
Université de Montréal

Demand-Driven Type Analysis

for Dynamically-Typed Functional Languages

par

Danny Dubé

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Thèse présentée à la Faculté des études supérieures

en vue de l’obtention du grade de Ph.D.

en Informatique

Août, 2002

c©, Danny Dubé, 2002

Université de Montréal

Faculté des études supérieures

Cette thèse intitulée:

Demand-Driven Type Analysis

for Dynamically-Typed Functional Languages

présentée par:

Danny Dubé

a été évaluée par un jury composé des personnes suivantes:

Gilles Brassard

président-rapporteur

Marc Feeley

directeur de recherche

Alain Tapp

membre du jury

Matthias Felleisen

examinateur externe

Gilles Brassard (par interim)

représentant du doyen de la FES

Résumé

Nous présentons une nouvelle analyse de types destinée aux langages typés dynami-

quement qui produit des résultats de grande qualité à un coût qui la rend utilisable en

pratique. Bien que statique, l’analyse est capable de s’adapter aux besoins de l’optimiseur

et aux caractéristiques du programme à compiler. Le résultat est un analyseur qui se modifie

rapidement pour être en mesure de mieux effectuer son travail sur le programme. Des tests

démontrent que notre approche peut user de passablement d’intelligence pour permettre la

réalisation de certaines optimisations.

L’analyse est adaptable parce qu’elle est effectuée à l’aide d’un cadre d’analyse pa-

ramétrisable qui peut produire des instances d’analyses à partir de modèles abstraits. Ces

modèles abstraits peuvent être remplacés au cours de l’analyse du programme. Plusieurs pro-

priétés du cadre d’analyse sont présentées et démontrées dans ce document. Parmi celles-ci,

on retrouve la garantie de terminaison associée à toute instance d’analyse produite à l’aide

du cadre, la capacité d’analyser parfaitement tout programme qui se termine sans erreur et

la capacité d’imiter plusieurs analyses conventionnelles.

Les modifications apportées au modèle abstrait en fonction des besoins de l’optimiseur le

sont grâce à l’utilisation de demandes et de règles de traitement des demandes. Les demandes

décrivent des requêtes pour la démonstration de propriétés jugées utiles à l’optimiseur.

Les règles de traitement permettent la traduction de demandes décrivant les besoins de

l’optimiseur en des directives précises de modifications au modèle abstrait. Chaque directive

de modification du modèle peut apporter une aide directe à l’optimiseur parce que les

règles de traitement font en sorte que des demandes justifiées sont transformées en d’autres

demandes justifiées.

Une approche d’analyse sur demande complète basée sur le pattern-matching est décrite

iv

et a été implantée. Le prototype implantant cette approche a démontré le potentiel considé-

rable de nos travaux. Il faudra encore effectuer d’autres recherches avant qu’on puisse utiliser

couramment notre approche dans les compilateurs. C’est toutefois compréhensible si on

considère que tous nos travaux, outre les idées liées aux analyses statiques conventionnelles,

sont une contribution originale.

Mots-clés : analyse sur demande — analyse adaptable — analyse statique — analyse de

types — techniques de compilation — optimisation de programmes

Abstract

We present a new static type analysis for dynamically-typed languages that produces high

quality results at a cost that remains practicable. The analysis has the ability to adapt

to the needs of the optimiser and to the characteristics of the program at hand. The

result is an analyser that quickly transforms itself to be better equipped to attack the

program. Experiments show that our approach can be pretty clever in the optimisations

that it enables.

The analysis is adaptable because it is accomplished using a parametric analysis frame-

work that can instantiate analyses by building them from abstract models. The abstract

models can be changed during the analysis of the program. Many properties of the analysis

framework are presented and proved in the dissertation. Among which there is the guar-

antee of termination of any analysis instance it produces, the capacity to analyse perfectly

well error-free terminating programs, and the ability to mimic many conventional static

analyses.

Modifications to the abstract model in response to the needs of the optimiser are realised

through the use of demands and demand processing rules. Demands express a request for

the demonstration of a property deemed useful to the optimiser. The processing rules

allow demands that directly express the needs of the optimiser to be translated into precise

proposals of modifications to the abstract model. Each modification to the model that is

proposed is potentially directly helpful to the optimiser because the processing rules ensure

that pertinent demands are translated into other pertinent demands.

A complete approach of demand-driven analysis based on pattern-matching is exposed

and has been implemented. The prototype implementing the approach has demonstrated

that our work has great potential. Further research has to be conducted to make the method

vi

usable in everyday compilers. Still, this is understandable, considering that our whole work,

except the notions related to conventional static analysis, is original material.

Key-words: demand-driven analysis — adaptable analysis — static analysis — type anal-

ysis — compilation techniques — program optimisation

Contents

1 Introduction 1

1.1 A Gentle Introduction . 1

1.2 Some More Precisions . 3

1.3 Sketch of a Solution . 8

1.4 Plan . 11

2 Definition of the Problem 13

2.1 Objective . 13

2.2 Language . 14

2.3 Generality of the Objective . 16

3 Analysis Framework 20

3.1 Instantiation of an Analysis . 21

3.1.1 Framework Parameters . 22

3.1.2 Analysis Results . 25

3.1.3 An Example of Use of the Analysis Framework 28

3.2 Internal Functioning of the Framework . 30

3.2.1 Evaluation Constraints . 30

CONTENTS viii

3.2.2 Safety Constraints . 36

3.3 Termination of the Analysis . 37

3.4 A Collecting Machine . 38

3.4.1 Well-Definedness of Cache Entries 40

3.5 Conservativeness of the Analysis . 45

3.5.1 Accessory Definitions . 45

3.5.2 Conservative Mimicking of the Evaluation 46

3.5.3 Conservativeness Regarding Dynamic Type Tests 57

3.6 Theoretical Power and Limitations of the Analysis Framework 58

3.6.1 Programs Terminating Without Error 59

3.6.2 Undecidability of the “Perfectly Analysable” Property 64

3.7 Flexibility in Practice . 71

4 Demand-Driven Analysis 75

4.1 A Cyclic Process . 75

4.2 Generation and Propagation of Demands 77

4.3 A Demand-Driven Analysis Example . 79

4.4 Preliminary Analysis . 84

4.5 Model-Update, Re-Analysis Cycle . 84

4.6 Discussion . 91

5 Pattern-Based Demand-Driven Analysis 93

5.1 Pattern-Based Modelling . 94

5.1.1 Representation of the Abstract Values and Contour 94

CONTENTS ix

5.1.2 Models . 98

5.1.3 Demands . 116

5.2 Demand Processing . 122

5.2.1 Bound Demands . 123

5.2.2 Never Demands . 124

5.2.3 Bad Call Demands . 125

5.2.4 Split Demands . 126

5.2.5 Call Site Monitoring . 136

5.2.6 Split-Couples Function . 137

5.2.7 Remarks . 147

5.3 Complete Approach . 148

5.4 Example of Demand-Driven Analysis . 152

5.5 Development of the Prototype . 160

5.5.1 Resolution-Like Processing of Demands 160

5.5.2 Model-Update Selection and Re-Analysis Cycle 163

5.6 Discussion . 164

6 Experimental Results 167

6.1 Current Implementation . 167

6.2 Test Methodology . 169

6.2.1 What is Measured? . 169

6.2.2 Benchmarks . 170

6.3 Results . 175

CONTENTS x

7 Conclusions 181

7.1 Contributions . 181

7.2 Related Work . 182

7.3 Future Work . 183

7.3.1 On the Pattern-Based Analysis . 183

7.3.2 Alternate Modelling . 185

7.3.3 Extensions . 186

7.3.4 Demand Propagation Calculus . 188

A Benchmarks xxii

A.1 Source of the cdr-safe Benchmark . xxii

A.2 Source of the loop Benchmark . xxii

A.3 Source of the 2-1 Benchmark . xxiii

A.4 Source of the map-easy Benchmark . xxiii

A.5 Source of the map-hard Benchmark . xxiii

A.6 Source of the fib Benchmark . xxiii

A.7 Source of the gcd Benchmark . xxiv

A.8 Source of the tak Benchmark . xxiv

A.9 Source of the n-queens Benchmark . xxiv

A.10 Source of the ack Benchmark . xxv

A.11 Source of the SKI Benchmark . xxv

A.12 Source of the change Benchmark . xxvii

A.13 Source of the interp Benchmark . xxviii

CONTENTS xi

A.14 Source of the cps-QS-s Benchmark . xxxi

A.15 Source of the cps-QS-m Benchmark . xxxiii

List of Tables

6.1 Experimental results . 176

6.2 The effect of the size of a program on the analysis 178

6.3 The effect of the inputs on the analysis times 179

List of Figures

2.1 Mini-language syntax . 15

2.2 Mini-language semantics . 15

3.1 Instantiation parameters of the analysis framework 22

3.2 Analysis results of the framework . 25

3.3 Evaluation constraints . 32

3.4 Safety constraints . 37

3.5 Semantics of the collecting machine . 39

3.6 Function computing the set of sub-expressions 40

3.7 Function computing the set of immediate sub-expressions 41

5.1 Syntax of the modelling patterns . 96

5.2 Definition of the conformance relation . 97

5.3 Algorithm for the conformance relation between modelling patterns 98

5.4 Implementation of the pattern-matchers 105

5.5 Algorithm for pattern-matching . 106

5.6 Syntax of the split patterns . 108

5.7 Simplification of split patterns . 110

LIST OF FIGURES xiv

5.8 Example of simplification of a split pattern 111

5.9 Generation of pattern-matcher update requests to ensure consistency . . . 111

5.10 Example of an update request and the sub-requests generated for consistency 112

5.11 Slicing of split patterns . 113

5.12 Example of the slicing of a split pattern 113

5.13 Extension of the definition of conformance between modelling and split pat-

terns . 114

5.14 Algorithm for the upgrade of inspection points in pattern-matchers 115

5.15 Example of the upgrade of a pattern-matcher 117

5.16 Syntax of the demands . 118

5.17 Algorithm for the “is spread on” relation 118

5.18 Definition of the “have a non-empty intersection” relation 119

5.19 Definition of the intersection operator between patterns 135

5.20 Example of couples to separate . 139

5.21 Example of a näıve separation . 140

5.22 Example of a more clever separation . 140

5.23 Implementation of the Split-Couples function 141

5.24 Example of computation made by Split-Couples 146

5.25 Algorithm for the demand-driven analysis 153

6.1 Translation of letrec-expressions . 171

6.2 Translation from the Scheme subset to the extended mini-language 173

6.3 Unrolling of the ack benchmark . 179

Remerciements

Je tiens à remercier ma copine, Marie-Lisa. Elle a toujours été encourageante et a su

m’apporter la motivation nécessaire. Merci à mes parents, ma soeur et son mari. Tous m’ont

accompagné dans mon cheminement et ont constitué un milieu réconfortant durant tous les

moments, heureux et pénibles.

Je tiens par-dessus tout à remercier mon directeur de thèse, Marc Feeley, pour son

support, tant moral que financier et technique. Il a su être aussi patient qu’il fallait l’être

avec moi. Il a toujours cru en moi, plus que je ne pouvais croire en moi-même. Il m’a toujours

témoigné un grand respect, même quand j’étais une peste d’entêtement.

Merci à toute la grande famille au complet, à mes amis et à mes camarades à l’école.

Tout particulièrement : Odi pour m’avoir aidé à garder la forme et dont la compagnie est

toujours agréable ; Sébastien pour être M. Divertissement en personne ; Mohamad qui m’a

apporté une authentique aide et avec qui j’allais noyer ma déprime dans la caféine ; Diane

qui a insisté avec tellement d’énergie pour que je complète mon doctorat ; le très constant (et

comique) Mario ; Dominique ; Martin ; Wissam ; Fernanda ; Éric ; Étienne et Jean-François

qui ont été si tannants et qui ont subi mes foudres tellement souvent (“Danny, t’es pas

parlable !”) ; et François qui m’a aidé à découvrir ma vraie nature de dictateur.

L’aide financière des organismes subventionnaires CRSNG et FCAR m’a été précieuse.

Elle n’a pas été vaine, après tout.

Chapter 1

Introduction

1.1 A Gentle Introduction

Very high quality type analysis can be performed on programs written in a dynamically-

typed functional language while maintaining control over the analysis time. A quality type

analysis is achieved by using a “clever” adaptive analysis method called demand-driven

analysis. Although the method does not come from traditional artificial intelligence, it

allows the analysis to adapt to the characteristics of the program at hand in ways that seem

rather intelligent. But all this is quite vague, so let us proceed from the beginning.

Program analyses that are used for optimisation purposes are always stretched between

two contradictory goals: quality and efficiency. Indeed, the user of a compiler wants the

compiler to produce the best possible code while taking the least possible time to do so.

Unfortunately, these desires are incompatible.

Roughly speaking, in the case of type analysis, two kinds of analyses exist, depending

on which goal is considered to have priority. Fast analyses aim the efficiency of the analysis

while heavy analyses aim the quality of the generated code. The fast ones feature reasonable

analysis times and obtain results of a fair quality. The heavy ones inspect the program very

closely and do not feature reasonable analysis times. Commonly used compilers that perform

some type analysis use a fast one because the heavy ones are too costly in practice.

Of course, the user’s desire to have his cake and eat it too is unrealistic but a relaxed

CHAPTER 1. INTRODUCTION 2

version is still interesting. What we are interested in is a type analysis of very high quality

that can be performed within times that remain practical. In our opinion, an analysis

featuring practical times is crucial if we want our type analysis or a derivative to eventually

be applied in some routinely used compiler. Despite the fact that our goal is relaxed, it still

seems to be a näıve, “spoiled child’s” desire. It seems to disregard the apparently strong

relation between quality and efficiency that years of research in type analysis have outlined.

Until now, this empirical relation has brought the user to expect a certain cost for a certain

quality. Our childish desire lies in the high-quality part of the spectrum while incurring a

cost that is well under the one that the quality-efficiency relation suggests. Is it reasonable

to aim at such a goal?

We believe it is reasonable because a small amount of cleverness often pays off more

than a lot of brute force. This is so in many aspects of real life and in computer science,

too. For example, during a war, the army with the greatest number of soldiers and the

best equipment does not necessarily defeat its enemy if it is poorly directed. In computer

science, an O(n log n) algorithm can outperform an O(n2) algorithm, even if the latter is

run on a computer that is faster by orders of magnitude. However, discovering the better

algorithm requires careful thought.

But what clever thing could be done about type analysis? This thesis has its origins in

an innocent sounding remark by my supervisor, roughly paraphrased as: “It would be nice

to have an analysis that is very powerful but that uses its power only as much as needed by

the optimiser to perform its job.” We all know something that has this kind of behaviour;

that is, something powerful but always trying to do as little as possible: a human. Let us

imagine an optimising compiler where the type analysis would be done by a human; say,

Mr. D. Let us describe the way Mr. D would proceed in analysing a program.

Mr. D would use his intelligence to perform the analysis. And he would perform a very

good one. Indeed, he wants to help the compiler to produce highly optimised code. But he

would use his intelligence mostly where it would really help the optimiser. That is, Mr. D is

lazy. If an easy check allows the optimiser to improve a particular piece of code, Mr. D will

not waste his time by making a complex proof involving the full extent of his mathematical

knowledge.

The mental work performed by Mr. D can be divided in two parts: raw program analysis

and reasoning about the task of analysing the program. The raw analysis part is essentially

CHAPTER 1. INTRODUCTION 3

similar to what conventional analyses do. On the other hand, he does the reasoning part by

inspecting the program, by looking at the analysis results, by inventing new raw analyses,

by searching for the right invariants, etc. The raw analysis part can be done by hand or by

writing an algorithm and running it on a machine. It does not matter how it is done. It is

mechanical work, anyway. But Mr. D is able to do the reasoning part only because he is

intelligent and understands what he is doing.

To summarise Mr. D’s work, we would say that he is intelligent, he is lazy, and he knows

what he is doing. He is able to analyse the program while he is also able to elaborate

strategies about the way he should analyse the program. The demand-driven analysis

approach that we introduce in this dissertation is inspired by the clever behaviour of Mr. D.

Our approach features the same division of the work into a raw analysis part and a reasoning

part. The reasoning part is able to modify the way raw analysis is done. The approach

features laziness as the reasoning part is goal-driven: it takes care of the needs of the

optimiser and only of these; any modification to the way raw analysis is done derives from

those needs. Up to this point, our approach seems to act exactly as Mr. D. But, as expected,

there is a difference and it lies in the fact that our approach does not understand what it

is doing. It is only a combination of numerous deterministic algorithms and it does not

exhibit any sign of learning or understanding whatsoever. Nevertheless, experiments have

shown that it exhibits considerable cleverness in the execution of its task. This is satisfying

as only intelligence is required, not consciousness.

1.2 Some More Precisions

The purpose of our type analysis is to help the optimiser to remove unnecessary dynamic

safety type tests from the executable. The code resulting from the compilation of a program

written in a dynamically-typed language includes dynamic safety type tests in the code of

many primitive operations. For example, let us consider the following Scheme1 expression:

(car x). This expression extracts the object in the first field of the pair contained in ‘x’,

provided ‘x’ really contains a pair. Since Scheme is dynamically-typed, ‘x’ could poten-

tially contain objects of any type, depending on the computations done by the program.

Consequently, the ‘car’ function must perform a safety type tests before it can extract the

1For a reference to the Scheme language, see [51].

CHAPTER 1. INTRODUCTION 4

contents of the first field. Safety tests guarantee that the execution of the program proceeds

safely.

If no test were performed before ‘car’ did the extraction, the extraction could trigger

an illegal operation at the hardware or operating system level and an abnormal termination

of the program would occur. Or the illegal extraction could go undetected and cause a

corruption of the data of the program, leading to potentially disastrous consequences. High-

level languages such as Scheme are designed with safe execution in mind. Consequently, it

is natural to include such dynamic safety tests in the executable.

Of course, these safety tests incur a penalty in the efficiency of the executable program.

So it is perfectly understandable to want to avoid the added inefficiency. A common way

to do so consists in telling the compiler to omit the inclusion of those tests. All potentially

illegal operations made by the executable program then go unchecked and result in low-

level crashes or program misbehaviour in case of an error. In this work, we choose not to

consider this “solution”. We prefer to insist on keeping the safety of the execution and

turn to another option: safe optimisations. For some operations made by the program, the

compiler may be able to determine that they can never go wrong. Safe optimisations can

be enabled only in these cases. For example, the (car x) expression need not include a

dynamic safety test if the compiler is able to determine that ‘x’ cannot contain anything else

than pairs. The demonstrations needed to trigger safe optimisations are obtained through

the use of static analysis.

But what is a static analysis? It is the gathering of informations about the execution

of the program. The nature of the informations that are gathered depends on what the

optimiser needs to perform its task. They may relate to the heap-space usage, the liveliness

of the objects at run-time, the may-alias information, or something else. In this work,

the informations that interest us is the type of the values involved in the computations

done by the program. What is particular to static analyses is the method that is used

to gather the informations: a phony execution of the program or some other process that

does not involve its real execution. It is mandatory to avoid the real execution because

its duration is unknown (and possibly infinite). On the other hand, the phony execution

requires the manipulation of phony values only for a bounded number of steps. So it is fast

(and predictable) enough to be a part of a compilation. The reader may find numerous

examples of static analyses in [3].

CHAPTER 1. INTRODUCTION 5

Despite the fact that the static execution is phony, it is designed in such a way that

it has a mathematical connection to the real execution. Consequently, the results of the

phony execution constitute the desired informations about the real execution. In general,

the informations are only approximations of what could be observed if the program were

really run. Moreover, in order to be useful to the optimiser, these informations have to be

conservative.

When we say that the gathered informations have to be conservative, it means that they

must take into account at least all possible behaviours of the program. But why is it “at

least” and not “at most” or “the best approximation of”? Because of the nature of typical

optimisations. Optimisations, such as the removal of safety type tests, require a particular

property to be true for all possible executions of the program. Consequently, if the property

is true for all behaviours listed in the description, then it has to be true for all concrete

behaviours of the program. For example, if the analysis says that ‘x’ can contain nothing

else than pairs, then, during the concrete execution of the program, it is certain that ‘x’

contains a pair (at least, if ‘x’ ever comes to existence) and (car x) can be optimised.

In opposition to the conservativeness of the analysis results, there is the need of the

optimiser for results that are as useful as possible. It is clear that obtaining a conservative

analysis is easy. We only need to write an analysis that pretends that anything may happen

during the execution. Note that these analysis results are certainly conservative. However,

the analysis results thus produced would not be useful as the property allowing optimisations

to be performed would not be true in general (according to the results). For example, if the

type analysis blindly determines that ‘x’ potentially contains objects of any type (which is

true), then the optimisation of (car x) cannot be performed.

Essentially, the best interest of the analyser is to overestimate the description as little

as possible while it must imperatively avoid underestimating the description. Reducing the

overestimation as much as possible requires increasing the computational effort put into the

analysis. However, an increase in the computational effort means that the compilation time

increases, too. It is clear that choosing a compromise between the quality of the description

(the smallness of its overestimation) and the compilation times is a difficult choice.

This difficulty in the choice of an analysis, in particular in the choice of a type analysis,

makes the conventional type analyses inappropriate almost all the time. Let us explain our-

selves. When a particular program is analysed, the analysis may be too coarse, producing

CHAPTER 1. INTRODUCTION 6

results that are too overestimated to be really useful to the optimiser. Or it may be too

strong and time would be wasted because sufficiently accurate results could have been pro-

duced by a much more efficient analysis. Surprisingly, the analysis may sometimes be both

too coarse and too strong at the same time for the program at hand. This is the case when

parts of the programs are easier to analyse than others. That is, the difficulty of producing

analysis results accurate enough to trigger the optimisation of certain expressions may be

much greater than for other expressions. This fact is made obvious by an example. Suppose

that our (car x) expression occurs in two places in the program. The first occurrence is

in expression (if (pair? x) (car x) ...)2 and the second is in (let ((x (get-lost

foo bar))) (car x)). Suppose that the get-lost function is extremely complex. Then

a heavy conventional analysis could well be both too strong and too coarse for the program

at the same time.

The fundamental reason behind the inappropriateness is that conventional analyses use

a fixed abstract model. We need to introduce the meaning of the “abstract model” term.

We mention just above that an analysis is done by performing a phony execution of the

program. This phony execution is often performed using abstract interpretation.3 During

the abstract interpretation of a program, phony values are manipulated, instead of concrete

values as in concrete interpretation. These phony values are called abstract values. Also,

during abstract interpretation, expressions are evaluated in phony contexts, not in concrete

contexts (lexical environment, current continuation, etc). An important difference between

concrete values and phony values is that, while concrete values are defined by the language,

the definition of the phony values has to be chosen by the implementer of the analysis. A

short introduction to abstract interpretation is given in [19].

Taken together, the values and contexts that are to be used by an analysis, constitute

the abstract model. Roughly speaking, the abstract model indicates under which simplistic

point of view the execution of the program is going to be modelled. Since conventional anal-

yses use a fixed abstract model, this point of view cannot change and it leads immediately

to the inappropriateness of the analyses. Since the inappropriateness of the conventional

analyses comes from the fixedness of the abstract model behind them, then clearly the

solution is to use some adaptive abstract model.

2The pair? function is a predicate that tests whether its argument is a pair or not.
3Not all static analyses are done using abstract interpretation. There are other kinds of static analyses.

Nevertheless, in all cases, there is an abstract model behind the analysis.

CHAPTER 1. INTRODUCTION 7

A direct consequence of the goal-driven nature of our type analysis is that the analyser

and the optimiser must collaborate. This collaboration necessarily comprises two elements.

First, the needs of the optimiser have to be expressed in some way. Second, the analyser

has to react in a positive way to the needs expressed by the optimiser. The first element

is quite simple. The property required for a particular optimisation to get enabled is well-

defined and, usually, relatively easy to formalise. It is sufficient to choose some formalism

in which the needs can be expressed. We illustrate the elements with our running example.

In the hope of removing the safety type test in expression (car x), the optimiser expresses

its need by emitting a request like: “I would like to see a demonstration that ‘x’ can only

contain pairs.” The analyser then has to do its best to fulfil the need of the optimiser.

The second element, however, is difficult and it is the core of our work. For the analyser,

to be able to take care of the needs of the optimiser means that it must be able to detect

when the analysis currently performed does not allow an optimisation to be enabled and,

if it is the case, to adapt the analysis with the intention to enable the optimisation. In

order to have an analyser capable of doing so, two new elements have to be provided. First,

the analyser must have the ability to change the analysis it performs while the compiler is

processing the program. That is, the analyser has to be able to change the abstract model

behind the analysis at will. Second, a decision procedure has to be included in the analyser

to let it determine how the abstract model ought to be modified. Indeed, a lot of freedom

is granted to the analyser by the adaptivity of the abstract model and this freedom must

not be used mindlessly. The first element can be realised without too much difficulty but

the second remains quite a challenge. Clearly, the second element is the one that seems to

require understanding and intelligent reasoning. Nonetheless, the demand-driven analysis

that we propose possesses the desired flexibility and adaptivity.

Now that we have a more precise description of the requirements for the analyser, es-

pecially those concerning its adaptivity, we come back to our goal for the quality expected

from the analyser. We do not simply expect a high-quality analysis at a practical cost,

where the quality is comparable to that of the heavy analyses. We expect an even higher

quality. Our expectations are justified by the adaptivity of the analyser. By its adaptivity,

the analyser ought to spend the minimum of effort to enable the easy optimisations and

invest more time on harder optimisations. Each optimisation ought to be taken care of using

an effort corresponding to its difficulty. Since the spectrum of the difficulty of optimising

the various expressions of the programs is typically very wide, the analyser is able to trigger

CHAPTER 1. INTRODUCTION 8

the optimisation of a maximum of expressions for the time it consumes. On the other hand,

fast conventional analyses only trigger the optimisation of the easy expressions. Heavy ones

may waste huge amounts of resources on easy and intermediate expressions by applying an

ill-adapted tedious procedure that is nevertheless too weak for the slightly more difficult

expressions. The demand-driven analyser, by its reasoning about the needs of the optimiser

and the strategies it elaborates, ought to find the specific modifications to the analysis that

are necessary to trigger the optimisation of the more difficult expressions. In other words, it

ought to trigger the optimisation of more difficult expressions because it is able to produce

a “well-tailored” analysis.

1.3 Sketch of a Solution

Before we present a quick overview of the solution, we need to come back to the optimisation

that interests us. We concentrate on the elimination of dynamic safety type tests. The other

type tests do not interest us. Those include the explicit tests written by the programmer

himself, such as the one in expression (if (pair? x)), and the implicit ones that

are not related to safety, such as the type tests performed by the garbage collector when it

traverses the heap-allocated objects. The difference between the safety tests and the others

is that the outcome of the safety tests is highly predictable. In fact, during the execution

of a bug-free program, all safety type tests have a positive outcome. On the other hand,

the explicit tests are precisely inserted by the programmer because he wishes these tests

to be performed. Then it is reasonable to assume that these tests have an active purpose

and that they result in both outcomes. Consequently, these tests are rarely redundant. The

safety tests, on the contrary, are in most cases redundant and can be removed (if identified

as such). They are a more valuable target for the analyser.

Not only are the safety type tests a valuable target, but their high predictability forms

the basis of the reasoning made by the demand-driven analysis. The analyser concentrates

on the needs of the optimiser that it considers to be plausibly realisable. The other needs

of the optimiser are not less legitimate but there is no evidence that they have a reasonable

chance of being realisable and they provide no clue on how to elaborate an analysis strategy

to enable them. For example, let us consider call (f x) and suppose that the optimiser

is able to improve the code produced for a call when only one function can possibly be

CHAPTER 1. INTRODUCTION 9

invoked there (e.g. by replacing the generic invocation sequence by a direct call). The need

of the optimiser consists in obtaining the confirmation that ‘f’ contains only one particular

function. It is a noble request as it would be profitable to the code if the confirmation could

be obtained. However, there is no indication that ‘f’ contains only one particular function.

In fact, functional languages are notable for using higher-order functions. So it would be

perfectly normal to see ‘f’ contain different functions during the execution of the program.

On top of the low plausibility of this need, there is the technical problem that this need

provides no cue to the demand-driven analyser on how to answer it successfully.

Now we give an overview of the way we obtain an analyser that is adaptive and that is

able to reason about the way to modify the analysis it performs. The analyser is adaptive

because it uses an analysis framework instead of a fixed analysis. Roughly speaking, the

analysis framework is the shell of an analyser. It contains all the usual mechanisms needed

by an analyser. However, it does not include an abstract model. The framework has a

parameter through which it receives an abstract model. When passed an abstract model

and a program, it performs the type analysis prescribed by the model on the received

program. The output of the framework is the analysis results. The latter are exactly those

that would be obtained if a true analyser incorporating the given abstract model would have

been used on the program.

The analysis framework has many useful properties. Any analysis that it instantiates

(through the reception of an abstract model) is guaranteed to terminate and is conservative.

The framework is able to mimic the behaviour of many conventional analyses. It is very

powerful: given a bug-free program and an appropriate model, it produces analysis results

that allows the optimiser to remove all safety type tests. Unfortunately, it is generally

unfeasible to decide if an “appropriate” model exists.

As to the reasoning procedure that elaborates new analysis strategies according to the

needs of the optimiser, we have two options. Either we create a (good old) AI program, or

we create a heuristic based on a limited set of simple and mechanical rules. In all cases,

the best that can be done is to obtain a heuristic since the optimisation problem toys with

undecidable properties. We choose the mechanical rules. We give the reasons behind this

choice in the next chapter.

The abstract models that we use are based on patterns. The patterns are similar to those

CHAPTER 1. INTRODUCTION 10

found in languages that include pattern-matching, such as Haskell,4 ML,5 and Prolog.6 At

the heart of the reasoning procedure used in the demand-driven analysis, there are. . . the

demands. Broadly speaking, demands are requests for the demonstration of facts that are

deemed useful to the optimiser. The demands directly constitute the formalism in which

the needs of the optimiser are expressed. But they also express other, indirect requests

which are produced through the reasoning process. For example, apart from the syntax,

the request of the optimiser “I would like to see a demonstration that ‘x’ can only contain

pairs.” that we mention above is in fact a demand.

The demands by themselves are not an active component of our approach. Demand

processing rules form the engine of the reasoning process. They translate existing demands

into new ones with the intent to elaborate a strategy on how to modify the analysis. The

reasoning obtained through the processing of demands is reminiscent of the resolution al-

gorithm used by Prolog. Our demand processing rules come, shall we say, from the top of

our hat. They are not perfectly arbitrary, however. They are relatively simple rules that

make a lot of sense and they obey two principles that we only mention here: sufficiency and

necessity. These principles are responsible for the cleverness shown by the analyser and for

keeping the analyser from letting the analysis degenerate to a heavy, impractical one.

Globally, the demand-driven analysis is a cycle made of two phases. One phase consists

in analysing the program using the current abstract model (raw analysis). The other consists

in modifying the abstract model through demand processing (reasoning). If all the safety

tests are eventually removed, the cycle ends. In the other case, the cycle would not end

were it not for a time limit placed by the user on the computational resources allotted to

the analysis. This unusual approach is consistent with our view that more precise results

are expected from the analyser if it is given more time. At least, is makes as much sense to

let an analyser work for a specified amount of time as it does to let an analyser work for an

a priori unknown amount of time up to the completion of its algorithm. In either case, the

user has no guarantee on the extent of the optimisations. Having a limit on the time taken

by the analysis is even more user-friendly. Moreover, the limit on the resources need not

necessarily be wall-clock time. It may be space or the number of logical steps performed by

the demand-driven analysis. Interestingly, this last measure has some kind of deterministic

4For a reference to the Haskell language, see [28].
5For a reference to the ML language, see [44].
6For a reference to the Prolog language, see [50].

CHAPTER 1. INTRODUCTION 11

relation with the quality of the executable code that results from the compilation (this is

discussed in Section 6.1).

1.4 Plan

In Chapter 2, we explain in detail the problem that we attack. We precisely describe the

optimisation for which the type analysis shall gather information. We introduce a mini-

language similar to a kind of Scheme that is simplified almost down to a λ-calculus. We

present its syntax and semantics. We bring justification for the selection of our goal.

Chapter 3 presents the analysis framework. It first gives a description of the use of the

framework. That is, the parameters (the abstract model) and the analysis results that it

produces. It then gives a precise description of its implementation. Finally, many properties

of the analysis framework are demonstrated. Namely: that any analysis it instantiates

always terminates; that the analysis is conservative; that it is powerful, as any error-free

terminating program can be analysed perfectly well using an appropriate model, i.e. all safety

tests can be removed from the program; that, unfortunately, it is generally impossible to

find such a model when it exists; that, in practice, it is very flexible since it can mimic many

conventional static analyses.

In Chapter 4, we give a sketch of what a demand-driven analysis should be, but without

giving a precise specification. We propose a cyclic approach where the program is first

analysed, then the static analysis is improved, then the program is analysed again, etc. An

imprecise definition of demands and processing rules is given. Some notions that help to

create a reasonable demand-driven analysis are presented. Namely, the necessity and the

sufficiency principles. An extensive example is used to better explain the principles behind

the approach.

In Chapter 5, we propose a concrete implementation of a demand-driven analysis that is

based on patterns. The chapter includes a complete description of pattern-based modelling,

from the representation of abstract values to the elaboration of an abstract model to be

fed to the analysis framework, of the syntax and meaning of the demands, of the demand

processing rules, and of the main algorithm controlling the analysis. An example illustrates

the working of the whole process. A brief history of the development of our current prototype

CHAPTER 1. INTRODUCTION 12

implementing the demand-driven analysis is presented.

Chapter 6 evaluates our prototype through many experiments. A brief description of

each of the benchmarks used in the experiments is given. The methodology used is presented

and justified.

Chapter 7 summarises our contributions, makes a quick survey of the (not so) related

work in demand-driven analysis, and, most importantly, presents some future work.

Chapter 2

Definition of the Problem

2.1 Objective

We intend to develop an adaptable type analysis for a dynamically-typed language. The

language is presented below. Basically, it is a minimalist applicative functional language that

includes three types: closures, pairs and the Boolean false (#f). To keep things simple, the

programs should be closed. That is, they should have no free variables. Also, compilation

is done on whole programs at once.

Some operations of the language require dynamic safety type tests. For example, before

performing the extraction of the car-field of an object, a check must be made to ensure that

it is truly a pair. At least, it is the case if safe execution of the program is desired. Indeed,

we work under the context of safe execution. Under the context of non-safe execution, the

problem of eliminating safety dynamic type tests would no longer exist. Additionally, if

the optimiser were to trust annotations given by the programmer, the context would also

be that of non-safe execution. We are interested in safe execution, so no external source of

information is trusted.

A näıve compilation of the programs would require the inclusion of code to perform

safety tests at run time everywhere a hazardous operations is made. However, optimising

compilers try to generate more efficient code by performing a static analysis on the programs

to discover evidence that some or all of the dynamic tests can be safely removed. Our

analysis intends to achieve this task.

CHAPTER 2. DEFINITION OF THE PROBLEM 14

The following sections first present the functional language to analyse. A detailed pre-

sentation of both the syntax and the semantics of the language is given. Then there is a

discussion about the generality of the quite specific analysis task that we have chosen.

2.2 Language

Figure 2.1 presents the syntax of our small applicative functional language. It does not have

a name but we will often refer to it as the mini-language. Expressions in the mini-language

are labelled. The labels are used to give a unique “name” to the expressions. For example,

it allows us to refer to a particular expression as e12 instead of having to write it verbatim

everywhere. We use numerical labels throughout this text.

The mini-language provides functions, pairs, and the Boolean ‘#f’. As in Scheme,

anything except ‘#f’ is considered to be a true Boolean value when the ‘if’ expression

tests its first sub-expression. The ‘pair?’ expression provides a way to distinguish between

pairs and the other objects. Depending on whether its argument is a pair or not, it returns

either the pair itself or ‘#f’, respectively. Finally, evaluation of sub-expressions generally

proceeds from left to right. This particularity could make a difference if one of the sub-

expressions loops and the other leads to an error, but it cannot when the program eventually

terminates. The rest of the semantics of the language is fairly standard: the ‘if’ expression

first evaluates the test and then only one of its two branches; the body of the λ-expression

is evaluated only when the function is eventually called; the other expressions evaluate all

of their sub-expressions.

Only three of the nine kinds of expressions require a dynamic safety test. We do not

include pair?-expressions in these three as their purpose is not safety and there is no reason

to expect their result to always be true (or false). Expressions accessing pairs, namely ‘car’

and ‘cdr’, must ensure that the objects that they are about to access are truly pairs. Calls

must ensure that the objects returned by the evaluation of the first sub-expression are truly

functions. The task of our type analysis is to give the optimiser the opportunity to remove

as many safety checks as possible among those introduced by these expressions.

The detailed semantics of the language are presented in Figure 2.2.1 Semantic domain

1The ∪̇ operator is the disjoint union. Its results is the union of its two argument sets but it is defined

CHAPTER 2. DEFINITION OF THE PROBLEM 15

Exp := #fl l ∈ Lab
| xl x ∈ Var, l ∈ Lab
| (le1 e2) l ∈ Lab, e1, e2 ∈ Exp
| (λlx. e1) l ∈ Lab, x ∈ Var, e1 ∈ Exp
| (ifl e1 e2 e3) l ∈ Lab, e1, e2, e3 ∈ Exp
| (consl e1 e2) l ∈ Lab, e1, e2 ∈ Exp
| (carl e1) l ∈ Lab, e1 ∈ Exp
| (cdrl e1) l ∈ Lab, e1 ∈ Exp
| (pair?l e1) l ∈ Lab, e1 ∈ Exp

Lab := Labels
Var := Variables

Figure 2.1: Mini-language syntax

Val↑ := Err ∪̇ Val
Err := Errors

Val := ValB ∪̇ ValC ∪̇ ValP
ValB := {#f} Booleans
ValC := {clos((λlx. e1), ρ) | (λlx. e1) ∈ Exp, ρ ∈ Env} Closures
ValP := {pair(v1, v2) | v1, v2 ∈ Val} Pairs
Env := Var→ Val

E : Exp→ Env→ Val↑ Evaluation function
E [[#fl]] ρ = #f
E [[xl]] ρ = ρ x
E [[(le1 e2)]] ρ = C (E [[e1]] ρ) (λv1. C (E [[e2]] ρ) (A v1))
E [[(λlx. e1)]] ρ = clos((λlx. e1), ρ)
E [[(ifl e1 e2 e3)]] ρ = C (E [[e1]] ρ) (λv. v 6= #f ? E [[e2]] ρ : E [[e3]] ρ)
E [[(consl e1 e2)]] ρ = C (E [[e1]] ρ) (λv1. C (E [[e2]] ρ) (λv2. pair(v1, v2)))
E [[(carl e1)]] ρ = C (E [[e1]] ρ) (λv. v = pair(v1, v2) ? v1 : error)
E [[(cdrl e1)]] ρ = C (E [[e1]] ρ) (λv. v = pair(v1, v2) ? v2 : error)
E [[(pair?l e1)]] ρ = C (E [[e1]] ρ) (λv. v ∈ ValP ? v : #f)

A : Val→ Val→ Val↑ Apply function
A f v = f = clos((λlx. e1), ρ) ? E [[e1]] ρ[x 7→ v] : error

C : Val↑ → (Val→ Val↑)→ Val↑ Check function
C v k = v ∈ Err ? v : k v

Figure 2.2: Mini-language semantics1

CHAPTER 2. DEFINITION OF THE PROBLEM 16

Val↑ contain evaluation results, which are either normal values or error values. We do not

explicitly define the error values. Normal values (or simply, values) are the Boolean, from

ValB, closures, from ValC, or pairs, from ValP. A closure is a constructor containing a

λ-expression and the definition lexical environment. Note that pairs and environments can

only contain values, not error values.

The evaluation function computes the value of an expression in a certain lexical environ-

ment. It makes extensive use of the check function C to verify whether the values obtained

during the evaluation of sub-expressions are normal. C takes an evaluation result and a

continuation. It immediately returns the evaluation result if it is an error, otherwise it

passes it to the continuation, which does the rest of the computation. The apply function

A takes care of the details of the invocation of a closure on an argument. The specification

of the evaluation function E itself is quite straightforward.

Note the situations in which an error can occur: in the access to the car- or cdr-field

and in a call. Evaluation of the other expressions is always safe, barring the occurrence of

an error in the evaluation of a sub-expression.

2.3 Generality of the Objective

Despite the fact that the objective of our research is done on type analysis, namely the

removal of dynamic safety type tests, we expect the research to have a much broader impact.

We present a few reasons to support our belief.

The mini-language is applicative; that is, the argument expression is completely evalu-

ated before the closure is invoked with the result. However, that does not mean that the

scope of our research is limited to applicative languages. We could aim at the same objective

while using a lazy language. The task of type analysis would be similar in such a language.

The choice of a type analysis is a reasonable one, too, as performing a good type analysis

in a dynamically-typed language is not less difficult than performing some other analysis.

Instances of analyses include escape analyses [53], reference counting analyses [35], numerical

range analyses [26, 27, 41, 48], and representation analyses [54, 32, 33]. In all cases, relatively

simple analysis methods can lead to relatively good analysis results. However, doing an

only it the two sets are disjoint.

CHAPTER 2. DEFINITION OF THE PROBLEM 17

optimal job, that is, obtaining results that allow the optimiser to do the best job possible,

is uncomputable as all the desired properties depend on the actual computations done be

the program.

Note that our real goal is not necessarily to obtain the best possible method to remove

dynamic type tests in the code generated by compilers. We also want to study the efficiency

of a demand-driven approach as a mean to drive an adaptive analysis intelligently. Non-

adaptive methods clearly have intrinsic limitations that are more or less easily encountered.

On the contrary, adaptive methods can push these limitations much farther. However, there

has to be some mechanism to guide the adaptations. As will be presented in the following

chapters, type analysis of the programs is performed using an adaptable analysis framework

and a demand-driven approach provides the means to translate the needs of the optimiser

(the task of removing safety tests) into precise directives on how to adapt the analysis of

the program to obtain analysis results that are more useful to the optimiser. Although the

demand-driven approach that we develop in this research is quite specific and the idea of

being demand-driven is quite general, success in our particular project would bring evidence

that the general idea can be useful.

The restriction to whole program compilation is not a mandatory one. In a concrete

implementation, our type analysis could be adapted to support separate compilation while

guaranteeing complete safety. However, a certain cooperation from the programmer would

be required. First, the program would have to be separated in module. This way, no

mutation of a variable could be done from another module (if the language includes side-

effects). Second, the programmer would have to give type annotations for all variables

that are exported out of a module. The importation of a module into a module under

compilation would make these annotations available to the compiler. The more precise

these annotations, the higher the quality of the analysis results for the module, and the

higher the quality of the executable code. In order to ensure safety of the evaluation of

the program, the compilation of each module would include a verification that the module

conforms to the given annotations and, at run time, before the start of the normal evaluation

of the program, the executable would perform a verification to ensure that each importing

module has seen the same annotations than those truly declared in each imported module.

The restriction to a language without input/output is not mandatory either. We chose

not to consider I/O because it does not add any interesting problem from the point of

CHAPTER 2. DEFINITION OF THE PROBLEM 18

view of the type analysis. It is clear that the ability to write data does not change what

the programs compute and it would not interfere with the type analysis. So output is not

interesting. It is less clear that the ability to read data is also uninteresting. Indeed, the

data that are read have an impact on the computations that programs perform. They

introduce an uncertainty factor in the computations. However, this uncertainty is quite

easy to manage: a (read) expression may return any value that the language’s specification

allows as a valid input value. For example, the specification could say that (read) returns

a value made of pairs and Booleans every time it is evaluated. Consequently, any attempt

by the type analysis to obtain precise type information about the possible value of (read)

plainly fails.

Clearly, a type analysis is useful in the compilation of dynamically-typed languages.

But it may seem useless for statically-typed languages such as ML or Haskell. However,

it is not the case. The main reason is that these languages both provide algebraic types.

An algebraic type may include many constructors. For example, in Haskell, list types are

algebraic types including two constructors: ‘[]’ of arity 0 for the empty list and ‘:’ of arity

2 for the pairs. The programmer can define a function taking lists as an argument and

use pattern-matching with a pattern for only one of the two constructors. If the function

is passed a list built using the other constructor, an error occurs. For example, an error

actually occurs if the head or the tail is extracted from an empty list. The inspection of the

argument is a kind of safety dynamic test as the typing of the program cannot guarantee

that only the expected constructor(s) will be passed. A type analysis such as ours would

be required in order to remove as many of those tests as possible. If we reverse the point

of view, programs in our mini-language can be considered to be statically typable using

a unique type that includes three constructors. The uniqueness of this hypothetical type

makes the static typing trivial and leaves all verifications relative to the constructors to the

run time.

Object-oriented languages could also benefit from an adaptation of our type analysis.

The exact instantiation class of an object can be seen as a constructor. The class of a de-

clared variable can be seen as an algebraic type including all the constructors corresponding

to its sub-classes. Moreover, the case where a variable does not reference any object, that

is, when its value is null, can be seen as corresponding to an additional ‘null’ constructor.

Despite the fact that our type analysis could be applied to a variety of languages,

CHAPTER 2. DEFINITION OF THE PROBLEM 19

we decided to use this particular applicative dynamically-typed functional mini-language

because it is the kind of language that needs and stresses type analysis the most. First,

programs written in dynamically-typed languages typically need more safety type tests than

those in statically-typed languages. Second, functional programs have a tendency to have

a more complex control-flow because of the use of higher-order functions. So our mini-

language (which is similar to Scheme) is particularly challenging for a type analyser.

Finally, demand-driven analysis could be useful in the field of dynamic compilation,

or just-in-time compilation. Of course, it would have to operate within relatively limited

resources, especially in time. But the advantage is that analysis would operate while the

program runs and profiling statistics about the real execution would be available.

Chapter 3

Analysis Framework

This chapter presents the analysis framework and numerous properties related to it. The

analysis framework, by itself, is not a complete static analysis for programs drawn from the

syntactic domain Exp. An abstract model has to be provided to the framework in order to

create an instance of analysis. Recall that the abstract model specifies what the phony values

and phony evaluation contexts are when a phony execution of the program is performed.

From now on, we designate phony values as abstract values and phony contexts as contours.

The abstract model takes the form of a few framework parameters. This parameterisation

of the analysis framework brings the mutability of the analysis that we need. Indeed, the

framework has a great flexibility as will be made apparent by results in this chapter.

We start the presentation of the analysis framework by describing its external behaviour,

that is, the description of its parameters and that of the results of an analysis instance. Next,

we present the functioning of the framework. The rest presents different properties of the

framework. The first one is the fact that any analysis instantiated from the framework

always terminates. Next, a collecting machine is introduced. The machine computes the

same result as the standard semantics for the mini-language but it also produces a cache

containing the details of the computation. With the help of the collecting machine, we

demonstrate that the analysis instances are conservative, that is, the results they produce

represent at least all the concrete computations made during the concrete evaluation. Next,

we show that for any program that terminates without error, there exists an abstract model

showing that all dynamic type tests can safely be removed. We also show that, unfortunately,

it is undecidable to determine if such a model actually exists for an arbitrary program. We

CHAPTER 3. ANALYSIS FRAMEWORK 21

end the chapter by illustrating the flexibility of the framework by giving abstract models

with which it is possible to imitate many known analyses.

A kind of analysis framework was previously presented by Ashley and Dybvig in [11]. It

is parameterised by two modelling functions: one that controls the accuracy of the analysis

by splitting abstract evaluation contexts and one that controls the speed of the analysis by

performing widening on stores. In simple words, widening is some sort of “exaggeration” of

the abstract values to help the analysis results to reach a stable state faster. Their analysis

framework does not offer the subtlety that ours does. Both parameters have a global effect

on the analysis. We consider them to be too coarse for our application. Also their framework

handles mutable variables and data structures. This adds unnecessary complexity since our

language is purely functional.

3.1 Instantiation of an Analysis

Before we present the process of instantiating an analysis for a program, we need to mention

the existence of a few restrictions imposed on the program itself. Let el0 ∈ Exp be the

program to analyse. First, the framework requires the program to be α-converted. That

is, each variable in the program must have a distinct name. This restriction poses no

big problem since, for a program having variables with the same name, a simple renaming

remedy to the situation. Second, the program must include proper labelling, that is, all labels

have to be distinct. It is vital to uniquely identify each expression in the program in order

to analyse it properly. Once again, there is no problem there since labels are an artificial

creation, anyway. They are introduced for analysis purpose only. Third, the program has

to be closed, that is, it must not have free variables. This restriction is closely related to

our choice not to provide input/output operations in the mini-language (see Section 2.3).

Now, if we suppose we have an appropriate program el0 , the analysis of el0 using an

abstract modelM is denoted by

R = FW(el0 ,M)

where FW is the analysis framework receiving a program and a model, and returning analysis

results R. We first describe the abstract model. Then the analysis results are presented.

CHAPTER 3. ANALYSIS FRAMEWORK 22

M = (ValB, ValC, ValP, Cont, k̂0, cc, pc, call)

ValB 6= ∅ Abstract Booleans
ValC 6= ∅ Abstract closures
ValP 6= ∅ Abstract pairs
Cont 6= ∅ Contours

k̂0 ∈ Cont Main contour
cc : Lab× Cont → ValC Abstract closure creation
pc : Lab× Val × Val × Cont → ValP Abstract pair creation
call : Lab× ValC × Val × Cont → Cont Contour selection

where Val := ValB ∪̇ ValC ∪̇ ValP
subject to |Val |+ |Cont| <∞

Figure 3.1: Instantiation parameters of the analysis framework

3.1.1 Framework Parameters

The abstract model, formed by framework parameters, is presented in Figure 3.1.1 The

model includes abstract values, abstract contours, and abstract evaluation functions.

The abstract values include Booleans (ValB), closures (ValC), and pairs (ValP). ValB,

ValC, and ValP are finite, non-empty sets. That is, these abstract domains must be finite

in order to guarantee that the abstract evaluation of the program always uses a finite

amount of resources. And they must be non-empty in order to have at least one abstract

representative for the concrete values of each type. The three sets must be mutually disjoint,

as it is expressed by the use of the disjoint union operator (∪̇). The set of abstract values Val

is the union of the three sets. As soon as three sets conform to the mentioned constraints,

they can be considered as legal abstract value domains. Nothing special is required of the

abstract values themselves. Their type comes from the fact that they belong to one (and

only one) of the three sets.

The abstract contours are given by the set Cont. It must be a finite, non-empty set.

No other restriction applies to the abstract contours. Contours are abstract representatives

for concrete evaluation contexts. A concrete evaluation context describes the circumstances

in which an expression gets evaluated. It includes the current lexical environment that is

visible by the expression. It also includes the identity of the caller to the closure which led

1In this chapter, we put a hat (̂) on the abstract entities to distinguish them from the concrete ones.

CHAPTER 3. ANALYSIS FRAMEWORK 23

to the current evaluation, the caller of the caller, etc. The context usually has an impact

on the value of an expression. For instance, an expression may produce different values

when evaluated in different lexical environments during concrete interpretation. Similarly,

this expression may produce different abstract values when evaluated in different contours

during abstract interpretation.

Each abstract contour represents a certain fraction of all possible evaluation contexts.

The abstract evaluation of an expression el in a contour k̂ must summarise everything

that could happen during the concrete evaluation of el in any evaluation context that is

represented by k̂. For example, if el evaluates to a pair in a certain evaluation context and

to a closure in another context, and that both evaluation contexts are abstracted by k̂, then,

during abstract evaluation in contour k̂, el will evaluate to at least an abstract pair and an

abstract closure, the last two being abstract counterparts of the concrete values returned

by el.

Parameter k̂0 is the contour in which the program (the top-level expression el0) is to be

abstractly evaluated. Except for that special use, k̂0 is an ordinary contour.

When a λ-expression is abstractly evaluated, an abstract closure must be produced.

Similarly for a cons-expression. However, the analysis framework does not decide by itself

which closure or which pair should be returned. This is where the closure creation function

(cc) and the pair creation function (pc) come into play. Function cc chooses the abstract

closure from ValC that should be returned based on the λ-expression and the current con-

tour. Function pc does the same but has also the possibility to base its decision on the two

values that go into the abstract pair. We explain in the next sections what it means to

produce a value that contains other values. pc may choose the abstract pair in function of

the label of the cons-expression, or in function of the contour, or in function of the type of

the value that goes in the cdr-field of the pair, or, in general, according to a combination

of strategies. As long as cc returns an element of ValC and pc returns an element of ValP,

everything works.

The possibility of specifying ValC and ValP contributes to the flexibility of the frame-

work but it is especially because of the existence of the cc and pc functions that the frame-

work is very flexible. It is also because of the call function that we describe below.

One might worry about the fact that there is no bc function (no Boolean creation func-

CHAPTER 3. ANALYSIS FRAMEWORK 24

tion). Indeed, Booleans are produced by the evaluation of the false constant and sometimes

by pair?-expressions. There could have been a bc function. However, we do not see the

utility of such a function as there is just one concrete Boolean. What would be the benefit

of choosing one abstract Boolean over another one since they all represent the same con-

crete Boolean? We believe there is none. But why do we allow ValB to have more than

one element in the first place? In fact, there is no advantage, but there is no problem in

doing so, either. The decision of having no bc function could be changed in the future if

something indicates that it would be beneficial. The current treatment of Boolean creation

by the framework is that each time an abstract Boolean is to be produced, the whole ValB

set is returned.

The last framework parameter is the call function. This function selects contours in

which expressions are evaluated. It is not used before the evaluation of each individual

expression but only before the whole body of a closure. A (possibly) new contour is selected

each time a closure is called. Indeed, when an abstract closure ĉ is invoked on argument

v̂ in call expression (lel1 el2) and in contour k̂, the body of ĉ gets evaluated in contour

call(l, ĉ, v̂, k̂). Hence, the call function contributes greatly to the flexibility of the analysis

framework as different contours can be selected, depending, of course, on the invoked closure

but also on the argument, on the label of the call expression where the invocation occurs,

and on the contour in which this invocation occurs. The resulting flexibility allows our

framework to have contours that may be call-chains or that may be abstract representatives

of the lexical environment, etc. Examples of various uses of the call function can be found

in Section 3.7.

In order to be a legal model for the analysis of a program el0 , M has to obey to a last

constraint. The three creation (or selection) functions have to be defined on the part of their

from-set that covers at least every possible argument passed by the analysis framework. That

is, their domain must cover at least every possible argument. The functions are not required

to be defined on their whole from-set as the label argument poses a problem. Presumably,

Lab is an infinite set and the rest of the specification of models manipulates only finite sets.

So now we present the part of the from-set that must be covered by each function. Let us

denote by 4(el0) the set of labels in program el0 .
2 Closure creation function cc has to be

defined at least on 4(el0) × Cont. Pair creation function pc has to be defined at least on

2The 4 function is formally defined in Section 3.4.1.

CHAPTER 3. ANALYSIS FRAMEWORK 25

R = (α, β, γ, δ, χ, π, κ)

Value of el in k: α
l,k̂
⊆Val l ∈ Lab, k̂∈ Cont

Contents of x when bound in k̂: βx,k̂
⊆Val x∈ Var, k̂∈ Cont

Return value of ĉ with body in k̂: γ
ĉ,k̂
⊆Val ĉ ∈ ValC, k̂∈ Cont

Flag indicating evaluation of el in k̂: δ
l,k̂
⊆Val l ∈ Lab, k̂∈ Cont

Creation circumstances of ĉ: χĉ ⊆Lab× Cont ĉ ∈ ValC
Creation circumstances of p̂: πp̂ ⊆Lab× Val × Val × Cont p̂ ∈ ValP

Selection circumstances of k̂: κ
k̂
⊆Lab× ValC × Val × Cont k̂∈ Cont

Figure 3.2: Analysis results of the framework

4(e0)×Val ×Val ×Cont. And contour selection function call has to be defined at least on

4(e0)× ValC × Val × Cont.

We could relax this last constraint on the domain of the abstract creation functions a

little more. For instance, the label passed to cc can only be that of a λ-expression. For pc

and call, the label can only be that of a cons-expression and a call expression, respectively.

However, specifying the minimal domains that way would be unnecessarily heavy. Anyway,

the given specification does not pose a real problem as, for example, cc may return any

element of ValC it wishes if the argument label is not one of a λ-expression; it does not

matter.

3.1.2 Analysis Results

The analysis results R of the analysis of program el0 using model M are described in

Figure 3.2. R takes the form of seven matrices of abstract variables. Each matrix contains

a certain kind of information. In fact, it is directly with these matrices that the framework

does the analysis of programs.

We describe the contents of each matrix. Essentially, the first four matrices are the

analysis results that are normally considered as the most interesting, especially the first.

The last three are rather intended for internal purpose.

The α matrix indicates the set of values to which each expression evaluates to in each

contour. Typically, there are many entries that remain empty after the analysis, because,

for example, there is some dead code in the program or, by the way the model is built, some

CHAPTER 3. ANALYSIS FRAMEWORK 26

expressions simply do not get evaluated in certain contours.

The β matrix indicates the values that each variable of el0 , in each contour, may contain.

Note how the entries in this matrix require el0 to be α-converted. Identical names for

different variables would produce pollution in the results as the values of all variables sharing

a certain name would also share their contents. The meaning of an abstract variable like

βx,k̂
is quite subtle. It is not necessarily equivalent to the result of a reference to x in contour

k̂. This would be ill-defined as there is no direct relation between the contour that prevails

when x is (abstractly) bound to a value and the contour that prevails when x is referenced.

The reference may occur inside of the body of a closure originating from a λ-expression that

is in the scope of x. Remember that the contour possibly changes during each invocation.

The abstract variable βx,k̂
represents the value of variable x if x is the parameter of some

closure ĉ and if, for every invocation where ĉ gets called on a certain value, contour k̂ is the

one that is prescribed by call for the given situation. For example, consider the following

program excerpt:

. . .

(1e2 e3)

. . .

(λ4x. (λ5y. x6))

. . .

Suppose that during evaluation of call e1 in contour k̂, a closure ĉ, coming from λ-expression

e4, gets called on some value v̂, and that call(1, ĉ, v̂, k̂) = k̂′. Then, it follows that v̂ ∈ βx,k̂′ .

Now, suppose that a closure originating from λ-expression e5 gets called and that its body

is evaluated in contour k̂′′. Then, the reference to x in e6 in contour k̂′′ will include the

contents of βx,k̂′ (and not of βx,k̂′′) because k̂′ is the contour in which x was bound.

The γ matrix indicates the values returned by the closures. Abstract variable γ
ĉ,k̂

contains the values returned by closure ĉ when its body has been evaluated in contour k̂.

The δ matrix indicates in which contours each expression gets evaluated. Each entry

of the matrix acts as a flag. If δ
l,k̂

is non-empty, then expression el gets evaluated in

contour k̂, otherwise, it is not. The actual contents of these abstract variables are not

important. The role of the δ matrix is to help the framework to generate analyses that

are not too conservative. Analyses should always be conservative, but it should avoid

CHAPTER 3. ANALYSIS FRAMEWORK 27

unnecessary pollution of the results as much as possible. This is particularly true in the

case of our framework. Arbitrary contour definition through parameters typically causes

the instantiation of analyses that include very discriminating contours. Discriminating

contours can mimic concrete evaluation contexts with high fidelity and most expressions

may get evaluated in only a small fraction of the contours. So it is important to avoid

propagation of values from the expressions that are not supposed to be evaluated.

The χ, π, and κ matrices are logs of the creation and selection of abstract values and

contours by the cc, pc, and call functions. They record the circumstances under which values

and contours are created and selected. Let us illustrate their usage with the case of the

π matrix. For each abstract pair, the π matrix logs which quadruples were effectively used

in the creation of the pair. Note that a pair p̂ could be created when any quadruple from

pc−1(p̂) is passed to pc. But that does not mean that, during the analysis, pair p̂ really

got created under all the circumstances present in pc−1(p̂). The exact set of circumstances

that were prevailing when p̂ was created during the analysis are logged in π p̂. The three

log matrices are very helpful in helping to reduce the propagation of superfluous values

throughout the analysis results.

• Abstract variable χĉ contains all couples that lead to the creation of ĉ, each being

formed by a label and a contour.

• Abstract variable πp̂ contains all quadruples that lead to the creation of p̂, each begin

formed by the label of the cons-expression, the two values to cons together, and the

contour that was prevailing during that creation.

• Abstract variable κ
k̂

contains all quadruples that lead to the selection of k̂ as a context

for the evaluation of the body of a closure, each being formed by the label of the call

expression, the closure that was invoked, the value that was passed, and the contour

that was prevailing during the call.

Note that, from the point of view of the framework, the fact that p̂ has some contents comes

from the fact that πp̂ contains some quadruples, and not from the fact that p̂ is actually

denoted in ValP by P , pair(v1, v2), or even ♣. The presentation of the internal functioning

of the framework in the next section show the intensive use of the log variables.

CHAPTER 3. ANALYSIS FRAMEWORK 28

3.1.3 An Example of Use of the Analysis Framework

To illustrate the use of the analysis framework, we present the analysis of a little program

using a simple model. Here is the program:

e0 = (car0 (cdr1 (cons2 #f3 (cons4 #f5 #f6))))

Note that we avoid calls in the example as the mechanics for analysing functions and calls

is quite involving. We choose the simplest legal model for the analysis of e0:

M = (ValB, ValC, ValP, Cont, K, cc, pc, call) where

ValB = {#f}

ValC = {C}

ValP = {P}

Cont = {K}

cc(l, k̂) = C

pc(l, v̂1, v̂2, k̂) = P

call(l, f̂ , v̂, k̂) = K

The model contains a single abstract value of each type and a single abstract contour.

Naturally, there is no freedom left in the choice of the three creation functions. Here are

the analysis results that we obtain from the analysis FW(e0,M):

R = (α, β, γ, δ, χ, π, κ) where

α0,K = {#f} α1,K = {#f, P} α2,K = {P} α3,K = {#f}

α4,K = {P} α5,K = {#f} α6,K = {#f}

γC,K = ∅

δ0,K = {#f} δ1,K = {#f} δ2,K = {#f} δ3,K = {#f}

δ4,K = {#f} δ5,K = {#f} δ6,K = {#f}

χC = ∅

πP = {(2, #f, P, K), (4, #f, #f, K)}

κK = ∅

Here is the signification of the results. We keep the description of the α matrix for the end.

Note that the β matrix is degenerated as there is no variable in e0. The γ matrix has only

CHAPTER 3. ANALYSIS FRAMEWORK 29

one entry. It says that closure C returns nothing when its body is evaluated in contour

K. It is because C never gets created in the first place, as is expressed by the χ matrix.

The δ matrix contains an entry per expression and it shows that all the expressions are

evaluated in contour K. The fact that their content is {#f} is not important, only that it

is not empty. The κ matrix indicates that K gets selected in no circumstance. There are

no calls, of course. The (necessary) use of K as the main contour is not considered by the

framework to be a contour selection.

Now, we come to the interesting part of the results. Let us first comment the contents

of the π matrix. It indicates that pair P got created under two circumstances. One by e4 in

contour K and using two Booleans. The other one by e2 in contour K and using a Boolean

and P itself. Intuitively, this is credible. But, as will be made clear in the next section,

these circumstances originate from the interaction between entries of the π and α matrices.

We complete the example by describing the contents of the α-matrix. Entries for e3, e5,

and e6 only contain #f. This is the only possible result for the evaluation of the constant

false. Also, entries for e2 and e4 contain pair P . A pair is the only result a cons-expression

could provide and there is only one abstract pair. Abstract variable α1,k̂
contains two values:

a Boolean and a pair. Note that, during a concrete evaluation, only a pair could be the

result for the evaluation of e1. This is an example where analysis results contains superfluous

values that do not correspond to anything in the concrete evaluation. This is caused by the

conservativeness of the analysis. The values in α1,k̂
are the result of the extraction of the

cdr-field of P . The extraction proceeds by taking the third field of all quadruples in πP .

This explains the presence of the two values in α1,k̂
. The value in α0,k̂

is the result of the

extraction of the car-field and also by the filtering of non-pairs among the values returned

by the sub-expression e1. The framework does not try to perform some kind of car-field

extraction on #f, but only on P .

Note, however, that the presence of a non-pair in α1,k̂
would force a compiler to include

a dynamic type test in the generated code for e0 in order to keep the operations safe. That

has to be so, unless it did another analysis with a more precise model and managed to show

that only pairs can result from the evaluation of e1.

Note also how the log variable π helped us in obtaining more precise results. If pc−1(P)

were to be used instead of πP , the values of expressions e0 and e1 would include Val entirely.

CHAPTER 3. ANALYSIS FRAMEWORK 30

3.2 Internal Functioning of the Framework

Essentially, the analysis framework works by performing an abstract interpretation of the

program. The analysis is done in two steps. First, a set of constraints is generated. These

constraints involve the abstract variables mentioned above (α
l,k̂

, etc.). The constraints

that are generated in order to perform the analysis are the evaluation constraints. Their

name comes from the fact that their goal is to simulate the evaluation of the program.

The second step consists in solving these constraints. Contrarily to what is done in [29], no

transformation or creation is performed on the constraints themselves but, instead, abstract

values are propagated in the abstract variables until all the constraints are satisfied.

In the rest of the section, we first present the generation of the evaluation constraints.

We do not present an algorithm for solving the constraints as it is a simple, mechanical

process. As is common with the resolution of systems of constraints between sets, there

are typically many solutions to the system. The one that is interesting is the least solution

since the analysis ought to avoid the propagation of superfluous values as much as possible.

Then we present the generation of safety constraints. These constraints are not a part

of the analysis. However, their purpose is to provide a systematic way to verify which opti-

misation’s are enabled by the analysis results. That is, if all safety constraints are satisfied

for a particular expression, then the code generated by the compiler for this expression need

not include any dynamic safety type test.

3.2.1 Evaluation Constraints

The set of evaluation constraints that the analysis framework generates for a program e l0 ∈

Exp and abstract modelM, where

M = (ValB, ValC, ValP, Cont, k0, cc, pc, call),

is presented in Figure 3.3. Note that, exceptionally for this figure, we omit putting a hat

(̂) on the abstract values and contours. The equations are already loaded enough without

it. And no concrete value is manipulated by the framework, anyway. The set of constraints

includes a special constraint ‘δl0,k0 ⊇ ValB’, used to start the abstract interpretation, and,

for each contour k and each expression el in the program, a set of constraints simulating

CHAPTER 3. ANALYSIS FRAMEWORK 31

the (eventual) evaluation of el in k. This constraint generator may seem very complex a

priori, so we explain the meaning of the constraints generated for each kind of expression.

The complexity of the constraints generated for each kind of expression vary wildly and so

we try to order the presentation from that of the simplest kind to that of the most difficult.

Let us start with the case of the constant false expression; i.e. let el = #fl. Anytime el

is evaluated, its value is #f. The constraint that is generated expresses just that. If δ l,k 6= ∅,

that is, if el gets evaluated, then αl,k ⊇ ValB. During the description of the abstract model,

we mentioned that we did not include a creation function for the Booleans. This is apparent

here as the whole set of abstract Booleans is poured into the value of the expression, that

is, in αl,k. Note that, for expression #fl and for all subsequent expressions, great care has

been taken to ensure that they do not produce values if they do not get evaluated.

We continue with the pair?-expression; i.e. let el = (pair?l el1). Here, el has a sub-

expression and some “pipes” have to be installed in order to coordinate the evaluation of e l1

with that of its parent. Let us sketch the concrete evaluation of el step by step and compare

it with the generated constraints. The first thing el does is to trigger the evaluation of its

sub-expression. This is expressed by the constraint δl1,k ⊇ δl,k. When the evaluation of el1

is completed, the type of the resulting value is checked. If the value is a pair, el returns

it directly. So the next constraint does the equivalent operation. The idea is that, if an

abstract pair represents a concrete pair returned by el1 , then the same abstract pair also

represents the concrete pair returned by el. If the value is not a pair, then #f is returned

by el. This is expressed by the last constraint. So, during the abstract evaluation of el in a

particular contour k, both the pair and the non-pair cases can occur concurrently. This is

typical in abstract interpretation.

We remain in pair-related cases and consider the cons-expression: i.e. let el = (consl el1

el2). The first constraints express the fact that both sub-expressions have to be evaluated

when el is. Instead, of creating one pair as during concrete interpretation, possibly many

abstract pairs may have to be created as each sub-expression may produce more than one

value. The last constraints create pairs for each combination of values. The pair is created

with the help of the pc function. Moreover, the circumstances prevailing when each pair is

created are logged in the appropriate π matrix entry. The logging of these informations is

required for the access to the fields of the pairs.

Let us consider the car-expression; i.e. let el = (carl el1). Basically, the evaluation steps

CHAPTER 3. ANALYSIS FRAMEWORK 32

Evaluation constraints for program el0 are:

⋃

k∈Cont

E [[el0]] k ∪ {δl0,k0 ⊇ ValB} ,

where

E [[#fl]] k = {δl,k 6= ∅ ⇒ αl,k ⊇ ValB}

E [[xl]] k = {δl,k 6= ∅ ⇒ αl,k ⊇ ref(x, l, k)}

E [[(lel1 el2)]] k = {δl1,k ⊇ δl,k, δl2 ,k ⊇ δl,k} ∪ E [[el1]] k ∪ E [[el2]] k ∪






βx,k′ 3 v,
αl,k ⊇ γc,k′,
κk′ 3 (l, c, v, k)

c ∈ αl1,k ∩ ValC, v ∈ αl2,k,
k′ = call(l, c, v, k),
(l′, k′′) ∈ χc, el′ = (λl′x. el′′)







E [[(λlx. el1)]] k =
{

δl,k 6= ∅ ⇒ αl,k 3 cc(l, k) ∧ χ
cc(l,k) 3 (l, k)

}

∪

{δl1,k ⊇ βx,k} ∪ E [[el1]] k ∪
{γc,k ⊇ αl1,k | c ∈ ValC, (l, k

′) ∈ χc}

E [[(ifl el1 el2 el3)]] k = {δl1,k ⊇ δl,k} ∪ E [[el1]] k ∪
{δl2,k ⊇ αl1,k ∩ (ValC ∪ ValP)} ∪
{δl3,k ⊇ αl1,k ∩ ValB} ∪ E [[el2]] k ∪
E [[el3]] k ∪ {αl,k ⊇ αl2,k ∪ αl3,k}

E [[(consl el1 el2)]] k = {δl1,k ⊇ δl,k, δl2,k ⊇ δl,k} ∪ E [[el1]] k ∪ E [[el2]] k ∪
{

αl,k 3 p,
πp 3 (l, v1, v2, k)

v1 ∈ αl1,k, v2 ∈ αl2,k,
p = pc(l, v1, v2, k)

}

E [[(carl el1)]] k = {δl1,k ⊇ δl,k} ∪ E [[el1]] k ∪
{

αl,k 3 v1 p ∈ αl1,k ∩ ValP, (l, v1, v2, k
′) ∈ πp

}

E [[(cdrl el1)]] k = {δl1,k ⊇ δl,k} ∪ E [[el1]] k ∪
{

αl,k 3 v2 p ∈ αl1,k ∩ ValP, (l, v1, v2, k
′) ∈ πp

}

E [[(pair?l el1)]] k = {δl1,k ⊇ δl,k} ∪ E [[el1]] k ∪ {αl,k ⊇ αl1,k ∩ ValP} ∪
{αl1,k ∩ (ValB ∪ ValC) 6= ∅ ⇒ αl,k ⊇ ValB}

ref(x, l, k) =







ref(x, l′, k), if el′ 6= (λl′y. el)
βx,k, if el′ = (λl′x. el)
∪k′ref(x, l′, k′), otherwise /∗ el′ = (λl′y. el), where y 6= x ∗/

for (l′′, c, v, k′′) ∈ κk,
(l′, k′) ∈ χc

where l′ = parent(l)

Figure 3.3: Evaluation constraints

CHAPTER 3. ANALYSIS FRAMEWORK 33

that are simulated by the constraints are the triggering of the evaluation of el1 and then,

for each pair thus obtained, the extraction of the car-field. The contents of the car-field

is computed by looking into the pair log (π) to recover the circumstances leading to the

creation of the pairs. The second component of each quadruple contains the value intended

for the car-field of a pair. Aside from the extraction issue, a point worth mentioning is the

treatment of the non-pair results coming from the sub-evaluation. The constraints simply

ignore the non-pair values. This may seem strange as, in the concrete interpretation, a non-

pair value would cause an error. However, in the design of the framework, we have chosen

to simulate only the non-erroneous computations by the evaluation constraints. But, as will

be made clear below, there are safety constraints that precisely have the verification of the

“pairness” of the results coming from el1 as a task. Moreover, propagating abstract error

values would be a waste of resources as there frequently are errors occurring somewhere

during the abstract evaluation. An error value appearing as result from the evaluation of

an expression would not be very meaningful, anyway: “An error possibly occurred during

the evaluation of el.”

The explanations for the cdr-expression are similar.

Now we turn to the conditional; i.e. let el = (ifl el1 el2 el3). The interesting characteristic

of the conditional is the fact that the last two sub-expressions get evaluated or not depends

on the value of the test. The abstract interpretation of el goes like this. The evaluation of

el1 is triggered. Then the evaluation of el2 is triggered if some true value comes from el1

and the evaluation of el3 is triggered if some false value comes from el1 . The evaluation of

both (or even none) may be triggered. Finally, the value of el is the union of the values of

el2 and el3 . These constraints are an example that the value of a δ entry may depend on

the value of an α entry.

The three kinds of expression that remain are all related to closures and invocations.

Let us consider the λ-expression; i.e. let el = (λlx. el1). The constraints generated for el

are divided in two groups: the ones related to the evaluation of the λ-expression itself and

the ones related to the invocation of closures originating from el. The constraints of the

first group simply verify whether el gets evaluated in contour k and, if so, create a closure

using cc and log its creation. Note that different λ-expressions could produce the same

abstract closure. However, the χ matrix logs the origins of all closures. The constraints of

the second group direct the evaluation of the body when a closure originating from e l is

CHAPTER 3. ANALYSIS FRAMEWORK 34

invoked. First, the evaluation of el1 in k is triggered if the parameter is bound to any value

in contour k. After el1 is evaluated, the values it produces are copied as the return value of

the closures (γc,k) originating from el. These closures may have been created in any contour,

but the thing that matters is that their body gets evaluated in k. Note that there is no

logical connection between the contour in which el is evaluated and the contour in which

el1 is evaluated. A contour selection using call occurs during each invocation. Nevertheless,

both groups of constraints are generated together as the constraint generator produces the

constraints for the evaluation in contour k for the whole program at once.

We continue by describing the constraints generated for a call; i.e. let el = (lel1 el2). The

triggering of the evaluation of the sub-expressions is routine, now. However, the invocation

is more interesting. An invocation occurs for all combinations of a closure c coming from e l1

and an argument v coming from el2 . Note that non-closures coming from el1 are ignored.

The contour k′ in which the body ought to be evaluated is selected using call. Then, the

parameter that has to be bound to the argument is located by searching for the origins of c

in the closure log χ. Note that there could be more than one parameter for abstract closure

c since different λ-expressions may produce c. The constraints then simulate the binding of

the parameter to v in contour k′, the contribution of the return value of c to the value of

el, and the logging in κ of the circumstances in which k ′ got selected.

The last kind of expression is the variable reference; i.e. let el = xl. It may seem

surprising that we describe the constraints related to this innocent-looking expression at

the end, but the reference is really not a trivial matter. Note that the framework does not

maintain an explicit abstract representative for the lexical environment. Also, remember

that the abstract variable βx,k does not represent the value of a reference to x in contour k.

So the constraint generated for el involves the use of the ‘ref’ function. This function does

the necessary work to gather the values to which x could be bound to when the reference

is made at label l in contour k. Essentially, ‘ref’ searches for the binging site of x by

climbing in the syntax tree of the program. This is why it computes the label l ′ of the

parent expression.3 Most of the steps made during the climb are simple, except when it

goes through a λ-expression. Remember that there is no simple connection between the

contour in which a closure body executes and the contour in which its native λ-expression

was evaluated. The value of ref(x, l, k) depends on el′ . There are three cases.

3The parent expression always exists because the program is closed. The main expression el0 has no
parent, but it is in the scope of no variable either, so a reference cannot occur there.

CHAPTER 3. ANALYSIS FRAMEWORK 35

1. If el′ is not a λ-expression, then a reference to x from el in contour k has to give the

same results as one from el′ .

2. If el′ is a λ-expression and its parameter is x, then the climb has come to an end. The

value of ref(x, l, k) is exactly βx,k.

3. Otherwise, el′ is a λ-expression and its parameter is not x. Let us suppose that the

parameter is y. The value of ref(x, l, k) is the value of a reference to x from el′ in

the context in which it was evaluated. The contour in which el′ was evaluated is not

necessarily k. More than that, it may not be unique. In fact, any contour k ′ in which

el′ has got evaluated, having resulted in a closure c, which has in turn been invoked in

some circumstances, leading to the evaluation of el in contour k, should be considered.

This is exactly what is expressed in the third case of the definition of ‘ref’. Closures

involved in the selection of contour k are first searched for in the κ matrix. Only

those originating from el′ are considered, since ‘ref’ performs a climb in the syntax

tree. Each of those closures has been created in some contour k ′, according to log χ.

So the reference to x continues at el′ in each such contour k′ and then the union of

their result is taken.

Now that the constraints for each kind of expression have been described, there remains

the ‘δl0,k0 ⊇ ValB’ constraint. This constraint ensures that the abstract interpretation of

el0 effectively happens. Otherwise, the minimal solution to the evaluation constraints would

consist in leaving all abstract variables empty.

Example of Evaluation Constraints

We come back on the example of Section 3.1.3 and give the evaluation constraints for the

same program

e0 = (car0 (cdr1 (cons2 #f3 (cons4 #f5 #f6))))

and the same model M. Fortunately, the use of a single contour helps in keeping the size

of the constraints moderate. Here they are:

{δ1,K ⊇ δ0,K}

∪ {δ2,K ⊇ δ1,K}

∪ {δ3,K ⊇ δ2,K , δ4,K ⊇ δ2,K}

CHAPTER 3. ANALYSIS FRAMEWORK 36

∪ {δ3,K 6= ∅ ⇒ α3,K ⊇ ValB}

∪ {δ5,K ⊇ δ4,K , δ6,K ⊇ δ4,K}

∪ {δ5,K 6= ∅ ⇒ α5,K ⊇ ValB}

∪ {δ6,K 6= ∅ ⇒ α6,K ⊇ ValB}

∪







α4,K 3 p v1 ∈ α5,K , v2 ∈ α6,K

πp 3 (4, v1, v2, K) p = pc(4, v1, v2, K)







∪







α2,K 3 p v1 ∈ α3,K , v2 ∈ α4,K

πp 3 (2, v1, v2, K) p = pc(2, v1, v2, K)







∪
{

α1,K 3 v2 p ∈ α2,K ∩ ValP, (l, v1, v2, k′) ∈ πp

}

∪
{

α0,K 3 v1 p ∈ α1,K ∩ ValP, (l, v1, v2, k′) ∈ πp

}

∪ {δ0,K ⊇ ValB}

3.2.2 Safety Constraints

To verify which dynamic type tests are still required once the analysis results are computed,

one can confront the latter to the safety constraints. Three kinds of expression may require

dynamic type tests: calls and car- and cdr-expressions. A dynamic test may have to be

included to check the value returned by their first sub-expression. Figure 3.4 presents the

safety constraints generated for a program el0 using a modelM. These constraints are very

simple and we do not give more details on their meaning.

An expression is safe and does not have to comprise a dynamic type test if the safety

constraints on the value of its first sub-expression (if there are any) are satisfied for all

contours k ∈ Cont.

A program is analysed perfectly well using modelM if all safety constraints are satisfied.

In other words, if the system of constraints obtained by joining both evaluation and safety

constraints has a solution. A program is analysable perfectly well if there exists a modelM

such that el0 is analysed perfectly well usingM.

If we come back to our running example, generating the constraints and confronting

them to the analysis results would reveal that e0 must include a dynamic type test to

ensure that it always operates on pairs, but e1 does not have to.

CHAPTER 3. ANALYSIS FRAMEWORK 37

Safety constraints for program el0 are:

⋃

k∈Cont

S [[el0]] k,

where

S [[#fl]] k = ∅

S [[xl]] k = ∅

S [[(lel1 el2)]] k = {αl1,k ⊆ ValC} ∪ S [[el1]] k ∪ S [[el2]] k

S [[(λlx. el1)]] k = S [[el1]] k

S [[(ifl el1 el2 el3)]] k = S [[el1]] k ∪ S [[el2]] k ∪ S [[el3]] k

S [[(consl el1 el2)]] k = S [[el1]] k ∪ S [[el2]] k

S [[(carl el1)]] k = {αl1,k ⊆ ValP} ∪ S [[el1]] k

S [[(cdrl el1)]] k = {αl1,k ⊆ ValP} ∪ S [[el1]] k

S [[(pair?l el1)]] k = S [[el1]] k

Figure 3.4: Safety constraints

3.3 Termination of the Analysis

The following theorem establishes that an analysis instance obtained from the analysis

framework (using a legal model) always terminates.

Theorem 3.1 An analysis performed by the evaluation constraints always finishes.

Proof 3.1 First, observe that each evaluation constraint can be rewritten as a set of

constraints, each constraint having the form:

I1 ∧ . . . ∧ In ⇒ I0

where each Ii, 0 ≤ i ≤ n, is a simple membership condition (for example, p3 ∈ αl,k). It

follows that the saturation of all abstract variables (for example, αl,k = Val) constitutes

a trivial solution to the evaluation constraints. So finding the minimum solution to the

constraints is guaranteed to finish since there is only a finite number of values that can be

put in each abstract variable. 2

CHAPTER 3. ANALYSIS FRAMEWORK 38

As an example, the evaluation constraints for expression #fl in contour k can be trans-

formed in the following way:

E [[#fl]] k = {δl,k 6= ∅ ⇒ αl,k ⊇ ValB}

7→

E [[#fl]] k = {v1 ∈ δl,k ⇒ v2 ∈ αl,k | v1 ∈ Val , v2 ∈ ValB}

3.4 A Collecting Machine

The establishment of many properties of the framework requires us to introduce a collecting

machine for the mini-language. So Figure 3.5 presents the semantics of a collecting machine.

The collecting machine essentially does the same computations as those performed during

an ordinary evaluation except that it also builds a cache containing a detailed description

of every step of the computations. For each evaluation of an expression in a particular

evaluation context, a pre-entry and a post-entry are logged into the cache. Concrete contours

are used by the collecting machine in order to designate each evaluation context met during

the evaluation of the program.

Let us comment on Figure 3.5. First, the contours are represented by finite strings of

labels. The labels in a particular contour are those of the call expressions through which

invocations were done that led to the evaluation context designated by the contour. For

example, the main expression of the program is evaluated in contour ε. If closure c1 is

invoked from call expression el1 during the evaluation of the main expression, its body is

evaluated in contour l1. In turn, if (another) closure c2 is invoked from call expression el2

during evaluation of the body of c1, the body of c2 is evaluated in contour l1l2. And so

on. We show below that this definition of concrete contours is sufficient to unambiguously

designate each evaluation context.

Second, a cache (of type Cache) is a set of entries. Each entry is either a pre-entry,

i.e. a member of PreEnt, or a post-entry, i.e. a member of PostEnt. Pre-entry pre(l, k, ρ)

indicates what lexical environment ρ was present when expression el got evaluated in contour

k. Post-entry post(l, k, v) indicates the value (or error value) v to which expression e l has

evaluated to in contour k.

The semantics of the collecting machine is very similar to the standard semantics of the

CHAPTER 3. ANALYSIS FRAMEWORK 39

Val↑ := Err ∪̇ Val
Err := Errors

Val := ValB ∪̇ ValC ∪̇ ValP
ValB := {#f} Booleans
ValC := {clos((λlx. e), ρ) | (λlx. e) ∈ Exp, ρ ∈ Env} Closures
ValP := {pair(v1, v2) | v1, v2 ∈ Val} Pairs
Env := Var→ Val
Cont := Lab∗ Contours
Cache := 2Entry

Entry := PreEnt ∪̇ PostEnt
PreEnt := {pre(l, k, ρ) | l ∈ Lab, k ∈ Cont, ρ ∈ Env}

PostEnt := {post(l, k, v) | l ∈ Lab, k ∈ Cont, v ∈ Val↑}

E : Exp→ Env→ Cont→ Val↑ × Cache Main evaluation function
E [[el]] ρ k = let (v, Ξ) = E′ [[el]] ρ k in

(v, Ξ ∪ {pre(l, k, ρ), post(l, k, v)})

E′ : Exp→ Env→ Cont→ Val↑ ×Cache Auxiliary eval. function
E′ [[#fl]] ρ k = (#f, ∅)
E′ [[xl]] ρ k = (ρ x, ∅)
E′ [[(le1 e2)]] ρ k = C (E [[e1]] ρ k)

(λv1. C (E [[e2]] ρ k) (A l k v1))
E′ [[(λlx. e1)]] ρ k = (clos((λlx. e1), ρ), ∅)
E′ [[(ifl e1 e2 e3)]] ρ k = C (E [[e1]] ρ k)

(λv. v 6= #f ? E [[e2]] ρ k : E [[e3]] ρ k)
E′ [[(consl e1 e2)]] ρ k = C (E [[e1]] ρ k)

(λv1. C (E [[e2]] ρ k) (λv2. (pair(v1, v2), ∅)))
E′ [[(carl e1)]] ρ k = C (E [[e1]] ρ k)

(λv. v = pair(v1, v2) ? (v1, ∅) : (error, ∅))
E′ [[(cdrl e1)]] ρ k = C (E [[e1]] ρ k)

(λv. v = pair(v1, v2) ? (v2, ∅) : (error, ∅))
E′ [[(pair?l e1)]] ρ k = C (E [[e1]] ρ k)

(λv. v ∈ ValP ? (v, ∅) : (#f, ∅))

A : Lab→ Cont→ Val→ Val→ Val↑ × Cache Apply function
A l k v1 v2 = (v1 = clos((λl′x. e1), ρ))

? E [[e1]] ρ[x 7→ v2] kl
: (error, ∅)

C : Val↑ × Cache→ (Val→ Val↑ × Cache)→ Val↑ × Cache Check function
C (v1, Ξ1) k = v1 ∈ Err ? (v1, Ξ1)

: let (v2, Ξ2) = k v1 in
(v2, Ξ1 ∪ Ξ2)

Figure 3.5: Semantics of the collecting machine

CHAPTER 3. ANALYSIS FRAMEWORK 40

4 : Exp→ 2Exp

4(#fl) = {#fl}
4(xl) = {xl}
4((le1 e2)) = {(le1 e2)} ∪4(e1) ∪4(e2)
4((λlx. e1)) = {(λlx. e1)} ∪4(e1)
4((ifl e1 e2 e3)) = {(ifl e1 e2 e3)} ∪4(e1) ∪4(e2) ∪4(e3)
4((consl e1 e2)) = {(consl e1 e2)} ∪4(e1) ∪4(e2)
4((carl e1)) = {(carl e1)} ∪4(e1)
4((cdrl e1)) = {(cdrl e1)} ∪4(e1)
4((pair?l e1)) = {(pair?l e1)} ∪4(e1)

Figure 3.6: Function computing the set of sub-expressions

mini-language. The major difference lies in the instrumentation that insert entries in the

cache. The semantic equations are divided in the definition of the main evaluation function

E and that of the auxiliary function E′. E′ is essentially similar to the standard semantic

function. E provides the instrumentation for recording the evaluation steps and leaves the

actual computations to E′. Note also how the apply function A updates the contour when

the invocation of a closure occurs. The label of the current call expression is appended

at the end of the current contour. The body of the closure is evaluated in this extended

contour.

3.4.1 Well-Definedness of Cache Entries

Now, we need to demonstrate that cache entries are properly recorded in the cache. In

particular, that there is no ambiguity or conflict between entries. The fact that pre- and

post-entries are added in the cache for each evaluation of an expression is obvious. The fact

that at most one pre-entry and one post-entry are added in the cache for the evaluation of

an expression under a certain contour is less obvious. Precisely, there should be at most

one pre-entry (post-) for each expression and contour pair. In order to show this fact, we

first introduce some notation, then characterise the contents of the cache returned by a call

to E, and finally show that there cannot be a conflict between entries.

Figures 3.6 and 3.7 define functions 4 and 4, respectively. Function 4 returns the

set of sub-expressions of a particular expression. Function 4 returns the set of immediate

sub-expressions. The immediate sub-expressions of el are the ones that could be evaluated

CHAPTER 3. ANALYSIS FRAMEWORK 41

4 : Exp→ 2Exp

4(#fl) = {#fl}
4(xl) = {xl}
4((le1 e2)) = {(le1 e2)} ∪4(e1) ∪4(e2)
4((λlx. e1)) = {(λlx. e1)}
4((ifl e1 e2 e3)) = {(ifl e1 e2 e3)} ∪4(e1) ∪4(e2) ∪4(e3)
4((consl e1 e2)) = {(consl e1 e2)} ∪4(e1) ∪4(e2)
4((carl e1)) = {(carl e1)} ∪4(e1)
4((cdrl e1)) = {(cdrl e1)} ∪4(e1)
4((pair?l e1)) = {(pair?l e1)} ∪4(e1)

Figure 3.7: Function computing the set of immediate sub-expressions

if el were evaluated, but without going through a closure invocation. For example, if

el = (l . . . (λl′x. (l′′ . . . el′′′ . . .)) . . .)

then if el′′′ is evaluated while el is evaluated, it is necessarily through a closure invocation.

That implies that el′′′ is not an immediate sub-expression of el. The difference between

the implementation of 4 and 4 only lies in the treatment of λ-expressions. The definition

of 4 is purely syntactic and does not try to determine if a sub-expression may really be

evaluated.

We will not distinguish between the expressions and their labels in the use of 4 and 4.

They could as well have type Lab→ 2Lab, or Exp→ 2Lab, etc.

The following theorem characterises the entries that may appear in a cache returned by

the collecting machine.

Theorem 3.2 Let e0 ∈ Exp be a program and el ∈ 4(e0), a sub-expression. Also, let

(v, Ξ) = E [[el]] ρ k. All entries in cache Ξ have the form pre(l′, k′, ρ′) or post(l′, k′, v′)

where
(

k′ = k ∧ l′ ∈ 4(l)
)

∨
(

k′ = kl′′k′′ ∧ l′′ ∈ 4(l)
)

What the theorem means is that all contours met during evaluation of el have k as a

prefix. Cases where precisely k was met involve immediate sub-expressions of el. And in

cases where an extension of k was met, the label used to extend k for the first time is one

belonging to an immediate sub-expression of el.

CHAPTER 3. ANALYSIS FRAMEWORK 42

Proof 3.2 We prove the property by induction on the number of uses of the function E in

the computation of E [[el]] ρ k. The proof is easy and a complete one would be too lengthy.

We only cover a few cases.

Basis. E [[el]] ρ k is computed with one use of E. Necessarily, el = #fl, el = xl, or

el = (λlx. el′). Then:

Ξ = {pre(l, k, ρ),post(l, k, v)}

Clearly, both entries in Ξ have the desired form as they contain the contour k and l ∈ 4(l).

Induction hypothesis. Let us suppose that entries in Ξ have the desired form if E [[e l]] ρ k is

computed in at most n0 uses of E.

Induction step. E [[el]] ρ k is computed in n0 + 1 uses of E. Necessarily, el is one of:







(lel1 el2), (ifl el1 el2 el3), (consl el1 el2),

(carl el1), (cdrl el1), (pair?l el1)







As it is the most complex and, consequently, a good representative, we present the case

where el = (lel1 el2).

The first sub-case occurs when E [[el1]] ρ k = (v1, Ξ1) where v1 ∈ Err. It follows that

Ξ = {pre(l, k, ρ),post(l, k, v1)} ∪ Ξ1

Note that E [[el1]] ρ k is computed with n0 uses of E. So, by induction hypothesis, each entry

in Ξ1 is of the form pre(l′, k′, ρ′) or post(l′, k′, v′) where

(

k′ = k ∧ l′ ∈ 4(l1)
)

∨
(

k′ = kl′′k′′ ∧ l′′ ∈ 4(l1)
)

Since 4(l1) ⊆ 4(l), we can conclude that each entry in Ξ has the desired form.

The second sub-case occurs when E [[el1]] ρ k = (v1, Ξ1) where v1 ∈ Val, E [[el2]] ρ k =

(v2, Ξ2), and either v2 ∈ Err or v1 6∈ ValC. It follows that

Ξ = {pre(l, k, ρ),post(l, k, error)} ∪ Ξ1 ∪ Ξ2

Again, by induction hypothesis, entries in Ξ1 and Ξ2 have the desired form (relatively to l1

and l2, respectively), and we can conclude that entries in Ξ all have the desired form.

CHAPTER 3. ANALYSIS FRAMEWORK 43

The last sub-case occurs when

E [[el1]] ρ k = (clos((λl4x. el3), ρ1), Ξ1),

E [[el2]] ρ k = (v2, Ξ2) where v2 ∈ Val, and

E [[el3]] ρ1[x 7→ v2] kl = (v3, Ξ3).

It follows that

Ξ = {pre(l, k, ρ),post(l, k, v3)} ∪ Ξ1 ∪ Ξ2 ∪ Ξ3

Once again, the induction hypothesis can be used to determine that entries in Ξ1 have the

desired form relatively to l1 and k, entries in Ξ2 have the desired form relatively to l2 and

k, and entries in Ξ3 have the desired form relatively to l3 and kl. Note that all contours

found in entries of Ξ3 have k as a strict prefix. We can conclude that all entries in Ξ have

the desired form. 2

With the help of this theorem, we can show that the contours unambiguously designate

the various evaluation contexts in which expressions are evaluated in the collecting machine.

In other words, that each distinct evaluation of a particular expression occurs in a distinct

contour.

Theorem 3.3 Let e0 ∈ Exp be a program, and let (v0, Ξ0) = E [[e0]] · ε. We have that

∀l′ ∈ Lab, k′ ∈ Cont.

|{pre(l′, k′, ρ) ∈ Ξ0 | ρ ∈ Env}| = |{post(l′, k′, v) ∈ Ξ0 | v ∈ Val↑}| ≤ 1

Proof 3.3 We make the demonstration by induction on the number of uses of E necessary

to compute (v, Ξ) = E [[el]] ρ k where el ∈ 4e0, ρ ∈ Env, and k ∈ Cont. For brevity, we

consider only a few cases.

Basis. If E [[el]] ρ k is computed with one use of E, verifying the property is trivial.

Induction hypothesis. Suppose that the desired property is true for Ξ when the number of

uses of E is at most n0.

Induction step. E [[el]] ρ k is computed in n0 + 1 uses of E. Then el has to be one of six

kinds of expressions. As it is the most complex, we choose the case where el = (lel1 el2) as

CHAPTER 3. ANALYSIS FRAMEWORK 44

a representative. Also, we restrict ourselves to the sub-case where

E [[el1]] ρ k = (clos((λl4x. el3), ρ1), Ξ1),

E [[el2]] ρ k = (v2, Ξ2) where v2 ∈ Val, and

E [[el3]] ρ1[x 7→ v2] kl = (v3, Ξ3).

It follows that

Ξ = Ξ+ ∪ Ξ1 ∪ Ξ2 ∪ Ξ3 where Ξ+ = {pre(l, k, ρ),post(l, k, v)}

The desired property holds for all cache parts Ξ1, Ξ2, and Ξ3 as each of the three sub-

evaluations uses E less than n0 times and consequently the induction hypothesis applies. So

it is easy to first convince oneself that

∀l′ ∈ Lab, k′ ∈ Cont.
[

∃ρ′ ∈ Env. pre(l′, k′, ρ′) ∈ Ξ if and only if ∃v′ ∈ Val. post(l′, k′, v′) ∈ Ξ
]

What remains to be shown is either the non-existence or the uniqueness of the pre-

entry for a particular expression el′ and contour k′. Similarly for the post-entries. As the

arguments for both kinds of entries are almost the same, the rest of the demonstration

considers only pre-entries.

Now, to make the theorem false, we would have to find two conflicting pre-entries in

Ξ. That is, pre(l′, k′, ρ′), pre(l′, k′, ρ′′) ∈ Ξ such that ρ′ 6= ρ′′. The two pre-entries cannot

come from only one of the cache parts Ξ+, Ξ1, Ξ2, and Ξ3 as Ξ+ introduces only one pre-

entry and the others have been given to us by the induction hypothesis. Let us enumerate

the different possibilities for the source of the two pre-entries and show that each possibility

leads to a contradiction.

If pre(l′, k′, ρ′) ∈ Ξ+ and pre(l′, k′, ρ′′) ∈ Ξ1, then l′ = l, k′ = k, and it implies that

l ∈ 4(l1). Contradiction.

If pre(l′, k′, ρ′) ∈ Ξ+ and pre(l′, k′, ρ′′) ∈ Ξ2, then, similarly, it implies that l ∈ 4(l2).

Contradiction.

If pre(l′, k′, ρ′) ∈ Ξ+ and pre(l′, k′, ρ′′) ∈ Ξ3, then k′ would have to be equal to k and

have k as a strict prefix at the same time. Contradiction.

CHAPTER 3. ANALYSIS FRAMEWORK 45

If pre(l′, k′, ρ′) ∈ Ξ1 and pre(l′, k′, ρ′′) ∈ Ξ2, then there are two cases. Either k′ = k

and l′ ∈ 4(l1) ∩ 4(l2) = ∅. Contradiction. Or k′ = kl′′k′′ where l′′ ∈ 4(l1) ∩ 4(l2) = ∅.

Contradiction.

If pre(l′, k′, ρ′) ∈ Ξ1 and pre(l′, k′, ρ′′) ∈ Ξ3, then k′ = klk′′ and it implies that l ∈ 4(l1).

Contradiction.

Finally, if pre(l′, k′, ρ′) ∈ Ξ2 and pre(l′, k′, ρ′′) ∈ Ξ3, then, similarly, it implies that

l ∈ 4(l2). Contradiction. 2

3.5 Conservativeness of the Analysis

An essential property about our analysis framework is that any analysis instance that it

produces is conservative. In short, the analysis results always force the optimiser to include

at least all the truly required dynamic type tests, and so, no matter what the abstract model

is. This property is to be established as the final result of this section and it is derived

from the main theorem saying that an analysis instance mimics conservatively the concrete

evaluation of the program. Before we present both, we first introduce many definitions and

notations helping in the next proofs.

3.5.1 Accessory Definitions

Let e0 ∈ Exp be the program to analyse. Let M = (ValB, ValC, ValP, Cont, k̂0, cc, pc,

call) be the abstract model. We will denote the analysis results by R. Formally,

R = (α, β, γ, δ, χ, π, κ) = FW(e0, M)

As the proof of conservativeness mentions both concrete and abstract values, a hat marks

the abstract values.

We define the abstract environment function ρ̂ this way:

ρ̂ : Lab× Cont → Var→ 2Val

ρ̂(l, k̂)(x) = ref(x, l, k̂)

CHAPTER 3. ANALYSIS FRAMEWORK 46

That is, it returns the abstract lexical environment visible from expression el in contour k̂.

Next, we define the “is abstracted by” relation. We denote the relation by the ↗ glyph.

This relation is defined in terms of the abstract model and parts of the analysis results.

These equations define when a concrete value is considered to be abstracted by an abstract

value:

#f ↗ v̂, if v̂ ∈ ValB

clos((λlx. e), ρ)↗ v̂, if v̂ ∈ ValC and ∃(l, k̂) ∈ χv̂. ρ↗ ρ̂(l, k̂)

pair(v1, v2)↗ v̂, if v̂ ∈ ValP and ∃(l, v̂1, v̂2, k̂) ∈ πv̂. v1 ↗ v̂1 ∧ v2 ↗ v̂2

The relation ↗ on values basically verifies that an abstract value has at least the same

behaviour as the concrete one. There are no special conditions for Booleans. The conditions

for pairs verify that appropriate values can be extracted from the car- and cdr-fields of

the abstract pair. The conditions for closures verify that the right λ-expression can be

recovered with an appropriate lexical environment. This last test consists in testing if an

abstract lexical environment abstracts a concrete lexical environment. We define the ↗

relation on environments as:

ρ↗ ρ̂(l, k̂), if ∀x ∈ Dom(ρ). ∃v̂ ∈ ρ̂(l, k̂). ρ(x)↗ v̂

Now, with the help of the ↗ relation defined on values and lexical environments, we

can formally explain what it means for analysis results to mimic conservatively the concrete

evaluation of a program. The relation also relates caches and analysis results conditional to

the provision of a contour abstraction function.

Ξ↗a R if

a : Cont→ Cont
∧

[

∀pre(l, k, ρ) ∈ Ξ. δl,a(k) 6= ∅ ∧ ρ↗ ρ̂(l, a(k))
]
∧

[

∀post(l, k, v) ∈ Ξ. (∃v̂ ∈ αl,a(k). v ↗ v̂) ∨ v ∈ Err
]

3.5.2 Conservative Mimicking of the Evaluation

Before we proceed with the main theorem, we introduce this little lemma. We do not prove

it as quick examination of the semantics of the collecting machine is sufficient to convince

oneself that it is true.

CHAPTER 3. ANALYSIS FRAMEWORK 47

Lemma 3.4 Let el ∈ Exp, ρ ∈ Env, and k ∈ Cont:

E [[el]] ρ k = (v, Ξ)⇒ post(l, k, v) ∈ Ξ

The following theorem constitutes the main part of the demonstration that any analysis

instance coming from the framework is conservative. The proof follows.

Theorem 3.5 Let el0 ∈ Exp be a program and let el ∈ 4(el0). Let the model M be (ValB,

ValC, ValP, Cont, k̂0, cc, pc, call). Let R = FW(el0 ,M) be the analysis results for el0 .

E [[el]] ρ k = (v, Ξ) ∧ δ
l,k̂
6= ∅ ∧ ρ↗ ρ̂(l, k̂)

⇒ ∃a : Cont→ Cont.
(

Ξ↗a R ∧ a(k) = k̂
)

The theorem says that the concrete evaluation of an expression in some evaluation con-

text has an abstract counterpart as long as the expression is evaluated in an appropriate

abstract evaluation context. The a function provided by the theorem is the contour ab-

straction function and it indicates to which abstract contour each concrete contour should

be mapped to. The theorem applies only if an appropriate abstract evaluation context is

found. That is, it applies only if there is an abstract contour in which el gets evaluated and

in which the lexical environment abstracts ρ. This may seem to weaken the theorem, but

note that we do not require E [[el]] ρ k to be an actual part of the concrete evaluation of

the whole program. It will quickly become apparent in the proof that, if E [[el]] ρ k is an

actual part of the whole evaluation, then there will exist an abstract contour k̂ in which el

is evaluated within an appropriate abstract lexical environment.

Proof 3.5 We prove the theorem by induction on the number of uses of E in the evaluation

E [[el]] ρ k. To have a more precise argumentation, we define the following property P :

P (n) : E [[el]] ρ k is computed in at most n uses of E ∧

E [[el]] ρ k = (v, Ξ) ∧ δ
l,k̂
6= ∅ ∧ ρ↗ ρ̂(l, k̂)

⇒ ∃a : Cont→ Cont.
(

Ξ↗a R ∧ a(k) = k̂
)

Basis. We must show that P (1) is satisfied. So we only need to consider cases where

E [[el]] ρ k is computed in exactly one use of E. The only expressions that can get evaluated

CHAPTER 3. ANALYSIS FRAMEWORK 48

in one use of E are the false constant, the variable reference, and the λ-expression. Let us

examine each case in turn.

First case: el = #fl. We have that:

1. E [[el]] ρ k = (#f, Ξ) where Ξ = {pre(l, k, ρ),post(l, k, #f)}, by the collecting machine

semantics;

2. let us define a : Cont→ Cont as [k 7→ k̂]; that is, it is only defined in k and a(k) = k̂;

3. δl,a(k) 6= ∅, because δ
l,k̂
6= ∅ and the definition of a;

4. ρ↗ ρ̂(l, a(k)), because ρ↗ ρ̂(l, k̂) and by def. of a;

5. ∀pre(l′, k′, ρ′) ∈ Ξ. δl′,a(k′) 6= ∅ ∧ ρ′ ↗ ρ̂(l′, a(k′)), by 3 and 4;

6. ∃v̂′ ∈ αl,a(k). #f ↗ v̂, because δ
l,k̂
6= ∅ implies α

l,k̂
⊇ ValB, by the evaluation

constraints of the analysis;

7. ∀post(l′, k′, v′) ∈ Ξ. (∃v̂′ ∈ αl′,a(k′). v′ ↗ v̂′) ∨ v′ ∈ Err, by 6;

8. Ξ↗a R, by 5 and 7.

So, Ξ↗a R where a(k) = k̂.

Second case: el = xl. We have that:

1. E [[el]] ρ k = (ρ x, Ξ) where Ξ = {pre(l, k, ρ),post(l, k, ρ x)}, by the collecting ma-

chine semantics;

2. let a = [k 7→ k̂];

3. δl,a(k) 6= ∅;

4. ρ↗ ρ̂(l, a(k));

5. ∀pre(l′, k′, ρ′) ∈ Ξ. δl′,a(k′) 6= ∅ ∧ ρ′ ↗ ρ̂(l′, a(k′));

6. ∃v̂′ ∈ ρ̂(l, k̂)(x). ρ x↗ v̂′, by 4;

7. ∃v̂′ ∈ αl,a(k). ρ x↗ v̂′, because δ
l,k̂
6= ∅ implies α

l,k̂
⊇ ref(x, l, k̂) = ρ̂(l, k̂)(x), by the

evaluation constraints, the definition of ρ̂, and 6;

CHAPTER 3. ANALYSIS FRAMEWORK 49

8. ∀post(l′, k′, v′) ∈ Ξ. (∃v̂′ ∈ αl′,a(k′). v′ ↗ v̂′) ∨ v′ ∈ Err, by 7;

9. Ξ↗a R.

So, Ξ↗a R where a(k) = k̂.

Third case: el = (λlx. el1). We have that:

1. E [[el]] ρ k = (c, Ξ) where c = clos((λlx. el1), ρ) and Ξ = {pre(l, k, ρ),post(l, k, c)};

2. let a = [k 7→ k̂];

3. δl,a(k) 6= ∅;

4. ρ↗ ρ̂(l, a(k));

5. ∀pre(l′, k′, ρ′) ∈ Ξ. δl′,a(k′) 6= ∅ ∧ ρ′ ↗ ρ̂(l′, a(k′));

6. α
l,k̂
3 cc(l, k̂) and χcc(l,k̂) 3 (l, k̂), because δ

l,k̂
6= ∅, and by the evaluation constraints;

7. c↗ cc(l, k̂), because cc(l, k̂) ∈ ValC and by 6;

8. ∃v̂′ ∈ αl,a(k). c↗ v̂′, by 6 and 7;

9. ∀post(l′, k′, v′) ∈ Ξ. (∃v̂′ ∈ αl′,a(k′). v′ ↗ v̂′) ∨ v′ ∈ Err, by 8;

10. Ξ↗a R.

So, Ξ↗a R and a(k) = k̂.

For all three possible kinds of expressions, we obtained that Ξ ↗a R for a function

a : Cont→ Cont such that a(k) = k̂. So P (1) is satisfied.

Induction hypothesis. Let us suppose that P (n− 1) is satisfied for some n ≥ 2.

Induction step. Now, we must show that P (n) is also satisfied. Note that we have to provide

a demonstration only for the cases where E [[el]] ρ k is computed in exactly n uses of E as

the cases for less than n uses are already covered by the induction hypothesis.

Since n ≥ 2, the only kinds of expressions that are possible for el are precisely those

that were impossible in the induction basis. In order to avoid starting with the difficult

call-expression case, we go through the kinds of expressions from the last to the first.

CHAPTER 3. ANALYSIS FRAMEWORK 50

First case: el = (pair?l el1). The evaluation starts by computing E [[el1]] ρ k = (v1, Ξ1).

Three sub-cases may occur: v1 is an error, a pair, or a non-pair value.

Let us first consider the sub-case where v1 ∈ Err. We have that:

1. E [[el]] ρ k = (v1, Ξ) where Ξ = {pre(l, k, ρ),post(l, k, v1)} ∪ Ξ1;

2. the computation of E [[el1]] ρ k is done in less than n uses of E;

3. δ
l1,k̂
6= ∅ by the fact that δ

l,k̂
6= ∅ and the evaluation constraints;

4. ρ ↗ ρ̂(l1, k̂) because: el is not a λ-expression, so ref(x, l1, k̂) = ref(x, l, k̂) (for any

x ∈ Var in the lexical environment), and so, ρ̂(l1, k̂) = ρ̂(l, k̂);

5. Ξ1 ↗a R where a(k) = k̂, because of 2, 3, 4, and the induction hypothesis;

6. δl,a(k) 6= ∅;

7. ρ↗ ρ̂(l, a(k));

8. ∀pre(l′, k′, ρ′) ∈ Ξ. δl′,a(k′) 6= ∅ ∧ ρ′ ↗ ρ̂(l′, a(k′)), by 1, 5, 6, and 7;

9. — 11. (non-existent)

12. ∀post(l′, k′, v′) ∈ Ξ. (∃v̂′ ∈ αl′,a(k′). v′ ↗ v̂′) ∨ v′ ∈ Err, by 1, 5, and the fact that

v1 ∈ Err;

13. Ξ↗a R.

So, Ξ↗a R where a(k) = k̂.

The second sub-case occurs when v1 ∈ ValP. Here, we give only the reasoning steps that

must be changed from the proof of the first sub-case:

9. post(l1, k, v1) ∈ Ξ1, because of the fact that E [[el1]] ρ k = (v1, Ξ1) and Lemma 3.4;

10. ∃v̂′ ∈ α
l1,k̂

. v1 ↗ v̂′, by 5 and the fact that v1 6∈ Err;

11. ∃v̂′ ∈ α
l,k̂

. v1 ↗ v̂′, by 10, the fact that v1 ∈ ValP (so v̂′ ∈ ValP), and the evaluation

constraints;

The third sub-case occurs when v1 ∈ ValB ∪ValC. The changes in the reasoning are:

CHAPTER 3. ANALYSIS FRAMEWORK 51

1. E [[el]] ρ k = (#f, Ξ) where Ξ = {pre(l, k, ρ),post(l, k, #f)} ∪ Ξ1;

11. ∃v̂′′ ∈ α
l,k̂

. #f ↗ v̂′′, by 10, the fact that v1 ∈ ValB ∪ ValC (so v̂′ ∈ ValB ∪ ValC),

and the evaluation constraints;

Since all three sub-cases are verified, the cache resulting from the evaluation of a pair-

membership test expression is abstracted by the analysis results.

Second case: el = (cdrl el1). Again, the evaluation of el starts by computing E [[el1]] ρ k =

(v1, Ξ1). The same three sub-cases as those seen with the pair?-expression must be con-

sidered. We skip the v1 ∈ Err sub-case since its treatment is almost identical as that of the

pair?-expression.

So we start by considering the sub-case where v1 = (v′1, v′′1) ∈ ValP. We have that:

1. E [[el]] ρ k = (v′′1 , Ξ) where Ξ = {pre(l, k, ρ),post(l, k, v ′′
1)} ∪ Ξ1;

2. the computation of E [[el1]] ρ k is done in less than n uses of E;

3. δ
l1,k̂
6= ∅ because of the fact that δ

l,k̂
6= ∅ and the evaluation constraints;

4. ρ ↗ ρ̂(l1, k̂) because: el is not a λ-expression, so ref(x, l1, k̂) = ref(x, l, k̂) (for any

x ∈ Var in the lexical environment), and so, ρ̂(l1, k̂) = ρ̂(l, k̂);

5. Ξ1 ↗a R where a(k) = k̂, because of 2, 3, 4, and the induction hypothesis;

6. δl,a(k) 6= ∅;

7. ρ↗ ρ̂(l, a(k));

8. ∀pre(l′, k′, ρ′) ∈ Ξ. δl′,a(k′) 6= ∅ ∧ ρ′ ↗ ρ̂(l′, a(k′)), by 1, 5, 6, and 7;

9. post(l1, k, v1) ∈ Ξ1, because of the fact that E [[el1]] ρ k = (v1, Ξ1) and Lemma 3.4;

10. ∃v̂′ ∈ α
l1,k̂

. v1 ↗ v̂′, by 5 and the fact that v1 6∈ Err;

11. let p̂ ∈ α
l1,k̂

such that v1 ↗ p̂;

12. p̂ ∈ ValP and ∃(l′, p̂′, p̂′′, k̂′) ∈ πp̂. v′1 ↗ p̂′ ∧ v′′1 ↗ p̂′′, by 11;

13. p̂′′ ∈ α
l,k̂

by 12 and the evaluation constraints;

14. ∀post(l′, k′, v′) ∈ Ξ. (∃v̂′ ∈ αl′,a(k′). v′ ↗ v̂′) ∨ v′ ∈ Err, by 1, 5, and 12;

CHAPTER 3. ANALYSIS FRAMEWORK 52

15. Ξ↗a R where a(k) = k̂.

Note how the↗ relation is helpful in the reasoning. It determines that p̂ is an abstraction of

v1 based on the observable behaviour of both values. Let us explain ourselves. The essence

of concrete value v1 is that it is a pair, and it contains two values v ′
1 and v′′1 in its fields.

The essence of abstract value p̂ is that it is a pair and, according to log variable π p̂, it has,

among other things, been formed by consing together p̂′ and p̂′′, that is, abstractions of v′1

and v′′1 , respectively.

The third sub-case occurs when v1 ∈ ValB ∪ValC. We give only the modified steps:

1. E [[el]] ρ k = (error, Ξ) where Ξ = {pre(l, k, ρ),post(l, k, error)} ∪ Ξ1;

9. — 13. (removed)

14. ∀post(l′, k′, v′) ∈ Ξ. (∃v̂′ ∈ αl′,a(k′). v′ ↗ v̂′) ∨ v′ ∈ Err, by 1, 5, and the fact that

the result is an error;

This ends the demonstration for case el = (cdrl el1).

Third case: el = (carl el1). Since the reasoning is analogous to that for the cdr-

expression, we skip it entirely.

Fourth case: el = (consl el1 el2). The evaluation of one of the sub-expressions may lead

to an error. Moreover, the related sub-cases are not really interesting and their demonstra-

tion could easily be done by adapting the one for the error sub-case in the pair?-expression

demonstration. So we concentrate immediately on the interesting sub-case where both sub-

expressions evaluate to normal values. Note that we will be a little more concise in the

demonstration:

1. let (v1, Ξ1) = E [[el1]] ρ k where v1 ∈ Val;

2. let (v2, Ξ2) = E [[el2]] ρ k where v2 ∈ Val;

3. E [[el]] ρ k = (p, Ξ) where p = pair(v1, v2) and Ξ = {pre(l, k, ρ),post(l, k, p)}∪Ξ1∪Ξ2

4. the computation of each of E [[el1]] ρ k and E [[el2]] ρ k uses E less than n times;

5. δ
l1,k̂
6= ∅ and δ

l2,k̂
6= ∅;

CHAPTER 3. ANALYSIS FRAMEWORK 53

6. ρ↗ ρ̂(l1, k̂) and ρ↗ ρ̂(l2, k̂);

7. Ξ1 ↗a1 R and Ξ2 ↗a2 R, where a1(k) = k̂ and a2(k) = k̂, by 4, 5, 6, and the induction

hypothesis;

8. let a = a1a2; that is, a contains all the bindings that form both a1 and a2; note

that there is conflict in doing so; this is because Theorem 3.2 guarantees us that

Dom(a1) ∩Dom(a2) = {k} and we know that a1(k) = a2(k) = k̂;

9. Ξ1 ↗a R and Ξ2 ↗a R, by 7 and 8;

10. ∀pre(l′, k′, ρ′) ∈ Ξ. δl′,a(k′) 6= ∅ ∧ ρ′ ↗ ρ̂(l′, a(k′)), by 3, 9, and the theorem pre-

conditions;

11. E [[el1]] ρ k = (v1, Ξ1) ⇒ post(l1, k, v1) ∈ Ξ1 ⇒ ∃v̂
′
1 ∈ α

l1,k̂
. v1 ↗ v̂′1; let v̂1 be that

value;

12. E [[el2]] ρ k = (v2, Ξ2) ⇒ post(l2, k, v2) ∈ Ξ2 ⇒ ∃v̂
′
2 ∈ α

l2,k̂
. v2 ↗ v̂′2; let v̂2 be that

value;

13. let p̂ = pc(l, v̂1, v̂2, k̂);

14. p̂ ∈ α
l,k̂

and (l, v̂1, v̂2, k̂) ∈ πp̂, by the evaluation constraints;

15. p↗ p̂, by 3, 11, 12, and 14;

16. ∀post(l′, k′, v′) ∈ Ξ. (∃v̂′ ∈ αl′,a(k′). v′ ↗ v̂′) ∨ v′ ∈ Err, by 3, 9, 14, and 15;

17. Ξ↗a R where a(k) = k̂.

Fifth case: el = (ifl el1 el2 el3). There are many sub-cases: the evaluation of the test

leads to an error, to a true value, or to a false value. The last two sub-cases can be further

subdivided depending on whether the evaluation of the branch that is taken leads to an

error on not. As in previous cases, we skip the sub-case where the test evaluates to an error.

We consider the sub-cases where the test evaluates to a true value. In the reasoning, we

take care of the situations where the then-branch el2 evaluates or not to an error. We have

that:

1. let (v1, Ξ1) = E [[el1]] ρ k where v1 ∈ ValC ∪ValP;

CHAPTER 3. ANALYSIS FRAMEWORK 54

2. let (v2, Ξ2) = E [[el2]] ρ k;

3. E [[el]] ρ k = (v2, Ξ) where Ξ = {pre(l, k, ρ),post(l, k, v2)} ∪ Ξ1 ∪ Ξ2;

4. the computation of both E [[el1]] ρ k and E [[el2]] ρ k is done in less than n uses of E;

5. δ
l1,k̂
6= ∅ (note that we cannot say the same thing about δ

l2,k̂
yet);

6. ρ↗ ρ̂(l1, k̂) and ρ↗ ρ̂(l2, k̂);

7. Ξ1 ↗a1 R where a1(k) = k̂, by 4, 5, 6, and the induction hypothesis;

8. E [[el1]] ρ k = (v1, Ξ1) ⇒ post(l1, k, v1) ∈ Ξ1 ⇒ ∃v̂
′
1 ∈ α

l1,k̂
. v1 ↗ v̂′1, since v1 6∈ Err;

let v̂1 be this value;

9. v̂1 ∈ δ
l2,k̂

, because of 8 which implies that v̂1 ∈ α
l1,k̂
∩ (ValC ∪ ValP);

10. Ξ2 ↗a2 R where a2(k) = k̂, by 4, 6, 9, and the induction hypothesis;

11. let a = a1a2; note that a(k) = k̂;

12. Ξ1 ↗a R and Ξ2 ↗a R;

13. ∀pre(l′, k′, ρ′) ∈ Ξ. δl′,a(k′) 6= ∅ ∧ ρ′ ↗ ρ̂(l′, a(k′));

14. E [[el2]] ρ k = (v2, Ξ2) ⇒ post(l2, k, v2) ∈ Ξ2 ⇒ (∃v̂′2 ∈ αl2,a(k). v2 ↗ v̂′2) ∨ v2 ∈ Err

⇒ (∃v̂′ ∈ αl,a(k). v2 ↗ v̂′) ∨ v2 ∈ Err, because of 12 and evaluation constraints;

15. ∀post(l′, k′, v′) ∈ Ξ. (∃v̂′ ∈ αl′,a(k′). v′ ↗ v̂′) ∨ v′ ∈ Err;

16. Ξ↗a R where a(k) = k̂.

These are the modified steps in the reasoning for the sub-cases where the test evaluates

to false:

1. let (v1, Ξ1) = E [[el1]] ρ k where v1 ∈ ValB;

2. let (v3, Ξ3) = E [[el3]] ρ k;

3. E [[el]] ρ k = (v3, Ξ) where Ξ = {pre(l, k, ρ),post(l, k, v3)} ∪ Ξ1 ∪ Ξ3;

4. the computation of both E [[el1]] ρ k and E [[el3]] ρ k is done in less than n uses of E;

6. ρ↗ ρ̂(l1, k̂) and ρ↗ ρ̂(l3, k̂);

CHAPTER 3. ANALYSIS FRAMEWORK 55

9. v̂1 ∈ δ
l3,k̂

, because of 8 which implies that v̂1 ∈ α
l1,k̂
∩ ValB;

10. Ξ3 ↗a3 R where a3(k) = k̂, by 4, 6, 9, and the induction hypothesis;

11. let a = a1a3; note that a(k) = k̂;

12. Ξ1 ↗a R and Ξ3 ↗a R;

14. E [[el3]] ρ k = (v3, Ξ3) ⇒ post(l3, k, v3) ∈ Ξ3 ⇒ (∃v̂′3 ∈ αl3,a(k). v3 ↗ v̂′3) ∨ v3 ∈ Err

⇒ (∃v̂′ ∈ αl,a(k). v3 ↗ v̂′) ∨ v3 ∈ Err, because of 12 and evaluation constraints;

Last case: el = (lel1 el2). There are numerous sub-cases: one of the sub-expressions

evaluates to an error; the first one evaluates to a non-closure; a closure is invoked and its

body is evaluated, leading or not to an error. The first kind of sub-cases is similar to sub-

cases present in all previous cases. We skip them. The second kind of sub-case is similar

to the one involving a cdr-expression and a non-pair. We skip it too. We only consider the

last kind of sub-cases. Here is the reasoning:

1. let (v1, Ξ1) = E [[el1]] ρ k where v1 = clos((λl4x. el3), ρ′);

2. let (v2, Ξ2) = E [[el2]] ρ k where v2 ∈ Val;

3. let (v3, Ξ3) = E [[el3]] ρ′[x 7→ v2] kl;

4. E [[el]] ρ k = (v3, Ξ) where Ξ = {pre(l, k, ρ),post(l, k, v3)} ∪ Ξ1 ∪ Ξ2 ∪ Ξ3;

5. the computation of each of E [[el1]] ρ k, E [[el2]] ρ k, and E [[el3]] ρ′[x 7→ v2] kl requires

less than n uses of E;

6. δ
l1,k̂
6= ∅ and δ

l2,k̂
6= ∅;

7. ρ↗ ρ̂(l1, k̂) and ρ↗ ρ̂(l2, k̂);

8. Ξ1 ↗a1 R and Ξ2 ↗a2 R, where a1(k) = k̂ and a2(k) = k̂, by 5, 6, 7, and the induction

hypothesis;

9. E [[el1]] ρ k = (v1, Ξ1) ⇒ post(l1, k, v1) ∈ Ξ1 ⇒ ∃v̂
′
1 ∈ α

l1,k̂
. v1 ↗ v̂′1 as v1 6∈ Err; let

ĉ ∈ α
l1,k̂
∩ ValC be that closure;

10. E [[el2]] ρ k = (v2, Ξ2) ⇒ post(l2, k, v2) ∈ Ξ2 ⇒ ∃v̂
′
2 ∈ α

l2,k̂
. v2 ↗ v̂′2 as v2 6∈ Err; let

v̂2 ∈ α
l2,k̂

be that value;

CHAPTER 3. ANALYSIS FRAMEWORK 56

11. let k̂′ = call(l, ĉ, v̂2, k̂);

12. ∃k̂′′ ∈ Cont. (l4, k̂′′) ∈ χĉ and ρ′ ↗ ρ̂(l4, k̂
′′), because v1 ↗ ĉ;

13. v̂2 ∈ βx,k̂′ , by 9, 10, 11, 12, and the evaluation constraints;

14. δ
l3,k̂′ 6= ∅, because of 13 and the evaluation constraints;

15. v2 ↗ v̂2 ∈ βx,k̂′ = ref(x, l3, k̂
′) = ρ̂(l3, k̂

′)(x) ⇒ ∃v̂′ ∈ ρ̂(l3, k̂
′). v2 ↗ v̂′ ⇒ ∃v̂′ ∈

ρ̂(l3, k̂
′). (ρ′[x 7→ v2]) x↗ v̂′;

16. for any y ∈ Dom(ρ′), ∃v̂′ ∈ ρ̂(l4, k̂
′′). ρ′ y↗ v̂′, by 12;

17. for any y ∈ Dom(ρ′), ∃v̂′ ∈ ρ̂(l3, k̂
′). ρ′ y ↗ v̂′, by 16 and the fact that ρ̂(l3, k̂

′)(y) ⊆

ρ̂(l4, k̂
′′)(y) (see the evaluation constraints);

18. for any y ∈ Dom(ρ′), ∃v̂′ ∈ ρ̂(l3, k̂
′). (ρ′[x 7→ v2]) y↗ v̂′, by 17;

19. ρ′[x 7→ v2]↗ ρ̂(l3, k̂
′), by 15 and 18;

20. Ξ3 ↗a3 R where a3(kl) = k̂′, by 5, 14, 18, the induction hypothesis;

21. let a = a1a2a3; there is no conflict as Dom(a1) ∩ Dom(a2) = {k}, a1(k) = a2(k) = k̂,

and Dom(a3) ∩ (Dom(a1) ∪Dom(a2)) = ∅;

22. Ξ1 ↗a R, Ξ2 ↗a R, and Ξ3 ↗a R;

23. since post(l3, kl, v3) ∈ Ξ3, we have that if v3 6∈ Err, then v̂3 ∈ α
l3,k̂′ such that v3 ↗ v̂3,

then v̂3 ∈ γ
ĉ,k̂′ ⊆ α

l,k̂
;

24. ∀pre(l′, k′, ρ′) ∈ Ξ. δl′,a(k′) 6= ∅ ∧ ρ′ ↗ ρ̂(l′, a(k′)), by 4 and 22;

25. ∀post(l′, k′, v′) ∈ Ξ. (∃v̂′ ∈ αl′,a(k′). v′ ↗ v̂′) ∨ v′ ∈ Err, by 4, 22, and 23;

26. Ξ↗a R where a(k) = k̂.

This completes the case el = (lel1 el2), the proof that P (n) is satisfied, and the whole proof

of Theorem 3.5. 2

CHAPTER 3. ANALYSIS FRAMEWORK 57

3.5.3 Conservativeness Regarding Dynamic Type Tests

The central property, Theorem 3.5, shows that an analyser instance produced by the frame-

work mimics conservatively parts of the concrete evaluation, provided that certain conditions

are met. The following theorem uses this property to show that an optimiser can rely on

the analysis results produced by the analyser.

Theorem 3.6 Let el0 ∈ Exp be a program. Let (v0, Ξ0) = E [[el0]] · ε be the concrete

evaluation result. LetM = (ValB, ValC, ValP, Cont, k̂0, cc, pc, call) be the abstract model.

Let R = FW(el0 ,M) be the analysis results. Then we have that:

∃post(l, k, v) ∈ Ξ0 ∧ (carl′ el) ∈ 4(el0) ∧ v ∈ ValB ∪ValC ⇒ ∃k̂ ∈ Cont. α
l,k̂
6⊆ ValP

∃post(l, k, v) ∈ Ξ0 ∧ (cdrl′ el) ∈ 4(el0) ∧ v ∈ ValB ∪ValC ⇒ ∃k̂ ∈ Cont. α
l,k̂
6⊆ ValP

∃post(l, k, v) ∈ Ξ0 ∧ (l′el el′′) ∈ 4(el0) ∧ v ∈ ValB ∪ValP ⇒ ∃k̂ ∈ Cont. α
l,k̂
6⊆ ValC

Essentially, it means that if v ∈ Err and we confront R to the safety constraints, then

at least one of the safety constraints has to be violated. More accurately, if it is expression

el that evaluates to an illegal value, then there is a safety constraint concerning el that gets

violated.

Proof 3.6 First, observe that in order to make the concrete evaluation to produce an

error, one the following three situations must occur: the sub-expression of a car- or a

cdr-expression returns a non-pair, the first sub-expression of a call expression returns a

non-closure. Formally, we have that:

∃post(l, k, v) ∈ Ξ0. (carl′ el) ∈ 4(el0) ∧ v ∈ ValB ∪ValC ∨

(cdrl′ el) ∈ 4(el0) ∧ v ∈ ValB ∪ValC ∨

(l′el el′′) ∈ 4(el0) ∧ v ∈ ValB ∪ValP

Second, using Theorem 3.5 it is easy to show that R abstracts the whole concrete

evaluation:

1. E [[el0]] · ε = (v0, Ξ0);

2. δ
l0,k̂0
6= ∅, by the evaluation constraints;

CHAPTER 3. ANALYSIS FRAMEWORK 58

3. · ↗ ρ̂(l0, k̂0), that is, the empty environment is abstracted by ρ̂(l0, k̂0); this is imme-

diate since · is not defined on any variable;

4. then Ξ0 ↗a R where a(ε) = k̂0, by 1, 2, 3, and Theorem 3.5.

Finally, we use this last result to obtain the desired property. In the case where

(carl′ el) ∈ 4(el0), we have that:

post(l, k, v) ∈ Ξ0 ∧ v ∈ ValB ∪ValC

⇒ ∃v̂ ∈ αl,a(k). v ↗ v̂ (since v 6∈ Err)

⇒ ∃v̂ ∈ αl,a(k) ∩ (ValB ∪ ValC) (by def. of ↗)

⇒ αl,a(k) 6⊆ ValP

Similarly in the other two cases. 2

3.6 Theoretical Power and Limitations of the

Analysis Framework

Because of its great flexibility, our analysis framework is a very powerful tool. In this

section, we show that any program that terminates without error can be analysed perfectly

well using the framework. What this means is that there exists an abstract model that,

when it is used to instantiate an analysis for the program, provides the demonstration that

all dynamic type tests can be removed. In the preceding section, we already demonstrated

that any program that terminates with an error cannot be analysed perfectly well. That

is, for any abstract model, the analysis results that we obtain using it show that at least

one type test has to be left in the compiled program. As for the non-terminating programs,

there is no general result. Some can be analysed perfectly well and some cannot. This is

particularly interesting since non-terminating programs do not run into an error (otherwise

they would terminate).

Additionally, we give the answer to another question. Since any error-free terminating

program can be analysed perfectly well and some non-terminating ones can, too, it would

be interesting to be able to find an appropriate model each time it exists. So a natural

question is: Is it possible to systematically decide whether there exists an abstract model

M that, when used to analyse a program, provides analysis results that respect all safety

CHAPTER 3. ANALYSIS FRAMEWORK 59

constraints? Section 3.6.2 presents a demonstration that the problem is (unfortunately)

undecidable. A by-product of this demonstration is the provision of evidence that some

non-terminating programs cannot be analysed perfectly well.

3.6.1 Programs Terminating Without Error

Programs that terminate without error can be analysed perfectly well. This result is pretty

easy to obtain since: a terminating program evaluates completely in a finite number of

steps; so it manipulates a finite number of values and evaluation occurs in a finite number

of contours; so we simply have to create an abstract model that contains precisely these

values and contours and in which cc, pc, and call behave like in the concrete evaluation.

Theorem 3.7 Let el0 ∈ Exp be a program. Let (v0, Ξ0) = E [[el0]] · ε. Let us suppose

that v0 6∈ Err. Then there exists an abstract model M such that the analysis results R =

FW(el0 ,M) satisfy all the safety constraints.

Proof 3.7 We build the abstract model this way:

M = (ValB, ValC, ValP, Cont, k̂0, cc, pc, call) where

ValB = ValB

ValC = {⊥C} ∪ {v ∈ ValC | ∃l ∈ Lab. ∃k ∈ Cont. post(l, k, v) ∈ Ξ0}

ValP = {⊥P} ∪ {v ∈ ValP | ∃l ∈ Lab. ∃k ∈ Cont. post(l, k, v) ∈ Ξ0}

Cont = {⊥} ∪ {k ∈ Cont | ∃l ∈ Lab. ∃ρ ∈ Env. pre(l, k, ρ) ∈ Ξ0}

k̂0 = ε

cc(l, k̂) =







c, if el = (λlx. el1) ∧ k̂ 6= ⊥ ∧ post(l, k̂, c) ∈ Ξ0

⊥C , otherwise

pc(l, v̂1, v̂2, k̂) =







p, if el = (consl el1 el2) ∧ v̂1 ∈ Val ∧ v̂2 ∈ Val ∧ k̂ 6= ⊥

∧ post(l1, k̂, v̂1) ∈ Ξ0 ∧ post(l2, k̂, v̂2) ∈ Ξ0

∧ post(l, k̂, p) ∈ Ξ0

⊥P , otherwise

call(l, v̂1, v̂2, k̂) =







k̂l, if el = (lel1 el2) ∧ v̂1 ∈ Val ∧ v̂2 ∈ Val ∧ k̂ 6= ⊥

∧ post(l1, k̂, v̂1) ∈ Ξ0 ∧ post(l2, k̂, v̂2) ∈ Ξ0

⊥ otherwise

CHAPTER 3. ANALYSIS FRAMEWORK 60

There is a dummy closure ⊥C and a dummy pair ⊥P added to the values manipulated by

the program. And there is a dummy contour ⊥ added to the set of contours manipulated

by the program. They are introduced to allow the abstract creation functions cc, pc, and

call to be defined on their entire domain. Basically, cc, pc, and call do exactly the same

computations as those done in the concrete evaluation. However, for any tuple of arguments

that do not correspond to a situation found during the concrete evaluation, they return a

dummy answer. We will see later that the dummies do not diminish the power of the model

as a smallest fixed-point solution to the evaluation constraints does not include dummies.

Note that cc and pc are well-defined despite the fact that c and p, respectively, are extracted

from the cache. This is a consequence of Theorem 3.3, which guarantees that the post-entry

from which c or p is extracted is unique.

Some justification has to be given in order to ensure that the model is legal. First, it is

easy to verify that ValB, ValC, ValP, and Cont are finite sets and that ValB, ValC, and

ValP are disjoint. Next, k̂0 is clearly a member of Cont as the program has been evaluated

in contour ε. cc, pc, and call are defined on their entire domain. cc either returns ⊥C or

the value extracted from a post-entry. Since the post-entry contains a value resulting from

the evaluation of a λ-expression, it is clear that the value is an element of ValC. So we can

conclude that the return value of cc is always in ValC. A similar reasoning applies to pc.

There remains to verify that call’s return value always lie in Cont.

In the case where call returns ⊥, the verification is immediate. In the case where call

returns a contour of the form k̂l, we have to show that the conditions checked by call are

sufficient to imply that k̂l ∈ Cont. The reasoning is the following:

1. k̂ 6= ⊥

⇒ ∃l′ ∈ Lab. ∃ρ ∈ Env. pre(l′, k̂, ρ) ∈ Ξ0;

2. el = (lel1 el2), post(l1, k̂, v̂1) ∈ Ξ0, post(l2, k̂, v̂2) ∈ Ξ0

⇒ the computation of E [[el]] ρ k̂ is required in the global computation E [[el0]] · ε;

3. computation of E [[el]] ρ k̂ is required

⇒ computation of E [[el1]] ρ k̂ is required

⇒ E [[el1]] ρ k̂ = (v̂1, Ξ1) for some cache Ξ1 ⊆ Ξ0;

4. computation of E [[el]] ρ k̂ is required and v̂1 ∈ Val

⇒ computation of E [[el2]] ρ k̂ is required

CHAPTER 3. ANALYSIS FRAMEWORK 61

⇒ E [[el2]] ρ k̂ = (v̂2, Ξ2) for some cache Ξ2 ⊆ Ξ0;

5. v0 ∈ Val ⇒ v̂1 ∈ ValC (otherwise there would have been an error and it would

contradict the theorem hypothesis);

6. v̂1 ∈ ValC and v̂2 ∈ Val

⇒ computation of E [[el3]] ρ′[y 7→ v̂2] k̂l is required where v̂1 = clos((λy. el3), ρ′)

⇒ pre(l3, k̂l, ρ′[y 7→ v̂2]) ∈ Ξ0

⇒ k̂l ∈ Cont

Valid model M = (ValB, ValC, ValP, Cont, k̂0, cc, pc, call) allows program el0 to be

analysed perfectly well. To justify this claim, we present an assignment to the abstract

variables that is a solution to the evaluation constraints and that also respects the safety

constraints. Here is the assignment:

α
l,k̂

=







{v}, if k̂ 6= ⊥ ∧ post(l, k̂, v) ∈ Ξ0

∅, otherwise

βx,k̂
=







{v}, if k̂ 6= ⊥ ∧ k̂ = k̂′l ∧ el = (lel1 el2) ∧

post(l1, k̂′, clos((λl3x. el4), ρ)) ∈ Ξ0 ∧ post(l2, k̂′, v) ∈ Ξ0

∅, otherwise

γ
ĉ,k̂

=







{v}, if ĉ 6= ⊥C ∧ k̂ 6= ⊥ ∧ ĉ = clos((λlx. el1), ρ) ∧

post(l1, k̂, v) ∈ Ξ0

∅, otherwise

δ
l,k̂

=



































if k̂ = ⊥ then
∅

else if pre(l, k̂, ρ) ∈ Ξ0 then






















if el = el0 then

{#f}
else let l1 = parent(l); if el1 = (λl1x. el) then

βx,k̂

else if el1 = (ifl1 el2 el el3) then

α
l2,k̂

else if el1 = (ifl1 el2 el3 el) then

α
l2,k̂

else
δ
l1,k̂

else
∅

CHAPTER 3. ANALYSIS FRAMEWORK 62

χĉ =







{(l, k) | el = (λlx. el1) ∧ k ∈ Cont ∧ post(l, k, ĉ) ∈ Ξ0}, if ĉ 6= ⊥C

∅, otherwise

πp̂ =












(l, v1, v2, k)

el = (consl el1 el2) ∧ k ∈ Cont ∧

post(l, k, p̂) ∈ Ξ0 ∧ p̂ = pair(v1, v2)






, if p̂ 6= ⊥P

∅, otherwise

κ
k̂

=












(l, v1, v2, k)

el = (lel1 el2) ∧ post(l1, k, v1) ∈ Ξ0 ∧

post(l2, k, v2) ∈ Ξ0 ∧ k̂ = kl






, if k̂ 6= ⊥

∅, otherwise

Clearly, matrices α, β, γ, χ, π, and κ are well-defined in terms of Ξ0 and because of the

fact that post-entries post(l, k,) are unique (Theorem 3.3). The δ matrix is well-defined,

too, because it is mostly defined in terms of Ξ0 and the other matrices. The only recursive

references to δ itself are non-cyclic, since we can see the definition of an entry δ
l,k̂

as being

computed as f(Ξ0, α, β, δparent(l), k̂) for some function f . Note that ∀k̂ ∈ Cont.|κ
k̂
| ≤ 1. Note

also that no abstract variable contains any of the dummies ⊥C , ⊥P , and ⊥.

Now, we have to verify that this assignment to the abstract variables respects all the

evaluation constraints. We omit a complete verification as it would be too lengthy and it

would be almost completely mechanical. The only point that is more difficult consists in

verifying that the constraints related to a variable reference are respected. That is, we verify

that, for any variable reference el = xl, δ
l,k̂
6= ∅ ⇒ α

l,k̂
⊇ ref(x, l, k).

We show by induction on the depth of label l in the syntax tree that if pre(l, k, ρ) ∈ Ξ0

and ρ x is defined, then ref(x, l, k) = {ρ x}.

Basis. Label l is at depth 0 ⇒ l = l0 ⇒ Dom(ρ) = ∅.

Induction hypothesis. Let us suppose that the desired property is respected for any label l

of depth at most d.

Induction step. Let pre(l, k, ρ) ∈ Ξ0 where l is at depth d + 1. Let l1 = parent(l). There

are two cases. First case:

1. el1 is not a λ-expression

2. ⇒ pre(l1, k, ρ) ∈ Ξ0.

3. Suppose that ρ x is defined.

CHAPTER 3. ANALYSIS FRAMEWORK 63

4. ⇒ ref(x, l1, k) = {ρ x} by induction hypothesis

5. ⇒ ref(x, l, k) = {ρ x} since ref(x, l, k) = ref(x, l1, k).

Second case:

1. el1 = (λl1x. el)

2. ⇒ ∃l2 ∈ Lab.

el2 = (l2el3 el4) ∧ k = k′l2 ∧ post(l3, k′, clos((λl1x. el), ρ′)) ∈ Ξ0 ∧ post(l4, k′, v) ∈ Ξ0

∧ ρ = ρ′[x 7→ v]

3. There are two sub-cases:

4. first sub-case:

(a) ρ x is defined

(b) ⇒ ref(x, l, k) = βx,k
(∗)
= {v} = {ρ x} (∗) because of the assignment to β variables

5. second sub-case:

(a) Suppose ρ y is defined

(b) ⇒ ref(y, l, k) =
⋃

k′′∈K ref(y, l1, k) where

K = {k′′ ∈ Cont | (l2, c, v, k′) ∈ κk ∧ (l1, k′′) ∈ χc}

= {k′′ ∈ Cont | (l1, k′′) ∈ χclos((λl1
x. el), ρ′)}

(since κk = {(l2, clos((λl1x. el), ρ′), v, k′)})

= {k′′ ∈ Cont | post(l1, k′′, clos((λl1x. el), ρ′)) ∈ Ξ0}

= {k′′ ∈ Cont | pre(l1, k′′, ρ′) ∈ Ξ0}

(c) ⇒ ∀k′′ ∈ K. pre(l1, k′′, ρ′) ∈ Ξ0

(d) ⇒ ∀k′′ ∈ K. ref(y, l1, k
′′) = {ρ′ y}

(e) ⇒ ref(y, l, k) = {ρ′ y} = {ρ y}

Now that we know that all the evaluation constraints are respected, there remains to do

the same with the safety constraints. That would be easy to verify since, by construction

of the assignment, the violation of a safety constraint directly imply that the concrete

evaluation should have led to an error.

CHAPTER 3. ANALYSIS FRAMEWORK 64

So this concludes the proof, as we gave a model, with which analysis results for the

program were obtained, and these results respect both the evaluation and the safety con-

straints. So the program could be analysed perfectly well.

2

3.6.2 Undecidability of the “Perfectly Analysable” Property

We demonstrate here that it is undecidable to determine whether there exists an abstract

model that allows a program to be analysed perfectly well. In order to do so, we make a

reduction from the Universal Language for the Turing machines to our problem. So, before

we state the theorem and give the proof, we introduce the definition of a Turing machine,

its behaviour on an input, and the Universal Language.

Our model of Turing machine has a tape that is infinite in both directions. It has a

success state and a failure state. Execution can only stop because the machine has entered

one of these special states. It cannot stop because of any kind of illegal operation like, for

example, letting the read/write head fall past the end of the tape (in the case of a machine

with a semi-infinite tape). The computation may last forever and the execution may not

stop.

Formally, a Turing machine M is a tuple (Q, Γ, Σ, δ, #, q0, qs, qf) where:

• Q is a (finite) set of states;

• Γ is the alphabet of the tape;

• Σ ⊂ Γ is the input alphabet;

• δ : Q×Γ→ Q×Γ×{L,R} is the function of transition, where L and R are directions;

it is defined for every pair of arguments; given a current state q ∈ Q and the symbol

c ∈ Γ that is currently under the read/write head, (q ′, c′, d) = δ(q, c) is a tuple giving

the new state, the symbol to be written at the current position and the direction in

which the head must move;

• # ∈ Γ is the blank symbol;

• q0 ∈ Q is the start state;

CHAPTER 3. ANALYSIS FRAMEWORK 65

• qs ∈ Q is the “success” state;

• qf ∈ Q is the “failure” state; qf 6= qs.

The execution of M on a word w ∈ Σ∗ proceeds like this. At the beginning, the tape

contains w surrounded by an infinity of # in both directions. The read/write head is

positioned on the first symbol of w. The state is set to q0. Then, computation is done

according to δ. Execution stops if the machine enters the state qs or qf . We say that M

accepts w if execution ends by having M to enter qs. We say that M refuses w if execution

ends by having M to enter qf . Finally, we say that M loops on w if execution never stops.

The Universal Language is defined as:

UL = {(M, w) ∈ {Turing machines} × Σ∗ |M accepts w}

It is well-known that UL is undecidable. For example, see [34].

We can now present the theorem.

Theorem 3.8 The following problem is undecidable:

{el ∈ Exp | ∃M. el is analysed perfectly well using model M}

Proof 3.8 We prove the theorem by making a reduction of UL to our problem. That

is, if our problem were decidable, then UL would be, too, leading to a contradiction. The

reduction is a transformation from a machine-word pair (M, w) to a program el0 such that

M accepts w if and only if el0 is analysable perfectly well.

The generated program simulates the execution of M on w. If the execution of the

machine ends by entering qs, the program ends by evaluating the expression #f. If the

execution of the machine ends by entering qf , the program ends by evaluating the expression

(car #f), causing an error. If the execution of the machine never ends, the program’s

evaluation lasts forever.

The tape is represented using two lists: one containing the part of the tape on the right

of the head and another contains the reverse of the part of the tape on the left of the head.

Of course, the lists cannot contain all the symbols appearing on their part of the tape. The

CHAPTER 3. ANALYSIS FRAMEWORK 66

end of list represents an infinity of blank symbols. The explicitly represented parts of the

tape are lazily extended during the execution. The current state and the symbol under the

read/write head are passed around as parameters.

Moreover, two counters are maintained throughout the program evaluation. The value

of the first one is always 1 less than the value of the second one. The program tests whether

this invariant is still true before each step of the simulation. Of course, the invariant is

always true. In the other (necessarily impossible) case, an error is generated by evaluating

(car #f). These two counters are used later in the proof.

We describe the transformation from (M, w) to el0 as a sequence of steps.

1. From a Turing machine to a functional program. We describe this first step of trans-

formation using a number of compilation functions denoted by ‘T·’.

T[[(M, v)]] = let d = Tδ[[δ]] /∗ d : Q→ Γ→ Q× Γ× {L,R} ∗/

let l = λk lt cs rt. lt = #f ? k #f ‘#’ (cs:rt)

: k (cdr lt) (car lt) (cs:rt)

let r = λk lt cs rt. rt = #f ? k (cs:lt) ‘#’ #f

: k (cs:lt) (car rt) (cdr rt)

/∗ l, r : (Γ∗ → Γ→ Γ∗ → Val↑)→ Γ∗ → Γ→ Γ∗ → Val↑ ∗/

letrec s = λc1 c2 q lt cs rt.

c1 + 1 6= c2 ? (car #f) :

q = qs ? #f :

q = qf ? (car #f) :

let (q′, cs′, dir) = d q cs

(dir = L ? l : r) (s (c1 + 1) (c2 + 1) q′) lt cs′ rt

s 0 1 q0 #f Tcs[[w]] Trt[[w]]

Tδ[[δ]] = λq cs. q = q0 ? T′
δ[[δ q0]] :

q = q1 ? T′
δ[[δ q1]] :

. . .

q = q|Q|−1 ? T′
δ[[δ q|Q|−1]] :

#f /∗ ← inaccessible case ∗/

T′
δ[[δ q]] = cs = c0 ? T′′

δ [[δ q c0]]:

cs = c1 ? T′′
δ [[δ q c1]]:

CHAPTER 3. ANALYSIS FRAMEWORK 67

. . .

cs = c|Γ|−1 ? T′′
δ [[δ q c|Γ|−1]]:

#f /∗ ← inaccessible case ∗/

T′′
δ [[δ q c]] = (q′, c′, dir′) /∗ where (q′, c′, dir′) = δ(q, c) ∗/

Tcs[[w]] =







‘#’, if w = ε

‘c’, if w = cw′

Trt[[w]] =







#f, if w = ε

T′
rt[[w

′]], if w = aw′

T′
rt[[w]] =







#f, if w = ε

‘a’:T′
rt[[w

′]], if w = aw′

In the generated program: function ‘d’ is the implementation of the transition function

δ; functions ‘l’ and ‘r’ update the tape when doing a transition to the left or to the

right, respectively; function ‘s’ does a step in the simulation of the machine; note that it

verifies counters ‘c1’ and ‘c2’ before doing the step proper; variable ‘q’ holds the current

state; variables ‘lt’, ‘cs’, and ‘rt’ hold the left part of the tape, the current symbol,

and the right part of the tape, respectively; variable ‘k’ contains the continuation of

the execution after an update of the tape.

2. Removal of syntactic sugar. We remove tuple manipulation in the generated program

using these rules:

let (x, y, z) = e1

e2

7→ let r = e1

let x = (car r)

let y = (car (cdr r))

let z = (car (cdr (cdr r)))

e2

(x, y, z) /∗ as a tuple creation ∗/ 7→ x:y:z:#f

We also remove multi-argument functions and calls:

λx1 x2 e 7→ λx1. λx2 e

e1 e2 e3 . . . 7→ (e1 e2) e3 . . .

Recursive use of these last rules may be required.

3. Elimination of types specific to the simulation of the Turing machine. We replace

state, symbol, and direction constants by numerical counterparts. Let us define the

CHAPTER 3. ANALYSIS FRAMEWORK 68

following coding functions:

TQ : Q→ {0, . . . , |Q| − 1} bijective

TΓ : Γ→ {0, . . . , |Γ| − 1} bijective

T{L,R} : {L,R} → {0, 1} bijective

We replace each special constant by its code:

q /∗ ∈ Q ∗/ 7→ TQ[[q]] /∗ ∈
�
∗/

c /∗ ∈ Γ ∗/ 7→ TΓ[[c]] /∗ ∈
�
∗/

dir /∗ ∈ {L,R} ∗/ 7→ T{L,R}[[dir]] /∗ ∈
�
∗/

4. Elimination of numbers. In turn, we transform arithmetical expressions and constants.

We transform the naturals into a unary representation based on lists. Here are the

rules:

e1 6= e2 ? e3 : e4 7→ e1 = e2 ? e4 : e3

e1 = e2 /∗ not a binding! ∗/ 7→ ((eq e1) e2)

e + 1 7→ (inc e)

n /∗ ∈
�
∗/ 7→ T � [[n]]

where:

T � [[n]] =







#f, if n = 0

#f:T � [[n− 1]], if n > 0

After the numeric operations and constants are removed, we apply this last rule once

to the whole program:

e 7→ let inc = λn. #f:n

letrec eq = λn1. λn2. n1 ? (n2 ? ((eq (cdr n1)) (cdr n2))

: #f)

: (n2 ? #f : (#f : #f))

e

5. Removal of syntactic sugar (again). We transform many syntactic constructs into

base language constructs. Each construct should be completely eliminated before

continuing with the next.

CHAPTER 3. ANALYSIS FRAMEWORK 69

letrec We remove letrec-expressions using the following rule:

letrec v = (λx. e1)

e2

7→ let v = (Y (λv. (λx. e1)))

e2

and add the definition of the Y combinator once to the whole program using this

rule:

e 7→ let Y = λf. let g = (λh. (λz. ((f (h h)) z)))

(g g)

e

let We use this rule to remove let-expressions:

let v = e1

e2

7→ ((λv. e2) e1)

conditional We replace the ‘· ? · : ·’ construct by a conditional from the mini-

language:

e1 ? e2 : e3 7→ (if e1 e2 e3)

cons We apply the following rule while taking care of respecting the fact that the ‘:’

operator is right-associative:

e1:e2 7→ (cons e1 e2)

6. α-conversion and proper labelling. We make sure each variable has a distinct name

and add unique labels to all the expressions of the program.

We can make the following observations about the generated program el0 . First, the only

expressions that may cause an error are the two (car #f) expressions. By construction of

the program, we know that the evaluation of the other expressions cannot go wrong.

Second, the first (car #f) expression, although it would necessarily cause an error if it

were evaluated, does not get evaluated in the first place. It is obvious that counters ‘c1’ and

‘c2’, after beginning with values 0 and 1, respectively, are each incremented by 1 after each

simulation step. So the invariant c1 + 1 = c2 is true during the whole evaluation of el0 .

Third, if M accepts w, the evaluation of el0 ends by returning #f as a result. By

CHAPTER 3. ANALYSIS FRAMEWORK 70

Theorem 3.7, it follows that there is a modelM allowing el0 to be analysed perfectly well.

Fourth, in the opposite case, M refuses w by entering state qf . In this case, the second

(car #f) expression gets evaluated and an error occurs. By Theorem 3.6, there cannot be

a model allowing el0 to be analysed perfectly well.

Fifth and last observation, if M loops on w, the evaluation of el0 never ends and no error

ever occurs but, nevertheless, el0 is not perfectly analysable. This fact is not necessarily

trivial to verify. We do not provide a complete and formal proof, we only give the following

reasoning:

1. Let us suppose that el0 can be analysed perfectly well using model M. Note that we

must have that |ValP| <∞ forM to be a legal model.

2. Note also that counters ‘c1’ and ‘c2’ go through all values in
�

and
�
− {0}, respec-

tively, during the infinite evaluation.

3. The following point is not directly established by Theorems 3.5 and 3.6, but we will

stretch the scope of these a little bit.

In our present case, the evaluation is infinite, so our collecting machine would not

stop computing and there would be no cache returned by it. However, we could

define a variant of the collecting machine to which we pass an argument indicating

the maximum number of steps that the machine should make. In the case of an infinite

evaluation, we could obtain a cache describing the beginning of the evaluation. On

top of it, we could adapt both theorems to make them able to handle partial caches.

So, we suppose that we have results similar to those given by the theorems despite

the fact that the evaluation is infinite.

Now, this is where the counters ‘c1’ and ‘c2’ come into play. Each time the generated

program el0 tests whether the invariant about counters ‘c1’ and ‘c2’ is still true, the

expression eltest = (ltest(eq (inc c1l1)) c2l2) is evaluated. So there are an infinity of

contours k ∈ Cont and n ∈
�

such that post(l1, k, T � [[n]]) and post(l2, k, T � [[n + 1]])

are in the cache.4

4We make a slightly abusive use of T � as it is supposed to produce code, not values. However, each
instance of code generated by T � can only evaluate to a single value, no matter in which environment or
contour it is evaluated.

CHAPTER 3. ANALYSIS FRAMEWORK 71

4. Among the abstract pairs in ValP, there is necessarily one that is the abstraction of

more than one number (of more than one list of Booleans). Let p̂ ∈ ValP be that

pair. Moreover, let m 6= n ∈
�

such that T � [[m]]↗ p̂ and T � [[n]]↗ p̂.

5. Let k ∈ Cont such that post(l1, k, T � [[m]]) and post(l2, k, T � [[m + 1]]) are in the

cache. Let k̂ ∈ Cont and p̂′ ∈ ValP abstract k and T � [[m + 1]], respectively. By our

“extended” Theorem 3.5, we know that p̂ ∈ α
l1,k̂

and p̂′ ∈ α
l2,k̂

. By the ambiguity of

what is abstracted by p̂, we conclude that the abstract evaluation of the test has to

include the possibility that the test is negative, leading to the evaluation of (car #f).

More precisely, the abstract evaluation of eltest in contour k̂ represents the test inc(m)

= m + 1 (which is true and which is expected by conservativeness) and the test

inc(n) = m + 1 (which is false). So α
ltest,k̂

contains an expected abstract true value

(i.e. ∈ ValC ∪ ValP) and an abstract false value (i.e. ∈ ValB).

6. Because the test may apparently be false, the expression (car #f) is abstractly evalu-

ated in contour k̂, leading to the violation of a safety constraint. Since this reasoning

holds for an arbitrary model, we conclude that el0 cannot be analysed perfectly well.

This concludes the proof that the generated program el0 is analysable perfectly well if

and only if M accepts w. Since UL is undecidable, it is impossible to always be able to

decide if there exists a model that allows an arbitrary el0 to be analysed perfectly well. 2

3.7 Flexibility in Practice

The flexibility of the analysis framework can be illustrated in another way. The framework

is able to imitate many conventional analyses.

For example, we can define models that produce analysis instances similar to polynomial

variants of Shivers’ K-cfa [55, 61, 37]. The proposed models are intended for the analysis

of program el0 .

ValB = {#f}

ValC = {⊥C} ∪ {λl k̂ | l ∈ 4(l0) ∧ el is a λ-expression ∧ k̂ ∈ Cont}

ValP = {P}

Cont = {k̂ ∈ Lab∗ | |k̂| ≤ K}

CHAPTER 3. ANALYSIS FRAMEWORK 72

k0 = ε

cc(l, k̂) =







λl k̂, if el is a λ-expression

⊥C , otherwise

pc(l, v̂1, v̂2, k̂) = P

call(l, v̂1, v̂2, k̂) = the longest suffix of k̂l in Cont

A contour is a chain of the labels of the enclosing K sites where calls occurred that lead

to the current evaluation. It is usually referred to as a call chain. By the definition of

Cont, there is only a polynomial number of abstract contours (relative to the size of the

program). There is also a polynomial number of values. Pairs are represented coarsely

by a single abstract pair. Distinct λ-expressions produce distinct closures. Moreover, the

contour in which a closure was created is captured by the closure. It allows closures to

behave differently depending on the evaluation context in which they were created. That

does not directly correspond to remembering the lexical environment but, in favourable

cases, it acts as a good substitute.

Note that in the particular case where K = 0, there is only one contour (ε) for the whole

abstract evaluation and one closure per λ-expression.

By its equivalence with the 0-cfa, set-based analysis [29, 37] is also imitated by an

instantiation of an analysis using our framework.

More elaborate analyses can also be imitated by the framework. The following example

is inspired from one in [37]. To obtain a more precise analysis, it is sometimes necessary

to distinguish contours by the type of the values that are manipulated by the program.

The advantage of contours based on types is that types constitute the information that is

really used in the concrete evaluation. That is, a program may test whether a particular

value is a pair, but never tests whether the function body being evaluated was called from

expression el. Contours directly conveying the really useful information normally improve

the analysis accuracy more than contours conveying information that is, in the best of cases,

only correlated to the useful information. Here is the definition of a model using type-based

contours.

ValB = {#f}

ValC = {⊥C} ∪ {λl k̂ | l ∈ 4(l0) ∧ el is a λ-expression ∧ k̂ ∈ Cont}

ValP = {P}

CHAPTER 3. ANALYSIS FRAMEWORK 73

Cont = {⊥} ∪
{

k̂ ∈ {b,c,p}∗ | |k̂| ≤ L
}

where L is the maximum number of variables

visible from any el ∈ 4(el0)

k0 = ε

cc(l, k̂) =







λl k̂, if el is a λ-expression and k̂ 6= ⊥

⊥C , otherwise

pc(l, v̂1, v̂2, k̂) = P

call(l, v̂1, v̂2, k̂) =







⊥, if k̂ = ⊥ or v̂1 6∈ ValC or v̂2 = ⊥C else

bk̂′, if v̂1 = λl k̂′ and v̂2 ∈ ValB else

ck̂′, if v̂1 = λl k̂′ and v̂2 ∈ ValC else

pk̂′, let v̂1 = λl k̂′ and v̂2 ∈ ValP

The two main differences with this new model are the following. Contours are made

of type indicators instead of labels. And it is the contour contained in the invoked closure

that is extended instead of the contour that prevails when the call occurs. The contour in

which an expression is evaluated indicates the (top-level) type of the value to which each

variable in the environment is bound. The analysis instance obtained using this model has

exponential complexity in the size of the program. The worst case occurs when the longest

lexical environment in the program contains a number of variables that is a significant

fraction of the size of the program.

Note that an abstract variable like α
l,k̂

always exists, even if the number of variables

visible from el and the number of indicators in k̂ do not match. In such a case, a minimal

solution to the evaluation constraints always includes the assignment α
l,k̂

= ∅ because the

expression never gets evaluated in that contour.

Despite its great flexibility, our framework has its limits. As an instance, the analy-

sis based on polymorphic splitting presented by Jagannathan and Wright [38] cannot be

imitated by the framework. Polymorphic splitting is presented as a method of obtaining,

in abstract interpretation, an analogue to the let-polymorphism used in Hindley-Milner

polymorphic type inference [43]. Abstract closures that are bound to a variable in a let-

expression receive a special treatment. First, their associated contour is extended when they

are bound to the variable. Next, their contour is modified by each reference to the variable.

Moreover, two distinct references to the variable produce two different modifications to the

CHAPTER 3. ANALYSIS FRAMEWORK 74

closure. This is clearly not feasible within our framework. In our case, a reference to a

variable cannot modify the value it is bound to, neither can it modify a part of that value.

Chapter 4

Demand-Driven Analysis

4.1 A Cyclic Process

Now that we have a precise objective and a powerful analysis framework, we propose a coarse

sketch of the demand-driven analysis. Demand-driven analysis should start by performing

a preliminary analysis for the program. The preliminary analysis is an inexpensive analysis

that provides relatively coarse initial analysis results. Typically, the preliminary analysis

results do not bring sufficient evidence to let the optimiser to remove all dynamic safety tests.

Demand-driven analysis then continues with a model-update, re-analysis cycle. A model-

update phase proposes and performs changes on the abstract model, based on the most

recent analysis results and on the dynamic tests that are remaining. Instead of “updated”,

we might as well say that the model has been refined. The re-analysis phase computes new

analysis results for the program using the new abstract model. This cycle continues until

there are no resources left for the analysis or all safety tests could be removed.

Of course, this sketch is very general and leads to many questions. We ask some questions

ourselves and bring answers to some of them immediately.

What can one expect from the use of an updated, or refined, abstract model? Normally,

the updated model produces a more accurate analysis instance. This more accurate analysis

may provide analysis results containing less superfluous values. And, with chance, these al-

low the optimiser to remove some additional safety tests. We use the term more informative

to describe analysis results that contain less superfluous values.

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 76

While it is clear that analysis results containing less superfluous values do not automat-

ically imply that some additional safety tests can be removed, it may not be obvious why

a more accurate analysis does not necessarily lead to more informative results. We give an

example scenario. Let a program el0 be analysed using model M. Also, let ValP contain

only one pair. Let el be some expression evaluating only to this pair. Now, for some reason,

a more precise description of the values to which el evaluates is required, and, consequently,

M is refined into M′ such that ValP ′ contains nine pairs. The nine pairs indicate the

types of the two values that are stored in the car- and cdr-fields (three different types

for the car-field and three for the cdr-field). Suppose that pc is changed accordingly. A

re-analysis is done and suppose that the results obtained for el0 using M′ reveal that el

may evaluate to any of the nine pairs in ValP ′. Then, in the precise case of el, the analysis

results are finer but not more informative.

How can the model be refined? In principle, there is no problem at all if one wants

to refine a model since a model is a simple collection of framework parameters and new

parameters can easily be chosen, as long as the new model is legal. Of course, automatic

updates of the model are more involving. It depends a lot on the modelling strategy. But it

is clearly feasible. Chapter 5 presents our proposal of a modelling strategy and the means

to update models automatically.

How should the modifications to the model be chosen? That is, among changes to ValP

and pc, changes to ValC and cc, changes to Cont and call, or some combinations of these,

which should be the most helpful in removing safety tests? This is the most interesting

question. It is not obvious a priori as computations in the program to analyse can be very

intricate. A change in the representation of pairs may help to obtain better information as

to which functions can be invoked at a certain call, which in turn, may cause one of these

functions not to be passed the Boolean that caused an error in the evaluation of its body.

Here are desirable characteristics of the method that chooses modifications to the model.

Naturally, this method should be systematic. Requiring the intervention of the user would

make it unusable. Also, it should tend to select appropriate, or useful modifications. To

expect guarantees that all selected modifications are useful is utopian, as the general task is

uncomputable. These reasons are generalities, but a more practical characteristic, and an

important one, is that we want the method not to become a large AI program, or an expert

system. We speculate that an AI engine driving the model modifications would probably

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 77

obtain better results than a more simple and mechanistic approach. However, we wish to

develop something that has at least some genericity, that could be adapted to other analyses

or to other languages. As we mention earlier, the real goal is more a proof of concept than

an attempt to get the best possible type analysis. The next section presents a proposal of

a method for the selection of modifications to the model.

4.2 Generation and Propagation of Demands

We propose a method for the selection of modifications to the model that is based on

demands. Roughly speaking, a demand is a request for the demonstration of a certain fact

or for the execution of a certain action. It is emitted because there are good reasons to

believe that its accomplishment would ultimately improve the analysis of the program. Also,

it is emitted because there are reasons to believe that it does represent an actual fact (in

the case of a request for demonstration) and consequently that it might be achievable.

In a model-update phase, demands are first generated, then processed, usually leading

to the emission of new, subordinate demands. We do not want to give in this chapter a

complete proposition as to precisely what demands are, how they are generated and how

they are processed. A complete proposition is given in Chapter 5. Nevertheless, we present

many general ideas here.

The processing of the demands is the process by which the direct needs of the optimiser,

expressed as the initial demands, are ultimately translated into other demands that are

precise indications on the way to update the model.

The initial demands are generated at the start of the model-update phase and directly

mirror the needs of the optimiser. For each expression for which a safety test seems to be

still required, according to the current analysis results, a demand is emitted asking for a

demonstration to be made to show that, in fact, the values manipulated by the expression

are all correct ones and no test is required. For example, if a safety test seems to be required

for expression (carl el1) or (cdrl el1), a demand is generated to ask for a demonstration

that, in fact, el1 may only evaluate to pairs. Clearly, the fact that a demand is emitted

implies that the current results suggest that el1 may evaluate to something else than pairs.

But the presence of the expression as it is suggests that the programmer believes that e l1

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 78

may only evaluate to pairs. The generation of the initial demands could hardly be a simpler

operation.

Demand processing uses rules to determine what actions should be done in the hope of

fulfilling the request stated in the demand. The actions to perform depend on the kind of

demand to process and on the context. The context includes the current state of the model

and the current analysis results. The existence of more than one kind of demands seems

inevitable.

The initial demands are all similar: they all ask to show that a certain expression may

only evaluate to pairs or to closures. However, other kinds of demands can be generated by

the processing of the initial demands, and the processing of their sub-demands, and that

of these new demands, etc. Even if different sets of demands may be used for different

demand-driven methods, some kinds of demands seem inevitable. For example, a demand

may ask for a demonstration that a particular expression does not get evaluated at all.

Or, at least, not in certain circumstances. Another example: a demand might ask for a

change to the model in such a way that more precise contours be introduced to cause a

certain expression to evaluate only to pairs in a particular contour, and only to Booleans in

another.

The precise set of demands that is required to implement a model-update phase depends

on the way one models the values and contours, on the way one wants the demands to be

processed (the processing rules), on the kind of sub-demands the processing rules produce,

etc.

Depending on the context, the processing of certain demands may lead to trivial success,

or trivial failure, to a modification to the model, or, generally, to a combination of actions

on some auxiliary data structures and the emission of new demands. Trivial success occurs

when, for example, the demand asks to show that an expression returns only pairs and that

the current analysis results indicate that it is already the case. Trivial failure occurs when,

for example, the demand asks to show that the main expression of the program does not

get evaluated, which is simply false.

Sketches of processing rules for typical demands are presented just after an informal

example of demand-driven analysis.

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 79

4.3 A Demand-Driven Analysis Example

We present an example of demand-driven analysis for a small program e1. It is not a complex

program and only one judicious modification to the basic abstract model will be sufficient to

analyse it perfectly well. The model-update phase that is presented is not very complicated

but it still provides the opportunity to informally introduce some considerations that are

fundamental in the development of a complete demand-driven approach.

The program to analyse is the following:

(
1
(λ

2
f. (

3
f
4
(

5
f
6
(cons

7
#f

8
#f

9
))))

(λ
10

x. (if
11

x
12

(car
13

(pair?
14

x
15
))

(λ
16

y. y
17
))))

Its evaluation does not cause an error but it is designed to cause confusion during a näıve

analysis, as we see next. The initial model we use for the analysis of e1 is:

M = (ValB, ValC, ValP, Cont, K, cc, pc, call)

ValB = {#f}

ValC = {λ2, λ10, λ16}

ValP = {P}

Cont = {K}

cc(l, k) =







λl, if l ∈ {2, 10, 16}

λ2, otherwise

pc(l, v1, v2, k) = P

call(l, f, v, k) = K

The results that we obtain by analysing e1 usingM are the following. We limit the presen-

tation of the results to that of the α matrix.

α1,K = {#f, λ16} α2,K = {λ2} α3,K = {#f, λ16} α4,K = {λ10}

α5,K = {#f, λ16} α6,K = {λ10} α7,K = {P} α8,K = {#f}

α9,K = {#f} α10,K = {λ10}

α11,K = {#f, λ16} α12,K = {#f, λ16, P} α13,K = {#f} α14,K = {#f, P}

α15,K = {#f, λ16, P} α16,K = {λ16} α17,K = ∅

When looking at the results, it is immediately apparent that only one dynamic safety test

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 80

is still needed. All calls are safe since α2,K , α4,K , and α6,K contain only closures. However,

the only other potentially erroneous expression, e13, still needs its safety test because its

sub-expression, e14, may evaluate to something else than pairs. Closer inspection of the

results shows that the two invocations of λ10 are merged together. For example, the values

it returns (i.e. α11,K) include the abstractions for both values that are returned during

the concrete evaluation of the program. The parameter ‘x’ (i.e. α12,K and α15,K) contains

abstractions for both arguments passed during the concrete evaluation, but it contains also

λ16 which is “prematurely” returned by the first invocation and passed as an argument in

the second invocation.

This first analysis is considered to be the preliminary analysis of the whole demand-

driven approach. The model used in the preliminary analysis is generally very simple, like

in this example. The next step is a model-update phase, since a safety test is still required

for the program. During the course of the model-update phase, we first generate initial

demands and then process them.

There is only one safety test left so we generate only one initial demand. In fact, we

generate only one initial demand for the safety test because there is only one contour, also.

The demand directly mirrors the needs of the optimiser and we will denote it like this:

D1 ≡ show α14,K ⊆ ValP

A literal reading of the demand does not make sense. Clearly, with the current model,

the contents of abstract variable α14,K are not restricted to pairs. But the intent is that

something should be done with M in order to eventually have that α14,K or, more likely,

specialisations of α14,K to all lie inside of the given bound.

What could specialisations of α14,K be? Variable α14,K represents the value of e14 in any

possible evaluation contexts. This is because contour K is unique and, as such, represents

all evaluation contexts. But a change to the model could introduce different contours (e.g.

K1, K2, . . .). Each of them would represent a distinct subset the evaluation contexts. So

α14,K1 , α14,K2 , . . . would represent the value of e14 in each set of evaluation contexts.

Having said that, we can interpret the demand as “do any necessary modifications to the

model to have, for any contour K ′ that is a specialisation of K, the constraint α14,K′ ⊆ ValP

to be satisfied”. Note that the modifications to the model need not necessarily introduce

specialisations of K but could modify the representation of closures or that of pairs to obtain

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 81

the desired effect.

Now, let us turn to the processing of D1. Ultimately, we want e14 to return nothing else

than pairs. To control the value of an expression, one normally has to control the source

of its value. e14 is a pair?-expression, and the value of that kind of expression depends

solely on the value of its sub-expression. By the semantics of a pair?-expression, it would

be sufficient to have e15 to return only pairs. So we would generate this new demand:

D2 ≡ show α15,K ⊆ ValP

As will be made apparent when we will be involved in the design of processing rules for

the demands, more than one strategy is usually available. For example, another sufficient

achievement consists in proving that e14 does not get evaluated at all, namely:

D′
2 ≡ show δ14,K = ∅

Consequently, it would not evaluate to any value, and the car-field extraction would cer-

tainly not operate on non-pairs. Is one of these two processing methods better than the

other? Are there other ways to process D1?

The answer to the second question is: yes. But we will explore other possibilities when

we present a complete approach in Chapter 5. To the first question, we answer that the first

processing method is better. Here is the reason. Although the fulfilling of any of D2 and D′
2

is sufficient to fulfil D1, only D2 is necessary. That is, α14,K ⊆ ValP implies α15,K ⊆ ValP.

But it is not the case that α14,K ⊆ ValP implies α15,K = ∅.

Now, why is it preferable to use sufficient and necessary sub-demands? Because of the

following reasoning. Since (car13 e14) is a part of the program, it is reasonable to expect e14

to return only pairs. It is not an absolute truth at all, but simply a reasonable assumption.

Since the demonstration that e13 returns only pairs is necessary to satisfy D1, D2 seems to

be a reasonable demand. The fact that D2 is also sufficient makes it even more attractive.

On the other hand, the property expressed in D ′
2 is not necessary, so the program could

possibly behave in such a way that the property expressed by D ′
2 is violated while the one in

D1 is satisfied nevertheless. It follows that D ′
2 could be false and, consequently, impossible

to satisfy. In the case considered in this example, the property in D ′
2 is effectively false as

e14 is evaluated.

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 82

Having chosen sub-demand D2, we then have to process it. Although it is tempting to

interpret D2 as saying “show that ‘x’ can only be bound to pairs”, the right interpretation

is more like “show that ‘x’ can only be bound to a pair when e15 is evaluated”. Showing

that e15 is not evaluated at all would solve our problems but this property is not a necessary

one, again. So we reject it. Let us study the situation carefully. Currently, ‘x’ seems to

possibly be bound to objects of any type. However, in the case where ‘x’ is bound to a pair,

the property in D2 is satisfied, so it is fine. And in the cases where ‘x’ is bound to #f or to

a closure, it appears that the property is violated. However, in the #f case, the conditional

causes e15 not to be evaluated. Consequently, there is no problem in this case, too. But let

us suppose that the processing rules cannot make such a reasoning. So a sensible approach

consists in first separating the cases associated to each type. In simple words, evaluation of

body e11 should occur in different contours depending on the type of ‘x’. We express this

new demand by:

D3 ≡ split α15,K ?

The ‘?’ is the split point symbol. It indicates where additional precision in the abstract

values is desired. It means “do the appropriate modifications to M so that, in K or in

each of its eventual substitutes K1, . . . , Kn, e15 evaluates to values of only one type”. If

the request in this demand could be achieved, then we would have made progress in the

resolution of our problem since it would be decomposed into three sub-cases. The sub-case

in which ‘x’ is bound to a pair would not be a problem. Neither would the sub-case in

which ‘x’ is bound to #f. There would remain the case where ‘x’ is bound to a closure.

The then-branch of the conditional would be evaluated and car-field extraction would be

attempted on #f. But, at least, the situation would be clearer because evaluation in this

case would necessarily lead to an error, so it would be legitimate to emit this demand:

D4 ≡ show δ15,KC
= ∅

where KC would be the contour in which ‘x’ is bound to a closure.

But let us not skip important steps. We first have to take care of D3. Separating

evaluation contexts to distinguish the type of the values bound to a variable is easy since

contours are selected by the call function. And we have total control over call. Let us process

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 83

D3 by modifyingM. We include only the modifications to M:

M′ = (ValB, ValC, ValP, Cont
′, K, cc, pc, call′)

Cont = {K,KB ,KC ,KP}

call(l, f, v, k) =







KB, if f = λ10 ∧ v ∈ ValB

KC , if f = λ10 ∧ v ∈ ValC

KP , if f = λ10 ∧ v ∈ ValP

K, otherwise

Note how the evaluation of the body of λ10 will occur in different contours depending on

the type of the argument. The rest of the program is evaluated in contour K. Here are the

analysis results that we obtain for e1 usingM′ (only the non-empty entries are listed):

α1,K = {λ16} α2,K = {λ2} α3,K = {λ16} α4,K = {λ10}

α5,K = {#f} α6,K = {λ10} α7,K = {P} α8,K = {#f}

α9,K = {#f} α10,K = {λ10}

α11,KB
= {λ16} α12,KB

= {#f}

α16,KB
= {λ16}

α11,KP
= {#f} α12,KP

= {P} α13,KP
= {#f} α14,KP

= {P}

α15,KP
= {P}

These results are much more accurate. We see fewer superfluous values in the α matrix.

Obviously, D3 has been processed with success since ‘x’ contains only values of the type

indicated by the contour, if at all, i.e. α12,KB
⊆ ValB, α12,KC

⊆ ValC, and α12,KP
⊆ ValP.

As expected, there is no problem in contours KB and KP . But the good news is that there

is no problem in contour KC either because the first invocation of λ10 no longer returns λ16

“prematurely” and so the second invocation does not receive λ16 as an argument.

The last safety test can now be removed without risk for the safety of the program.

Indeed, ∀k ∈ Cont. α14,k ⊆ ValP. On the other hand, if it would not have been the case

that α14,KC
⊆ ValP, then it would have been necessary to continue with the processing of

D4.

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 84

4.4 Preliminary Analysis

The choice of a good initial model to be used in the preliminary analysis is important. We

do not give one here explicitly as it depends on the abstract value representation strategy.

But there are some principles that must be considered during the choice of the initial model.

The initial model has to be a compromise between contradictory tendencies: an ideal

preliminary analysis should be relatively fast and accurate. The problem with a preliminary

analysis that is too slow is that it may consume all the work units available to the analyser.

And, in case of exhaustion of the work units during the preliminary analysis, one has to

choose between two bad solutions. First bad solution: let the preliminary analysis finish.

In this case, the time limit prescribed by the user is not respected. Second bad solution:

interrupt the preliminary analysis. In this case, the analysis results have to be completely

discarded as the minimal valid solution has not been reached yet and, consequently, there

is no guarantee that the results are conservative.

On the other hand, the problem with a preliminary analysis that is not accurate enough

is that the results may be almost unusable. It means that the results could contain so

many superfluous values that almost all safety tests would seem to be required. It follows

that almost all the work would be left to the model-update, re-analysis cycle. The cycle is

powerful but the cost of removing one safety test with it is much greater than the cost of

removing one safety test with the preliminary analysis.

4.5 Model-Update, Re-Analysis Cycle

The proposition of a complete approach for the cycle is presented in Chapter 5. Here, we

only present considerations related to the model-update, re-analysis cycle and especially

to demand processing. Many of the considerations have been introduced informally in the

example.

The purpose of the model-update, re-analysis cycle is to modify the model in such a way

that an increasing number of dynamic safety tests can be removed from the executable code

generated for the program to compile. As proposed, the model-update phase consists in the

generation and processing of demands in order to translate the needs of the optimiser into

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 85

prescriptions of model updates.

When processing a demand, the corresponding processing rule should always translate it

into necessary and, when possible, into sufficient sub-demands. Sub-demands are sufficient

when achievement of the requests in the sub-demands implies achievement of the request in

the processed demand. Sub-demands are necessary when the achievement of the processed

demand necessarily implies the achievement of the sub-demands. It is not always possible

to find sufficient and necessary sub-demands, depending on the demand to process and the

current analysis results. We give examples of the four possible cases.

Necessary and sufficient This case occurred in the demand-driven analysis example. For

demand D1:

D1 ≡ show α14,K ⊆ ValP where e14 = (pair?14 e15)

we can emit one sub-demand D2:

D2 ≡ show α15,K ⊆ ValP

D2 is sufficient because its achievement would automatically imply the achievement

of D1, as a pair?-expression evaluates to a pair when its sub-expression evaluates to

that precise pair. D2 is also necessary because the only way we can have that e14

returns only pairs (or nothing) is to have e15 to return only pairs (or nothing). This

is the ideal case.

Necessary but insufficient Let us consider a demand D3:

D3 ≡ split α23,k ? where e23 = (if23 e24 e25 e26)

Suppose that both e25 and e26 evaluate to values of more than one types in contour

k. Since the value of e23 is the union of the values of e25 and e26, then it is necessary

to split the values coming from e25 and e26. That is, if the model were magically

modified in such a way that D3 is achieved, we would necessarily observe that, in each

sub-contour ki specialising k, e25 would evaluate to values of a single type. Similarly

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 86

for e26. So let us emit the following sub-demands:

D4 ≡ split α25,k ? D5 ≡ split α26,k ?

If both sub-demands are eventually satisfied, then both branches of the conditional

will be well-split according to the type of the values to which they evaluate. That is, k

will have been replaced by sub-contours k1, k2, . . . such that in each ki, each branch,

taken individually, evaluates to values of only one type, if at all. But it does not

automatically imply that D3 is achieved. In a contour, say k7, e25 could evaluate only

to pairs while e26 could evaluate only to Booleans, meaning that, in k7, e23 evaluates

to values of more than one type. So the processing of D3 produced necessary but

insufficient sub-demands.

Sufficient but unnecessary Let us consider a demand D6:

D6 ≡ show α18,K ⊆ ValP where e18 = (if18 e19 e20 e21)

Suppose that e19 and e20 evaluate to values of all types and that e21 evaluates only to

pairs. We could emit the following sub-demand:

D7 ≡ show α19,K ⊆ ValB

The advantage of using D7 is that its achievement is sufficient to cause the achievement

of D6. However, it does not express a necessary property of the computations made

by the program. To see why, imagine that the model is magically modified in such

a way that D6 is achieved. It could be the result of having e20 to return only pairs

and leaving the results of e19 unchanged. In this case, the property in D7 would not

be satisfied and it could even be impossible to satisfy D7. So, processing D6 as we

suggested here is risky.

Insufficient and unnecessary Let us consider a demand D8:

D8 ≡ show α31,X ⊆ ValP where e31 = (31e32 e33)

Suppose that α32,X = {c1, c2}, α33,X = {b, p} (for Boolean and pair), and that the

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 87

results obtained by performing each possible invocation is summarised in this table:

on b p

c1 {b, p} {b, p}

c2 {b} {p}

Here is an insufficient and unnecessary sub-demand:

D9 ≡ show c1 6∈ α32,X

D9 would be insufficient because the local information currently available indicates

that it is possible that c2 would be still called on b and still returned {b}. Also, D9

would be unnecessary because the real computations happening at e31 could be that

a concrete closure abstracted by c1 does get called on some argument but that the

return value is a pair.

The last case was included in the list for completeness. It is not clear how the generation

of unnecessary and insufficient sub-demands could help in the model-update phase.

In general, unnecessary sub-demands should be avoided since the property they contain

may possibly be false. Since there is no hope of ever finding a demonstration for such

properties, a considerable amount of time could be lost in the processing of the unnecessary

demands. Note however that it does no harm as far as the safety of the generated executable

code is concerned. Dynamic safety tests are removed only when there is indisputable evi-

dence in the analysis results that they are redundant.

The whole demand-driven approach is based on the following reasoning. We use the

arrow ‘∼>’ to indicate that the steps in the reasoning are not logical implications but rea-

sonably reliable conclusions instead.

When a programmer uses a possibly erroneous operation such as car, he expects

the safety test to always succeed

∼> the safety test truly succeeds all the time

∼> there exists a mathematical proof that the safety test always succeeds

∼> there exists an abstract model that forms a demonstration that the safety

test always succeeds

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 88

∼> the demand-driven cycle can find such an abstract model through demand

generation and processing

This reasoning clearly shows the difference between “trusting the programmer on how to

invest analysis efforts” and “trusting the programmer on which safety tests should be omit-

ted”. Only the first kind of trust is granted as it does not compromise the safety of the

executable code. The reasoning also illustrates why it is so important to use processing rules

that produces only necessary sub-demands. By the fact that the initial demand, generated

from the possibly erroneous expression, is most probably necessary, then all its sub-demands

and sub-sub-demands, recursively, are necessary, too. It is then reasonable to expect these

sub-demands to be achievable. On the other hand, there is no “reasonably reliable” chain

of deductions to support the belief that an unnecessary sub-demand has a good potential

of being satisfiable.

The complete set of demands naturally depends on the whole demand-driven approach.

However, three kinds of demands that we already mentioned previously seem to be un-

avoidable. Namely, bound demands, such as show α12,k ⊆ ValP , split demands, such as

split α12,k ?, and never demands, such as show δ12,k = ∅. Normally, we expect the pro-

cessing rules to be relatively simple for most of the demand kinds and in most situations.

As an instance, the reasonings involved in the example of Section 4.3 were all reasonable

and intuitive. However, the biggest problems are to be expected from the processing of the

demands related to conditionals and call expressions. Especially from the calls as the un-

decidability of the optimisation task would disappear if calls were removed from the source

language.

The importance of having necessary demands leads to an important principle in the

design of the processing rules. This principle says that the good cases should always be

separated from the bad cases before an attempt is made to show that some cases do not

occur. The wording of the principle is deliberately vague as it applies to many situations.

The meaning of the principle is better illustrated by examples.

A first example relates to the bound demands. Usually, some values lie inside the bound

and the others, outside. Let us consider demand D ≡ show α3,K ⊆ ValC and let us suppose

that α3,K contains abstract closures and pairs. The closures are the good cases since their

presence in α3,K does not give rise to problems. On the other hand, the pairs are the

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 89

bad cases as D precisely asks for a demonstration that they should not appear in α3,K .

One cannot take appropriate measures to achieve D by letting α3,K contain both types of

values. Neither can one do so by trying to eliminate all values from α3,K as the resulting

sub-demands would not express necessary properties. Because, as far as we know, there is

no indications that closures should not appear in α3,K . So, appropriate measures must first

include a sub-demand asking to make a separation between pairs and closures in α3,K . Using

demand D′ ≡ split α3,K ?, actually. Only when D′ has been achieved can one continue

with the normal processing of D. In the general situation, after the successful processing

of D′, contour K has been replaced by specialised versions of K: {K1, . . . ,Kn} = G ∪̇ B,

and in contours Ki ∈ G, α3,Ki
contains only closures and in contours Kj ∈ B, α3,Kj

does

not contain any closure. D is trivially satisfied in contours Ki ∈ G (the Good cases). In

contours Kj ∈ B such that α3,Kj
6= ∅ (the Bad cases), it is now legitimate to emit a demand

like D′′
j ≡ show δ3,Kj

= ∅. Now, D′′
j is as necessary as D. That is, violation of D causes a

safety test to stay required and violation of D ′′
j does the same.

Here is another example relates to calls. In a single call, some invocations may be

considered to be hazardous and some, not. Let us consider call (40e41 e42) in contour K,

where α41,K = {c1, c2}, α42,K = {v}, and a demand D asking for a demonstration that c1

is not invoked on v at e40 in contour K. Doing nothing is not an appropriate method to

achieve D. On the contrary, emitting demands like show δ40,K = ∅ or show δ41,K = ∅ is

not appropriate either as they do not express necessary properties. That is, it may be the

case that a concrete closure, represented by c2 is truly invoked on a value, represented by v,

at e40 in some context, represented by K. Consequently, closures c1 (the bad case) and c2

(the good case) must be separated before any attempt to demonstrate that some expression

does not get evaluated in some contour is made.

Apart from the fundamental mechanism of generation and processing of demands, many

considerations are related to the infrastructure required by the demand-driven analysis. A

first consideration is that there has to be some kind of concurrency in the model-update,

re-analysis phase. The cycle cannot proceed by working on the removal of one safety test,

then on another, etc. Any safety test may be arbitrarily difficult to remove, if possible at

all. So a sequential approach for the removal of tests may block at one of the first tests,

leading to the consumption of all the time units available. This is a bad use of the resources

as many more safety tests might have been removed by working on all tests concurrently.

This way, all the easily removable tests disappear after little effort has been invested on

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 90

them. Only the tests that are the most difficult to remove, or impossible, remain.

Deriving from the concurrency, there is the problem of the obsolescence of demands.

The effort that is invested on some tests frequently results in an update of the model.

This update causes some demands to become either trivially satisfied, or expressed in out-

fashioned terms. Demands that are trivially satisfied not even have to be those that are

responsible for the model update. They become a simple nuisance as processing them is a

waste of time. Proper testing may be done before processing each demand in order to avoid

wasting time on already satisfied ones. On the other hand, demands that are expressed

in out-fashioned terms are a more serious problem as their meaning is not related to the

abstract model anymore. For example, consider the out-fashioned demand D ≡ split α7,k ?

where contour k has been replaced by the more precise contours k1, k2, and k3. As it is,

D is no longer a valid demand. It should be replaced by specialised demands D1, D2, and

D3 where Di ≡ split α7,ki
?. Continuing to manipulate D is problematic as the following

situation could occur. Each Di may be trivially satisfied. That is, each abstract variable

α7,ki
may contain values of only one type. That would mean that D would be satisfied.

However, if we interpreted α7,k as ∪i α7,ki
, then we could be brought to believe that D is

not satisfied, as ∪i α7,ki
could contain values of different types.

A last consideration concerns the sharing of the abstract model between threads of de-

mand processing. Note that the computation effort that is put into proving the redundancy

of a particular safety test can be viewed as a thread in the global, concurrent model-update,

re-analysis phase. Sharing the abstract model between threads means that, each time one

of the threads selects an update to the model, it is applied to a single global model. On

the contrary, not sharing the model means that each thread has its own private model.

The advantage of sharing is that useful information can flow quickly between threads. And

updating a model means that the new analysis results will mimic the concrete evaluation

more accurately. However, the inconvenience of sharing is that the frequent model updates

coming from all threads cause demands to be frequently rewritten in new terms. These

frequent rewritings tend to cause a proliferation of demands. Hybrid approaches can be

chosen that try to obtain the best of both worlds and keep the inconvenience to a mini-

mum. For example, the model held by a thread is communicated to the other threads only

if its corresponding safety test has been proven to be redundant. So only “clearly useful”

model updates propagate to the model of the other threads.

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 91

4.6 Discussion

To summarise the contents of this chapter, we would say that it is a proposal of a demand-

driven analysis being composed of a preliminary analysis followed by a model-update, re-

analysis cycle. Instead of the description of a complete approach, the most important

considerations to take care of in the design of a complete approach are highlighted. The

major considerations are: the balance between accuracy and cost in the preliminary anal-

ysis; the concepts of necessity and sufficiency in the processing of demands; the necessary

concurrency in the cycle and its consequences; and the eventual sharing of model updates.

Chapter 5 proposes a complete approach that tries to stay as simple as possible while taking

care of these considerations.

Of course, without the proposition of a complete approach and the execution of exper-

iments, it is hard to evaluate the potential of a demand-driven type analysis. However,

the eventuality that the demand-driven analysis could be less powerful than an oracle in

choosing an abstract model could well be real. That is, an oracle would choose an abstract

model allowing the program to be analysed perfectly well each time such a model exists.

Of course, this task is uncomputable and we cannot expect the demand-driven approach

to do the same in finite time for each program. But we could have hoped that, given an

unbounded amount of time, it has the ability to eventually find an appropriate model each

time such a model exists while having the freedom to possibly loop each time the model

does not exist. However, even this reduced requirement may not be achievable. That is,

the demand-driven analysis does not try every possible abstract model by brute force. Each

modification has to be needed according to the current state of the model and the current

analysis results. So there exists the possibility that a program could be so intricate that

no useful suggestion for updating the model is proposed after a certain point. I.e. that all

useful modifications to the model seem to be unnecessary.

We expect that a model-update phase based on demand manipulation ought to propose

interesting modifications to the model. The expectations come from the necessity of the

property in each demand. Necessity that ultimately comes from the supposition of the

programmer being probably right when he believes that some values have to be pairs or

closures. Consequently, we say that calls and car- and cdr-expressions are reliable hints

to have guidance of the demand-driven analysis. Of course, these expressions are precisely

those that normally include dynamic safety tests that the optimiser wants to remove. But

CHAPTER 4. DEMAND-DRIVEN ANALYSIS 92

the legitimacy behind the expectations comes from the reliability of the hints and not from

the importance of having the optimiser to perform its task. If the optimisation to perform

were the detection of calls where inlining of functions can occur,1 there would not be the

same legitimacy. To see why, when the programmer writes a call expression in his program,

that does not mean that he believes that only one function can be invoked from this call.

At least, there is no syntactic evidence to support the existence of such a belief. So there

is no reasonable chain of conclusions that we can draw from the call. However, other

reliable sources of properties exist. As an instance, profiling2 can provide statistics about

the execution of a program and these statistics may reveal the existence of properties with

possibly high degree of reliability. For example, if all closures observed at a certain call e l

came from the same λ-expression el′ during each of the several million invocations having

occurred there, then it is an opportunity for inlining. A demand could be emitted that

requests a demonstration of the statement that all the closures invoked at el come from el′ .

1The inlining is an optimisation technique in which a call is replaced by the body of a function, when it
is known that only that function could be invoked at that call.

2Profiling a program consists in gathering different statistics on the details of the execution of a program.
The nature of the statistics may vary wildly as they go from execution frequency for expressions to the type
of the objects seen at a particular point in the program.

Chapter 5

Pattern-Based Demand-Driven

Analysis

We now present a complete approach for performing a demand-driven analysis. That is, we

present particular choices for the representation of the abstract values and abstract contours,

the implementation of models, and the global algorithm. The choices are intended to form

the simplest and most intuitive representation for the abstract values and contours. Values

and contours are based on patterns or, in informal terms, data structures with holes. A

pattern presents a shallow description of a concrete value or contour. It is similar to patterns

found in high-level languages that feature pattern-matching for the definition of functions.

Models are represented using pattern-matchers.

The chapter starts by giving a complete presentation of the abstract models and de-

mands. Then the processing rules for the demands are presented with a discussion on our

particular choices. Next, the whole approach is presented. It is a description of the cur-

rent prototype. A history of the different attempts to create a working prototype follows.

Finally, we discuss the pros and cons of the current pattern-based approach and mention

extensions to it.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 94

5.1 Pattern-Based Modelling

We use patterns to represent values and contours. The syntax of these patterns and their

meaning is first presented. The reasons behind the choice of the patterns follow.

Next, the abstract models are described. It includes the definition of the pattern-

matchers, their use and the properties that they must obey. Algorithms used to update

the pattern-matchers, that is, the abstract models, are also presented.

Finally, the syntax and meaning of the demands are presented. These are presented in

that section because the definition of demands is closely related to the patterns and the

representation of values and contours.

5.1.1 Representation of the Abstract Values and Contour

The abstract values are represented using patterns which are shallow versions of the concrete

values. That is, the type and contents of the sub-values are known up to a certain depth.

The depth where the details are still available need not be the same in every part of a value.

At the point where no more details are available, a special pattern is used to indicate that

anything could go there. For example, an abstract pair could contain the Boolean #f in its

car-field and the special any-value pattern in its cdr-field.

There are two reasons why we have adopted such a representation. We believe that

it is the simplest and most intuitive representation that still features an arbitrary level of

accuracy. Also, following the explanations of Section 3.7, we think that data abstractions

of what is directly used in the concrete evaluation should perform better than abstractions

that are indirectly linked to the concrete evaluation. For example, we expect to obtain

better results by manipulating abstract pairs containing (incomplete) description of the two

values they contain than by manipulating ones memorising at which label and in which

contour they were created.

Overview

Here is an overview of the abstract representation for the values of each type. There is

only one abstract Boolean since there is only one concrete Boolean to keep track of. Pairs

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 95

are more or less shallow representations of concrete pairs. They do not memorise how they

were created but rather what they contain. On the other hand, closures remember which

λ-expression they come from and what contour was prevailing during their creation. Two

distinct λ-expressions cannot produce the same abstract closure. However, the memorised

contour can be an approximation of the one that prevailed at creation time. This may seem

to be in sharp contradiction with the spirit in which we want to represent abstract values.

But this apparent contradiction disappears when we see what abstract contours are.

The choice of the representation for the contours is a direct application of the principle

that the best abstract representation should be a partial description of the concrete entity.

Abstract contours are essentially shallow versions of lexical environments, but without the

variables. An abstract contour is a list of abstract values where each abstract value repre-

sents the value to which a visible variable is bound to. As abstract values, abstract contours

may feature various degrees of accuracy in the representation of the value of each variable.

The first value is a bound on the contents of the variable introduced by the innermost en-

closing λ-expression. The last corresponds to the value of the outermost visible variable. By

construction of the abstract models, expressions get abstractly evaluated in contours that

have a length corresponding to that of the lexical environment.

Syntax

Abstract values and contours are denoted using the syntax of the modelling [contour] pat-

terns. We call these modelling patterns to distinguish them from the split patterns that

are introduced later. Figure 5.1 presents the syntax of the modelling patterns. There is a

different modelling pattern for each type of abstract value. Also, there is a special pattern

that represents all values: ∀. There is another special pattern that represents all closures:

λ∀. These special patterns mark the limits of the description of the abstract values. For

example, pattern (#f , ∀) is the notation for the pair mentioned above. The abstract pair

contains a Boolean in its car-field and contains anything in its cdr-field.

Without the special patterns, the syntax of modelling patterns could only denote con-

crete values. In order to be able to identify the type of the abstract values, model parameters

cc and pc are not allowed to return ∀ as abstract closure or as abstract pair, respectively.

Also, to avoid blending all closures together, parameter cc is not allowed to return λ∀ as

abstract closure.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 96

MPat := ∀ |
#f |
λ∀ |
λl k | where l ∈ Lab and k ∈ MCtPat
(P1, P2) where P1, P2 ∈ MPat

MCtPat := (P1 . . . Pn) where n ≥ 0 and P1, . . . , Pn ∈ MPat

Figure 5.1: Syntax of the modelling patterns

Modelling contour patterns are represented as lists of patterns. They have as many

entries as there are variables in the environment of the expressions for which the contours

are intended. In particular, the main expression and its immediate sub-expressions get

evaluated in the empty contour: (). This is normal as there is no variable visible from these

expressions. To illustrate the contours let us we consider this partial program:

(1(λ2x. (3(λ4y. e5)
. . .))

. . .)

The contours in which e5 is to be evaluated have two entries: the first for the value of

‘y’, the second for the value of ‘x’. For example, a contour indicating that ‘x’ is a closure

and ‘y’ is a pair looks like:

k = ((∀, ∀) λ∀)

By construction of our abstract models, it is guaranteed that a reference to ‘x’ made in k

(i.e. from an expression in 4(e5)) can only yield closures and a reference to ‘y’ can only

yield pairs.

Conformance

Modelling patterns denote abstractions of concrete values. Most of the abstract values

happen to represent more than one concrete values. When a concrete value is represented by

an abstract value, we say that the concrete value conforms to, or is abstracted by, the abstract

value. Here, we give a formal definition of the conformance relation. We use the notation

↗ (already used in Section 3.5.1) to denote the “is abstracted by” relation. However,

we give here a new definition that gives a direct correspondence between concrete values

and modelling patterns, without any kind of reference to some analysis results. Figure 5.2

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 97

↗ ⊆ Val ×MPat

v ↗ ∀

#f ↗ #f

c↗ λ∀, if c ∈ ValC

clos((λlx. e), ρ)↗ λl k, if ρ↗l k

pair(v1, v2)↗ (P1, P2), if v1 ↗ P1 and v2 ↗ P2

↗l ⊆ Env ×MCtPat, l ∈ Lab

ρ↗l (), if ρ is valid at label l and Dom(ρ) = ∅

ρ↗l (P1 P2 . . . Pn), if ρ is valid at label l,
x is the innermost variable among those in Dom(ρ),

ρ x↗ P1,
el1 = (λl1x. e), and

ρ[x 7→ ⊥]↗l1 (P2 . . . Pn)

Figure 5.2: Definition of the conformance relation

presents the definition of relation ↗. The correspondence between lexical environments

and modelling contour patterns is also presented. In this case, a label must be provided

to the relation as an index. We say that an environment is abstracted, at label l, by a

contour pattern when the values to which variables are bound conform to the corresponding

abstract values in the contour. The label is necessary because otherwise the same contour

could abstract lexical environments containing bindings for different sets of variables. In

Figure 5.2, we use the notation ρ[x 7→ ⊥] to denote an environment identical to ρ except

that the new one is not defined on ‘x’. The symbol ⊥ can be seen as an undefined value.

An extension to the definition of the relation ↗ that we use later is that of the con-

formance between modelling patterns. We say that P1 conforms to P2 when all concrete

values that conform to P1 also conform to P2 and we denote it by P1 ↗ P2. Verifying the

following property about two modelling patterns P1 and P2:

P1 ↗ P2 if

∀v ∈ Val. v ↗ P1 ⇒ v ↗ P2

is mathematically sound but does not form an algorithm. However, it is easy to present one.

The conformance relation between modelling contour patterns is also presented. Technically,

the label index is not necessary to compare contour patterns directly anymore because the

only requirement on them is to be of the same length. But we keep it to let the notation

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 98

↗ ⊆ MPat ×MPat

P1 ↗ ∀

#f ↗ #f

λ∀ ↗ λ∀

λl k ↗ λ∀

λl k1 ↗ λl k2, if k1 ↗l k2

(P1, P2)↗ (P ′
1, P ′

2), if P1 ↗ P ′
1 and P2 ↗ P ′

2

↗l ⊆ MCtPat ×MCtPat l ∈ Lab

(P1 . . . Pn)↗l (P ′
1 . . . P ′

n), if there are n visible variables at label l and

P1 ↗ P ′
1, . . . , Pn ↗ P ′

n

Figure 5.3: Algorithm for the conformance relation between modelling patterns

be consistent with the concrete-abstract case and to keep a connection with the following

mathematical definition of conformance between contour patterns:

(P1 . . . Pn)↗l (P ′
1 . . . P ′

n) if

∀ρ ∈ Env. ρ is valid at label l⇒
(

ρ↗l (P1 . . . Pn)⇒ ρ↗l (P ′
1 . . . P ′

n)
)

Note that we will never have to test conformance between two contours that abstract two

incompatible lexical environments, i.e. lexical environments that have different domains.

Figure 5.3 presents the formal definition of an algorithm testing the conformance between

two modelling patterns. Proving that this definition of conformance is identical to the

mathematical definitions is very simple and so we do not make the proof.

5.1.2 Models

We build upon the definition of the abstract values and define the abstract models. Abstract

models are made of a certain number of pattern-matchers. These pattern-matchers regulate

the accuracy of the modelling patterns that act as abstract values. As is soon presented,

abstract operations on values are performed similarly to concrete operations except that

pattern-matchers are used to determine the appropriate level of details in the resulting

values. For example, while a concrete pair holding values v1 and v2 is pair(v1, v2), an

abstract pair holding values v̂1 and v̂2 is obtained by passing (v̂1, v̂2) through a pattern-

matcher. The latter may choose to reduce the accuracy in certain points of the new pair.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 99

A theoretical definition of pattern-matchers is first presented. There are many prop-

erties to which they must obey. Models are defined using these pattern-matchers. Then,

the implementation of the pattern-matchers is described. Finally, the algorithms allowing

pattern-matchers (and, consequently, the abstract model) to be updated are presented.

Theoretical Definition of Pattern-Matchers

The task of a pattern-matcher consists in choosing, for each concrete value v, a modelling

pattern P that is going to be its corresponding abstract value. Naturally, P must be chosen

so that v conforms to it. That is, is has to choose P such that v ↗ P . We define a pattern-

matcher to be a set of modelling patterns. For a concrete value v and a pattern-matcher

M , the abstract value P returned as a representative for v is the element P ∈M such that

v ↗ P .

Note that we just used the words “the abstract value”. That means that such an abstract

value must be present in M . This leads to the following property of pattern-matchers. A

correct pattern-matcher has to be exhaustive. That is, M is exhaustive if:

∀v ∈ Val. ∃P ∈M. v ↗ P

But it is not yet sufficient to allow us to use the words “the abstract value”. For most

of the values in Val, there is more than one pattern to which it conforms. So there may be

more than one P ′ ∈M such that v ↗ P ′. So a particular pattern-matcher has to commit to

certain patterns so that its results are always unique. That is, it has to be non-redundant.

Formally, M is exhaustive and non-redundant if:

∀v ∈ Val. ∃1P ∈M. v ↗ P

The modelling pattern P chosen by the existential quantifier is the abstract value selected

by the pattern-matcher to be the abstract representative for v.

The preceding example—the construction of an abstract pair—also used a pattern-

matcher. However, the pattern-matcher was used on a modelling pattern, not on a concrete

value. Normally, it does not make a difference. For a modelling pattern P and pattern-

matcher M , we simply search for P ′ ∈M such that P ↗ P ′. However, if P is not accurate

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 100

enough, there may be no appropriate P ′ in M . But, as long as P is accurate enough, we

can use the pattern-matcher to find an abstract value that abstracts it.

We present a simple example of modelling pattern that is not accurate enough. Let M

be:

{#f , λ∀, (∀, ∀)}

If P = ∀, then we cannot select P ′ ∈ M such that P ↗ P ′. P is too inaccurate. In fact,

∀ is the only modelling pattern that is too inaccurate to have an abstract representative in

M .

Mathematically, selecting an abstract value in a pattern-matcher is equivalent to a pro-

jection. For v ∈ Val ∪MPat, the abstract value v ′ ∈ MPat selected by the pattern-matcher

M is usually different from v. But if we want to select the abstraction for v ′, we get v′

again. Intuitively, it makes sense as the task of the pattern-matcher is to “erase” unwanted

details in values. Once their unwanted details are erased, values do not change anymore if

they go through the pattern-matcher again.

Now that we have a precise definition of a pattern-matcher, we can introduce the model.

A pattern-based abstract model is built on a group of pattern-matchers: one for the abstract

values and the others for the abstract contours. All of them have to be exhaustive and non-

redundant. The pattern-matcher projecting the abstract values is used for all three types.

It has to be able to project all values in Val. We will usually denote it as MV . As for the

contour pattern-matchers, there is one for each λ-expression of the program. The contour

pattern-matcher Ml selects the contour in which the body of a λ-expression (λlx. el1) is to

be evaluated when a closure originating from el is invoked.

In order to obtain a legal model, MV must contain distinct patterns for values of the

three types. That is, it cannot be {∀}. Also, MV must provide distinct abstract closures

for each λ-expression. So this model is not accurate enough:

{#f , λ∀, (∀, ∀)}

Indeed, blending all closure together would keep our model from being able to feature sets

of contours customised for each closure body.

The contour pattern-matchers do not project (simple) modelling patterns, but mod-

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 101

elling contour patterns. Pattern-matcher Ml contain contour patterns of length n, where

n is the number of variables in the environment of the body of (λlx. el1). However, what

we presented above about a value pattern-matcher applies almost immediately to contour

pattern-matchers. The only difference lies in the meaning of the exhaustiveness property.

Instead, of being able to project all values in Val, Ml has to be able to project all lists of val-

ues of length n. There is no minimal accuracy required from the contour pattern-matchers.

An abstract modelM for program el0 can be built using pattern-matchers provided that

there is a value pattern-matcher MV and one contour pattern-matcher Ml per λ-expression

el. Each pattern-matcher must be exhaustive and non-redundant. We define each framework

parameter inM as:

• ValB is {#f}

• ValC is {λl k ∈MV}

• ValP is {(P1, P2) ∈MV}

• Cont is
⋃

l∈L Ml where L = {l ∈ 4(el0) | el is a λ-expression}

• k0 is ()

• cc(l, k) is the projection by MV of λl k

• pc(l, P1, P2, k) is the projection by MV of (P1, P2)

• call(l1, λl (P1 . . . Pn), P, k) is the projection by Ml of (P P1 . . . Pn)

The definition of the first five parameters is straightforward. On the other hand, the defi-

nition of the three creation functions deserves some explanation. The cc and pc functions

consist in performing a projection on a pattern built in a natural way. Patterns λl k and

(P1, P2), respectively, are both projected using MV . The raw closure λl k contains full

contour information. Some of it is forgotten by the projection. Similarly, for the raw pair

(P1, P2). The definition of call summarises well the mechanisms implementing our contour

selection strategy. Since contours are abstract representatives for lexical environments, the

contour selected for the evaluation of the body of a closure reflects the lexical environment

by combining the closure’s contour (the abstract closure’s definition environment) and the

argument in the invocation. The contour that prevails at the site where the invocation

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 102

occurs is not considered. Neither is the label of the call. The raw contour (P P1 . . . Pn)

is first created and is then projected using the pattern-matcher specialised for invocations

of closures of the form ‘λl ’, that is, Ml. Note how the value of the innermost variable, P ,

is inserted at the beginning of the new contour, maintaining the invariant that the value of

the variables are listed from the innermost to the outermost.

Before we are done with the theoretical presentation of the pattern-based models, we

need to take care of a last problem: that of consistency between pattern-matchers. The

projection of a concrete value using a pattern-matcher is always possible, as long as the

pattern-matcher is exhaustive and non-redundant. However, not all abstract values can

be projected using a pattern-matcher, even if the pattern-matcher is exhaustive and non-

redundant. Certain abstract values are too inaccurate. That is, too inaccurate in at least

some of their sub-components. The problem with abstract values (or contours) that are

too inaccurate is that, when they are used to form a raw pattern P and a projection of

P is attempted using a pattern-matcher M , there may not be any P ′ ∈ M such that

P ↗ P ′. Consequently, the pattern-matchers on which an abstract model is built must

represent projections that return values accurate enough to be included into raw patterns

and projected again by the same or other pattern-matchers.

Let us give an example of a value pattern-matcher that produces values that are too

inaccurate for its own needs. Let MV be:







#f , λ∀, (∀, #f),

(∀, λ∀),

(∀, (#f , ∀)), (∀, (λ∀, ∀)), (∀, ((∀, ∀), ∀))







Normally, it would not be considered as a valid value pattern-matcher because it blends

all closures together. But we prefer to keep the example simple as we are not interested

by closures here. MV projects Booleans and closures to their simplest formulation. But

it lets pairs have more details. The type of the value in the cdr-field of pairs is explicit

and in the case where this value is a pair too, the car-field of this internal pair contains

an extra level of details. Note also that all abstract pairs have no information about the

contents of their car-field. However, type information on the value in the car-field of pairs

is sometimes required during the construction of new pairs. To clearly illustrate when the

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 103

problem occurs, we consider the following expression:

(cons22 #f23 (cons24 (λ25x. x26) #f27))

Concretely evaluating e22 in, say, the empty environment ‘·’, gives:

pair(#f, pair(clos((λ25x. x26), ·), #f))

Just out of curiosity, we may project this value using pattern-matcher MV to obtain the

corresponding abstract value:

(∀, (λ∀, ∀))

However, during an abstract evaluation of e22, the abstract value must be built step by

step. So the creation of the inner pair (evaluation of e24) produces the following raw and

projected pattern:

(λ25 (), #f)
MV7→ (∀, #f)

The creation of the outer pair (evaluation of e22) produces:

(#f , (∀, #f))
MV7→ ?

The projection cannot be done because the internal abstract pair is not accurate enough to

be handled by MV .

This was an example of the value pattern-matcher not being consistent with itself. But

to obtain a valid pattern-based model, it is not only necessary for MV to produce abstract

values accurate enough for its own needs, but it must do the same for the needs of each M l,

and each Ml must produce contours accurate enough for the needs of MV . Indeed, by the

definition of the creation functions cc and pc, MV is used to project raw patterns containing

abstract values and contours coming from itself and from the different Ml, respectively.

And by the definition of the selection function call, all the Ml are used to project raw

contour patterns containing abstract values coming from MV (and from closure contours

coming themselves from MV). So the implementation of abstract models has to ensure that

consistency is maintained between the pattern-matchers after each model update.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 104

Implementation of Pattern-Matchers

The mathematical definition of pattern-matchers is simple and precise but if pattern-

matchers were directly implemented this way, projections would be rather inefficient. So,

instead, pattern-matchers are implemented as decision trees. A fast traversal of a pattern

allows the pattern-matcher to determine what the result of the projection is. The traversal

takes linear time in the size of the pattern. More precisely, it takes time linear in the size

of the inspected part of the pattern. Some sub-parts of a pattern need not be inspected as

they are matched to the sub-pattern ∀ in the pattern-matcher.

We have adopted a breadth-first traversal of the patterns. Note that a depth-first traver-

sal would work too. In fact, any valid order would work; as long as any part of the pattern is

inspected before its sub-parts are. But we have a reason to prefer the breadth-first traversal.

During a demand-driven analysis, there typically are considerable differences in the level

of details needed in some values (or contours) compared to that in other values. For example,

the pairs having a non-pair in the cdr-field may be uninteresting for the analysis while those

having a pair in the cdr-field may become very detailed in both fields. When coarse and

detailed values coexist, the point at which there is a distinction between the two kinds of

values occurs at a low depth in the pattern (because a coarse value is not very deep, to start

with). So, in order to avoid considering unnecessary details in the uninteresting values,

the inspection of the distinguishing point should appear as high as possible in the decision

tree. When a breadth-first traversal is used, this point cannot appear below a certain depth

because traversing all levels above the point can only introduce a bounded number of stages

in the decision tree. On the other hand, if a depth-first traversal is used, an arbitrary

number of points may have to be inspected before the distinguishing point is reached. This

is because full-detail inspection is necessary as long as the point distinguishing uninteresting

and interesting values is not met. To come back to the example, a decision tree performing

a depth-first traversal of the pairs would have to inspect the value in the car-field with full

precision in the eventuality that the pairs are interesting, i.e. in the eventuality that the

cdr-field contains a pair. Complete traversal of the value in the car-field may be arbitrarily

long. So a depth-first traversal may lead to a decision tree that is exaggerately big if a bad

case occurs.

Now, let us describe the data structures used to implement the pattern-matchers. First,

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 105

PM := PMO | PMC | PML

PMO := Onode [Val ⇒M] | where M ∈ PM
Onode [ValB ⇒M1, ValC ⇒M2, ValP ⇒M3]

where M1,M2,M3 ∈ PM
PMC := Cnode [Lab⇒M] | where M ∈ PM

Cnode [l1 ⇒M1, . . . , ln ⇒Mn] where M1, . . . ,Mn ∈ PM
and {l1, . . . , ln} =
{l ∈ Lab | el is a λ-expr.}

PML := Leaf P where P ∈ MPat ∪MCtPat

Figure 5.4: Implementation of the pattern-matchers

the decision tree is made of inspection nodes—the internal nodes—and of result nodes—the

leafs. The leafs contain the results of the projection of raw patterns. There are two kinds

of inspection nodes: the object nodes and the closures nodes. The two kinds of inspection

nodes both come in two variants: the blind variant and the discriminating variant. An

object node expects a value and (possibly) discriminates on the type of the value. A closure

node expects a closure and (possibly) discriminates on the label attached to the closure. A

blind variant does not inspect its corresponding sub-pattern and has a single sub-tree. A

discriminating variant inspects its corresponding sub-pattern and dispatches the remainder

of the traversal to one of its sub-trees depending on the type or the label.

Figure 5.4 presents the data structures used to represent decision trees. The inspection

nodes are built with a constructor that indicates if they are object or closure nodes. Then

a list of alternatives follows. We believe that the notation for the alternatives speaks for

itself. The leaf nodes contain modelling patterns or modelling contour patterns, depending

on whether they are part of a value or contour pattern-matcher, respectively.

The breadth-first traversal of data structures typically requires a queue to temporarily

hold the sub-structures until they are traversed. It is the case for the traversal of patterns.

The general treatment for a pattern depends on the inspection node variant that is inspecting

it. When the inspection node is blind, the pattern is simply extracted from the queue. When

the inspection node is discriminating, the pattern is extracted from the queue and then its

sub-patterns, when they exist, are inserted in the queue for future inspection. One may

have noted that the data structures used to implement the pattern-matchers do not include

nodes to inspect contour patterns explicitly. The inspection of contours always starts by

breaking them into the individual values they contain and inserting each value one after the

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 106

pm : PM× 〈queue of MPat〉 → MPat ∪MCtPat
pm(Onode [Val ⇒M], P / q) = pm(M, q)
pm(Onode [ValB ⇒M1, . . .], #f / q) = pm(M1, q)
pm(Onode [. . . , ValC ⇒M2, . . .], P / q) = pm(M2, q / P),

if P = λ∀ or P = λl (P1 . . . Pn)
pm(Onode [. . . , ValP ⇒M3], (P1, P2) / q) = pm(M3, q / P1 / P2)
pm(Cnode [Lab⇒M], P / q) = pm(M, q)
pm(Cnode [. . . , li ⇒Mi, . . .], λli (P1 . . . Pn) / q) = pm(Mi, q / P1 / . . . / Pn)
pm(Leaf P, []) = P

Figure 5.5: Algorithm for pattern-matching

other in the queue.

Queues are denoted using square brackets and queue elements are separated by commas.

Insertion is performed to the right and extraction, to the left of queues. The projection of

(simple) modelling pattern P is done by using [P] as an initial queue. The projection is

done by computing:

pm(MV , [P])

where ‘pm’ is the pattern-matching function. The projection of modelling contour pattern

(P1 . . . Pn) using pattern-matcher Ml is done by computing:

pm(Ml, [P1, . . . , Pn])

Figure 5.5 presents the algorithm that performs projections using the pattern-matchers. It

takes a pattern-matcher node and a queue of values as arguments. To make the algorithm

easier to read, we use a view 1 on queues, denoted by ‘/’, to indicate both insertions and

extractions. As usual, insertions are done to the right of queues and extractions, to the left.

The object nodes accept all kinds of modelling patterns. But the closure nodes expect

only modelling patterns of closures. By construction of the pattern-matchers, a closure is

1A view is an implicit transformation that is performed on data structures to present them under a
different aspect, or point of view, that is more helpful. Views are used both in pattern-matching and in the
construction of values. Here is an example using a Haskell-like syntax. We can extract the first two elements
of a list along with the rest of the list using the pattern a:b:xs. However, if the real intent was to obtain
a list of the first two elements and the rest of the list, the use of the concatenation view, ++, in pattern
[a,b]++xs, would be more natural. In the first pattern, it is the real constructor that is used to perform
the pattern-matching. But in the second, a fictitious but more convenient representation of the values is
obtained by the use of the ++ view.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 107

always the next pattern to extract from the queue each time pattern-matching goes through

a closure node. Also, a leaf always coincide with an emptied queue. This is guaranteed by

construction of the pattern-matchers.

Let us have a closer look at the algorithm. When an object node is reached, four cases

are possible: the node is blind or the node is discriminating and the extracted pattern is

that of a Boolean, that of a closure, or that of a pair. A blind node simply discards the

pattern. In the other cases, sub-patterns, if they exist, are inserted back into the queue.

In the Boolean case, there is no sub-pattern to insert back. In the closure case, the whole

closure is inserted back for future examination by a closure node. The inspection of the

label of the closure, if it occurs at all, is considered to be an operation done deeper by one

level in the pattern than the inspection of its type. In the pair case, both sub-patterns are

inserted back into the queue.

When a closure node is reached, there are only two cases: the node is blind or it is

discriminating on the label of the λ-expression from which the extracted closure originates.

When the node is blind, the label and the whole closure are not considered and the closure

is discarded. When the node is discriminating, there is a case for each λ-expression label.

The contour of the closure is broken and the values it contains are inserted into the queue,

from the first to the last.

When a leaf is reached, the result of the projection is simply extracted from the leaf and

returned.

The presented data structures and pattern-matching algorithm provide an implementa-

tion for the abstract models that is relatively fast. The raw patterns that must be projected

because of the use of creation functions of the model can be processed in linear time with

the size of the part of the pattern that is inspected by the decision trees.

Model Updates

An update of the model consists in changing one or a few of the pattern-matchers to make

them more accurate. That is, more accurate with respect to the projection results and more

accurate with respect to their inspection of the projected patterns. A single model update

may require more than one change to the same pattern-matcher. Typically, this is the case

for MV . The changes to the pattern-matchers must be done with care. In particular, the

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 108

SPat := ? |
λ? |
λl k | where l ∈ Lab and k ∈ SCtPat
(P1, P2) | where P1 ∈ SPat and P2 ∈ MPat
(P1, P2) where P1 ∈ MPat and P2 ∈ SPat

SCtPat := (P1 . . . Pi−1 Pi Pi+1 . . . Pn) where Pi ∈ SPat
and ∀j ∈ {1, . . . , n} − {i}. Pj ∈ MPat

Figure 5.6: Syntax of the split patterns

pattern-matchers must stay consistent with the others. However, a systematic updating

procedure that ensures that the updates are done properly is relatively easy to elaborate.

The first tools we need to describe are the split patterns and the split contour patterns.

The split patterns specify a point in the abstract values or abstract contours where an

increase in precision is sought. Split patterns are usually generated by the processing of

demands. Figure 5.6 presents their syntax. The ‘?’ sign is called the split point. Every

split (contour) pattern contains exactly one split point. Normally, the split point causes the

values to be more accurate by one extra level. But, in order to stay as general as possible,

we do not rely on that supposition.

The syntax of the split patterns allows one to indicate which abstract values should be

affected by the update. For example, the following two patterns are not equivalent:

(λ∀, ?) (∀, ?)

Both ask for additional accuracy in the representation of the value in the cdr-field of pairs.

But the first asks for additional accuracy only for the pairs that have a closure in their

car-field while the second asks it for all pairs. Naturally, more complex restrictions can

be expressed using the “modelling part” of the patterns. However, there are limitations

related to the fact that patterns are traversed in a breadth-first manner. For example, the

following patterns describe the same split:

λ12 ((λ∀, #f) ?) λ12 ((∀, ∀) ?)

because the node affected by the split point is higher in the decision tree than those cor-

responding to the fields of the pair. So, the choice between blindness and discrimination

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 109

for the higher node cannot depend on the path that is followed in lower nodes. Even if,

concretely, updates are performed directly on decision trees, here, we prefer to describe the

update process while considering pattern-matchers to be sets.

The model update requests take the form of one or more pattern-matcher update requests.

Pattern-matcher update requests are denoted using the syntax:

update M with P where M ∈ PM and P ∈ SPat

In fact, the name of the pattern matcher is important. The reasons are presented later.

As an example, the processing of demands might generate the following pattern-matcher

update requests:

update M2 with (?)

update MV with λ4 (?)

update M4 with (#f ?)

Each pattern-matcher update request can be processed individually.

The first step in the processing of a pattern-matcher update request like:

update MV with P or update Ml with k

consists in simplifying the pattern P—or k. Unnecessary details ought to be removed from

the pattern since they do not have an influence on the signification of the pattern. We

illustrate the simplification by using once again the above example:

λ12 ((λ∀, #f) ?) 7→ λ12 ((∀, ∀) ?)

The implementation of the simplification is relatively simple. It only requires a breadth-first

traversal of the pattern. The elements of the pattern are noted. Since there is no decision

tree to guide the traversal, explicit markers are manipulated along with the sub-patterns.

The ‘O’ and ‘C’ markers indicate object and closure inspections, respectively. When the split

point is found, the rest of the traversal operates an erasure of the remaining sub-patterns.

The top of the pattern is then rebuilt on top of these simplified sub-patterns. Figure 5.7

presents the algorithm formally. ‘S’ is an overloaded function that simplifies both split

patterns and split contour patterns. Function ‘SQ’ deconstructs and reconstructs the higher

parts of the pattern. Function ‘S?
Q’ is the detail-erasure operation. Note that a queue is

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 110

S : SPat→ SPat
S(P) = P ′

where P ′ / [] = SQ([] / O P)

S : SCtPat→ SCtPat
S((P1 . . . Pn)) = (P ′

1 . . . P ′
n)

where P ′
n / . . . / P ′

1 / [] = SQ([] / O P1 / . . . / O Pn)

SQ : 〈queue of {O, C} × (SPat ∪MPat)〉 → 〈queue of (SPat ∪MPat)〉
SQ(O ∀ / q) = SQ(q) / ∀
SQ(O ? / q) = S?

Q(q) / ?

SQ(O #f / q) = SQ(q) / #f
SQ(O P / q) = q′ / P ′, if P is λ∀, λ?, or λl k

where P ′ / q′ = SQ(q / C P)
SQ(O (P1, P2) / q) = q′ / (P ′

1, P ′
2)

where P ′
2 / P ′

1 / q′ = SQ(q / O P1 / O P2)
SQ(C λ∀ / q) = SQ(q) / λ∀

SQ(C λ? / q) = S?
Q(q) / λ?

SQ(C λl (P1 . . . Pn) / q) = q′ / λl (P ′
1 . . . P ′

n)
where P ′

n / . . . / P ′
1 / q′ = SQ(q / P1 / . . . / Pn)

S?
Q : 〈queue of {O, C} ×MPat〉 → 〈queue of MPat〉

S?
Q(O P / q) = S?

Q(q) / ∀

S?
Q(C P / q) = S?

Q(q) / λ∀

S?
Q([]) = []

Figure 5.7: Simplification of split patterns

used for the deconstruction of the pattern and another for the reconstruction. The order

of the sub-patterns in the reconstruction queue is reversed. Figure 5.8 shows a trace of the

simplification of the above example.

The next step in the processing of a pattern-matcher update request consists in ensuring

that the pattern-matchers remain consistent. Updating a certain pattern-matcher may lead

to a cascade of updates. This is because the updated values may be created by projecting

raw patterns obtained from other values and these other values might not be accurate

enough yet. Figure 5.9 shows the rules that are used to generate new update requests from

complex ones in order to maintain consistency. The new requests have to go through the

rules themselves, and so on, until a base case is reached. The set of requests obtained this

way can be processed in any order by the third step: the model could be in an inconsistent

state during the update, but once all the pattern-matcher update requests are achieved,

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 111

S(λ12 ((λ∀, #f) ?))






























SQ([O λ12 ((λ∀, #f) ?)])


























SQ([C λ12 ((λ∀, #f) ?)])





















SQ([O (λ∀, #f), O ?])
















SQ([O ?, O λ∀, O #f])












S?
Q([O λ∀, O #f])







S?
Q([O #f])
[

S?
Q([])

⇒ []

⇒ [∀]
⇒ [∀,∀]

⇒ [∀,∀, ?]
⇒ [?, (∀, ∀)]

⇒ [λ12 ((∀, ∀) ?)]

⇒ [λ12 ((∀, ∀) ?)]
⇒ λ12 ((∀, ∀) ?)

Figure 5.8: Example of simplification of a split pattern

update MV with ? → none

update MV with λ? → none

update MV with λl (P1 P2 . . . Pn) → update Ml′ with (P1 P2 . . . Pn)
where el′ = (λl′x. el′′) and l ∈ 4(l′′)

update MV with (P1, P2) → update MV with P1, if P1 ∈ SPat
update MV with (P1, P2) → update MV with P2, if P2 ∈ SPat
update Ml with (P1 P2 . . . Pn) → update MV with P1, if P1 ∈ SPat
update Ml with (P1 P2 . . . Pn) → update MV with λl (P2 . . . Pn), if P1 6∈ SPat

Figure 5.9: Generation of pattern-matcher update requests to ensure consistency

it becomes consistent again. Figure 5.10 continues the example of Figure 5.8 and lists the

pattern-matcher update requests that ensure a consistent update of the model. The example

supposes that λ-expression e12 is an immediate sub-expression of λ-expression e7 and that

λ-expression e7 is an immediate sub-expression of λ-expression e3.

The third step is the slicing of patterns. The pattern in a pattern-matcher update

request may be asking for an increase in accuracy that adds more than one extra level in the

concerned abstract values. To avoid manipulating complex update situations, we perform

slicing on the pattern. The slicing of a pattern transform it in a sequence of patterns of

increasing accuracy. It makes sure that nodes in the decision tree are upgraded from the

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 112

update MV with λ12 ((∀, ∀) ?)
→ update M7 with ((∀, ∀) ?)
→ update MV with λ7 (?)
→ update M3 with (?)
→ update MV with ?

Figure 5.10: Example of an update request and the sub-requests generated for consistency

highest to the lowest. Visually, the sequence of patterns have a split point that moves further

away from the top when we consider them in the order they appear in the sequence. The

split point moves further away from the top in a breadth-first order. Figure 5.11 presents

the slicing algorithm formally. The sequence that is produced by the algorithm is denoted

using the syntax of queues. However, insertions to the front of the sequence are done using

the ‘.’ operator. The ‘map’ function is the usual function. It takes a function and a sequence

as arguments and applies the function to each element of the sequence, producing a new

sequence. On the contrary of to the preceding step, the patterns obtained with the slicing

algorithm are ordered and the order must be respected. Figure 5.12 shows a split pattern

and the sequence of patterns obtained by slicing it. Notice how a split point is inserted for

each point of the sub-pattern that is not a “universal” one, i.e. ∀ or λ∀.

The fourth step consists in applying the simplified, consistent, and sliced patterns to the

pattern-matchers. Let us consider a pattern-matcher update request like:

update MV with P or update Ml with k

We suppose that the order among the sliced patterns produced by the slicing algorithm

is respected. The upgrade may not even be necessary if the node to upgrade is already

discriminating. Even if upgrades are actually performed on decision trees, we prefer to

present upgrades on set-based pattern-matchers to keep things simpler. Also, we give the

textual explanations only for an update of MV . The operations are almost identical in the

case of the update of Ml.

When we update MV with a split pattern P , some of the modelling patterns in MV

change while others do not. So we need a tool to decide which modelling patterns are

affected by P . To fulfil our needs, we extend the ↗ relation to make it able to test if

a modelling pattern conforms to a split pattern. If we decree that ‘?’ is equivalent to ∀

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 113

S : SPat→ 〈sequence of SPat〉
S(P) = map (λ (P ′ / []). P ′) σ

where (, σ) = SQ([] / P)

S : SCtPat→ 〈sequence of SCtPat〉
S((P1 . . . Pn)) = map (λ (P ′

n / . . . / P ′
1 / []). (P ′

1 . . . P ′
n)) σ

where (, σ) = SQ([] / P1 / . . . / Pn)

SQ : 〈queue of {O, C} × (SPat ∪MPat)〉 →
〈queue of MPat〉 × 〈sequence of 〈queue of (SPat ∪MPat)〉〉

SQ(O ∀ / q) = (q′ / ∀, map (λ q. q / ∀) σ)
where (q′, σ) = SQ(q)

SQ(O ? / q) = (q′ / ∀, (q′ / ?) . [])
where (q′, []) = SQ(q)

SQ(O #f / q) = (q′ / ∀, (q′ / ?) . (map (λ q. q / #f) σ))
where (q′, σ) = SQ(q)

SQ(O P / q) = (q′ / ∀, (q′ / ?) . (map (λ (P ′ / q). q / P ′) σ)),
if P is λ∀, λ?, or λl k
where (λ∀ / q′, σ) = SQ(q / C P)

SQ(O (P1, P2) / q) = (q′ / ∀, (q′ / ?) . (map (λ (P ′
2 / P ′

1 / q). q / (P ′
1, P ′

2)) σ))
where (∀ / ∀ / q′, σ) = SQ(q / O P1 / O P2)

SQ(C λ∀ / q) = (q′ / λ∀, map (λ q. q / λ∀) σ)
where (q′, σ) = SQ(q)

SQ(C λ? / q) = (q′ / λ∀, (q′ / λ?) . [])
where (q′, []) = SQ(q)

SQ(C λl (P1 . . . Pn) / q) = (q′ / λ∀,
(q′ / λ?) .
(map (λ (P ′

n / . . . / P ′
1 / q). q / λl (P ′

1 . . . P ′
n)) σ))

where (∀ / . . . / ∀ /
︸ ︷︷ ︸

n times

q′, σ) = SQ(q / P1 / . . . / Pn)

SQ([]) = ([], [])

Figure 5.11: Slicing of split patterns

S ((λ12 (?), (#f , ∀))) =

[

? , (?, ∀) , (λ∀, ?) ,
(λ?, (∀, ∀)) , (λ12 (∀), (?, ∀)) , (λ12 (?), (#f , ∀))

]

Figure 5.12: Example of the slicing of a split pattern

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 114

↗ ⊆ MPat × (MPat ∪ SPat)
. . . (rules for the MPat ×MPat cases)

P ↗ ?

λ∀ ↗ λ?

λl k ↗ λ?

λl k1 ↗ λl k2, if k1 ↗l k2

(P1, P2)↗ (P ′
1, P ′

2), if P1 ↗ P ′
1 and P2 ↗ P ′

2

↗l ⊆ MCtPat × (MCtPat ∪ SCtPat) l ∈ Lab
. . . (rule for the MCtPat ×MCtPat cases)

(P1 . . . Pn)↗l (P ′
1 . . . P ′

n), if these are n visible variables at label l and

P1 ↗ P ′
1, . . . , Pn ↗ P ′

n

Figure 5.13: Extension of the definition of conformance between modelling and split patterns

(and that ‘λ?’ is equivalent to ‘λ∀’), then, by the slicing, we can always decide whether

each pattern in MV conforms to P . Indeed, the only point in which conforming patterns in

MV may not be as precise as P is exactly at the split point. The decree is reasonable as,

although ‘?’ asks for higher accuracy, it has not committed to a particular choice among

the available options. Figure 5.13 presents the extension to ↗. The extension makes use of

the previous definition without any special indication.

With the help of the conformance relation, it is now easy to express the algorithm that

upgrades the inspection points. Figure 5.14 presents the algorithm. A pattern-matcher

update request ‘update MV with P ’ is performed by the (overloaded) function ‘U ’ and the

resulting pattern-matcher is U(MV , P). Basically, each modelling pattern in MV is first

tested for conformance to the split pattern. If it is conforming, it is “exploded” into more

accurate modelling patterns, if it is not already accurate enough. When ∀ is exploded, it

provides the basic patterns of the three types. When ‘λ∀’ is exploded, it provides the basic

patterns of all closures of the program. The program is assumed to be el0 . Note that some

cases are not treated by u. This is because of the conformance test previously made: the

definition of u contains only the possible cases.

A small example of upgrading is presented in Figure 5.15. The value pattern-matcher for

a little program is upgraded using pattern P = λ10 (∀ ?). The current state of MV is shown.

Note that MV is precise enough to be ready to be split using P . This is always the case

because of the slicing of split patterns. We suppose that the program has two λ-expressions,

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 115

U : PM× SPat

U(MV , P) =
⋃

P ′∈MV

(

if P ′ ↗ P then P ′ u P
else {P ′}

)

U : PM× SCtPat

U(Ml, k) =
⋃

k′∈Ml

(

if k′ ↗l′ k then k′ u k
else {k′}

)

where el = (λlx. el′)

u : MPat × (MPat ∪ SPat)→ 2MPat

P u ∀ = {P}
∀ u ? = {#f , λ∀, (∀, ∀)}
P u ? = {P}, if P 6= ∀
#f u#f = {#f}
P u λ∀ = {P}

λ∀ u λ? =







λl (∀ . . . ∀
︸ ︷︷ ︸

n times

)

l ∈ 4(el0) ∧
el is a λ-expression ∧
there are n visible variables at label l







λl k u λ? = {λl k}

λl k′ u λl k =
{

λl k′′ k′′ ∈ k′ u k
}

(P ′
1, P ′

2) u (P1, P2) =
{

(P ′′
1 , P ′′

2) P ′′
1 ∈ P ′

1 u P1, P ′′
2 ∈ P ′

2 u P2

}

u : MCtPat × (MCtPat ∪ SCtPat)→ 2MCtPat

(P ′
1 . . . P ′

n) u (P1 . . . Pn) =
{

(P ′′
1 . . . P ′′

n) P ′′
1 ∈ P ′

1 u P1, . . . , P ′′
n ∈ P ′

n u Pn

}

Figure 5.14: Algorithm for the upgrade of inspection points in pattern-matchers

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 116

e5 and e10, having respectively one and two variables in their lexical environment.

If the upgrade of pattern-matchers is done directly on the decision trees, it can be made

more efficient. Essentially, the efficient algorithm consists in performing the conformance

test and the (eventual) node upgrade together. Branches of the trees that do not conform

to the pattern are unchanged. Branches that conform may change, depending on the fact

that the inspection node corresponding to the split point is blind or not. Projection results

at the leafs must be updated to reflect the increase in accuracy. Essentially, the update of

the leafs is done similarly to u. Note that the upgrade of a blind node into a discriminating

node changes the use of the queue. New blind nodes have to be introduced on lower

levels in the trees to consume the sub-patterns that are to be inserted in the queue by

the new discriminating node. As an instance, when a blind object node is turned into a

discriminating node, two blind object nodes have to be added in the “pair” branch and a

blind closure node has to be added in the “closure” branch. No new node is required in the

“Boolean” branch as no sub-pattern gets inserted in the queue when #f is encountered.

5.1.3 Demands

We present the different kinds of demands that we manipulate during the demand processing

phases of the demand-driven analysis. Most of these kinds were introduced informally in

the previous chapter as “inevitable” ones. We now give a complete presentation of each

kind along with its syntax and meaning.

Figure 5.16 presents the syntax of demands. The first three kinds of demands were

informally mentioned in the previous chapter. The bad call demands are added to the list.

Here is a precise description of each kind of demands. Each demand more or less directly

asks for modifications to the abstract model.

Bound demands. Demand ‘show αl,k ⊆ B’ requests a demonstration that el, when eval-

uated in contour k, provides only values contained in bound B. The possible bounds

include each of the three types (ValB, ValC, and ValP) and also the values acting as

true Boolean values in conditionals (ValTrues = ValC ∪ ValP). The demonstration

obtained when the demand is achieved usually have contour k split into a certain

number of more specialised contours k1, . . . , kn such that ∀ 1 ≤ i ≤ n. αl,ki
⊆ B. The

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 117

MV =







#f ,
λ5 (∀),
λ10 (#f ∀), λ10 (λ∀ ∀), λ10 ((∀, ∀) ∀),
(∀, ∀)







U(MV , λ10 (∀ ?)) =







































#f
non−conforming
⇒ {#f}

∪

λ5 (∀)
non−conforming
⇒ {λ5 (∀)}

∪

λ10 (#f ∀)
conforming
⇒







λ10 (#f #f),
λ10 (#f λ∀),
λ10 (#f (∀, ∀))







∪

λ10 (λ∀ ∀)
conforming
⇒







λ10 (λ∀ #f)
λ10 (λ∀ λ∀)
λ10 (λ∀ (∀, ∀))







∪

λ10 ((∀, ∀) ∀)
conforming
⇒







λ10 ((∀, ∀) #f)
λ10 ((∀, ∀) λ∀)
λ10 ((∀, ∀) (∀, ∀))







∪

(∀, ∀)
non−conforming
⇒ {(∀, ∀)}













































#f ,
λ5 (∀),
λ10 (#f #f),
λ10 (#f λ∀),
λ10 (#f (∀, ∀)),

λ10 (λ∀ #f),
λ10 (λ∀ λ∀),
λ10 (λ∀ (∀, ∀)),

λ10 ((∀, ∀) #f),
λ10 ((∀, ∀) λ∀),
λ10 ((∀, ∀) (∀, ∀)),

(∀, ∀)







Figure 5.15: Example of the upgrade of a pattern-matcher

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 118

Demand := show V ⊆ B | where V ∈ α-var, B ∈ Bound
split V P | where V ∈ Splittee, P ∈ SPat
show V = ∅ | where V ∈ δ-var
bad-call l f v k where l ∈ Lab, f, v ∈ MPat, k ∈ MCtPat

Bound := ValB | ValC | ValP | ValTrues
Splittee := ValC | ValP | V where V ∈ α-var ∪ β-var ∪ γ-var
α-var := αl,k where l ∈ Lab, k ∈ MCtPat
β-var := βx,k,l where x ∈ Var, k ∈ MCtPat, l ∈ Lab
γ-var := γc,k where c ∈ MPat, k ∈ MCtPat
δ-var := δl,k where l ∈ Lab, k ∈ MCtPat

Figure 5.16: Syntax of the demands

↗↖↙↘ ⊆ 2MPat × SPat

S ↗↖↙↘ P, if ∀ ∈ S

S ↗↖↙↘ ?, if (#f ∈ S ∧ S \ {#f} 6= ∅) ∨
(S ∩ T 6= ∅ ∧ S \ T 6= ∅)

where T = {(P1, P2) | P1, P2 ∈MPat}

S ↗↖↙↘ λ?, if λ∀ ∈ S ∨
(λl k, λl′ k′ ∈ S ∧ l 6= l′)

S ↗↖↙↘ λl (P1 . . . Pn), if Pi ∈ SPat ∧ T ↗↖↙↘ Pi

where T =

{

P ′
i

λl (P ′
1 . . . P ′

n) ∈ S ∧

λl (P ′
1 . . . P ′

n)
∃

∩ λl (P1 . . . Pn)

}

S ↗↖↙↘ (P1, P2), if Pi ∈ SPat ∧ T ↗↖↙↘ Pi

where T =
{

P ′
i (P ′

1, P ′
2) ∈ S ∧ (P ′

1, P ′
2)

∃

∩ (P1, P2)
}

Figure 5.17: Algorithm for the “is spread on” relation

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 119

∃

∩ ⊆ (MPat ∪ SPat)× (MPat ∪ SPat)

∀
∃

∩ P2

P1
∃

∩ ∀

?
∃

∩ P2

P1
∃

∩ ?

#f
∃

∩ #f

λ∀
∃

∩ P2, if P2 is λ∀, λ?, or λl k

P1
∃

∩ λ∀, if P1 is λ? or λl k

λ?
∃

∩ P2, if P2 is λ? or λl k

P1
∃

∩ λ?, if P1 is λl k

λl (P1 . . . Pn)
∃

∩ λl (P ′
1 . . . P ′

n), if Pi
∃

∩ P ′
i , ∀1 ≤ i ≤ n

(P1, P2)
∃

∩ (P ′
1, P ′

2), if P1
∃

∩ P ′
1 and P2

∃

∩ P ′
2

Figure 5.18: Definition of the “have a non-empty intersection” relation

property αl,k ⊆ B may not (and need not) necessarily be satisfied literally.2

Most of the time, bound demands are generated as initial demands and directly express

the needs of the optimiser.

The set of bounds that can be used in bound demands may seem restricted. One

may estimate that more complex bounds are necessary. However, by the choice of the

demand processing rules, bound demands are quickly transformed into other demands.

The four different bounds that are mentioned are just sufficient for our approach.

Never demands. Demand ‘show δl,k = ∅’ asks for a demonstration that el is not really

evaluated in contour k. Once again, various modifications to the abstract model

are generally needed among which there is typically a split of contour k into more

specialised ones, k1, . . . , kn, such that ∀ 1 ≤ i ≤ n. δl,ki
= ∅.

Usually, never demands are generated because there is evidence that, if the expression

gets evaluated, then it necessarily leads to an error.

Split demands. These demands ask for an increase in the accuracy of the modelling. The

splittee is the entity for which greater accuracy is required, i.e. that should be split.

The desired improvement in accuracy is specified by the split pattern. There are

split demands that directly ask for an update of the model. These have ValC or

2Moreover, after the split of k is done, k no longer exists. So, strictly speaking, talking about abstract
variable αl,k is an abuse of notation.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 120

ValP as splittee. The others ask for increased accuracy—or separation—in the values

contained in an abstract variable. The abstract variable represents the value of an

expression (αl,k), the value of a reference to a variable (βx,k,l), or the return value of

a closure (γc,k).

Split demands having an abstract variable as splittee are mainly generated to separate

the so-called good cases from the bad cases. In the previous chapter, we explain the

importance of separating good and bad cases before any attempt to remove the bad

cases is made.

A splittee of the form βx,k,l denotes a reference to ‘x’ in contour k and from label

l. Recall that this is different from the abstract variable βx,k. The contours that

are valid where the variable is bound and those where the variable is referenced may

differ completely. For example, it is the case when the reference occurs in an expression

deeply nested inside of the closure that introduced the binding to the variable.

Split demands on abstract variables request that the model be modified in such a

way that (in the case of a splittee from ‘α-var’) k is split into specialised contours

k1, . . . , kn such that, in each ki, the values fall on only one side of the pattern. To

formally express this concept, we need the help of the “is spread on” relation to

indicate when abstract values happen not fall all on the same side of the pattern.

Figure 5.17 gives a formal definition of this relation. The spread relation between a

set of values S and a split pattern P is denoted by S ↗↖↙↘ P . In turn, this relation

is based on another one: the “have a non-empty intersection”. This one indicates

if two split or modelling patterns have an intersection, i.e. if there exists a concrete

value that is abstracted by both patterns. We write P1
∃

∩ P2 when patterns P1 and

P2 have a non-empty intersection. Figure 5.18 formally defines the relation. Again,

we decree that split pattern ‘?’ abstracts all values and ‘λ?’ abstracts all closures. So,

the achievement of ‘split αl,k P ’ consists in modifying the abstract model such that

k is specialised into k1, . . . , kn such that ∀1 ≤ i ≤ n. ¬(αl,ki
↗↖↙↘ P). Similarly for other

split demands where the splittee is an abstract variable.

To help to understand the meaning of ↗↖↙↘, we use a picture. Imagine that the set of

all modelling patterns lie on a (two-dimensional) plan. Since patterns are discrete

entities, we will imagine them as sand granules. Now, our set of abstract values S

is represented by a subset of these granules. Imagine that our split pattern P is a

riddle—a coarse sieve. It has a certain number of holes. It may be as vast as the plan or

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 121

may occupy only a tiny fraction of the plan. Testing whether S ↗↖↙↘ P hold is equivalent

to sifting the sand granules using the riddle: let the sand granules levitate above the

ground, each at their respective x and y coordinates; let the riddle lie between the

granules and the ground; and finally let the granules fall free. Some granules fall into

the riddle, some do not. Among the granules that fall into the riddle, some may go

through a different hole than others. We say that the sand was spread over the riddle

if more than one hole was passed through by the sand. The granules that fell outside

of the riddle do not matter.

With the test S ↗↖↙↘ P , a similar thing occurs. Some abstract values do not have an

intersection with P : they fall outside of P . Others fall into P and pass through one of

the “holes” of P , depending on the type or on the label of a sub-pattern. Moreover,

some values may even be too coarse to be able to go through one of the holes; they

get stuck on P . Let us give some examples:

• pattern P = (?, ∀) sifts pairs; it has three holes that are (#f ,∀), (λ∀,∀), and

((∀,∀),∀); Booleans and closures fall outside of P ; ∀ cannot go through P but

cannot fall outside either;

• pattern P = ? has three holes and no values can fall outside of it;

• pattern P = (λ12 (λ∀ #f), (λ?, #f)) occupies a small fraction of the plan and

has as many holes as there are λ-expressions in the program.

So S ↗↖↙↘ P holds if there is a value in S that gets stuck in P or if there are values in

S going through different “holes” of P . Values having no intersection with P do not

matter.

Bad call demands. Demand ‘bad-call l f v k’ asks for a demonstration that the described

invocation actually does not occur. The invocation is that of closure f on argument

v at call el in contour k. The achievement of this demand usually requires to first

perform changes on the abstract model and then to have all “bad” specialisations of

the invocations not to occur.

Bad call demands originate from the processing of never demands. In order to show

that a certain expression (that happens to be the body of a closure) does not get

evaluated, it is necessary to show that certain calls do not occur.

Call site monitoring. Although call site monitoring is not a kind of demand, we mention

it here simply to introduce its syntax. When a call expression el has to be monitored,

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 122

we write the pseudo-demand ‘monitor-call l k’. It specifies in which contour the

monitoring must be done.

We intentionally omit to explain what monitoring is exactly. We simply mention that

it consists in taking actions to achieve all bad call demands related to the specified

call site.

5.2 Demand Processing

We present the processing rules for the demands. The processing rules for each kind of

demands are presented in the following sections. They are considered in the following order:

the bound demands, the never demands, the bad call demands, and the split demands.

The processing of the split demands is clearly the most involving. Then, we continue by

describing the monitoring of call sites. Finally, we present an important function that is

used to minimally separate couples according to some given property: the Split-Couples

function (sc) is useful in the processing of a few demands.

The demand processing rules depend on a certain number of hypothesis. They suppose

that the complete demand-driven approach is the one presented in a later section. Changing

the global approach would require some adaptation of the processing rules. As described,

the processing rules are intended to be used during a model-update phase. Let el0 be the

program to analyse. The current abstract model is

M = (ValB, ValC, ValP, Cont, (), cc, pc, call)

and is built on the pattern-matchers

{MV} ∪ {Ml | (λlx. e) ∈ 4(el0)}

The analysis results for the program usingM are assumed to be available as

R = (α, β, γ, δ, χ, π, κ) = FW(el0 ,M)

Despite the hypotheses that we pose, many processing rules take care of more cases than

it is strictly necessary. This is because, most of the time, it is simpler to treat all cases,

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 123

even impossible ones, than to argue why some of them are impossible.

We show the results of processing a demand using a double arrow. It is usually preceded

by a condition. It looks like:

If some condition:

⇒results

Most of the results of demand processing are emissions of new demands. But some results

constitute one or many model updates. When the processing of a demand is complete

and does not emit sub-demands, a comment is added to indicate whether its processing is

successful. Comment (success) indicates that the demand is achieved. Comment (failure)

indicates that the demand cannot be achieved. Normally, demands that depend on the

failed demand cannot be achieved either. As we explain during the description of the

global demand-driven approach, the comments are ignored. We insert them to make the

presentation clearer. However, a modified approach could make use of the comments.

5.2.1 Bound Demands

Let us consider bound demand D ≡ ‘show αl,k ⊆ B’ where B is one of the four bounds.

When D is processed, one of three situations can occur. The first is that the bound is

respected, so D is trivially achieved:

If αl,k ⊆ B:

⇒(success)

The second situation occurs when no value resulting from the evaluation of el in k lies

inside of B. This is a relatively simple situation as only bad cases occur. Only bad values

can come from el so the sufficient and necessary way to achieve D is by showing that el

does not get evaluated in k at all:

If αl,k ∩B = ∅:

⇒show δl,k = ∅

Note that, if αl,k is empty, we can say that, in fact, it falls into the first two situations.

However, the first situation is more favourable and should be used. Each time the conditions

attached to a situation are met, this situation should be considered to have priority over

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 124

the next ones as we list the more favourable situations first.

The last situation occurs when there are both good and bad cases. That is, when there

are values that lie inside of the bound and others, outside. The first step in trying to achieve

D then consists in separating the good and bad cases:

Otherwise:

⇒split αl,k ?

Because of the simplicity of the valid bounds, a split demand requesting the values in α l,k to

be split according to their (top-level) type is sufficient to separate good cases from bad cases.

In the eventuality that this new demand is achieved, then a reiteration of the processing of

D (in fact, of its specialisations) will be able to proceed using one of the first two situations.

5.2.2 Never Demands

Let us consider never demand D ≡ ‘show δl,k = ∅’ to be the demand to process. The

first and simplest situation occurs when the property to verify is already true. Then, the

demand is trivially achieved:

If δl,k = ∅:

⇒(success)

Another simple situation consists in D asking for a demonstration that the program does

not get evaluated in the main contour, which is patently false. The abstract interpretation

of the program, for analysis purpose, is started by the constraint δl0,() ⊇ ValB. It follows

that D fails:

If l = l0 and k = ():

⇒(failure)

The other situations require some active processing. First, note that, most of the time,

the fact that an expression is evaluated is controlled by its parent expression, i.e. by e l′ ,

where l′ = parent(l).3 Often, the evaluation of el depends only on the fact that el′ is

3The attentive reader may notice that we do not mention the case where l = l0 and k 6= (). This is because
el0 is not inside the body of a closure. Its evaluation cannot be triggered because of some invocation. So the
only way el0 gets evaluated is by the starting constraint which uses contour (). Consequently, for all k 6= (),
we have that δl0,k = ∅, and this case is caught by the first situation.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 125

evaluated too. But let us start by considering the special cases first.

If el′ = (λl′x. el), the events that cause the evaluation of el in contour k are that some

closure originating from el′ gets invoked and call selects k as the contour in which el ought

to be evaluated. So, in order to try to achieve D, a demonstration that each such invocation

cannot happen is needed. Bad call demands are emitted for each invocation leading to the

evaluation of el in k. If all of these sub-demands are eventually achieved, then D clearly

becomes so, too:

If el′ = (λl′x. el):

⇒
{

bad-call l′′ (λl′ k′′) v k′ (l′′, (λl′ k′′), v, k′) ∈ κk

}

The situation in which el′ is a conditional and el is its then-branch is a special case as

it is not true that el is evaluated if and only if el′ is. In fact, el is not evaluated if and only

if the test in el′ does not return “true” values (closures and pairs). So D is achieved if and

only it can be showed that the test returns nothing else than “false” values:

If el′ = (ifl′ el′′ el el′′′):

⇒show αl′′,k ⊆ ValB

The situation in which el is the else-branch of el′ is symmetric to the then-branch

situation:

If el′ = (ifl′ el′′ el′′′ el):

⇒show αl′′,k ⊆ ValTrues

The remaining situations are all those in which el is evaluated if and only if el′ is. Those

include the case where el is the test of the conditional el′ and the cases where el′ is not a

λ-expression nor a conditional. The appropriate processing in these situations is to ask for

a demonstration that el′ does not get evaluated either (at least in contour k):

Otherwise:

⇒show δl′,k = ∅

5.2.3 Bad Call Demands

Let us consider demand D ≡ ‘bad-call l f v k’. Since the parameters in D describe the

circumstances of an invocation, we know that el is a call. Let el = (lel′ el′′). In processing

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 126

D, the first situation that we could face is that of D being trivially achieved. The described

invocation does not occur if at least one of f and v does not appear at the call in the

specified contour:

If f 6∈ αl′,k or v 6∈ αl′′,k:

⇒(success)

Otherwise, the invocation really occurs. At least, according to the current analysis

results. The natural processing for this bad call would consist in separating the specified

invocation from the others, if they exist, and then trying to show that el does not get

evaluated in the sub-contour that contains the specified invocation. Prior separation of the

specified invocation from the others, if they exist, is essential, since the other invocations

need not necessarily be bad. Indeed, the other invocations may even represent actual

concrete invocations, and, as such, should not be subject to an attempt to demonstrate

that they do not occur. Non-occurrence of the other invocations is not necessary.

However, we do not process D in the way we just described. The described method lead

to too many splits. Imagine that many closures are invoked on many different arguments at

el in k, and that half of the invocations are considered to be bad. The described processing

requires every bad invocation to be completely separated from all the others. But the only

separation that is really needed is one that separates all bad calls from all (presumably) good

calls. This global separation may be much simpler than the combination of all individual

separations. So instead of immediately taking measures to achieve D, we prefer to put it in

a log of bad calls. Later, all bad calls related to el and contour k are processed together in

what we designate as the monitoring of el in k. We denote the log of bad calls by LBC and

the invocations that are marked as bad for call el in contour k are listed in LBC(l, k).

Otherwise:

⇒Insert (f, v) in LBC(l, k)

Flag (l, k) as a candidate for monitoring

5.2.4 Split Demands

The processing of a split demand ‘split V P ’ depends considerably on the splittee V .

Processing of the demand for each kind of splittee is presented in separate sections.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 127

Direct Split on the Model

A direct split on the model is requested by a demand like D ≡ ‘split V P ’ where V is

ValC or ValP. No matter which of the two splittees is used in D, the demand is processed

identically. The value pattern-matcher is updated using P :

⇒Update MV with P

Split on α-Variables

The splits on α-variables are the most involving part of the demand processing. Let us

consider split demand D ≡ ‘split αl,k P ’. The simplest situation is the one in which D is

trivially achieved. It occurs when the values in the abstract variable are not spread on the

pattern:

If ¬(αl,k ↗↖↙↘ P):

⇒(success)

Otherwise, the complexity of the processing becomes immediately apparent. The values

in the abstract variable are spread on the pattern and some measures have to be taken in

order to cause this spreading to disappear. We know that the values in an α-variable result

from the abstract interpretation of expression el. And the interpretation of el depends on

the kind of expression it is. So, similarly to the processing of never demands that depended

on the kind of the parent expression, the processing of split demands on α-variables depends

on the kind of the expression itself. We consider each kind of expression in turn.

Boolean Constant Let el = #fl. This situation is actually impossible, as we explain

next, but we include it for completeness. Abstract variable αl,k contains either all Booleans

(ValB) or nothing, depending on whether el gets evaluated in contour k or not. If αl,k =

ValB, inspection of each possible split pattern P ′ shows that we cannot have that αl,k ↗↖↙↘ P ′.

Intuitively, this is because abstract Booleans in ValB represent perfectly accurately the

concrete Boolean. A concrete value by itself cannot be spread on a split pattern. And

if αl,k = ∅, then there clearly in no spreading. But we give the processing rule for D

nevertheless and we indicate that D is trivially achieved:

If el = #fl:

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 128

⇒(success)

Variable Reference Let el = xl. Processing D is very simple as it translates directly

into a split demand on a β-variable:

If el = xl:

⇒split βx,k,l P

Call Let el = (lel′ el′′). This situation is the difficult one. Here are a couple of reasons.

First, the result of the evaluation of el comes from the invocation of each closure on each

argument and blending the individual results together. So the values in αl,k are not directly

function of the values in αl′,k and αl′′,k. Second, the calls are responsible for making our

mini-language a Turing-complete one. Without them, analysing a program could simply

consist in concretely evaluating it, given the guarantee not to loop.

In order to process D, the result of each invocation has to be inspected. For closure f

invoked on argument v, with return values in γf,k′ , for some k′, there are three cases: γf,k′

has no intersection with P , γf,k′ is not spread on P , or γf,k′ is spread on P . In the first

case, the invocation does not contribute to the value of αl,k in a way that is observable by

P . In the second case, we can determine into which “hole” of P the result of the invocation

falls. In the third case, we cannot even determine into which “hole” the invocation falls.

The treatment of each invocation is different depending on the case to which it belongs.

Invocations having an empty return value or a return value that has no intersection with

P are ignored.

Invocations having a return value that is spread on P lead to a request for having a more

precise description of the computations occurring in the invoked closure. Eventually, the

more precisely described closure may have return values that cease to be spread on P . That

is, γf,k′ may be replaced by a number of more specialised invocation results, each causing

no spreading on P . Being able to determine in which “hole” of P each invocation result

goes is vital to a successful processing of D. Until the invocation of f on v is split into

non-spreading evaluation results, it cannot be used to select useful splits on sub-expressions

el′ and el′′ .

Invocations having a return value that is not spread on P are immediately used in

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 129

selecting splits on the sub-expressions of el. The return value of such an invocation goes

through a single “hole” of P but that does not automatically mean that all non-spreading

return values, once united together, do not spread on P . In order to make progress in

the achievement of D, non-spreading return values are collected together along with their

corresponding closure-argument couple. The Split-Couples function is then used to select

splits on the closure component and/or on the argument component. That is, on the value of

el′ and that of el′′ , respectively. The sc function selects splits such that incompatible couples

are separated by the splits. We say that two couples (f1, v1) and (f2, v2) are incompatible

if their associated return values γf1,k1 and γf2,k2 go through different “holes” of P . If all

the splits selected by sc are to be achieved, then no incompatible couples will appear in the

same contour anymore.

We give the processing rule and then give an example:

If el = (lel′ el′′):

⇒






split γf,k′ P

f ∈ αl′,k ∩ ValC ∧ v ∈ αl′′,k ∧

k′ = call(l, f, v, k) ∧ γf,k′ ↗↖↙↘ P







∪
{

split αl′,k P ′ P ′ ∈ B
}

∪
{

split αl′′,k P ′′ P ′′ ∈ C
}

where A =







((f, v), γf,k′)

f ∈ αl′,k ∩ ValC ∧ v ∈ αl′′,k ∧

k′ = call(l, f, v, k) ∧

∃v′ ∈ γf,k′ . v′
∃

∩ P ∧ ¬ (γf,k′ ↗↖↙↘ P)







(B, C) = sc(A, P)

In our example, we consider demand D =≡ ‘split αl,k ?’ where el = (lel′ el′′). So we

want to have k (and possibly other abstract entities) split into k1, . . . , kn so that, for each

1 ≤ i ≤ n, the contents of αl,ki
is of a single type, if not empty. In order to have an actual

situation with which we can work, let us suppose that two different closures may be invoked

on two different values. That is, αl′,k = {f1, f2} and αl′′,k = {v1, v2}. For convenience, we

also suppose that f1 and f2 originate from two different λ-expressions and that v1 and v2 are

values of different types. These last convenient suppositions are used below to keep things

simple. During abstract interpretation, each closure is invoked on each argument and each

time a contour is selected by call. We denote by kij the contour selected when fi is invoked

on vj , for i, j ∈ {1, 2}. That is, kij = call(l, fi, vj , k). Let the spreading or non-spreading

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 130

on ? of the result of each invocation be given by this table:

¬ (γf1,k11 ↗↖↙↘ ?), γf1,k12 ↗↖↙↘ ?,

γf2,k21 ↗↖↙↘ ?, and ¬ (γf2,k22 ↗↖↙↘ ?)

Finally, let us suppose that ∅ 6= γf1,k11 ⊆ ValB and that ∅ 6= γf2,k22 ⊆ ValP.

Using this information, we are able to illustrate the processing of D. First among all

the return values γfi,kij
, none is empty. So none is ignored. Second, we must take care

of the return values that are spread over ?, namely γf1,k12 and γf2,k21 . For each, a split

demand is emitted that requests that they be split using pattern ?. Finally, we take care

of non-spreading return values γf1,k11 and γf2,k22 . Individually, they are non-spreading but,

collectively, they are spread on ?. So the set A describing the couples is built:

A = {((c1, v1), γc1,k11), ((c2, v2), γc2,k22)}

The two couples in A are incompatible because their associated return values go through

different “holes” of ?. The first couple goes through the “Boolean hole” and the second goes

through the “pair hole”. Since the couples are distinct, at least one of the components must

be distinct. In our case, both components differ. The sc function computes an economical

way to separate the two couples in A relatively to pattern ?. It returns one of the two

following splitting strategies:

({λ?}, ∅) or (∅, {?})

meaning that either a split should be performed on the first components to separate them

based on the closure label or a split should be performed on the second components to

separate them based on the type. Splitting both components would be zealous. If we

suppose that the first strategy is adopted, then the final result of processing D is:

⇒split γf1,k12 ?

split γf2,k21 ?

split αl′,k λ?

λ-Expression Let el = (λlx. el′). When this situation is being considered, we know that

it is because αl,k ↗↖↙↘ P . And since αl,k = {cc(l, k)}, then P is of the form λl k′. So we

translate D into a direct model update demand:

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 131

If el = (λlx. el′):

⇒split ValC P

Conditional Let el = (ifl el′ el′′ el′′′). The processing for the conditional expression

shares some similarity with that of the call. The evaluation result, αl,k, is the union of

some sub-evaluations; here, the two branches of the conditional. Each sub-evaluation result

spreads on P has to be split first. The non-spreading results are used to select splits on sub-

expressions of el; here, this occurs when both branches are non-spreading but incompatible

and a split on the test has to be emitted.

We first consider the case where the evaluation result of at least one of the branches is

spread on P . Since the evaluation result of el remains spread on P as long as the result of

at least one branch is, then it is necessary to split the result for each such branch. It is too

early to be able to determine if a split on the test is required or not.

If el = (ifl el′ el′′ el′′′) ∧ (αl′′,k ↗↖↙↘ P ∨ αl′′′,k ↗↖↙↘ P):

⇒
{

split αl(n),k P l(n) ∈ {l′′, l′′′} ∧ αl(n),k ↗↖↙↘ P
}

The other case consists in having the result for both branches not to be spread on P .

But, since we know that αl,k ↗↖↙↘ P , these results must be incompatible. To achieve D, the

necessary and sufficient sub-demand to generate is to ask for both branches not to evaluate

in the same contour. So the cases where the test evaluates to a true value must be separated

from the cases where the test evaluates to a false value. So a sub-demand is emitted that

asks for the split of the result of the test on its type. In fact, this is slightly excessive as

a ValB/ValC/ValP distinction is requested when only a ValB/ValTrues one is required.

However, the split pattern syntax that we have chosen cannot express a split coarser than

‘?’.

If el = (ifl el′ el′′ el′′′):

⇒split αl′,k ?

Pair Construction Let el = (consl el′ el′′). Keeping in mind that αl,k ↗↖↙↘ P , quick

inspection of the different kinds of split patterns allows us to conclude that P is of the

form (P ′, P ′′). One of P ′ and P ′′ is a split pattern. We process D simply by emitting a

sub-demand that asks for the sub-split to be performed on the appropriate sub-expression

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 132

of el:

If el = (consl el′ el′′) ∧ P = (P ′, P ′′) ∧ P ′ ∈ SPat:

⇒split αl′,k P ′

If el = (consl el′ el′′) ∧ P = (P ′, P ′′):

⇒split αl′′,k P ′′

Note that the proposed processing in the situation where we have a pair construction

expression is sufficient. But it is less clear whether it is necessary. To see why, we give

an example. Let P = ((∀, ∀), λ?). Of course, the value of el′′ has to be split using λ? in

a way or another. But is it really α
l′′,k that should be split? Note that P specifies that

additional accuracy is requested only when the car-field of the pair contains a pair. Maybe

the appropriate processing consists in first splitting αl′,k using ? and, when this is done, we

have k specialised into, say, kB, kC , and kP . We would then split αl′′,kP
using λ?. That

is, we would split the value of el′′ only in the contour in which el′ evaluates to pairs. We

believe that it is not obvious at all whether this more elaborate way of splitting is easier or

more profitable. A split on αl′′,k?
has to be made for some k?, anyway.

Since the split sub-pattern in (P ′, P ′′), that is, P ′ or P ′′, has to be propagated to el′ or

el′′ anyway, the question can be summarised like this: Should more accuracy be requested

on the non-splitting side in order to (possibly) facilitate the splitting on the splitting side?

We have decided that the answer would be: no. Only the sub-pattern on the splitting side

is propagated. No additional accuracy is requested from the non-splitting side.

CAR-Field Access Let el = (carl el′). Since D asks for increased accuracy in the

representation of the value of el, then a new demand should be emitted that requests

increased accuracy in the representation of the car-field of the pairs that come from e l′ .

That is, since P is the split pattern appearing in the request concerning el, (P, ∀) should be

the one appearing in the request concerning el′ . However, a verification that the abstract

domain ValP is accurate enough for (P, ∀) must be done. Indeed, it is pointless to ask for

a split of αl′,k using (P, ∀) if the abstract pairs are not distinguishable by (P, ∀). If ValP

is not accurate enough, a direct model update demand is emitted. Otherwise, the normal

processing is performed.

If el = (carl el′) ∧ ValP is accurate enough for (P, ∀):

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 133

⇒split αl′,k (P, ∀)

If el = (carl el′):

⇒split ValP (P, ∀)

Verifying that ValP is accurate enough for (P, ∀) is relatively simple. The abstract pairs

in ValP result from projections using MV . The verification proceeds by testing whether

there is a modelling pattern in MV having an intersection with (P, ∀) but for which we

cannot decide in which “hole” it passes through. In other words, if there is a modelling

pattern in MV that is spread on (P, ∀):

ValP is accurate enough for (P, ∀)

⇔

∀ v ∈MV . ¬ ({v} ↗↖↙↘ (P, ∀))

This processing for D is an instance of the creation of complex split patterns using

simpler ones. Also, it justifies our choice of the meaning of split demands, as presented in

Section 5.1.3 that says that values having no intersection with the split pattern are ignored.

The split of αl′,k using (P, ∀) is concerned only with pairs coming from el′ . Non-pairs coming

from el′ do not contribute to the value of el and, as such, are not concerned by the split

pattern (P, ∀). The fact that their presence leads to errors is an independent problem.

CDR-Field Access Let el = (cdrl el′). The processing of D is completely symmetric to

that of a demand concerning a car-field access.

If el = (cdrl el′) ∧ ValP is accurate enough for (∀, P):

⇒split αl′,k (∀, P)

If el = (cdrl el′):

⇒split ValP (∀, P)

Pair Membership Test Let el = (pair?l el′). The processing of D is trivial, the split

pattern is propagated to the sub-expression without modification:

If el = (pair?l el′):

⇒split αl′,k P

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 134

To see why this processing is adequate, each form of split patterns has to be considered.

If P = ?, then to make the distinction ValP/ValB on the value of el, it is necessary to make

the distinction ValP/ValP on the value of el′ . The split pattern ? is then used. P cannot

be λ? nor be of the form λl k, because αl,k ↗↖↙↘ P . Finally, if P = (P ′, P ′′), then only the

pairs coming from el are concerned. Since these pairs are the same as those coming from

el′ , P itself must be used in the split of αl′,k.

Split on β-Variables

Let D ≡ ‘split βx,k,l P ’. Processing D results in a direct model update. However, some

information has to be gathered in order to find the appropriate contour pattern-matcher

and to produce the right split contour pattern. The first step consists in finding the position

of variable ‘x’ in contour k. Recall that k is an abstract version of the lexical environment

and that “bounds” on the possible values that each variable can take are listed from the

innermost variable to the outermost. Let eli ∈ 4(el0) be the λ-expression that binds ‘x’:

(λlix. (. . . (λli+1
yi+1. (. . . (λlnyn. el′n

) . . .)) . . .))

where el ∈ 4(el′n
). In other words, we have that the elj are λ-expressions, for 1 ≤ j ≤ n,

and that:

(λl1y1. el′1
) ∈ 4(el0)

(λl2y2. el′2
) ∈ 4(el′1

)

. . .

(λli−1
yi−1. el′

i−1
) ∈ 4(el′

i−2
)

(λlix. el′
i
) ∈ 4(el′

i−1
)

(λli+1
yi+1. el′

i+1
) ∈ 4(el′

i
)

. . .

(λlnyn. el′n
) ∈ 4(el′n−1

)

el ∈ 4(el′n
)

So k = (Pn . . . Pi+1 Pi Pi−1 . . . P1) and Pi is the bound on the value of ‘x’ in contour k.

The intent is to update k such that its Pi pattern is split into specialisations. Note that the

pattern-matcher that must be updated is Mln . Updating Mln using the split contour pattern

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 135

∩ : (MPat ∪ SPat)× (MPat ∪ SPat)→ (MPat ∪ SPat)
P1 ∩ P2 is undefined if P1, P2 ∈ SPat
∀ ∩ P2 = P2

P1 ∩ ∀ = P1

? ∩ P2 = ?
P1 ∩ ? = ?
#f ∩#f = #f
λ∀ ∩ P2 = P2, if P2 is λ∀, λ?, or λl k
P1 ∩ λ∀, = P1, if P1 is λ? or λl k
λ? ∩ P2 = λ?, if P2 is λl k
P1 ∩ λ? = λ?, if P1 is λl k
λl (P1 . . . Pn) ∩ λl (P ′

1 . . . P ′
n) = λl ((P1 ∩ P ′

1) . . . (Pn ∩ P ′
n))

(P1, P2) ∩ (P ′
1, P ′

2) = (P1 ∩ P ′
1, P2 ∩ P ′

2)

Figure 5.19: Definition of the intersection operator between patterns

(Pn . . . Pi+1 P Pi−1 . . . P1) would almost be what we want except that more than contour k

may get updated. Instead, we compute the intersection between P and Pi and use the result

in the split contour pattern. That is, we update Mln using (Pn . . . Pi+1 (P∩Pi) Pi−1 . . . P1).

The definition of the intersection is presented in Figure 5.19. This definition is that of a

function computing the intersection between patterns. It it different from the
∃

∩ relation

whose purpose is simply to determine whether some concrete value is abstracted by both

its arguments. The ∩ function produce a pattern representing the intersection of the input

patterns as long as it makes sense. That is, the patterns must have an intersection (according

to
∃

∩) and they must not both be split patterns.4 The result of the processing of D is thus:

If k = (Pn . . . P1) ∧

(λl1y1. el′1
) ∈ 4(el0) ∧

(λljyj . el′
j
) ∈ 4(el′

j−1
), ∀ 2 ≤ j ≤ n ∧

el ∈ 4(el′n
) ∧

yi is in fact x

⇒Update Mln with (Pn . . . Pi+1 (P ∩ Pi) Pi−1 . . . P1)

Note that the value of a variable is generally controlled through many abstract values and

contours. In the general case, Mli must be updated to provide more accurate contours,

4The intersection between a split pattern and a modelling pattern may lead to a resulting pattern that
is less accurate. This is because the split point (?) has priority over the modelling pattern it is intersected
with. When this situation occurs, the resulting pattern is a split pattern but it does not cause a real update
on the pattern-matcher.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 136

which allows MV to be updated to provide more accurate closures of the form λli+1
ki+1,

which in turn allows Mli+1
to be updated to provide more accurate contours, . . . , which

allows Mln to be updated to provide more accurate contours. However, a single update

request is emitted and we let the rules that ensure consistency do the rest.

Split on γ-Variables

Let D ≡ ‘split γf,k P ’. The processing of D appears trivial when we note that the return

value of a closure f , when its body is evaluated in contour k, is precisely the result of the

evaluation of the body in contour k. The only thing that has to be done is to recover the

label of the body of the closure and emit a new split demand:

If f = λl k′ ∧ el = (λlx. el′):

⇒split αl′,k P

5.2.5 Call Site Monitoring

As explained in the processing of bad call demands, undesirable invocations are logged into

the bad-call log and they are taken care of later. When the invocation of f on v, denoted

as (f, v), is put into the bad-call log for call site el and contour k, denoted as LBC(l, k), the

call site is flagged for future monitoring. Eventually, the demand-driven analysis goes into

a call site monitoring phase and monitors each call site that has been flagged.

We describe the processing of the command C = ‘monitor-call l k’, that is, the moni-

toring of call site el in contour k. We insist on the fact that C is not a demand, but simply

a command. Once processed, C cannot be considered as achieved. Even if each demand

that results from the processed of C is eventually achieved, C still cannot be considered as

achieved. New undesirable invocations occurring at el in contour k may be discovered later

and a new monitoring would be required.

Let el = (lel′ el′′). Let A be the set of all invocations occurring at el in k denoted in the

form of couples:

A = (αl′,k ∩ ValC)× αl′′,k

and LBC(l, k) contains those that are bad invocations. The first situation that we may face

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 137

in processing C is that no invocation in A is marked as bad. Then the monitoring trivially

succeeds:

If (αl′,k ∩ ValC)× αl′′,k ∩ LBC(l, k) = ∅:

⇒(success)

The second situation is the one in which all invocations in A are marked as bad. None

should be allowed to occur. Then the adequate processing consists in requesting a demon-

stration that el does not evaluate in contour k:

If (αl′,k ∩ ValC)× αl′′,k ⊆ LBC(l, k):

⇒show δl,k = ∅

Note that A contains only couples that represent invocations occurring at el in k. The other

couples, i.e. those in:

(αl′,k ∩ (ValB ∪ ValP)) × αl′′,k

represent illegal invocations as it is not a closure that is to be invoked.

The last situation is the one in which bad invocations and good invocations (invocations

not yet considered as bad) appear in A. The appropriate processing consists in emitting

demands that separate the good from the bad cases. If all these demands are eventually

achieved, then the first or second situations will apply in the different specialised contours.

Once again, the Split-Couples function is used:

Otherwise:

⇒
{

split αl′,k P1 | P1 ∈ B
}

∪
{

split αl′′,k P2 | P2 ∈ C
}

where A = (αl′,k ∩ ValC)× αl′′,k

(B, C) = sc (A, LBC(l, k))

5.2.6 Split-Couples Function

The Split-Couples function is used in two places in the processing of “demands”: in the split

of an α-variable where the expression involved is a call; in the monitoring of a call site. One

might have noted that sc is overloaded. In the first case, it receives a set of couple-result

pairs and a split pattern. In the second, it receives two sets of couples. Both type signatures

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 138

for sc are given here:

sc : 2(MPat×MPat)×2MPat
× SPat → 2SPat × 2SPat

sc : 2MPat×MPat × 2MPat×MPat → 2SPat × 2SPat

Despite the differences in the uses, the task is essentially the same: couples are grouped

into equivalence classes and splits operating on the first or on the second components of

the couples must be produced such that all non-equivalent couples have been separated by

splits. So we describe the implementation of sc in two steps: computing the equivalence

classes, finding splits to separate them.

Let us find the equivalence classes in the first use of Split-Couples. Suppose it is used as

sc(Σ, P). Σ is a set of couple-result pairs like ((f, v), S) where (f, v) describes an invocation

and S is the result of the invocation. P is a split pattern. By the construction of Σ, there

are no two couple-result pairs that have the same couple. Also, we expect that, in each

couple-result pair ((f, v), S) ∈ Σ, S is non-empty, has some intersection with P , and is not

spread on P . These conditions ensure that the following definition of relation R on couples

is one of an equivalence relation:

(f1, v1) R (f2, v2) ⇔ ¬
(

(S1 ∪ S2)↗↖↙↘ P
)

where ((f1, v1), S1), ((f2, v2), S2) ∈ Σ

Basically, R says that two couples are related if their associated return values go through

the same “hole” of P . The desired equivalence classes are those induced by R on the set

{(f, v) | ((f, v), S) ∈ Σ}.

Let us do the same in the second use of Split-Couples. Suppose it is used as sc(S, T).

S is the set of invocations that occur. T is the set of undesirable invocations. We define

relation R this way:

(f1, v1) R (f2, v2) ⇔ ((f1, v1), (f2, v2) ∈ T) ∨ ((f1, v1), (f2, v2) 6∈ T)

Basically, R says that two couples are related if they are both good or both bad. The desired

equivalence classes are those induced by R on S.

From this point on, we can now consider that we have a set of couples and that a colour

has been assigned to each couple. The number of colours may be much smaller than the

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 139

×

×

×

×

◦

◦

◦

◦

4

4

4

4

Figure 5.20: Example of couples to separate

number of couples. For example, when the couples have been separated into good and bad

calls, there are two colours. To help to understand the task of separating the couples, we

choose an illustration that represent couples of different colours. The couples are presented

in Figure 5.20 as points on the plan. They are depicted using different symbols to represent

different colours. Two couples having the same x-coordinate have the same first component

but different second components. Similarly for couples having the same y-coordinate.

The separation task now consists (in 2D-points terminology) in drawing vertical and

horizontal lines (separators) that delimit rectangles in which points of a single colour lie.

The simplest separation consists in drawing a complete grid of lines such that each rectangle

contains at most one point. However, separations made of fewer separators are desirable

because, concretely, each separator translates into a split demand that is emitted on one of

the two sub-expressions of a call. Since we cannot presume that any demand is trivial to

achieve, demands should be generated with parsimony. A more economical but still näıve

method of separation of the couples consists in introducing as many vertical separators as

necessary and then to introduce horizontal separators only in the columns that require some.

Figure 5.21 presents the separation that is obtained if we proceed this way. It is clearly

better than the grid strategy. But it is possible to do better by trying to take advantage of

the distribution of the couples. Figure 5.22 presents a more clever separation of the couples.

It introduces only 7 separators compared to the 11 introduced by the näıve method.

The illustration using points and colours does not correspond to the couples/equivalence-

classes with high fidelity but highlights the main concerns: the separators are uni-dimension-

al and they should be introduced in small numbers. We can now present the implementation

of the process of separation for the classes of couples. Since horizontal and vertical separators

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 140

×

×

×

×

◦

◦

◦

◦

4

4

4

4

Figure 5.21: Example of a näıve separation

×

×

×

×

◦

◦

◦

◦

4

4

4

4

Figure 5.22: Example of a more clever separation

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 141

sc
′ : 2MPat×MPat × 2(MPat×MPat)×(MPat×MPat) → 2SPat × 2SPat

sc
′(S,R) =

(

{P1 | (P1, P2) ∈ D ∧ P1 ∈ SPat} , {P2 | (P1, P2) ∈ D ∧ P2 ∈ SPat}
)

where A =
{

{(P ′
1, P ′

2) ∈ S | (P ′
1, P ′

2) R (P1, P2)} (P1, P2) ∈ S
}

B =
[

{[] / O P1 / O P2 | (P1, P2) ∈ K} K ∈ A
]

(C,) = sc
′
Q(B)

D =
{

(P1, P2) P2 / P1 / [] ∈ C
}

sc
′
Q, sc′

O ∀, sc
′
O ?, sc

′
C ∀, sc

′
C ? : 〈sequence of 2〈queue of {O,C}×MPat〉〉 → 2〈queue of MPat∪SPat〉 ×

�

sc
′
Q([]) = (∅, 0)

sc
′
Q([K]) = (∅, 0)

sc
′
Q([K1, . . . ,Ki−1, ∅,Ki+1, . . . ,Kn]) = sc

′
Q([K1, . . . ,Ki−1,Ki+1, . . . ,Kn])

sc
′
Q

([

{[]}, . . . , {[]}
︸ ︷︷ ︸

≥2 times

])

= (∅, ∞)

sc
′
Q([K1, . . . ,Kn]) = (Ni, ni), if ∃ (O P / q) ∈ K1 ∧ ni ≤ min(n1, n2)

where (N1, n1) = sc
′
O ∀([K1, . . . ,Kn])

(N2, n2) = sc
′
O ?([K1, . . . ,Kn])

sc
′
Q([K1, . . . ,Kn]) = (Ni, ni), if ∃ (C P / q) ∈ K1 ∧ ni ≤ min(n1, n2)

where (N1, n1) = sc
′
C ∀([K1, . . . ,Kn])

(N2, n2) = sc
′
C ?([K1, . . . ,Kn])

Figure 5.23: Implementation of the Split-Couples function (to be continued . . .)

seem to have a similar cost a priori, our approach looks for separators by inspecting both

components of the couples level by level. In fact, a breadth-first traversal of both components

simultaneously is performed in order to have a balance in the complexity of the split patterns

that are selected in each dimension. The separation method tries different strategies in a

dynamic-programming fashion and selects a shortest separation strategy.

Figure 5.23 presents the implementation of the separation phase of the sc function. The

algorithm consists in first taking the (non-empty) equivalence classes among the couples

in S induced by relation R and inserting the two components of each couple into a queue.

Queues are used for both traversing the components of the couples and for reconstruct-

ing split patterns. The split patterns are then extracted from the reconstruction queues.

Note that these patterns are intended to split couples, and not just one of the two com-

ponents. However, as we do in the processing of split demands on α-variables related to

cons-expressions, we keep only the split pattern among the pair of patterns. Costs for the

different strategies are returned with the reconstruction queues.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 142

sc
′
O ∀(M) =

({

q / ∀ q ∈ N
}

, n
)

where A =
[

{q | (O P / q) ∈ K} K ∈M
]

(N, n) = sc
′
Q(A)

sc
′
O ?(M) =

{

(∅, ∞), if ∃K ∈M. (O ∀ / q) ∈ K
({q0} ∪N ′

1 ∪N ′
2 ∪N ′

3, 1 + n1 + n2 + n3), otherwise

where A =
[

{q | (O #f / q) ∈ K} K ∈M
]

(N1, n1) = sc
′
Q(A)

N ′
1 =

{

q / #f q ∈ N1

}

B =
[

{q / C P | (O P / q) ∈ K ∧ (P is λ∀ or λl k)} K ∈M
]

(N2, n2) = sc
′
Q(B)

N ′
2 =

{

q / P P / q ∈ N2

}

C =
[

{q / O P1 / O P2 | (O (P1, P2) / q) ∈ K} K ∈M
]

(N3, n3) = sc
′
Q(C)

N ′
3 =

{

q / (P1, P2) P2 / P1 / q ∈ N3

}

{q0} =
{

sc
′′
Q(q) / ? K ∈M, (O P / q) ∈ K

}

sc
′
C ∀(M) =

({

q / λ∀ q ∈ N
}

, n
)

where A =
[

{q | (C P / q) ∈ K} K ∈M
]

(N, n) = sc
′
Q(A)

sc
′
C ?(M) =

{

(∅, ∞), if ∃K ∈M. (C λ∀ / q) ∈ K
({q0} ∪

⋃

l∈L N ′
l , 1 +

∑

l∈L nl) , otherwise

where L =
{

l ∈ 4(el0) el is a λ-expression
}

Al =
[

{q / O P1 / . . . / O Pj | (C λl (P1 . . . Pj) / q) ∈ K} K ∈M
]

(Nl, nl)
= sc

′
Q(Al)

N ′
l =

{

q / λl (P1 . . . Pj)
there are j visible variables at label l ∧
(Pj / . . . / P1 / q) ∈ Nl

}

{q0} =
{

sc
′′
Q(q) / λ? K ∈M, (C P / q) ∈ K

}

sc
′′
Q : 〈queue of {O, C} ×MPat〉 → 〈queue of MPat〉

sc
′′
Q([]) = []

sc
′′
Q(O P / q) = sc

′′
Q(q) / ∀

sc
′′
Q(C P / q) = sc

′′
Q(q) / λ∀

Figure 5.23: Implementation of the Split-Couples function (continued . . .)

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 143

Let us describe the implementation. The main function for the separation of couples is

sc
′, which takes the set of couples passed to sc and the equivalence relation R. It acts as an

interface in front of the central function sc
′
Q. Couples are grouped into equivalence classes,

represented as sets, and these equivalence classes are grouped into a sequence. We denote

sequences using square brackets instead of curly braces and all set operations can be used

on the sequences, like definition in comprehension and membership test. We use sequences

to contain the equivalence classes instead of sets not that much because they are ordered,

but because the same element can appear more than once in a sequence. This feature is

useful because, eventually, classes may simply consist of a set containing the empty queue

and it is important to be able to distinguish whether there is one or more of these classes.

Central function sc
′
Q operates quite similarly to the slicing algorithm that is described

in the section on model update. The difference lies in the fact that a sequence of sets of

queues is manipulated instead of a single queue and that, at each possible split point, a split

may, or may not, be introduced. As in all algorithms performing a breadth-first traversal of

patterns, the patterns in the deconstruction queues are marked as either object nodes (O)

or as closure nodes (C). A non-terminal step in the operations of sc
′
Q consists in computing

a separation strategy for an object node or for a closure node. Note that, for a certain

invocation of sc
′
Q, if one queue in some set in the sequence has length l, then all queues

have length l. Also, if the first element to be extracted from that queue is of the object

kind, then it is also the case for all queues. Similarly for the closure kind. Computing a

separation strategy for an object node consists in computing one using the blind auxiliary

function sc
′
O ∀, computing another using the discriminating auxiliary function sc

′
O ?, and

selecting the “best” of both strategies. A strategy has an infinite cost when it does not

provide a proper separation. When both strategies have an infinite cost, taking the “best”

consists in taking any strategy among the two. Computing a separation strategy for a

closure node proceeds in a similar way, using auxiliary functions sc
′
C ∀ and sc

′
C ?.

Blind auxiliary functions sc
′
O ∀ and sc

′
C ∀ elaborate separation strategies by choosing not

to insert a split at the current inspection point. Concretely, the first element of each queue

is discarded. This means that the information that remains in the equivalence classes for

performing the separation is reduced. However, the advantage is that no new separator

is introduced at this point. The shortened queues are passed to sc
′
Q to let it elaborate a

separation strategy based on the remaining information. The splits that it proposes are

then updated to allow complete patterns to eventually be reconstructed.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 144

Discriminating auxiliary function sc
′
O ? elaborates a separation strategy by choosing to

perform a split at the current inspection point. Queues that have a Boolean, a closure,

or a pair as their first element are taken separately. So three specialised versions of the

equivalence classes are obtained. A separator is introduced. The cost of the resulting

strategy is the sum of the costs of the sub-strategy for each specialised partition, plus

one for the additional separator. Since a split is done, the sub-patterns of the inspected

patterns become apparent and queues are updated accordingly at deconstruction and at

reconstruction. Discriminating auxiliary function sc
′
C ? proceeds in a similar manner with

closure inspection nodes. However, instead of making three versions of the partition based

on the type, |L| specialised versions are made, where L is the set of labels of λ-expressions.

For sc
′
O ? and sc

′
C ?, an immediate split may be impossible if there is a queue that contains

an “ambiguous” pattern. That is, if a queue contains ‘∀’ or ‘λ∀’, respectively. In such a

case, the separation strategy is marked as having an infinite cost. It is then rejected by

upper levels in the separation strategy selection.

We come back to the description of the different cases in sc
′
Q. The first terminal cases

are the success of a separation strategy. The equivalence classes are successfully separated

if there is at most one class left. No separator is required and the cost of the separation

strategy is 0. The other terminal case is the failure of a separation strategy. The separation

fails if there remains at least two equivalence classes containing empty queues. This means

that no information remains about the original couples and incompatible ones cannot be

distinguished. An infinitely costly strategy is returned. Such a failure is not an extraor-

dinary event. It simply means that insufficient separators are selected in upper stages of

the separation strategy selection. Note that the complete selection process cannot fail as

introducing separators at every inspection point is guaranteed to produce a successful strat-

egy. Finally, there is a “clean-up” non-terminal case. It removes empty classes from the

sequence. An empty class occurs when no representative of a certain type (or closure label)

can be found among the queues of a certain class during a previous specialisation.

This completes the description of the implementation of the Split-Couples function.

Since its internal operations are slightly complex, we present a short example illustrating

the computations it makes. Let us consider the couples formed by the invocations of λ3 ()

and λ5 () on #f and λ∀. Note that, normally, modelling pattern λ∀ is not supposed to be

manipulated directly as a value. But we need to split very simple couples in order to keep

the example to a reasonable size. Suppose that the couple (λ5 (), #f) is marked as bad.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 145

The main computations that are made to split the couples are the following:

sc({(λ3 (), #f), (λ3 (), λ∀), (λ5 (), #f), (λ5 (), λ∀)}, {(λ5 (), #f)})

sc
′({(λ3 (), #f), (λ3 (), λ∀), (λ5 (), #f), (λ5 (), λ∀)}, R)

where R = {(λ3 (), #f), (λ3 (), λ∀), (λ5 (), λ∀)}
2 ∪ {(λ5 (), #f)}2








sc
′
Q([{[O λ3 (), O #f], [O λ3 (), O λ∀], [O λ5 (), O λ∀]}, {[O λ5 (), O #f]}])

. . .

⇒ ({[∀, ?], [?, λ∀], [#f , λ?]}, 3)

⇒ ({?, λ?}, {?})

The computations made by central function sc
′
Q are shown in Figure 5.24. Despite the

smallness of the input to sc, an impressive amount of computations has to be performed.

In the trace of the computations performed by sc
′
Q, the main ideas are illustrated.

The trace of each use of the central function or of an auxiliary function is presented in a

separate box. With the notable exception that blind auxiliary functions only use sc
′
Q once

and no separate box is depicted for these uses of sc
′
Q. Function sc

′
Q uses either auxiliary

functions sc
′
O ∀ and sc

′
O ? when the next pattern in the queues is of the object kind, and

sc
′
C ∀ and sc

′
C ? when the next pattern is of the closure kind. Each time, the best of both

resulting strategies is returned. Blind auxiliary functions sc
′
O ∀ and sc

′
C ∀ simply consume

the first pattern in each queue, sometimes leading to equivalence classes containing only

empty queues. Discriminating auxiliary function sc
′
O ? separates its input queues into those

that start with a Boolean, those that start with a closure, and those that start with a pair.

Sub-strategies are elaborated for each new partitions of queues. They are then combined

together with the addition of a queue containing parts of a new split pattern performing the

discrimination directly introduced by sc
′
O ? itself. Similarly, sc

′
C ? separates its input queues

into those that start with a closure having 3 as a label and those that start with a closure

having 5 as a label. Note how the reconstruction queues are modified depending on which

type or which label they are the result for. Unfortunately, not all cases appearing in the

implementation of sc
′ are illustrated in the example. But a complete one would likely result

in a huge trace. We tried to keep a balance between completeness and comprehensibility.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 146

sc
′
Q([{[O λ3 (), O #f], [O λ3 (), O λ∀], [O λ5 (), O λ∀]}, {[O λ5 (), O #f]}])

∀ ↓
sc

′
O ∀

([{[O λ3 (), O #f], [O λ3 (), O λ∀], [O λ5 (), O λ∀]}, {[O λ5 (), O #f]}])
sc

′
Q([{[O #f], [O λ∀]}, {[O #f]}])

∀↙
sc

′
O∀

([{[O #f], [O λ∀]}, {[O #f]}])
sc

′
Q([{[]}, {[]}])

⇒ (∅, ∞)

↘ ?

sc
′
O ?([{[O #f], [O λ∀]}, {[O #f]}])
ValB↙

sc
′
Q([{[]}, {[]}])

⇒ (∅, ∞)

ValC ↓
. . .

↘
. . .

ValP

⇒ ({[?]}, ∞)
⇒ (∅, ∞)

↓ ?

sc
′
O ?([{[O λ3 (), O #f], [O λ3 (), O λ∀], [O λ5 (), O λ∀]}, {[O λ5 (), O #f]}])

ValB↙
sc

′
Q([∅, ∅])

⇒ (∅, 0)

ValP ↙
sc

′
Q([∅, ∅])

⇒ (∅, 0)

↘ ValC

sc
′
Q([{[O #f , C λ3 ()], [O λ∀, C λ3 ()], [O λ∀, C λ5 ()]}, {[O #f , C λ5 ()]}])

∀ ↓
sc

′
O∀

([{[O #f , C λ3 ()], [O λ∀, C λ3 ()], [O λ∀, C λ5 ()]}, {[O #f , C λ5 ()]}])
sc

′
Q([{[C λ3 ()], [C λ5 ()]}, {[C λ5 ()]}])

∀↙
sc

′
C∀

([{[C λ3 ()], [C λ5 ()]}, {[C λ5 ()]}])
sc

′
Q([{[]}, {[]}])

⇒ (∅, ∞)

↘ ?

sc
′
C ?([{[C λ3 ()], [C λ5 ()]}, {[C λ5 ()]}])

3↙
sc

′
Q([{[]}, ∅])

⇒ (∅, 0)

↘ 5

sc
′
Q([{[]}, {[]}])

⇒ (∅, ∞)
⇒ ({[λ?]}, ∞)

⇒ (∅, ∞)
↓ ?

sc
′
O ?([{[O #f , C λ3 ()], [O λ∀, C λ3 ()], [O λ∀, C λ5 ()]}, {[O #f , C λ5 ()]}])

ValB ↓
sc

′
Q([{[C λ3 ()]}, {[C λ5 ()]}])

∀↙
sc

′
C∀

([{[C λ3 ()]}, {[C λ5 ()]}])
sc

′
Q([{[]}, {[]}])

⇒ (∅, ∞)

↘ ?

sc
′
C ?([{[C λ3 ()]}, {[C λ5 ()]}])

3↙
sc

′
Q([{[]}, ∅])

⇒ (∅, 0)

↘ 5

sc
′
Q([∅, {[]}])

⇒ (∅, 0)
⇒ ({[λ?]}, 1)

⇒ ({[λ?]}, 1)
ValC ↙

sc
′
Q([{[C λ3 (), C λ∀], [C λ5 (), C λ∀]}, ∅])

⇒ (∅, 0)

↘ ValP

sc
′
Q([∅, ∅])

⇒ (∅, 0)
⇒ ({[λ∀, ?], [λ?, #f]}, 2)

⇒ ({[λ∀, ?], [λ?, #f]}, 2)
⇒ ({[∀, ?], [?, λ∀], [#f , λ?]}, 3)
⇒ ({[∀, ?], [?, λ∀], [#f , λ?]}, 3)

Figure 5.24: Example of computation made by Split-Couples

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 147

5.2.7 Remarks

We conclude the section on demand processing with a few remarks. The first one is the

observation that we took care of choosing processing rules that emit sufficient and necessary

sub-demands. In the presentation of certain processing rules, we mentioned that some of

the emitted split demands are more aggressive than what is really needed. For example, it

is the case in the processing of bound demands, in the processing of split demands on α-

variables where the expression is a pair construction, and with the split demands prescribed

by function sc. However, these demands cannot be designed as unnecessary since the

property they express is indeed true. In fact, all split demands are necessary. This may

seem surprising but it should be noted that the abstract interpretation tries to be a simplified

representative of the concrete interpretation. And in concrete interpretation, at most one

value is the result of each evaluation of an expression in a concrete contour. That concrete

value, taken alone, cannot be spread on any split pattern. Since the abstract evaluation of

an expression in an abstract contour represents a (usually infinite) union of (non-spreading)

concrete evaluations, it is legitimate to ask for a split of this evaluation into non-spreading

abstract evaluations. The split demand may not be achievable but, at least, the property

it expresses is true.

We have chosen split demands to be the main tool in the translation of the needs of

the optimiser into model update prescriptions. They are the basic operations that are

performed to prepare the analysis results for adequate processing of bound, never, and

bad call demands. However, in most of the cases, we could proceed otherwise and bound

demands could be processed and transformed mostly into new bound demands. For example,

the processing of D ≡ ‘show αl,k ⊆ B’, for B being some modelling pattern, or union of

modelling patterns, could easily be done by emitting new bound and never demands when

el is #fl, (ifl el′ el′′ el′′′), (consl el′ el′′), (carl el′), (cdrl el′), or (pair?l el′). By having an

update of the model additionally, expressions xl and (λlx. el′) could easily be processed too.

Also, never demands, which can be seen as special variants of bound demands operating

on δ-variables, could be processed by emitting new bound, never, and bad call demands.

However, the processing of bad call demands and that of D, where el = (lel′ el′′), would be

problematic. Consider processing D knowing that:

αl′,k = {f}

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 148

αl′′,k = {v}

call(l, f, v, k) = k′

γf,k′ 6⊆ B

Should the new bound demand ‘show γf,k′ ⊆ B’ be emitted, blaming f for the violation of

the bound? Or should a demand be emitted that asks for a demonstration that the call does

not occur at all? If so, by emitting ‘show δl′,k = ∅’ or by emitting ‘show δl′′,k = ∅’? At

least one of the three properties expressed in these demands has to be true. But which one?

Always choosing the right one would require an oracle. And emitting three “or-related”

demands seems, if not impossible, far from obvious. So it seems that split demands are

unavoidable if adequate processing of demands like D is desired. And since split demands

and their complex processing is necessary, we chose to use them extensively and simplify

the processing of the other demands.

The final remark about our processing rules is that the rules always propose a single

“plan” to achieve the processed demands. As we mention in the previous remark, in some

situations, it would be useful to be able to express things like this set of properties or that

one needs to be verified to achieve the processed demand. Since we chose not to allow the

execution of alternate plans, only a single plan is allowed and consequently it must include

only necessary demands. This may unduly delay the achievement of the processed demands.

Indeed, if it were possible to propose two plans, the normal, necessary plan could coexist

with an alternate, aggressive plan that would immediately try to show a property that is only

probably true. The knowledge that a property is probably true could come from profiling

statistics on the program, for example. The processed demand would be achieved as soon

as one of the plans is completed. Typically, the aggressive plan would “have guessed right”

and succeed quickly. But sometimes it would result in the launch of unfeasible demands

that could cause a considerable waste of analysis efforts. It would certainly be interesting

to investigate on the value of allowing alternate plans in the future.

5.3 Complete Approach

Now that all the necessary tools have been presented, we can describe the complete demand-

driven analysis approach. As mentioned in the previous chapter, the demand-driven analysis

is divided in two parts. A preliminary analysis is first performed and then the demand-

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 149

driven cycle is entered.

The preliminary analysis simply consists in analysing the program el0 using the initial

model. The cycle needs these preliminary results in order to start. The initial model is

relatively coarse. There is one abstract Boolean, one abstract pair, one abstract closure

per λ-expression, and one abstract contour for the body of each λ-expression plus the main

contour (). More formally, the initial modelM0 is built on the following pattern-matchers:

MV = {#f , (∀, ∀)} ∪ {λl (∀ . . . ∀
︸ ︷︷ ︸

n(l) times

) | l ∈ L}

Ml = {(∀ . . . ∀
︸ ︷︷ ︸

n(l)+1 times

)}, l ∈ L

where L = {l ∈ 4(l0) | el is a λ-expression}

n(l) = number of variables visible at label l

In short, M0 is the simplest model that does not mix the three types of values and the

closures coming from different λ-expressions. We believe that M0 is a good compromise

between simplicity and accuracy. IfM0 were coarser, the quality of the preliminary analysis

results would be too low. Also, extra mechanisms would have to be added in the set

of demands and the demand processing rules to take anonymous closures or values into

account. On the other hand, if M0 were more accurate, more time would be spent in the

preliminary analysis without evidence that this extra accuracy is useful at all. The demand-

driven cycle is better informed to choose which part of the abstract model ought to be made

more accurate.

The demand-driven cycle is the repetition of the model-update and re-analysis phases.

The cycle ends when there is no time left or there are no more dynamic safety types tests to

remove. The model-update phase consists in making a modification to the abstract model

through demand processing. The re-analysis phase simply performs an analysis of the

program using the newly updated model. Hopefully, the modification to the model makes

the new analysis results more precise. Note that there is no guarantee that the modification

leads to more precise results. Note also that what we mean by “more precise” is not having

analysis results expressed using more precise abstract values, but having analysis results

that are more informative, or, stated differently, less overly conservative. For example,

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 150

suppose that among the analysis results, we have that:

αl,k = {(∀, ∀)}

and that, after a model update and a re-analysis (assuming that k has not been specialised):

αl,k =







(#f , #f), (λ∀, #f), ((∀, ∀), #f),

(#f , λ∀), (λ∀, λ∀), ((∀, ∀), λ∀),

(#f , (∀, ∀)), (λ∀, (∀, ∀)), ((∀, ∀), (∀, ∀))







These new results are expressed using more precise abstract values but they are not more

precise themselves. What we know is that el, when evaluated in contour k, can produce any

pair. These new results are not less conservative. However, if the new results are:

αl,k =







(#f , #f), ((∀, ∀), #f),

(#f , λ∀), (λ∀, λ∀),

(λ∀, (∀, ∀))







we can say that they are more precise, or more informative.

The model-update phase proceeds by generating and processing demands and then se-

lecting a particular model update. The idea is that the initial demands directly reflect the

needs of the optimiser and that the processing of demands is a kind of translation from the

needs of the optimiser to prescriptions of model updates. All suggestions of model update

that can be obtained from the current analysis results are gathered and the selection occurs

among the suggestions. In order to gather the suggestions of model update, the demands

that are normally processed by modifying the model are kept apart without being processed.

Only those that do not modify the model are processed.

The execution of the model-update phase consists in maintaining a set of demands to

process. When there are no more demands to process, a selection occurs among the model-

modifying demands that have been gathered. The demands that are put in the set initially

are those reflecting the needs of the optimiser. These initial demands correspond exactly

to the constraints that would be violated if the safety constraints for the program using

the current model were generated and confronted to the analysis results. Formally, these

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 151

demands are:

{

show αl′,k ⊆ ValC (lel′ el′′) ∈ 4(l0) ∧ k ∈ Cont ∧ αl′,k 6⊆ ValC
}

∪






(

(carl el′) ∈ 4(l0) ∨ (cdrl el′) ∈ 4(l0)
)

∧

show αl′,k ⊆ ValP k ∈ Cont ∧

αl′,k 6⊆ ValP







Once the initial demands are inserted in the set, demand processing starts. A demand is

extracted from the set and processed provided that it is not a model-modifying demand.

Otherwise it is inserted in the set of model-modifying demands. The processing of an

ordinary demand usually causes the emission of new demands. So processing continues

until the set of demands to process is empty. Of course, verifications are done to ensure

that a demand is not processed more than once. If the set of demands to process becomes

empty, but there are call sites to monitor, the monitoring of all those sites is triggered.

The monitoring usually causes new demands to be emitted. If there is no site to monitor,

then the demand processing has completed. If the allotted time expires during demand

processing, the processing is stopped and the selection is done immediately.

The model-modifying demands are of the form:

split ValC P

split ValP P

split βx,k,l P

The selection of the model update is done on a space consumption basis. In our proto-

type, the data structures for the abstract model and the analysis results use a considerable

amount of space. So the criterion that is used to select the “best” model update consists in

trying to minimise the amount of space used by the model and the results. Despite the fact

that this criterion is relatively näıve, it is quite effective. A model update that leads to more

precise analysis results is favoured because the number of abstract values propagated during

the analysis using the proposed model has a tendency to decrease. However, including the

size of the abstract model in the criterion is crucial because it ensures that the gains in

the size of the results are not obtained by causing the model to expand too much. The

inconvenience associated to this criterion is that a re-analysis has to be performed for each

model update proposal.

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 152

A summary of the complete demand-driven approach is presented in Figure 5.25. Many

operations are only informally specified. They are italicised to indicate that their definition

can found elsewhere. Here is the meaning of each variable of the algorithm. The current

abstract model is M. The current analysis results are R. The set of demands to process

is S. The demands already seen in this period of the cycle are in T . The model-modifying

demands are kept in U . Variable F contains the call sites flagged for future monitoring.

Naturally, the couples describing the bad invocations (closure and argument) are kept in

the bad-call log LBC. Variables D and S ′ act as temporaries and contain a demand and a

set of demands, respectively.

5.4 Example of Demand-Driven Analysis

We illustrate the demand-driven analysis algorithm by analysing a small program. Despite

its small size, it is designed to be relatively intricate. At least, for an analyser. A trace

of the execution of the demand-driven analysis is given. The processing of each demand

and its effects are presented. The trace includes the set of demands to process, markers

to distinguish the model-modifying demands, the bad-call log and the flagged call sites.

The evolution of the abstract model through the updates is presented. Also, excerpts of

the current analysis results are shown in order to bring some justification to the presented

demand processing. Let us begin the example.

The program to analyse is the following:

(
1
(λ

2
swap.
(

3
swap

4
(car

5
(

6
swap

7
(cons

8
(λ

9
x. x

10
)

(cons
11

(λ
12

y. #f
13
)

#f
14
))))))

(λ
15

p. (cons
16

(cdr
17

p
18
) (car

19
p

20
))))

Essentially, a function ‘swap’ is defined and used by the “main program”. ‘Swap’ takes

a pair and returns a new pair where the car- and cdr-fields have been swapped. The

main program builds a #f-terminated list containing the identity function and a constant

function. It then calls ‘swap’ on the list and extracts the car-field from the result. This is

equivalent to dropping the head of the list. Finally, it calls ‘swap’ on this shortened list. It

is easy for a human reader to convince himself that this program does not lead to an error

when it is evaluated. Consequently, it is natural to hope that the demand-driven analysis

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 153

M :=M0; R := FW(el0 ,M) /* preliminary analysis */
while there is time /* demand-driven cycle */

S := {initial demands}; T := S; U := ∅; F := ∅;
LBC(l, k) = ∅, ∀ l ∈ 4(l0), k ∈ Cont;
if S = ∅ then exit
do

while there is time and S 6= ∅ /* demand processing */

let D ∈ S; S := S − {D}
if D is model-modifying then

U := U ∪ {D}
else if D ≡ ‘bad-call l f v k’ then

process D with flagged couple (l, k) put in F , if necessary
else

process D with emitted demands in S ′

S := S ∪ (S′ − T); T := T ∪ S ′

end if
end while
while there is time and F 6= ∅ /* call site monitoring */

let (l, k) ∈ F ; F := F − {(l, k)}
process ‘monitor-call l k’ with emitted demands in S ′

S := S ∪ (S′ − T); T := T ∪ S ′

end while
while there is time and S 6= ∅
if U = ∅ then

exit
else

let D be the best demand in U /* selection of a . . . */

process D with modified model in M /* . . . model update */

end if
R := FW(el0 ,M) /* re-analysis */

end while

Figure 5.25: Algorithm for the demand-driven analysis

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 154

will be able to eliminate all dynamic type tests. We will see that it indeed does so.

The abstract model used to perform the preliminary analysis is based on the following

pattern-matchers:

MV =







#f ,

λ2 (), λ9 (∀), λ12 (∀), λ15 (),

(∀, ∀)







M2 = {(∀)}

M9 = {(∀ ∀)}

M12 = {(∀ ∀)}

M15 = {(∀)}

Note how the value pattern-matcher contains one abstract value per type, except for the

closure type where there is one abstract closure per λ-expression. The contour pattern-

matchers for the invocation of each kind of closures are the trivial ones.

Here is an excerpt of the results collected by the preliminary analysis:

R : α2,() = {λ2 ()}, α4,(∀) = {λ15 ()},

α6,(∀) = {(∀, ∀)}, α7,(∀) = {λ15 ()},

α18,(∀) = {#f , λ9 (∀), λ12 (∀), (∀, ∀)},

α20,(∀) = {#f , λ9 (∀), λ12 (∀), (∀, ∀)}

Only the results that are pertinent for the example are presented.

Now that the preliminary analysis has been performed, the demand-driven cycle can

start. We show a trace of the first model-update phase. We add comments throughout

the presentation of the different model-update phases. Comments are indicated similarly to

footnotes. A sign like 99gis put on top of the arrows separating the numerous steps of the

model-update phases. The corresponding comment is given in the text. Here is the trace of

the first model-update phase:







show α18,(∀) ⊆ ValP

show α20,(∀) ⊆ ValP







1g
⇒







show α20,(∀) ⊆ ValP

split α18,(∀) ?






⇒







split α18,(∀) ?

split α20,(∀) ?







2g
⇒







split α20,(∀) ?

[split βp,(∀),18 ?]







3g
⇒







[split βp,(∀),18 ?]

[split βp,(∀),20 ?]







CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 155

1gThe first set contains the initial demands. A quick examination of the program reveals

that there are six expressions that may require a dynamic safety test. However, the results

of the preliminary analysis indicate that four of the expressions do not really need a test.

So the remaining two tests are taken care of by the emission of these two initial demands.

The arrow indicates that an elementary step of the demand-driven algorithm is performed.

In this case, there exists a demand to process, so the arrow indicates that the first demand

is processed. In all the traces, we take the convention that the first demand to process is

taken care of and that the eventual new demands are added at the end of the set. Normally,

we will not describe the processing of the demands themselves. The processing rules are

quite precise and the information that they need about the analysis results that is needed

is presented in the corresponding result excerpt. 2gThe newly emitted demand is a model-

modifying demand. To indicate that it should not be processed, we enclose it into square

brackets. 3gThe demand-processing ends because there is no more demand to process. Also,

there is no call site to monitor.

The demand processing of this first model-update phase has produced two model update

suggestions. Next, a selection is made to choose the update to perform on the abstract

model. In this case, both demands have exactly the same effect on the model. The update

on the model causes pattern-matcher M15 to be updated. Here is its new definition:

M15 = {(#f), (λ∀), ((∀, ∀))}

Now, when ‘swap’ is invoked, its body is not always evaluated in the same contour. The

contour depends on the type of the argument that is passed to ‘swap’. Intuitively, this first

update makes sense as it is necessary to know whether ‘p’ is a pair or not before we can do

a car- or cdr-field extraction on it.

Using this new, updated model, a re-analysis of the program is performed. Here is an

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 156

excerpt of the new analysis results:

R : α4,(∀) = {λ15 ()},

α5,(∀) = {#f , λ9 (∀), λ12 (∀), (∀, ∀)},

α18,(#f) = {#f}, α20,(#f) = {#f},

α18,(λ∀) = {λ9 (∀), λ12 (∀)}, α20,(λ∀) = {λ9 (∀), λ12 (∀)},

α18,((∀, ∀)) = {(∀, ∀)}, α20,((∀, ∀)) = {(∀, ∀)},

κ(#f) = {(3, (λ15 ()), #f , (∀))},

κ(λ∀) =







(3, (λ15 ()), (λ9 (∀)), (∀)),

(3, (λ15 ()), (λ12 (∀)), (∀))







Note that we do not include information on the value of expressions e2, e6, and e7 again

since it was already determined at the beginning of the first cycle that they did not need a

dynamic safety test. However, that on e4 is needed for the next model-update phase and is

mentioned nevertheless. Note that an updated model cannot lead to worse analysis results.

This is why we consider the cases of e2, e4, e6, and e7 to be closed.

Based on these new analysis results, a second demand-processing phase can start. Note

how the remaining initial demands are expressed in more precise terms because of the

updated model. Also, demands are still necessary in only two of the three contours since

contour ‘((∀, ∀))’ means that ‘p’ cannot contain anything else than pairs. Which is perfectly

satisfactory for the extraction of the field of a pair. Here is the trace of the second demand-

processing phase:







show α18,(#f) ⊆ ValP

show α18,(λ∀) ⊆ ValP

show α20,(#f) ⊆ ValP

show α20,(λ∀) ⊆ ValP







⇒
4 steps
· · · ⇒







show δ18,(#f) = ∅

show δ18,(λ∀) = ∅

show δ20,(#f) = ∅

show δ20,(λ∀) = ∅







⇒
4 steps
· · ·

⇒







show δ17,(#f) = ∅

show δ17,(λ∀) = ∅

show δ19,(#f) = ∅

show δ19,(λ∀) = ∅







⇒
4 steps
· · · ⇒







show δ16,(#f) = ∅

show δ16,(λ∀) = ∅







4g
⇒







show δ16,(λ∀) = ∅

bad-call 3 (λ15 ()) #f (∀)







5g
⇒







bad-call 3 (λ15 ()) #f (∀)

bad-call 3 (λ15 ()) (λ9 (∀)) (∀)

bad-call 3 (λ15 ()) (λ12 (∀)) (∀)







CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 157

6g
⇒







bad-call 3 (λ15 ()) (λ9 (∀)) (∀)

bad-call 3 (λ15 ()) (λ12 (∀)) (∀)

LBC(3, (∀)) = {(λ15 (), #f)}







⇒
2 steps
· · · ⇒

{

LBC(3, (∀)) =

{
(λ15 (), #f),

(λ15 (), λ9 (∀)),

(λ15 (), λ12 (∀))

}}

7g
⇒







monitor-call 3 (∀)

LBC(3, (∀)) =

{
(λ15 (), #f),

(λ15 (), λ9 (∀)),

(λ15 (), λ12 (∀))

}







8g
⇒







split α5,(∀) ?

LBC(3, (∀)) =

{
(λ15 (), #f),

(λ15 (), λ9 (∀)),

(λ15 (), λ12 (∀))

}







9g
⇒







[split ValP (?, ∀)]

LBC(3, (∀)) =

{
(λ15 (), #f),

(λ15 (), λ9 (∀)),

(λ15 (), λ12 (∀))

}







4gThe processing of this never demand consists in finding all invocation circumstances

leading to the selection of contour ‘(#f)’ and involving a closure originating from parent

λ-expression e15. It appears that the single circumstance logged in κ(#f) involves a closure

originating from e15, so it becomes a bad call demand. 5gSimilarly, the two circumstances

become bad call demands. 6gThe bad call demand is not trivially achieved so it must be

inserted into the bad-call log. We denote this insertion by indicating the state of the log at

the bottom of the set. Also, we flag the concerned call site by underlining its appearance as

an index in the log. 7gThere is no more demand to process. However, there is a flagged call

site. A monitor command is emitted and the flag is removed from the call site. 8gThe call

site only implicates function ‘swap’ and arguments of all types. Only the pair is allowed as

an argument. Consequently, a split demand is emitted to request a separation of the good

and the bad cases. 9gFinally, a model-modifying demand is emitted and there are no more

demand to process and no call site to monitor.

The unique model-modifying demand is necessarily selected. It requests an update on

the representation of the pairs. Pattern-matcher MV is updated and becomes:

MV =







#f ,

λ2 (), λ9 (∀), λ12 (∀), λ15 (),

(#f , ∀), (λ∀, ∀), ((∀, ∀), ∀)







With the new model, a re-analysis is performed and we can observe these new analysis

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 158

results:

R : α4,(∀) = {λ15 ()}, α5,(∀) = {#f , (λ∀, ∀)},

α6,(∀) = {(#f , ∀), ((∀, ∀), ∀)},

α7,(∀) = {λ15 ()}, α8,(∀) = {(λ∀, ∀)},

α16,((∀, ∀)) = {(#f , ∀), ((∀, ∀), ∀)},

α17,((∀, ∀)) = {#f , (λ∀, ∀)}, α18,(#f) = {#f},

α18,(λ∀) = ∅, α20,(#f) = {#f},

α20,(λ∀) = ∅, γλ15 (),((∀, ∀)) = {(#f , ∀), ((∀, ∀), ∀)},

κ(#f) = {(3, (λ15 ()), #f , (∀))}

The results reveal that, in fact, ‘swap’ is not called on any closure. However, there is no

evidence that it is not called on #f and the two remaining initial demands try to remedy

to the situation in the next demand-processing phase:







show α18,(#f) ⊆ ValP

show α20,(#f) ⊆ ValP






⇒

2 steps
· · · ⇒







show δ18,(#f) = ∅

show δ20,(#f) = ∅






⇒

2 steps
· · ·

⇒







show δ17,(#f) = ∅

show δ19,(#f) = ∅






⇒

2 steps
· · · ⇒

{

show δ16,(#f) = ∅
}

⇒
{

bad-call 3 (λ15 ()) #f (∀)
}

⇒
{

LBC(3, (∀)) = {(λ15 (), #f)}
}

⇒







monitor-call 3 (∀)

LBC(3, (∀)) = {(λ15 (), #f)}







⇒







split α5,(∀) ?

LBC(3, (∀)) = {(λ15 (), #f)}






⇒







split α6,(∀) (?, ∀)

LBC(3, (∀)) = {(λ15 (), #f)}







⇒







split γλ15 (),((∀, ∀)) (?, ∀)

LBC(3, (∀)) = {(λ15 (), #f)}






⇒







split α16,((∀, ∀)) (?, ∀)

LBC(3, (∀)) = {(λ15 (), #f)}







⇒







split α17,((∀, ∀)) ?

LBC(3, (∀)) = {(λ15 (), #f)}






⇒







[split ValP (∀, ?)]

LBC(3, (∀)) = {(λ15 (), #f)}







Only one model-modifying demand is generated and it is automatically selected. It asks

for another improvement in the representation of the pairs. Once again, pattern-matcher

MV is updated and it now includes abstract pairs that are uniformly specified one level

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 159

deep:

MV =







#f ,

λ2 (), λ9 (∀), λ12 (∀), λ15 (),

(#f , #f), (λ∀, #f), ((∀, ∀), #f),

(#f , λ∀), (λ∀, λ∀), ((∀, ∀), λ∀),

(#f , (∀, ∀)), (λ∀, (∀, ∀)), ((∀, ∀), (∀, ∀))







A re-analysis with the new model leads to the following results:

R : α4,(∀) = {λ15 ()}, α5,(∀) = {#f , (λ∀, #f)},

α6,(∀) = {(#f , λ∀), ((∀, ∀), λ∀)},

α7,(∀) = {λ15 ()}, α8,(∀) = {(λ∀, (∀, ∀))},

α16,((∀, ∀)) = {(#f , λ∀), ((∀, ∀), λ∀)},

α17,((∀, ∀)) = {#f , (λ∀, #f)}, α18,(#f) = {#f},

α18,((∀, ∀)) = {(λ∀, #f), (λ∀, (∀, ∀))}, α20,(#f) = {#f},

γλ15 (),((∀, ∀)) = {(#f , λ∀), ((∀, ∀), λ∀)}, κ(#f) = {(3, (λ15 ()), #f , (∀))}

Unfortunately, they do not allow the removal of the last two safety tests, yet. The same

two initial demands are emitted for the next demand-processing phase:







show α18,(#f) ⊆ ValP

show α20,(#f) ⊆ ValP






⇒

14 steps
· · · ⇒







split α17,((∀, ∀)) ?

LBC(3, (∀)) = {(λ15 (), #f)}







⇒







split α18,((∀, ∀)) (∀, ?)

LBC(3, (∀)) = {(λ15 (), #f)}






⇒







[split βp,((∀, ∀)),18 (∀, ?)]

LBC(3, (∀)) = {(λ15 (), #f)}







Only one model-modifying demand is generated by the demand-processing phase. Its

application to the model causes the update of pattern-matcher M15:

M15 = {(#f), (λ∀), ((∀, #f)), ((∀, λ∀)), ((∀, (∀, ∀)))}

Before this modification, the analysis of the behaviour of ‘swap’ was confusing both invoca-

tions of ‘swap’. Remember that the first invocation involves the whole list and the second,

the shortened list. Each time, the abstract invocation of ‘swap’ sees a pair coming as an

argument. So the values for both invocations were blended together. With this last update,

the analysis no longer confuses both invocations and now each invocation has its own return

value. The second invocation involves only the shortened list originating from the return

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 160

value of the first invocation.

A re-analysis using this last model provides the desired results. Namely, these contain:

R : α18,(#f) = ∅, α20,(#f) = ∅

which completes the demonstration that no safety test is required for the whole program.

The presented example illustrates the execution of the demand-driven analysis on a

simple program. But also, it is remarkable to see how the algorithm did it all without coming

close to “understand” the program or being intelligent in a human sense. The only expertise

in type analysis is present in the design of the global approach and mainly in the design

of the processing rules. But even in the processing rules, there is no long body of domain-

specific knowledge; only relatively short, sensible tests and transformations. Nevertheless,

the whole approach is remarkably intelligent. Empirical evaluation of its performances are

presented in Chapter 6.

5.5 Development of the Prototype

The presented prototype is not a first attempt that has happened to immediately work

well. Many previous prototypes have been built and tried. The attentive reader may have

noticed some details that suggest that previous approaches were used: the (success) and

(failure) comments that are ignored; many kinds of demands that can never happen to

be trivially achieved, namely bad call demands; the split demands with ValC as a splittee

that can never be emitted.

5.5.1 Resolution-Like Processing of Demands

The first prototypes did not proceed with a model-update re-analysis cycle but were doing

a kind of request resolution à la Prolog. That explains the presence of the (success) and

(failure) comments. Reaching (success) meant that the current demand was trivially

achieved and reaching (failure) meant that the current demand could not be achieved.

When many sub-demands were emitted by the processing of the current demand, they were

considered to be linked by a logical-and operator, i.e. the current demand was achieved if

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 161

all its sub-demands were achieved.

This resolution-like approach had many problems. For example, the natural processing

for a bound demand is first to separate the good cases from the bad cases and then to

show the impossibility of the bad cases. This processing requires an ordering in time that

cannot be expressed using simple Boolean operators. So sequencing operators were intro-

duced. Their task consisted in triggering the processing of a certain demand, waiting for its

achievement, and then emitting another demand. In fact, a complete system of package of

things to do, called wills, were implemented to take care of the prescriptions issued by the

processing of demands. Wills could include the emission of groups of demands, sequences of

other wills, and other commands that we mention below. Wills were intended to implement

all the mechanisms needed for performing the resolution of the demands in a resolution-like

fashion. They were pretty complex.

Another problem with the resolution-like approach was that of the model updates be-

ing performed during the resolution process. The execution of a will doing a sequencing

operation typically consists in waiting for a model update to cause the first sub-demand to

succeed in order to trigger the processing of the next one. This particular will is specifically

designed to deal with such updates. However, the processing of other demands might be

affected by the model update. For example, calls are expressions with a very complex inter-

pretation and they can be affected by almost any model update. So, a demand concerning a

call that is processed at the beginning of the demand-driven analysis usually does not lead

to the same set of sub-demands as if it were processed later. It typically becomes easier

to process as the model evolves. So the prototypes had two mechanisms to deal with the

processing of difficult demands. The first was that the demand could be re-emitted by its

will. For example, when a demand cannot be completely processed (typically because a

separation of good and bad cases has to be performed first), its will consists in a sequencing

operator that first emitted split demands for the separation and then emitted the original

demand again. If the splits are eventually achieved, then the new processing of the demand

can happen within new, separated results.

The problem with this re-emission after the separation is completed is that, often, the

requested separation is too complex. Indeed, at the beginning of the demand-driven analysis,

the analysis results may be too inaccurate and the processing of a demand concerning a

call may produce a will that asks for a separation that is excessively ambitious. So the

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 162

split demands involved in the separation may never be achieved. However, the analysis

results typically become more accurate as the demand-driven analysis progresses. The

processing of the same demand, if done later, would lead to the request of a much more

sober separation step, increasing the chances of its realisability. To take advantage of the

progressive improvement of the analysis results, we added another mechanism: a wake-up

call for the complex demands. If there is a wake-up call that is set for a certain demand and

that the demand is not achieved within a certain amount of time, then it is automatically

re-emitted. In order to determine which demands have been processed, since when, whether

they are achieved or not, etc., we added a demand log. It was a complex data structure

with fast access and in which all existing demands were noted along with their related

informations. Another problem that the demand log helped to deal with was that of the

cyclic demands. Cyclic demands often appear when, for example, two functions are mutually

recursive and the result of each one depends on that of the other. A split demand on the

result of the first leads to the emission of a split demand (among other) on the result of the

other, which in turn leads to the same first demand. The demand log allowed to verify if

a demand was already in the waiting queue to be processed or has already been processed

and possesses a will.

Periodically reprocessing a demand could be expensive as a new will could possibly be

created, which lead to the possible emission of similar demands as before. So, for certain

kinds of demands, we instead performed periodic checks to see if they now happened to be

achieved, due to some update of the model. When a demand was discovered to be achieved

during a check, we would delete the whole “search” tree that represented its resolution

process and send a success signal to its parent demands. One can imagine the complexity

of such an operation because of the wills, wake-up calls, demand log that are involved in

the resolution process.

All these mechanisms were introduced in the successive prototypes in order to try to

make the demand-driven analysis work. All of this was terribly complex and, on top of

that, it did not work satisfactorily. The main problems that we finally identified through

extensive experiments were: the processing of a demand rarely benefits from the most

up to date analysis results; many demands continued to be “resolved” while it could be

established from the current analysis results that they were now useless (not to confuse

with “achieved”).

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 163

5.5.2 Model-Update Selection and Re-Analysis Cycle

From these observations, we decided to make a major change in the demand-driven analysis

procedure and decided that, each time the model was changed, demand processing had to

be restarted from scratch. At first glance, it seems like a terrible waste of resources. Indeed,

the initial demands have to be generated each time, many similar demands have to be

processed each time. The reader could witness that redundancy in the example of demand-

driven analysis in the previous section. But the benefits clearly outweigh the inconveniences:

only the demands that are needed according to the current analysis resources are generated

and processed. As soon as new results indicate that such or such property no longer needs to

be verified, the corresponding demand does not get emitted. The model-modifying demands

that are proposed by the demand processing now have a very high degree of pertinence.

The new problem is that the demand-processing phase of the cycle usually proposes

more than one model-modifying demands. Our first strategy consisted in selecting all of

them. We immediately saw an improvement in the intelligence of the prototype. It could

discover facts that stayed completely unsuspected by the previous prototypes. However,

it caused a massive expansion of the abstract model. During the demand-driven analysis,

the analysis results were rapidly improving in quality but they were expressed in so many

precise values that they were expanding very quickly, too. After only a few minutes of

execution, the prototype needed more than a gigabyte of memory space.

So we decided to use a selection criterion. The first one simply consisted in measuring

the increase in size of the abstract model and selecting the model-modifying demand that

caused the smallest increase. It succeeded in keeping the model to a reasonable size but

it had the tendency to choose demands that do not really help in making the results more

informative. Consequently, the results quickly expanded as they were always denoting the

same information but in ever finer terms. Nevertheless, for some benchmarks, this control

on the size of the model, plus the high pertinence of the proposed model-modifying demands

resulted in successful analyses, where previous prototypes stagnated or exploded.

We changed the criterion for a slightly more clever one: its measures the increase in

the size of both the model and the results and selects the least increase-causing demand.

Despite the fact that this criterion is not much more clever than the previous one, it happens

to be really useful. It is the one that is used in the current prototype and allows the latter

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 164

to analyse perfectly well many of the benchmarks that we submit to it.

In conclusion, we say that it is practically the most näıve design of demand-driven

analysis that allowed us to obtain a working prototype. The “more clever” approach of

having a resolution of demands à la Prolog did not work properly. Although the cyclic

approach of performing demand processing from scratch and re-analysing after each model

update seems to imply some resource waste, it turns out to be economical in the demands

that it insists on processing.

5.6 Discussion

To conclude with the pattern-based demand-driven analysis, we make a few comments. We

believe that the pattern-based analysis is the simplest instance of demand-driven analy-

sis that has a reasonably high power. The meaning of the patterns as abstract values is

straightforward. There are only a few kinds of demands that need to be manipulated and

the rules to process them are relatively intuitive. Moreover, the pattern-based instance

respects the intent expressed in the presentation of demand-driven analyses in general that

we should avoid creating an expert system with an extensive knowledge base to obtain a

good type analysis.

The pattern-based approach has somehow a reduced power compared to the concept of

demand-driven analysis in general. Not necessarily theoretically, but in practice. Theoret-

ically, the modelling of the concrete values and evaluation contexts using patterns is not

less powerful than the generic modelling allowed by the analysis framework: a correctly

terminating program still can be analysed perfectly well using a model based on patterns.

Indeed, the correctly terminating program runs only for a certain time; so it creates values

and manipulates environments that have only a certain depth (if written as syntax trees);

so choosing pattern-matchers that only project details that are beyond this depth would

allow to simulate with perfect accuracy the concrete computations.

In practice, however, the program runs for an unknown time and a priori manipulates

arbitrarily big and deep values. The pattern-based modelling is intrinsically myopic and

fails to capture many kinds of properties applying to the values. For example, for long

enough lists, the difference between lists having an even length and those having an odd

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 165

length cannot be made. By inspection of the first few levels of a list, it is clear that it is

impossible to determine how many other pairs are linked in the list. On the other hand,

with the general modelling provided by the analysis framework, it is easy to choose ValP

and pc such that pairs that start lists of even and odd length are distinguished.

Despite its myopia, the pattern-based modelling, in combination with the analysis re-

sults, may sometimes discover non-superficial properties of the values manipulated by a

program. Consider a simple program that manipulates two kinds of lists: lists of closures

and lists of pairs. Suppose that both kinds of lists are terminated by #f. Let us pretend

that we are the analyser ourselves and that an oracle told us that the program only ma-

nipulates those two kinds of lists. Then we could identify which of the two kinds of lists

we are manipulating in a myopic fashion: if the first pair contains a closure, then it is the

head of a closure list; otherwise, it is the head of a pair list. The real analyser can discover

the same invariant (without the help of an oracle, of course) by exploiting the contents of

the log of pair creation circumstances, i.e. the π matrix. First, let us observe what the log

contains when there is only one abstract pair, i.e. when ValP = {(∀, ∀)}:

π(∀, ∀) =







(, λ (. . .), #f ,),

(, λ (. . .), (∀, ∀),),

(, (∀, ∀), #f ,),

(, (∀, ∀), (∀, ∀),),

. . .







These circumstances illustrate the best possible case for the analysis results. Note that we

intentionally omitted to give the labels and contours where the pairs are created and the

details from the closures stored into the pairs. The omitted details are not useful to the

example. The information in the log only indicates that lists are #f-terminated and that

they contain closures and pairs. But if we now observe the contents of the log if the model

were updated to have pairs that are distinguished by the type of the value in their car-field,

i.e. ValP = {(#f , ∀), (λ∀, ∀), ((∀, ∀), ∀)}:

π(#f ,∀) = ∅

π(λ∀, ∀) = {(, λ (. . .), #f ,), (, λ (. . .), (λ∀, ∀)), . . .}

π((∀, ∀),∀) = {(, (, ∀), #f ,), (, (, ∀), ((∀, ∀), ∀),), . . .}

Again, these results also illustrate the best possible case for the analysis results. Observe

CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS 166

that pairs having a closure in the car-field are either terminated by #f or have a closure

list in the cdr-field; pairs having a pair in the car-field are either terminated by #f or

have a pair list in the cdr-field. This property of the lists can be discovered by the analyser

because the different kinds of lists have a superficial difference that is sufficient to distinguish

them.

On the contrary, if there are two kinds of lists and that these two kinds are only dif-

ferentiated deeply, the analyser cannot find the distinction. For example, suppose that the

program manipulates these two kinds of lists: both are lists of Booleans, but one kind is

#f-terminated and the other is terminated by a closure. Then, if we consider two suffi-

ciently long lists, one that is #f-terminated and the other not, then there is no superficial

difference between them. So they have to be represented by the same abstract value (by the

projection through the value pattern-matcher). The best the pattern-based analyser could

do is to determine that the lists contain Booleans and are terminated by a Boolean or a

closure. Only short lists could be classified correctly. However, by directly using generic

models accepted by the analysis framework, a model can be chosen such that pairs are

different depending on the type of the value that terminates the list they are the head of.

We finish by asking, and answering, the following question: Since any correctly termi-

nating program can be analysed perfectly well using an appropriate pattern-based model,

is the pattern-based demand-driven analysis always able to eventually analyse the program

perfectly well? Unfortunately, the answer is: No. Intuitively, it is relatively easy to accept

this answer. It is because the analyser starts with a coarse model, may only obtain obscure

analysis results, and may not be able to discover the appropriate model updates before there

is no more useful information it can extract from the results. However, strictly speaking,

this explanation is not sufficient. But in Chapter 6, experiments show that our prototype

is not able to analyse perfectly well some of the benchmarks.

Chapter 6

Experimental Results

We have run some experiments on a prototype implementation of the pattern-based demand-

driven analysis. But before we present the results of these experiments, we first give some

details on the implementation of the prototype. And then we describe the method used to

measure the effectiveness of the demand-driven analysis. Finally, we present the results and

make comments.

6.1 Current Implementation

The prototype is implemented in a rather näıve way. No special effort has been made

to make it particularly efficient, in time and in space. The abstract values and abstract

contours are implemented almost as we have presented them in the previous chapter. They

are represented using simple, easy to read Scheme data made of lists, symbols and numbers.

For example, here is the representation of two abstract values:

(#f , λ∀) 7→ (pair (bool) (clos any))

λ12 (∀ #f ∀) 7→ (clos 12 (vals (bool) vals))

This representation is quite space consuming and could certainly be reduced to a more

compact form.

During the analyses, values and contours of this kind are created and projected using

the pattern-matchers. Their projection involves their deconstruction using a queue. Conse-

CHAPTER 6. EXPERIMENTAL RESULTS 168

quently, this process is also time consuming. However, a feature of the implementation of the

pattern-matchers reduces the space consumption. During a single analysis, the abstractions

that result from the projections using the pattern-matchers are not created from scratch.

Instead, they are taken from the leaves of the pattern-matchers. So the values stored in the

α, β, γ, and δ matrices are the same objects (in the sense of eq?) as those already present

in the pattern-matchers. However, the tuples found in the χ, π, and κ matrices are built

during the analysis even if their contents are already existing objects. Naturally, the data

structures implementing the matrices themselves must also be created.

The considerable amount of data structures that are needed in order to perform the

analyses causes a loss of time efficiency due to the stress on memory management. Also,

the repeated projections of abstractions add to the inefficiency.

The implementation of the sets that hold the values of each matrix entry is efficient.

However, operations on the sets rely on an ordering relation between abstractions that is

quite heavy. To determine the relative order of two abstractions, the relation traverses the

lists and atoms until a difference is found. These comparisons cause a large consumption of

time.

In fact, the major source of time consumption in the prototype is the need to re-analyse

the program from scratch each time a model-modifying demand is evaluated by the selection

criterion. With models that are increasingly complex during the whole demand-driven

analysis, the repeated analyses incur a tremendous cost. When one watches the trace that

is produced by the prototype, it is perfectly obvious that almost all the time is spent in

the demand selection step. Even in the prototype that used only the size of the model as

a criterion, almost all of the time was spent in the analyses. The demand generation and

processing steps are faster by orders of magnitude.

Because of that, our current measure of the amount of resources to invest in the demand-

driven analysis is not reliable. The amount of resources is measured in the number of

processed demands. Since the processing of demands is far from being the major cost,

the measure does not represent very accurately the amount of resources that are available.

Using a measure like the CPU time would be preferable. At least, it is so from the point of

view of the user of the system. From our current point of view, the advantage of the current

measure is that it measures the amount of reasoning the demand-driven analysis can do.

Indeed, the cleverness of the approach comes mostly from the processing of demands.

CHAPTER 6. EXPERIMENTAL RESULTS 169

6.2 Test Methodology

6.2.1 What is Measured?

For each benchmark, we count the number of safety tests that can be removed from the

program. It is important to note the distinction between the fact that these tests are

dynamic and the fact that we remove their static occurrences in the program text. We count

the number of static occurrences of the tests, not the number of dynamic uses of the tests.

One might object that “counting the static occurrences of the tests is farther from

measuring the concrete improvement in the execution time of the program than counting

their dynamic uses”. We agree, but we answer that “it is not farther by much”. Let us give

our reasons.

The number of dynamic uses does not have a relation to the execution time of the

program that is as tight as we may expect at first. Many other factors impact on the

execution time: the “useful” computations made by the program, the hidden run-time tasks

such as memory management, the interaction with the operating system, the particular

machine on which the program runs, etc. In general, it is hazardous to predict what is the

impact on the execution time of the program when it has been determined that only 50%

of the uses of dynamic tests were required. In some situations, the savings on the safety

tests are overshadowed by the remainder of the program tasks and little improvement of the

execution time is observed. On the other hand, the frequency of the dynamic tests during

the computations might be so high that the reduction in the execution time could be close to

that of the number of uses of safety tests. In exceptional cases, the improvement could even

be over 50% if the optimizations help the code to be smaller and to behave more favourably

in relation to the cache memory and if they improve the branch prediction success rate in

the processor.

For the exact same reasons, directly taking the improvement of the execution time of

the programs as a measure of the effectiveness of the analysis is not representative.

Using the number of static occurrences of safety tests in the program text has many

advantages. It exclusively depends on the analysis and the program. No external factors

can influence the measure. The success of our analysis in the removal of the different safety

tests depends more on the intrinsic difficulty of the program. Consequently, we believe it

CHAPTER 6. EXPERIMENTAL RESULTS 170

gives a more stable measure of the effectiveness of the analysis. For instance, it cannot

happen to obtain very good results on a particular benchmark because it eliminated a few

very frequently used tests and, the next time, to obtain poor results because it eliminated

many rarely used tests. A measure of the dynamic uses of the safety tests is more sensitive

to “luck”. Moreover, there is no reason to believe that frequently used tests are harder or

easier to eliminate than rarely used ones. Our measure is insensitive to the inputs of the

program while it is executed. Or course, our mini-language does not include input/output

operations, but a concrete language for which the analysis could eventually be implemented

should include input/output.

Finally, counting the number of static occurrences of safety tests is common in the field

of static analyses. Also, it is compatible with the goal we gave ourselves at the beginning

of the document: to try to remove as many safety tests as possible.

6.2.2 Benchmarks

The effectiveness of the analysis is evaluated using a variety of benchmarks. They vary from

small to medium size. There are a few toy programs, adaptations of some of the Gabriel

benchmarks, and other programs. Many benchmarks involve numerical computations. Some

have a more symbolic nature. Most are written or translated, completely or partly, by hand

from Scheme. Some are automatically compiled from a subset of Scheme into the syntax of

the mini-language.

Before we present each benchmark, we need to discuss a few issues regarding their

translation. The most important issue concerns the use of letrec-expressions. As we

know, the mini-language does not include letrec-expressions (it does not even include let-

expressions). In order to obtain benchmarks written in the mini-language, letrecs are

reduced into lets plus uses of the well known “Y” combinator. For each benchmark, we

used two different translations. One in which variable Y is first bound to an appropriate

function and in which each recursive function gets created by calling Y on a partially

recursive function. The other in which each recursive function is created using a private Y

combinator. Clearly, having one global Y combinator makes the program harder to analyse

because every recursive function is created using the same λ-expression coming from Y.

Naturally, the returned closure remembers its associated partially recursive function but

CHAPTER 6. EXPERIMENTAL RESULTS 171

(letrec
1

foo = (λ
2
x. (

3
foo

4
x

5
))

(
6
foo

7
#f

8
))

(a) Original program

(let
1

Y = (λ
2
f. (let

3
g = (λ

4
h. (λ

5
z. (

6
(

7
f
8
(

9
h

10
h

11
)) z

12
)))

(
13

g
14

g
15
)))

(let
16

foop = (λ
17

foof. (λ
18

x. (
19

foof
20

x
21
)))

(let
22

foo = (
23

Y
24

foop
25
)

(
26

foo
27

#f
28
))))

(b) Translation with global Y

(let
1

foo = (let
2

f = (λ
3
foo2. (λ

4
x. (

5
foo2

6
x

7
)))

(let
8

g = (λ
9
h. (λ

10
z. (

11
(

12
f
13

(
14

h
15

h
16
)) z

17
)))

(
18

g
19

g
20
)))

(
21

foo
22

#f
23
))

(c) Translation with private Y

Figure 6.1: Translation of letrec-expressions

the analyser has to discover that by itself. On the other hand, private Y combinators

allow recursive functions from distinct letrecs to be created from distinct λ-expressions.

Certainly, this does not make the task as easy as if the analyser knew how to handle

letrec-expressions directly but nevertheless it helps a lot. Figure 6.1 shows both kinds of

translation for the little benchmark loop.

Many benchmarks involve numerical computations. But we know that the mini-language

does not include numbers. Consequently, a reduction step used in the elaboration of the

benchmarks consists in getting rid of the numbers by replacing them by lists of Booleans.

Only the naturals and a few arithmetic operations are supported. The numbers are encoded

in unary. Thus, the constant ‘3’ appearing in the program is translated into:

(cons #f (cons #f (cons #f #f)))

The “numerical lists” do not have any special status and are manipulated as ordinary values

by the mini-language.

CHAPTER 6. EXPERIMENTAL RESULTS 172

The benchmarks written in the Scheme subset may include empty lists, both Booleans,

numbers (naturals), pairs, vectors, closures of any (non-variable) arity, and symbols. A

subset of the standard library is provided. The extra special forms are letrec and let,

provided that they include only one binding. Also, the expression to which the variable

is bound in letrec-expressions must be a λ-expression. Programs written in this subset

of Scheme are translated into the mini-language plus let, letrec, and unary numbers.

Each Scheme object is represented by a pair of the mini-language. The pair contains a

type tag (a small number) and the value encoded in a type-dependent way. The necessary

library functions are included. The Scheme type discipline is enforced and a Scheme type

error leads to the evaluation of the mini-language expression (car #f). Wrapping and

unwrapping instrumentation is added throughout the translated program. Programs thus

translated tend to expand considerably. Figure 6.2 shows the translation of a very small

expression. The code expansion is evident.

We now describe each benchmark:

cdr-safe Definition and use of a secure version of the cdr function. Written in the extended

mini-language.

loop An infinite loop. Written in the extended mini-language.

2-1 Computes the indicated subtraction. Written in the extended mini-language.

map-easy Two uses of map on the same list using two different functions. Written in the

extended mini-language.

map-hard A use of map on two different lists using two different functions. Each function

can only be applied on the elements of its corresponding list. Otherwise, an error

would occur. This simple benchmark is reported in [37] as being impossible to analyse

perfectly well by the k-cfa analysis, no matter how big k is. Written in the extended

mini-language.

fib Computes the 7th Fibonacci number. Adapted from a Gabriel benchmark. Written in

the extended mini-language.

gcd Computes the greatest common divisor of 3 and 5. Written in the extended mini-

language.

CHAPTER 6. EXPERIMENTAL RESULTS 173

(if (= 2 3) #f ’(32 a))

7→

(let
1

true = (cons
2

4
3
(cons

4
#f

5
#f

6
))

(let
7

false = (cons
8

4
9
#f

10
)

(let
11

wrap-num = (λ
12

n. (cons
13

2
14

n
15
))

(let
16

null = (cons
17

0
18

#f
19
)

(let
20

wrap-clos =
(λ

21
n. (λ

22
c. (cons

23
1

24
(λ

25
m. (if

26
(=

27
n

28
m

29
) c

30
(car

31
#f

32
))))))

(let
33

test = (λ
34

x. (if
35

(=
36

(car
37

x
38
) 4

39
) (cdr

40
x

41
) x

42
))

(let
43

call = (λ
44

x. (if
45

(=
46

(car
47

x
48
) 1

49
) (cdr

50
x

51
) (car

52
#f

53
)))

(let
54

wrap-sym = (λ
55

l. (cons
56

6
57

l
58
))

(let
59

dummy = #f
60

(let
61

= =

(
62
(

63
wrap-clos

64
2

65
)

(λ
66

x. (λ
67

y. (if
68

(=
69

(car
70

x
71
) 2

72
)

(if
73

(=
74

(car
75

y
76
) 2

77
)

(if
78

(=
79

(cdr
80

x
81
) (cdr

82
y

83
)) true

84
false

85
)

(car
86

#f
87
))

(car
88

#f
89
)))))

(let
90

cons = (
91
(

92
wrap-clos

93
2

94
)

(λ
95

x. (λ
96

y. (cons
97

3
98

(cons
99

x
100

y
101

)))))

(if
102

(
103

test
104

(
105

(
106

(
107

(
108

call
109

=
110

) 2
111

)

(
112

wrap-num
113

2
114

))

(
115

wrap-num
116

3
117

)))

false
118

(
119

(
120

(
121

(
122

call
123

cons
124

) 2
125

) (
126

wrap-num
127

32
128

))

(
129

(
130

(
131

(
132

call
133

cons
134

) 2
135

)

(
136

wrap-sym
137

(cons
138

97
139

#f
140

)))

null
141

))))))))))))))

Figure 6.2: Translation from the Scheme subset to the extended mini-language

CHAPTER 6. EXPERIMENTAL RESULTS 174

tak Computes the Takeuchi function on 18, 12, and 6. Adapted from a Gabriel benchmark.

Written in the extended mini-language.

n-queens Counts the number of solutions to the problem of the n-queens, for n = 4.

Written in the extended mini-language.

ack Computes the Ackermann function on 4 and 0. Adapted from a Gabriel benchmark.

Written in the extended mini-language.

SKI Interpreter for programs written using the well known S, K, and I combinators. The

SKI program is that of an infinite loop. Written in the extended mini-language.

change Computes the optimal strategy for returning the change using coins taken from

unlimited supplies of coins of 25/c, 17/c, 4/c, 3/c, and 1/c. The optimal change return

consists in minimising the number of coins. The result of the computation is a vector

of pairs. Each pair contains the optimal strategy for making change for the amount

corresponding to its position in the vector. The strategy is expressed by a pair contain-

ing the optimal number of coins and the most valuable coin needed by this strategy.

For amounts greater than the length of the vector, the most valuable coin must be

selected until the remaining amount is handled by the vector. Written in the Scheme

subset.

interp Interpreter for the Scheme subset. The program it interprets is:

(letrec ((foo (lambda () (foo)))) (foo))

The interpreter does not check whether the operations performed by the program it

interprets are valid. So an illegal operation in the interpreted program causes the

interpreter to do an illegal operation itself. Written in the Scheme subset.

cps-QS-s Generation and sort of a list of numbers. The list contains the numbers 1 to 28

in “random” order. The numbers are generated by the successive powers of 2 modulo

29. The list is then sorted using the Quicksort algorithm. The program is written in

continuation-passing style (CPS) except for the initial definition of the CPS versions

of the library functions. Written in the Scheme subset.

cps-QS-m The same program but translated by hand in the extended mini-language. In-

deed, apart from the empty lists terminating the lists of numbers, the other values are

CHAPTER 6. EXPERIMENTAL RESULTS 175

directly present in the extended mini-language.

Appendix A presents the listing of each benchmark.

6.3 Results

We present the results of the experiments on the benchmarks in Table 6.1. Each benchmark

has been translated into the mini-language in two versions: one with a global Y combinator

and one with a Y combinator for each letrec-expression. A limit of 10000 “work units” has

been allowed for the analysis of each benchmark. The machine running the benchmarks is a

PC with a 1.5 GHz Athlon CPU, 2 GByte RAM, and running RH Linux kernel 2.4.18-5smp.

Gambit-C 4.0 was used to compile the demand-driven analysis.

The meaning of each column is the following. The column labelled Y indicates whether

the benchmark is the version with one Global Y combinator or with Private Y combinators.

The column labelled size indicates the size of the benchmark, as measured by the number of

expressions. The columns labelled total, pre, and post indicate the number of occurrences

of safety tests present in the non-optimised program, in the optimised program based on the

preliminary analysis results, and in the optimised program after demand-driven analysis,

respectively. The column labelled during gives a trace of the evolution of the number of

safety tests through the analysis. An item of the form n@t indicates that n safety tests

are still necessary after t work units have been consumed. The columns labelled units and

time indicate how many work units and how much CPU time, respectively, were consumed

by the whole analysis process.

Only partial results could be obtained for the benchmarks written in the Scheme subset

and for the global Y version of cps-QS-m. The execution of the demand-driven analysis

on these consumed too much memory and it had to be stopped. Consequently, they are

analysed using the 0-cfa only. No post information is available for them. Nevertheless, we

insist on mentioning the benchmarks as they could serve as a basis for comparison if future

improvements of the implementation of the demand-driven analysis eventually allows these

to be analysed. The size of the interp benchmark may seem particularly impressive, but

it is mainly due to the expressions that create the “Scheme symbols”.

Looking at the results of the experiments on the other benchmarks, we easily note

CHAPTER 6. EXPERIMENTAL RESULTS 176

Y size total pre during post units time(s)
cdr-safe G 17 4 1 0 5 0.04

P 17 4 1 0 5 0.03
loop G 32 11 0 0 1 0.04

P 26 9 0 0 1 0.03
2-1 G 48 15 2 1@7 0 47 0.51

P 42 13 2 1@7 0 48 0.42
map-easy G 82 26 6 4@19 0 134 3.12

P 76 24 6 4@19 0 134 2.83
map-hard G 96 33 9 6@38 5@254 3@305 1@520 0 1399 115.54

P 101 35 4 2@118 0 284 8.42
fib G 141 40 12 12 10000 2204.95

P 168 50 5 4@16 3@29 2@39 1@46 0 358 13.87
gcd G 257 77 8 7@25 6@47 5@66 4@82 1 10000 11482.90

3@95 2@105 1@112
P 328 103 6 5@19 4@35 3@48 2@58 1@65 0 8509 1633.34

tak G 202 46 9 9 10000 2967.36
P 218 52 4 3@13 2@23 1@30 0 240 18.22

n-queens G 372 121 51 51 10000 23028.97
P 454 151 11 10@34 9@65 8@93 5 10000 2667.07

7@118 6@140 5@1750
ack G 162 49 5 4@16 3@29 2@39 1@46 1 10000 5786.97

P 189 59 3 2@10 1@17 0 200 12.51
SKI G 285 46 19 15@91 13@173 11@323 4 10000 1238.40

9@397 7@473 6@543
5@1474 4@3584

P 290 48 17 13@52 11@98 9@138 8@212 0 899 98.90
5@249 4@358 3@567 1@673

change G 2371 717 377 [377] [0] 3227.67
P 2519 771 329 [329] [0] 1944.26

interp G 42056 1348 762 [762] [0] 17251.09
P 42292 1434 678 [678] [0] 9597.56

cps-QS-s G 2042 584 277 [277] [0] 11273.67
P 2157 626 242 [242] [0] 7705.23

cps-QS-m G 693 211 58 [58] [0] 71.47
P 808 253 16 14@49 13@92 12@132 1 10000 3356.97

11@169 10@203 9@234
8@262 7@287 6@309 5@328
4@344 3@357 2@444
1@1121

Table 6.1: Experimental results

CHAPTER 6. EXPERIMENTAL RESULTS 177

that having private Y combinators make the analysis much simpler. It is the case for the

preliminary analysis and for the complete demand-driven analysis.

In fact, the demand-driven analysis is able to remove all safety tests when private Y

combinators are used except in the cases of the n-queens and of the cps-QS-m benchmarks.

In these two cases, the demand-driven analysis is nevertheless able to improve on the re-

sults obtained by the preliminary analysis. These results are remarkable, given that the Y

combinator is quite intricate. Also, in the benchmarks that use the subtraction, a pretty

difficult property has to be demonstrated. The property says that, when an expression such

as (− x y) is evaluated, y is never greater than x. In fact, subtraction is implemented using

a call to a function that is inserted during the reduction that removes the numbers from the

extended mini-language. The function assumes that its arguments respect the property. If

they do not, the function eventually attempts to extract the cdr-field of the Boolean #f

that ends the unary representation of x. In the 2-1, fib, gcd, tak, and ack benchmarks,

the property necessarily had to be demonstrated since these rely on the subtraction.

When a global Y combinator is used, on the other hand, the analysis obtains results of

a pretty variable quality. The problem is that all recursive functions are blended together

by Y and when there is no easily detectable difference in the behaviour of these functions,

then the analysis does not realise that a “good move” consists in creating distinct recursive

functions for uses of Y on distinct partially recursive functions.

Note that there is no clear relation between the size of the benchmarks and the success of

the demand-driven analysis on them. Certainly, the style of programming has a much bigger

impact, as demonstrated by the difference introduced by global and private Y combinators.

On top of the difficulty created by their size, we expect the benchmarks written in Scheme

to be difficult to analyse because of their style, also. Eventually, their style may even have

a bigger impact than their size. The main reason is that all Scheme values are encapsulated

in pairs using special purpose functions and that this encapsulation may produce a masking

effect similar to that of the global Y combinator. As an instance, two Scheme functions

introduced by distinct letrec-expressions become very difficult to distinguish: they both

are represented as pairs; their car-field contains the same “closure” type tag and their

cdr-field contains functions created by the wrap-num function, whose task is to check the

number of arguments that are to be passed; the check function then contains a reference

to the distinct “raw” recursive functions. If a global Y combinator is to be used on top

CHAPTER 6. EXPERIMENTAL RESULTS 178

unrolling 1 2 4 8 16
units 176 280 532 1276 3724
time(s) 10.59 24.34 79.97 374.34 2325.77

Table 6.2: The effect of the size of a program on the analysis

of that, the difference between both raw recursive functions is even more difficult to make.

The difference appears only in the references to the partially recursive functions the closure

from Y has captured. It is not clear if even a very improved demand-driven analysis could

ever be discriminating enough for these benchmarks.

Note that, when the demand-driven analysis has some success in removing safety tests, it

usually is able to find the opportunities rather quickly. This suggests that relatively modest

investments in analysis time can usually be fruitful. At least, provided that the program is

“analysable”. When it is not, it seems that considerable time investments in the analysis

do not help. This is a happy result since it means that the demand-driven analysis should

be used with a rather limited amount of resources, which tends to make it more practical.

We ran another kind of experiment. We wanted to obtain a measure of the time re-

quired by the demand-driven analysis on a family of programs that have exactly the same

programming style. To do so, we have modified the ack benchmark and unrolled the re-

cursive function by various factors. Figure 6.3 shows the aspect of the resulting programs.

For each unrolling level i, the number of safety tests in the resulting program is 43 + 19i if

no optimisation is done. There remain 3 after the preliminary analysis. And the demand-

driven analysis removes the remaining tests. The times required by the complete analysis

for different unrolling levels are presented in Table 6.2. The measures indicate that the total

time required by the complete analysis grows between quadratically and cubically with the

level of unrolling. This is certainly better than the exponential behaviour expected of a

type analysis that uses lexical-environment contours.

We also ran experiments concerning the inputs used in some of the benchmarks. Mem-

bers of the jury of this dissertation have expressed the concern that some benchmarks used

very small input values. For example, the ack benchmark contains the computation of the

Ackermann function on arguments 4 and 0, which produces only 13 as a result. It is obvious

that it is cheaper by orders of magnitude to evaluate this benchmark than to analyse it.

Analysing such a program does not seem very worthwhile. Consequently, we present a few

CHAPTER 6. EXPERIMENTAL RESULTS 179

(letrec
1

ack =

(λ
2
m. (λ

3
n. (let

4
ack = (λ

5
m. (λ

6
n. (if

7
(=

8
m

9
0

10
)

(+
11

n
12

1
13
)

(if
14

(=
15

n
16

0
17
)

(
18
(

19
ack

20
(−

21
m

22
1

23
)) 1

24
)

(
25
(

26
ack

27
(−

28
m

29
1

30
))

(
31
(

32
ack

33
m

34
) (−

35
n

36
1

37
)))))))

(let
38

ack = (λ
39

m. (λ
40

n. (if
41

(=
42

m
43

0
44
)

(+
45

n
46

1
47
)

(if
48

(=
49

n
50

0
51
)

(
52
(

53
ack

54
(−

55
m

56
1

57
)) 1

58
)

(
59
(

60
ack

61
(−

62
m

63
1

64
))

(
65
(

66
ack

67
m

68
) (−

69
n

70
1

71
)))))))

· · ·
(

?
(

?
ack

?
m

?
) n

?
)· · ·))))

(
?
(

?
ack

?
4

?
) 0

?
))

Figure 6.3: Unrolling of the ack benchmark

test time(s)

ack 4 0 18.5
ack 4 4 19.0
ack 10 10 19.8

test time(s)

fib 7 20.5
fib 50 25.2

test time(s)

gcd 3 5 2375.8
gcd 3 6 4167.5

Table 6.3: The effect of the inputs on the analysis times

experiments in Table 6.3 that show the impact of the programs inputs on the analysis times.

These experiments were run on a different machine and at a different time. They were run

on a PC with a 1.2 GHz Athlon CPU, 1 GByte RAM, and running RH Linux kernel 2.4.9.

Clearly, the time required to run the first benchmarks is longer than the time required

to analyse them. The measures show that, roughly, benchmarks ack and fib remain as

difficult to analyse, no matter what the input numbers are. On the other hand, the gcd

benchmark becomes much harder to analyse when one of its inputs is only increased by

one. This may seem surprising at first since the numbers manipulated by the first two

benchmarks are gigantic (even delirious in the case of ack) while those manipulated by the

last one are very small. However, the difference comes from the fact that the demonstration

of the safety of the first benchmarks only has to partition the naturals into {0}, {1}, {2},

and the rest, while the demonstration for the last benchmark has to distinguish each number

involved in the computations. It is easy to realise the difficulty of such demonstrations when

one remembers that numbers are encoded as lists.

CHAPTER 6. EXPERIMENTAL RESULTS 180

A last experiment was conducted to prove an affirmation made in the previous chap-

ter: that the pattern-based demand-driven analysis may fail to analyse perfectly well some

programs, even if the amount of resources is unlimited. We let the analyser do its work

on the SKI benchmark (with global Y) until it stopped by itself. After the consumption of

29560 work units, it stopped by lack of proposal of model-modifying demands.

Chapter 7

Conclusions

7.1 Contributions

Our goal was to obtain a type analysis of very high quality that is not prohibitively expensive.

We think that we have reached our goal by proposing the demand-driven analysis: the

program is repetitively analysed using abstract models that are increasingly specialised

for the task at hand; the updates of the abstract model are directed by the processing of

demands, which constitutes the means to translate the needs of the optimiser into proposals

of updates to the abstract model.

Static analysis of programs is a classical domain in the field of compilation (see [3]).

However, all proposed static analyses share the characteristic that their underlying abstract

model is constant. Even if some compilers offer a spectrum of analyses of varying strength,

it remains the responsibility of the user to select himself the desired analysis. In any case,

the analysis certainly does not adapt to the given program while the compilation occurs.

To improve static analysis: we proposed an analysis where the abstract model is modifi-

able through the use of an analysis framework; we proposed and realised an implementation

of abstract models based on patterns such as those used in many programming languages

such as ML, Haskell, or Prolog; we introduced the concept of demands that are requests for

the achievement of desirable tasks; the demands are generated according to the needs of the

optimiser, are translated following precise rules—the demand processing rules—and result

in specific proposals of update of the abstract model so that the analyser becomes better

CHAPTER 7. CONCLUSIONS 182

equipped to analyse successfully the program. Most of the theoretical basis behind the

approach has been proved in the dissertation. Finally, the approach has been implemented

and tested. It exhibits an impressive cleverness in the difficulty of the facts that it is able

to discover in order to enable the optimisations.

Expect for the concepts of static analysis, abstract interpretation (see [19]), and param-

eterisable analysis (at compiler implementation time, though, not at compile time, see [11]),

our whole work is original. Two papers present parts of our contributions [21, 22].

7.2 Related Work

As we underline in the exposition of our contributions, we had to propose ourselves almost

everything that we have presented, so it is not surprising to find that there is virtually no

related work. In fact, the most closely related work is so more by the name than by the

ideas.

Demand-driven analyses are presented by Duesterwald et al [23, 24], by Agrawal [1, 2],

and by Heintze and Tardieu [31]. The analyses that are presented are a data-flow analysis,

a simultaneous data-flow and call graph analysis, and a pointer analysis, respectively. In

essence, these works consist in taking classical static analyses and turning them into lazy

versions. That is, the presented analyses are able to produce only parts of the results that

the classical ones compute and to reduce the necessary amount of computations accordingly.

The demands represent the need for a specific part of the results. Demand processing rules

are used to determine the minimal subset of computations that is necessary to produce only

those parts. In each case, the original analysis is very simple and, not too surprisingly, the

demand processing rules turn out to be quite simple, too.

Other work also shares similar names. But they are used in the compilation of languages

featuring lazy evaluation. They have a completely different purpose: they are normal

analyses that compute informations about demands on the suspended computations of the

programs. They are usually referred to as strictness analyses. For the sake of information,

such works are presented in [13], [47], and [52], for example.

CHAPTER 7. CONCLUSIONS 183

7.3 Future Work

As our work is not exactly a polished, refined solution to a well-delimited problem but more

a bold leap into a whole new methodology in static type analysis, it brings with it a lot of

new questions, problems, and things to try. We briefly mention some.

7.3.1 On the Pattern-Based Analysis

A lot of additional work ought to be done on the pattern-based demand-driven analysis

itself.

Speeding Up the Analysis

In order to make the demand-driven type analysis really practical, its speed must be im-

proved. We propose some means to make it faster.

First, the approach would be much faster if the numerous re-analyses were not always

computed from scratch. Indeed, a single modification to the abstract model does not nec-

essarily imply that the new analysis results completely change. A kind of incremental

re-analysis could be implemented. That is, given a model M, the corresponding analysis

results R, and an updated model M′, the new analysis results R′ could be obtained more

efficiently than by performing a re-analysis from scratch. A way to do it consists in having

a mechanism that allows the analyser to retract from R the abstractions that have been

refined (and only these) and then to propagate the refined values instead. At the beginning

of the process of analysing the program, we expect the model to be so coarse that any

update would concern a major fraction of the abstractions but, as the model becomes more

refined, model updates should involve only a very small fraction of the abstractions and the

retraction and propagation sweep should become minor.

Second, the direct manipulation of the näıvely represented abstractions during the anal-

yses is costly and more efficient representations should be considered. Indices for the ab-

stractions instead of the abstractions themselves would be more lightweight. Bit vectors are

often employed to implement set operations, also.

Third, the representation of the contours could be optimised and they could be restricted

CHAPTER 7. CONCLUSIONS 184

to contain only the environment variables to which there is a reference. In most of the closure

bodies, only a fraction of all the visible variables are really referenced. The corresponding

contours should only list the values of these.

Aggressive, Risky Strategies

In the current approach, the demand processing rules produce a single set of new demands

and these demands are restricted to be necessary and sufficient. The uniqueness of the

strategy could be abandoned. The rules could still produce the same conservative strategy

but, additionally, more aggressive and risky strategies. These would not need to be made

of necessary demands, but of sufficient ones. The multiplicity of strategies would make the

analyser tolerant to the failure of the aggressive strategies and allow it to fall back to the

conservative ones when necessary.

Better Selection of Model-Modifying Demands

The current criterion for the selection of the “best” model-modifying demand is very näıve.

A more appropriate criterion should measure the quality of the information contained in

the analysis results. Sometimes, good (informative) analysis results need to be verbose.

Also, the current method consists in selecting a model-modifying demand after the

other and accumulating the updates without considering other sequences of updates. This

sequence of updates can be viewed as a search for an ideal model. Now, single-threaded

searches have the inconvenience of being easy to trap in “local optima”. Browsing through

elementary AI references for search methods could be profitable. For example, a kind of

best-first search could be more effective than our greedy search.

Extension to Scheme

Our demand-driven type analysis is intended for the mini-language but should be extended

to cover a dynamically-typed functional language such as Scheme. We expect the greatest

challenge to come partly from separate compilation (not a standard feature but a part

of most Scheme implementations) and from continuations but, most of all, from the side-

effects created by define, set!, and a few standard library functions. Indeed, the heart

CHAPTER 7. CONCLUSIONS 185

of the pattern-based approach relies on the absence of side-effects. Contours, by definition,

represent the value of the variables in the lexical environment. But what does it mean

to be in a contour where, say, ‘x’ is constrained to contain a pair and then a side-effect

mutates its contents to a vector? Does the contour stays the same and we allow vectors to

be contained in variable ‘x’ despite the fact that the contours says that the bound on the

possible values of ‘x’ ought to be the pairs? Or does the contour instantaneously changes

when the side-effect occurs?

7.3.2 Alternate Modelling

The pattern-based modelling of values and evaluation contexts is just a choice of ours and a

different modelling could be used while maintaining the fact that the demand-driven analysis

uses abstract interpretation.

The Use of Labels

We should try a modelling of the pairs that produce abstractions that remember the label of

the cons-expressions that created them. However, recall that we argued that pairs are never

discriminated on the basis of their origins in the concrete interpretation. So they should not

be in the abstract interpretation either. Also, abstract pairs without labels help in avoiding

a proliferation of abstractions having the same meaning. But the point of creation may

carry a lot of information as the programmer may have different plans for pairs created in

different parts of the programs.

Regular Trees

Patterns, and even patterns that include creation site labels, are shallow representations of

concrete values. Of course, we showed that deep invariants could sometimes be discovered

through the use of the information kept in the log matrices of the analysis framework.

Regular trees, on the contrary, naturally express deep invariants of the concrete values. A

sound mathematical basis comes along with them. Analyses using regular trees should be

considered. They have been used by Aiken (and collaborators) in [5, 4, 6] and presented by

Courcelle in [18]. The results by Aiken showed an impressive representation power but did

CHAPTER 7. CONCLUSIONS 186

not seem to be efficient enough.

7.3.3 Extensions

Other Languages

Although we explicitly aim at analysing dynamically-typed languages, we believe that the

type analysis could be useful in some statically-typed languages, too. Indeed, statically-

typed languages such as ML and Haskell feature algebraic types. The particular choice of

a constructor is not determined at compile time. In many situations (such as prior to the

extraction of the first element of a list), a dynamic test must be performed to ensure that an

appropriate constructor is being manipulated. These dynamic tests are perfectly analogous

to the safety types tests made in Scheme, for example. And they incur similar run-time

penalties, too.

In fact, we can consider the typing system of Scheme to be implemented as a single

algebraic type that includes many different constructors. The main type means “Scheme

object” and the constructors mean number, character, etc. To push the point further, we

say that even if Scheme programs do not include type annotations, they usually respect an

implicit type discipline that is much stricter than the full dynamism that Scheme allows.

We believe that Scheme programs and ML and Haskell programs often have very similar

data structures with comparable type signatures, even if no static verification of the types

is done in the first case.

Profiling

Having profiling statistics about the program to analyse would be very useful to the demand-

driven analysis. It would put a realistic price on the safety tests or, conversely, a realistic

profit estimation on the eventual removal of these tests. It is folklore in computer science

that execution occurs 90% of the time in only 10% of the program. The work units invested

in the demand-driven analysis would be used in a more profitable way if they enabled

optimisations on more frequently executed code.

CHAPTER 7. CONCLUSIONS 187

Different Sources of Initial Demands

We are able to say that our demands express reasonable requests because they correspond

to necessary properties of the program. The basis of this necessity is that run-time errors

probably will not occur. Consequently, initial demands are only generated from expressions

where run-time errors could occur. In an extended system, initial demands could be gener-

ated from different sources. However, various degrees of reliability should be attributed to

these sources. That is, the confidence that the properties must be true varies from a source

to another. For example, during the compilation of a complete program along with the

necessary library functions, a higher degree of reliability should be granted to the demands

originating from expressions in the library functions. Indeed, these are normally written

with extreme care while it is doubtful that the program should be considered to be as secure

as the library.

If profiling were used, a whole family of optimiser needs could be taken care of by the

analyser. For example, the information needed by the optimiser to perform inlining is not

related to safety issues at all. But if profiling statistics show that, at certain call sites,

the same closures are always invoked, then some kind of credibility could be granted to a

demand requesting the demonstration of the conjectured (but desirable) property.

Certainty Analysis

If a future extension of the demand-driven analysis allows the demand processing rules to

speculatively generate aggressive non-necessary strategies, it would be useful to know which

strategies are more likely to fail or, even, which are sure to fail. Profiling information helps

in deciding which are likely to fail. But in order to know that an aggressive strategy is sure

to fail, we have to know that a particular non-necessary property is certainly false. For

example, let us suppose that the processing of a demand D would be greatly simplified if

it could be shown that closure c does not get invoked at el. Suppose also that the stated

property is not a necessary one. An aggressive strategy might try to achieve the desired

demonstration. However, if we knew that c is indeed invoked at el in at least one occasion,

the analyser would avoid to make a useless attempt with this aggressive strategy.

That kind of information is knowledge that something does occur. Analyses used for

optimisation purposes never gather that kind of knowledge. They are conservative analyses

CHAPTER 7. CONCLUSIONS 188

and they gather a superset of all that happens. The information that we need in the present

case is of the opposite nature: it is a subset of all that happens. All the facts reported by

such an analysis are sure to happen. We call such an analysis a certainty analysis. Its

results would be useful for the evaluation of the pertinence of various strategies.

Other Kinds of Analyses

The general approach of generating and processing demands that express necessary prop-

erties could be tried on other analyses than type analysis. Its natural applications are the

analyses related to safety issues. It should adapt well to numerical range analysis, for in-

stance. Such an analysis determines in which range all the numerical values contained in a

variable must lie. This information is then used to optimise accesses to arrays since one or

both bound checks may possibly be dropped.

By using profiling statistics to obtain suggestions of plausible properties, the (non-type)

analysis need not necessarily be related to safety issues. It appears that most of the opti-

misations are not related to safety. For example, inlining (see [9, 39]), eager evaluation in

lazy languages (with the help of strictness analyses, see [14, 13, 47, 52]), register allocation

(with the help of liveliness analysis and pointer or alias analysis, see [3, 17, 65, 31]), stack

allocation to replace heap allocation (see [25, 53]), selection of efficient representation for

the values (see [32, 33, 54]), recycling of heap objects (see [35, 36]), elimination of dead code

(see [3, 40]), static branch prediction (using numerical analysis, though, see [48]), etc.

7.3.4 Demand Propagation Calculus

We merely make an allusion to this subject as it is no more than a vague idea by ours. A

demand-driven type analysis could be based on a pure demand propagation calculus and

not relying on abstract interpretation of the programs at all. We imagine that the result

would be a kind of reverse abstract interpretation where bounds on acceptable values are

propagated backward in the program instead of sets of possibles values being propagated

forward. However, we are not able to guess what would be the power of such an approach

or whether it would be equivalent to something that is already known.

Bibliography

[1] Gagan Agrawal. Simultaneous demand-driven data-flow and call graph analysis. In

Proceedings of International Conference on Software Maintenance, pages 453–462, sep

1999.

[2] Gagan Agrawal, Jinqian Li, and Qi Su. Evaluating a demand-driven technique for call

graph construction. In Computational Complexity, pages 29–45, 2002.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques

and Tools. Addison-Wesley, 1986.

[4] Alexander Aiken and Brian Murphy. Implementing regular tree expressions. In Func-

tional Programming and Computer Architecture, pages 427–447, aug 1991.

[5] Alexander Aiken and Brian Murphy. Static type inference in a dynamically typed

language. In ACM, editor, POPL ’91. Proceedings of the eighteenth annual ACM

symposium on Principles of programming languages, pages 279–290, jan 1991.

[6] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and type in-

ference. In Proceedings of the Conference on Functional Programming Languages and

Computer Architecture, pages 31–41, jun 1993.

[7] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with condi-

tional types. In Principles of Programming Languages, pages 163–173, jan 1994.

[8] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. Technical Report

DEC-SRC-62, Digital Equipment Corporation, Systems Research Centre, aug 1990.

[9] J. Michael Ashley. The effectiveness of flow analysis for inlining. In Proceedings of the

1997 ACM SIGPLAN International Conference on Functional Programming, 1997.

BIBLIOGRAPHY xvii

[10] J. Michael Ashley and Charles Consel. Fixpoint computation for polyvariant static

analyses of higher-order applicative programs. In ACM Transactions on Programming

Languages and Systems, pages 1431–1448, sep 1994.

[11] J. Michael Ashley and R. Kent Dybvig. A practical and flexible flow analysis for

higher-order languages. ACM Transactions on Programming Languages and Systems,

20(4):845–868, jul 1998.

[12] Anindya Banerjee. A modular, polyvariant, and type-based closure analysis. In Proceed-

ings of the 1997 ACM SIGPLAN International Conference of Functional Programming,

pages 1–10, jun 1997.

[13] Sandip K. Biswas. A demand-driven set-based analysis. In Conference record of POPL

’97, the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 372–385, jan 1997.

[14] Adrienne Bloss and Paul Hudak. Variations on strictness analysis. In 1986 ACM

Symposium on Lisp and Functional Programming, pages 132–142, 1986.

[15] François Bourdoncle. Abstract interpretation by dynamic partitioning. Journal of

Functional Programming, 2(4):407–435, 1992.

[16] François Bourdoncle. Abstract debugging of higher-order imperative languages. In

Proceedings of the 1993 ACM Conference on Programming Language Design and Im-

plementation, pages 46–55, 1993.

[17] Robert G. Burger, Oscar Waddell, and R. Kent Dybvig. Register allocation using lazy

saves, eager restores, and greedy shuffling. In Conference on Programming Language

Design and Implementation, volume 30, pages 130–138, jun 1995.

[18] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Sci-

ence, 25(2):95–169, mar 1983.

[19] Patrick Cousot. Abstract interpretation. ACM Computing Surveys, 28:324–328, jun

1996.

[20] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Conference

Record of the Fourth ACM Symposium on Principles of Programming Languages, pages

238–252, jan 1977.

BIBLIOGRAPHY xviii

[21] Danny Dubé and Marc Feeley. Demand-driven type analysis: an introduction. In

Proceedings of the Workshop on Scheme and Functional Programming 2001, pages 21–

32, sep 2001.

[22] Danny Dubé and Marc Feeley. A demand-driven adaptive type analysis. In Proceedings

of the 2002 ACM SIGPLAN International Conference on Functional Programming,

pages 84–97, oct 2002.

[23] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Demand-driven computation

of interprocedural data flow. In Symposium of Principles of Programming Languages,

pages 37–48, jan 1995.

[24] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A demand-driven analyzer

for data flow testing at the integration level. In Proceedings of the 18th International

Conference on Software Engineering, pages 575–586, mar 1996.

[25] Benjamin Goldberg and Young Gil Park. Higher order escape analysis: Optimizing

stack allocation in functional program implementations. In ESOP’90, 3rd European

Symposium on Programming, volume 432 of Lecture Notes in Computer Science, pages

152–160, may 1990.

[26] Rajiv Gupta. Optimizing array bound checks using flow analysis. ACM Letters on

Programming Languages and Systems, 2:135–150, 1993.

[27] William H. Harrison. Compiler analysis of the value ranges for variables. IEEE Trans-

actions on Software Engineering, 3(3):243–250, may 1977.

[28] The Haskell language. http://www.haskell.org/.

[29] Nevin Heintze. Set based analysis of ML programs (extended abstract). Technical

Report CS-93-193, Carnegie Mellon University, School of Computer Science, jul 1993.

[30] Nevin Heintze. Control-flow analysis and type systems. Lecture Notes in Computer

Science, 983:189–206, 1995.

[31] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In Proceedings of

SIGPLAN 2001 Conference on Programming Languages Design and Implementation,

ACM SIGPLAN Notices. ACM Press, jun 2001.

BIBLIOGRAPHY xix

[32] Fritz Henglein. Global tagging optimization by type inference. In Proceedings of the

1992 ACM Conference on Lisp and Functional Programming, pages 205–215. ACM,

aug 1992.

[33] Fritz Henglein and Jesper Jørgensen. Formally optimal boxing. In 21st Annual ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages, Portland,

Oregon, pages 213–226, jan 1994.

[34] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata, languages and

computations. Addison-Wesley, Reading, MA, 1979.

[35] Paul Hudak. A semantic model of reference counting and its abstraction (detailed

summary). In Proceedings of the 1986 ACM Conference on Lisp and Functional Pro-

gramming, pages 351–363, 1986.

[36] Katsuro Inoue, Hiroyuki Seki, and Hikaru Yagi. Analysis of functional programs to

detect run-time garbage cells. ACM Transactions on Programming Languages and

Systems, 10(4):555–578, oct 1988.

[37] Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in higher-

order languages. In 22nd ACM Symposium on Principles of Programming Languages,

pages 392–401, jan 1995.

[38] Suresh Jagannathan and Andrew Wright. Effective flow analysis for avoiding run-time

checks. Lecture Notes in Computer Science, 854:207–224, 1995.

[39] Suresh Jagannathan and Andrew Wright. Flow-directed inlining. In Proceedings of the

ACM SIGPLAN 1996 Conference on Programming Language Design and Implementa-

tion, pages 193–205, 1996.

[40] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code elimination. In

Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language Design

and Implementation, pages 147–158, 1994.

[41] Priyadarshan Kolte and Michael Wolfe. Elimination of redundant array subscript range

checks. In Proceedings of the ACM SIGPLAN 1995 Conference on Programming Lan-

guage Design and Implementation, pages 270–278, 1995.

[42] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive subtyp-

ing. In Proceedings POPL ’93, pages 419–428, 1993.

BIBLIOGRAPHY xx

[43] Robin Milner. A theory of type polymorphism in programming languages. Journal of

Computer and System Science, 17(3):348–375, 1978.

[44] The ML language. http://cm.bell-labs.com/cm/cs/what/smlnj/sml97.html.

[45] Patrick O’Keefe and Mitchell Wand. Type inference for partial types is decidable. In

ESOP’92, 4th European Symposium on Programming, volume 582 of Lecture Notes in

Computer Science, pages 408–417, feb 1992.

[46] Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type inference.

Information and Computation, 118(1):128–141, apr 1995.

[47] Dirk Pape. Higher order demand propagation. Lecture Notes in Computer Science,

1595:153–168, 1999.

[48] Jason R. C. Patterson. Accurate static branch prediction by value range propagation. In

Proceedings of the ACM SIGPLAN ’95 Conference on Programming Language Design

and Implementation, pages 67–78, jun 1995.

[49] Benjamin C. Pierce. Bounded quantification is undecidable. In Proceedings of the 19th

Annual Symposium on Principles of Programming Languages, pages 305–315, jan 1992.

[50] The Prolog language. http://www.logic-programming.org/prolog std.html.

[51] The Scheme language. http://www.scheme.org/.

[52] R. Sekar and I. V. Ramakrishnan. Fast strictness analysis based on demand propaga-

tion. ACM Transactions on Programming Languages and Systems, 17(6):896–937, nov

1995.

[53] Manuel Serrano and Marc Feeley. Storage use analysis and its applications. In Proceed-

ings of the 1996 ACM SIGPLAN International Conference on Functional Programming,

pages 50–61, 1996.

[54] Zhong Shao. Flexible representation analysis. In Proceedings of the 1997 ACM SIG-

PLAN International Conference on Functional Programming, pages 85–98, jun 1997.

[55] Olin Shivers. Control flow analysis in Scheme. In Proceedings of the SIGPLAN ’88

Conference on Programming Language Design and Implementation, pages 164–174,

jun 1988.

BIBLIOGRAPHY xxi

[56] Olin Shivers. Cps data-flow analysis example. Technical report, Carnegie Mellon Uni-

versity, may 1990.

[57] Olin Shivers. Data-flow analysis and type recovery in Scheme. Technical Report CMU-

CS-90-115, Carnegie Mellon University, mar 1990.

[58] Olin Shivers. Super-β: Copy, constant, and lambda propagation in Scheme. Technical

report, Carnegie Mellon University, may 1990.

[59] Olin Shivers. Useless-variable elimination. Technical report, Carnegie Mellon Univer-

sity, apr 1990.

[60] Olin Shivers. Control-flow Analysis of Higher-Order Languages. PhD thesis, Carnegie

Mellon University, may 1991.

[61] Olin Shivers. The semantics of Scheme control-flow analysis. In Proceedings of the

Symposium on Partial Evaluation and Semantics-based Program Manipulation, pages

190–198, jun 1991.

[62] Jeffrey Mark Siskind. Flow-directed lightweight closure conversion. To be published

by ACM.

[63] Jerzy Tiuryn and Mitchell Wand. Type reconstruction with recursive types and atomic

subtyping. In TAPSOFT ’93: Theory and Practice of Software Development, 4th

International Joint Conference CAAP/FASE, pages 686–701, apr 1993.

[64] Adam Brooks Webber. Program analysis using binary relations. In Proceedings of the

1997 ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, pages 249–260, jun 1997.

[65] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer analysis for

c programs. In Proceedings of the ACM SIGPLAN ’95 Conference on Programming

Language Design and Implementation, volume 30, pages 1–12, jun 1995.

[66] Andrew K. Wright and Robert Cartwright. A practical soft type system for scheme.

In Conference on Lisp and Functional Programming, pages 250–262, jun 1994.

Appendix A

Benchmarks

The source of each benchmark is presented next. All benchmarks except change, interp,

and cps-QS-s are written in the syntax of the extended mini-language. These benchmarks

have to be reduced to the basic mini-language and α-converted before the demand-driven

analysis can operate on them. On the other hand, the change, interp, and cps-QS-s

benchmarks are written in Scheme syntax. Before they can be processed by the demand-

driven analysis, they first have to be translated from Scheme to the extended mini-language

and then undergo the same reductions as the other benchmarks.

A.1 Source of the cdr-safe Benchmark

(let
1

cdr-safe = (λ
2
l. (if

3
(pair?

4
l
5
) (cdr

6
l
7
) #f

8
))

(
9
cdr-safe

10
(

11
cdr-safe

12
(cons

13
#f

14
(λ

15
x. x

16
)))))

A.2 Source of the loop Benchmark

(letrec
1

foo = (λ
2
x. (

3
foo

4
x

5
))

(
6
foo

7
#f

8
))

APPENDIX A. BENCHMARKS xxiii

A.3 Source of the 2-1 Benchmark

(−
1

2
2

1
3
)

A.4 Source of the map-easy Benchmark

(letrec
1

map =

(λ
2
op. (λ

3
l. (if

4
l
5
(cons

6
(

7
op

8
(car

9
l
10
)) (

11
(

12
map

13
op

14
) (cdr

15
l
16
))) #f

17
)))

(let
18

d = (cons
19

(λ
20

x. x
21
) (cons

22
#f

23
#f

24
))

(let
25

list = (cons
26

d
27

(cons
28

d
29

(cons
30

d
31

#f
32
)))

(let
33

op1 = (λ
34

y. (
35
(car

36
y

37
) #f

38
))

(let
39

op2 = (λ
40

z. (car
41

(cdr
42

z
43
)))

(cons
44

(
45
(

46
map

47
op1

48
) list

49
) (

50
(

51
map

52
op2

53
) list

54
)))))))

A.5 Source of the map-hard Benchmark

(letrec
1

map =

(λ
2
op. (λ

3
l. (if

4
l
5
(cons

6
(

7
op

8
(car

9
l
10
)) (

11
(

12
map

13
op

14
) (cdr

15
l
16
))) l

17
)))

(let
18

op1 = (λ
19

x. (car
20

x
21
))

(let
22

op2 = (λ
23

y. (
24

y
25

#f
26
))

(letrec
27

loop =

(λ
28

data. (let
29

res1 = (
30
(

31
map

32
op1

33
) (car

34
data

35
))

(let
36

res2 = (
37
(

38
map

39
op2

40
) (cdr

41
data

42
))

(
43

loop
44

(cons
45

(cons
46

(cons
47

#f
48

#f
49
) (car

50
data

51
))

(cons
52

(λ
53

w. #f
54
) (cdr

55
data

56
)))))))

(
57

loop
58

(cons
59

#f
60

#f
61
))))))

A.6 Source of the fib Benchmark

(letrec
1

fib = (λ
2
n. (if

3
(<=

4
n

5
1

6
) n

7
(+

8
(

9
fib

10
(−

11
n

12
1

13
)) (

14
fib

15
(−

16
n

17
2

18
)))))

(
19

fib
20

7
21
))

APPENDIX A. BENCHMARKS xxiv

A.7 Source of the gcd Benchmark

(letrec
1

mod = (λ
2
x. (λ

3
d. (−

4
x

5
(∗

6
(/

7
x

8
d

9
) d

10
))))

(letrec
11

gcd = (λ
12

b. (λ
13

s. (if
14

(=
15

s
16

0
17
) b

18
(

19
(

20
gcd

21
s
22
)

(
23
(

24
mod

25
b

26
) s

27
)))))

(let
28

gcd = (λ
29

x. (λ
30

y. (if
31

(>=
32

x
33

y
34
) (

35
(

36
gcd

37
x

38
) y

39
)

(
40
(

41
gcd

42
y

43
) x

44
))))

(
45
(

46
gcd

47
3

48
) 5

49
))))

A.8 Source of the tak Benchmark

(letrec
1

tak = (λ
2
x. (λ

3
y. (λ

4
z. (if

5
(<=

6
x

7
y

8
)

z
9

(
10
(

11
(

12
tak

13
(

14
(

15
(

16
tak

17
(−

18
x

19
1

20
)) y

21
) z

22
))

(
23
(

24
(

25
tak

26
(−

27
y

28
1

29
)) z

30
) x

31
))

(
32
(

33
(

34
tak

35
(−

36
z
37

1
38
)) x

39
) y

40
))))))

(
41
(

42
(

43
tak

44
18

45
) 12

46
) 6

47
))

A.9 Source of the n-queens Benchmark

(letrec
1

make-list =
(λ

2
n. (λ

3
v. (if

4
(=

5
n

6
0

7
) #f

8
(cons

9
v

10
(

11
(

12
make-list

13
(−

14
n

15
1

16
)) v

17
)))))

(letrec
18

list-ref =
(λ

19
l. (λ

20
n. (if

21
(=

22
n

23
0

24
) (car

25
l
26
) (

27
(

28
list-ref

29
(cdr

30
l
31
))

(−
32

n
33

1
34
)))))

(letrec
35

list-set =
(λ

36
l. (λ

37
n. (λ

38
v. (if

39
(=

40
n

41
0

42
)

(cons
43

v
44

(cdr
45

l
46
))

(cons
47

(car
48

l
49
)

(
50
(

51
(

52
list-set

53
(cdr

54
l
55
)) (−

56
n

57
1

58
)) v

59
))))))

(letrec
60

nq =

(λ
61

n.
(λ

62
i.

(λ
63

sw.
(λ

64
s.

(λ
65

se.
(if

66
(=

67
i
68

0
69
)

1
70

(letrec
71

loop =

(λ
72

j.
(if

73
(=

74
j
75

n
76
)

0
77

(+
78

APPENDIX A. BENCHMARKS xxv

(if
79

(
80
(

81
list-ref

82
sw

83
) j

84
)

(if
85

(
86
(

87
list-ref

88
s
89
) j

90
)

(if
91

(
92
(

93
list-ref

94
se

95
) j

96
)

(let
97

sw = (cdr
98

(
99
(

100
(

101
list-set

102
sw

103
) j

104
) #f

105
))

(let
106

s = (
107

(
108

(
109

list-set
110

s
111

) j
112

) #f
113

)

(let
114

se = (cons
115

(cons
116

#f
117

#f
118

)

(
119

(
120

(
121

list-set
122

se
123

) j
124

) #f
125

))

(
126

(
127

(
128

(
129

(
130

nq
131

n
132

) (−
133

i
134

1
135

)) sw
136

) s
137

)

se
138

))))

0
139

)

0
140

)

0
141

)

(
142

loop
143

(+
144

j
145

1
146

)))))

(
147

loop
148

0
149

))))))))

(let
150

nqueens =
(λ

151
n. (let

152
flags = (

153
(

154
make-list

155
(∗

156
2

157
n

158
)) (cons

159
#f

160
#f

161
))

(
162

(
163

(
164

(
165

(
166

nq
167

n
168

) n
169

) flags
170

) flags
171

) flags
172

)))

(
173

nqueens
174

4
175

))))))

A.10 Source of the ack Benchmark

(letrec
1

ack = (λ
2
m. (λ

3
n. (if

4
(=

5
m

6
0

7
) (+

8
n

9
1

10
)

(if
11

(=
12

n
13

0
14
)

(
15
(

16
ack

17
(−

18
m

19
1

20
)) 1

21
)

(
22
(

23
ack

24
(−

25
m

26
1

27
))

(
28
(

29
ack

30
m

31
) (−

32
n

33
1

34
)))))))

(
35
(

36
ack

37
4

38
) 0

39
))

A.11 Source of the SKI Benchmark

(letrec
1

append =

(λ
2
l1. (λ

3
l2. (if

4
(pair?

5
l1

6
) (cons

7
(car

8
l1

9
) (

10
(

11
append

12
(cdr

13
l1

14
)) l2

15
))

l2
16
)))

(letrec
17

eval =
(λ

18
exp. (if

19
(car

20
(car

21
exp

22
))

(
23

eval
24

(
25
(

26
append

27
(car

28
exp

29
)) (cdr

30
exp

31
)))

(let
32

c = (car
33

exp
34
)

(let
35

rest = (cdr
36

exp
37
)

(if
38

(pair?
39

rest
40
)

(let
41

arg1 = (car
42

rest
43
)

(let
44

rest = (cdr
45

rest
46
)

(if
47

(pair?
48

(cdr
49

c
50
))

(if
51

(pair?
52

rest
53
)

APPENDIX A. BENCHMARKS xxvi

(let
54

arg2 = (car
55

rest
56
)

(let
57

rest = (cdr
58

rest
59
)

(if
60

(pair?
61

(cdr
62

(cdr
63

c
64
)))

(if
65

(pair?
66

rest
67
)

(let
68

arg3 = (car
69

rest
70
)

(let
71

rest = (cdr
72

rest
73
)

(
74

eval
75

(cons
76

(cons
77

arg1
78

(cons
79

arg3
80

#f
81
))

(cons
82

(cons
83

arg2
84

(cons
85

arg3
86

#f
87
))

rest
88
)))))

exp
89
)

(
90

eval
91

(cons
92

arg1
93

rest
94
)))))

exp
95
)

(
96

eval
97

(cons
98

arg1
99

rest
100

)))))

exp
101

)))))

(
102

eval
103

(cons
104

(cons
105

(cons
106

(cons
107

#f
108

(cons
109

#f
110

(cons
111

#f
112

#f
113

)))

(cons
114

(cons
115

(cons
116

#f
117

(cons
118

#f
119

#f
120

))

(cons
121

(cons
122

(cons
123

(cons
124

#f
125

(cons
126

#f
127

(cons
128

#f
129

#f
130

)))

(cons
131

(cons
132

#f
133

#f
134

) #f
135

))

(cons
136

(cons
137

#f
138

#f
139

) #f
140

))

#f
141

))

#f
142

))

(cons
143

(cons
144

(cons
145

(cons
146

#f
147

(cons
148

#f
149

(cons
150

#f
151

#f
152

)))

(cons
153

(cons
154

(cons
155

(cons
156

#f
157

(cons
158

#f
159

(cons
160

#f
161

#f
162

)))

(cons
163

(cons
164

(cons
165

#f
166

(cons
167

#f
168

#f
169

))

(cons
170

(cons
171

#f
172

(cons
173

#f
174

(cons
175

#f
176

#f
177

))) #f
178

))

#f
179

))

(cons
180

(cons
181

(cons
182

(cons
183

#f
184

(cons
185

#f
186

(cons
187

#f
188

#f
189

)))

(cons
190

(cons
191

(cons
192

#f
193

(cons
194

#f
195

#f
196

))

(cons
197

(cons
198

#f
199

(cons
200

#f
201

#f
202

)) #f
203

))

#f
204

))

(cons
205

(cons
206

#f
207

#f
208

) #f
209

))

#f
210

))

#f
211

))

(cons
212

(cons
213

(cons
214

#f
215

(cons
216

#f
217

#f
218

))

(cons
219

(cons
220

(cons
221

(cons
222

#f
223

(cons
224

#f
225

(cons
226

#f
227

#f
228

)))

APPENDIX A. BENCHMARKS xxvii

(cons
229

(cons
230

#f
231

#f
232

) #f
233

))

(cons
234

(cons
235

#f
236

#f
237

) #f
238

))

#f
239

))

#f
240

))

#f
241

))

(cons
242

(cons
243

#f
244

#f
245

) #f
246

)))))

A.12 Source of the change Benchmark

(let ((queue-empty

(cons ’() ’())))

(let ((queue-insert

(lambda (q x)

(if (null? (car q))

(cons (cons x ’()) ’())

(cons (car q) (cons x (cdr q)))))))

(let ((queue-top

(lambda (q)

(car (car q)))))

(let ((queue-pop

(lambda (q)

(let ((head (cdr (car q))))

(if (null? head)

(cons (reverse (cdr q)) ’())

(cons head (cdr q)))))))

(let ((queue->list

(lambda (q)

(append (car q) (reverse (cdr q))))))

(let ((stratv->stratf

(lambda (v)

(let ((len (vector-length v)))

(let ((c (cdr (vector-ref v 0))))

(lambda (M)

(if (< M len)

(vector-ref v M)

(let ((n (quotient (+ (- M (- len 1)) (- c 1)) c)))

(let ((cpl (vector-ref v (- M (* n c)))))

(cons (+ n (car cpl)) c))))))))))

(letrec

((ret

(lambda (coins)

(if (null? (cdr coins))

(list->vector (cons (cons 0 1) ’()))

(let ((c (car coins)))

APPENDIX A. BENCHMARKS xxviii

(let ((rest (cdr coins)))

(let ((v (ret rest)))

(let ((f (stratv->stratf v)))

(let ((initq (queue-insert queue-empty (cons 0 c))))

(letrec

((loop2

(lambda (M wq nb-c sq)

(if (= nb-c c)

(list->vector (queue->list sq))

(let ((strat-hi (queue-top wq)))

(let ((wq (queue-pop wq)))

(let ((nb-c (if (= (cdr strat-hi) c)

(- nb-c 1)

nb-c)))

(let ((sq (queue-insert sq strat-hi)))

(let ((strat-lo (f M)))

(if (< (+ (car strat-hi) 1)

(car strat-lo))

(let ((strat

(cons (+ (car strat-hi) 1)

c)))

(let ((wq (queue-insert wq strat)))

(loop2 (+ M 1) wq (+ nb-c 1) sq)))

(let ((wq

(queue-insert wq strat-lo)))

(loop2 (+ M 1)

wq

nb-c

sq))))))))))))

(letrec

((loop1

(lambda (M wq nb-c)

(if (< M c)

(loop1 (+ M 1)

(queue-insert wq (f M))

nb-c)

(loop2 M wq nb-c queue-empty)))))

(loop1 1 initq 1))))))))))))

(ret (cons 25 (cons 17 (cons 4 (cons 3 (cons 1 ’()))))))))))))))))

A.13 Source of the interp Benchmark

(letrec ((zip

APPENDIX A. BENCHMARKS xxix

(lambda (l1 l2)

(if (null? l1)

’()

(cons (cons (car l1) (car l2)) (zip (cdr l1) (cdr l2)))))))

(let ((capply

(lambda (f)

(lambda (args) (apply f args)))))

(let

((std-alist

(append

(append

(append

(append (append (cons (cons ’null? (capply null?)) ’())

(cons (cons ’boolean? (capply boolean?)) ’()))

(append (cons (cons ’number? (capply number?)) ’())

(cons (cons ’equal? (capply equal?)) ’())))

(append (append (cons (cons ’= (capply =)) ’())

(cons (cons ’< (capply <)) ’()))

(append (cons (cons ’<= (capply <=)) ’())

(cons (cons ’+ (capply +)) ’()))))

(append (append (append (cons (cons ’- (capply -)) ’())

(cons (cons ’* (capply *)) ’()))

(append (cons (cons ’quotient (capply quotient))

’())

(cons (cons ’cons (capply cons)) ’())))

(append (append (cons (cons ’car (capply car)) ’())

(cons (cons ’cdr (capply cdr)) ’()))

(append (cons (cons ’cadr (capply cadr)) ’())

(cons (cons ’caddr (capply caddr)) ’())))))

(append

(append

(append (append (cons (cons ’cadddr (capply cadddr)) ’())

(cons (cons ’length (capply length)) ’()))

(append (cons (cons ’reverse (capply reverse)) ’())

(cons (cons ’append (capply append)) ’())))

(append

(append (cons (cons ’assoc (capply assoc)) ’())

(cons (cons ’vector-length (capply vector-length)) ’()))

(append (cons (cons ’vector-ref (capply vector-ref)) ’())

(cons (cons ’list->vector (capply list->vector)) ’()))))

(append

(append

(append

(cons (cons ’map (lambda (args)

(let ((f (car args)))

(map (lambda (x) (f (cons x ’())))

(cadr args)))))

APPENDIX A. BENCHMARKS xxx

’())

(cons (cons ’apply (lambda (args) ((car args) (cadr args))))

’()))

(append (cons (cons ’symbol? (capply symbol?)) ’())

’()))

’())))))

(let ((standard-environment

(lambda (v)

(cdr (assoc v std-alist)))))

(letrec ((ev

(lambda (exp env)

(if (boolean? exp)

exp

(if (number? exp)

exp

(if (symbol? exp)

(env exp)

(let ((kw (car exp)))

(if (equal? kw ’quote)

(cadr exp)

(if (equal? kw ’lambda)

(let ((fpars (cadr exp)))

(let ((body (caddr exp)))

(lambda (apars)

(let ((alist (zip fpars apars)))

(ev body

(lambda (v)

(let ((a (assoc v alist)))

(if a (cdr a) (env v)))))))))

(if (equal? kw ’if)

(if (ev (cadr exp) env)

(ev (caddr exp) env)

(ev (cadddr exp) env))

(if (equal? kw ’let)

(let ((binding (car (cadr exp))))

(let ((var (car binding)))

(let ((val (ev (cadr binding) env)))

(ev (caddr exp)

(lambda (v)

(if (equal? v var) val (env v)))))))

(if (equal? kw ’letrec)

(let ((binding (car (cadr exp))))

(let ((var (car binding)))

(let ((l-e (cadr binding)))

(letrec ((env2 (lambda (v)

(if (equal? v var)

(ev l-e env2)

APPENDIX A. BENCHMARKS xxxi

(env v)))))

(ev (caddr exp) env2)))))

((ev (car exp) env)

(map (lambda (e) (ev e env))

(cdr exp)))))))))))))))

(let ((eval (lambda (exp) (ev exp standard-environment))))

(eval

(cons ’letrec

(cons

(cons (cons ’foo

(cons (cons ’lambda

(cons ’()

(cons (cons ’foo ’()) ’())))

’()))

’())

(cons (cons ’foo ’()) ’()))))))))))

A.14 Source of the cps-QS-s Benchmark

(let ((CPS-=

(lambda (x y k) (k (= x y)))))

(let ((CPS-if

(lambda (res k1 k2) (if res (k1) (k2)))))

(let ((CPS-*

(lambda (x y k) (k (* x y)))))

(let ((CPS-modulo

(lambda (x y k) (k (modulo x y)))))

(let ((CPS-cons

(lambda (x y k) (k (cons x y)))))

(let ((CPS-null?

(lambda (x k) (k (null? x)))))

(let ((CPS-car

(lambda (x k) (k (car x)))))

(let ((CPS-cdr

(lambda (x k) (k (cdr x)))))

(let ((CPS-<

(lambda (x y k) (k (< x y)))))

(let ((CPS-<=

(lambda (x y k) (k (<= x y)))))

(let ((CPS-append

(lambda (x y k) (k (append x y)))))

(let ((CPS-k

(lambda (res) res)))

APPENDIX A. BENCHMARKS xxxii

(let ((gen-list

(lambda (g p k1)

(letrec ((loop

(lambda (n acc k2)

(CPS-= n 1

(lambda (tmp1)

(CPS-if tmp1

(lambda ()

(k2 acc))

(lambda ()

(CPS-* n g

(lambda (tmp2)

(CPS-modulo tmp2 p

(lambda (tmp3)

(CPS-cons n acc

(lambda (tmp4)

(loop tmp3 tmp4

k2))))))))))))))

(CPS-cons 1 ’()

(lambda (tmp5)

(loop g tmp5

k1)))))))

(letrec ((filter

(lambda (pred? l k3)

(CPS-null? l

(lambda (tmp6)

(CPS-if tmp6

(lambda ()

(k3 ’()))

(lambda ()

(CPS-car l

(lambda (tmp7)

(pred? tmp7

(lambda (tmp8)

(CPS-if tmp8

(lambda ()

(CPS-car l

(lambda (tmp9)

(CPS-cdr l

(lambda (tmp10)

(filter pred? tmp10

(lambda (tmp11)

(CPS-cons tmp9 tmp11

k3))))))))

(lambda ()

(CPS-cdr l

(lambda (tmp12)

APPENDIX A. BENCHMARKS xxxiii

(filter pred? tmp12

k3))))))))))))))))

(letrec ((quicksort

(lambda (l k4)

(CPS-null? l

(lambda (tmp13)

(CPS-if tmp13

(lambda ()

(k4 ’()))

(lambda ()

(CPS-car l

(lambda (pivot)

(CPS-cdr l

(lambda (rest)

(filter

(lambda (n k5)

(CPS-< n pivot

k5))

rest

(lambda (lows)

(filter

(lambda (n k6)

(CPS-<= pivot n

k6))

rest

(lambda (highs)

(quicksort lows

(lambda (tmp14)

(quicksort highs

(lambda (tmp15)

(CPS-cons pivot tmp15

(lambda (tmp16)

(CPS-append tmp14 tmp16

k4))))))))))))))))))))))

(gen-list 2 29

(lambda (tmp17)

(quicksort tmp17

CPS-k))))))))))))))))))

A.15 Source of the cps-QS-m Benchmark

(let
1

CPS-= = (λ
2
x. (λ

3
y. (λ

4
k. (

5
k

6
(=

7
x

8
y

9
)))))

(let
10

CPS-if = (λ
11

res. (λ
12

k1. (λ
13

k2. (if
14

res
15

(
16

k1
17

#f
18
) (

19
k2

20
#f

21
)))))

APPENDIX A. BENCHMARKS xxxiv

(let
22

CPS-∗ = (λ
23

x. (λ
24

y. (λ
25

k. (
26

k
27

(∗
28

x
29

y
30
)))))

(let
31

CPS-modulo = (λ
32

x. (λ
33

y. (λ
34

k. (
35

k
36

(−
37

x
38

(∗
39

(/
40

x
41

y
42
) y

43
))))))

(let
44

CPS-cons = (λ
45

x. (λ
46

y. (λ
47

k. (
48

k
49

(cons
50

x
51

y
52
)))))

(let
53

CPS-null? = (λ
54

x. (λ
55

k. (
56

k
57

(if
58

x
59

#f
60

(cons
61

x
62

x
63
)))))

(let
64

CPS-car = (λ
65

x. (λ
66

k. (
67

k
68

(car
69

x
70
))))

(let
71

CPS-cdr = (λ
72

x. (λ
73

k. (
74

k
75

(cdr
76

x
77
))))

(let
78

CPS-< = (λ
79

x. (λ
80

y. (λ
81

k. (
82

k
83

(<
84

x
85

y
86
)))))

(let
87

CPS-<= = (λ
88

x. (λ
89

y. (λ
90

k. (
91

k
92

(<=
93

x
94

y
95
)))))

(let
96

CPS-append =

(λ
97

x. (λ
98

y. (λ
99

k. (letrec
100

loop =

(λ
101

l. (if
102

l
103

(cons
104

(car
105

l
106

)

(
107

loop
108

(cdr
109

l
110

)))

y
111

))

(
112

k
113

(
114

loop
115

x
116

))))))

(let
117

CPS-k = (λ
118

res. res
119

)

(let
120

gen-list =
(λ

121
g.

(λ
122

p.
(λ

123
k1.

(letrec
124

loop =

(λ
125

n.
(λ

126
acc.

(λ
127

k2.
(

128
(

129
(

130
CPS-=

131
n

132
) 1

133
)

(λ
134

tmp1.
(

135
(

136
(

137
CPS-if

138
tmp1

139
) (λ

140
dummy. (

141
k2

142
acc

143
)))

(λ
144

dummy.
(

145
(

146
(

147
CPS-∗

148
n

149
) g

150
)

(λ
151

tmp2.
(

152
(

153
(

154
CPS-modulo

155
tmp2

156
) p

157
)

(λ
158

tmp3.
(

159
(

160
(

161
CPS-cons

162
n

163
) acc

164
)

(λ
165

tmp4. (
166

(
167

(
168

loop
169

tmp3
170

) tmp4
171

)

k2
172

))))))))))))))

(
173

(
174

(
175

CPS-cons
176

1
177

) #f
178

)

(λ
179

tmp5. (
180

(
181

(
182

loop
183

g
184

) tmp5
185

) k1
186

)))))))

(letrec
187

filter =
(λ

188
pred?.

(λ
189

l.
(λ

190
k3.

(
191

(
192

CPS-null?
193

l
194

)

(λ
195

tmp6.
(

196
(

197
(

198
CPS-if

199
tmp6

200
) (λ

201
dummy. (

202
k3

203
#f

204
)))

(λ
205

dummy.
(

206
(

207
CPS-car

208
l
209

)

(λ
210

tmp7.
(

211
(

212
pred?

213
tmp7

214
)

(λ
215

tmp8.
(

216
(

217
(

218
CPS-if

219
tmp8

220
)

(λ
221

dummy.
(

222
(

223
CPS-car

224
l
225

)

(λ
226

tmp9.
(

227
(

228
CPS-cdr

229
l
230

)

APPENDIX A. BENCHMARKS xxxv

(λ
231

tmp10.
(

232
(

233
(

234
filter

235
pred?

236
) tmp10

237
)

(λ
238

tmp11.
(

239
(

240
(

241
CPS-cons

242
tmp9

243
)

tmp11
244

)

k3
245

)))))))))

(λ
246

dummy.
(

247
(

248
CPS-cdr

249
l
250

)

(λ
251

tmp12. (
252

(
253

(
254

filter
255

pred?
256

) tmp12
257

)

k3
258

))))))))))))))))

(letrec
259

quicksort =
(λ

260
l.

(λ
261

k4.
(

262

(
263

CPS-null?
264

l
265

)

(λ
266

tmp13.
(

267
(

268
(

269
CPS-if

270
tmp13

271
) (λ

272
dummy. (

273
k4

274
#f

275
)))

(λ
276

dummy.
(

277
(

278
CPS-car

279
l
280

)

(λ
281

pivot.
(

282
(

283
CPS-cdr

284
l
285

)

(λ
286

rest.
(

287
(

288
(

289
filter

290
(λ

291
n. (λ

292
k5. (

293
(

294
(

295
CPS-<

296
n

297
)

pivot
298

)

k5
299

))))

rest
300

)

(λ
301

lows.
(

302
(

303
(

304
filter

305

(λ
306

n. (λ
307

k6.
(

308
(

309
(

310
CPS-<=

311
pivot

312
) n

313
)

k6
314

))))

rest
315

)

(λ
316

highs.
(

317
(

318
quicksort

319
lows

320
)

(λ
321

tmp14.
(

322
(

323
quicksort

324
highs

325
)

(λ
326

tmp15.
(

327
(

328
(

329
CPS-cons

330
pivot

331
) tmp15

332
)

(λ
333

tmp16.
(

334
(

335
(

336
CPS-append

337
tmp14

338
)

tmp16
339

)

k4
340

)))))))))))))))))))))

(
341

(
342

(
343

gen-list
344

2
345

) 29
346

)

(λ
347

tmp17. (
348

(
349

quicksort
350

tmp17
351

) CPS-k
352

))))))))))))))))))

