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ABSTRACT 

Stochastic Simulation to Improve Land-Cover Estimates Derived from Coarse Spatial 

Resolution Satellite Imagery  

by Conrad M. Bielski 

Keywords: stochastic imaging, remote sensing, land-cover and scale change 

 

 Today’s land-cover monitoring studies at regional to global scales using 

optical satellite based remote sensing is confined to the use of coarse spatial 

resolution imagery. Due to the coarse spatial resolution, land-cover identification is 

poor and estimation is error prone. Some land-cover investigations apply a scaling-up 

approach where fine spatial resolution imagery is aggregated until the wanted 

mapping scale is attained. Here, the opposite approach (scaling-down) is investigated 

through the use of geostatistical stochastic imaging techniques. The objective of this 

thesis is to examine the possibility of generating finer spatial resolution multi-spectral 

like images based on available multi-spectral coarse spatial resolution imagery to 

extract land-cover information. Other ideas addressed were: a) whether stochastic 

imaging can indeed generate multi-spectral like finer spatial resolution imagery based 

on coarse spatial resolution imagery, b) the possibility of introducing SAR imagery to 

improve the spatial location of the generated image features and, c) the applicability 

of an automatic spectral segmentation algorithm to the generated imagery. The 

sequential gaussian simulation algorithm was used to generate the finer spatial 

resolution multi-spectral like images. This algorithm was applied using the local 

varying mean and co-simulation options and always conditioned to the coarse spatial 
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resolution imagery. From aboard the SPOT-4 satellite, the VEGETATION (VGT) 

instrument provided the coarse spatial resolution imagery while the HRVIR 

instrument provided the fine spatial resolution imagery for validation. Algorithm 

parameters were taken directly and derived from the VGT imagery. RADARSAT 

ScanSAR wide imagery was also used in the stochastic imaging process. Four test 

sites in the vicinity of the Island of Montreal were chosen each measuring 15 km x 15 

km. The tests resulted in the generation of multi-spectral images with red, NIR and 

SWIR bands. Three different sets of input parameters were used to generate the finer 

spatial resolution images. The first set was based on the VGT image statistics, the 

second was based on derived finer spatial resolution statistics and the last set was 

based on the second set of parameters with the inclusion of SAR imagery. The K-

means algorithm was chosen to segment the generated finer spatial resolution images. 

Overall, this experiment served to: a) demonstrate that coarse spatial resolution 

imagery can be applied to generation of finer spatial resolution imagery with 

stochastic imaging techniques. However, before spectral reproducibility can be 

achieved, the sensing system and scale relationships must be better understood, b) 

illustrate the appropriateness of the co-simulation technique but also show that the 

input parameters (variogram and distribution) have a significant impact on the 

resulting scale of the generated finer spatial resolution images, c) demonstrate that 

the use of SAR imagery is beneficial to the process of generating finer spatial 

resolution imagery because it helps fix the ground scene characteristics, but the 

relationship to the optical imagery (an important input parameter for co-simulation) 

varies depending on the scene and must be further investigated, d) show that spectral 
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segmentation of synthetic imagery is possible but validation remains difficult using 

the standard approach. 
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RÉSUMÉ 

La simulation stochastique pour améliorer les estimations de la couverture des sols à 

partir d’images satellitales à résolution spatiale grossière 

par Conrad M. Bielski 

mots clés: simulation stochastique, télédétection, couverture des sols, changement 

d’échelle 

 

 À l’heure actuelle, le suivi de la couverture du sol par télédétection à des 

échelles allant du régional au planétaire est confiné à des capteurs à résolution 

spatiale grossière.  Une telle résolution cause l’agrégation des objets, ce qui mène à 

des estimations erronées quant à l’étendue et aux  types de classes extraites des 

images. Ce problème est beaucoup plus aigu lorsque le territoire présente une grande 

hétérogénéité.  C’est pourquoi plusieurs préfèrent classifier des images à résolution 

fine et par la suite agréger les classes pour obtenir une cartographie à des échelles 

moins détaillées. Cette technique est cependant coûteuse et ne répond pas aux 

exigences d’un suivi régulier pour les échelles allant du régional au planétaire.  Dans 

cette thèse nous examinons le problème inverse, c’est-à-dire de générer des images à 

résolution spatiale fine en se servant des images à résolution spatiale grossière. 

 

Plus particulièrement, l'objectif principal de cette recherche était d’évaluer la 

capacité des techniques géostatistiques de simulation stochastique afin de générer des 

images multispectrales à une résolution spatiale fine.  Ces images permettraient ainsi 
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d’obtenir des données sur la couverture du sol mieux adaptées aux besoins du suivi 

du territoire qu’en se servant des images originales à résolution grossière. Les 

objectifs spécifiques de cette étude étaient les suivants :  a) étudier le potentiel des 

différentes techniques de simulation stochastique pour générer des images à 

résolution fine ayant des caractéristiques spectrales similaires aux images acquises 

par des capteurs à cette résolution fine, b)  étudier la possibilité d’intégrer des images 

non-optiques dans le processus de simulation afin d’introduire des informations 

complémentaires qui pourraient améliorer la caractérisation du territoire, et c) évaluer 

le potentiel de classification automatique des images générées.  

 

Pour ce faire, des images provenant du satellite SPOT-4 ont été utilisées. Les 

images du capteur VEGETATION (VGT) étaient les images de base à résolution 

grossière (1 km). Les images du capteur HRVIR à résolution fine (20 m) ont servi 

comme données de validation pour les images générées à l’aide des algorithmes de 

simulation stochastique. L’imagerie non-optique SAR du satellite RADARSAT-1 

(mode ScanSAR, résolution nominale de 100 m) complétait la série de données. 

Quatre sous-régions de 15 x 15 km dans la région métropolitaine de Montréal ont été 

choisies afin de couvrir différents types paysages (urbain, péri-urbain et rural).  

 

Pour chaque sous-région des images multispectrales (rouge, PIR, IROC) ont 

été générées en utilisant l’algorithme SGSIM (Sequential Gaussian SIMulation) et les 

techniques LVM (local varying mean) et co-simulation. L’expérimentation 

comprenait trois phases; chaque phase amenait des informations suplementaires a la 
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simuation stochastique. Dans la première phase, les intrants (variogramme et 

distribution) provenaient directement des images VGT. Dans la seconde phase, ces 

intrants étaient fixés pour représenter les caractéristiques des images à résolution fine. 

Puisque ces intrants n’étaient pas conformes aux statistiques des images HRVIR, ces 

dernières ont finalement servies à la simulation de la phase II. Dans la troisième 

phase les images RADARSAT ont été introduites avec les intrants de la phase II. 

Dans les deux premières phases les deux techniques (LVM et co-simulation) ont été 

appliquées, tandis que dans la troisième phase seule la co-simulation a été employée. 

Pour la co-simulation avec les données RADARSAT,  la corrélation avec les données 

optiques n’était assez forte pour influencer la génération d’images. C’est pourquoi 

nous avons fixé une corrélation arbitraire de 0.75 mais en conservant le signe de la 

relation radar-optique.  

 

La segmentation des images générées dans chaque phase ainsi que des images 

de base a été réalisée à l’aide de l’algorithme K-means puisque notre objectif était 

d’évaluer les similarités des espaces spectraux de chacune des images. Les groupes 

spectraux (clusters) établis par l’algorithme ont été comparés. Les images classifiées 

ont aussi été analysées en fonction des données disponibles sur les occupations du sol 

afin d’analyser la correspondance entre classes spectrales et classes d’occupation du 

sol.  

 

Les principaux résultats des trois phases d’expérimentation sont les suivants : 

L’utilisation des intrants provenant uniquement de VGT (phase I) permettent la 
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génération des images à une résolution spatiale plus fine, cependant leurs 

caractéristiques sont passablement similaires aux images originales VGT ; 

L’utilisation des intrants provenant de HRVIR (phase II) permet de générer des 

images avec un contenu spectral plus varié mais difficile à faire correspondre aux 

images HRVIR ; L’ajout de l’image RADAR dans le processus de simulation (phase 

III) permet d’obtenir des patrons spatiaux qui correspondent mieux à ceux de 

HRVIR. 

 

Les résultats de l’application de l’algorithme K-means démontrent qu’il est 

possible d’obtenir des regroupments distincts. Cependant leur nombre variait selon la 

sous-région et les images analysées (8-16 regroupments). L’examen comparatif des 

regroupments dans l’espace spectral ainsi que des proportions de pixels par 

regroupment a montré qu’il est difficile d’établir des liens clairs entre les 

regroupments des images générées et ceux obtenus par HRVIR. Les regroupments 

obtenus dans la phase I étaient similaires à ceux de l’image VGT. Par contre, les 

regroupments étaient différents dans la phase II et III, sauf ceux obtenus avec la 

technique LVM.  La validation avec les données sur les occupations du sol n’était 

concluante. En effet, même dans le cas de HRVIR, à l’exception de la classe eau, il 

n’y avait pas un regroupments dominant par type d’occupation du sol.  Les images 

générées dans la phase II et III avec la co-simulation présentaient le plus d’intérêt. En 

effet, deux ou trois regroupments dominants correspondaient à une classe 

d’occupation du sol, de la même manière que les images HRVIR.  
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Les conclusions de cette recherche sont: a)  l’algorithme SGSIM permet de 

générer des images à une résolution spatiale plus fine à partir des images à résolution 

grossière ; cette recherche ouvre donc une nouvelle voie pour étudier les mécanismes 

de changement d’échelle dans le cas des images de télédétection ; b) les images à 

résolution fines générées dans cette recherche présentent des différences de 

distribution spectrale par rapport aux images “réelles.” Prise seule, la différence entre 

les résolutions spatiales de VGT et HRVIR ne peut pas expliquer ces différences dans 

les distributions spectrales. Les conditions d’expérimentation étant bien choisies au 

départ (acquisition des images en parallèle, zones centrales des images, mêmes 

bandes spectrales) nous ont permis de minimiser les incertitudes dues aux conditions 

d’acquisition. Ceci nous amène à conclure que les différences sont plutôt attribuables 

aux systèmes de captage eux-mêmes (différences dans le système optique, résolution 

radiométrique différente, sensibilités spectrales différentes des détecteurs, etc.). Il y a 

donc matière à étude comparative plus poussée dans le domaine de captage des 

données avant que l’on puisse s’assurer que les différences observées ne sont pas des 

artefacts de l’algorithme de simulation; c) L’algorithme SGSIM est facilement 

adaptable à des conditions d’application pratique. Cependant, le choix des intrants 

dans cet algorithme est important parce que les images générées sont très sensibles 

aux conditions initiales, particulièrement le variogramme et la forme de la 

distribution des valeurs ; le problème mentionné plus haut sur la difficulté d’obtenir 

un variogramme ponctuel pour des sous-régions à partir du variogramme de VGT 

mérite d’être étudié plus à fond car pour que la méthode proposée ici soit pratique 

nous devons nous affranchir des données à résolution spatiale fine ; d) L’utilisation 
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des images SAR s’est avérée importante pour donner un aspect spatial plus réaliste 

aux images générées. La solution adoptée ici pour leur intégration est nouvelle et 

appropriée. En étudiant les relations optique-radar à partir d’autres images il est 

possible de mieux étalonner la valeur du coefficient de corrélation nécessaire à 

l’application de la technique de co-simulation ; e) la validation des résultats est 

difficile compte tenu de l’incompatibilité entre classes spectrales (peu importe 

l’image utilisée) et les catégories générales d’occupation du sol telles qu’employées à 

la cartographie standard à échelle régionale (urbain, agricole, forestier, etc.). 
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Figure 5.21 – Histograms computed from the 10th percentile images based on the set 

of 50 realisations for sites A (left side) and B (right side).  

Figure 5.22 – Histograms computed from the 10th percentile images based on the set 

of 50 realisations for sites C (left side) and D (right side).  

Figure 5.23 – Histograms computed from the median images based on the set of 50 

realisations for sites A (left side) and B (right side).  

Figure 5.24 – Histograms computed from the median images based on the set of 50 

realisations for sites C (left side) and D (right side).  

Figure 5.25 – Histograms computed from the 90th percentile images based on the set 

of 50 realisations for sites A (left side) and B (right side).  

Figure 5.26 – Histograms computed from the 90th percentile images based on the set 

of 50 realisations for sites C (left side) and D (right side).  

Figure 6.1 – Computed histograms based on the HRVIR images of study sites A (left 

side) and B (right side).  

Figure 6.2 – Computed histograms based on the HRVIR images of study sites C (left 

side) and D (right side).  

Figure 6.3 – Legend for the experimental variograms based on the HRVIR imagery 

(figures 6.4 and 6.5). 

Figure 6.4 – Computed experimental and model variograms based on the HRVIR fine 

spatial resolution imagery for study sites A (left side) and B (right side). Distance is 
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shown in pixels where 1 pixel is equal to 20 m (Note the abscissa axis is not 

constant).  

Figure 6.5 – Computed experimental and model variograms based on the HRVIR fine 

spatial resolution imagery for study sites C (left side) and D (right side). Distance is 

shown in pixels where 1 pixel is equal to 20 m (Note the abscissa axis is not 

constant). 

Figure 6.6 – Phase II generated finer spatial resolution imagery using the LVM 

option.  

Figure 6.7 – Phase II single realisation co-simulated imagery of study sites A through 

D.  

Figure 7.1 – Histogram of the RADARSAT ScanSAR wide imagery.  

Figure 7.2 – Generated finer spatial resolution imagery conditioned with SAR 

imagery. 

Figure 7.3 – Generated imagery computed from 50 realisations using the E-type 

estimate and phase III input parameters for study sites A through D.  

Figure 8.1 – Three-dimensional representation of the spectral groupings in spectral 

feature space after segmentation based on the K-means algorithm. The results shown 

are for study site A and a maximum of 16 groups.  

Figure 8.2 – K-means segmentation results for phase I and II statistical images. The 

results shown are for study site A and a maximum of 16 groups.  

Figure 8.3 – K-means segmentation phase III results for study site A. The results 

shown are for study site A and a maximum of 16 groups.  

Figure 8.4 – Three-dimensional representation of the spectral groupings in spectral 

feature space after segmentation based on the K-means algorithm. The results shown 

are for study site A and a maximum of 10 groups. 

Figure 8.5 – K-means segmentation results for phase I and II statistical images. The 

results shown are for study site A and a maximum of 10 groups.  

Figure 8.6 – K-means segmentation phase III results for study site A. The results 

shown are for study site A and a maximum of 10 groups. 
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Figure 8.7 – Three-dimensional representation of the spectral groupings in spectral 

feature space after segmentation based on the K-means algorithm. The results shown 

are for study site B and a maximum of 16 groups. 

Figure 8.8 – K-means segmentation results for phase I and II statistical images. The 

results shown are for study site B and a maximum of 16 groups. 

Figure 8.9 – K-means segmentation phase III results for study site A. The results 

shown are for study site B and a maximum of 16 groups. 

Figure 8.10 – Ranked spectral segments based on the pixel count. The results shown 

are for study site A and a maximum of 16 groups. 

Figure 8.11 – Classified spectral segments based on percent cover of study site A 

with 16 classes (single realisation images). 

Figure 8.12 – Classified spectral segments based on percent cover of study site A 

with 16 classes (E-type estimate and median images). 

Figure 8.13 – Classified spectral segments based on percent cover of study site A 

with 16 classes (10th and 90th percentile images).  

Figure 8.14 – Ranked spectral segments based on the pixel count. The results shown 

are for study site A and a maximum of 10 groups. 

Figure 8.15 – Classified spectral segments based on percent cover of study site A 

with 10 classes (single realisation images). 

Figure 8.16 – Classified spectral segments based on percent cover of study site A 

with 10 classes (E-type estimate and median images). 

Figure 8.17 – Classified spectral segments based on percent cover of study site A 

with 10 classes (10th and 90th percentile images). 

Figure 8.18 – Ranked spectral segments based on the pixel count. The results shown 

are for study site B and a maximum of 16 groups. 

Figure 8.19 – Classified spectral segments based on percent cover of study site B 

with 16 classes (single realisation images). 

Figure 8.20 – Ranked spectral segments based on the pixel count. The results shown 

are for study site B and a maximum of 10 groups.  

Figure 8.21 – Classified spectral segments based on percent cover of study site B 

with 10 classes (single realisation images). 
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Figure 8.22 – CLI vectors superimposed on the spectrally segmented images of study 

site A based on 16 clusters. 

Figure 8.23 – The distribution of spectral segments within the built-up land-cover 

class for study site A based on 16 clusters. 

Figure 8.24 – The distribution of spectral segments within the water land-cover class 

for study site A based on 16 clusters. 

Figure 8.25 – CLI vectors superimposed on the spectrally segmented images of study 

site B based on 16 clusters. 

Figure 8.26 – The distribution of spectral segments within the built-up land-cover 

class for study site B based on 16 clusters. 

Figure 8.27 – The distribution of spectral segments within the water land-cover class 

for study site B based on 16 clusters.  

Figure 8.28 – The distribution of spectral segments within the pasture land-cover 

class for study site B based on 16 clusters. 

Figure 8.29 – The distribution of spectral segments within the woodland land-cover 

class for study site B based on 16 clusters. 

Figure 8.30 – CLI vectors superimposed on the spectrally segmented images of study 

site C based on 16 clusters. 

Figure 8.31 –The distribution of spectral segments within the pasture land-cover class 

for study site C based on 16 clusters.  

Figure 8.32 – The distribution of spectral segments within the woodland land-cover 

class for study site C based on 16 clusters. 

Figure 8.33 – CLI vectors superimposed on the spectrally segmented images of study 

site D based on 16 clusters. 

Figure 8.34 – The distribution of spectral segments within the woodland land-cover 

class for study site D based on 16 clusters. 

Figure 8.35 – Woodland vectors superimposed on the spectrally segmented images of 

study site D based on 16 clusters (1:50 000 map scale). 

Figure 8.36 – The distribution of spectral segments within the woodland land-cover 

class for study site D based on 16 clusters (1:50 000 map scale). 
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Figure 8.37 – Proposed validation procedure for comparing generated finer spatial 

resolution images to a validation data set.  
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AVHRR – Advanced Visible High Resolution Radiometer 

BOREAS – BOReal Ecosystem-Atmosphere Study 

CDF – cumulative distribution function 

CCDF – conditional cumulative distribution function 

CORINE – Co-Ordination of Information on the Environment 

EM – Electromagnetic (refers to the Electromagnetic spectrum) 

DN – Digital Number 

IFOV – Instantaneous Field of View 

VGT – VEGETATION sensor onboard the SPOT 4 satellite 

HRVIR – High Resolution Visible Infrared sensor onboard the SPOT 4 satellite 

Land-cover – the composition and characteristics of land surface elements 

NIR – Near Infrared 

NOAA – National Oceanic and Atmospheric Administration 

OK – Ordinary Kriging 

PSF – Point Spread Function 

RF – Random Function 

RV – Random Variable 

Scaling-up (or bottom up) – Aggregation process where the original spatial data are 

reduced to a smaller number of data units. 

Scaling-down (or top down) – the reverse of scaling-up, i.e. increasing the number of 

data units based on a limited data set.  

SAR – Synthetic Aperture Radar 

SD – Standard Deviation 

SWIR – Short Wave Infrared 

SGSIM – Sequential Gaussian Simulation 

TREES – TRopical Ecosystem Environment observation by Satellite 
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Chapter 1 – Introduction 

Scientists and policy-makers rely upon satellite based remotely sensed data to 

extract pertinent information relating to the state of the environment. At the global 

scale, categorising geographic space into broad land-cover classes (e.g. forest, urban, 

etc.) and monitoring their changes over time are important because land-cover 

distribution and change are inputs to many studies including desertification, 

greenhouse effects, etc. Projects such as TREES (TREES 1999) or NASA's Landsat 

Pathfinder Humid Tropical Deforestation Project (UMD 1998) use estimates of the 

total tropical forest cover across the globe to help measure changes caused by natural 

and anthropogenic disturbances over time. Land-cover can also be used as a surrogate 

for specific parameters (e.g. plant biomass or canopy conductance) that cannot be 

measured directly over large regions (Cihlar et al. 1997) as in the case of the 

BOREAS project that deals with ecosystem-atmosphere interactions (BOREAS; 

Sellers et al. 1995). Future monitoring will support governments for environmental 

action. The Kyoto protocol (UNFCCC 2001) calls for better forest management and 

countries are rewarded or penalised depending on the state of their forests. Such 

monitoring demands accuracy in order to make sure that protocol compliance be 

rewarded and non-compliance be penalised. Uncertainties in such situations 

(Townshend et al. 1992) provide political loopholes and no means of upholding the 

law because verification is erroneous. 

 

Acquiring data on the state of and changes in land-cover at the global scale 

however, is not an easy task. The most suitable satellite imagery provides large area 
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coverage while maintaining an adequate spatial resolution for land-cover 

characterization. The extent of the recorded image determines the total ground scene 

area that can be sensed and must be large enough to supply a “snapshot” in time of 

the land-cover state of the whole Earth. A large extent also allows for a finer temporal 

resolution providing important monitoring information that can be used to separate 

seasonal trends in land-cover change from disturbances and modifications. In a 

practical sense, optical data benefits from such a fine temporal resolution because 

cloud cover and atmospheric effects, in general, are reduced.  

 

However, such an ideal remote sensor does not exist because there is always a 

trade-off between extent of coverage and fineness of the spatial resolution. Over the 

last 20 years, experimentation with the NOAA AVHRR series of satellite based 

sensors (about 2000 km of spatial coverage at 1 km spatial resolution and daily 

coverage) has shown the difficulty of applying coarse spatial resolution optical 

imagery specifically to the extraction of thematic content and estimating its 

proportions (Justice et al. 1989, Townshend et al. 1991, Townshend et al. 1992, 

Townshend et al. 1994, Mayaux and Lambin 1995; 1997). The fact that recorded 

observations and derived conclusions are scale dependent is well known (Gosz 1986, 

Addicott et al. 1987).  The certainty in identifying ground scene composition and 

characteristics increases as the scale of observation (i.e. resolution and extent of 

image data) provides the necessary details at the scale of inference (i.e. resolution and 

extent of extracted information). Thus, a general practice applied today to obtain an 

exact characterisation of broad land-cover categories is to classify fine spatial 

resolution satellite data and scale-up. The scaling-up procedure involves aggregating 
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the land-cover classes based on cartographic generalisation criteria e.g. at what map 

scale will side roads still be shown. The European CORINE land-cover program is 

based on the principle of cartographic generalisation and in Canada this principle will 

also be utilised to meet the Kyoto protocol requirements. However, such an approach 

is very time consuming and does not meet the fine temporal revisit criterion.  

 

In order to extract the same broad land-cover categories from satellite based 

optical coarse spatial resolution imagery the opposite procedure would need to be 

applied: scaling-down. Scaling-down is more problematic because less information is 

available at the start.  Technological advances provide better optical coarse spatial 

resolution imagery and favourable experimental conditions to examine the feasibility 

of such a scaling-down procedure. In fact the VGT and the HRVIR sensors on board 

the SPOT-4 satellite provides respectively large extent/coarse spatial resolution 

imagery and small extent/fine spatial resolution imagery that can be recorded in 

parallel (VEGETATION 1999). Thus it is possible to generate data sets of the same 

area of interest at both fine and coarse spatial resolutions under the same external 

conditions (time of the day, atmospheric and solar illumination conditions). In 

addition, the availability of SAR satellite images with relatively large area coverage 

(500 km x 500 km) and medium spatial resolution (<100 m), such as the ScanSAR 

wide mode of RADARSAT-1, could be introduced as an independent source of 

information into this scaling-down procedure. A scaling-down procedure could be 

realised and the quality of the scaled-down imagery in terms of land-cover 

characterization constitute the core of this thesis. Geostatistical stochastic imaging 
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techniques are the privileged tool for such a procedure for the reasons explained in 

the next section. 

 

1.1 Available Techniques  

The existing techniques that aim to improve the information extraction 

potential from coarse spatial resolution images introduce “exogenous image data”. 

These techniques can be separated into two general categories (table 1.I). Image 

enhancement tries to provide a visually more appealing product while error correction 

attempts to correct land-cover estimates.  

 

Table 1.I – Various approaches to improve image quality and derived information. 

Goal Method References 
Image 
Enhancement 

Fusion Carper et al. 1990; Chavez et al. 1991; Pohl and 
Van Genderen 1998; Ranchin and Wald 2000; 
Liu 2000; Del Carmen Valdes and Inamura 2001 

Error 
Correction 

Regression Kong and Vidal-Madjar 1988; Foody 1994; 
Oleson et al. 1995; Mayaux and Lambin 1995; 
Fazakas and Nilsson 1996; Maselli et al. 1998 

 Modelling Iverson et al. 1989; Zhu and Evans 1992; Cross 
et al. 1991; Kerdiles and Grondona 1995; 
Ouaidrari et al. 1996; Atkinson et al. 1997 

 

Image enhancement (table 1.I – first row) is primarily achieved through fusion 

techniques. Fusion techniques use fine spectral/coarse spatial resolution imagery that 

is combined with coarse spectral/fine spatial-resolution imagery to obtain an image 

with the finest spectral/spatial resolution combination. 
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Error correction procedures are often based on either regression or modelling. 

When regression is used (table 1.I – middle row), relationships between samples of 

fine spatial resolution parameters and the matching coarse spatial resolution 

parameters are computed. These relationships are then extrapolated over regions 

where only the coarse spatial resolution parameter is present to estimate the fine 

spatial resolution parameters. 

 

Modelling can encompass a large number of techniques. One of the more used 

techniques is mixture modelling (table 1.I – last row). Mixture modelling is based on 

the assumption that the measured spectral response from a particular image pixel is 

related to the mixture or patterns of cover types in that location.  

 

The afore mentioned techniques, however, do not provide all the necessary 

solutions to improve image data quality gathered over large regions. Image fusion 

necessarily requires a fine spatial/coarse spectral resolution image as well as a coarse 

spatial/fine spectral resolution image that both cover the same region. Monitoring 

large regions using this technique is therefore unfeasible because fine spatial 

resolution imagery is usually not available. The regression and modelling techniques 

require fine spatial resolution image samples for calibration. The larger the area under 

investigation, the more sample sites are required. Furthermore, the complexity of the 

ground scene is a determining factor in the required number of sample and validation 

sites and thus the number of required fine spatial resolution samples increases as 

spatial heterogeneity increases. 
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Previous studies showed that coarse spatial resolution optical imagery (NOAA 

AVHRR) had quantifiable spatial variability based on the variogram (e.g. Gohin 

1989, Bielski 1997). This information together with image statistics could be the 

input for various geostatistical methods (i.e. kriging or stochastic imaging) to 

generate finer spatial resolution imagery.  

 

Geostatistical methods, which were originally developed for the mining 

industry in the 1950’s, were later introduced into the remote sensing context in the 

late 1980’s by Woodcock et al. (1988a, 1988b). Many remote sensing studies and 

applications have since used geostatistics and some typical studies are presented in 

table 1.II. However, no attempt has been documented until now to generate a finer 

spatial resolution image using geostatistical techniques. More importantly, no attempt 

has been made to examine whether such a scaling-down procedure can generate an 

image whose spectral characteristics approach those of a fine spatial resolution image 

that is considered optimal for land-cover classification at the regional scale. 
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Table 1.II – A listing of geostatistical applications in the remote sensing context. 

Curran and Dungan 
1988 

Used the semi-variogram to isolate sensor noise and remove 
intra-pixel variability  

Gohin 1989 Used the variogram and co-variogram to compare sea surface 
temperatures taken in situ and from satellites to evaluate the 
importance of spatial structures in the data and instrument error. 

Webster et al. 1989 Variogram was used to design sampling schemes for estimating 
the mean to meet some specified tolerance expressed in terms of 
standard error. 

Atkinson et al. 1990 Selection of sufficient image data for compressed storage. 
Cohen et al. 1990 Computed semivariograms on images of a variety of Douglas-fir 

stands and found relationships between patterns in stand 
structure, canopy layering and percent cover. 

Bhatti et al. 1991 Interpolated ground measurements of soil properties and crop 
yield over large areas combined with Landsat TM data using 
kriging and co-kriging. 

Atkinson et al. 1992 Applied co-kriging using ground based radiometry. 
D'Agostina and 
Zelenka 1992 

Applied the co-kriging technique to two available information 
sources to reduce the estimation error. 

Dungan et al. 1994 Provided examples of kriging and stochastic imaging to map 
vegetation quantities using ground and image data. 

Lacaze et al. 1994 Compared variogram of different Mediterranean environments 
based on images from a variety of sources (air and satellite 
based). 

Rossi et al. 1994 Interpolated land-cover classes found under the clouds with 
kriging. 

Atkinson and Curran 
1995 

Evaluation of the relation of size of support with the precision of 
estimating the mean of several properties using kriging. 

St-Onge and Cavayas 
1995 

Used the directional variogram from high spatial resolution 
images to estimate height and stocking of forest stands. 

Eklundh 1995 Noise estimation in AVHRR data using the nugget variance. 
Lark 1996 Computed semi-variance in a local window for lags of different 

length and direction to discriminate land-cover classes. 
Van der Meer 1996 Development of indicator kriging based classification technique 

for hyperspectral data. 
Curran and Atkinson 
1998 

Presented overview of geostatistics in remote sensing with 
examples. 

Dungan 1998 Compared regression, co-kriging and stochastic imaging 
techniques to generate maps based on sampled imagery. 

Wulder et al. 1998 Used variogram model parameters to compute the semivariance 
moment texture as a surrogate of forest structure to related LAI 
and vegetation indices. 

Atkinson and Emery 
1999 

Explored the spatial structure of different bands using the 
variogram. 
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Initial attempts by the author to generate finer spatial resolution images were 

done using the kriging interpolator with unsatisfactory results (Bielski and Cavayas 

1998, Bielski 1999). Kriging proved to be inadequate because the interpolation 

algorithm generated smoothed images whose overall statistics did not reproduce the 

anticipated results at the finer spatial resolution. These difficulties could in principle 

be overcome with the application of the geostatistical stochastic imaging technique 

(Dungan 1998, Goovaerts 2000) because the simulated data is not smoothed.  

 

1.2 Objectives and Hypotheses 

An attempt is made in this thesis to establish a practical procedure to generate 

finer spatial resolution imagery based on coarse spatial resolution optical imagery and 

stochastic imaging. This generated imagery could then provide a better land-cover 

characterization than the original imagery could. The generated finer spatial 

resolution imagery would provide a finer unit of measurement (finer spatial 

resolution) and more spectral variability to discern different land-cover types. 

The specific objectives of the study are as follows: 

- analyse the ways that experimental variograms and other statistical parameters 

extracted from the sole coarse spatial resolution imagery  could be used as a 

support for generating finer spatial resolution imagery; 

- analyse the possibility of using information provided by non optical sensors (SAR 

imagery); 

- validate the various generated images in terms of location and possible class 

labels. 
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The working hypotheses based on previous personal work are: 

- that the coarse spatial resolution imagery preserves enough information to 

generate new data with similar spectral characteristics compared to a finer spatial 

resolution imagery; 

- that geostatistical theory as well as the stochastic imaging techniques can be used 

to change the spatial scale of remotely sensed imagery; 

- that SAR imagery can provide spatial location information to enhance the 

generated optical images; 

- that an automatic segmentation algorithm is applicable to synthetic multi-spectral 

imagery in order to obtain meaningful land-cover classes. 

 

A tool able to zoom-in (or out) on available coarse spatial resolution imagery 

based on geostatistical knowledge could provide the data necessary to fill in the gaps 

between unavailable finer resolution sensor data. This approach presented here 

concentrates on the structure of the data itself and generates image data in the same 

spectral bands as those found in the original coarse spatial resolution imagery. The 

procedure itself is based on generating data with similar characteristics as that of finer 

spatial resolution imagery and information extraction therefore becomes a secondary 

step. Information extraction as a secondary step facilitates the creation or loss of 

information rather than modelling how land-cover objects appear or disappear 

depending on the scale of observation. A reliable segmentation or supervised 

classification method thus remains an integral part of the information extraction 

procedure.  
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1.3 Originality and Contribution of the Thesis 

The novel idea behind the approach presented in this thesis is to apply a 

stochastic imaging technique to generate imagery at a finer spatial resolution. The 

stochastic imaging algorithm explored for this purpose was the sequential gaussian 

simulation algorithm. In addition, both the locally varying mean (LVM) and co-

simulation techniques were tested. Theoretically such an approach could be applied 

without recourse to any spatial data set. However, the goal is to generate a finer 

spatial resolution data set based solely on available coarse spatial resolution imagery 

whose characteristics are similar to a fine spatial resolution image that could be 

acquired in reality. Furthermore, the emphasis is placed on modelling the change in 

the overall statistics of the images rather than modelling the manner in which land-

cover classes change over different spatial scales. Consequently, applying traditional 

segmentation techniques and classification strategies to generated finer spatial 

resolution optical imagery is a new tactic.  

 

Testing the viability of zooming-in to coarse spatial resolution data by means 

of geostatistical stochastic imaging is important because of the possibility of 

increasing certainty about derived information. This particular approach could 

increase certainty through the availability of finer spatial resolution data. Use of finer 

spatial resolution data means that the scale of observation is closer to that required by 

the user (scale of inference) and should therefore reduce error. The usefulness of the 

resulting generated finer spatial resolution image data however, is entirely dependent 
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on whether the theory behind the stochastic imaging algorithms is sound. Success in 

this work would allow researchers to generate finer spatial resolution imagery for 

global studies based on coarse spatial resolution data. As such, historical AVHRR 

imagery can also be re-examined to improve land-cover assessment.  

 

Another novelty of this thesis is the inclusion of SAR imagery into the 

scaling-down process. SAR data differs from optical data in that the sensor is active 

as well as the fact that it records wavelengths in the cm range. The benefit of the SAR 

data to generating finer spatial resolution imagery is that it can provide spatial 

location information that is lacking in the original coarse spatial resolution data. 

 

As mentioned earlier, satellite based remote sensing image data are available 

in a multitude of configurations because no single sensor can provide the user with all 

the information associated with a specific ground scene. It is expected that the results 

of this research will give increased confidence in using coarse spatial resolution 

images for deriving and estimating land-cover at the regional scale of observation. 

 

1.4 Structure of the Thesis 

The thesis is subdivided into nine chapters. Chapter 2 discusses the role of 

resolution and extent in deriving information from remotely sensed data. The 

remotely sensed data chosen for this investigation were image data that recorded in 

either the optical or microwave region of the EM spectrum. This choice rests on the 

fact that these are presently the two most common sensor configurations for satellite 
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remote sensing platforms. A discussion of the spatial, spectral, radiometric and 

temporal scales related to these types of sensors is also presented. The scale of 

observation is based on the sensor characteristics while the scale of inference pertains 

to the scale at which conclusions are made (Csillag et al. 2000). The final goal of any 

remote sensing campaign is to extract pertinent information from the image data. The 

relationship between the scale of observation and the scale of inference determines 

the certainty with which one can draw conclusions but this relationship is usually 

unknown. 

 

Remotely sensed imagery is a regionalised variable and chapter 3 provides a 

practical explanation of the geostatistical tools applied including the experimental 

variogram, the model variogram, regularisation and stochastic imaging. Specifically, 

the sequential gaussian simulation algorithm was chosen for this research because of 

its ease of implementation, speed and suitability for the available data. Both LVM 

and co-simulation implementations were tested. 

 

The methodology as well as the data are presented in chapter 4. Chapters 5 to 

7 describe the three phases of the experiment. Each phase was designed to introduce 

more information into stochastic imaging process. Phase I generates finer spatial 

resolution imagery based on coarse spatial resolution statistics and data. Phase II 

generates finer spatial resolution imagery based on derived fine spatial resolution 

statistics and coarse spatial resolution data. The final phase uses the same information 

as phase II to which it incorporates SAR imagery to better localise spectral objects. In 

chapter 8, each of the generated images is then segmented in order to analyse their 
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usefulness in deriving and estimating land-cover at the regional scale of observation. 

Finally, the resulting spectral segments are validated with Canadian Land Inventory 

(CLI) data. Chapter 9 presents a summary discussion of the work as well as the 

conclusions.  
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Chapter 2 – The Remotely Sensed Image 

The remotely sensed image itself is a recording of spectral measurements 

arranged in space. These data are ultimately used to derive land-cover information 

about a recorded ground scene. The data itself and the scale of observation directly 

determine the information content and is based on the spatial, spectral, radiometric 

and temporal characteristics. In digital form, the data are easily manipulated and 

algorithms help enhance and automate the information extraction process. The 

following sections discuss the remotely sensed image characteristics and the 

difficulties in extracting the desired information, especially from coarse spatial 

resolution images. 

 

2.1 Remotely Sensed Image Characteristics 

An important characteristic of remotely sensed image data quality is 

resolution (or the overall fineness of detail characterising the image) and extent. The 

resolution is the smallest unit from which a meaningful measurement can be 

recorded. Qualitatively it is described as either fine or coarse. The extent refers to the 

limits of the resolution characteristic in question with small and large describing its 

qualities. The two are inseparable and context dependent. 

 

2.1.1 Spatial resolution 

The most obvious characteristic of any remotely sensed image is spatial 

resolution. Optical sensors record reflected energy in the visible and reflective IR 
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regions of the EM spectrum (0.4 – 2.5 µm). The spatial resolution of these sensors 

can be defined by 

- the geometrical properties of the imaging system, 

- the ability to distinguish between point targets, 

- the ability to measure the spectral properties of small targets and, 

- the ability to measure the periodicity of repetitive targets (separability) 

(Mather 1987), 

- dwell time in new sensors.  

 

The IFOV of a sensor is the ground scene area contributing to a single 

measurement as defined by the sensor’s aperture (geometric properties) (figure 2.1). 

The IFOV is the area on the ground that is viewed by the instrument from a given 

altitude at any given instant in time. The equation  

D = H * b 

computes the spatial resolution (diameter D) of an image knowing the height of the 

sensor (H) and the IFOV in radians (b). The resulting image data is affected by the 

IFOV because for a given flying height, the IFOV is positively related to the sampled 

ground extent but negatively related to the spatial resolution (Curran 1985). 

 

The point spread function (PSF) of a sensor, or the distribution of intensity 

from a single point source, influences the spatial resolution through the sensor’s 

ability to distinguish between point targets. The presence of relatively bright or dark 

objects within the IFOV of the sensor will increase or decrease the amplitude of the 
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PSF so as to make the observed radiance either higher or lower than that of the 

surrounding areas. Therefore, objects that are smaller than the IFOV spatial 

resolution of the sensor can still be detected (e.g. small rivers in the NIR band). 

 

H
ei

gh
t (

H
)

b

IFOV
Diameter (D)  

Figure 2.1 – Spatial resolution based on the geometric properties of the imaging 

system where D is the diameter of the ground sampling element in metres, H is the 

height of the sensor and b is the IFOV in radians. 

 

The Effective Resolution Element (ERE) is a measure of spatial resolution 

based on the size of an area for which a single radiance value can be assigned with 

reasonable assurance that the response is within 5 % of the value representing the 

actual relative radiance. The Effective Instantaneous Field of View (EIFOV) is based 

on the spatial frequency of distinguishable objects. This measure is usually based on 
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theoretical targets and therefore is likely to exceed the performance of an instrument 

in actual applications (Mather 1987). 

 

Optical sensors depend on reflected sunlight (passive system) while a radar 

sensor sends and receives energy pulses (active system) in the millimetre to metre 

range. The spatial resolution of a radar system is based on the ability of its antenna to 

identify two closely spaced targets as separate points, i.e. the points will appear on 

the image as two distinct dots. For example, if a particular radar system is able to 

distinguish two closely spaced objects as separate; a lower resolution system may 

only distinguish one object. Radar spatial resolution is measured in both the azimuth 

(i.e. flight) and range (i.e. side looking) directions and is controlled by the radar 

system and antenna characteristics. The signal pulse length (figure 2.2) and the beam 

width (figure 2.3) thus control the radar systems spatial resolution. The signal pulse 

length dictates the spatial resolution in the direction of energy propagation where 

shorter pulses will result in a finer spatial resolution in the range direction. The width 

of the beam dictates the resolution in the azimuth direction. The beam width is 

directly proportional to the radar wavelength and is inversely proportional to the 

length of the transmitting antenna. This means that spatial resolution deteriorates as 

the distance increases from the antenna with respect to the target. Therefore a long 

radar antenna is required to achieve finer spatial resolution in the flight direction. 

Since satellites are very far from their targets, in theory this would require the system 

to carry an enormous antenna. 
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Figure 2.2 – Spatial resolution in the range direction for a radar system. 

 

Azimuth

a b

c d

Antenna beam
width

R
ange

TOP

 

Figure 2.3 – Spatial resolution in the azimuth direction for a radar system. 

 

In order to circumvent the need for a very long antenna, the Synthetic 

Aperture Radar (SAR) was developed. SAR uses a short antenna that can simulate a 

much larger antenna through modified data recording and signal processing 

techniques. Signal processing techniques also allow azimuth resolution to be 

independent of range resolution (CCRS 2001). 
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Figure 2.4 presents a diagram of the geometry of a radar system. The diagram 

indicates that the range resolution is divided into two different types of spatial 

resolutions, slant (e) and ground (a) resolutions. 
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Figure 2.4 – The geometry of a radar system. 

 

 The range resolution is determined by the frequency bandwidth of the 

transmitted pulse and thus by the duration (width) of the range-focused pulse. Large 

bandwidths yield small focused pulse widths. The range resolution of imaging radars 

depends on signal pulse length and therefore the actual distance resolved is that 



 21

distance between the leading and the trailing edge of the pulse.  These pulses can be 

shown in the form of signal wave fronts propagating from the sensor (figure 2.4 (e)).  

When these wave front arcs are projected to intersect a flat earth surface, the 

resolution distance in ground range is always larger (coarser) than the slant range 

resolution (figure 2.4 (a)). The resolution in the azimuth direction is theoretically one-

half of the radar antenna.  

 

The SAR system collects signal history that is not in image format. The raw 

data is impossible to interpret visually and therefore must be digitally processed in a 

procedure called compression. Compression converts the history in the range and 

azimuth directions to a two-dimensional grid format whose basic subdivision is the 

slant range and zero Doppler resolution cell. This cell relates to the smallest ground 

area for which a reflection intensity value was calculated during processing (single 

look). A single look is prone to excessive speckle and therefore the signals are 

usually processed using several looks. This degrades the spatial resolution of the 

generated image but attenuates the speckle. 

 

Another type of spatial resolution pertains to the manner in which digital 

imagery is viewed. Digital imagery is most often displayed on a computer screen 

where the pixel, or picture element, is the smallest element able to display data. This 

pixel has nothing to do with the physical attributes recorded by the sensor and 

therefore, the on-screen spatial resolution of an image can be changed effortlessly. 

The term ‘pixel’ also pertains to the area on the ground represented by the data values 

(Colwell 1983) in the remote sensing context. 
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In geostatistics, the term support is used instead of spatial resolution. Support 

describes the size, geometry and orientation of the space on which an observation is 

defined. Support is normally equivalent to spatial resolution, however, in practice the 

geometry of the support may be complex because of the PSF of the sensor, and the 

true size of support is likely to be greater than the spatial resolution. The true support 

varies across the image due to the scan angle of the sensor (Atkinson and Curran 

1995). 

 

2.1.2 Spectral resolution 

The spectral resolution of a digital image is the smallest wavelength interval 

of the EM spectrum that can be recorded by the sensor commonly referred to as the 

spectral band or channel. The spectral resolution can vary even within the same 

sensor configuration (figure 2.5).  
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Figure 2.5 – Spectral resolution of four different satellite based sensors. 

 

2.1.3 Radiometric resolution 

Strictly speaking, the radiometric resolution is the bit, i.e. the binary manner 

in which data are encoded. However, since technology today is all based on the bit, 

the more traditional remote sensing definition of the radiometric resolution is the 

smallest detectable difference in the incoming EM signal. Figure 2.6 shows the 

difficulty that a coarse spectral resolution sensor will have to detect small changes in 

the incoming EM energy. This notion is strongly connected to radiometric extent 

(number of bits) and influenced by the spatial and spectral resolution. The precision 

of the technology and the sensitivity of the material (in the case of optical sensors) 

are very much a limiting factor of radiometric resolution. 
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Figure 2.6 – The incoming energy (represented by the arrows) is easily quantified 

with the sensors on the left (fine radiometric resolution) but not those on the right 

(coarse radiometric resolution).  

 

2.1.4 Temporal resolution 

The temporal resolution is the smallest time step between two successive 

recordings of the same ground scene (figure 2.7). 
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Figure 2.7 – Temporal resolution of two sets of images.  

 

To describe the temporal resolution it is necessary to specify the variability in 

temporal resolution within a given data set. Therefore the minimum and maximum 

time between image acquisitions of the same region must be known. A variable 
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temporal resolution will have different minimum and maximum time steps between 

image acquisitions while a regular temporal resolution will have equal minimum and 

maximum time steps. 

  

2.2 Image Extent 

Resolution cannot exist without extent. Therefore the extent is associated with 

all notions of resolution in the remote sensing context.  

 

2.2.1 Spatial extent 

The spatial extent is the total area observed or under study. The ground scene 

is the extent (or area) on the ground that is recorded. The sensors spatial extent is the 

total area that is captured in an image. However, a data set can be made up of several 

images connected together thereby increasing the total extent originally captured by 

the sensor itself.  

 

2.2.2 Spectral extent 

The total width of the EM spectrum that can be sensed by a sensor is the 

spectral extent. Satellite based sensors provide different spectral extents (table 2.I). In 

multi-spectral data, the spectral extent is not necessarily contiguous.  
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Table 2.I – The spectral extent of several satellite based sensors. 

Sensor system Range Min. (µm) Range Max. (µm) 
SPOT HRVIR 0.5 1.75 
SPOT VGT 0.43 1.75 
Landsat TM 0.45 12.5 
NOAA AVHRR 0.58 12.5 
 

2.2.3 Radiometric extent 

The radiometric extent is the maximum range of values that can be used to 

store a measured variable. Similarly, it is the number of discrete levels into which a 

signal may be divided (figure 2.8) where the signal is considered as a spectral band. 

For example, 8 bit data is able to store up to 256 different values while 9 bit data can 

store up to 512 different values. The decision for the radiometric extent is based on 

the dynamic range or the sensor signal-to-noise ratio (Richards and Jia 1999). 
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Figure 2.8 – Radiometric extent shown in conjunction with spectral resolution and 

radiometric resolution. 

 

2.2.4 Temporal extent 

Turner et al. (1989) have defined the temporal extent as the duration of time 

under consideration. 
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2.3 Remotely Sensed Image Scale 

 Scale is best known as the mathematical relationship between the size of 

objects as represented on maps, airphotos or other remotely sensed data and the actual 

size of the objects themselves (Colwell 1983). This type of scale is referred to as the 

cartographic or map scale. Cartographic scale can be absolute; the actual distance, 

direction, shape, and geometry or relative; a transformation of absolute scale to a 

scale that describes the relative distance, direction, or geometry based on some 

functional relationship (Turner et al. 1989). 

 

Remotely sensed image scale refers to the spatial, spectral, radiometric and 

temporal relationship between resolution and extent. The image scale changes 

depending on the sensor because of differences in either sensor resolution or extent 

characteristics. These scale changes fundamentally affect the recorded data 

complicating direct comparison between different sensors. Also, changing the 

meaning of scale from resolution to extent can have important qualitative and 

quantitative effects on how measurements change across scales (Turner et al. 1989). 

 

The scale of observation in the remote sensing context pertains to the 

resolution and extent of what is being measured, i.e. the ground scene and is solely 

dependent on the imaging sensor. The scale of observation therefore, is inherently 

linked to the spatial, spectral, radiometric and temporal characteristics of the sensor 

and only exists in the data itself (not in the scene). For example, the scale of 
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observation can be regarded as the relationship between resolution and extent as 

captured by the sensing device and consequently the actual scene never changes scale 

(figure 2.9). It is our inability to record all aspects of resolution and extent that 

produces scale. 

 

image 1 image 2 scene

 

Figure 2.9 – The spatial resolution and/or extent can change depending on the sensor 

configuration. The scene itself however remains the same. 

 

Just as important is the scale of inference, i.e. the scale at which conclusions 

are made or information is presented. The scale of inference is not necessarily equal 

to the scale of observation, however, the difference between the scale of observation 

and that of inference should be accurately expressed, especially where different data 

sources are related to different scales of observation1 (Csillag et al. 2000). In many 

cases, as shown in figure 2.10, the scale of observation is different than the scale of 

inference and the manner in which the scale of inference was produced is not known.  

 

                                                           
1 The scale of observation or inference cannot be described by a single adjective because it is a two 

dimensional concept and language is one-dimensional. Thus, image scale should not be used as a 

descriptor but rather as a method of introducing the characteristic in question. For example, the spatial 

scale can have coarse resolution and small extent and not coarse spatial scale.  
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Differences in image scale also complicate observations of events or objects 

by modifying the data itself. As the data are modified through scale, events or objects 

can appear or disappear because events and objects all have an optimal resolution and 

extent. The difficulty is to relate phenomena or objects at different scales. Therefore, 

the ideal image scale is not scene dependent but rather object dependent. 

 

observation procedure inference

 

Figure 2.10 – The life cycle of image data that has been recorded at a specific scale of 

observation. The final product will have a scale of inference that is not necessarily 

that of the original data. 

 

2.4 Information Extraction from Imagery 

The extraction of information from remotely sensed imagery depends on the 

object or phenomenon under study and the stages of analysis can range from simple 

to complex. The most simple corresponds to detectability, the ability to discover or 

notice the existence or presence of an object or phenomenon and the most complex is 

interpretability, the ability to explain or understand in a particular way. 

 

Detection in remote sensing is the determination of the presence or absence of 

an object. This object is non-specific and non-identified. The interpretation is a 
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simple dichotomy such as yes/no, true/false, or 1/0. The stimuli for detection are 

variations in tone, texture, pattern, configuration and other image characteristics 

(Colwell 1983). The ability to detect phenomena or objects under surveillance 

involves all image scale characteristics and is the initial step in gathering information. 

 

The spatial resolution of an image plays an important role in detecting objects. 

Figure 2.11 (left graph) graphically portrays the chances of detecting an object based 

on the size of the object and the spatial resolution of the imagery assuming a linear 

relationship between spatial resolution and object size. The diagonal (from bottom 

left to top right) of this diagram represents the region where detection is most 

uncertain while the upper left and lower right regions provide the greatest certainty of 

detection or non-detection respectively. Detection based on extent requires that the 

imagery encompasses the object or phenomenon under study. Chances of detection 

can also improve when the encompassing area is much larger than the object or 

phenomenon of interest (figure 2.11, right graph). 

 

Object detection in the radiometric scale depends on the ability to discern 

changes between measurements. This is also intimately related to spectral scale 

detection which is based on the reflectance of an object (optical system) in the same 

wavelengths as that of the sensor itself and the ability to differentiate the signal from 

other objects. For example, too small a radiometric extent for a large spectral band 

would make it difficult to differentiate between objects with a similar spectral 

signature because small variations in the intensity for the given band would not be 

differentiated. 
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Figure 2.11 – The chances of object detection based on the spatial scale. 

 
 

Object or phenomenon detection also depends on the temporal scale. Too 

short a temporal resolution may only generate a lot of unnecessary data while too 

coarse of a temporal resolution may not be enough to capture the event being 

monitored. The same is true for temporal extent, where a remote sensing campaign 

might stop acquiring data just before the beginning or the end of a phenomenon.  

 

Detectability in remotely sensed images can be a result of chance or planned 

around the object/phenomenon under study. Moreover, for a given spatial resolution, 

the radiometric resolution can improve detection of scene objects. 

 

Distinguishing separate identities as being such in an image is called 

separability and is the next step after detection. Separability helps identify scene 

elements. In order to separate objects the spatial and spectral resolutions must be fine 
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enough to distinguish an object from the rest of the scene. Object separability in the 

spectral scale is also dependent on the radiometric scale of the recording sensor. 

Finally, the temporal scale can help distinguish between objects in time due to 

changes over time both natural and anthropogenic.  

 

Interpretation is the final and most difficult phase and requires the greatest 

amount of information and knowledge. Psychological analysis regards image 

interpretation as if it occurred in a time sequence. The sequence begins with the 

detection and identification of objects, followed by measurement of the objects and 

finally the communication of perception and significance of the objects (Colwell 

1983). Automating interpretability using computers is difficult because the 

communication of perception and significance requires knowledge but such 

knowledge is difficult to program. Interpretability determines information beyond 

identification. 

 

Interpretability can also be the ability by which probabilistic statements can be 

made about objects, phenomena and relationships found in the imagery. The more 

knowledge one has about the scene, the greater the probability that the interpretations 

will be correct (Colwell 1983). 

 

All sensor characteristic scales have a role in the extraction of information. 

Therefore, one must consider the role of each sensor characteristic scale (spatial, 

spectral (Buttner and Csillag 1989), radiometric and temporal) when making 

observations. Satellite based monitoring also provides a wide range of observation 
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scales generating important data for information extraction but also creating 

difficulties in relating the different images. The scales at which data are collected and 

analysed directly influence the level and kinds of information that may be obtained. 

Information derived from data collected at a particular scale is dependent on that 

scale (Colwell 1983). 

 

Scale is based on the resolution and extent established by the sensor 

characteristics. The sensor itself is sub-optimal for some or all of the phenomena or 

objects of a ground scene because they are not identical across the ground scene. This 

implies loss of information.  

 

2.5 Aggregation and Scale Changes  

Aggregating spatial data is a current technique in the environmental sciences, 

including remote sensing. During an aggregation process, the original spatial data are 

reduced to a smaller number of data units (points, lines, polygons, pixels) for the 

same spatial extent (Ling and Butler 1999). This idea has come to be known as 

scaling-up (or bottom-up approach (Turner et al. 1989)) and is applied to test or 

reveal spatial patterns and their effects that are present or emergent at coarser spatial 

resolutions (Zhang and Montgomery 1994, Turner et al. 1989) or to reduce model 

complexity (Rastetter et al. 1992). 

 

Aggregation can be based on the original data recorded (such as the DN of an 

image) (Justice et al. 1989) or based on already interpreted or classified data (such as 
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land-cover maps (Turner et al. 1989b, Benson and MacKenzie 1995)). The 

aggregation method is also important (Ling and Butler 1999). When aggregating 

involves averaging, the effect is to reduce the variance of the data and to make their 

distribution more symmetric. The standard deviation, the coefficient of variation and 

the difference between the mean and median all decrease as the resolution becomes 

coarser. Though the support of the data has an effect on the spread and the symmetry 

of the distribution, it does not affect the mean (Isaaks and Srivastava 1989). 

Aggregation can also create spatial associations between variables that were not 

originally associated together at the individual (finest) level. This affects in a 

fundamental manner the characteristics of the data, and the results of subsequent 

analysis (Openshaw, 1981). 

 

The spatial resolution changes when aggregation is performed from fine to 

coarse thereby producing a change of scale. Scale problems have been acknowledged 

in a variety of studies (e.g. Allen and Starr 1982, O'Neil et al. 1986, Meentemeyer 

and Box 1987, Rosswall et al. 1988), and the importance of spatial heterogeneity has 

also been recognised (e.g. Risser et al. 1984, Forman and Godron 1986, Turner 1987, 

1989). However, 'scaling rules' have not been developed, and scaling limits have been 

difficult to identify (Turner et al. 1989). As one tries to scale-up, qualitative shifts can 

occur where the dominant processes that structure the patterns change as scale 

changes (Benson and MacKenzie 1995). 

 

Studies have also described the important effects that can be observed on the 

proportion of landscape occupied by a particular land-cover type when aggregation is 
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made (Henderson-Sellers et al. 1985, Turner et al. 1989a, Moody and Woodcock 

1994, 1995). The earth sciences deal with processes that occur at a variety of 

temporal and spatial scales. The requirements proposed by Turner et al. (1989a) in 

order to make predictions at more than one level of resolution are:  

- the identification of the processes of interest and parameters that affect 

this process at different scales, 

- the development of rules to translate information across scales and, 

- the ability to test these predictions at the relevant spatial and temporal 

scales. 

 If information were available about the relationship between spatial covariance of 

data with coarse spatial resolution and that of data with fine spatial resolution, either 

through theoretical (Zhang et al. 1990) or experimental (Woodcock et al. 1988, 

Rubin and Gomez-Hernandez 1990) means, it could be used to scale-up knowledge 

from local to regional scales (Dungan et al. 1994). 

 

As the remote sensing study area increases (particularly for landscape 

studies), the natural tendency is to decrease the resolution thereby losing the details 

and concentrating on the general themes. This natural tendency is due to our inability 

to absorb the significant amount of data associated with fine spatial resolution over a 

large study area. With database technology constantly improving, management of 

such large amounts of data becomes possible and directly interpretable.  

 

Some common observations of aggregation can also be made based on already 

classified fine spatial resolution data. Classes consisting of large, homogeneous 
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patches tend to grow larger with aggregation. Classes characterised by highly 

clumped distributions, but small or intermediate sized patches, first grow, and then 

decrease in size as the spatial resolution is progressively degraded beyond the typical 

patch size for that class. Classes composed of small, fragmented units rapidly 

disappear as more clumped cover types, through the aggregation procedure, dominate 

them. Naturally, most classes do not fall neatly into any of these categories (Moody 

and Woodcock 1994). Therefore it is difficult to model the behaviour of aggregating 

cover types. 

 

The effect of aggregation on global statistics when averaging over an image is 

greatest for data sets that are spatially uncorrelated, i.e. heterogeneous in nature. In 

such cases, the standard deviation decreases and the distribution rapidly becomes 

more symmetric. As the values become more homogeneous, this effect decreases and 

the reduction in spread and symmetrization occur less rapidly because they depend on 

the spatial arrangement of the data values (Isaaks and Srivastava 1989). Isaaks and 

Srivastava (1989) also show that the effect of aggregation on the symmetry of the 

distribution is related to the connectedness of extreme values and not adequately 

described by the semivariogram (i.e. the connectedness of extreme values). 

Therefore, the expected degree of symmetrization is based on available qualitative 

information about the spatial arrangement of the data and one’s own judgement. 

 

The reverse estimation, however, from coarse spatial resolution to fine spatial 

resolution (or scaling-down) may be more problematic unless an empirical relation 

has been established between the coarse and fine spatial resolutions. This is because 
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features at a fine spatial resolution may not be recoverable from coarse spatial 

resolution information (Benson and Mackenzie 1995). More importantly, even with 

an empirical relationship, one could not get around the problem of spatial location of 

the estimated fine spatial resolution images. 

 

Benson and MacKenzie (1995) support the view that scaling issues must be 

addressed when using satellite imagery to derive landscape parameters since most 

landscape parameters are sensitive to changes in grain. Multi-scale studies based on 

imagery showed that the relationship between spatial patterns and ecological 

processes in tallgrass prairie ecosystems is not restricted to a particular scale of 

observation (Nellis and Briggs 1989). Turner et al. (1989b) studied the effect of scale 

change not only by changing the resolution but also the extent. They showed the 

difficulty of modelling such changes. Lacaze et al. (1994) demonstrated the 

possibility of multi-scale analysis using the experimental variogram and showed the 

usefulness of this tool for scale related research.  

 

John Wiens in 1989 challenged researchers to make scaling issues a primary 

focus of research efforts. Since that time we have learned that the successful 

application of research findings depends critically on both identifying the appropriate 

scale of observation for the application and the ability to extrapolate findings across 

scales (Gustafson 1998) to an appropriate scale of inference. It is an accepted fact that 

the characterisation of landscape structure is scale of observation dependent (Nellis 

and Briggs 1989). However, identifying the appropriate scale of observation is not 

readily evident and one should be aware of this fact and document it accordingly.  
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2.6 The Error, Accuracy and Precision Relationship  

Error is intimately related to accuracy and precision. Accuracy is the 

conformity to fact, the exactness, and the degree to which a measurement is known to 

approximate a given value. Precision is made so as to vary minimally from a set 

standard, clearly expressed or delineated and it corresponds to a statistical measure of 

repeatability, usually expressed as a variance or standard deviation of repeated 

measurements (figure 2.12). The variance is the basic measure for precision, and a 

fundamental parameter in probability and statistics.  

 

DeFries and Belward (2000) recognise that accurate land-cover information is 

an essential requirement for science and policy applications. Precision however is not 

well established in the remote sensing sciences due to the lack of repeated 

measurements for any given landscape. Ideally, one expects an information product 

that is both accurate and precise. 

 

Accuracy is a relative term. In cartography it can refer to the closeness with 

which data on the map are located with respect to defined geographical positions, to 

the detail with which elevations are indicated, or to the degree to which a mapped 

distribution portrays the 'real' distribution. The concept can only be dealt with in 

terms of 'accuracy for what purpose' but does not in any way change the fact that the 

accuracy of source data must always be a matter of primary concern. Errors can easily 

be propagated and exaggerated through the compilation process when accuracy is 
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poor. Unfortunately, the quality of the source data is not always readily evident 

(Robinson et al. 1984) and therefore accuracy assessment tends to be strongly 

constrained by the resources available. Journel (1996) goes even further to say that 

there is no exact data. There are only specific representations of reality deemed more 

relevant than others are and that relevance is goal dependent.  

 

 

Figure 2.12 – The importance of accuracy and precision. The left graphs present a 

target and distribution, which is both accurate and precise. The middle graph 

represents poor accuracy but good precision and the right hand graph shows both 

poor accuracy and precision.  

 

Aggregation produces unfamiliar data (i.e. everyday objects are not easily 

distinguished) at certain scales of observation. This unfamiliarity drives us to look for 

things that are familiar thus introducing errors (or inaccuracies). At a specific scale of 

observation there is no error. The error is produced by the desire or need to ‘see’ the 

information that we are accustomed to or require. Scaling-up produces qualitative 

unknowns that are then considered as errors. Degrading an image using an averaging 

filter produces quantitative results but the generated image is intuitively error prone 
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because of the lack of understanding of the process of scaling. Strictly speaking there 

is no error if the averaging computations were done correctly. Error is introduced 

when we try to extract information about objects and/or phenomena that are not 

compatible with the available scale of observation. In such a case, the scale of 

inference is not the same as the scale of observation and thus error is introduced. 

Error is minimised, however, when the scale of observation coincides with the 

phenomenon being observed (or the scale of inference). 

 

Aggregation of fine spatial resolution land-cover maps to coarser spatial 

resolutions means that estimates of the proportions of land-cover types vary as a 

function of spatial resolution. The magnitude of the errors appears to be a function of 

the spatial resolution of the map, the original size of the land-cover classes, the 

variability among fine-scale components, and the spatial pattern of the classes 

(Rastetter et al. 1992, Moody and Woodcock 1994). As such, aggregation plays a part 

in the magnitude of the errors. 

 

Mapping at very broad spatial extents on the basis of high spatial resolution 

data has clear advantages for accuracy because complex land-cover patterns are finely 

resolved, and map outputs can be more properly validated than coarse resolution 

maps. This is the path taken by NASA's Landsat Pathfinder Tropical Deforestation 

Project (UMD 1998). However, this high spatial resolution approach requires the 

processing of very large volumes of data that are not necessarily recorded in any 

particular temporal order due to acquisition difficulties. Moreover, the classification 

of cover types at a fine resolution requires a good knowledge of the ecology and of 
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the land-cover patterns of the area under investigation - something that is difficult to 

achieve when monitoring very large extents (Mayaux and Lambin 1995). 

 

Woodcock and Strahler (1987) present relationships between spatial 

resolution and mean local variance of image data at different scales. The spatial 

resolution at which local variance reaches a maximum is considered to match closely 

the characteristic scale of scene variation. This study and others (Markham and 

Townshend 1981, Cushine 1987) have discussed the relevance of resolution-

dependent effects on the accuracy of multi-spectral image classification. Specifically, 

spatial resolution determines the relative variability between and within land-cover 

classes, influencing spectral separability. Marceau et al. (1994a, 1994b) have used the 

resolution dependence of classification accuracy to assess optimum spatial 

resolutions for feature extraction. 

 

Sample support size is of fundamental importance for various measurement 

and estimation problems. For example, sensor geometry, comparisons of alternative 

measurement devices, and plot size determination, all require examination of the 

variability of results as influenced by dimensions of the sample (Zhang et al. 1990). 

The best way to handle the support effect is to use sampled data that have the same 

support as the area we intend to estimate; unfortunately, this is rarely possible. 

Without such data, we must make some correction based on assumptions concerning 

the changes in the distribution of values as their support increases. This correction is 

usually rather imprecise and heavily dependent on assumptions. Nevertheless, it is 
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certainly better to make a coarse correction (and to carefully document the 

assumptions) than to ignore the problem (Zhang et al. 1990). 

 

The loss of accuracy introduced by aggregation must be balanced against a 

loss in precision through the accumulation of errors associated with the estimation of 

a large number of parameters in complex, non-aggregated models (O'Neil, 1973). 

Precision for the most part does not necessarily play an important role in land-cover 

estimates because most often there is only one map produced and compared to 

‘known’ land-cover estimates. However, when a large number of possible scenarios 

are available, precision may be a confidence indicator. The possible scenarios can be 

generated using stochastic imaging techniques. Moreover, with no 'base map' to 

compare to, precision could also be a surrogate to accuracy by providing an insight 

into the most likely value. Here, a most likely value could be the mean or median of 

the distribution of values. Accuracy, however, can only be evaluated if the true value 

is known. With a distribution of values, the relative precision resulting from 

generating several realisations of images is readily assessed by measuring the spread 

of the output distribution which in geostatistics is often referred to as uncertainty 

space (Goovaerts 1997).  

 

Both accuracy and precision are very important for land-cover estimation and 

mapping. Poor accuracy and/or precision will affect extracted information and 

conclusions. Both are important for continental to global land-cover mapping but the 

problem still remains as to how to measure the accuracy or precision of such data 

when there is no standard. A variety of efforts are currently underway to map land-
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cover at continental up to global extents using a variety of remotely sensed data 

sources. Rigorous assessment of the accuracy of these maps continues to be difficult.  

 

Several researchers have already presented their conclusions on this subject. 

Kong and Vidal-Madjar (1988) have reported that before we can use fine and coarse 

spatial resolution imagery together, it is necessary to understand how the statistical 

properties of the landscape are modified when the dimension of the sub-scene is 

varied. Moody and Woodcock (1994) have suggested that in order to better 

understand the scaling issues and implications of accuracy in land-cover data, it is of 

interest to investigate the relationships between land-cover map error, scale of 

observation and scene spatial structure. 

 

Large errors arise as land-cover data are sampled at progressively coarser 

resolutions and have significant implications for coarse spatial resolution modelling 

and monitoring activities. An understanding of the role of spatial characteristics in 

governing the loss of information with decreasing resolution may improve our ability 

to preserve this information across scales or to quantify the errors expected in coarse 

spatial resolution surface representations. Both Turner (1989) and Moody and 

Woodcock (1995) provided results that indicated significant relationships between 

the spatial characteristics of cover types and scale-dependent proportion errors.  
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2.6.1 Error correction and validation 

The solution of the problem of making reliable maps has to be accompanied 

by the recognition that "accurate" and "erroneous" are not disjunct sets, but can rather 

be viewed as a continuum (Csillag and Kertesz 1989). Several methods have also 

been proposed to help correct information that is based on a scale of observation with 

coarse spatial resolution to one with a finer spatial resolution. Model inversion is 

based on the idea that it is theoretically possible to predict the loss of information in 

the scaling process with the spatial resolution degradation if the degree of adjacency - 

or contiguity - of land cover types is known (Turner et al. 1989). Another study 

concluded that relationships do exist between the fine scale spatial arrangement of 

land-cover and the proportional errors found at a coarse spatial resolution (Moody 

and Woodcock 1995). However, the difficulty lies in knowing the degree of the 

spatial arrangement at both fine and coarse spatial resolutions. In reality, only the 

spatial arrangement at a coarse spatial resolution is known for the entire extent when 

dealing with coarse spatial resolution image data over large extents.  

 

Other techniques try to correct land-cover information errors based on a 

relationship between samples of coarse and fine spatial resolution imagery. This 

relationship can then be extrapolated over a large region where fine spatial resolution 

data is not available. A major challenge in applying this type of method is the 

difficulty to establish a correspondence between data sampled using two different 

sensor configurations especially in the case of ground scenes that are heterogeneous 

in nature (Kong and Vidal-Madjar 1988).  
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In order to quantify error, known reference information must be available for 

comparison. Moody and Woodcock (1995) say that this type of validation requires 

methods for aggregating reference maps from fine to coarse scales, as well as 

knowledge of the types and magnitudes of errors that this scaling will introduce into 

the reference data. Any effective aggregation of fine-scale knowledge to anticipate 

coarse-scale response requires some data or information from the coarser scale 

(Rastetter et al. 1992). As a consequence a scaling model (modelling changes from 

the scale of observation to the scale of inference) cannot be verified without data at 

both the initial scale and final scale of observation. 

 

Lunetta et al. (1991) have indicated areas where errors can be found and 

thereby influencing the final accuracy of the remotely sensed derived information 

product. Errors generated by atmospheric conditions and natural variability of the 

landscape cannot be controlled. Other difficulties can be controlled such as errors due 

to data collection, (e.g. geometric or radiometric error) where geometric inaccuracies 

lead to misregistration (Kleinn et al. 1996). Location accuracy of corrected remote 

sensor data are very susceptible and cannot be better than the ground control upon 

which the rectification coefficients are based. Another area of accuracy assumption is 

in data processing. Such error can be generated during data conversion or improper 

choice of algorithms. Furthermore, a large variety of data and information sources are 

available in the earth sciences. These data originate from various measurement 

devices that have different precision and that are taken over different volumes or time 

intervals.  
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Remote sensing is, however, an efficient means of mapping land-cover or 

other characteristics of local sites. Summary statistics from these thematic maps 

estimate the proportion or area of the geographic space in each cover category. Areal 

estimates are often needed for strategic planning, land management, and resource 

assessments (Czaplewski et al. 1992). Due to aggregation effects, coarse spatial 

resolution remotely sensed data does not provide the exactitude needed. More 

importantly, there is no data set to which land-cover estimates can be compared. 

These data sets are not available because data cannot be gathered with a finer spatial 

resolution as quickly as those with a much coarser spatial resolution. Thus, a 

workaround practise that is widely used is to find relationships using small areas 

where fine spatial resolution data is available and extrapolating those relationships to 

the entire extent where similar landscape properties are observed (Mayaux and 

Lambin 1995, 1997). Accuracy in such instances is computed on sample areas where 

both fine and coarse spatial resolution data are available. 

 

Oleson et al. (1995) studied the potential for using AVHRR data to retrieve 

fine temporal resolution reflectance estimates at the Landsat TM spatial resolution. 

Their approach compared land-cover classes to raw DN. Their work gave mixed 

results but instead of correcting the coarse spatial resolution data they tried to 

generate their own fine spatial resolution image data set based on coarse spatial 

resolution image data. 
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In most practical applications, the support of the samples is not the same as 

the support of the estimates we are trying to calculate. Errors associated with the 

remote sensing and GIS data acquisition, processing, analysis, conversion, and final 

product presentation can have significant impact on the confidence of decisions made 

using the data. Performing spatial data analysis operations with data of unknown 

accuracy, or with incompatible error types, will produce a product with low 

confidence limits and restricted use in the decision making process (Lunetta et al. 

1991). The contradiction between the requirements of constant accuracy and constant 

resolution will necessitate significant contributions from different branches of science 

for modelling co-regionalized and/or elaborating classification strategies that can lead 

from rasters to vectors, or from vectors to rasters. It is also understood that whenever 

a choice is made concerning data representation, it implies that a particular model is 

used to estimate accuracy (Csillag and Kertesz 1989). 

 

Different classification procedures provide different areal estimates in some 

cases, and possible ways to resolve these differences must be studied (Cihlar et al. 

1997). If more accurate information is needed then data at a finer spatial resolution is 

required resulting in a change in scale (Csillag and Kertesz 1989). Land-cover is a 

key environmental information and the objective is to present data in a format from 

which accurate land cover information can be extracted (Cihlar 2000). The scale 

determines the accuracy and accuracy determines error. The greater the error, the 

lower the precision. As digital cartography and geographic information systems 

mature, more need is seen for the development of measures of accuracy, error or 

uncertainty for spatial data (Goodchild 1988). 
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Models and measurements of phenomena that occur over large regions, such 

as the effects of acid precipitation, global carbon and nitrogen cycles, increased 

desertification and climate change, are scale dependent. Consequently, the level of 

resolution and the heterogeneity at all relevant scales must be considered when 

defining the research goals and sampling design for studies conducted across 

spatial/temporal scales (Cullinan and Thomas 1992). 

 

2.7 Discussion 

The above discussion sheds some light on the possible results of the 

experiment presented in this thesis. Generating coarse spatial resolution imagery 

based on fine spatial resolution imagery will produce an image that appears similar to 

a coarse spatial resolution image that was acquired over the same region. Of course 

the degree of similarity will depend on the scene itself as well as the different 

parameters discussed previously. The reverse is not true in that generating a finer 

spatial resolution image based on coarse spatial resolution imagery will not look like 

a fine spatial resolution acquired over the same region. Down-scaling produces finer 

spatial resolution images that do not have object location information. For example, 

road networks or intricate objects that are at the spatial limit at the finer spatial 

resolution will not be reconstructed based solely on coarse spatial resolution 

information.  
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Other differences can be observed when comparing a real and generated 

image. For example, it is not guaranteed that a degraded image will have the same 

distribution as that of an image acquired directly by the sensor itself because the 

aggregation methods are different (i.e. mathematical vs. sensor system). 
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Chapter 3 – Geostatistics 

Geostatistical tools such as the variogram and stochastic imaging could 

provide the means to generate finer spatial resolution imagery based on coarse spatial 

resolution imagery. This chapter discusses the regionalized variable, the variogram 

and its modelling, and the stochastic imaging technique using the sequential gaussian 

simulation algorithm. The presentation is based on three primary sources: Goovaerts 

(1997), Deutsch and Journel (1998), and Journel and Huijbregts (1989), unless 

otherwise noted. 

 

3.1 Background 

Spatial statistics provides advanced methods for analysing image data and is 

able to cope with observational interdependencies (Griffith 1993) i.e. the variability 

between samples. Simply stated, geostatistics is "the study of phenomena that 

fluctuate in space" (Olea 1991) and is principally the application of the regionalized 

variable theory. The regionalized variable theory and the methods it embodies are 

applicable throughout the earth sciences for investigating the spatial variation of, and 

for estimating, continuous random variables (Oliver 1987). Observations of remotely 

sensed imagery tend to show that pixels that are near to each other are more alike 

than those further apart and the degree of dissimilarity depends on both the 

environment and nature of the recorded scene. Such observations can be quantified 

using geostatistics, which offers a collection of deterministic and statistical tools 

aimed at understanding and modelling spatial variability (Curran and Atkinson 1998).  
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The fundamental assumption of classical inferential statistical analysis is the 

independence of observations. However, because the spatial structures we find in 

nature are commonly patches or gradients, this assumption is usually violated at 

specific (and usually unknown) scales of sampling. Therefore, it is imperative to 

know something about the degree and scale of spatial dependence in the system being 

studied. Geostatistics provide methods to both describe spatial structure and to make 

statistical inferences that are robust in the presence of spatially dependent 

relationships (Gustafson 1998). 

 

3.2 Remotely Sensed Imagery and Geostatistics 

Remotely sensed image data can be viewed as a regionalized variable, 

meaning that it is a variable whose position in space is known (x, y). The data are 

regionalized variables because the recorded EM radiation has a location in space 

associated with it (figure 3.1 – top). Each image pixel is also considered a random 

variable (RV). The RV is the set of possible outcomes of a single pixel within the 

data set (figure 3.1 – middle). This set of possible outcomes models the local 

uncertainty about the variable at its location and is information dependent because the 

distribution changes as more data about the RV become available. The set of all the 

available RVs defined over an image of interest is the Random Function (RF) (figure 

3.1 – bottom) whereby the set of unknown values is regarded as a set of spatially 

dependent RVs. This allows us to account for structures in the spatial variation of the 

attribute. The RF is usually defined strictly to a single band (attribute b1), hence 
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another RF would be defined to model the spatial variability of any other band 

(attribute b2). The set of realizations of the RF models the uncertainty about the 

spatial distribution of the EM radiation (i.e. the attribute) recorded over the entire 

image (study area). 
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Figure 3.1 – A graphical representation of the regionalized variable (top graph), the 

Random Variable (RV) (middle graph) and the Random Function (RF) (bottom 

graph). Each square represents a recorded value within an image. 

 

In the geostatistical literature, z represents the actual value (be it 

unsampled/unknown or the outcome) and Z represents the RV (the possible 

distribution of values for z). Since these values are location dependent, (u) denotes 

the location in space and/or time. The basic paradigm of the probabilistic approach, 

underpinning geostatistics, is to characterise or model the unknown z(u) (unsampled 

variable at location u) as a RV Z(u) (the distribution of possible outcomes of the 
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unsampled variable at location u), the probability distribution of which models the 

uncertainty about z. The difficulty of assessing the uncertainty about the pixel value 

at location u thus reduces to that of modelling the probability distribution of the RV 

Z(u). Uncertainty is maximal when no information is available and the probability of 

occurrence for all outcomes is the same. For example, the probability of occurrence 

would be the same for each pixel within the range of values between 0 and 255 for an 

8-bit image. In order to increase certainty, more information about the behaviour of 

the pixel must be known. This information is derived from nearby pixels that 

condition the probability distribution of the RV Z(u) thereby reducing the uncertainty 

at the pixel location. By accounting for the dependence between RVs at different 

locations the RF model allows such updating. 

 

The continuous RV Z(u) is fully characterized by its cumulative distribution 

function (cdf) which gives the probability that the variable Z at location u is no 

greater than any given threshold z. Each pixel z(uα) therefore, is viewed as a 

particular realization of the random variable Z(uα). Provided measurements are 

precise, there is no uncertainty about the recorded pixel value z(uα). Thus, the 

probability for the random variable Z at uα to be no greater than a threshold z is one 

for any threshold greater than or equal to the datum z(uα) and zero for other 

thresholds z < z(uα). 

 

In geostatistics, most of the information related to an unsampled value z(u) 

comes from sample values at neighbouring locations u', whether defined on the same 
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attribute z or on some related attribute y. Therefore it is important to model the 

degree of correlation or dependence between any number of RV's Z(u), Z(uα), α=1, 

..., n and more generally Z(u), Z(uα), α=1, ..., n, Y(u'β), β=1,..,n'. The concept of a RF 

allows such modelling and updating of prior cdfs into posterior conditional 

cumulative distribution functions (ccdf). As mentioned, a RF is defined as a set of 

usually dependent RVs Z(u), one for each location u in the study area A (Goovaerts 

1997). 

 

Just as a RV Z(u) is characterised by its cdf, a RF Z(u) is characterized by the 

set of all its K-variate cdfs for any number K and any choice of the K locations uk, k 

= 1, ..., K: 

F(u1, ..., uk; z1, ..., zk) = Prob{Z(u1) < z1, ..., Z(uk) < zk}  (1) 

The univariate cdf of the RV Z(u) is used to model uncertainty about the value z(u) 

and similarly the multivariate cdf is used to model joint uncertainty about the K 

values z(u1), ..., z(uk) (Goovaerts 1997). 

 

3.3 Inference and Stationarity 

Repetitive sampling is required to infer any statistic. For example, a single 

value cannot provide the necessary information to deduce the possible outcomes (or 

distribution) of a variable. Generally remote sensing only provides a single measure 

for any one pixel within an image. Therefore, the RV model is impossible to generate 

from a single remotely sensed image. The paradigm underlying most inference 

processes is to trade the unavailable replication at location u for another replication 
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available somewhere else in space. For example, the cdf may be inferred from the 

cumulative histogram of the z-samples collected at pixel locations other than the pixel 

of interest, within the same area. This trade of replication or sample spaces 

corresponds to the hypothesis (or rather a decision) of stationarity. 

 

The RF of a specified area of an image (or the entire image) is said to be 

stationary if its multivariate (multi-pixel) cdf is invariant under any translation of the 

K-coordinate vectors uk, that is F(u1,...,uk;z1,...,zk) = F(u1+1,...uk+1; z1,...,zk), for the 

entire translation vector 1 (figure 3.2). Invariance of the multivariate cdf entails 

invariance of any lower order cdf, including the univariate and bivariate cdfs, and 

invariance of all their moments (e.g. mean, variance and covariance). The decision of 

stationarity allows inference. For example, the unique stationary cdf F(z) = F(u;z), for 

all u in the set of A, can be inferred from the cumulative sample histogram of the z-

data values available at various locations within the area A. Stationarity can also be 

considered as an assumption about a given area that all samples came from the same 

probability distribution. 

 

 A proper decision concerning the stationarity of the data is critical for the 

representativeness and reliability of the geostatistical tools used. Consequently, 

pooling data across different landscapes could mask important differences; on the 

other hand, splitting the image data into too many smaller images may lead to 

unreliable statistics based on too few data and an overall confusion. The rule in 

statistical inference is to pool the largest amount of relevant information to formulate 

predictive statements (Goovaerts 1997). Furthermore, stationarity is a property of the 
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model; thus the decision of stationarity may change if the scale of the study changes 

or if more data become available. If the goal of the study is global, then local details 

can be averaged out; conversely, the more data available, the more statistically 

significant differentiations become possible. 

 

= =
 

Figure 3.2 – Any translation of the data (represented by the grid) within the area 

deemed stationary would result in the same distribution. 

 

3.4 The Variogram 

When dealing with variability between two attributes, one of the first 

statistical measures that come to mind is the covariance. The general covariance 

statistic can be extended to a spatial context to measure similarity between data that 

are not at the same location. The covariance between data that are separated by a 

specific distance is computed as: 
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with:          (2) 

          (3) 

where N(h) is the number of data pairs within the class of distance and direction, m-h 

and m+h are the means of the corresponding tail and head values. The covariance can 

be computed for different classes of distance (e.g. h1, h2, etc.) and the ordered set of 

covariance (C(h1), C(h2), etc.) is called the experimental autocovariance function. 

This statistic measures the average similarity between pixels within a class of 

distance. 

 

The central tool in geostatistics (and an alternative to the covariance) is the 

variogram. It is a measure of spatial dissimilarity in a regionalized variable and can 

quantify the scale and pattern of spatial variability (Oliver 1987, Curran and Atkinson 

1998). The variogram, 2γ(h), is defined as the variance of the increment [Z(u)-

Z(u+h)]. Thus for a stationary RF, 2γ(h) = Var[Z(u+h) – Z(u)]. 

 

In a more applied context, the variogram is computed as half the average 

squared difference between pairs of pixels separated by a distance h or  
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           (4) 

 where [z(uα) – z(uα + h)] is the difference in the variable z between two pixels 

separated by a distance h. The vector (u) are the co-ordinates for z at the location α. 

For example, if we consider a line of pixels extracted from an image where z is the 

DN (figure 3.3), the variogram is estimated by the average squared difference 

between all pairs a distance h apart (the lag distance). In figure 3.3, the lag intervals 

shown are 1, 2, 3, and 4 pixels apart. These lags are based on the available data and 

the separation distance between pixels. The variogram is a useful measure of 

dissimilarity between pixels (Jupp et al. 1988) where a larger variance indicates less 

similarity between the pixels. An idealised variogram could be similar to that shown 

in figure 3.4. The sill is the plateau that the variogram reaches at the range (the 

distance at which the sill is reached). The variogram also reflects the variance 

components acting at different scales, enabling the extent of the zone of influence of 

a phenomenon to be characterized and therefore, providing useful information about 

the nature of the phenomenon (Bellehumeur and Legendre 1998).  

 

The computed variogram based on the image data, otherwise known as the 

experimental variogram, is actually not continuous and only provides experimental 

values for a finite number of lags. If one is to use the experimental variogram in 

geostatistical techniques such as kriging or stochastic imaging, it is necessary to fit a 

mathematical model to the computed experimental variogram. A continuous function 

must be fitted to the experimental variogram values so as to deduce variogram or 
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covariance values for any possible lag h required by interpolation algorithms, and 

also to smooth out sample fluctuations. The model fitted is defined by its type and 

model coefficients. 

 

1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2

3 3 3

4 4
 

Figure 3.3 – Pairs of pixels representing the distance classes that would be used to 

compute the variogram along a line of pixels. 
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Figure 3.4 – An idealised variogram. The variogram is a graph showing the 

dissimilarity in pairs of values separated by a specific distance (or lag).  

 

Permissible models must also pass the positive definite condition. The 

positive definite condition requires the covariance model C(h) to be non-negative and 
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to not fluctuate. However, in order for the covariance model to be positive definite 

would require the variance of any finite linear combination of RVs over a set area 

(deemed stationary) to also be non-negative. There are only a few families of simple 

functions that meet these criteria. The spherical and exponential schemes are the most 

often encountered members. If more complex models are needed they can be formed 

by combining two or more simple models (McBratney and Webster 1986). 

 

In order to avoid having to test a posteriori the permissibility of a variogram 

model a common practice consists of using only linear combinations of basic models 

that are known to be permissible (Christakos 1984). Five basic models are widely 

used in the earth sciences however only two are presented here because previous 

work has shown that these are the most applicable in the remote sensing context: the 

spherical and exponential models. The spherical model with range a is equal to: 

          (5) 

and the exponential model with practical range a is equal to: 

           (6) 

The permissible models can also be classified according to their behaviour at 

infinity and at the origin. Both the spherical and exponential models are bounded, 

meaning that they actually reach a sill at the range. At the origin both spherical and 
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exponential models have a linear behaviour. Note that for a same practical range, the 

exponential model starts to increase faster than the spherical model. 

 

3.4.1 Variogram regularisation  

Geometrically, regularisation is simply increasing the size of support over 

which a spatial process is averaged. In the context of remote sensing it means 

increasing the size of the pixels and coarsening the spatial resolution. Regularisation 

is a key to understanding the relations between spatial dependence and size of support 

(Atkinson and Curran 1995). The difficulty lies in the fact that remotely sensed image 

data are always regularised and thus a ‘point’ model variogram is never available. 

Thus, statistics and functions, including the variogram, that are derived from a 

regularised variable are themselves regularised (Clark, 1977). 

 

3.5 Informed Guessing or Local Estimation 

Sampling a particular area generally provides only measurements at specific 

locations. The unsampled locations however, are just as important and knowing the 

distance from the closest sampled locations to the unsampled location is important if 

one were to guess the attribute value for the unsampled location. To develop an 

estimator using the same notion, it would be reasonable to use a weighted average of 

the sample values, with the ‘closer’ samples having more weight. This estimator 

would be of the form: Z*=w1z1 + w2z2 + … + wnzn where the weightings (w) sum to 

1. If this condition is met and there is no trend (locally) then Z* is an unbiased 
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estimator. This means that over a number of estimations the average error will be 

zero. This type of estimator is called a linear estimator because it is a linear 

combination of the sampled values (Clark 1977). 

 

 Building on this idea, kriging is the generic name adopted by geostatisticians 

for a family of generalised least-squares regression algorithms in recognition of the 

pioneering work of Danie Krige (1951). All kriging estimators are variants of the 

basic linear regression estimator Z*(u) defined as: 

           (7) 
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where λα(u) is the weight assigned to datum z(uα) interpreted as a realisation of the 

RV Z(uα). The quantities m(u) and m(uα) are the expected values of the RVs Z(u) and 

Z(uα). Note that the number of data involved in the estimation as well as their weights 

may change from one location to another. In practice, only the n(u) data closest to the 

location u being estimated are retained, i.e. the data within a given neighbourhood or 

window W(u) centred on u (Goovaerts 1997). 

 

The interpretation of the unknown value z(u) and data values z(uα) as 

realisations of RVs Z(u) and Z(uα) allows one to define the estimation error as a RV 

Z*(u) - Z(u). All flavours of kriging share the same objective of minimising the 

estimation or error variance σ2
E(u) under the constraint of unbiasedness of the 

estimator; i.e.  
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σ2
E(u) = Var{Z*(u) - Z(u)}    (8) 

is minimised under the constraint that: 

E{Z*(u)-Z(u)} = 0     (9) 

The kriging estimator varies depending on the model adopted for the RF Z(u) itself. 

The RF Z(u) is usually decomposed into a residual component R(u) and a trend 

component m(u): Z(u) = R(u) + m(u). The residual component is modelled as a 

stationary RF with zero mean and covariance Cr(h): 

E{R(u)} = 0      

        (10) 

 

Cov{R(u), R(u+h)} = E{R(u)*R(u+h)} = Cr(h)   

         (11) 

The expected value of the RV Z at location u is thus the value of the trend 

component at that location: E{Z(u)} = m(u). Once a RF model has been chosen, the 

next step consists of inferring its parameters from the available information. The 

inference process aims at estimating the parameters of the RF model from the sample 

information available over the study area. Inference of the two first moments (mean 

and covariance) of the multivariate RF Z(u) which are required by the interpolation 

algorithms (kriging). 

 

The kriging weighting system accounts for a) the proximity of data to the 

location u being estimated and b) data redundancy. Instead of the Euclidean distance 

|uα - u| common to all variables, the distance considered in kriging is the variogram 
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distance γ(uα- u) as modelled from the data and specific to the variable under study. 

Note that the kriging weights depend only on the shape (relative nugget effect, 

anisotropy, correlation range) of the semivariogram and not on its global sill or any 

factor multiplying the variogram or covariance model. 

 

Beyond providing a least-squares estimate of the attribute z, kriging also 

provides the attached error variance, e.g. for ordinary kriging: 

          (12) 

That error variance is: 

- covariance model-dependent, which is an excellent feature because the 

estimation precision should depend on the complexity of the spatial 

variability of z as modelled by the covariance,  

- data configuration-dependent. The terms C(uα-u) account for the relative 

geometry of data locations uα and their distances to the location u being 

estimated, 

- independent of data values. For a given covariance model, two identical 

data configurations would yield the same kriging variance no matter what 

the data were. 

 

Kriging is an interpolator. However, remote sensing measures EM radiation 

for entire scenes and the resulting image data cover the entire region of interest. 

Interpolation is not required unless there is missing data due to atmospheric effects 
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(Rossi et al. 1994) or other technical difficulties, which is not the case here. As it has 

been previously mentioned however, the scale of observation of the data itself is often 

not ideal. The strengths of geostatistics are the possibilities to both estimate the 

spatial structure at a different support (spatial resolution) and to interpolate. 

  

If the goal were to change the spatial scale, then one would need to fill in the 

holes when fixing the image data onto a finer grid, i.e. finer spatial resolution. This 

would require knowing the spatial structure at the finer spatial resolution and also a 

means of assigning values to all the finer grid nodes. In a sense one would be 

interpolating onto the new grid and kriging would be the perfect choice because the 

spatial structure at the finer spatial resolution could be inferred with the variogram. 

However, kriged estimates produce variances that are less than those based on the 

original data. This smoothing effect should not occur when moving from a coarse to a 

fine spatial resolution, but rather the variance should increase. A smoothed map as 

provided by kriging is appropriate for showing global trends (Deutsch and Journel 

1998). Since image data is ultimately used to extract other types of information, a 

generated finer spatial resolution image should have more spatial variability than that 

of the original. Furthermore, the sample variogram is altered such that the pattern of 

spatial variation is different from that of the original data. Consequently, kriged maps 

could never exist in reality (that is, they could never be observed through 

measurement) (Curran and Atkinson 1998). Previous work has shown finer spatial 

resolution kriged images to produce unrealistic results (Bielski and Cavayas 1998, 

Bielski 1999) because spatially the images were smoothed instead of becoming more 

variable as is expected when down-scaling occurs. 
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3.6 Local Uncertainty 

The presentation so far has shown how kriging computes a ‘best’ estimate and 

attaches an error term to it. Another possibility is to first assess the uncertainty about 

the unknown, then from that assessment deduce an estimate optimal in some 

appropriate sense (Srivastava 1987, Journel 1989 – lesson 4). This approach is based 

on what is known, i.e. the available sampled data. Modelling the uncertainty about 

z(u) with the RV Z(u) can be achieved by computing the distribution function 

F(u;z|(n)) = Prob{Z(u) < z|(n)} which is made conditional to the available data (n). 

This probability distribution is a model of the uncertainty about z(u) because 

probability intervals can be derived: Prob{Z(u) ∋ (a,b]|(n)} = F(u;b|(n)) – F(u;a|(n)). 

 

Note that these probability intervals are independent of any particular estimate 

z*(u) of the unknown value z(u). Indeed, uncertainty depends on the information 

available (n) and not on a particular optimality criterion retained to define an estimate 

(Goovaerts 1997).  

 

For example, an 8-bit image provides a minimum of information: the 

constraint interval [zmin, zmax] being 0 and 255 respectively. This information is the 

basis of our uncertainty model and is not location specific. Therefore any unknown 

pixel within the image is assumed to have equal probability of a DN between 0 and 

255. In such a case, all RVs have the same cdf: 
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F(u;z) =  { 0 if z < 0,  
{ z/255 if in the set of (0,255], for all z 

  { 1 if z > 255      
         (13) 

 
For any one specific image deemed stationary, the uncertainty model can be updated 

and modelled from its cdf and could result in a different cdf by reducing the range of 

possible values, for example to a range of 10 to 235. However, even with this update, 

the uncertainty model is still not location specific because it takes into account the 

entire recorded scene (that was deemed stationary). The range of DN is still large and 

as a result the RV is the same again for all locations. In order to concentrate the 

uncertainty model further, the spatial dependence between pixels should be exploited 

by making it conditional to local DN values rather than global DN values. This latest 

update, the conditional cdf (ccdf) (conditional to the spatially dependent 

neighbouring pixels) is based on the (n) neighbouring pixels. The equation 

F(u;z|(n)) = Prob {Z(u) ≤ z|(n)}   

        (14) 

represents this idea and “ |n ” expresses conditioning to the local information n(u) 

neighbouring data z(uα) and thus is location dependent. 

 

The neighbouring data z(uα), however, are made up of only a few samples. 

Not nearly enough to generate a continuous ccdf as is required. The easiest manner to 

derive the ccdfs from the available local data is based on the multiGaussian model 

because its properties render the inference of the parameters of the ccdf 

straightforward. Under the multiGaussian model, the mean and variance of the ccdf at 

location u are identical to the simple kriging estimate y*SK(u) and simple kriging 
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variance σ2
SK(u) obtained from the n(u) data y(uα) (Journel and Huijbregts 1989). 

One also has the choice of adopting other kriging algorithms (such as ordinary 

kriging) depending on the nature of the data under study. 

 

The normal score transform is one technique used for generating the ccdf 

based on the few data available. A normal score transformation sees the original z-

data transformed into y-values with a standard normal histogram. This transformation 

can be made graphically by correspondence between the cumulative one-point 

distributions of the original and standard normal variables where the p-quantiles zp 

and yp of the two distributions are equal. This can be achieved in three steps. 

1. The n original data z(uα) are ranked in ascending order: [z(uα′)](1) ≤ … ≤ 

[z(uα)](k) ≤ … ≤ [z(uα′′)](n) where k is equal to the rank of the datum z(uα) 

among all n data.  

2. The sample cumulative frequency of the datum z(uα) with rank k is then 

computed as p*k = k/n – 0.5/n if all data z(uα) receive the same weight 1/n; that is, 

if the sample histogram is deemed representative of the study area.  

3. The normal score transform of the z-datum with rank k is matched to the p*k-

quantile of the standard normal cdf. 

 

Using these three steps it is possible to build models of uncertainty for any 

location within a study area of interest. Knowledge of the ccdf model at location u 

allows a straightforward assessment of the uncertainty about the unknown z(u) prior 

and independently of the choice of a particular estimate for that unknown (Goovaerts 
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1997). Instead of just picking a single value out of the model of uncertainty, it is 

possible to draw a series of L simulated values z(l)(u), l = 1, …, L. Each value z(l)(u) 

represents a possible outcome of the RV Z(u) modelling the uncertainty at location u. 

The L simulated values z(l)(u) are distributed according to the ccdf because the 

random numbers are uniformly distributed in [0,1]. This is called the ‘Monte Carlo’ 

simulation of the value at location u. 

 

This property of the ccdf reproduction allows one to approximate any moment 

or quantile of the conditional distribution by the corresponding moment or quantile of 

the histogram of many realizations z(l)(u). Monte-Carlo simulation can thus 

approximate the conditional variance and mean (E-type estimate) of the distribution 

and provides an alternative to the approximations for computing the conditional 

variance or E-type estimate. Note that determination of the quantile value still 

requires interpolation and extrapolation from calculated ccdf values. 

 

3.7 Stochastic Imaging 

A kriged image is ‘best’ in the least-squares sense in that the local error 

variance Var{Z*(u)-Z(u)} is minimum. The image of such best local estimates, 

however, may not be best as a whole. As mentioned, interpolation algorithms tend to 

smooth out local details of the spatial variation of the attribute (Curran and Atkinson 

1998, Bielski and Cavayas 1998). Typically small values are overestimated while 

large values are underestimated. Such conditional bias is a serious shortcoming when 

the aim is to detect patterns of extreme attribute values such as regions of the same 
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object or phenomenon. Another drawback of estimation is that the smoothing is not 

uniform. Rather it depends on the local data configuration: smoothing is minimal 

close to the data locations. A map of kriging estimates appears more variable in 

densely sampled areas than in sparsely sampled areas. Thus the kriged map may 

display artefact structures. Smooth interpolated maps should not be used for 

applications sensitive to the presence of extreme values and their patterns of 

continuity. 

 

Stochastic imaging aims to generate a map or a realization of z-values, say 

{z(l)(u), u in the set of A} with l denoting the lth realization, which reproduces 

statistics deemed most consequential for the problem in hand, i.e. reproducing model 

statistics. Typical requirements for such simulated map are: 

1. Data values are honoured at their locations: z(l)(u) = z(uα), for all u = uα, α=1,...,n. 

The realization is then said to be conditional. 

2. The histogram of simulated values reproduces closely the declustered sample 

histogram. 

3. The covariance model C(h) is reproduced 

More complex features such as spatial correlation with a secondary attribute or 

multiple-point statistics may also be reproduced (Goovaerts 1997). 

 

Stochastic imaging reproduces the sample histogram and the variogram model 

much better than kriging, yet it is not exact nor should it be because it is but a 

possible outcome. Reasons for departure between model and realization statistics are 



 72

the type of algorithm, the density of conditioning data, the variogram parameters, and 

the size of the simulation grid (Goovaerts 1997). As a result, stochastic imaging can 

generate multiple realizations that all match reasonably well the same sample 

statistics and exactly the conditioning data. The set of alternative realizations {z(l)(u), 

u in the set of A}, l=1, ..., L, provides a visual and quantitative measure (actually a 

model) of spatial uncertainty. Spatial features such as specific strings of large values 

(such as rivers in a remotely sensed image) are deemed certain if seen on most of the 

L simulated images. Conversely, a feature is deemed uncertain if seen only on a few 

simulated images. 

 

Using the spatial uncertainty model by generating alternative realisations of 

the spatial distribution of an attribute is rarely a goal per se. Rather, these realisations 

serve as input to complex transfer functions that consider all locations simultaneously 

rather than one at a time. The processing of each input realisation yields a unique 

value for each response. For example, this could be a unique number or estimate of 

land-cover types. Image segmentation utilises all locations simultaneously as well, 

however unlike transfer functions, the result is not a single response value but rather 

groupings of similar spectral associations and the area taken up by each group. The 

distribution (histogram) of the L response values corresponding to the L input 

realizations provides a measure of response uncertainty resulting from our imperfect 

knowledge of the distribution in space of z. That measure can then be also used in 

risk analysis and decision-making. 
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3.7.1 Stochastic imaging theory 

A set of simulated maps {z(l)(u'j), j=1,...N}, l=1, ... L, can be generated by 

sampling the N-variate or N-point ccdf modelling the joint uncertainty at the N 

locations u'j: 

F(u'1, ...u'N;z1,...zN|(n)) = Prob{Z(u'1) ≤ z1, ..., Z(u'N) ≤ zN|(n)} 

         (15) 

Inference of the conditional cdf requires knowledge or stringent hypotheses about the 

spatial law of the RF Z(u). The multivariate gaussian RF model is one model whose 

spatial law is fully determined by the sole z-covariance function. This model 

underlies several simulation algorithms. I chose to use the sequential gaussian 

simulation algorithm. The sequential gaussian simulation algorithm models and 

samples a one-point ccdf at each of the N nodes visited along a random sequence 

instead of modelling the N-point ccdf, i.e. the ccdf modelling the joint uncertainty at 

the N locations u′j . To ensure reproduction of the z-covariance model each one-point 

ccdf is made conditional not only to the original n data but also to all values 

simulated at previously visited locations. 

 

The sequential simulation paradigm is based on Bayes’ axiom that states that 

any two-point ccdf can be expressed as a product of one-point ccdfs: 

F(u′1,u′2;z1, z2|(n)) = F(u′2; z2 | (n+1)) ⋅ F(u′1;z1 | (n))  (16) 

where “ | (n+1) ” denotes conditioning to the n data values z(uα) and the realization 

Z(u′1) = z(l)(u′1). What this actually means is that it is possible to generate more than 

one realization in sequence thus not having to model the N-point ccdf. The sequence 
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is that the value z(l) is first drawn from the ccdf F(u′1;z1 | (n)), then the ccdf at location 

u′2 is conditioned to the realisation z(l)(u′1) in addition to the original data (n), its 

sampling yields the correlated value z(l)(u′2). The idea is to trade the sampling, hence 

modelling of the two-point ccdf, for the sequential sampling of two-point ccdfs that 

are easier to infer.  

 

This notion can be further generalised to more than two locations. By 

recursive application of Bayes’ axiom, the N-point conditional cdf can be written as 

the product of N one-point conditional cdfs. This decomposition allows one to 

generate a realization of the random vector {Z(u'j), j=1,...N} in N successive steps: 

Step 1. Model the cdf at the first location u'1 conditional to the n original data z(uα): 

F(u'1;z|(n)) = Prob{Z(u'1 ≤ z|(n)}. 

Step 2. Draw from that ccdf a realization z(l)(u'1) which becomes a conditioning 

datum for all subsequent drawings. 

… 

Step N-3. At the i-th node u'i visited, model the ccdf of Z(u'i) given the n original data 

and all (i-1) values z(l)(u'j) simulated at the previously visited locations u'j, j=1,...i-1: 

F(u'i;z|(n+i-1)) = Prob{Z(u'i) ≤ z|(n+i-1)}. 

Step N-2. Draw from that ccdf a realization z(l)(u'i) which becomes a conditioning 

datum for all subsequent drawings. 

Step N. Repeat the two previous steps until all N nodes are visited and each has been 

given a simulated value. 
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The resulting set of simulated values {z(l)(u'j), j=1,...N} represents one 

realisation of the RF {Z(u),u in the set of A} over the N nodes u'j. Any number L of 

such realisations, {z(l)(u'j), j=1,...N}, l=1,...L can be obtained by repeating L times the 

entire sequential process with possibly different paths to visit the N nodes. 

 

The sequential simulation algorithm requires the determination of a ccdf at 

each location being simulated, which is achieved using the multiGaussian formalism 

presented above i.e. the RF model is gaussian and thus is named sequential gaussian 

simulation. The sequential gaussian simulation algorithm honours data at their 

locations. At any datum location uα, the simulated value is drawn from a zero-

variance, unit-step conditional cdf with mean equal to the z-datum z(uα) itself. This 

basically means that the conditioning value is unchanged during stochastic imaging.  

 

The sequential principle can also be extended to the simulation of several 

continuous attributes. This study needs to generate data that is related to previously 

simulated images to jointly simulate the spectral bands. One way to achieve this is by 

defining a hierarchy of variables. Instead of trying to simulate all the bands 

simultaneously, several researchers propose to simulate other bands (or variables) in 

turn as long as it is done conditionally to the previously simulated values. (Gomez-

Hernandez and Journel 1993, Almeida and Journel 1994). The predefined hierarchy 

allows the implementation of the co-located co-kriging approximation. This hierarchy 

of spectral channels is based on the correlation between spectral bands. The higher a 

channel correlation, the more important the channel. However, in order to choose the 
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first band to be simulated, the total variance was considered. It was deemed that a 

higher variance provided more information content and thus was the first band to be 

simulated. 

 

3.7.2 Practical stochastic imaging 

In the context of this work, the actual simulation would proceed as follows 

(figure 3.5). The parameters that are required in order to run this simulation are the 

modelled variogram, the minimum and maximum values of the simulation output, 

and the original data for conditioning the simulation. In addition to these parameters 

the grid onto which the simulated values will be attached must also be given. 

1. The remotely sensed image data are transformed to a standard normal cdf using 

the normal scores transform. 

2. The sequential gaussian simulation is performed on the transformed data. The 

sequential gaussian simulation proceeds as follows: 

a. A random path is defined visiting each node on the finer spatial resolution 

grid only once. 

b. At each node, a RV is generated conditional to the local data. This is achieved 

by determining the parameters (mean and variance) of the gaussian ccdf using 

OK and the normal score variogram model. The conditioning data consists of 

transformed original image data and previously simulated data found at 

nearby nodes. 

c. A value is drawn from the gaussian ccdf randomly and added to the current 

node being visited. 
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d. Then proceed to the next node along the random path and repeat steps b and c. 

e. Continue advancing to other nodes (locations) until all nodes have been 

visited at least once. 

3. The resulting generated image must be back-transformed. Since the simulation 

was performed in normal scores space, the resulting output must be converted 

back to match the range and distribution of the original DN values. 

 

Variations do exist in the above methodology based on the input parameters 

and data. For instance, when stochastic imaging is applied to generate three different 

channels that are based on the same recorded scene, the first channel to be simulated 

is only conditioned by the original imagery. All subsequent channels are conditioned 

to the previously simulated channel based on the given correlation between channels 

as well as the original imagery. 
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Figure 3.5 – The sequential gaussian simulation algorithm represented graphically. 
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3.7.3 Simple kriging with locally varying mean (LVM) 

The LVM option in the SGSIM algorithm refers to simple kriging (SK) with 

varying local means. Normally the SK algorithm uses the mean value of the area 

under consideration deemed stationary. In such a case the mean is not location 

dependent. When there is access to secondary information, the known stationary 

mean of the primary data may be replaced by known varying means m*SK(u): 

           

          (17) 

where ‘lm’ stands for ‘local mean’. Local mean refers to the trend component that is 

modeled as a function of the location u. When a continuous secondary attribute is 

available, then the primary local mean can be a function (linear or not) of the 

secondary attribute value at u. Here the secondary attribute is taken to be the coarse 

spatial resolution VGT imagery itself. In doing so, there is a perfect linear 

relationship between the primary and secondary attributes.  

 The kriging weights λSK
α (u) are obtained by solving a SK system:  

           

          (18) 
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where CR(h) is the covariance function of the residual RF R(u) = Z(u) – m(u) and not 

that of Z(u) itself. Therefore, in practice one needs the variogram of residuals. This is 

obtained by subtracting the trend from the primary attribute and computing the 

variogram on the residuals. The residual values are then estimated using SK and the 

closest available residual data r(uα). The final estimate of the primary data is obtained 

by adding the trend estimate to the SK estimate of the residual r*
SK (taken from 

Goovaerts 1998). 

 

3.7.4 Co-simulation 

The second option that was used in conjunction with the SGSIM algorithm to 

generate finer spatial resolution images was the co-simulation option. The co-

simulation option was used to generate the different channels of the finer spatial 

resolution images as well as help better localise simulated images (in the case of 

using the SAR imagery). In the first case, generating the different channels based 

solely on the conditioning data would not assure spectral objects to be something that 

could be found on the ground. Therefore a certain relationship had to be maintained. 

In the second case, the relationship between the SAR data and the optical data was 

used to constrain the simulation of the optical data to real world locations. In both 

cases the joint spatial variability of the attributes needed to be reproduced. 

 

To reproduce the joint spatial variability in general, it is necessary to model 

not only the variograms of the primary and secondary data, but also the cross-

variograms between the primary and secondary data (as in co-kriging). Almeida and 
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Journel (1994) propose an approach that does not require the inference and modeling 

of the matrix of covariances and cross-covariances. The proposed simulation 

algorithm is in essence a joint sequential Gaussian simulation capitalizing on the 

collocation idea to reduce the co-kriging system and a Markov model to reduce the 

burden of inference. The Markov model hypothesis does not fully determine the 

coregionalization of the primary and secondary data sets, i.e. it does not yield a 

specific model; however, whenever a single secondary datum is retained, as in 

collocated cokriging, the covariance of the secondary data is not called for. As such, 

secondary data is necessary at all locations where the primary variable is to be 

estimated.  

 

For this approach to work, a hierarchy of variables requires to be defined 

because the algorithm accounts for spatial correlation between primary variables by 

retaining, for the simulation of any particular primary variable, the collocated value 

of all previously simulated primary variables of a different type. This predefined 

hierarchy allows the implementation of the co-located co-kriging approximation. This 

hierarchy should be based on the autocovariance and cross-covariances that are most 

critical to reproduce. In the phase I and II experiments, the first channel to be 

simulated was the one with the greatest variability. This channel was simulated to 

generate an image with values at all the nodes. The second channel was co-simulated 

based on the strongest correlation with the first simulated channel. The final channel 

was co-simulated based on the strongest correlation between the other generated 

channels.  
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After defining the hierarchy of variables the algorithm proceeds as follows (from 

Goovaerts 1997): 

 

1. Transform all the channels Zi into their normal scores Yi. 

2. Define a random path visiting only once each node to be simulated (just as in 

sequential simulation paradigm). 

3. At each node u′: 

- Use SK to determine the parameters of the Gaussian ccdf of the first variable 

Y1(u′). The conditioning information consists of neighbouring normal score data 

y1(uα1) and previously simulated values y1
(l)(u′) from that ccdf, and add it to the 

conditioning data set. 

- Use co-located simple co-kriging to determine the parameters of the Gaussian 

ccdf of the second variable Y2(u′). In addition to neighbouring normal score data 

y2(uα2) and previously simulated values y2
(l)(u′j), the previously simulated co-

located value y1
(l)(u′) is retained as datum. Then, draw a simulated value y2

(l)(u′) 

from that ccdf, and add it to the conditioning data set. 

. 

. 

. 

- Use co-located simple co-kriging to determine the parameters of the Gaussian 

ccdf of the last variable YNv(u′). The conditioning information consists of the 

neighbouring normal score data yNv(uαi) and previously simulated values y(l)
Nv(u′j) 

of that variable, plus all previously simulated co-located values y1
(l)(u′), …, y(l)

Nv-
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1(u′). Then, draw a simulated value y(l)
Nv(u′) from that ccdf, and add it to the 

conditioning data set. 

 

4. Loop until all N nodes are simulated. 

5. Back-transform the Nv realizations into simulated values for the original variable. 

 

Therefore a model of co-regionalisation is not required when using this algorithm 

(taken from Almeida and Journel 1994).  
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Chapter 4 – Methodology and Data  

The goal of this work is to generate fine spatial resolution optical-like imagery 

based on coarse spatial resolution optical imagery and the stochastic imaging 

paradigm and to validate the generated imagery to real fine spatial resolution 

imagery. The diagram (figure 4.1) presents the basic framework of the proposed 

methodology organised into three phases based on the distinct sources of information 

applied. 

 

The design of this experiment is based on three phases where each phase 

made use of the sequential gaussian simulation algorithm to generate finer spatial 

resolution imagery. The three phases differed from each other in the type of 

information that was input into the simulation algorithm. In the first phase the input 

information was based solely on the coarse spatial resolution VGT imagery. This 

information included the imagery itself as well as the distribution and the spatial 

parameters such as the variogram. In phase II the coarse spatial resolution imagery 

itself was still applied however the input parameters were based on the wanted finer 

spatial resolution HRVIR imagery. The final phase utilised the same input parameters 

as those in phase II with the addition of RADARSAT SAR imagery. This strategy 

was chosen in order to see whether the resulting generated finer spatial resolution 

images were improved with the more complex input parameters. 

 

The final analysis involved the segmentation and validation of the generated 

finer spatial resolution images. Segmentation was performed automatically with the 
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K-means algorithm and validation of the results was attempted in different ways 

including the use of land-cover maps.  

 

Segmentation and Validation

Phase I

coarse spatial
resolution image

(VGT)
+

coarse spatial
resolution based

parameters
(VGT)

coarse spatial
resolution image

(VGT)
+

derived fine spatial
resolution parameters

(HRVIR)

coarse spatial
resolution image

(VGT)
+

derived fine spatial
resolution parameters

(HRVIR)
+

ScanSAR imagery

Stochastic Imaging
(sequential Gaussian simulation)

Phase IIIPhase II

 

Figure 4.1 – A diagram of the proposed methodology. The three phases are related to 

the different types of information used to generate the finer spatial resolution 

imagery.  
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4.1 Image Data 

A myriad of optical satellite remote sensing imagery is currently available. 

However, the goal here is to zero in on the spatial aspect of the imagery itself, 

concentrating only on the image spatial scale, i.e. spatial resolution and/or spatial 

extent. Therefore, the ideal set of imagery (coarse and fine spatial resolution) for both 

testing and validating the approach would have the same spectral and radiometric 

scales, be acquired at the same time to avoid atmospheric differences and have a 

similar viewing geometry. Currently, the only platform that satisfies most of these 

requirements is SPOT 4. The SPOT 4 system is unique because the two main sensors 

onboard, HRVIR and VGT share a similar spectral scale for three channels, i.e. three 

identical bands (table 4.I). Furthermore, both types of imagery can be taken 

simultaneously providing an ideal situation for comparing data at two different scales 

of observation because the atmospheric conditions are similar and the viewing 

geometry is almost the same. The primary difference between the two sensor 

configurations is spatial resolution and extent (table 4.I). The difference in spatial 

resolution is two orders of magnitude and the area covered is even greater. These 

characteristics allow one to study the image spatial scale without introducing 

unwanted variability from other image scales, such as spectral or temporal; 

differences normally associated with comparing two different sensors. Note however, 

that the radiometric scales are different (10 bits for VGT vs. 8 bits for HRVIR). 

Unfortunately, the radiometric extent could not be equal because of the limits of 

present sensor technologies.  
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Table 4.I – HRVIR and VGT sensor characteristics onboard the SPOT 4 satellite. 

SPOT 4 Sensor HRVIR VGT 
Blue band (µm) N/A 0.43 - 0.47 
Green band (µm) 0.50 - 0.59 N/A 
Red band (µm) 0.61-0.68 0.61-0.68 
NIR band (µm) 0.79-0.89 0.78-0.89 
SWIR band (µm) 1.58-1.75 1.58-1.75 
Radiometric resolution 8 bit 10 bit 
Pixel resolution (m) 20 x 20 1000 x 1000 
Swath width (km) 60 (at nadir) 2200 

 

One of the original goals of the SPOT 4 system was to combine the benefits of 

the VGT sensor’s revisit capability and the HRVIR sensor’s high spatial resolution 

for detailed modelling and multi-scale sampling. The HRVIR and VGT sensors use 

the same geometric reference system in order to facilitate the study of multi-scale 

observations (VEGETATION 1999). 

  

For this study, the coarse spatial resolution imagery was recorded on May 24, 

1998 by the VGT instrument. This image covers a large portion of western Quebec, 

eastern Ontario (Canada) and northern New York and Vermont states (USA) (figure 

4.2 inset). Four study sites were chosen in the region of Montréal, Québec, and are 

delineated in figure 4.2. Each study site is made up of a total area of 15 x 15 VGT 

pixels which is approximately equivalent to 15 km x 15 km. Study area A is located 

on the Island of Montreal in a highly urbanised region that includes the downtown 

core and several different residential areas. Study area B is located on the southern 

shore of the St. Lawrence River in a highly agricultural area with rural settlements. 

Due to the acquisition date in late May, some of the fields appear to be quite bare. 

Study area C comprises of a mixed forest/agriculture region with some rural 
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settlement and finally study area D is on the urban/rural divide on the northern edge 

of the region of Montreal where forest, agriculture and suburban regions can be 

identified. The VGT study areas are examples of the type of data that is provided by 

coarse spatial resolution optical imagery in northern cold temperate zones. 

 

The imagery in the figures from this point on will always be shown as a false 

colour composite unless otherwise noted. The channel combinations are blue = 

channel 2 (red), green = channel 3 (NIR) and red = channel 4 (SWIR). 
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Figure 4.2 – SPOT 4 VGT imagery. Upper left inset presents the areal extent that can be sensed by the VGT sensor (about 2200 km). 

The central image presents a magnification of the island of Montreal and surrounding areas that is approximately equal to the extent 

covered by a single SPOT 4 HRVIR image. The red squares each encompass a study area 15 x 15 km denoted as study areas A through 

D. 

A

B

C

D



 

Although a single VGT scene can cover a much larger area, the small sub-

samples were chosen within a confined region for several reasons. One of the most 

important technical reasons is the availability of fine spatial resolution validation 

data, i.e. SPOT 4 HRVIR. HRVIR imagery only covers a swath 60 km wide, far less 

than that provided by a single VGT image. Therefore, validation sites needed to be 

found within the extent of the available HRVIR imagery. Secondly, the availability of 

space to store the data. A single VGT sub-sample, including 3 bands, needs just over 

1 K of memory. However, simulating many realisations at a much finer spatial 

resolution does require large amounts of storage space that were not available to me. 

Finally, the study sites were chosen within different land-cover regions (e.g. urban 

landscape, agricultural landscape, etc.). Choosing specific land-cover regions also 

satisfied my decision of stationarity (see chapter 3). 

 

A simultaneously recorded HRVIR image of the region of Montreal provided 

the fine spatial resolution imagery for the four study sites (figure 4.3). The four 

HRVIR sub-samples also cover the same extent as their VGT sub-sample 

counterparts (A through D). 

 

In order to compare the coarse and fine spatial resolution images of the four 

study sites directly, the images were corrected geometrically (image to image) using 

control points without spatially degrading the resolution of the HRVIR image. Their 

geometric accuracy is in reality difficult to assess because of the great smoothing 

effect generated by the VGT IFOV compared to the ‘point’ samples that are captured 
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by the HRVIR instrument. The HRVIR imagery was the base image for the geometric 

correction. A degraded HRVIR image was also not used to correct geometrically 

because it was felt that it would introduce unnecessary inaccuracies because the 

degradation focal point is not known. A visual inspection indicates that the study sites 

at both spatial resolutions correspond adequately. The spatial detail provided by the 

HRVIR images are those desirable for local to regional level studies because 

everyday objects can be fairly easily delineated.  
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Figure 4.3 – SPOT 4 HRVIR imagery of the four study sites denoted A through D.  
 
 

As was noted above, the radiometric scale of the HRVIR and VGT images is 

not the same. Initial tests on the data using the raw DN showed inconsistencies 

between the expected values that were observed at the two different spatial 

resolutions. These inconsistencies were discovered when summary statistics were 

compared (e.g. mean and median) and the computed variogram for both HRVIR and 

VGT images. The most obvious inconsistency being the expected mean values for 

A B
C D
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both types of images were very different. In order to minimise the effect of the 

differences found in the radiometric dimension of the two types of imagery, it was 

decided that reflectance be used as the compatible measure because both images 

would be expressed in the same units. The converted reflectance data of both the 

HRVIR and VGT images was within the desired accuracy found in the literature 

(Henry and Meygret 1999). 

 

Both the VGT and HRVIR images were acquired simultaneously and the 

chosen study sites were near the centre of the VGT imagery. It was considered that 

the atmospheric effects on both types of images were similar and therefore the DN 

were only converted to top of the atmosphere (TOA) reflectance. Transformation of 

the VGT and HRVIR DN image to a reflectance image was achieved using correction 

equations provided by SPOT (SPOT 2000, VITO 2000). Applying the equation: 

TOA reflectance VGT = a * DN + b   (19) 

where a = 0.0005 and b = 0.0 for all bands. A similar correction was applied to the 

HRVIR image data. At first the TOA radiance was computed based on the absolute 

calibration gains provided (table 4.II) in the HRVIR image header file: 

  TOA radiance (L) = DN/a + b  (20) 

where a is the absolute calibration gain (ACG) value and b is the calibration offset 

usually set to zero. The next step was to convert this into TOA reflectance. 

Computing TOA reflectance values requires knowledge of the sun’s whereabouts at 

the time of recording. Thus: 

TOA reflectance (HRVIR) = πL/E cos z  (21) 
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where L is the TOA radiance (from above), E is the solar spectral constant and z is 

the suns zenith angle (table 4.II). 

 
Table 4.II – Calibration coefficients used to transform the SPOT 4 HRVIR imagery to 

TOA reflectance values. 

HRVIR channel ACG Solar Constant 
(Wm-2 µ m-1) 

Sun Zenith 
Angle 

Channel 2 1.29086 1586 28°10′ 
Channel 3 1.08 1054 28°10′ 
Channel 4 5.93 240 28°10′′ 
  

One of the desired objectives was to produce finer spatial resolution synthetic 

images whose spatial locations were true to the underlying scene. This required 

additional spatial information at a spatial resolution comparable to the final product. 

The secondary spatial information was provided by RADARSAT-1 ScanSAR wide 

mode imagery because it can record scenes over large extents and at a spatial 

resolution that is much finer than that of the VGT sensor. Furthermore, fine spatial 

resolution optical imagery cannot be used in this case because the technology is not 

far enough advanced for large area monitoring due to platform characteristics such as 

a low revisit rate, and other technical difficulties such as atmospheric interference. 

The possibilities of mixing optical and SAR imagery with stochastic imaging 

techniques are explored. Table 4.III presents the characteristics of the ScanSAR wide 

mode imagery that was chosen for this research and acquired by RADARSAT-1. The 

large coverage of a single ScanSAR wide mode image is comparable to that of a VGT 

scene in extent. As a result, both sensors (i.e. VGT and RADARSAT-1) within a 

reasonable amount of time could cover the same extent. The spatial resolution of 
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imagery acquired in ScanSAR wide beam mode is also much finer than that of the 

VGT imagery.  

 
Table 4.III – RADARSAT ScanSAR wide beam mode image characteristics. 

Beam Mode Nominal Area Nominal 
Resolution 

Pass Mode Radiometric 
Resolution 

ScanSAR wide 500 km x 500 
km 

100 m Ascending 8 bits 

 
SAR imagery can be acquired during the day or night with rain or clouds. 

These qualities alone make it a very useful alternative to sensors that record in the 

visible spectrum. However, the difficulty associated with segmenting/classifying 

land-cover and subsequently estimating land-cover using SAR data is quite important. 

Measurements taken in the visible spectrum are much more convenient for such work 

especially when vegetation is involved. It is postulated that the spatial information 

provided by a RADARSAT SAR sensor can complement and/or enhance the 

generated fine spatial resolution imagery. 

 

Optical and SAR based imagery are different. A SAR image portrays 

information that is qualitatively different from that of an optical image because 

microwave and optical frequencies are sensitive to different target surface 

characteristics. Optical frequencies interact with materials at a molecular level and 

respond to the surface chemistry of target materials whereas radar frequencies interact 

with materials at a macroscopic structural level and respond to the bulk electrical 

properties of target materials at resolutions near the radar wavelength. What appears 

on the SAR image is dependent on such variables as geometric shape, surface 

roughness and moisture content of the target object, as well as the sensor target 
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geometry and the transmission direction (look direction) and the polarization state of 

the radar sensor. To understand radar output one needs to understand the radar 

configuration, the energy associated with radar remote sensing, the way in which that 

energy interacts with objects at the Earth’s surface, and the manner in which this 

interaction is represented as an image. Even though the manner in which the imagery 

is produced is completely different than that of the optical imagery, the spatial details 

associated with such an image can be compared to that of optical images. Objects 

may not look the same on the different images but they are in the same spot. For 

example, a river will be dark in both a SAR image and a red band image but a silo 

would be bright on the SAR image but not necessarily on the red image because it 

depends on the colour and surrounding objects. 

 

The RADARSAT-1 satellite acquired the SAR data on May 19, 1998. The 

entire scene is presented in figure 4.4 (inset) while the study sites are presented in the 

main figure. Geometric registration was based on the HRVIR imagery. Raw DN 

values were also converted to backscatter values because prior experience showed 

poor correlation between any of the optical channels (NACOG 2000). The data was 

converted to radar backscatter values using the PCI (2000) SARSIGMA routine. 

 

The date of acquisition of the ScanSAR wide imagery differs from that of the 

optical images by five days (earlier). Thus, the differences between the two images in 

terms of land-cover changes between acquisition dates were considered minimal. 
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A B

C D

 
Figure 4.4 – RADARSAT-1 ScanSAR wide beam mode imagery. Upper left inset 

presents the full RADARSAT-1 image in ScanSAR wide beam mode. The image was 

recorded while ascending and produced using the w1, w2, s5 and s6 beam modes. 

Each of the images (A through D) covers the same area as that of the HRVIR and 

VGT image subsets.  

 
 

 The RADARSAT-1 ScanSAR wide imagery covers a large swath by 

switching the beam position in the range direction. Special processing is required to 

combine data from individual beam positions into a single scene (Raney et al. 1991). 
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4.2 Generating Finer Spatial Resolution Imagery 

The novel approach proposed here was to use stochastic imaging to generate 

synthetic fine spatial resolution optical-like imagery based on available coarse spatial 

resolution imagery. Specifically, the sequential gaussian simulation (SGSIM) 

algorithm (Deutsch and Journel 1998) was chosen because the image data are 

continuous (between 0% and 100% for reflectance) and the output imagery also 

needed to be continuous. 

 

Goovaerts (1997) shows that ordinary kriging yields, on average, better 

predictions than the simulation algorithm in that the mean absolute prediction error is 

smaller for kriging estimates than for simulated values. This behaviour is expected 

because there is no smoothing effect with stochastic imaging. However, kriging does 

underestimate high and low values (conditional bias) which lead to underestimating 

global attributes (Goovaerts 1997). This behaviour was also observed in previous 

work (Bielski and Cavayas 1998, Bielski 1999) especially in terms of the 

requirements for a scale change.  

 

As shown in the diagram at the beginning of the chapter (figure 4.1), the 

SGSIM algorithm was fed three different input parameters that are associated with 

each phase of the experiment. These sets of parameters differ in their spatial 

variability and histogram characteristics and conditioning data. The primary source of 

these parameters is the coarse spatial resolution VGT imagery. Furthermore, the 
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SGSIM algorithm was used to generate imagery using the co-simulation and LVM 

options. 

 

For each study site, a single realisation is generated as well as a set of 50 

realisations (only in the co-simulation case). Since the goal is to provide optical-like 

imagery, this process is repeated for each available channel (red, NIR and SWIR 

channels). These three particular channels were chosen because the SPOT 4 HRVIR 

and VGT sensors share these three common channels, even though they each have at 

least one other channel available (table 4.I). 

  

The difficulty in visualising 50 different realisations for analysis also required 

a method of generalising the output images. This was accomplished by computing 

four statistics and generating statistical maps for interpretation. The four statistics 

used were the E-type estimate and the 10th, 50th and 90th percentiles. These statistics 

were computed for the same pixel location across all 50 realisations per spectral band 

creating a statistical image where the pixel value equalled the statistic for that 

location. 

 

The applied stochastic imaging algorithm necessarily required a grid onto 

which generated values were assigned. All realisations were generated onto a grid 

with 750 nodes in the x and y directions. The 750 nodes in both directions were 

equivalent to the number of HRVIR pixels found within an area 15 x 15 km. The 

minimum node location was 0.6 and the distance between nodes was 0.02. These 

values are based on the 1000 m coarse spatial resolution VGT data set. Dividing the 
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actual spatial resolution (in m) of the HRVIR data by 1000 will give the node size. 

The minimum node location was chosen as 0.6 (rather than 0.5) in order to place the 

VGT data off centre (figure 4.5). 

 

4.2.1 Phase I parameters  

The SGSIM algorithm requires several parameters including the minimum, 

maximum, and normalised variogram model at the very least (for an unconditional 

simulation). In phase I, the parameters were directly taken from the VGT imagery. 

Therefore, an experimental variogram was computed for each study site for all 

spectral channels of the VGT imagery. The same imagery was used to compute the 

histogram and all univariate image statistics providing the necessary minimum and 

maximum values as well as the distribution. The variogram model parameters were 

derived from the computed experimental variogram and automatically fitted to each 

channel. 

 

The VGT imagery can be considered as the entire population for a recorded 

scene. Specifically, one has measured the entire extent within the area of interest. 

Therefore, at the scale of observation provided by the VGT sensor (and provided no 

atmospheric interference as in our case) all the data for the region was known. With 

this in mind two different conditioning scenarios were applied to generate the 

realisations. The first scenario used the LVM option of the SGSIM algorithm. The 

LVM or locally varying mean option requires a value to be assigned to every node of 

the simulation grid. This value represents a local average that was equal to the 

original VGT data and varies spatially. All simulated values were conditioned to this 
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data. Therefore, the same reflectance VGT value was assigned to every node where 

the same value would cover a region 50 x 50 nodes (figure 4.5 – left side). This area 

corresponds in size to the spatial resolution of a single VGT pixel. The second 

scenario also used the VGT image data for conditioning the realisations however only 

one node within a 50 x 50 node area was assigned a value (figure 4.5 – right side). 

This second scenario considered the single VGT value as a random variable at the 20 

m spatial resolution. The goal of this approach was to minimise the conditioning 

influence of the VGT data on the finer spatial resolution realisations. Such a data 

configuration provided some conditioning information but less spatial structure than 

that provided by the LVM scenario. 

 

Figure 4.5 – The LVM and co-simulation node configurations. The LVM case has a 

background value for all the nodes that are within a single VGT pixel while the co-

simulation case places the VGT pixel value as a central node within a single VGT 

pixel extent. 

 

LVM Co-simulation
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4.2.2 Phase II parameters  

The phase II parameters were a modification of phase I parameters. The 

modifications were based on the idea that parameters approximated to the wanted fine 

spatial resolution would generate an image with similar global statistics. One of the 

most important required parameters, the variogram, can be derived from the coarse 

spatial resolution image data by determining the model for the punctual variogram 

(Clark 1977, Atkinson and Curran 1995, Collins and Woodcock 1996). For validation 

purposes, the punctual variogram was considered to be equal to that based on the 

HRVIR imagery. The hypothesis behind using the punctual variogram as opposed to 

the regularised variogram was that punctual variogram would introduce greater 

spatial variability into the generated finer spatial resolution imagery which was an 

expectation when down-scaling occurs. 

 

The realisations based on phase II parameters also used both the LVM and co-

simulation SGSIM options and were also conditioned to the VGT imagery. The 

parameters that were adjusted to try and match those of the HRVIR scale of 

observation were the minimum, maximum and model variogram. However, the 

distribution was still based on the VGT imagery. 

 

4.2.3 Phase III parameters  

The addition of RADARSAT-1 imagery to integrate location information into 

the simulation process distinguished the phase III parameters. The phase III base 

parameters were equivalent to those of phase II, i.e. minimum, maximum, variogram 
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model, etc. The realisations were again conditioned by the coarse spatial resolution 

VGT imagery.  

 

In this final attempt only co-simulation was used with the SAR data because 

no available SGSIM algorithms were able to simultaneously run both co-simulation 

(to integrate the SAR data) and LVM. The SAR data was co-simulated with the 

visible channel of each study site with the strongest correlation to generate the finer 

spatial resolution imagery. 

 

4.3 Image Segmentation and Validation 

Ultimately, one must extract information from the generated fine spatial 

resolution optical-like images. Defries and Belward (2000) call for improved analysis 

techniques that could help the global monitoring effort. Segmenting the generated 

finer spatial resolution imagery is a first step in the information extraction process.  

 

Image segmentation is carried out to determine, based on spectral 

characteristics, the kinds of objects that can be separated. Spectral objects are entities 

in channel space (i.e. red, NIR and SWIR) that can be automatically delineated. The 

segmentation algorithm was run on all available data including the SPOT 4 HRVIR, 

VGT and generated image data. Automatically segmenting the imagery permitted  

analysis of the results in an objective manner because it was based strictly on the 

spectral separability rather than user input. 
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The K-means algorithm was chosen to perform the segmentation. A simple 

image segmentation algorithm was chosen because it was easy to implement in the 

three-dimensional feature space and it required little user intervention. The only user 

supplied information was the maximum number of desired clusters. For each of the 

study sites, the K-means algorithm was run twice: once with a maximum of 16 

clusters and a second time with 10 clusters. Such a small number of clusters was 

chosen based on prior hands-on experience and the fact that within the coarse spatial 

resolution images the number of discernible land-cover objects was quite small.  

 

The Narenda-Goldberg (Narenda and Goldberg 1977) algorithm based on 

multi-dimensional histograms of the spectral data was also considered as a possible 

automatic segmentation algorithm. However, preliminary tests showed that the large 

amount of segmented clusters produced by the algorithm were too difficult to 

interpret and to compare between images.  

 

The final step was to validate the resulting clusters that were spectrally 

segmented. Validation required a base map from which ‘known’ clusters could be 

compared to with those derived from the original coarse spatial resolution VGT 

imagery and the generated finer spatial resolution optical-like imagery. The base map 

used was derived by segmenting the HRVIR imagery and considered as the real 

clusters because it was at the wanted scale of inference.  

 

Validation of the generated images occurred in three ways. A first validation 

criterion was the ability to produce land-cover clusters that were comparable to 
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clusters based on the HRVIR imagery in spectral feature space. The second was to 

determine whether the total percent covered by each spectral cluster was equal to the 

total percent covered by the clusters computed from the HRVIR imagery which was 

deemed the ‘reality’. The expectation was that the generated fine spatial resolution 

imagery be similar to that which is observed by the HRVIR instrument. The final 

validation procedure compared mapped land-cover areas at both the 1:250 000 and 

1:50 000 map scales to the segmentation results. The 1:250 000 data was based on the 

Canada Land Inventory level II UTM digital data while the 1:50 000 data was based 

on digitised topographic maps.  
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Chapter 5 – Generated Finer Spatial Resolution Images Based 

on Coarse Spatial Resolution Input Parameters  

The first generated fine spatial resolution optical-like images were based on 

phase I parameters originating directly from the coarse spatial resolution VGT 

imagery. The computed image statistics based on the generated phase I images were 

very similar to those of the original VGT imagery suggesting that a change of spatial 

scale did not take place. The sequential simulation algorithm LVM option produced 

qualitatively better imagery than the co-simulation option. The results of this first 

attempt are provided below and figures not presented in the text can be found in the 

appendix. 

 

5.1 Coarse Spatial Resolution Data Analysis 

Phase I simulations required: 

1. VGT imagery 

2. VGT image first order statistics 

3. Variogram model parameters based on the VGT imagery 

 

5.1.1 The VGT imagery 

Image summary statistics for each of the four study sites are presented below 

(table 5.I). The summary statistics were based on 225 samples (n = 225) because each 

coarse spatial resolution study site image covered a total area of 15 x 15 pixels.  
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In general the four study sites could be easily differentiated from each other 

based on their summary statistics. The general trend seemed to be that the urban site 

A produced overall the lowest reflectance values. This can be due to the fact that all 

three other study sites had considerably more vegetation and/or had less water than at 

site A. Sites B and C had the highest mean and median values for both the red and 

SWIR channels (channels 2 and 4). The NIR channel with the highest mean and 

median values was found in the site D image. The maximum values for each channel 

were distributed between the three sites B, C and D. It was not a surprise that all the 

minimum values computed for the entire data set were found on the site A image 

(table 5.I). The standard deviation was presented along with the coefficient of 

variation statistic to measure the variability of the different images. Overall data 

variability was greatest on the urban site A image. This was most likely due to 

spectral heterogeneity found within the urban landscape at study site A. However the 

general trend across all study sites was that channel 2 (red) was the most variable. 

The differences in mean and median statistics were also fairly small for sites B 

through D (table 5.I).  

 

The correlation statistic was also computed between all pairs of channels for 

each study site (table 5.II). The correlation information was essential for the co-

simulating algorithm when generating the spectral bands. Most channel combinations 

provided a fairly strong correlation. The urban study site A exhibited strong positive 

correlation between all of the spectral channels. Sites B through D exhibited a 

negative correlation between channels 2 and 3 with site C having the strongest (-0.74) 

and site B the weakest (-0.05). The strongest correlation values were computed 
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between channels 2 and 4 for all study sites. Although the rank correlation coefficient 

was computed for all pairs of channels, the results were not presented for two 

reasons: a) the co-simulation algorithm cannot use rank correlation values due to the 

data transformation and b) the rank correlation generally showed weaker relationships 

most likely caused by the loss of information in computing the statistic.  

 

Table 5.I – Summary statistics for study sites A through D (n = 225). All statistics 

except the coefficient of variation are in reflectance units (percent). 

  Mean Median max min Std dev coef var 
Site A Channel 2 5.68 6.25 8.05 0.40 1.92 34% 

 Channel 3 5.55 5.95 8.65 0.80 1.69 31% 
 Channel 4 5.83 6.55 8.00 0.45 1.82 31% 

Site B Channel 2 7.87 8.10 11.50 1.80 1.74 22% 
 Channel 3 7.74 7.85 9.60 3.30 0.87 11% 
 Channel 4 8.70 8.95 10.75 2.15 1.18 14% 

Site C Channel 2 7.09 7.40 11.00 2.10 2.09 29% 
 Channel 3 8.62 8.60 10.75 6.70 0.85 10% 
 Channel 4 8.70 8.80 11.60 6.20 1.06 12% 

Site D Channel 2 5.32 5.35 9.95 2.55 1.49 28% 
 Channel 3 9.16 9.25 10.95 6.90 0.79 9% 
 Channel 4 7.88 7.85 9.55 5.10 0.84 11% 

 

 

Table 5.II also presents the results of a t-test computed on the correlation 

coefficients. All but the site B channel 2 vs. channel 3 correlation coefficients 

rejected the null hypothesis (i.e. the correlation was not different than zero). The 

presence of strong correlation indicates that in general there is redundancy of 

information between all channels. The site B channel 2 vs. channel 3 correlation of 

determination only explained far less than 1% of the variability between the two 

channels, which was also a very good indication that the two channels were 

independent.  
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Table 5.II – Computed correlation statistics between all pairs of channels for the four 

study sites and their statistical significance based on the t-test of a correlation 

coefficient. 

 Channels Correlation 90% 95% 99% 
Site A 2 vs. 3 0.75 reject Reject reject 

 2 vs. 4 0.91 reject reject reject 
 3 vs. 4 0.93 reject reject reject 

Site B 2 vs. 3 -0.05 cannot cannot cannot 
 2 vs. 4 0.78 reject reject reject 
 3 vs. 4 0.48 reject reject reject 

Site C 2 vs. 3 -0.74 reject reject reject 
 2 vs. 4 0.76 reject reject reject 
 3 vs. 4 -0.26 reject reject reject 

Site D 2 vs. 3 -0.35 reject reject reject 
 2 vs. 4 0.71 reject reject reject 
 3 vs. 4 0.29 reject Reject reject 

 

 

Histograms were computed for each channel of the study sites (figures 5.1 and 

5.2). Graphically the histograms also reveal that the red channel images were the 

most variable because they had the widest distribution. The computed standard 

deviation statistics provided in table 5.I also supported this fact. Overall, the shapes 

of the histograms appeared normally distributed except for the site A histograms. The 

channel 2, site A histogram revealed a large spike to the left of the distribution that 

was associated with the large percentage of water covering the image and thus 

skewed the distribution. The same phenomenon was observed in the third and fourth 

channels, however not as apparent because of the small area of water that was 

covering those images. 
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Figure 5.1 – Histograms of the study sites A (left side) and B (right side). All three 

spectral channels are shown for each image (from top to bottom). 
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Figure 5.2 – Histograms of the study sites C (left side) and D (right side). All three 

spectral channels are shown for each image (from top to bottom). 
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5.1.2 The VGT image variogram 

The experimental variogram was used to compute the spatial variability of 

each of the four study site images by channel. Two directional variograms (0° and 

90°) and an omni-directional variogram were computed. Figure 5.3 illustrates how 

the variogram directions were computed.  

 

 

Figure 5.3 – The experimental variogram was computed for all the coarse spatial 

resolution images in two directions: north-south (0°) and east-west (90°), and in all 

directions (omni-directional variogram, circular arrow). The variogram legend is 

found on the right side of the figure. 

 

The computed variograms based on the coarse spatial resolution images are 

presented in figures 5.4 and 5.5. Distance was computed in terms of pixels. 

Therefore, a single pixel is equal to a lag (distance) of 1 km. The largest lag for which 

the variance was computed was 10 km (over a maximum of 15 km) in order to ensure 

a sufficient amount of data pairs for the statistic to be viable. 
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In general the computed variograms derived from the coarse spatial resolution 

imagery could be considered anisotropic (i.e. the spatial variability depends on 

direction). For sites A through C, the east-west directional variograms exhibited a 

higher sill in all channels, while the north-south direction exhibited the highest sill for 

study site D. The omni-directional variograms were always found to be centred 

between the two directional variograms. This expected behaviour was due to the fact 

that the omni-directional variogram can be considered as an average of the two 

directional components. 

 

The site A red channel experimental variogram (figure 5.4, top left) exhibited 

a small sill before continuing to increase. This was the only channel for the site A 

image where a sill was observed. The remaining two channels (NIR and SWIR) 

neither the east-west oriented nor the omni-directional variogram exhibited a definite 

sill. Only the north-south oriented variogram exhibited an apparent sill for the study 

site A (channels 3 and 4).  The lack of a well defined sill for site A was most likely 

due to the variable nature of the urban scene. The city core was located in the lower 

right section of the image. The residential sections of the city were more pronounced 

as the distance from the core increased. This however did not include the many 

pockets of industrial areas that covered the entire region. Such a rich texture of land-

cover was most likely the driving force behind the spatial variability still present at 

distances equal and more than half the image size. Thus, the idea that a spatial trend 

underlied the urban imagery (study site A) was dismissed because it was the nature of 
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the ground scene itself that caused the steady increase in variance with distance and 

not some underlying phenomenon. 

 

A variogram with no apparent sill was generally not observed on the images 

of the other study sites. Only the channel 3 image of study site D also exhibited such 

behaviour. The other computed variograms (for study sites B through D) all reached a 

definitive sill. This indicated that pixel values at larger lags were not related.  

 

As mentioned above, the computed 90° directional variogram sill was highest 

based on the images of study sites A through C compared to the 0° directional 

variogram sill. The anisotropy reversed for all image channels of study site D. This 

type of phenomenon had been previously encountered in very coarse spatial 

resolution image data (Bielski 1997) and was attributed to the sensor geometry rather 

than the ground scene itself. In order to minimize the differences due to the sensor 

geometry and also to simplify the modelling of the experimental variograms, the 

omni-directional variogram was chosen as the measure of spatial variability 

throughout all the study sites. 

 

In total, 16 variogram models were adjusted automatically to the experimental 

variograms using Pardo-Iguzquiza’s (1999) automatic fitting program (Figures 5.4 

and 5.5 – solid line). The model variogram parameters are presented in table 5.III. 

The spherical model was fitted to all of the computed omni-directional experimental 

variograms. 
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Figure 5.4 – Experimental variograms for sites A (left side) and B (right side). The 

variograms were computed on each channel in 2 directions (north-south and east-

west) and in all directions (omni-directional variogram). Note that the abscissa scale 

is not constant. 

 



 

 

118

γ

γ

γ

Distance

Study Site C channel 2

.0 2.0 4.0 6.0 8.0 10.0
.00

1.00

2.00

3.00

4.00

5.00

6.00

Distance

Study Site C channel 3

.0 2.0 4.0 6.0 8.0 10.0
.000

.100

.200

.300

.400

.500

.600

.700

.800

.900

Distance

Study Site C channel 4

.0 2.0 4.0 6.0 8.0 10.0
.00

.40

.80

1.20

Distance

Study Site D channel 2

.0 2.0 4.0 6.0 8.0 10.0
.00

.50

1.00

1.50

2.00

2.50

Distance

Study Site D channel 3

.0 2.0 4.0 6.0 8.0 10.0
.00

.20

.40

.60

.80

Distance

Study Site D channel 4

.0 2.0 4.0 6.0 8.0 10.0
.00

.20

.40

.60

.80

 

Figure 5.5 – Experimental variograms for sites C (left side) and D (right side). The 

variograms were computed on each channel in 2 directions (north-south and east-

west) and in all directions (omni-directional variogram). Note that the abscissa scale 

is not constant. 
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Table 5.III – Variogram model parameters based on the computed omni-directional 

coarse spatial resolution image experimental variogram. A single spherical model 

was fitted automatically and the range parameter is given in km.  

Nugget relative nugget sill range 
Site A Channel 2 0.40 12% 3.29 10.11 

 Channel 3 0.23 9% 2.64 8.08 
 Channel 4 0.14 4% 3.17 11.31 

Site B Channel 2 0.00 0% 3.04 5.20 
 Channel 3 0.02 3% 0.74 5.17 
 Channel 4 0.00 0% 1.40 5.68 

Site C Channel 2 0.00 0% 4.35 4.33 
 Channel 3 0.00 0% 0.73 6.32 
 Channel 4 0.35 45% 0.78 4.15 

Site D Channel 2 0.00 0% 2.21 4.63 
 Channel 3 0.03 4% 0.59 6.35 
 Channel 4 0.01 1% 0.69 3.92 

 

The majority of the fitted variogram-model nugget parameters were very close 

to zero. Previous studies indicated that satellite based remotely sensed imagery 

tended to have low nugget values. However, a low nugget value does not provide 

enough information about the model variogram itself. Therefore, the relative nugget 

was computed which gave a better idea of the influence of the nugget effect. The 

relative nugget is the proportion of the nugget to the sill value. The highest relative 

nugget was computed for channel 4, study site C at 45%. Although this seemed pretty 

high, the closest relative nugget value was only 12% for channel 2 at study site A. All 

other relative nugget values were below 10% with almost half being less than 1%. 

 

The largest range parameters were found at the study site A where all of the 

range parameters were above 8 km. For the other study sites, the highest range 

parameter was approximately 6.3 km, fitted to the channel three images for study 
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sites C and D. The lowest computed range parameter was adjusted to channel four of 

study site D. No trends were identified between the computed channel ranges and 

study sites. 

 

The highest sill parameters were adjusted to channel 2 for all of the study 

sites. This was an expected result because channel 2 also consistently exhibited the 

largest variance. The largest difference however between the sills of individual 

channels was observed at sites B through D. The urban site (A) had comparable sill 

values ranging only between 2.6 and 3.3. 

 

5.2 Phase I LVM Option Results 

The necessary SGSIM algorithm parameters were obtained from the 

computed coarse spatial resolution statistics. The first stochastically generated images 

were based on the LVM option. The parameter file for this and for all subsequent 

generated images is available in the appendix. The coarse spatial resolution VGT 

imagery was the conditioning data. The LVM based generated finer spatial resolution 

images are presented in figure 5.6. 
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Figure 5.6 – Phase I generated finer spatial resolution images using sequential 

gaussian simulation and the LVM option for study sites A through D.  

 

The generated finer spatial resolution imagery was quite fascinating because 

one still could distinguish the coarse spatial resolution pixel borders that conditioned 

the simulation and provided the local means for the 1000 x 1000 m pixel areas. The 

generated image colours are quite similar to those that were observed in the original 

A B
C D
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coarse spatial resolution images. The computed statistics for the generated finer 

spatial resolution images are provided below (tables 5.IV and 5.V).  

 

Table 5.IV – Phase I summary statistics based on the LVM option generated finer 

spatial resolution imagery. All statistics except the coefficient of variation are in 

reflectance units (percent). 

  Mean Median max min std dev coef var 
Site A Channel 2 5.89 6.36 10.83 0.00 1.93 33% 
  channel 3 5.66 6.01 10.37 0.00 1.82 32% 
  channel 4 6.08 6.59 9.67 0.00 1.78 29% 
Site B channel 2 7.55 7.66 13.58 0.34 1.88 25% 
  channel 3 7.72 7.77 10.93 2.06 1.09 14% 
  channel 4 8.68 8.78 12.51 1.23 1.51 17% 
Site C channel 2 7.05 7.24 12.08 1.40 2.06 29% 
  channel 3 8.37 8.32 12.65 4.51 1.13 14% 
  channel 4 8.73 8.74 14.76 2.84 1.38 16% 
Site D channel 2 5.06 5.09 10.70 0.00 1.86 37% 
  channel 3 9.11 9.13 13.18 4.95 1.09 12% 
  channel 4 7.96 7.97 12.46 3.19 1.21 15% 
 

Table 5.V – Phase I correlation statistics between channels of the generated finer 

spatial resolution imagery based on the LVM option. 

 channels correlation
Site A 2 vs. 3 0.64 
  2 vs. 4 0.77 
  3 vs. 4 0.78 
Site B 2 vs. 3 -0.03 
  2 vs. 4 0.49 
  3 vs. 4 0.20 
Site C 2 vs. 3 -0.57 
  2 vs. 4 0.51 
  3 vs. 4 -0.27 
Site D 2 vs. 3 -0.23 
  2 vs. 4 0.36 
  3 vs. 4 0.04 
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The above computed statistics based on the generated finer spatial resolution 

images using the LVM option were comparable to the original VGT image statistics. 

The mean and median statistics (table 5.IV) were very similar (but not exact). The 

greatest change in the mean was 0.32 for channel 2, study site B where the mean 

value dropped. The change in the mean was not always negative between the original 

VGT data and the generated images based on the LVM option. The study site A 

experienced a rise in the mean that ranged between 0.11 and 0.25. All the other study 

sites encountered a drop in the mean except for channel 4, study sites C and D which 

were very small (0.03 and 0.08 respectively). 

 

The median values (table 5.V) for the most part acted in the same manner as 

the changes observed with the mean. The greatest change again occurred for channel 

2, study site B with a change of 0.44. The study site A median values all increased 

but not with the same magnitude as the mean values ranging between 0.04 and0.11. 

All the other study sites experienced a decrease in the median except for channel 4, 

study site D. An interesting trend was also observed in the magnitude of change 

between the mean and median values. The study site A median values had a greater 

magnitude of change then the mean values. This was reversed for the other study sites 

where the median exhibited a greater magnitude of change then the mean. 

 

The resulting minimum and maximum values (table 5.IV) also differed from 

the original VGT image data. The maximum values in every case increased and the 

minimum values decreased for all study sites. The range of change for the maximum 
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value was between 3.16 and 0.75. For the minimum values the range of change was 

between 3.36 to 0.4. 

 

Since there was a change in the minimum and maximum values the standard 

deviation statistic also differed. Comparing the differences in the coefficient of 

variation, the changes were overall quite small. The greatest change was 9% for 

channel 2 of study site D. However, all the other coefficients of variations had 

changes smaller than 4 % compared to the original VGT imagery.  

 

Differences in the correlation coefficient between spectral channels of the 

different study site images were also observed. There was no change in sign for the 

correlation coefficients. The greatest change was 0.35 (channel 2 vs. 4, study site D) 

while the smallest change was 0.01 (channel 3 vs. 4, study site C). In all cases the 

correlation between channels weakened compared to the computed correlation based 

on the coarse spatial resolution VGT imagery. Furthermore, all these weakened 

correlation coefficients were statistically different from zero. 

 

The histograms presented in figures 5.7 and 5.8 were computed from the 

generated images using the LVM option. These histograms were visibly smoother 

than their coarse spatial resolution counterparts. This was in part due to the increase 

in the number of data presented. Each VGT image study site was made up of only 

225 pixels, while the generated images were made up of 562500 pixels. The 

smoothing effect caused by the increase in the number of values also seemed to mask 

some details that were previously apparent in the coarse spatial resolution image 
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computed histograms. For example, spikes in the histogram observed in channel 4 of 

study sites C and D were filled in. Another interesting aspect of the generated images 

histograms was the variability in frequencies between the coarse and finer spatial 

resolution images. The study site A histograms all had a peak to the left of the mean 

that was produced by the presence of water in the scene. For channel 2, the frequency 

increased for the mean values while it decreased for the water peak in the finer 

generated image. Whereas, channel 3 and 4 overall frequencies dropped compared to 

the coarse spatial resolution VGT histograms. Such changes in frequency were 

observed for all of the histograms. The cause of this change of frequency seemed to 

be linked to the manner in which histogram ‘holes’ were filled with the stochastic 

simulation algorithm. By filling these holes in the distribution, the histogram became 

smoother in nature and therefore changed the overall distribution of frequencies. 

 



 

 

126

Figure 5.7 – Phase I computed histograms based on the generated finer spatial 

resolution imagery with the LVM option. Study sites A (left side) and B (right side) 

are presented with all image channels (from top to bottom).  
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Figure 5.8 – Phase I computed histograms based on the generated finer spatial 

resolution imagery with the LVM option. Study sites C (left side) and D (right side) 

are presented with all image channels (from top to bottom). 
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5.3 Phase I LVM Option Results with Residual Variogram 

The LVM approach was again tested this time using the variogram of 

residuals as the algorithm input. The variogram of residuals (figures 5.9 and 5.10) 

generally have a similar shape to the experimental variogram of the VGT image data. 

It is primarily the tail ends of the variograms that differ: the residual variograms 

tappered off while the experimental variograms continued to increase (e.g. Site A – 

channel 3). 
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Figure 5.9 – The variograms of residuals based on the study sites A and B VGT 
images. 
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Figure 5.10 – The variograms of residuals based on the study sites C and D VGT 
images. 
 

The resulting model variogram parameters did provide evidence of the 

differences between the experimental variogram and the variogram of residuals 

(Table 5.VI). Generally the nugget of the variogram of residuals was also small 
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compared to the sill. This is evidenced by the small relative nugget values (ranging 

from 0 to 15 percent). Such behaviour was also observed in the model parameters 

computed from the experimental variogram. The sill values were consistently lower 

than those of the VGT model parameters but the sill ranking order matched that of the 

VGT model parameters. The range parameter was quite different for the study site A 

images with all of the ranges of the variogram of residuals being quite a bit lower 

than those of the VGT data itself. The study site B on the other hand variogram of 

residuals range parameters were quite similar while the study sites C and D were only 

slightly lower. 

 
Table 5.VI – Model parameters for the variogram of residuals. 

  Nugget Relative 
nugget 

sill range

Site A Channel 2 0.0005 0% 2.3924 5.94
 Channel 3 0.0084 1% 1.4124 6.20
 Channel 4 0.1247 7% 1.8003 7.03

Site B Channel 2 0.0059 0% 2.8640 5.10
 Channel 3 0.0864 15% 0.5903 5.25
 Channel 4 0.0013 0% 1.2404 5.00

Site C Channel 2 0.0022 0% 3.6388 3.25
 Channel 3 0.0009 0% 0.4974 4.19
 Channel 4 0.0047 0% 1.0778 3.17

Site D Channel 2 0.0006 0% 2.1705 4.41
 Channel 3 0.0122 3% 0.4533 4.19
 Channel 4 0.0009 0% 0.6030 3.41

 

 

With these model parameters a new set of finer spatial resolution images were 

generated using the VGT imagery as the locally varying mean (phase I) (figure 5.11). 

The resulting images were visually similar to those of the initial attempt. The reason 

for this similarity is twofold: a) the form of the variogram of the residuals was quite 

similar to that of the experimental variogram used initially and b) the locally varying 
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mean data was again the coarse spatial resolution VGT imagery. The distinctive 

blocks that are the coarse spatial resolution of the VGT imagery were again apparent. 

 

C
A B

D

 
Figure 5.11 – Phase I generated finer spatial resolution images using sequential 

gaussian simulation and the LVM option with the variogram of residuals for study 

sites A through D.  
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Summary statistics and correlation coefficients of the generated finer spatial 

resolution images are presented in tables 5.VII and 5.VIII. As expected the summary 

statistics were quite similar to those of the original VGT imagery. Some differences 

were observed in the correlation coefficients of the generated imagery and those of 

the original VGT imagery. The study site A image correlation was almost identical to 

that of the VGT imagery. The study site B, channel 2 vs. 3 correlation was not 

negative as was observed in the VGT imagery itself, but was still quite weak while 

the other channel pairs had stronger computed relationships. The study site C channel 

2 vs. 3 relationship remained negative however was slightly weaker. The channel 2 

vs. 4 relationship was unchanged while the sign of the channel 3 vs. 4 relationship 

changed sign. The last study site, D, showed weakened relationships for all pairs of 

channels compared to the VGT data. 

 

Table 5.VII – Phase I summary statistics based on the LVM option generated finer 

spatial resolution imagery. 

  mean median Max min std dev 
Site A Channel 2 5.68 6.03 9.70 0.00 1.91 

 Channel 3 5.55 5.80 10.55 0.00 1.79 
 Channel 4 5.84 6.29 10.03 0.00 1.88 

Site B Channel 2 7.87 8.09 13.08 1.06 2.00 
 Channel 3 7.76 7.81 12.39 2.00 1.31 
 Channel 4 8.71 8.92 12.83 1.42 1.58 

Site C Channel 2 7.10 7.39 13.33 0.00 2.20 
 Channel 3 8.63 8.64 12.80 4.79 1.23 
 Channel 4 8.71 8.70 14.38 3.54 1.37 

Site D Channel 2 5.29 5.36 10.95 0.03 1.76 
 Channel 3 9.31 9.37 12.96 5.40 1.10 
 Channel 4 7.79 7.80 12.04 2.87 1.14 
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Table 5.VIII – Phase I correlation coefficients between channels of the generated 

finer spatial resolution imagery based on the LVM option. 

 channels correlation
Site A 2 vs. 3 0.753

 2 vs. 4 0.904
 3 vs. 4 0.928

Site B 2 vs. 3 0.287
 2 vs. 4 0.836
 3 vs. 4 0.679

Site C 2 vs. 3 -0.254
 2 vs. 4 0.765
 3 vs. 4 0.31

Site D 2 vs. 3 -0.195
 2 vs. 4 0.403
 3 vs. 4 0.117

 
 

The histograms of the generated finer spatial resolution images were also computed 

(appendix). Their distribution was similar to that what was computed in the original 

attempt (section 5.2). The similarity of the results suggests that even though the 

variogram of the residuals differed from that of the experimental variograms, their 

shape was similar enough not to make any significant differences between the 

generated images. 

 

5.4 Phase I Co-Simulation Results 
The finer spatial resolution images could also be generated using a co-

simulation approach. The co-simulation technique requires that each variable (in this 

case a spectral channel) can be simulated one after another as long as it is done 

conditionally to the previous simulated images (Gomez-Hernandez and Journel 1993; 

Almeida and Journel 1994). Therefore, a channel ordering must be applied which was 

based on the available coarse spatial resolution VGT data. The first channel generated 
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was the image with the greatest spectral variability. Variability was an important 

concern because one does not want to limit the other simulations by starting with an 

image with very little variability. Since variability was also a good indicator of the 

amount of information, it was expected that the channel with the highest spectral 

variance would therefore carry the most information. The second criterion was 

correlation. Highly correlated channels were paired for co-simulation. Table 5.IX 

presents the order in which the images were generated. Channel 2 (red band) was the 

initial channel because the computed variability was always the highest. 

 

Table 5.IX – Phase I spectral channel co-simulation ordering based on coarse spatial 

resolution VGT image data.  

 Initial channel Co-simulation Co-simulation 
Site A 2 2 vs. 4 4 vs. 3 
Site B 2 2 vs. 4 4 vs. 3 
Site C 2 2 vs. 3 2 vs. 4 
Site D 2 2 vs. 3 2 vs. 4 
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Figure 5.12 – Phase I generated finer spatial resolution images using the sequential 

gaussian algorithm with the co-simulation option.  

 

Figure 5.12 presents the co-simulated finer spatial resolution imagery. These 

generated images lack the strong conditioning that was observed using the LVM 

option and resulted in very diffuse images. The summary statistics for this set of 

generated images are presented in table 5.X. The generated co-simulation images 

were very similar to the original coarse spatial resolution VGT summary statistics. 

A B
C D
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The mean value varied only slightly compared to the VGT image mean. The largest 

change in the mean value was only ±0.05. The median also did not vary significantly 

with the largest difference compared to the VGT median being only 0.10. These 

variations were much smaller than those found in the generated imagery using the 

LVM option. The maximum and minimum values also varied very little. Both 

measures only varied at the most by ±0.05. Therefore, it was no surprise that the 

variance statistics for the generated co-simulation images also did not change 

significantly. The greatest change in the coefficient of variation that was observed 

was only by 1%.  

 

The correlation statistics also provided some insight into the generated finer 

spatial resolution images (table 5.XI). The observed correlation statistics increased 

compared to those computed directly from the VGT imagery, i.e. a stronger 

correlation coefficient was computed for the relationships between channels in the 

majority of cases. The correlation coefficient weakened only in two cases, channels 2 

vs. 4 and channel 3 vs. 4 of the study site A images. Even more interesting was the 

fact that the sign of the relationship changed for two of the generated finer spatial 

resolution images, channels 2 vs. 3 for study site B and channels 3 vs. 4 for study site 

D. The greatest increase in magnitude was detected for the correlation between 

channels 3 vs. 4 at study site D. 
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Table 5.X – Phase I image statistics based on the co-simulation generated finer spatial 

resolution imagery. All statistics except the coefficient of variation are in reflectance 

units (percent).  

  Mean Median max min std dev coef var 
Site A Channel 2 5.68 6.31 8.05 0.40 1.94 34% 
  Channel 3 5.51 5.95 8.60 0.80 1.79 33% 
  Channel 4 5.83 6.55 8.00 0.45 1.85 32% 
Site B channel 2 7.83 8.10 11.50 1.80 1.73 22% 
  channel 3 7.71 7.85 9.60 3.30 0.85 11% 
  channel 4 8.66 8.95 10.75 2.15 1.26 15% 
Site C channel 2 7.14 7.50 11.00 2.10 1.99 28% 
  channel 3 8.59 8.52 10.75 6.70 0.86 10% 
  channel 4 8.70 8.80 11.60 6.20 1.32 15% 
Site D channel 2 5.27 5.22 9.95 2.55 1.45 28% 
  channel 3 9.11 9.25 10.95 6.90 0.80 9% 
  channel 4 7.88 7.85 9.55 5.15 0.94 12% 
 

Table 5.XI – Phase I computed correlation coefficients based on the co-simulation 

generated finer spatial resolution imagery.  

 channels Correlation
Site A 2 vs. 3 0.87 
  2 vs. 4 0.88 
  3 vs. 4 0.92 
Site B 2 vs. 3 0.26 
  2 vs. 4 0.81 
  3 vs. 4 0.59 
Site C 2 vs. 3 -0.80 
  2 vs. 4 0.88 
  3 vs. 4 -0.72 
Site D 2 vs. 3 -0.47 
  2 vs. 4 0.89 
  3 vs. 4 -0.35 
 

For each study site, the generated spectral channel histograms are presented in 

figures 5.13 and 5.14. Visually comparing the co-simulation generated histograms to 

the original VGT image histograms showed very little difference. The peaks of the 

distribution were very well matched to those of the VGT data. In the tail sections of 
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the co-simulation derived histograms, some subtle differences were observed. Since 

the original VGT image data was only comprised of 225 pixels for every study site, 

the tails of the distributions only had a few values thereby leaving holes in some of 

the histograms. The co-simulated images on the other hand are made up of a many 

more pixels and filled in the holes in the distribution with values that had fairly small 

frequencies. This phenomenon was well illustrated on the study site B histograms left 

tail. 
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Figure 5.13 – Single realisation co-simulation histograms of the spectral channels 

based phase I input parameters for study sites A (left side) and B (right side).  
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Figure 5.14 – Single realisation co-simulation histograms of the spectral channels 

based on phase I input parameters for study sites C (left side) and D (right side).  
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5.5 Results from a Series of Realisations 

Using the co-simulation approach, a set of 50 realisations of each channel was 

generated for each study site. Due to the fact that all 50 generated images could not 

be examined individually because of the sheer volume of data, summary statistics 

were computed across all 50 realisations. Across the 50 realisations the E-type 

estimate, 10th, 50th and 90th percentiles were computed and false colour composite 

images were produced based on these summary statistics (figures 5.15 to 5.18). The 

false colour images were produced with blue = channel 2 statistic, green = channel 3 

statistic and red = channel 4 statistic.  

 

Generally the images based on the statistics computed across all 50 

realisations were visually similar to the co-simulation generated finer spatial 

resolution image (single realisation). The diffuse nature of the imagery persisted even 

when computing 50 realisations. However, the single realisation image did have a 

greater range of colours. This indicated more variability between the channels than 

what was seen on the images generated from 50 realisations. The observed variability 

in the single realisation was not present in the statistically based images because the 

statistical values are more likely to be similar in certain areas across the 50 

realisations. 
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Figure 5.15 – Phase I E-type statistic presented in false colour based on 50 

realisations.  
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Figure 5.16 – Phase I 10th percentile statistic presented in false colour based on 50 

realisations.  
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Figure 5.17 – Phase I median statistic presented in false colour based on 50 

realisations.  
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Figure 5.18 – Phase I 90th percentile statistic presented in false colour based on 50 

realisations.  

 

The statistically based generated images produced dots that are in a grid 

formation. This phenomenon was certainly caused by the conditioning data because 
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of the grid like formation of the dots. The statistically based images produced such a 

pattern because simulated pixels in the vicinity of these points were conditioned by 

the VGT data. Proximity to the conditioning data resulted in a stronger dependence 

that is not apparent in a single realisation (because of the random visit sequence) but 

was apparent over 50 realisations. Therefore over 50 realisations, any particular node 

in the vicinity of a conditioning node would have a distribution of values that was 

much less variable than pixels found further away. As such, the histogram of these 

nodes tended to vary less.  

 

The computed summary statistics across the 50 realisations are presented in 

tables 5.XII through 5.XV with expected results. The E-type estimate computed 

across the 50 realisations showed overall very little change compared to the original 

VGT statistics. The mean of the E-type estimate varied only slightly with a maximum 

change of only 0.05 for channel 2 of study site D. The median varied a little more 

with a maximum of 0.16 for the same image. The maximum and minimum values of 

the distribution derived from the E-type estimate image showed no change except for 

the channel 4 of study site D where the minimum increased by only 0.05. However, 

very slight changes were observed in the coefficient of variation with the greatest 

change being only 4%. 

 

The median image based on the 50 realisations also did not change 

statistically compared to the original VGT image data. The mean and median values 

for this image changed by a maximum of 0.08 and 0.13 respectively. Again, the 



 

 

148

minimum and maximum values did not change except for channel 4 of study site D. 

For the median image the coefficient of variation only changed a maximum of 3%. 

 

The ‘extreme’ distribution statistics differed significantly from those of the E-

type estimate and mean because the results were taken from the lower and upper 

quantiles of the distribution. Looking at the means computed based on the 10th 

percentile image, the values were always lower and the change varied between 0.35 

(channel 3 site D) and 1.26 (channel 2 site A). All the median values were also lower 

than their VGT image counterparts varying between 0.20 (channel 4 site A) and 1.15 

(channel 2 site A). The minimum values of the 10th percentile image distribution did 

not vary much at all, however the maximum values decreased only in the site A 

image. All the other study sites did not have any change in their maximum values 

compared to the original course VGT image data. The variance of the distribution for 

these particular images did increase overall with a maximum observed at channel 2 

study site A of 15%.  

 

The final images of this set of realisations were based on the 90th percentile. 

This set of images exhibited a general increase in the mean and median statistics 

except for channel 3, study site C for the median where it decreased by 0.05. The 

increase in the mean ranged between 0.29 and 1.03 and for the median between 0.27 

and 1.06. The minimum and maximum values did not vary from those of the original 

VGT data except for a small change in channel 4, study site D where the minimum 

increased by 0.05. The coefficients of variation decreased at a maximum of 16% for 

channel 2 study site A. 
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The differences exhibited in the 10th and 90th percentile statistics compared to 

the coarse spatial resolution VGT image statistics were expected. The 10th percentile 

distribution should generally be made up of lower values than the average because 

the statistic comes from the lower end of the distribution. The same reasoning can be 

applied to the 90th percentile where higher than average mean and median values 

were observed because the statistic necessarily was biased towards the higher end of 

the distribution.  

 

Table 5.XII – The E-type summary statistics based on 50 realisations. All statistics 

except the coefficient of variation are in reflectance units (percent).  

E-Type  mean Median Max min std dev coef var 

Site A Channel 2 5.64 6.16 8.05 0.40 1.69 30% 
 Channel 3 5.51 5.99 8.65 0.80 1.64 30% 
 Channel 4 5.84 6.55 8.00 0.45 1.68 29% 

Site B channel 2 7.86 8.02 11.50 1.80 1.57 20% 
 channel 3 7.71 7.80 9.60 3.30 0.79 10% 
 channel 4 8.67 8.91 10.75 2.15 1.18 14% 

Site C channel 2 7.08 7.38 11.00 2.10 1.87 26% 
 channel 3 8.59 8.51 10.75 6.70 0.82 10% 
 channel 4 8.70 8.74 11.60 6.20 1.12 13% 

Site D channel 2 5.27 5.19 9.95 2.55 1.33 25% 
 channel 3 9.13 9.30 10.95 6.90 0.73 8% 
 channel 4 7.86 7.87 9.55 5.15 0.86 11% 
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Table 5.XIII – The 10th percentile summary statistics based on 50 realisations. All 

statistics except the coefficient of variation are in reflectance units (percent).  

1st 
quantile 

 mean median max min std dev coef var 

Site A channel 2 4.42 5.10 4.42 0.40 2.17 49% 
 channel 3 4.70 5.47 4.70 0.80 1.89 40% 
 channel 4 5.15 6.35 5.15 0.45 2.13 41% 

Site B channel 2 7.09 7.05 11.50 1.80 1.65 23% 
 channel 3 7.29 7.36 9.60 3.30 0.90 12% 
 channel 4 8.24 8.51 10.75 2.15 1.41 17% 

Site C channel 2 6.07 6.40 11.00 2.10 2.00 33% 
 channel 3 8.27 8.20 10.75 6.70 0.82 10% 
 Channel 4 7.79 7.75 11.60 6.20 1.09 14% 

Site D Channel 2 4.59 4.41 9.95 2.55 1.24 27% 
 Channel 3 8.73 8.93 10.95 6.90 0.80 9% 
 Channel 4 7.34 7.28 9.55 5.15 0.93 13% 

 

Table 5.XIV – The median summary statistics based on 50 realisations. All statistics 

except the coefficient of variation are in reflectance units (percent).  

5th 
quantile 

 mean median max min std dev coef var 

Site A channel 2 5.76 6.32 8.05 0.40 1.79 31% 
 channel 3 5.55 5.95 8.65 0.80 1.69 31% 
 channel 4 5.90 6.55 8.00 0.45 1.75 30% 

Site B channel 2 7.87 8.10 11.50 1.80 1.60 20% 
 channel 3 7.72 7.85 9.60 3.30 0.80 10% 
 channel 4 8.69 8.92 10.75 2.15 1.17 14% 

Site C channel 2 7.11 7.45 11.00 2.10 1.92 27% 
 channel 3 8.59 8.51 10.75 6.70 0.83 10% 
 channel 4 8.70 8.80 11.60 6.20 1.16 13% 

Site D channel 2 5.26 5.22 9.95 2.55 1.34 26% 
 channel 3 9.13 9.32 10.95 6.90 0.74 8% 
 channel 4 7.87 7.85 9.55 5.15 0.87 11% 
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Table 5.XV – The 90th percentile summary statistics based on 50 realisations. All 

statistics except the coefficient of variation are in reflectance units (percent). 

9th 
quantile 

 Mean median max Min std dev coef var 

Site A channel 2 6.71 7.09 8.05 0.40 1.24 0.18 
 channel 3 6.26 6.62 8.65 0.80 1.41 0.23 
 channel 4 6.43 6.82 8.00 0.45 1.34 0.21 

Site B channel 2 8.61 8.82 11.50 1.80 1.48 0.17 
 channel 3 8.12 8.14 9.60 3.30 0.72 0.09 
 channel 4 9.07 9.25 10.75 2.15 0.98 0.11 

Site C channel 2 8.07 8.46 11.00 2.10 1.72 0.21 
 channel 3 8.91 8.55 10.75 6.70 0.82 0.09 
 channel 4 9.61 9.59 11.60 6.20 1.14 0.12 

Site D channel 2 5.98 5.95 9.95 2.55 1.43 0.24 
 channel 3 9.51 9.61 10.95 6.90 0.67 0.07 
 channel 4 8.36 8.48 9.55 5.15 0.80 0.10 

 

Figures 5.19 through 5.26 present the histograms computed from the 

generated images based on the statistics across all 50 realisations. The histograms 

based on the E-type statistic images all visually approximated the histograms derived 

from the coarse spatial resolution VGT imagery. Their appearance was much 

smoother in nature but was not as smooth as those produced by the images generated 

with the LVM option. The median images also resembled the original VGT image 

histograms however their frequency distribution was much higher thereby producing 

higher peaks than was observed in the E-type statistic images. The most notable 

example of this was in the left tail of the distribution for study site A, channels 2 and 

3. Here the frequency of the low reflectance values was twice as high than those of 

the E-type estimate for channel 2. 
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Figure 5.19 – Histograms computed from the E-type estimate images based on the set 

of 50 realisations for sites A (left side) and B (right side). 
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Figure 5.20 – Histograms computed from the E-type estimate images based on the set 

of 50 realisations for sites C (left side) and D (right side).  
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Figure 5.21 – Histograms computed from the 10th percentile images based on the set 

of 50 realisations for sites A (left side) and B (right side).  
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Figure 5.22 – Histograms computed from the 10th percentile images based on the set 

of 50 realisations for sites C (left side) and D (right side).  
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Figure 5.23 – Histograms computed from the median images based on the set of 50 

realisations for sites A (left side) and B (right side).  
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Figure 5.24 – Histograms computed from the median images based on the set of 50 

realisations for sites C (left side) and D (right side).  
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Figure 5.25 – Histograms computed from the 90th percentile images based on the set 

of 50 realisations for sites A (left side) and B (right side).  
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Figure 5.26 – Histograms computed from the 90th percentile images based on the set 

of 50 realisations for sites C (left side) and D (right side).  
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The 10th and 90th percentile images depicted the distribution of the extreme 

values over the 50 realisations. These distributions did not mimic those of the coarse 

spatial resolution VGT image data or those of the mean and median histograms 

described in the previous paragraph. The 10th percentile histogram clearly showed an 

increase in the lower range of reflectance values. A very good example was channel 2 

of study site A where the lower peak had almost the same frequency as that of the 

median value computed from the VGT image data. In general what was observed is 

that the distribution shifted to the left. This was most obvious for channel 2 of study 

sites C and D. The opposite was observed for the 90th percentile images. The study 

site A images lower bump almost disappeared for all three channels. Due to this shift, 

the channel 2 frequencies close to the mean almost doubled compared to those of the 

original VGT histogram. This shift of frequency distribution toward the right was 

also very pronounced in the images of study sites B through D. 

 

5.6 Discussion of Phase I Results 

Phase I produced results inline with expectations, that is, the summary 

statistics were similar to those of the original VGT imagery. This included the fact 

that the computed overall statistics based on the different types of generated finer 

spatial resolution imagery were similar to those based on the original coarse spatial 

resolution VGT imagery. 
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The generated finer spatial resolution images were visually different than the 

VGT image, specifically the range of colours and the diffuse nature of the imagery. In 

essence, the generated imagery could be considered as new images. They were new in 

the sense that their spatial resolution was very different from that of the VGT image. 

However, they still shared comparable summary statistics and at this point it is 

difficult to determine whether the generated imagery was related to the actual ground 

scene. The fact that the coarse and generated imagery statistics were so similar 

implies that they were not related to the actual ground scene. In theory, study sites A 

through D images at the finer spatial resolution (20m) should at least have higher 

variability than the original VGT images.  

 

With this in mind, one must consider the spatial scale of observation and 

inference. From the computed statistics it was clear that the desired change in spatial 

scale did not occur as desired. A change in spatial resolution did occur which in itself 

was a change of scale, however the scale of inference (based on the generated 

imagery) could never be associated with the real ground scene. It cannot be 

associated with the real ground scene because the simulations were based on coarse 

spatial resolution image statistics. Therefore, the sequential gaussian simulation 

algorithm generated what could be considered as an image whose scale of 

observation is that of a VGT sensor but re-sampled to a finer grid. When changing the 

spatial scale of observation from coarse resolution to fine, the expectation was that 

the overall variance, at least, would increase. In reality, the differences in the 

summary statistics between the 20 m HRVIR and 1000 m VGT images was quite 
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large. Changes in variance can be considered the most important factor when 

changing spatial scales.  

 

The generated finer spatial resolution imagery however was still quite 

interesting. The generated images based on the LVM option produced an image 

whose conditioning coarse spatial resolution VGT image footprint could still be 

discerned. Even more interesting was the fact that no relationship between bands was 

utilised to produce the generated finer spatial resolution imagery. Each spectral 

channel was simulated individually based only on the conditioning VGT data and yet 

a correlation coefficient was computed between the generated channels that was 

similar to those found based on the VGT image data. It seemed that the conditioning 

VGT image data had a strong enough influence to impose an inter-channel correlation 

that was similar to that found at the coarse spatial resolution. 

 

The same spectral objects as identified in the HRVIR imagery could not be 

created. For example, roads, parks, rivers, buildings and so on can be readily 

recognised on the HRVIR imagery but in general the generated images reproduced at 

a finer spatial resolution the original VGT spectral objects. This behaviour is due to 

the aggregation effect of the coarse spatial resolution VGT sensor. Spatial location 

information is not available from the VGT image data for spatial resolutions finer 

than 1 km and is impossible to deduce this information directly from the coarse 

spatial resolution data. Such information could only be available from secondary 

sources. However, even though the location of objects cannot be distinguished, one 
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should be able to cluster similar spectral signatures and thus extract spectral objects 

and derive land-cover information. 

 

The relationship between spectral channels is an important characteristic for 

the detection of object spectral signatures. If one was able to predict the spectral 

relationship between bands then there would be a greater chance that the generated 

finer spatial resolution imagery would be successful in extracting products that are 

more in tune with real ground scene characteristics. However, the spectral 

relationship could also change depending on the spatial resolution. The LVM option 

did not require the correlation to be known between channels because each band was 

simulated separately. The co-simulation option, however, required additional 

information on the correlation between channels to guide the realisations. The input 

correlation parameters were derived directly from the VGT imagery and for this 

reason the resulting simulations also had similar correlation between channels. The 

question still remains as to whether one should expect that finer spatial resolution 

imagery have the same spectral relationship that is found at the coarse spatial 

resolution. In my opinion, the relationship between bands will change depending on 

the spatial resolution because as the spatial resolution becomes finer, the variability 

of the data also increases producing new inter-band relationships. As a result, the 

actual expected relationship between spectral channels would be difficult to predict, 

i.e. the direction or magnitude of the change in correlation is not very clear. The 

coarse spatial resolution channel correlation however, should be used as an indicator 

of the possible spectral relationship at a finer spatial resolution. 
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The co-simulation algorithm required the relationship between simulated 

spectral channels to be known. This relationship is present because spectral data is 

not a random process but rather it is a process related to the object or phenomenon 

being recorded by the sensor. In theory, generating spectral channels separately 

should produce spectral entities that could be considered random and with no ‘real 

world’ equivalent. However, as was seen in the LVM case, the strong conditioning 

influence of the VGT data maintained a similar correlation between the generated 

spectral image channels even though the channels were simulated separately. 

 

The correlation statistic used in the SGSIM algorithm assumed a linear 

relationship between spectral channels but the spectral relationship was not 

necessarily linear. Therefore, even poor linear relationships between spectral channels 

might influence the simulation process by also not allowing the channels to have a 

linear relationship. The relationship between spectral channels is very important for 

image segmentation. Segmentation is dependent on the relationship between the 

spectral channels because it takes place in spectral feature space. 

 

The last generated images were based on a set of 50 realisations. Each 

resulting image was based on either the E-type, median, 10th or 90th percentile 

statistic computed across all generated images. This exercise provided insight into the 

differences between realisations and the 10th and 90th percentile images revealed the 

extreme possibilities that the sequential gaussian simulation algorithm could produce 

as well as provide a type of image confidence range. The results showed that over 50 

realisations, no major deviations occurred. 
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Chapter 6 – Generated Finer Spatial Resolution Images Based 

on Derived Finer Spatial Resolution Input Parameters 

The goal of phase II was to generate finer spatial resolution imagery whose 

statistics matched those that could be expected to be observed at a spatial resolution 

of 20 m. This particular phase required that the input parameters be more in tune with 

the intended 20 m finer spatial resolution. The parameters deemed most important 

during a change of spatial resolution were the variogram and histogram parameters. 

The variogram provided information about the spatial variability while the histogram 

provided information on the change in the distribution of values. The expected 

outcome was that the generated finer spatial resolution images would be more 

variable than those of the VGT images. The amount of change in variability depended 

on the underlying ground scene. 

 

6.1 Available Fine Spatial Resolution Data 

If only coarse spatial resolution image data was available, then the phase II 

input parameters would have to be derived from the available data with no way to 

verify the validity. However, HRVIR images were available and the actual fine 

spatial resolution derived data could be verified for the four study sites. These 

HRVIR images were considered as point samples compared to the very coarse VGT 

data. Table 6.I presents the computed statistics based on the HRVIR imagery.  
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Table 6.I – Computed HRVIR summary statistics for study sites A through D (n = 

5625000). Except for the coefficient of variation, all statistics are in reflectance units 

(percent). 

    Mean Median max min std dev Coef var 
Site A Channel 2 9.49 9.85 37.33 2.35 2.95 31% 

  Channel 3 17.85 17.55 79.62 0.31 7.46 42% 
  Channel 4 15.41 16.05 63.69 0.25 5.13 33% 

Site B Channel 2 10.97 10.73 37.33 2.50 4.06 37% 
  Channel 3 23.51 22.57 79.62 0.31 6.83 29% 
  channel 4 21.03 21.06 63.69 1.25 4.75 23% 

Site C channel 2 10.45 9.85 37.03 3.23 4.43 42% 
  channel 3 25.72 24.77 55.80 0.31 6.68 26% 
  channel 4 21.31 20.81 52.65 1.76 5.04 24% 

Site D channel 2 8.64 7.35 37.33 2.50 3.82 44% 
  channel 3 27.61 27.27 79.62 0.31 6.37 23% 
  channel 4 19.91 19.06 63.69 0.25 4.64 23% 

 

As expected, the HRVIR image summary statistics differed from those of the 

coarse spatial resolution image. All the mean and median values were found to be 

greater than that of the VGT data. For the mean the differences ranged from 3.10 to 

18.45 while the differences in the median ranged from 2.0 to 18.02. Another obvious 

difference between the VGT and HRVIR statistics was the maximum value. The 

maximum values for all channels increased substantially ranging from 25.83 to 70.97 

for channel 3 of study site A. The minimum values did not have such a substantial 

change compared to the maximum values. Three channels had higher minimum 

values (channel 2, site A; channel 2, site B; channel 2, site C) while the others were 

all lower. 

 

The coefficient of variation of the HRVIR image data was greater than that of 

the VGT image data. The difference in the variability of the distribution was not that 
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significant in all cases. Channel 4, study site A exhibited the smallest difference in 

the coefficient of variation of only 2% while the largest difference was exhibited by 

channel 3, study site B with a total of 18% compared to the same VGT channel. 

 

Table 6.II – Computed correlation coefficients based on the HRVIR image data. 
  Channels Correlation 
Site A 2 vs. 3 0.17 
  2 vs. 4 0.65 
  3 vs. 4 0.79 
Site B 2 vs. 3 -0.32 
  2 vs. 4 0.73 
  3 vs. 4 0.29 
Site C 2 vs. 3 -0.52 
  2 vs. 4 0.80 
  3 vs. 4 -0.04 
Site D 2 vs. 3 -0.49 
  2 vs. 4 0.77 
  3 vs. 4 -0.03 
 

 

Examining table 6.II that presents the computed correlation coefficient of the 

HRVIR imagery showed many weak linear relationships between spectral channels. 

Out of all the channel combinations, only four had a strong correlation (i.e. are 

significantly above 0.5) and no pattern to this strong correlation seemed to be present. 

There were also some negative relationships computed. The strongest correlation was 

found at study site C between channels 2 and 4 (0.80) while the weakest relationships 

were found between channels 3 vs. 4 at study sites C (-0.04) and D (-0.03). When 

only looking at study sites B through D, the strongest correlation was always between 

channels 2 and 4. All the correlation coefficient values were statistically significant. 
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The correlation between spectral channels was very different from that 

observed in the VGT images. For study site A, the correlation statistic decreased 

quite dramatically between channels 2 and 3. There was also a decrease in the 

correlation between the other channels for the study site A, however the relationship 

remained fairly strong. For study site B, the correlation strengthened for channels 2 

and 3, which was weaker between the same VGT image channels. The correlation 

weakened slightly between the other channel pairs of study site B. For study site C, 

the correlation increased between channels 2 and 4, and channels 3 and 4 for study 

site D. All other channel correlation showed a decrease for study sites C and D. 

 

The sign of the relationships between channels of the HRVIR images was for 

the most part similar to that of the VGT image data. The exception being study site D 

channels 3 and 4 where the sign changed from positive (VGT) to negative (HRVIR). 

However, in both cases the relationship was very weak. Overall, the largest 

correlation variation observed was 0.58 and the smallest was 0.04. 

 

The differences in the correlation between channels of the HRVIR and VGT 

images were difficult to derive because no model was available a priori for such 

relationships. Therefore, the computed correlation coefficients based on the fine 

spatial resolution HRVIR image data itself were used as input parameters to the phase 

II simulations.  

 

Figures 6.1 and 6.2 present the computed histograms based on the HRVIR 

images. The sheer number of data points (n = 562500) produced a smoother looking 
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histogram than that based on the VGT imagery. The graphs were also drawn with a 

different range because of the higher variability of the HRVIR data distribution. The 

histograms themselves produced a different frequency distribution than that of the 

VGT histograms. For instance, the channel 2 (red band) histogram frequencies based 

on the HRVIR data were all higher than those of their VGT counterparts were. For 

channel 3 (NIR band) the frequencies were lower and for channel 4 (SWIR band) the 

frequencies were approximately equal. This indicated that the spatial scale of change 

was not uniform across the EM spectrum. This has profound implications on scale 

change because it means that a single model cannot be used for all of the spectral 

bands in question. Such differences in the distribution could also explain the changes 

that were observed in the correlation coefficients. 

 

The shapes of the histograms were also quite different from those based on the 

VGT imagery. The channel 2 histograms of study sites C and D were especially 

different because the highest frequencies were found to the left of the distribution 

instead of the right as was seen in the VGT histograms.  
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Figure 6.1 – Computed histograms based on the HRVIR images of study sites A (left 

side) and B (right side).  
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Figure 6.2 – Computed histograms based on the HRVIR images of study sites C (left 

side) and D (right side).  
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The experimental variograms were computed on the fine spatial resolution 

HRVIR imagery (legend: figure 6.3, figures 6.4 and 6.5). Although each study site 

was quite small, the large number of data points (n = 562500) associated with each 

HRVIR image produced long computing times. For this reason it was decided that the 

experimental variogram be computed only in two directions (north-south and east-

west) and thus the omni-directional variogram was not computed. The lag was based 

on the pixel where a pixel was equal to 20 m. 

 

 

Figure 6.3 – Legend for the experimental variograms based on the HRVIR imagery 

(figures 6.4 and 6.5). 
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Figure 6.4 – Experimental and model (visual fit) variograms based on the HRVIR 

fine spatial resolution imagery for study sites A (left side) and B (right side). Distance 

is shown in pixels where 1 pixel is equal to 20 m (Note the abscissa axis is not 

constant).  
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Figure 6.5 – Experimental and model (visual fit) variograms based on the HRVIR 

fine spatial resolution imagery for study sites C (left side) and D (right side). Distance 

is shown in pixels where 1 pixel is equal to 20 m (Note the abscissa axis is not 

constant). 
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The HRVIR experimental variograms were unlike their VGT counterparts. 

The most striking difference was the fine scale variability that was captured by the 

experimental variogram. Such fine scale variability was not apparent in the coarse 

spatial resolution VGT imagery because of the large lag. A secondary scale of spatial 

variability was also observed over longer distances. The fine scale variability 

occurred within a distance of 20 pixels (400 m). Such fine scale variability cannot be 

attained using the VGT imagery because the smallest distance (spatial resolution) is 

1000 m. 

 

Note that the directional component of the experimental variograms was not 

as pronounced based on the HRVIR imagery as those based on the VGT imagery. 

Only channels 2 and 4 of study sites B and C hinted at an anisotropic behaviour. 

 

Due to the different scales of spatial variability observed in the experimental 

variograms computed from the HRVIR imagery, an automatic fitting procedure was 

not used to fit a model. Instead a variogram model was fit visually to the 

experimental variogram data. The resulting model parameters are presented in table 

6.III. The basic models used for both fine and coarse scale spatial variability was the 

spherical model. The maximum lag computed in each direction was only 6800 m but 

that was sufficient distance to reach a sill in all cases. 

 

The smallest lags of the experimental variogram (figures 6.3 and 6.4) all 

began at the origin. Therefore, the nugget values were all set to zero, i.e. no nugget 

effect. The fine scale variability was captured with the first model where the sill 
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values ranged between 4 and 25. The channel 3 sill value was always 25 across all the 

study sites while the study site A, channel 2 had the lowest sill value associated with 

the fine scale model. The range parameters associated with the fine scale variability 

were also very small. They ranged between 10 pixels (200 m) and 20 pixels (400 m). 

Here the channel 3 range parameters were also all equal to 12 pixels across all four 

study sites. The channel 2 range parameters were equal to 17 for the study sites B 

through D. While the study site A had the lowest overall range parameters for the first 

model. 

 

Table 6.III –Model variogram parameters adjusted to the experimental variogram of 

the HRVIR image. The range values are shown in pixels where a pixel is equal to 20 

m. The spherical model was used throughout. The model 1 parameters describe the 

fine scale variability while the model 2 parameters describe the coarse scale 

variability. 

   Model 1  Model 2  
  nugget Sill Range Sill Range 
Site A channel 2 0.0 4.0 10.0 4.5 275.0 
 channel 3 0.0 25.0 12.0 22.0 150.0 
 channel 4 0.0 10.0 12.0 15.0 350.0 
Site B channel 2 0.0 10.0 17.0 6.0 275.0 
 channel 3 0.0 25.0 12.0 19.0 150.0 
 channel 4 0.0 12.0 20.0 12.0 350.0 
Site C channel 2 0.0 10.0 17.0 9.0 275.0 
 channel 3 0.0 25.0 12.0 17.0 150.0 
 channel 4 0.0 12.0 15.0 15.0 275.0 
Site D channel 2 0.0 8.0 17.0 7.0 200.0 
 channel 3 0.0 25.0 12.0 15.0 100.0 
 channel 4 0.0 14.0 15.0 7.0 175.0 
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The second model was based on the coarse scale spatial variability. The sill 

parameters ranged between 8.5 and 47. The channel 3 sill values were the highest 

across all the study sites while the channel 2 sill values were consistently the lowest. 

The range parameters for the second model were all much higher than those of the 

first model with values ranging between 100 pixels (2000 m) and 350 pixels (7000 

m). Looking back at the range model parameters computed from the VGT data, the 

range values spanned between approximately 4000 m and 11 km. 

 

6.2 Phase II Input Parameters 

When only coarse spatial resolution data is available, one must be able to 

derive global statistics that are associated with the fine spatial resolution imagery that 

is to be generated. The stochastic imaging phase II parameters were an initial attempt 

at deriving finer spatial resolution spatial variability and distribution statistics based 

on the available VGT imagery. This proved to be more difficult than expected.  

 

One of the key goals of phase II was to derive the model variogram 

parameters at the finer spatial resolution, i.e. the point variogram. In theory, it is 

possible to derive the point variogram from the regularised variogram and vice versa 

(Clark 1977, Collins and Woodcock 1999). The resulting models were compared to 

the computed HRVIR and VGT variograms where the HRVIR image was considered 

as the ‘point’ variogram and the VGT was considered as regularised. The variogram, 

which was calculated on one type of support, will not be the same as that calculated 

on another, i.e. the HRVIR and VGT variograms should be different. The process of 
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averaging the EM signal across the spatial resolution will influence the shape and 

behaviour in such a manner that an indirect method must be used to derive the 

theoretical model for the point variogram necessary for further analysis and 

estimation (Clark 1977). It is only by finding the punctual variogram or some 

reasonable approximation to it, that we can see the effect of changing the spatial 

resolution in the range of interest and it must be done by trial and error (Atkinson and 

Curran 1995). 

 

A first attempt was made using Clark’s (1977) method to derive the point 

variogram model parameters based on the VGT variogram models. This method 

consistently produced model parameters that were much lower than those directly 

computed from the HRVIR experimental variograms. For this reason these results 

were not considered satisfactory. Another attempt was made using the Collins and 

Woodcock (1999) algorithm. However, applying the Collins and Woodcock (1999) 

algorithm also produced erroneous results. The resulting regularized variograms were 

all much flatter (i.e. the sill values were again very much lower) than those computed 

directly from the VGT imagery. It was therefore decided that the variogram model 

parameters computed directly from the HRVIR imagery be used to generate the phase 

II finer spatial resolution images. 

 

The sequential gaussian simulation algorithm also required parameters that 

describe the distribution of the derived phase II finer spatial resolution data. This 

primarily entails estimating the minimum and maximum of the distribution. Although 

the actual minimum and maximum values were known based on the original HRVIR 
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imagery, this information was not used directly in phase II because the distributions 

did not have the same mean. Instead a simple procedure was devised in order to 

estimate the minimum and maximum values based on the available HRVIR and VGT 

data.  

 

The standard deviation (SD) in this case was known for all channels of the 

coarse spatial resolution data set and was a measure of the spread of the distribution. 

Theoretically, the point variogram model parameters can be estimated based on the 

available coarse spatial resolution data. Once the point model variogram parameters 

are known, the sill parameter can be used as an estimate of the total variance over the 

given extent and from this the SD can easily be computed. With the SD known for 

the point imagery to be generated a new minimum and maximum value can be 

derived by considering the mean to be invariant across spatial resolutions (Isaaks and 

Srivastava 1989). Examining the available phase II data showed that each channel 

variance for the HRVIR imagery was close to the sill value of the modeled HRVIR 

variograms. On the other hand, comparing the HRVIR and VGT imagery revealed 

differences in the mean values. Therefore, a methodology was devised to try and 

normalize for the differences in mean between the fine and coarse spatial resolution 

images. 

 

 

The wanted parameter was the SD of the VGT data at a spatial resolution of 

20 m. A simple relationship between the VGT and HRVIR SD at both 20 m and 1000 

m spatial resolutions was devised to find this wanted parameter. 
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SD VGT 1km           SD VGT 20m 
-----------------    =    ----------------- 
SD HRVIR 1km       SD HRVIR 20m 

 

From the available data the SD was known for the VGT data at 1 km and 

HRVIR data at 20 m. However, at least a third value must be known to solve the 

relationship. This third value was derived from the HRVIR images by coarsening 

(using an averaging procedure) the spatial resolution to 1 km and computing the SD 

on the coarse spatial resolution HRVIR data. 

 

Having the SD for the VGT data at a theoretical 20 m spatial resolution 

allowed for the derivation of new minimum and maximum values. The minimum and 

maximum values were computed by multiplying the above result (i.e. SD VGT at 

20m) by two standard deviations, which is equal to 1.96. The resulting value provided 

a basis for a ‘normal’ distribution range. This value was then added to the mean of 

the original VGT data to compute the maximum value and subtracted from the mean 

to compute the minimum. Since negative values were not possible for reflectance, all 

negative values were set to zero. None of the maximum values ever reached the 

100% (reflectance). The resulting values can be found in the phase II parameter files 

(appendix). 
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6.3 Phase II LVM and Co-Simulation Results  

Phase II was based on fine spatial resolution input parameters to the 

sequential gaussian simulation algorithm. The first images were generated using the 

LVM option and conditioned to the VGT imagery (figure 6.6). 

 

Figure 6.6 – Phase II generated finer spatial resolution imagery using the LVM 

option.  

 

A
DC
B
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The generated imagery using the LVM option and phase II parameters 

possessed a very distinct association with the conditioning coarse spatial resolution 

VGT imagery. The apparent blocks were the limits that delineated the coarse spatial 

resolution VGT pixel. However, the grain of this imagery was finer and less diffuse 

than the phase I generated imagery using the LVM option. The summary statistics 

associated with these images are presented below (table 6.IV).  

 

Table 6.IV – Summary statistics for the phase II generated images using the LVM 

option.  

  Mean Median max Min std dev coef var 
Site A channel 2 5.88 6.29 11.60 0.00 1.98 34% 

  channel 3 5.62 5.95 11.02 0.00 1.90 34% 
  channel 4 6.03 6.48 10.63 0.00 1.86 31% 

Site B channel 2 7.77 7.85 15.66 0.01 1.94 25% 
  channel 3 7.73 7.77 13.05 0.99 1.27 16% 
  channel 4 8.70 8.86 13.09 0.36 1.50 17% 

Site C channel 2 7.11 7.32 12.95 0.05 2.13 30% 
  channel 3 8.59 8.59 13.72 3.10 1.31 15% 
  channel 4 8.73 8.74 14.24 3.42 1.37 16% 

Site D channel 2 5.23 5.19 12.27 0.00 1.85 35% 
  channel 3 9.06 9.10 14.16 3.62 1.24 14% 
  channel 4 7.96 7.98 13.10 2.26 1.33 17% 

 

The summary statistics computed from the phase II generated images using 

the LVM option were quite similar to those of the VGT imagery. The mean and 

median values varied only slightly from those of the VGT imagery. The mean 

changed by a maximum of 0.20 for channel 4, study site A. The median values also 

barely changed with a maximum difference of 0.25 for channel 2, study site B. 

Differences in the minimum and maximum statistics were much more evident. All of 

the maximum values increased and all the minimum values decreased compared to 
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the VGT statistics. The change in the maximum values ranged between 1.95 (channel 

2, study site C) and 4.16 (channel 2, study site B). From the above table many 

minimum values were set to zero with the greatest change of 3.60 for channel 3, 

study site C. This change in minimum and maximum values however was expected 

because the phase II algorithm parameters were set to these new values. The 

coefficient of variation changed very little. The highest computed change was only 

7%.  

 

The generated imagery statistics were also compared to the HRVIR image 

statistics. This comparison should be taken with a grain of salt because of the 

different radiometric scales of the two images. The changes in the mean and median 

values had quite a large range. However, in all cases the mean and median of the 

HRVIR imagery was greater than that of the generated phase II imagery using the 

LVM option. The mean ranged between 3.20 and 18.55 while the median ranged 

between 2.16 and 18.17. The greatest differences for the mean and median in both 

cases was for channel 3, study site D. The maximum values showed the greatest 

differences and in all cases the HRVIR had the highest values. These values differed 

from 21.67 to 68.60. The differences in the minimum values were not as significant 

and actually showed decreases i.e. the phase II minimum was higher than the HRVIR 

minimum. The correlation coefficients also differed. The coefficient of variation for 

channel 2, study site A, was higher for the phase II imagery by 3%. In all other 

occurrences the coefficient of variation was lower and the differences ranged between 

2% and 13%. 
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The correlation coefficients were computed between channels of the phase II 

images (table 6.V) and all were statistically significant to α=5. Study site A showed 

strong correlation between all bands however, the other study sites showed poor 

correlation. For study sites B through D, the correlation between channels 2 and 4 

was consistently higher. All correlation between channels 2 and 3 for study sites B 

through D had a negative relationship as well as channels 3 and 4 of study site C.  

 

The phase II image correlation was weaker when compared to the VGT data. 

This was likely due to the greater local variability found in the generated images 

using the LVM option. On the other hand, the correlation coefficient compared to the 

HRVIR imagery was variable and ranged in magnitude between 0.05 and 0.40. 

 

Table 6.V – Computed correlation coefficients for the phase II generated images 

using the LVM option. 

 Channels Correlation
Site A 2 vs. 3 0.56 
  2 vs. 4 0.70 
  3 vs. 4 0.70 
Site B 2 vs. 3 -0.06 
  2 vs. 4 0.49 
  3 vs. 4 0.22 
Site C 2 vs. 3 -0.47 
  2 vs. 4 0.47 
  3 vs. 4 -0.15 
Site D 2 vs. 3 -0.19 
  2 vs. 4 0.37 
  3 vs. 4 0.10 
 

The phase I and phase II generated images based on the LVM option 

exhibited very similar tendencies. The differences (±) in the mean and median were at 
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most 0.22 for the mean and 0.27 for the median. The minimum and maximum values 

were of course lower and higher respectively because of the derived parameters used 

in the phase II generated imagery. A slight increase in the coefficient of variation was 

observed from phase I to phase II generated images with a change between 1% and 

2% except for the channel 4 for study sites B and C where no change was observed 

and channel 2, study site D where a decrease of 2% was observed. 

 

Histograms were computed from the phase II LVM option generated images 

(appendix). Visually they were smooth and the distribution, especially for the 

histograms of study sites B through D, was quite normal. The study site A histograms 

showed an extended tail to the left of the graph. These histograms resemble the phase 

I histograms computed from the images using the LVM option. However, it should be 

noted that there were many negative numbers generated through the simulation 

process that were set to zero (because a negative reflectance does not exist) and 

therefore the number of data in the histograms varied from channel to channel.  

 

The co-simulation option of the sequential gaussian simulation algorithm was 

also used with phase II parameters. As in phase I, the simulation ordering was 

necessary and based on the HRVIR image correlation. The phase II co-simulation did 

not have the same ordering as the phase I co-simulation because the greatest 

variability was found in the channel 3 (NIR band) and therefore was the first channel 

to be simulated in every case. The ordering of the co-simulations was therefore also 

modified (table 6.VI).  
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The phase II single realisation co-simulations are presented in figure 6.7. The 

images did not appear as diffuse as their phase I counterparts giving the appearance 

of much more local variability. These images were however different from those 

generated using the LVM option. Making use of the phase II parameters however did 

not improve the ability to localise familiar objects that would be normally detected at 

a 20 m spatial resolution. Summary statistics for these phase II single realisation co-

simulated images are presented in table 6.VII. 

 

Table 6.VI – Phase II co-simulation ordering based on HRVIR image correlation. 

 Initial channel Co-simulation Co-simulation 
Site A 3 3 vs. 4 4 vs. 2 
Site B 3 3 vs. 2 2 vs. 4 
Site C 3 3 vs. 2 2 vs. 4 
Site D 3 3 vs. 2 2 vs. 4 
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Figure 6.7 – Phase II single realisation co-simulated imagery of study sites A through 

D.  

 

The mean and median statistics computed from the phase II single realisation 

co-simulated images were very similar to those of the original VGT images. The 

mean was generally higher for the original VGT imagery by a maximum of 0.19 

except for channel 2 and 4 of study site D whose means were 0.01 less than the phase 

A
DC
B
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II co-simulated imagery. The median was also almost invariable (with a maximum 

change of 0.15). 

 

The minimum and maximum values however differed quite significantly from 

the original VGT values as expected. The minimum values were consistently lower 

and the maximum values were consistently higher than those from the VGT image 

because the parameters were set in this manner. The maximum values increased 

between 2.85 and 11.85 while the minimum values decreased a little less, between 

0.4 and 6.90. All the correlation coefficients increased in the phase II generated 

images by 1% to 11%. 

 

Strong differences were found between the phase II and HRVIR summary 

statistics. The phase II co-simulated imagery showed mean and median values that 

were very different from those based on the HRVIR data. The mean was consistently 

lower by 3.19 to 18.56 and the median was lower by 2.05 to 18.02 than the HRVIR 

statistics. Even with the adjusted phase II maximum values, the HRVIR images had 

much higher maximum values than those of the phase II single realisation images did. 

The change in the maximum values varied between 21.27 for channel 2, study site C 

and 59.12 for channel 3, study site A. The minimum values for the phase II single 

realisation images, on the other hand, were all lower than their HRVIR counterparts 

ranging from 0.25 to 3.23. The coefficients of variation for study sites B through D of 

the phase II single realisation images were all lower than that of the HRVIR imagery. 

The study site A images however showed an increase in the coefficient of variation 
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for channels 2 and 4 of 11% and 3% respectively while channel 3 showed no change 

compared to the HRVIR statistics. 

 

Changes were also observed between the phase I and phase II single 

realisation co-simulated images. For the mean and median statistics, differences were 

very slight and ranged between 0.01 and 0.15 for the mean and to a maximum of 0.09 

for the median. Much greater differences were found between the maximum values 

for which the phase II images were all higher. The minimum values of the phase II 

images were all lower than those generated using the phase I parameters. As a 

consequence, the coefficients of variation also differed between the two generated 

images having either no change (channel 4 study sites B and C) or an increase in the 

coefficient of variation in the phase II based imagery to a maximum of 9%. 

 

Table 6.VII – Phase II single realisation co-simulated imagery summary statistics. 
   Mean median max min std dev coef var 
Site A Channel 2 5.53 6.40 11.50 0.00 2.32 42% 
  Channel 3 5.36 5.95 20.50 0.00 2.27 42% 
  Channel 4 5.71 6.55 15.94 0.00 2.05 36% 
Site B Channel 2 7.78 8.07 15.30 0.40 1.93 25% 
  Channel 3 7.68 7.80 21.13 0.00 1.32 17% 
  Channel 4 8.68 8.91 17.99 0.01 1.28 15% 
Site C Channel 2 7.09 7.50 15.76 0.00 2.42 34% 
  Channel 3 8.60 8.55 21.71 0.00 1.50 17% 
  Channel 4 8.69 8.80 18.56 0.01 1.28 15% 
Site D Channel 2 5.33 5.30 12.80 0.00 1.70 32% 
  Channel 3 9.05 9.25 21.64 0.00 1.57 17% 
  Channel 4 7.89 7.87 16.98 0.00 1.18 15% 
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Table 6.VIII – Phase II single realisation co-simulated images computed correlation 

coefficients.  

 channels correlation 
Site A 2 vs. 3 0.73 
  2 vs. 4 0.80 
  3 vs. 4 0.81 
Site B 2 vs. 3 -0.42 
  2 vs. 4 0.76 
  3 vs. 4 -0.35 
Site C 2 vs. 3 -0.63 
  2 vs. 4 0.86 
  3 vs. 4 -0.60 
Site D 2 vs. 3 -0.57 
  2 vs. 4 0.81 
  3 vs. 4 -0.55 
 

 

The computed correlation coefficients based on the phase II single realisation 

co-simulated images were fairly strong across the board (table 6.VIII). The weakest 

correlation were found between channels 2 and 3, and 3 and 4 of study site B while 

the highest were found at the study site A. All computed correlation were again 

statistically significant at α=0.05. Comparing these results with those of the coarse 

spatial resolution VGT data, it is observed however that the correlation differences do 

not have any particular pattern. For example, the study site A correlation were all 

lower than their VGT counterparts while study site D consistently had higher 

correlation compared to their VGT counterparts. Some changes in sign were also 

observed compared to the VGT images. In both cases, the channel 3 and 4 correlation 

reversed sign for the study sites B and D. 
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The phase II single realisation co-simulated correlation parameters used to 

generate the images were based on the HRVIR image correlation but were 

consistently higher than those of the HRVIR images were. Differences in the 

correlation coefficients ranged between 0.02 and 0.64. A sign change also occurred 

between channels 3 and 4 at study site B. 

 

Comparing correlation coefficients between phase I and phase II single 

realisation co-simulated images, the study sites A and C phase II correlation were all 

lower than the phase I generated relationships. For the study site B, the sign changed 

for both channel 2 and 3, and 3 and 4 correlation. Furthermore, the magnitude of the 

relationships increased between channels 2 and 3 while it decreased for the others. 

Looking at study site D, the relationship between channels 2 and 4 decreased and 

increased for the other relationships compared to the phase I statistics. 

 

The histograms were computed for the phase II single realisation co-simulated 

images (appendix). Their distribution appeared irregular compared to the phase II 

LVM option images, which were very smooth. The study site A histograms visually 

appeared to be similar in shape to the VGT histograms. However, the channel 2 and 3 

histograms had higher frequencies in both cases compared to those of the VGT 

histograms. Overall, this effect was seen across all study sites when comparing to the 

VGT histograms. An interesting feature to note was the very low frequency tails of 

the distributions in study sites B through D. The channel 2 histograms had this tail on 

both sides of the distribution and was the result of the back transformation. The phase 
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II histograms did not resemble the HRVIR histograms, but on the other hand were 

very similar to the phase I single realisation co-simulation histograms.  

 

The co-simulation option was also used to generate 50 realisations based on 

the phase II input parameters. A single image was generated from these 50 

realisations by computing the E-type estimate, median, 10th and 90th percentile 

(appendix). These images appeared more diffuse than that of a single realisation. The 

dot phenomenon that was observed in the same images based on the phase I 

parameters also appeared in these images. Summary statistics were computed on the 

resulting images (tables 6.IX to 6.XII). 

 

Table 6.IX – The E-type summary statistics based on 50 realisations.  
E-type   mean median Max min std dev coef var 
Site A channel 2 5.54 6.24 8.60 0.29 1.81 33% 
  channel 3 5.38 5.66 11.83 0.68 1.54 29% 
  channel 4 5.71 6.27 9.47 0.45 1.51 26% 
Site B channel 2 7.83 7.79 12.30 1.80 1.16 15% 
  channel 3 7.70 7.74 12.46 3.17 0.82 11% 
  channel 4 8.69 8.73 11.53 2.15 0.80 9% 
Site C channel 2 7.04 7.34 11.89 1.89 1.83 26% 
  channel 3 8.61 8.59 13.99 4.75 0.88 10% 
  channel 4 8.69 8.83 11.80 4.77 0.99 11% 
Site D channel 2 5.33 5.14 10.08 2.25 1.19 22% 
  channel 3 9.11 9.22 13.64 5.16 0.84 9% 
  channel 4 7.88 7.84 11.96 4.94 0.76 10% 
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Table 6.X – The 10th percentile summary statistics based on 50 realisations. 
1st 
quantile 

  mean median max min std dev coef var 

Site A channel 2 3.85 4.80 8.05 0.00 2.29 59% 
  channel 3 3.35 3.39 8.65 0.01 2.04 61% 
  channel 4 4.18 5.22 8.00 0.05 2.37 57% 
Site B channel 2 5.89 5.77 11.50 0.65 1.29 22% 
  channel 3 6.58 6.70 9.60 0.11 1.11 17% 
  channel 4 7.55 7.73 10.75 0.79 1.26 17% 
Site C channel 2 4.94 4.76 11.00 0.06 2.01 41% 
  channel 3 7.49 7.53 10.75 0.12 1.02 14% 
  channel 4 7.71 7.86 11.60 0.35 1.09 14% 
Site D channel 2 3.88 3.54 9.95 0.18 0.98 25% 
  channel 3 7.97 8.18 10.95 0.04 1.14 14% 
  channel 4 6.98 7.05 9.55 0.12 0.83 12% 
 
Table 6.XI – The median summary statistics based on 50 realisations. 
5th 
quantile 

  mean median max min std dev coef var 

Site A channel 2 5.71 6.49 8.05 0.32 2.02 35% 
  channel 3 5.53 5.95 8.65 0.80 1.62 29% 
  channel 4 5.93 6.57 8.00 0.45 1.68 28% 
Site B channel 2 7.90 8.02 11.50 1.80 1.24 16% 
  channel 3 7.73 7.83 9.60 3.30 0.67 9% 
  channel 4 8.83 8.55 10.73 2.15 0.69 8% 
Site C channel 2 7.12 7.55 11.00 2.10 1.96 28% 
  channel 3 8.58 8.55 11.95 6.70 0.75 9% 
  channel 4 8.70 8.90 11.60 6.20 0.94 11% 
Site D channel 2 5.25 5.15 9.95 2.55 1.22 23% 
  channel 3 9.15 9.32 10.95 6.90 0.67 7% 
  channel 4 7.90 7.80 11.39 5.15 0.71 9% 
 
Table 6.XII – The 90th percentile summary statistics based on 50 realisations. 
9th 
quantile 

  mean Median max min std dev coef var 

Site A Channel 2 6.96 7.43 11.43 0.40 1.30 19% 
  Channel 3 7.05 7.05 20.38 0.80 1.38 20% 
  Channel 4 6.89 7.00 15.55 0.45 0.83 12% 
Site B Channel 2 9.68 9.75 14.99 1.80 0.96 10% 
  Channel 3 8.72 8.75 20.84 3.30 0.96 11% 
  Channel 4 9.63 9.60 16.70 2.15 0.56 6% 
Site C Channel 2 8.97 9.29 15.49 2.10 1.56 17% 
  Channel 3 9.72 9.70 21.62 6.70 1.23 13% 
  Channel 4 9.64 9.64 17.43 6.20 0.98 10% 
Site D Channel 2 6.92 6.69 12.66 2.55 1.41 20% 
  Channel 3 10.15 10.10 21.57 6.90 1.14 11% 
  Channel 4 8.76 8.81 16.72 5.15 0.79 9% 
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Some slight differences were observed between the E-type estimate and 

median images. Generally the E-type estimate images mean and median values were 

lower. On the other hand, the maximum values were higher than those of the median 

images were. The minimum values of the E-type images were equal or lower than the 

median images. The coefficient of variation differed by a maximum of 2%.  

 

The 10th percentile images mean and median statistics were all lower than that 

of the E-type estimate image as expected. The maximum values as well as the 

minimum values were also lower. The coefficient of variation tended to be higher for 

the 10th percentile image with the study site A values ranging between 26% and 32% 

higher while the other study sites ranged between 2% and 15% higher than the E-type 

estimate image. The opposite results were observed with the 90th percentile image 

statistics. The mean, median, maximum and minimum statistics were all higher than 

the other generated images as expected. The study site A again had the greatest 

changes in the coefficient of variation that were this time lower (ranging from 9% to 

14%) than those of the E-type estimate image. Only one other channel had such a 

large difference (9%) compared to the E-type estimate images and that was channel 2, 

study site C. The other study sites saw their coefficient of variation changed by a 

maximum of only 5%. 

 

Even with the phase II parameters used in the co-simulation algorithm, the 

resulting statistics were still similar to those of the VGT imagery. For instance, the E-

type estimate images mean and median values match those of the VGT imagery with 
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variations in the mean being at most 0.17 and in the median 0.31. The median image 

statistics generated using the phase II parameters also only varied by 0.13 in the mean 

and 0.40 in the median (channel 4, study site B). These differences in the central 

tendency of the distribution were very slight compared to the VGT imagery. The 

maximum values of the phase II imagery were greater than the VGT imagery because 

the parameters were set to those values. The coefficient of variation statistic was 

reduced by a maximum of 7% compared to the VGT data. The median images were 

very similar overall to the VGT images. 

 

Histograms were computed for the E-type estimate, median, 10th and 90th 

percentile images (appendix). These histograms were generally smoother than the 

single co-simulated images but not as smooth as those based on the LVM option 

images. When comparing these histograms to the original VGT data, the median 

images histograms matched quite well. The E-type estimate histograms had similar 

overall distributions but were smoother.  

 

It came as no surprise that the 10th and 90th percentile image histograms did 

not look anything like the original VGT image histograms. The 10th percentile 

histograms tended to have a more negatively skewed distribution while the 90th 

percentile images tended to have a more positively skewed distribution. The 10th and 

90th percentile image histograms also had long tails that were not apparent in the 

mean and median image histograms. The long tails were extreme values (either 

positive or negative) and thus only appeared in the 10th and 90th percentile image 

histograms. The normal back-transformation model caused the low frequencies of 
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these tails because missing values must be extrapolated in order to fit the minimum 

and maximum parameters specified to the algorithm when converting the simulated 

values back to reflectance. 

 

The lack of similarity was easily perceived between the HRVIR image 

histograms and the generated phase II images. Differences in the histograms of the 

generated phase I and phase II images were apparent providing evidence that the 

input parameters did change the resulting imagery.  

 

6.4 Discussion 

The goal of phase II was to generate finer spatial resolution optical-like 

imagery using the sequential gaussian simulation algorithm with input parameters 

that were more in tune with the desired final products at 20 m spatial resolution. The 

fact that an image was generated does not mean that the goal was reached. These 

generated images must satisfy certain scale criteria in order to be useful in the remote 

sensing context and their appropriateness evaluated. In phase I, the results clearly 

demonstrated the statistical similarity between the generated and VGT imagery. 

Phase II results were resembled those of the VGT imagery because of the difficulty in 

deriving the finer spatial resolution statistical input parameters and the dependence on 

the VGT conditioning imagery.  

 

Phase II results failed to reproduce the wanted HRVIR image statistics as it 

was hoped. The modified input parameters for phase II were the model variogram 
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parameters and the distribution parameters. The point model variogram of the VGT 

data was taken from the HRVIR imagery, considered as point samples compared to 

the coarse spatial resolution VGT imagery. The first attempt at finding the punctual 

variogram model parameters using Clark’s (1977) method failed to produce results 

that were similar to the HRVIR image based experimental variogram. An algorithm 

developed by Collins and Woodcock (1999) was also applied to deduce the punctual 

model variogram based on regularised variogram model information and again did 

not produce the expected HRVIR model variograms. 

 

The HRVIR images were assumed throughout to be point measurements 

compared to the VGT imagery because of the great differences in spatial resolution. 

This assumption was necessary to validate the derived fine spatial resolution 

statistics. If this assumption was true then the current available tools that were used to 

determine the punctual variogram model from coarse spatial resolution data were 

imprecise because they resulted in coarse spatial resolution model variograms that 

were different from those observed in the VGT imagery. Otherwise, the tools were 

correct but the assumption that the HRVIR imagery was the point sample imagery is 

invalid. In both cases more study must be done in order to verify these statements.  

 

Regarding this issue, Collins and Woodcock (1999) describe some general 

obstacles when using real (coarse and fine spatial resolution) images. The viewing 

and illumination conditions can have significant impact on the scene spatial structure, 

affecting both the magnitude and isotropy of spatial dependence. Also the atmosphere 

in most cases is a major factor to be considered. Furthermore, the PSF is not constant 
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across all scan angles and this is most prominent for sensors with very large swath 

widths such as the VGT sensor. For the most part, these obstacles were avoided in 

this study by using the SPOT 4 satellite where both the HRVIR and VGT sensors are 

on the same platform. Having images taken at the same time the atmospheric 

differences were negligible. Furthermore, as the chosen study sites images were close 

to nadir, viewing and illumination angle differences were minimised. Therefore, in 

this case it would appear that the sensor PSF would be the most influential variable 

and therefore skew the regularisation procedures. The fact that the HRVIR and VGT 

sensors have different spectral extents was important, however it would not influence 

the regularisation of the spatial variability as greatly as the sensor PSF could. The 

PSF defines the characteristics of the image of a point source formed by an optical 

system. An accurate model of the PSF of coarse spatial resolution sensors such as 

AVHRR or VGT is difficult to determine due to the unknown contributions of 

atmospheric and view angle effects, deviations from preflight optical characteristics, 

and along-track and cross-track asymmetry (Moreno and Melia 1994). Remotely 

sensed measurements are not simple averages of radiance within a sensor’s field of 

view, and this field may not be rectangular (as is often implicitly assumed when 

averaging pixels). Instead, sensor optical and electronic effects cause scene radiance 

to be weighted differently according to its relative spatial position. Using a simple 

averaging process is equivalent to assuming that the PSF has the form of a simple 

square wave. Few if any studies have explicitly assessed the impact of modelling the 

remote sensing process using such assumptions (Collins and Woodcock 1999). 
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The need for the phase II punctual variogram model parameters left little 

choice but to adopt the HRVIR imagery parameters directly. This decision was made 

knowing that there was a difference in the radiometric extent between the sensors 

because the simulation algorithms only required the shape of the punctual variogram 

model and not the sill values themselves. This was achieved by normalising the 

model to a variance of one.  

 

Phase II also required parameters that described the distribution of the wanted 

finer spatial resolution data. Specifically, the minimum, maximum and the normal 

score transform file were the most important. The minimum and maximum values 

provide the sequential gaussian simulation algorithm with the extent of the 

distribution of values while the normal score transform file provides the information 

to convert the actual image data to and from the standard normal distribution. The 

input parameter minimum values did resemble the HRVIR images minimum values 

but the derived phase II maximum values were much lower than those observed in the 

HRVIR imagery. The manner in which these parameters were derived was obviously 

inadequate and a method should be used that is based on the knowledge of the 

HRVIR sensor itself rather then pure statistics. 

 

The back-transformation file in phase II was based on the VGT data and 

therefore the simulated values necessarily resembled the VGT distribution. The fact 

that the minimum and maximum values were changed and the transformation file was 

not, was the reason why the generated imagery histograms tended to have such long 

tails with low frequencies. These long tails were caused by the extrapolation of the 
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simulated values to reach the minimum and maximum values imposed by the input 

parameters that were lower than the minimum and higher than the maximum values 

of the conditioning VGT back-transform file. Future work should concentrate on also 

correcting the back-transformation file to the finer spatial resolution output desired. 

Isaaks and Srivastava (1989) present some possible techniques that could help adapt 

the back-transform file where the mean of the distribution remains unchanged and the 

variance is adjusted by some factor (called variance adjustment factor). The effect of 

support on the back-transform file distributions symmetry is related to the entropy, or 

the connectedness of extreme values. Entropy is not adequately described by the 

variogram and therefore our a priori knowledge of the underlying scene will help 

judge the expected degree of symmetrization. Qualitative information about the 

spatial arrangement of values must be brought to bear on the problem. If past 

experience in similar environments suggests that the extreme values were poorly 

connected, then we should choose a procedure that implicitly increases the symmetry 

of the distribution as the support increases. If the extreme values tend to be well 

connected, then we might prefer a procedure that does not implicitly symmetrize the 

distribution (Isaaks and Srivastava 1989). According to Zhang et al. (1990), 

unfortunately, all of these methods to adjust the distribution depend on unverifiable 

assumptions about how the distribution changes as the support increases and they also 

require knowledge of certain parameters that are difficult to estimate precisely. 

 

Each new generated image was exactly the same size and equivalent to the 

SPOT 4 HRVIR study sites, i.e. the spatial resolution was 20 m and the image grid 

was 750 pixels x 750 pixels. A change of scale occurred when generating these finer 
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spatial resolution images because the spatial resolution changed from that of 1000 m 

to 20 m. Is stationarity guaranteed when the change of spatial scale involved a change 

of spatial resolution? Without knowledge of the underlying finer spatial resolution 

variability one cannot make this decision a priori. More importantly, one must 

consider whether the stochastic imaging algorithm used to generate the imagery was 

capable of producing non-stationary imagery. Looking over the results from both 

phase I and II, it appeared that the sequential gaussian simulation algorithm was not 

capable of generating non-stationary data because the resulting overall statistics were 

similar. The HRVIR study sites produced different overall statistics however; the area 

was still deemed stationary.  

 

One of the goals of the generated finer spatial resolution images was to 

increase the certainty of the information that was extracted from them. This increased 

certainty was based on the notion that finer spatial resolution brings better accuracy. 

However, the uncertainty about the phase II input parameters must also play an 

important part in the total error. As a result, the manner in which the phase II 

parameters were derived must be improved in order to increase the certainty of the 

final product. The total error however, cannot be assessed until the real values are 

known and compared to the generated finer spatial resolution data. 

 

Estimation of the punctual variogram is error-prone. There is nothing inherent 

in the algorithm to prevent estimation of variance for spatial resolutions finer than the 

original data. In fact, if the punctual variogram is known, variance at any resolution 

can be determined accurately. The problem is the greater difficulty of estimating the 
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punctual variogram from coarse data. Estimates of variance at fine scales are affected 

by such problems. In practice, there is no way to tell whether the punctual variogram 

has been estimated precisely. This uncertainty undermines confidence in fine-scale 

estimates made from coarse-scale data. At best, such estimates constitute reasonable 

guesses based on the available information, but their accuracy cannot be confirmed in 

practice. More experience may lead to a general rule regarding the range of 

resolutions over which estimates remain valid (Collins and Woodcock 1999). 

 

In phase II, 50 realisations were used to generate statistical imagery based on 

the E-type estimate, median and 10th and 90th percentiles. The resulting statistics 

demonstrated the resemblance of the phase II generated images to those of phase I. 

Even over 50 realisations the stochastic images did not differ significantly from those 

of the phase I images. 

 

Based on the results, it was obvious that the input parameters were very 

important because they drive the simulation. Incorrect or inappropriate input 

parameters would still generate a finer spatial resolution image. However, such data 

would be useless for any land-cover information extraction. Therefore, if the input 

parameters were not at the correct spatial scale, then neither would the resulting 

imagery. The testing of this idea would require generating imagery based entirely on 

known fine spatial resolution statistical parameters and comparing the results to 

generated images based on coarse spatial resolution statistics. For example, the 

HRVIR image statistics and phase I statistics could be used. Furthermore, both 

conditional and unconditional simulations should be investigated in order to observe 
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the influence of the conditioning data on the resulting imagery. The expectation 

would be that better input parameters would yield better results. 

 

Many new parameters were derived and introduced into the simulation 

process in phase II. However, the resulting generated finer spatial resolution imagery 

did not differ significantly from those of phase I as was hoped. Before any definitive 

conclusions can be made, further study into the uncertainty in the use or derivation of 

the phase II parameters is required. 
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Chapter 7 – Generated Finer Spatial Resolution Images with 

the Help of SAR Imagery  

A 20 m spatial resolution image such as HRVIR provides imagery with spatial 

detail that is ideal for local level land-cover projects because objects are easily 

identified. The previously generated phase I and II finer spatial resolution imagery 

was visually difficult to interpret because of the lack of familiar objects. The 

stochastic nature of the generated images produced an almost featureless product 

because there was no way of knowing the spatial arrangement or location of spectral 

objects prior to simulation. Location information was needed to fix simulated values 

to geographic positions that better represent the actual ground scene variability.  

 

Spatial location information can be taken from other types of imagery. 

RADARSAT SAR imagery can be recorded at a spatial resolution of 100 m that 

covers an area approximately 500 km x 500 km. The SAR can record ground scenes 

in a variety of conditions where optical sensors are unusable. In addition, 

RADARSAT ScanSAR is able to revisit areas of interest on a regular basis with a 

small time step. As such, RADARSAT ScanSAR imagery was considered as a 

complimentary source of imagery for the VGT imagery. However, the amount of 

information that can be potentially extracted from a single band SAR image is much 

less than from a multi-spectral image with an equivalent spatial resolution. Moreover, 

the SAR images visual characteristics are unfamiliar to the human eye hindering 

interpretation and information extraction. This imagery nevertheless can record the 
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same ground scene providing information on object location at a spatial resolution 

that is much finer than that of the VGT imagery. 

 

Phase III used RADARSAT ScanSAR wide imagery to condition the 

generated finer spatial resolution imagery to improve the visual output. The influence 

of the SAR data greatly improved the visual output of the generated finer spatial 

resolution imagery however the correlation between visible and SAR data was poor 

and ultimately arbitrarily increased.  

 

7.1 Conditioning with RADARSAT-1 SAR Imagery  

In phase III, a new image data set was introduced: RADARSAT ScanSAR 

wide. Summary statistics for the study sites relating to the single band SAR data are 

presented in table 7.I. The RADARSAT ScanSAR wide imagery was resampled to a 

20 m spatial resolution when geometric corrections were applied. Therefore, the 

summary statistics were based on 562500 sample pixels (n = 562500) just like the 

original HRVIR imagery which covers a total area of 750 x 750 pixels. 

 

Table 7.I – Summary statistics based on the RADARSAT ScanSAR imagery 

recorded for each of the study sites (n = 562500). The mean, median, maximum and 

minimum values are in radar backscatter values (units sigma naught). 

 Mean median max Min std dev coef var 
Site A 0.45 0.42 0.98 0.00 0.21 46% 
Site B 0.29 0.27 0.93 0.00 0.13 44% 
Site C 0.29 0.26 0.93 0.00 0.11 39% 
Site D 0.35 0.34 0.99 0.05 0.12 33% 
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The highest mean and median values were computed for study site A at 0.45 

and 0.42 respectively. Study site D showed slightly lower mean and median values 

while study sites B and C had equal mean values. The median values for study sites B 

and C were very similar with only a difference of 0.01. For the SAR data, the 

computed median values were consistently lower than the mean. The opposite was 

observed in the summary statistics of the visible image data. 

 

SAR backscatter values range between 0 and 1. Sites A through C all had 

minimum values that were equal to zero while the study site D had a slightly higher 

minimum value of 0.05. The highest value was computed for the study site D (0.99) 

while study sites B and C had the lowest maximum values of 0.93.  

 

The SAR imagery is physically different from VGT and HRVIR imagery so 

direct comparison of the summary statistics was meaningless. The coefficient of 

variation statistics for the SAR imagery ranged between 33% for study site D and 

46% for study site A. For the most part, the SAR coefficient of variation statistics 

were higher than those computed for any of the VGT bands, except for study site A, 

channel 2 with a correlation of 34%. The HRVIR coefficients of variation were a 

little stronger than the VGT coefficients and therefore more comparable to the SAR 

computed coefficient of variation statistics. 

 

As in phase I and II, the co-simulation algorithm required information on the 

correlation between the conditioning and simulated data. The HRVIR imagery was 

used to compute the correlation between visible and SAR data (table 7.II) because the 
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spatial resolution of the VGT imagery was too coarse. The goal of computing the 

correlation coefficients between the optical and SAR image data was to determine the 

linear relationship between the optical and SAR bands. The VGT data was not used 

because of the large differences in spatial resolution that would produce a range of 

variations (100 pixels) for every one VGT pixel. Such a comparison would not 

adequately describe the relationship between the optical and SAR data. Furthermore, 

one wants to know the relationship between optical and SAR image data at the fine 

spatial resolution which is being simulated.  

 

Table 7.II – Computed correlation coefficients between the RADARSAT SAR image 

and the HRVIR imagery.  

 Channels Correlation 
Site A 2 vs. SAR 0.41 

 3 vs. SAR 0.12 
 4 vs. SAR 0.28 

Site B 2 vs. SAR -0.29 
 3 vs. SAR 0.23 
 4 vs. SAR -0.14 

Site C 2 vs. SAR -0.48 
 3 vs. SAR 0.28 
 4 vs. SAR -0.38 

Site D 2 vs. SAR -0.23 
 3 vs. SAR 0.09 
 4 vs. SAR -0.21 

 

All pairs produced weak correlation coefficients. The computed t-test resulted 

in rejecting the null hypothesis (indicating that the channels are dependent) at α = 

0.1, 0.05 and 0.01. The magnitude of the relationships ranged between 0.48 for study 

site C, channel 2 vs. SAR and 0.09 for study site D, channel 3 vs. SAR. Negative 

relationships were also computed between channel 2 and SAR, and channel 4 and 
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SAR for study sites B through D. Study site C produced the strongest relationships 

compared to the other study sites. 

 

The computed correlation between the HRVIR and SAR image data are 

expectedly quite different than that what was observed between pairs of optical 

channels. The computed coefficients of correlation for the VGT imagery were 

generally much higher except for study site B, where the channel 2 vs. 3 correlation 

was much lower. The sign of the relationships were also different compared to the 

SAR correlation results and those based on the VGT image data. When compared to 

the HRVIR correlation coefficient results, the differences were much more varied and 

in many cases not as extreme. 

 

Such weak correlation coefficients (all were less than 0.5) would have little 

effect on conditioning the realisations (NACOG 2000). The general trend that was 

observed however, showed that the red band (or channel 2) always produced the 

strongest relationship with the SAR data. The red channel was therefore chosen as the 

first channel to be generated. However, in order to increase the conditioning influence 

of the RADARSAT ScanSAR data on the resulting realisations, the magnitude of the 

relationship was arbitrarily increased to 0.75. The sign of the relationship however 

remained as in table 7.II.  
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Figure 7.1 – Histogram of the RADARSAT ScanSAR wide imagery.  
 

 

For each of the study sites, the histogram of the RADARSAT ScanSAR wide 

images was computed (figure 7.1). Their overall shape was smooth and all study sites 

exhibited a long positive tail. The histogram based on study site A exhibited a sudden 

and notable peak at the extreme right. The other study sites (especially B and D) also 

have slight increases in the frequencies around their maximum values. The urban 

nature of the ground scene of study site A caused the sudden spike to the right of the 

distribution. The strong signal return was caused by structures that simulate corner 

reflectors. A second peak developed to the left of the distribution because of the large 

area covered by water within the study site A. Water scatters the EM radiation in the 
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centimetre region where SAR signals are recorded and therefore the signal return is 

weaker (specular reflection). The positive skew observed in all the SAR histograms 

pushed the median statistic below the mean value across all study sites.  

 

The phase III simulations began by co-simulating the fine spatial resolution 

channel 2 with the help of the RADARSAT ScanSAR wide imagery. The other 

channels were simulated in the same manner as in phase II. Table 7.III presents phase 

III co-simulation ordering. The input parameters otherwise were the same as in phase 

II. 

 
Table 7.III – Spectral channel co-simulation ordering based on RADARSAT 

ScanSAR wide and VGT image data. 

 Initial co-simulation Co-simulation Co-simulation 
Site A SAR vs. 2 2 vs. 4 4 vs. 3 
Site B SAR vs. 2 2 vs. 4 4 vs. 3 
Site C SAR vs. 2 2 vs. 3 2 vs. 4 
Site D SAR vs. 2 2 vs. 3 2 vs. 4 
 

 

7.2 Phase III Co-Simulation Results 

The sequential gaussian simulation algorithm as it was made available in the 

Deutsch and Journel (1999) software was unable to generate finer spatial resolution 

images with both the LVM and co-simulation options at the same time. Therefore, 

realisations using the LVM option could not be generated in phase III. 
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Figure 7.2 – Generated finer spatial resolution imagery conditioned with SAR 

imagery. 

 

A single realisation was computed generating a multi-spectral image for each 

of the four study sites (figure 7.2). The resulting finer spatial resolution imagery was 

visually different then the phase I and II images. The most noticeable differences 

were the sharper boundaries that could be detected. Also, the imagery did not appear 
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as diffuse as in the previously generated finer spatial resolution imagery. Comparing 

the above output to the original HRVIR images presented in chapter 4 gives one a 

better appreciation of the details resulting from incorporating the SAR imagery into 

the simulation process. 

 

The study site A imagery (figure 7.2), shows the contour of the Island of 

Montreal quite clearly. In the upper left corner a section of the Rivière-des-Prairies 

can be seen that separates the Island of Montreal and Laval. This river was not seen 

in the other generated finer spatial resolution images. The water/land interface was 

much less diffuse. Imagery of the island itself is also much more detailed where white 

areas seem to indicate built up areas while colourful regions are located where 

vegetation is prominent. For example, the circular region of the Mount Royal was 

quite easily distinguished in the upper right hand corner of the image. The overall 

high pixel values associated with built up areas are most likely due to the influence of 

the SAR imagery. 

 

Study sites B through D were located in less urbanised regions. In the study 

site B image (figure 7.2), the river that runs through the middle of the image and the 

lake at the top do not exhibit the expected dark colour for water. However, forested 

and agricultural regions were quite well delineated in either green for forest or red for 

agricultural areas. Built up areas on the generated fine spatial resolution imagery 

appear as white specks. This is due to the strong influence of the SAR imagery. The 

horseshoe shaped forested area was well defined in the study site C image. The 

generated finer spatial resolution image of study site D (figure 7.2) also improved 
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agricultural plot delineation within the generally forested scene much better than 

those generated in both phase I and II. The generated images of study sites C and D 

also did not display the water surfaces as dark regions. 

 

The summary statistics were computed for the single realisation images (table 

7.IV). The highest mean value computed was for channel 3 of study site D while the 

lowest was 5.52 for channel 3 of study site A. The median value behaved similarly 

with the same channels having the highest and lowest computed values. Generally, 

study site A images produced the lowest overall mean and median values. The 

maximum values ranged between 21.70 for channel 3 of study site C and 11.50 for 

channel 2 of study site A. All the minimum values for study site A were equal to 

zero, while the other study sites had minimum values ranging between zero and 0.41 

for channel 2, study site B. 

 

Table 7.IV – Summary statistics for the single realisation finer spatial resolution 

images co-simulated with RADARSAT ScanSAR wide image data. 

  mean Median max min std dev Coef var
Site A Channel 2 5.69 6.35 11.50 0.00 2.03 36% 

 Channel 3 5.52 5.95 20.50 0.00 2.07 37% 
 channel 4 5.83 6.55 15.99 0.00 1.94 33% 

Site B channel 2 7.88 8.10 15.29 0.41 1.78 23% 
 channel 3 7.72 7.81 21.10 0.00 1.14 15% 
 channel 4 8.69 8.95 18.01 0.02 1.27 15% 

Site C channel 2 7.08 7.53 15.66 0.03 2.17 31% 
 channel 3 8.63 8.55 21.70 0.01 1.32 15% 
 channel 4 8.69 8.83 18.52 0.04 1.17 14% 

Site D channel 2 5.27 6.12 12.80 0.05 1.42 27% 
 channel 3 9.14 9.25 21.64 0.01 1.06 12% 
 channel 4 7.90 7.85 16.98 0.00 1.07 13% 

 



 216

The highest coefficient of variation was found at study site A and ranged 

between 33% and 37%. Lower coefficients were computed for all the other study 

sites and ranged between 31% for channel 2 of study site C and 12% for channel 3 of 

study site D.  

 

The phase III single realisation mean and median values were similar to the 

original VGT imagery. The maximum difference in the mean across all the study sites 

was only 0.05. The differences in the median statistic were a little greater with 

channel 2 of study site D being 0.77 higher than the VGT image median. Except for 

study site B, the mean and median values for channel 2 had the greatest difference 

compared to the original VGT imagery. All phase III maximum values were greater 

and all the minimum values were lower than their respective VGT image 

counterparts. The differences in the coefficients of variability were not very large 

ranging from 1% to 6% with the phase III computed coefficients being greater than 

their VGT image counterparts, except for channel 2 of study site D.  

 

The mean and median values of the phase III generated finer spatial resolution 

images were lower than those of the HRVIR imagery were. These differences in the 

mean value ranged between 3.09 to 18.47 for channel 3 of study site D and the 

median value range between 1.23 and 18.02. The HRVIR images maximum values 

were all expectedly higher because the phase II input parameters where used. 

Differences between the two images maximum values ranged between 21.37 and 

59.12. The minimum values were lower and only slightly differed from the HRVIR 

imagery. The coefficient of variation statistic also varied slightly. Channel 2 of study 
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site A was the only image where the coefficient of variation was higher than the 

HRVIR imagery. All other images had lower coefficient of variation statistics that 

ranged from no change to 17% for channel 2, study site D. 

  

No significant differences where observed when comparing the phase II and 

III summary statistics. The largest differences in the mean were observed at study site 

A where mean values for the phase III image was greater by only 0.16. The median 

values generally differed even less. Only very small differences were found in the 

minimum and maximum values. Overall, the coefficient of variation statistic was 

greater for the phase II images with slight differences ranging from no change to 6%. 

The phase III distributions had less variability because of the added constraints of the 

SAR image data. The addition of the SAR conditioning data basically only resulted in 

decreasing the variability of the output images when looking only at the summary 

statistics. 

 

The correlation coefficient statistic computed on the phase III generated 

images showed that the channel relationships were quite strong (table 7.V). The 

strongest relationship was computed for the channel 2 vs. 4 pair of study site C at 

0.86 and the weakest for channel 3 vs. 4 for study site B at –0.38. All study site A 

correlation coefficients and channels 2 vs. 4 relationships were positive. In all cases, 

the relationships all rejected the t-test null hypothesis. 

 

Almost no change was observed between the phase II and phase III correlation 

coefficients. For the same band combinations, the differences between the two were 
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between zero and 0.06 and all signs remained the same. However, the phase III 

correlation coefficients were all stronger than those of the HRVIR imagery. 

 

Table 7.V – Correlation coefficient of the phase III generated images.  
 Channels Correlation
Site A 2 vs. 3 0.69 
 2 vs. 4 0.74 
 3 vs. 4 0.81 
Site B 2 vs. 3 -0.45 
 2 vs. 4 0.75 
 3 vs. 4 -0.38 
Site C 2 vs. 3 -0.66 
 2 vs. 4 0.86 
 3 vs. 4 -0.65 
Site D 2 vs. 3 -0.59 
 2 vs. 4 0.80 
 3 vs. 4 -0.56 
 

 

The phase III generated image histograms (appendix) were very similar in 

shape to those of the VGT imagery. Even the channel 2 histograms that were co-

simulated using the SAR imagery were similar to the channel 2 histograms of the 

VGT imagery. The HRVIR and phase III generated finer spatial resolution 

histograms were not any more similar visually than the previous two attempts (i.e. 

phase I and II). 

 

A second set of generated imagery was produced based on the phase III input 

parameters by computing statistics over a set of 50 realisations (Figure 7.3 and 

appendix). The order of the co-simulations was the same as that for single realisations 

(table 7.III).  
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Figure 7.3 – Generated imagery computed from 50 realisations using the E-type 

estimate and phase III input parameters for study sites A through D.  

 

The images based on the E-type estimate statistic (figure 7.3) produced a 

much better delineation of different land-cover than was observed in any of the 

previous simulations. Study site A of the Island of Montreal clearly displayed the 

water surfaces that were also observed in the fine spatial resolution HRVIR imagery 
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and the shoreline was strongly delineated. The Island of Montreal itself visually 

seems to have less variability overall than the single realisation image. Built up areas 

(which are also areas with a strong SAR signal) were still the brightest and vegetated 

areas such as the Mount Royal were not as prominent in the E-type estimate image. 

Another interesting effect observed in the study site A image was a type of road 

network. However, this is not the case and was most likely an artefact of the 

simulation algorithm.  

 

The study sites B through D E-type estimate images generated different 

results (figure 7.3). In these images the forest and agricultural land-cover entities 

dominated and were strongly delineated but the range of colours had diminished 

overall. The variability diminished because the E-type estimate retained only the 

mean values across the 50 realisations. The most notable change however, was the 

red colour of the water land-cover, which was not dark as expected. 

 

The median, 10th and 90th percentile images are found in the appendix. The 

median imagery resembled quite strongly the E-type estimate imagery. The images 

based on the 10th and 90th percentile showed more water and more land respectively 

because the water values were lower and the land values were higher. 

 

 Summary statistics (appendix) were very similar to those of the VGT 

imagery and as such also did not differ from the results computed from phase II. 

Similarly, the HRVIR image summary statistics were higher than those based on the 
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phase III 50 realisations. The same result was observed based on the computed 

histograms of the phase III generated images based on 50 realisations (appendix).  

 

7.3 Discussion 

The results presented above provide an insight into the possibilities of using 

RADARSAT ScanSAR wide imagery to help generate finer spatial resolution 

imagery. While the summary statistics did not drastically change compared to earlier 

attempts (phase I and phase II), the resulting images provided much better spatial 

detail. This resulted in imagery that was not diffuse and also provided fairly accurate 

object locations.  

 

One of the first hurdles encountered in phase III was the fact that the SAR 

imagery did not actually have a strong linear relationship with any of the optical 

bands. In order for the SAR imagery to have any influence on the co-simulation, a 

stronger correlation was needed. As a result, the correlation was arbitrarily increased 

to 0.75. This correlation value was chosen arbitrarily because it could have been 

higher or lower than 0.75. However it was felt that a higher correlation might bias the 

simulation toward the SAR imagery itself and produce artefact results. More tests 

must be carried out in order to see how changes in the correlation affect the resulting 

co-simulations. 

 

A second decision that was taken while increasing the correlation between 

SAR and optical bands artificially was to keep the sign of the relationship. The 
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highest computed correlation was between channel 2 and the SAR images however, 

their weak relationships ranged between –0.23 and –0.48. Artificially increasing these 

negative relationships also caused a negative relationship between the SAR and red 

band water-surface objects. Normally this is not the correct relationship because 

water-surface objects have a low reflectance in the red band and low return in the 

microwave band and as a result a positive correlation should have been observed. The 

total surface area taken up by water in the study sites B through D were quite small 

and thus did not influence the computed correlation coefficient as much as in the case 

of study site A. This resulted in a water object always being improperly simulated if 

one was to use a negative relationship. Further study is required to test whether a 

positive relationship should always be used when water is present and to see what 

effect this would have on other types of land-cover. 

 

A second possibility would be to first process the SAR imagery even further. 

For example, a texture filter could be applied to the imagery and the resulting image 

would be used to compute the correlation coefficient. If the texture image produces a 

stronger linear relationship with respect to the visible image channels then the 

correlation value would not have to be artificially increased and the sign of the 

relationship would better describe the relationship between the two different types of 

imagery. 

 

The generated phase III images did provide very good spatial localisation of 

the vegetated land-cover. The resulting images resemble quite well a fine spatial 

resolution image. The accuracy of this data must still be investigated if one was to use 
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such imagery for mapping forest and agricultural land-cover. Another outcome of 

including the SAR data in the generation of finer spatial resolution imagery was the 

appearance of built up areas. Normally in the visible spectrum, built-up areas do not 

appear as bright pixels because man made objects such as buildings are spectrally 

defined. Built up areas therefore must be spectrally different from the background to 

actually detect it. The generated imagery with the help of SAR imagery allows the 

user to spot buildings differently. The high signal return caused by man made 

structures in the microwave band produces very bright spots in the SAR imagery. In 

study site A, the result of this high return was translated into very high reflectance 

values producing white areas in the optical imagery. The other study sites also 

produced white flecks in regions where towns and buildings were expected. The 

negative relationship however that was used to generate the imagery at those study 

sites must be further investigated in order to be sure that the same land-cover type is 

generated throughout.  

 

Results of the phase III implementation also showed that summary statistics 

were not similar to those of the HRVIR imagery. This result echoed those found 

during phase II. Although in phase III the appearance of the generated finer spatial 

resolution imagery was greatly improved the statistical similarities between the 

original coarse spatial resolution VGT imagery were still strong.  

 

The RADARSAT ScanSAR imagery was used to influence the simulated 

output using the co-simulation approach. This approach only allowed the first optical 

band that was simulated to be influenced directly by the SAR imagery. Channel 2 
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was used in every case and the histograms of the generated finer spatial resolution red 

band did not show any clear signs of SAR influence because of the back-

transformation. Without any significant influence on the first simulated band, the 

other bands (channels 3 and 4) were primarily influenced by their relationship to 

channel 2. 

 

Geometric registration was an important step in phase III because the optical 

data had to be overlaid by the SAR data. Misregistration would cause objects to be 

placed in the wrong location. The water surfaces of the phase III generated images of 

study sites B through D appeared as red. At first, it was concluded that the cause was 

due to misregistration. However, after verifying the geometric registration a different 

reason was found i.e. the negative relationship between SAR and the red band. As a 

result, preparatory steps must be carefully executed and caution must be used when 

interpreting the stochastic imaging results. 

 

The imagery that was produced using 50 realisations also produced some 

interesting results. Study site A generated finer spatial resolution imagery, especially 

based on the E-type statistic, produced what looked like a road network on the Island 

of Montreal. Although it appears to be a road network, it would be impossible that the 

fusion of the VGT and RADARSAT ScanSAR imagery could ever produce such fine 

spatial details. The cause of this effect is most likely due to the influence of the SAR 

imagery in an urban setting. Patterns are quite pervasive in urban settings where, for 

example, a residential area made up of single family homes produces a specific 
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pattern that can be observed in the SAR imagery. This influence generated the 

patterns that are observed in the generated images based on 50 realisations. 

 

Familiar objects or entities are what allows one to classify land-cover based 

on remotely sensed imagery. The stochastic nature of the images produced in phase I 

and II were impossible to interpret directly because of the lack of familiarity. Objects 

or entities were not generated but rather spatial data was stochastically assigned in 

order to satisfy the input parameters of the stochastic imaging algorithm. The addition 

of SAR imagery at the wanted resolution provided the necessary data in order to 

place simulated values in the correct location thereby improving the resulting 

imagery in terms of familiarity. Without this familiarity the notion of map accuracy 

becomes useless in the traditional context because no two simulated images would be 

exactly alike. 
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Chapter 8 – Extracting Information from Generated Imagery 

Information extraction is the most difficult part of any remote sensing 

investigation. At this stage detection, segmentation and classification are the 

processes by which information is extracted. Here the goal was to spectrally segment 

the generated finer spatial resolution imagery in order to compare them to the HRVIR 

and VGT image based spectral segments. The segmentation process was necessarily 

done automatically for exploratory reasons and because of the nature of the generated 

images. Segmentation alone does not guarantee land-cover information, however it is 

the first necessary step. The final step is to compare the spectral segments to known 

classes in order to evaluate the suitability of the generated finer spatial resolution 

imagery. 

 

A fine spatial resolution image based on a recorded ground scene can be 

interpreted visually by a trained eye based on the knowledge of location, size, shape 

and tone of detectable objects. In this case, the generated finer spatial resolution 

imagery did not always produce images that resembled regular ground scenes 

because of the stochastic nature of the algorithm and the lack of spatial information 

when scaling-down. Therefore, knowledge of location, size and shape are not 

necessarily applicable to phase I and II images. Only in phase III with the infusion of 

RADARSAT ScanSAR imagery did the simulated output resemble a real ground 

scene even though artefacts were observed within the imagery. 
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Chapter 8 focuses on the extraction of land-cover and the calculation of the 

area taken up by each land-cover. Land-cover information based on coarse spatial 

resolution imagery does not provide the same details possible with a finer spatial 

resolution image. Therefore, estimates based on coarse spatial resolution imagery can 

be erroneous when compared to local level land-cover classes.  

 

8.1 Automated Image Segmentation 

Unsupervised image segmentation was applied to all the original and 

generated phase I, II and III images using all three spectral bands. Supervised 

methods were considered unsuitable for this application because known land-cover 

objects could not be defined. Among the unsupervised segmentation techniques, the 

K-means algorithm was chosen. 

 

The K-means algorithm uses the spectral feature space of the three channels 

making up the images to find the centres of spectral clusters that are similar 

spectrally. The K-means algorithm only requires the user to input the maximum 

number of segments. For exploratory purposes, the K-means algorithm was run twice 

on each image. The first segmentation was based on 16 segments while the second 

was based on 10 segments.  

 

The actual number of groups was decided based on viewing the original 

imagery. Both a lower threshold and upper threshold were decided upon because 

some study sites had fewer obvious land-cover classes while others had more. Too 
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large a number of classes were not wanted because of the difficulty that was foreseen 

in matching up the different segments in spectral feature space between images. The 

results of the segmentation are presented below. The figures are three-dimensional 

graphs representing the mean value of each segment for each spectral channel. 

Channel 2 (red band) is presented along the x axis, channel 3 (NIR band) along the y 

axis and channel 4 (SWIR band) along the z axis. The total number of pixels within 

each segmented group is shown at the location in spectral feature space as a 

percentage of the total. The different images were coded in order to easily identify 

them in the graphs (table 8.I). 

 

Table 8.I – Codes used to identify images in the graphs. 

VGT SPOT 4 coarse spatial 
resolution image 

HRVIR SPOT 4 fine spatial resolution 
image 

LVM1 LVM phase I generated image LVM2 LVM phase II generated image 
P1 Co-simulated phase I generated 

image 
P2 Co-simulated phase II 

generated image 
P1E E-type estimate phase I 

generated image 
P2E E-type estimate phase II 

generated image 
P1Q1 1st quantile phase I generated 

image 
P2Q1 1st quantile phase II generated 

image 
P1Q5 Median phase I generated 

image 
P2Q5 Median phase II generated 

image 
P1Q9 9th quantile phase I generated 

image 
P2Q9 9th quantile phase II generated 

image 
P3 SAR/co-simulated phase III 

generated image 
P3E SAR/co-simulated E-type 

estimate generated image 
P3Q1 SAR/co-simulated 1st quantile 

generated image 
P3Q5 SAR/co-simulated median 

generated image 
P3Q9 SAR/co-simulated 9th quantile 

generated image 
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Figure 8.1 – Three-dimensional representation of the spectral groupings in spectral 

feature space after segmentation based on the K-means algorithm. The results shown 

are for study site A and a maximum of 16 groups.  

 

The segmentation results for study site A are presented in figures 8.1 through 

8.3. The segmentation of the original VGT and HRVIR are shown in the upper left 
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and right respectively of figure 8.1. The VGT and HRVIR spectral segments were 

quite different. The VGT image generated spectral groupings that have a planar trend 

with little variability. A generally equal distribution of groupings across all spectral 

values was observed. The HRVIR imagery on the other hand produced many 

groupings with low spectral values across all the three channels. Only three groups 

were observed that were made up of high spectral values.  

 

In figure 8.1 (middle graphs) the phase I and II generated images using the 

LVM option are presented. The resulting segmentation of these two images produced 

very similar patterns. The distribution of spectral segments of the LVM phase I and II 

images however generally follow the planar distribution found in the VGT imagery. 

Differences that were observed were the many higher valued spectral segments in the 

LVM generated images. The bottom graphs (figure 8.1) present the co-simulated 

single realisation phase I and II images. The spectral segments from these images 

were also similar to the VGT images spectral segments.  

 

The K-means algorithm was also used to segment the E-type estimate, 

median, 10th and 90th percentile images (figure 8.2). The segmented phase I E-type 

estimate imagery produced groupings that were almost perfectly planar (figure 8.2 – 

upper left). The phase II E-type estimate image however showed a slight curvature. 

The spectral segments however also tended to increase in a planar fashion beginning 

from segments made up of low spectral values to groups of values with high spectral 

values. The median generated imagery spectral segments were almost identical in 
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structure to those of the E-type estimate (figure 8.2). More variability in the lower 

spectral region could be observed in the phase II median graph. 

 

As expected, the resulting spectral segments of the phase I and II 10th 

percentile images differed from the E-type estimate and median segmentations. The 

most notable change was the higher number of pixels within the lower spectral 

segments. The 90th percentile phase I segmentation showed a slight deviation toward 

the channel 2 axis compared to the E-type estimate segments. The phase II 90th 

percentile image produced quite a pronounced shift toward the channel 2 axis before 

deviating again (almost perpendicularly). Note the majority of the segments were in a 

region where channel 2 and 4 had high spectral values but not channel 3.  

 

The phase III results of the spectral segmentation are shown in figure 8.3. The 

single realisation image graph of the spectral segments differed from both the VGT 

and HRVIR graphs. The actual spectral segments were distributed quite unevenly. 

The E-type estimate segments however still had a linear effect reminiscent of the 

VGT image results. The median image segments were not as evenly distributed, with 

four groupings close to the upper limits of values for all three channels. The 10th 

percentile segments resulted again in a planar distribution oriented in the z direction. 

However, the 90th percentile segments mimicked those that were observed in the 

same phase II results.  
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Figure 8.2 – K-means segmentation results for phase I and II statistical images. The 

results shown are for study site A and a maximum of 16 groups.  
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Figure 8.3 – K-means segmentation phase III results for study site A. The results 

shown are for study site A and a maximum of 16 groups.  

 

The second set of segmented images for study site A was based on a 

maximum of 10 segments (figures 8.4 to 8.6). Again the VGT and HRVIR images 

did not produce the similar spectral segments, as was expected (figure 8.4). The graph 
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based on the VGT data showed comparable results as observed with 16 segments 

with a planar sequence of spectral groups. The HRVIR image on the other hand did 

not produce the same spectral clustering. Specifically the group of low value spectral 

segments was no longer present as was seen with 16 groups.  

 

The phase I LVM based imagery with 10 spectral segments had many 

similarities to the VGT image output. The LVM II based imagery retained 

approximately the same configuration however more segments were found in the 

higher spectral regions. The single realisation phase I and II images resulted in a 

different arrangement in spectral feature space (figure 8.4) than both the VGT and 

HRVIR results.  

 

Figure 8.5 presents the segmented spectral clusters of the E-type, median, 10th and 

90th percentile images. For the most part, these diagrams behaved exactly in the same 

manner as those for the 16 spectral segment case. The phase III results (figure 8.6) 

also showed the same tendencies as the spectral segments based on 16 segments. 
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Figure 8.4 – Three-dimensional representation of the spectral groupings in spectral 

feature space after segmentation based on the K-means algorithm. The results shown 

are for study site A and a maximum of 10 groups. 
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Figure 8.5 – K-means segmentation results for phase I and II statistical images. The 

results shown are for study site A and a maximum of 10 groups.  
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Figure 8.6 – K-means segmentation phase III results for study site A. The results 

shown are for study site A and a maximum of 10 groups. 
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The computed spectral segments based on 16 classes for study site B (an 

agricultural region) are presented in figures 8.7 to 8.9. The graphs of the VGT and 

HRVIR spectral segments again were not similar (figure 8.7). While most of the 

spectral clusters were found in the higher ranges for the VGT segments, the HRVIR 

segments were mostly concentrated in the lower spectral ranges.  

 

The phase I LVM spectral segments resembled the VGT graph with a few 

more lower spectral value clusters while the phase II LVM spectral segments 

generally had a greater distribution of clusters in the higher spectral value region 

(figure 8.7). The phase I single realisation image mimicked again the VGT spectral 

clustering. The phase II single realisation image produced spectral clusters that varied 

in the channel 2/3 space with fairly high channel 4 spectral values (figure 8.7).  

 

The phase I E-type estimate and median images spectral segments were very 

similar (figure 8.8). The phase II E-type image showed the majority of the segments 

at higher reflectance values, while the median graph spectral clusters were spread out 

across the channel 2/3 plane with high values in the SWIR band. The 10th percentile 

and 90th percentile based images produced different results as expected. The 90th 

percentile images generated spectral clusters that made an ‘L’ shape in the channel 

2/3 plane (figure 8.8). 
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Figure 8.7 – Three-dimensional representation of the spectral groupings in spectral 

feature space after segmentation based on the K-means algorithm. The results shown 

are for study site B and a maximum of 16 groups. 
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Figure 8.8 – K-means segmentation results for phase I and II statistical images. The 

results shown are for study site B and a maximum of 16 groups. 
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Figure 8.9 – K-means segmentation phase III results for study site A. The results 

shown are for study site B and a maximum of 16 groups. 
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The phase III imagery did not produce the same spectral segments as those 

observed in the phase I and II images (figure 8.9 – top). The E-type estimate and 

median spectral clusters were not similar either. There seemed to be a negative 

relationship in the median spectral segments between channels 2 and 3. The 10th and 

90th percentiles again differed from the other phase III spectral graphs. 

 

The study site B generated images were also segmented based on a maximum 

of 10 clusters. The resulting three-dimensional spectral space representations 

provided similar results as those found above based on 16 clusters (appendix). 

 

Similar trends were observed for study sites C and D (appendix). Spectral 

segment configurations derived from the VGT and HRVIR images were always 

different. The phase I and II LVM based images resulted in spectral segments that 

were similar in form to those of the VGT imagery. Another generated image that 

consistently and expectedly produced similar spectral segments to those of the VGT 

imagery was the phase I co-simulated images. The phase II co-simulated images 

tended to differ from both the VGT and HRVIR images spectral segment formations 

and were more variable in spectral feature space then the VGT imagery. Furthermore, 

the differences between having segmented 10 or 16 segments was variable. 

Generally, the 10 segment graphics matched closely the formation based on 16 

clusters. Some curious spectral cluster arrangements were observed (appendix) but 

these were deemed unimportant because our goal was to try and match spectral 

segments between the different images, which could not be done. 
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8.2 The Difficulty of Validation 

Validation requires that known objects or pixel values be compared to those 

that are under study. Normally, this would be done based on location. Stochastic 

imaging however prevents such validation because spatial location is not preserved. 

This is further hindered by the fact that the generated imagery is segmented 

differently depending on the manner in which it was generated. The previous section 

demonstrated the difficulty with which to match spectral segments between different 

images.  

 

 The fact that spectral classes could not be linked between the different images 

led to the need for a different kind of comparison. From the above figures one could 

see that even though different images were generated spectrally, segmentation of the 

data was possible. Therefore the clustered data was compared by the total percentage 

per segment, i.e. each segment was ranked by the total percent area. Ranking the data 

compared the segments based on total area.  
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Figure 8.10 – Ranked spectral segments based on the pixel count. The results shown 

are for study site A and a maximum of 16 groups. 

 

Figure 8.10 presents the ranked segments for each of the generated images for 

study site A using 16 classes. The largest spectral segment was in purple and found at 

the bottom of the graph. Comparing only the largest spectral segments, one can 

immediately see the large disparity between each of the images compared to the ‘true’ 

image, that of the HRVIR image (AS16 – figure 8.10). The graph also showed that 

not all images necessarily had 16 segments or at least some segments contained very 

few pixels. This was quite obvious with the phase II and phase III based single 

realisation images. 

 

Comparing spectral segments in this manner helped see how much cover each 

segment occupied. Any change in the percentage of cover (i.e. a segment is made up 
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of more or less number of pixels) would generate a graph that is different from the 

HRVIR ‘ideal’. The HRVIR image was the first graphic on the left in figure 8.10. 

The original VGT (AV16 – 8.10) image showed that the largest portion of segments 

was greater by just under 10% compared to the HRVIR image. A difference of 10% 

on the VGT image was equal to 22.5 pixels. That was quite a large difference 

considering it was the segment with the greatest number of pixels. The graphic 

clearly showed the variability in spectral segments among the generated images. Only 

the VGT image had a different spatial resolution (1000 m). All the other images were 

based on a 20 m spatial resolution.  

 

From figure 8.10, the generated image that most resembled the HRVIR 

spectral segments was the phase I LVM based image. For the most part the larger 

segments were fairly similar in terms of the number of pixels each segment 

contained. Some differences were observed in the smaller sized spectral segments. 

The largest differences were observed in the images that were generated using the co-

simulation approach. Both phase I and II single realisation images had over estimated 

the percentage of the largest segments compared to the HRVIR data. This was not 

however true for the post-processed based imagery where only the median and 90th 

percentile images had segment percentages that were much greater than that of the 

HRVIR imagery. 

 

The bar graphs (8.10) alone will not provide land-cover information that is 

required. Figure 8.11 presents the images based on the spectral segments. The pseudo 

colours were the same as those presented in figure 8.10. Comparing the VGT and 



 

 

247

 

HRVIR images clearly showed the difference in not only the detail that was available 

but also in the manner in which the images were segmented and the total area each 

segment encompassed. A very clear example was the area taken up by water. In the 

VGT scene, water was coloured blue while in the HRVIR image it was red. In this 

particular case it seemed that the blue and red segment traded places. 

 

The generated finer spatial resolution images were very much different from 

both the coarse VGT and fine HRVIR spatial resolution images. Although the phase I 

LVM based image still had overtones of the large pixels of the VGT image the 

segmentation clearly showed that location was not necessarily maintained. This was 

even more obvious in the phase II LVM based image where the spectral segmentation 

was spatially dissimilar to the VGT image. 

 

The phase I and II generated co-simulation images were even more difficult to 

decipher because of the many small clusters that peppered the study site A. These 

images produced spectral segments unlike any other image. The phase III co-

simulated imagery however did seem to localise the land-cover segments in a manner 

similar to the HRVIR images. This was surprising because the spectral segment 

rankings of the HRVIR and phase III single realisation images were quite different. 

 

The post-processed based images were very different (figures 8.12 and 8.13). 

They were different because the spectral segments did not seem to be based on the 

underlying scene. A general trend could also be observed where the complexity of the 

simulations increased with the input parameters. The phase I imagery was based on 
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the VGT input parameters which were very coarse and therefore the output images 

were also course. These images resembled smoothed maps just like the VGT image. 

The phase II imagery on the other hand had fine spatial scale input parameters that 

obviously had a local effect on the resulting simulations. Finally, the phase III images 

showed the most variability with the inclusion of SAR data. This tendency was 

observed across all the computed statistics. 
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Figure 8.11 – Classified spectral segments based on percent cover of study site A 

with 16 classes (single realisation images). 
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Figure 8.12 – Classified spectral segments based on percent cover of study site A 

with 16 classes (E-type estimate and median images). 
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Figure 8.13 – Classified spectral segments based on percent cover of study site A 

with 16 classes (10th and 90th percentile images).  

 

Figure 8.14 presents the results of segmenting spectrally the study site A 

images into 10 clusters. The K-means algorithm output based on 10 segments was 
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different than that based on 16 segments. Greater disparity was observed between the 

VGT and HRVIR spectral segments. Comparing the other images results to those of 

the HRVIR percent cover distribution showed that with 10 segments there were fewer 

similarities between images than when 16 clusters were used. 
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Figure 8.14 – Ranked spectral segments based on the pixel count. The results shown 

are for study site A and a maximum of 10 groups. 

 

The ranked spectral segments were again used to produce pseudo colour 

images based on 10 clusters (figure 8.15). In this set, the phase II and III single co-

simulation images showed similarities in the spatial position of the ranked clusters. 

Several images also did not generate the maximum number of spectral segments, 

such as the VGT and phase I LVM images. 
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 The post-processed images that were produced using only 10 spectral 

segments and based on the study site A showed similar results (figures 8.16 and 8.17) 

to their 16 spectral segment counterparts. 

 

The same procedure was applied to the study site B (agricultural scene) 

images with 16 spectral clusters (figure 8.18). Again, the HRVIR and VGT images 

produced very different outcomes resulting in segment pixel counts that were difficult 

to merge. The phase I LVM images cluster percentages on the other hand produced 

clusters that were quite similar to those derived from the HRVIR imagery. This same 

result was observed in the study site A with 16 spectral segments. All other single 

realisation images had quite different cover percentages than the HRVIR image. 

 

Looking at figure 8.18 the phase II and III co-simulated imagery produced 

some of the worst results compared to HRVIR imagery. The first spectral segments 

were at least 10% greater than the HRVIR first segment and the others were also 

much higher. The phase II and III co-simulated image outputs were very similar 

which was not too surprising because they were based on the same input parameters. 

No other generated imagery produced a similar pattern.  
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Figure 8.15 – Classified spectral segments based on percent cover of study site A 

with 10 classes (single realisation images). 
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Figure 8.16 – Classified spectral segments based on percent cover of study site A 

with 10 classes (E-type estimate and median images). 
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Figure 8.17 – Classified spectral segments based on percent cover of study site A 

with 10 classes (10th and 90th percentile images). 
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Figure 8.18 – Ranked spectral segments based on the pixel count. The results shown 

are for study site B and a maximum of 16 groups. 

 

The ranked spectral segments were again used to produce pseudo colour 

images (figure 8.19). Only the single realisation images are shown. The post-

processed images can be found in the appendix because their results were very 

similar to that of the study site A results. 
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Figure 8.19 – Classified spectral segments based on percent cover of study site B 

with 16 classes (single realisation images). 
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The VGT and HRVIR images (figure 8.19) were again visually different both 

spatially and in terms of the pseudo colouring. The phase I LVM images spectral 

segment ranking was similar to that of the HRVIR image. The resulting pseudo 

colour image however was quite different because strong spatial ties to the VGT 

image were observed. Spatially, the phase III image resembled the HRVIR imagery 

most (figure 8.19). The dark blue colour of the river was easily recognisable however, 

the same colour was used within the agricultural region in the phase III image that 

was more difficult to interpret. The other land-cover objects were not as easily 

associated because the phase III image did not have the same type of groupings as the 

HRVIR imagery.  

 

The study site B images were also segmented with a maximum of 10 spectral 

clusters. The results of this segmentation showed many of the images did not produce 

the maximum number of segments, e.g. HRVIR, VGT, phase I and II (figure 8.20). 

The total number of pixels per segment also varied as in the previous attempts. Again 

the phase II and III co-simulation results differed the most compared to the HRVIR 

based results. 

 

The ranked segments (maximum of 10) were also used to produce pseudo 

colour images (figure 8.21). The phase III pseudo colour image accentuated the 

problem found in chapter 7 with regards to the negative relationship applied between 

the SAR and channel 2. The water class was quite clearly delineated spatially in the 

pseudo coloured image however, the segment to which it was associated to did not 
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conform to the water class. The HRVIR pseudo coloured image had the water 

segment primarily within the water boundaries. The phase III pseudo colour image on 

the other hand associated the water with other land-cover types that should not have 

been a part of the water segment. This association made it difficult to classify the 

segment as well as provide an accurate estimate of the area taken up by this class.  
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Figure 8.20 – Ranked spectral segments based on the pixel count. The results shown 

are for study site B and a maximum of 10 groups.  
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Figure 8.21 – Classified spectral segments based on percent cover of study site B 

with 10 classes (single realisation images). 
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The study site C was also an agricultural scene. Generally the results were 

similar to those seen above. What was interesting to note in some cases was the fact 

that even though the segment ranking might have been similar, the classes to which 

the segments referred to on the image were not the same. An example of this was 

study site C HRVIR and VGT image spectral segments based on 16 clusters 

(appendix). The output showed that the first three classes had a similar pixel total. 

However, when this information was compared to the pseudo colour images 

(appendix), there seemed to be no spatial relationship between the two. 

 

The pseudo colour imagery based on the phase I, II and III co-simulation 

outputs delineated quite well the forest feature that was visible in the HRVIR imagery 

(appendix). This was interesting because based on the VGT and LVM phase I and II 

outputs, this feature was not delineated as strongly. The river features however were 

not delineated as effectively. The phase III output also suffered from the negative 

relationship that was imposed on the SAR and channel 2 relationship. 

 

Segmenting the study site C images into 10 clusters resulted in only the 

HRVIR image producing so many clusters. All the other images were unable to 

segment the image into so many clusters with the majority of the images having 6 to 

8 segments. The phase II and III co-simulated images were again quite similar in 

terms of the total number of pixels per segment. Unlike previous similarities the 

pseudo colour image also showed similarities because the forest land-cover was made 
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up with the same colours. This was not too much of a revelation because the 

generated images were based on the same finer spatial resolution input parameters. 

 

Again the water class was not properly delineated because of the negative 

relationship imposed during phase III. However, there was no evidence of the water 

class in the other generated finer spatial resolution images because it was too small to 

register properly in the VGT imagery (appendix).  

 

The final study site to be studied was D. Running the K-means algorithm with 

a maximum of 16 clusters produced results that were inline again with the 

expectations and results of previous tests. In this case, the two largest clusters of the 

HRVIR imagery were larger than any of the phase I, LVM1 and LVM2 images. The 

phase II and III co-simulated images on the other hand produced much larger clusters. 

 

Looking over the pseudo coloured images based on the size of the 16 spectral 

segments showed that the VGT image was spectrally segmented differently than the 

output of all the generated finer spatial resolution images. The various pseudo colours 

that were found in the same location of different images indicated that for the same 

location, depending on the manner in which the imagery was generated will result in 

a different estimate of that land-cover. This difference was also seen in the HRVIR 

image. 

 

The phase III generated image again had difficulty properly segmenting the 

water class. However, the introduction of the SAR data into the simulation process 
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resulted in better spatial delineation of the land-cover especially the forest and 

agriculture classes. 

 

The study site D was also spectrally segmented into 10 clusters (appendix). In 

this case the VGT image generated a similar first cluster that was very similar in size 

to that of the HRVIR image. This similarity however did not result in the same land-

cover on the ground. The other finer spatial resolution generated images (LVM 1, 

LVM 2 and phase I co-simulation) produced segments that contained less pixels than 

the HRVIR image. Again, the phase II and III co-simulation images produced much 

larger clusters compared to all the other results. 

 

Looking at the pseudo colour images (appendix) the differences in the VGT 

and HRVIR images were quite clear. Spatially both the HRVIR and VGT images 

were quite heterogeneous, however the spatial scale of this spatial variability was 

quite different. The other generated finer spatial resolution images did not resemble 

either the VGT or HRVIR images because of the pseudo colour ranking based on the 

total number of pixels per segment. Only the phase III co-simulation image 

delineated the forest/non-forest land-cover similarly to the HRVIR imagery. Again 

the water class was wrongly classified due to the imposed negative relationship 

between the SAR and channel 2. 
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8.3 Assessment of Accuracy 

A final analysis of the accuracy of the generated finer spatial resolution 

images was done using land-cover data. This vector data came from the Canada Land 

Inventory Level-II UTM digital data set whose original map scale was 1:250 000 

while the second is based on 1:50 000 topographical maps (National Topographic 

Digital Data Base). The assessment of the accuracy of the segmented images were 

made by comparing the number of segments and the pixel frequency that falls within 

specific land-covers.  

 

For each study site certain land-cover classes were chosen and the spectral 

clusters that were found at those places was extracted. This was done for the VGT, 

HRVIR and each of the generated finer spatial resolution images. 

 

From section 8.2, the number of clusters into which the image data was 

spectrally segmented significantly altered the number of pixels associated with any 

one cluster. In any of the study sites, the number of possible land-cover classes was at 

least 8. For this reason the assessment was only being tested on the 16 cluster outputs. 

This was because running the K-means algorithm with only 10 clusters in many cases 

did not generated even 10 clusters. In order to make sure that enough spectral clusters 

were available for the accuracy assessment only the results based on 16 clusters was 

used. 
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8.3.1 CLI based accuracy 

The CLI land-use system has 14 valid codes (table 8.II). Not all land-cover 

types were assessed during this study because of the location of the study sites. Those 

land-cover classes that were applied in this section were checked (table 8.II). The 

land-cover classification for this area is quite old and was produced between 1950 

and 1970.  

 

Table 8.II – CLI Valid Land-Use Codes. 

Code Land-Use  
B Urban built-up area √ 
E Mines, quarries, sand and gravel pits  
O Outdoor recreation  
H Horticulture  
G Orchards and vineyards  
A Cropland  
P Improved pasture and forage crops √ 
K Unimproved pasture and range land  
T Productive woodland √ 
U Non-productive woodland  
M Swamp, marsh or bog  
S Unproductive land – sand  
L Unproductive land – rock  
8 Unmapped areas (subclass Z = Water area) √ 
 

The images in this section are presented in pseudo colours where a single 

colour was assigned to each spectral segment.  

 

For study site A, only the built-up and water land-cover classes were used. 

Figure 8.22 shows the area covered by these two classes as well as the outline over 

the images under investigation. Visually, it was apparent that the VGT imagery 

would have the greatest error in accuracy because the land-cover border divided the 
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large pixels and it was difficult to separate them. The vectors that delineated the land-

cover classes however were not as accurate as the HRVIR imagery because the 

vectors sometimes did not properly overlay the imagery. The HRVIR imagery also 

showed that within the built-up land-cover there was a wider range of spectral 

segments. However, this was the same for the VGT image as well as all of the 

generated finer spatial resolution images. 

 

CLI HRVIR VGT LVM1

P1 LVM2 P2 P3

Figure 8.22 – CLI vectors superimposed on the spectrally segmented images of study 

site A based on 16 clusters. 

 

Even though there was a range of spectral segments within the built-up class, 

the water class was very homogeneous in the HRVIR image. Only the phase III 

(figure 8.22, P3) generated image also provided a homogeneous water class that was 
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well defined. Within the boundaries of the water class, the other images continued to 

be made up of several different spectral segments.  

 

Figure 8.23 shows the distribution of spectral segments under the built-up 

land-cover. In a metropolitan region, the built-up land-cover class is made up of 

many types of objects, which includes both man made and natural. 

 

Figure 8.23 – The distribution of spectral segments within the built-up land-cover 

class for study site A based on 16 clusters. 

 

Based on figure 8.23, the HRVIR image had approximately 5 segments made 

up of more than 10% of the pixel count. Therefore these 5 segments made up more 

than 60% of the built-up class for study site A. Therefore, out of a possible 14 
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spectral segments, five accounted for the majority of the built-up area. The VGT 

image on the other hand presented a different distribution. One segment rose much 

higher than the rest attaining over 25%. In association with this segment, four other 

spectral segments made up 75% of the region.  Here there were also five segments 

that made up most of the region however they account for approximately 75%. One 

segment took up almost 30%.  

 

The phase I and phase II LVM generated images resembled the HRVIR 

images spectral segment distribution in that they did not have any one segment that 

made up most of the built-up land-cover class. All the co-simulated finer spatial 

resolution images were made up of spectral segments that contained over 25% of the 

pixels within the urban class. The phase II and III co-simulated images were very 

distinct having three dominant spectral segments for urban class where over 75% of 

the pixels came from only three different spectral segments.  

 

The other land-cover of interest at study site A was water (figure 8.24). The 

HRVIR first segment was made up of just over 80% of the pixels found within the 

water class. The other spectral segments whose frequencies were very small were 

most likely due to the inaccuracy of the class vectors. The VGT image also had a 

spectral segment that rose above the others however it only accounted for 30%. Based 

on the VGT image output, there seemed to be a trend where the more information 

was inserted into the generation of the image, a single segment continued to take 

more and more of the pixels making up the water class. The phase III co-simulation 

image provided the largest single segment (after the HRVIR image) with the most 
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number of pixels within the water land-cover class (over 50%). Only the phase I and 

II LVM images did not produce such a distribution. Their frequencies were fairly 

equal across all the spectral segments meaning that there was a large mix of different 

spectral segments within the water land-cover class.  

 

Figure 8.24 – The distribution of spectral segments within the water land-cover class 

for study site A based on 16 clusters. 

 

The other three study sites were agricultural scenes. For these study sites four 

main land-cover classes were investigated: built-up, water, improved pasture and 

productive woodland. The study site B spectrally segmented images with the land-

cover class overlay is shown in figure 8.25. 
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CLI HRVIR VGT LVM1

P1 LVM2 P2 P3

 

Figure 8.25 – CLI vectors superimposed on the spectrally segmented images of study 

site B based on 16 clusters. 

 

The study site B image was primarily made up of pasture (figure 8.25 – CLI 

(blue)). The red sections were built-up areas while the purple was woodland (figure 

8.25 – CLI). A river runs through this image and was delineated in green (figure 8.25 

– CLI). Based on the HRVIR image (8.25), the vectors appeared to delineate the 

regions quite loosely because the mapping was based on 1:250 000 map scale. 

However, it was still possible to see what areas belonged to which land-cover class. 

The coarse resolution VGT spectrally segmented image pixels however were much 

larger than some of the land-cover areas themselves delineated by the vectors. This 

was further observed in the phase I LVM generated imagery. As spatial resolution 

became more fine, heterogeneity within the land-cover class vectors became more 
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pronounced but at the same time the boundaries of the spectral segments were also 

more in line with the land-cover class vectors. The phase II and III co-simulated 

spectrally segmented images appeared to be the most heterogeneous.  

 

The number of spectral segments found under each of the four land-cover 

classes was computed for study site B (figures 8.26 through 8.29).  

 

Figure 8.26 – The distribution of spectral segments within the built-up land-cover 

class for study site B based on 16 clusters. 

 

The built-up areas of study site B were primarily made up of spectral segment 

three for the HRVIR image because 30% of the pixels came from that segment. 

However, there were many more spectral segments that were found within the built-

up area class for the HRVIR imagery. Another three spectral segments contained over 

10% of the total pixels with another three segments making reaching each up over 
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5%. This variability of the spectral segments that made up a single land-cover class 

was not exclusive to the HRVIR image. The VGT and generated finer spatial 

resolution images all had quite a variable number of spectral segments making up the 

built-up land-cover class. The VGT image had the fewest number of spectral 

segments that fell into the built-up land cover class because of its coarse spatial 

resolution. The phase II LVM generated finer spatial resolution image produced the 

most variable distribution of spectral segments while the phase III co-simulated 

image produced the highest frequency of pixels for any single spectral segment 

compared to the HRVIR imagery under the built-up land-cover class.  

 

The distribution of spectral segments under the water land-cover class found 

at study site B is presented in figure 8.27. The distributions were quite variable for all 

images other than the HRVIR image. The HRVIR spectrally segmented image had a 

dominant first segment, which accounted for almost 80% of the pixels within the 

water class. Although the VGT and phase III co-simulated images also had spectral 

segments that were quite dominant they did not make up such a large percentage of 

the total number of pixels under the water land-cover class. This indicated a greater 

variability of spectral segments thereby introducing more ambiguity with regards to 

the estimate of the water class. Note however that the segments with the highest 

frequency in the water land-cover class distributions were very low in the built-up 

land-cover class figure for both HRVIR and phase III co-simulation based images. 

This indicated that the spectral segmentation process was able to at least discriminate 

quite well between the built-up and water classes at study site B. 
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Figure 8.27 – The distribution of spectral segments within the water land-cover class 

for study site B based on 16 clusters.  

 

The built-up and water land-cover classes were not as prominent at the study 

site B as in study site A. The figure 8.28 presents the results of the spectral segments 

found under the improved pasture land-cover class for study site B. The pasture class 

covered a large percentage of the study site B image and the resulting spectral 

segment distributions were variable. Such behaviour can be expected because of the 

wide range vegetation and field that can be found within this land-cover class at the 

end of May when the image was recorded. The greatest variability in the distribution 

of spectral segments within the pasture land-cover class was for the phase II LVM 

based image. This generated imagery always had very variable spectral segment 

distributions. For this particular land-cover, the HRVIR image spectral segment 

distribution was much more variable than that found for the phase III co-simulation 

image. There were four segments from the phase III  co-simulation image that were 
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above 15% and accounted for over 70% of the pasture land-cover. On the other hand, 

only one segment was greater than 15% for the HRVIR imagery. The VGT image 

spectral segment distribution in this case was not as variable as that of the HRVIR 

imagery. 

 

Figure 8.28 – The distribution of spectral segments within the pasture land-cover 

class for study site B based on 16 clusters. 

 

The phase II co-simulated imagery produced a spectral segment distribution 

for the pasture class that was similar to the phase III co-simulated results. From the 

distribution alone it was difficult to tell whether one produced more accurate results 

than the other in terms of estimating the total area of pasture at study site B. 

 

The final land-cover class investigated for study site B was the productive 

woodland class (figure 8.29). Two spectral segments based on the HRVIR image 
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made up over 50% of the woodland class. The phase III co-simulation image had 

three prominent spectral segments that made up over 70% of the woodland land-

cover class however the distribution was much less variable than the HRVIR images. 

The most variable distribution of spectral segments was again based on the phase II 

co-simulation image for the woodland land-cover class. 

 

Figure 8.29 – The distribution of spectral segments within the woodland land-cover 

class for study site B based on 16 clusters. 

 

Classification of the study site B would have been difficult for either the real 

HRVIR and VGT images as well as the generated finer spatial resolution images 

because of the variability of spectral segments found within the wanted land-cover 

classes. Therefore, in order to classify these spectral segments more information was 

required which was related to location as well as experience. 
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The study site C was also an agricultural mix region. The same land-cover 

classes as in study site B dominated in this area (figure 8.30). The horseshoe shaped 

purple region in the CLI image is the productive woodland land-cover class while the 

blue areas are pastures. A river running across the image is also classified as well as a 

few built-up areas in red. 

 

CLI HRVIR VGT LVM1

P1 LVM2 P2 P3

Figure 8.30 – CLI vectors superimposed on the spectrally segmented images of study 

site C based on 16 clusters. 

 

The study site C results were pretty similar to the results of the previous study 

sites. Similarities were specifically found between the results of study site B because 

all the land-cover classes were quite heterogeneous except for the water class in the 

HRVIR image. As such only the pasture and woodland results were presented 

(figures 8.31 and 8.32). The results of the built-up and water land-cover class can be 
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viewed in the appendix. The distribution of the spectral segments for the built-up 

land-cover class was variable for the HRVIR image as well as the phase I co-

simulation and phase I and II LVM generated images. The VGT image as well as the 

phase II and III co-simulated images had less variable distributions with one or 

several dominant segments. A single dominant spectral segment for the water class 

was observed for the HRVIR imagery in study site C. The other images had a much 

greater distribution of spectral segments associated with this land-cover class.  

 

The pasture land-cover class made up a large percentage of the total area of 

the study site C. The phase II and III co-simulation images produced spectral segment 

distributions that were quite similar in shape but differed in frequency (figure 8.31). 

These same distributions also had dominant spectral segments that made up a large 

percentage of the pasture land-cover class. The other images produced distributions 

of spectral segments that were quite variable. This was no surprise because of the 

heterogeneity seen in the segmented images across the study site C. 

 

The final land-cover class analysed for study site C was the woodland class 

(figure 8.32). Looking back at the delineated woodland class in the segmented 

images, the woodland area seemed to be made up of two to four different classes. 

This fact was supported by the graphs of the distribution of the spectral segments 

within the woodland land-cover class. The HRVIR image was mostly made up of two 

spectral segments while the phase II and III co-simulated images had four dominant 

spectral segments within the woodland class. 
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Figure 8.31 –The distribution of spectral segments within the pasture land-cover class 

for study site C based on 16 clusters.  

 

Figure 8.32 – The distribution of spectral segments within the woodland land-cover 

class for study site C based on 16 clusters. 
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The other images had more of a variable distribution of spectral segments 

within the woodland class. The VGT image had two distinct peaks that separated 

themselves from the rest of the distribution of spectral segments. 

 

The final study site, D, is also based on an agricultural scene with the same 

four land-cover classes being most significant in the area. In this area the woodland 

land-cover class was most dominant (figure 8.33 – CLI (purple)). Again, every image 

provided a different spectral segmentation. 

 

CLI HRVIR VGT LVM1

P1 LVM2 P2 P3

Figure 8.33 – CLI vectors superimposed on the spectrally segmented images of study 

site D based on 16 clusters. 

 

The graphs of the spectral segments found under the built-up, water and 

pasture land-cover classes are found in the appendix. The HRVIR imagery had quite 
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a variable distribution of spectral segments. This result was mirrored loosely by the 

phase II LVM based generated images spectral segments. The phase II and III co-

simulated images spectral segments that were found under the built-up area class 

were primarily made up of three dominant segments. 

 

The water class again was very well segmented in the HRVIR imagery. The 

other images had two or three spectral segments that dominated within the boundaries 

of the water land-cover class. Some of these same dominant segments found within 

the water class were also found in the pasture class (i.e. phase II and III co-simulated 

images). For example the eighth segment in the phase II co-simulated image provided 

just under 25% of the coverage based on the pasture class and just over 45% in the 

water class. The other images had quite a variable distribution of spectral segments 

within the pasture land-cover class as was observed in the previous study sites. 

 

The distribution of spectral segments for the study site C woodland land-cover 

class is presented in figure 8.34. The HRVIR imagery had two spectral segments that 

dominated this class and accounted for almost 40% of the pixels. Several other 

spectral segments accounted for the rest making a variable distribution within this 

class. The VGT, phase I and II LVM based and phase I co-simulation images all had 

a variable distribution of spectral segments within the woodland land-cover class. The 

phase II and III co-simulation based images again contained three dominant segments 

that made up a large part of the class. These images also had a less variable 

distribution of the spectral segments. 
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Figure 8.34 – The distribution of spectral segments within the woodland land-cover 

class for study site D based on 16 clusters. 

 

8.3.2 A more accurate classification 

A large area of study site D was made up of the woodland land-cover class 

based on the CLI. Land-cover information was also available for this sector whose 

classification was based on a much finer map scale (1:50 000) with a more recent 

production date (~1990). The woodland class for this area was investigated (figure 

8.35). The fineness of this woodland land-cover data set was easily appreciated 

compared to the CLI image (figure 8.35). The woodland boundaries are much more 

exact and delineate many smaller areas that were not possible using the CLI land-

cover data set. The HRVIR image was finely divided into the woodland land-cover 

by the vectors. The coarse spatial resolution VGT spectral segments in most cases did 

not make up an entire polygon making it very difficult to estimate the area taken up 
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by woodland land-cover. The smooth nature of the phase I LVM and co-simulated 

imagery also had the same difficulty as the VGT image. The phase II LVM and co-

simulated spectrally segmented images were more heterogeneous in nature and 

therefore had a greater mix of spectral segments within the woodland land-cover 

class. Finally, the phase III co-simulated image appeared to have certain spectral 

segments within the woodland land-cover as observed in the HRVIR image. 

 

CLI HRVIR VGT LVM1

P1 LVM2 P2 P3

Figure 8.35 – Woodland vectors superimposed on the spectrally segmented images of 

study site D based on 16 clusters (1:50 000 map scale). 

 

The spectral segments found within the limits of the woodland class 

boundaries were sampled (figure 8.36). Two spectral segments accounted for over 

65% of the pixels found within the boundaries of the woodland land-cover class 

based on the HRVIR imagery. A little variability was observed with three segments 
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each taking up just over 5%. The VGT, phase I and II LVM and phase I co-

simulation images all resulted in spectral segment distributions that were quite 

variable with no obvious dominant segment. The phase II and III co-simulated image 

results showed that between three and four spectral segments dominated within the 

boundaries of the woodland class. This distribution of spectral segments was similar 

to that of the HRVIR imagery in the sense that specific segments dominate the 

woodland class.  

 

Figure 8.36 – The distribution of spectral segments within the woodland land-cover 

class for study site D based on 16 clusters (1:50 000 map scale). 

 

8.4 Discussion 

There was quite a difference in the type of information that could be extracted 

from the HRVIR or VGT optical images and the generated finer spatial resolution 
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images. These differences were shown in the location of the spectral segments in 

spectral feature space, the total number of pixels that were associated with the 

spectral segments, and the location of these spectral segments within the image. 

 

The spectral segments in spectral feature space could be generally put into 

three categories: real fine spatial resolution imagery, real coarse spatial resolution 

imagery and generated finer spatial resolution imagery. The only spectral segments 

that fit into the real fine spatial resolution image category were the HRVIR images 

because their segmentation was very distinct from the others. The second category 

was made up of the VGT imagery as well as the phase I co-simulated images and 

phase I and II LVM based images. The spectral segments from these generated finer 

spatial resolution images closely mimicked the segmentation of the VGT imagery. 

Although their spatial resolution was not the same, the information that could be 

extracted from these spectral segments was very similar to that of the original VGT 

image. The generated image group was made up of the phase II and III co-simulated 

images. The spectral segments resulting from these images differed from both the real 

fine and coarse spatial resolution images. 

 

Spectral segments in spectral feature space differed from image to image. The 

results of section 8.2 provided further evidence of these differences. By ranking each 

spectral segment based on the number of pixels, comparisons were made between 

images. It was observed that the ranked segments were not similar geographically 

overall and therefore the ranked segments could not be matched. For example, the 

total number of pixels was equal within a spectral segment however in one image the 
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segment represented water while in the other image the segment represented man 

made objects. The similarities between ranked segments could not be tested 

statistically because the number of segments delineated by the K-means algorithm 

was not constant. 

 

Accuracy is determined by the differences between what is known to be at a 

specific location and what is considered to be at the same location based on the 

available data. The smaller the difference, the more accurate the information. In 

section 8.3, the locations of several known land-cover classes were compared to the 

spectral segments at those same locations. With the exception of the water land-cover 

class, there was a variable distribution of spectral segments that made up any single 

land-cover class. While this in itself was not unusual, the fact that these same spectral 

segments were found within different land-cover classes does suggest error. The more 

land-cover classes a spectral segment belongs to, the greater is the error of the 

classification. 

 

The VGT image results in this chapter could be deceiving because the spatial 

resolution of the pixels was not 1 km. In order to overlay the VGT image on the other 

images, the 1 km spatial resolution had to be divided into smaller pixels which were 

equal in spatial resolution to the HRVIR and generated images. As a consequence of 

dividing up the large pixels, the resulting distributions of the total percentage found 

within a given land-cover class was less then what it should have been. For example, 

if the vector crossed down the middle of a VGT pixel then the entire pixel area would 

be used to estimate the area. By dividing up the VGT pixel, only half of the pixels 
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within the area taken up by the original VGT pixel were taken into account thereby 

decreasing the area taken up by the VGT image data. 

 

Validation requires a high degree of geometric accuracy because geometric 

error displaces objects from where they should be located or known to be located. 

The VGT imagery in study site B did not appear to overlay the HRVIR imagery 

exactly. This has significant implications for validation because errors would then be 

caused by the error in location and not necessarily spectral segmentation. Geometric 

accuracy is paramount for this procedure. For validation purposes, both location and 

class are most important. 

 

In the perfect case, a single spectral segment would be associated with a single 

land-cover class. However, this idea is the exception rather than the rule because 

land-cover classes are necessarily made up of a varying number of spectral objects, 

i.e. the urban land-cover class was made up of vegetation as well as man-made 

structures. The heterogeneity that was found both in the HRVIR, VGT and generated 

finer spatial resolution images was normal.  

 

8.4.1 A possible validation procedure 

 A validation procedure that would be better suited to the type of data 

available and generated through stochastic imaging techniques is suggested. The 

primary issues that must be taken into account are the differences in scale between 

the two data sets as well as the differences in information content, e.g. a topographic 
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map and a remotely sensed image. Validation would be uncomplicated if the 

validation data set had the same scale as the data being validated. In such a case there 

would be no question as to the differences in scale and therefore error could be dealt 

with directly. However, this is rarely the case requiring users to compare information 

derived from two different scales and derived in different manners. 

 

There are two aspects to remote sensing image validation: accuracy of 

classification and accuracy of location. The accuracy of classification is the ability to 

segment and label pixels within the image with the wanted object classes. The 

accuracy of location is making sure that the classified pixel is in the correct 

geographic location. For best results both types of accuracy should have little error. 

 

The validation procedure taken in this dissertation tried to be objective by 

choosing automatic segmentation procedures. Also, a direct comparison was hoped 

for between generated finer spatial resolution imagery and HRVIR imagery. From the 

results that were shown, it is obvious that a direct comparison was not possible. 

However, further analysis is warranted.  

 

A future study would look at several different scales (figure 8.37). Finer 

spatial resolution images would be generated in the same manner at four different 

spatial resolutions, e.g. 500 m, 250 m, 100 m, and 20 m. At the same time, the 

classified fine spatial resolution image would be generalized to the same spatial 

resolutions as those generated by stochastic simulation thereby allowing direct 

comparison of information at different spatial resolutions. Furthermore, the types of 
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land-cover classes that persist could be observed in the generalization of the finer 

spatial resolution information. 

 

Once the new data sets are generated, a relationship could be modeled 

between the spectral segments of the generated finer spatial resolution imagery and 

those of the generalized land-cover classes to assist in the labeling of the spectral 

segments of the generated finer spatial resolution imagery. 

 

Finally an accuracy assessment could be made between the classified 

generated finer spatial resolution imagery and those of the generalized land-cover 

map. This accuracy assessment could begin based on a single land-cover class such as 

the forest class. The forest class is a good choice because it is an important object in 

both global and local scale studies and (depending on size) can be observed at both 

fine and coarse spatial resolutions. 
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Figure 8.37 – Proposed validation procedure for comparing generated finer spatial 

resolution images to a validation data set.  

 

Such a study would also help determine whether a break in the range of 

spatial scales generated is present. The break would be detected with differences 

found between the generalized and generated images.  

 

The testing of different validation procedures is a necessity in this case in 

order to better understand what stochastic imaging is capable of in terms of 

generating finer spatial resolution imagery as well as for quantifying the error that 

could be expected from using such a technique. It is expected that this procedure 

could produce valued results when dealing with both large and small changes in 

spatial resolution. 
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Chapter 9 – Summary and Conclusions 

Two competing procedures are used today for land-cover monitoring at the 

global scale. The traditional land-cover characterisation and mapping procedure 

begins with a fine spatial resolution image and then one generalises to the wanted 

map scale (e.g. 1:100 000). The second procedure is based on a mixed spatial 

resolution approach that utilises both coarse spatial resolution imagery and fine 

spatial resolution samples. Both procedures are expensive and have poor temporal 

cohesion (chapter 1). Here, a less expensive and temporally sound reverse procedure 

was proposed and tested by generating finer spatial resolution multi-spectral imagery 

based solely on coarse spatial resolution data. 

 

This research demonstrated that technically it is possible to generate finer 

spatial resolution images based solely on coarse spatial resolution imagery and 

stochastic imaging techniques. Between the two sequential gaussian simulation 

options used, the co-simulation approach produced more realistic results compared to 

the HRVIR imagery considered as the ‘truth’. However, this required the derivation 

of the fine spatial resolution variogram and object location information. 

 

In phase I, many similarities were observed between the resulting finer spatial 

resolution imagery and the conditioning VGT imagery. These similarities were 

observed spatially, statistically and in the spectral segmentation of the imagery. As a 

result it was necessary to refine the procedure to better match the image 
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characteristics of the HRVIR imagery. Refining the procedure required determination 

of the variogram at the finer spatial resolution. 

 

As explained in chapter 6, the derived finer spatial resolution variogram was 

very different from the variogram computed directly from the HRVIR imagery, even 

though the imagery was acquired at the same moment in time and with the same 

spectral bands. The geostatistical theory of regularisation could not be assumed in 

this case to derive the finer spatial resolution variogram parameters because of 

differences in the HRVIR and VGT sensor systems. These differences were attributed 

to the fact that the HRVIR and VGT sensors are separate systems. As a result, it was 

decided that the computed HRVIR variogram be used instead. The resulting 

generated finer spatial resolution images had spatial heterogeneity that better 

resembled the HRVIR imagery. However, spectrally the spatial location of segments 

did not correspond to either the VGT or HRVIR images. 

 

Geographically improved finer spatial resolution images were generated with 

the conditioning help of the RADARSAT-1 ScanSAR imagery (phase III – see 

chapter 7). The co-simulation was able to integrate the location information into the 

generated finer spatial resolution imagery but was very dependent on the optical and 

SAR linear relationship. Differences were still observed visually and statistically 

between the phase III and the HRVIR images. The images showed visual undertones 

of the conditioning SAR imagery while the statistical results matched the phase II co-

simulated images. For mapping purposes, the geographic information provided by the 

SAR data is essential to better delineate objects when stochastic imaging is applied. 
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SAR data is also easily acquired because of its active sensor system thereby 

facilitating the acquisition of images to complement the coarse spatial resolution 

optical imagery. 

 

The final step in any remote sensing investigation is information extraction. 

Information extraction began with the automatic spectral segmentation of the original 

and generated images. Further information extraction was hindered because of the 

difficulty in matching spectral clusters between images (see chapter 8). As a result, 

accuracy assessment also proved difficult. Furthermore, the stochastic spatial nature 

of the generated finer spatial resolution images did not allow for a regular accuracy 

assessment because the location of simulated pixels varied with each realisation. 

 

Spectral homogeneity within land-cover classes was rare because of the very 

nature of the land-cover. A class, such as forest or urban, will be quite variable even 

when spectral segmentation is applied as was demonstrated by the HRVIR imagery 

(see chapter 8). This same spectral heterogeneity was found in the generated finer 

spatial resolution images. The difficulty lied in knowing whether a segment was part 

of a real land-cover class or an artefact of the stochastic imaging process. As a test, 

known broad land-cover classifications (e.g. urban) were overlaid onto the images 

and the cluster distributions compared. With the exception of the water class, land-

cover classes were made up of several different clusters. The phase II and III results 

appeared to have dominant clusters but it was difficult to evaluate their significance 

in terms of land-cover classes. Even the HRVIR imagery behaved in a similar 

manner.  
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Overall, this series of experiments served to: 

- demonstrate that coarse spatial resolution imagery can be used to generate 

finer spatial resolution imagery from stochastic imaging techniques. 

However, before spectral reproducibility can be achieved, the sensing 

system and scale relationships must be better understood; 

- illustrate the appropriateness of the co-simulation technique but also show 

that the input parameters (variogram and distribution) drive the resulting 

spatial scale of the generated finer spatial resolution images; 

- demonstrate that the use of SAR imagery is beneficial to the process of 

generating finer spatial resolution imagery because it helps fix the ground 

scene characteristics, but the relationship to the optical imagery (an 

important input parameter for co-simulation) varies depending on the 

scene and must be further investigated; 

- show that spectral segmentation of synthetic imagery is possible but 

validation remains difficult using the standard approach; 

- demonstrate that the ground scenes of the study sites were favourable for 

this methodology. However, this small group of sites does not represent 

all possible ground scenes and larger areas in different regions must also 

be tested to see how scene types influence the resulting generated finer 

spatial resolution imagery.  

 

Several other topics for research emerged from the results of the work 

presented: 
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1. The derivation of finer spatial resolution image statistics is 

paramount to advancing the presented methodology. A better 

understanding of the relationship between the optical and SAR 

imagery and the effects of arbitrarily increasing the correlation will 

provide a better understanding of the potential of this methodology 

for incorporating different types of image data. 

2. The results presented above were based on four distinct regions that 

were chosen to satisfy the decision of stationarity and other criteria 

(e.g. different land-covers). Monitoring necessarily covers much 

larger regions that may not be considered stationary and therefore 

affect the stochastic imaging procedure. Another consequence of 

this is the variogram model used for the region under study. A 

single variogram model that describes the entire region will be very 

generic and not capable of describing local variability. As a 

consequence, a better design would be to delineate areas within the 

study region that are similar before generating finer spatial 

resolution imagery. 

3. Monitoring of a specific region requires imagery to be recorded 

over time. The behaviour of the resulting generated finer spatial 

resolution images based on a set of images acquired over time is 

important because the deviations in the resulting images must be 

known to be caused by changes on the ground rather than due to the 

stochastic imaging procedure. Otherwise, real changes could not be 

separated from artefacts of the simulation process. 
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4. The statistical images generated from the set of 50 realisations 

contributed to the understanding of the possible alternatives that 

each realisation produced. Further study can look into the spectral 

cluster differences between each of the realisations. 

 

The success of this procedure could lead to the possibility of establishing a 

procedure that provides image data at the desired scale of observation given the 

available imagery. 
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