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Résumé 

 Les cellules endocrines et neuroendocrines contiennent des organelles spécialisées 

nommées les granules de sécrétion denses. Ces organelles renferment des protéines et des 

peptides qui sont sécrétées uniquement lorsque la cellule reçoit un stimulus physiologique.  

Le ciblage des protéines vers les granules de sécrétion est indispensable à la production de 

certaines hormones peptidiques tels l’insuline et le glucagon.  Tandis que des études ont 

démontrés que les protéines contiennent des signaux pour être ciblés dans divers 

compartiments cellulaires, aucun signal canonique n’a été découvert pour le ciblage vers les 

granules.  Nous avons déjà démontré que des hélices alpha associées à la membrane et 

situées dans la région C-terminale de la prohormone convertase PC1/3 jouent un rôle 

important dans la capacité de cette protéine d’être ciblée vers les granules. 

 

Notre hypothèse est que les hélices alpha sont responsables de cibler les protéines dans les 

granules de sécrétion et que ce ciblage est médié par des interactions membranaires. 

 

 Le but de cette étude était de déterminer le mécanisme utilisé par les hélices alpha 

pour cibler des protéines vers les granules.  Premièrement, nous avons déterminé les 

caractéristiques biophysiques d’hélices alpha aptes à cibler des protéines vers les granules 

en testant une série d’hélices synthétiques qui varient en termes de la composition des 

résidus, la charge, l’amphipathicité et l’hydrophobicité.  Deuxièmement, nous avons testé si 

une hélice alpha était nécessaire pour le ciblage vers les granules des trois enzymes PC 

résidentes des granules (PC1/3, PC2 et PC5/6A).  Nous avons également vérifié l’efficacité 

du ciblage vers les granules et comparé les différences entre les trois enzymes PC 

résidentes des granules.  Troisièmement, nous avons résolu la structure tridimensionnelle 

d’un des domaines de ciblage de PC1/3.  La fonction individuelle de chaque résidu a été 

déterminée par mutagénèse dirigée. 
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 Nos résultats démontrent que la présence de résidus chargés (négativement ou 

positivement) et qui sont ségrégés d’une surface hydrophobe dans les hélices alpha jouent 

un rôle critique dans la fonction des hélices alpha de cibler des protéines vers les granules.  

 Des hélices alpha ont ciblée PC1/3, PC2 et PC5/6A vers les granules.  Une analyse 

détaillée des structures prédites formées par les domaines de ciblages des enzymes PC 

démontre une corrélation entre la capacité des hélices de cibler une protéine vers les 

granules et la présence d’une surface hydrophobe.  De plus, la détermination de la structure 

tridimensionnelle d’un des domaines de ciblage de PC1/3 (PC1/3711-753) a nécessité la 

présence d’une micelle composée d’éléments membranaires.  La structure et un essai 

fonctionnel ont démontré la nécessité de la Leucine 745 (L745) pour assurer le ciblage vers 

les granules. 

 En résumé, nos résultats démontrent la nécessité de résidus hydrophobes situés dans 

une hélice alpha pour cibler des protéines vers les granules de sécrétion et ce possiblement 

à l’aide d’interactions membranaires. 

 

Mots-clés: granules de sécrétion, trafic de protéines, trafic membranaire, résonance 

magnétique nucléaire 
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Abstract 

Endocrine and neuroendocrine cells contain specialized secretory organelles called 

dense core secretory granules (DCSGs).  These organelles are the repository of proteins and 

peptides that are secreted in a regulated manner when the cell receives a physiological 

stimulus.  The targeting of proteins to DCSGs is crucial for the generation of peptide 

hormones including insulin and adrenocorticotropic hormone.  While previous work has 

demonstrated that proteins destined to a variety of cellular destinations contain targeting 

sequences, no single consensus sequence for secretory granule sorting signals has emerged.  

It has been previously shown that membrane associated alpha helical domains in the 

carboxy-terminal tail of the prohormone convertase PC1/3 play an important role in the 

ability of this region to direct DCSG targeting. 

 

Our hypothesis is that alpha helices are responsible for redirecting proteins to 

DCSGs and that this targeting is mediated by protein-lipid interactions. 

 

The goal of this study was to determine the mechanism used by alpha helices to direct 

sorting of proteins to DCSGs.  First, we determined the biophysical characteristics of 

sorting helices by testing a series of engineered alpha helices that vary in residue 

composition, charge, amphipathicity and hydrophobicity.  Second, we tested whether an 

alpha helix was necessary for the DCSG targeting of the three DCSG granule resident PC 

enzymes (PC1/3, PC2 and PC5/6A).  We also assessed the efficiency of entry into granules 

and compared differences between the three granule-resident PC enzymes.  Lastly, we 

solved the three-dimensional solution structure of one of the PC1/3 helical DCSG-sorting 

domains.  The function of the individual amino acids making up this DCSG-sorting domain 

was tested by site-directed mutagenesis. 

Our results demonstrate that the presence of charged (either positive or negative) 

amino acids, spatially segregated from a hydrophobic patch in the alpha helices of secretory 
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proteins plays a critical role in the efficiency of alpha helices to direct secretory granule 

sorting.  Alpha helices were also critical to target PC1/3, PC2 and PC5/6A to the regulated 

secretory pathway.  Analysis of the predicted structures formed by these three granule 

sorting helices showed a correlation between their granule sorting efficiency and the 

clustering of hydrophobic amino acids in their granule targeting helices.  Moreover, the 

determination of the three-dimensional solution structure of one of the DCSG-sorting 

domains of PC1/3: PC1/3 711-753 required the presence of a micelle. The structure in 

conjunction with a functional DCSG-sorting assay revealed the importance of leucine 745 

(L745) located within the alpha helix in mediating DCSG sorting. 

In summary, our results demonstrate the requirement of hydrophobic residues situated 

in alpha helices to direct proteins to DCSGs possibly through membrane interactions. 

 

Keywords: secretory granules, prohormone convertases, protein trafficking, membrane 

trafficking, nuclear magnetic resonance  
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The intracellular sorting of peptide hormone precursors to dense core secretory 

granules (DCSGs) is essential for their bioactivation. Despite the fundamental 

importance of this cellular process, the nature of the sorting signal(s) for entry of 

proteins into DCSGs remains a source of vigorous debate. In this chapter, I will 

highlight recent discoveries that are consistent with a model in which several protein 

domains, acting in cell-specific fashion and at different steps in the sorting process, act 

in concert to regulate the entry of proteins into DCSGs.  

 

1.1 Protein codes: The advent of the signal sequence 

 

The accurate sorting of proteins to their cellular destinations is of fundamental 

importance in biology and must occur with high precision in the context of a highly 

concentrated and extremely complex mixture of proteins.  The identification of the “codes” 

carried by proteins that ensure their proper intracellular sorting has been a topic of intense 

and fruitful research for more than 40 years.  As a result, most introductory textbooks now 

include descriptions of the canonical signals, which direct the sorting of proteins to specific 

cellular destinations (Summarized in Table 1.1).  Thus, proteins are imported in the 

secretory pathway based on the presence of an N-terminal cleavable signal peptide 

containing 7-12 hydrophobic amino acids (1).  Mitochondrial-destined proteins, contain an 

N-terminal code termed the ''presequence'' consisting of 20-50 residues enriched in 

positively charged (lysine or arginine), hydroxylated (tyrosine, threonine or serine) and 

hydrophilic sequences (2).  The mitochondrial ''presequence'' also has the ability to form 

amphiphilic alpha helices.  As for nuclear proteins, they contain the ''nuclear localization 

signal'' consisting of either one (monopartite) or two (bipartite) stretches of basic amino 

acids (3).  The sugar residues of proteins destined to lysosomes contain mannose-6-

phosphate which bind to the mannose-6-phosphate receptor to direct lysosomal sorting (4).  

Moreover, proteins can also contain ''codes'' enabling them to be retained in a specific 
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cellular location.  The lysine-aspartic acid- glutamic acid-leucine (KDEL) sequence in 

mammals (5) and histidine-aspartic acid-glutamic acid-leucine (HDEL) sequence in yeast 

(6) serve as endoplasmic reticulum (ER) retention signals while a stretch of 20 hydrophobic 

residues flanked by basic residues results in a Golgi retention signal (7).  Finally, proteins 

that are endocytosed contain tyrosine and di-leucine motifs (8).  All of the above sequences 

are sufficient to redirect proteins to the specific organelle defined by the code. 

However, a similar canonical ''code'' has not been established for directing proteins 

to dense core secretory granules (DCSG).  These cytoplasmic organelles, found uniquely in 

endocrine and neuroendocrine cells, store hormones, proteases and signaling molecules 

until the cell receives a signal for their release.  For example, the inactive proinsulin 

prohormone is activated within DCSGs by specific proteases and will be released when 

blood glucose levels are elevated (9).  As such, DCSGs are the key component in the 

regulated secretory pathway.  Why has the identification of DCSG sorting signals been 

such an elusive goal? 

 

CELLULAR LOCALIZATION SIGNAL SEQUENCE 

Secretory pathway 7-12 hydrophobic residues at N-terminus 

Mitochondria 20-50 residues enriched in positively charged, 

hydroxylated and hydrophilic sequences 

Nucleus One or two stretches of basic residues 

Lysosomes Mannose-6-phosphate tags 

ER retention signal KDEL (mammals); HDEL (yeast) 

Golgi retention signal 20 hydrophobic residues flanked by basic 

residues 

Endocytosis Tyrosine and di-leucine motifs 

 

Table 1.1: Examples of canonical sorting signals identified for specific cellular 

compartment
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1.2 Dense core secretory granules within the secretory pathway 

 

1.2.1 Early secretory pathway 

 

There has been a lot of debate not only about how DCSG sorting occurs, but also 

just where in the cell this triage takes place.  All cells have the capacity to rapidly secrete 

proteins after their transit through the constitutive secretory pathway. Thus, proteins 

destined for the secretory pathway will first transit to the ER.  It is here that the N-terminal 

secretory pathway signal peptide sequence (Table 1.1; secretory pathway) will be 

recognized by the signal recognition particle located on the signal recognition receptor 

found on the ER membrane (10).  In eukaryotes, the Sec 61/Sec Y complex forms a 

conducting channel ensuring the co-translational translocation of secretory pathway 

proteins to the ER lumen (11).  Upon exiting the ER at specific areas lacking ribosomes 

(12), properly folded secretory proteins will be transported to the Golgi in vesicles coated 

with coat protein complex-II (COP-II) (13) with the proper transfer of cargo from vesicles 

ensured by specific vesicular adaptors termed soluble N-ethylmaleimide sensitive fusion 

protein attachment receptors (SNARES) (14).  SNARES are located on the cytosolic face of 

vesicles (v-SNARE) and will dock a vesicle via an interaction with a target vesicle’s t-

SNARE.  In the Golgi, proteins are glycosylated in the various cisternae and stacks, which 

range from the cis, the medial and ending with the trans Golgi networks (TGN) in the 

anterograde trafficking of secretory proteins.  During the 1980s, there was considerable 

debate on whether trafficking through the Golgi occurred using the same vesicle (cisternal 

maturation) or using cargo transferred via SNARE adaptors to different vesicles (vesicular 

trafficking model, For Review see (15)).  In 2006, both Losev et al. (16) and Matsuura et 

al. (17) showed immunofluorescent images of differentially tagged Golgi cisternae.  Using 
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time-lapse video microscopy, both groups demonstrated that the Golgi cisternae would 

change color over time indicating that the same vesicle was being trafficked along the 

Golgi.  These findings are consistent with a cisternal maturation model for Golgi trafficking 

and effectively resolved (for the time being) the vigorous debate. 

 

1.2.2 The trans Golgi network as a molecular sorting station 

 

Upon reaching the terminal Golgi stacks in the TGN, proteins are transported in 

budding vesicles to specific various destinations.  In all mammalian cells, proteins can be 

trafficked to various destinations.  Proteins will either bud off into low density vesicles and 

be secreted via a non-regulated constitutive pathway or be routed towards the intracellular 

endosomal pathway (18;19).  Moreover, certain proteins can be re-routed to earlier 

compartments via recycling mechanisms (20).  In polarized cells, there is a differential 

sorting originating from the TGN to either the apical or basolateral surface of the cell 

ensuring the asymmetrical distribution of certain proteins (21).  In contrast, a unique 

regulated pathway of secretion exists in endocrine and neuroendocrine cells where 

exocytosis of high density DCSGs is tightly regulated (Figure 1.1).  A great deal of 

evidence supports the view that in the appropriate cell type, DCSG sorting signals can re-

direct proteins from the constitutive secretory pathway to DCSGs confirming that it is not a 

default secretory pathway, but rather a pathway that requires specific biophysical properties 

of the stored protein or the recognition of a “sorting signal” by the cellular machinery.  The 

nature of this DCSG sorting signal has not been clearly defined to date. 
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Figure 1.1: Schematic representation of the secretory pathway in endocrine and 

neuroendocrine cells. 

In the anterograde trafficking pathway, proteins pass through the endoplasmic reticulum 

(ER), then through the cis, medial and trans Golgi networks.  The trans Golgi network 

serves as a sorting station where non-granule proteins are packaged in low-density vesicles 

and are secreted in an unregulated manner across the plasma membrane (PM).  Granule 

proteins are first packaged in immature secretory granules that fuse and form dense core 

secretory granules. The dense core secretory granules are secreted when the cell receives an 

influx of calcium. 
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Some groups have proposed that DCSG sorting occurs through the action of a sorting 

“receptor” present in the trans-Golgi network (TGN), which latches onto granule-destined 

proteins at sites where nascent granules will bud.  This model has been referred to as the 

“sorting by entry” model and implies that only DCSG proteins can be present in this 

organelle.  Studies performed by Chung et al. in 1989 provided the first support for the 

“sorting by entry” hypothesis.  They used peptide hormones as affinity ligands to find 

partner proteins in canine pancreatic tissue.  Using this approach, they identified a 25-kDa 

protein considered as a potential DCSG sorting receptor (22).  Further experiments revealed 

that this protein was identical to chymotrypsinogen and was not detectable in every 

endocrine tissue.  Furthermore, chymotrypsinogen bound granule proteins with very low 

affinity (23). One of the limitations of  Chung’s studies was that it was difficult to 

distinguish between proteins present in the TGN and DCSG proteins themselves.  The 

inherent difficulty of separating the closely spaced secretory pathway compartments is a 

complicating factor when identifying DCSG and non-DCSG proteins and this analytical 

limitation has made the identification of compartment-specific partners difficult.  In 

addition, the presence of the constitutively secreted glycosaminoglycan protein in DCSGs 

suggests that proteins other than those destined for regulated secretion may enter DCSGs 

(24). 

About 10 years later, Cool et al. (25) postulated that carboxypeptidase E (CPE) 

could be the bona fide DCSG sorting receptor.  All of their observations stemmed from an 

obese mouse line with a spontaneous mutation in CPE: the Cpe fat/fat mouse.  Isolation of 

CPE from the Cpe fat/fat mouse revealed a decreased binding of various peptide hormones to 

the mutated CPE when compared to native CPE.  In addition, the authors reported that the 

DCSG protein proopiomelanocorticotropin (POMC) was no longer stored in DCSGs in the 

Cpe fat/fat mouse. However, competitors were quick to point out in independent experiments 

that hormone secretion was normal in the Cpe fat/fat mouse (26).  A common argument 

against CPE as a sorting receptor is that no single receptor can exist to ensure the 1:1 ratio 

needed to ensure the functionality of the “sorting by entry” theory as the flow of DCSG 
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proteins traversing the regulated secretory pathway is too large.  However, it should be 

noted that the signal recognition particle receptor is sufficient to handle the large traffic of 

proteins being co-translationally translocated across the ER membrane.   

With all of this conflicting data, “the sorting by entry” view was losing support. 

Simultaneously, convincing evidence was presented that in cells that generate DCSGs, all 

of the contents of the TGN are initially encapsulated into nascent granules termed immature 

secretory granules (ISGs).  This finding led to the development of the “sorting by retention” 

model, which proposes that those proteins destined to be secreted constitutively are 

progressively extruded in low density vesicles as the granule matures, ultimately leaving 

only the correct cargo protein in the mature DCSG.  A detailed mechanism explaining this 

extrusion has been clearly identified (Figure 1.2) as well as the mechanism of granule 

maturation.  Thus, the maturation of ISGs involves the progressive acidification of the ISG 

lumen (27) and the homotypic SNARE-dependent fusion between the various ISGs to form 

the mature DCSG; a process requiring the soluble cytosolic factors N-ethylmaleimide 

sensitive fusion protein (NSF) and alpha soluble NSF attachment protein (alpha-SNAP) 

(28).  A member of the synaptotagmin calcium-sensing family of proteins, synatoptotagmin 

IV (syt IV), is critical to ensure the ISG homotypic fusion event (29).  It is adaptor protein-

1 (AP-1), a clathrin protein adaptor that assists in the budding of all non-DCSG proteins 

from the lumen of the ISGs via clathrin coated vesicles.  The non-granular proteins in their 

clathrin coated vesicles are believed to be transported to the endosomal compartment (30).  

The resulting DCSGs produced are then ready to exocytose on the plasma membrane 

through the interaction of their granule specific vesicle-associated membrane protein-2 

(VAMP-2) v-SNARE located on the cytosolic face of the DCSG and the plasma 

membrane’s t-SNARE (31).  While the ''sorting by retention'' model provides clues 

concerning granule formation and the trafficking of the granule from the TGN to the 

plasma membrane, the proteins identified to date are all cytosolic and do not explain the 

selective retention of cargo within the granule core.  Perhaps the best such example is 

provided by a recent proteomics analysis of bovine adrenal medulla granules using a 
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phosphatidyl inositol (4, 5) bisphosphate pull-down assay (32).  Phosphatidyl inositol (4,5) 

bisphosphate is a lipid implicated in the exocytosis of granules and is situated on the 

cytosolic face of the plasma membrane.  The proteomics analysis did not reveal any granule 

cargo proteins but unsurprisingly identified cytosolic proteins involved exclusively in 

exocytosis.  What about the inside of the granule? 

Regardless of which theory is correct, a subset of proteins is somehow correctly 

stored in DCSGs.  These granule resident proteins must contain “codes” allowing efficient 

targeting to this organelle.  Moreover, these proteins may be interacting with partner 

proteins in order to enter granules while the granular environment itself may also influence 

the efficient targeting of granule proteins. Can a mechanism be proposed to help explain 

this critical event? 
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Figure 1.2: Dense core secretory granule maturation. 

Equivalent immature secretory granules (ISGs) go through a homotypic fusion event 

facilitated by SNARE adaptors located on the ISG surface.  The homotypic fusion is 

assisted by the cytosolic factors NSF and alpha-SNAP, the vesicle bound synaptotagmin IV 

(syt IV) protein and a proton adenosine triphosphate -ase (H-ATPase) assuring the 

acidification of the ISG lumen.  Proteins not destined for DCSGs are extruded via AP-

1coated vesicles that attract clathrin and are targeted to the endosomal pathway for 

degradation.  The mature DCSG will fuse with the plasma membrane (PM) and be 

exocytosed via a specific interaction with the DCSG’s VAMP-2 SNARE. 
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1.3 Three truths and three postulates 

 

The first truth is that regardless of the site at which sorting occurs, a mechanism has 

to exist that establishes and then maintains the segregation of DCSG cargo proteins from 

those that are constitutively secreted.  Thus, it is a reasonable postulate that some 

mechanism exists to anchor the appropriate cargo proteins to the DCSG as it forms or 

matures.  

 A second truth is that the sorting of proteins to DCSGs is a prerequisite for certain 

post-translational processing steps in hormone and protease activation.  For example, the 

conversion of proinsulin to active insulin only occurs in the acidic (pH=5.5) DCSG 

compartment (9).  Orci et al. showed that ionophores disrupting the proton exchange 

mechanism in the late secretory pathway also blocked the activation of proinsulin (9).  The 

cleavage of POMC to its many active peptides including adrenocorticoptropic hormone 

(ACTH) is equally influenced by the specific ion composition present in the DCSG (33). In 

addition, the proteolytic activation of prorenin to renin can also only occur in DCSGs (34).   

All of the above examples indicate that the precursors are encapsulated in the 

nascent secretory granules.  This is an efficient mechanism for the organism because it 

ensures that the secretion of the active hormones or proteases is under appropriate 

physiological control. However, for granule-restricted activation to occur it is necessary 

that both the protein precursors and the appropriate processing enzymes end up in the same 

DCSG. In the case of proinsulin, this means that the proprotein convertases 1/3 and 2 

(PC1/3 and PC2) as well as CPE, all of which are required for generation of active insulin, 

have to be co-targeted with proinsulin in the budding granules.  Thus, a second postulate is 

that a mechanism exists to ensure efficient co-targeting of protein precursors and their 

processing enzymes in the same organelle. 
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DCSGs also share by definition the distinguishing trait of a core that appears dark 

or dense in electron micrographs.  However, in spite of this common appearance, there may 

be important functional and mechanistic differences in DCSGs.  For example, the 

gonadotropes of the pituitary store luteinizing hormone and follicle stimulating hormone in 

separate DCSGs and their release is independently controlled (Reviewed in (35)).  

Likewise, there are two types of DCSGs in chromaffin cells containing either epinephrine 

or norepinephrine and these are morphologically distinct (36).  Norepinephrine granules are 

larger and electron opaque with a prominent halo between the granule membrane and the 

dense core.  The epinephrine granules are smaller, finely granular structures that fill the 

enclosing membrane and have no halo.  It appears that these differences can depend on the 

biophysical characteristics of the cargo itself (37).  Accordingly, Sobota et al. demonstrated 

that proteins that can self-aggregate would be stored in distinct DCSG from proteins that 

lack tertiary structure (37).  Thus, cargo itself can dictate the composition of a DCSG 

independently of the maturation of the granule. 

The signals for targeting proteins to DCSGs also show tissue-specific variations: 

Removal of 90 amino acids from the C-terminus of the granin chromogranin A (CgA) 

prevents its sorting to DCSGs in pituitary growth hormone 4 cells (GH4), but has no effect 

on DCSG sorting in sympathoadrenal pheochromocytoma 12 cells (PC12) (38).  Likewise, 

POMC is efficiently stored in DCSGs when transfected into cultured pituitary cells, but not 

in sympathetic neurons (39).  Thus, a third truth is that not all DCSGs are alike and it is a 

reasonable postulate that DCSGs can be assembled, even within the same cell, through 

more than one mechanism. 

Could some of these truths explain the difficulties in reaching consensus on the 

protein signals necessary for DCSG targeting? 



 

 

13 

 

 

 

1.4 A plethora of signals, a paucity of consensus 

 

There has been no shortage in the variety of DCSG sorting mechanisms proposed in the last 

2 decades: these include protein domains that interact with or that traverse membranes and 

that may or may not interact with additional proteins on the cytoplasmic side of the DCSG, 

proteins proposed to be a “master switch” for granule formation, universal granule cargo 

receptors, protein domains that mediate aggregation in the late TGN, certain paired basic 

protease cleavage sites or alpha helices in secretory proteins, disulfide constrained loops, 

acidifying proton pumps and other mechanisms.  As a result, investigators have become 

progressively entrenched in defending their favorite mechanisms and commonly use the 

descriptors “controversial” and “difficult to repeat” to describe the work of others in their 

publications.  Nevertheless, it is possible to accommodate most of these findings into a 

model that subdivides targeting function into three components (Figure 1.3): membrane 

associated (or traversing) tethers, tether-associated cargo and aggregation. 
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Figure 1.3: Proteins sorted to dense core secretory granules (DCSGs) can be 

functionally divided into three groups. 

Tethers (shown in red) either traverse or associate with membranes. Many DCSG cargo 

proteins also aggregate to form the dense core (shown in blue) and these aggregates may 

contain more that one protein. Some DCSG proteins associate with membrane tethers 

(arrows). The highlighted yellow boxes indicate the various protein domains or 

mechanisms that have been implicated in DCSG sorting. Note that some proteins (such as 

insulin) may have multiple DCSG sorting mechanisms. See text for details and abbreviation 
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1.4.1 Membrane-associated tethers 

 

The fact that many DCSG proteins are either membrane-associated or traverse the 

membrane is significant.  Petidyl-α-amidating monooxygenase (PAM), muclin and phogrin 

are all type I membrane proteins.  PAM is an enzyme catalyzing the alpha-amidation of 

extended peptides containing glycine residues (40).  In the pituitary and brain, PAM is in 

the lumen of the DCSG and anchored via its carboxy terminal transmembrane domain (40).  

Muclin is anchored in the DCSG of pancreatic acinar cells where it binds O-sulfated 

proteins (41).  The fact that both PAM and muclin are membrane anchored in granules 

ensures that both these proteins will not be secreted constitutively.  Phogrin is a protein 

tyrosine phosphatase present in many neuronal and endocrine cell types with a granule 

sorting domain located in the cytoplasmic tail of the protein (42;43).  Although the exact 

nature of the signal is still debated, it appears that this domain can bind the clathrin adaptor 

proteins AP-1 and adaptor protein-2 (AP-2) in vitro (44).  When one considers that 

vesicular transport proteins are present on the cytosolic face of vesicles, the interactions 

described between phogrin and the AP-1 and AP-2 proteins provide a unique means of 

communication between the granule cargo proteins and the membrane domains or 

cytoplasmic proteins that will define the budding DCSG. 

DCSG proteins can also interact with the membrane without traversing it.  The 

membrane-binding domain of the granule-resident protein CPE is located in the final 22 

residues of its C-terminal domain and is proposed to have a shallow membrane interaction 

(45).  The CPE DCSG sorting domain adopts an alpha helical secondary structure (45).  

The prohormone convertases PC1/3 (46), and PC2 (47) are also targeted to DCSGs and as 

for CPE there is agreement that the granule sorting is mediated by short alpha helical 

domains.  PC1/3 contains a region predicted to form an amphipathic alpha helix in its C-

terminal domain between residues 711-753 (48).  An alpha helical domain has also been 
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shown to be important for targeting prosomatostatin (49), CgA (50) and VGF (51) to 

DCSGs.  Interestingly, both the alpha helices in the targeting sequences of prosomatostatin 

and CgA are amphipathic like PC1/3 apart from being located on the N-terminus.  

Specifically for prosomatostatin, two leucine residues located at positions 7 and 11 of the 

alpha helix respectively, form a hydrophobic pocket critical in targeting prosomatostatin to 

DCSGs (49) suggesting yet again a possible membrane interaction.  In summary, this group 

of DCSG proteins could therefore be tethered to the membranes of the TGN or the 

maturing granule.  Since many of the DCSGs proteins are membrane tethered could the 

membrane itself play an important role in the sorting process? 

 

1.4.2 Membrane lipids implicated in vesicular traffic  

 

 Since a large number of DCSG sorting domains interact with membranes, the 

glycerophospholipids, sphingolipids and cholesterol present in eukaryotic cells may play a 

pivotal role in targeting proteins to DCSGs. 

 Membrane lipids can be divided in 3 large subclasses.  First, glycerophospholipids 

contain a glycerol backbone and a polar phosphate group esterified to a choline (Figure 1.4; 

phosphatidylcholine (PtdCho), shown as PC in figure), an ethanolamine 

(phosphotidylethanolamine, PE; not shown in Figure 1.4), a serine (phosphatidylserine, PS; 

not shown in Figure 1.4) or an inositol head group (phosphatidylinositol, PI).  Two non-

polar side chains of varying length are attached to the glycerol backbone.  Accordingly, 

these lipids can be modified resulting in phosphorylated inositol head groups (Fig. 1.4; 

phosphatidylinositol phosphate, (shown as PIP in figure) and phosphatidyl inositol 2-

phosphate, shown as PIP2 in figure).  In contrast, the second class of membrane lipids: 

sphingolipids contain a ceramide (Figure 1.4; ceramide, Cer) backbone instead of the 

glycerol backbone found in glycerophospholipids (52).  Structurally, most of the 

glycerophospholipids adopt a perfect cylindrical geometry due to the diametrical 
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equivalency of both the head groups and non-polar side chains (Figure 1.4: Space-filling 

model structure of PtdCho shown as PC in figure).  In contrast, the sphingolipids will form 

very narrow cylinders due to their saturated highly compact tails (Figure 1.4; Structure of 

sphingomyelin, SM).  This results in very tightly packed lipids that give rise to a gel-like 

state, which does not abide by the classical fluid-like mosaic hypothesis postulated for 

membranes.  As such, a third class of lipids: sterols such as cholesterol (Figure 1.4; 

Cholesterol) are localized in areas where sphingolipids are present giving a more fluid 

membrane (52).  Membrane patches rich in sphingolipids and cholesterol are defined as 

lipid rafts (53). 

 Most lipids are synthesized at the ER and are then trafficked to various organelles. 

The ER is composed of PtdCho, PE, PI, PS, phosphatidic acid (PA), Cer, galactoceramide, 

cholesterol and triacylglycerol while the mitochondrion is composed of PE, 

phosphatidylglycerol (PG), cardiolipin and PA.  Mono- and bi- and triphosphorylated 

inositol lipids are found on the cytosolic leaflet of the plasma membrane as are 

sphingolipids (52).  At the Golgi, some specific lipids are localized on both the cytosolic 

and lumenal leaflets.  In the lumenal leaflet of the TGN, where protein sorting to DCSGs 

occurs, a large number of sphingolipids are synthesized including sphingomyelin, 

galactocerebroside and lactosylceramide (52).  These sphingolipids co-exist with 

cholesterol at the lumen of the TGN (53).  As for glycerophospholipids, certain varieties are 

localized on the  cytosolic leaflet of the Golgi such as PtdCho, PE, and PI-4 phosphate.  A 

phosphotransferase capable of removing the phosphate group of PtdCho produces 

diacylglycerol at the cytosolic leaflet of the TGN (54). The diacylglycerol is 

interconvertable with PA via a diacylglycerol kinase also present on the cytosolic leaflet of  

the TGN (55).  PA may also be obtained directly from PtdCho using phospholipase D 1 

(56;57).  The existence of lipid flippases, capable of transferring both diacylglycerol and 

PA from the cytosolic Golgi leaflet to the lumenal leaflet of the TGN, has been proposed 

(58). Compelling evidence has also been obtained for the implication of 

glycerophospholipids on sorting to DCSGs.  For instance, protein kinase D is capable of 
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binding the diacylglycerol present at the TGN and regulate vesicular budding (54).  

Unfortunately, this observation has not been extended for the regulated pathway and is 

limited to constitutively secreted vesicles.  Instead, work by Shields and colleagues 

demonstrated that inhibition of PA synthesis by 1-butanol altered the appearance of the 

Golgi apparatus and decreased secretion in an endocrine cell type (59).  Thus, can Golgi 

lipids be involved in vesicular trafficking and specifically DCSG protein targeting? 

 CPE preferentially binds sphingolipids and cholesterol-rich membrane fractions 

(60) while both the prohormone convertases PC1/3 (46) and PC2 (47) bind liposomes 

enriched in sphingolipids and cholesterol.  The lipid raft patches may serve as anchors in 

the TGN where the alpha helical sequences presented in the C-termini of PC1/3, PC2 and 

CPE are tethered.  Moreover, cholesterol depletion by statin drugs diverted CPE from 

DCSGs to constitutively secreted vesicles (60).  Specific inhibition of sphingolipid 

synthesis with the drug fuminosin resulted in the re-routing of PC2 to the constitutive 

pathway without affecting another granule protein CgA (61).  This raises the possibility 

that different granule proteins may be interacting with different lipids but also that direct 

membrane interactions may not be sufficient for all proteins to be correctly targeted to 

DCSGs.  Furthermore, cholesterol depletion in endocrine cells completely eliminated the 

regulated pathway (62).  Thus, the present tools to study lipids in regulated secretion are 

limiting especially since membranes are an integral part of the cell.  An animal model was 

used to circumvent the difficulty in blocking lipids by pharmacological agents as is done in 

cell culture models.  The mouse model reiterates the necessity for cholesterol in granule 

formation (63).  The Smith-Lemli-Opitiz dehydrocholesterol 7-/- (Dhc7 -/-) mice are 

deficient for the 7-Dhc reductase gene, the final step in cholesterol synthesis.  The Dhc7 -/- 

mice contained abnormally sized granules compared to control mice.  A biophysical 

characterization of liposomes containing minimal cholesterol quantities such as in the Dhc7 
-/- mice showed a decrease in membrane curvature leading the authors to believe that 

diminished cholesterol quantities prevent budding of vesicles from the TGN.  
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 In summary, while specific lipid content has been shown to be important for the 

sorting of proteins to DCSGs, no specific lipid-protein interactions have yet been identified 

that would explain DCSG sorting. 
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Figure 1.4: Membrane lipids separated as structural or signaling molecules. 

The main eukaryotic membrane lipids are the glycerophospholipids such as 

phosphatidylcholine (PtdCho; PC). Their diacylglycerol (DAG) backbone carries a 
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phosphate (phosphatidic acid; PA) esterified to a choline (forming PtdCho), ethanolamine 

(forming phosphatidylethanolamine (PE); not shown), serine (forming phosphatidylserine 

(PS); not shown), or inositol (forming phosphatidylinositol; PI). The phosphosphingolipid 

sphingomyelin (SM) and the glycosphingolipid glucosylceramide (GlcCer) have a ceramide 

(Cer) backbone, consisting of a sphingoid base (such as sphingosine; Sph), which is amide-

linked to a fatty acid.  Lipids can be interconverted by the actions of kinases and 

phosphatases. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews Molecular 

Cell Biology, Volume 9, Issue 2 copyright 2008 
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1.4.3 Cargo interactions via membrane tethers 

 

1.4.3.1  Carboxypeptidase E 

 

A second group of granule-sorting domains may act by binding cargo proteins to the 

granule-tethered proteins described in the previous sections.  For example, CPE has been 

proposed to interact with a number of granule cargo proteins including proenkephalin, 

proinsulin, POMC (64) and secretogranin III (SgIII) (65).  POMC binds CPE via an amino-

terminal disulfide constrained hydrophobic loop (64).  Brain-derived neurotropic factor 

(BDNF) is also targeted to the regulated secretory pathway through an interaction with 

membrane-tethered CPE (66).  Analysis of superimposed X-ray structural models identified 

key acidic residues implicated in a complex between CPE and BDNF.  Interestingly, some 

of these cargo-CPE interactions promote retention in secretory granules, even though some 

of the cargos are not enzymatic substrates of CPE reinforcing the claim for a tether.  

Furthermore, no common mechanism for interaction of these cargo proteins with CPE has 

yet emerged. 

 

1.4.3.2 Paired Basic Amino Acids 

 

Paired basic amino acids have also been reported to direct DCSG sorting in some 

proteins including proneurotensin (67), prorenin (68), prothyrotropin releasing hormone 

(69) and progastrin (70) and to increase the sorting efficiency of proinsulin (71).  In the 

analyses carried out to date, it appears that these paired basic amino acids must constitute a 

cleavage site for one of the granule-resident prohormone convertases (PC1/3 or PC2) to 

function as a granule sorting domain since changing the cleavage site to one recognized by 
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furin (another member of the family which cleaves its substrates in the early secretory 

pathway) causes the proteins to be secreted through the default constitutive pathway (68).  

These results raise the possibility that certain DCSG-targeted proteases can act as sorting 

chaperones for their substrates in addition to being processing proteases.  The interaction of 

substrates with membrane-tethered proteases is thus another potential granule sorting 

mechanism. 

 

1.4.3.3 Interaction with DCSG transmembrane proteins 

 

DCSG transmembrane domains are not inert and they too are capable of assisting 

the correct entry of granule-resident proteins.  In fact, muclin has been suggested to act as a 

granule cargo “receptor” in pancreatic cells through its binding of sulfate groups on O-

linked glycosylated proteins (41).  Atrial natriuretic factor (ANF) has also been shown to be 

tightly bound to the membranes of atrial myocyte secretory granules through its interaction 

with PAM (72), although it is not a substrate of PAM.  Since there are no-known alpha-

amidated peptides in the cardiac atrium (72), no enzymatic role can be postulated for PAM 

apart from a DCSG sorting role.  Recently, PAM has been found to interact with the new 

partner proteins: Kalirin/Trio.  Overexpression of the Rho guanine nucleotide exchange 

factors Kalirin/Trio diverted the granule protein POMC to the constitutive secretory 

pathway and resulted in the secretagogue-independent secretion of unprocessed POMC 

(73).  Pharmacological inhibition of the guanine nucleotide exchange activity of 

Kalirin/Trio restored POMC localization to DCSGs and processing of POMC to its many 

peptides.  Since Kalirin/Trio both interact with the DCSG integral membrane protein PAM, 

this study indicates how partner proteins can be affected by signaling molecules and 

subsequently regulate DCSG protein localization thereby ensuring substrate activation.  

Thus, a variety of interactions with “tethers” may serve to target proteins to secretory 

granules.  Notably, if this mechanism is correct, it would in some cases provide a means to 

ensure that processing enzymes and their substrates end up in the same DCSGs.  
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1.5 Aggregation 

 

A third category of granule targeting mechanisms involves formation of high 

molecular weight protein complexes or aggregates.  Indeed, many granule targeted cargo 

proteins have the ability to multimerize or aggregate, leading in most cases to the formation 

of electron dense cores.  What causes this aggregation and how does it affect the formation 

of DCSGs? 

1.5.1 The granular milieu 

 

The protein concentration in the late secretory pathway is highly elevated.  For 

example, proinsulin has a measured concentration of 42 mM in pancreatic beta-cell 

granules (74) where it can form hexamers (75).  Granule resident proteins do not exhibit 

aggregation in the early secretory pathway.  Cellular fractionation studies of pituitary cells 

expressing the granule resident hormones prolactin and growth hormone demonstrate that 

the latter hormones are soluble in the cis and medial regions of the Golgi (76).  Prolactin 

and growth hormone share the unique property of being soluble in Lubrol detergent to test 

their aggregation (77).  Thus, Lubrol solubility was only required for TGN and DCSG 

fractions of growth hormone and prolactin (77).  Furthermore, Lubrol solubility is 

reversible after 30 minutes demonstrating the inherent nature of these hormones to 

aggregate.  Strikingly, expression of these hormones in non-endocrine CV-1 in origin 

(COS) fibroblast cells resulted in no aggregation (78) suggesting that there is something 

unique about the TGN/DCSG environment provided by endocrine cells permitting this 

“molecular crowding”.  What make the TGN so unique in these cell types? 

Initial experiments relied on the mildly acidic and divalent-cation rich DCSG 

environment to study aggregation.  Purified secretogranin II (SgII), a granin family granule-
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resident protein, aggregated in the presence of 10 mM calcium at pH = 5.2 (79).  In vivo, 

packaging of SgII in DCSGs was inhibited by the addition of ammonium chloride which 

increases the pH (79).  Furthermore, rough endoplasmic reticulum (RER) specific 

permeabilization of 1-10 mM calcium buffered at pH = 6.4 aggregated both SgII and a 

second granin chromogranin B (CgB) in the early secretory pathway where both CgB and 

SgII are normally non-aggregated (80).  A direct correlation between the ability to 

aggregate in vitro and to be sorted to secretory granules in transfected cells has also been 

reported for another granin family member: CgA (81).  Because granins are acidic proteins 

that can cluster in the slightly acidic environment present in DCSGs (For review see (82)) it 

has been suggested that aggregation may serve to prevent their extrusion from the maturing 

granule.  Indeed, it has been shown that treatment of PC12 cells with bafilomycin A1, a 

specific inhibitor of vacuolar H-ATPase, resulted in a decrease in regulated secretion of 

CgA, with a concomitant decrease in visible DCSGs (83) suggesting that regulated 

secretion of CgA and acid-dependent dense core formation are linked in DCSGs.  The pH 

effect on CgA may be modulated by CgA’s response to the calcium present in the late 

secretory pathway.  In fact, CgA is a high capacity but low affinity calcium binding protein 

(84).  While CgA is present as a dimer in the early secretory pathway (ER and cis Golgi) it 

can form higher order multimers when calcium-bound in the DCSG (85).  Calcium 

mediated aggregation through direct binding to a protein has also been demonstrated for 

pro-ANF and this directly correlates with the ability of pro-ANF to be correctly targeted to 

DCSGs (86). 

Other divalent ions present in the late secretory pathway of pituitary cells have also 

correlated with granule protein aggregation.  Histochemistry identified a major difference 

between the TGN from pituitary cells and the TGN from fibroblasts, which do not contain 

any DCSGs.  In fact, pituitary cells contained a higher concentration of the divalent ion 

zinc (87) and zinc is present in high enough concentrations to ensure a 1:1 complex with 

granule hormones (88).  A second divalent ion, copper, has also been measured in high 

concentrations in the late secretory pathway of pituitary cells (89).  Chelation of both zinc 
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and copper reduced the aggregation of both prolactin and growth hormone and their 

subsequent storage to DCSGs (78).  Moreover, proinsulin can also bind zinc in the late 

secretory pathway resulting in proinsulin crystal hexamers in the DCSGs of pancreatic 

alpha cells (75)  

 

1.5.2 Aggregation chaperones 

 Proteins can also act as chaperones to increase the aggregation of partner proteins.  

However, tags placed on proteins to facilitate their visualization in a cell or their 

purification can lead to an increase of aggregation for proteins that will be stored in DCSGs 

or to the misrouting of non-granules proteins to the regulated pathway.  Secreted alkaline 

phosphatase (SEAP) is a constitutively secreted protein that specifically increased the 

aggregation of CgA in the presence of millimolar calcium concentrations (81).  However, 

this was later found to be due to a hexa-histidine tag placed at the C-terminus of SEAP 

which bound the free calcium present in the secretory pathway resulting in a novel form of 

aggregation which did not involve hydrophobic interactions (90).  Similar observations 

have been made with green fluorescent protein (GFP) which can form disulphide bonds and 

efficiently target GFP tagged proteins to DCSGs (91).  Great caution must therefore be 

taken when analyzing results with hexa-histidine and GFP tagged proteins (92).  Moreover, 

7B2 is a granin family member which assists the granule targeting of PC2 (93).  Expression 

of 7B2 also results in the aggregation and enhanced granule-localization of proenkephalin 

(92).  Thus, while 7B2 does not cause PC2 to aggregate, it can cause the aggregation of a 

different partner raising the possibility that aggregation may be sequence specific as has 

been described for the coiled-coiled domains of CgA (94). 

 Thus, aggregation not only forms a visible core, it appears to play a role in the 

sorting retention of cargo protein as well. 
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1.5.3 A role for cargo in directing DCSG biogenesis? 

 

 DCSGs are essentially budded off regions of TGN that are densely packed with 

cargo.  In 2002, Kim et al. reported that silencing CgA expression in PC12 cells results in 

impaired regulated secretion of transfected prohormones, a loss of DCSG proteins and the 

loss of visible DCSGs.  The authors concluded that CgA is not only a component of the 

dense core, but that it is also a “master regulator” of DCSG biogenesis (95).  Moreover, 

transfection of CgA in a fibroblast cell type lacking a regulated secretory pathway resulted 

in the formation of DCSGs rendering CgA a granule “on/off switch” (95). Similar 

experiments were carried out by Courel et al. using the DCSG sorting domain of CgA 

located in the N-terminal region between residues 1-115 (96).  Transfection of CgA (1-115) 

in the A35C PC12 sympathoadrenal cell line lacking a secretory pathway biogenerated de 

novo DCSGs and targeted growth hormone to these de novo granules as in normal 

sympathoadrenal cells.  A functional secretory pathway was fully restored as the granule-

rerouted growth hormone was secreted in a regulated fashion (96).  Thus, the DCSG sorting 

domain of CgA also functions as a granulogenic determinant.  A mechanism explaining 

CgA's effect may be provided by the gene repressing RE-1 silencing transcription factor 

(REST).  REST is expressed in A35C cells but not in normal PC12 cells and regulates 

CgA's promoter region (97).  CgA and other granule proteins are transcriptionally repressed 

in the A35C cell line.  Thus, the re-introduction of transfected CgA may compensate for the 

lack of CgA in A35C cells, which will aggregate at the TGN and cause budding to form 

DCSGs.  New evidence suggests that alpha-helical coiled-coiled regions of CgA are 

responsible for granule core condensation by forming homomultimers (94). 

 CgA has also been reported to induce the expression of protease nexin-1 (PN-1), a 

serine protease inhibitor that slows the turnover of a number of DCSG cargo proteins (98), 

which could provide an additional mechanism for increasing DCSG aggregate formation.  

Since CgA binds to another granin partner,  SgIII, which in turn can associate with 
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cholesterol (99) as well as CPE (65), aggregation may synergize with protein-protein and 

protein-membrane interactions to improve the retention of cargo proteins in the maturing 

granule and their regulated secretion.  Does all of this data suggest that the appearance of 

DCSGs can be solely explained by CgA? 

 Malosio et al. (100) were unable to confirm the data of Kim et al (95).  They were 

unable to establish a correlation between DSCG content and CgA expression in isolated 

clonal lines of PC12 cells which express varying levels of CgA and this suggests that a 

multitude of proteins could be contributing to DCSG appearance.  In fact, expression of a 

number of other DCSG cargo proteins, including pro-vasopressin, pro-oxytocin, POMC, 

SgII and CgB, is sufficient to induce aggregate-containing cytoplasmic vesicles even in 

cells with no regulated secretory pathway (101) although these probably do not display all 

of the functional characteristics of DCSGs (31).  Indeed, Malosio et al. demonstrated that 

transfection of CgA in non-endocrine cells gives rise to TGN-derived vesicles but that these 

vesicles co-localize with lysosomal protein markers (100).  Thus, the complexity of granule 

formation may not be explained by the aggregation of a single protein. 

 Regulating the formation of the aggregate may also be physiologically important: 

Knoch et al. reported that a polypyrimidine binding protein (PTB) which is up-regulated 

under conditions of high insulin demand stabilizes messenger RNAs of many of these same 

DCSG cargo proteins in insulin-producing cells and leads to increased granule formation 

(102).  Knockdown of PTB expression in insulinoma-1 (INS-1) cells causes the specific 

disappearance of DCSGs without affecting any other cellular organelle (102).  The authors 

of these studies did not wish to call PTB “a master gene” since it is ubiquitously expressed.  

Instead, specific factors present in endocrine cells capable of interacting with PTB are more 

likely to play a role.  In fact, PTB binds to specific untranslated regions of the proinsulin 

processing enzymes PC1/3 and PC2 increasing the stability of their mRNA (102).  In 

summary, aggregation mechanisms are multi-faceted and can either be influenced by 

specific ionic concentrations of the DCSG, chaperone proteins and specific protein 
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sequences.  These factors along with the newly described transcriptional regulators may 

ultimately lead to the formation of the granule. 

 

1.6 In vivo models of granule biogenesis 

 

In spite of the compelling arguments presented for these various DCSG sorting 

mechanisms, examining their process in the whole animal has been anything but simple.  

One example of this difficulty is the proposed role of CgA as a master regulator of granule 

formation.  Although down-regulation of CgA expression was reported to result in the loss 

of detectable DCSGs in cultured PC12 cells, CgA gene inactivation in mice leads to either a 

“reduction” (103) or no discernable effect (36) on DCSG formation in the CgA-rich adrenal 

chromaffin cells in two independent studies using different mice lines.  In spite of the 

differences in the effects on DCSG morphology, both studies report a similar and dramatic 

effect on cathecholamine secretion in the CgA-deficient mice while one of the two groups 

demonstrated that the CgA null mice are hypertensive (103) proving that CgA deficiency is 

not entirely without consequence.  How can these apparent differences in the requirement 

for CgA be explained?  One obvious possibility is that other DCSG cargo proteins can 

complement the function of CgA in the formation of the dense core in vivo, but cannot 

compensate for its absence in catecholamine storage and secretion.  In support of this 

explanation, the group that saw no effect of CgA inactivation on DCSG formation reported 

an up-regulation of CgB and SgII in the adrenal glands of the mutant CgA null mice (36).  

Thus, while CgA may affect DCSG formation in some cultured cells, this particular 

function can obviously be replaced in vivo.  Nevertheless, while experiments to date have 

not identified a “master” regulator of DCSG formation, the concept may not be entirely 

wrong in specific cell types:  ANF inactivation in mice leads to a complete loss of visible 

DCSGs in the cardiac atrium (104) with an increase in salt-sensitive hypertension.  

Moreover, inactivation of the renin gene leads to a complete disappearance of DCSGs in 
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the juxtaglomerular cells of the kidney (105).  It’s important to note, however, that 

regulated secretion can occur in the absence of a dense core as it does in many 

neurosecretory vesicles.  In the case of the ANF and renin-deficient mice, it will be 

intriguing to determine if the remaining cargo proteins are still packaged in such vesicles in 

the absence of the aggregating partner. 

A similar conundrum exists with CPE as a “sorting receptor” for a variety of DCSG 

cargo proteins. Cool et al. originally proposed CPE as the regulated secretory pathway 

sorting receptor because they observed endocrine disorders in the Cpe fat/fat mouse which 

harbors a mutation in the CPE gene (25).  Proinsulin and POMC are among the several 

proteins that were shown to bind to CPE and which were proposed to enter DCSGs by this 

association (25).  However, concurrent results demonstrate that both proinsulin and POMC 

are correctly targeted to DCSGs in CPE fat/fat mice (26).  Can all of these seemingly 

disparate results be reconciled? 

  

1.7 Synergy and diversity in granule sorting mechanisms 

 

 Although there may be many reasons why it’s been hard to derive a 

consensus for the mechanisms and components of the DCSG sorting machinery, the most 

intuitive is that we are the victims of our own scientific reductionism. In our search for a 

simple canonical sorting mechanism we have developed a grossly overly simplified view of 

the way in which proteins enter DCSGs.  Close to 100% of the proinsulin produced in 

pancreatic beta cells enters DCSGs (106) while only about one quarter of the prorenin in 

the secretory pathway of kidney juxtaglomerular cells is sorted to DCSGs (107).  Is there an 

explanation for these differences?  Proinsulin contains numerous potential DCSG sorting 

domains such as a binding domain for CPE (64), two paired basic amino acid protease 

cleavage sites recognized by the membrane tethered proteases PC1/3 and PC2 (108) and the 

ability to hexamerize and subsequently aggregate in the presence of the divalent cation zinc 
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(75) while prorenin only contains a single DCSG sorting domain: a paired basic amino acid 

protease cleavage site (68).  In the case of prorenin, changing even a single one of these 

basic amino acids completely eliminates DCSG targeting in endocrine tissue culture cells 

(68).  In contrast, neither the mutation of the protease cleavage sites (109) nor the 

hexamerization domain (75) of proinsulin appear to affect its DCSG sorting.  Combined 

with the finding that proinsulin is still efficiently sorted to DCSG in CPE-deficient mice 

(26), it has been tempting to dismiss the function of these putative sorting signals.  

However, another possible explanation is that with its many DCSG sorting signals, 

proinsulin might be able to compensate for the loss of any single sorting domain.  There is 

in fact some evidence to support the view that DCSG sorting signals can synergize: 

duplicating the disulfide constrained loop DCSG sorting signal normally found at the N-

terminus of CgB results in a greater sorting efficiency to DCSGs than the native protein 

(110).  Furthermore, combining the alpha helical sorting signal of the PC1/3 protease and 

the paired basic amino acid sorting domains of prorenin on either the same protein or on 

two proteins capable of dimerizing led to a dramatic increase in DCSG sorting over 

proteins containing either individual domain (111).  Thus, diverse sorting signals may be 

able to functionally complement each other even through protein-protein interactions.  

Complementarity in cellular sorting machineries may also occur as missing sorting 

components can easily be replaced by parallel sorting machineries.  Hosaka et al. also 

reported that pituitaries of the Cpe fat/fat mouse contain elevated levels of both SgIII and 

CgA which might compensate for the loss of CPE (65).  Both SgII and CgA were able to 

target POMC to the regulated pathway in the absence of its usual sorting receptor CPE.  

This raises the issue of specificity and how various sorting machineries can not only 

recognize their own cargo but also increase their expression levels in the absence of parallel 

sorting mechanisms. 

All of these cases are consistent with the existence of multiple sorting mechanisms, 

each of which can contribute to the overall efficiency of protein sorting or retention in 

DCSGs.  Cell types and the nature and/or the number of the sorting domains contained in 
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the cargo protein would ultimately determine the extent to which each mechanism is active.  

Multimerization and aggregation could add synergy between mechanisms used by other 

DCSG cargo proteins in the aggregate. With such a model, it’s also easy to imagine how 

changing conditions within the cell could alter DCSG sorting efficiency of a protein, a 

potential control point that has important implications for hormone secretion but that has 

received little attention to date. 

 

 

1.8 Granule active Prohormone Convertases as a model to study 

sorting mechanisms of a DCSG cargo/tether 

 

In 1967, Donald Steiner demonstrated that large peptide hormones were post-translationally 

cut into smaller hormones by specific proteases and that this occurred at paired basic 

residues (112).  During the same year, Michel Chrétien and Choh Hoh Li discovered that 

beta-melanocyte stimulating hormone, gamma-lipotropin and beta-lipotropin were all 

derived from the same precursor: POMC (113).  Almost twenty years later, the PC family 

of calcium dependent mammalian serine proteases was established with the identification 

of furin (114).  The PC family’s characterization was established by the structural 

similarities between furin and both the yeast kexin 2 and the bacterial subtilisin enzymes 

(115).  Indeed, the yeast kexin 2 enzyme was capable of cleaving mammalian peptide 

hormones in endocrine cells (116).  Thus, PC enzymes will post-translationally activate 

large inactive precursor hormones by recognizing dibasic residues (usually arginines) 

within a general motif: (R/K)-(X) n-R↓; where n= 0, 2, 4 or 6, ↓ represents the cleavage site 

and X is any amino acid except cysteine and rarely proline (117).  There are currently 7 

known members of the PC family of which three: PC1/3, PC2 and PC5/6A are 

enzymatically active only in DCSGs:  Why would these three PC enzymes be different?  A 

close examination of the primary sequences of all PC enzymes reveals that they share 
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highly homologous domains.  In fact, all PC enzymes (Figure 1.5) contain a Pro domain 

restricting enzymatic activity in the early secretory pathway, a catalytic domain comprising 

the D, H, S catalytic triad of residues and a P-domain involved in both calcium-binding and 

stabilization (117).  The least homologous domain between all PC family members is the 

C-terminal domain (117).  Can this explain why the activity of PC1/3, PC2 and PC5/6A is 

restricted to granules? 

 

 

 

 

 
 

 

Figure 1.5: The Prohormone Convertases 

Schematic diagram comparing the structures of the various members of the basic amino 

acid specific members of the PC protease family. Note that the C-termini are the least 

conserved in this family 
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1.8.1 The cell biology of the granule-localized PC enzymes 

 

1.8.1.1 PC1/3 and PC2 

 

 Both PC1/3 and PC2 have a restricted distribution in mammals and are co-expressed 

in neurons (118), the hypophysis (119), the cardiovascular system (120), the pancreas 

(121), the thyroid gland (122), and in the adrenal gland (123).  Mouse knockout models of 

both PC1/3 and PC2 exist with the following phenotypes.  The PC1/3 knockout mouse has 

severe growth defects, hyperproinsulinaemia, defective growth hormone releasing hormone 

(GHRH) and POMC processing (124) while the PC2 knockout mouse has defects in 

hypoglycaemia, proinsulinaemia, glucagon deficiency and defects in opioid processing 

(125).  A quantitative neuropeptidomic analysis of both knockout models revealed a degree 

of redundancy in both enzymes.  Indeed, in the PC1/3 knockout mouse, activated levels of 

PC1/3 substrates remained unchanged leading the authors to believe that PC2 is 

compensating for the loss of PC1/3 (126).  Neuropeptidomic analysis of the PC2 knockout 

mouse displayed a 33% reduction in the processing of prohormones (127).  Regardless of 

the PC, both knockout models reduced the number of substrates being cleaved in DCSGs 

making the correct targeting of PC1/3 and PC2 to this organelle critical for endocrine 

homeostasis.  Perhaps the most striking effect was observed in a patient lacking active 

PC1/3 (128).  The patient had severe early obesity (at 6 yrs of age), adrenocortical 

insufficiency and hyperproinsulinaemia; all consequences of inactive PC1/3 being trapped 

in the ER (128). 

 Since the PC proteases are themselves synthesized as inactive precursors, the N-

terminal Pro domain is cleaved in both PC1/3 and PC2 rendering both enzymes active.  It 

has been reported that the Pro domain of PC1/3 is autocatalytically cleaved in the 

endoplasmic reticulum while PC2’s Pro region is cleaved in a later secretory compartment 
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(TGN or ISGs) that is more acidic (129).  Single amino acid substitutions in the Pro region 

of PC1/3 modify the inhibitory profile of PC1/3 (130) making a direct interaction between 

PC1/3’s Pro region and the catalytic site possible.  As for PC2’s propeptide, it also inhibits 

the enzyme’s activity.  In this case, the 7B2 granin chaperone will remove the propeptide 

within granules making targeting of both PC2 and 7B2 to DCSGs a critical event (93).  The 

activation of PC1/3 is also not fully complete until the enzyme reaches the DCSGs.  An 

additional autocatalytic cleavage of the C-terminal domain after a dibasic cleavage site at 

positions 617-618 renders the enzyme fully active (131).  Co-transfection of a substrate 

containing a dibasic cleavage site recognized by PC1/3 with either full length PC1/3 or a 

PC1/3 deletion mutant devoid of its C-terminal domain demonstrates that full length PC1/3 

can cleave substrates uniquely when its C-terminal domain has been removed in DCSGs 

while the C-terminal truncated mutant is active in a non-granular compartment (131).  In 

addition, co-transfection of the substrate with PC1/3 in a non-endocrine cell line resulted in 

no enzymatic PC1/3 activity while a similar experiment using the C-terminal truncated 

PC1/3 produced cleaved substrate products (131).  Thus, removal of the C-terminal of 

PC1/3 renders the enzyme active and this removal is dependent on the enzyme’s 

localization in DCSGs.  Rabah et al. demonstrated that the C-terminal domain of PC1/3 

inhibits PC1/3 activity in a non-competitive manner in the presence of its own Pro domain 

(132).  Thus, the propeptide may bind the catalytic center in the early secretory pathway 

and the C-terminal domain would bind elsewhere in the molecule.  An additional inhibitory 

mechanism restricting PC1/3 activity may exist.  Pro-SAAS (non acronymic) is a peptide 

present in DCSGs of neuroendocrine cells capable of inhibiting PC1/3 function in vitro 

(133).  Unfortunately, a pro-SAAS null mouse was made without any significant effect on 

PC1/3 activity (134).  In fact, the pro-SAAS null mice were obese as are the PC1/3 

knockout mice .  It's highly likely that pro-SAAS is a poor substrate for PC1/3 as it contains 

two non-optimal PC1/3-like recognition sites (133).  As for the DCSG targeting for PC1/3, 

it appears to be coordinated by alpha helices located within the C-terminus.  Indeed, three 

separate domains have been identified.  A first is located after the C-terminal autocatalytic 
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cleavage site between residues 617-638 and this domain is predicted to form a 

transmembrane alpha helix (135) though this characteristic remains controversial (136).  

Two separate regions between residues 667-753 are also predicted to form alpha helices 

and both these sequence are sufficient to sort a heterologous constitutively secreted fusion 

protein to granules (48).  A disruption of the second predicted helix located between 738-

751 with two proline residues in lieu of two leucine residues at positions 745 and 749 

respectively blocked sorting to granules.  In addition, a fusion protein expressing the native 

PC1 sequence between residues 711-753 (thus including the predicted helix between 

residues 738-753) was consistently located in the membrane fraction in transfected cells 

while the non-sorting proline mutant was mostly soluble.  A recent proteomics analysis of 

bovine secretory granules revealed that PC1/3 is present in both the membrane and soluble 

fractions (137).  These data are consistent with a membrane-anchoring role of alpha helices 

in sorting of PC1/3 to DCSGs followed by an intra-granular release of PC1/3 devoid of its 

C-terminal domain where it would be able to cleave substrates.  Moreover, PC2 also 

contains an alpha helical region in its C-terminal domain.  Deletion of these residues also 

blocked PC2 sorting (47).  Is sorting of PC5/6A, the third granule resident PC also 

dependent on regions in its C-terminus that can form alpha helices? 

 

1.8.1.2 PC5 

 PC5 expression is restricted to neuronal cells (138), glial cells (138), the thyroid 

gland (122), the gut (139), the adrenal (123)  and the cardiovascular system (123).  There 

are two PC5 isoforms produced from differentially spliced mRNAS generating PC5/6A, a 

915 residue long DCSG protein and PC5/6B, an 1877 residue long Golgi-localized protein 

with a C-terminal cytosolic tail (140).  Just like PC1/3 and PC2, the granule sorting 

sequence of PC5/6A has been localized in the last 38 residues of its C-terminal domain 

(140) without any specific motif having been detected.  The C-terminal domain also 

contains a cysteine-rich region, which is anchored on the cell surface where it can interact 
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with tissue inhibitors of metalloproteases (141).  In vitro data suggests that the PC5/6A’s 

Pro domain blocks its own activity as with the other two granule resident PCs (142).  

Interestingly, a block in PC5/6A expression results in an increase of PC2 expression (143) 

in a mouse intestinal tumor cell line.  Thus, the granule resident PC enzymes are capable of 

compensating for each other’s loss in animal models.  The PC5 null mouse resulted in a 

lethal phenotype demonstrating that the gene regulating PC5’s expression is essential (144). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: The Granule Resident members of the PC family.  

(A) PC1/3 activity is inhibited (arrows) by both its PRO and C-terminal domains (C-ter) in 

the ER/TGN.  Once in granules, the PRO domain is cleaved but remains bound to PC1 

while the C-terminal domain is autocatalytically cleaved resulting in an active enzyme.  (B) 

Repression of the PRO domain of PC2 is negated (arrow) by the 7B2 chaperone in 

granules.  (C) PC5/6A activity is also repressed (arrow) by its PRO domain in the early 

secretory pathway 
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1.9 Objectives of the dissertation 

 

In endocrine and neuroendocrine cells, the secretory pathway contains a regulated 

component ensuring the activation and subsequent release of hormones within DCSGs.   

The correct targeting of prohormones and their proteases to granules is thus critical 

for cellular function and depends on the diversion of granule-destined proteins at the TGN 

membrane.  The ability of primary sequences capable of forming alpha helices to act as 

DCSG sorting signals has been observed in granule resident proteins including PC1/3 (48) 

and PC2  (47).  Thus, we hypothesize that alpha helices are responsible for redirecting 

proteins to DCSGs and that this targeting is mediated by protein-lipid interactions. 

In the first objective, we will attempt to determine the biophysical characteristics of 

sorting helices by testing a series of synthetically engineered alpha helices that vary in 

residue composition, charge, amphipathicity and hydrophobicity. 

In the second objective, we will test whether an alpha helix is necessary for the DCSG 

targeting of PC5/6A as required for both PC1/3 and PC2.  Moreover, we will also assess 

the efficiency of entry into granules and compare differences between the three granule-

resident PC enzymes.  A biophysical analysis will be performed to compare differences in 

the sorting domains of proteins from a same family. 

 In the final objective, we will solve the three-dimensional solution structure of one 

of the PC1/3 helical DCSG sorting domains.  The function of the individual amino acids 

making up this DCSG sorting domain will be tested by site-directed mutagenesis. 

Taken together, these three objectives will advance our understanding of protein 

targeting to DCSGs by not only studying the sorting phenomenon but by also observing the 

structural characteristics of a DCSG sorting domain.  Indeed, the functional anatomy of a 

DCSG sorting domain will be defined by the characteristics of its alpha helix and its ability 

to interact with the DCSG milieu. 
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ABSTRACT 

 

Many endocrine and neuroendocrine cells contain specialized secretory organelles called 

dense core secretory granules. These organelles are the repository of proteins and peptides 

that are secreted in a regulated manner when the cell receives a physiological stimulus. The 

targeting of proteins to these secretory granules is crucial for the generation of certain peptide 

hormones including insulin, adrenocorticotropic hormone (ACTH) and others. While 

previous work has demonstrated that proteins destined to a variety of cellular destinations 

including secretory granules contain targeting sequences, no single consensus sequence for 

secretory granule sorting signals has emerged. We have previously shown that alpha helical 

domains in the carboxy-terminal tail of the prohormone convertase PC1/3 play an important 

role in the ability of this region of the protein to direct secretory granule targeting. In the 

current study we show that a variety of alpha helical domains are capable of directing a 

heterologous secretory protein to granules. By testing a series of synthetic alpha helices we 

also demonstrate that the presence of charged (either positive or negative) amino acids, 

spatially segregated from a hydrophobic patch in the alpha helices of secretory proteins likely 

plays a critical role in the ability of these structures to direct secretory granule sorting. 
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INRODUCTION 

 

 Many enzymes and peptide hormones, such as renin, insulin, adrenocorticotropic 

hormone (ACTH) and others, are synthesized as precursors that are proteolytically 

activated before secretion from the cell. In most cases, this proteolytic activation only 

occurs after the precursors are selectively targeted to specialized organelles found in 

endocrine and neuroendocrine cells called dense core secretory granules (1;2). This process 

depends on the efficient co-targeting of the activating protease and its substrate from the 

trans-Golgi network (TGN) to nascent secretory granules where the protease processes the 

precursor. Since the resulting polypeptide hormones are stored within secretory granules 

until the cell receives a signal for their release, this mode of protein export from the cell is 

called the regulated secretory pathway. 

 Several protein domains have been implicated in the process of sorting proteins to 

dense core secretory granules. The function of these domains can be grossly subdivided 

into three groups: The first group involves formation of high molecular weight protein 

complexes or aggregates. Indeed, many granule targeted proteins have the ability to 

multimerize or aggregate, leading in most cases to the formation of electron dense cores 

(reviewed in (3)). Expression of a variety of granule cargo proteins including chromogranin 

A (4;5), pro-vasopressin, pro-oxytocin, pro-opiomelanocortin (POMC), secretogranin II 

and chromogranin B (5) is sufficient to induce aggregate-containing cytoplasmic vesicles in 

cells that do not normally contain secretory granules, although these vesicles do not have 

all of the characteristics of secretory granules (5). Proinsulin, POMC and engineered 

proteins containing the carboxy-terminal tail of prohormone convertase PC1/3 also form 

multimers; however this property alone is insufficient to direct granule sorting (6;7). Thus, 

aggregation or multimerization may contribute to secretory granule targeting efficiency 

although it has not been shown in many cases to be essential. A second group of granule-

sorting domains may act by binding cargo proteins to granule-tethered proteins. For 
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example, carboxypeptidase E (CPE) has been proposed to interact with a number of granule 

cargo proteins including POMC, proenkephalin, growth hormone and proinsulin and to 

promote their retention in secretory granules, even though some of these are not enzymatic 

substrates of CPE (8-10). In addition, paired basic amino acids (that may form semi-stable 

complexes with granule-resident proteases) have been reported to direct secretory granule 

sorting in some proteins including prosomatostatin (11), prorenin (12) and progastrin (13). 

Muclin, a type I membrane protein granule-resident protein, has also been suggested to act 

as a granule cargo “receptor” in pancreatic cells through its binding of sulfate groups on O-

linked glycosylated proteins (14). Thus, a variety of interactions with “tethers” may serve 

to target proteins to secretory granules. A third class of granule targeting proteins domains 

involves the direct association of proteins with the secretory granule membrane. Peptidyl-α-

amidating monooxygenase (PAM) (15), phogrin (16) and muclin (14) are all type 1 

membrane-spanning proteins that are targeted to dense core secretory granules. Proteins 

may also interact, but not span, granule membranes: For example, the membrane-binding 

domains of the granule-resident protein carboxypeptidase E (17;18) and the prohormone 

convertases PC1/3 (7;19), and PC2 (20) are key for their targeting to dense core secretory 

granules. In each of these cases, as well as in prosommatostatin (21)  and the neuronal and 

endocrine polypeptide VGF (22), the granule sorting domain includes one or more short 

alpha helical domains. Taken together, these results raise the possibility that the presence of 

alpha helical domains plays an important role in the targeting of certain proteins to nascent 

secretory granules. In the current study we have sought to obtain a better understanding of 

the mechanism by which granule sorting alpha helices function. A systematic analysis of a 

series of alpha helices varying in either their polar or non-polar residues or their 

amphipathicity indicates that the hydrophobic face of an alpha helix is likely critical for 

targeting proteins to secretory granules. 
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EXPERIMENTAL PROCEDURES 

Recombinant plasmid construction 

 Naturally occurring peptide fragments to be analyzed for secretory granule sorting 

were derived from the mouse PC1/3 (NM_013628) and the human prorenin cDNAs 

(NM_000537). The numbering used to identify the protein domains is relative to initiator 

methionine of both proteins. Protein fragments were tested for their ability to sort 

heterologous proteins to secretory granules by attachment to a fragment of mouse 

immunoglobulin IgG2b (referred to as Fc) as previously described ((7) and illustrated in 

Figure 2.1C). Fusion proteins were constructed by selective amplification of corresponding 

fragments using polymerase chain reaction (PCR). Attachment of the K/L+W synthetic 

amphipathic alpha helices KLLKLLLKLWLKLLKLLL (23) to the Fc fusion protein 

containing PC1/3 711-740 (Figures 2.1, 2.2) or the Fc protein alone (Figure 2.3) was 

accomplished by insertion of double stranded oligonucleotides with the following forward 

sequences: K/L+W: AAG CTG TTG AAA CTA TTG CTG AAA CTG TGG CTA AAG 

CTG TTG AAG CTA CTG CTA TGA.  Remaining synthetic helices (Figure 2.3 and Table 

2.2) were similarly constructed by using the following forward nucleotides: K/V+W: AAG 

GTG GTT AAA GTC GTG GTT AAG GTC TGG GTG AAG GTT GTC AAA GTG GTT 

GTC TGA; Non-amphi.: AAG AGA CTG AAA TTG CTA CTG AAG TTG TGG CTA 

AAA CTG TTG AAG CTA AAA AAG TGA; E/L+W: GAG CTG TTG GAA CTA TTG 

CTG GAG CTG TGG CTA GAA CTG TTG GAG CTA CTG CTA TGA; D/L+W: GAC 

CTG TTG GAT CTA TTG CTG GAC CTG TGG CTA GAT CTG TTG GAC CTA CTG 

CTA TGA;  K/A+W: AAG GCT GCA AAA GCC GCA GCG AAG GCA TGG GCG 

AAG GCT GCG AAA GCT GCC GCA TGA; K/A: AAG GCT GCA AAA GCC GCA 

GCG AAG GCA GCT GCG AAG GCT GCG AAA GCT GCC GCA TGA; G/L+W: GGC 

CTG TTG GGT CTA TTG CTG GGG CTG TGG CTA GGG CTG TTG GGT CTA CTG 
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CTA TGA. All of the resulting coding sequences were verified in their entirety by DNA 

sequencing and were inserted into the pRSV globin mammalian expression vector (7). 

 

Mammalian cell culture, transfection and secretion analysis  

 Mouse corticotrophic AtT-20 cells were grown in Dulbecco’s minimal essential 

medium (DMEM; Invitrogen, Burlington, Ontario, CANADA) containing 10% fetal bovine 

serum (FBS) in a humidified incubator at 37 ºC in 10% CO2. Expression vectors were 

stably transfected into AtT-20 cells by co-transfection with pSV-Neo (Invitrogen, 

Burlington, Ontario, CANADA) and selection of stable pools was carried out in Geneticin 

(G418, Invitrogen, Burlington, Ontario, CANADA). G418-resistant pools of cells were 

used for all subsequent studies. 

For metabolic labeling, 4.5 X 105 stably transfected cells were plated in each of two 35mm 

dishes. Twenty-four hours later, the medium was replaced with 0.5 ml of pre-warmed 

methionine-free DMEM containing 10% dialyzed FBS for 1 hrs. Labeling was achieved by 

addition of 300 µCi of 35S-methionine/cysteine (Trans-35S Label; MP Biomedicals, Irvine, 

CA) for 2 hours. Medium was then replaced with pre-warmed complete medium for 16 hrs. 

(chase). To test for regulated secretion the cells were rinsed in complete medium and in one 

of the wells, the cells were incubated for an additional 3 hours in complete medium to 

measure constitutive secretion while in the other well the cells were incubated in complete 

medium supplemented with 10µM forskolin (Sigma-Aldrich, St. Louis), a secretagogue 

which stimulates secretory granule release. The corresponding culture supernatants were 

then immunoprecipitated with Protein-A Sepharose (Sigma-Aldrich, St. Louis) and the 

immunoprecipitated proteins were separated by SDS-PAGE. The gels were incubated with 

3 changes of 10% 2,5-Diphenyloxazole (PPO; Sigma-Aldrich, St. Louis) in dimethyl 

sulfoxide, rinsed in water, dried and subjected to fluorography. Dried gels were 

subsequently exposed to storage phosphor screens and emissions were quantified using a 

Storm Phosphorimager (GE Healthcare, Mississauga, Ontario). Results were compared by 
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one-way ANOVA using Dunnet’s post-test and are expressed in Table 2.I as mean ± SEM. 

The forskolin-stimulated secretion of the endogenous granule cargo peptide beta-endorphin 

(2.00 ± 0.14, n=15) was determined by radioimmunoassay in each experiment and was 

used to ensure that the stimulation of AtT-20 cell granule release was comparable in all 

experiments.  

 

Protein secondary structure predictions. 

 Secondary structure predictions (Table 2.2) were carried out with the NNPREDICT 

(24), GOR III (25) and PROF (26) algorithms. Helical wheel projections and isoelectric 

point calculation (pI) were carried out with the EMBOSS (The European Molecular 

Biology Open Software Suite) software package (27). Hydrophobic cluster analysis was 

carried out by the method of Gaboriaud et al. (28). 

 

Immunocytochemistry and confocal microscopy 

 AtT-20 cells stably transfected with the appropriate expression vector were seeded 

onto Lab Tek Glass Chambers (Nalgene Nunc, Napierville, Il) at a density of 10,000 

cells/chamber.  Twenty four hours later, the cells were fixed with 4% paraformaldehyde in 

Tris-buffered saline (TBS) for 10 minutes at room temperature, rinsed in TBS and 

permeabilized with absolute methanol at –20 °C for 10 min.  Non-specific binding was 

blocked for 30 minutes with 5% non-fat milk in TBS at 4°C for 1 hr. Slides were incubated 

with a polyclonal rabbit anti-ACTH antibody (1:300, obtained from Nabil G. Seidah, 

IRCM) and an anti-mouse IgG antibody (Invitrogen, Burlington, Ontario, CANADA) 

conjugated to ALEXA 488 (1:200) for 1 hr. at room temperature in blocking buffer.  The 

slides were subsequently washed with TBS and incubated with anti-Rabbit IgG antibody 

conjugated to rhodamine (1:100; Chemicon, Temecula, Ca) for 1 hr. at room temperature.  
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Slides were mounted using SlowFade Light Antifade Kit, (Invitrogen, Burlington, Ontario, 

CANADA) and visualized using a Zeiss LSM 510 Confocal Microscope. 
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RESULTS 

Exposed alpha helices direct secretory proteins to granules 

 To compare the ability of various alpha helical domains to redirect a constitutively 

secreted protein into secretory granules, we analyzed the secretory properties of a series of 

pulse-labeled recombinant fusion proteins in mouse pituitary AtT-20 cells either in the 

absence or presence of forskolin, a secretagogue that increases intracellular cAMP resulting 

in the release of secretory granules. AtT-20 cells contain dense core secretory granules in 

which endogenous proopiomelanocortin (POMC) is processed into adrenocorticotropic 

hormone (ACTH) by a series of proteolytic cleavages involving PC1/3 (reviewed in (29)). 

As we have previously shown (7), a recombinant protein expressing a single chain fragment 

of the mouse immunoglobulin heavy chain constant region is secreted constitutively (i.e., 

not retained in granules) when expressed in these cells as evidenced by equivalent levels of 

secretion in absence (-F; constitutive secretion) and presence (+F; regulated secretion) of 

forskolin (Figure 2.1C, Fc). By contrast, attaching the region of the PC1/3 C-terminal tail 

comprising amino acids 711-753 onto the C-terminus of the Fc fragment (Fc:PC1/3 711-

753) leads to its increased secretion in the presence of forskolin, demonstrating that the 

fusion protein had been diverted to the regulated secretory pathway. This portion of the 

PC1/3 C-terminal tail contains a region predicted to form an alpha helix (Figure 2.1A) 

which is crucial for its ability to direct secretory granule sorting (7). The importance of the 

alpha helix in directing sorting is confirmed by the loss of forskolin-stimulated release of 

the fusion protein in which the helix domain is deleted (Figure 2.1; Fc: PC1 711-740). To 

determine if there is some unique characteristic of alpha helices that are capable of sorting 

proteins to secretory granules, we replaced the natural helix predicted to reside in the last 

13 amino acids of PC1/3 C with an entirely synthetic amphipathic alpha helix (23). This 

alpha helix (Figure 2.1B K/L+W; also referred to as Hel 13-5 in references 30-33) has been 
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shown to bind with high affinity to both model membranes and biomembranes (30;31) and 

to reorganize Golgi-specific phospholipid micelles into nanotubular structures (32). 

Surprisingly, substitution of the native helical peptide with the synthetic alpha helix led to 

regulated secretion of the fusion protein in AtT-20 cells (Figure 2.1C; Fc: PC1/3 711-740 

K/L+W). To further test whether the simple exposure of alpha helical domains on secretory 

proteins could be sufficient to target proteins to secretory granules, we attached the first 31 

amino acids of the human prorenin prosegment to the C-terminus of the Fc fragment 

(Figure 2.1C; Fc:hProren 1-31). While this region of human prorenin contains two 

predicted alpha helical domains (33) (Figure 2.1B), these play no role in secretory granule 

sorting in the native protein context (12). However, when placed C-terminal to the Fc 

fragment, the prorenin prosegment has the ability to confer regulated secretion to the fusion 

protein (Figure 2.1C; Fc:hProren 1-31). Quantification of granule sorting efficiency and 

comparison to the forskolin-stimulated secretion of endogenous beta-endorphin (a peptide 

product of POMC cleavage in secretory granules) confirms that all of the helix-containing 

domains divert the normally constitutively secreted Fc fragment into the regulated secretory 

pathway (Table 2.1).  
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Figure 2.1: A variety of alpha helices are able to target proteins to secretory granules.  

 (A) The C-terminal tail of PC1/3 from amino acids 711-753 is sufficient to target 

heterologous proteins to the regulated secretory pathway (7). (B) Heterologous alpha 

helical domains tested for granule targeting. (Top) A fusion between a portion of the PC1 

C-terminal tail in which the native granule-sorting alpha helical region has been deleted and 

replaced with a synthetic helix (bold type). The novel predicted helical region is overlined. 

(Bottom) A portion of the pro region of prorenin between amino acids 1 and 31 contains 
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two predicted alpha helical regions (overlined) neither of which are involved in secretory 

granule targeting in the native protein (12). (C) Transfection assay to test for secretory 

granule targeting. The fusion proteins (depicted in schematic form on the right) consisted of 

a signal peptide (sp) and a fragment of the mouse immunoglobulin heavy chain (Fc) in 

addition to the putative sorting domains described above. Parallel wells of stably 

transfected AtT-20 cell pools expressing the various fusion proteins were pulse-labeled for 

2 hrs and chased with unlabeled medium for an additional 16 hrs. After the chase period, 

the supernatants were collected from the parallel wells (two lanes labeled C) and the cells 

were subsequently incubated for an additional 3 hrs either in the absence (-F) or presence 

(+F) of the secretagogue Forskolin. Fc containing proteins in the culture supernatants were 

immunoprecipitated with Protein A Sepharose, separated by SDS-PAGE and detected by 

fluorography.   

 

 

FUSION PROTEIN n= SORTING INDEX 

(+F/-F) 

Fc 8 0.94 ± 0.10 

Fc:PC1/3 711-753 5 4.82 ± 0.55** 

Fc:PC1/3 711-740 3 1.25 ± 0.39 

Fc:PC1/3 711-740Synth 4 3.24 ± 0.12** 

Fc:hProren 1-31 8 3.25 ± 0.16** 

 

Table 2.1: Secretory granule sorting efficiency of fusion proteins in transfected AtT-

20 cells.  

Immunoprecipitated fusion proteins from autoradiograms similar to those shown in Figure 

2.1 were quantified by exposure to a storage phosphor screen. Values shown are the mean ± 

SEM for multiple independent experiments.**P< 0.01 as compared to Fc. 
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As an independent confirmation of the ability of these alpha helices to direct secretory 

granule targeting, we compared the sub-cellular distribution of the various Fc fusion 

proteins to that of ACTH, an endogenous granule-resident protein in AtT20 cells (Figure 

2.2). Labeling of the transfected AtT-20 cells with an anti-ACTH antibody (Figure 2.2, 

middle column) results in staining of POMC, the precursor of ACTH in the Golgi apparatus 

(asterisks) as well as speckled staining of ACTH in dense core secretory granules which are 

concentrated in cytoplasmic extensions ((34); closed arrowheads). When either the Fc 

protein alone or the Fc protein attached to the 711-740 fragment of PC1/3 are expressed, 

staining is localized primarily in the Golgi and perinuclear area (left column, asterisks), 

indicating inefficient sorting to granules as predicted by our biochemical studies, above. In 

contrast, attachment of either the 711-753 region of PC1/3 or the human prorenin 

prosegment to the Fc fragment or the synthetic K/L+W alpha helix to Fc:PC1/3 711-740 

leads to a dramatic increase of fusion protein detection in cytoplasmic extensions (Figure 

2.2). This staining corresponds to secretory granules as evidenced by its co-localization 

with ACTH (right column). Thus, the sub-cellular distribution of the fusion proteins as 

determined by confocal microscopy confirms the results obtained by biochemical assays 

and strongly suggests that any exposed alpha helical domain in a secretory protein can 

direct the protein to dense core secretory granules. 
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Figure 2.2: A variety of alpha helix-containing domains target fusion proteins to 

secretory granules.  

Stably transfected mouse pituitary AtT-20 cells were simultaneously immunolabeled with 

antibody to the various fusion proteins (Fc, left panel) and endogenous ACTH (middle 

panel). The asterisks denote the Golgi apparatus that stains for all of the fusion proteins as 

well as the ACTH precursor POMC. The closed arrowheads denote the cytoplasmic 
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extensions where ACTH-containing secretory granules are concentrated. Note that the 

relative staining intensity of the fusion proteins (green, left panels) in the granule-

containing cytoplasmic extensions increases dramatically when either of the three helix-

containing domains is attached to the fusion protein. Original magnification 63X. 

Reference size bar is in the upper left panel. 
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Biochemical characteristics of granule-targeting alpha helices 

 Although the data presented above demonstrate that the presence of an alpha helix 

is necessary for the granule sorting activity of the protein fragments tested, they do not test 

whether an alpha helix is sufficient to constitute a granule-sorting signal. To test this 

possibility, we have attached the K/L+W helix directly to the C-terminus of the Fc protein 

and examined its sorting to secretory granules in stably transfected AtT-20 cells. Because 

the fusion proteins attached to various synthetic alpha helices were secreted with variable 

kinetics from the transfected cells (data not shown), we could not directly compare their 

sorting by pulse-chase analysis. For this reason and because the cellular distribution of the 

fusion proteins by microscopy confirms the pulse chase analysis (Figure 2.2), we chose to 

test for the steady-state distribution of the helix-containing fusion proteins in transfected 

AtT-20 cells (Figure 2.3). Analysis of the distribution of the Fc protein fused to the K/L+W 

helix showed an identical pattern of distribution of Fc and ACTH staining, both in the 

Golgi apparatus (asterisks) as well as the cytoplasmic extensions (closed arrowheads). 

Thus, it appears that the K/L+W helix is sufficient to re-direct the constitutively secreted Fc 

protein to secretory granules.  To derive an estimate of the efficiency of granule sorting 

with this fusion protein, the fraction of Fc-expressed cells that contained the fusion protein 

in the granule-containing cytoplasmic extensions was determined (Table 2.3).  The K/L + 

W helix was present in 70.40 ± 3.06 % of the cells in the cytoplasmic extension, suggesting 

a high efficiency of targeting to secretory granules. 

 The finding that synthetic helices are sufficient to direct secretory granule targeting 

in fusion proteins permits the analysis of the biochemical requirements for the sorting 

activity by introducing systematic amino acid substitutions. As shown in the helical wheel 

projection in Table 2.2, the K/L+W helix is amphipathic (23) with a predicted isoelectric 

point (pI) of 11.4. To test for the contribution of the positive charge of the helix, we 

substituted the lysines with negatively charged glutamic acid residues. Thus, the E/L+W 

helix is also predicted to be amphipathic but has a pI of 3.3 (Table 2.2). Nevertheless, 
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confocal microscopy shows that the negatively charged E/L+W helix also redirected the 

fusion protein to secretory granules as evidenced by its co-localization with ACTH in the 

cytoplasmic extensions in 63.27 ± 3.37 % of the cells (Figure 2.3, closed arrowheads).  

Interestingly, replacing the glutamic acid residues with aspartic acid (D/L+W), while not 

significantly changing the pI of the helix (Table 2.2) led to reduced co-localization of the 

fusion protein with ACTH in cytoplasmic extensions and a more diffuse staining 

throughout the cell body with only 36.17 ±1.57 % of the fusion protein being present in 

cytoplasmic extensions (Figure 2.3, D/L+W).  Moreover, a comparison of the distribution 

of the Fc fusion proteins linked to K/L+W, E/L+W and D/L+W reveals that only the helix 

containing the glutamic acids (E/L+W) co-localizes with POMC in the perinuclear Golgi 

apparatus.  

 To test the importance of the hydrophobic face of the helices in sorting, we 

progressively decreased the hydrophobicity of the amino acids on that side of the helix.  

Accordingly, the K/V+W, K/A+W helices gradually reduce the size and hydrophobicity of 

the side chains on the hydrophobic face, whereas the K/A helix also removes the bulky 

tryptophan hydrophobic group. While the K/V+W helix led to a degree of co-localization 

with ACTH comparable to that seen with the K/L+W helix (66.86 ± 1.45 of K/V +W in 

cytoplasmic extensions), the K/A+W helix shows more staining of the fusion protein in the 

Golgi apparatus than in the granule containing extensions with only 3.20 ±1.60 % of the 

fusion protein present in cytoplasmic extensions (K/A+W, closed arrowheads). Strikingly, 

removal of the bulky hydrophobic tryptophan residue from the uncharged face of the helix 

leads to detection of the fusion protein only in the Golgi apparatus (K/A, <0.9% of the 

fusion protein is present in cytoplasmic extensions). Thus, the ability of the helix to direct 

proteins to secretory granules appears to correlate with its hydrophobicity. 

 To test whether amphipathicity is necessary for the sorting activity of the helix, we 

replaced three leucine residues on the hydrophobic face of the amphipathic helix with three 

positively charged amino acids (Table 2.2, Non-amphi., Helical wheel projection).  

Confocal microscopy of transfected AtT-20 cells revealed that this non-amphipathic helix 
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efficiently redirects the fusion protein to secretory granule-containing cytoplasmic 

extensions where it co-localizes with ACTH in 72.05 ± 1.95 % of the cells (Figure 2.3, 

Non-amphi., closes arrowheads).  In order to determine if a charged face on the helix is 

important for its activity in directing secretory granule sorting, a helix was designed with 

non-polar glycine residues replacing the charged residues while maintaining the 

hydrophobic face (Table 2.2, G/L+W). This G/L+W helix-containing fusion protein shows 

no co-localization with POMC or ACTH in either the Golgi apparatus or the cytoplasmic 

extensions of the transfected cells, but rather shows a weak and diffuse cytoplasmic 

staining pattern in permeabilized cells (Figure 2.3, G/L+W).  Immunocytochemistry of the 

G/L + W helix under non-permeabilizing conditions resulted in staining of the plasma 

membrane suggesting that the fusion protein containing the G/L + W helix is restricted to 

the membrane surface.  Surprisingly, when the cells were prepared under non-

permeabilizing conditions, a strong generalized staining pattern for the G/L+W helix-

containing fusion protein was detected, consistent with the distribution of the fusion protein 

on the cell surface (Figure 2.4, lower right panel).  This staining pattern was not seen in 

cells expressing the fusion protein containing the very similar helix in which the glycines 

were replaced with lysines (Figure 2.4, upper right panel).  Indeed, we have been unable to 

detect secretion of the G/L+W helix-containing fusion protein in culture supernatants after 

metabolic labeling (data not shown).  Thus, although amphipathicity per se does not seem 

to play a critical role in the ability of the helix to direct sorting of the fusion protein to 

secretory granules, maintenance of a charged surface on the helix is essential in allowing a 

protein to dissociate from the plasma membrane and be efficiently secreted. 
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Table 2.2: Biochemical characteristics of the synthetic helices tested for granule 

sorting activity:  

Isoelectric point (pI) and helical wheel projections were determined using the EMBOSS software 

package (27). Secondary structure was either predicted with the NNPREDICTA, GOR IIIB and 

PROF C algorithms(24) (25) (26) or determined by circular dichroismD (23). Hydrophobic cluster 

analysis was carried out by the method of Gaboriaud et al. (28). The filled diamond shapes 

represent the positions of the non-polar glycine residues. Circled sequences represent hydrophobic 

patches. 
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Figure 2.3: Granule-targeting efficiency of alpha helices with differing biochemical 

properties.  

 

Fc fusion proteins attached to various non-natural alpha helices were stably transfected in 

mouse pituitary AtT-20 cells and simultaneously immunolabeled with antibody to detect 

the fusion proteins (Fc, left panel) and endogenous ACTH (middle panel). See Table 2.2 for 

the primary sequence and structural characteristics of the helical domains tested. The 

asterisks denote the Golgi apparatus that stains for all of the fusion proteins as well as the 
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ACTH precursor POMC. The closed arrowheads denote the cytoplasmic extensions where 

ACTH-containing secretory granules are concentrated. Yellow staining in the right panel 

denotes co-localization of staining for the Fc fusion proteins and POMC/ACTH. Original 

magnification was 63X. Reference size bar is in the upper left panel. 

 

 

 

 

 

 

 

Fc Fusion protein Percent expressing cells showing localization 

in cytoplasmic extensions (%) 

Fc 2.15 ± 1.57 

K/L + W 70.40 ± 3.06 *** 

E/L + W 63.27 ± 3.37 *** 

D/L + W 36.17 ± 1.57 *** 

K/V + W 66.86 ± 1.45 *** 

K/A + W 3.20 ±1.60 

K/A 0.98 ±0.98 

Non-amphipathic 72.05 ±1.95 *** 

G/L + W 1.54 ±1.50 

Table 2.3: Secretory granule sorting efficiency of Fc fusion proteins containing 

various alpha helical peptides with differing biochemical properties.  

Stably transfected AtT-20 cells were immunostained as in Figure 2.3 and the percent of Fc-

expressing cells with staining in granule-containing cytoplasmic extensions was assessed in 

100 separate cells each in three independent experiments.  Values shown are the mean ± 

SEM. ***P< 0.001 as compared to Fc. 
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Figure 2.4: The G/L+W fusion protein is localized to the cell surface.  

Transfected AtT-20 cells stably expressing Fc fusion proteins with either the K/L+W or 

G/L+W peptides at their C-terminus were stained with fluorescent antibody to the Fc 

protein as described in Figure 2.2 and 3, but without permeabilization. Note that while the 

G/L+W containing Fc fusion protein showed little intracellular staining (Figure 2.3), 

abundant staining is detected in the absence of permeabilization, suggesting localization to 

the cell surface (G/L+W, right lower panel). In contrast, the K/L+W peptide does not direct 

the Fc fusion protein to the cell surface (right, upper panel). Original magnification was 

63X. Reference size bar is in the upper left panel 
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DISCUSSION 

 In this study, we have provided evidence that the simple exposure of an alpha 

helical domain is sufficient to direct a linked secretory protein to dense core secretory 

granules. Although it is clear that alpha helices are present in numerous secretory proteins 

that do not enter secretory granules, placement of these helices in the context of our fusion 

proteins may expose them, making them able to interact with membranes or other granule 

sorting components in the secretory pathway. This would explain the ability of the prorenin 

alpha helices to direct granule sorting in the fusion protein while they have no such ability 

in the native protein. The alpha helices in the C-terminal tail of PC1/3 may, themselves, be 

masked until the enzyme undergoes a conformational change in the TGN where the tail has 

been proposed to unfold and render the enzyme fully active (29;35). In this model, the 

autocatalysis of the C-terminal tail would have to take place after formation of the 

immature secretory granule since the tail would provide the anchor for retention of PC1/3 

in the nascent granule buds.  

 The most surprising finding of the current study is that a completely synthetic alpha 

helix is sufficient to redirect a constitutively secreted protein into the regulated secretory 

pathway, thereby confirming that it is the helix itself, and not adjacent sequences, that 

directs the secretory granule sorting of the fusion protein. This finding made it possible to 

systematically characterize the biochemical requirements for this sorting activity. The 

initial peptide that we tested (K/L+W) was previously shown to form an amphipathic helix 

and to rearrange Golgi-enriched liposomes into nanotubular structures in vitro (23). For 

direct comparison of the activity of this helix in in vitro liposome deformation and in vivo 

secretory granule sorting, we included the bulky hydrophobic tryptophan residue placed 

originally in this helix to measure tryptophan quenching in vitro (23). Our results 

demonstrated that the presence of the hydrophobic leucine and tryptophan residues in the 

helix played a critical role in conferring sorting activity (Figure 2.3 and Table 2.3).  In 
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addition, although there was no strict requirement for amphipathicity (non-amphipathic 

helix) (Figure 2.3 and Table 2.3), there did seem to be a correlation between the ability of 

the helix to direct sorting and clustering of hydrophobic residues (Table 2.2) and the degree 

of hydrophobicity of the residues in the cluster (Leu > Val > Ala). In addition to the 

requirement for hydrophobic residues, sorting helices also required segregated charged 

residues since removal of the charges (e.g., G/L+W) completely eliminated the sub-cellular 

sorting of the fusion protein to the secretory granule and caused the fusion protein to be 

accumulated at the cell surface.  The finding that both negatively and positively charged 

amino acids could be substituted in the helix supports the role of the charge beyond a 

primary recognition event in the sorting (e.g. with another protein or with a charged lipid). 

The seemingly more efficient sorting of the helix containing glutamic acids (E/L+W) as 

compared to the helix containing aspartic acids (D/L+W) remains difficult to understand.  

Notably, the aspartic acid side chain is the smallest among the charged amino acids we 

tested, raising the possibility that larger charged side chains are more efficient in directing 

granule sorting. Interestingly, the natural sorting helices of PC1/3 (Figure 2.1), PC2 (20) 

and CPE (18) are rich in glutamic acids. One possible explanation for the role of the 

charged amino acids is that they maintain a shallow interaction of the helix with the inner 

leaflet of the TGN membrane.  This model is supported by the behavior of the G/L+W 

peptide, in which elimination of the charged residues caused the helix to behave as if it 

were anchored in the membrane and unable to be secreted. 

 The importance of the hydrophobic amino acids and the relative unimportance of 

the charge of the polar residues have been reported in other membrane-deforming helices. 

Both positively and negatively charged synthetic alpha helices are equally capable of 

deforming liposomes into tubular structures in vitro (32). Mutation of the hydrophobic 

residues in a non-membrane spanning alpha helical region of the membrane-interacting 

protein epsin abolishes its ability to curve membranes (36). Similarly, mutation of 

hydrophobic residues in Sar1p (a component of the COPII complex) abolished its ability to 

deform lipid vesicles in vitro whereas mutation of the charged residues within the helix had 
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no effect (37). The current results suggest that alpha helices involved in sorting proteins to 

secretory granules might also act by interacting directly with membranes. Indeed, PC1/3 

(7;19), PC2 (20) and CPE (18) have been reported to bind membranes through their helical 

sorting domains. These hydrophobic-plasma membrane interactions may function to assist 

in the pinching off of the TGN membrane to form the secretory granules. This argues for a 

shallow interaction between alpha helices and membrane components permitting targeting 

to secretory granules and subsequent secretion in the extracellular milieu.  

 In summary, we have shown that simple exposure of an alpha helix at the C-

terminal end of a constitutively secreted protein redirects this protein to the regulated 

secretory pathway.  The major characteristic of an alpha helix important for targeting 

proteins to secretory granules would be the presence of both a hydrophobic cluster and 

segregated charged amino acids. 
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SUMMARY 

There are seven members of the Prohormone Convertase (PC) family of secreted serine 

proteases that cleave their substrates at basic amino acids thereby activating a variety of 

hormones, growth factors and viruses. PC1/3, PC2 and PC5/6A are the only members of 

the PC family that are targeted to dense core secretory granules where they carry out the 

processing of proteins that are secreted from the cell in a regulated manner.  Previous 

studies have identified alpha helices in the C-termini of the PC1/3 and PC2 proteases that 

are required for this sub-cellular targeting. In the current study, we demonstrate that a 

predicted alpha helix in the C-terminus of PC5/6A is also critical for the ability of this 

domain to target a heterologous protein to the regulated secretory pathway of mouse 

endocrine AtT-20 cells. Analysis of the subcellular distribution of fusion proteins 

containing the C-terminal domains of PC1/3, PC2 and PC5/6A confirmed that all three 

domains have the capacity to redirect a constitutively secreted protein to the granule-

containing cytoplasmic extensions. Analysis of the predicted structures formed by these 

three granule sorting helices shows a correlation between their granule sorting efficiency 

and the clustering of hydrophobic amino acids in their granule targeting helices. 
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INTRODUCTION 

 

The Proprotein Convertases (PC) constitute a distinct family of serine proteases 

related to bacterial subtilisin and the yeast kexin proteases. The PC enzymes cleave their 

substrates after paired basic amino acids and they are known to participate in the proteolytic 

activation of a variety of hormones, growth factors, enzymes, receptors and viruses either in 

the secretory pathway or after secretion from the cell (for review see [1]).  Upon entry into 

the Trans-Golgi Network (TGN), the majority of the PC enzymes, including furin, PC4, 

PACE4 and PC7, enter low-density secretory vesicles and are secreted from cells in a 

constitutive manner.  Only three of the seven known basic amino acid-specific PC 

enzymes, PC1/3, PC2 and PC5/6A, are selectively targeted to dense core secretory granules 

of endocrine and neuroendocrine cells where they activate their substrates. Targeting of 

proteins to dense core secretory granules requires the recognition of one or more sorting 

signals in the TGN and granule-resident proteins are either selectively included or retained 

in nascent secretory granules (reviewed in [2]).  The resulting secretory granules 

subsequently undergo a series of maturation steps that include processing of hormone 

precursors, condensation to form a dense core and docking at the plasma membrane. 

Because dense core secretory granules are released from the cell in response to a 

physiological stimulus, this mechanism of secretion is referred to as the regulated secretory 

pathway.  While the transit time through the regulated secretory pathway is in the order of 

hours, transit through the constitutive secretory pathway can be completed within minutes.   

The various PC enzymes share a common general structure that includes an amino-

terminal prosegment which is autocatalytically cleaved, a central catalytic domain 

comprising the catalytic triad amino acids aspartic acid, histidine and serine and a 

stabilizing P- domain involved in the binding of calcium [1].  The C-terminal domains of 

the PC enzymes exhibit the least amount of homology between the family members. 

Several lines of evidence suggest that the granule sorting signals for PC1/3, PC2 and 
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PC5/6A reside in the C-terminal domain of these enzymes. PC1/3 devoid of its C-terminal 

domain is efficiently expressed and enzymatically active, but no longer enters the regulated 

secretory pathway [3;4]. A predicted amphipathic alpha helix in the last 43 amino acids at 

the C-terminus of PC1/3 is necessary for this domain to target a heterologous fusion protein 

to secretory granules and mediates the interaction of this domain with the membrane 

fraction of expressing cells [3].  Likewise, a protein domain in the C-terminal tail of PC2 is 

capable of redirecting heterologous proteins to secretory granules [5;6]. This sorting 

activity is contained in the last 25 amino acids of PC2 and has been reported to form an 

amphipathic alpha helix capable of interacting with raft resident lipids [6].  

The granule-targeting domain of the PC5/6A protease has been less well defined. 

Alternative splicing produces two forms of PC5/6A that differ in their C-termini [1]: The 

longer form (PC5/6B) contains a C-terminal transmembrane domain that retains the 

enzyme in the Golgi apparatus. The shorter form, PC5/6A, is secreted by both the 

constitutive and regulated secretory pathways.  Similar to PC1/3, C-terminal tail of PC5/6A 

is removed by a proteolytic cleavage once it enters secretory granules [7].  Engineered 

deletion of the last 38 residues within this C-terminal tail of PC5/6A leads to its exclusive 

secretion from the constitutive secretory pathway [8], consistent with the existence of a 

secretory granule sorting signal in this domain.  In the current study, we sought to define 

the secretory sorting signals in the PC5/6A C-terminus and to compare these to the granule 

sorting domains in the other granule-targeted PC family enzymes. Our results suggest that 

PC1/3, PC2 and PC5/6A share a common sorting mechanism defined by an alpha helix 

whose efficiency correlates with the clustering of hydrophobic residues on a face of the 

helix. 
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MATERIALS AND METHODS 

 

Recombinant plasmid construction 

Naturally occurring peptide fragments to be analyzed for secretory granule sorting were 

derived from the mouse PC1/3 (NM013628), the mouse PC2 (NM 008792) and the mouse 

PC5/6A (BC12619). The numbering used to identify the protein domains used is relative to 

initiator methionine. Protein fragments were tested for their ability to sort heterologous 

proteins to secretory granules by attachment to a fragment of mouse immunoglobulin 

IgG2b (referred to as Fc) as previously described [3;21]. Fusion proteins were constructed 

by selective amplification of corresponding fragments using polymerase chain reaction 

(PCR). All of the resulting coding sequences were verified in their entirety by DNA 

sequencing and were inserted into the pCDNA3 mammalian expression vector (BF052232). 

Mammalian cell culture, transfection and secretion analysis  

Mouse corticotrophic AtT-20 cells were grown in Dulbecco’s minimal essential medium 

(DMEM; Invitrogen, Burlington, Ontario, CANADA) containing 10% fetal bovine serum 

(FBS) in a humidified incubator at 37 ºC in 10% CO2. Stable transfection of expression 

vectors into AtT-20 cells was carried out by electroporation as previously described [3]. 

Selection of stable pools was carried out in Geneticin (G418, Invitrogen, Burlington, 

Ontario, CANADA). G418-resistant pools of cells were used for all subsequent studies. 

For secretion analysis, 4.5 X 105 stably transfected cells were plated in each of two 35mm 

dishes. Twenty-four hours later, the medium was replaced with 0.5 ml of pre-warmed 

methionine-free DMEM containing 10% dialyzed FBS for 1 hrs. Labeling was achieved by 

addition of 300 µCi of 35S-methionine/cysteine (Trans-35S Label; MP Biomedicals, Irvine, 

CA) for 2 hours. Medium was then replaced with pre-warmed complete medium for 16 hrs. 

(chase). To test for regulated secretion the cells were rinsed in complete medium and in one 
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of the wells, the cells were incubated for an additional 3 hours in complete medium to 

measure constitutive secretion while in the other well the cells were incubated in complete 

medium supplemented with 10µM forskolin (Sigma-Aldrich, St. Louis), a secretagogue 

which stimulates secretory granule release. The corresponding culture supernatants were 

then immunoprecipitated with Protein-A Sepharose (Sigma-Aldrich, St. Louis) and the 

immunoprecipitated proteins were separated by SDS-PAGE. The gels were incubated with 

3 changes of 10% 2,5-Diphenyloxazole (PPO; Sigma-Aldrich, St. Louis) in dimethyl 

sulfoxide, rinsed in water, dried and subjected to fluorography. Dried gels were 

subsequently exposed to storage phosphor screens and emissions were quantified using a 

Storm Phosphorimager (GE Healthcare, Mississauga, Ontario). The forskolin-stimulated 

secretion of the endogenous granule cargo peptide beta-endorphin was determined by 

radioimmunoassay in 15 parallel cultures in order to ensure that the stimulation of AtT-20 

cell granule release was efficient and comparable in all experiments.  

 

For comparison of fusion protein expression levels in stably transfected AtT20 clones 

(Figures 3.3B, and Figure 3.4) G418-resistant cell clones were picked, seeded in 24 well 

plates and tested for fusion protein expression using an ELISA assay for the mouse Ig2b 

fragment (Assay Designs, Ann Arbor, MI).  Clonal cultures were subsequently verified for 

uniform expression of the fusion proteins by fluorescence microscopy using an anti-mouse 

IgG antibody conjugated to ALEXA 488 (Molecular Probes; Eugene, OR)(see below). To 

verify expression levels in clones, 5 X 105 cells were plated into 25 mm wells.  The next 

day, the cells were labeled with 300 µCi of 35S-methionine/cysteine for 1 hour. Labeling 

medium was then replaced with pre-warmed complete medium for 3 hours. (Chase).  The 

culture supernatants corresponding to this chase period were immunoprecipitated with 

equal mixtures of Protein-A sepharose and Protein-A sepharose which had previously been 

pre-coupled to an antibody recognizing the N-terminus of PC1/3 (antibody 7690-06, ref. 

[22]). The resulting fluorogram (Figure 3.3B) allows a comparison of fusion protein 

expression levels relative to the endogenous PC1/3. 
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Immunocytochemistry and confocal microscopy 

Mouse corticotropic AtT-20 cells stably transfected with the appropriate expression vector 

were seeded onto Lab Tek Glass Chambers (Nalgene Nunc, Napierville, Il) at a density of 

20,000 cells/chamber.  Twenty-four hours later, the cells were fixed with 4% 

paraformaldehyde, washed in TBS and permeabilized with –20 °C absolute methanol for 10 

min.  Slides were immunostained with a polyclonal rabbit anti-ACTH antibody (1:300) and 

an anti-mouse IgG antibody conjugated to ALEXA 488 (Molecular Probes, Eugene, OR) 

(1:200) for 1 hour at room temperature.  Slides were subsequently stained with anti-Rabbit 

IgG antibody conjugated to rhodamine (Chemicon, Temecula, Ca) (1:100) for 1 hr. at room 

temperature.   Slides were mounted using SlowFade Light Antifade Kit, (Molecular Probes) 

and visualized using an Zeiss LSM 510 Confocal Microscope. 

 

Protein secondary structure predictions. 

Predictions of helical wheel and helical net structures were carried out with the EMBOSS 

(The European Molecular Biology Open Software Suite) software package [23]. Additional 

helical structure predictions were carried out with the Jnet [24] or the PredictProtein 

(PROF) [11] algorithms. 

Statistical analysis 

Results (Figures 3.1, 3.2) are expressed as the mean +/- SEM and were compared by one-

way ANOVA using Dunnet’s Multiple Comparisons post-test. 
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RESULTS 

The secretory granule sorting domain of PC5/6A is contained in the last 

38 amino acids of the C-terminus 

Previous results had shown that PC5/6A with a 38 amino acid truncation at the C-terminal 

failed to enter secretory granules [8]. In order to further define the PC5/6A secretory 

granule sorting signal, both the entire PC5/6A C-terminal tail (688-915) and the last 38 

amino acids were tested for the ability to re-direct a constitutively secreted protein into the 

secretory granules of mouse corticotropic AtT20 cells (Figure 3.1) either in the absence or 

presence of forskolin, a secretagogue that increases intracellular cAMP resulting in the 

release of secretory granules [9]. AtT-20 cells contain dense core secretory granules in 

which endogenous proopiomelanocortin (POMC) is processed into adrenocorticotropic 

hormone (ACTH) by a series of proteolytic cleavages involving PC1/3 (reviewed in [1]). 

As we have previously shown [3], a recombinant protein containing a single chain fragment 

of the mouse immunoglobulin heavy chain constant region is secreted constitutively (i.e., 

not retained in granules) when expressed in these cells as evidenced by its continued 

secretion into the supernatant after a 16 hr chase period (Figure 3.1B, Fc).  After the chase 

period, there is a roughly 1.5-fold stimulation of secretion of the small amount of the Fc 

protein remaining in the cells as determined by comparing levels secreted in the absence (-

F; constitutive secretion) and presence (+F; regulated secretion) of forskolin (Figure 3.1C, 

Fc). By comparison, the secretion of endogenous granule-resident beta-endorphin is 

stimulated roughly 2.1-fold by the same treatment (2.1-fold +/- 0.12 (SEM), n=15). The 

low abundance of intracellular protein retention and forskolin-stimulated secretion of the Fc 

protein thereby constitute the baseline for analyzing potential granule sorting domains.  

Attachment of the entire 228 amino acid C-terminal tail of PC5/6A to the Fc fusion protein 

causes a significant increase in its retention in the cell and its regulated secretion (Figure 
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3.1 B and C; 688-915) confirming that this region of the protein contains a granule sorting 

signal.  Notably, attachment of the last 38 amino acids of the C-terminus to the fusion 

protein results in an equivalent redirection of the fusion protein to the regulated secretory 

pathway (Figure 3.1 B and C; 878-915) suggesting that the PC5/6A secretory granule 

sorting signal is entirely contained within the C-terminal 38 amino acids of PC5/6A. 
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Figure 3.1 The PC5/6A granule-sorting domain is contained in the last 38 amino acids 

of its C-terminus.  

(A) Upper: Schematic representation of PC5/6A showing the signal peptide (sp) 

prosegment (pro), catalytic, P domain (P) and the autocatalytically cleaved C-terminal 

domain (C-term). The speckled area represents the region deleted by de Bie et al. [8] that 

resulted in loss of secretory granule sorting. Lower: Schematic representation of the fusion 

proteins used to test for secretory granule targeting. sp, signal peptide. Fc, portion of the 

mouse IgG2b immunoglobulin. PC5/6A, various portions of the PC5/6A C-terminus as 

indicated (numbering is relative to the initiator methionine). (B) Representative pulse-chase 

assay for regulated secretion of the fusion proteins in AtT-20 cells. Parallel wells of stably 

transfected AtT-20 cell pools expressing the various fusion proteins were pulse-labeled for 

2 hrs and chased with unlabeled medium for an additional 16 hrs. After the chase period, 
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the supernatants were collected from the parallel wells (two lanes labeled C) and the cells 

were subsequently incubated for an additional 3 hrs either in the absence (-F) or presence 

(+F) of the secretagogue Forskolin. Fc containing proteins in the culture supernatants were 

immunoprecipitated with Protein A Sepharose, separated by SDS-PAGE and detected by 

fluorography. (C) Autoradiograms similar to those shown in panel B were exposed to 

storage phosphor screen and quantified. Shown are the ratios (mean +/- SEM) of fusion 

protein content in the regulated (+F) versus constitutive (-F) secretion incubations. n=4-12 

independent transfections.***P<0.001, *P<0.05, versus Fc by one-way ANOVA with 

Dunnet’s post test. n.s., not significant. 
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The PC5/6A secretory granule sorting domain is predicted to form an 

alpha helix 

The secretory granule sorting domains of PC1/3 and PC2 correspond to regions 

predicted to form alpha helices [3;6]. In order to determine if the same is true for the 

granule-sorting domain of PC5/6A, we analyzed this domain using two different protein 

structure prediction algorithms. Both Jnet [10] and PROF [11] predict the formation of a 

helix in the C-terminal half of this domain, roughly centered over residues 897-910, as well 

as a short region in the N-terminal portion of the fragment (Figure 3.2, 880-884, overlines).  

To test whether the C-terminal helix corresponds to the secretory granule sorting activity, 

serial deletions that remove either part or all of the predicted helix were made.  Secretion 

analysis demonstrates that both of the fusion proteins containing C-terminal deletions show 

reduced sorting efficiency as compared to protein containing the intact 38 amino acid 

domain (Figure 3.2 B and C, compare 878-906 and 878-891 to 878-915).  Moreover, this 

reduction in sorting efficiency correlates with the disruption of the predicted alpha helix in 

this region (see overlines on Figure 3.2 A, 878-906 and 878-891).  To further confirm that 

the observed effects were due to deletion of functional sorting elements, a 5 amino acid 

deletion was made in the N-terminal end of the PC5/6A peptide, resulting in a disruption of 

the short helix predicted in that portion of the molecule (see Figure 3.2 A, 883-915, missing 

overlines). Secretion analysis in transfected AtT-20 cells reveals that this fusion protein 

sorts to secretory granules with the same efficiency as the fusion protein containing the 

entire 38 amino acid sorting domain (Figure 3.2 B and C, compare 878-915 to 883-915). In 

conclusion, the PC5/6A C-terminal tail contains a secretory granule-sorting signal whose 

function, like those of PC1/3 and PC2, correlates with the predicted formation of an alpha 

helix. 
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Figure 3.2: The PC5/6A C-terminus contains a granule-sorting domain predicted to 

form an alpha helix.  

(A) Schematic representation of the PC5/6A C-terminal domains tested for regulated 

secretion. Overlined regions were predicted to form alpha helices by either the JPred (solid 

line) or PROF (hatched/dotted line) algorithms. (B) Representative fluorogram of 

supernatants from transfected AtT-20 cells. (C) Quantitative analysis of fusion protein 

sorting to the regulated secretory pathway. n=4-12 independent transfections  
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The minimal granule sorting domains of PC1/3, PC2 and PC5/6A 

selectively re-direct a constitutive protein to granules 

To compare the sorting properties of the PC5/6A C-terminal tail to those previously 

identified in PC1/3 and PC2, we tested their ability to re-direct the Fc protein to the 

granule-containing regions in AtT-20 cells. In order to reduce experimental artifact that 

might result from varying levels of fusion protein expression, we isolated clonal lines of 

stably transfected AtT-20 cells that were selected for comparable levels of expression of the 

various fusion proteins (Figure 3.3B). In addition, to ensure that the levels of expression of 

the fusion proteins did not saturate the endogenous sorting machinery, we verified that 

endogenous PC1/3 secretion and its conversion from the 87Kd form to the 66Kd C-terminal 

truncated form (a secretory granule phenomenon) were not affected (Figure 3.3B, 

endogenous PC1/3). In agreement with our previous results [3], staining of transfected cells 

with an antibody to the mouse immunoglobulin (Fc) domain of the fusion protein revealed 

its presence predominantly in the TGN (Figure 3.4, open arrows) and in a diffuse pattern 

throughout the cytoplasm of expressing cells. This is the pattern expected for a 

constitutively secreted protein which transits from the TGN to low-density secretory 

vesicles. In contrast, inclusion of the C-terminal domains of either FcPC1/3, PC2 or 

PC5/6A results in the detection of the fusion protein not only in the TGN (open arrows) but 

also in cytoplasmic extensions (closed arrow), with the most intense staining being in the 

extensions. Concomitant staining with an antibody that detects both POMC and ACTH 

shows an identical spatial distribution of staining, with roughly equivalent localization in 

the TGN (POMC) and granule-containing cytoplasmic extensions (ACTH).  Thus, the C-

terminal domains of PC1/3, PC2 and PC5/6A are all equally capable of re-directing a 

constitutively secreted protein to granule-containing cytoplasmic extensions in AtT-20 

cells. 
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Figure 3.3 (A) and (B): Comparison of the sorting capacity of fusion proteins 

containing various PC family C-termini: 

 (A) Schematic representation of the C-terminal domains tested for regulated secretion. 

Overlined regions were predicted to form alpha helices by either the JPred (solid line) or 

PROF (hatched/dotted line) algorithms. (B) Clonal cell lines were selected from AtT-20 

cell pools, labeled with 35S-methionine for 1 hour and chased for 2 hours in complete 

medium. The chase supernatant was simultaneously immunoprecipitated for the fusion 

protein and endogenous PC1/3 and the precipitated proteins were subjected to SDS-PAGE 

and fluorography. Note that the level of secretion of each of the various fusion proteins was 

comparable between the different cell lines. In addition, expression of the fusion proteins 

did not interfere with secretion of the endogenous PC1/3 (87 kDa and 66 kDa forms).  
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Figure 3.4: Comparison of the sorting capacity of fusion proteins containing various 

PC family C-termini: 

Sub-cellular distribution of fusion proteins in transfected AtT-20 cells immunolabeled with 

antibody to the various fusion proteins (Fc; left panel) or endogenous POMC/ACTH 

(middle panel). The red staining (middle panels) shows the distribution of endogenous 

ACTH (present primarily in dense core secretory granules) and its precursor 
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proopiomelanocortin (primarily present in the endoplasmic reticulum and Golgi apparatus). 

Note the relative staining distribution of the fusion proteins between the TGN (open 

arrows), the cytoplasmic region and the granule-containing cytoplasmic extensions (closed 

arrows). The micrographs shown are typical of the staining pattern seen in >50 cells 

examined in 4 independent experiments. 
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Structural correlates of sorting efficiency 

In an effort to better understand the granule sorting properties of the C-terminal 

alpha helices in PC1/3, PC2 and PC5/6A, we compared their predicted biophysical 

characteristics. The efficiency of sorting of the predicted helices did not correlate with their 

length; while the sorting helices of PC1/3 and PC5/6A are predicted to cover 14 amino 

acids, the PC2 helix extends over 28 amino acids (Figure 3.3 A, overlines). In addition, the 

sorting efficiency did not correlate with predicted isoelectric points since the PC1/3 and 

PC2 helices are predicted to be acidic while the PC5/6A sorting helix is very basic (Figure 

3.5, pI). Helical wheel projections revealed that while both the PC1/3 and PC2 helices were 

amphipathic (i.e., had a segregation of hydrophobic and polar faces on the helix), the 

PC5/6A helix had a relatively uniform distribution of hydrophobic residues (boxed) around 

the helix (Figure 3.5, left). Interestingly, helical net projections, which represent a side view 

of the helix as if it had been sliced open and flattened, reveals that the more hydrophobic 

residues (L, I and V) are present in clusters on the surface of all three helices, but in the PC 

1/3 helix these residues are more abundant and are predicted to be more tightly clustered on 

the helix surface (Figure 3.5, right).  
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Figure 3.5: Predicted biophysical properties of C-terminal granule sorting helices in 

PC enzymes. 

Shown are the predicted isoelectric points (pI), helical wheel projections (left) and helical 

net projections (center) for the regions predicted to form alpha helices in the C-termini of 

PC1/3, PC2 and PC5/6A.  Hydrophobic amino acids are boxed. See text for details. 
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DISCUSSION 

Many peptide hormones (such as insulin, ACTH and others) are only bioactive after 

selective cleavage of their precursor proteins in secretory granules by PC enzymes such as 

PC1/3, PC2 or PC5/6A. Understanding how these enzymes and their substrates are targeted 

to secretory granules is thus critical in understanding this key cellular process in 

endocrinology.  The current results suggest that secretory granule-targeting domain of 

PC5/6A is comprised of a C-terminal region predicted to form an alpha helix as had been 

previously reported for PC1/3 and PC2 and suggests that the three members of the PC 

family that are targeted to dense core secretory granules share a common sorting 

mechanism.  Although these studies were carried out using engineered fusion proteins, 

several studies have now shown that removal of the C-terminal tails in the otherwise intact 

PC1/3, PC2 and PC5/6A enzymes prevents their sorting to dense core secretory granules 

[3-6;8], confirming the importance of these domains in the context of the native proteins.  

Alpha helical sequences involved in sorting proteins to secretory granules have also 

been observed in other proteins: prosomatostatin contains an alpha helix in its N-terminal 

region sufficient for targeting to secretory granules [12].  Carboxypeptidase E also contains 

an alpha helix in its C-terminus that is critical for sorting the protein to secretory granules 

which has been reported to traverse the granule membrane [13].  Recently, a protease 

cleavage site located within an alpha helix was found to mediate sorting of VGF to 

secretory granules [14]. Thus, alpha helices may represent a family of sorting signals used 

by a number of secretory granule cargo proteins. The exact mechanism by which these 

helices mediate secretory granule targeting has not yet been determined. However, by 

studying the secretory granule sorting activity of a variety of synthetic helices, Dikeakos et 

al. [15] demonstrated that the most efficient helices were characterized by a hydrophobic 

patch in a charged helix and their efficiency was unaffected by the nature of the charge 

(i.e., they could be either acidic or basic), properties that also characterize the natural 
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granule sorting helices of PC1/3, PC2 and PC5/6A.  Previous reports have suggested that 

PC1/3 and PC2 associate with detergent-resistant membrane microdomains within the 

secretory pathway [3;6;16-18] and that this association could be disrupted by either deletion 

or mutation of the alpha helical region of the sorting domain [3;6]. This raises the 

possibility that the secretory granule targeting of the PC enzymes is mediated by interaction 

of the helices in their C-termini with specific membrane domains in the secretory pathway. 

Such a mechanism could be important for anchoring certain secretory granule cargo 

proteins (such as the PC enzymes) to the vesicle membrane so that they can be retained for 

storage. In a recent proteomic analysis of endocrine cell secretory granules derived from 

bovine chromaffin cells, Wegrzyn et al. [19] reported that PC1/3 was indeed a component 

of both the soluble and membrane fractions of the granule preparation, lending support to 

this model. Whether or not the granule-targeting helices of the PC enzymes also play a role 

in triggering granule budding as has been suggested for other membrane-binding helices 

[20] will be an interesting topic for further study. 
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ABSTRACT 

 

Peptide hormones such as insulin and glucagon are synthesized as inactive precursors. It is 

only upon the proper co-targeting of prohormones and their processing enzymes, the 

prohormone convertases (PCs), to dense core secretory granules (DCSGs) that the 

precursors are activated to exert their physiological functions. PC1/3 is targeted to DCSGs 

via its carboxy terminal granule-sorting domain (PC1/3 711-753). In the current study, we 

have determined the three-dimensional solution structure of PC1/3 711-753. The structure 

reveals that PC1/3 711-753 contains two amphipathic alpha helices located between residues 

722-728 and 738-750, respectively.  A functional targeting study demonstrates that the 

second helix (PC1/3 738-750) is necessary and sufficient to target a constitutively secreted 

protein to granules and that leucine 745 (L745) within the second helix is critical in 

mediating this function.  Moreover, NMR chemical shift mapping studies identified a 

calcium-binding region located in the carboxy terminal tail between residues 750-753. 

These results provide key information regarding the mechanism alpha helical regions use to 

target proteins to DCSGs. 
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INTRODUCTION 

 

Dense core secretory granules (DCSGs) are a repository in endocrine and 

neuroendocrine cells. It is only upon entering this organelle that inactive prohormones are 

activated by processing enzymes and subsequently released when the cell receives the 

correct physiological stimulus [For Review see (1)].  This process is termed the regulated 

secretory pathway and diverges from the constitutive secretory pathway where proteins are 

packaged in low-density vesicles and released in an unregulated manner. Thus, the correct 

targeting of hormone substrates and their concomitant processing enzymes ensures the 

availability of critical hormones such as insulin, glucagon and renin at the proper rate and 

time. 

Various mechanisms have been postulated to explain protein sorting to DCSGs [For 

Review see (2)] and they can be divided in two models. The “sorting by entry’’ model 

postulates that proteins are triaged at the Trans Golgi Network (TGN) via a protein-receptor 

interaction. Proteins interacting with this receptor would be diverted into the regulated 

secretory pathway. Carboxypeptidase E (CPE) may play the receptor role (3) although this 

classification is not clear-cut (4). A second model is ‘sorting by retention’ where all 

proteins, regardless of their final destination, enter an immature secretory granule which 

matures through acidification (5) and prohormone processing (6) steps. Non-DCSG 

proteins would be extruded and only the remaining proteins will form the mature DCSG. 

Molecular players have now been identified explaining this maturation step. N-

ethylmaleimide-sensitive fusion protein (NSF) (7), alpha soluble NSF attachment protein 

(α-SNAP) (7) and synaptotagmin IV (8)  play distinct roles in the homotypic fusion of 

immature secretory granules whereas cytosolic adaptor protein 1 (AP-1) plays a role in the 

retrieval of non-DCSG proteins from the immature secretory granules (9). While these two 

models are compelling they both fail to define how cargo is targeted to the DCSG. 
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There is no known canonical sorting signal sequence but there are multiple 

mechanisms by which sorting to DCSGs can occur (2). For example, dibasic processing 

sites (most notably KR sequences) in unprocessed precursor hormones can direct proteins 

to DCSGs. Prorenin (10), progastrin (11) and proneurotensin (12) are examples of an intact 

basic processing site being required to ensure DCSG targeting. Alternatively, the inherent 

ability of proteins to aggregate in the environment of the late secretory pathway, which is 

high in calcium, (13) is another example of a DCSG sorting signal.  Proteins such as atrial 

natriuretic factor (ANF) (14) contain a calcium binding site mediating its aggregation.  

Also, the ability of proteins to tether to a membrane by either associating with or traversing 

the membrane can also result in their targeting to the DCSG. Phogrin is an example of a 

transmembrane protein capable of interacting with cytosolic proteins which assist in its 

trafficking to DCSGs (15). Alpha helices have been described as targeting signals in DCSG 

proteins such as CPE (16), VGF (17), chromogranin A (CgA) (18), prosomatostatin (19) 

and secretogranin II (SgII) (20). We have demonstrated that the three DCSG members, 

PC1/3, PC2 and PC5A/6, of the prohormone convertase family are targeted to DCSG by a 

common alpha helical targeting region (21).   

The prohormone convertases are a family of serine proteases [For Review see (22)] 

containing an amino-terminal Pro domain that functions to repress enzymatic activity in the 

early secretory pathway, a catalytic domain and a P-domain implicated in protein stability. 

The pro, catalytic and P domains have a high degree of homology between all seven known 

PC family members. It is the carboxy-terminal domain of the PC enzymes that displays the 

least amount of sequence homology. Interestingly, DCSG- targeting signals for PC1/3, PC2 

and PC5A/6 are all found in the non-conserved carboxy-terminal domain. Specifically, 

PC1/3 requires the presence of residues 617-753 to enter DCSGs as this domain contains 

three regions predicted to form alpha helices that are capable to function as DCSG-sorting 

signals. First, a helical sequence between residues 617-638 can redirect a constitutively 

secreted protein to DCSGs (23).  Alternatively, we demonstrated that DCSG-sorting signals 

are also found between residues 665-682 and residues 711-753 respectively (24). All three 
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of the proposed DCSG-sorting signals are predicted to form alpha helices.  Moreover, we 

demonstrated that the region between residues 711-753 was necessary and sufficient to 

target a heterologous fusion protein to the DCSGs (24). The signal targeting PC2 to DCSG 

is in a region forming an alpha helix localized in the carboxy terminal domain of PC2 (25). 

Moreover, we showed that PC5A/6 is targeted to DCSGs via a predicted alpha helix 

localized in the carboxy-terminus of PC5A/6 between residues 891-915 (21). While all of 

the above data explaining the potential role of alpha helices in sorting proteins to DCSGs 

has been predicted using secondary structure prediction algorithms, no experimental data 

has verified the actual structure of a DCSG-sorting domain.  In the current manuscript, we 

have determined the nuclear magnetic resonance (NMR)-solution structure of the PC1/3 

DCSG-sorting domain localized between residues 711-753 and use this information to 

systematically identify the mechanism PC1/3 utilizes to enter DCSG.  The structure 

represents the first high-resolution structure of a DCSG-sorting domain.  The structure 

demonstrates that the domain contains two amphipathic alpha helices separated by a short 

eight-residue linker.  The structure in combination with in vivo functional experiments 

helps us in defining how PC1/3 interacts with membranes and binds calcium. 
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MATERIALS AND METHODS 

 

15N and 15N/13C-labeled protein expression and purification 

 

The mouse PC1/3 cDNA encoding for the amino acids 711-753 was inserted into the 

pGEX-4T (GE Healthcare) vector, which contains an amino-terminal glutathione-S-

transferase (GST) tag followed by a thrombin-cleavage site. A single colony was picked 

and grown in 2 L of minimal media containing 1 g/L of 15NH4Cl and 2.5 g/L 13C-glucose. 

Log phase cultures were induced with 0.66 mM IPTG for 3 hours at 37˚ C.  Bacterial 

pellets were resuspended in 100 mL of Buffer A (20 mM Tris, pH = 7.4, 1 M NaCl, 1 mM 

EDTA and 1 mM DTT) and lysed.  Bacterial lysates were centrifuged and the supernatant 

was incubated with 10 mL of Glutathione-Sepharose resin (GE Healthcare). Bound resin 

was washed three times with Buffer A and twice times with phosphate-buffered saline 

(PBS).  Subsequent overnight incubation of the resin with 100 units of thrombin protease 

(GE Healthcare) allowed the release of PC1 711-753 from the resin into the supernatant.  The 

resulting supernatant was dialyzed overnight against 5% acetic acid and was further 

purified by reverse-phase high-pressure liquid chromatography (HPLC) (C4 Vydac column) 

and eluted with a 25-45 % acetonitrile gradient over 40 minutes.  The acetonitrile was 

removed via roto-evaporation and the pure peptide was lyophilized. 

 

NMR sample preparation and data collection 

 

For NMR studies, 15N- or 13C/15N-labeled PC1/3 711-753 peptide was resuspended at a 

concentration of 1 mM in 20 mM d-11 Tris (Cambridge Isotopes) (pH = 6.85), 20 mM 3-

[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) (Fisher) and either 
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90% H20/10% D20 or 99.9% H20. NMR spectra were collected at 26.6˚C on Varian Unity 

Inova 500, and 600 and 800 MHz NMR spectrometers. The backbone and aliphatic side 

chain resonances were assigned using a combination of experiments, including two-

dimensional (2D) 1H-15N Heteronuclear Single Quantum Coherence (HSQC) (26), 2D 1H-
13C constant time HSQC (CT-HSQC), 2D HBCBCGCDHD (27), 2D HBCBCGCDCEHE 

(27), three-dimensional (3D) HNCACB (28), 3D (HB)CBCA(CO)NNH (29), 3D HNCO 

(30), 3D H(CCO)NNH, 3D (H)C(CO)NNH (29;30), 3D HNHA (31) and 3D HCCH-

correlation spectroscopy (COSY).  Backbone dynamics were assessed by measuring 15N-1H 

heteronuclear Nuclear Overhauser Effects (NOEs) (32). Intermolecular NOEs between the 

CHAPS micelle and 15N/13C-labeled PC1/3711-753 were obtained from a 3D 15N/13C (F1)-

filtered, (F3)-edited NOESY (33)}. The NMR data were processed with 

NMRPipe/NMRDraw (34) and analyzed with NMRView (35). 

 

Structure calculations 

 

 The interproton distances were estimated from the intensities of the cross peaks observed 

in the 3D 15N-edited Nuclear Overhauser Effect Spectroscopy (NOESY)-HSQC (36;37) 

and 13C-edited heteronuclear multiple quantum coherence-total correlation (HMQC)-

NOESY experiments (38). The backbone dihedral angles were obtained from the analysis 

of 1H, 15N, 13C', 13Cα, and 13Cβ chemical shifts using the program TALOS (39). Structure 

calculations were performed with the program CNS (40) using a combination of torsion 

angle dynamics (TAD) and Cartesian dynamics. Starting from an extended structure with 

standard geometry, 50 structures were calculated using NOE-derived interproton distances 

and backbone dihedral angles. These 50 structures did not have any NOE violation greater 

than 0.2 Å and no backbone dihedral angle restraint violation greater than 2˚. Structural 

statistics were performed using Procheck (41). Illustrations of the structure were prepared 

with the programs PYMOL (www.pymol.org), Chimera (42) and MOLMOL (43). 
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Recombinant plasmid construction 

Peptide fragments to be analyzed for secretory-granule sorting were derived from the 

mouse PC1/3 (NM013628). The numbering used to identify the protein domains is relative 

to the initiator methionine of both proteins. Protein fragments were tested for their ability to 

sort heterologous proteins to secretory granules by attachment to a fragment of mouse 

immunoglobulin IgG2b (referred to as Fc) as previously described (21). The PC1/3 fusion 

protein was constructed by selective amplification of corresponding fragments.  Mutations 

were made using PCR overlap extension (44). All of the resulting coding sequences were 

verified in their entirety by DNA sequencing and were inserted into the pRSV globin 

mammalian expression vector (24). 

 

Mammalian cell culture, transfection and secretion analysis 

 

Mouse corticotrophic AtT-20 cells were grown in Dulbecco’s minimal essential medium 

(DMEM; Invitrogen, Burlington, Ontario, CANADA) containing 5% fetal bovine serum 

(FBS), 0.01% gentamicin (Invitrogen) and 0.1% SerXtend (Irvine Scientific, Santa Anna, 

CA) in a humidified incubator at 37 ºC in 5% CO2. Expression vectors were stably 

transfected into AtT-20 cells by cotransfection with pSV-Neo (Invitrogen, Burlington, 

Ontario, CANADA) and selection in Geneticin (G418, Invitrogen, Burlington, Ontario, 

CANADA). G418-resistant pools of cells were used for all subsequent studies. For 

metabolic labeling, 4.5 X 105
 stably transfected cells were plated in each of two 35mm 

dishes. After twenty-four hours, the medium was replaced with 0.5 mL of prewarmed 

methionine-free DMEM containing 10% dialyzed FBS and 300 µCi of 35S-

methionine/cysteine (Trans-35S Label; MP Biomedicals, Irvine, CA) for 2 hours and 

incubated at 37 ºC. Labeling medium was then replaced with prewarmed complete medium 
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for 16 hours (chase). To test for regulated secretion, the cells were rinsed in complete 

medium and in one of the wells, the cells were incubated for an additional 3 hours in 

complete medium to measure constitutive secretion while in the other well the cells were 

incubated in complete medium supplemented with 10 µM Forskolin, a secretagogue which 

stimulates granule release. The corresponding culture supernatants were then 

immunoprecipitated with Protein-A Sepharose (Sigma, St. Louis) and the 

immunoprecipitated proteins were separated by SDS-PAGE. The gels were incubated with 

3 changes of 10% PPO in dimethyl sulfoxide, rinsed in water, dried and subjected to 

fluorography. Dried gels were subsequently exposed to storage phosphor screens (GE 

Healthcare) and emissions were quantified using a Molecular Dynamics Storm 

Phosphorimager. Results were compared by one-way ANOVA using Bonferonni’s post-test 

and expressed as mean values with a standard error on the mean (SEM) 
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RESULTS 

 

DCSG-sorting domain of PC1/3 in a micellar environment. 

 

We sought to characterize the structure of the DCSG sorting domain of PC1/3 located 

within residues 711-753 to understand how this domain is able to redirect the PC1/3 

processing enzyme to DCSG. NMR and crystallization studies of DCSG sorting domains 

have been limited by the fact that these domains are associated with membranes and have 

limited solubility in physiological buffers (2). Indeed, a two-dimensional 1H-15N HSQC 

spectrum of 15N-labeled PC1/3 711-753 contains signals that appear to be heterogeneous with 

respect to each other in typical physiological buffer conditions (Figure 4.1, A). The 

heterogeneous signal intensities suggest that the protein is partially aggregated (45). In 

contrast, 15N-labeled PC1/3 711-753 in the presence of 20 mM CHAPS gave a homogenous 

set of signals suggesting that the protein was no longer aggregated (Figure 4.1, B). Identical 

results were obtained using a dodecyl phosphocholine (DPC) micelle solution (data not 

shown).  CHAPS is a zwitterionic detergent that has a critical micellar concentration 

between 4-6 mM depending on the buffer used (46). CHAPS micelles have been used to 

characterize the structure of several proteins by NMR including calcineurin-B (45) and 

eukaryotic translation initiation factor 4E (eIF4e) (47). The addition of 20 mm CHAPS to 

PC1/3 711-753 allowed for the complete 1H, 15N and 13C chemical shift assignment of PC1/3 

711-753. As a result, we pursued the structure elucidation of PC1/3711-753 in the presence of 20 

mM CHAPS. 
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Figure 4.1: PC1/3 711-753 requires a micelle for structure determination 

Two-dimensional 1H-15N-HSQC spectra for 15N-labeled PC1/3 711-753 in the absence (A) 

and in the presence (B) of 20 mM CHAPS.  All spectra were recorded in 20 mM d-11 Tris 

(pH= 6.5) at 26.6˚C with or without CHAPS. Arrows denote regions of the spectra 

displaying peak heterogeneity without CHAPS (A) and subsequent peak homogeneity with 

CHAPS (B) 
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The NMR solution structure of the PC1/3 DCSG-sorting domain reveals 

two alpha helical regions. 

 

The NMR solution structure of the DCSG-sorting domain of PC1/3 from residues 

711-753 indicates the presence of two amphipathic alpha helices. The first α-helix is 

between residues 722-728 whereas the second α-helix is between residues 738-750 (Figure 

4.2 and Figure 4.3). The precise angle between the two helices in the sorting domain of 

PC1/3 is difficult to define by NMR due to the absence of long range NOEs between the 

two helices. A total of 50 structures was calculated, all of them satisfying the experimental 

constraints with no NOE violation larger then 0.2 Å and no backbone dihedral angle 

violation greater then 2°. The 20 structures with the lowest energies were selected for 

statistical analysis (Table 4.1).  

Interestingly, the second helix overlaps with the previously identified minimal 

domain of PC1/3 required for sorting (24).  However, a phylogenetic analysis of the 

carboxy terminal region of PC1/3 using the ClustalW program (48) (Figure 4.4) 

demonstrates that residues 717-749 are highly conserved from fish to man.  This sequence 

conservation includes both helices as well as the loop between the two helices. 
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Restraints used for the structure calculations 

Total NOE distance restraints 275 

Short-range (intraresidue) 135 

Medium-range (|i - j| ≤ 4)  140 

Dihedral angle restraints, φ, ψ 38 

Structural statistics 

RMSDs from idealized geometry 

Bonds (Å) 0.00070 ± 0.00005 

Angles (deg) 0.3226± 0.0009 

Impropers (deg) 0.092± 0.002 

Dihedral restraints (deg) 0.05± 0.02 

Distance restraints (Å) 0.007±0.001 

Ramachandran statistics (%) 

Residues in most favorable regions 69.2 

Residues in additional allowed regions 25.1 

Residues in generously allowed regions 3.3 

Residues in disallowed regions 2.3 

Coordinate Precision (Å) 

Atomic pairwise rmsd for backbone atoms (C', Cα, N) (722-728) 
0.3 ± 0.2  

 

Atomic pairwise rmsd for backbone atoms (C', Cα, N) (738-750) 0.4 ± 0.3 

Atomic pairwise rmsd for all heavy atoms (722-728) 1.0 ± 0.3 

Atomic pairwise rmsd for all heavy atoms (738-750) 1.6 ± 0.3 

Table 4.1 Structural statistics for of PC1/3 711-753 
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Figure 4.2: Overlay of the 20 lowest-energy structures of PC1/3 711-753.  

The structures were superimposed using the backbone atoms C′, Cα, and N of the first helix 

between residue S722 and residue F728 (A) and the second helix between residue D738 and 

residue N750 (B). 
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Figure 4.3: PC1/3 711-753 contains two amphipathic helices. 

Ribbon representation of the first alpha helix of PC1/3 711-753 (A) and the second alpha helix 

of PC1/3 711-753 (B) with the hydrophobic sides chains highlighted in orange. (B) Clusters of 

hydrophobic (orange) and hydrophilic (blue) residues of the first alpha helix of PC1/3 711-753 

between residue S722 and residue F728 (Panel C) and the second alpha helix of PC1/3 711-753 

between residue D738 and residue N750.  
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Figure 4.4: PC1/3 711-753  phylogenetic analysis  

The amino acid sequence alignment of PC1/3 711-753 from several species was generated 

using the CLUSTALW algorithm (48).  The sequences are highly conserved between 

residues 717 and 749. The secondary structure elements derived from the structure of 

PC1/3 711-753 (Helix 1, Loop and Helix 2) are indicated above the sequences. 
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Correlation between the structure of PC1/3 711-753 and its ability to act as a 

DCSG sorting domain 

 

We next sought to determine if both alpha helices of PC1/3711-753 are capable of 

independently targeting a constitutively secreted protein to DCSGs in AtT20 

neuroendocrine cells. Vectors either expressing a fragment of the non-DCSG targeted 

immunoglobulin (Fc) protein (49) or fusion proteins consisting of FcPC1/3 711-753, FcPC1/3 

711-738 and FcPC1/3 738-753 were transfected in AtT20 cells (Figure 4.5). The ability of the 

various Fc-fusion proteins to be secreted in a regulated manner was tested in the presence 

of the forskolin secretagogue, which increases cytoplasmic calcium levels and promotes 

regulated exocytosis.  In this assay, the FcPC1/3 711-753 fusion protein is secreted in a 

regulated manner with high efficiency, p < 0.005 (sorting ratio: 0.29 ± 0.07) compared to 

the Fc protein alone (sorting ratio: 0.05 ± 0.02). Statistical analysis of the sorting ratios 

proved that the DCSG-sorting information for PC1/3 is localized in the second helix as the 

sorting ratios of Fc PC1/3 711-738 and Fc PC1/3 738-753 fusion proteins were equivalent (p < 

0.005). The first helix (Fc PC1/3 722-728) did not function as a sorting domain on its own and 

displayed an equivalent sorting ratio to Fc alone, p < 0.005 (sorting ratio: 0.07 ± 0.07).  

These results are consistent with previous results that PC1/3 738-751 is necessary and 

sufficient for DCSG sorting (24). 
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Figure 4.5: Functional assay of the two helices in PC1/3 711-753 

 (A) Secretion assay testing the two individual helices of PC1/3 711-753 fused with the 

portion of the mouse IgG2b immunoglobulin Fc. Proteins are composed of either Fc alone 

(Fc), both helices (FcPC1/3 711-753), the first helix (FcPC1 711-738) or the second helix 

(FcPC1/3 738-753). Representative pulse-chase assay for regulated secretion of fusion 

proteins in AtT-20 endocrine cells are shown. Parallel wells of stably transfected AtT-20 

cell pools expressing the various proteins were pulse-labeled for 2 hours and chased with 

unlabeled medium for an additional 16 hours. After the chase period, the supernatants were 

collected from the parallel wells (lanes C) and the cells were subsequently incubated for an 

additional 3 hours either in the absence (-F) or in the presence (+F) of the secretagogue 

Forskolin. Fc containing proteins in the culture medium were imunoprecipitated with 

Protein A Sepharose, separated by SDS-PAGE and detected by fluorography. (B) 

Autoradiograms similar to those shown in panel A were exposed to storage phosphor 

screen and quantified. Shown are the ratios (mean +/- SEM) of fusion protein (for 

simplicity the term PC1/3 was removed in the figure legend whenever residue numbers 
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appear) content in the regulated (+F) versus constitutive (-F) secretion incubations. N = 4-6 

independent transfections.  ***P< 0.005, FcPC1/3 738-753 and FcPC1/3 711-753 versus Fc by 

one-way ANOVA with a Tukey post test. No significant (n.s.) difference was observed 

between FcPC1/3 711-738 and Fc alone. 
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Mutational analysis of the second helix of PC1/3 711-753 

 

In order to define specific residues involved in sorting of PC1/3711-753 to DCSG 

within the second alpha helix, we tested a series of alanine point mutants (Figure 4.6).  As 

described above, a DCSG targeting assay was performed in AtT20 endocrine cells stably 

expressing the Fc PC1/3 711-753 mutants. Quantification of the amount of fusion protein 

released upon secretagogue stimulation revealed that most mutants did not significantly 

affect DCSG targeting efficiency apart from the mutant FcPC1/3 711-753 (L745A), p < 0.005 

(sorting ratio: 0.11 ± 0.03). Interestingly, the L745A mutation within PC1/3 711-753 reduced 

the sorting efficiency of PC1/3 to a level equivalent to the presence of Fc alone or a fusion 

protein containing only the first helix (FcPC1/3 711-738), p < 0.005. 
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Figure 4.6: Site-directed mutagenesis of the second helix of PC1/3711-753 

 (A) PC1/3711-753 point mutant proteins used to test regulated secretion in AtT20 endocrine 

cells. Proteins containing the Fc portion of the mouse IgG2b immunoglobulin and 

fragments of the carboxy-terminal domain of PC1/3 comprising either Fc alone (Fc), both 

helices (FcPC1/3 711-753) or alanine point mutants of FcPC1/3 711-753 were stably transfected 

in endocrine AtT20 cells.   The same type of assay described in the legend of Figure 4.5 was 

performed and Fc containing proteins in the culture medium were imunoprecipitated with 

Protein A Sepharose, separated by SDS- PAGE and detected by fluorography. (B) 

Autoradiograms similar to those shown in panel A (for simplicity the term PC1/3 was 
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removed in the figure legend whenever residue numbers appear) were exposed to storage 

phosphor screen and quantified. Shown are the ratios (mean +/- SEM) of fusion protein 

content in the regulated (+F) versus constitutive (-F) secretion incubations. n = 4-8, 

independent transfections. ***P< 0.005, Fc PC1/3711-753 (L745A) versus Fc PC1/3711-753  by 

one-way ANOVA with a Tukey post-test. 
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Association of the PC1/3 DCSG sorting domain with micelles 

 

We had previously demonstrated that PC1/3 711-753 was present in the membrane fraction 

when transfected in endocrine cells (24). Based on our structural and mutagenesis data, we 

attempted to determine by NMR spectroscopy if PC1/3711-753 interacts with membrane-

mimicking micelle components. CHAPS is an analog of cholesterol and cholesterol is an 

integral part of the TGN membrane where the sorting of DCSG proteins occurs (2). We 

titrated 15N-labelled PC1/3 711-753 with incremental quantities of CHAPS (0-20 mM) to 

specifically determine which residues of the protein are involved in interactions with the 

CHAPS micelles (Figure 4.7, A). Quantification of chemical shift variations between 15N-

labelled PC1/3 711-753 in the absence of CHAPS and 15N-labeled PC1/3 711-753 in 20 mM 

CHAPS allowed us to define two regions of PC1/3 711-753 displaying significant chemical 

shift variations, and they correspond to residues 724-729 and 741-750 (Figure 4.7, B). 

These regions virtually coincide with the two alpha helical regions of PC1/3 711-753 that are 

located between residues 722-728 and 738-750, respectively.  The amphipathic nature of 

the helices is further supported by the fact that intermolecular NOEs are observed between 

the CHAPS and only hydrophobic residues in both the first (V725) and second (L741, L742, 

L745, M746, and I 748) helix (data not shown).  Thus both alpha helical regions of PC1/3 711-

753 are capable of interacting with membrane-like micelle components. 
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Figure 4.7: PC1/3 711-753 interactions with a CHAPS micelle 

 (A) Overlay of a selected region from the two dimensional 1H-15N HSQC spectra for 15N-

labeled PC1/3 711-753 in the free form (black), in the presence of 4 mM CHAPS (green), 8 

mM CHAPS (blue) and 20 mM CHAPS (red). The chemical shift variations observed for 

residues V727 and I748 are highlighted with arrows. (B) Histogram of the variations in 

chemical shifts [Δδ (ppm) (50)] of 15N-labeled PC1/3 711-753 between the free form and in the 

presence of 20 mM CHAPS. 
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Identification of a calcium-binding site in PC1/3 

 

It has been proposed that calcium plays a role in sorting based on the high concentration of 

calcium in the DCSGs (10 mM) (13). However, the exact role of calcium in the sorting of 

PC1/3 to DCSGs remains unknown. In order to determine if the DCSG-sorting domain of 

PC1/3 bound calcium, we performed chemical shift mapping studies in the presence of 

varying concentrations of CaCl2 (1-10 mM).  Addition of 10 mM CaCl2 to 15N-labeled 

PC1/3 711-753, resulted in significant changes in the chemical shifts of several residues of 

PC1/3 711-753, as determined by two-dimensional 1H-15N HSQC experiments (Figure 4.8, 

A). The most significant chemical shift changes were observed for residues I748 and E751. 

Analysis of the variations indicated that the largest chemical shift changes occurred at 

residue E751 (Figure 4.8, B). An electrostatic potential map of PC1/3 711-753 reveals that E751 

is located in a highly negatively charged region containing residues 750-753 (Figure 4.9). 

In the absence of calcium, the region between residues 751-753 showed a high degree of 

backbone motion on the picosecond-to-nanosecond time scale, as derived from 1H-15N 

heteronuclear NOE experiments (Figure 4.10).  Residues displaying low 1H-15N 

heteronuclear NOE values have an intrinsic flexibility.  The 1H-15N heteronuclear NOE 

experiment indicates the presence of a flexible and disordered region localized between 

residues 751-753, which is most likely accessible for calcium binding. 
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Figure 4.8: PC1/3 711-753 interacts with calcium 

(A) Overlay of the two-dimensional 1H-15N spectra for 15N-labeled PC1/3 711-753 in the free 

form (black) and in the presence of 10 mM CaCl2 (red). Examples of shifted signals are 

circled. Histogram of the variations in either backbone (B) or side chain (C) chemical shifts 

[Δδ (ppm) (50)] of 15N-labeled PC1/3 711-753 between the free form and in the presence of 10 

mM CaCl2. 
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Figure 4.9: Calcium-binding site in PC1/3 711-753 

 Electrostatic potential for PC1/3 711-753   mapped on the molecular surface between –0.9 

(red) and +0.9 (blue) kT using the program Pymol (www.pymol.org). Arrow denotes 

negatively charged region at the carboxy-terminus corresponding to the proposed calcium-

binding site which comprises residues 751-753 of PC1/3. 
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Figure 4.10: PC1/3 711-753 backbone dynamics 

 Plot of the heteronuclear 15N-1H NOEs for PC1/3 711-753 
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Mutational analysis of the calcium-binding site of PC1/3 711-753 

 

In order to determine if calcium binding to PC1/3 711-753 plays a role in sorting, we tested 

the ability of point mutants [FcPC1/3711-753 (E751A), FcPC1/3711-753 (E752A) and 

FcPC1/3711-753 (N753A)] and a deletion mutant (Fc PC1/3 711-750) (Figure 4.11) to redirect 

the constitutively secreted Fc protein to the regulated secretory pathway. Quantification of 

the amount of fusion protein released upon secretagogue stimulation revealed that only the 

FcPC1/3711-753 (E752A) mutant had an effect on the sorting of PC1/3 to DCSGs effectively 

decreasing regulated secretion when compared to Fc PC1/3 711-753 (Figure 4.10; p < 0.05).  

Surprisingly, the FcPC1/3 711-750 deletion mutant still sorted as well as FcPC1/3 711-753 

despite the fact that it no longer contains the calcium-binding region. 
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Figure 4.11: Mutational analysis of the calcium binding site on the sorting of PC1/3711-

753 to secretory granules. 

(A) A similar stimulated secretion assay as described in Figures 4.5 and 4.6 was performed 

on either point mutants of the calcium-binding regions of PC1/3 [FcPC1/3711-753 (E751A), 

FcPC1/3711-753 (E752A) or FcPC1/3711-753 (N753A)] or a deletion mutant that eliminates the 

calcium-binding region (FcPC1/3 711-750). (B) Autoradiograms similar to those shown in 

panel A (for simplicity the term PC1/3 was removed in the figure legend whenever residue 

numbers appear) were exposed to storage phosphor screen and quantified. Shown are the 

ratios (mean +/- SEM) of fusion protein content in the regulated (+F) versus constitutive (-

F) secretion incubations. n = 4-8; independent transfections. 

**P< 0.05, Fc E752A versus Fc PC1 711-753 by one-way ANOVA with a Tukey post-test. 
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DISCUSSION 

 

In the current manuscript, we have determined the first high-resolution structure of 

a DCSG-sorting domain from the carboxy terminal of PC1/3 between residues 711 and 

753. The solubility of DCSG proteins has been a major hurdle in solving structures in an 

aqueous environment since they are often membrane-associated and the use of micelle-

forming conditions such as CHAPS and DPC was crucial to solving the structure of PC1/3 

711-753.  The sorting domain of PC1/3 contains two alpha helices separated by a short eight-

residue linker.  The sequence of the domain is highly conserved in both helices as well as in 

the linker.  Both helices are amphipathic and they interact with the CHAPS micelle through 

the hydrophobic face of the helix.  Since both helices are interacting with the micelle and 

one does not observe long range NOEs between the two helices, this suggests that the 

sorting domain of PC1/3 is effectively laying on the micelle surface and interacts with the 

micelle in a carpet-like mechanism [For Review See (51)].  The second helix (PC1/3 738-750) 

is necessary and sufficient to target a constitutively secreted protein to DCSGs and L745 is 

critical in mediating this targeting step.  L745 is localized on the hydrophobic face of a non-

dynamic region.  Moreover, a calcium-binding region was found in a negatively charged 

and flexible region localized at the extreme carboxy terminus. 

The interaction of PC1/3 711-753 with the CHAPS and DPC micelle is consistent with 

the DCSG-sorting domain being anchored on the membrane surface at the level of the TGN 

and thereby not being imported to the default constitutive secretory pathway.  Functionally, 

the presence of two helices in PC1/3’s sorting domain and the necessity of only the second 

helix located between residues 738-750 requires further investigation.  Interestingly, two 

similar DCSG sorting motifs have been observed in secretogranin II (20).  Secretogranin II 

contains both an amino-terminal and a carboxy-terminal sorting domain and both of these 

domains have been predicted to form a similar helix-loop-helix motif.  Moreover, in both of 
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these motifs the second helix was necessary and sufficient to direct secretogranin II to 

granules. The loop region between both helices for these sorting domains may ensure that 

the proteins are not forming transmembrane domains hindering their subsequent 

extracellular release. Furthermore, the length of a helix may be critical for its granule 

targeting capacity.  It has been shown that engineered alpha helices were capable of 

deforming vesicles when they contained 18 residues while 12 residue helices did not to 

deform these same vesicles (52). Thus, length may be critical in not just the membrane-

tethering step at the TGN but in the subsequent budding and DCSG formation stages. 

In PC1/3 711-753, L745 was critical in mediating the sorting of PC1/3 to granules.  A 

surface representation of PC1/3 711-753 (Figure 4.12, A) demonstrates that PC1/3 contains a 

hydrophobic patch in the region surrounding L745.  This clustering of hydrophobic residues 

appears to be critical in tethering PC1/3711-753 to the TGN membrane allowing sorting to 

DCSGs.  Recently, our group studied a series of alpha helices and determined that the 

clustering of hydrophobic residues within a charged alpha helix was necessary and 

sufficient to target a constitutively secreted protein to DCSGs (49).  Disruption of the 

hydrophobic cluster resulted in the constitutive secretion of the tested proteins.  Indeed, a 

surface representation of PC1/3 711-753 (Figure 4.12, B) indicates that the alanine at position 

745 (arrow) disrupts the hydrophobic cluster present in the second helix of PC1/3 711-753.  

Moreover, we had previously shown that the hydrophobic cluster localized in the second 

helix ensured a more efficient targeting of PC1/3 711-753 to DCSGs than either of the alpha-

helical sorting domains of the two other PC granule resident proteins: PC2 and PC5/6A 

(21).  A biophysical comparison of the helical-sorting domains of PC1/3, PC2 and PC5A/6 

demonstrated that the helix containing the more hydrophobic cluster (PC1/3) was capable 

of redirecting a constitutively secreted fusion protein more efficiently to DCSGs (21).  In 

terms of interacting with membranes, the presence of hydrophobic residues may supersede 

the actual presence of the alpha helix itself.  Sar1P contains an amino-terminal helix critical 

in targeting the protein to COP1 coated vesicles (53).  Mutation of the hydrophobic 

residues of Sar1p and not the alpha-helical structure itself abrogated targeting of Sar1p to 
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COP1 vesicles.  Recently, it has been demonstrated that luteinizing hormone is targeted to 

granules by a non-alpha helical leucine-rich sequence situated at its carboxy-terminus (54). 

While the authors did not investigate the membrane-binding capabilities of luteinizing 

hormone, they did observe that the protein formed a dimer through the leucine-rich granule-

targeting region.  Thus, hydrophobic regions may not be exclusively involved in membrane 

binding but also in forming high molecular weight complexes that will be stored in DCSGs 

and not be secreted in low-density constitutively secreted vesicles.  

The DCSG sorting domain of PC1/3 was also found to interact with calcium. Since 

the FcPC1/3711-753 (E752A) point mutant slightly decreased the sorting of PC1/3 to DCSGs, 

we tested whether calcium binding is important for sorting. The role of calcium in the 

targeting of PC1/3 to DCSGs has been stipulated in the activation step of the enzyme as 10 

mM is required to activate PC1/3 processing of POMC (13) and activation of PC1/3 occurs 

in the DCSG (55).  The autocatalytic cleavage of the carboxy-terminal domain (PC1/3 617-

753) within DCSGs results in a fully active PC1/3 enzyme.  Calcium may assist in the 

autocatalytic cleavage of PC1/3 617-753 thereby activating PC1/3.  In our current study, we 

identified a negatively charged region in PC1/3 between residues 750-753, which displayed 

significant chemical shift variations upon the addition of 10 mM CaCl2. Thus, CaCl2 is 

binding a disordered and highly flexible region situated at the extreme carboxy-terminal 

end of PC1/3. While the observed chemical shift variations do not suggest a conformational 

change, they may result in a change in the electrostatics of PC1/3 ensuring the proper 

anchoring of PC1/3 on the membrane. Indeed, the FcPC1/3 711-750 deletion mutant, which 

eliminates the calcium-binding region, did not affect sorting of PC1/3 to DCSGs suggesting 

that calcium binding serves to mask the negative charges present between residues 751-753 

thereby ensuring that the hydrophobic face of the helix approaches the TGN membrane.  

This mechanism would be an efficient way to ensure the membrane tethering of PC1/3 in 

an intracellular compartment where calcium concentration rises.  A similar mode of 

membrane binding has been described for the exocytic protein synaptotagmin I, which 

exhibits calcium dependent phospholipid binding (56) and does not undergo a 
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conformational change in the presence of calcium but rather an electrostatic modification.  

Alternatively, it has been shown that calcium can also modulate the aggregation state of 

certain granule proteins such as the highly acidic chromogranin A (CgA) protein (57).  CgA 

binding to calcium results in high-molecular weight complexes, which are stored to 

DCSGs.  We have shown that a fusion protein containing PC1/3 711-753 has the ability to 

form dimers (24).  Calcium may assist in the dimerization of PC1/3 at the TGN membrane 

thereby ensuring a more efficient targeting to DCSGs. 

 In summary, by elucidating the structure of PC1/3 711-753 we have functionally 

characterized the key residue implicated in DCSG targeting. We have also documented a 

calcium-binding site present in PC1/3 711-753 potentially masking a negatively charged 

region on PC1/3 thereby ensuring efficient granule targeting. 
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Figure 4.12: Hydrophobic molecular surface representation of PC1/3 711-753 

 

(A) Surface representation of PC1/3711-753 with the more hydrophobic residues colored in 

red and the more hydrophilic residues colored in blue generated with Chimera (42).  The 

arrow indicates a highly hydrophobic cluster of residues in the vicinity of L745. (B) Model 

hydrophobic surface representation of PC1/3711-753 (L745A) mutant.  Arrow indicates the 

area with a decrease in hydrophobicity. 

Hydrophilicity                    Hydrophobicity 
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5.1 The Carboxy-terminal domain of PC1/3 has a dual function 

 

Studies of the biosynthesis and of the DCSG-sorting signal of PC1/3 have led to 

many insights regarding its activity as a secretory granule convertase.  In addition to the 

autocatalytic removal of its inhibitory amino-terminal prosegment in the early secretory 

pathway, PC1/3 also catalyzes the proteolytic removal of its own carboxy-terminal tail only 

in cells containing dense core secretory granules (131). Removal of the PC1/3 carboxy-

terminal tail leads to full activation of the enzyme and provides an explanation for the 

restraint of the enzymatic activity in the early, pre-granule secretory pathway. In addition, 

the carboxy-terminal tail is required for correct sorting of PC1/3, as recombinant PC1/3 

enzymes in which the carboxy-terminal tail has been removed no longer enter secretory 

granules (131).  The PC1/3 carboxy-terminal domain is sufficient to direct secretory 

granule targeting of linked proteins that would normally be secreted by the default or 

constitutive secretory pathway (131).  Thus, the carboxy-terminal domain of PC1/3 is a bi-

functional domain that represses PC1/3’s enzymatic activity in the pre-granular secretory 

pathway in addition to correctly targeting PC1/3 to DCSGs. 

 PC1/3’s granular fate is determined at the TGN membrane or through an extrusion 

mechanism in an immature secretory granule.  At these locations, proteins enter either the 

constitutive or the regulated secretory pathways.  A membrane-associated amphipathic 

alpha-helix located between residues 738-750 serves as a DCSG sorting signal for PC1/3.  

Leucine 745 (L745), located in the amphipathic alpha helix between residues 738-750, is 

critical for the proper DCSG localization of PC1/3.  There is nothing unique about the 

ability of the PC1/3 alpha helix to act as a DCSG sorting domain. In fact, artificial 

sequences that form alpha helices functionally replaced the native helix of PC1/3 and 

redirected a constitutively secreted fusion protein to DCSGs (Chapter 2).  In order to 

function as DCSG-sorting domains, alpha-helices need to contain a hydrophobic cluster 

extending to the degree of hydrophobicity of the residues in the cluster (L>V>A) in 
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addition to charged (positively or negatively) residues.  Thus, L745, located in PC1/3’s 

alpha helix, may serve to stabilize a hydrophobic cluster ensuring efficient DCSG targeting. 

 Moreover, further investigation of the three PC family members localized in 

DCSGs, PC1/3, PC2 and PC5/6A, again revealed a common alpha helical targeting 

mechanism (Chapter 3). The carboxy-terminal helices of the three granule-resident PC 

enzymes are able to target a fusion protein to granules with varying efficiencies.  The 

biophysical comparison of these C-terminal helices demonstrated that PC1/3 contained an 

amphipathic helix with the highest hydrophobic moment and was more efficiently targeted 

to DCSGs than both PC5/6A and PC2.  Why would hydrophobic clusters be more efficient 

in sorting proteins to DCSGs? 

 Lipid domains have been proposed to be critical for sorting proteins to DCSGs.  

Hydrophobic residues may provide key contact points with the TGN membrane ensuring 

the tethering of granule-resident proteins.  The proposed hydrophobic residue-plasma 

membrane interactions may function to anchor granule-targeted cargo proteins to the 

secretory granule membrane thereby segregating granule-resident proteins from the default 

constitutive pathway.  

 

5.2 Models on how the late secretory pathway environment 

contributes to DCSG sorting 

 

 Calcium concentrations increase and the pH decreases in the late secretory 

pathway and both of these changes may contribute to DCSG sorting of select cargo proteins 

(33).  The calcium-rich environment within the TGN may also dictate the tethered state of 

PC1/3 at the TGN membrane or simply promote the aggregation of PC1/3.  The solution 

structure of the granule-targeting region of PC1/3 711-753 revealed a calcium-binding site 

located in the negatively charged flexible carboxy-terminal residues 750-753 (Chapter 3).  

However, deletion of the calcium-binding site did not have any effect on sorting of PC1/3 
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to DCSGs.  The calcium-binding site may serve to mask negative charges to allow better 

anchoring of PC1/3 in the membrane.  The proposed masking of the charged residues in 

PC1/3 750-753 may also expose hydrophobic clusters that cause PC1/3 to aggregate and 

thereby increase tethering at the TGN membrane.  Indeed, divalent cation binding to 

proteins has been demonstrated to expose a hydrophobic surface in various proteins 

including GroEL (145) resulting in their aggregation.  In addition, the late secretory 

pathway’s acidic environment may enhance the exposure of a hydrophobic surface.  In fact, 

at the intra-granular pH (pH = 5.5), CgA’s carboxy-terminal region undergoes a 

conformational change exposing its carboxy-terminal domain (146). Interestingly, the 

isolelectric point (pI) of CgA 407-431 is 4.34 almost identical to the pI value of PC1/3 711-753 

(pI = 4.1), making both these proteins negatively charged and capable of binding calcium in 

the pH ranges (pH = 5.5-7.0) present in the late secretory pathway.  While a specific 

calcium-binding site has not been identified for CgA, the alpha helical region in CgA 407-431 

may serve this function by creating an exposed hydrophobic surface.  How would the 

results presented in this dissertation fit in the context of the whole PC1/3 carboxy-terminal 

domain (PC1/3 619-753)? 

Once PC1/3 has entered the granule, the pH decreases further (pH=5.5).  Our 

structural studies demonstrate that PC1/3 711-753 is insoluble at this pH (data not shown), 

presumably due to the proximity of the pH to the protein’s pI  (PC1/3 711-753 , pI = 4.1).  At 

this juncture, the anchored DCSG targeting domain may be insoluble and disrupt PC1/3’s 

fold.  In this state, the carboxy-terminal domain would no longer repress PC1/3’s enzymatic 

activity allowing PC1/3 to be an active enzyme within the DSCG. 

 In Chapter 2, we demonstrated that charge reversed alpha helices could be 

efficiently targeted to DCSGs.  Since a positively charged helix cannot bind calcium and 

will not become insoluble in the DCSGs, how would this fit with the model?  The activity 

of PC1/3 in the context of the entire PC1/3 molecule was not tested in the charge-reversed 

helices. The positively charged helices studied in Chapter 2 contained hydrophobic clusters 

that may have been sufficient to act as DCSG-sorting domains.  In future studies, we need 
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to determine if positively charged helices are able to activate PC1/3 by causing the release 

of the carboxy-terminal domain and subsequently unfold the inhibitory portion of the 

carboxy-terminal domain from the rest of the PC1/3 molecule and enhance the auto-

catalytic cleavage of the inhibitory carboxy-terminal domain.  If the proposed model is 

correct (Figure 5.1), positively charged sorting domains would not be affected by the drop 

in pH within the DCSG and this would result in constitutively inactive PC1/3. 

 Moreover, two additional alpha helices present in the C-terminal domain of PC1/3 

have been demonstrated to act independently as DCSG-sorting signals. First, a sequence 

between residues 617-638 can redirect a constitutively secreted protein to DCSGs (135). A 

hydrophobic cluster analysis (147) reveals that this sequence contains two hydrophobic 

clustered regions (Figure 5.2). A similar hydrophobic cluster analysis of a second DCSG 

sorting alpha helical region localized between residues 665-682 (48) also reveals two 

hydrophobic clusters. These hydrophobic clusters may contribute to anchoring PC1/3 to the 

TGN membrane and PC1/3 would be targeted to the DCSG.  The difference between these 

alpha helices (PC1/3 617-638 and PC1 665-682) and the alpha helix studied in this dissertation 

(PC1/3 711-753) is the charge.  Both PC1/3 617-638 and PC1/3 665-686 have basic pIs (pI around 

11) as opposed to PC1/3 711-753’s acidic pI (pI = 4.1).  As noted above, while the basic alpha 

helices (PC1/3 617-638 and PC1/3 665-682) can target a constitutively secreted protein to 

DCSGs, their effect on the activation of full-length PC1/3 needs be tested. 
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Figure 5.1: Model for the sorting of PC1/3 to DCSGs 

(A) In the early secretory pathway, the PRO domain functions to repress the catalytic 

activity of PC1/3.  Bound substrates are not converted to active hormones (prosubstrates).  

(B) At the Trans Golgi Network, the PRO domain of PC1/3 undergoes an autocatalytic 

cleavage event.  The carboxy-terminal (C-terminal) domain represses the enzymatic 

activity of PC1/3.  We propose that this inhibition event occurs via residues 619-710 since 

residues 711-753 contains a hydrophobic cluster proposed to interact with the TGN 

membrane. The binding of calcium to a negatively charged region comprising residues 750-
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753 may enhance this interaction.  (C) Once in the secretory granule (pH = 5.5), the 

carboxy-terminal domain would become uncharged and aggregate.  We propose that this 

action enhances the autocatalytic cleavage of the carboxy-terminal domain of PC1/3.  This 

would eliminate the inhibition on the catalytic site of PC1/3 by the carboxy-terminal 

domain and result in the activation of prohormone substrates. 
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Figure 5.2: Comparison of the sorting domains of PC1/3 

Using the method of Gaboriaud et al. (147), the three sorting domains located in the 

carboxy-terminal domain (residues 617-753) were analyzed. The filled diamond shapes 

represent the positions of the non-polar glycine residues. Isoelectric point (pI) were 

determined using the EMBOSS software package (148). 
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5.3 Concluding remarks 

 

 In summary, we have examined the mechanism whereby alpha helices target 

proteins to DCSGs.  Alpha helices through highly hydrophobic faces are anchored to the 

membrane ensuring entry in DCSGs.  The results presented in this dissertation are in 

accordance with the characteristics of granule targeting sequences presented in Chapter 1.  

Indeed, we can effectively reconcile numerous sorting mechanisms using PC1/3 as a model.  

Thus, PC1/3 is an example of a membrane-tethered protein.  The tethering occurs through 

an alpha-helical DCSG-targeting sequence.  Moreover, the interaction between PC1/3 and 

the membrane may be dependent on the ionic conditions present in the late secretory 

pathway as calcium is proposed to assist in the membrane-tethering event.  The acidic 

conditions in the late secretory pathway may be functionally linked to the masking of 

negatively charged residues by calcium as these acidic pH conditions result in non-

protonated PC1/3 protein.  Furthermore, the residues located on the hydrophobic face of 

PC1/3 are essential for the sorting event.  In closing, the alpha helical mediated DCSG 

targeting of PC1/3 depends on interactions between PC1/3 and the late secretory pathway 

environment.   

 

5.4 Long-term Perspectives 

 

Many key experiments can further explain the sorting of proteins to DCSGs. 

1 The proper localization of proteins in granules can be simplified with a more 

quantifiable secretion assay.  Recent advances in fluorescence microscopy, notably 

deconvolution microscopy, allow three dimension reconstructions of cells 

improving their visualization (96).  Moreover, the attachment of reporter proteins on 

sorting domains has improved the quantification of the amount of protein secreted 
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from a granule (96).  

2 Sorting to granules takes place on the lumenal side of the TGN membrane. 

Researchers have failed to identify lumenal partner proteins capable of assisting this 

sorting event. With the advent of proteomics, a greater effort must be undertaken to 

identify partner proteins that interact with granule-resident proteins. In contrast, in 

vitro systems can be developed to determine whether or not granule-resident 

proteins require any partner proteins to be targeted to DCSGs.  For example, the KL 

helix used in Chapter 2 has the capability to deform Golgi-like liposomes into 

nanotubules (149).  A similar effect can be tested for the native helices of the PC-

enzymes to prove that the helix itself can provide a mechanical force to induce 

budding of the TGN. 

3 The elucidation of the solution structures of the PC2 and PC5/6A sorting domains 

will prove whether these domains also require a micellar environment in order to 

not be aggregated. This will most likely be the case for PC2, which adopts an alpha-

helical structure only in the presence of liposomes (47).  On the other hand, PC5/6A 

contains a cysteine rich domain in its carboxy-terminal domain adjacent to the 

region predicted to form an alpha helix representing a potential novel fold. These 

structures will also help in understanding why these PC enzymes (PC2 and PC5/6A) 

are sorted less efficiently to DCSGs when compared to PC1/3 (Chapter 3). 

4 Novel approaches must be undertaken to study the effect of calcium on sorting. A 

live cell imaging method can be developped to monitor the subcellular localization 

of fluorescently-tagged granule proteins upon specific chelatation of calcium 

present in DCSGs.  Care must be taken to maintain normal levels of the 

extracellular calcium as decreased levels of calcium will inhibit regulated 

exocytosis. 

5 The long-term objective for understanding the mechanism of sorting proteins to 

granules is a better understanding of hormone peptide production.  An animal model 

can be created to study sorting domains in vivo.  For example, granule production 
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can be tested in mice overexpressing the granule sorting region of PC1/3.  Possible 

therapeutic effects can be verified in diabetic mice models that do not produce 

enough of the PC1/3 cleavage product insulin. 

 

5.5 Where do we go from here? 

 

The past two decades have been marked by many interesting discoveries in DCSG protein 

targeting.  Work to date has largely supported the three postulates outlined in Chapter 1: 

proteins exist that could explain the anchoring of DCSG cargo to the granule membrane, 

protein complexes between processing enzymes and their substrates have been proposed 

that could explain how these proteins end up in the same granules and the diversity of 

sorting mechanisms helps to understand how there could be distinct DCSGs even within 

single cells and how there could be such a lack of agreement on the mechanism of DCSG 

sorting.  Unfortunately, this lack of a simple consensus mechanism has limited progress 

primarily to attempts to determine the role of single-targeting motifs in given proteins in 

various cell culture models that may or may not be entirely appropriate.  While this 

approach has certainly not been without merit, a better understanding of the complexity of 

this important cellular event may help to design experiments that will help to significantly 

advance this field of research.  Several important questions remain: How does the DCSG 

protein cargo identify the membrane patches that will make up the mature granule?  Does 

this occur in the lumen of the TGN?  Are specific lipids involved?  How do these 

complexes communicate with the cytoplasmic accessory proteins that are necessary for the 

formation of the budding DCSG?  In fact, while it has been difficult to explain the entry of 

proteins into DCSG, we can expect that describing the assembly of proteins on the surface 

of the DCSG which are necessary for their cytoplasmic transport, docking at the membrane 

and exocytosis will be an equally daunting challenge:  A recent report on the components 

of the functionally related synaptic vesicle identified over 400 associated proteins (150).  
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What is abundantly clear is that in the characterization of this unique organelle, there is still 

a lot to sort out. 
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