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Résumé 

La signalisation extracellulaire par les nucléotides régule d'importants pro­

cessus physiologiques via les récepteurs purinergiques. Dans les poumons, les 

nucléotides extracellulaires sont impliqués dans la défense primaire en facili­

tant la clairance mucociliaire et en augmentant la sécrétion du surfactant. Cet 

ouvrage comprend deux parties: la première traite de l'étude du mécanisme 

de la libération des nucléotides, particulièrement de l'ATP, par les cellules 

A549 (une lignée utilisée comme système modèle des cellules alvéolaires); 

et la seconde partie est consacrée à une méthode d'imagerie que nous avons 

développée pour pouvoir éventuellement étudier l'implication des nucléotides 

extracellulaires dans le contrôle de la hauteur du liquide de surface (L8). 

1. Pour la première partie, des cellules A549 ont été insérées dans une 

chambre à perfusion maintenue à 37 0 C et la sécrétion des nucléotides a 

été induite par un choc hypotonique de 50%. La concentration de l'ATP 

extracellulaire a été évaluée à l'aide d'un essai luciférine-luciférase. Nous 

avons testé des agents connus pour intervenir dans l'exocytose et dans 

les voies de signalisation calcique et purinergique. L'inhibition de l'exo­

cytose a réduit significativement la sécrétion de l'ATP et ce résultat 

indique qu'une exocytose Ca2+ -dépendante est le principal mécanisme 

de sécrétion de l'ATP par les cellules A549. De plus, l'étude exhaustive 

du signal calcique a révélé que la sécrétion de l'ATP dépend entière­

ment de la mobilisation du Ca2+ des sources intracellulaires et qu'il 

provient essentiellement du reticulum endoplasmique, une source sen­

sible à la thapsigargine. Toutefois, une petite fraction du signal calcique 

provient d'une source non identifiée, insensible à la thapsigargine et af­

fectée par le pH intracellulaire. Les concentrations extracellulaires des 

divers nucléotides ont également été évaluées par HPLC. Nos données 

indiquent que les nucléotides sécrétés lors d'un choc hypotonique aug­

mentent la sécrétion de l'ATP par un phénomène de feedback positif 

autocrine/ paracrine. 



2. Le montage expérimental conçu pour l'étude du LS comprend une 

chambre d'observation équipée d'un système de contrôle de la tem­

pérature et de l'humidité pour prévenir l'évaporation, et montée sur un 

microscope à épifluorescence. Les cellules sont cultivées sur filtre dans 

des conditions air-liquide et le filtre est ensuite inséré dans la chambre 

d'observation de façon à ce que la mono couche soient orientée perpen­

diculairement à l'objectif. Ce dispositif permet d'avoir une vue de profil 

du LS marqué avec une sonde fluorescente et de suivre avec une haute 

résolution temporelle les variations de sa hauteur. 

Cette étude aura contribué à une meilleure compréhension des mécanismes 

physiologiques impliquées dans la défense primaire des poumons par les nu­

cléotides extracellulaires et que cette connaissance pourra éventuellement 

servir au développement des nouvelles thérapies contre des maladies liées à 

des problèmes de clairance mucociliaire. 

Mot clés: 

signalisation purinergique, ATP extracellulaire, signalisation calcique, méca­

nisme de la sécrétion, exocytose, défense pulmonaire, liquide de surface pul­

monaire, système optique, chambre à observation latéral, micrOScopie d'épi­

fluorescence 
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Abstract 

Extracellular nucleotides, acting via purinoreceptors, regulate important 

physiological pro cesses in most body tissues. In the airways, extracellular 

nucleotides are implicated in the primary defence mechanism by potentiat­

ing mucociliary clearance and surfactant secretion. Two different approaches 

for studying extracellular nucleotides on the lung epithelium are presented 

and divide this thesis into two parts. The first part focuses on the physio­

logical aspect of nucleotide release, especially ATP, from the alveolar type II 

cellline A549 and the second on the development of a side-viewing technique 

for the observation of ATP-dependent airway surface liquid (ASL) height 

variations: 

1. While previous results showed that cell-swelling induced ATP secre­

tion, and that this secretion was tightly correlated with an intracellu­

lar Ca2+ elevation, the present research was designed to establish the 

mechanism which is responsible for nucleotide release from A549 cells. 

Moreover, the source and the progress of the intracellular Ca2+ sig­

nal were thoroughly analyzed. In this study, nucleotide release from 

A549 cells was induced by a 50% hypotonie shock in a flow-through 

chamber at 37
0 C. Agents, known to interfere with the exocytotic 

process, intracellular Ca2+ signalling and purinergic signalling, were 

applied, and the ATP concentration in the perfusate aliquots was de­

termined with a luciferase-Iuciferin assay. The individual concentra­

tion of aIl nucleotides was determined by HPLC. The inhibition of 

the exocytotic pro cess significantly reduced ATP secretion and indi­

cated a Ca2+ -dependent exocytosis as the principal release mechanism. 

The study of the Ca2+ signal revealed that ATP release depended en­

tirely on Ca2+ mobilization from intracellular stores, primarily from 

the thapsigargin-sensitive endoplasmic reticulum and to a lesser ex­

tent from an unidentified thapsigargin-insensitive source, which was, 

however, sensitive to intracellular pHalterations. FinaIly, ceIl-swelling 



induced, Ca2+ -dependent ATP release from A549 ce Us was shown to 

be amplified by a positive autocrinejparacrine feedback of co-released 

nucleotides. 

2. The side-viewing imaging technique was designed and constructed for a 

potential time-resolved study of ASL height alterations upon stimula­

tion with extraceUular ATP. A custom-designed side-viewing chamber 

was mounted on the microscope stage and was equipped with a tem­

peraturejhumidity control system to keep an in vitro ceU culture in a 

physiological environment and to prevent the ASL from insensible water 

loss. The chamber was comprised of a housing including a perforated 

knob, which accommodated a filter insert with an air jliquid grown cell 

monolayer and aUowed perfusion of the basal side. The housing posi­

tioned the filter insert perpendicular to the microscope objective and 

enabled a direct observation of fiuorescently labeUed ASL through an 

epifiuorescence microscope. 

These two areas of study aim to contribute to a better understanding of the 

physiological mechanisms involved in the primary lung defence via extracel­

lular nucleotides. This knowledge is the basis for the development of novel 

therapies especiaUy against diseases of impaited mucociliary clearance. 

Keywords: 

purinergic signalling, extracellular ATP, Ca2+ -signalling, release mechanism, 

exocytosis, airway defence, airway surface liquid, optical system, side-viewing 

microscopy, epifiuorescence microscopy 
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Introduction 

In the lungs, on a surface of 140 m2
, the blood is separated from the air by 

a tissue barrier of only 0.5 - 30 /-Lm [11. This huge surface, which is almost 

directly exposed to the environment, risks being damaged resulting from 

contamination by bacteria, viruses and pollutants. To protect the lung from 

these harmful airborne insults, the respiratory tract has a range of powerful 

and effective defence mechanisms. Dysfunction of any of these mechanisms 

can result in respiratory diseases, among which cystic fibrosis (CF) is one of 

the most severe [21. 
Sneezing and coughing are reflex defence mechanisms, providing the most 

instantaneous protection against airway irritants. The non-reflex mechanisms 

are independent units, and consist of the following processes: 

• Physical defence: 

1. Air-conditioning is based on cooling, warming and humidification 

of the inhaled air through the evaporation of water from the airway 

surface liquid (ASL), which lines the air-conductive part of the 

respiratory tract [3]. 

2. Air-filtration is based on the elimination and deposition of inhaled 

particles on the ASL-covered ciliated epithelium. Its efficiency is 

augmented by the anatomic structure of the lung with its bronchial 

tree [1] . 

• Chemical defence is based on the ability of the ASL to buffer and dilute 

inhaled toxic substances [4, 5]. 
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• Cellular def~nce consists of the innate immunity response1 to an invad­

ing microbe. The innate responses use phagocytic cells (neutrophils, 

monocytes, macrophages), cells that release infiammatory mediators 

(basophils, mast cells, and eosinophils), and natural killer cells [6, 7]. 

An important stage in cellular defence is the adhesion of the invading 

microbe to the airway fiuids, i.e. the ASL in the air-conductive part 

and the alveolar fiuid in the gas-exchange alveoli [8] . 

• Humoral defence is based on the secretion and effectivity of diverse 

biomolecules in the airway fiuids. These biomolecules can be classified 

as: antimicrobial proteins, immunoglobulins, cytokines and infiamma­

tory mediators, as weIl as antioxidants [9]. They can be released either 

continuously as a constant constituent of the airway fiuids (e.g. an­

timicrobial surfactant proteins in the alveoli [10]) or temporary during 

an innate immunity response (e.g. cytokines, infiammatory mediators 

[9]). 

In aIl of these non-refiex defence mechanisms, the airway fiuids, which line 

the entire respiratory tract, play a crucial role in the successful maintenance 

of a sterile environment: 

The ASL provides through its well-regulated periciliary fiuid and mucus 

layer the best conditions for an effective mucociliary clearance. In this 

clearance process, particles bigger than 2 - 3 /-Lm adhere on the mucus 

and are transported out of the airways by synchronous beats of cilia on 

epithelial cells. 

The alveolar fluid contains surfactant proteins, among other bioactive mol­

ecules, that are synthesized and secreted by alveolar type II cells (AT II), 

one of the major cell types in the alveolar epithelium. Surfactant pro­

teins, apart from their role in the reduction of surface tension in the 

lung, enhance phagocytosis by opsonizing2 bacteria and other parti­

cles [10, 12]. 

IThe innate immune system consists of the immune defence that lacks immunologie 
memory [61. 

20psonization is the process whereby particles become coated with molecules that allow 
them to bind to receptors on phagocytes [11]. 
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Surfactant secretion from AT II ceUs [13], mucus secretion from goblet ce Us 

[14], and ciliary beat frequency on ciliated ceUs [15, 16] are aIl stimulated by 

extracellular ATP through purinergic receptors. Airway fluid homeostasis is 

likewise controlled by extraceUular ATP through the regulation of transep­

ithelial Cl- transport 117]. 

This dissertation focuses on the significance of ATP and other nucleotides 

on the lung epithelium, which act as extracellular signalling molecules via 

purinergic receptors. Two different approaches for studying the involvement 

of extraceUular nucleotides in lung defence are presented here, and therefore 

divide this Ph.D. thesis into two parts. 

Part l, which comprises article 1 and article 2 (see sections 3.1 and 3.2, re­

spectively), deals with the investigation of the mechanism of Ca 2+ -dependent 

secretion of nucleotides and adenosine from A549 ceUs. A general introduc­

tion to extracellular ATP as a signalIing molecule is given in section 1.1. 

Section 2.2 describes our set-up system for ATP release and the analytical 

method for its quantitative evaluation via bioluminescence. The A549 celI 

line is a model system for the study of AT II cell function and is briefly char­

acterized in appendix A.1.2. Various types of mechanical stress, including 

membrane stretch and shear stress, provoke ATP-dependent surfactant se­

cretion from AT II ceUs [18, 19, and references therein]. For the investigation 

of the associated ATP and nucleotide secretion, we chose hypotonie shock as 

an in vitro example of mechanical stress. This choice was motivated by the 

following reasons: 

• Transient reorganization of actin cytoskeleton induced by hypotonie 

stress is quite similar to that induced by shear stress [19-21]. 

• Reported hypotonie stress-induced responses share sorne common char­

acteristics with those that are shear stress-induced: both of these 

stresses induce ATP release in the endothelium [22, 23]. 

• Shear stress-activated chloride current is similar to hypotonic stress­

activated volume-regulated anion channel (VRAC) current [24, 25]. 
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The investigation of hypotonie stress-induced ATP-release provides, there­

fore, significant information about its mechano-sensitive release mechanism. 

In addition, hypotonie stress can be easily applied on liquid-covered cell­

cultures (see appendix A.1), and does not require any sophisticated set-up, 

unlike mechanical stress. The magnitude of hypotonie stress can be easily 

controlled by the degree of solvent dilution. 

As previously reported, a hypotonie shock induces a Ca2+ signal that is 

tightly involved in ATP [26] and surfactant release [27] from A549 cells. Sec­

tion 1.2 off ers a general physiological insight into Ca2+ signalling, whereas 

section 2.3 addresses ratiometric imaging as a measuring technique for intra­

cellular Ca2+ alteration. For the extensive study of the ATP release mecha­

nism and the Ca2+ signal, pharmacological agents were used to interfere with 

the exocytotic process, the Ca2+ signal and purinergic signalling. A complete 

list of these agents with their description is provided in appendix A.3. 

Part II of this Ph.D. thesis concerns the design and construction of a side­

viewing method based on epifluorescence microscopy. The aim of this method 

is to achieve a time-resolved ('" 100 ms) observation of ASL height on in vitro 

cell cultures, which will potentially provide a possibility to study ASL height 

variations upon stimulation of ATP secretion. The technique is described in 

article 3, chapter 6. Basic properties of the ASL and its regulation via ex­

tracellular ATP are described in chapter 4. The fundamentals of microscopy, 

which were necessary for the development of this technique, are explained in 

chapter 5. AlI technical drawings of the side-viewing system are reproduced 

in appendix C. 

Every analytical method applied in the course of this Ph.D. project, Le. 

bioluminescent ATP evaluation, fluorescent intracellular Ca2+ imaging and 

fluorescent ASL height measurement, is based on the principles of lumines­

cence. Section 2.1 describes the princip les responsible for the similarities and 

differences between these methods. The conclusions and the outlook for both 

parts of this thesis are given jointly at the end of part II in chapter 7. 



Part 1 

Mechanism of ATP release 



Chapter 1 

Physiological background 

1.1 Extracellular ATP 

1.1.1 Introduction 

In 1929 Drury and Szent-Gyorgyi were the first to describe potential actions 

of extracellular adenosine 5'-monophosphate (AMP) and adenosine on the 

mammalian heart muscle [28]. Fundamental studies of the effect of adenine 

nucleotides on cardiovascular physiology followed and were reviewed in a 

book by Green and Stoner in 1950 [29]. A few years later, adenosine S'­

triphosphate (ATP) was shown to be released from the adrenal medulla and 

sensory nerves following stimulation [30, 31]. In 1963, Robert M. Berne 

published a paper proposing a possible role for adenosine in the control of 

blood fiow to the heart [32]. This work set the direction for the following 

years in the research field of extracellular signalling by adenosine. Ensuing 

studies on the transduction mechanisms triggered by extracellular adenosine 

were carried out by Sattin and RaIl [33]. 

In 1972 Burnstock postulated that ATP was a neurotransmitter involved in 

non-adrenergic, non-cholinergie responses of smooth muscles in the gastroin­

testinal tract and the bladder, and introduced the term "purinergic" [34]. 

With his comment entitled liDo sorne nerves release more than one trallsmit­

ter?" [35], he challenged the hitherto accepted Dale's principle, which stated 

that each neuron releases only one synaptic transmitter, and substantially 
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infiuenced the development of the concept of purinergic signalling. However, 

given the fact that ATP was initialIy recognized by Lipmann as the universal 

energy carrier of alIliving celIs in the early 1940s [36], Burnstock's work ex­

perienced resistance to this new concept. Only in the early 1990s was ATP 

finally recognized as an important signalling mole cule that mediates diverse 

biological effects via celI surface receptors - termed purinergic receptors [37]. 

To date, these receptors have been found in almost all organs, tissues and 

celIs in the body [38]. 

In 1978 Burnstock provided a basis for distinguishing two types of purinergic 

receptor families, named Pl (adenosine) and P2 (ATP, ADP and UTP, UDP) 

[39]. Since then, four subtypes of Pl receptors have been cloned: Al, A2A' 

A2B and A3 [40]. AlI Pl adenosine receptors are typical G protein-coupled 

(metabotropic) receptors (see page 21). 

The P2 receptors were further subdivided into a P2X family of ligand-gated 

ion channel (ionotropic) receptors and a P2Y family of metabotropic recep­

tors. Currently, seven subtypes of the P2X family and eight subtypes for the 

P2Y family have been cloned and functionalIy characterized [38]. 

1.1.2 Purinergic signalling in the lung epithelium 

P2 receptors are widely distributed throughout the lung. P2Y2, P2Y4 , and 

P2Y 6 are the predominant and the most relevant receptor types in airway 

epithelial cells. Several P2X receptor subtypes have also been identified, 

primarily the P2X4 receptor [38, 41]. 

A549 celIs, an in vitro model of the alveolar type II (AT II) epithelium (see 

appendix A.1.2), express the P2Y2 receptor, which responds equally to ATP 

and UTP, as well as the P2Y6 receptor, whose agonist is UDP and to a much 

smaller extent UTP and ATP [38,42]. Recently, they have been found to also 

express the UDP-glucose specifie Gi protein-coupled P2Y 14 receptor [43]. 

16HBE14o- celIs, a human bronchial epithelial celIline (see appendix A.1.1), 

express the P2X4 and P2Xs receptors, both activated through ATP, and the 

P2Y4 receptor, which responds to UTP and ATP [44,45]. 
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Purinergic receptors transfer various signaIs and cause diverse effects in air­

way epithelial cells. In AT II cells, surfactant release is stimulated and reg­

ulated via P2Y receptors [46, 47]. The most potent endogenous stimulus 

for surfactant secretion is extracellular ATP. Several second messengers are 

activated in AT II cells following agonist binding: intracellular Ca2+ is mo­

bilized, prostaglandin levels increase, and PKC is activated [13, 47]. 

ATP also exerts various effects on bronchial cells. Ciliated epithelial cells 

show an increase in ciliary activity in response to ATP enhancing mucocil­

iary transport [48, 49]. Goblet cells are induced to synthesize and secrete 

mucins in response to extracellular ATP [50, 51]. Clara, serous and ciliated 

ce Ils are stimulated by ATP and UTP to secrete Cl- and HCO; [52, 53]. 

AlI these effects are involved in the regulation of the airway surface liquid 

(ASL) volume. The ASL volume in turn is crucially involved in the efficient 

removal of noxious materials from the airway surfaces, and constitutes the 

lung's powerful primary defence mechanism (see chapter 4). 

Airway epithelial cells release nucleotides under basal conditions and, in am­

plified form, after stimulation (e.g. shear stress, hypotonie stress, stretch) 

[54-56]. These released nucleotides are metabolized by surface-attached ecto­

nucleotidases by sequential dephosphorylation (e.g. into ADP, AMP, and 

adenosine) [57]. This pro cess terminates the large transient effects mediated 

by ATP and UTP and produces a sustained P2Y6 receptor-mediated event 

[58, 59]. 

1.1.3 Release mechanisms of ATP 

The cytoplasmic level of ATP under normal metabolic conditions is 

5 - 10 mmol· 1-1
• This concentration is essential for maintaining the mem­

brane potential and a low intracellular Ca2+ level, for assuring the synthesis 

of GTP and the activity of the G-proteins, for the signal transduction through 

various protein kinases, and for certain steps of exocytosis [60]. 

ATP and other nucleotides are also present in various types of organelles 
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especially in the ER and Golgi, where ATP is required for the phosphoryla­

tion of transmembrane and secretory proteins and for other energy-requiring 

processes, such as the dissociation of complexes between chaperones and cor­

rectly folded and assembled proteins, disulfide formation and protein poly­

merization [61, 62]. Since ATP and other nucleotides are heavily charged 

molecules, they cannot pass the membranes by simple diffusion. Therefore, 

specifie transporters are assumed to facilitate their uptake [61-64]. 

At first, it was assumed that the only source of extracellular ATP acting on 

purinoceptors was damaged or dying cells. But it is now recognized that 

ATP release following stimulation does not occur only through ceIllysis but 

primarily through a weIl-controlled physiological mechanism [65]. There is an 

active debate, however, about the precise transport mechanism(s) involved. 

There are at least three general mechanisms by which ATP release may occur 

[65, 66] (see Fig. 1.1 on page 10): 

Cytolysis during cell membrane damage or death - contributing to patho­

physiological mechanisms. 

Exocytosis of ATP-filled vesicles or granules. 

Facilitated diffusion through ATP release channels or through ATP trans­

porters (e.g. ABC proteins). 

For a long time, exocytosis was considered as the common release mechanism 

of neurotransmitters [67]. As a neurotransmitter, ATP is also believed to be 

released through exocytosis; however, non-exocytotic release has not been 

dismissed yet [37, 60, 68]. The evidence of Ca2+ dependence in the process 

of ATP release is typically consistent with regulated exocytosis [69] (see also 

section 1.2.2). 

For ATP release from non-neuronal ceIls, various transport mechanisms have 

been proposed, including ATP-binding cassette (ABC) transporters [70-72], 

connexin or pannexin hemichannels [73-75], plasmalemmal voltage-dependent 

anion channels (VDAC) [76], as weIl as vesicular exocytosis [26, 77, 78]. 
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Figure 1.1: Potential ATP release mechanisms: 

(A) cytolysisj (B) exocytosisj (C) facilitated diffusion - ATP channel, carrier 
protein ( transporter) 

10 

The biggest controversy arose when the cystic fibrosis transmembrane con­

ductance regulator (CFTR), one of the most common ABC proteins in eu­

cariotic organisms, was suggested to conduct ATP [71]. Since then, various 

papers have described the observation of ATP transport by ABC proteins 

[79]. On the other hand, many other studies have convincingly determined 

the inability of ABC proteins to transport ATP [80-83]. Various efforts were 

made to explain earlier daims to the role of ABC proteins as ATP channels, 

such as differences in experimental set up or conditions [79]. 

Other possibilities for an implication of CFTR on ATP release were also pro­

posed, such as the regulation of an associated ATP channel [84] or even the 

regulation of exocytosis [79]. 

To conc1ude, exocytosis appears to predominate as release mechanism, al­

though sorne cell types may also release ATP by several parallel mechanisms, 

such as by exocytosis and through the activation of VDAC-like channels. 

Whichever way ATP and other nucleotides are released from the cells, their 

extracellular importance is finally weIl established. 



CHAPTER 1. PHYSIOLOGICAL BACKGROUND 11 

1.2 Intracellular calcium 

1.2.1 Overview 

Ca2+ in the organism 

Ca2+ is the most abundant metal ion in the body. An average adult body 

contains in total around 1 kg of calcium, 99% of which is a component of 

the skeleton in form of calcium phosphate and the remaining 1 % is present 

in the extracellular fluid3 and the cellular protoplasm4 [85]. 

The free Ca2+ level in the extracellular fluid is he Id close to 1 mM, which 

allows the body to manipulate the precipitation of phosphates by slightly 

modifying phosphate and Ca2+ concentrations and, in this way, to build up 

bones and teeth. In the cytosol of eukaryotic cells, the resting level of free 

Ca2+ is closely controlled to around 100 nM. The large gradient from extra­

cellular fluid to cytosol of about 10 000 is held up by actively pumping Ca2+ 

out of the cytosol, either into the extracellular space or into intracellular or­

ganelles, such as the endoplasmic reticulum (ER), which accumulates Ca2+ 

close to a concentration of 1 mM and serves as an intracellular Ca2+ store. 

The intracellular and extracellular Ca2+ level is further buffered by certain 

Ca2+ -binding proteins, such as parvalbumin, calmodulin and calbindin [86]. 

With the toolkit of intracellular Ca2+ stores, channels, pumps and Ca2+­

binding proteins of various binding affinity and kinetics, a cell is capable 

of precisely regulating alterations of the intracellular Ca2+ level both tem­

porally and locally. Accordingly, specific triggers can increase the cytosolic 

Ca2+ level up to 500 - 1000 nM in different spatial and temporal domains by 

opening channels in the ER and/or plasma membrane. These Ca2+ signaIs, 

in turn, can controllocalized pro cesses (e.g. exocytosis) and global responses 

(e.g. myocyte contraction) as weIl as responses of extremely wide time scale, 

from microseconds (e.g. activation of ion channels) to many hours, weeks, 

months or even years (e.g. synaptic plasticity, memory, long-term adapta-

3Extracellular fluid encompasses the blood plasma, the intersitial fluid and the 
lymph [Il]. 

4The protoplasm is the substance within a cell enclosed by the cell membrane. It 
encompasses the cytosol and all organelles [11]. 
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tion, neuronal ageing) [87]. Almost every cellular process - from fertilization 

to apoptosis - includes a Ca2+ -dependent step, making the Ca2+ ion the most 

versatile and universal signalling agent in advanced biological systems [88]. 

Properties of the Ca2+ ion 

The following properties make the Ca2+ ion suitable for this unique role: 

Ca2+ is a large divalent cation with a radius of 0.95 Â. It is widely available 

since it is abundant in most natural waters in the presence of common anions 

such as CI-, RCOi and NOi [86]. The charge-to-size ratio distinguishes the 

Ca2+ ion from ions of similar size, such as Na+, and from ions of equal charge, 

such as Mg2+ and Zn2+ [86]. It also provides the Ca2+ ion with a particularity 

in structure and thermodynamic affinity for certain classes of ligands, as well 

as in reaction rates, which are summarized under the following three points: 

• Structure 

Ions with a radius r 2: 0.75 A, such as Ca2+, allow irregular coor­

dination geometry, bond angle, bond distance, and high coordination 

numbers (7-10) in their complexes. This flexibility enables them to eas­

ily adjust to steric crowding5 . Ca2+ differs in this respect strongly from 

Mg2+ (r = 0.6 A) - an ion equally abundant in the body and essential 

for numerous biochemical pro cesses - which is strictly octahedral in 

symmetry, and from Zn2+ (r = 0.65 A) which is strictly tetrahedral 

in symmetry. Only conformational changes induced by binding to a 

Ca2+ ion will lead, therefore, to activation of Ca2+ -sensitive proteins. 

Based on the high coordination number, Ca2+ is, furthermore, an ideal 

cross-linking agent for proteins and biopolymers [86] . 

• Kinetics 

Ca2+ has a much lower tendency to form complexes than Mg2+, whose 

complexes with monodentate ligands, such as water, are relatively sta­

ble. Ca2+, in contrast, exchanges water very rapidly, with a rate close 

5Steric crowding occurs when a large number of functional groups belonging to one 
or several mole cules accumulate inside a restricted area - usually around an ion. It very 
often results in steric hindrance of the individual groups. 
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to the collisional diffusion limit of 1010 S-l. The activation speed of a 

protein through complexation of Ca2+ is, therefore, diffusion-limited, 

whereas the extent and duration of activation by a single Ca2+ ion is 

limited by the stability of the protein-Ca2+ complex [86] . 

• Binding 

In contrast to monodentate ligands, multidentate ligands can form very 

stable chelation complexes with Ca2+, whose stability constants exceed, 

in this case, those for Mg2+. Within a multidentate ligand, Ca2+ is 

even able to interact with neutral oxygen donors such as carbonyls and 

ethers. This increase in stability and affinity can be attributed to steric 

factors, which favour the bigger ion to accommodate the donor atoms 

in a more convenient way [86]. 

Discovery of Ca2+ as signalling agent 

The importance of Ca2+ for signal transduction was discovered by Sydney 

Ringer at the end of the 19th century. He showed that Ca2+ ions were indis­

pensable for fish survival, development of fertilized eggs, muscle contraction, 

and ceIl adhesion [89-93]. Shortly after, Locke [94], and then Overton [95], 

found that Ca2+ is necessary for signal transmission between nerve and mus­

cle. But only half a century later, a general theory of Ca2+ as a universal 

second messenger was promulgated by Lewis Victor Heilbrunn in his book 

An Outline of General Physiology [96]. There he wrote: "The reaction ofthis 

calcium with the protoplasm inside the ceil is the most basic of ail protoplas­

mic reactions." This theory was ignored for another couple of decades, until 

the invention of the patch clamp technique and the synthesis of fluorescent 

Ca2+ indicators paved the way for the establishment of Ca2+ signalling as 

the most ubiquitous and pluripotent signalling system involved in almost aIl 

known cellular pro cesses [97]. 

Nowadays, a vast number of research articles and reviews, dedicated to Ca2+ 

signalling, is being published every year. Many aspects of Ca2+ signalling 

(e.g. sources of Ca 2+, Ca 2+ channels and pumps, local and global signalling, 

and trigger and responses) in physiology and pathophysiology of diverse cell 
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systems are being addressed and investigated. 

The following two sections will introduce sorne of the principles of Ca2+ 

signalling by focusing this broad topic on the aspects that are relevant to 

this Ph.D. thesis, Le. the variety of intracellular Ca2+ stores, the types of 

Ca2+ events, the variety of stimuli that can trigger Ca2+ signalling, and, 

finally, exocytosis as an example for Ca2+ -regulated processes. 

1.2.2 Basics of calcium signalling 

Intracellular calcium stores 

As mentioned above, the concentration of free Ca2+ -ions in the cytosol is 

precisely regulated, and can rapidly increase in response to various types of 

stimuli. A rise in the cytosolic Ca2+ concentration can be caused by the 

opening of Ca2+ channels in the plasma membrane and/or by the release of 

Ca2+ from internaI stores. The major intracellular pool of Ca2+ is the ER 

with two subsets of Ca2+ release channels: the Ca2+ -gated Ca2+ release chan­

nel, generally known as ryanodine receptor (RyR) , and the IP3~gated Ca2+ 

release channel, referred to as IP3-receptor (IP3R) [98]. Almost aIl other or­

ganelles of an eukaryotic cell, such as the mitochondria, the nucleus, the Golgi 

apparatus, lysosomes and acidic secretory granules were also found to play 

a significant role in the shaping of cytosolic Ca2+ signalling in various cells 

[99-102]. AlI of these organelles have both specifie Ca2+ release channels and 

Ca2+ uptake mechanisms. A more recent concept of Ca2+ signalling involves 

even the cytoskeleton of the cell. Ca2+ storage at high-affinity binding sites 

of F-actin subunits were shown to be involved in the store-operated Ca2+ 

influx pathway, in Ca2+ spiking and oscillations, as well as in Ca2+ induced 

Ca2+ release (CICR) [103]. Figure 1.2 on page 15 illustrates the potential 

Ca2+ stores within a cell with the major transport pathways responsible for 

Ca2+ movemertt. Each of these stores will be briefly characterized in the 

following descriptions. 

The Endoplasmic Reticulum (ER) is an organelle found in aIl eukaryotic cells. 



Figure 1.2: Schematic drawing of a cell showing parts of its structure responsible for controlled intracellular Ca2+ 
movement. 

PTP, permeability transition pore; SOC, store-operated Ca2+ channel; PMCA, plasma membrane Ca2+ 
ATPase; ER, endoplasmic reticulum; IPsR, inositol-l,4,5-triphosphate receptor; RyR, ryanodine receptor; SERCA, 
sarcojendoplasmic reticulum Ca2+ ATPasej INM, inner nuclear membrane; ONM, outer nuclear membrane; cADPR, 
cyclic ADP-ribose 
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It forms a complex continuous network system of endomembranes which can 

be structurally divided into rough ER, smooth ER and nuclear membrane. 

The entire ER controls a wide range of cellular pro cesses such as synthesis 

and st orage of transmembrane and secretory proteins, lipids, steroids and 

other biomolecules [11]. Mainly the smooth ER also plays a central role 

in signalling processes by producing local or global Ca2+ fluctuations. It 

releases Ca2+ into the cytosol through RyR Ca2+ channels via CI CR and 

cyclic ADP-ribose (cADPR) activation [87], or through IP3R Ca2+ channels 

via IP3-induced Ca2+ release (II CR) [104]. The role of the ER as an internaI 

Ca2+ store and signalling organelle is supported by several families of proteins 

localized in the endomembrane as weIl as within the ER lumen: especially 

by the Ca2+ pumps, which belong to the sarcojendoplasmic reticulum Ca2+ 

ATPase (SERCA) type, three types of IP3R and three types of RyR Ca2+ 

release channels, as weIl as intraluminal Ca2+ -binding proteins most of which 

also serve as Ca2+ -regulated enzymes. It is, furthermore, supported by the 

high degree of organization with specialized regions that are localized close to 

areas where they can generate specific Ca2+ signaIs [104]. Since the ER has 

a finite capacity, its signalling function depends on the abundance of Ca2+ in 

its lumen. To prevent Ca2+ store depletion, the cell employs a store-operated 

entry mechanism to ensure a sufficient replenishment of the ER with Ca2+. 

The entry of Ca2+ takes place through store-operated Ca2+ channels (SOC) 

in the plasma membrane after their stimulation by an empty ER. The nature 

of the signal emanating from the ER and the identity of the SOCs were a 

matter of debate for 20 years. Only recently were two major players in the 

signalling and permeation mechanism discovered: an ER Ca2+ -sensor, called 

STIM16 , was found to be involved in the activation of SOCs by triggering 

Orai proteins, which constitute subunits of SOCs, to form a pore [105, 106]. 

The Mitochondria are functionally closely connected with the Ca2+ signalling 

function of the ER. They cooperate in generating Ca2+ signaIs of precise 

shape, the ER releasing Ca2+ and the mitochondria assisting in the recovery 

6STIMl is a single spanning membrane protein with an unpaired Ca2+ binding EF­
hand. 
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phase by rapidly sequestering it. After the recovery phase, the mitochondria 

return the sequestered Ca2+ back to the ER [107]. At equilibrium, most of 

the Ca2+ resides within the lumen of the ER. During a Ca2+ signal, Ca2+ 

moves from the ER lumen into the mitochondria, where it indu ces the gen­

eration of reactive oxygen species (ROS) [107]. ROS can feedback to the ER 

and sensitize its Ca2+ release channels. This ROS-dependent sensitization 

of the Ca2+ release channels is particularly important wh en the cell has to 

generate repetitive Ca2+ spikes [104, 108]. A prolonged shift of Ca2+ from 

the ER to the mitochondria induces a number of stress signaIs (including 

ROS) which triggers the onset of apoptosis by activating the formation of a 

permeability transition pore (PTP) [108]. 

The Nucleus is surrounded by a double membrane, the nuclear envelope, that 

separates it from the cytoplasm. Both of the membranes have characteristics 

of the ER, the outer nuclear membrane (ONM) containing a SERCA and 

the inner nuclear membrane (INM) containing IP3R and RyR Ca2+ channels 

[102]. The nuclear envelope contains large nuclear pores with a large ion 

conductance which is drastically reduced either after accumulation of Ca2+ 

inside the nuclear envelope or by transport of macromolecules through nu­

clear pore complexes [102]. Upon stimulation, many cells exhibit Ca2+ signaIs 

both in the cytosol and the nucleus. The following ways of nuclear Ca2+ sig­

nal generation exist: • Ca2+ may reach the nucleus directly from the cytosol 

through the nuclear pores [102]. • Nuclear Ca2+ signaIs can be triggered 

independently of cytosolic Ca2+ signaIs by direct release of Ca2+ from the 

nuclear envelope. IP3 , cADPR and nicotinic acid adenine dinucleotide phos­

phate (NAADP) were observed to indu ce such a release [102] .• Ca2+ cou Id 

be released to the nucleoplasm from Ca2+ containing microvesicles which re­

side in the nucleoplasm [102]. In contrast to the mitochondria and the ER, 

the nucleus does not act as a Ca2+ sink. Rather, the nuclear envelope is 

destined to slow down the cytosolic Ca2+ wave to the nucleus since a rise in 

nuclear Ca2+ controls specific nuclear pro cesses such as gene transcription, 

development, protein transport into the nucleus and cell growth [109]. 
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The Golgi Apparatus primarily pro cesses, sorts and packs macromolecules 

synthesized by the cell for secretion (exocytosis) or for use wi thin the cell. 

Changes in Ca2+ concentration either within the Golgi lumen or in the ad­

jacent cytosol regulate Golgi function. In addition, the Golgi apparatus 

contains a release and sequestration apparatus for Ca2+ which accumulates 

it to a concentration of around 300 J.LM [110]. The generation of IP3 stim­

ulates Ca2+ release from the Golgi through the IP3R release channel which 

is the only Ca2+ release channel found in the Golgi membrane. The Golgi 

apparatus contains, furthermore, two types of Ca2+ ATPases, one of which 

is a thapsigargin-sensitive SERCA and the other a thapsigargin-insensitive 

secretory pathway Ca2+ ATPase (SPCA) [110]. The Golgi collaborates with 

the ER - with different kinetics - in elevating cytosolic Ca2+ in response to 

IP3 stimulation and modulates the duration and pattern of cytosolic Ca2+ 

signaIs (1101. 

Lysosomes and Acidic Secretory Granules were found to be responsible for 

nicotinic acid adenine dinucIeotide phosphate (NAADP) induced Ca2+ re­

lease [111]. NAADP-sensitive Ca2+ channels are located on lysosome-related 

acidic organelles. These organelles are thapsigargin-insensitive and are loaded 

with Ca2+ by a H+ jCa2+ exchanger [111]. There has been a consider­

able amount of controversy regarding the ability of secretory granules to 

actively participate in the regulation of Ca2+ concentration in their environ­

ment. Since, however, exocytosis requires high local Ca2+ concentrations, it 

strongly suggests that Ca2+ release from secret ory granules is an appropriate 

signal [99]. 

The theory of F-Actin 7 -dependent Ca2+ signalling is based on the in vitro 

observation that F-actin is able to store and release Ca2+ within the physi­

ological concentration range of 20 - 1000 nM Ca2+ [103]. Ca2+ is bound to 

a high-affinity binding site of G-actin8 in a reversible manner. In the poly­

merized F-actin form, the Ca2+ binding site is inaccessibly hidden within the 

7F-actin or filamentous actin is a polymer of G-actin subunits [111. 
8G-actin or globular actin is the actin monomer which polymerizes above a critical 

concentration to F-actin [UI. 
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filament structure [103]. The Ca2+ -storing actin system has the following 

characteristics: • Monomeric ATP-G-actin is the high-affinity Ca2+ -binding 

species of the store exhibiting a pH-dependent K~a2+ = 2 8 nM [103] . 

• Monomeric ADP-G-actin is the low-affinity Ca2+ -binding species of the 

store with a 100-foid lower affinity for Ca2+ (K~a2+ 400 nM) compared 

to the high-affinity monomeric ATP-G-actin [103]. • Ca2+ bound to the 

high-affinity Ca2+ -binding site of F-actin can only be released upon depoly­

merization to G-actin monomers. The Ca2+ /Mg2+ exchange rate, k~xa2+, on 

F-actin is about 4 OOO-fold lower than on G-actin [103]. 

Spatiotemporal modulation of Ca2+ signaIs 

Since intracellular Ca2+ controls a large number of different pro cesses in the 

same cell, the spatial and temporal organization of cytosolic Ca2+ signaIs is 

of crucial importance. Stimulation of cells can evoke Ca2+ signaIs that are 

either local or global, depending on the agonist concentration and the length 

of the stimulation period [112]. Moreover, the following features of the Ca2+ 

signalling machinery control the localization of high-Ca2+ concentration: 

• Although the Ca2+ ion is very mobile in water, it diffuses only slowly in 

the cytosol due to the many high-affinity binding sites on relatively im­

mobile proteins, such as actin. The combination of the rapidly diffusible 

messenger IP3 with the slowly diffusible Ca2+ in succession enables the 

restriction of Ca2+ signalling events to a local area [86]. 

• Many effects of Ca2+ are initiated through binding to calmodulin (CaM). 

In these cases, the final response to the Ca2+ signal depends on both 

the local Ca2+ and CaM concentrations [113]. 

• Upon activation, elementary Ca2+ -releasing events are produced by the 

brief opening of a single or a small group of Ca2+ channels located in 

either the plasma membrane or in intracellular Ca2+ -storing organelles. 

These elementary events appear as localized plumes of Ca2+ around the 

channels and have been labelled with different names depending on the 

channel responsible for their formation: 1) A sparklet is formed as a 
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result of the brief opening of voltage-operated channels. 2) A spark is 

formed by the opening of RyR Ca2+ channels. 3) A puff results from 

the release of Ca2+ from IP3R Ca2+ channels [114]. 

• Of particular significance with regard to the spatiotemporal aspects of 

Ca2+ signalling is the pro cess of CI CR from both types of intracellular 

receptor channels, the IP3R and RyR. This Ca2+ sensitivity enables 

the Ca2+ released from one receptor to stimulate Ca2+ release from 

its neighbours, thereby causing a regenerative wave of Ca2+ release 

throughout the entire cytosol. EspeciaIly, puffs are the building blocks 

of intracellular Ca2+ waves in cells and are likely to be responsible for 

global Ca2+ signaIs [112]. 

• A close juxtaposition of mitochondria with a cluster of release channels 

can form a rapid and transient high-Ca2+ microdomain in the perimi­

tochondrial space (see page 16). 

• Intracellular pH is known to modulate IP3-induced Ca2+ release by 

altering binding of IP3 and Ca2+ to the receptor site [115, 116]. In 

addition, the activity of several membrane proteins, including channels, 

exchangers and pumps are pH sensitive. A change in intracellular pH 

may control, therefore, intracellular Ca2+ homeostasis [117-119]. 

As a result of the different Ca2+ influx pathways (see page 14) and the feature 

of the Ca2+ signalling machinery, the cell is able to precisely manipulate the 

location, size, shape and duration of intracellular Ca2+ elevation, enhancing 

greatly the versatility, accuracy and efficiency of Ca2+ signalling. 

Stimuli provoking calcium signalling 

Inside the ceIl, the Ca2+ ion acts as a secondary messenger, relaying signaIs 

received on the outer cell surface into the cell interior and amplifying their 

strength. 

The main stimuli that can trigger intracellular Ca2+ elevation are: 

• Biomolecules, which can be functionally classified as: 
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1. Hormones - chemical messengers, usually peptides or steroids, 

prod uced and released into the bloodstream by one tissue and 

affecting another [120]. 

2. Neurotransmitters - chemical messengers, such as acetylcholine, 

dopamine, etc., that transmit nerve impulses across a synapse [120]. 

3. Extracellular matrix components - including fibronectin, laminin, 

collagen, etc., that are involved in the transmission of mechanical 

stimuli via membrane-attached integrins [1211. 

4. Cytokines - regulatory proteins and peptides, e.g. interleukines 

and interferon, produced by cells of the immune system [122]. 

5. Extracellular nucleotides and adenosine - messengers involved in 

purinergic signalling (see chapter 1.1). 

• Environmental stimuli, such as: 

1. Physical stimuli (e.g. light [123], change in electrical potential 

difference [124], shear stress [125], osmotic stress [26, 126]). 

2. Chemical stimuli (e.g. extracellular oxidative stress [123], 

taste [123], odour [127]). 

AH molecular messengers bind to receptors on the outer side of the plasma 

membrane, which can be classified as: 

• Ionotropic receptors, which are ligand-gated ion channels that open or 

close in response to agonist binding [1281· 

• Metabotropic receptors, which are G-protein9 coupled receptors that 

dissociate into Ga and G,BI subunits upon agonist binding and then 

interact with effectors [129]: 

Ga can be subdivided into four main families: 

Ga. stimulates adenylyl cyclase and increases the level of cAMP. 

9 Guanine nucleotide-binding protein 
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GUq stimulates phospholipase C and generates the second messen­

gers IP3 and diacylglycerol (DAG). 

GUi inhibits adenyly cyclase and lowers the level of cAMP. 

GUt increases cGMP Phosphodiesterase and lowers the level of 

cGMP. 

G.B1' directly regulates many proteins, including enzymes and channels. 

Ca2+ influx across the plasma membrane can, furthermore, occur via me­

chanically and voltage-activated Ca2+ channels. 

The primary trigger employed in the experiments conducted for this Ph.D. 

project was osmotic stress induced by a 50% hypotonic solution. It caused 

cell-swelling induced, Ca2+ -dependent ATP release. The justification for this 

choice of stimulus is stated in the introduction. The source and progress of 

the Ca2+ signal were studied extensively in the course of this Ph.D. project. 

The results are presented in section 3.2. 

Calcium signalling in regulated exocytosis 

Regulated exocytosis requires an elevation of intracellular Ca2+ concentra­

tion over the basal level of rv 100 nM. The extent of the fusion process is 

controlled by the magnitude and duration of local intracellular Ca2+ increase. 

Either full fusion of the vesicle or "kiss-and-run" fusion - where the vesicle's 

integrity is maintained and only transient release is achieved - is possible 

[130]. The required Ca2+ elevation may originate either from Ca2+ entry 

across the plasma membrane or from Ca2+ mobilization from internaI stores, 

or from both. Non-excitable cells rely on Ca2+ entry through ionotropic re­

ceptors as weIl as metabotropic receptor-activated second-messenger-induced 

mobilization of Ca2+ from intracellular stores [131]. 

Ca2+ regulation of exocytosis is achieved via the interaction with a number 

of distinct molecular targets located at or near the site of membrane fusion. 

Various proteins with Ca2+ -binding domains and Ca2+ -activated protein ki­

nases are involved in the regulation of exocytosis, including SNARE proteins, 

synaptotagmin, munc18, syntaxin, calmodulin, CaMKII, PKC and others. 
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Since a further description of these proteins and their function goes beyond 

the scope of this Ph.D. thesis, the interested reader is referred to the many 

detailed review articles which have been written on this topic [130, 132-138]. 



Chapter 2 

Theory of the experimental 

methods 

2 .1 Luminescence 

2.1.1 Overview 

Luminescence is a general term for any process in which photons are emitted 

from a system that was shifted to an excited electronic state by sorne form 

of energy [139]. Fig. 2.1 on page 25 presents a schematic depictionlO of 

vibrational and electronic transitions. 

Multiple mechanisms exist by which a system can be excited [139]. Table 1 

on page 26 lists the most important types of luminescence according to the 

excitation mechanism. Photoluminescence occurs after excitation with light 

(Le. radiation within the optical range - UV to IR), whereas chemilumi­

nescence appears as a result of a chemical reaction. Bioluminescence is a 

special form of chemiluminescence in presence of an enzyme. Photolumines­

cence and bioluminescence will be discussed more in depth as part of the 

techniques used in the course of this Ph.D. work. Special attention will be 

given to the phenomenon of fluorescence as a pathway for deactivation of 

photoluminescence. 

lOcalled Jablonski Diagram after the Polish photophysicist Aleksander Jablonski 
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l 

......,..----- } vibraUonal energy states 
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R 

electronic 
So ------''----------- ground state 

Figure 2.1: Jablonski diagramll 

S Singlet state 

T Triplet state 

A Absorption (10- 15 s) 

F Fluorescence (10-9 - 10-7 s) 

P Phosphorescence (10-3 - 102 s) 

R Non-radiative relaxation (e.g. quenching) 

le Internai conversion (10- 14 - 10-11 s) 

ISe Intersystem crossing (10-6 - 10-5 s) 

DF Delayed fluorescence 

llThe distances between electronic states and vibrational states are not to scale. 
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Table 1: Various types of luminescence 

Term 
Photoluminescence 

Chemiluminescence 
Bioluminescence 

Cathodoluminescence 

Thermoluminescence 

Radioluminescence 

Electroluminescence 

Triboluminescence 

Sonol uminescence 

2.1.2 Photoluminescence 

Excitation mechanism 
Light 

Chemical reaction 

Electrons 

Heating 

X-rays, Q-, {3- or ,-rays 

Electric field or current 

Mechanical energy 

Sound waves in liquids 

Photoluminescence is the emission of light subsequent to the absorption of 

light. The absorbance A of light by a substance follows the law of Lambert­

Beer: 
It 

19- = -êCl =-A 
10 

10 intensity of incident light [lx] 

It intensity of transmitted light [lx] 

ê molar absorptivity [m2 . mol-1] 

C concentration of absorbing molecules [mol·l- I ] 

depth of the sample [mJ 

(2.1) 

The molar absorptivity coefficient (also molar extinction coefficient) is an 

intrinsic measure of absorption strength of a substance at a specifie wave­

length. The absorbance A is higher, the higher the ê. The energy of absorbed 
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light is given by Planck's relation: 

E energy [J] 

N Avogadro's number 

c 
E = Nhl/ = Nh­

À 

h Planck's constant [6.626 . 10-34 J . s] 

1/ light frequency [S-I] 

c velocity of light [2.998.108 m . S-I] 

À light wavelength [nm] 

(2.2) 

Electronic excitation of a substance occurs only if E corresponds to the dif­

ference in energy between its ground electronic state (Sa in Fig. 2.1, page 25) 

and the electronically excited state (SI or S2 in Fig. 2.1, page 25). 

Fluorescence is the radiative transition between excited state and ground 

state of the same spin multiplicity which occurs in a time frame of 10-9 -

10-7 s after excitation (called fluorescent life time Tf) [140]. Several pro­

cesses, such as quenching and intersystem crossing (see Fig. 2.1, page 25), 

compete with fluorescence for the deactivation of the vibrationally lowest 

excited state. Hence, the intensity of fluorescence If can be determined by 

following equation [140]: 

(2.3) 

If intensity of fluorescence [lx] 

la intensity of absorbed light (Jo - It) [lx] 
. . nurnber of events 

<I> f fractIOn of excIted molecules that fluoresce ( ) 
nurnber of photons absorbed 

Since every electronic state of a molecule has several associated vibrational 

levels, excitation and emission do not occur at one single wavelength, but 

over a range of wavelengths, called a spectrum. Before electrons return 

from the excited state to the ground state, they lose vibrational energy as 
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part of internaI conversion. As a result, the emission spectrum is shifted to 

longer wavelengths than the excitation spectrum, which is known as Stokes 

shift 12 [140]. The greater the Stokes shift, the less excitation and emission 

spectra overlap. As a result, it is easier to eliminate excitation light by ap­

propriate selection of excitation and emission filters for a better detection of 

the weaker fluorescence light. 

2.1.3 Bioluminescence 

Bioluminescence is the process of light production through oxidation of a 

compound catalyzed by an enzyme. The light production results from the 

generation of a product molecule in an excited state. In order to discard the 

excess of energy, the molecule either fluoresces or transfers its energy to a 

fluorescent acceptor (sensitized bioluminescence) [141]. Each chemilumines­

cent compound or group can produce no more than one photon of light. The 

quantum yield of bioluminescence is, therefore, the ratio of the total number 

of photons produced to the total number of substrate molecules utilized. It 

can be expressed as the product of several terms [141]: 

(2.4) 

total number of photons produced 

total number of substrate molecules utilized 

1>c chemical yield of product; in general, 1>c = 1 

1> f fraction of excited molecules that fluoresce 

1>ex fraCtion of product molecules produced in an electronically excited 
state 

Numerous examples of bioluminescence exist in nature, most notably the 

light emitted by the male firefly. Other examples include glow worms, cer­

tain mushrooms and various marine organisms [142]. In these organisms, 

a compound called luciferin reacts with an ATP-complex of the enzyme lu­

ciferase to form an excited oxidized molecule that subsequently emits light. 

12 after the Irish mathematician and physicist Sir George Gabriel Stokes 
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It is important to note that the names Iuciferin and Iuciferase are generic 

terms for the active agent in bioluminescent organisms, and that their ac­

tuaI moiecular structures differ significantly from organism to organism [142, 

143]. 
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2.2 ATP release chamber and ATP evaluation 

2.2.1 Evaluation of ATP 

General considerations 

Two methods are mainly used for the evaluation of ATP: the luciferase­

luciferin assay [144] and high-performance liquid chromatography combined 

with fluorescence detection (HPLC-F) of derivatized nucleotides [145]. Both 

techniques are very sensitive and allow the detection of ATP down to 

rv 0.5 pmol [144, 145]. The luciferase-Iuciferin assay is very simple and does 

not require any addition al handling of the sample. However, it allows solely 

the detection of ATP. On the other hand, HPLC-F enables a simultaneous 

detection of aU nucleotides and nucleosides from one sam pIe, but involves a 

derivatization step between collection and measurement. 

Radiolabelled ATP has also been used in the detection of ATP release. How­

ever, the incorporation of the radioactive label does not necessarily follow the 

uptake and release of endogenous ATP, and the released radioactive label is 

a mixture of ATP and other purines liberated from the cell. Consequently, 

it do es not provide a clear evaluation of the amount of released endogenous 

ATP [146]. 

Both methods, the luciferase-Iuciferin assay and HPLC-F, were applied in 

the scope of this Ph.D. work to evaluate ATP released from A549 cells upon 

hyptonic shock (see section 3.1 and 3.2). However, HPLC-F was performed 

elsewhere (by Dr. Silvia Kreda, University of North Carolina at Chapel Hill, 

Cystic Fibrosis/Pulmonary Research Treatment Center) and therefore will 

not be described here in detail. The luciferase-luciferin assay is elaborated 

in the following subsection. 

Luciferase-Iuciferin assay 

Fig. 2.2 on page 32 delineates the particular reaction steps of the formation 

of oxyluciferin and light in the presence of the enzyme luciferase. The first 

reaction catalyzed by luciferase is the formation of adenyl-D (- )-luciferin (an 

active form of luciferin) from D (- )-luciferin and ATP-Mg. The oxidation 
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of the acyl adenylate by oxygen leads to the formation of an enzyme-bound 

product molecule in the excited state. The complex decays to free luciferase 

and the ground-state oxyluciferin with the emission of light [147]. The lumi­

nescence intensity is proportion al to the ATP concentration if firefly reagents 

are present in excess [148]. 

At low ATP concentrations, luminescence rises to a maximum value and re­

mains constant for a minute or longer. As the ATP level increases, there is 

a rapid ri se to peak luminescence intensity foIlowed by a rapid decay due to 

product inhibition [149, 150]. 

The high specificity of the light reaction for ATP is the basis for the utiliza­

tion ofthis reaction for the evaluation of ATP. Other nucleoside triphosphates 

are inactive in light production and, importantly, only negligibly inhibit the 

reaction with ATP [151]. Sorne nucleoside triphosphates even support pho­

ton production due to the promotion of the dissociation of the oxyluciferin­

luciferase complex [152], or in the presence of transphosphorylases, due to 

the coupling of nucleoside triphosphates to ATP production [153]. 

The performance of the luciferase-Iuciferin assay has been enhanced by mod­

ifications of the luciferase enzyme, which increases its chemical and physi­

cal stability [144]. Furthermore, different reaction conditions, including the 

presence of particular cations or anions, and the type of solvent influence 

the activity of firefly luciferase, the kinetics of light emission, as weIl as the 

emission spectra and quantum yield of firefly bioluminescence. They have 

to be known or adequately chosen to correctly evaluate quantitative ATP 

measurements, and are therefore presented in the foIlowing paragraphs. 

EFFECT OF METAL IONS 

The bioluminescent luciferase-Iuciferin reaction requires a divalent cation. 

The actual substrate for the reaction is the ATP-Mg complex, while uncom­

plexed ATP competitively inhibits the reaction. Sorne divalent metal-ions 

can replace Mg2+, such as Mn2+ and Ca2+, which both enhance the biolu­

minescent reaction. On the other hand, cations such as Sr2+, ZnH , Cd2+, 

Ni2+ BaH Cu2+ Sn2+ CoH CaH Hg2+ as weIl as the lanthanide Gd3+ , , , , , , , , 
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Figure 2.2: Luciferase-Iuciferin bioluminescence 
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inhibit the reaction to various degrees [154, 155]. Millimolar and higher con­

centrations of aU cations except Mg2+, Ca2+ and Mn2+ inhibit luminescence 

strongly. The addition of monovalent metal salts al ways leads to the inhi­

bition of luciferase. The degree of inhibition varies depending on the anion 

part of the salt (see next paragraph) [155]. 

EFFECT OF ANIONS 

The activity of firefly luciferase was shown to be very sensitive to the pres­

ence of anions, and the amount of inhibition at a particular ionic strength 

was strongly dependent on the nature of the anion. The inhibitory effect of 

anions increases in the foUowing order: CI- < CO~- rv SO~- rv Br- < 
SO~- rv PO~- < N03" < r-« Cr20~-« Fe (CN)~- [155, 156]. The 

inhibition by these anions is non-competitive with respect to luciferin [155]. 

Arsenate AsO~- and other anions were used to reduce background light, 

which interfered with the detection of low levels of ATP. They are also used 

to inhibit peak fluorescence preventing the rapid decay in fluorescence inten­

sity at high ATP levels [150]. Na+, K+, and NHt cations have been found 

to have no influence on the extent of the inhibition of their anions [156]. 

EFFECT OF SOLVENTS 

At neutral and alkaline pH the colour of light emitted is yeUow-green, whereas 

at acid pH a red emission is observed using luciferase from Photinus pyralis 

[157]. The quantum yield for the bioluminescent reaction at alkaline pH 

is close to unit y, indicating the formation of an excited product-Iuciferase­

complex that is protected from solvent quenching [157]. 

Various solvents, such as polyvinylpyrrolidone, polyethylene glycols and non­

ionic detergents, stimulate the activity of firefly luciferase. The sol vents 

affect the oxidative reaction and enhance both peak light and total light 

emission [158]. 
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Figure 2.3: Chamber for hypotoilically indticed ATP reiease 
..10 • • ~ .. • 

2.2.2 Chamber for hypotonically induced ATP teÎease 
~ . '. . . '. ',': : . - . ~ .:-" .:. 

A low-volume, flow-through chamber was previously designed to coiiect Afp 
.' • ' '. ". .' ,. .' . ' .• ~ '.' . • ; • . " . :,:: :\ J ....•.. ~' _'. .. 

secreted during hypotonie challenge [26]. Fig. 2.3 on page 34 ilhisttates the 
. .' ",". . . . " . '.~: .. " < ./ ~ .' ><:" . ~ ..... / -~ .. , '! '; ; 

experimental set-up: .,,' , , 

A24 rrÙn x 60 mI? cover-gl,ass slip with an adherent celi motidl~yet i~ placed 

between two 6 mm-thiek polycarbonate plates, one bf therii oeatihga '0.'5 
mm~thi~k silicon 'gasket (cut o~t of a medieal grade ~iliton r~bbe(sh~e~). 
The cut-out' area of the silicon sheet is rv 6'00 mm2 . ", . ' 

th~ physiologie al br hypotonic solution are pumped from a resetvoit thtough 
.. .' . . . . .' . . " . 

an in~hne~e~ter ~nd enter the A'TP release chambet at il temp~raÜlté ~f 
37 0 C.', Âftei the perf~sion of th~ chamber with' the ~ell ip.bti~lay~t,' thé 

solution i~ 'collected' into fraction~' ôf 30 s to i ~iti, respective!;. Theft ATP 
c~Iitent, is' mé~sur~d by the 1 uëife~ase-l ucife~in ~ssay. " ':, "'J," " .' 

Thetime c~ur~e of ATP ~elèase cluring the e~p~riment can he evahiated ,h.Y 
the foliowing equation: 

, , 
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[ATP]rel = (Lu - Bk) . [T (L 1 D )] . ps· [10
6

] (2.5) 
n . Uini - e . sn qc 

[ATP] rel amount of ATP released 

Lu acquired luminescence [rLUp3 

Bk background fluorescence [rLU] 

Tn tonicity (e.g. 1 for isotonie; 0.7 for 30% hypotonie) 

LUini initial calibration with 100 nM ATP [(100 nM ATP)-l] 

De decrease in luminescence [rLU] 

sn sample number 

ps perfusion speed [ml. min-1] 

qc quantity of cells ("" 500 cells mm- 2 for A549) [confluent cells] 

Consequently, the unit for [ATP] rel is: 

[ 
100 pmoles ATP ] 

min· 106 confluent cells 

13relative light unit 
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2.3 Ratiometric imaging 

Ratiometric imaging is a fluorescence microscopie technique that takes ad­

vantage of the spectral shifts exhibited when fluorescent dyes bind to their 

target ions. Since intracellular ion measurements with ratiometric indica­

tors are relatively independent of uneven dye loading, cell thickness, photo­

bleaching effects and dye leakage, this method is generally given preference 

over non'-ratiometric imaging [159]. Various types of ratiometric imaging 

have been developed, including Fura-2 imaging of intracellular calcium and 

BCECF imaging of intracellular pH. 

2.3.1 Basic principles 

Requirements for the fluorescent indicator 

Fluorescent dyes used for ratiometric imaging are designed to have high se­

lectivity, but low affinity for the specifie ion in question. High selectivity 

assures an accurate and specifie measurement of ion concentration, whereas 

low affinity is necessary to avoid non-genuine alteration of intracellular ion 

concentrations as a result of ion binding to the dye [160]. Fast kinetics in ion 

binding is required for kinetic studies of intracellular ion alterations [159]. 

Large absorbance and large fluorescence changes resulting from ion binding 

are also essential attributes for an effective performance of the dye [161]. 

Experimental set-up 

Ratiometric imaging by means of microscopy requires an epifluorescence mi­

croscope (see page 171) equipped with a CCD or other type of detector, and a 

computer for system control and image processing. A multi-filter wheel with 

two different excitation filters are controlled by the computer and placed in 

the path of excitation light. Fluorescent images are recorded with the de­

tector, digitized and stored. A subsequent image analysis and processing 

enable quantification of spatial and temporal distribution of ion concentra­

tion within the cell [159]. To avoid photobleaching and phototoxicity, low 
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levels of excitation energy, short exposition time and high sensitivity detec­

tors should be used. 

Loading of the ce Ils 

Most fluorescent indicators are membrane-impermeable. Various dye-Ioading 

procedures were developed, ofwhich some are considerably invasive to the cell 

[159]. In contrast, derivatization of the indicators to acetoxymethyl (AM) 

esters renders them cell-permeable, and enables them to passively diffuse 

across the intact cell membrane. Inside the cell, ubiquitous intracellular es­

terases hydrolyze the AM group and release the ion-sensitive polyanionic, 

cell-impermeable indicator. The final intracellular concentration and the 

degree of hydrolyzation of the indicator, which can reach up to several milli­

molar [161], depends on various factors, including type of indicator, cell type, 

loading concentration of indicator, number of cells, loading time, loading tem­

perature and potential pre- and post-treatment of cells [159]. The loading 

medium should not contain any amino acids or amines because they may 

cleave the AM esters and prevent loading. The nonionic and nondenaturing 

detergent Pluronic® F-127 (see page 277) is frequently added to help dis­

perse the indicator in the loading medium, especially at low loading tempera­

tures. Sorne problems during the cellioading process have been encountered 

[162, 163]: 

1. Indicators may be sequestered in non-cytoplasmic compartments (Le. 

cytoplasmic organelles) either due to incomplete hydrolysis of the AM 

ester or mediated by organic anion transport systems; 

2. Loaded cells may actively and passively lose dye, either due to incom­

pIete hydrolysis of the AM ester or mediated by organic anion transport 

systems. 

The following solutions have been found: 

1. Sequestration of the fluorescent indicator can be avoided through low 

loading temperatures (15-33 0 C) or through pre-chilling at 4 0 C before 

loading the cells [162). 
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2. Ratiometric measurements help to minimize the impact of indicator 

leakage on experimental data (see above). However, active extrusion 

of anionic indicators from cells by organic ion transporters should be 

reduced by performing experiments at lower than physiologie temper­

atures (15 - 33 0 C) or by applying inhibitors such as probenecid (see 

page 279) or sulfinpyrazone [163]. 

2.3.2 Calcium imaging 

Calcium indicators shift their absorption spectrum and change their emitted 

fluorescence intensity in response to [Ca2+] i alterations in the range between 

0.3 . Kd and 10 . Kd [159]. A description of the ratiometric Ca2+ chelator 

Fura-2 is given on page 270. To estimate [Ca2+L, fluorescent intensities 

(Àem = 520 nm) are acquired for Àexl = 340 nm and Àex2 = 380 nm and 

entered into the following equation [164]: 

R 

F3800 

F380• 

(2.6) 

equilibrium dissociation constant for Ca2+ and Fura-2, according 
to [164]: rv 224 nM at 37 0 C 

Ratio (F340 / F380 ) of measured fluorescence intensity 

ratio (F340 / F380 ) of fluorescence intensity, formed at minimum 
Ca2+ concentration 

ratio (F340 / F380 ) of fluorescence intensity, formed at maximum Ca2+ 
concentration 

fluorescence intensity for Àex2 - 380 nm at minimum Ca2+ 
concentration 

fluorescence intensity for Àex2 - 380 nm at maximum Ca2+ 
concentration 

For in situ calibration of Fura-2, ionomycin (see page 272) is used as ionophore 

to equilibrate the controlled external ion concentration with the ion concen­

tration within the cell [165]. The calibration procedure is complex and rather 
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imprecise and is, therefore, avoided if a qualitative analysis is sufficient. 

2.3.3 Intracellular pH 

The pH indicator BCECF is characterized on page 266. Intracellular pH mea­

surements with BCECF are accomplished by measuring the pH-dependent 

fluorescence intensity (Àem = 535 nm) for Àex1 = 490 nm and for its isosbestic 

point14 of Àex2 = 440 nm. They are entered into the following equation [166]: 

(R- Rmax) 
pH = pK + log (Rmax _ R) (2.7) 

pK pK value for BCECF under experimental conditions (pKa = 6.98) 

R ratio (F495 / F440 ) of measured fluorescence intensity 

Rmax ratio (F495 / F440 ) of fluorescence intensity at maximum calibrated 

BCECF is commonly calibrated in situ using the K+ /H+ ionophore nigericin 

in the presence of 100 - 150 mM K+ to equilibrate internai and external 

pH [167]. 

14 At the isosbestic point, the fluorescence spectrum of an indicator is independent of 
the ion concentration. 
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3.1 ARTICLE 1: Calcium-dependent release of 

adenosine and uridine nucleotides from 

A549 cells 

3.1.1 Preamble 

Previous results from this group showed that hypotonie shock-induced ATP 

release from A549 cells was tightly correlated with an intracellular Ca2+ sig­

nal. This finding suggested that ATP release from these cells is triggered by 

an intracell ular Ca 2+ elevation and pointed toward a Ca 2+ -dependent exocy­

totic release mechanism [26]. 

The objective of this research was to reassess and to strengthen the assump­

tion of a Ca2+ -dependent exocytotic ATP release mechanism from A549 cells 

and to further analyze the potential co-release of other nucleotides, i.e. ADP, 

AMP, adenosine, UTP and UDP. 
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3.1.2 Jlrticle 

Tat ur , S.; Kreda, S.; Lazarowski, E.; Grygorczyk, R. 

Calcium-dependent release of adenosine and uridine nucleotides from A549 

cells. Purinergic Signalling, Epub 25 July 2007. 

Reproduced on pp. 42-72 with permission. 
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Abstract 

Extracellular nucleotides play an important role in lung defense, but the release 

mechanism and relative abundance of different nucleotide species secreted by lung 

epithelia are not weil defined. In this study, to minimize cell surface hydrolysis, we 

used a low-volume, flow-through chamber and examined adenosine and uridine 

nucleotide concentrations in perfusate aliquots of human lung A549 cells challenged 

by 50% hypotonie shock. ATP, ADP, AMP, and Ado were quantified in HPLC 

analysis of fluorescent etheno derivatives, and UTP and UDP were measured using 

HPLC-coupled radioenzymatic assays. After the onset of hypotonie shock, ATP, 

ADP, UTP, and UDP in the perfusates increased markedly and peaked at 

approximately 2.5 min, followed by a graduai decay in the next 15-20 min; peak 

changes in Ado and AMP were relatively minor. The peak concentrations and fold 

increment (in brackets) were: 34±13 nM ATP (5.6), 11±5 nM ADP (3.7), 3.3±1.2 nM 

AMP (l.4), 23±7 nM Ado (2.1), 21 nM UTP (>7), and Il nM UDP (27). Nucleotide 

release was almost completely abolished from cells loaded with the calcium chelator 

BAPTA. Under isotonic conditions, elevation of intracellular calcium with the 

calcium ionophore ionomycin (5 pM, 3 min) also released nucleotides with kinetics 

and relative abundance as above, albeit less robust. ADP:A TP (1 :3) and UDP:UTP 

(1 :2) ratios in perfusates from stimulated cells were markedly higher than the 

cytosolic ratios of these species, suggesting that an NDP-rich compartment, e.g., the 

secretory pathway, contributed to nucleotide release. Laser confocal microscopy 
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experiments illustrated increased FMI-43 uptake into the plasma membrane upon 

hypotonie shock or ionomycin treatment, consistent with enhanced vesicular 

exocytosis under the se conditions. In summary, our results strongly suggest that 

calcium-dependent exocytosis is responsible, at least in most part, for adenosine and 

uridine nucleotide release from A549 cells. 

Keywords: Ca2+ dependence, exocytosis, hypotonie shock, lung epithelial ceIls, 

nucleotide secretion 
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Introduction 

ExtraceHular nucleotides control a diverse range of physiological processes by 

interacting with a large group of cell surface P2Y and P2X receptor families [1-3]. In 

the lungs, extracellular nucleotides regulate airway surface liquid homeostasis and 

mucociliary clearance by modulating epithelial ion and fluid transport as weil as 

ciliary beating [4]. In alveoli, ATP is a potent secretagogue that stimulates type II cel! 

surfactant secretion. Nucleotide levels on airway surfaces, measured in vitro and ex 

vivo, show dynamic changes due to the combination of basal and stimulated release 

and their rapid metabolism by several groups of membrane-associated and secreted 

soluble ecto-enzymes. These ecto-enzymes extend the signaling potential of A TP by 

converting it to Ado, a ligand of the AI-3 family of G protein-coupled receptors [1,4-

7]. 

Nucleotide release is stimulated by cell mechanical perturbations, such as 

shear stress, membrane stretch, medium change, hyposmotic swelling and hypoxia 

[1,8]. It is now recognized that mechano-sensitive ATP release occurs from healthy 

cells via physiological processes, which do not involve cell damage. Numerous 

reports have suggested that the cystic fibrosis transmembrane conductance regulator 

(CFTR) and other members of the superfamily of A TP-binding cassette transport 

proteins serve as a conductive pathway for A TP release, or regulate an associated 

A TP channel. However, other groups using patch-clamp, lipid-bilayer and 
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luminometry techniques, have not found any detectable CFTR-mediated or CFTR­

regulated ATP release (reviewed in [1]). Volume-regulated anion channels (VRAC) 

and voltage-dependent anion channels (VDAC, porins or maxi cr channels) are 

known to have considerable permeability to cations and large organic anions, and 

several laboratories have implicated these channels in cell swelling-induced A TP 

release and the autocrine regulation of cell volume. However, recent studies have 

demonstrated that conductive pathways, including VRAC, VDAC and stretch­

activated channels, are not involved in cell swelling-induced A TP release from A549 

cells [1,9,10]. FinaIly, connexin hemichannels also have been proposed to mediate 

A TP release, but their role in this process in a physiological setting is not always 

clear [1]. 

While conductive release mechanisms are still being debated, exocytotic A TP 

release is weIl established in excitatory ceIls, blood platelets and ch rom affin cells. 

Furthermore, there is growing experimental evidence supporting such a release 

mechanism also by epithelial and other non-excitatory cells. In particular, we have 

recently demonstrated that cell swelling-induced A TP release from A549 and 

16HBE140- epithelial cells and NIH 3T3 fibroblasts is tightly correlated with 

intracellular Ca2+ elevations; it is abolished in ce Ils loaded with the Ca2+ chelator 

BAPTA or by low temperature, strongly suggesting the involvement of Ca2
+­

dependend exocytotsis [10]. Whether release of other nucleotides from epithelial cells 
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also involves Ca2+-dependent exocytosis remains incompletely explored. Such 

studies, however, are complicated by nucleotide hydrolysis at the airway surface, 

which makes it difficult to assess the magnitude and relative abundance of different 

nucleotide species released. Therefore, we used a flow-through cham ber to minimize 

cell surface hydrolysis. 

We found that hypotonic shock markedly increased ATP, ADP, UTP, and 

UDP concentrations in perfusates, which peaked at approximately 2.5 min. 

Nucleotide release was almost completely abolished from cells loaded with the 

calcium chelator BAPT A and, under isotonic conditions, could be evoked by 

elevation of intracellular calcium with the calcium ionophore ionomycin. High 

nucleotide diphosphates (NDPs) concentrations in perfusates of stimulated cells 

suggested that an NDP-rich compartment, e.g., the secretory pathway, contributed to 

this release. Together with real-time FMI-43 fluorescence experiments, our results 

strongly indicate that calcium-dependent exocytosis is a major mechanism of 

adenosine and uridine nucleotide release from A549 cells. 
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Materials and Methods 

Cells 

Human lung carcinoma A549 cells were grown in DMEM supplemented with 10% 

FBS, 2 mM L-glutamine, 56 V/mL penicillin-G and 56 Jlg/mL streptomycin sulfate. 

AIl constituents of the culture media were from GIBCO-BRL (Burlington, ON). A TP 

efflux was measured from cell monolayers grown to confluency on 24x60-mm glass 

coverslips. Fura-2 calcium imaging and FMI-43 microscopy experiments were 

performed on cells grown on circular 15-mm diameter no. 1 glass coverslips. 

Nucleotide efflux assay 

To measure nucleotide efflux during hypotonic challenge with high temporal 

resolution, we used a custom-designed low-volume (300 JlL), flow-through chamber, 

as described previously [10]. Briefly, 24x60-mm glass coverslips with confluent cell 

monolayers of ~500 eells/mm2 were mounted in the chamber and perfused with warm 

(37°C/in-line heater - Warner Instrument Co., Hamden, CT) Ringer solution at the 

rate of 1.3 mL/min. The Ringer solution contained (in mM): 110.5 NaCl, 24 

NaHC03, 1.3 KCl, 1 MgCh, 1 CaCh, 2.5 Na2HP04, 2.5 KH2P04, 1.2 K2HP04, 10 

glucose; pH 7.4 was maintained by bubbling with 5% C02. After an equilibration 

period in isotonic solution (5-15 min), a 50% hypotonie solution was applied, and the 

perfusate was continuously collected for 30-s intervals during the initial burst of A TP 
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secretion (0-5 min) and during 1 min elsewhere. Nucleotide concentrations in the 

samples were evaluated by high-performance liquid chromatography ( HPLC) 

analysis, as described below. For studies in absence of extracellular calcium, CaCh 

was omitted and the solutions were supplemented with 0.1 mM EGT A. The 50% 

hypotonic solution was prepared by appropriate reduction of salt concentration while 

divalent cation concentrations were kept constant. 

HPLC quantification of adenine and uridine nucleotides 

UTP concentrations were quantified by UDP-glucose pyrophosphorylase-based 

reaction [11]. Briefly, 100-).11 samples were incubated in the presence of 0.5 U/mL 

UDPglucose pyrophosphorylase, 0.5 U/mL inorganic pyrophosphatase, 1.6 mM 

CaCb, 2 mM MgCb, 25 mM HEPES (pH 7.4), and -100,000 cpm 1 ).1M 

[14C]glucose-lP. Incubations lasted 1 h at 30°C. Reactions were terminated by 

heating the samples at 95°C for 2 min. Conversion of [14C]glucose-IP to [14C]UTP 

was determined by HPLC (Shimadzu) via a Nova Pack C18 column and ion pairing 

mobile phase. Radioactivity was measured on-fine with a Packard F1o-0ne detector. 

Assay sensitivity was 1 pmol (3 nM in 100-).11 sarnples) 

UDP was quantitatively phosphorylated in the presence of [l2p1ATP, usmg 

nuc1eoside diphosphokinase (NDPK). Briefly, 100-).11 samples containing 0.1 U/ml 

NDPK, 0.1 ).1Ci 60 nM [y32p]ATP, 1.6 mM CaCh, 2 mM MgCh, and 25 mM HEPES 

(pH 7.4) were incubated for 5 min at 30°C. Reactions were terminated by heating the 
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samples at 95°C for 2 min. The resulting conversion of [y32p]ATP to [y32P]UTP was 

monitored by HPLC [12]. A calibration curve employing known amounts of UDP 

was chartered in parallel during each assay. This as say allows UDP quantification 

with sensitivity of20 fmol (0.2 nM in lOO-ill samples). 

Etheno derivatization. Samples (200 Ill) were derivatized for 30 min at 72°C in the 

presence of 1.0 M chloroacetaldehyde and 25 mM Na2HP04 (pH 4.0). The resulting 

fluorescent I,N6-ethenoadenine derivatives were analyzed by HLPC (Waters), in a 

Hamilton PRP-XIOO anion exchange column, as described previously [4]. Etheno (E)­

ATP, s::ADP, E-AMP, and e-adenosine were quantified with a sensitivity of 200 fmol 

(1 nM in 200-1l1 samples). 

FMI-43 studies 

Bulk exocytosis was quantified in A549 cells as changes in the fluorescence intensity 

of FMI-43 incorporated into the plasma membrane [13,14], and recorded by real­

time confocal microscopy. Cells were washed with Hank's Balanced Salt Solution + 

20 mM HEPES + 2 mM MgCh and 1.6 mM CaCh (HBSSH) or with HBSSH devoid 

of calcium (HBSSH 0 Ca). They were mounted onto the stage of a Leica SP2 AOBS 

confocal microscope equipped with HCX Apo L63x NA 0.9 immersion Leica lens 

and a 488 nm Argon laser. Experiments were initiated by incubation of the cells with 

3 IlM FMI-43. Cells were incubated for at least 10 min, and hypotonic shock was 

applied by decreasing salt concentration 33% while maintaining calcium, magnesium 
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and FMI-43 concentrations constant. Altematively, cells incubated with FMI-43 in 

HBSSH or HBSSH 0 Ca were stimulated with 5-10 ).lM ionomycin. Real-time 

recording was performed by laser scanning in the xz axes with a galvostage, initially 

every 10 and then every 30 s for the time periods indicated in the figures. Ove raIl 

fluorescence intensity changes associated with the plasma membrane were estimated 

by measuring the intensity value associated with each pixel through time. The entire 

apical membrane compartment displayed in a confocal plane and 5 random regions of 

basolateral and sub-apical domains were analyzed, normalized to basal values 

(time=O) and averaged for each region. Cell swelling was estimated as a change of 

cell height in the xz plane at different time points, normalized to basal values, and 

averaged. 

Fura-2 calcium measurements 

To load Fura-2, ceUs were incubated (1 h, 37°C, 5% C02) in physiological solution 

containing 25 !lM Fura-2-AM + 0.02% Pluronic® F 127 and 2.5 mM probenicid. This 

was followed by 30 min de-esterification period in physiological solution containing 

probenicid. The physiological saline solution was comprised (in mM) of: 140 NaCI, 5 

KCI, 1 MgClz, 1 CaCh, 10 glucose and 10 HEPES, pH 7.4, adjusted with NaOH. 

50% hypotonic medium was prepared by reducing the salt concentration while 

keeping divalent cation concentration constant. For calcium imaging, coverslips with 

Fura-2-loaded ce Ils were mounted in the imaging/perfusion chamber attached to the 
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heated platform (Warner Instruments Co.) on the stage of an inverted microscope 

(Nikon TE300). The cells were exposed to alternate (200 ms) illumination at 340 and 

380 nm with a high-pressure mercury lamp (100 W) via interference filters (Chroma 

Technology, Brattleboro, VT) mounted on a filter wheel (Sutter Lambda 10-C, Sutter 

Instrument Co., Novato, CA) and a dichroic mirror (510/540 nm, Chroma 

Technology). Fluorescence images were recorded at 15- to 60-s intervals with the 

digital camera and stored for later analysis. 

Chemicals 

For calcium imaging experiments, Fura-2-AM was obtained from Molecular Probes, 

Invitrogen Corp. (Burlington, ON). Probenicid, Pluronic® F127 and ail other reagents 

were from Sigma Aldrich (Oakville, ON). 
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Results 

Kinetics of nucleotide release 

Figure 1 shows an example of the time-course of nucleotide release induced by 50% 

hypotonie shock. For cIarity, the release of adenine and uridine nucIeotides appears 

on separate graphs: A and B, respectively. The kinetics of release were remarkably 

similar for ail nucleotides; after the onset of hypotonie shock nucleotide 

concentration increased rapidly, peaking at ~2.5 min, followed by a graduai decay in 

the next 10-15 min. The average peak values from several separate experiments are 

shown in Figure lC. Interestingly, ATP was the major species at the peak of 

stimulated release, whereas for basal release, Ado was the predominant species. The 

rank order of nucleotide abundance at the peak was: A TP > Ado ~ UTP > ADP ::::: 

UDP > AMP. Relative increases of nucIeotide concentrations at the peak were also 

the highest for NTPs and NDPs (ATP 5.6-fold, ADP 3.7-fold, UTP >7-fold, UDP 27-

fold), whereas the increase was smaller for AMP and Ado (1.4-fold and 2.l-fold, 

respectively). 

RaIe of [Ca +2J; 

To investigate the role of [Ca +2]j in adenine nucleotide release, we tested the effect of 

the Ca2
+ ionophore ionomycin. In the absence of hypotonie shock, exposure to 5 \lM 

ionomycin for 3 min induced transient nucleotide release from A549 cells: Figure 2A. 

This release reached a peak at approximately 1.5 min, i.e. slightly earlier and at 
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somewhat lesser absolute peak amplitude compared to that induced by 50% 

hypotonic shock. Otherwise, the kineties and relative nucleotide abundance were 

similar for both stimuli. Almost complete inhibition of swelling-induced adenine 

nucleotide release was observed for A549 cells loaded with the Ca2+ chelator 

BAPTA, compared to control untreated cells of the same batch tested in parallei 

experiments: Figure 2B and C, respectively. Fura-2 fluorescence [Ca +2]j 

measurements confirmed a dramatic reduction of the [Ca+2]j response to 50% 

hypotonie shock in BAPTA-Ioaded cells: Figure 2D. These experiments demonstrate 

that elevation of [Ca+2]j was required to trigger adenine nucleotide release from 

A549 epithelial cells. 

FMI-43 fluorescence changes implicate vesicular exocytosis 

Strong calcium dependence of nucleotide release may indieate the involvement of 

vesieular exocytosis. To further explore this possibility, bulk exocytosis was 

examined by real time confocal mieroscopy in cells bathed in FMI-43. Fluorescence 

intensity associated with the plasma membrane increased rapidly by incorporation of 

the soluble probe into the membrane and remained almost constant after 5 min in 

non-stimulated cells. Plasma membrane-associated fluorescence intensity rose rapidly 

(~20 s) with hypotonic shock stimulation. This change was accompanied by increased 

cell volume seen as increment of cell height: Figure 3A and B. Cell volume peaked at 

about 3 min, followed by a regulatory volume decrease in the next 10-15 min (data 
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not shown). A similar plasma membrane associated FMI-43 fluorescence intensity 

increase was observed in the absence of hypotonic shock, when the cells were 

stimulated with ionomycin, in the presence but not in the absence of calcium in the 

bathing solution: Figure 4. These data indicate that both hypotonic shock and 

ionomycin stimulated bulk exocytosis in A549 cells. 
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Discussion 

In this study, we used the flow-through chamber and an etheno derivatization 

me as ure ment technique to examine the kinetics of nucleotide release from A549 lung 

epithelial cells induced by hypotonic shock. We demonstrated that ATP, ADP, AMP, 

Ado, UTP and UDP appeared in the perfusates with the same kinetics, peaking at 

-2.5 min (Figure 1), which coincided with the peak of [Ca +2]j elevation evoked by 

hypotonic shock: Figure 2D. Similar tight temporal correlation between the [Ca+2]j 

signal and A TP release, measured by luciferase-luciferin luminescence assay, was 

reported previously for A549, 16HBE140· epithelial cells and NIH-3T3 fibroblasts 

[10]. Such a close temporal association suggests that hypotonic shock-induced 

elevation of [Ca +2]j is a trigger for the release of nucleotides. This was supported by 

the strong inhibitory effect of the intracellular Ca2+ cheletor BAPTA-AM and the 

induction of nucleotide release in the absence of hypotonic shock solely by the rise of 

[Ca +2]j with ionomycin. These data demonstrate tight Ca2+ -dependence of nucleotide 

release, and point to a Ca2+ -dependent exocytotic mechanism. It should be noted, that 

the bulk [Ca +2]j changes shown in Figure 2D, likely represent superposition of 

spatially separated, distinct [Ca +2]j responses, one evoked directly by hypotonic shock 

and the other due to autocrine/paracrine actions of the released nucleotides on P2Y 

receptors. The latter effects might be minimized, at least partially, by continuous 

perfusion, which reduced nucleotide concentration in the bulk of the chamber far 



CHAPTER 3. ARTICLES: MECHANISM OF ATP RELEASE 57 

below the ICso of P2Y receptor activation, however, this possibility requires further 

study. 

Consistent with a Ca2
+ -dependent exocytotic mechanism, FM 1-43 fluorescence 

studies revealed enhanced incorporation of the probe into the plasma membrane 

induced by hypotonic shock or ionomycin treatment. Increased plasma membrane­

associated FM 1-43 fluorescence intensity was a measure of the cumulative amount of 

membrane added by exocytosis [13]. FMI-43 fluorescence increased rapidly during 

the tirst 20 s of hypotonic shock: Figure 3. Interestingly, the initial fluorescence 

increment exceeded the cell surface increase estimated from xz confocal scans. In our 

previous study using a dual-image 3D cell reconstruction technique [15], we observed 

only a Il % to 30% surface increase of single substrate-attached A549 cells swollen 

in 50% hypotonic solution [10]. This difference could be attributed, in part, to 

different method of cell height and surface evaluation in that study as weil as 

differences in swelling responses of single isolated cells compared to confluent cel! 

monolayer. However, a similar discrepancy between FMI-43 fluorescence, cell 

surface and membrane electrical capacitance has been also reported by others, e.g. 

with pituitary lactotrophs, where the dense granules docked into the plasma 

membrane, were intensely stained by FMI-43, in addition to the membrane added to 

the cel! surface [16]. Therefore, the divergence of fluorescence and the cell surface 

changes seen in our study with A549 cel!s may be also result in part, from FMI-43 
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staining of the lipophilic content of fused vesicles, in addition to the staining of fused 

vesicular membranes. The FM 1-43 dye is often employed to fluorescently mark 

surfactant-containing lamellar bodies in alveolar type II (A TIl) cells [17,18], and 

A549 cells, a model of A TIl cells, also contain granules enriched in surface active 

phospholipids [19]. However, the exact contribution of such granules to increased 

FM 1-43 fluorescence in stimulated A549 cells was out of the scope of the present 

investigation and will require future direct study. 

Vesicle exocytosis may be mechanistically associated with nucleotide release 

in 2 ways: nucleotides can be delivered to the extracellular medium as cargo 

molecules within exocytotic vesicles, or, alternatively, secreted from the cytosol via 

vesicle-associated nucleotide-conducting channels or transporters, transiently 

expressed at the plasma membrane as a consequence of vesicle-plasma membrane 

fusion. Analysis of the relative abundance of different nucleotide species that appear 

in the extracellular medium may help to distinguish between these 2 mechanisms. 

A TP and UDP-sugars accumulate in the lumen of the secretory pathway up to 20-50 

fold above their cytosolic concentrations, and luminal utilization of these molecules 

generates ADP and UDP. UDP is the major uridine nucleotide detected in ER/Golgi 

fractions [20] and, eventually, a UDP-selective apyrase (UDPase) converts UDP to 

UMP [21]. ER/Golgi ADP and UMP are exchanged for cytosolic ATP and UDP­

glucose via specific transporters [22-25]. Since intraluminal nucleotides are not 

subject to the mechanisms that retrieve resident ER/Golgi proteins, they are predicted 
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to remain within trafficking vesicIes, and to be released to the extracellular space 

from the secretory pathway. Our results suggest that this mechanism Iikely accounted 

for UDP release from A549 cells. Figure 1 C illustrates that hypotonie stimulation 

promoted a sharp increase in UDP levels, with a UTP:UDP concentration ratio of2:1. 

Since the cytosolic UTP: UDP ratio is > 1 0: 1 [26], our results suggest, at least in part, 

a vesicular rather than a cytosolic source of UDP and, as a corollary, of ATP and 

ADP. 

In summary, our results provide strong evidence for Ca2+-dependent vesicular 

exocytosis as a major mechanism of adenosine and uridine nucleotide release from 

A549 epithelial cells induced by hypotonie stress. Part of this release involves 

vesicles of the protein secretory pathway. Further investigations are needed to cIarifY 

the origin and contribution of other vesicular pools as weIl as the mechanisms and 

sources of intracellular Ca2+ elevations that evoke nucleotide secretion. 
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Figure legends 

Figure 1. Transient nueleotide release from A549 eells indueed by 50% 

hypotonie shoek. 

Time-course of adenosine (A) and uridine (B) nucleotide release observed in 

response to 50% hypotonic shock. A representative experiment is shown, out of 4 

performed under the same conditions. Hypotonic shock was applied at t=O min and 

was preceded by 15-min equilibration in isotonic solution. C, Basal (t=O min) and 

peak (t=2.5 min) nucleotide concentrations detected in perfusates. Average values ( 

±S.D.) are from 3-4 experiments, such as in A and B, except for UTP and UDP, 

which are from a single experiment. * due to the limited sensitivity of UTP 

evaluations (:::::3 nM), the basallevel ofUTP was found to be below the detection limit 

and was not shown. 

Figure 2. Effeet of intraeellular Ca2
+ modulators on nucleotide release. 

(A) In the absence of hypotonie shock, application of 5 !-lM ionomycin resulted in 

transient nucleotide release with kinetics similar to that induced by hypotonic shock. 

An example, out of n=2 similar experiments, is shown. Loading A549 cells with the 

Ca2
+ chelator BA PT A almost completely inhibited hypotonic stress-induced 

nucleotide release compared to controls that were run in parallel: Band C 

respectively (n=2). Effect of BAPTA on the [Ca2+]j response is shown in D. The 2 

traces represent changes of the Fura-2 fluorescence ratio at 2 excitation wavelengths, 
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À.340/À.380, in response to 50% hypotonie shock, applied at t=O min, in control and 

BAPTA-Ioaded cells. Note that the rapid peak of the [Ca2+]j response was abolished 

in BAPTA-Ioaded cells. Similar responses were observed in n=4 experiments. 

Figure 3. Effeet of hypotonie shoek on FMl-43 surface membrane staining. 

A. Confocal FMI-43 fluorescence images of confluent A549 cells after 20 min of 

dye loading in isotonie solution, followed by 50% hypotonie shock stimulation. The 

images depict the xz scans of the cell monolayer at different time points. Note the 

increase in cell size and fluorescence intensity consistent with hypotonie shock­

induced cell swelling and heightened bulk exocytosis. 

B. Time-course of FMI-43 plasma membrane fluorescence and cell height changes 

during hypotonie shock. 

Figure 4. Effeet of ionomyein on FMl-43 surface membrane staining. 

A. Confocal FMI-43 fluorescence images of confluent A549 cells prior to and after 

4-min exposure to 5 J.!M ionomycin in the presence of extracettutar calcium. The 

images show the the xz scans of the cell monolayer at different time points. Note the 

increase in fluorescence intensity after ionomycin stimulation, indicating enhanced 

exocytosis. 
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B. Time-course of FM 1-43 plasma membrane fluorescence changes of unstimulated 

cells (~ CON), and cells during ionomycin treatment in the presence (. ION) or 

absence (. ION 0 Ca) of extracellular calcium. 
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3.1.3 FUrther unpublished results 

The A549 cell line has characteristics of alveolar type II (AT II) cells (see 

page 253) whose primary function is to synthesize and secrete surface-active 

material. AT II cells contain typical organelles such as mitochondria, ER, 

microperoxisomes, various filaments and microtubules, as weIl as unique or­

ganelles referred to as lamellar bodies (LB), which contain layers of sur­

factant [1681. Pulmonary surfactant forms a thin monolayer at the air-water 

interface of the alveolar epithelium and reduces surface tension in the alveoli. 

In addition, i t also plays a role in the protection against infection (see page 2). 

Structurally, surfactant is a homogenous material consisting of rv 80% sat­

urated and unsaturated glycerophospholipids (mainly phosphatidylcholine 

(PC)), rv 12% neutral lipids (predominantly cholesterol) and rv 8% proteins 

(predominantly surfactant proteins SP-A, SP-B, SP-C, SP-D, but also en­

zymes and other proteins) 11691. Whereas the secretion of phospholipids was 

shown to be mediated solely by the exocytosis of LBs [170], the secretion of 

N-ethylmaleimide­
sensitive fusion 

protein blockage 

Inhibition of vesicle 
formation with 

monensin 

Disassembling of 
Goigi-complex with 

brefeldin A 

Microfilament 
disruption with 
cytochalasin D 

Microtubule 
disruption with 
nocodazole 

Figure 3.1: Seleeted steps of the seeretory pathway and their inhibitors 

Munc18, mammalian homologue of une-18; NSF, N-ethylmaleimide-sensitive 
factor; SNAP-25, synapto-somal-assoeiated protein of 25 kDa 
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proteins seems to be more complex. While the small hydrophobie polypep­

tides SP-B and SP-C are localized inside the LBs and co-secreted with the 

LB contents, the large hydrophilic proteins SP-A and SP-D are secreted in a 

LB-independent manner [171, 172]. 

Since the principal release mechanism of ATP from A549 cells upon hypotonie 

shock was shown to be vesieular (see section 3.1.2), the question arises if ATP 

might be released as a by-product from LBs or rather by a LB-independent 

pathway. In order to be able to discuss this question, the different steps of the 

secret ory pathway will first be outlined in general terms. The experiments 

examining the secretory steps leading to ATP release will then be analysed 

in comparison with the biogenesis of LBs and the release of surfactants. 

Fig. 3.1 on page 73 depicts selected steps and pro teins of a typical secretory 

pathway: the smooth ER, rich in a wide variety of enzymes, is involved in the 

synthesis of lipids, triglycerides, and steroids, whereas the rough ER is the 

site of the synthesis of (secretory) proteins. Some secretory products are then 

transported to the Golgi apparatus (GA) where they are modified (e.g. by 

glycosylation, phosphorylation) and sorted [173]. ATP and other nucleotide 

derivatives, which are required as energy source or as substrates for protein 

modification, are transported into both of these organelles, the ER and the 

GA, through specifie transporters in exchange for the analogous monophos­

phate [174]. The vesicles destined for secretion are transported and stored 

close to the plasma membrane, ready to be released upon an appropriate 

signal [173]. The fusion of the vesicles with the plasma membrane involves 

many different proteins (see section 1.2.2, page 22) of which only three are 

presented in the figure (SNAP-25, Munc18, NSF). 

The significance of the particular steps in the secretion process depends on 

the cell type and varies between the different secretory products. In or­

der to compare cell-swelling induced ATP release form A549 cells with the 

LB-dependent secret ory pathway in AT II cells, various inhibitors, such as 

brefeldin A (BFA), monensin, nocodazole, cytochalasin D and N-ethylmaleimide 

(NEM), which interfere with the secret ory pathway, were used. Their targets 

and functions are indicated in fig. 3.1 on page 73. 
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Table II; Peak and total release of ATP after interfering with the secret ory 
pathway 

Agent 
Brefeldin A 

Monensin 

Nocodazole 

Cytochalasin D 

N -ethylmaleimide 

Il Peak ATP releaseG 

59 ± 7c 

19 ± 8C 

42 22 c 

33 ± 6c 

6 ± 4C 

"Data are mean ± S.D. as percentage of control. 
bnumber of experiments 
cp < 0.05 

Total ATP releaseG n b 

81 3c 3 

45 15c 3 

56 20 c 3 

56 5c 4 

8 6c 4 

BFA was previously used by Osanai et al. [175, 176] to study the involvement 

of the GA in protein and lipid trafficking to the LBs in cultured AT II cells. 

The disruption of the GA by BFA (2.5 - 10 J-lg/ml for 15 min) completely 

blocked protein secretion but did not alter PC secretion. It was, furthermore, 

demonstrated that PC was transported to the LB via a Golgi-independent 

and SP-B via the Golgi-dependent pathway. It appears, therefore, that sur­

factant components take different pathways to reside in the LBs. 

Fig. 3.2a on page 77 shows the time course of cell-swelling induced ATP re­

lease from A549 cells after the incubation with BFA (10 J-lg/ml for 2.5 h). The 

peak was reduced to 59 7% and the total amount to 81 3% (cf. table II). 

This result indicates that the major part of released ATP originates from a 

source that by-passes the GA, suggesting an at least partly LB-dependent 

pathway. 

Monensin alters, on the one hand, protein transport in association with ultra­

structural changes in the GA. In this regard, treatment of AT II cells from rat 

lung with monensin (lJ-lM for 1 h) was found to inhibit the rate of sialylation 

and secretion of SP-A [177]. On the other hand, the effect of monensin seems 

to be also related to its fun ct ion as H+ ionophore by collapsing H+ gradients 
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of acidic compartments (see 274). For instance, a normal posttranslational 

proteolysis of proSP-C occurs in acidic intracellular compartments, includ­

ing LBs, and is inhibited by monensin (2 J.LM for 1 h) [178]. Chander et 

al. reported that LBs maintain an acidic interior (pH 6.1 or lower) which is 

generated by an energy dependent pro cess [179]. 

The pretreatment of A549 cells with monensin (10 J.LM for 18 h) strongly 

reduced ATP peak secretion upon 50% hypotonic shock to 19 ± 8% and the 

total amount to 45 ± 15% (cf. table II, page 75 and fig. 3.2b, page 77). 

Considering that the majority of ATP release occurs on a GA-independent 

pathway (see BFA), it seems unlikely that the strong effect of monensin is 

only caused by the inhibition of the trans GA function. The reduction could 

have been, moreover, caused by ATP depletion from the LBs due to the 

attempt to counteract the uncoupled H+ flux and to maintain the pH gradi­

ent. Should this be, indeed, the case, the strong inhibition of ATP release 

by monensin wou Id speak in favour of a LB-dependent ATP release path­

way. Further experiments with agents that induce an elevation of vacuolar 

pH could clarify this point. Since a reduction of cytosolic ATP could also 

affect the amount of mechanism-independent ATP secretion, monensin and 

aIl other agents were tested for a potential influence on the intracellular ATP 

level. For this purpose, the treated cells were washed twice with cold PBS 

and lysed in a 0.1 M NaOHjO.5 mM EDTA mixture. The cell lysates were 

incubated at 60 0 C for 20 min and frozen at _20
0 

C. The ATP levels were 

measured by the standard luciferinjluciferase assay. None of the agents was 

found to influence the intracellular ATP level of A549 cells under the exper­

imental conditions (data not shown). 

The cytoskeletal elements (microfilaments and microtubules) have two op­

posite roI es in respect to vesicle secretion: one advancing secretory vesi­

cles toward the plasma membrane and the other impeding vesicle fusion 

with the plasma membrane by forming a physical barrier. In AT II celIs, 

a microtubule-based mechanism delivers LBs to the plasma membrane [180] 

and a su bplasmalemmal actin filament system forms a mechanical hindrance 

that has to be transiently depolymerized to allow LB membrane fusion and 
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exocytosis [181]. 

The exposure of A549 cells to nocodazole (20 p,M for 18 h), which disassem­

bles microtubules, led to a reduction of peak ATP release to 42 ± 22% and of 

total ATP release to 56 ± 20% (cf. table II, page 75 and fig. 3.2c, page 77). 

These data indicate the involvment of microtubules in the translocation of 

ATP containing vesic1es to the site of exocytosis and support the hypothesis 

that hypotonically released ATP might be a co-secretagogue of surfactant 

from LBs. 

The role of actin filaments in the pro cess of surfactant secretion from AT 

II cells was previously examined among others by the application of cy­

tochalasins. These studies gave, however, controversial results since both a 

reduction as well as an increase in the release of surfactant was measured 

[182, 183]. This inconsistency may be explained with the limited specificity 

of cytochalasins binding to different cellular target sites. The complex inter­

action with the microfilament network might result rather in a redistribution 

of actin than in its disassembling [184, 185]. In A549 cells, the exposure to 

cytochalasin D (2 p,M for 18 h) inhibited the peak of ATP release to 33±6% 

and the total amount of ATP release to 56 ± 5% (cf. table II, page 75 and 

fig. 3.2d, page 77) indicating an involvment of microfilaments in celI-swelling 

induced ATP release. 

The two results indicate that ATP release upon 50% hypotonie shock from 

A549 cells depends on an intact microtubular system as well as on functional 

microfilaments for a well-controlled exocytotic process. ATP is, thus, medi­

ated by the microtubule-microfilament system, similar to surfactant release. 

Little is known about the molecular machinery that regulates the exocytosis 

of lamellar bodies [172]. Only recently, components of the vesicle fusion ma­

chinery of AT II cells have been identified. These include SNARE proteins 

synaptobrevin-2, syntaxin-1, soluble NSF attachment proteins SNAP-23 and 

SNAP-25 [186], as well as the N -ethylmaleimide sensitive fusion protein 

(NSF) and o:-SNAP proteins, which disassemble SNARE complexes [187]. 

NEM has been, furthermore, found to interfere with the transport of pro­

teins from the ER on account of a NEM-sensitive component distinct from 
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the NSF [188, 189] and to have stimulatory and inhibitory effects on various 

ion channels [190]. 

The incubation of A549 cells with the thiol-alkylating agent NEM (1 mM for 

15 min) almost completely blocked cell-swelling induced ATP release, only 

leaving 6±4% of its peak and8±6% of its total amount (cf. table II, page 75 

and fig. 3.2e, page 77) demonstrating the substantial contribution of exo­

cytosis to the ATP release mechanism. NEM-inhibited ATP release might, 

however, not only be a result of a direct interference with the fusion process 

on the plasma membrane, but also of an interference with sorne intracellular 

pro cesses and/or with potentially other release pathways. 

In conclusion, these experiments give an interesting insight into the exocy­

totic pathway responsible for cell-swelling induced ATP release from A549 

cells. It seems that ATP is released in big part as a co-secretagogue of sur­

factant in a LB-dependent pathway. The partial inhibition of ATP release 

with BFA suggests that both a GA-dependent pathway, accountable for SP­

B transport to the LBs, and a GA-independent pathway, accountable for PC 

transport to the LBs, contribute to cell-swelling induced ATP secretion. The 

strong inhibitory effect of monensin on ATP release might only be partially 

a result of GA disruption. It could be, moreover, explained by a direct ac­

tion on the acidic LBs as a H+ ionophore, leading to ATP depletion over the 

effort to maintain the pH gradient. Finally, the cytoskeleton was shown to 

play an important, however, not yet defined role in ATP-release. So far, no 

conclusions can be drawn as to the implication of a LB-independent path­

way. More experiments are necessary to confirm and to further analyse the 

proposed pathways and sorne of them are suggested in the following points: 

• All specified inhibitors were applied in the above discussed experiments 

in a relatively high concentration and for a rather long period of time. 

It could be, therefore, interesting to repeat the experiments with con­

centrations and incubation times similar to the ones used for the studies 

of surfactant secretion. This would make it easier to compare the two 

sets of data. 
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• Information about the co-released products upon hypotonie shock could 

clarify the relative contribution of LB-dependent and LB-inde pendent 

pathway of ATP release. For this purpose, the perfusate aliquots could 

be analysed for their content of surfactant components by HPLC com­

bined with a matrix-assisted laser desorption/ionization mass spec­

trometer (HPLC-MALDI-MS), in addition to the ATP concentration 

by the luciferin/luciferase assay. 

• To verify the suggested hypothesis for the inhibitory effect of mon­

ensin on ATP release, the intralamellar pH could be increased by aci­

dotropic agents (e.g. NH4CI, methylamine, chloroquine, amantadine) 

followed by a stimulation of ATP release. The incubation time should 

be relatively long to allow a potential intralamellar ATP depletion (see 

incubation time of monensin) without affecting cell viability. 

• To further examine the role of the cytoskeleton in cell-swelling induced 

ATP release, various other agents, which have a well-defined effect on 

the cytoskeleton (e.g. jasplakinolide, latrunculin A), could be tested 

for their impact on ATP release. 
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3.2 ARTICLE 2: Ca2+ -dependent ATP release 

from A549 cells involves synergistic 

autocrine stimulation by co-released uridine 

nucleotides 

3.2.1 Preamble 

Section 3.1 deals with the analysis of nucleotide co-release from A549 cells 

upon hypotonie shock and confirms a Ca2+ -dependent exocytotic release 

mechanism. 

The objective of this research was to specify the origin(s) of the intracellular 

Ca2+ elevation and to further analyze the components of the Ca2+ signal 

leading to the exocytosis of ATP. 

3.2.2 ~rticle 

Tatur, S.j Groulx, N.; Orlov, S.N.; Grygorczyk, R. 

Ca2+ -dependent ATP release from A549 cells involves synergistic autocrine 

stimulation by co-released uridine nucleotides. Journal of Physiology - Lon­

don, 584(2):419-435, October 2007. 

Reproduced on pp. 82-133 with permission. 
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SUMMARY 

Extracellular A TP is a potent surfactant secretagogue but its origin in the 

alveolus, its mechanism(s) of release and regulatory pathways remain unknown. 

Previously, we showed that hypotonie swelling of alveolar A549 cells induces Ca2+_ 

dependent secretion of several adenosine and uridine nuc1eotides, implicating 

regulated exocytosis. In this study, we examined sources of intracellular Ca2+ 

([Ca2+]j) elevation evoked by acute 50% hypotonie stress and the role of autocrine 

purinergic signaling in Ca2+-dependent ATP release. We found that ATP release does 

not directly involve Ca2+ influx from extracellular spaces, but depends entirely on 

Ca2+ mobilization from intracellular stores. The [Ca2+]j response consisted of slowly­

rising elevation, representing mobilization from thapsigargin (TG)-insensitive stores 

and a superimposed rapid spike due to Ca2+ release from TG-sensitive endoplasmic 

reticulum (ER) Ca2+ stores. The latter could be abolished by hydrolysis of 

extracellular triphospho- and diphosphonuc1eotides with apyrase; blocking 

P2Y 21P2Y 6 receptors of A549 cells with suramin; blocking UDP receptors (P2Y 6) 

with PPADS; emptying TG-sensitive stores downstream with TG or caffeine in Ca2+_ 

free extracellular solution; or blocking the Ca2+-release inositol 1,4,5-triphosphate 

receptor channel of the ER with 2-aminoethyl diphenylborinate. These data 

demonstrate that the rapid [Ca2+]j spike results from the autocrine stimulation of 

IP3/Ca2+-coupled P2Y, predominantly P2Y6, receptors, accounting for ~70% of total 

Ca2+ -dependent A TP release evoked by hypotonie shock. Our study reveals a novel 

paradigm in which stress-induced A TP release from alveolar cells is amplified by the 

synergistic autocrine/paracrine action of co-released uridine and adenosine 

nuc1eotides. We suggest that a similar mechanism of purinergic signal propagation 

operates in other cell types. 
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INTRODUCTION 

Extracellular nucleotides, such as A TP and UTP, are important autocrine­

paracrine mediators in most tissues. In the distal lung, A TP is a potent secretagogue 

that stimulates type II cell surfactant secretion (Rooney, 2001). In the airways, 

through interactions with purinergic receptors, ATP, UTP, UDP, and adenosine 

control the volume of airway surface liquid by regulating transepithelial ion transport 

rates (Lazarowski et al., 2004), activating cilia beating (Geary et al., 1995) and mucin 

secretion (Lethem et al., 1993) and thereby mobilizing the mucociliary clearance 

process that removes noxious materials from the airways. Despite the physiological 

relevance of responses triggered by extracellular nucleotides in the lungs, little is 

known about their origin on the epithelial surface and the release pathways. 

Increasing evidence suggests that extracellular A TP functions as a stress-responsive 

molecule, and mechanically-induced ATP release is a cell-regulated process that does 

not involve cell lysis. In particular, mechanical stresses, such as stretch, shear, media 

change or osmotic stress, have been shown to evoke A TP release from many cell 

types. Except in freshwater drowning, lung epithelia are seldom exposed to hypotonic 

shock. It represents, however, an experimentally-convenient and frequently-used 

surrogate of mechanical stress, with which it shares many common characteristics, 

including induction of A TP release, transient cytoskeleton reorganization, 

intracellular Ca2+ ([Ca2+]j) elevation and stimulation of other signaling pathways 

(Koyama et al., 2001). We have shown recently that swelling-induced ATP release 

from lung alveolar A549 cells, bronchial epithelial 16HBE140- cells and NIH 3T3 

fibroblasts tightly correlates with [Ca2lj elevation, indicating the involvement of 

Ca2+-dependent exocytosis (Boudreault & Grygorczyk, 2004a). We also 

demonstrated that besides ATP, significant amounts of ADP, UTP and UDP are co­

released from A549 cells by hypotonic shock (Tatur et al., 2007). Mechanical stresses 

and hypotonic cell swelling are known to induce elevations of [Ca2+]j, which may 

involve Ca2+ influx from extracellular spaces and/or mobilization from intracellular 
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stores. Furthermore, once released, extracellular nucleotides cou Id have paracrine­

autocrine effects on metabotropic P2Y receptors expressed on the surface of airway 

epithelia. Because stimulation of P2Y receptors is coupled to elevation of [Ca2+]i, it 

may lead to nucleotide-induced enhancement of A TP release. Indeed, A TP-induced 

A TP release from astrocytes, cou Id play a role in Ca2+ wave propagation (Anderson 

et al., 2004). 

In this study, we investigated hypotonie stress-induced A TP release from 

A549 cells and exat:nined the role of Ca2+ influx and mobilization from intracellular 

stores. We also examined the contribution of the autocrine effects of released 

nucleotides on [Ca2+]i signaling and ATP release. 
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METHons 

Cells 

Human lung carcinoma A549 cells were grown in Dulbecco's Modified Eagle 

Medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 56 UlmL 

penicillin-G and 56 flg/mL streptomycin sulfate. AlI culture media constituents were 

from GIBCO-BRL (Burlington, ON). ATP efflux was measured from cell 

monolayers grown to confluence (- 500 cells*mm-2
) on 24x60 mm glass coverslips. 

Cell volume was quantified from cells plated at low density on 22x22 mm glass 

coverslips, white Fura-2 calcium imaging experiments were performed with cells 

grown on circular 15-mm diameter glass coverslips. 

Solutions and chemicals 

Physiological isotonie solution (IS) contained (in mM): 140 NaCI, 5 KCl, 1 

MgCh, 1 CaCh, 10 glucose and 10 TES, pH 7.4, adjusted with NaOH. 50% 

hypotonie saline (HS) was prepared by reducing NaCI concentration to 70 mM white 

keeping divalent cation concentration constant. In sorne control experiments, 

solutions with the same reduced NaCI content were used, while iso-osmolarity was 

maintained by adding 140 mM mannitol. Osmolarity of the solutions was checked 

with a freezing point osmometer (Micro Osmometer 3300, Advanced Instruments 

Inc., Norwood, MA) and was 316 mOsm for IS, 161 mOsm for HS and 316 mOsm 

for HS with added mannitol. For studies in the absence of extracellular calcium 

([Ca2+]o), CaCh was omitted and the solutions were supplemented with 0.1 mM 

ethylene glycol-bis(l3-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to chelate 

trace Ca2+. Ali reagents, including Pluronic® F127 and probenecid, were obtained 

from Sigma-Aldrich Canada, Ltd., Oakville, ON. For calcium imaging", Fura-2-AM 

was procured from Invitrogen-Molecular Probes, Kingston, ON. Apyrase (2 U/ml), 

bafilomycin (1 flM), glycyl-L-phenyl-B-naphthylamid (GPN, 100 flM), 
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carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP, 10 !-lM), suramin (100 

!-lM) as weIl as modulators of [Ca2+]j, 2-aminoethyl diphenylborinate (2-APB, 75 

!-lM), caffeine (l0 mM), ruthenium red (100 !-lM) and thapsigargin (TG, 1 !-lM), were 

purchased from Sigma-Aldrich Canada, Ltd. 6-N,N-Diethyl-f3,y-dibromomethylene­

D-adenosine-5'-triphosphate (ARL 67156) was bought from Calbiochem (San Diego, 

CA). ln general, the cells were pre-treated for 30 min in IS with the indicated 

concentration of the test compound. The experiments were th en conducted in the 

absence of the inhibitor in case of bafilomycin, GPN and TG. By contrast, 2-APB, 

caffeine, ruthenium red, and suramin were also present during A TP efflux 

experiments by including them in the perfusate solutions. Thus, they were also 

present in perfusate aliquots used to evaluate A TP content by luciferase 

bioluminescence. Therefore, al! these compounds were tested for their ability to 

directly interfere with luciferase bioluminescence (see below). 

ATP efflux assay 

A TP efflux during hypotonie challenge was measured with high temporal 

resolution using a custom-designed, low-volume (325 f.tL), flow-through chamber, as 

described previously (Boudreault & Grygorczyk, 2004a). Briefly, a 24x60 mm 

coverslip with confluent cell monolayer was mounted in the chamber and perfused 

with a warm (37°C/in-line SF-28 heater, Wamer Instrument Co., Hamden, CT) 

solution at 1.3 mL/min. After an equilibration period in IS (5-15 min), 50% hypotonic 

shock was applied by HS perfusion (t=O), and the perfusate was co!lected 

continuously at 30-s intervals during the initial burst of A TP secretion (0-5 min) and 

every 1 min thereafter. A TP in the samples was quantified by a luciferase-Iuciferin­

based assay, using A TP Assay Mix and A TP Assay Mix Dilution Buffer supplied by 

Sigma-Aldrich Canada, Ltd. ATP release rates were expressed in pmol/(min* 106 

cells). Total ATP release was calculated by summing aIl ATP values collected, 
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starting from the application of hypotonie shock until the release rate returned to 

baseline, typically after about 15 min. 

AIl test compounds that were added to the extracellular solution during the 

A TP efflux experiments were also examined for their ability to directly interfere with 

luciferase bioluminescence. We found strong inhibition of bioluminescence by 

suramin (see inset in Figure SA), moderate by caffeine, and weak by 2-APB. The 

color of ruthenium red-containing solution also interfered with bioluminescence 

detection and contributed to inaccuracies in ATP evaluation. To correct for these 

inhibitory effects, calibration of luciferase-Iuciferin luminescence versus A TP 

standards was always performed in the presence of these reagents. 

Statistical significance was determined by paired (-test, and P < 0.05 was 

considered significant. 

[ctl+); measurements 

For [Ca2+]i measurements, cells were loaded (1 h, room temperature) with 10 

~ Fura-2-AM in physiological solution containing 0.02% Pluronie® F127 and 2.5 

mM probenecid, followed by a 30-min de-esterification period in IS containing 

probenecid and the desired inhibitor (see below). For fluorescent imaging, a coverslip 

with Fura-2-loaded cells was mounted in an imaging/perfusion chamber (RC-20, 

volume 48 J.lI) attached to a heated platform (P-5, Wamer Instrument Co.) on the 

stage of an inverted microscope (Nikon TE300). The imaging chamber was perfused 

continuously with a warm solution (37°C) via an in-tine heater (SF-28, Warner 

Instrument Co.) at -0.5 ml/min. The cells were iIluminated for 100 ms with alternate 

Iight wavelengths of 340 and 380 nm, using a high-pressure mercury lamp (100 W) 

via interference filters (Chroma Technology, Brattleboro, VT) mounted on a filter 

wheel (Sutter Lambda IO-C, Sutter Instrument Co., Novato, CA) and a dichroic 

mirror (510/540 nm, Chroma Technology Corp., Brattleboro, VT). Fluorescence 
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images were recorded at 15-s intervals with the digital camera and stored for later 

analysis. Fura-2 measurements are presented as the fluorescence F340/F380 ratio. In 

sorne experiments, to chelate intracellular Ca2
+, cells were loaded with BAPTA-AM 

(25 IlM) for 30 min at room temperature in physiological solution. 

Ali test compounds that were added to the extracellular solution during Ca2
+_ 

imaging experiments were examined for their potential interference with Fura-2 

fluorescence. To do so, control cell-free experiments were performed with Fura-2 

solution in the cuvette, and fluorescence was measured in the presence and absence of 

the test compound at 340 nm and 380 nm excitation wavelengths with a SPEX 

FluoroMax spectrofluorimeter (Edison, NJ, USA). Only ruthenium red affected 

fluorescence noticeably and was, therefore, not used in [Ca2+]i imaging experiments. 

Cell volume evaluation 

To evaluate the volume changes of substrate-attached cells, we deployed an 

upgraded version of the 3D imaging technique described in our previous work 

(Boudreault & Grygorczyk, 2004b;Groulx et al., 2006). Briefly, the method involves 

3D reconstruction of cell shape based on cell images acquired in two perpendicular 

directions. Side-view and top-view cell images were acquired at 10- to 60-s intervals 

prior to hypotonic challenge and at 5- to 30-s intervals during the challenge, to 

closely foIlow rapid ceIl volume changes. The 3D topography of the ceIl surface was 

reconstructed by a dual image surface reconstruction technique (Boudreault & 

Grygorczyk, 2004b). This technique generates a set of topographical curves of the 

cell surface from its digitized profile and base outline. Cell volume, surface and 

height were calculated from such a reconstructed cell topographical mode!. Ali 

calculations were carried out entirely with MatLab (MathWorks, Inc., Natick, MA). 
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RESULTS 

We previously showed that hypotonie stress-induced ATP release from A549 

cells was triggered by [Ca2Ji elevation, but the sources and mechanism of Ca2+ 

mobilization were not determined. In this study, we examined the contribution of 

different intracellular Ca2+ stores to hypotonie stress-evoked [Ca2+]i responses and 

their role in triggering A TP release from A549 cells. We also investigated the 

involvement of [Ca2+]i signaIs resulting from autocrine purinoreceptor stimulation by 

secreted nucleotides. Throughout this study, the kinetics of ATP release, [Ca2+]i 

responses and cell volume changes evoked by acute 50% hypotonie stress were 

measured in parallei experiments. 

Role of extra cellular Ca2
+ 

We first examined the role of Ca2+ influx from the extracellular spaces in 

hypotonie shock-evoked A TP release and [Ca2+]i responses. Under control 

conditions, with 1 mM CaCh in the extracellular solution, 50% hypotonie shock 

rapidly increased the A TP release rate, reaching a peak at approximately 2 min and 

followed by decay that lasted approximately 15 min, before retuming to baseline 

(Figure lA). To abolish calcium influx from the extracellular spaces, experiments 

were carried out with nominally Ca2+-free extracellular solutions containing 0.1 mM 

EGT A to chelate any trace of Ca2+. Wh en the cells were perfused with a Ca2+ -free IS 

for up to 10 min, the kinetics and amount of released A TP, induced by subsequent 

application of a Ca2+-free HS, were indistinguishable from those observed in parallel 

control experiments performed in the presence of Ca2+ (Figure 1 A). Longer, up to 40 

min, pre-incubation in Ca2+-free IS slightly altered the time course of hypotonie 

shock-evoked ATP release, reducing the peak and total amount of secreted A TP, but 

the changes remained statistically insignificant. These experiments demonstrated that 

hypotonie shock-induced A TP release does not directly require Ca2+ influx from the 
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extracellular spaces, but depends entirely on Ca2+ mobilization from intracellular 

stores. 

Figure 1 B shows the typical [Ca21j response of A549 cells to 50% hypotonie 

shock with Ca2+ present in extracellular solution. The response, represented by the 

Fura-2 fluorescence F34o/F38o ratio, consisted of a slow, pre-spike elevation initiated 

at the onset of hypotonie shock (t = 0), lasting approximately 0.5 min (see inset in 

Figure lB), and followed by a rapid 'spike at about 1.5 min. After the peak, [Ca2+]j 

decayed to a level that was significantly above baseline. This sustained [Ca21j 

elevation lasted as long as the cells remained in HS (at least 20 min) and returned to 

baseline only after re-perfusion with IS. Thus, kineticaIly, it appears that the [Ca2+]j 

response to hypotonie shock consists of two superimposed components, a slowly­

rising response that includes the pre-spike and post-spike sustained elevation, and a 

rapid spike (see also Figures 2B and 3 below). Figure IC examines the impact of 

extraceIlular Ca2+ removal on basal [Ca2+]j under isotonie conditions and its response 

to 50% hypotonie shock. During short (3-5 min) incubation in Ca2+-free IS, basal 

[Ca2+]j decreased slowly, consistent with a steady Ca2+ leak from the extracellular 

spaces, but the subsequent response to Ca2+-free HS remained unaffected (data not 

shown). However, longer (> 1 0 min) incubation in Ca2+ -free IS graduaIly reduced the 

peak [Ca2+]j response to HS, and after 30-40 min incubation, it was significantly but 

not completely diminished (Figure 1 C). Interestingly, the pre-spike and sustained 

post-spike [Ca21j elevation remained almost unaffected in these experiments. The 

results suggest that the rapid [Ca2+]j spike induced by hypotonie shock is due to Ca2+ 

mobilization from intracellular stores, which are graduaIly depleted during ceIl 

incubation in Ca2+-free solution. In contrast, the slow component of the [Ca2+]j 

response remained unchanged even after prolonged Ca2+-free incubation and, thus, 

likely represents Ca2+ mobilization from different intracellular source(s). 

The fact that prolonged Ca2+-free incubation significantly reduced the rapid 

[Ca2+]j spike but had no effect on ATP release suggests that part of the ATP response 
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is Ca2+-independent, or that the remaining [Ca2+]i signal is sufficient to trigger a full 

A TP response. Indeed, the latter seems to be the case, because BAPT A chelation of 

intracellular Ca2+ almost completely abolished both [Ca21i elevation and A TP release 

induced by 50% hypotonie shock (Figure ID). This experiment confirms the 

conclusion of our previous study that hypotonie shock-induced A TP reJease from 

A549 cells depends entirely on [Ca2+]i signaling (Boudreault & Grygorczyk, 2004a). 

Interestingly, we noticed that residual [Ca2+]i and A TP responses to hypotonie shock 

varied between individual experiments, likely reflecting the variable efficiency of 

BAPTA loading and/or the spatiotemporal dependence of intracellular Ca2+ buffering 

by BAPT A in A549 ceUs. 

In our experiments, we applied hypotonie shock by perfusing cells with a HS 

made by reducing NaCI content. When the cells were presented with a solution of the 

same reduced NaCI content but with iso-osmolarity kept constant with added 

mannitol, no responses were observed (Figure lE). This result demonstrates that 

[Ca2+]j and A TP release responses evoked by HS are caused by reduced osmolarity 

and not by changes in ionic strength. During 50% hypotonie shock, cell swelling 

reached a peak at 2-3 min; this was followed by a regulatory volume decrease (RVD) 

(Figure IF). Removal of extracellular Ca2+ may change the kinetics of cell swelling 

or RVD, and could thus contribute to altered [Ca2+]i responses. To verify this, cell 

volume changes evoked by 50% hypotonie shock were investigated in Ca2+_ 

containing and Ca2+-free solutions. As Figure IF shows, the kineties, extent of 

hypotonie swelIing and subsequent RVD in A549 cells were not different in the 

presence or absence of extracellular Ca2+. 

Role of TG-sensitive Co!+ stores 

To examine, in more detail, the nature of the intracellular Ca2+ stores 

contributing to the complex [Ca21i response induced by hypotonie shock, we applied 

pharmacological tools acting on specifie stores or release mechanisms. The 
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endoplasmic reticulum (ER), the most eminent and active Ca2+ store in most cells 

(Brini & Carafoli, 2000), was the first target of our investigation. In Ca2
+ -containing 

IS, acute addition of TG (1 ~M), a specifie, irreversible inhibitor of the sarco-ER 

Ca2+ pump (SERCA) (Thastrup et al., 1990), produced significant Ca2+ mobilization. 

However, despite large [Ca2+]j responses, it induced only negligible A TP release 

(Figure 2A). When the cells were pre-treated with TG (1 ~M) for 30 min in Ca2+-free 

IS to empty the intracellular Ca2+ stores, and then challenged by Ca2+-free HS, the 

rapid [Ca2+]j spike was completely abolished, while the slow component of the [Ca2+]j 

response remained unaffected (Figure 2B, top panel). Thus, it confirms that the rapid 

spike and the slow component of the hypotonie shock-induced [Ca2+]j response 

represent Ca2+ mobilization from two different stores, one of which is TG-sensitive 

and the other TG-insensitive. The peak rate of hypotonie shoek-indueed ATP release 

from TG-treated cells was significantly reduced to 42 ± 8% of that observed with 

control, untreated cells (n = 6; Figure 2B, lower panel). As a result, total A TP release 

was also reduced but to a lesser degree (62 ± 3% of control, Table 1). These data also 

indicate that both ci+ stores contributed to ATP release; the rapid [Ca2+]i spike 

involving TG-sensitive stores was c10sely correlated with the rapid peak of A TP 

release. However, with cells having their TG-sensitive stores depleted, hypotonie 

shock induced only a slowly-rising [Cili response, representing Ca2+ mobilization 

from TG-Însensitive stores, and a significantly slower rate of A TP release was 

observed (Figure 2B, lower panel). 

Using 30 cell imaging, we also verified that swelling and the RVO of TG­

treated cells were similar to those seen with untreated cells (n 4, data not shown). 

Therefore, the effects of TG treatment on ATP release cou Id be entirely attributed to a 

specifie action of TG on Ca2+ signaling. 

Two major types of Ca2+-release receptor channels, ryanodine (RyR) and 

inositoI 1,4,5-trisphosphate (IP3R), may be invoIved in Ca2+ mobilization from TG­

sensitive stores such as the ER (Galione & Churchill, 2002). Cell pre-treatment (30 
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min, 37°C) with caffeine (10 mM), or 2-APB (75 !lM), modulators of RyR and IP3R 

respectively, had a similar effect on [Ca2+]j responses to Ca2+-free hypotonie shock as 

TG, Le., they completely abolished the rapid Ca2+ mobilization spike, while the 

slowly-rising component remained unaffected (Figure 3, top panel). These two 

compounds also diminished the peak rate of A TP release to 56 ± 4% and 58 ± 6% of 

control values, respectively (Figure 3, bottom panel). Table 1 summarizes the effects 

of several RyR and IP3R modulators on A TP secretion induced by 50% hypotonie 

shock in Ca2+-containing and Ca2+-free solutions. It confirms that both RyR and IP3R 

play a role in this process. From Table 1, it is also apparent that simultaneous 

application of TG, caffeine and 2-APB did not completely abolish A TP secretion. 

The residual ~30% of total A TP release was therefore due to Ca2+ mobilization from 

TG-insensitive Ca2+ stores. When the ER-Ca2+ store modulators (TG, 2-APB, 

caffeine, ruthenium red) were tested in the presence of extracellular Ca2+, the time­

course of cell swelling-induced ATP release displayed larger variability, with a 

slightly higher peak and a shallower decline, compared to experiments performed in 

the absence of extracellular Ca2+ (data not shown). This could be attributed to Ca2+ 

entry via store-operated plasma membrane Ca2+ channels (SOC), such as Trp 1 and 

Trp6, which are expressed in A549 cells (Brough et al., 2001 ;Xue et al., 2000). 

However, the difference in total A TP released remained statistically insignificant (see 

Table 1). It should be remembered, however, that most of the pharmacological 

modulators in our study have limited specificity, e.g. 2-APB likely has many targets 

affecting not only IP3R-mediated Ca2+ release but also Ca2+ influx via SOC, 

phospholipase C (PLC) activity and IP3 production (Padar et al., 2005). 

Role of extracellular ATP degradation and autocrine effects of secreted nucleotides 

To minimize the hydrolysis of secreted A TP by ecto-nucleotidases, our A TP 

release experiments were carried out in a custom-made flow-through chamber 

(internaI volume = 325 !ll), which was continuously perfused at the rate of 1.3 
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ml/min, providing complete solution replacement in the experimental chamber every 

-15 s. This allowed us to maintain the bulk A TP concentration in the chamber below 

100 nM, even at the peak of A TP secretion (Boudreault & Grygorczyk, 2004a). This 

approach, however, may not completely prevent A TP degradation or the autocrine 

effects of secreted nucleotides. If ecto-nucleotidases are located in close proximity to 

A TP release sites, a significant fraction of extracellular A TP could be hydrolyzed 

before it is washed away from the cellular surface. Furthennore, the local cell surface 

concentration of A TP and other co-released nucleotides may go much higher than in 

the bulk perfusate, and may thus be sufficient to activate P2Y receptors. To assess the 

extent of A TP degradation at the cell surface in our experiments, release was studied 

in the presence of 100 JlM ARL 67156, an A TP analog and selective inhibitor of 

ecto-A TPases, which shows 300-fold greater selectivity for ecto-A TPase versus P2Y 

receptors (Drakulich et al., 2004;Berra-Romani et al., 2004). As Figure 4 

demonstrates, ARL 67156 significantly enhanced A TP content in perfusate aliquots 

and, at the peak, the rate of A TP release observed in the presence of ARL reached 

146 ± 5% of control values (n=4, Table 2). Thus, in the absence of ARL 67156, 

despite continuous perfusion, a significant fraction of secreted A TP was hydrolyzed 

by cell surface ecto-ATPases. However, we did not notice the contribution of secreted 

nucleotidases to A TP degradation in our experiments, because A TP concentration in 

perfusate aliquots remained stable at room temperature for at least 1-2 h after 

collection. 

We have previously reported that upon hypoosmotic challenge, several other 

nucleotides besides ATP are secreted from A549 cells, in particular, significant 

amounts of UTP and UDP have been detected (Tatur et al., 2007). These nuc1eotides 

may have autocrine/paracrine effects by acting on P2Y and P2X receptors. However, 

the contribution of ionotropic Na +- and Ca2+-permeable P2X receptors to the 

autocrine effects is unlikely, because the responses were independent of Ca2+ influx 

from the extracellular spaces, as demonstrated in Figure 1 above. Therefore we 
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focused on P2Y 2 and P2Y 6 receptors that were found on the AS49 cell surface 

(Schafer et al., 2003;White & Bumstock, 2006;Xue et al., 2000). Activation of these 

IP3/Ca2+-coupled receptors could provide a positive feedback loop, where nucleotide­

induced [Ca2+]i elevation could further enhance Ca2+-dependent nucleotide release, a 

mechanism similar to A TP-induced A TP release reported in astrocytes (Anderson et 

al., 2004). To investigate this possibility, [Ca2+]i responses and ATP release induced 

by hypotonic shock were examined in the presence of 100 !lM suramin, a nonspecific 

P2Y receptor antagonist. Figure SA (top panel) shows that the peak [Ca2li response, 

representing release from TG-sensitive stores, was drastically reduced in the presence 

of suramin. The peak rate and cumulative A TP release were also significantly 

reduced to 10 ± 1 % and 32 ± 21 % respectively of control values (Figure SA, bottom 

panel and Table 2). The reduction of A TP release could not be attributed to the strong 

inhibitory effect of suramin on luciferase bioluminescence reaction, because this was 

corrected by using suramin-containing ATP standards (see inset in Figure SA). Thus, 

the above experiments strongly suggest that the autocrine stimulation of P2Y 

receptors and the IP3/Ca2+ signaling pathway contribute significantly (~70%) to ATP 

secretion evoked by hypotonic shock. This was further confirmed in experiments 

performed in the presence of apyrase (2 U/ml; 30°C), an enzyme which hydrolyzes 

the triphospho- and diphosphonucleotides (Figure SB, left panel). The rapid [Ca2+]i 

spike, which represents Ca2+ mobilization from TG-sensitive stores, was almost 

completely abolished, demonstrating that it was, in fact, evoked by the autocrine 

effects of rapidly-secreted extracellular tri- and diphosphate nucleotides acting on 

P2Y receptors. These experiments also showed that secreted nucleotides are 

susceptible to hydrolysis by exogenously-added apyrase. When similar experiments 

were performed with hexokinase (10 to 20 U/ml; 30°C), which, in the presence of 10 

mM glucose, effectively converts nucleotide triphosphates (ATP, UTP) into 

diphosphates (ADP, UDP) (Lazarowski et al., 1997), no effect on the peak [Ca2li 

response was observed (Figure SB, right panel). Ifhexokinase was indeed effective in 
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removing nucleotide triphosphates in these experiments, the result may suggest that 

autocrine stimulation of the peak [Ca2+]i response cou Id be attributed mainly to UDP, 

acting on the P2Y6 receptor, and/or ADP, acting on the P2YJ receptor, while UTP, 

ATP acting on the P2Y2 receptor seems to play a less prominent role. We addressed 

this point further in the experiments presented below. 

Because of the wide and nonspecific effects of suramin (Zhang et al., 1998), 

to examine the involvement of P2Y!, P2Y2 and P2Y6 receptors more explicitly, we 

tested their known antagonist and agonists. Figure 5C shows that PPADS, a more 

specific P2Y 6 receptor antagonist, aboli shed the hypotonic shock-induced peak 

[Ca2+]i response and strongly inhibited peak ATP release (by ~76%), effects that were 

similar to that of suramin and consistent with the prominent ro le of P2Y 6 receptors. In 

the absence of hypotonic shock, direct bulk addition of 10 J,tM UDP, a selective P2Y6 

receptor agonist, or 100 IlM UTP, a selective P2Y 2 receptor agonist, induced a 

significant [Ca21i response but small ATP release, which at the peak amounted only 

to ~ 1 % to 6 % respectively, compared to that induced by 50% hypotonie shock 

(Figure 5D and E). We also verified that contaminating A TP levels in 100-IlM UTP 

and 10-JlM UDP samples were negligible «0.1 nM), assuring that A TP detected in 

the perfusate indeed originated from UTP- or UDP-induced cellular A TP release. 

Exogenous ATP, which is equipotent with UTP at P2Y2 receptors, also induced a 

significant [Ca2+]i response (Figure 5F, left panel). These results confirm that both 

P2Y2 and P2Y6 receptors are functionally expressed in A549 cells. Recently, the 

presence of UDP-glucose (UDP-glc)-specific P2Y I4 receptors was reported in A549 

cells (Muller et al., 2005). In our hands, however, 10 IlM UDP-glc did not evoke any 

detectable [Ca21i responses in A549 cells (Figure 5F, left panel), suggesting that 

P2Y 14 receptor expression may vary between different laboratories, e.g., due to 

different number of celI passages or culture conditions. Interestingly, 10 J,tM ADP or 

2-MeSADP, a P2Y 1 receptor agoni st, evoked a strong, although transient, short­

lasting «1 min) [Ca2+]i spike (Figure 5F, right panel). Such a transieIit response is 
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consistent with the reported fast desensitization of P2Y] receptors observed in other 

cell types (Palmer et al., 1998). To deterrnine if the P2Y] receptor significantly 

contributes to autocrine [Ca2li responses during hypotonic shock, hexokinase 

experiments, such as those in the Figure 5B (right panel), were repeated in the 

presence of the P2Y 1 receptor antagonist A3P5PS (1 J.lM). We found no effect of the 

antagonist on the hypotonic shock-induced [Ca2li response in these experiments (not 

shown), demonstrating that P2Y l receptors do not contribute significantly to the 

autocrine effects noted in our study. 

Collectively, the above results confirrn that A549 cells express functional 

P2Y 2 and P2Y 6 receptors and, in addition, suggest thefunctional expression of P2Y 1 

receptors. Although ail three receptors are functionally present, only P2Y 6 seems to 

play a prominent role in autocrine [Ca2+]i signaling during hypotonie shoek-evoked 

nucleotide release. 

Role of TG-insensitive Ca1+ stores 

The above experiments demonstrated an important role of purinoreeeptor­

mediated Ca2+ mobilization from TG-sensitive Ca2+ stores in hypotonie shoek­

induced ATP release. Here, we investigated the role of the TG-insensitive part of the 

[Ca2+]i response, whieh is seen as a slowly-rising, sustained component during 

hypotonie shoek (see e.g., Figures 2B and 3). Acidic eompartments, sueh as 

lysosomes, are being recognized as a part of TG-insensitive Ca2+ stores (Galione & 

Churchill, 2002); therefore, we examined the effect ofbafilomycin, an inhibitor ofthe 

Iysosomal H+-Ca2+ exehanger, and GPN, whieh disrupts lysosomal organelles. Both 

of these agents did not affect the peak rate or total A TP released from A549 cells 

induced by hypotonie shoek (Table 1), demonstrating that TG-insensitive Ca2+ 

mobilization in A549 cells involves stores other than aeidie-Iysosomal compartments. 

Next, we examined the modulators of mitoehondrial funetion: FCCP, a proton 

ionophore whieh depolarizes the inner mitoehondrial membrane and reduees the 
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electrochemical driving force for Ca2+ uptake, and oligomycin, inhibitor of F IIFO 

A TP synthase. Figure 6A shows that both modulators were without effect, suggesting 

that mitochondria also do not contribute to the TG-insensitive Ca2+ response evoked 

by hypotonic shock. 

The actin cytoskeleton is known to regulate diverse cellular processes, 

including secretion and Ca2+ signaling. Sorne studies even suggest that the actin 

cytoskeleton itself may be part of intracellular Ca2
+ stores (Janmey et al., 1998;Lange 

& Brandt, 1996;Lange, 1999). We, therefore, explored the possibility that in our 

experiments the actin cytoskeleton may function as a TG-in sensitive Ca2
+ store. To 

perform such studies in isolation from TG-sensitive stores, the contribution of the 

latter was eliminated by pre-treating cells with TG in Ca2+-free solution for 30 min to 

completely empty them. We found that disruption of actin filaments with latrunculin 

had no effect on hypotonic shock-induced, TG-insensitive Ca2+ responses or on 

corresponding A TP release (Figure 6B). Disruption of actin filaments with 

cytocholasin D was also without effect (data not shown). Similarly, induction of actin 

polymerization with jasplakinolide had no effect on the Ca2
+ response, while ATP 

release showed only slightly slower kinetics, with the peak rate and total A TP release 

not being affected significantly (Figure 6B and Table 1). In contrast, in control cells 

not treated with TG, cytocholasin D had a significant (~70%) inhibitory effect on 

ATP release (Table 1). Thus, the intact cytoskeleton has an important role in 

modulating A TP release from cells with functional TG-sensitive stores. However, it 

has no direct role in Ca2+ storage and mobilization from TG-insensitive stores and 

corresponding A TP release. 
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DISCUSSION 

The present study examined different sources of [Ca2+]i elevations induced by 

acute hypotonie stress in A549 cells and their role in stimulating Ca2+ -dependent A TP 

release. We found that ATP release depends entirely on Ca2+ mobilization from 

intracellular stores. Both TG-sensitive and TG-insensitive stores are involved, 

contributing approximately 70% and 30% respectively to total A TP released by 

hypotonie shock. Importantly, we also found that despite rapid perfusion of the 

experimental chamber, autocrine stimulation of P2Y receptors by co-released uridine 

and adenosine nucleotides plays a major role in amplifying the initial hypotonie 

stress-induced [Ca2+]i response and further promoting ATP release. 

Two eomponents of the [Ca2+fï response to aeute hypotonie stress 

The [Ca2+]i response induced by acute 50% hypotonie shock in A549 cells 

consisted of two superimposed, kinetically-different components. Both were due to 

Ca2+ mobilization from intracellular stores, while Ca2+ influx from extracellular 

spaces was not directly involved. The rapid [Ca2+]i spike originated from Ca2+ 

mobilization from TG-sensitive stores, such as the sarco- endoplasmie reticulum, and 

was abolished when the stores were depleted by blocking SERCA with TG, or by 

activating RyR Ca2+ release channels with caffeine, under Ca2+-free conditions to 

prevent refilling the stores. Antagonists of IP3R (2-APB) and RyR (ruthenium red) 

also inhibited the [Ca2+]i spike and A TP release (Table 1), indicating that Ca2+ 

mobilization via both channels plays a role in triggering A TP secretion. RyR may 

contribute to the propagation of [Ca21i signaling via cyclic ADP-ribose and Ca2+_ 

induced Ca2+ release mechanism (Galione & Churchill, 2002). Interestingly, full 

inhibition of the rapid [Ca2+]i peak by 2-APB, a non-competitive IP3R Ca2+ release 

channel antagonist (Figure 3), suggests that this component of the hypotonie shock­

induced [Ca21i response results from activation of plasma membrane receptor(s) that 
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couple with the IP3/Ca2+ signaling pathway. Indeed, autocrine activation of P2Y 

purinoreceptors was confirmed in a further study, and is discussed below. 

The absence of the rapid spike after pre-treatment with TG revealed the 

slowly-rising [Ca2lj component originating from a TG-insensitive intracellular 

source. Beside the ER, the mitochondria and the nucleus appear to be crucial for the 

generation of Ca2+ signaIs of high spatiotemporal complexity (Brini & Carafoli, 

2000). However, both organelles are implicated in the buffering and uptake of 

cytosolic Ca2+ rather than initiating and extending Ca2+ signaling (Brini & Carafo li , 

2000). Hence, they are unlikely to be responsible for the TG-insensitive part of the 

hypotonic shock-induced Ca2+ signal. Indeed, the modulators of mitochondrial 

function, FCCP and oligomycin, were without effect on the TG-insensitive Ca2+ 

response to hypotonic shock. Furthermore, experiments with bafilomycin and GPN, 

which interfere with the Ca2+-storage capability of acidic compartments, showed that 

they are not involved in triggering ATP release, suggesting the involvement of Ca2+ 

stores different from acidic lysosomal compartments. Interestingly, even prolonged 

~40-min absence of extracellular Ca2+ had no effect on the slow [Ca2+]j component, 

indicating that TG-insensitive stores may not be of an organellar nature and 

prompting us to examine the hypothesis that actin may act as a non-organellar Ca2+ 

store (Lange & Brandt, 1996;Lange, 1999). However, our experiments with agents 

that promote either actin polymerization or depolymerization were without significant 

effect on hypotonic shock-induced Ca2+ mobilization from TG-insensitive stores and 

corresponding A TP release. Thus, the nature of this slow [Ca2+]j response component 

remains incompletely understood. 

Earlier reports with other cell types showed that [Ca2+]j elevations caused by 

hypotonic shock could either result from Ca2+ influx across the plasma membrane 

and/or from Ca2+ release from internaI stores (McCarty & O'Neil, 1992;Sanchez et 

al., 2003;Tinel et al., 2000;Wu et al., 2001;Wu et al., 1997). In our experiments, Ca2+ 
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influx did not play a direct role in either the slow or rapid peak of the [Ca2+Ji response 

to acute hypotonie shock, although the prolonged absence of extracellular Ca2+, led to 

partial depletion of TG-sensitive stores and reduction of the rapid [Ca2+]i peak. These 

differences may be due to the different cell types studied and experimental 

conditions. Our experiments were petformed with substrate-attached cells at 37°C, 

while some other studies utilized ceUs in suspension or at room temperature. Because 

the rapid peak of [Ca2li responses results from the autocrine/paracrine purinergic 

loop in A549 cells, other factors may include the differential expression of P2Y 

receptors, differences in nucleotide release and the expression of different plasma 

membrane Ca2+-permeable channels. 

Ca2+ and ATP release. 

Our previous study demonstrated a tight correlation between [Ca2+Ji 

elevations and ATP release in A549, 16HBE140' and NIH-3T3 fibroblasts during the 

initial ~5 min of hypotonie stress (Boudreault & Grygorczyk, 2004a). The present 

work shows correspondingly that maneuvers which eliminated the rapid [Ca2li spike 

also significantly reduced the rate of A TP release. Complete emptying of TG­

sensitive stores by pharmacological maneuvers reduced, by up -70%, the total A TP 

release evoked by subsequent 50% hypotonie shock (Table 1). The remaining -30% 

of ATP release could be attributed to the slow [Ca2+Ji signal originating from TG­

in sensitive stores. Interestingly, TG on its own provoked quite significant [Ca2+]i 

elevation, but in contrast to hypotonie shock, induced only minor ATP release. We 

previously observed that the strong [Ca2+]i signal generated by application of the 

Ca2+-ionophore ionomycin produced relatively minor ATP release (Boudreault & 

Grygorczyk, 2004a). Both experiments imply that other factor(s) besides global 

[Ca2+]i elevation modulate A TP release from A549 cells. For example, the 

spatiotemporal dependence of [Ca2li signaling is now a widely recognized feature of 

this universal second messenger, which restricts the Ca2+ action to specifie 
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intracellular microdomains, allowing the fine control of cell function (Oheim et al., 

2006;Spat, 2006). Thus, relatively minor A TP release might indicate that A TP release 

sites are distant from TG-induced Ca2
+ mobilization sites. Moreover, besides Ca2

+, 

other signaling pathways not investigated in this study have been implicated in the 

regulation of A TP release, including tyrosine kinase, RhofRho kinase and PB-kinase 

(Grygorczyk & Guyot, 2001 ;Koyama et al., 2001). 

Sorne studies found that onJy a fraction of hypotonie shock-induced A TP 

release could be inhibited by loading cells with intracellular Ca2+ chelator BAPT A­

AM, which suggests a Ca2+-independent release mechanism (Okada et al., 2006). 

Mobile Ca2+ buffers, such as BAPT A, provide an efficient mechanism to spatially 

restrict the [Ca2+]j increase (Oheim et al., 2006), but its efficiency in preventing Ca2+_ 

triggered vesicular exocytosis will critically depend on the distance between Ca2+ 

release sites and secretory vesicles. Ca2+ transients might be highly localized, 

reaching as high as 5 ).lM to 30 ).lM at submembrane microdomains (reviewed in 

(Oheim et al., 2006). Thus, despite a high Ca2+-binding rate, BAPTA may not 

completely prevent localized [Ca2+]i increases. This may be especially the case for 

highly-differentiated primary epithelial cells, where secretory vesic1es may co­

localize with submembrane Ca2+ stores. Further studies are required to explore the 

effectiveness of BAPTA in preventing hypotonie shock-induced submembrane 

[Ca2+]j transients and A TP release from such cells. 

Role of the autocrine/paracrine loop in ATP release 

Our data demonstrate that the rapid [Ca2+]i peak induced by hypotonie shock 

results entirely from the autocrine/paracrine effects of released nuc1eotides acting on 

IP3/Ca2+ signaling pathway-coupled P2Y receptors. This conclusion is supported by 

the following experimental evidence. The rapid [Ca2Jj peak could be almost 

completely aboli shed by: (i) the hydrolysis of extracellular triphospho- and 
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diphosphonueleotides with apyrase, but not hexokinase; (ii) bloeking P2Y reeeptors 

with the non specifie P2Y receptor antagonist suramin; (iii) bloeking the P2Y6 

reeeptor with its more specifie antagonist PPADS, but not the P2Y1 reeeptor 

antagonist A3P5PS; (iv) blocking the ER Ca2+-release IP3R channel with its 

antagonist 2-APB downstream of the P2Y receptor; or (v) eompletely emptying ER 

stores with TG or eaffeine. 

We have reeently reported that several adenine and uridine nucleotides are 

transiently released from A549 cells in response to hypotonie shoek (Tatur et al., 

2007). Importantly, apart from ATP, significant amounts of UTP, UDP and ADP 

could be deteeted in eell perfusates (A TP > UTP > UDP > ADP). Therefore, released 

nucleotides, by interacting with their specifie receptors, cou Id contribute to 

autocrine/paracrine signaling in A549 cells. In this study, by investigating [Ca2+]j 

responses to the bulk addition of UTP, ATP, or UDP, we confirmed the functional 

expression of P2Y 2 and P2Y6 receptors respectively (Clunes & Kemp, 1996;Zhao et 

al., 2000), but not UDP-glc-specific P2Y14 receptors (Muller et al., 2005) in A549 

eells. Interestingly, we also found evidence for the functional expression of the ADP 

receptor P2YI. Based on their functional presence, we eoncIude that, in princip le, the 

three P2Y receptor subtypes may contribute to the autocrine effects of released 

nucleotides. In partieular, the involvement of P2Y 6 reeeptor was further confirmed by 

using its more specifie antagonist PPADS, which almost completely abolished the 

hypotonie shoek-induced rapid [Ca21i peak and signifieantly diminished A TP 

release, while the P2Y 1 reeeptor antagonist A3P5PS had no deteetable effeet on the 

rapid [Ca2+]j response. This suggests an important role for P2Y 6 receptor in the 

autocrine/paracrine loop. The relative contribution of P2Y 2 reeeptors could not be 

independently determined in complementary experiments because selective P2Y2 

receptors antagonists are not available commercially. However, complementary 

support that P2Y6 but not P2Y2 receptors are the main players in the autocrÏne [Ca2+]i 

response was provided by experiments with apyrase and hexokinase. Apyrase, by 
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hydrolyzing nucleotide tri- and diphosphates, eliminates the agonists of both P2Y 2 

and P2Y 6 receptors, completely abolishing the peak [Ca2+]i response. However, 

hexokinase, which eliminates only agonists of P2Y 2 receptors by converting UTP and 

ATP into UDP and ADP (Lazarowski et al., 1997), had no noticeable effect. 

Based on our data, we propose the following mechanism of hypotonie shock­

induced A TP release. Upon hypotonie shock, initial Ca2
+ mobilization likely occurs 

from TG-insensitive stores, seen as the slowly-rising pre-spike in Figure 1 B. This 

initial [Ca2+]i elevation triggers the vesicular exocytosis of adenosine and uridine 

nuc1eotides which, via autocrine/paracrine activation of Gq protein-coupled P2Y 

receptors, stimulates the PLC/IP3 signaling pathway, leading to subsequent activation 

of IP3R Ca2+ release channels of the ER. At this point, Ca2+ -inducd Ca2+ release via 

RyR will also contribute to [Ca2+]i signal propagation. The enhanced [Ca2+]i signal, 

seen as the rapid [Ca2li spike in Figure lB will, in turn, further promote Ca2
+_ 

dependent A TP release. Such nucleotide-promoted nuc1eotide release likely leads to 

almost full depletion of exocytosis-available vesicular pools in A549 cells, since after 

~5 min, the rate of A TP release does not tightly correlate with the [Ca2li signal any 

longer. As a result, after the initial peak, the rate of ATP release decays towards 

background, despite significantly elevated [Ca2li (Boudreault & Grygorczyk, 

2004a;Grygorczyk & Boudreault, 2005). 

The proposed mechanism might be a general scheme of hypotonie or 

mechanical stress-induced A TP release from other cell types, although the specifie 

players of the autocrine loop may vary, depending on the type of P2Y receptor 

expressed by a given cell and its ability to release different adenosine and uridine 

nuc1eotides. In the particular case of A549 cells, UDP acting on P2Y 6 receptors seems 

to have a prominent role. As exemplified by the effect of the ecto-A TPase inhibitor 

ARL in our experiments, extracellular nuc1eotide metabolism, and possibly their 

interconversion, may also have an important role in regulating nuc1eotide release and 

autocrine signaling and requires future investigation. Our findings may have 
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interesting implications for the regulation of surfactant secretion by alveolar type II 

cells. Although the stimulatory effect of stretch and involvement of P2Y 2 receptors in 

surfactant secretion are well-established (Dietl & Haller, 2005;Rooney, 2001), the 

contribution of other P2Y receptors remains unclear. Our study suggests an important 

role of P2Y 6 receptors in synergistic autocrine/paracrine stimulation of the IP3/Ca2
+ 

signaling pathway after stress-induced nucleotide release from A549 cells, a modei of 

type II pneumocytes. The resulting amplification and spatiotemporal extension of the 

[Ca2ii signal may influence severa} steps of surfactant secretion, including lameHar 

body fusion, pore-opening and surfactant dispersion (Dietl & Haller, 2005). 

In summary, our study demonstrates an important role of autocrine purinergic 

signaling in hypotonic stress-induced A TP release. The autocrine loop amplifies the 

initial stress-evoked Ca2
+ response, accounting for the majority (-70 %) of released 

A TP. Our study aiso provides a novel paradigm in which stress-induced A TP release 

from alveolar A549 cells is amplified predominantly by the autocrine/paracrine action 

of co-released UDP acting on P2Y6 receptors. We propose that such synergistic 

effects of co-released nucleotides may be a general mechanism of purinergic signal 

propagation and amplification in other ceIl types. 
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Table 1. 

Peak ATP release Total A TP release 

Agent [Ca·1o Absence of [Ca21" [CaL1o Absence of [CaL+] 0 

Action % of control n P % of control n P % of oonlro1 ij P % of control ± n P 

±SD ±SD ±SD SD 

2-APB IP3R inhibition 70±2 3 <0.05 58±6 3 <0.05 108 ± 1 < 0.05 

Caffeine RyR stimulation 65 ± 12 6 v.VJ 56±4 3 <0.05 60 ± 15 6 

Ruthenium Red RyR inhibition 51 ±4 3 v.VJ 'J :1::> 3 <0.05 72±5 3 <0.05 75 ± 12 > 0.05 

• Thapsigargin (TG) ER-Caz+ -pump inhibition 44± 14 7 < 0.001 42±8 6 < 0.001 94±31 6 >0.05 62±3 < 0.001 

2-APB + caffeine 31 ±9 3 <0.05 30±6 <0.05 

+TG 

Bafilomycin Ca2+-Wexchanger 104± 9 3 > 0.05 98±3 3 >0.05 

inhibition 

GPN lysosome disruption 105 ± 28 3 > 0.05 108 ± 13 3 >0.05 

BAPTA [Caz+]i chelating agent 10 ± 2 3 <0.05 Il ± 2 3 <0.05 

Cytochalasin D inhibition of actin 33 ±6 3 <0.05 56± 5 3 <0.05 

polymerization 

%ofTG± %ofTG±SD 

SD 

Jasplakinolide + induction of actin 97 ± 15 3 >0.05 135 ± 10 3 > 0.05 

TG polymerization 

Latrunculin A + disruption of micro fila- 88±9 3 >0.05 121 ± 9 3 > 0.05 

TG ment-mediated processes 



Table 2. 

Peak ATP release Total ATP release 

Agent [Ca2Jo [Ca2Jo 
Action % of control ± SD n P % of control ± SD n P 

ARL Ecto-nucleotidase inhibition 146 ± 5 4 < 0.05 

Suramin P2X, P2Y receptor inhibition 10 ± 1 3 < 0.001 32 ± 21 3 < 0.05 

PPADS P2Y 6 receptor inhibition 24± 2 3 < 0.001 35 ± 10 3 < 0.05 
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Table 1. 

Effeet of Ca2
+ signaling and eytoskeleton modulators on 50% hypotonie shoek­

indueed A TP release from A549 eells. 

Table 2. 

Modulation of hypotonie shoek-indueed ATP release by selected inhibitors of eeto­

nucleotidases and P2Y receptors. 
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FIGURE LEGENDS 

Figure 1. Role of extraeellular Ca2
+ in hypotonie shoek-indueed ATP release, 

[Ca21i and eell volume responses. 

A. Time-course of A TP release induced by 50% hypotonie shock (t = 0) from 

confluent A549 cell monolayers. The data points shown as (.) represent ATP 

eftlux observed with 1 mM Ca2+ present in the perfusate throughout the 

experiment (n = 4). The data points shown as (.) and (~) represent ATP eftlux 

observed in the absence of extracellular Ca2+ when it was removed 10 min and 40 

min before hypotonie shock, respectively (n = 3 and n = 4 respectively). Peak 

and total A TP releases were not significantly different between the three 

experimental groups. 

B. Time-course of the hypotonic shock-induced [Ca21j response in A549 cells in 

Ca2+ -containing HS. The response consisted of a slow pre-spike elevation 

initiated at the onset of hypotonic shock (t = 0), a rapid spike at about 1.5 min, 

and a sustained after-spike [Ca2+]j elevation, which returned to baseline after the 

cells were re-perfused with physiological IS. The inset shows the initial [Ca2+]j 

response acquired with higher temporal resolution, clearly demonstrating the 

existence of a pre-spike. 

C. Effect of extracellular Ca2+ removal on the hypotonic shock-induced [Ca2+]j 

response. The three representative traces (out of n 3 to 4 independent 

experiments) show the Fura-2 fluorescence F34ofF380 ratio response to hypotonie 

shock recorded with Ca2+ present throughout the experiment (.), or after removal 

ofextracellular Ca2+ for 17 min (.) or 40 min (~) before Ca2+-free 50% HS was 

applied. Note the significant reduction of the peak [Ca2+]j response in ceUs 

incubated for 40 min in Ca2+ -free extracellular solution. 

D. The [Ca21i and ATP responses to hypotonie shock are abolished in BAPTA­

loaded (25 !lM, 30 min) cells; representative of n = 3 independent experiments. 
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E. The [Ca2+]j and ATP responses, upper and lower panels, respectively, are evoked 

by reduced osmolarity, not ionie strength. The control traces (e) refer to 

responses triggered by HS that had 50% reduced NaCI content. When the cells 

were perfused with HS complemented with mannitol ta maintain iso-osmolarity 

(see Methods), no responses were observed (.); representative of n = 3 

independent experiments. 

F. 50% hypotonie shock-induced volume responses of single, substrate-attached 

A549 cells in Ca2+-containing (left panel) and Ca2+-free (right panel) solutions. 

Thin fines represent data from individual single-cell experiments, and sofid fines 

represent a fit to the average data (±S.D.; n 3 ta 4). Ccli swelling and RVD were 

similar for bath experimental conditions. 

Figure 2. Modulation of the cell swelling-induced [Ca2+h response and ATP 

release by TG. 

A. Time course of [Ca2+]j changes (top panel) and ATP release (bottom panel) in 

response to the acute addition of 1 )lM TG in Ca2+-free IS. Each trace is 

representative of 3 independent experiments. 

B. Top panel: Hypotonic shock-induced [Ca2+]i response in TG-treated cells, 

representative of 4 independent experiments. Bottom panel: Hypotonie shock­

induced A TP release from TG-treated cells, representative of 6 independent 

experiments. (e) refers to control cells incubated for 30 min in Ca2+-free 

solution prior ta the experiment, and (T) refers to cells incubated for 30 min in 

Ca2+-free solution containing 1 )lM TG. 

Figure 3. Role of RyR and IP3R in the cell swelling-induced [Ca2+]j response and 

ATP release. 

Hypotonic shock-induced [Ca2+]j response (top panel) and ATP release (bottom 

panel) in caffeine (T) and 2-APB (.) pre-treated cells. Representative traces are 
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shown out of n 3 independent experiments; control (.) refers to the [Ca2li response 

in untreated ceUs. Ali experiments were performed in Ca2+-free solutions. 

Figure 4. B10cking ecto-ATPases enhances peak ATP release. 

Effect of the ecto-ATPase inhibitor ARL 67156 (100 f.1M) on hypotonie shock­

induced A TP release. Control experiments (.) were performed in the presence of 

[Ca2l o without the addition of inhibitor; (.) represents the time course of ATP 

release in the presence of [Ca2+]o and ARL. Representative traces out of n 4 are 

shown. 

Figure 5. Role of autocrine/paracrine purinergic signaling. 

A. Effect of hypotonie shock on [Ca2+]j (top panel) and A TP release (bottom panel) 

after blocking purinergic receptors with suramin ( ... ); (.) refers to the control 

response in the absence of suramin. Representative traces out of n = 3 

independent experiments are shown. Inset in bottom panel: Calibration curve of 

luciferase-Iuciferin luminescence (in relative light units, RLU) versus standard 

ATP concentrations: (.) refers to ATP standards in IS; (0) refers to ATP 

standards in IS containing 100 f.1M suramin. Similar effect of suramin on 

luciferase-Iuciferin luminescence was observed in HS. 

B. Effect of apyrase ( ... , left panel), or hexokinase ( ... , right panel) on the hypotonie 

shock-induced [Ca2li response. Apyrase (or hexokinase) was added 3 min prior 

to and throughout hypotonie shock. On each panel, a representative trace out of n 

3 independent experiments is shown. Control (.) refers to untreated cells. Ali 

experiments were performed in the presence of 1 mM extraeellular Ca2+ and at 

30°C, not as usually at 37°C, in accordance with the optimal temperature of the 

enzyme activity. Therefore, the extent of peak reduetion by apyrase at 37°C 

might be slightly different. 
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C. Effect of the P2Y6 receptor antagonist PPADS on hypotonie shock-induced ATP 

release and the [Ca2Jj response. 100 IlM PPADS was added to cells 30 min 

before the application of hypotonie shock and was present throughout the 

experiment were performed in Ca2+-containing solutions. For each condition, a 

representative experiment out of n = 3 is shown. (.) refers to untreated cells, and 

(.) refers to PPADS-treated cells. 

D. Effect of 10 IlM UDP, a P2Y6 agonist, on the [Ca2Jj response (representative of 

n 3) and ATP release (average ± S.D. of n = 3), top and bottom panels, 

respectively. 

E. Effect of 100 IlM UTP, a P2Y2 agonist, on the [Ca2+:h response (representative of 

n = 3) and ATP release (average ± S.D. of n = 3), top and bottom panels, 

respectively. 

F. Left panel: Effect of 10 IlM A TP (.), a P2Y2 agonist, and 10 IlM UDP-glc (.), a 

P2Y 14 agonist, added at t 0, on the [Ca2+]j response. Note that UDP-glc had no 

effect, although the cells did respond robustly to the subsequent addition of UTP 

(.). Right panel: 10 IlM ADP or 2-MeSADP, agonists ofP2Y1 receptors, evoked 

short-lasting [Ca2+]i tesponses that were kinetically different from those observed 

for other nucleotides, shown in D and E. For these experiments, ADP was pre­

treated with lOU/mI of hexokinase in the presence of 10 mM glucose for 1 h at 

room tempe rature to remove any contaminating ATP and UTP. For each 

condition, a representative experiment out of n = 3 is shown. 

Figure 6. Role of mitoehondria and aetin in the TG-insensitive [Ca2+]i response 

to hypotonie shoek. 

A. Effect of FCCP and oligomycin (OM), on the hypotonie shock-induced [Ca2+]j 

response. Cells were pre-treated for 30 min with 10 IlM FCCP + 1 IlM TG, or 10 

IlM OM + 1 IlM TG, in Ca2+-free IS for 30 min prior to the experiment. 

Experiments were performed in the absence of extracellular Ca2+. (.) refers to 
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TG-treated cells, (.) refers to FCCP + TG-treated cells, and (v) refers to OM + 

TG-treated cells. For each condition, a representative experiment out of n 3 is 

shown. 

B. Effect of jasplakinolide (JASP), an inducer of actin polymerization, and 

latrunculin A (LA), a microfilament-disrupting agent, on the hypotonie shock­

induced [Ca2ii response (top panel) and ATP release (bottom panel). The cells 

were pre-treated for 2 h with 1 !lM JASP, or 1 h with 1 !lM LA, and with 1 !lM 

TG for 30 min in Ca2+-free IS prior to the experiment. Experiments were 

performed in the absence of extracellular Ca2+. (.) refers to TG-treated cells, (.) 

refers to LA + TG-treated cens, and ( ... ) refers to JASP + TG-treated cells. For 

each condition, a representative experiment out of n 3 is shawn. 
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Figure 2 
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Figure 4 
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3.2.3 Further unpublished results 

The origin of the thapsigargin (TG)-insensitive Ca2+ -elevation was further 

analyzed in the context of sorne publications reporting that various cell types 

responded to osmotic challenge with changes in intracellular pH (pHi) and 

that these changes were associated with alterations in intracellular Ca2+ [191, 

192]. 

When A549 cells were exposed to a 50% hypotonic solution, they responded 

with a short rise and a subsequent slow decrease in pHi to about pH 6.9. As 

soon as the cells were reperfused with isotonic solution (18), the pHi returned 

to its initial value of about pH 7.1 (see Fig. 3.3, page 134). The ce Ils were 

next exposed to 1 /LM ionomycin and to isotonic solutions containing 40 

mM sodium acetate (NaOAc) or 20 mM NH4CI (in exchange to NaCI), and 

intracellular Ca2+ as weIl as pHi alterations were measured by ratiometric 

imaging (see section 2.3). 

Figure 3.3: Time-course of intracel­
lular pH and Ca2+ upon application 
of a 50% hypotonie shock; represen­
tatives of n = 3 independent exp er­
iments each 
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AIthough the intracellular Ca2+ level increased very strongly upon treatment 

with ionomycin, a Ca2+ -ionophore (see page 272), the corresponding pHi al­

teration was very small and rather negligible (see Fig. 3.4, page 134). In 

contrast, intracellular alkalization as well as acidification with NH4Cl and 

NaOAc also evoked intracellular Ca2+ alterations (see Fig. 3.5, page 135). 

It has to be considered that the observed alterations in the intracellular Ca2+ 

level associated with the pHi changes IDight be an artifact of a pH-dependence 

of the Ca2+ -affinity to Fura-2, even though the fluorochrome has been con­

sidered relatively insensitive to pH changes [1641. However, an acidification 

would protonate Fura-2, decrease thereby its Ca2+ -binding ability and di­

minish the magnitude of Ca2+ -bound fluorescence as weIl as the associated 

fluorescence ratio - an effect opposite to that which was actually observed. 

To be able to interpret the observed responses of A549 ce Ils to NH4CI and 
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to N aOAc, the physiological role of these mole cules will be briefly reviewed 

in the following two paragraphs: 

The Ammonium Cation, NHt, is produced in the body during amino acid 

catabolism [193]. It is a weak acid (NHt + H20 ;::::± NH3 + H30+; pKa = 9.25 

at 25 0 C, pKa = 9.15 at 37 0 C [194]) and appears, therefore, mainly in the 

protonated form as ammonium cation NHt at the physiologic pH range of 

7.1-7.415 . The major metabolic pathway responsible for the removal of NHt 

is the synthesis of nontoxic urea in the liver via the ornithine cycle [193]. 

During the exposure of cells to ammonium salts, the lipophilic free base NH3 

can passively penetrate cell membranes. In the cell, NH3 protonates again 

(NH3 + H20 ;::t NHt + OH-; pKb = 4.75 at 25
0 

C [194]) leading thereby 

to an intracellular alkalization. Different cell types show divers responses 

following the uptake of NH3 /NHt. In addition to the effect of NHt on 

metabolism and divers cellular pro cesses (for further information see [195-

199]), NHt was shown to induce an intracellular Ca2+ rise in a variety of cell 

types either from internaI Ca2+ stores or through Ca2+ influx. The increase 

in intracellular Ca2+ was mainly a result of the ammonia-induced intracel­

lular alkalization [200-202]. However, also pH-independent pathways were 

reported, where NH3 /NHt seem to directly affect proteins involved in the 

Ca2+ signalling pathway [203, 204]. 

The Acetate Anion, AcO-, is found in the blood plasma in a concentration of 

< 0.2 mM [205, 206]. After the intake of ethanol, the concentration can ri se 

by as mu ch as 20-fold [207]. Cells take up AcO- from the blood plasma and 

use it either as a source of energy [208, 209] or they transform it to acetyl 

coenzymeA (acetyl-CoA), an activated form of AcO- [210]. 

Free acetate is a week base (AcO- + H20 ;::t AcOH + OH-; pKb = 9.25 

at 25 0 C [194]) and its conjugate acid readily permeates the cell membrane. 

Inside the ce Il , acetic acid deprotonates again and causes thereby an intra­

cellular acidification. In addition to the intracellular acidification, AcO- was 

shown to also induce in sorne cases an intracellular Ca2+ increase. Similarly to 

150nly 1 - 2% exists in the deprotonated form NH3 . 
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NHt, acetate-induced intracellular Ca2+ rise was shown to be triggered either 

through a pH-dependent or through an unknown pH-independent pathway 

[211-213]. 

Obviously, both ions are endogenous substances to whose exposure cells may 

react in various ways. Most important in regard to the present study is the 

observation that both ions evoke in vitro a pHi alteration and a concomitant 

intracellular Ca2+ elevation, which, however, do not necessarily have to be 

interrelated. 

The experiment, in which the intracellular Ca2+ in A549 cells was increased 

with the aid of ionomycin (see Fig. 3.4, page 134), reveals that an intracel­

lular Ca2+ increase only insignificantly altered the pHi. This result indicates 

that - in case of an existing correlation between the pHi alteration and the 

intracellular Ca2+ signal - the pHi should affect the intracellular Ca2+ level 

and not vice versa. 

The exposure of A549 cells to NHt as weIl as the removal of extracellular 

AcO- (see Fig. 3.5, page 135), led to an intracellular alkalization as weIl as to 

a transient increase in intracellular Ca2+ with a relatively fast return to the 

initial baseline after around 3 min. In contrast, the exposure to AcO- as weIl 

as the removal of extracellular NHt led to an intracellular acidification and 

to an increase in intracellular Ca2+, which declines slower than during alka­

lization (removal of NHt) or stays on an elevated level (exposure to AcO -). 

Interestingly, the A549 cells responded to the first stimulus, the exposure to 

NHt (alkalization) or to AcO- (acidification), with a smaller Ca2+ signal 

than to the second stimulus, the removal of NHt (acidification) or AcO­

(alkalization). The differences in the size of the Ca2+ signaIs in response to 

the alkalization upon the exposure to NHt and the removal of AcO-, re­

spectively, may emanate from the fact that in one case the alkalization was 

induced on resting cells and in the other case on already stimulated ceIls; 

the same explanation may apply to the differences in the magnitude of the 

Ca2+ signaIs following intracellular acidification in response to the exposure 

to AcO- and the removal of NHt. 

The described observations indicate a potential pH-dependence of the Ca2+ 
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signal since it seems unlikely that NHt and AcO-, two ions of completely dif­

ferent chemical properties, evoke Ca2+ signaIs whose patterns are of similar 

shape during intracellular alkalization (transient increase) and acidification 

(slow decrease or sustained elevation). Furthermore, the hypothesis that 

NHt and AcO- were responsible for a pH-inde pendent Ca2+ elevation would 

rather imply that only the exposure to these ions induces a Ca2+ increase 

and not their removal. 

In conclusion, the discussed experiments show that a 50% hypotonic shock 

induces a pHi alteration in A549 cells, which is not evoked by the intracellular 

Ca2+ signal. Although there is evidence that the pHi alterations may, in 

turn, induce an intracellular Ca2+ signal in A549 cells, further experiments 

are essential to clarify the possiblity of a pHi-induced thapsigargin-insensitive 

Ca2+ -increase. The follwing experiments could give additional information 

about the interrelation of pHi and the intracellular Ca2+ level: 

1. pHi alterations of different magnitude: 

• The exposure of A549 cells to NHt and AcO- concentrations (5 

40 mM), which induce similar pHi changes, could reveal a possible 

correlation between the magnitudes of the pHi alterations and the 

concomitant Ca2+ signaIs. 

• The application of different ammonium salts (e.g. NHt Cl-, NHt 

AcO-, NHt SO~-, C'{Ht)2 CO~-) would induce pHi alterations 

of different magnitudes while keeping the NHt concentration con­

stant. A resulting Ca2+ signal of equal magnitude in aIl cases 

(except for NHt AcO-) would imply its ammonium-dependence 

and pH-independence. 

2. NHt- and AcO--independent pHi alterations: 

• An intracellular alkalization can be induced with alkylated ammo­

nium derivatives (e.g. tetramethylammonium). If the ammonium­

induced Ca2+ signal was pH-independent, tetraalkylammonium-
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induced alkalization should not trigger any intracellular Ca2+ sig­

nal. 

• The modification of the extracellular pH results, usually, in a par­

allel pHi alteration. A correspondent intracellular Ca2+ signal 

would prove the potentiality of pH-dependent Ca2+ signalling in 

A549 cells. 

• The inhi bi tion of the Na + /H+ exchanger in the A549 plasma mem­

brane with 5-(N,N-dimethyl)-amiloride (DMA) leads to an intra­

cellular acidification [214]. Also in this case, a correspondent intra­

cellular Ca2+ signal wou Id prove the potentiality of pH-dependent 

Ca2+ signalling in A549 cells. 

To examine the thapsigargin-sensitivity of the potentially pH-dependent Ca2+ 

signal, the ab ove mentioned experiments should be carried out on thapsigar­

gin-pretreated cells. To ensure, furthermore, that the pHi alterations do 

not induce any Ca2+ influx from the extracellular fluid, Ca2+ -free solutions 

should be used during the experiments. 

Proof of a pH-dependence of the thapsigargin-sensitive Ca2+ -signal would 

rise the two following questions: 

1. What is the origin of hypotonie shock-induced acidification? 

2. How does the intracellular pH affect the intracellular Ca2+ level? 

Several potential sources of intracellular acidification are known: 

• Mitochondria: uncoupled mitochondria were reported to cause intra­

cellular acidification as weIl as intracellular Ca2+ increase [215]. 

• Na+ /H+ -exchanger (NHE): NHE is known to be a major carrier in­

volved in the regulation of both cytosolic pHi and cell volume [216]. 

• H+-carriers other than NHE: the CI- /HC03"-exchanger or Na+-HC03" 

cotransporter, as weIl as other ion channels were also involved in intra­

cellular acidification [217-219]. 
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Various mechanisms of intracellular Ca2+ elevation due to pHi changes have 

been described as follows: 

• Ca2+ was released from intracellular storages, such as acidic compart­

ments [2201. 

• Ca2+ was released from TG-sensitive compartments, Le. the ER [221, 

222]. 

• Ca2+ -influx was observed through pHi-sensitive Ca2+ -permeable, non­

selective cation channels [223]. 

• A decrease in pH reduced the Ca2+ -binding affinity of EF-hand proteins 

[224] and may thereby increase the cytosolic Ca2+ homeostasis. 

According to section 3.2.2, mitochondria do not play a role in the TG­

insensitive Ca2+ elevation. Moreover, acidic compartments and Ca2+ -influx 

from the extracellular space were aiso excluded from participating in the Ca2+ 

signal. Hence, further experiments are necessary to investigate the other po­

tential origins of pHi decrease and the associated intracellular TG-insensitive 

Ca 2+ increase. 
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Chapter 4 

Airway surface liquid -

Physiological background 

4.1 Characteristics of the ASL 

The conducting airways (trachea, bronchi, bronchioli) are lined by a thin 

layer of airway surface liquid (ASL), which plays an important role in the self­

cleaning mechanism of the lung - the airway mucus clearance. The efficiency 

of airway mucus clearance depends in large part on the height and the prop­

erties of both of the ASL components, the mucus layer and the underlying 

periciliary liquid layer (PCL). The mucus layer is an adhesive, viscoelastic gel 

generated by secreted high-molecular weight mucins (MUC5AC, MUC5B). 

The viscoelastic properties, and hence the transportability, of this layer are 

determined by the entanglement of the polymeric mucins with "sticker" pro­

teins and, importantly, by the hydration of this layer. This layer entraps 

airborne particles and bacteria, inhibits bacterial growth and biofilm16 for­

mation and protects the airways from fluid loss [226]. At its inner surface, 

the mucus layer interfaces with the PCL layer, which has been reported to 

vary from 7 to 70 p,m in height and was recently suggested to be comprised 

of grafted mucins and other molecules such as cell surface glycolipids [227]. 

This design likely accounts for the important interdependence of the hydra-

16 A biofilm is a complex aggregation of microorganisms highly resistant to antimicrobial 
agents [225]. 
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tion status of the mucus layer and PLC. In the form of grafted brushes, 

it provides, furthermore, very low friction, enabling efficient ciliary beating 

[227, 228]. 

For a long time, ciliary activity and mucin secretion were thought to be 

the principal determinants of airways mucus clearance. While both are very 

important, it is now believed that airway surface hydration is the most im­

portant variable in controlling the efficiency of mucus clearance [229]. The 

dehydration of the ASL and the associated reduction in ASL height causes 

the following impairments: 

• a highly viscoelastic, adhesive mucus layer; and 

• collapse of the PCL, and loss of its lubricant properties that separate 

the mucus layer from the cell surface. 

The combined loss of the PCL lubrication and the increased adhesiveness of 

the mucus layer results in the adhesion of mucus to the airway surfaces [229]. 

4.2 Regulation of the ASL 

The significance of accurate ASL regulation becomes apparent in the genetic 

disease cystic fibrosis (CF) which is characterized by ASL depletion followed 

by mucus stasis and chronic infection [229]. The regulation of ASL height is 

extremely complex, and it is still not completely understood. In normal air­

way epithelia, ASL height is under the control of a finely tuned balance of Na + 

absorption through the apical membrane epithelial Na + channel (EN aC), and 

Cl- secretion, mediated by two apical membrane Cl- channels, the cystic fi­

brosis transmembrane conductance regulator (CFTR) Cl- channel and the 

Ca2+ -activated Cl- channel (CaCC). The tuning of these channels occurs 

through release and metabolism of ATP via a dual purinergic signalling sys­

tem (see section 1.1.2), which is illustrated in Fig. 4.1 on page 144 [227]. 

Under static conditions, airway epithelial cells continuously release a low 

basallevel of ATP (rv 300 fM . cm-2 . min- 1 [230]) to the airway lumen that 

is mostly converted into adenosine by surface ecto-nucleotidases. This basal 

concentration of adenosine (rv 100 nM [230]) on airway surfaces is sufficient to 



Figure 4.1: Dual purinergic signalling pathway for ion transport across the apical membrane of airway epithelial cells 
both pathways control ASL height in normal Lung Epithelia. 

CFTR, cystic fibrosis transmembrane conductance regulator; ENaC, epithelial sodium channel; CaCC, Ca2+ -activated 
CI--channel; CNT, concentrative nuc1eotide transporter; ATP, adenosine 5'-triphosphate; ADP, adenosine 5'-diphosphatej 
AMP, adenosine 5'-monophosphatej cAMP, 3'-5'-cyc1ic adenosine monophosphate; ADO, adenosinej INO, inosinej PIP2 , 

phosphatidylinositol bisphosphate; IP3 , inositol-1,4,5-trisphosphate 
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activate the A2B purinoceptor which generates an intracellular raise of cAMP. 

cAMP, in turn, activates CFTR, which regulates CI- secretion and ENaC 

activity to maintain the homeostatic ASL height on airway surfaces [229]. 

Under stress conditions, such as shear stress and compression, the rate of 

ATP release is greatly increased, raising ATP concentrations in the ASL to 

30-50 nM [229]. This concentration of ATP activates additionally the P2Y2 

receptor-dependent signalling pathway inhibiting Na + absorption and stim­

ulating CaCC-mediated CI- secretion [229]. 

In CF airway epithelia, ASL height regulation depends solely on the ATP­

signalling system which, under static conditions, causes ASL to be absorbed 

to the degree that the cilia collapse onto the airway surface [229]. 

The ability of the airway epithelia to determine ASL height is still an area of 

active investigation and discussion. While for a long time it was thought that 

cilia were somehow involved in sensing ASL height, it is now suggested that 

the concentrations of soluble mediators in the ASL, such as ATP, adenosine, 

and channel-activating proteins are the crucial factors in this process [230]. 

To further study how ASL height is regulated, especiaIly by extracellular 

ATP, a microscopie technique was developed in the course of this Ph.D. 

work that enables a direct observation of the fluorescently labelled ASL. 

This technique is described in chapter 6. 



Chapter 5 

Optical microscopy 

5.1 Introduction 

5.1.1 Development of the microscope 

Historians credit the invention of the compound microscope to the Dutch 

lenscrafters, Zacharias and Hans Janssen, around the year 1590 [231]. The 

compound microscope uses two converging lens systems and light to produce 

an enlarged image of an object that is too minute to be viewed by the naked 

eye. In the early 17th cent ury, Galileo Galilei, the father of modern astronomy 

and physics, heard of this invention, and developed, first, his own telescope 

and, later, a tripod microscope [231]. In 1664, Robert Hooke published "Mi­

crographia" [232], a fascinating work on optical microscopy. Hooke's work 

describes and illustrates observations he made with a compound microscope 

on a wide variety of organisms including insects, plants and bird feathers. 

Anton van Leeuwenhhoek (1632-1723), a Dutch tradesman, developed his 

own microscopes which consisted of one single magnifying glass. With his 

handcrafted simple microscopes, which reached a magnification up to 250x, 

he was the first one to observe and describe microrganisms, such as bacteria 

and yeast [231]. 

During the 1Sth cent ury, the main focus of instrument makers was on the 

development of the microscope's design to facilitate focusing and to meet the 

needs of the user [231]. In the 19th cent ury, optical improvements increased 
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magnification and resolving power. In 1830, Joseph Jackson Lister reduced 

the problem of spherical and chromatic aberration by developing the first 

apochromat. Carl Zeiss and Ernst Abbe were the first to design lenses of 

- for their time - the technically highest possible quality based on optical 

theory and the laws of physics [231]. 

The 20th cent ury was marked by the advancement of the traditional opti­

cal compound microscope and by the development of new microscopic tech­

niques, such as the ultramicroscope (Richard Adolf Zsigmondy, Nobel Prize 

1925), the phase-contrast microscope (Frits Zernike, Nobel Prize 1932), the 

electron microscope (Ernst Ruska, Nobel Prize 1938), and the scanning tun­

neling microscope (Gerd Binnig and Heinrich Rohrer, Nobel Prize 1981) [233]. 

The development of optical microscopes and their applications has proceeded 

rapidly over the last several decades. This is due both to the improvement in 

the manufacture of opticallenses and to the improvement in the design of op­

tical systems. The development of new fluorescent labels has also accelerated 

the expansion of fluorescent microscopy in research. 

5.1.2 Components of a microscope 

The performance of a good compound microscope depends on good mechan­

ical parts (stability and rigidity of the microscope, the precise holding frame 

for objectives and eyepieces, flexibility for focusing and moving a specimen) 

and excellent lenses (magnification and resolution). The components of a 

Nikon Inverted Microscope ECLIPSE TE300, which was used in the courSE) 

of this Ph.D. project, are depicted in Fig. B.1 on page 285 and Fig. B.2 on 

page 286. 

During illumination with transmitted light, the rays first pass through the 

collector lens and sorne filters and then through the condenser, microscope 

slide (if available), specimen, cover glass (if available), objective and ocular. 

Finally, it enters the observer's eyes. Additional filters, prisms and a tube 

lens (for infinity corrected optical systems) might also be necessary to com­

plete the optical setup of a compound microscope [234]. 
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There are at least nine methods to illuminate a specimen: 

1. Transmitted light with brightfield; 

2. Transmitted light with darkfield; 

3. Transmitted light with polarization; 

4. Incident light with brightfield; 

5. Incident light with darkfield; 

6. Transmitted light with phase contrast; 

7. Transmitted light with interference contrast; 

8. Incident light with fluorescent specimen (e.g. epifluorescence micros­

copy); 

9. Incident light with polarization. 

EssentialIy, there are two main principles of illumination in microscopy. One 

was devised by Edward Nelson, which is generally called critical illumination, 

and the other by August K6hler, which is named after its inventor, Kahler 

illumination. At the present time, critical illumination is preferred for use in 

simple microscopes, whereas the modern research microscopes have a built-in 

illuminator based on the Kühler principle of illumination. 

The physical principles of optical microscopy inc1ude interference, diffrac­

tion and coherence of light, which operate constructively or destructively in 

the microscope. A geometrical approach to microscopical imaging is based 

on refraction and reflection of rays, represented in the ability of lenses and 

mirrors to focus and change the convergence and divergence of light beams. 

The diffraction theory of image formation, first formulated by Ernst Abbe 

in 1873, explains sorne fundamental problems related to resolution and con­

trast [234]. AlI these principles and further fundamentals of microscopy are 

described in the following sections in order to give every reader of this thesis 

the necessary background for the understanding of chapter 6. 
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Figure 5.1: Reflection and refraction at an interface between two media: 

S = incident ray, R = reflected ray, T = transmittedjrefracted ray 
e = angle of incidence, e' = angle of refraction, e" = angle of reflection 

5.2 Sorne principles of optics 

5.2.1 Refraction and reflection of light 

Geometrie opties, employing the theory of refraction and refiection of light 

rays, is along with wave opties one of the two approaches that describe the 

ability of a microscope to both magnify and resolve. 

Refraction occurs when light passes from One medium of One optical density 

to another one with a different optical density (see Fig. 5.1, page 149). The 

measure of optical density is the refractive index n 17. The exact refractive 

index for a medium varies with the wavelength of light. This physical phe­

nomenon causes dispersion, which is the separation of white light into its 

spectral components (see Fig. 5.2, page 150). Dispersion in lenses produces 

the undesired effect of chromatic aberration, which is described in detail on 

page 161. , 

While only part of the travelling light is transmitted (refracted) through 

the second medium, the remainder refiects at the interface. The proportion 

17The refractive index n equals the speed of light in a vacuum divided by its speed in a 
material. 
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Figure 5.2: Dispersion of light by a glass prism 

of refraction to refiection depends on the refractive indices of both media, 

the direction of light travelling, the light polarization and the angle of inci­

dence [235]. 

The angle of refiection (JI! is equal to the angle of incidence (J with opposite 

sign [235]: 
(J = -(JI! 

The degree of refraction depends on the refractive indices of the two media 

and is described by Snell's law: 

sin (J n2 
-- = - =n2I 
sin (JI nI 

(5.1) 

(J, (J'angle of incidence, angle of refraction 

nI, n2 refractive index of first medium, refractive index of second medium 

n2I relative index of refraction 

If the first medium is optically less dense than the second one (nI < n2, e.g. 

air ~ glass), the angle of incidence (J is greater than the angle of refraction 

(J'. For (J = 90 0

, (J' reaches its maximum and is called critical angle of 

refraction (J~r [235]: 
(J' . nI 

cr = arCSln-
n2 

(5.2) 

If the second medium is optically less dense than the first one nI > n2, 

e.g. glass ~ air), the angle of refraction (J' is greater than the angle of 
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Figure 5.3: Two-wave interference 

El = al sin (x 7/JI) 
E2 = a2 sin (x - 7/J2) 
E = al sin (x - 7h) + a2 sin (x 7/J2) 

Ea: destructive for multiples of XE (7r + 7/JI, 7r + 7/J2) 
Eb: constructive for multiples of XE (7r + 7/J2, 7r + 7/JI) 
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incidence (J. If (J > (Jcr, in which (Jcr is related to (J' = 90 0

, the phenomenon 

of total internaI reflection occurs. In the case of (J < (JCr'l the incident ray (8) 

is only refracted (T)j in the case of (J > (Jc/') it is exclusively refiected (R), 

and for (J (Jcr, the refracted ray (T) propagates along the interface [235]. 
In accordance with the reversibility theorem of optical rays the critlcal angie 

of incidence (Jcr is equal to the critieal angle of refraction (J~r' 

5.2.2 Interference of light 

In wave op tics, whieh employs the theory of interference and diffraction, light 

is considered as a wave. The phenomenon of interference is the basis of most 

microscopie techniques, such as interference, phase contrast, and brightfield 
, ' ..... 

rnicroscopy [234]. 
Two coherent18 monochromatic waves propagating in an isotropie medium 

in the same direction with amplitudes al and a2, and phases '1/;1 and '1/;2; 

respectively, (see Fig. 5.3, page 151) can be represented by: 

(5.3) 

180nly coherent waves, which have similar optical properties (wavelength, direction, 
phase - either the same phase or a fixed phase difference), are capable ofinterfering .1235]. 
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Figure 5.4: Diffraction of light through a pinhole 

principle which states that each point of an advancing wave front can be 

considered as the centre of a source of a new wave. Fig.5.4 on page 153 

shows how a narrow pinhole can be considered as a source of spherical waves 

whose superposition generates a new wavefront with a non-uniform intensity 

distribution (1) around the geometric shadow limit (interference or diffrac­

tion fringes) [235]. 

In microscopy, diffraction fringes form the smallest unit of an image. This 

unit is called Airy disc, and together with a whole series of concentric rings 

Airy pattern20
, which determines the limits of optical resolution. 

In conclusion, it should be noted that diffraction interacts with interference in 

the case of coherent waves, as can be best observed in the form of diffraction 

fringes (see Fig. 5.4, page 153). 

5.3 Magnification and resolution 

The principle function of a microscope is to enhance resolution. Resolution 

can be measured as the smallest distance between two points, which the hu­

man eye is capable of seeing as distinct [236]. The microscope enlarges the 

2°after the British Astronomer Royal Sir George Biddell Airy 
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unresolvèd 

Figure 5.5: Rayleigh criterion for resolution 
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view of an object so that details of this object can be observed which oth­

erwise cannot be resolved by the human eye [236]. If image formation was 

solely based on geometric optics then magnification would increase along 

with resolution without limit. However, other factors, based on diffraction 

and interference, limit useful magnification. Additional magnificat ion that 

do es not yield higher resolution and more detail is called empty magnification. 

The limit for the microscope's resolution is set by the diffraction at the aper­

ture of the objective. For a point source, the resulting image is an Airy 

pattern (see Fig. 5.4, page 153). The Rayleigh criterion for resolution of 

two point sources in a diffraction-limited system21 is given when the first 

diffraction minimum of the Airy pattern of one source point coincides with 

the maximum of another (see Fig. 5.5, page 154). Henee, the sm aller the 

Airy discs are, the less likely they overlap and the better the resolution. The 

Airy disc projected by an objective is aIl the sm aller the higher the numerical 

aperture (NA) of the objective is. 

The NA is a crucial value that indicates the light aceeptance angle, which 

in turn determines the light gathering power, the resolving .power, and the 

21 If al! parts of an imaging system are perfect, then the resolution of any imaging pro cess 
will be limited by diffraction. 
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Figure 5.6: Numerical aperture of oil immersion and dry objective 

depth of field (axial resolving power) of the objective. It is given by: 

NA n· sina (5.6) 

n refractive index of medium between the coverslip and the lens system 

a half of the entrance angle of the light cone (see Fig. 5.6, page 155) 

Since the half aperture angle a cannot exceed 90 0 , the maximum possible 

NA is equal to the refractive index n of the immersion medium. Hence, for 

dry systems (immersion medium: air, n = 1) the theoretically maximum NA 

is 1. In practice, the maximum NA of dry systems cannot exceed 0.95, and 

greater values may be obtained only with immersion systems [235, 234]. 

Light-gathering power is a measure of the illumination and image bright­

ness provided. The illumination brightness as weIl as the image brightness 

are determined by the square of the condenser NA and objective NA, respec­

tively. The image brightness (Bim ) is additionally inversely proportional to 

the square of magnificat ion M l235]: 

(
NA)2 

Bim oc M (5.7) 

Resolving power has been defined as the ability of a microscope to form 

separate images oftwo points lying close together [234]. The resolving power 
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of a microscope can be determined by the following equations: 

1.22·,,\ 
r 

NAobj + NAcond 
(self-luminous objects; acc. to Rayleigh) (5.8) 

Î 

r 
NAobj + NAcond 

1 
(non-luminous objects; acc. to Abbe) (5.9) 

r 
minimal space between two adjacent particles while still allowing 
the particles to be perceived as separate [nm] 

NAobj 

NAcond 

wavelength of illumination [nm] 

numerical aperture of the objective 

numerical aperture of the condenser 

NA is associated with both the condenser and the objective. For the sharpest 

images in brightfield and phase contrast microscopy (see page 171), the NA 

value of the condenser should be matched by the NA value of the specific 

objective; equation (5.9) on page 156 for non-Iuminous objects applies. For 

epifluorescence microscopy (see page 171) only the NA of the objective deter­

mines the degree of resolution; equation (5.8) on page 156 for self-Iuminous 

objects applies. 

The axial resolving power of an objective, which is measured parallel to 

the optical axis, is referred to as depth of field 22 . High magnification and 

high NA objectives are also accompanied by a shallow depth of field. It can 

be calculated by the following equation [237, page 255]: 

(5.10) 

22Not to be confused with focal depth, which is the placement of the image plane in 
relation to the lens. 
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d 

À 

depth of field [nm] 

wavelength of illumination [nm]-
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n 
refractive index of medium between coverslip and objective's front 
lens 

NA numerical aperture of the objective 

5.4 Lenses 

5.4.1 Basic properties of lenses 

Lenses can be classified by two main types: the convex lenses with a thickness 

greater at the optical centre of the lens than at the edges and the concave 

lenses with a thickness greater at the edges of the lens than at the optical 

centre (see Fig. 5.7, page 158). If the optical density of the lens is higher than 

its surrounding medium (e.g. air), a convex lens converges parallellight rays 

and is also called positive lens; a concave lens, in contrast, diverges parallel 

light rays and is called negative lens [235, 234]. 

The most important parame ter of a lens is its focallength f [235, 234]. The 

object-side (front) focal length is denoted by j, and the image-side (back) 

focal length by f' (see Fig. 5.8, page 159). The focal lengths f and f' are 

al ways opposite in sign and: 
f n 
f' ni 

n refractive index of the medium in front of the lens 

n' refractive index of the medium behind the lens 

(5.11 ) 

If these media are identical, Le. n = ni, the front and back focal lengths are 

the same: 

f =-1' 

The value 
ni n 

K=- =--
f' f 

(5.12) 
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Figure 5.7: Cornrnon types of lenses: 

Positive lenses: (A) biconvex; (B) plano-convex; (C) convergent rneniscus 
Negative lenses: (D) biconcave; (E) pIano-concave; (F) divergent rneniscus 

is known as optical power (in air: 1/ f) and is expressed in m- l or in diopters. 

For thin lenses23 the focal length of a lens surrounded by air can be roughly 

calculated according to the lensmaker equation: 

.!. ~ (n - 1) [~ - ~l 
f rll rl2 

(5.13) 

f focal length of the lens 

n refractive index of the lens material 

rll and rl2 radii of curvature of the lens surfaces 

Two planes or points are said to be conjugate if one is the image of the other. 

Their related distances can be calculated by the Cartesian lens equation 

(applicable only for thin lenses): 

1 1 1 
-+-=-
81 82 f 

23Lenses whose axial thickness t can be dismissed: t « Tll, Tl2. 

(5.14) 
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Real images are inverted, virtual images are upright. The following relations 
hold: 

SI > 2· f => IMI < 1, real 2· f > SI > f 
f > SI > 0 

=> IMI > 1, real 
SI = 2 . f => IMI = 1, real => IMI > 1, virtual 

SI distance from an object to the principle plane of the lens 

S2 distance from the principle plane of the lens to the image 

f focal length 

The magnification factor of a lens specifies the power of increasing or reducing 

an object's apparent size on its image. It is defined as: 

M magnification factor 

SI distance from an object to the principle plane of the lens 

S2 distance from the principle plane of the lens to the image 

(5.15) 

The image is larger than the object if IMI > 1, and smaller if IMI < 1. 

M is negative for real images and positive for virtual images (see Fig. 5.8, 

page 159). 

Lenses may be combined to make more complex systems, such as in objec­

tives. If thin lenses with focal lengths fI and 12, respectively, are separated 
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by a distance d, the combined focal length 1 can be calculated according to: 

1 

1 
12 (d - Id 

d - (fI + 12) 

The simplest case is when lenses are placed in contact: 

1 1 1 - - - + - for d -t 0 1 - fI 12' 

(5.16) 

The combined magnification factor Mc for multi-Iens systems is given by: 

m 

Mc = Mcl Mc2 ... Mcm = II Mck 
k=1 

(5.17) 

Equations for multi-Iens systems can be extended limitlessly because aIl com­

bined lenses can be treated as a single system to which an additionallens is 

added. 

A compound microscope has two systems of lenses for magnification: 

1. The objective (also called object lens or object glass) (see section 5.4.3) 

is the lens closest to the observed specimen. Usually, a microscope 

accommodates four to six parfocal objectives24
, which typically consist 

of 10x, 20x, 40x and 60x magnificat ion factors. 

2. The eyepiece (also called ocular) (see section 5.4.4) is the lens closest 

to the eye. It additionally magnifies the primary image and projects it 

onto the retina of the eye. 

Three other systems of lenses are necessary for Kahler illumination: 

1. The collector Lens projects the image of the lamp filament onto the 

condenser aperture. 

240bjectives with identical parfocal distances can be interehanged while remaining in 
foeus. 
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2. The field lens focuses the image of the lamp filament at the plane of 

the substage condenser aperture diaphragm. 

3. The condenser lens system (see section 5.4.5) gathers and focuses the 

light onto the (specimen. It provides an illumination of uniform intensity 

over the entire viewfield. 

5.4.2 Optical defects 

Lenses are subject to some optical defects (also called aberrations) which 

cause non-ideal images to be formed. This topic is large and complex, there­

fore only the two most important aberrations will be discussed in the follow­

ing paragraphs. 

Spherical aberration 

Spherical aberration is an optical defect caused by spherical lens shape. Fig. 

5.9 on page 162 illustrates that the focallength of the rays entering the lens is 

dependent on the distance of the ray from the optical axis, e.g. the marginal 

rays are focused doser to the lens than the central ones (negative spherieal 

aberration). A spherically aberrated lens has, therefore, no well-defined fo­

eus [238]. 

The lateral (or transverse) spherical aberration is defined by the radius p of 

the circle of confusion in the paraxial image planes. As a result of the cirde 

of confusion, the image of a point formed by a spherieally aberrated lens is 

a dot surrounded by a halo of light [2341. 

In general, positive lenses exhibit negative spherical aberration, whereas 

negative lenses exhibit positive spherical aberration. Thus, spherical aber­

ration of optical systems is correeted by combining positive and negative 

lenses [234, 238]. 
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Figure 5.9: Spherical aberration 

Chromatic aberration 

Figure 5.10: Chr.omatic aberra­
tion 

Spherical aberration has been discussed on the assumption of the presence of 

monochromatic light. AlI aberrations are, however, wavelength dependent, 

which is known as chromatic aberration (see Fig. 5.10, page 162). 

Chromatic aberration is caused by the dispersion of light (see page 150) 

through the lens, whose refractive index n varies with the wavelehgth of 

light. Equation 5.13 on page 158 demonstrates that f is dependent on n, 

which is the reason that different wavelengths of light will have different fo­

cal lengths. The result is a halo of colours around the image that is seen 

through the lens [234, 238]. 

Chromatic aberration can be reduced using an achromat, which i~ a lens sys­

tem of two combined lenses with different dispersion characteristics. They 

usually correct chromatically for two wavelengths (red and blue), and spher­

ically for green. 

The next higher level of correction can be achieved with jtuorites. Fluorites 

contain natural or synthetic fluorite and have lower dispersion than normal 

glass. These lens systems correct chromatically for two wavelengths (red and 

blue), and also spherically for two wavelengths (blue and green). 

An apochromat uses a three-Iens system to correct chromatic aberration for 

three wavelengths (red, green and blue). The lenses are made of special 

low-dispersion glass. An apochromatic objective can minimize chromatic 

aberration to the degree that coloured halos are not seen around a point. It 
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also spherically corrects for two wavelengths (blue and green) [234, 238]. 

The achromat and apochromat correct chromatic aberration in the axial di­

rection (axial chromatic aberration). 

Since off-axis rays are also dispersed, images of different sizes are formed de­

pending on the wavelength of the ray. This optical defect is known as LateraL 

chromatic aberration or chromatic difference of magnification. Newer ob­

jectives and oculars with chromatic-aberration-free optics are independently 

corrected for both longitudinal chromatic aberration and chromatic differ­

ence of magnification [234, 239]. 

Other kinds of aberration include astigmatism, barrel, coma, field curvature 

and pincushion distortion (for further details see [234, 235]). 

5.4.3 Objectives 

The most important component of an optical compound microscope is the 

objective. It is responsible for primary image formation and plays, therefore, 

a crucial role in the quality of the final image, i.e. magnification, resolution 

and correction for lens aberrations. Lenses in modern objectives are made of 

high-quality glass of specifie optical properties and precise design [240]. 

Essential specifications are inscribed on the barrel of each objective and will 

be briefly discussed in the following. 

Magnification 

Magnifying power is, together with the resolving power (see section 5.3), the 

most important optical parameter in microscopy. The magnifying power from 

available objectives ranges from 0.5x (low power) to 250x (high power) [239]. 

Numerical aperture 

The numerical aperture (NA) determines primarily the resolving power of 

the objective and is usually inscribed on the barrel next to the magnification 

(see section 5.3). 

The NA of an objective depends, to a certain degree, on the amount of 
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Table III: Objective designations for cornrnon optical corrections [239] 

Abbreviation 

Achro, Achromat 

Fluor, FI, Fluar, Neofluar, Fluotar 

Apo 

Plan, Pl, Achroplan, PIano 

Plan Apo 

CF, CFI 

Type 
Achromatic aberration 
correction 

Fluorite aberration correction 

Apochromatic aberration 
correction 

Flat Field optical correction 

Apochromatic and Flat Field 
correction 

Chrome-Free, Chrome-Free 
Infinity-Corrected 

correction for optical aberration. Objectives with a high degree of optical 

correction have larger numerical apertures for the respective magnificat ion 

than for uncorrected ones [239]. Sorne objectives are designed for special 

immersion media between front lens and cover glass (see Working Distance 

on page 166), to attain even higher working numerical apertures. 

Optical corrections 

The correction for optical aberrations is crucial for good performance of an 

objective. Table III on page 164 lists the objective designations of the most 

corn mon optical corrections. 

Mechanical tube length 

The mechanical tube length is defined as the distance from the nosepiece 

opening, where the objective is mounted, to the top edge of the observation 

tubes, where the oculars are inserted. 

Until the 1980s, objectives were designed for finite tube lengths ranging from 

160-210 mm, depending on the manufacturer and the application. This sys­

tem requires that a specimen is placed between !obj and 2!obj. The objective 
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focuses the magnified image of the specimen (primary image) at the level 

of the diaphragm of the eyepiece (see section 5.5). Objectives designed for 

a fixed tube length bear the inscription of the length of mechanical tube: 

e.g. 160 [239). The drawback of these objectives is the alteration of the 

optical tube length (optical path between objective and eyepiece) whenever 

an accessory, such as a prism or a fluorescence illuminator, is placed in the 

lightpath between objective and eyepiece. To compensate for this alteration, 

the specimen has to be moved, which can be regarded as defocusing. This 

procedure introduces spherical aberration into a microscope system corrected 

for a standard mechanical tube length [234). 

Nowadays, microscopes are designed for use with infinity corrected objectives 

(inscription: 00). Their principle is described on page 170. Infinity-corrected 

systems are easier to design than finite systems. Moreover, they allow in­

sertion of accessories in the parallel light path between objective back focal 

plane and the tube lens without introducing aberrations [234]. 

Caver glass thickness 

Most objectives intended for use with a coverslip are corrected for a cover 

glass thickness t = 0.17 mm. A deviation of this conventional thickness 

causes poor image quality due to optical aberration. The larger the NAobj , 

the sm aller is the tolerable deviation tJ.t. For this reason, sorne high-power 

objectives have a correction collar adjustment of the internallens elements to 

compensate for this variation [234]. In addition to the presence of a correction 

coIlar, these objectives are labelled as Corr, w;Corr, or CR [239). 

Warking distance 

The working distance dObj is the free distance between the front lens of the 

objective and the coverslip or the object plane for no-cover-glass objectives. 

In general, the distance dobj decreases as the NAobj increases. Objectives 

with short dobj , such as immersion objectives, have a spring-Ioaded front lens 'v 

which will retract if driven onto a surface. This feature protects the lens 

from being damaged [234]. 
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In general, it is useful to have dry objectives with working distances as long 

as possible. Specially designed CFI objectives can achieve working distances 

that are several times longer th an working distances of typical objectives 

with comparable NAs [241]. Common abbreviations are: LWD (long working 

distance), ELWD (extra-long working distance), SLWD (super-long working 

distance), and ULWD (ultra-long working distance) [239]. 

Immersion medium 

Objectives requiring a liquid instead of air between the front lens and the 

coverslip are called immersion systems. Accordingly, systems having an air 

gap between the front lens and coverslip are called dry systems. The basic 

function of the immersion liquid is to increase the NAobj (see Fig. 5.6, page 

155). Common immersion liquids are special immersion oil (n = 1.51, abbrev. 

oil or oel), water (n = 1.33, abbrev. W), and glycerol (n 1.47, abbrev. 

Gly) [234]. 

Specialized objectives 

Sorne specialized micros co pic techniques require specifie objectives that house 

additional devices. For instance, objectives for phase contrast (see page 171) 

are fitted with a phase plate close to the back focal plane of the objective. 

They are designated with a Ph [239]. 

Epifluorescence applications (see page 171) require high-NA objectives in 

order to capture the highest possible amount of light emitted by fluorescing 

specimen. Fluorescence objectives are made of quartz and special glass that 

have high transmission from the UV (down to 340 nm) to the IR, and are 

extremely low in auto-fluorescence [239]. 

Coatings 

An uncoated air-glass interface reflects 4-5 % of light striking normal to its 

surface. Since there are many such air-glass interfaces within a microscope, 

the initial light intensity, the contrast and the overall quality of the micro­

scopie iqlage tend to be greatly reduced. To counteract this phenomenon, 
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optical elements are coated with antireftecting films, which interferentially 

decrease the reflections of light at air-glass interfaces [234]. A typical antire­

flective coating is magnesium fluoride [240]. 

5.4.4 Eyepiece 

The eyepiece (or ocular) is a lens system that magnifies the primary image 

and projects it either as a real image on a camera system or a virtual image 

on the human eye, depending on the location of the internaI fixed eyepiece 

field diaphragm [234]. 

The diameter of the fixed eyepiece diaphragm opening determines the field 

size observed by the microscopist. It is inscribed on the eyepiece as a field 

number (FN) and varies from 18-26 mm. Another designation present on the 

eyepiece barrel is the magnification, which ranges from '" 6x to 25x [241]. 

Eyepiecejobjective combinations should be chosen appropriate to the correc­

tion and type of objective to ensure optimal magnification of specimen detail 

without adding unnecessary artifacts. The range of useful magnification for 

an eyepiecej objective combination is defined by the numerical aperture of 

the system (see section 5.3). Therefore, the most corn mon eyepieces are in 

the range of 10x to 20x. 

5.4.5 Condenser 

The basic function of a condenser is to gather the light coming from the light 

source and to concentrate it into a cone of light that illuminates the specimen 

with uniform intensity over the entire viewfield. Conventional microscopes 

have a substage condenser that is fitted below the stage of the microscope; 

whereas inverted microscopes comprise system con den sers above the stage 

(ELWD or LWD) and a turret with components for phase contrast, differen­

tial interference or darkfield microscopy [241]. 

Condensers are available according to different levels of correction. The sim­

plest substage condenser is the Abbe condenser which can reach a NAcond 

up to 1.25. However, it is not well-corrected chromatically nor spherically. 

The best level of correction is achieved in aplanatic-achromatic condensers. 
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They are well-corrected for spherical and chromatic aberration, and are the 

condensers of choice for colour observation and recording in white light [234]. 

The size of condenser aperture (N Acond ) and the proper focusing of the con­

denser are crucial for an optimal performance of the objective. The NAcond 

should be equal or higher than NAobj to receive the highest resolution possible 

(see section 5.3). 

5.5 Light path in a compound microscope 

Fig. 5.11 on page 169 depicts a ray diagram of light microscopy under the 

condition of Kèihler illumination in which the illuminating and image-forming 

light paths are merged into one diagram. In both of the light paths (illumi­

nating and image-forming), there are four separate conjugate planes, which 

are simultaneously in focus. 

The conjugate planes in the illuminating light pathway, in which the lamp 

filament is in focus, are [242]: 

1. The lamp filament aoboco from which light is radiating out. 

2. The aperture diaphragm in the front focal plane of the condenser lens 

a1 b1c1· 

3. The back focal plane of the objective lens a2b2c2. 

4. The eyepoint (or Ramsden disc) in the back focal plane of the eyepiece 

a3b3c3 where the pupil of the microscopist's eye should be placed. 

The conjugate planes in the image-forming light pathway, in which the spec­

imen in focus, are [242]: 

1. The field diaphragm in the back focal plane of the collector lens 102030. 

2. The object plane on the back focal plane of the condenser lens 112131. 

3. The primary (or intermediate) image plane on the front focal plane of 

the eyepiece 122232. The magnification of the primary image is given 
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Figure 5.11: Symmetrical ray diagram of the light microscope; taken with permission from source {242} 

The rays a'a'a',b'b'b' and c'c'c' arising from the separate points aoboco in the lamp filament illuminate the whole area of 
the object as a series of parallel bundles of rays and are focused in the illuminating aperture series of conjugate planes 
a1b1c1 (illuminating aperture diaphragm), a2b2c2 (back focal plane of objective) and a3b3c3 (Ramsden disc). 
The parallel bundle of rays a'b'c' arising from the whole area of the filament are focused in the illuminated field series of 
conjugate planes 102030 (illuminated field diaphragm), 112131 (object) and 122232 (primary or intermediate image). The 
pupi! of the eye, focused at infinity, is situated at or near the Ramsden disc (a3b3c3) and pro duces the secondary image 
h2232 on the retina of the eye. 
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by the ratio of the image distance and the specimen distance to the 

principle plane of the objective lens system (see equation 5.15). 

4. The microscopist's retina of the eye. 

In infinity-corrected systems, the specimen is placed at the front focal plane 

ofthe objective. Hence, the rays from the object plane 112131 proceed parallel 

through the objective and its back focal plane, theoretically forming an image 

at infinity. An additional tube lens in the mechanical tube forms the primary 

image by focusing, the parallel rays at the front focal plane of the eyepiece 

122232 [242]. The magnification of the primary image in an infinity-corrected 

system is given by the ratio of the focallength of the tube lens and the focal 

length of the objective. 

5.6 Specialized methods 

A wide spectrum of microscopie techniques has been developed to enhance 

contrast and to provide better observation, such as phase contrast, darkfield, 

modulation contrast, differential interference contrast, polarized light and 

fluorescence microscopy - to mention only a few. A qualitative description 

will be given in the following as to the techniques used in connection with 

this dissertation, Le. brightfield, phase contrast and fluorescence microscopy. 

5.6.1 Brightfield 

Standard transmission of light through the specimen is called brightfield mi­

croscopy. Specimen which are coloured or thick enough to absorb a significant 

amount of light can be easily observed using this technique. However, un­

stained thin specimen do not offer much contrast and are very difficult to see. 

In this case, a fixed 25 specimen can be stained to provide contrast against 

the background [243]. 

25Pixation refers to the technique of preserving a deceased specimen for microscopie 
study in an intact and stable state. 
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5.6.2 Phase contrast 

Phase contrast microscopy is a contrast-enhancing optical technique which 

produces high-contrast images of colourless, transparent specimen without 

the exigence of staining. Invented by Frits Zernike [244] in the 1930s, it 

employs an optical mechanism to translate minute variations in phase into 

corresponding changes in amplitude that can be observed as differences in 

brightness. 

Upon application of K6hler illumination (see section 5.5), light is focused by 

a collector lens on a specialized annulus (phase plate) positioned on the front 

focal plane of the condenser lens (plane a1b1cl in Fig. 5.11, page 169). Light 

rays passing successively through the annulus and the condenser illuminate 

the specimen as partially coherent light bundles. The rays pass through 

the specimen either undeviated or diffracted and retarded in phase due to a 

variation in refractive indices. On the back focal plane of the objective (plane 

a2b2c2 in Fig. 5.11, page 169), which is a conjugate plane to the condenser's 

front focal plane, a second phase plate is positioned in a way whereby it is 

precisely aligned with the condenser phase plate. Undeviated and diffracted 

light emitted from the specimen and collected by the objective is segregated 

by this second phase plate and focused to a primary phase contrast image 

that can be observed through the eyepiece [234]. 

5.6.3 Fluorescence microscopy 

Fluorescence microscopy is a specialized technique for the study of fluores­

cent substances. The principles of fluorescence are described in detail in 

section 2.1.2. 

The first fluorescence microscope was developed by Otto Heimstadt and Hein­

rich Lehmann in 1911. It was originally employed to observe specimen with 

strong inherent (primary) fluorescence [234]. In 1933, Max Haitinger used 

for the first time secondary fluorescence to overcome the limitation of weak 

primary fluorescence of most cells and tissues [234]. Since then, myriad fluo­

rescence labels have been developed for diverse applications (e.g. see section 

2.3). 
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Figure 5.12: Schematic illustration of epifluorescence microscopy 
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Fig. 5.12 on page 172 schematically illustrates the principle of epifluorescence 

microscopy, which uses the objective to illuminate the sam pIe (in contrast to 

trans-fluorescence, where the sample is illuminated from the opposite side). 

As a light source, typically a mercury or a Xenon lamp is cou pIed in to the 

back of the inverted microscope. The wavelength required for fluorescence ex­

citation is selected by an excitation filter, which transmits only exciting radi­

ation (e.g. blue light). A dichromatic mirror26 (also called a dichroic mirror) 

totally reflects the exciting light, which impinges on the sample. Part of the 

exciting radiation is absorbed by the sam pIe and re-emitted at longer wave­

lengths as fluorescence light (e.g. red light). The fluorescence light passes 

first through the dichromatic mirror and subsequently through an emission 

filter that absorbs the residual reflected excitation light. A coloured image 

can be observed against a dark background [2341. 

26 A dichromatic mirror selectively passes light comprising a range of wavelengths while 
reflecting other wavelengths. 
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5.7 Photomicrography 

Photomicrography is photography through a compound microscope. The 

quality of a photomicrograph depends on the quality of the microscope. It 

is essential that the microscope uses K6hler illumination, that the field and 

condenser diaphragms are adjusted correctly and the condenser height is op­

timized. When properly adjusted, the microscope will yield images that have 

even illumination over the entire field of view and display the best compro­

mise of contrast and resolution. 

Today, digital cameras replace the traditional sensitized film with a CCD 

(charge-coupled device) photon detector, which consists of a thin silicon 

wafer divided into a geometrically regular array of small, light-sensitive re­

gions - called pixels. These pixels capture and store image information in 

the form of localized electrical charges that vary with incident light intensity 

and exposure time. The electronic signal associated with each pixel of the 

detector is read out very rapidly as an intensity value for the corresponding 

image location. The following digitization of the values enables a computer 

to reconstruct the image and to display it on a monitor virtually instanta­

neously [245]. For photomicrography with a digital camera, it is important 

that the sensor size, relay magnification and pixel dimensions are selected 

appropriately [246, 247]. 

5.7.1 Image formation on the sensor 

The objective of a compound microscope forms a circular primary image (see 

section 5.5) of the object at the aperture of the eyepiece. The diameter of 

this image, which is directed through the eyepiece to the eye, is specified by 

the FN (see page 167). In photomicrography, the primary image is projected 

onto the surface of a camera sensor by using relay optics or simply a coupler. 

If the diagonal size of the sens or matches the FN of the eyepiece, the size 

of the directly recorded image (lx magnification) will correspond roughly 

to the image size seen through the eyepiece (see Fig. 5.13, page 174). If 

the diagonal size of the sensor is smaller than the FN of the eyepiece, the 
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Figure 5.13: Field of view - monitor versus eyepiece (example: firefly) 

primary image has to be reduced in size with the relay optics (magnification 

value < 1) in order to record what is seen through the eyepiece. With a lx 

magnification, only the centre section of the eyepiece view will be recorded 

(see Fig. 5.13, page 174). The field of view size (Fa VS), which is the portion 

of the object that is visible on the monitor, varies with changes in: 

1. Size of the CCD sensor chip - height, width or diagonal (ChS [mm]) 

2. Objective magnification (DM) 

3. Relay optics coupler magnification (CM). 

Fa VS is determined by the foIlowing formula: 

ChS 
FoVS=OM.CM 

5.7.2 Image resolution 

(5.18) 

The resolution limit of a microscope (optical resolution) is determined by the 

NAs of condenser and objective, as weIl as the wavelength of light (see equa­

tion 5.9, page 156). The size of the smaIlest resolvable distance 'f between 

two points appears enlarged at the primary image, and further enlarged or 
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reduced by the relay opties at the sensor surface. The size of the resolution 

limit at the sensor (rsen ) can be determined by: 

rsen = r· OM· CM (5.19) 

rsen resolution limit at the sensor 

r smallest resolvable distance 

OM objective magnification 

CM relay optics coupler magnification 

The largest physical pixel size of the sensor, whieh allows us to record the 

smallest resolvable distance, is further constrained by the Nyquist-Shannon 

sampling theorem. It states that the exact reconstruction of a signal from its 

sample is possible if the sampling frequency is greater than twice the signal 

frequency. 

The required maximum pixel size (pixmax ) on the sensor is, therefore, de­

termined by the opties, which form the image, and the Nyquist-Shannon 

theorem: 
. 1 

P'/,Xmax :::; 2' . r sen (5.20) 

r sen resolution limit at the sensor 
1 

If the pixels on the sensor are larger than the maximum allowable, the sensor 

is not suit able for recording the finest detail with the opties as configured. 

In this case, the magnification of the relay opties should be increased. 

5.7.3 Requirements for digital photography 

The optical specifications of our available objectives and relay opties coupler, 

resulting magnifications, field of view size, and pixel requirements for digital 

photography are listed in table IV on page 176. A description of total mag-
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Table IV: Optical specifications and requirements for digital photography 

OM (NA) CM TMa FoVS a r b r sen 
b pix'maœ 

[mm] [JLm] [JLm] [JLm] 
eq. 5.21 eq. 5.18 eq.5.8 eq. 5.19 eq. 5.20 

10x (0.3) 0.6x 70 1.58 1.01 6.04 3.02 
10x (0.3) lx 116 0.95 1.01 10.07 5.03 
10x (0.3) 4x 464 0.24 1.01 40.26 20.13 
20x (0·4) 0.6x 139 0.79 0.75 9.06 4.53 
20x (0.4) lx 232 0.47 0.75 15.1 7.55 
20x (0·4) 4x 929 c 0.12 0.75 60.39 30.2 
40x (0.6) 0.6x 278 0.39 0.50 12.08 6.04 
40x (0.6) lx 464 0.24 0.50 20.13 10.07 
40x (0.6) 4x 1857c 0.06 0.50 80.52 40.26 
40x (0.75) 0.6x 279 0.39 0.40 9.66 4.83 
40x (0.75) lx 464 0.23 0.40 16.10 8.05 
40x (0.75) 4x 1857c 0.06 0.40 64.42 32.21 
60x (1·4) 0.6x 418 0.26 0.22 7.76 3.88 
60x (1.4) lx 697 0.16 0.22 12.94 6.47 
60x (1.4) 4x 2786c 0.04 0.22 51.76 25.88 

acalculated with a monitor magnification (MM = lOx), a square CCD format 
(ChSdiag = 9.5 mm) and a digital image diagonal dimension of Imdiag = llO mm 

bcalculated for À = 495 nm, regarding only N AObj 

cT M » T M max ; for more details see page 177 

nification and field of view size is briefly outlined below. 

The total magnification (TM) depends on: 

1. Objective magnification (aM) 

2. Relay optics coupler magnification (CM) 

3. CCD chip diagonal dimension (ChSdiag ; [mm]) 

4. Digital image diagonal dimension (Imdiag; [mm]) 

TM can be calculated by the following formula: 

TM=OM·CM·MM (5.21) 
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. h h . 'fi' MM Imdiag Wlt t e momtor magm catIOn = ChS. . 
dtag 

The range of useful total magnification for an objectivejrelay optics (ob­

jectivejeyepiece, resp.) combination is defined by the NA of the system 

(see section 5.3). The minimum magnification, which is necessary for the 

resolution of a detail present in an image, is arbitrarily set at 

T Mmin = 500 x NA [234]. The maximum useful magnification of an im­

age is set at T Mmax = 1000 x NA. Magnifications higher than this value 

will usually lead to empty magnification, whereby increasing magnification 

through the relay optics lens (or eyepiece) only causes the image to become 

more magnified, with no corresponding increase in detail resolution. 



Chapter 6 

Article 3: Side-viewing 
• ffilcroscopy 

6.1 Preamble 

Extracellular ATP is the major factor controlling ASL height in the con­

ductive airways (see section 4). It is thus interesting to study the effects 

of released ATP on the properties of ASL. This study required the develop­

ment of a novel system that allowed a continuous observation of the ASL. 

This approach would extend the methodological technique available in the 

group and could potentially provide a complementary aspect to the subject 

of extracellular ATP in lung epithelia. 

The objective of this research was to design and set up a side-viewing system 

based on epifluorescent microscopy that would allow time-resolved observa­

tion of ASL height alterations on in vitro air-liquid cultured cell monolayers. 

6.2 Article 

Tatur, S.; Chabot, H.; Grygorczyk, R. 

Method for Measuring Surface Liquid Height of in vitro Airway Epithelial 

Cell Cultures with Epifluorescence Microscopy. To be submitted to the Jour­

nal of Microscopy. 
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Manuscript included on pp. 180-211. 

AIl technical drawings are reproduce in appendix C. 
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Summary 

Lung epithelial cells are covered by a thin layer of airway surface liquid (ASL) whose 

height is of vital importance for proper lung functioning. The precise measurement of 

ASL height and its variations is essential to study the mechanisms of its control and 

regulation. So far, however, no technique was developed which allowed a sufficiently 

precise resolution of ASL height alterations, neither in vivo nor in vitro. 

In this study, we describe a novel side-view imaging technique which permits 

recording of ASL height variations on in vitro models of airway epithelial cell 
( 

cultures. The system requires a custom-designed side-view chamber mounted on the 

microscope stage, equipped with a temperature/humidity control system for 

maintaining the cell culture at an airlliquid interface (ALI) during the experiment. 

The set-up is not restricted to any specific type of microscopy and no modification of 

the microscope itself is necessary. A cell monolayer, grown under ALI condition on 

the filter membrane of a modified MilliceIl® insert is mounted in a side-view chamber 

perpendicular to the microscope objective. In this orientation, fluorescently labelled 

ASL height can be directly recorded by convention,al epifluorescence microscopy. 

Compared to laser scanning confocal microscopy (LSCM), it has the advantage of a 

shorter image-acquisition time. 



CHAPTER 6. ARTICLE 3: SIDE- VIEWING MICROSCOPY 182 

INTRODUCTION 

The airway epithelium which lines the entire respiratory tract is covered by a thin 

ASL layer measuring in vivo 7 J.lm to 70 J.lm in height (Tarran, R., 2004). The ASL 

defends the lung against infectious and noxious agents, and conditions inhaled air 

which is associated with the so-called 'insensible water loss' from the ASL (Boucher, 

R.C., 1999). The height of ASL is a key parameter in airway physiology and is 

thought to be important in the pathophysiology of cystic fibrosis, asthma, and other 

diseases ofthe airways (Verkman, A.S. et al., 2003). 

So far, the ASL height ofbronchial and trachea cell cultures has been studied by laser 

scanning confocal microscopy (LSCM) (Boucher, R.e., 1999; Jayaraman, S. et al., 

2001; Roomans, G.M. et al., 2004). However, this expensive and complex technique 

has its downsides, su ch as low temporal resolution and photobleaching. Accordingly, 

the acquisition of an image or a sequence of images can take up to 1 min depending 

on the chosen image resolution. These limitations preclude the possibility to observe 

fast responses in ASL height alterations upon a cell stimulus, which lie in the range of 

few seconds. Furthermore, laser scanning causes photobleaching and photodamage to 

the cells because of the exposure to laser light of high average operating power 

(Piston, D.W., 1999), an outcome which may alter the cell response to a stimulus. 

Side-view imaging of the ASL, which would directly record the profile of the ASL, 

could obviate these problems. Several approaches for side-view imaging with a 

routine microscope have already been developed (Boocock, C.A. et al., 1985; 
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Boudreault, F. & Grygorczyk, R., 2004; Cao, J. et al., 1997; Ingram, V.M., 1969; 

Sanders, E.J. & Prasad, S., 1979; Tsai, J.W. et al., 2004). AlI ofthese techniques were 

applied to single cell observation with phase contrast illumination, and the ceUs were 

cultured on solid substrata under Iiquid-covered conditions. None of these techniques 

was, therefore, suitable for ASL height observation. 

In response to the described exigencies, we developed a novel approach for side-view 

ASL observation based on conventional epifluorescence microscopy. The cells were 

cultured on a filter membrane of a modified Millicell® insert under air-Iiquid interface 

(ALI) condition and mounted in a chamber which allowed direct side-view imaging 

of the ASL profile. The ASL height cou Id be measured with accuracy equal to LSCM 

with the advantage of faster image acquisition (100 ms to 1 s, depending on the NA 

of the system and the fluorescence intensity of the dye). Furthermore, the short 

illumination time Iimits the phototoxic effects on the cell culture. 
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MATERIALS AND METHODS 

Cell Preparation 

Fi/ter Preparation 

184 

12 mm Millieell® inserts with a 0.6 em2 membrane area (PIHA01250; Millipore 

Corp., Billerica, MA, USA) were modified as shown in Fig. lA. The rim of the 

polystyrene cylinder was eut away to obtain an unobstructed side-view of the cells 

grown on the filter in an up-side down orientation. The modification was 

aeeomplished manually with a scalpel, working under sterile conditions. The 

modified MilIieell® inserts were then placed into autoclaved biocompatible Tygon® 

tubing pieces (# 54007; United States Plastic Corp., Lima, OH, USA), as shown in 

Fig. lB, which enabled seeding and culturing cells on the outer side of the filter 

membrane. After the modification of the Millicell® inserts, the outer side of the filter 

membrane was coated with 120 III type 1 collagen (Vitrogen-lOO; Collagen Corp., 

Palo Alto, CA, USA). The collagen was left to dry ovemight at 37°C and neutralised 

by washing with PBS before seeding the cells. 

Cel! Culture 

The human bronchial epithelial ce~l-line l6HBE140-, a generous gift from Dr. D. 

Gruenert (University of Califomia at San Francisco, CA, USA), was eultured under 

ALI conditions similar to the procedure described by (Forbes, B. et al., 2003): The 

cells were seeded at a density of2.5x 105 cellsxcm-2 and were grown in DMEM:F-12 
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(Gibco, # 12400-024) supplemented with 2% Ultraser G (Life Technologies, Paisley, 

UK), 1.2 gxr' NaHC03, 100 Uxmr' penicillin, 100 jlg*mr' streptomycin, and 2 

mM L-glutamine. Ali constituents of the culture medium were from Gibco-BRL, 

Burlington, ON, Canada, unless otherwise specified. The medium was removed from 

the apical side after 2 days in culture (37°C, 5% CO2) and then maintained at an air­

liquid interface. The medium on the basal side was replaced every 24 h. The cells 

were used for experiments between day 7 and day 12 after seeding. 

Cel! Treatment 

To label the ASL, 50 jll of an Alexa Fluor 488 or 594 Dextran conjugate solution (10 

kD; Invitrogen-Molecular Probes, Kingston, ON, Canada) was added on top of the 

cell monolayer, the excess was aspirated. During the system test runs, the cells were 

left for 1 h in the incubator (37°C, 5% C02) to recover their natural ASL height. For 

future physiological experiments, the recovering time will have to be established for 

each cell culture. A concentration of2 mg*mr' Alexa Fluor Dextran in PBS was used 

for confocal microscopy measurements, whereas for epifluorescence microscopy 

measurements the solution was further diluted to 2 jlg*mr1 Alexa Fluor Dextran in 

PBS to reduce background fluorescence coming from beyond the focus. For cell­

profile observations; the ce 11 membrane was stained either with 5-

hexadecanoylaminofluorescein (HAF) or dapoxyl sulfonic acid (DSA) by covering 

the cel! culture with 30 jll PBS containing 10 jlg*mr1 HAF or 10 jlM DSA for 5 min. 
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The cells were then rinsed with PBS. During ail experiments, the cells were perfused 

from the basal side with physiological saline solution (PS) which contained (in mM): 

140 NaCI, 5 KCI, 1 MgCh, 1 CaCh, 10 glucose and 10 HEPES, pH 7.4 adjusted with 

NaOH. Ali PS components were obtained from Sigma-Aldrich Canada, Ltd., 

Oakville, ON. HAF and DSA were purchased from Invitrogen-Molecular Probes, 

Kingston, ON, Canada. 

Experimental Setup 

Side- View Cham ber 

Fig. 2A depicts the side-view chamber (made of non-fluorescent black de1rin) which 

accommodated the modified Millicell® insert with the cell culture for side-view 

observation. The Millicell® insert precisely fitted onto the holder with six inlet and 

one outlet channels. These channels were coupled, respectively, with an inlet and 

outlet metal tube connected to an in-line heater (Wamer Instrument Corp., Hamden, 

CT, USA) and a peristaltic pump (Gilson Miniplus 3, Worthington, OH, USA) which 

continuously provided the cells with warm PS (37°C, 

0.5 ml*min-1
) from the basal side. The holder was designed to rotate around its axis 

within the chamber frame. This feature allowed finding the best spot for observation 

which was then secured with the retaining screw. 
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Mini-Incubator 

On the microscope stage, the side-view chamber was placed Înto a mini-incubator 

(made of non-fluorescent black delrin) with a temperature and humidity control 

system (see Fig. 2B) which provided an air compartment of controlled temperature 

(37°C) and humidity (45-60%). The temperature and humidity sensors were placed 

close to the cell monolayer on both sides of the side-view cham ber to precisely 

control its incubation conditions and, therefore, to avoid insensible water loss from 

the surface of the cells. Warm, humidified air entered the incubator from the bottom, 

whereas the opening on top of the incubator had two functions: firstly, it served as an 

outlet for the inflowing warm and humidified air to avoid condensation on the 

objective, and, secondly, it allowed brightfield illumination on the cell profile which 

was very valuable during initiallocating and focusing of the cell profile. 

Temperature and Humidity System 

An Air-Therm™ ATX Humidifier (ATX-H) was purchased from World Precision 

Instruments, Inc., Sarasota, FL, USA. It consisted of an air heater with precise 

temperature and humidity control connected to an ultrasonic humidifier (see Fig. 2C). 

The air continuously circulated in a closed circuit and was coupled to the microscope 

stage incubator. The air pressure within the closed circuit was kept constant by air 

influx through a small eut in the tubing behind the coupling valve. The warm, humid 

air was fed into the incubator from undemeath the microscope stage. This 
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arrangement prevented the objective to be in the direct flow path of the humid air 

and, thus, to fog up. The objective was, furthermore, preheated to 37°C and the whole 

set-up was flushed with warm (37°C) air for about 1 h before turning on the 

humidifier. This procedure prevented major condensation on any parts of the system 

for a relative humidity of up to 60% at a steady room temperature of -25°C. Since 

inhaled air is gradually humidified to 100% relative humidity by the ASL of the 

upper airways (Zuchner, K., 2006), the relative humidity in the mini-incubator should 

be optimized for every cell culture. It should be kept as low as possible to avoid 

condensation and as high as necessary to countervail evaporation of the ASL. If a 

humidity level of more than 60% is necessary, the microscope objective can be 

potentially equipped with an objective heater system. For the cell line 16HBEI40-, 

the humidity level was set to 55%. 

Optical Arrangement 

The side-view chamber with the incubator was placed on the stage of a Nikon TE300 

inverted microscope (1\1ikon Canada Jnc., Montréal, Qc) equipped with an extra long 

working distance (EL WD) system condenser. Fluorescently labelled cells and ASL 

were observed through an ELWD CFI objective (Nikon, 40x/0.60, WD 3.7-2.7, CR 

0-2) using epi-fluorescent illumination. The following excitation filters and emission 

filter blocks (Chroma Technology Corp., Rockingham, VT, USA) were used: a 495 

nm excitation filter with a GFP tilter block was used for Alexa 488 and HAF, a 340 
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nm excitation tilter with a Fura-2 filter block was used for OSA, and a Texas Red 

filter block was used for Alexa 594. The microscope was focused on the lower edge 

of the vertically-oriented filter with the cell culture, and the image was directly 

projected on the camera chip via a C-mount lx (or 4x) coupler (Nikon Canada Inc., 

Montréal, Qc). The cover-slip correction collar (CR) on the objective was essentially 

set to O. 

Data Acquisition and Analysis 

Image Acquisition 

Brightfield and fluorescent images of the cell profile and ASL layer were acquired 

with a monochromatic T57 Micromax CCD camera (Princeton Instruments, Trenton, 

NJ, USA) and MetaVue software version 7.0 (Molecular Deviees Corp., Sunnyvale, 

CA, USA). The camera chip had 512 x 512 imaging pixels with an individual pixel 

size of 13 ~m. 

Image Analysis 

The acquired images were processed using MetaVue software (Molecular Devices 

Corp., Sunnyvale, CA, USA). Background flattening has been applied to reduce stray 

Iight coming from fluorescence beyond the plane in focus. This procedure subtracts 

the large gradient of background fluorescence intensity and reveals additional details 

without losing image data. A line scan perpendicular through the ASL produces a 
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fluorescence intensity profile and facilitates the estimation of ASL height and to 

monitor its variations. 

Confocal Microscopy 

Images of fluorescently labelled ASL were aiso recorded using a TE300 inverted 

microscope (Nikon Canada Inc., Mississauga, ON) equipped with a confocal laser­

scanning system (BioRad MRC 1024, Hercules, CA, USA) and a monochrome 

CoolSnap-Fx CCD camera (Photometries, Tucson, AZ, USA). The camera chip had 

1300 x 1030 imaging pixels with an individual pixel size of 6.7 Ilm. 

The ASL was scanned in the x-y-plane and the x-z-plane (see Fig. 2 A), respectively. 

Each scanning plane was separated by 1.2 Ilm. The images were analysed using the 

Confocal Assistant software version 4.02 (© Todd Clark Brelje). While x-z scanning 

directly displayed side-view images of the ASL, the x-y-scanning planes had to be 

merged and processed to generate a side-view of the ASL. 
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RESUL TS AND DISCUSSION 

Cell Culture 

191 

16HBE140- cell cultures grown at ALI condition do not reflect the in vivo situation of 

the mammalian airways since they consist of only one cell type and form a very thin 

ASL layer. Nevertheless, 16HBE140- is a good choice as cell model for the 

development of a method to measure ASL height since it is a cell culture which is 

easy to culture under air-liquid conditions. The thin ASL layer may also be seen as an 

advantage to test the limits of the system in its potential to create an appropriate 

surrounding of humidity and temperature and to resolve details in the shape of the 

ASL profile. 

The Optical System 

Depth of Field 

The depth of field is defined as the range of distances within an object that appears in 

focus. Observing a curved surface with a conventional microscope, as depicted in Fig. 

3A, implies that only part the surface will be in focus. To be able to record 

fluorescently labelled ASL over a representative area, we needed to have a 

sufficiently broad section in focus. Fig. 3A sketches the depth of field (d) referring to 

the circular fiIter membrane of the Millicell® insert in observation orientation. The 

depth of field is given bythe following equation (Shillaber, c.P., 1944): 
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The equation results in d = 1.1 ~m for a numerical aperture of NAobjeclive = 0.6, a 

wavelength of Àex = 495 nm, and a refractive index of n ~ 1 for air (Lide, D.R.ed., 

2007). As a result, a maximum section of 1::::: 220 /lm of the Millicell® insert is 

theoretically in focus. This section size exceeds the field of view size (FoV) of the 

camera chip wh en using 40x TM (F 0 V = 512 pixels x 13 .um -;- 40 = 166.4 ~m). 

Accordingly, the camera chip can be used to its full capacity. 

Evaluation of the fluorescence intensity profile 

To facilitate the evaluation of the fluorescence intensity profile of the ASL, an image 

of yellow-green fluorescent microbeads (505/515) of 4 /lm diameter (# F8859 

Invitrogen-Molecular Probes, Kingston, ON, Canada) was taken and their 

fluorescence intensity profiles were plotted. As can be seen in Fig. 3B, the precise 

value of 4 /lm for the diameter lies on 0.4 of the altitude of the profile curve. 

According to this observation, the reading position for the evaluation of the ASL 

heights was set to be 0.4 of the altitude of the fluorescence profile curves. 

Resolution and Brightness 

Since ALI cultured 16HBE 140- cells are covered by a rather thin layer of ASL (~3-6 

~m, see below), we required a high resolution power to observe ASL height 
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variations. With the EL WD CFI objective (NAobjeclive = 0.6), we achieved an optical 

resolution of ropl = 0.61 x À x NA-1 = 0.5 I1m at Àex = 495 nm. To obtain a final 

image resolution of ropl ' the resolution on the camera chip rchip needed to be equal to 

or greater than (of lower value than) ropl ' If rchip was greater than 'Opl' the final image 

resolution was reduced to the value of rchip ' According to the Nyquist-Shannon 

sampling theorem, 'chip is of higher value than the two-fold individual pixel size of 

the camera chip (Pix) divided by the total optical magnification (TM) 

(rChiP > 2 x pix X TM-1
). The TM in our optical arrangements was set either at 40x 

(40x objective magnification and lx coupler magnification) or at 160x (40x objective 

magnification and 4x coupler magnification). The camera chip from the 

epifluorescence microscopy system (pix = 13l1m) achieved a maximal resolution of 

rchip >::; 0.65 I1m> 'opl for 40x TM and 'chip >::; 0.1611m < 'OPI for 160x TM, considering 

an approximation for the pixel size of half the sampling size. An approximation of a 

smaller sampling pixel size would lead to an inferior resolution with the same 

parameters. The superior resolution for 160x TM ha s, however, its drawback to the 

image brightness (Bim ) which decreased substantially with the increased TM and the 

reduced NA of the 4x-coupler (Bim oc (NA/TM) 2 
) (Born, M. & Wolf, E., 1999)). The 

image acquisition required a ten- to twenty-fold longer illumination time, one of 

about 1000 ms (see Fig. 2B bottom right) compared to around 100 ms by direct lx-
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coupling in aIl other images taken by means of the epifluorescence microscope (Fig. 

4A-D). Before an experiment, the necessity for a (slight) increase in resolution has to 

be, therefore, weighed up against the disadvantage of a longer illumination time. 

The resolution on the camera chip from the confocal microscopy system 

(pix = 6.7 )lm) was rchip = 0.34)lm < rapt for 40x TM. However, the resolution of an 

image reconstructed from a stack of sequential images acquired by confocal 

microscopy is not only defined by rapt or r chip ' but also by the distance of the 

scanning planes. An optimal scanning distance should be chosen considering similar 

princip les as above: the smaller the scanning distance, the better is the resolution. At 

the same time, the acquisition-, and with it, the illumination:'time can increase 

enormously. On the other hand, the greater the scanning distance, the worse the 

resolution, though in exchange, the acquisition and illumination times get shorter. 

Fig. 5A shows a reconstructed image from sequential x-y-scans of the fluorescently 

labelled ASL on a 16HBE140- cell monolayer. We chose a scanning distance of 1.2 

)lm to minimize the acquisition time which resulted in rather low image resolution. 

The fluorescent ASL band appears to be straightened and missing the typical 

undulating profile of the cell mono layer which was seen on the epifluorescence 

images of higher resolution (Fig. 4B, D). Nevertheless, the ASL height can still be 

correctly estimated to be approx. 5 )lm. 
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Temperature, Humidity and Perfusion 

A precise adjustment of surrounding temperature and humidity is essential for 

accurate and reproducible measurements of the ASL height on living cell cultures. 

The temperature and humidity system with the A TX-H allowed us to control the 

temperature inside the stage incubator to ± 0.2°C and the air humidity to a precision 

of ± 3%. The perfusion system of the side-view chamber supplied the cells with warm 

(37°C) solution to nourish and to bathe them from the basal side. Both, a humidity 

level of 50-55% and a continuous perfusion of the basal side of the cell mono layer, 

were necessary to prevent the 16HBE140- cell monolayer from drying out. During 

our short-term experiments (up to 30 min), we perfused the cells with PS. They can, 

however, be also perfused with pH-adjusted cell media (bubbled through with air / 

5% C02) for experiments of longer duration. For specific cell stimulation, selected 

drugs can be added to the perfusion medium, and the perfusate temperature as weIl as 

the temperature inside the stage incubator can be changed if necessary. 

Side-View Imaging 

Conventional Microscopy 

To verify the evenness and smoothness of the MilliceIl® insert after its modification, 

we took side-view images of the Millicell® insert with and without cell culture. Fig. 

4A shows brightfield images of the modified MilliceIl® insert in profile without cell 

culture (left side) and with a cell monolayer (right side). Fig. 2B (right bottom) 
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displays identical cell profiles in brightfield and epifluorescence illumination after 

labelling the cell membrane with HAF. Whereas the profile of the MiIliceIl® insert 

without cell culture is even and flat, the profiles with a cell mono layer appear 

undulating. AlI profiles in brightfield illumination clearly display an Airy pattern as a 

result of light diffraction at the air-ce Il frontier line. The fluorescence image in Fig. 

2B reveals a cell height of 3-5 !lm. The TM of aIl images was 160x with 40x 

objective magnification and 4x coupler magnifications. 

Fig. 4B shows a side-view image of fluorescently labelled ASL which was recorded 

with 40x TM and an acquisition time of 100 ms. The fluorescence intensity profiles 

of three different locations are displayed on the right side of the image and facilitate 

the estimation of the ASL height. The peak of fluorescence intensity corresponds to 

the ASL height and measures between -4 and 6 !lm. On the cell side of the peak, the 

fluorescence intensity stays slightly elevated compared to the side facing the air 

compartment. To verify if the elevated fluorescence intensity originates from the cell 

monolayer, an image of the fluorescent cell monolayer profile was superimposed with 

an image of the fluorescent ASL. Fig. 4C shows the two-coloured superimposed 

image in which the ASL layer is displayed in red colour and the cell profile in green. 

It becomes now apparent that the elevated fluorescence on the cell side in Fig. 4B is 

indeed caused by the cell monolayer - probably due to the scattering of fluorescence 

light - and measures around 5 !lm. 
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The ability to measure ASL height alterations was tested by taking pictures of the 

fluorescent ASL layer in an interval of 15 min. Fig. 4D shows two sequential images 

of the fluorescent ASL. The left picture was taken directly after labelling the ASL and 

the right after the cell mono layer with the labelled ASL stayed in the mini-incubator 

for 15 min. The enlarged fluorescence intensity profile reveals a small decrease in the 

ASL height of less than 1 ).lm, and demonstrates that ASL height variations in the 

range close to the resolution limit are detectable. 

Con/ocal Microscopy 

To validate the results obtained with epifluorescence microscopy, the ASL height was 

measured with confocal microscopy using the same side-viewing chamber system. 

Fig. 5B was recorded by x-z-scanning confocal microscopy and is displayed 

unprocessed. It resembles the image in Fig. 4B and shows fluorescent ASL with a 

height of 4-7 ).lm and a drift of fluorescent light toward the cell mono layer. 

Fig. 5A was generated from x-y-scans of the cell culture. This approach corresponds 

to the hitherto applied procedure for ASL height measurements (Tarran, R., 2004; 

Verkman, A.S. et al., 2003). The resolution is confined to the distance of the scanning 

planes which was chosen to be 1.2 flm to keep the acquisition time in a reasonable 

range. As mentioned above, although the resolution is evidently lower than in Fig. 5B 

as weil as in Fig. 4B and D, the ASL height can still be estimated to be around 5 flm. 
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CONCLUSION AND FUTURE DIRECTIONS 

The custom-designed side-viewing chamber equipped with the temperature and 

humidity control system enables fast imaging of ASL height and its variations during 

cell stimulation with epifluorescence microscopy as weil as with confocal 

microscopy. It will allow a qualitative evaluation (limited by the resolution of the 

system) of ASL height alterations with respect to time. Epifluorescence microscopy 

provides similar images to confocal microscopy with the advantage of requiring a 

considerably Jower acquisition time. Images recorded by epifluorescence microscopy 

and confocal x-z-scanning have a comparably high resolution (r 0.65 and 0.5 /lm, 

respectively), whereas the resolution ofthe calculated side-viewing images from x-y­

scanning confocal microscopy is noticeably lower (r = 1.2 /lm) and limited by the 

distance of the scanning planes. However, x-y-scanning confocal microscopy has the 

advantage of not being limited to the edge of the tilter membrane of the Millicell® 

insert and generates ASL images throughout the tilter area. 

Further advancement of the system is desirable to make the side-viewing technique 

more versatile. The installation of a microscope objective heater would allow an 

increase in the relative humidity level inside the mini-incubator close to saturation. 

Cell cultures demanding a very high level of air humidity could then be studied. The 

development of an easy access to the surface of the cell monolayer - through e.g. an 

opening in the mini-incubator - would enable cel1 stimulation from the apical side. 
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Both technical improvements would be very useful to take the full advantage of this 

newmethod. 
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FIGURE CAPTIONS 

Figure 1. Modification of MilIiceU® inserts for cell culture growth and cell side­

view observation from the outer side of the fllter membrane. 

A. Manual modification of the Millicell® insert: the rim of the polystyrene cylinder is 

cut away with a scalpel under sterile conditions for obstruction-free cell side-view 

observation .. 

B. Insertion of a modified Millicell® insert into a tubing piece: the autocJavable 

Tygon® tubing is cut into 14-mm long pieces and modified in the iIlustrated way. 

The Millicell® inserts are placed into the tubing pieces to enable cell culture on 

the outer side of the filter membrane. 

Figure 2. Set-up components and arrangement. 

A. Three-dimensional view of the side-view chamber to accomodate the Millicell® 

insert with a cell culture grown on the outer side of the filter membrane. The 

chamber consists of a chamber frame which fits on a microscope stage and a filter 

holder with inlet and outlet tubes to supply the basal side of the cell monolayer 

with physiological solution. 

B. Cross-section of the complete microscope stage assembly. The stage assembly 

consists of a stage ring with an air-in let tube, an incubator and the side-view 

chamber. The microscope condenser iIIuminates the cell profile through the top 
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opening of the incubator for brightfield images. Recorded brightfield and 

fluorescent images of the cell profile are shown at the bottom right. 

C. Temperature and humidity control system connected to the microscope stage 

assembly. The air circulates in a closed circuit and is coupled to the stage 

incubator via a coupling valve through the air-inlet tube of the stage ring. A sm ail 

opening behind the coupling valve regulates the air pressure within the circuit. 

Figure 3. Geometrical diagram of the depth of field. 

A. Radius of the Millicell® insert at the filter membrane side after its modification: 

r ~ 5.5 mm. Depth of field: d = 1.1 Ilm. Length of the Millicell® insert section 

which is simultaneously in focus: 1 = 2J r 2 - (r - d) 2 220 ~m. 

B. Yellow-green fluorescent microbeads (Â-ex=505 nm 1 Âem=515 nm) of 4 Ilm 

diameter. The fluorescent profiles of three microbeads with 4-~m section marks 

are represented below the image. 

Figure 4. Side-view images recorded by epifluorescence microscopy. 

A. Brightfield image of the p10dified Millicell® insert without cell culture (left) and 

with cell culture (right). 

B. Fluorescence image of the ASL labelled with Alexa Fluor 488 Dextran recorded 

with a conventional epifluorescence microscope (illumination time: 100 ms). The 
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fluorescence intensity profiles at three different locations are displayed separately 

on the right side and superimposed below the image. 

C. Two-colour image of superimposed fluorescent ASL layer, labelled with Alexa 

Fluor 594, and fluorescent cell profile, labelled with DSA. The ASL layer is 

displayed in red and the cell profile in green. 

D. Two sequential images taken at 15 min interval. The left fluorescent image was 

taken immediately after labelling the ASL layer with Alexa Fluor 488 Dextran. 

The right fluorescent image of the cell monolayer was taken after 15 min in the 

mini-incubator (37°C, 55% relative humidity). On the right side of the images, the 

fluorescence intensity profiles at two locations are displayed, green representing 

the fluorescence intensities of the first taken image and blue of the next one. An 

enlargement of the upper panel fluorescence intensity profiles is displayed over 

the upper panel. 

Figure 5. Side-view images by confocal microscopy. 

A. X-Z fluorescence image of the ASL reconstructed from z-y sections recorded by 

scanning confocal microscopy. 

B. X-Z fluorescence image of the ASL recorded by x-z-scannmg confocal 

mlcroscopy. 
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Chapter 7 

Conclusions and future directiol1S 

Figure 7.1 on page 213 summarizes the mechanism of Ca2+ -dependent ATP 

release discussed in sections 3.1 and 3.2: 

A 50% hypotonie shock triggers a gradual rise in intracellular Ca2+ (pre­

spike) originating from a TG-insensitive Ca2+ store, probably via a preceding 

intracellular acidification. The precise mechanism of cell acidification and the 

source of the associated Ca2+ elevation are not yet identified. The slow rise 

in intracellular Ca2+ may evoke a Ca2+ -induced Ca2+ release from RyR and 

IP3R channels, and initiates a Ca2+ -dependent release of nucleotides. The 

principal nucleotide release mechanism from A549 cells upon hypotonie shock 

is regarded as being exocytosis for the following reasons: 

• Previous results showed tight Ca2+ -dependence of ATP release [26, and 

sections 3.1.2 and 3.2.2]. 

• The ratio of co-released UTP:UDP was 2:1 which suggests a vesicular 

rather than a cytosolic source (UTP:UDP c:::: 10:1) of the nucleotides 

(see section 3.1.2). 

• Inhibitors affecting the exocytotic pathway significantly inhibited ATP 

release (see section 3.1.3). 

The released nucleotides stimulate the metabotropic purinergic receptors 

present on the A549 cell membrane (P2Y1, P2Y2 , P2Y6). From these recep­

tors, the P2Y 6 receptor, whose most potent agonist is UDP, plays a promi-
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Figure 7.1: Signalling pathway of Ca2+ -dependent ATP release from A549 

nent role in this paracrinejautocrine stimulation that leads to the activation 

of IP3R channels and evokes the rapid Ca2+ spike. The final result of the 

intensified Ca2+ signal is a regeneratively amplified exocytotic nucleotide re­

lease. 

The origin of the TG-insensitive Ca2+ elevation remains to be further investi­

gated. Although a correlation between hypotonie shock-induced intracellular 

acidification and intracellular Ca2+ increase has been found, the origin of the 

acidification and the mechanism of pHj-dependent control of the intracellu­

lar Ca2+ level are still unknown. After organelles (mitochondria and lyso­

somes) were proven not to be responsible for the intracellular acidification 

(see section 3.2.3), it seems that the intracellular pH alteration is generated 

by a mechanism involving either ion channels, co-transporters or exchang-
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ers [217-219]; this question, however, still needs to be addressed in detail. 

pH-sensitive proteins are probably responsible for the pH-dependent increase 

in the intracellular Ca2+ level (see section 3.2.3); also, these proteins need to 

be identified. 

Chapter 6 describes a novel technique for visualizing ASL height on in vitro 

air-liquid cultured lung epithelial cells in a temperature- and humidity-con­

trolled environment. It enables time-resolved (100 ms) side viewing of a 

ftuorescently marked cell monolayer and/or ASL with a conventional epiftuo­

rescence microscope. A further development of the system would inc1ude the 

installation of a microscope objective heater that would prevent condensation 

on the objective at relative humidity levels ab ove 60%. This improvement 

would allow to study cell cultures demanding very high levels of air humidity. 

In addition, the insertion of an opening in the mini-incubator would give easy 

access to the surface of the cell monolayer and would en able cell stimulation 

from the apical side. 

To further investigate the ATP-dependence of ASL regulation, the choice of 

an appropriate in vitro cell culture system that reproduces an in vivo air­

way epithelial morphology is essential. Several continuous cell lines, such 

as HBE1 (immortalized human bronchial epithelial cell line [248]), MM-39 

(transformed human tracheal gland cell line [249]), NuLi (normallung, air­

way epithelial cellline [250]), and CuFi (cystic fibrosis, airway epithelial cell 

line [250]) are capable of becoming fully polarized at an air-liquid interface 

and should be tested for their suitability for ATP-dependent ASL height 

studies. Methods for the development of new, well-differentiated human air­

way epithelial cell cultures have been described in [251-253]. 

To find ways to stimulate ATP secretion from these cell cultures and to study 

the relationship between these stimuli and the ASL height alterations will be 

another important issue in the investigation of ATP-dependent ASL height 

control. Knowledge about the ATP release mechanism from lung epithelial 

cells (see sections 3.1 and 3.2) is crucial in this context and suggests the 

stimulation of exocytosis. 
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In conclusion, the understanding of the physiological mechanisms of ATP 

release from lung epithelial cells and the resulting ATP-dependent ASL con­

trol are the basis for developing novel therapies for diseases of impaired ASL 

regulation, such as cystic fibrosis and asthma. 
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Appendix A 

Materials 

A.1 Cell lines 

A.I.I 16HBE14o-

Nomenclature 

Clone number 16 of a Ruman Branchial Epithelial cell line; 14th sample of 

human branchial epithelial cells received in the laboratory; transformed by 

an origin-defective simian virus 40 (pSVori-) [254]. 

Description 

Figure 

16HBE14o-

A.1: 

Epithelial cells of mainstream, second-generation 

bronchi from a l-year-old, male heart-Iung trans­

plant patient were transformed by calcium phos­

phate transfection with the pSVori- plasmid [255]. 

The established cell line, 16HBE14o-, shows the 

presence of tight junctions and retains vectorial 

ion transport in vitro. When cells are grown at 

an airjliquid-interface, they develop cilia [255]. 

Bath the mRN A for CFTR and the protein itself 

are present in the cell [256]. 

The choice of culture conditions is highly relevant for the proliferation and 
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differentiation of the cells. In addition to the choice of culture medium, sub­

stratum coating and cell-seeding density, the volumes of media on each side 

of the epithelial barrier is crucial for the differentiated phenotype of the cells 

[257]. 

Cultured under liquid-covered conditions, 16HBE14o- cells form layers with 

a height of 1-5 cells, comparable with bronchial epithelium in vivo. These cell 

layers form well-defined, tight adherens and gap junctions, as weIl as highly 

organized actin filaments which lead to high transepithelial electrical resis­

tance (TEER) values (up to rv 800 n . cm2) [256]. In contrast, 16HBE14o­

cells, cultured at an airjliquid interface, display no clear polar organization 

and form cell layers of 10-16 ce lis in thickness. Cellular contacts are weak, 

and the actin filaments show characteristics similar to cells growing separated 

from each other. The TE ER values are not greater than 130 - 250 n . cm2 

[256,258]. 

Subculturing 

1) Liquid-covered culture condition: 

1. Check the confluence of the cells in a Petri dish (0 100 mm) under the 

microscope. 

2. Warm up MEM (see section A.2.1), PBS (see section A.2.2) and trypsin 

(0.05 %) to 37 0 C. 

3. Wash the cells twice with 10 ml of PBS. 

4. Cover the cells with 4 ml of trypsin and incubate at 37 0 C for 5 min. 

5. Shake the Petri dish until all cells are detached. 

6. Add 10 ml of MEM, to neutralize the trypsin. 

7. Transfer the cell suspension into a sterile 50 ml tube. 

8. Pellet the cells by centrifugation at 1400 rpm for 5 min. 

9. Resuspend the cells in 10 ml of MEM. 
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10. Add 3 ml of cell suspension to each Petri dish containing 7 ml of MEM. 

l1. Rock the Petri dishes gently to evenly distribute the cells. 

12. Leave them in the incubator at 37 0 C and 5 % CÛ2. 

13. Replace the growth medium every 2-3 days. 

Time to obtain confluent monolayer: '" 1 week. 

2) Air/liquid culture condition: 

L Coat the inverted, modified Millicell® Culture Plate Inserts (MCPI) 

(0 6 mm2; see section CA) with 120,.tl of PureCol (Type 1 collagen, 

3 mg/ml, pH 2; INAMED Corporation). 

2. Leave the filters to dry overnight under laminar air flow. 

3. Wash the filters with PBS and distribute them into 6-well plates. 

4. Proceed with the cells as described above until number 9. 

5. Warm up DMEM:F-12 (see section A.2.1) to 37 0 C. 

6. Count the cells using a hemocytometer. 

7. Pellet the cells by centrifugation at 1400 rpm for 5 min. 

8. Resuspend the cells in an adequate volume of DMEM:F-12 to receive 

a final concentration of 1.25· 106 cells/ml. 

9. Fill the basal chamber of the coated MCPI with DMEM:F-12 (l'V 9 ml). 

10. Add 200 j.tl of cell suspension on the apical si de of the MCPI. 

11. Leave them in the incubator at 37 0 C and 5 % CÛ2. 

12. Replace the growth medium on the basal side every day. 
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13. Remove the growth medium from the apical side after 2 days in culture. 

Keep removing the growth medium from the apical si de until the cells 

are confluent. 

Culture time: 6-12 days. 

A.1.2 A549 

Nomenclature 

Epithelial Adherent Cells growing in monolayers; colony number 549 [259]. 

Description 

Figure A.2: A549 

The A549 cell Hne was established from an ex­

planted alveolar adenocarcinoma which was re­

moved from a 58-year-old Caucasian man in 1972 

[259]. 

A549 cells synthesize lecithin with a high per­

cent age of disaturated fatty acids and contain 

multilamellar cytoplasmic inclusion bodies typ­

ical of those found in type II alveolar epithelial 

cells (AT II) which are responsible for pulmonary 

surfactant secretion [260]. They are cultured un­

der liquid-covered conditions and grow adherently as monolayers. 

In contrast to 16HBE14o-, A549 does not contain endogenous CFTR chan­

nels [261]. 

Subcult uring 

Liquid-covered culture condition: 

1. Check the confluence of the cells in a Petri dish (0 100 mm) un der the 

microscope. 
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2. Warm up DMEM (see section A.2.1), PBS (see section A.2.2) and 

trypsin (0.05 %) to 37· C. 

3. Wash the cells twice with 10 ml of PBS. 

4. Coyer the cells with 4 ml of trypsin and incubate at 37 0 C for 3 min. 

5. Shake the Petri dish until aH cells are detached. 

6. Add 10 ml of DMEM, to neutralize the trypsin. 

7. Transfer the cell suspension into a steril 50 ml tube. 

8. Pellet the cells by centrifugation at 1400 rpm for 5 min. 

9. Resuspend the cells in 10 ml of DMEM. 

10. Add: 

<> 1 ml of cell suspension to a Petri dish containing 9 ml of DMEM 

to receive a confluent monolayer after 5 days of culture. 

<> 2 ml of cell suspension to a Petri dish containing 8 ml of DMEM 

to receive a confluent mono layer after 4 days of culture. 

11. Rock the Petri dishes gently to evenly distribute the cells. 

12. Leave them in the incubator at 37 0 C and 5 % CO2 • 

13. Replace the growth medium every 2-3 days. 

Doubling time: 22 h. 
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A.2 Solutions 

A.2.1 Growth media 

Recipes for growth media can vary in pH, glucose concentration, growth fac­

tors, and the presence of other nutrient components. The growth factors 

used to supplement media are often derived from animal blood, such as calf 

serum. 

The medium in which cells are cultured has to be changed regularly to re­

plenish nutrients and avoid the build up of potentially harmful metabolic 

biproducts and dead cells. 

Dulbecco's Modified Eagel's Medium (DMEM) was used for the culture 

of A549, and the Minimum Essential Medium (MEM) for the culture of 

16HBE14o- cells under liquid-covered conditions on culture petri-dishes or 

glass coverslips. 

A l:l-mixture of DMEM and Ham's Nutrient Mixture F-12 (F-12) was taken 

for culture of 16HBE14o- cells at an airjliquid-interface on filters. 

DMEM 

Preparation of 1 l: 

1. Dissolve a bag of DMEM (Gibco-BRL #12100-046) in 500 ml Millipore 

water27 . Rinse the bag well! 

2. Add 3.7 g of NaHC03 . 

3. Adjust the pH to 7.0 with 1 M HCL 

4. Fill up to 900 ml with Millipore water. 

5. Filter through a 0.22 I1m filter under the sterile hood. 

6. Store at 4 a C. 

7. Before utilization add to each 500 ml: 

27 purest water (deionized water additionally purified of organic impurities; resistance: 
18.2 MW . cm @ 25 0 C) 
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o 50 ml of FBS to reach 10% final concentration. 

o 2.8 ml of penicillin-streptomycin (10 000 U /ml and 10 000 g/ml, 

respecti vely ). 

o 5 ml of glutamine (200 mM). 

The DMEM must be pink. It turns red as soon as it is too old. penicillin­

streptomycin and glutamine have to be added every 3-4 weeks. 

MEM 

Preparation of 1 l: 

1. Dissolve a bag of MEM (Gibco-BRL #61100-061) in 500 ml Millipore 

water. Rinse the bag well! 

2. Add 2.2 g of NaHC03 . 

3. Adjust the pH to 7.0 with 1 M HCL 

4. Fill up to 900 ml with Millipore water. 

5. Filter through a 0.22 /lm filter under the sterile hood. 

6. Store at 4 0 C. 

7. Before utilization add to each 500 ml: 

o 50 ml of FBS to reach 10% final concentration. 

o 5 ml of penicillin-streptomycin (10 000 U Iml and 10 000 g/ml, 

respectively) . 

o 5 ml of glutamine (200 mM). 

DMEM:F-12 (1:1 mixture) 

Preparation of 1 l: 

1. Dissolve a bag of DMEM 1 F-12 (Gibco-BRL #12400-024) in 500 ml 

Millipore water. Rinse the bag weIl! 
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2. Add 1.2 g of NaHC03 . 

3. Adjust the pH to 7.0 with 1 M NaOH. 

4. Fill up to 960 ml with Millipore water. 

5. Complete to 1 1 with 20 ml Ultroser G (light sensitive) to reach 2% 

final concentration. 

6. Filter through a 0.22 /-Lm filter under the sterile hood. 

7. Store at 4 0 C. 

8. Before utilization add to each 500 ml: 

<> 5 ml of penicillin-streptomycin (10 000 U Iml and 10 000 g/ml, 

respectively) . 

<> 5 ml glutamine (200 mM). 

A.2.2 Balanced salt solutions (BSS) 

BSSs are aqueous solutions of inorganic salts with the following principle 

functions: 

• They serve as irrigating, transporting and diluting fluids while main­

taining intra- and extra-cellular osmotic balance. 

• They provide cells with water and certain bulk inorganic ions essential 

for normal cell metabolism. 

• Combined with a carbohydrate, such as glucose, they provide the prin­

ciple energy source for cell metabolism. 

• They provide a buffering system to maintain the medium within the 

physiological pH range (7.2-7.6). 

Different BSSs have been developed since the discovery that cells basically 

require five ions: Ca2+, Mg2+, K+, Na+, and CI-. 
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Physiological solution (PS) 

PS is an isotonie BSS (also physiologie isotonie solution (IS)) containing a 

synthetic buffer, e.g. HEPES, and is used for short-time experiments (up to 

2 h for A549). 

Preparation of 1 l: 

Concentrations [mM] 1 F. W. [g/mol] 1 Amount [g] 

140 NaCI 58.443 8.18 

5 KCI 74.561 0.37 (5 ml of 1 M stock) 

10 HEPES 238.301 2.38 

1 MgCI2 · 6H20 

1 CaCb· 2H20 

10 glucose 

203.302 

147.016 

180.157 

0.20 (10 ml of 100 mM stock) 

0.15 (10 ml of 100 mM stock) 

1.80 

o Adjust the pH to 7.4 with NaOH. 

o Filter the solution under the sterile hood. 

o Store at 4 0 C. 

Ringer solution (RS) 

RS is an isotonie BSS comparable with PS. It contains, however, inorganic 

phosphate and carbonate salts as a buffer. It is used in case synthetic organic 

buffers interfere with the experiments. 

Preparation of 1 l: 

Concentrations [mM] 1 F. W. [g/mol]1 Amount [g] 

110.5 NaCI 58.443 6.46 

24 NaHC03 84.007 2.02 

1.3 KCI 74.561 0.0969 (1.3 ml of 1 M stock) 
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1 MgCI2 ·6H2O 203.302 0.20 (10 ml of 100 mM stock) 

1 CaClz·2H2O 147.016 0.15 (10 ml of 100 mM stock) 

2.5 Na2HP04 141.947 0.355 

or 2.5 N a2HPO 4 . 7H2O 268.053 0.67 

2.5 KH2P04 136.085 0.34 

1.2 K2HP04 174.175 0.21 

10 glucose 180.157 1.80 

<> Filter the solution under the sterile hood. 

<> Store at 4 0 C. 

<> Before use, adjust the pH to 7.4 bubbling through 5% CO2. 

Phosphate buffered saline (PBS) 

PBS is an isotonie BSS mainly used to wash cells. It also can be used to 

dilute substances. 

Preparation of 1 1: 

Concentrations [mM] 1 F. W. [g/mol] 1 Amount [g] 

137.0 NaCl 58.443 8.01 

2.7 KCI 74.561 0.22 (3 ml of 1 M stock) 

7.7 Na2HP04 141.959 1.09 

2.3 KH2P04 136.085 0.31 

<> Adjust the pH to 7.4 with HCL 

<> Filter the solution under the sterile hood. 

<> Store at 4 0 C. 
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A.2.3 Hypotonie solution (HS) 

A hypotonie solution contains a lower concentration of solutes relative to 

an isotonie BSSs. When a cell is placed in a hypotonie solution, the water 

diffuses into the ceIl, causing the cell to swell. 

Preparation: 

Hypotonie solutions were prepared starting from isotonie solutions (e.g. phys­

iological solution, Ringer solution). The isotonie solutions were diluted to the 

desired concentration with Millipore water containing ImM of CaCl2 and 

ImM of MgCl2 to keep the concentration of the divalent cations constant. 

The osmolarity was controlled with a freezing point osmometer (Micro Os­

mometer 3300, Advanced Instruments Inc., Norwood, MA, USA). 
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A.3 Chemicals and active agents 

Adenosine 5'-diphosphate (ADP) 

Figure A.3: ADP 

Molecular formula: ClOH15N501OP2 
Molecular weight: 427.2 

Description 

ADP, such as ATP (see page 264), con­

sists of an adenine ring and a ribose sugar 

(together called adenosine). It is the prod-

uct of ATP dephosphorylation by ATPases and possesses two phosphate 

groups compared to three in ATP. ADP is converted back to ATP through an 

oxidative phosphorylation process in the mitochondrial matrix [262]. ADP 

also acts as an important signalling molecule. Especially in platelets, it is 

involved in the regulation of thrombosis and hemostasis [263]. Extracellular 

ADP interacts with the purinergic receptors P2YI, P2Y12 and P2X1, lead­

ing to further platelet activation [264]. In the blood, ADP is, eventually, 

converted to adenosine by the action of ecto-ADPases [265]. 

Adenosine-3'-phosphate-5'-phosphosulfate (A3P5PS) 

Figure A.4: A3P5PS 

Molecular formula: ClOH15N5013P2S 

Molecular weight: 507.26 

Stock solution: 1 mM in H20 

Active concentration: 1 MM 

Description 

A3P5PS is a competitive P2Y1 receptor 

antagonist. The presence of a phosphate 

in the 2'- or 3'-position appears to be crucial for antagonist activity, because 

adenosine-3' -phosphate-5' -phosphate and adenosine-2' -phosphate-5'­

phosphate also exhibit antagonist/partial agonist activities,whereas other 
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3'-substituted analogues, such as 3'-amino-ATP, are full agonists with no 

antagonist activity [266]. 

Alexa Fluor® 488 dextran 

Figure A.5: 
Alexa Fluor® 

Molecular weight: la 000 

Stock solution: 2 mg/ml 

Description 

Alexa Fluor® 488 is a green-fluorescent dye that ex­

hibits the following unique features: the fluorescence 

spectra are almost identical to those offluorescein, with 

excitation/emission maxima of 495/519 nm; the ab-
488 

sorption is strong with an extinction coefficient greater 

than 65 000 cm -1 M - \ the photostability is much greater than that of fluores-

cein, allowing more time for observation and image capture; the fluorescence 

is pH-insensitive between pH 4 and la [267]. 

In Alexa Fluor® 488 dextran, the Alexa Fluor® 488 dye is conjugated to 

la kDa dextran (1-2 dyes per dextran). Dextrans are hydrophilic polysac­

charides synthesized by Leuconostoc bacteria. They are characterized by 

their high molecular weight, good water solubility, low toxicity and relative 

inertness. They easily dissolve in the ASL, without penetrating across the 

epithelium [268]. 

2-Aminoethoxy-diphenylborate (2-APB) 

Figure A.6: 

Molecular formula: (C6H5hBOCH2CH2NH2 

Molecular weight: 225.09 

Stock solution: 75 mM in DMSO 

Active concentration: 75 JLM 

2-APB Description 

2-APB is a low-cost, cell-permeable inositol-1,4,5-triphos­

phate receptor (InP3R) antagonist. In addition to attenuating the release 
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of internaI Ca2+ stores, 2-APB can also inhibit the store-operated channels 

(SOCs) that replenish the Ca2+ pool, and affect phospholipase C activity 

as weIl as IPa production [269, 270]. 2-APB can, therefore, be very useful 

in analyzing certain aspects of Ca2+ -signalling. It should, however, be used 

with care. 

Apyrase 

Activity: t".I 200 units/mg Protein 

Stock solution: 1 mg/ml in H20 
Active concentration: 2 units/ml 

Description 

ATP diphosphohydrolases, commonly called apyrases, are made up of a sin­

gle polypeptide chain. The molecular weight of known plant apyrases varies 

from 40 51 kDa. Sorne apyrases from animal sources are known to be gly­

copeptide with a molecular weight between 50 and 189 kDa. 

Apyrases are nucleotide hydrolyzing enzymes. In contrast to ATPases, which 

use the energy stored in ATP for metabolite and ion transport processes, 

apyrases reveallow substrate specificity, hydrolyzing different di- and triphos­

phonucleotides to their monophosphates. Their physiological role is to con­

trol the concentration of nucleotides destined for information transmission. 

The optimal range of pH and temperature for apyrase activity varies from 

6.5 7 and from 30 - 37 0 C, respectively, depending on the origin (plant or 

animal) of the enzyme [271]. 
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6-N,N -diethyl-j3, ,-dibromomethylene-D-adenosine-5'­

triphosphate (ARL 67156) 

Figure A.7: ARL 

Molecular formula: C15H21Br2N5Na3012P3 

Formula weight: 785.05 

Stock solution: 10 mM in H20 

Active concentration: 100 /LM 

Description 

ARL 67156 is a non-hydrolyzable structural ana­

logue of ATP and inhibits non-specifically ecto-

triphosphate nucleotidases. It prevents hydrolysis of ATP without signifi­

cantly acting on purinergic receptors [57]. 

Adenosine 5'-triphosphate (ATP) 

Figure A.8: ATP 

Molecular formula: ClOH16N5013P3 

Molecular weight: 507.18 

Stock solution: 10 mM in H20 

Description 

ATP consists of an adenine ring and 

a ribose sugar (together called ade-

nosine) and three phosphate groups. The phosphoryl groups, starting with 

the group closest to the ribose ring, are referred to as the a, {J, and T phos­

phates. ATP is highly soluble in water and is quite stable in solutions between 

pH 6.8 7.4. However, it is rapidly hydrolyzed at extreme pH and should 

be best stored as an anhydrous salt [2721. 
ATP is the main energy source for the majority of cellular functions. This 

includes the synthesis of macromolecules and their transportation within the 

cytoplasma and across membranes. Beyond this, ATP - and its hydrolysis 

products ADP (see page 261), AMP and adenosine - functions as a signalling 

molecule in the extracellular space of almost aIl cells of the body [38]. 
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Bafilomycin Al 

Molecular formula: C35H5S09 

Molecular weight: 622.83 

Stock solution: 100 /LM in DMSO 

Active concentration: l /LM 

Description 
Figure A.9: Bafilomycin Al Bafilomycin Al is a macrolide an-

tibiotic produced by Streptomyces griseus. It is a highly specifie inhibitor of 

vacuolar type H+ -ATPase (V-ATPase). However, it is not selective for any 

particular subclass, but, instead generally inhibits aIl essential V-ATPases 

[273]. 

1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic 

acid (BAPTA) 

Figure A.lO: 

BAPTA 

Molecular formula: C22H24N2010 

Molecular weight: 476.43 

Stock solution: 5 mM in H20 

Active concentration: 25 /LM. 

Description 

BAPTA is a Ca2+ -specifie chelator. The presence 

of four carboxylic acid functional groups makes the binding of two Ca2+ ions 

possible. The flexibility of the functional groups is crucial for the coordina­

tion geometry of the divalent Ca2+ ions. 

BAPTA has a high affinity to Ca2+ with a dissociation constant Kd ~ 100 nM 

[274]. It has fast buffer kinetics and is used in the AM-form for noninvasive 

ceIlloading as intracellular Ca2+ -buffer [275]. 
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2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein 

(BCECF) 

Molecular formula: C27H150n 

Molecular weight: 515.41 

Stock solution: 1 mM in DMSO 

Active concentration: 2.5 {tM 

Description 

266 

Figure A.ll: BCECF, free acid BCECF is the most widely used fluores-

cent indicator for intracellular pH with 

a pKa of 7.0, which matches the normal range of cytoplasmic pH ( ....... 6.8 

- 7.4). It belongs - such as Fura-2 (see page 270) - to the group of ra­

tiometric indicators with excitation wavelengths of 440 and 495 nm. The 

acetoxymethyl ester derivative (BCECF-AM) is membrane-permeable and 

allows non-invasive bulk loading of cells [167]. 

Brefeldin A (BFA) 

8().~ .• "~.;'.' ..... '.' ... A .... O.' .. · ...... ,.o(r~~ ., ... C8:1' 8\,; ... ~ 
,.' .. ? 

; ri'. 

HO' 

Figure A.12: 

Brefeldin A 

Molecular formula: C16H2404 

Molecular weight: 280.36 

Stock solution: 5 mg/ml in DMSO 

Active concentration: 10 {tg/ml 

Description 

Brefeldin A is a macrolide antibiotic produced by fun-

gal organisms such as Eupenicillium brefeldianum. It 

strongly inhibits protein transport from the ER to the Golgi complex [276]. 

The main target of Brefeldin A appears to be a GTP-exchange factor re­

sponsible for activating the GTP-binding protein ADP-ribosylation factor 

(ARF1). ARF1 is involved in the formation of transport vesicles by recruit­

ing coat proteins to intracellular membranes [277]. 
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Caffeine 
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Figure A.13: 

Caffeine 

Molecular formula: CsHlQN40 2 

Molecular weight: 194.19 

Active concentration: 10 mM 

Description 

Caffeine is a xanthine alkaloid compound which can be found 

in the leaves and beans of the coffee plant, in tea, as weIl as in the beans, 

leaves and fruits of more than 60 plants [278]. 

Caffeine is a central nervous system stimulant believed to act through adeno­

sine receptors. It is an adenosine receptor antagonist and adenosine 3',5'­

cyclic monophosphate (cAMP) phosphodiesterase inhibitor [279]. 

It also affects intracellular calcium levels, acting as an agonist for the ryan­

odine receptor and as an inhibitor of the InP3R on the ER [280]. 

Cytochalasin D 

Figure A.14: Cytocha-
lasin D 

Molecular formula: C30H37N06 

Molecular weight: 507.62 

Stock solution: 10 mM in H20 

Active concentration: 2 p,M 

Description 

Cytochalasins are a group of fungal metabo­

lites which permeate the cell membrane, bind 

to one end of actin filaments and inhibit the 

association and dissociation of su bu nits [281]. Cytochalasin D was found to 

be very effective in binding to the barbed end of actin filaments [281]. 
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Dapoxyl® sulfonic acid, sodium salt 

Figure A.15: Dapoxyl® 

Description 

Molecular formula: C17H15N2Na04S 

Molecular weight: 366.37 

Stock solution: 10 mM in H20 

Active concentration: 10 /LM 

268 

5-( 4"-Dimethylaminophenyl)-2-( 4'-phenyl)oxazoles are fluorescent solvato­

chromic dyes who se fluorescence strongly depends on solvent polarity. The 

fluorescence-environ ment dependence, large extinction coefficients, high fluo­

rescence quantum yields, and large Stokes shift of the fluorophores are used 

for the development of fluorescent molecular probes to study a variety of bi­

ological events and pro cesses [282]. Dapoxyl sulfonic acid is an amphiphilic 

dapoxyl derivative with an absorption maxima near 370 nm, and an emis­

sion maximum close to 520 nm wh en bound to phospholipid bilayer mem­

branes [283]. 

Dimethylsulfoxide (DMSO) 

0, 

iH3Ç(4~ç8j,; 
Figure A.16: 

DMSO 

Description 

Molecular formula: (CH3 hSO 

Molecular weight: 78.13 

Solubility: miscible in water, ethanol, chloroform, benzene 

Melting point: 18.5 0 C 

Boiling point: 189
0 

C 

DMSO is a colourless polar aprotic solvent. It readily dissolves a variety of 

organic substances as weIl as many inorganic salts and gases. Pure DMSO 

is not considered toxic. However, DMSO increases the rate of absorption 

of sorne compounds through organic tissues including skin, which makes it 

potentiaIly dangerous [284]. On the other hand, DMSO can be used as a 

drug delivery system, when properly administered, on account of this prop­

erty [285]. 
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Ethylene glycol-bis(j3-aminoethylether)-N,N,N',N'-tetra­

acetic acid (EG TA) 

Figure A.17: EGTA 

Molecular formula: C14H2401ON2 

Molecular weight: 380.35 

Active concentration: 100 MM 

Description 

EGTA is a chelating agent that is related to 

the better known ethylenediaminetetraacetic acid (EDTA), but with a much 

higher affinity for Ca2+ than for Mg2+ ions. It has a similar affinity to Ca2+ 

as BAPTA (see page 265), but its buffer kinetics is slow [274, 275]. It is 

usually used for making BSSs with a low content of Ca2+. 

Ethidium bromide 

Figure A.18: 

Ethidium bromide 

Molecular formula: C21H20BrN3 

Formula weight: 394.31 

Stock solution: 10 mg/ml in H20 

Active concentration: 10 Mg/ml 

Description 

Ethidium bromide (systematic nomenclature: 2,7-

Diamino-1O-ethyl-6-phenylphenan thridinium bromi-

de) is a fluorescent, intercalating agent for nucleic 

acid. It is commonly used to detect nucleic acids from PCRs, restriction 

digests, etc. It can aiso be used to differentiate between viable and necrotic 

cells. 

Ethidium bromide is a very strong mutagen, carcinogen and teratogen [272]. 
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FCCP (Carbonylcyanide-4-( trifluoromethoxy )phenyl­

hydrazone) 

'CN 

0). ,N==< 
... ,.p '.,' .~, CN 
Fe.' 'H '. 3 .. '. . 

Figure 

FCCP 
A.19: 

Molecular formula: ClOH5F3N40 

Molecular weight: 254.17 

Stock solution: 0.5 mM in DMSO 

Active concentration: 10 /LM 

Description 

FCCP is a protonophore (H+ ionophore) and an uncoupler of mitochondrial 

phosphorylation. Tt reduces intracellular pH and is capable of depolarizing 

the mitochondrial membranes and the plasma membrane [286]. Treatment 

of cells with FCCP at varying concentrations leads to partial (100 nM) or 

complete (10 /LM) depolarization and apoptosis [287]. 

Fura-2-AM (Fura-2 pentakis( acetoxymethyl) ester ) 

Figure A.20: Fura 2-AM 

Molecular formula: C44H47N3024 

Molecular weight: 1001.85 

Stock solution: 0.5 mM in DMSO 

Active concentration: 2.5 /LM 

Description 

Fura-2 is an intracellular fluorescent 

indicator with a high selectivity and 

low affinity for Ca2+ (Kd ~ 224 nM) 

[164]. Tt belongs to the group of ra­

tiometric indicators (see also BCECF page 266) with excitation wavelengths 

of 340 and 380 nm. The intensity of fluorescent emission depends on the 

concentration of the dye, the thickness of the ceIl, an optical constant of the 

set-up, and a non-linear function of the Ca2+ -concentration. Ratioing has, 

therefore, the advantage of reducing the effects of uneven dye-Ioading, dye­

leakage, and photo-bleaching [164]. The AM form is used for noninvasive 

intracellular loading [164]. 
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G lycyl-L-Phenylalanin-{3-N aphthylamide (G PN) 

Figure A.21: GPN 

Molecular formula: C21 H21 N 302 

Molecularweight: 347.41 

Stock solution: 100 mM in DMSO 

Active concentration: 100 j.tM 

Description 

GPN is a substrate for cathepsin C, a pro­

tease located exclusively in lysosomes. GPN 

diffuses to the lysosomes after permeabilization of the cell membrane. It is 

hydrolyzed by cathepsin C and the hydrolysis products are trapped inside 

the lysosomes due to their increased polarity. The accumulation of these 

substrates causes an osmotic lysis of the lysosomes [288]. GPN appears to 

be an excellent tool for the specifie disruption of lysosomes. 

5-Hexadecanoylaminofluorescein (HAF) 

Figure A.22: 5-Hexade­

canoylaminofluorescein 

Molecular formula: C36H43N06 

Molecular weight: 585.74 

Stock solution: la mg/ml DMSO 

Active concentration: la j.tg/ml 

Description 

Fluorescein is a hydrophilic fluorophore with a 

pH-dependent absorption maximum at 494 nm 

and emission maximum at 521 nm in water [272]. 

5-Hexadecanoylaminofluorescein is an amphiphilic 

isocyanate-derivative of fluorescein with an alkyl tail. It is a fluorescent mem­

brane probe that localizes at the aqueous interface of cell membranes. The 

lipophilic alkyl tail anchors in the outer lipid layer, and the polar fluorescein­

group resides on the outer surface of the cell membrane [289]. To minimize 

dye internalization, experiments should be carried out between 21 - 23 0 C. 
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Hexokinase 

Activity: 2:: 135 units/mg Protein 

Stock solution: 1 mg/ml in H20 

Active concentration: 10 units/ml 

Description 
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Hexokinase is a dimeric protein made of two equal rv 54 kDa monomers 

[290]. It catalyzes the phosphorylation of D-hexose sugars at the C6 position 

utilizing ATP as a phosphate source, which is the first step of intracellular 

metabolic processes such as glycolysis and glycogen synthesis [291]. 

The rate of phosphorylation varies with different hexoses and Nucleotides 

triphosphates, and is highest with D-glucose and ATP. The optimal range of 

pH and temperature for hexokinase activity lies between 7.5 9 and from 

25 - 33 0 C depending on its isoform [292]. 

Ionomycin 

Molecular formula: C41 H70CaOg 

Formula weight: 747.07 

Stock solution: 1 mM in DMSO 

Active concentration: 1-5 p,M 

Description 

Ionomycin is a nonfluorescent Ca2+ -ionophore 
Figure A.23: Ionomycin used to transport Ca2+ across biological 

membranes [272]. In the presence of high extracellular Ca2+ -concentrations 

it can induce apoptotic degeneration of the cell due to the sudden increase 

of intracellular Ca2+ [272]. 
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J asplakinolide 

Figure A.24: Jas­

plakinolide 

Molecular formula: C36H45BrN406 

Molecular weight: 709.68 

Stock solution: 1 mM in DMSO 

Active concentration: 1 J.LM 

Description 

Jasplakinolide is a membrane-permeable cyclic pep­

tide produced by the marine sponge Jaspis johnstoni. 

It is composed of three amino acids, D-alanin as weIl 

as the rare D-,B-tyrosine and D-2-bromoabrine [293]. 

It induces actin polymerization and stabilizes actin 

filaments. The peptide has a much greater effect on Mg2+ -actin than on 

Ca2+ -actin [294]. 

Latrunculin A 

Figure A.25: La-

trunculin A 

Molecular formula: C22H31N05S 

Molecular weight: 421.55 

Stock solution: 1 mM in DMSO 

Active concentration: 1 J.LM 

Description 

Latrunculin A is a membrane-permeable macrolide toxin 

produced by the Red Sea sponge Latrunculia magnifica. 

Besides the macrolide ring, it is composed of a rare 2-

thiazolidinone ring as weIl as a tetrahydropyran~lactol ring [295]. Latrunculin 

A is an actin-disrupting agent, which prevents microfilament polymerization 

due to one-to-one binding with monomeric G-actin. Lantrunculin does not, 

however, alter the microtubular structure [296]. 
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2-(Methylthio )adenosine 5'-diphosphate (2-MeSADP) 

Figure A.26: 2-MeSADP 

Monensin 

Molecular formula: CllH17N501OP2S 

Molecular weight: 539.24 

Description 

2-MeSADP is an ADP analogue with a 

lO-times higher affinity to the human 

P2Yl-receptor than ADP [297]. 

Molecular formula: C36H61 NaOll 

Formula weight: 692.85 

Stock solution: 10 mM in DMSO 

Active concentration: 10 /LM 

Description 
Figure A.27: Monensin 

Monensin, a polyether antibiotic, is 

a monovalent ionophore that exchanges Na +, K+ ions and protons across 

membranes. It affects the acidification of acidic compartments and has been 

shown to influence the function of the Golgi apparatus. It causes swelling of 

Golgi cisternae and secretory vesicles; slows or arrests intra-Golgi transport of 

newly synthesized secretory proteins; interferes with the late Golgi functions, 

such as proteolytic processing and attaching of terminal sugars to N-linked 

glycoproteins; and leads to the accumulation of membrane and secret ory 

protein precursors in medial or trans-Golgi cisternae [298]. 
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N -Ethylmaleimide (NEM) 

Figure A.28: 

NEM 

Molecular formula: C6H7N02 

Molecular weight: 125.13 

Stock solution: 1 M in Methanol 

Active concentration: 1 mM 

Description 

NEM is a chemical derivative of maleic acid imide. It alky­

lates sulfhydryl groups, thereby irreversibly inhibiting the formation of cys­

tine linkages in proteins. As a result ofthe alkylation ofthe N -ethylmaleimide 

sensitive fusion protein (NSF), NEM blocks vesicular transport [2721. 

Nigericin 

Figure A.29: 

Nigericin 

Molecular formula: C4oH68011 

Molecular weight: 724.97 

Stock solution: 10 mM in DMSO 

Active concentration: 10-50,uM 

Description 

Nigericin is a polyether antibiotic produced by Strep­

tomyces hygroscopicus. It acts as an ionophore for 

monovalent cations with an ion selectivity such as K+, 

H+, Rb + and Na +. It most commonly functions as an anti porter of H+ and 

K+ [2721. 
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Nocodazole 

Figure A.3D: Nocoda-

Molecular formula: C14HuN303S 

Molecular weight: 301.32 

Stock solution: 20 mM in DMSO 

Active concentration: 20 j.tM 

zole Description 

Nocodazole is a synthetic antimitotic agent that 

disrupts microtubules by binding to tJ-tubulin. It prevents the formation of 

interchain disulfide linkage, thus inhibiting microtubule dynamics, disrupting 

the mitotic spindle function, and fragmenting the Golgi complex [299]. 

5-Nitro-2-(3-phenylpropylamino)benzoic acid .(NPPB) 

Figure A.31: NPPB 

Molecular formula: C16H16N204 

Molecular weight: 300.31 

Stock solution: 125 mM in DMSO 

Active concentration: 125 j.tM 

Description 

NPPB is a chloride channel blocker, which is highly membrane permeable. 

It blocks unselectively an kinds of chloride channels in a reversible manner. 

In addition, it has been shown to have protonophoric activity, potential1y 

disturbing cytosolic pH and mitochondrial ATP synthesis [300]. 
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Oligomycins 

Oligomycin A 

Molecular formula: C4sH740ll 

Molecular weight: 791.06 

Stock solution: 10 mM in DMSO 

Active concentration: 10 fLM 

Description 
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Figure A.32: 

Oligomycin A 

Oligomycin A, B, C and D are a complex of sev­

eral closely related compounds of macrolide antibi-

otics produced by Streptomyces diastatochromogenes. 

They inhibit oxidative phosphorylation in the mitochondria [272]. 

Pluronic® F-127 

Figure A.33: Pluronic® F-127 

Description 

Average molecular formula: 

(EO)98(PO)67(EO)9828 

Average molecular weight: 12 600 

Pluronie® F-127 is a polyoxypropylenepolyoxyethylene block copolymer with 

a low absorbance in UV. It is a non-ionie detergent which ean be dissolved in 

DMSO up to a final concentration of 0.2% (w Iv). It is non-toxie and often 

used to facilitate cellioading with AM-eompounds. The 0.2% (w Iv) solution 

can be used to prepare the compound stock solution [301]. 

28(EO) ethylene oxidej (PO) propylene oxide. 
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Phorbol 12-myristate 13-acetate (PMA) 

Molecular formula: C36H560S 

Molecular weight: 616.83 

Stock solution: 1 mM in DMSO 

Active concentration: 1 /LM 

Description 
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Figure A.34: 

PMA 
PMA is an activator of the signal transduction enzyme 

protein kinase C (PKC). The effects of PMA on PKC 

result from its similarity to diacylglycerol (DAG), which is one of the natural 

activators of sorne PKC isoforms [302]. It has also been shown to be a highly 

potent tumor promotor and mitogen [272]. 

Pyridoxal phosphate-6-azo (benzene-2 ,4-disulfonic acid) 

tetrasodium salt (PPADS) 

Figure A.35: PPADS 

Molecular formula: C14HlON3Na4012PS2 

Molecular weight: 599.31 

Stock solution: 100 mM in H20 

Active concentration: 100 /LM 

Description 

PPADS is a highly specifie, non-selective (but 

non-universal) P2 antagonist with a small pref­

erence for P2X1 receptors. It also blocks P2X2, P2X3, P2X5 and P2Y1 re­

ceptors with similar potencies. It is weaker as an antagonist for homomeric 

P2X4, P2X6 and P2X7 , P2Y4, P2Y6, P2Yl1 and P2Y12 receptors [303]. 

Probenecid 

Molecular formula: C13H19N04S 

Molecular weight: 285.36 

Active concentration: 2.5 mM 

---------- -----
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Figure A.36: Pro-

benecid 

Description 

Probenecid is commonly used to inhibit organic­

anion transporters located in the cell membrane. 

Such transport ers can extrude dyes and indicators 

and thus contribute to poor loading or a high back-

ground signal in assays based on retention of the 

dyes or indicators inside cells [163]. 

Ruthenium Red 

Molecular formula: N 14H4202Cl6Ru3 

Formula weight: 786.35 

Stock solution: 100 mM in H20 

Active concentration: 100 ILM 

Figure A.37: Ruthenium Red Description 

Ruthenium red is a polycationic rea­

gent that is effective in inhibiting ER Ca2+ release channels. In contrast to 

heparin and caffeine, it inhibits only the ryanodine receptor without affecting 

the InP3R [280, 304]. 

Ryanodine 

Figure A.38: Ryan-

odine 

Molecular formula: C25H35NOg 

Molecular weight: 493.63 

Stock solution: 100 mM in H20 

Active concentration: 100 ILM 

Description 

Ryanodine is a naturally occurring alkaloid which 

binds specifically to a Ca2+ release channel on the 

ER with high affinity. It also accounts for the 

name of this Ca2+ release channel, the ryanodine receptor channel (RyR). 
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Stimulation or inhibition of Ca2+ effiux by ryanodine is influenced by di­

valent cation concentration, temperature and time of incubation, as weil as 

by the concentration of ryanodine itself. At low concentrations « 10 {lM), 

ryanodine sensitizes the channel to activation and dissociates along with the 

closure of the channel [305]. At high concentrations (> 10 {lM), ryanodine 

blocks the release of Ca2+ through the RyR Ca2+ channels [306]. 

Suramin 

Figure A.39: Suramin 

Mol. formula: CSIH34N6Na6023S6 

Molecular weight: 1429.17 

Stock solution: 100 mM in H20 

Active concentration: 100 {lM 

Description 

Suramin is a symmetric polysulfo­

nated naphthylurea. It releases Ca2+ 

from skeletal muscle sarcoplasmic reticulum vesicles in a concentration-de­

pendent manner and is also a ligand for P2 receptors [307]. However, its 

interaction with a large range of other proteins, in addition to P2 recep-

tors, limits the application of this agent as a tool for the characterization 

of P2 receptors. These proteins include interleukin, glutamate, nicotinic, 5-

hydroxytryptamine and GABA receptors, various proteases, Na+ /K+- and 

Ca2+ -ATPases, ecto-nucleotidases, G protein-coupled receptor kinases, as 

weil as G protein subunits, basic fibroblast growth factor and reverse tran­

scriptase [303]. 
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Thapsigargin 

Molecular formula: C34H50012 

Molecular weight: 650.75 

Stock solution: 1 mM in DMSO 

Active concentration: 1 JLM 

Description 

Thapsigargin is a plant-derived sesquiterpene 
Figure A.40: Thapsigargin lactone, and functions as a membrane-perme­

able, tight-binding inhibitor of the sarcojendoplasmic reticulum Ca2+ -ATPase 

(SERCA). It increases the concentration of cytosolic free Ca2+ in sensitive 

cells by an acute and highly specifie arrest of the sarcojendoplasmic reticu­

lum Ca2+ pump, followed by a rapid Ca2+ leak from the IP3R and RyR Ca2+ 

channels [308]. 

Uridine 5'-diphosphate (UDP) 

Molecular formula: C9H14N2012P2 

Molecular weight: 404.16 

Stock solution: 10 mM in H20 

Description 

UDP serves as a carrier for hexoses, hex-
Figure A.41: UDP 

osamines and hexuronic acids in the syn­

thesis of glycogen, glycoproteins and glycosaminoglycans. It is also an agonist 

of P2Y6 receptors [272]. 
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Uridine 5'-diphosphoglucose (UDP-glc) 

Figure AA2: UDP-glucose 

Molecular formula: C15H22N2017P2 

Molecular weight: 564.29 

Stock solution: 10 mM in H20 

Description 

UDP-glucose is used in cells as an 

activated form of glucose, as a sub­

strate for glycosyltransferases as weIl as for glycogen and glycoprotein meta­

bolism. In the extracellular space, it functions as a specifie agonist for the 

P2Y 14 receptor [309]. 

Uridine 5'-triphosphate (UTP) 

Molecular formula: . C9HlSN201SP3 

Molecular weight: 484.14 

Stock solution: 10 mM in H20 

Description 

UTP is a pyrimidine analog of ATP. 
Figure AA3: UTP 

It is an activated precursor in the 

synthesis of RNA, and in glycogen and glycoprotein metabolism. It is also 

an agoni st of P2Y 2 and P2Y 4 receptors that activate chloride channels in 

epithelial ceIls, increasing ciliary beat frequency and inducing degranulation 

of goblet ce Ils in airway epithelia [272J. 
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Xestospongin C 

Figure A.44: 

Molecular formula: C2sHsoN202 

Molecular weight: 446.71 

Stock solution: 1 mM in DMSO 

Active concentration: 3-10 MM 

Description 
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Xestospongin C 
Xestospongin C is a marine alkaloid isolated from 

the Okinawan sponge Xestospongia Sp .. It is a potent, cell-permeable inhib-

itor of IP3R-mediated Ca2+ -release. It also sensitizes RyR-mediated CICR 

[310]. 



Appendix B 

Microscope components 

The components of a Nikon Inverted Microscope ECLIPSE TE300, which 

was used in the course of this Ph.D. project, are depicted on the following 

two pages. 
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Power supply 
(TE'·PS100 or 
TECP$El00) 
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Rectangular 
mechanicalstage 

Figure B.1: Right-hand view of the Nikon inverted microscope TE300; 
taken from the microscope operation manual 
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Bertrandlans 
focusing screw. 

Fr.ont port' 

Figure B.2: Left-hand view of the Nikon inverted microscope TE300; 
taken /rom the microscope operation manual 
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Technical drawings 

C.I Side-view microscopy set-up 

- Essential elements 

Figure C.I: Assembled view of the entire stage set-up 
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Figure C.2: Cross-section of the entire stage set-up 
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Figure C.3: Exploded view of the entire stage set-up: 

(1) Stage ring with air-inlet (see section C.2) 
(2) Side-view chamber (see section C.3) 
(3) Incubator (see section C.5) 

289 
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C.2 Stage ring 

Figure C.4: 3D view of the stage ring with air inlet 

Figure C.5: Cross-section of the stage ring with air inlet 
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Figure C.6: Detailed 2D engineering drawing of the stage ring with air inlet 
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C.3 Side-view chamber 

C.3.1 Assembly 

Figure C.7: Assembled view of the side-view chamber 

Figure C.8: Cross-section of the side-view chamber 
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Figure C.g: Exploded view of the side-view chamber: 

(1) Chamber frame (see section C.3.2) 
(2) Retaining screw 
(3) Filter holder (see section C.3.3) 
(4) lnlet tube 
(5) Outlet tube 
(6) Modified Millicell® Culture Plate Insert (see section C.4) 
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C.3.2 Chamber frame 

Figure C.lO: 3D view of the chamber frame including the section plane for 
Fig. C.ll 

Figure C.ll: Cross-section of the chamber frame 
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Figure C.12: Detailed 2D engineering drawing of the chamber frame 
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C.3.3 Filter holder 

Figure C.13: 3D view of the filter holder 

Figure C.14: Cross-section of the filter holder 
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Figure C.l5: Detailed 2D engineering drawing of the fllter holder 
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C.4 Cell culture filter inserts 

CA.1 Modification of the Millicell® culture plate in­

serts (M CPI) 

Figure C.16: Original MCPI Figure C.17: Modified MCPI 

, 

i 

: 1 

Figure C.18: Dimensions of the modified MCPI 
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C.4.2 Preparation of the MCPI for cell culture 

Figure C.19: Design of the MCPI holding tube 

Figure C.20: Inserting the modified MCPI into the tube 
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Figure C.21: 3D view of modified MCPI in the tube 
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C.5 Incubator 

C.5.1 Assembly 

Figure C.22: Assembled view of the incubator 

Figure C.23: Cross-section of the incubator 
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Figure C.24: Exploded view of the incubator: 

(1) Main chamber (see section C.5.2) 
(2) Cover (see section C.5.3) 

302 



APPENDIX C. TECHNICAL DRAWINGS 

C.5.2 Main chamber 

Figure C.25: 3D view of the main incubator chamber 

Figure C.26: Cross-section of the main incubator chamber 
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Figure C.27: Detailed 2D engineering drawing of the main incubator chamber 
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C.5.3 Cover 

Figure C.28: 3D view of the chamber cover 

Figure C.29: Cross-section of the chamber cover 
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Figure C.30: Detailed 2D engineering drawing of the chamber cover 
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C.6 Valve 

C.6.1 Assembly 

Figure C.31: Assernbled view of the valve 

Figure C.32: Cross-section of the valve 
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Figure C.33: Exploded view of the valve: 

(1) Main valve tube (see section C.6.2) 
(2) Reducing tube (see section C.6.3) 
(3) Shutter (see section C.6.3) 
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C.6.2 Main valve tube 

Figure C.34: 3D view of the main valve tube 

Figure C.35: Cross-section of the main valve tube 
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TopView Isomefric View 
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Figure C.36: Detailed 2D engineering drawing of the main valve tube 
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C.6.3 Valve tube accessories 

Figure C.37: 3D view of the 
reducing tube 

Figure C.39: 3D view of the 
valve shutter 

Figure C.38: Dimensions of the re­
ducing tube 
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Figure CAO: Dimensions of the valve 
shutter 




