GFP only 

were excised and submitted to mass spectrometry for protein identification as described 

(Orthwein et al, 2010). 

 

3.6.3. DNA constructs 

AID–GFP, AID–Flag/HA, APOBECs and Myc–HSP90β expression vectors have been 
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described (Orthwein et al, 2010). Human DnaJa1 in pFlag–CMV2 was a kind gift of Dr HY 

Zoghbi (Baylor College of Medicine, Houston). Human HSC70 in pEGFP-C1 was a kind gift 

from Dr U Stochaj (McGill University, Montreal). Human DnaJa2, DnaJa4, DnaJb1 and 

DnaJb11 were obtained from the I.M.A.G.E consortium. Details on DNA constructs are 

provided in Supplementary data. 

 

3.6.4. Retroviral and lentiviral infections 

Retroviral transduction of mouse primary B cells and DT40 cells was as described 

(Patenaude et al, 2009). CH12F3 B cells were infected with retroviral particles obtained from 

the supernatant of HEK293T cell cultures cotransfected with pMXs-ires–GFP or pMXs 

constructs and vectors expressing MLV Gag-Pol and VSV-G envelope (2:1:1 ratio). Briefly, 

the retroviral supernatant was spun down at 2000 g for 90 min at 32°C in Retronectin® 

(Takara)-coated plates before adding 5 × 105 CH12F3 cells and spinning at 600 g for 30 min at 

32°C and GFP+ cells were sorted. A similar procedure was used for lentiviral infections. 

Mission® DnaJa1 and DnaJa2 shRNAs (Supplementary Table SII) cloned in pLKO.1-Puro 

(Sigma-Aldrich) were contransfected with psPAX2 (Addgene plasmid 12260, deposited by Dr 

D Trono) and pVSG-G into HEK293T cells to produce lentiviral particles. An shRNA targeting 

luciferase and cloned in pLKO.1-Puro (Addgene plasmid 1864 deposited by Dr D Sabatini) 

was used as control. Cells were selected in 0.5 μg/ml puromycin 2 days post-infection. 

 

3.6.5. IP and western blot 

Cells were homogenized in lysis buffer (20 mM Tris, pH 8.0, 137 mM NaCl, 10% 

glycerol, 2 mM EDTA, 1% Triton X-100, 20 mM NaF) 48 h after transfection and extracted on 

ice for 10 min. The lysate was clarified for 10 min at 12 000 g at 4°C and processed for western 

blot or IP. Typically, 2–5 × 106 cells were analysed by western blots to detect endogenous 

proteins. Tagged proteins were immunoprecipitated using either anti-Flag M2 affinity gel 

(Sigma-Aldrich) or MACS GFP Isolation kit (Miltenyi Biotech) according to the 

manufacturer's instructions. Eluates and lysates were analysed by western blot developed with 

SuperSignal West Pico Chemiluminescent substrate (Thermo Fisher Scientific). Antibodies 
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used are in Supplementary data. 

 

3.6.6. Monitoring of antibody diversification 

Ig gene conversion was estimated by fluctuation assay of the proportion of cells 

undergoing surface IgM− to IgM+ reversion in multiple single cell-derived populations of DT40 

cells after 3-week expansion at 41°C. IgM expression was measured by flow cytometry using 

1:200 PE- (Southern Biotech) or FITC (Bethyl)-conjugated anti-chicken IgM. IgM to IgA 

switching was assayed in CH12F3-2 cells activated for 3 days with 1 ng/ml TGF-β1, 10 ng/ml 

IL-4 and 1 μg/ml agonist anti-CD40 (BD). IgA expression was measured by flow cytometry 

using anti-mouse IgA-PE antibody (1:200; eBioscience). Ex-vivo isotype switching to IgG1 

was assayed using resting splenic B cells purified by CD43 depletion, with CFSE loading to 

monitor cell division where indicated, as described (Orthwein et al, 2010). Cells were stained 

with anti-IgG1-biotin (1:200; BD) followed by APC-conjugated anti-biotin (Miltenyi Biotech) 

and 10 μg/ml propidium iodide. For the complementation assays of DNAJA1−/− B cells using 

retroviral delivery, double infection was performed at days 2 and 3 post-stimulation and isotype 

switching analysed at day 5. 

 

3.6.7. Mice immunizations and lymphocyte populations 

DNAJA1−/− mice (Terada et al, 2005) were backbred to C57Bl/6J background for at 

least 11 generations. In all experiments, 2- to 4-month-old, sex-matched littermates were used. 

DNAJA1+/+ and DNAJA1+/− served as controls as they were indistinguishable (our results and 

Terada et al, 2005). Mice were immunized i.p. with 100 μg of NP15-CGG (Biosearch 

Technologies Inc., # N5055-5) in 100 μl PBS+100 μl of Imject Alum (Thermo Scientific) and 

boosted at day 30. Blood samples were collected at day −1 (preimmune), day 11 post -

immunization (primary response) and day 37 (secondary response). Anti-isotype-specific 

antibodies were used to capture and detect total serum IgM and IgG1 in serum by ELISA. 

Concentrations were estimated from calibration curves made with Ig isotype standards (BD 
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Pharmingen). Serum levels of total or high affinity anti-NP-specific IgG1 were determined by 

coating plates with NP26-BSA or NP4-BSA (5 μg/well), respectively. IgG1 was detected using 

biotynilated anti-mouse IgG1 (1:1000; BD Pharmingen) followed by HRP-conjugated 

streptavidin (1:5000; Thermo Scientific) and 2,2′ -Azino-bis(3-ethylbenzothiazoline-6-sulfonic 

acid) substrate, detected by absorbance at 405 nm. Arbitrary units were calculated multiplying 

OD readings for each point of a curve made of serial twofold dilutions of the serum by the 

corresponding serum dilution factor. The OD 50% was defined as the anti-NP IgG1 titre for 

each mouse and plotted divided by 100 (NP26) or 10 (NP4) to have similar graphing scales. 

Lymphocyte populations from spleen and thymus were analysed by flow cytometry as detailed 

in Supplementary data. The IRCM's and Kumamoto University's animal experimentation ethics 

committees approved all mouse work. 

 

3.6.8. IF and confocal microscopy 
HeLa cells were transiently cotransfected with AID in pCDNA3.1 and either pEGFP-

C3 DnaJa1 or DnaJa1-C394S using TransIT-LT1 (Mirus). Cells were treated 48 h post-

transfection either by heat shocking at 43°C for 90 min, or with 50 ng/ml Leptomycin B or 

EtOH solvent control for 2 h. Cells were processed for IF and confocal microscopy as 

described (Patenaude et al, 2009), except that blocking was 5% goat serum 1 mg/ml BSA in 

PBS overnight at 4°C and we used a mouse anti-AID MAb (clone, 1:500; Invitrogen) for 1 h 

followed by goat anti-mouse Alexa-680 (1:500; Invitrogen) for 30 min and imaged in an LSM 

510 microscope (Zeiss) with a HeNe 633 laser. Control and DnaJa1-depleted CH12F3 cells 

stably expressing AID–GFP or GFP and DnaJa1 were treated with 10 ng/ml Leptomycin B or 

EtOH for 2 h. Cells were plated on poly-L-Lysine-treated coverslips and processed for confocal 

microscopy. 
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Supplementary Figure S3.1. J-protein family structure and comparison between relevant J-

proteins. (A) Schematic structure of the three types of J-proteins indicating their different 

domains (except for type IIIs, which do not share a common organization). CaaX indicates the 

farnesylation motif present in type I J-proteins. CTD, C-terminal domain (B) Similarity 

between all the mouse type I and II J-proteins was estimated from full length protein 

alignments using ClustalX (Thompson et al, 2002) and illustrated by a neighbour-joining tree 

constructed using Seaview 4.2.8 (Gouy et al, 2010). All nodes have significant boostraps 

(>0.5). Type I HSP40s are in red. Type II HSP40s are in black with the ones used in this work 

highlighted in bold. (C) Comparison of the three dimensional structure of the yeast type I 

HSP40 YDJ1 and type II HSP40 Sis1 C-terminal region domains drawn using the same color 

coding as in (A) drawn in MacPymol using pdbs 1NLT (Li et al, 2003) and 3AGZ (Sha et al, 

2000), respectively. The dimerization domain of YDJ1 involving many interspersed 

hydrophobic residues in CTDIII was drawn from pdb 1XAO (Wu et al, 2005). (D) Protein 

alignment of mouse DnaJa1 and DnaJa2 with identities shown as grey boxes to highlight the 

extensive similarity between the two proteins. 
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Supplementary Figure S3.2. Analysis of DnaJa1- or DnaJa2-depleted CH12F3 cells. (A) IgA 

germline transcript (Iα GLT) and Aicda transcript levels were estimated by semiquantitative 

RT-PCR on serial two-fold dilution of cDNA made from CH12F3 transduced with control or 

DnaJa1 shRNA, 24h post-CIT. Gapdh was used as control; – ,reverse transcriptase was 
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omitted. (B) Growth curves of the indicated CH12F3 populations starting from 5 x 104 cells/ml 

were determined by counting live cells in a haemocytometer. Mean ± SEM of duplicate cultures 

are plotted over time. (C) The effect of DnaJa1 or DnaJa2 downregulation on the levels of 

HSP90 and HSC70 was monitored by western blot for the indicated CH12F3 populations using 

actin as loading control. 
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Supplementary Figure S3.3. Analysis of lymphocyte populations in DNAJA1-/- mice. (A) 

Mean ± SD spleen weight of three DNAJA1-/- mice normalized to their respective littermate 

controls. (B) Total number of splenocytes per spleen for three littermate mice pairs. (C) 
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Representative flow cytometry profile of splenocytes from DNAJA1-/- and littermate control 

stained for B and T cells with anti-B220-APC and anti-CD3-PercPCy5.5, respectively. (D) 

Proportion of T cells (CD3+ B220-), B cells (CD3- B220+) and their ratio in splenic 

leukocytes for 3 pairs of control and DNAJA1-/- littermates. Each female (triangles) and male 

(circles) pair is linked by a line. (E) Splenic CD4 to CD8 T cell ratio for three DNAJA1-/- mice 

calculated from flow cytometry data and plotted as mean ± SD of the value normalized to their 

littermate controls set at 2. (F) Representative flow cytometry profile of B220+ splenic B cell 

subpopulations from DNAJA1-/- and littermate control mice. Anti-CD21-FITC versus anti-

CD23-PE plot of B220+-gated cells is shown. Marginal zone (MZ) (CD21+ CD23-), follicular 

(Fo) (CD21+ CD23+) and non-follicular (NF) (CD21- CD23-) B cells are indicated. (G) 

Proportion of follicular, marginal zone and non-follicular B cells in splenic B cells calculated 

from flow cytometry data of 3 littermate pairs. (H) Relative proportion of immature and mature 

B cells in splenic B220+ cells plotted as mean ± SD of the DNAJA1-/- mice values normalized 

to their littermate controls set as 100%. (I) Total number of thymocytes per thymus for 3 mouse 

littermate pairs. (J) Representative flow cytometry profile of CD3+ thymic T cells stained with 

anti-CD4 and anti-CD8. (K) Relative proportion of thymic T cell subpopulations plotted as 

mean ± SD of three DNAJA1-/- mice normalized to their respective littermate controls set as 

100%. In all panels, paired, two-tailed t-test was used with p values indicated where the 

differences are statistically significant (p<0.05). 
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Supplementary Figure S3.4. DNAJA1-/- B cell proliferation, Aicda and IgH sterile 

transcripts. (A) Proportion of IgG1+ cells at each generation, as determined from CFSE 

staining, for four littermate pairs of DNAJA1-/- and control mice. (B) Mean proportion + SD of 

live (top panel) and dead (bottom panel) cells in each generation for the four DNAJA1-/- (white 
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bars) and the four control (black bars) mice shown in (A). The proportion of live cells was 

calculated by flow cytometry as the proportion of cells at each CFSE peak after gating cells on 

forward and side scatter and excluding dead cells by propidium iodide (PI) staining. Dead cell 

proportion was calculated by gating cells on forward and side scatter, then plotting CFSE 

versus PI and determining the proportion of PI+ cells for each generation. (C) Resting splenic 

B cells from DNAJA1-/- and littermate control mice were loaded with CFSE and analyzed at 0, 

48 and 96 h poststimulation by flow cytometry. Profiles from all time points are plotted 

superimposed in the same histogram. (D) Aicda transcript and IgM (μ) and IgG1 (γ1) germline 

transcripts (GLT) estimated by semi-quantitative RT-PCR using 2-fold serial dilutions of cDNA 

made from DNAJA1-/- and littermate control mice B cells. Gapdh was used as control; –, 

samples in which reverse transcriptase was omitted. 
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Supplementary Figure S3.5. DNAJA1-/- B cell proliferation, Aicda and IgH sterile 

transcripts. (A) Aicda transcript levels were estimated by semi-quantitative RT-PCR using 2-

fold serial dilutions of cDNA prepared from mock or FTI-277-treated Ramos and mouse 

primary B cells. (B) Control or DnaJa1-depleted CH12F3 cells expressing AID-GFP or GFP 

and DnaJa1 were treated with leptomycin B to monitor the effect of DnaJa1depletion on AID 

subcellular localization. Representative confocal images are shown, scale bar 10 μm. The 

cellular localization of each protein was classified and the proportion of cells showing each 

distribution is plotted as bars with the number of cells counted indicated (n). C, cytoplasm; N,  

nuclear. 
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3.10. Supplementary materials and methods 

3.10.1. DNA constructs.  
DnaJa1 was subcloned as a BglII-BamHI fragment into pEGFP-C1 and pcDNA3.1-myc 

by using oligonucleotides AO14 and AO6 (see oligonucleotide sequences in Supplementary 

Table SI). DnaJa1 C394S (ΔF) point mutation was introduced by Quickchange (Stratagene) 

using oligonucleotides AO58 and AO59. DnaJa1 truncations were generated by using internal 

restriction site: HindIII-BamHI fragment subcloned into pEGFP-C3 for DnaJa1ΔN1(50-397) 

and EcoRI-BamHI fragment subcloned into pEGFP-C1 for DnaJa1ΔN2(161-397). hDnaJa2 

was subcloned into pEGFP-C1 as a SalI-BamHI fragment or into pcDNA3.1-myc as BglII-

BamHI fragment. hDnaJa4 was subcloned as a BlgII-BamHI fragment, hDnaJb1 and hDnaJb11 

as BamHI-EcoRI fragments into pcDNA3.1-myc using oligonucleotides AO16-AO17, AO18-

AO19 and OJ110-OJ111 respectively. hDnaJa1 and its respective ΔF mutant were subcloned as 

a BamHI-NotI fragment into pMX-iresGFP using oligonucleotides AO66- AO67 and AO66-

AO68 respectively. hDnaJa2 was excised from pcDNA3.1-myc as a BamHI-EcoRI fragment 

and subcloned into pMX-iresGFP. GFP-HSC70 was excised as a HindIII-XhoI fragment and 

subcloned in pMXs vector. 

 

3.10.2. Antibodies used for western blot.  
Anti–EGFP–HRP (1:3,000; Miltenyi Biotec), anti– Myc-HRP (1:3,000 Miltenyi 

Biotec), anti–Flag-HRP (1:3,000 Sigma-Aldrich), anti- HSP90 (1:3,000 sees both isoforms; 

BD), anti-AID (1:1,000 Cell Signaling Technology), anti-actin (1:3,000; Sigma-Aldrich), anti-

PCNA (1:5,000 PC-10; Abcam), anti-DnaJa1 (1:3000 KA2A5; Thermo Scientific), anti-HA 

(1:3000 CAB3872; Thermo Scientific), anti-HSC70 (1:2000 SMC-106A; Stressmarq). 

Polyclonal rabbit serum recognizing mouse AID (1:500) was a kind gift from Dr J. Chaudhuri 

(Sloan-Kettering Institute, New York). Specific antibodies against DnaJa2, -a4 and –b1 have 

been described (Abdul et al, 2002; Terada & Mori, 2000). Secondary antibodies used were goat 

anti–mouse Ig-HRP and anti–rabbit Ig-HRP (1:10,000; Dako) and goat anti–rat Ig-HRP 
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(1:5,000; Millipore). 

 

3.10.3. Lymphocyte population analysis.  
Mice were euthanized, organs collected and grinded through a 70 μm cell strainer. 

Splenocytes were centrifuged at 400 x g for 10 min at RT and resuspended in 1 ml erythrocytes 

lysis buffer for 5 min at RT, washed and resuspended in PBS. Aliquots of 5 x 105 cells were 

stained for 15 min using combinations of the following antibodies (BD Pharmingen): anti-

B220APC, anti-CD3PerCCPCy5.5, anti- CD4PE, anti-CD8APC, anti-CD21FITC and anti-

CD23PE (all 1:200); anti-IgMPE and anti- IgDFITC (both 1:100). Dead cells were excluded by 

staining with 10 μg/ml propidium iodide. Data was acquired in a FACSCalibur (BD 

Biosciences) and analyzed using FlowJo (Tree Star, Inc). 

 

3.10.4. Semi-quantitative RT-PCR.  
Total RNA was extracted with TRIzol® (Invitrogen). cDNA was synthesized by 

random priming using the ProtoScript® M-MuLV Taq RTPCR kit (NEB). Mouse and human 

Aicda transcripts were amplified using oligonucleotides AO43/AO44 and OJ500/OJ538 

respectively. IgM (μ), IgA (Iα) and IgG1 (γ1) germline transcripts were amplified using 

oligonucleotides OJ530/OJ531, AO45/AO46 and AO39/AO40 respectively. Gapdh transcripts 

were amplified using oligonucleotides provided by the manufacturer. 
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4.2. Abstract 
Activation Induced Deaminase (AID) and the APOBEC proteins constitute a group of 

cytidine deaminases acting on DNA and/or RNA with diverse physiological functions. AID 

targets the immunoglobulin genes thereby initiating antibody somatic hypermutation and 

isotype class switching during immune responses. Regulation of AID protein levels is central to 

balancing efficient immunity with AID pathological roles in cancer and autoimmunity. In this 

study, we report that AID is instrinsically less stable than its APOBEC paralogs. This, at least 

partially explains why AID stability depends on constant chaperoning by the HSP90 system, 

while we find that APOBEC1, 2 and 3G are not even indirectly depending on HSP90. We 

identify AID N-terminal aspartic acid residue and an internal PEST-like motif as destabilizing 

modulators of AID protein turnover. Disruption of these motifs impacts AID levels by 

increasing its stability and concomitantly upregulates antibody diversification. Moreover, we 

find that cytoplamic polyubiquitination and proteasomal degradation of AID is not dependent 

on its internal lysine residues. Furthermore, the addition of a HA tag at the N-terminus of AID 

did not prevent its cytoplasmic protein turnover, suggesting a non-canonical way of targeting 

AID to the proteasome. Thus, we show that there is a direct contribution of AID intrinsic 

instability to regulate the efficiency of antibody diversification. 
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4.3. Introduction 
The Activation Induced Deaminase (AID)/APOBEC family comprises several members 

that act as DNA and/or RNA mutators to perform their biological roles (1). While the functions 

of APOBEC2 and APOBEC4 are still unclear, AID, which is considered to be one of the 

ancestral members of this family, plays a central role in adaptive immunity by initiating the 

diversification of the peripheral antibody repertoire during the GC reaction (2, 3). APOBEC1, 

on the other hand, edits apolipoprotein B mRNA, which generates a premature stop codon and 

leads to the expression of a tissue-specific truncated apolipoprotein B polypeptide chain (4, 5). 

Finally, the APOBEC3 subgroup is important for the innate immune response to retroviruses 

and protects against the transposition of endogenous retroelements by deaminating their cDNA 

(6). 

AID catalyzes the deamination of deoxycytidine to deoxyuridine at defined regions of 

the immunoglobulin (Ig) genes, initiates somatic hypermutation (SHM) and class switch 

recombination (CSR) (7-9). SHM entails the introduction of point mutations within the IgV 

region and underpins affinity maturation of the antibody response (8, 9). In addition, AID 

targets the DNA regions immediately preceding the constant exons that encode for the different 

antibody isotypes. Processing of the deoxyuridine leads to the generation of a double-strand 

break intermediate and results in CSR, replacing the default IgM isotype for either IgG, IgE or 

IgA (7). AID deficiency compromises the antibody response leading to a hyper-IgM 

immunodeficiency syndrome and to a susceptibility to specific autoimmune manifestations (3, 

10-12). On the other hand, AID overexpression contributes to other types of antibody-mediated 

autoimmune diseases such as lupus (13). Finally, physiologically or aberrantly expressed AID 

predisposes to cancer (14, 15) due to some off-target activity which leads to mutations in tumor 

suppressor and/or (proto)-oncogenes (16-18) and chromosomal translocations (19-23). Beyond 

its role in antibody diversification, physiological expression of AID outside the GC B cells is 

well documented but the role and the regulation of AID in these contexts are virtually unknown 

(11, 12, 24-31).  
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Ensuring that AID is expressed appropriately and in the right context is critical to favor 

its physiological functions over its pathological effects. However, the growing number of 

instances in which AID is expressed outside of the GC B cells in physiological or pathological 

conditions highlights the importance of post-transcriptional and post-translational regulation. In 

this context, regulatory pathways controling AID at the mRNA and protein levels as well as 

restricting its access to the nucleus are extremely important (32, 33). AID stability is directly 

linked to its subcellular localization. AID is a nucleo-cytoplasmic shuttling protein with 

predominantly cytoplasmic steady-state localization (34-38). AID is much more stable in the 

cytoplasm than in the nucleus (39, 40), but the molecular explanation for this differential 

stability is only partially known. We have shown that AID interacts with and is stabilized by 

the HSP90 molecular chaperoning pathway in the cytoplasm (40, 41). Nuclear AID may be 

unstable in part of a lack of chaperoning but the finding that AID is targeted for degradation by 

REGγ suggests also some active destabilization (42). It remains unclear why AID requires the 

assistance of chaperones in comparison to the APOBEC proteins, which share conserved three-

dimensional structure and much sequence similarity but do not bind the same chaperones (40, 

41). 

This study aimed at identifying putative intrinsic sequence or structure that determines 

AID stability. Although the general steps implicated in protein turnover are well characterized, 

it is unclear what are the actual signals dictating protein stability. Several biochemical and 

biophysical properties of proteins have been described as determinants of protein turnover 

including molecular weight (43), isoelectric point (44, 45), hydrophobicity (46, 47) and the 

presence of certain motifs (48-51). The presence of unstructured regions has also been 

implicated in protein stability (52, 53). In several subsets of proteins, motifs also called degrons 

that predispose a protein to increased instability have been identified including the APC/C-

dependent D- and KEN boxes (49, 54-57), the TrCP recognition box (DSGXXS) (58-61), and 

the PEST motifs (50, 62). The simpler N-degron has also been extensively described in which 

the nature of a protein N-terminal amino acid determines its half-life (51, 63). Newly 

synthesized proteins contain an N-terminal methionine which is considered as a stabilizing 

residue according to the N-end rule, but proteins can be enzymatically modified at their N-

terminus to reveal a primary, secondary or tertiary destabilizing residue depending on the 
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number of steps required before its polyubiquitination starts (63). Proteins degraded by the 

ubiquitin-proteasome pathway not only require the presence of degrons, but also the availability 

of free residues for attachment of polyubiquitin chains for targeting to the proteasomal 

degradation (64, 65).  

Here, we report that AID is intrinsically less stable than its paralogs, the APOBECs. 

This is in good part determined by the N-end rule and an internal PEST-like motif. Disruption 

of these degrons modulates AID protein turnover and directly impacts antibody diversification, 

without affecting AID subcellular localization. Strikingly cytoplasmic AID protein turnover 

and polyubiquitination state is independent of its internal lysine residues. In conclusion, we 

report for the first time a direct contribution of AID intrinsic instability in the regulation of its 

biological activity and antibody diversification, independently of its subcellular localization.  
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4.4. Experimental procedures 
4.4.1. DNA constructs 
AID-GFP, GFP-AID, AID-A2 chimeras and APOBEC constructs have been described 

previously (66). The AID Kzero mutant in which every lysines were mutated to arginines and 

fused to GFP was a kind gift of Dr Reynaud (INSERM, Paris). AID-D2A was cloned in 

pGEM-T vector as a BamHI-EcoRI fragment by using oligonucleotides OJ251 (5'-

AAGGATCCCAAATGTTCAGCCTCTT GATGAA-3') and OJ166 (5'-CGAATTCCCAAGTC 

CCAAAGTACGAAATGC-3') and subcloned into pEGFP-N3 as a BglI-EcoRI fragment. AID-

D2A-GFP fragment was subsequently subcloned into pTRC vector as a Nhe-NotI fragment or 

in pMX vector as a NotI-EcoRI fragment. The same procedure was performed with AID-D2F 

using oligonucleotides OJ252 (5'-AAGGATCCCAAATGTTCAGCCTCTTG ATGAA-3') and 

OJ166. D67A/D69A double mutation was introduced into pAID-GFP by quickchange using 

oligo-nucleotides OJ343 (5'-GCTACATCTCGGCCTGGGCCCTAGACCCTGG-3') and OJ344 

(5'-CCAGGGTCTAGGGCCCAGGCCGAGATGTAGC-3'). AID-D67/69A-GFP was 

subcloned into pTRC vector or pMX vector as previously described. 

 

4.4.2. Drug treatments 
Stock aliquots of 2 mM GA were made in DMSO. Stocks of 5 mM MG132 (EMD) and 

25 µg/ml LMB (LC Laboratories) were made in ethanol. CHX (Sigma-Aldrich) was freshly 

prepared before each experiment (100 µg/ml) in EtOH. All drugs were stored at −20°C 

protected from light. 

 

4.4.3. Confocal microscopy 
HeLa cells were transiently transfected with AID and its mutants in pEGFP-N3 using 

TransIT-LT1 (Mirus). Cells were treated 48 h post transfection with 50 ng/ml Leptomycin B or 

EtOH solvent control for 2 h. Cells were processed for confocal microscopy as described (38). 

 

4.4.4. AID stability assays 
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The GFP signal of cell lines expressing AID-GFP variants was measured by flow 

cytometry at various time points after the indicated treatments as previously described (38, 40). 

Dead cells were excluded by propidium iodide staining. 

 

4.4.5. AID mutagenic activity 
AID catalytic activity was measured by a mutation assay as previously described (67) 

using the ung-deficient E. coli strain BW310 expressing AID-GFP and derived mutants. 

 

4.4.6. Retroviral infection 
The Ramos Burkitt’s B cell lymphoma lines stably expressing AID-GFP or GFP-tagged 

APOBEC proteins were generated as previously described (38, 66). Retroviral transduction of 

mouse AID-/- primary B cells has been described (38). DT40 IgM+ ψV− AID-/- chicken B and 

Ramos B cells were infected with retroviral particles obtained from the supernatant of 

HEK293T cell cultures cotransfected with pMX and vectors expressing MLV Gag-Pol and 

VSV-G envelope (2:1:1 ratio) as previously described (38). GFP+ cells were FACS-sorted.  

 

4.4.7. Monitoring of antibody diversification 

AID-mediated somatic hypermutation was estimated by fluctuation assay of the 

proportion of cells undergoing surface IgM+ to IgM- reversion in multiple subcloned 

populations of sIgM+ ψV− AID-/- DT40 cells complemented with various GFP-tagged AID 

constructs after 4 weeks of expansion at 41°C (68). IgM expression was measured by flow 

cytometry using 1:200 PE-conjugated anti–chicken IgM (Southern Biotech). Ex vivo isotype 

switching to IgG1 was assayed using resting splenic AID-/- B cells purified by CD43 depletion 

as described (38). Cells were stained with anti–IgG1-biotin (1:200; BD) followed by APC-

conjugated anti-biotin (Miltenyi Biotech) and 10 µg/ml propidium iodide. 

 

4.4.8. Western blot 
Cells were homogenized in lysis buffer as previously indicated (40). The lysate was 
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clarified for 10 min at 12,000 x g at 4°C and processed for western blot. Typically, 2 x 106 cell 

equivalents were analyzed by western blots. Tagged proteins were immunoprecipitated using 

MACS GFP Isolation kit (Miltenyi Biotech) according to the manufacturer’s instructions. 

Eluates and lysates were analyzed by western blot developed with SuperSignal West Pico 

Chemiluminescent substrate (Thermo Fisher Scientific). Antibodies used for western blot were 

anti–EGFP–HRP (1:3,000; Miltenyi Biotec), anti-AID (1:1,000 Cell Signaling Technology), 

anti-PCNA (1:5,000 PC-10; Abcam), and anti-monoubiquitinated and -polyubiquitinated 

conjugates antibody (1:1,000; Enzo Life Sciences, Inc.). 
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4.5. Results 

4.5.1. Unlike AID, the APOBEC enzymes are independent of HSP90 
We have previously shown that AID interacts with several members of the HSP90 

molecular chaperoning pathway including the HSP40 DnaJa1, HSC70 and HSP90 (40, 69). 

None of the APOBEC1, 2 or 3G was able to bind to any of these chaperones, which is puzzling 

given the phylogenetic and high sequence and structure similarities among AID/APOBEC 

members. This could be due to a more transient interaction or an indirect dependence on 

HSP90 of the APOBECs. The AID-HSP90 interaction is functionally important to stabilize and 

maintain the steady-state levels of cytoplasmic AID and can be monitored by stably expressing 

GFP-tagged proteins in a human B cell line and measuring the mean fluorescence intensity 

(MFI) of the GFP signal over time after inhibiting HSP90 with geldanamycin (GA) (40). We 

used stable transfectants of the Ramos B cell lymphoma line because at least AID and 

APOBEC3G are endogenously expressed in B cells (2, 70). We found that, unlike AID, 

APOBEC1 (A1), APOBEC2 (A2) and APOBEC3G (A3G) levels did not change over time 

after HSP90 inhibition (Figure 4.1A). AID nuclear accumulation upon treatment with the 

CRM1 nuclear export inhibitor leptomycin B (LMB) leads to its degradation in the nucleaus 

(Figure 4.1A and 4.1B) (39, 40). A3G is exclusively cytoplasmic but A2 is distributed 

throughout the cell; A1 shuttles in and out of the nucleus and accumulates in the nucleus of 

Ramos cells after LMB treatment (Figure 4.1B). However, neither A2 nor A1 are destabilized 

by LMB treatment, in fact A1 levels increased after CRM1 inhibition (Figure 4.1A). We then 

measured the stability of AID and its paralogs by treating cells with cycloheximide (CHX) to 

block protein synthesis and followed the decay of GFP-tagged proteins in Ramos B cells 

(Figure 4.1C). AID displayed the fastest decay with a half-life of 13.6 hours; A3G 

demonstrated a longer half-life with 24 hours. As expected, HSP90 inhibition led to a 

significant decrease in AID half-life but did not affect the APOBECs (Figure 4.1C). We 

conclude that none of the APOBECs directly or indirectly requires HSP90 activity. These 

results also suggest that AID requires constant chaperoning by HSP90, a chaperone that 

stabilizes nearly-folded proteins rather than participating in protein biogenesis, because it bears  
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Figure 4.1. The protein half-life of AID is shorter than the other APOBECs. (A) GFP-tagged 

AID, APOBEC1 (A1), APOBEC2 (A2) and APOBEC3G (3G) were stably expressed in Ramos 

B cells and GFP mean fluorescence intensity (MFI) was monitored by flow cytometry at 

different times after treatment with 2µM geldanamycin (GA), 50 ng/ml leptomycin B (LMB) or 

DMSO control (Ctrl) and normalized to t0 = 100%. One of two independent experiments is 

shown. Average MFI ± SD of duplicates is plotted over time (*, p<0.05, paired two-tailed t-

test). (B) Hela cells transfected with GFP-tagged AID, A1, A2 or A3G were treated with 

leptomycin B fixed and imaged by confocal microscopy. Representative confocal images are 

shown, scale bar 10 µM. The cellular localization of each protein was classified and the 

proportion of transfected cells showing each distribution is plotted as bars with the number of 
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cells quantified indicated (n). C, cytoplasm; N, nuclear.(C) Stable transfected Ramos cells were 

treated with 100 ng/ml cycloheximide (CHX; upper panel) alone or before HSP90 inhibition 

(lower panel) and GFP-tagged protein levels were followed as in (A). One of two independent 

experiments is shown. Average MFI ± SD of duplicates is plotted over time (*, p<0.05, paired 

two-tailed t-test). The half-life of each AID/APOBEC proteins was calculated by linear 

regression. Half-life in hours ± SD is indicated.  
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intrinsic instability features that destabilize AID both in the cytoplasm as well as in the nucleus. 

 

4.5.2. Survey of putative destabilizing sequences in AID 
We asked whether there were domains in AID that could cause instability. We used 

AID-APOBEC2 chimeras, in which 30-50 amino acid-long AID regions were replaced by the 

corresponding homologous APOBEC2 residues (Figure 4.2A), to screen for regions of AID 

that could be implicated in its intrinsic instability. A caveat of this strategy is that the structure 

of AID is not known and these AID-A2 chimeric proteins could simply be unstable because 

they are not folded properly. Indeed, chimeras #3 and #4, in which amino acids 88-116 and 

118-150 of AID were respectively replaced, displayed shorter half-lives than wild-type AID 

(Figure 4.2B-C). However, chimeras #1 and #2, replacing AID N-terminal residues (19-57 or 

59-84 amino acids, respectively), showed significantly longer half-lives than AID (Figure 4.2B-

C). These could be explained by a defect in AID subcellular trafficking since we have shown 

previously that chimera #1 fails to enter the nucleus and chimera #2 has a reduced kinetic of 

nuclear import compared to AID (38). However, N-terminal GFP tagging of AID also entirely 

blocks its nuclear import (38) and still had a shorter half-life than chimera #1 (Figure 4.2B-C). 

These results suggested that the AID regions replaced in chimeras #1 and #2 contained motifs 

destabilizing AID. 

As a first approach to define AID destabilizing residues, we performed a sequence 

analysis for known destabilizing structures and motifs (degrons). Several HSP90 client proteins 

are intrinsically unstructured proteins (IUP) (71-76). Furthermore, several studies have 

highlighted the importance of unstructured regions for protein degradation by the ubiquitin-

dependent and independent proteasome (52, 64, 77, 78). We compared AID and APOBEC 

proteins for the presence of disordered regions using two different prediction algorithms  

(DisEMBLTM (79) and PONDR® (80)) which report unstructured residues based on the protein 

sequence. In both analyses, AID presented the largest proportion of disordered regions (31% 

and 18% of AID, respectively) (Table 4.1). Interestingly, several of these regions are predicted 

as hot loops (defined as loops with a high degree of mobility) and indeed coincide with 

predicted loops in the three-dimensional model of AID (Figure 4.2D). Analysis of AID protein  
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Table 4.1. Predicted intrinsic protein disorder and unstructured regions within human AID/ 
APOBEC proteins. 

 

HUGO 
name 

Description 

               Hot loops 
    Predicted by DisEMBLTM 

         Disordered regions 
        predicted by PONDR® 

Position (aminoacid) 
Unstructured 

coverage 

(%) 

Position 

(aminoacid) 
Unstructured 

coverage (%) 

AICDA activation-induced 

cytidine deaminase 
14-29 
38-51 

120-130 
179-198 

 

31 1-6 
13-19 
25-33 

125-128 
188-195 

 

18 

APOBEC1 apolipoprotein B mRNA 

editing enzyme, catalytic 

polypeptide 1 

1-32 
51-62 

 

19 1-14 
48-55 

 

10 

 
APOBEC2 

 

apolipoprotein B mRNA 

editing enzyme, catalytic 

polypeptide-like 2 

 

10-24 
197-207 

 

 

12 

 

10-24 

 

7 

 
APOBEC3G 

 

apolipoprotein B mRNA 

editing enzyme, catalytic 

polypeptide-like    3G 

 

1-31 
40-52 

204-214 

 

 

14 

 

1-3 
48-52 

138-147 
326-330 
373-381 

 

8 
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Figure 4.2.  N-terminal region of AID modulates its stability. (A) Schematic representation of 

AID-APOBEC2 chimeric proteins (AID-A2ch1-4) in which either one of the regions from A2 

indicated between dotted lines was substituted for the homologous AID region. (B) GFP-tagged 

AID and AID-A2 chimeras were stably expressed in Ramos B cells and GFP MFI was 

monitored as previously indicated after CHX treatment and normalized to t0 = 100%. One of 

two independent experiments is shown. Average MFI ± SD of duplicates is plotted over time (*, 

p<0.05, paired two-tailed t-test). (C) Half-life in hours ± SD of each AID and AID-A2 proteins 

calculated from linear regression projection of the data obtained in (B) is indicated. (D) 

DisEMBLTM prediction of AID hot loops are indicated in red in AID three-dimensional model 

(38). (E) Multispecies alignment of AID N-terminal region containing a conserved aspartic 

acid at position two (in red) and two conserved PEST-like motifs (highlighted in blue for the 

PEST-I (score: -10.81) and in green for the PEST-II (score: -15.23)).  
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sequence for the presence of degrons failed to identify any significant TrCP recognition box 

(81), KEN box or D-box motif usually present in cell-cycle regulated proteins (49). Unfolded 

regions have been shown to be enriched in PEST motifs, which are stretches of amino acids 

enriched in proline (P), glutamic (E) or aspartic acid (D), serine (S), and threonine (T) and are 

implicated in protein turnover of many unstable proteins (50, 62). PEST motifs are usually 

located in solvent-exposed loops or extensions that are preferentially targeted for proteolytic 

cleavage by the proteasome (82, 83). Analysis of human AID protein sequence using the 

pestfind algorithm identified two putative PEST sequences with poor scores (Figure 4.2E), 

located between amino acids 63-74 (PEST-I) and amino acids 77-92 (PEST-II). These domains 

are highly conserved in AID orthologs (Figure 4.2E), PEST-I was only absent in Xenopus AID.  

Several others destabilizing motifs have been described previously. N-terminal 

unstructured proteins are also associated with N-degrons that regulate protein stability by the 

proteasome through the N-end rule pathway (63). Some of these proteins have their N-terminal 

methionine enzymatically removed. The nature of the second N-terminal residue influences the 

stability of these proteins by making it more or less susceptible to the N-end rule pathway. 

Amino acids are divided between primary, secondary or tertiary destabilizing for this pathway. 

Interestingly, AID displays a secondary destabilizing aspartic acid residue at position two, 

which is conserved throughout evolution (Figure 4.2E). This raised the possibility that AID 

could be subjected to the N-end rule. Although none of these predictions is conclusive, they all 

prompted to the N-terminal region of AID for possible intrinsic determinants of its stability. 

 

4.5.3. Altering AID cytoplasmic stability impacts its physiological 

activity 
There is no evidence that AID N-terminus is modified but the influence of the N-

terminal residue in half-life can be tested by mutating it to a more stabilizing or destabilizing 

residue. We replaced AID D2 residue with either a more destabilizing residue, we chose 

phenylalanine (D2F), or a more stabilizing one, alanine (D2A), and analyzed their impact on 

AID stability. We first confirmed that D2A or D2F mutation did not affect AID subcellular 
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localization and shuttling, which are important for AID stability (Figure 4.3A). We also 

measured the catalytic activity of these mutants using the E.coli-based rifampicin-resistance 

assay (67). D2A catalytic activity was reduced by ~25% compared to AID and D2F was 

equally active than wild-type (Figure 4.3B). Conserved enzymatic activity and nucleo-

cytoplasmic shuttling are good indications that these single point mutants of AID do not have 

any major structural alteration. We then analyzed their half-lives in Ramos B cell. In steady-

state, D2A showed a mild but significantly longer half-life than AID while D2F was less stable 

than wild-type AID (Figure 4.3C). Interestingly, modification of the AID N-terminal residue 

impacts its stability in the cytoplasm, but not in the nucleus since both mutants show equal 

decay kinetics after LMB treatment (Figure 4.3C lower left and upper right panels). Analysis of 

AID variants expression in 293 cells by western blot correlates with stability data obtained in 

Ramos B cells : D2A showed higher steady-state levels whereas D2F was less expressed 

compared to AID (Figure 4.3D). Unlike the AID-A2 chimeras, these mutants provided useful 

enzymes to analyse the impact of AID cytoplasmic stability on its biological function. 

Therefore, we performed CSR assays on Aicda-/- mouse B cells complemented by retroviral 

delivery with GFP-tagged AID variants. D2A and D2F showed significantly reduced isotype 

switching to IgG1 (Figure 4.3E). We also assayed AID-mediated SHM in an Aicda-/- chicken 

DT40 cell line that diversifies the IgVλ by SHM (68) and can be monitored by the appearance 

of sIgM-loss cells from originally sIgM+ populations. There was also a reduction for both D2A 

and D2F mutants, although, in this case, D2A reduction was non-significantly different from 

wild-type AID (Figure 4.3F). The compromised CSR and SHM of the D2A mutant could be 

simply explained by its reduced catalytic activity. However, D2F mutant shows that the 

introduction of a primary destabilizing residue in AID N-terminus had no impact on its 

catalytic activity, therefore the decrease in CSR and SHM must be due to the change in 

stability. We conclude that AID stability in the cytoplasm is important for antibody 

diversification. 

 

4.5.4. A PEST-like motif influences AID stability and function 
Although our data suggest that the N-degron contributes to AID instability, it cannot 
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Figure 4.3. Altering AID N-terminal aspartic acid residue impacts both its stability and 

function. (A) Hela cells transfected with GFP-tagged AID mutated at position 2 either for a 

more stabilizing residue alanine (D2A), or a primary destabilizing residue phenylalanine 

(D2F) with regard to the N-end rule were treated with LMB and processed as previously 

indicated (Figure 1B). Representative confocal images are shown; scale bar 10 µM. n, number 

of cells counted indicated; C, cytoplasm; N, nuclear. (B) The catalytic activity of GFP-tagged 

AID and the indicated mutants was monitored by E. coli mutation assay. The number of 

rifampicilline-resistant colonies/109 viables colonies obtained for AID-GFP construct was set 

as 100%. Ctrl, pTRC empty vector. (C) GFP-tagged AID and its mutants D2A and D2F were 

stably expressed in Ramos B cells and analyzed as previously described. One of two 
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independent experiments is shown. Average MFI ± SD of duplicates is plotted over time (*, 

p<0.05, paired two-tailed t-test). Half-life in hours ± SD is indicated. (D) 293 retroviral 

producing cells transfected with the indicated AID-GFP contruct or GFP control in pMX were 

harvested, lyzed and the expression level of the indicated proteins was analyzed by WB using 

anti-AID antibody. GFP-tagged AID contructs migrate at an approximate size of 45 kDa. 

PCNA was used as a loading control. Expected AID-GFP band was identified by a circle. (E) B 

cells from AID-deficient mice were infected with retroviruses encoding GFP-tagged AID, the 

indicated AID-GFP variants or GFP control in pMX. The proportion of infected (GFP positive) 

cells that have switched to IgG1 was measured by flow cytometry in non-saturating conditions 

of stimulation (5 ng/mL IL-4 and 25 µg/mL LPS) and summarized in the bar graphs. Means ± 

SD values from seven independent mice for each construct are plotted relative to AID-GFP 

value set as 100%. (F) SHM was monitored in analogous experiments to (E) except that a 

sIgM+ ψV− AID-/- DT40 chicken cell line, which uses SHM to diversify the Ig genes, was used. 

IgM-loss cells arise as a consequence of SHM with a certain frequency, and so the proportion 

of sIgM-loss cells arising over time provides an estimate of SHM rate. DT40 cells infected with 

the indicated retroviral GFP-tagged AID contruct were sorted for GFP+ cells. The proportion 

of infected (GFP positive) cells that have lost IgM was measured for several subclones by flow 

cytometry and summarized in the graphs. Median values from twelve subclones for each 

construct are indicated. In all panels, p values from paired, two-tailed t-test are indicated only 

for significant differences (p<0.05). 

 

 



169 

 

 

 

 
 

Figure 4.4. Disruption of a PEST-like motif in AID results in increased stability and 

antibody diversification. (A) Detailed location in a putative AID monomer (left panel) and 
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dimer (right panel) of PEST domains present in its N-terminus. For clarity, the same colors as 

in figure 2E were used to deliminate PEST domains. The right panel shows a predicted solvent-

accessible surface of the putative PEST. (B) GFP-tagged AID and its mutant were stably 

expressed in Ramos B cells and analyzed as previously described. One of two independent 

experiments is shown. Average MFI ± SD of duplicates is plotted over time (*, p<0.05, paired 

two-tailed t-test). (C) Half-life in hours ± SD of AID and D67/69A mutant calculated from 

linear regression projection of the data obtained in (B) is indicated. (D) Hela cells transfected 

with GFP-tagged AID or its mutant D67/69A which affects the putative PEST-I domain were 

treated with LMB and processed as before as in Figure 1B. Representative confocal images are 

shown; scale bar 10 µM. n, number of cells counted indicated; C, cytoplasm; N, nuclear. (E) 

The catalytic activity of GFP-tagged AID and the indicated mutant was monitored as 

previously indicated. AID-GFP catalytic activity was set as 100%. Ctrl, pTRC empty vector. 

(F) CSR was measured as previously indicated. Means ± SD values from six independent mice 

for each construct are plotted relative to AID-GFP value set as 100%. (G) SHM was monitored 

as previously indicated. Median values from twelve subclones for each construct are 

indicated.In panels (F) and (H), p values from paired, one-tailed Student’s t-test are indicated 

only for statistically significant differences (p<0.05) 
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explain the difference in protein turnover between AID and chimeras #1 and #2, which do not 

affect AID N-terminal end. We asked whether the PEST-like motifs present in AID contribute 

to its intrinsic instability. The PEST-I domain overlapped a solvent-exposed loop in our AID 

model (Figure 4.4A), while the PEST-II domain would be less accessible for proteolytic 

cleavage in the folded protein. Despite their low score in pestfinder, two PEST-I motifs would 

be in close proximity to each other in a putative AID dimer, which might result in a stronger 

motif. Thus, we focused on the PEST-I and mutated D67 and D69 to alanines to destroy the 

PEST-I. 

D67/69A GFP-tagged mutant showed significantly increased half-life when compared 

to AID (Figure 4.4B-C). In addition, D67/69A was less responsive to GA suggesting that this 

mutant is more stable in the cytoplasm where AID stability highly depends on HSP90. 

Interestingly D67/69A mutation also increased AID half-life in the nucleus (Figure 4.4B right 

panel and 4.4C). Importantly, these differences in protein turnover could not be explained by 

any defect in subcellular localization that was equivalent for AID and D67/69A mutant in 

steady-state and after LMB treatment (Figure 4.4D). Our results suggest that the PEST-I is an 

intrinsic destabilizing motif for AID in the cytoplasm and in the nucleus. Using the E.coli 

mutation assay, the D67/69A mutant showed 60% catalytic activity compared to wild-type AID 

(Figure 4.4E). Despite this, disruption of the PEST-I led to a significant increase in CSR and 

SHM (Figure 4.4F-G). We conclude that a PEST-like motif influences AID stability in both the 

cytoplasm and in the nucleus as well as its function in antibody diversification. 

 

4.5.5. AID internal lysine residues are not required for its 

cytoplasmic polyubiquitination and degradation by the proteasome 
We have shown that cytoplasmic AID gets polyubiquinated and degraded by the 

proteasome after HSP90 inhibition (40). Others have described that nuclear AID is both 

polyubiquitinated but also targeted by an ubiquitin-independent pathway involving REGγ to the 

proteasome (39, 42). To verify whether internal AID lysine residues were required for its 

polyubiquitination and cytoplasmic degradation by the proteasome, we used a construct 
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previously described (39) in which all AID lysines were mutated to arginines (Kzero; Figure 

4.5A). AID-Kzero showed delayed degradation in the nucleus compared to AID (39), which we 

confirmed in our system using stably transfected Ramos cells treated with LMB (Figure 4.5B).  

Inversely, HSP90 inhibitor GA treatment led to a faster decay of the lysineless mutant than 

wild-type AID in our assay (Figure 4.5B). Furthermore, addition of proteasomal inhibitor 

MG132 blocked Kzero decay, confirming the requirement of the proteasome for AID Kzero 

degradation after HSP90 inhibition (Figure 4.5B). CHX treatment showed that internal lysines 

residues are structurally important for AID, since Kzero displayed a significant shorter half-life 

compared to wild-type AID (Figure 4.5C). However, only a small portion of AID or AID Kzero 

are polyubiquitinated in steady-state as observed by inhibiting the proteasome with MG132 

(Figure 4.5D). Strikingly, proteasome inhibitor combined with the HSP90 inhibitor GA led to a 

significant increase in the proportion of both AID and AID Kzero polyubiquitinated forms 

(Figure 4.5D). We therefore investigated the presence of alternative sites for AID 

polyubiquitination. Free α-NH2 terminus can serve as the conjugation site for ubiquitin by a 

poorly understood mechanism and addition of N-terminal tags has been shown to stabilize 

proteins which are N-terminally ubiquitinated including the AID paralog APOBEC3G (84-87). 

To verify whether AID α-NH2 terminus is implicated in its protein turnover in the cytoplasm, 

we added an HA tag to AID Kzero N-terminus. As shown previously, N-terminal tagging of 

AID prevents its nuclear import which explains why HA-Kzero-GFP levels were not affected 

by LMB treatment (Figure 4.5E) (38). However, HA-Kzero-GFP was still responsive to GA 

(Figure 4.5E). We therefore conclude that cytoplasmic AID degradation could occur through 

the polyubiquitination of non-lysine residues. 

 
 
 
 
 
 



173 

 

 

 

               



174 

 

 

Figure 4.5. AID lysine residues are dispensable for its polyubiquitination and degradation 

after HSP90 inhibition. (A) Schematic representation of AID and the positions of its eight 

lysine residues. All lysines were mutated to arginines in the GFP-tagged Kzero construct. Data 

from (39). (B) GFP-tagged AID and its lysineless mutant (Kzero) were stably expressed in 

Ramos cells and GFP MFI was monitored after treatment with 50 ng/ml leptomycin B (LMB), 

2µM geldanamycin (GA), 10 µM MG132 or DMSO control (Ctrl) and normalized to t0 = 

100%. One of two independent experiments is shown. Average MFI ± SD of duplicates is 

plotted over time (*, p<0.05, paired two-tailed t-test). (C) Stable transfected Ramos cells were 

treated with 100 ng/ml cycloheximide (CHX; upper panel) alone or before HSP90 inhibition 

(lower panel) and GFP-tagged protein levels were followed as in (B). One of two independent 

experiments is shown. Average MFI ± SD of duplicates is plotted over time (*, p<0.05, paired 

two-tailed t-test). (D) GFP-tagged AID and its lysineless mutant Kzero were immunoprecipated 

using anti-GFP from extracts of stably expressing Ramos cells treated with 2µM Geldanamycin 

(GA) and/or 10 µM MG132 as indicated and analyzed by western blot to detect ubiquitinated 

forms of AID. Anti-GFP western blot confirmed similar immunoprecipitation levels of the bait. 

(E) A N-terminal HA tag was added to AID lysineless mutant (HA-Kzero), stably expressed in 

Ramos cells and analyzed as in (B).  (*, p<0.05, paired two-tailed t-test). 
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4.6. Discussion 
There is ample evidence correlating AID localization and its stability (38-40, 88). 

Because of this interdependence, it has been difficult to test the contribution of each one to 

regulate AID and antibody diversification. We identify here mutations that stabilize AID by 

increasing its half-life without impacting its subcellular localization. These mutations serve to 

define instrinsic destabilizing regions or motifs in AID. But more importantly, they allow to 

experimentally proving that the stability of AID in the cytoplasm and in the nucleus is limiting 

for antibody diversification. 

 

4.6.1. Instrinsic unstructured regions in AID  
Our results show that, while AID and the APOBECs show apparently similar stability, 

AID depends on the HSP90 molecular chaperoning pathway whereas the APOBECs do not. 

We hypothesize that one of the reasons for this difference could be their different content of 

unstructured regions. This is speculative in the absence of an AID three-dimensional structure 

but many HSP90 clients are considered to be instrinsically unstructured proteins such as the 

neuronal -synuclein (73, 74), the microtubule stabilizing tau protein (71, 72), the cyclin-

dependent kinase inhibitor p21(WAF1/CIP1) (75, 89) and the steroid hormone receptors (90-93). 

Unstructured regions confer useful properties to these proteins such as rapid and specific 

interaction potential without excessive binding strength at the cost of some instability, 

versatility in the nature of its partners and susceptibility to post-translational regulation (94). 

Indeed, AID interacts with multiple partners including DNA replication factor A (RPA) (95), 

chromatin-associated and transcription factors (KAP1/HP1, RNA pol II, SPT5/SPT6, RNA 

exosome) (96-100), RNA processing proteins (CTNNLB1, GANP, PTBP2) (101-103) and 

subcellular localization mediators (importin-α, CRM1, eEF1α) (38, 88). AID is also post-

translationally modified by PKA/PKC and PP2A (104-106). Association to these factors is 

either through the N-terminal or the C-terminal region of AID when it has been mapped, which 

are the regions predicted to be unstructured (Figure 4.2D and Table 4.1). A recent study 

suggests that intrinsically unstructured proteins require the chaperones for assistance in the 
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association to other proteins, rather than for folding (107). The fact that AID is present in 

different pools in the cytoplasm and the nucleus as revealed recently (88, 96), indicates that 

HSP90 stabilization could be a transitory state before moving on to another complex (i.e 

cytoplasmic retention or nuclear import complex), preventing AID from aggregating and/or 

being targeted to the ubiquitin-proteasome system due to exposed degradation motifs.    

 

4.6.2. Nature of these intrinsic determinants and their impact on 

AID stability  
In an attempt to identify the domains implicated in AID intrinsic instability, we show 

that changing the amino acid in position two of AID affects its protein stability as it would be 

predicted by the N-end rule. Although there is no direct evidence that the N-terminal 

methionine of AID is processed to reveal the destabilizing aspartic acid, this is quite a common 

N-terminal modification that can affect between 55 and 70% of the proteins depending on the 

organism and the subcellular compartment (108). Of note, others have reported a methionine 

aminopeptidase (methionine aminopeptidase 1, MetAP1) copurifying with AID (101). We 

show that replacing AID aspartic acid at position two for a more stabilizing residue (alanine) 

delays its turnover and results in higher steady-state levels. This mutation also reduces its 

catalytic activity by 25% and proportionally its ability to perform antibody diversification. 

Other stabilizing residues have been described including proline, serine, threonine, glycine and 

valine. Mutating aspartic acid to a serine may be an alternative to conserve the charged 

environment at the N-terminus of AID and should be tested to confirm the implication of the N-

end rule pathway in AID turnover. The introduction of a more destabilizing amino acid at the 

second position of AID leads to increased destabilization and reduced antibody diversification 

confirming the importance of this position for AID stability. Furthermore, it suggests a direct 

contribution of AID stability for its biological function.   

Our results show that disrupting a PEST-like motif in AID N-terminal region stabilizes 

AID both in the cytoplasm and in the nucleus. These regions enriched in proline, 

aspartic/glutamic acid, serine and threonine, are generally flanked by positive residues and have 

been predicted to be solvent-exposed regions more susceptible to proteolysis (62). In fact, 
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PEST motifs are abundant in intrinsically unstructured proteins (82, 83). Whether the PEST-I is 

an actual PEST domain or not is secondary. The identification of an additional destabilizing 

motif suggests that AID intrinsic instability results from the combination of at least two 

degradation motifs. Indeed, there is no direct correlation between the presence of any specific 

degradation signal and the in vivo half-lives of proteins (53). It is rather the combination of 

multiple factors including protein disorder and degrons that would influence the rate of a 

protein turnover (53). Our data show that a PEST-like motif by destabilizing AID influences its 

function in antibody diversification. Controlling AID protein turnover through the presence of 

destabilizing motifs could be an additional post-translation regulation to limit its biological 

function.   

 

4.6.3. AID degradation in the cytoplasm 
The turnover of most of the proteins is mediated by the ubiquitin-proteasome pathway. 

In agreement with this, we showed previously that cytoplasmic AID gets polyubiquitinated and 

degraded by the proteasome after HSP90 inhibition (40). Surprisingly, we report here that AID 

polyubiquitination is independent of its lysine residues, which are usually the typical acceptor 

of ubiquitin moieties. Lysineless ubiquitination has been reported for a small group of proteins 

including p21 (WAF1/CIP1)(86, 109), p14/19ARF (84), ERK3 (86), Id1 and Id2 (110, 111), MyoD 

(87) as well as APOBEC3G (112, 113). Instead, these proteins are polyubiquitinated at their α-

NH2 group. Addition of an N-terminal tag prevented their stabilization by an unclear 

mechanism. The high sequence and structure similarities among AID/APOBEC members 

would predict that they use similar pathway of degradation. However, attachment of an HA tag 

at AID N-terminus has no impact on its stability after HSP90 inhibition, suggesting an 

alternative way for targeting AID to the proteasome. Several viral proteins including the HIV-1 

Vpu protein and the KSHV K3 and K5 proteins utilize non-canonical ubiquitin acceptors 

(serine and threonine) to target cellular proteins for proteasomal degradation (114-118). AID 

could therefore be polyubiquitinated on serine and threonine residues. However, we cannot 

exclude that the absence of available lysines in the Kzero mutant forces the ubiquitin-
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proteasome pathway to use noncanonical residues for AID degradation. It is also possible that 

AID degradation is mediated by an ubiquitin-independent proteasomal pathway. Indeed, 

nuclear AID is actively destabilized by the ubiquitin-independent REGγ-proteasome pathway 

(42).  

In conclusion, our data suggest a direct contribution of destabilizing motifs in AID 

protein turnover and antibody diversification. They are consistent with a model in which AID 

presents unstructured regions requiring the assistance of the HSP90 molecular chaperoning 

pathway to prevent its aggregation. Therefore, limiting AID protein levels through the presence 

of destabilizing motifs is an additional way to regulate antibody diversification. 
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This thesis described the identification of new cytoplasmic partners and determinants of 

AID that modulate/affect its stability and contribute in regulating antibody diversification. We 

have found that cytoplasmic AID is stabilized by the HSP90 molecular chaperoning pathway, 

which we have described in much detail (Chapters 2 and 3). This regulatory pathway is 

important to set up the necessary AID levels for efficient antibody diversification, while 

limiting AID oncogenic potential. We were also able to initiate a study which points toward 

intrinsic destabilizing determinants in AID protein sequence that could explain the need for 

chaperoning, and toward a direct contribution of AID stability to antibody diversification 

(Chapter 4).    

 

5.1. AID association with the HSP90 molecular chaperoning 

pathway 
During the course of this thesis, Aoufouchi et al. described that AID is much more 

stable in the cytoplasm than in the nucleus [522], but the molecular explanation for this 

differential stability was unknown. We identified and functionally characterized AID as a novel 

HSP90 client [523] and we showed that AID interacts with several factors that are part of the 

HSP90 molecular chaperoning pathway, in particular the HSP40 DnaJa1, HSC70 and HSP90 

[523, 524]. AID requirement for these chaperones is evolutionary conserved, as HSP90 

inhibition or modulation of DnaJa1 levels affected both endogenous AID levels and AID-

mediated antibody diversification in chicken, mouse and human B cells [523, 524]. 

Intriguingly, none of AID paralog APOBECs, which share high sequence and structure 

similarities, were able to bind to any of these chaperones [523, 524]. APOBEC1 was reported 

to associate with a type II HSP40/DnaJ protein, DnaJb11, and downregulation of DnaJb11 

inhibited APOBEC1-mediated ApoB mRNA editing [525]. This observation was surprising at 

first since DnaJb11 is an endoplasmic reticulum (ER)-resident protein [526] while APOBEC1 

is a nucleo-cytoplasmic shuttling protein [157, 314, 527]. In fact, a truncated form of DnaJb11 

lacking its ER localization signal was used and therefore it is likely that the observated 

interaction is not physiologically relevant. However, convincing evidence showed that 

zebrafish APOBEC2 interacts with the chaperone UNC45B but not with HSP90-α [149]. 
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Disruption of unc45b in zebrafish showed the same dystrophic phenotype as downregulation of 

APOBEC2 [149]. UNC45B interacts with HSP90 [528], but our data showed that, unlike AID, 

APOBEC proteins do not depend on the HSP90 pathway for their stabilization (Chapter 4). It 

remains unclear whether any other chaperones are involved in the stabilization of APOBEC 

proteins. 

Since HSP90 stabilizes nearly-folded proteins rather than participating in protein 

biogenesis, the AID-HSP90 association could be due to the presence of intrinsically 

unstructured domains that make AID partially unfolded unless stabilized by an interacting 

partner. Indeed, early reports suggested that recombinant AID purification is quite challenging 

and only yields a low amount of active/soluble protein (~5%), with the rest being found in 

complexes that are inactive [187, 190]. In the absence of an AID crystal structure, we can only 

speculate about the position and the extent of these partially unfolded regions. The presence of 

unstructured domains in AID would fit with the fact that several intrinsically unstructured 

proteins such as α-synuclein [529, 530], tau [531, 532], p21(WAF1/CIP1) [533, 534], and the steroid 

hormone receptors [535-538], also require HSP90 assistance for their stabilization. But the 

absence of any canonical sequence or structural motif that dictate HSP90 association to its 

clients makes it difficult to identify domain(s) controlling AID-HSP90 interaction [375]. We 

mapped this interaction to AID N-terminal region spanning residues 19 to 84 [523]. This region 

contains 2-3 putative unstructured domains as predicted by two different algorithms, 

DisEMBLTM and PONDR® (Chapter 4). Together, these domains could confer to AID a 

partially unfolded face and require its binding to HSP90. Indeed, several lines of evidence 

suggest that recognition of HSP90 clients is related to their conformation and stability [375]. 

This is exemplified by the cellular and viral forms of the SRC tyrosine kinase (c- and v-SRC), 

which share high sequence similarities (~95%) but depend differently on HSP90. V-SRC is 

intrinsically unstable and associates strongly to HSP90, while c-SRC is more resistant to 

denaturating conditions in vitro and only transiently associates with this molecular chaperone 

[376-378]. Similarly, the differential dependence of AID/APOBEC on the HSP90 pathway may 

be related to their different contents in unstructured regions. Although this is a hypothesis, it is 

suggestive that replacing these regions with the homologuous APOBEC2 regions or mutating 



192 

 

 

them to disrupt the PEST-like motif result in less responsiveness to HSP90 inhibitors (Chapter 

4 and data not shown). Altogether, we showed that AID requires the assistance of the HSP90 

molecular chaperoning pathway. We suspect this process to be determined by AID intrinsic 

instability conferred by unstructured regions containing destabilizing motifs such as a PEST-

like motif. 

 

5.2. The role of the HSP90 pathway in AID stability and its 

interdependence with subcellular localization 
Our studies provide mechanistic insight into the link between AID subcellular 

localization and stability. Indeed, the HSP90 molecular chaperoning pathway stabilizes 

cytoplasmic AID and determines the overall AID steady-state levels [523], thus at least 

partially explaining why cytoplasmic AID is much more stable than its nuclear counterpart. 

HSP90 protects cytoplasmic AID from degradation since HSP90 inhibition resulted in the 

polyubiquitination and the proteasomal degradation of AID in the cytoplasm (Figure 5.1). This 

recapitulates the major function of HSP90 as a modulator of the stability and the functional 

maturation of its clients [375, 409, 539], such as the steroid hormone receptors [540, 541]. 

 In general, HSP90 client stabilization is initiated by the interaction with the HSP40 and 

HSP70 system [524, 540, 541] (Figure 5.1), but only a subset of HSP40-HSP70 substrates is 

delivered to HSP90 for stabilization [541, 542]. Different HSP40 proteins can have a redundant 

role in this initial substrate recognition and association with HSP70. Indeed, several HSP40s 

(f.i. DnaJa1 and –b1 for the progesterone receptor [416] , DnaJa1 and -a2 for the potassium 

channel protein HERG [420]) can bind to the same substrate in vitro [416, 421, 423, 543, 544], 

as we found to be the case for AID [524]. Nonetheless, AID specifically depends on DnaJa1 for 

its stabilization since its deficiency results in reduced endogenous AID levels and decreased 

AID half-life, accompanied by reduced biological activity [524]. The requirement of DnaJa1 

farnesylation for binding and biological activity of AID supports a non-redundant role for this 

co-chaperone in linking AID to the HSP90 pathway. This is based on a previous report showing 

that the farnesylation of DnaJa1 ortholog YDJ1 is required for its interaction with HSP90 

clients in vitro [400] and in vivo in yeast [401]. To our knowledge, AID is the first endogenous 
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HSP90 client in higher eukaryotes for which a specific HSP40 has been identified to be 

involved in its stabilization in vivo. The only other known example for an endogenous protein 

is the mitogen-activated kinase kinase kinase (MAPKKK) STE11 in yeast [400], but in this 

case the diversity of HSP40/DnaJ proteins is limited as yeast only expresses one type I- and one 

type II- cytosolic DnaJ proteins [545, 546]. 

It remains unclear whether additional HSP40 proteins are implicated in AID 

stabilization, since DNAJA1-/- mice can make up to 50% of normal AID protein levels. The 

first candidate for this DnaJa1-independent pathway would be DnaJa2, given its high similarity 

with DnaJa1 (~95%), but our data exclude this possibility [524]. In yeast, the type II HSP40 

SIS1 protein can partially substitute for the DnaJa1 ortholog YDJ1 [394, 544], which suggests 

that DnaJb1 could potentially contribute to AID stabilization in the absence of DnaJa1. 

Partially folded AID could also skip the stabilization by HSP90 altogether and become stable in 

complex with others factors such as eEF1α [325] or importins [315] (Figure 5.2). The nature of 

this DnaJa1-independent pathway for AID stabilization remains unclear and requires further 

investigations but it is clearly much less efficient than the DnaJa1-dependent pathway. 

 In any case, the cytoplasmic stabilization by the DnaJa1–HSP90 pathway is critical for 

producing the physiological maximal levels of AID. Overexpression experiments suggest that 

DnaJa1 is the limiting factor in AID stabilization [524], in line with previous studies showing 

that HSP40 co-chaperones, especially DnaJa1, are limiting components in the HSP90 molecular 

chaperoning pathway in E. coli, yeast, but also in mammalian systems [390, 412-415]. DnaJa1 

overexpression increases both AID protein levels and AID biological activity in B cell lines 

[524]. Interestingly, mice in which higher levels of AID were achieved by either 

overexpression AID through a transgene [199-202] or removing the negative post-

transcriptional regulation of AID by miR-155 [203, 204] all showed increased CSR and SHM 

in vitro but did not display increased levels of switched serum Ig. In particular, loss of AID  
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Figure 5.1. AID stabilization by the DnaJa1-HSP90 pathway and drugs that can inhibit it. 

Detailed schematic representation with each step participating in the stabilization of AID. AID 

is synthesized in the cytoplasm where unfolded AID is met by the HSP40-HSC70 system; the 

specific action of DnaJa1 allows transferring AID into the HSP90 molecular chaperoning 

stabilization cycle. AID stabilization can also occur through a DnaJa1-independent pathway, 

as DNAJA1-/- B cells still display up to 50% of normal AID levels. HSP90 inhibitors, such as 

geldanamycin (GA) and its derivative 17-AAG, prevent the ATP hydrolysis cycle of the 

chaperone. FTI, farnesyltransferase inhibitors, prevent farnesylation of DnaJa1, which is 

required for binding to and stabilization of AID. Both inhibitors lead to polyubiquitination and 

proteasomal degradation of cytoplasmic AID.  
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regulation by mi-R155 resulted in impaired affinity maturation in vivo [203]. It may be that the 

upper limit for AID physiological levels could be influenced by the increased apoptosis that 

elevated AID can bring about [547]. Thus, it is unlikely that DnaJa1 overexpression, which is 

predicted to increase steady-state AID levels in B cells, results in a more efficient antibody 

diversification. It may rather affect AID oncogenic potential as increased levels of AID in B cells 

have been reported to increase IgH-cMyc translocations [201, 204] and mutations in some non-Ig 

targets [201, 203, 257]. 

Our data also suggests that there is very little turnover of cytoplasmic AID, with 

stabilization being the default pathway. Indeed, inhibiting the proteasome does not produce 

much polyubiquitinated AID in B cells while simultaneous inhibition of HSP90 and the 

proteasome results in massive accumulation of polyubiquitinated AID [523]. Furthermore, 

downregulation of the HSP90-associated E3 ubiquitin ligase CHIP does not impact the overall 

steady-state AID levels in a mouse B cell line (data not shown), suggesting that only a very 

small proportion of cytoplasmic AID is targeted for degradation under normal steady-state 

conditions. Conversely, nuclear AID is much less stable and seems to be constantly targeted to 

the proteasome by Ub-dependent and –independent pathways [331, 333]. It remains unclear 

whether AID nuclear degradation results from the loss of stabilizing interactions and/or an 

active program of destabilization. HSP90 is mostly found in the cytoplasm, where it constitutes 

1-2% of the total protein levels [375]. Nuclear AID could therefore loose this stabilizing 

interaction and be exposed to rapid degradation after import. However, there is still some 

HSP90 in the nucleus in normal and cancer cells [548, 549] and some evidence suggests that 

HSP90 can translocate into the nucleus in response to stress or other stimuli [550-553]. Since 

HSP90 does not have a nuclear localization sequence, its nuclear import may only occur by co-

transport with its clients. Indeed, HSP90 can be co-imported with the glucocorticoid receptor 

(GR) into the nucleus [554-556]. But whether HSP90 is localized in the nucleus in the context 

of B cell stimulation and whether nuclear AID is at any stage associated with this chaperone is 

unknown.   

A common feature of nuclear and cytoplasmic AID is the fact that they do not depend 

on internal lysines for polyubiquitination. AID with all lysine residues mutated to arginines 



196 

 

 

(Kzero) is still significantly polyubiquitinated in both the cytoplasm and the nucleus ([331] and 

chapter 4), suggesting either a N-terminal ligation or a non-canonical ubiquitination site. Our 

data indicates that AID degradation through N-terminal ligation is unlikely to occur in the 

cytoplasm, but further work is required to definitively exclude this possibility. Due to AID’s 

intrinsic instability, it is possible that the absence of available lysines in the Kzero mutant 

forces the Ub-proteasome pathway to use noncanonical residues for AID degradation. This 

could also have some unknown physiological relevance. 

 

5.3. Direct impact of AID stability in antibody diversification 
Because of the interdependence between AID subcellular localization and stability [315, 

325, 329, 331, 332], it has been difficult to evaluate the direct contribution of AID protein 

turnover in regulating antibody diversification. Here we could show that modulating AID 

stability, without visibly affecting its subcellular localization, influences the efficiency of 

antibody diversification in vitro (Chapter 4). AID intrinsic instability seems to depend at least 

on an N-degron and an internal PEST-like motif. The N-end rule, which depends on the Ub-

proteasome pathway for protein turnover, requires N-terminal proteolytic processing of its 

substrates [500]. While N-terminal methionine cleavage is an evolutionary conserved 

modification, affecting up to 70 % of the proteins in plant plastids [503], we have no direct 

evidence that AID is processed in such a way to reveal the destabilizing aspartic acid at 

position two. Analysis of purified AID by mass spectrometry or N-end sequencing of purified 

endogenous protein could reveal whether AID is post-translationally cleaved at its N-terminus. 

Similarly, it remains unclear whether the AID internal destabilizing motif we described 

(Chapter 4) is an actual PEST motif. These regions enriched in proline, aspartic/glutamic acid, 

serine and threonine, are generally found in short-lived proteins [508-511]. Interestingly, it has 

been hypothesized that PEST motifs confer increased susceptibility to proteolysis by recruiting 

both the Ub-dependent and -independent proteasomal degradation pathway [512]. It is possible 

that the AID PEST-like motif is recognized by REG-γ in the nucleus, thus targeting AID for 

Ub-independent proteasomal degradation but this has not been confirmed. Indeed, AID-REGγ 

interaction requires the first 140 amino acids of AID that encompass the PEST-like motif [484]. 
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Whether modulating AID’s instrinsic stability may affect antibody diversification in vivo also 

requires more investigation. But it is now clear that destabilizing motifs in AID directly 

contribute to its biological functions by modulating AID protein turnover and limiting its 

presence in the nucleus. 

 

5.4. Cytoplasmic pools of AID 
Differential AID stability between the cytoplasm and the nucleus is an additional way 

of restricting its access to the nucleus. Indeed, inhibiting HSP90 or DnaJa1 farnesylation 

(which prevents binding to AID), as well as DNAJA1 knockdown, do not affect cytoplasmic 

retention of AID [523, 524]. Both nuclear destabilization and cytoplasmic retention contribute 

to AID nuclear exclusion [315, 484, 522]. Cytoplasmic retention may involve the participation 

of the eEF1α translation factor, since it is stoichiometrically associated with AID in the 

cytoplasm and mutating the proposed AID cytoplasmic retention motif can disrupt this 

interaction [315, 325]. This step would logically be after AID is stabilized by and released from 

HSP90. AID would therefore coexist in different cytoplasmic pools [557]. We could envision 

that these regulatory mechanisms form a circuit (f.i. release from HSP90 is always followed by 

AID associated to cytoplasmic retention, which precedes nuclear import, etc; Figure 5.2A). 

Preliminary immunofluorescence experiments suggest that AID stabilization by HSP90 is a 

prerequisite for its nuclear import [523]. It is also likely that the transmission of AID from the 

meta-stable complex with HSP90 may require some maturation step such as post-translational 

modifications or oligomerization [327, 332]. This would therefore allow mechanisms with 

apparently the same effect to play distinct roles.  

 Alternatively, unstructured regions may confer to AID useful properties such as rapid 

and specific interaction potential without excessive binding strength [558]. In fact, unstructured 

proteins require the assistance of chaperones for interacting with other co-factors [559]. HSP90 

stabilization could therefore be a transitory state, where AID is subsequently transferred to 

several competing destinations (f.i. release from HSP90 could be followed by cytoplasmic 

retention or nuclear import or degradation; Figure 5.2B). This network model would prevent 
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AID from aggregating/or being targeted to the Ub-proteasome system while having the 

flexibility to bind multiple alternative partners. Of course, AID regulation may be a mixture of 

both models. Nevertheless, it remains unclear what dictates AID dissociation from HSP90 and 

what is the relative distribution of AID between the HSP90 stabilizing pool and the cytoplasmic 

retention pool. But altogether these mechanisms greatly contribute in determining the 

appropriate steady-state and nuclear levels of AID during antibody diversification. 

 

5.5. Pharmacological modulation of AID levels. 
Modulating AID stability seems to be one way of controlling AID expression levels 

and, thereby an important mechanism regulating antibody diversification. On the one hand, 

AID stabilization by the DnaJa1-HSP90 chaperoning pathway is important to obtain 

sufficiently high AID protein levels for efficient antibody diversification. On the other hand, 

AID pathological outcomes are restricted by both DnaJa1 levels and nuclear destabilization of 

AID, which limit the functional levels of this mutagenic enzyme. In fact, AID is oncogenic, 

which is likely a consequence of its capacity to mutate and generate DNA breaks, thus 

initiating chromosomal translocations and mutations in tumor suppressor genes and proto-

oncogenes [261-265]. Oncogenic AID lesions are directly correlated to AID protein levels as 

increased expression of AID in B cells leads to a large increase in IgH-cMyc translocations 

[201, 204] and increased mutations in some non-Ig targets [201, 203, 257]. Ectopic expression 

of AID in Ph+ CML promotes the progression into a fatal B lymphoid blast crisis as AID activity 

leads to the acquisition of mutations in BCR-ABL1 and the development of resistance to the 

therapeutic drug imatinib [129]. We have shown that HSP90 inhibitors such as geldanamycin 

derivates, which are already in clinical trials [444], could be exploited to indirectly target AID. 

Indeed, destabilization of AID with HSP90 inhibitors prevented AID-mediated mutations in 

BCR-ABL and the generation of resistance to imatinib in CML cells. Farnesyltransferase 

inhibitors, which prevent the binding of AID to DnaJa1, could also serve as a pharmacological 

tool to decrease 
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Figure 5.2.  Major post-translational regulation steps affecting AID levels. (A) Detailed 

schematic representation with each step participating in the stability and the subcellular 

localization regulation represented within a cycle. Only selected AID interacting factors are 

shown. After AID stabilization by the HSP90 molecular chaperoning pathway, some undefined 

maturation step or conformational change can allow AID to pass onto eEF1α and/or other 

cytoplasmic retention factors before active nuclear import. A number of factors could be 

implicated, alternatively or jointly, in AID nuclear import. Once inside the nucleus, AID is 

either exported by CRM1 or targeted to the Ig loci by interacting with a number of RNA 

processing factor, where it is phosphorylated by PKA. AID is (subsequently?) degraded in the 

nucleus either through Ub- or REGγ-dependent proteasomal degradation. (B) Simplified 

schematic representation of the same steps as in A but in the form of a network in which most 

pools of AID are interconnected. 
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AID protein levels. Whether increased expression of limiting factors of the HSP90 pathway, 

especially DnaJa1, could favour the development of AID-associated lymphomas/leukemias is 

unknown. Increased expression of members of the HSP90 pathway has been reported in solid 

tumors and haematological malignancies [408, 409], but little is known about DnaJa1 

expression profiles between healthy subjects and lymphoma/leukemia-affected patients. We 

also know very little about whether DnaJa1 levels correlate with AID levels in B cells and other 

relevant cell types/tissues.  

AID is also implicated in the onset of autoimmune diseases [242, 285-287] and could 

be an interesting target to treat pathologies such as rheumatoid arthristis and systemic lupus 

erythematosus, which are associated with exacerbated antibody diversification. Interestingly, 

several reports have shown a differential expression of DNAJA1 between healthy controls and 

patients affected with autoimmune diseases. DNAJA1 is overexpressed in synovial tissues of 

patients affected by rheumatoid arthritis [560]. Furthermore, differential expression of DNAJA1 

in peripheral blood of systemic lupus erythematosus patients has been reported and two single 

nucleotide polymorphisms in DNAJA1 are associated with the onset and the progression of this 

autoimmune disease [561, 562]. Mouse models recapitulating lupus and rheumatoid arthritis 

display increased levels of AID, which correlate with higher levels of autoantibodies [242, 285-

287]. Moreover, AID deficiency, or even haploinsufficiency, results in a more moderate disease 

[195, 242-244]. The challenge here, similar to AID involvement in cancer development, is to 

identify a disease and a mouse model where AID implication and onset can be predicted in 

order to target AID at the right time. In the absence of specific inhibitors of AID, exploiting 

HSP90 and farnesyltransferase inhibitors as described in this thesis (Chapter 2 and 3) proved to 

be a reasonable alternative to pharmacologically targeting AID. 
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Our results show that AID is stabilized in the cytoplasm by the HSP90 molecular 

chaperoning pathway. This requires the participation of the HSP40 DnaJa1, which is a limiting 

step in AID stabilization. AID stability and protein levels directly modulate its biological 

functions. Increased AID stability, by introducing stabilizing mutations, or increased AID 

protein levels by overexpressing DnaJa1, result in a more efficient antibody diversification. 

Conversely, inhibiting HSP90 or farnesyltransferases as well as reducing DnaJa1 levels result 

in less antibody diversification and off-target mutations. 

We show this in particular for the BCR-ABL oncogene, in which HSP90 inhibitors 

prevent the emergence of an AID-dependent imatinib-resistant subpopulation of CML cells. 

Thus, pharmacological modulation of AID protein levels is an interesting possibility to treat 

AID-related cancers and/or pathologies associated with exacerbated antibody diversification. 

Mouse models, where AID has been directly implicated in the development of ALL or CML, 

are great tools to investigate whether this strategy could prevent or slow down the onset of 

these diseases. Preliminary work in patients affected by CML blast crisis suggested that the use 

of arsenic trioxide, a drug that downregulates AID mRNA and protein levels, combined to 

imatinib, could achieve better therapeutic effects by reducing drug resistance [563]. Similarly, 

disruption of Aicda in the mouse model of IBD reduces the incidence of colon cancer 

development [564], which could be another therapeutic opportunity. Downregulating AID 

protein levels could also minimize AID contribution to autoimmune diseases, as AID 

overexpression correlates with the production of autoantibodies and the onset of autoimmune 

diseases such as lupus and rheumatoid arthritis [242, 285-287]. Therefore, modulating AID 

levels, systematically or locally, could minimize its pathological contribution to both cancer 

and autoimmune diseases. Targeting the farnesylation of DnaJa1 by using farnesyltransferase 

inhibitors may reduce AID pathological outcomes as well and could serve as an alternative to 

HSP90 inhibitors. 

Our work raises the question of whether the HSP90 molecular chaperoning pathway 

could be a predisposing element in the development of AID-associated diseases. Since DnaJa1 

is a limiting factor in AID stabilization, one could hypothesize that upregulation of this co-

chaperones may result in higher steady-state AID levels, thus increasing the susceptibility to 

off-target mutations, chromosomal translocations, and antibody-associated autoimmune 
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diseases. It is also unclear whether AID is as dependent on HSP90 stabilization in normal 

versus transformed cells. Further experimental work is also needed to explore whether AID 

stabilization by the HSP90 molecular chaperoning pathway is as critical for its demethylation 

function as it is for antibody diversification.  
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