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SOMMAIRE 

Les distributions phase-type (PH) sont utilisées comme modèles de probabi­

lité d'une variable aléatoire positive. Elles remontent aux travaux de Neuts au 

milieu des années quatre-vingt. Les premières applications se retrouvent en re­

cherche opérationnelle comme modèle pour les temps d'attente en théorie des files 

d'attente. L'actuariat est un autre domaine où l'on utilise souvent des modèles 

de probabilité de variables positives d'où l'intérêt des actuaires pour les distri­

butions PH démontré récemment. L'estimation statistique des distributions PH 

par l'algorithme EM a été proposée au milieu des années quatre-vingt-dix par 

Asmussen et ses collaborateurs. Les actuaires ont aussi appliqué cette classe de 

modèles à la théorie du risque et aux probabilités de ruine. Des généralisations aux 

distributions PH multivariées ont aussi été introduites dans les années quatre­

vingt suivant les travaux de Neuts qui ont fait école. Elles peuvent servir à la 

modélisation de la probabilité de deux ou plusieurs variables positives distribuées 

conjointement. 

Le premier article traite de l'estimateur du maximum de vraisemblance par 

l'algorithme EM et de tests d'ajustement par le bootstrap paramétrique pour des 

distributions PH bivariées. Âhlstrom et ses collaborateurs ont publié en 1999 un 

algorithme EM pour l'estimation paramétrique de la distribution du temps de 

rechute en analyse de survie. Ils ont utilisé une distribution PH bivariée dont une 

composante est plus grande que l'autre avec probabilité un. Même si l'algorithme 

EM proposé dans cette thèse est semblable, il n'en demeure pas moins que notre 

modèle est plus général. Nous montrons aussi comment calculer avec autant de 

précision voulue les coefficients de corrélation de Spearman et de Kendall d'un 

modèle PH bivarié ajusté à des données. Ces coefficients de corrélation peuvent 
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alors être comparés aux coefficients non paramétriques de 8pearman et de Ken­

dall basés sur les rangs. Des valeurs rapprochées des coefficients paramétriques et 

non paramétriques sont une indication de la validité du modèle. Un test d'ajus­

tement convergent est construit en comparant la fonction de survie paramétrique 

(bivariée) ajustée avec la fonction de survie expérimentale au travers d'une sta­

tistique de type Cramér-von Mises. Ces résultats sont utilisés pour ajuster une 

distribution PH bivariée à un véritable jeu de données issu du domaine de l'assu­

rance avec pour variables la perte subie (L088) et la dépense pour perte allouée 

après rajustement (ALAE). C'est la première fois à notre connaissance que les 

distributions PH bivariées sont utilisées sur de vraies données. La distribution 

PH bivariée ajustée est ensuite utilisée pour calculer la moyenne et les quantiles 

de la distribution conditionnelle de la variable ALAE étant donné une valeur de 

l'autre variable L088. 

Le deuxième article étend le théorème de Jewell en théorie de la crédibilité 

à une grande classe de distributions qui sort des distributions exponentielles li­

néaires et même de la famille exponentielle. Le théorème de Jewell montre que 

la crédibilité exacte se produit dans la famille exponentielle linéaire univariée et 

multivariée de distributions conditionnelles, une fois appareillées à la distribu­

tion a priori conjuguée appropriée. La crédibilité exacte est étudiée ici dans le 

cas de distributions PH univariées et multivariées. Les chaînes de Markov sous­

jacentes sont utilisées, en incluant les paramètres de risque non-observables pour 

les distributions PH. 

MOTS CLÉS: 

Distributions phase-type; processus de Markov continu; chaîne de Markov ca­

chée; algorithme EM; bootstrap paramétrique; crédibilité exacte; distributions 

coxiennes; théorème de Jewell. 
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SUMMARY 

Phase-type (PH) distributions are used as probability models for positive 

random variables. Their origin stems from the works of Neuts published in the 

early eighties. The first applications are found in operational research as models 

for waiting times in the field of queuing theory. Probability models in actuarial 

science are also fraught with positive variables such as losses and survival times 

which may explain the recent interest of actuaries in PH distributions. Stati~tical 

estimation of PH distributions with the EM algorithm was developed in the mid 

nineties by Asmussen and his coworkers. Actuaries have also applied this class 

of models to risk theory and ruin probabilities. Extensions to multivariate PH 

distributions were also developed in the eighties following the seminal work of 

Neu~s. They can serve as models for the joint probability distribution of two or' 

more positive random variables. 

The first paper treats of maximum likelihood estimation by the EM algorithm 

and goodness-of-fit tests by parametric bootstrap when the model is a bivariate 

PH distribution. Âhlstrom and his coworkers published in 1999 an EM algorithm 

for the parametric estimation of relapse time distributions in survival analysis. 

They used a bivariate PH distribution with one component greater than the other 

component with probability one. Although the EM method proposed in this thesis 

is similar, our model is more general. Moreover, we show how to evaluate with any 

desired degree of accuracy the Spearman or Kendall corrrelation coefficients of 

the fitted bivariate PH model. These correlation coefficients can then be compa­

red with the non parametric Spearman or Kendall coefficients based on ranks. A 

close agreement is an indication of the validity of the model. A consistent good­

ness-of-fit testing procedure is proposed which compares the fitted (bivariate) 
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parametric survival function with the empirical survival function using a statistic 

of the Cramér-von Mises type. A parametric bootstrap algorithm is also provided 

to ob tain the critical region of the proposed test. The results are used to fit real 

data in the insurance industry relating losses (L088) and allocated loss adjust­

ment expenses (ALAE). To our knowledge this is the first time ~hat bivariate 

PH distributions are used to fit real data. The fitted bivariate PH distribution is 

used to obtain the quantiles and the mean of the conditional distribution of the 

variable ALAE for a given value of the other variable L088. 

The second paper extends Jewell's theorem in credibility theory to a larger 

class of distributions, outside of exponential distributions or even the linear expo­

nential family. Jewell's Theorem proves that exact credibility occurs in the univa­

riate and multivariate linear exponential family of conditional distributions, when 

paired with the appropriate conjugate prior distribution. Here, exact credibility 

is discussed in a univariate and multivariate PH setting. Hidden Markov chains 

are used, embedding the unobservable risk parameters in the PH distributions. 

KEYWORDS: 

Phase-type distributions; continuous Markov pro cesses ; hidden Markov chain; 

EM algorithm; parametric bootstrap; exact credibility; coxian distributions; Je­

well's theorem. 
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Chapitre 1 

PRELIMINARY NOTIONS ON PHASE-TYPE 

DISTRIBUTIONS AND CREDIBILITY 

THEORY 

1.1. PHASE-TYPE DISTRIBUTIONS 

1.1.1. Sub-intensity matrices and matrix exponentials 

Suppose that the real matrix A = (aijkjEE, for E = {l, ... , l}, has eigenvalues 

Bi = Bi(A), i 1, ... ,i. Assume that I(hl ~ IB21 ~ ... ~ IBd· The following result 

is easily proved. 

Lemma 1.1. If B = aA + b for sorne real constants a and b, then 

The upper bound for the largest eigenvalue BI for a nonnegative matrix Îs 

given in the following lemma. 

Lemma 1.2. Let A = (aijkjEE be a nonnegative rnatrix, i.e. aij ~ 0 for aU i,j, 

then, 

Proof. If 4> = (4)1, ... ,4>1) T is the eigenvector associated with BI, then 

1 

Bl 4>i = L aij4>j, i = 1, .. ') l, 
j=l 
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and as a result 1 BIll <Pi 1 ~ 2::~=1 aij maxkEE 1 <Pk l, for i = 1, ... ,l. Consequently, 

l 

IBII max l<Pil ~ max L aij max l<Pkl· lEE lEE kEE 
j=l 

Thus IBII ~ maxiEE L::jEE aij. The proof simply uses the fact that AT has the 

same eigenvalues as A. o 

The density and Laplace transform of a phase-type distribution are expressed 

with a sub-intensity matrix. We present the required preliminaries of sub-intensity 

matrices; 

Definition 1.1. The matrix T = (tij kjEE, is called a sub-intensity or a sub­

genemtor matrix if tij ~ 0, for i =J:. j, 2::~=1 tij ~ 0, and for at least one i E E, 

2::~=1 t ij < O. 

The following lem ma gives an upper bound for the real part of the maximal 

eigenvalue of a sub-intensity matrix. Let ~(z) denote the real part of the complex 

number z. 

Proposition 1.1. If T = (tijkjEE is a sub-intensity matrix then, the eigenvalues 

Bi(T; = 0 or~(Bi(T;) < 0, fori = 1, ... ,l. 

Proof. Let c > maxiEE(tii). Then, U = T+cI is a nonnegative matrix. Applying 

Lemma 1.1 and Lemma 1.2 to the matrix U completes the proof. o 

Because T = (ti,jkjEE is nonsingular if and only if Ois not an eigenvalue then, 

we have the following corollary. 

Corollary 1.1. A sub-intensity matrix T = (tijkjEE with eigenvalues Bi is non­

singular if and only if ~(Bi( T;) < 0, for i = 1, ... , l. 

Definition 1.2. The exponential of a square matrix A is defined as 

00 (tA)n 
exp(tA) = L -,-, tE IR. 

n=O n. 
(1.1 ) 

In general, it is not an easy task to obtain the exponential of a matrix from 

the definition. There are many ways to caIculate the exponential of a matrix. 

Moler and Van Loan (1978), examines many ways to caIculate the exponential of 

a matrix to conclude that different forms of matrices require different approaches. 

The next theorem finds a representation formula for a matrix exponential. 
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Proposition 1. 2. Let fh, ... , BI be the eigenvalues of A = (aij )i,jEE then, 

exp(tA) = al (t)A I + ... + al(t)A1 (1.2) 

where, ak(t) and Ak are given recursively by 

al (t) = e'h t , 

Al = l, 

ak(t) = 1t 

ellk (t-x)ak_1 (x)dx, 

Ak = (A - BI!) ... (A - Bk- 11), 

for k = 2, ... , l. 

For a proof see Rolski et al. (1999), p. 325. We have the following coroUary 

from Proposition 1.2. 

Corollary 1.2. Let BI,'" ,BI be the eigenvalues of A = (aijkjEE. Then, for each 

s > maxiEE ~(BiL 

Hm e-st exp(tA) = O. 
t->oo 

(1.3) 

Proof. In view of (1.2), we have ta show that 

Hm exp( -st)lak(t)1 = 0, 
t ...... oo 

(1.4) 

for k = 1, ... J Equation (1.4) is true for k = 1. Suppose that (lA) holds for 

sorne k = n - 1 < l. As a result, for each e > 0 there exists li > 0 such that 

exp(-sx)lan_l(x)1 < e for aU x.> li. On the other hand, we have that 

e-stlan(t)1 $ e[!R(IJ,,)-slt 11/ le-IJnxan_1 (x)ldx 

+ lt e[!R(IJn)-Sj(t-X)e-SXlan_1 (x)ldx. 

For a fixed point li > 0, limt ...... oo e[!R(lIn)-slt f: le-8nxan_1 (x)ldx =: O. This implies 

that the first integrand tends ta zero. The second integrand is al ways less than 

S-~(lIn)' and this completes the proof. 0 

Let A(h) = (aij(h))i,jEE be a matrix function such that aIl its entries are 

differentiable functions of h. The matrix derivative of A(h) is defined by 
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dA(h) = hm A(h + b) - A(h) . 
dh 5~O b 

. (1.5) 

The following lemma states the derivative of a matrix exponential. 

Lemma 1.3. The matrix exponential eAh is differentiable on the whole real line 

and 

d Ah 
_e _ _ A Ah _ AhA 

dh - e - e . (1.6) 

One can prove this lemma by using (1.1) and (1.5). For a proof, see Roiski 

et al. (1999), p. 315. If A and B are both differentiable matrix functions then, a 

differential rule for the product of A and B is given in the following lem ma. 

Lemma 1.4. If A(h) and B(h) are bath differentiable matrix functions then, 

:h [A(h)B(h)] = [:hA(h)] B(h) + A(h) [:hB(h)] . (1.7) 

As in the definition of the matrix derivative, the integral J: A(x )dx is a matrix 

with elements J: aij(x)dx, for 1/ < t. In particular, for the matrix exponential 

function we have the following lemma. 

Lemma 1.5. If T is a nonsingular matrix then, 

l t 
exp(xT)dx = rI[exp(tT) - exp(1/T)]. (1.8) 

M oreover, if all the eigenvalues of T have negative real parts then, 

100 

exp(xT)dx = - rI. 

Proof. Equation (1.8) is a consequence of (1.6) and (1.7) which imphes 

Let 1/ = a in (1.8) and let s = a in (1.3) to get limt~oo exp(tT) = O. o 

1.1.2. Continuous-time Markov chains 

Definition 1.3. A stochastic process {Jt , t 2: a}, defined on a probability space 

(n, J, IP'), with values in a countable set E, called the space state of the process, 

is called a continuo us Markov chain if for any finite set a :S t1 < t2 < ... < tn < 
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tn +l of times and corresponding set il, i 2 , ... ,in-l, i, j of states in E such that 

P(Jtn = i, Jtn_l = in-l, ... , Jtl = id > 0, we have 

Equation (1.9) is called the Markov property. The Markov property states that 

in order to calculate the probability of a corning event given sorne past events, 

only the rnost recent past event is relevant. If for all s, t such that 0 ~ s ~ t and 

all i,j E E, the conditional probability P(Jt = jlJs = i) depends only on t - s, 

we say that the pro cess {Jl, t 2: O} is hornogeneous, or has stationary transition 

probabilities. In this case, IfD(Jt = j/Js = i) = IfD(Jt- s = j/Jo = i) and the function 

Pij(t) = P(Jt = jlJo = i), i, j E E, t 2: 0 

is called the transition function of the process. All continuous Markov chains dis­

cussed in this thesis have stationary transition probabilities. The finite-dimensional 

probabilities of the pro cess {Jt , t 2: O} can be obtained in terrns of the transition 

function Pij (t) and the initial probability distribution ai = IfD( Jo = i), i E E. In 

fact, we have 

n 

= 2:= aio II Pim-l,im(tm - tm-d, 
ioEE m=l 

where ta = O. As the transition function is also a conditional probability, it satisfies 

the following property : 

It also satisfies 

Pij(t) 2: 0, for aH i,j E E and 2:=Pij(t) = 1. 
jEE 

Pij(O) = P(Jo = jlJo = i) = Oij = { 1, 
0, 

i = j, 

i =1 j, 

(1.10) 
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where 6ij is the Kronecker delta. Finally, for aU 8, t ~ 0, i, j E E, 

Pij(t + s) = LPik(s)pkj(t). (1.11) 
kEE 

Equation (1.11) is called the Chapman-Kolmogorov equation. For a proof, see 

Anderson (1991). In order for the chain to go from state i to state j in time 

t + 8, it must be in sorne state at time 8. The Chapman-Kolmogorov equation 

is obtained by using the Markov property and conditioning on the state at time 

s. The Chapman-Kolmogorov equation shows that if the transition function is 

known on sorne interval, 0 < t < to, it is known for aH t > O. This fact suggests 

that the transition probabilities can be determined from their derivatives at O. If, 

for i i= j, the limit 

q .. = lim Pij(h) 
tJ h-+O h 

exists then, % is called the jump rate from state i to state j. Note that the jump 

rate is not a function of t. This limit exists for aU the cases considered in this 

thesis. In general, it is possible to construct Markov chains based on jump rates, 

see Durrett (1999). 

In the following, it is shown how to compute the transition probabilities from 

the jump rates. Using the Chapman-Kolmogorov equation (1.11), 

Using (1.10), note that 1 - Pii(S) = Ek;6iPik(8), 50 that 

Hm _Pl_ï (_8 ) __ 1 = _ lim ~ P_ik_( 8_) = - "" qik 
8-+0 8 II-+O~ 8 ~ 

k;6i k;6i 

The limit as 8 goes to a of (1.12) is 

p~/t) = LqikPkj(t) - ),iPij(t). 
k;6i 

(1.12) 

(1.13) 

Introducing the matrix Q = (qij) , where qii = -),il equation (1.13) may be 

rewritten in matrix form for p(t) = (Pij(t))ij as 

p' (t) = Qp(t). 
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This is Kolmogorov's backward equation. This equation solves for 

The rnatrix Q is called the infinitesirnal generator of the Markov chain. Anderson 

(1991) gives a rigorous account of continuous-tirne Markov chains. 

1.1.3. Definition of phase-type distribution 

A random variable that is defined as the absorption time of an evanescent 

finite-state continuous-time Markov chain is said to have a phase-type (PH) dis­

tribution. The distribution and density functions of a PH distribution can be 

expressed in terms of the m x 1 initial state distribution vector 7r and the m x m 

infinitesimal generator matrix T of the underlying Markov chain. The pair (7r, T) 

is known as a representation of order m of the PH distribution. Since their in­

troduction by Neuts (1981), PH distributions have been used in a wide range of 

stochastic modeling applications in areas as diverse as telecommunicatiollS, tele­

traffic modeling, biostatistics, queueing theory, risk theory, reliability theory, and 

survival analysis. Erlang (1917) wrote the first paper to extend the familiar expo­

nential distribution with his method of stages. He defined a nonnegative random 

variable as the time taken to move through a fixed number of stages, spending an 

exponential amount of time with a fixed positive rate in each one. Nowadays, we 

refer to distributions defined in this manner as Erlang distributions. Cox (1955) 

generalized Erlang's notion by allowing complex parameters. This construction, 

defines the class of distributions with rational Laplace-Stieltjes transforms (LST), 

of which the class of PH distributions is a proper subset. These distributions are 

nowadays also known as matrix-exponential distributions. Neuts (1981) genera­

lized Erlang's method of stages in a different direction. He defined a phase-type 

random variable as the time taken to progress through the states of a finite-state 

evanescent continuous-time Markov chain, spending an exponential amount of 

time with a positive rate in each one, until absorption. 

PH distributions have many appealing features. In the following sorne of them 

are listed. 
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(1) They are dense in the class of aU distributions defined on the nonnegative 

real numbers. 

(2) The use of PH distributions in stochastic models often enables algorith­

mically tractable solutions to be found. Quantities of interest, such as the 

distribution and density functions, the Laplace-Stieltjes transform, and 

the moments of PH distributions are expressed simply in terms of the ini­

tial phase distribution 1T and the exponential or powers of the infinitesimal 

generator T. 

(3) Stochastic models, particularly where the exponential distribution is used 

to model quantities (such as inter-arrivaI times, service times, or lifetimes), 

can now be extended with PH distributions. 

(4) Since the class of PH distributions is closed un der a variety of operations, 

such as finite mixtures and convolutions, systems with PH inputs often 

have PH outputs. 

Neuts and his coworkers, in the late seventies, established much of this mo­

dern theory. Neuts (1995) developped queuing theory by PH distributions and 

Asmussen (2000) applied PH distributions to risk theory. 

Let {Jt , t ~ O} be a Markov process in the finite state space 

E = {1, ... , m, m + 1} , 

where 1,2, ... , mare transient and, thus, m + 1 is an absorbent state. Then, 

{Jt , t ~ O} has an infinitesimal generator of the form 

(1.14) 

where T = (tij )i,j=l, ... ,m is an m x m matrix, t = (ti)i=l,.",mis an m dimensional 

column vector and 0 is an m dimensional vector of zeros. Superscript T stands for 

the transpose of a matrix or vector. Since the rows of an infinitesimal generator 

must sum to zero, note that t = -Te, where e = (1,1, ... , I)T is the vector of 

ones. Let ai IP( Jo = i) be the initial state probabilities. Often, it is assumed 

that the chain does not start in the absorbent state, i. e. am+l = O. In that case, 



Ct can be written as 

This condition is assumed in the next definition. 

Definition 1.4. The time until absorption, 

x = inf {t ~ 01 Jt = m + 1} 

9 

(1.15) 

is said to have a PH distribution with representation or parameters (Tr, T). 

The dimension m of Tr is said to be the dimension of the phase-type distribu­

tion. 

1.1.4. Properties of phase-type distributions 

The first property relates to the exponential of the infinitesimal generator 

matrix. 

Proposition 1.3. Assume the representation (1.14) of the infinitesimal genera­

tor. Then, 

Proposition 1.4. If X has a PH distribution with parameters (Tr, T) then, the 

density of X is given by 

Proof: Let Pij(X) = IP(Jx = jlJo = i). Then, 

m m m m 

i=1 j=1 i=1 j=1 

where (eTx)ij is the ij-element of the eTx . The density function is the derivative 

of the cumulative distribution function. Renee, f(x) = Tr T eTxt. 

Proposition 1.5. The Laplace transform of X is given by 

where l is identity matrix of dimension m. 

o 
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From the definition of the inverse of a matrix, one can write the LST as a ratio 

of polynomials. The maximum degree of the denominator is m and the degree of 

the numerator is less than m (because the limit of the Laplace transform as s 

goes to -00 is zero). Then, it can be written as foUows 

L(s) = 1 + Cl S + ... + Cm_l Sm- 1 

1 + dIS + '" + dmsm 

Phase-type distributions not only have rational Laplace transforms, but also with 

sorne conditions aU distributions with rational Laplace transform are of phase­

type. See the following theorem of Q'Cinneide (1989). 

Proposition 1.6. A distribution defined on [0,00) is a PH distribution if and 

only if 

(1) it is the point mass at zero, or 

(2) a): it has a strictly positive density on (0,00), and 

b): it has a~ rational Laplace transfo Tm such that there exists a pole of 

maximal real part, -" that is real, negative, and such that -, > 
~( -ç-), where ~(-ç-) is the real part of any other pole. 

Proposition 1.7. The moment of arder n, n ~ 1, of X is given by 

As a consequence, the full class of PH distributions of order m has a parame­

trization in 2m - 1 dimensions. This foUows from the Cayley-Hamilton theorem 

from which there is at least one sequence >'0, >'1,"" >'m-l such that 

m-l 
T-me = L >'iT-ie. 

i=O 

If we fix such a sequence then, those coefficients together with the first m - 1 

moments de termine all the moments recursively. lndeed, it can be seen by pre­

multiplying the relation ab ove by -rrT-n that 

(-l)~+mJE [xn+m] m-l (_l)n+iJE [xn+i] 

(n + m)! = ~ >'i (n + i)! . 

Since the Laplace transform near zero is determined by aU the moments, it follows 

that >'0, >'1, ... ,>'m-l and JE [X] , ... ,JE [Xm- 1
] determine the distribution. 
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When the representation of the PH distribution is estimated, overparametri­

zation will occur. From the latter discussion, a PH distribution of dimension m 

has a parametrization with 2m - 1 parameters. However, direct estimation of the 

representation (rr, T) requires m2 + m - 1 parameters to be estimated. 

Neuts (1981) showed that the convolution of two independent PH variables 

with possibly different dimensions is a PH variable. 

Proposition 1.8. Suppose that F and G are PH distributions with representa­

tions (a, T) of orderm and ({3, S) of ordern, respectively. Then, their convolution 

F * G is a PH distribution with representation h, R) of order m + n, where 

and t = - Te. 

R = ( T -t{3T) , 
o -8 

l':l'0te that F(O) is the probability that the chain associated with F starts in 

the absorbent state, i. e. F(O) = Gm+l' It is also easily proved that a finite mixture 

of PH distributions follows a PH distribution. 

Proposition 1.9. If (Pl j ... ,Pk) is the vector of mixing probabilities and Fj is a 

PH distribution with representation (7r j, Tj ), 1 ::; j ::; k, then, the mixture has 

the representation with initial state probabilities 

Pk7rk 

and infinitesimal generator 

Tl 0 0 

0 T2 0 
T= 

0 0 Tk 

For the next theorem we need the following definition. 
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Definition 1.5. A PH distribution is called triangular phase-type, or TPH, if 

it has a representation in which the matrix T is of infinitesimal genemtor upper 

triangular. 

The most important property of TPH distributions found in Assaf and Le­

vikson (1982) is that absorption happens in a bounded number of transitions. 

Proposition 1.10. The TPH class of distributions is the smallest class contai­

ning all exponential distributions and which is closed under finite mixtures, finite 

convolutions and formation of coherent systems. 

1.1.5. Sorne exarnples of PH distributions 

In the following, sorne well-known probability density functions are represen­

ted by phase-type distributions. More examples can be found in Fackrell (2003). 

Exarnple 1.1. The exponential distribution with density function f(x) = 

Àe-'\x has the representation 

7r = 1, 

T = -À. 

Example 1.2. The hyper-exponential distribution with probability density 

function 
n 

f(x) = L aiÀie-'\;x 

i=l 

has the representation 

-À1 0 0 

o 
T 

o o 

Example 1.3. The rn-phase Erlang distribution with density function 

x> 0, 



has the representation 

7r - (l,O, ... ,O)T, 

->. >. 
0 ->. 

T = 

0 0 

0 0 

where m is the dimension of Matrix T. 

0 

>. 

0 

0 

o 0 

o 0 

->. >. 
o ->. 
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Example 1.4. A PH distribution is unicycle if it has a representation of the form 

7r = (Œl,Œ2, ... ,Œm)T, 

->'1 >'1 0 o 0 

0 ->'2 >'2 o 0 

T = 

0 0 0 ->'m-l >'m-l 

/-LI /-L2 /-L3 /-Lm-l ->'m 

where, for i = 1, ... , m - 1, /-Li 2: 0, >'1 ::; >'2 ::; >'3 ::; ... ::; >'m and >'m > E:,~l /-Li· 

In the next example it is exemplified that the representation of a phase-type dis­

tribution may not be unique. 

Example 1.5. In the folIowing example from Botta et al. (1987) the non­

uniqueness of the representation happens even for the minimal order or dimension 

of a PH distribution. AlI the next three representations lead to the same PH 

probability density function 

The representations are 

7r = (1/3,2/3) T and T = 
( 

-02 _0
5

) (1.16) 
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7r = (1/5,4/5) T and T = ( -~ -~ ), (1.17) 

and 

-3 1 1 

7r = (0,1/2,1/2) T and T = 1 -4 2 (1.18) 

1 0 -6 

In the representations (1.16) and (1.17), the or der of the PH distribution is 2, 

whereas it is 3 in (1.18). In general, a representa,tion which has the minimum 

order is called minimal. From this example, even the minimal one is not unique. 

The order of a PH distribution is defined as the order of the minimal one 

Example 1.6. A PH distribution is said to be acyclic if its matrix T is upper 

triangular. 

Example 1.7. A PH distribution is said to be Coxian of order p if 

7r - (I,O, ... ,O)T, 

-À1 q1À1 0 o 0 

0 -À2 q2 À2 o 0 

T 

0 0 0 -Àp- 1 qp-1Àp- 1 

0 0 0 o -Àp 

w here 0 < qi < 1 and Ài > 0, i = 1, ... , p'-

As in Proposition 1.6, we have the following theorem about the characterization 

of Coxian distributions. 

Proposition 1.11. A distribution defined on [0,00) is a Coxian distribution if 

and only if 

(1) it is the point mass at zero, or 

(2) a): it has a strictly positive density on (0,00), and 

b): it has a rational LST with only real and negative poles. 

See O'Cinneide (1991) for a proof. A remarkable result from Cumani (1982) 

and Dehon and Latouche (1982) establishes that a PH variable having an acyclic 
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Markov chain representation can be uniquely represented by a Coxian distribution 

with stochastically increasing states, i.e. ->'1 ::; ->'2 ::; ... ::; ->'p, Such pro cesses 

start at state 1 and can only jump from i to i + 1 or p + 1. Therefore, the 

true parameter dimension is 2p - 1, where p is the dimension of the acyclic PH 

distribution. 

1.1.6. EM algorithm for PH distributions 

The EM (Expectation-Maximization) algorithm of Dempster et al. (1977) is 

a general iterative method for finding the maximum-likelihood estimate of the 

parameters, when the data is incomplete or has missing values. It finds its useful­

ness when the likelihood function of the incomplete (observed) data is intractable 

but that of the complete (unobserved or missing) data lS of a simpler form which 

can be analytically optimized. Assume that the data x is observed and generated 

by sorne distributions, say f(xl1» with log-likelihood function l(1)) = logf(xl1». 

We calI x the incomplete data and refer to l(1)) as the incomplete log-likelihood 

function. Suppose that an unobserved (complete) data y, where x = x(y), has 

pdf g(yl1». Assume 

Q(1)'I1>) = 1Eq, [logg(yl1>') lx] 

exists for aU pairs (</J',</J). The EM iteration 1>(p) ~ 1>(p+l) is defined as follows: 

E-step : Compute Q(1)I1>{p)). 

M-step : Find </J(P+1) that maximizes Q( 1>11>{p)) over 1>. 

Simplifications occur when the complete datà density function is a member of 

the exponential family 

g(yl</J) = b(y) exp [1>Tt (y)] /a(</J), (1.19) 

where 1> is the vector parameter, t(y) is the vector of the complete data sufficient 

statistic. If (1.19) holds, simplified expressions found in Dempster et al. (1977) for 

the E and M steps are : E-step : Estimate the complete data sufficient statistics 

t(x) by finding 

t(p) = lEq,(p) [t(y)lx]. 
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M-step : Determine 4J(p+l) as the solution for 4J of the equation 

lE</> [t(y)] = t(p). 

By definition a PH random variable is the time until absorption in an ab­

sorbent state. This can be considered as an incomplete data in the sense that 

they only provide information about the absorption time of the absorbent state, 

not about the whole path of the underlying Markov chain, Jt . The initial state, 

the states that have been visited, and the time spent in each visited state are not 

observed. Renee, the hidden information can help to maximize the incomplete 

likelihood function which is untractable. For an observation x from a PH va­

riables as defined in (1.15) with representation (7r, T), the complete information 

is formulated by the embedded Markov chain of visited states 

and the sojourn times 

where k is the number of jumps until hitting m + 1. A complete observation of 

the process Jt on the interval (0, x] is represented by 

y = (io, ... , ik - 1 , Sa,···, sk-d, 

where x = sa + ... + Sk-l. To get the probability density function of y, one needs 

the probability Pjl of jumping from j to l which is given by 

0, j,l = 1, ... ,m,j = l, 
Pjl = lP'(in+l = llin = j) = ..!.i..!..-

-tjj' j,l = 1, ... ,m,j =1= l, 

it" , j = 1, ... , m, l = m + 1. 
- jj 

The density of y can be derived by Markov chain properties and considering that 

the time spent in each state i has an exponential distribution with mean 1/ ).,i, 

where ).,i = -tii , as in Asmussen et al. (1996). Thus, 

(1.20) 

where f) = (7r, T) is the parameter. 
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Let JP], ... , Jin] be n independent realizations of the process. This gives n 

embedded Markov chains 

.[11] .[11] 
'1,0 , ... , 2kllll_1' 

with corresponding holding times 

[II] [II] 
so , ... , skllll_1' 

The complete data becomes y = (y[l], ... , y[n]), where 

[II] _ ('[11] .[11] [II] [II]) - 1 Y - '1,0 , ... ,2kllll_1'SO , ... ,skllll_1' 1/- , ... ,n. 

The observed incomplete data is the following function of the complete data 

X[II] = (S[II] + ... + S[II] ) o kllll-I . 

Define 

1 { 
'[IIJ - .} '1,0 - '1, , 

k11l1 -I 

2: 1 {itJ = i} st], 
... =0 

Let 
n 

Bi = 2: B !II] 
2 , 

11=1 
n 

Zi 2: Z !II] 
2 , 

11=1 
n 

Nij = 2:NI~J 
2J ' 

11=1 

be the number of Markov processes starting from state i, the total time spent in 

each state i, and the number of jumps from state i to state j, respectively. Then, 

the density of the complete data y is the product of n densities as in (1.20) 

(1.21) 
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where t i ,m+l t i . The density (1.21) is a member of a curved multi-parameter 

exponential family with sufficient statistics 

where i l, ... ,m, j = l, ... ,m + l, i i= j. The M-step is given by 

The E-step for an exponential family consists of computing the conditional ex­

pectation of the sufficient statistics, given the complete data and the current 

parameter estimates. If the current parameter estimates at step h of the algo­

rithm is (J(h), the complete sufficient statistics at the h + 1 E-step consists in the 

evaluation of the following conditional expectations 

n 

I:: IEe(l» [BIll) IX[II]] ) 
11=1 

n 

2: IEe(l» [zlll]lx[II)] ) 
11=1 

n 

2: IEe(l» [Nl;llx[II)] ) 
11=1 

for i l, ... ) m, j = l, ... , m + l, i i= j. The E-step is the most complicated 

step. It is given in details in Asmussen et al. (1996). Define 

e(a b i J' T) = lb e T(u-a)K·e T(b-u) du , , , , l], 

a 

where E ij is an m x m matrix with a one in position (i, j) and zeros elsewhere. 

The conditional expectations are given as follows . 
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where 7T~h) is the ith component of 1i(h) , 

1i(h)T C(O x[vl i i T(h))e , ", 
f(x[v1IO(h)) 

t .. 1i(h)T C(O, x[v] , i, j, T(h))e 

- tJ f(X[v1iO(hl ) , 

where i,j = l, ... ,m, i =f j. The function C(a,b,i,j,T) can be evaluated by 

numerical methods in ordinary or partial differential equations su ch as the Runge­

Kutta method of order four. More detailed useful numerical methods can be found 

in Asmussen et al. (1996). 

1.2. CREDIBILITY THEORY 

Generally speaking, credibility theory is a quantitative tool that allows an 

insurer to combine the past experience of a policyholder to the pure premium 

in a risk class or group of risk classes. If the past observed experience of the 

policyholder indicates a difference in risk to that assumed for the class, then 

the insurer has to explore this difference to see if it is due to a really different 

policyholder or it is only due to natural stochastic variation in the risk cIass. 

If the policyholder is indeed different, then sorne credible information can be 

obtained from the individual experience which is not being considered when the 

pure premium or manual premium is calculated. In other words, the assumption 

of homogeneity in the risk cIass fails. 

For example, in car insurance the insurer may assume that the number of 

accidents in one year follows a Poisson distribution with mean f.l, but then the 

experience of a particular policyholder may have an average X that is far from 

f.l. In statistical term, X would show a significant difference with f.l. In this case, 

the insurer must consider two facts : 

(1) The risk class is not homogeneous. Its heterogeneity should be taken into 

account. 
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(2) What share of this difference is due to heterogeneity and to natural ran­

dom variation? 

To combine these two facts, the credibility premium, Pc should be a combination 

of the manual rate M and the past individual observation summary X. A very 

good candidate for Pc is 

Pc = ZX + (1 - Z)M , (1.22) 

where the credibility factor Z E [0,1] should be determined. Full credibility occurs 

when Z 1. Section 1.2.1 deals with limited fluctuations credibility theory which 

developed at the beginning of twentieth century and represented a first attempt 

to model credibility in practical situations. The problem with this approach is 

its lack of a sound underlying mathematical theory justifying the method. As 

a result, greatest accuracy credibility was developed. It is introduced in Section 

1.2.2. This method provides a statistical framework for credibility theory, where 

the risk parameter has a prior distribution modelling the, possible heterogeneity 

within the portfolio. Both, the classical models of Bühlamnn and Bühlamnn­

Straub will be discussed. 

1.2.1. Limited fluctuations credibility theory 

Limited fluctuations credibility theory was developed in the early part of twen­

tieth century as the first attempt to give quantitative credibility rules. Suppose 

that XI, . .. , Xn represent the past daim experience of a policyholder and are 

i. i. d., with theoretical mean fJ- and variance (J'2. The variance of X = L.j~l Xj is 

n . In this limited fluctuations approach if the variation of X about fJ- is not si-

gnificant, then full credibility is assigned to X. In statistical terms, it means that 

the difference between X and fJ- is small relative to fJ- with a high probability, i.e., 

for gi ven small rand 0 < p < 1 (with r close to 0 and p close to 1) 

then the full credibility is achieved. Let YP be defined by 



then full credibility occurs if 

~ < I!i 
ft - V~' 

where >'0 = (M;Y. For more details see Klugman et al. (2008), p. 558. 
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When full credibility does not hold, the linear credibility premium (1.22) is 

deemed appropriate. One good choice for Z in (1.22) is 

n 
n+k' 

where n is the number of observations in X and k is a constant to be chosen. 

This form of Z tends to 1 as n --+ 00. A very elementary way to determine Z in 

(1.22) is to force the variance of the premium Pc in (1.22) to be controlled at a 
2 • 

level, say fa. In thlS case Z can be expressed by the formula 

For more details on limited fluctuations credibility theory see Norberg (1979), 

Mowbray (1914), Herzog (1999) or Longley-Cook (1962). 

1.2.2. Greatest accuracy credibility theory 

Greatest accuracy credibility theory is a model-based approach introduced 

by Bühlmann (1967). In this approach, the risk parameter 8 is modeled by a 

probability distribution, say II. The values of 8 varies for different policyholders 

and this random nature of 8 reflects the heterogeneity within an insurance port­

folio. For a given 8 = 0 the distribution of the number or size of daims in year 

i = 1, ... , n + 1 is given by !x;I(}(x 1 0). Usually it is assumed that for a given 0, 

the Xl,'" 'Xn+l are i.i.d. random variables. 

The ideal premium rate for the next year n+l should be ftn+l (8) = lE [Xn+ l 18], 

but the value of 8 is not known. In a Bayesian context, lE [Xn+l 1 Xl, ... , Xn ] is a 

valuable substitute with desirable properties. Mathematically, there is no dosed 

form formula for this Bayesian premium, except for sorne special combinations 

of the prior distribution, II and !XI8=(}(X 1 0). Bühlmann (1967) approximates 
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lE [Xn+1 1 8l by a linear function of the past observations Xl, ... ,Xn with a pre­

mium formula of the form : 
n 

ao + Laixi, 
j=l 

where O:j, for j = 1, ... ,n need to be determined. To this end, the o:'s are chosen 

such as to minimize the squared error loss, that is 

where the expectation is taken over the joint distribution of Xl, ... ,Xn and 8. 

Equating ~ to 0 yields the estimators aj which satisfy 

n 

lE[ILn+1(8)] = lE[Xn+1] = ao + L ajlE[Xj ] , 
j=l 

(1.23) 

while by taking the partial derivative of Q with respect to ai and setting to 0 

gives 
n 

lE[ILn+1(8)Xi ] = aolE[Xi ] + L ajlE[XiXj ]. 
j=l 

The left-hand side of this equation can be written as 

Thus 8Q/8ai = 0 implies 

lE {I~[ILn+1 (8)Xi I8]) 

lE {ILn+1 (8)lE[Xi 18]} 

- lE {lE[Xn +118]lE[Xi I8]} 

= lE {I~[Xn+1XiI8]} 

n 

lE[XiXn+d = oolE[Xil + L 0)8: [XiXJl, 
j=l 

Multiplying (1.23) by lE[Xd and subtracting from (1.24) we have 

n 

(1.24) 

Cov(Xi,Xn+d = LOjCov(Xi,Xj ), i = 1, ... ,n. (1.25) 
j=l 
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Equations (1.23) and (1.25) together are called normal equations. In the sim­

plest case, it is assumed that given 8 = 0, the Xl, ... ,Xn+l are i. i. d. random 

variables. Define 

and 

where j.L(0) and 11(0) are referred to as the hypothetical mean and pro cess variance, 

respectively. Define also 

and 

Bühlmann (1967) shows that 
n 

j.L = lE[j.L(8)] , 

Il = lE[II(8)] , 

a = V(j.L(8)]. 

Qo + LQjXj = ZX + (1- Z)j.L, 
j=l 

n 
where Z = --k and k is given by 

n+ 

k = ~ = lE[V(Xj I8)] 
a V[lE(Xj I8)]' 

(1.26) 

The value of Z derived from (1.26) is known as Bühlmann's credibility factor. 

The values Qo, QI,"" Qn also minimize 

and 

(1.28) 

To see this, take derivatives of (1.27) or (1.28) with respect to aD, al, ... ,an and 

note that the solutions still satisfy the normal equations (1.23) and (1.25). Hence 

the credibility premium Qo + ~;=l QjXj is the best linear estimator of each of 

the hypothetical me an lE [Xn+ 1 18] , the Bayesian premium lE[Xn+lIXl , ... ,Xn ] and 

the prediction of X n+!. 
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In Bühmann-Straub's credibility theory model, the classic Bühmann's 8S­

sumptions are generalized. In this model the conditional variance, V[Xj le = 8l 
is allowed to be a proportional to v(8), i.e. 

but still IE[Xjle = 8l does not depend on j. As a result we have again 

n 

ŒO + L ŒjXj = ZX + (1 - Z)J.L, 
j=l 

where X = LJn_l '!!!:iXJ., Z = ~,m = ml + ... +mn and k is given by (1.26). 
- m m+k 

For more details on Bühlmann-Straub's model see Klugman et al. (2008), p. 588, 

or Bühlmann and Gisler (2005), p. 77. 

1.2.3. Exact credibility 

Mayerson (1964) finds that the linear credibility premium is the exact Baye­

sian premium for some combinations of prior (also called structural) and claims 

distributions. Jewell (1974) extends these exact credibility results to the univa­

riate exponential family of distributions with a proper choice of prior. His main 

result is a special case of the following theorem. 

Proposition 1.12. (Linear Exponential Family) Suppose that the X n in X = 

(Xl, ... ,XN +l ) Tare conditionally independent, given e, with common probability 

density function 

Xj E X,8 E n, (1.29) 

and the prior density is a natural conjugate 

[q( 8)] -k ell k r(fJ)r' (8) 
1['(8) = c(J.L, k) , (1.30) 

where -00 ~ 80 < 81 ~ 00, with 1['(80) = 1['(81) = 0, J.L = IE(X) and k = ~~i~:~ll, 
then exact credibility occurs, with 

(1.31) 

where Z = ~k' 
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For a proof see Jewell (1974) and Klugman et al. (2008) p. 593. 

Landsman and Makov (1998) extends Jewell's Proposition 1.12 to the larger 

exponential dispersion family. In a parametrization similar to that of Klugman et 

al. (2008), p. 593, its probability density functions are written as : 

p(>. x) eÀr(8)x 

fXle(xIB) = [q(B)]À ' xE X,B E n. (1.32) 

The introduction of the dispersion parameter >. makes this a more flexible family 

of distributions than the linear exponential family (>' = 1). The natural conjugate 

prior on 8 remains the same as in (1.30) and exact credibility still occurs, now 

with Z = À~k' Other properties of (1.32) are that j.L(B) = IE(X 1 8 = B) = 

q'(B)j[r'(B)q(B)] and (J2(B) = V(X 1 8 = B) = j.L'(B)/[>.r'(B)]. Using the natural 

conjugate in (1.30) gives j.L = IE[j.L(8)] and k = IE[V(XI8)]jV[IE(XI8)]. For 

a comprehensive treatment on the exponential dispersion family, see Tweedie 

(1984), Nelder and Wedderburn (1972) or J(ZIrgensen (1987). 
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ABSTRACT 

Maximum likelihood estimation and a (parametric bootstrap) goodness-of-fit 

test are considered for bivariate phase-type distributions. The initial probability 

vector and infinitesimal generator matrix are estimated by the EM algorithm. 

In a special case, the dependence structure of bivariate phase-type distributions 

is revealed. The results are used to fit a real bi-dimensional data set related to 

insurance losses (L088) and aIlocated loss adjustment expenses (ALAE). The 

fitted bivariate phase-type is used to obtain conditional quantiles and mean of 

ALAE for a given value of L088. The bivariate phase-type distribution meets aIl 

the requirements listed in Klugman and Parsa (1999). 

Key words : Bivariate insurance losses, bivariate phase-type distribution, conti­

nuous Markov process, EM algorithm 

2.1. INTRODUCTION 

Phase-type (PH) random variables are defined as the time until absorption in 

a set of absorbent states in a continuous time Markov chain environment. Coxian, 
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Erlang-n, hyper-exponential and mixture of Erlang-n distributions are special 

cases of PH random variables. Neuts (1981) defines the PH random variable and 

establishes its theoretical properties. PH distributions are dense among aU distri­

butions with positive support. In addition, they have density, Laplace transform 

and aU their moments in closed form and thus, various probability quantities can 

be obtained easily. Despite the interesting properties of PH variables, sorne diffi­

culties arise in statistical estimation. Non-uniqueness of representations in sorne 

PH models, as discussed in O'Cinneide (1989), and over-parametrization is brie­

fly mentioned in Asmussen et al. (1996). Asmussen et al. (1996) study parameter 

estimation by the EM algorithm, as weU as fitting other densities on the positive 

line with PH distributions. In Assaf and Levikson (1982) sorne properties of PH 

variables in reliability are investigated. Asmussen (2000) applies PH distributions 

to risk theory. In Drekic et al. (2004), the distribution of deficit at ruin, in the 

Sparre Andersen renewal model, with PH distributed claim size is considered. Li 

and Garrido (2004) consider the ruin probability in risk theory for Erlang-n distri­

butions, a special case of PH distributions. In Assaf et al. (1984), a multivariate 

PH distributions is defined. In Kulkarni (1989) a new class of multivariate PH 

distribution is introduced. In the multivariate case, the structure of dependence 

under sorne conditions is studied by Li (2003). The conditional tail expectation 

for multivariate PH distributions is obtained in Cai and Li (2005a). 

This paper is organized as follows. Univariate and multivariate PH variables, 

with their properties, are briefly defined in Section 2.2. Section 2.3 covers para­

meter estimation of bivariate PH (BPH) distributions via the EM algorithm. In 

Section 2.4, a method to simulate a BPH distribution is used in a smaU simula­

tion study on the bias and standard deviation of the EM estimator. A (parametric 

bootstrap) goodness-of-fit test for BPH distributions is proposed in Section 2.5. 

Section 2.6 includes a data analysis of the ALAE data by fitting a BPH distribu­

tion. It also gives expressions for the conditional quantiles and condition al mean. 

This article extends the works of Asmussen et al. (1996), Assaf et al. (1984) and 

Âhlstrom et al. (1999) to problems of statistical nature in BPH distributions, 
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namely, the statistical estimation by the EM algorithm and a parametric boots­

trap goodness-of-fit test. To our knowledge, this is the first paper in which BPH 

distributions are applied in the context of a real data analysis. 

2.2. PRELIMINARIES 

Consider {Jt , t 2 O} a right continuous Markov pro cess on the finite state 

space r = {l, 2, ... , m, m + 1} with initial probability vector 0: and infinitesimal 

generator matrix A. Suppose that rI and r 2 are two nonempty stochastically 

closed subsets (E cris said to be stochastically closed if, once Jt has entered 

E, it never leaves) of r such that rI n r 2 = {m + 1} and only the state m + 1 

is absorbent and hence, the absorption into it is certain. As a convention, aU 

vectors are column vectors and superscript T denotes the transpose of a matrix. 

The matrix A can be written as 

A=(T t), 
OT 0 

(2.1) 

where the matrix T = (t ij ) is m x m and t = (t j ) is an m-dimensional vector. 

These elements satisfy tii < 0, i = 1, ... ,m, tij 2 0, i f.; j, and Te + t = 0, where 

e is a vector of ones. States 1, ... , mare transient if and only if T is nonsingular, 

see Neuts (1994). In this article, we al ways suppose that Om+l = 0, and hence, 0: 

can be written as 

Let Xl and X 2 be the times until absorption in rI and r 2 , respectively. We caU 

the joint distribution of (Xl, X 2) a bivariate PH (BPH) distribution with repre­

sentation (tr, T, r b r 2 ). The marginal distributions of Xl and X 2 have univariate 

PH distributions. 

If (Xl, X 2 ) has a BP H distribution, by using Markov chain theory, it is shown 

in Assaf et al. (1984) that the joint survival function is 

X2 2 Xl 20, 

Xl 2 X2 20, 
(2.2) 
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where gk, k = 1,2, is an m x m diagonal matrix whose ith diagonal element is 1 

if i E f!~, and 0 otherwise. Assaf et al. (1984) also provide the Laplace transform 

of the joint distribution of (Xl, X 2 ) 

= 7r T[(UI + u2)I - Tt i {G2 [uII Tl-ITgI 

+Gdu2I - Tl-ITg2 - [TgIg2 - GI - Gz]} e', 

where Gk = Tgk - gkT, k = 1,2, is the commutator. 

In general, the joint distribution F has a singular component on the set Xl = 

Xz, which can be avoided by supposing that ti = 0, for i E q n r2, see Assaf et 
) 

al. (1984). Hereafter, we also suppose that ?Ti = 0, for i E rI U r 2, and as a result 

IP(X1 > 0, X 2 > 0) = 1. By imposing this structure on the initial probability 

vector 7r we have that gk7r = 7r, k = 1,2, and hence, the marginal survival 

functions can be obtained easily from (2.2). 

Using the fact that deTx /dx = TeTx = eTxT, the density of the absolutely 

continuous component can be derived from (2.2) 

X2 ?:: Xl ?:: 0, 

Xl ?:: X2 ?:: O. 
(2.3) 

The singular component on Xl = Xz may be useful in sorne applications related 

to life insurance. It is given in Assaf et al. (1984) with a further simplification as 

(2.4) 

Hence, 

is obtained with the evaluation of (2.4) at X = O. Thus, with a correction to the 

statement made in Assaf et al. (1984), the singular part is zero if and only if 

[TgIgZ - G I - G 2l e = 0, which is equivalent to ti = 0, i E Pl nr2. When?Ti = 0, 
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for i E rI U r 2, one can assume without loss of generality that 

7r(1,2) 

0 

0 

A(I,2) B(l) B(2) 

T = 0 A(l) 0 

0 0 A(2) 

where the partition corresponds to the three subsets fi n r~, rI \{m + 1}, and 

r2\{m + 1}. Then, the joint density (2.3) can be rewritten, with a correction to 

Assaf et al. (1984), a.s 

X2 2:: Xl 2:: 0, 

Xl 2:: X2 2:: o. 
(2.5) 

The multivariate version of phase-type random variables (MPH) is also defi­

ned in Assaf et al. (1984). Suppose that {Jt , t 2:: O} is a right continuous Markov 

chain on a finite state space r. Let rI, ... , r n be nonempty stochastically closed 

subsets of r, such that n~l ri has just one member, namely m + 1, and absorp­

tion into m + 1 is certain. The matrix A is still the infinitesimal generator as in 

(2.1). Define X k = inf{t 2:: OlJt E rd, k = 1,2, ... , n. We assume that ?Ti = 0 for 

i E Ui=lri . The joint MPH distribution of (Xl, ... ,Xn ) has the representation 

(7r
T

, T,rl, ... ,rn ). For 0 < Xl ~ X2 ~ ... ~ Xn , 

The MPH distribution is absolutely continuous if and only if tij = 0, whenever 

i E rk n fi and jErk n rl, where k =J. l. The Laplace transform is given 

in Assaf et al. (1984) and it can be used to calculate all the moments. As in 

the univariate case, MPH has the closure property. Let T = (Tl, ... , Tn ) and 

W = (WI , .. . , Wm ) be independent MPH random vectors. Tuen, the conjunction 

(T, W) = (Tl, ... , Tn , WI , ... , Wm ) is an MPH random vector. See Marshall and 

Shaked (1986) for a proof. Moreover, MPH distributions are closed under finite 
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mixture and convolution, see Assaf et al. (1984) and Kulkarni (1989). Cai and Li 

(2005b) give an explicit representation for the convolution of MPH distributions. 

As for univariate PH, the class of n-dimensional MPH distributions is dense in 

the set of aIl distributions on [0, oo]n, see Assaf et al. (1984) for a proof. 

2.3. EM ALGORITHM 

2.3.1. General EM algorithm 

The EM (Expectation-Maximization) algorithm of Dempster et al. (1977) is a 

general iterative method for finding the maximum likelihood estimate of the para­

meters, when the data is incomplete or has missing values. One of the application 

of EM algorithms is when maximizing the likelihood function is analyticaIly in­

tractable but the likelihood function can be simplified by assuming the existence 

of additional but hidden or missing information. The EM algorithm is not gua­

ranteed to find the global maximum, it may converge to a local maximum or even 

. a saddle point of the likelihood surface, see Wu (1983). 

Assume that the data x is observed and generated by sorne distributions, say 

f(xl4» with log-likelihood function L(4)) = logf(xl4». We caU x the incomplete 

data and refer to L( 4» as the incomplete log-likelihood function. Suppose that 

an unobserved (complete) data y, where x = x(y), has pdf g(yl4». Assume 

Q( 4>'14» = lE cp [log g(yl4>') lx] 

exists for aIl pairs (4)',4>). The EM iteration 4>(p) ---+ 4>(p+l) is defined as foIlows : 

E-step: Compute Q(4)I4>(p)). 

M-step : Find 4>(p+l) that maximizes Q(4)I4>(P)) over 4>. 

Simplifications occur when the complete data density function is a member of 

the exponential family 

g(yl4» = b(y) exp [4>t(yf] /a(4)), (2.6) 

where 4> is the vector parameter, t(y) is the vector of the complete data sufficient 

statistic. If (2.6) holds, Dempster et al. (1977) present simplified expressions for 

the E and M steps : 
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E-step : Estimate the complete data sufficient statistics t(x) by finding 

M-step : Determine 4>(p+l) as the solution for 4> of the equation 

lEct>[t(y)] = t(p). 

2.3.2. EM algorithm for the BPH distribution 

EM algorithms in a Markovian chain environment are not new. There are 

sorne works done in this context, including those of Breuer (2002), Ryden (1996), 

Asmussen et al. (1996) and Âhlstrom et al. (1999). The latter one is the EM 

algorithm for a special case of BPH distributions satisfying Xl < X2 and with 

censoring conditions on the data. Our work compared to Âhlstrom et al. (1999) 

might be considered as an incremental work to general BP H distributions. 

By definition a BP H random variable is the time until absorption in stochas­

tically closed subsets rI and r2. This can be considered as an incomplete data 

in the sense that they only provide information about the time of hitting rI and 

r 2 , not about the whole path of Jt . The initial state, the states that have been 

visited, and the time spent in each visited state are not observed. Rence, the hid­

den information can help to maximize the incomplete likelihood function which 

is untractable. For the case Xl < X2, the complete path can be formulated by the 

embedded Markov chain of visited states 

and the so journ times 

where ml is the number of jumps until hitting rI and m2 is the number of jumps 

until hitting the absorbent state m + l. 
Given an observation (Xl, X2) of the BPH distribution, a complete observation 

of the pro cess Jt on the interval (0, X2] is represented by 
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where, Xl = So + ... + Sml-l and X2 = So + ... + 8 m2-l' Ta get the probability 

density function of y, one needs the probability Pjk of jumping from j ta k which 

is given by 

0, j, k = 1, ... , m, j = k, 

Pjk = lP(in+l = klin = j) = ~ 1= -tjj' j,k=l, ... ,m,j k, 

...!Lt ' , j = 1, ... , m, k = m + 1. 
- jj 

The density of y can be derived by Markov chain properties and considering that 

the time spent in each state i has an exponential distribution with mean 1/ 'xi, 

where 'xi = -tii , as in Asmussen et al. (1996). Thus, 

where () = (rr, T) is the parameter. 

Let Jpl, ... , JJnJ be n independent realizations of the process. This gives n 

embedded Markov chains 

'[IIJ '[IIJ .[11] 
~o , ... ,2 1") , ... ,2 (,,) 

ml -1 m 2 -1 

with corresponding sa journ times 

[IIJ [IIJ [IIJ 
8 0 , ... ,8 ["1 , ... ,S [v] , /1 = 1, ... , n. 

ml -1 m 2 -1 

The complete data becomes y = (y[l}, ... ,y[nJ), where 

[II] _ ('[IIJ '[IIJ '[11] [II] [IIJ [II]) 1 Y - 20 , ... , 2 [v] , ••• ,~[v] ,80 , ... ,8 [v] , ••• ,8 [v] ,/1 = , ... , n. 
ml -1 m2 -1 ml -1 ml! -1 

The observed incomplete data is the following function of the complete data 

Define 

1 {
,[IIJ - ,} 
20 - 2 , 
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Let 

n 

Bi = L B [II] 
t , 

11=1 

n 

Zi = I:Z,[II] 
t , 

11=1 

n 

Nij = LNJ~] IJ ' 
11=1 

be the number of Markov processes starting from state i, the total time spent in 

each state i, and the number of jumps from state i to state j, respectively. 

Then, the density of the complete data y is the product of n densities as in 

(2.7) 

(2.8) 

where ti,m+l = ti. The density (2.8) is a member of a curved multi-parameter 

exponential family with sufficient statistics 

where i = 1, ... , m, j = 1, ... , m + 1, i =1- j. For the complete data, maximum 

likelihood estimates of the unknown parameters were obtained by Asmussen et 

al. (1996). They can be used in our context and, therefore, the M-step is given by 

However, the E-step differs considerably since the observed and incomplete data is 

now bivariate. As it was noted in Section 2.3, the E-step for an exponential family 

consists of computing the conditional expectation of the sufficient statistics, given 

the complete data and the current parameter estimates. 

If the current parameter estimates at step k of the algorithm is (}(k) , the 

complete sufficient statistics at the k + 1 E-step consists in the evaluation of the 
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following conditional expectations 

n 

B i(k+1) = I):~:;6(k) [BIIIllxIIlJ], (2.9) 
11=1 

n 

L 1E6 (k) [Z}1I1Ixllll], (2.10) 
11=1 

n 

Nijk+l) = L 1E6(k>1Ni~Jlx[IIJJ, (2.11) 
11=1 

for i = 1, ... , m, j = 1, ... , m + 1, i =1= j. The most complicated part is the E-step 

which is derived in the Appendix. AU calculations are for the case Xl < X2 ; the 

other case is similar. The final results are given here. For convenience, the sarne 

notations are used as in the univariate case in Asmussen et al. (1996). To simplify 

formulas we define the sets r~ = r k \ {m + 1}, k = 1,2, the matrix Eij with a one 

in position (i,j) and zeros elsewhere, and the vector ei with a one in position i 

and zeros elsewhere. Also, let 

C (a b i J' T) = lb eT(u-a)E"eT(b-u)du l , , , , ~J' 

a 

The conditional expectations in (2.9)-(2.11) are given as follows ; 

where ny) is the ith component of n U-), 
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The function Cl (a, b, i, j, T) can be evaluated by numerical methods in ordi­

nary or partial differential equations su ch as the Runge-Kutta method of order 

four. Note that for a < b, 

Cl (a, b, i, j, T) = C~ (0, b - a, i, j, T), 

where 

, .. _ T(r-u) .. Tu l
r 

Cl (0, T, 2,), T) - 0 e EtJe du, 

and 

dC~ (0, T, i, j, T) _ E .. Tr TC' (0 .. T) 
dT - tJ e + l' T, OZ, ), , 

with initial conditions C~ (0,0, i, j, T) = O. 

We end this section with an interesting property that holds when one fits a 

BPH distribution by the EM algorithm: at each iteration of the EM algorithm, 

the mean of the fitted BPH distribution equals the sample mean. This property 

was given by Asmussen et al. (1996) for PH distributions and it also holds in 

the bivariate case as is now shown. The observations are linear functions of the 

sufficient statistics, 

For the component Xl, this implies 

n 

nXI = L L zlv1
. 

v=l iEr\rl 
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Taking conditional expectations,· given x, on both sides yields 

n 

nXl = L L lEO(k) [Zlll]lx[lI]j 
11=1 iEf\fl 

n 

- L L lEO(k+l) [Zlll]] 
Il,,,1 ier\rl 

n 

L lEO(k+l) [xIII)] 
Il,,,1 

The same argument applies to the component X 2• 

2.4. SIMULATED DATA FROM A BPH DISTRIBUTION 

Consider a BPH distribution with state space r = {l, 2, 3, 4}, closed subsets 

rI = {2,4} and r 2 = {3, 4}, 1r = (1, 0, 0) T, and the matrix 

-al pal qal 

T= a -a2 a (2.12) 

a a -a3 

where a < p < 1, q = 1 - p, ai > a, i 1,2,3. This is a special case of the 

Marshall-Olkin distribution, see Marshall and Olkin (1967). The joint survival 

function can be written without any matrix exponential using the simplified joint 

density (2.5) 

S.(x" x,) = { 

The Pearson correlation coefficient, 

a2e-UIX2] + qe-U1X2 1 

a3e-alxl J + pe-a1x1 , 

TO = [a~ + (1 - q2)aip/2[a~ + (1 - p2)aip/2' 

is obtained from the Laplace transform. It is estimated from the data using the 

usual sample correlation coefficient f. The maximum correlation of 1 is obtained 

by letting al approach 0, whereas the minimum of -1/3 is reached by letting a2 

and a3 approach a and choosing p = 1/2. Also, if a2 = qal and a3 = pal then, 

T = O. In fact, the last case corresponds to two independent exponentials. A more 
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appropriate measure of dependence for distributions with non-linear regression is 

Spearman correlation 

where Fe,i, i = 1,2, are the two marginal distributions of the joint BPH distri­

bution Fe. In the special case a2 = a3 it is given by 

The minimum Spearman correlation of -3/4 and the maximum of 1 are obtained 

under the same circumstances as for Pearson correlation. Another appropriate 

measure is Kendall correlation 

which for this model is 

Kendall Te for this model varies between -1/2 and 1. For any bivariate distribution, 

Spearman pe and Kendall Te can be consistently estimated from the data using 

their empirical versions 

p = 12 t R S _ 3 n + 1 
n(n + l)(n - 1) v=l v v n - 1 ' 

4 

( ) 
Pn - 1, 

n n-1 
T 

where (Rv, Sv) are the pairs of ranks and Pn is the number of concordant pairs. 

Here, two pairs (xrl , xrl) and (x~')'l, x~')'l) are said to be concordant when (xrl -

x~')'l)(xrl - x~')'l) > o. 

The EM algorithm was run on 10,000 data sets of size n = 50, 100, 200, and 

400 generated from a BPH distribution with sub-intensity matrix T as in (2.12) 

with p = 0.5, al = 0.05, a2 = 0.1 and a3 = 0.1, which gives correlation coefficients 

of Te = 0.7836, pe = 0.675, and Te = 0.5. For the model (2.12), it can be observed 

that sin ce each of the conditional expectations of the E-step does not depend on 
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fJ then, the EM aigorithm converges in one iteration. This remark gives aiso an 

explicit expression for the EM estimator 

T= o o 

o. o 

Table 2.1 reports absolute values of biases and standard deviations of the EM 

estimate computed over the 10,000 replicates. As for any regular maximum like­

lihood estimator, bias decreases as n-l and becomes negligible compared to the 

standard deviation which decreases as n- Ij2 , 

n bias standard deviation 

0.0010 0.0005 0.0005 \ 0.0074 0.0053 0.0051 

50 o 0.0040 0 o 0.0218 0 

o o 0.0042 o 0 0.0218 

0.0005 0.0002 0.0002 0.0051 0.0036 0.0036 

100 o 0.0021 0 o 0.0149 0 

o 0 0.0019 o 0 0.0147 

0.0002 0.0001 0.0001 0.0036 0.0025 0.0025 

200 a 0.0011 a o 0.0104 0 

o a 0.0011 o 0 0.0103 

0.0991 0.0461 0.0530 0.0025 0.0018 0.0018 

400 .001 o 0.6161 0 0 0.0072 0 

o 0 0.5165 0 0 0.0071 J 

TAB. 2.1. Bias and standard deviation of the EM estimator. 

Generating of a data set of size n from the BPH distribution with represen­

tation (7r) T, r 1> r 2) can be done by repeating n times the following algorithm for 

one observation (Xl, xÙ· 

(1) Initialize Xmin = 0, X max = 0, and a = (7r,O). 

(2) Generate astate, i E {l, ... , m + 1}, from a one trial multinomial(l,a) 

distribution. 
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(3) Generate a sojourn time, s, from the exponential distribution with mean 

-1/tii' 

(4) X max = X max + s. 

(5) If i E q n q then Xmin = Xmin + s. 

(6) Calculate the transition probabilities 

Pi,k = 

0, k = i, 

~, k = 1, ... , m, k # i, 
.J.L k=m+1. -tii' 

and let Cl = (Pi,l"" 'Pi,m+l)' 

(7) Set j = i to store the state previously visited. 

(8) Repeat steps (2) to (7) as long as i # m + 1. 

(9) If j E rI then Xl = Xmin and X2 = X max , otherwise Xl - X max and 

2.5. GOODNESS-OF-FIT TEST 

The statistic used for testing goodness-of-fit is 

n 2 

v2 = '"" [S- (X [II] X[II]) - S (X [II] X[II])] 
n ~ en l' 2 nI' 2 , (2.13) 

11=1 

where Sn is the empirical survival function, i. e. 

and Sen is the parametric survival function (2.2) with f} estimated by the EM 

algorithm. Large values of V; are evidence against the parametric model. For 

regular parametric models, Stute et al. (1993) established that the parametric 

bootstrap of 
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is consistent for testing goodness-of-fit. An argument similar to the Lemma in 

Section 2 of Kiefer (1959) can be used to show that the following version 

w~ = n J [FiJJx) - Fn(X)f dFn(x) 

n 2 L [FiJn(x[II]) - Fn(x[II])] 
11=1 

can also be bootstrapped consistently. The proposed V; is obtained by replacing 

the distribution function by the survival function which has a simpler expression 

for BPH distributions. 

The goodness-of-fit bootstrap test of significance level a is performed as fol­

lows. Given a sample of size n, (xr], xr]), 1/ = 1, ... , n, estimate (J by Ôn using the 

EM algorithm for BPH distributions, and calculate the goodness-of-fit statistic 

V; in (2.13). Then, repeat a large number, say B, of times the following 3 steps. 

(1) Generate a bootstrap sample of size n from the BPH distribution with 

parameter Ôn denoted (ir], ir]), 1/ = 1, ... , n. 

(2) Find the EM estimate Ôn from the bootstrap sample. 

(3) Compute the goodness-of-fit statistic 

V-2 = ~ [S- (-[II] -[II]) _ SA (-[II] -[II])] 2 
n ~ 8nXl,X2 n X l,X2 

11=1 

After repeating the previous loop B times, this Monte Carlo simulation pro duces 

B (ordered) values: 

The bootstrap test rejects the model when V; exceeds the f(l - a)Bl order 

statistic, i.e. when V; > V;,(I(l-O)Bl)' 

A simulation was conducted to verify the significance level of the bootstrap 

test. It consisted in generating 2,000 samples of size n = 200 from the BPH distri­

bution (2.12), each with a different sub-intensity matrix T generated at random. 

The parameters were independently generated from the following distributions: 

al, a2, a3 uniform on the interval (0,10) and p uniform on (0,1). Each bootstrap 
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LOSS ALAE 

mean 41,208 12,588 

median 12,000 5,471 

standard deviation 102,748 28,146 

minimum 10 15 

maximum 2,173,595 501,863 

0.25 quantile 4,000 2,333 

0.75 quantile 35,000 12,577 

Pearson f 0.4022 

Spearman p 0.4519 

Kendall f 0.3154 
TAB. 2.2. Descriptive statistics of ALAE data. 

test was done at level a = 0.05 with B = 1,000 bootstrap samples. The propor­

tion of significant bootstrap tests obtained, out of 2,000, was 0.054, which is dose 

to the intended 0.05 level. 

2.6. FITTING ALAE DATA WITH A BPH MODEL 

This section consists of fitting a BPH distribution to insurance company in­

demnity daims. The data set contains 1,500 bi-dimensional observations. The 

variables are LOSS or indemnity payment and ALAE, allocated loss adjustment 

expenses, which covers expenses attributed to the settlement of individual daims 

such as daim investigation expenses. See Klugman et al. (2008) for more informa­

tion on the data. Frees and Valdez (1998) and Klugman and Parsa (1999) fitted 

this data set using copulas. The variable LOSS treated in these two papers is the 

loss incured to the insured so that this variable is censored when the daim ex-

ceeds the policy limit. Here, LOSS is always the indemnity payment which means 

censoring is ignored. It can be observed from Figure 2.1 that there is a moderate 

positive sample Pearson correlation of f = 0.4022. The descriptive statistics are 

given in Table 2.2. 



45 

The variables were rescaled as LOSS/I00, 000 and ALAE/I0, 000 so that they 

are about of the same order of magnitude. This rescaling also makes the elements 

of the sub-intensity matrix T not too close to zero, thus improving the numerical 

stability. To begin the algorithm, a few choices were tried for f, fI and f 2. We 

start with the minimal elements for f = {1,2,3,4}, fI = {2,4} and f 2 = {3,4} 

which results in a very poor fit. Then, more elements were added to these three 

sets. Finally, it was found that the choice f = {1, ... , 12}, fI = {5, 6, 7, 12}, 

f 2 = {8, 9, 10, 11, 12}, yields a good fit. The EM algorithm was iterated 300 

times starting with random values of 7r and T. The fitted BPH distribution 

could capture the essential characteristics of the joint distribution, such as the 

dependence structure. 

As shown in Table 2.3, the fitted BPH survival function is close to the em­

pirical survival function over the who le domain. The fitted BP H distribution 

has standard deviations for LOSS and ALAE of 102,750 and 28,146, respecti­

vely. Pearson, Spearman, and Kendall correlation coefficients are ren = 0.3932, 

Pen = 0.4512 (0.0116), and Ten = 0.2968 (0.0042), respectively. These are very 

close to the sample statistics in Table 2.2. Since there is no explicit expression 

for the latter two coefficients, they can be computed numerically, with any de­

sired degree of accuracy, through a simulation. The evaluation of Kendall Ten , 

for exarnple, was done by jointly simulating 50,000 data points from the fitted 

(joint) BP H distribution, Fen' and averaging, over these 50,000 values, the sur­

vival function, Sô
n

, As a measure of accuracy, the standard error of the me an 

accompanies in parentheses this average. Spearman correlation can be evaluated 

similarly, with the exception that the two components are independently genera­

ted from the marginal PH distributions of the fitted BPH distribution. AIso, the 

means of the fitted BPH distribution always equal the sample means as shown 

in Section 2.3.2. The marginaIs of the fitted BPH distribution are plotted in 

Figure 2.2. The columns G-H and Frank of Table 2.3 give the two fits obtai­

ned in Frees and Valdez (1998) using Pareto distributed marginaIs in both cases 

with either the Gumbel-Hougaard copula or the Frank copula. The estimates of 

the parameters of these two fits were computed by Frees and Valdez (1998) and 
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(LOSS,ALAE) Sn S· On G-H Frank 

(1,000 ;0) 0.9300 0.9262 0.9257 0.9286 

(8,000 ;0) 0.5927 0.5981 0.6029 0.6137 

(10,000 ;0) 0.5200 0.5425 0.5469 0.5582 

(1,000,000 ;0) 0.0007 0.0007 0.0082 0.0088 

(10,000,000 ;0) 0.0000 0.0000 0.0000 0.0000 

(0 ;1,000) 0.8793 0.8819 0.8659 0.8742 

(0 ;10,000) 0.3120 0.3150 0.3237 0.3380 

(0 ;100,000) 0.0133 0.0154 0.0121 0.0112 

(100 ;10) 0.9932 0.9910 0.9907 0.9910 

(100 ;100) 0.9827 0.9807 0.9780 0.9790 

(1,000 ;100) 0.9203 0.9162 0.9148 0.9177 

(10,000 ;100,000) 0.0120 0.0142 0.0115 0.0097 

(1,000 ;1,000) 0.8253 0.8233 0.8157 0.8255 

(10,000 ;1,000) 0.4847 0.5047 0.5078 0.5267 

(15,000 ;5,000) 0.3013 0.3088 0.3103 0.3356 

(5,000 ;15,000) 0.1940 0.1933 0.1953 0.2070 

(40,000 ;12,000) 0.1280 0.1263 0.1255 0.1221 

(1,000,000 ;100,000) 0.0007 0.0002 0.0039 0.0003 

V? n 0.1280 
TAB. 2.3. Comparison of survival functions. 

were simply used here to compute the survival functions from the distribution 

functions. The last row is the measure of global fit used for the goodness-of-fit 

test in Section 2.5 and computed here over all the n = 1,500 data points. The 

Gumbel-Hougaard and Frank models with the censored variable LOSS give fits 

quite similar to the one- obtained with the BP H model without censoring. The fit 

were comparable because there were only about 34 censored observations. Strictly 

speaking however, such comparisons are difficult to interpret since the variable 

LOSS has different meanings. 
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2.6.1. Condition al quantiles and mean 

The conditionai survivai function of X 2 , given Xl = Xl, can be obtained from 

(2.2), 

(2.14) 

For a given value of L088, quantiles of ALAE were calculated based on the 

conditional survival function (2.14) and presented in Table 2.4 and Figure 2.1. The 

conditional mean of X 2 given Xl = Xl is somewhat tedious. For this purpose, by 

. using either (2.14) directly or the condition al probability density function derived 

from (2.14), one can write a system of differential equations of the first order 

which can be numerically solved by, e.g., Runge-Kutta methods. The probability 

density function of X 2 given Xl = Xl was used here. After sorne straightforward 

calculations, the conditionai mean is given by 

lE(X
2
lxd = 7r T eTx1G1( _T-1 + xlI)g2e + 7r TC2(XI, G 2, T)Tgle, 

-7r T eTx1 Tgl e 

where C2 (x, G, T) is a function satisfying the differentiai equation 

d~ C2(x, G, T) = C2(x, G, T)T + xeTxG, 

with initial conditions C2 (O, G, T) = O. The conditionai mean is given in the last 

column of Table 2.4. It is observed in Figure 2.1 that the mean is always greater 

than the median which reflects the right-skewness of ALAE. 
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ApPENDIX 

We assume a BPH distribution for which lP'(Xl > 0, X 2 > 0) = 1. As a result, 

the initial state can be only in fr n q. All calculations are for the case Xl < X2. 

The expressions for the case Xl > X2 are given without further explanations. 

1. Calculations of lE [Bi lx] : 

lEB [1 {io = i} lx] 

- lP'B (io = ilx) 
lP'B (io = i) lP'B (X E dxlio = i) 

= 
lP'B (X E dx) 

2. Calculations of lE[Zilx] : 

lEB[Zil x ] - lEB [1= l{lu = i}dulx] 

1= lP'B (lu = ilx) du 

= {= lP'B (lu = i) lP'B (X E dxl lu = i) du 
Jo lP'B (X E dx) 

7r T Cl (0, Xl, i, i, T)GleT(X2-xllTg2e 

f(xIO) 
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lEe[Zilxl = 100 

JP>e (lu = ilx) du 

_ 100 JP>e (Xl E dXI) JP>e (lu = ilXI E dXI) JP>e (XZ E dxz!Ju 
o JP>e (X E dx) 

i) 

7r T e TXl G l Cl (Xl, xz, i, i, T)Tgze 

f(xI8) 

For Xl > X2, i Er;, 
E [Z'I 1 = 7r T eTX2GzCI(XZl Xl, i, i, T)Tgle 

e ~ x f(xI8) . 

3. Calculations of lE [Nij lx] : 

For every small E > D, Nij can be approximated by 

00 

Nij LI {Jke = i, J(k+:l)e=j} . 

k=O 

For each case we have calculated Ee[Nijlx]. The exact value can be obtained by 

letting E l O. 

For Xl < Xz, i,j E ri n r~, 

lE. [Ni' Ixl = lE. [t, 1 p" i, J('+1)'=;} lx 1 
[Xf-1 

_JP>_e -'..U_k_e _'/,_' '-,J..:-(k_+...;.l )_€ _=.,-J_', _X_E_d_x.:.,.) 
k=O JP> (X E dx) 

Since e Tu is a continuous function and 

then, 

and 

eTe 1 
----T,asé-O, 

é 



lEe[Ntjlx] ]Pe (JX1-e = i, JX1 = jlX) 

-
]Pe (JXl-e = i)]Pe (J:ra = jlJx1 - e = i)]Pe (X2 E dX21JX1 = j) 

]Pe (X E dx) 

1T' T eT(Xl-e)EiieTeej]Pe (X2 E dX21JX1 = j) 
]Pe (X E dx) 

1T' T eTXIEijeT(X2-XdTg2e 

f(xIO) 

For Xl > X2, i E r~ n r~, j E r~, 

[x2Ie]-1 

lEe[Ntjlx] = L]Pe (JkE = i, J(k+l)e = jlx) 
le] 

X~l ]Pe (Xl E dXl, Jkf = i, J(k+l)e = j, X 2 E dX2) 
L...J lFe (X E dx) 

k=xl!e 

[x2/EJ-l 
L lFe (Xl E dxd lFe (JkE = i, J(k+lle = jlXI E dXI) 

k=[X!/EJ 

lFe (X2 E dX211(k+l)f = j) 
lFe(X E X) 

1T'T eTXIGICI(XI,X2,i,j, T)Tg2e 

-40 tij f(XIO) . 

For Xl > X2, i,j E r~, 

t .. 1T' T eTx2G2CI(X2, Xl, i,j, T)Tgle 

~J f(XIO) . 
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For Xl < X2, i E r~, j = m + 1, 

]ID (Xl E dxd]ID (JX2-f ~ ilXI E dxd]ID (JX2 = j1JX2 - f = i) 
]ID (X E dx) 

7r T eTX1GleT(X2-xtlei 

~ -ti f(xIO) 
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The BPH distribution with a mass on Xl = X 2 occurs rarely in application but 

is still worthy of mention. Based on the interpretation of the sub-intensity matrix 

T, this case happens wh en there is a positive probability of moving from sorne 

state in rr n r2 directly to the absorbing state rI n r2 = m + 1. lndeed, aIl 

calculations will be on the set rr n r2 because the only state visited on rI u r 2 is 
the absorbent state m + 1. This case is very similar to the univariate case which 

is treated in details in Asmussen et al. (1996). The expectations of the E-step are 

Tx T 7rieie glg2 e . rc rc = TT' ~ E 1 n 2' 
1T' e XgIg2 Te 

1T' T Cl (0, X, i, i, T)glg2 Te . rc rc 
- TT' 't E ln 2' 

1T' e XgI g2 Te 

1T' T Cl (0, X, i, j, T)glg2 Te .. rc rc 
t ij T TT' 't, J E ln 2' 

1T' e Xg I g2 e 

1T' T eTXg g Te. 
- t i l 2 l, i E r~ n r~, j = m + 1. 

1T' T eTxg I g 2 Te 
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FIG. 2.1. ALAE versus L088 with curves for conditional quantiles 

and mean. The dotted curve is the conditional mean of ALAE given 

L088. 
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Chapitre 3 

EXACT CREDIBILITY WITH PHASE-TYPE 

DISTRIBUTIONS 

ABSTRACT 

Phase-type random variables are defined as the time until absorption in a 

set of absorbent states of a Markov chain environment. Coxian, Erlang-n, hyper­

exponential and mixtures of Erlang-n random variables are special cases of PH 

random variables. PH distributions have the property of being dense among aIl 

distributions with positive support. This is useful in approximating daim severity 

distributions by PH distributions. 

In credibility theory Jewell (1974a) and Jewell (1974b) prove how exact credi­

bility occurs in the univariate and multivariate exponential family of conditional 

distributions, when paired with the appropriate conjugate prior. Here exact cre­

dibility is discussed in a univariate and multivariate PH setting. Hidden Markov 

chains are used, embedding the unobservable risk parameters in the PH distribu­

tion parameters. This ~xtends the results Jewell outside the exponential family 

of distributions. 

Key words : Phase-Type Distributions, Coxian Distributions, Exact Credibility, 

Jewell's Theorem, Continuous Markov Processes 
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3.1. PRELIMINARIES ON CREDIBILITY THEORY 

3.1.1. Preview 

Credibility theory deals with the calculation of premiums in an insurance 

portfolio containing heterogeneous risks (contracts) that share sorne common risk 

characteristics. Let X n represents the daim of a particular contract in year n, for 

n = 1, ... , N, based on N years of observations. Furthermore, assume that past 

years premiums were based on a "manual" premium rate, M, possibly different 

from X = 2::=1 Xn/ N. If past daims indicate that there is a significant difference 

between M and X, then M may not be suitable for the coming period premium. 

As a result there are two natural questions: (1) how credible is past data? and (2) 

what should the premium be next year for this contract, or more precisely, should 

we consider only the individual contract effects (that is X), only the portfolio 

characteristics (i.e. M), or a combinat ion of them? 

A natural choice with ample historical and practical evidence in its favour, is 

the linear credibility premium, i. e., 

ZX + (1- Z)M, 

where the credibility factor Z, 0 :::; Z :::; 1, is to be determined. This is an 

important matter that has attracted considerable research interest. The larger Z, 

the more credible the data in each contract. 

The first attempt by Mowbray (1914) was mostly on the first question above. 

Using introductory statistical methods he identified what sample size is sufficient 

to consider past observations credible, and assign full credibility (Z = 1) to 

X. He proposed a formula also for Z when there is only partial credibility (i. e. 

o < Z < 1). This approach is called Limited Fluctuations Credibility Theory. For 

a deeper analysis on this limited fluctuations approach see Klugman et al. (2008) 

and Norberg (1979). 

Bayesian credibility theory has been considered by many authors. To proceed, 

let us assume that each contract may be characterized by an unobservable risk 

parameter e which varies in value by contract. e may be vector-valued. For 

example a car insurer may categorize policyholders from very good, good and 
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bad to very bad drivers. A risk classification rule in each category, or rate class, 

can be for instance the average number of observed accidents in the past N 

years by the policyholder. Of course 8 varies by contract, therefore it might be 

considered random with a probability density function 7r(B). 

It is acceptable to assume that claims in each rating class are conditionally in­

dependent given 8, and have an identical distribution. That means Xl,'" ,XN+l 

are conditionally iid. with conditional density fXle(xIB), where the claim amounts 

Xi have been adjusted for inflation or other trends. 

The fair premium f-l(B) = IE(XN +118 = B) would be ideal to predict the future 

year net premium, but unfortunately the parameter B is unobservable. What is 

known here are the observations for the past N years, hence the next natural can­

didate for the premium is the predictive mean IE(XN +1 IXI , ... ,XN ), also called 

the Bayesian premium. In sorne cases, under a proper choice of distributions, the 

Bayesian premium equals the following linear credibility premium 

Ma = Z X + (1 - Z) f-l , 

where f-l = IE(X) = lE [f-l(8)] plays the raIe of the manual premium here. In such 

cases, it is said that exact credibility occurs. 

Bühlmann (1967) shows how to appraximate the Bayesian premium with a 

linear combination of past observed claims, that minimizes the expectation of a 

square loss function with respect to 8 and Xl,'" ,XN . As a result he shows that 

the estimator of the predictive mean is the linear credibility premium with 

where 1E7I" and V 71" are the mean and variance with respect to the prior distribution 

7r of 8. Bailey (1950) and Mayerson (1964) find that the linear credibility pre­

mium is the exact Bayesian premium for sorne combinat ions of prior (also called 

structural) and claims distributions. Jewell (1974a) extends these exact credibility 

results to the univariate exponential family of distributions with a praper choice 

of prior. His main result is a special case of the following theorem. 
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Theorem 3.1. Suppose that theXn in X= (XI, ... ,XN+d T are conditionally 

independent, given 8, with common probability density function 

Xj E X, (J Est, (3.1) 

and the prior density is a natural conjugate 

[q( (J)] -k eJl k r((})r' ((J) 
7r((J) = c(J.L, k) , (Jo < (J < (JI , (3.2) 

where -00 ~ (Jo < (JI ~ 00, with 7r((Jo) = 7r((JI) = 0, J.L = lE(X) and k = ~~~;I~ll, 

then exact credibility occurs, with 

with Z = rftk' 
For a proof see Jewell (1974a) and Klugman et al. (2008), p. 594. 

Landsman (1998) extends Jewell's Theorem 3.1 to the larger exponential dis­

persion family. In a parameterization similar to that of Klugman et al. (2008), 

p. 594, its probability density functions are written as : 

x E X, (J Est. (3.3) 

The introduction of the dispersion parameter À makes this a more flexible family 

of distributions than the linear exponential family (À = 1). The natural conjugate 

prior on (J remains the same as in (3.2) and exact credibility still occurs, now with 

Z = À~k' Other properties of (3.3) are that 

q' ((J) 
J.L((J) = lE(X18 = (J) = r'((J)q((J) 

2 J.L'((J) 
and a ((J) = V(XI8 = (J) = À r'((J)' 

Using the natural conjugate in (3.2) gives J.L = lE [J.L(8)] and 

k = lE[V(XI8)]/V[lE(XI8)]. 

(3.4) 

For a comprehensive treatment on the exponential dispersion family, see Tweedie 

(1984), Nelder and Wedderburn (1972) or J0rgensen (1986) and J0rgensen (1987). 
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3.1.2. Extensions 

If X n represents the daim in one single contract for period n = 1, ... ,N + 1, 

it is reasonable to assume that for a fixed integer m, X n can be written as a sum 

of m independent random variables. For example, m = 4 can be interpreted as 

the number of seasons, where the total amount in one year equals to the sum of 

daims occurred in each season. Another example cou Id be in car insurance, when 

for one single policy there are two or more drivers insured on the same car and 

the total daim for the car equals to sum of daims for each driver. Therefore 

m 

Xn = LYin, (3.5) 
i=l 

where Yin are conditionally independent given a risk parameter e, but not ne­

cessarily identically distributed. In practice, it may be common that the insurer 

do es not observe or keep a record of the Yin 's, but only of the Xn 's. The following 

theorem shows that if exact credibility occurs for Yin, with a proper prior on e, 
so is true for X n in (3.5). 

Theorem 3.2. Assume that exact credibility occurs for independent random va­

riables {Yin}~l1 with a proper prior distribution of e, such that the credibility 

factors Z are the same for aU i, that is, 

lE{Yi,N+1IYi1, ... , YiN} = Z fh + (1 - Z) lE(Yin) , for i = 1, ... ,m. 

If Xn = 2:::1 ai Yin, is a weighted average for given constants m and al, ... ,am, 

then exact credibility also occurs for X n with the same credibility factor z. 
Proof. Due to the exact credibility assumption on the {Yin}, we have that 

Z (rh, ... , Ym) T 

+ (1 - Z) (lE (YIn) , ... , lE(Ymn )) T, 

where Yn = (YIn, ... ,Ymn) and Yi = 2::=1 Yin/No 

As a result we have 

Z N m 

lE{XN +1IY1'··· 'YN} = N(LLaiYin) + (1- Z)lE(Xn). 
n=l i=l 
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Taking conditional expectations on both sides and keeping in mind that the a­

algebras generated by the Xn's and Yin's satisfy 

by the tower property of conditional expectation, we get the following result : 

Z N m 

IE{XN+1Ixl, ... , XN} = N IE{ I:: I:>l:iYinlxl, ... , XN} + (1 - Z) IE(Xn ) , 

n=l i=l 

which equals 

Z x + (1 - Z) IE(Xn ) . 

o 

Example 3.1. As an illustrative example where the assumptions of Proposition 

3.2 and the conclusions are met, assume that Yin = Œi Y where Y is a member 

of the exponential dispersion family in (3.3) and Œi > 0, for i = 1, ... , mare 

known coefficients. Then, for any fixed year n = 1, ... , N, the probability density 

function of a given Yin is given by 

y> o. 

This is not a member of the exponential family in (3.1), nor of the exponential 

dispersion family (3.3). But we can still condition all Yin, for i = 1, ... ,m, on 

the same () and assume that the prior distribution is a member of (3.2). Then the 

posterior distribution, given YN = (YI' ... , YN), becomes 

which is of the same form as (3.2), but for parameters 

* [ÀN _ ] ( ÀN Yi k 
k* = ÀN + k and Il~ = Œi Yi + Il k / ÀN + k) = ÀN + k Œi + ÀN + k 11· 
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H ence the posterior mean below is of the same form as the prior mean lE(Yi,N +1) = 

ai lE(Y) = ai lE [lE (Y 18) ] = ai lE [J.L(8) ] = ai J.L, but for parame ter J.Li : 

by (3.4), 

which means that exact credibility still occurs for Yin, with the same credibility 

factor Z = ÀN/(ÀN + k), for all i = 1, ... ,m. 

One important question arises from the previous theorem : what if m is a 

random variable? The credibility problem differs when total daims in a period, 

X n , are random sums. We try here to answer this question, at least to sorne 

extent. 

First suppose that M, the random variable version of m, is independent from 

Yjn in (3.5) and such that lE(M) < 00. The portfolio interpretation changes as 

a random M no longer represents the number of seasons or of drivers. Consider 

instead a group insurance portfolio where the total daims of a given risk dass is 

composed of a random number of iid individual daims Yin- Renee, our portfolio 

assumptions are as follows : 

- X n = L~~ Yin, for n = 1, ... , N + 1. 

- for fixed i the Yin are conditionally iid random variables, given 8, for 

n = 1, ... , N + 1, with conditional mean J.Li(8) = lE(Yin 18) and margi­

nal expectation J.L = E[J.Li(8)]. 

- Prior distributions on 8 in (3.2) are chosen independently such that the 

exact credibility occurs for Yin, given 8, with the same credibility factor Z. 

- Mn, are iid random variables with known probability mass function and 

independent of 8 and the Yin's, such that lE(Mn) < 00, for n = 1, ... , N + 1. 

In what follows it is shown that under the above conditions, exact credibility 

occurs. 
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First denote by mN = (ml, ... , mN), then by conditional independence of the 

Yin's : 

On the other hand, it is easily seen that the posterior distribution is proportional 

to 

71"(eIYN,mN) ex !YNI8,MN(YNle,mN)71"(e), (3.6) 

ex er (9)(ÀLf:.l L7":l Yij+J.Lk) q(et(ÀL;:'l mi+k) r'(e), (3.7) 

which is of the same form as the prior distribution, but for k* = À 2::1 mi + k 
",N m· 

d * - J.Lk+ÀL...i=l Li';l Yij Th C f E 1 31 an IL - ÀL;:'l mi+k . erelore, rom xamp e . , 

Taking conditional expectations on both sides of (3.8) with respect to the sigma­

field generated by XN = (Xl, . .. , XN) and m, yields to 

By the tower property of conditional expectation we have 

MN+! 

lE(XN+1IXN,mN) = IE(L Yi,N+IIXN,mN) 
i=l 

MN+l 

= IE[IE( L Yi,N+IIXN,mN,MN+1) IXN,mN] 
i=l 

lE [MN+l lE (Yl,N+l 1 XN, mN, MN+1) 1 XN, mN] 

= IE(MN+IIXN,mN)IE(Yl,N+lIXN,mN), 
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where lE(MN + I 1 XN, mN) = lE(MN+d, by independence. Then from (3.9) 

lE (X' 1 X- -) _ NlE(MN+I) - k lE(MN+d 
N+I N,mN - N x+ N J-l. 

À Ln=l mn + k À Ln=l mn + k 

Theorem 3.3. Under the above portfolio assumptions, exact credibility occurs 

f. X ,,\:,Mn "\/" 'th d 'b 'l't f. t NJF..(MN+tl Jor n = L. . .d=l .I in WZ cre Z Z Z y Jac or À "N k' 
Lm=l mn+ 

The credibility factor À ~IE.JMN+Il k is a fundion of N, and as N -t 00 the 
n=l m n + 

credibility factor tends to l. 

Two assumptions are imposed in Theorem 3.3 which may not be hold for 

sorne insurance portfolios. The random variables (Ml, ... , MN) may not be ob­

servable. For example, in group insurance, the total daims may be recorded but 

not the number of daims. Independence between the random variables M and 8 

is another assumption that may not hold in practice. 

The following section presents applications of credibility to random sums with 

phase-type distributions. 

3.2. CREDIBILITY THEORY FOR UNIVARIATE PH 

3.2.1. Phase-type distributions 

A random variable that is defined as the absorption time of an evanescent 

finite-state continuous-time Markov chain is said to have a phase-type (PH) dis­

tribution. Since their introduction by Neuts (1995) in 1981, PH distributions 

have been used in a wide range of stochastic modeling applications in areas as di­

verse as telecommunications, biostatistics, queueing theory, risk theory, reliability 

theory, and survival analysis. 

Erlang (1917), extended the exponential distribution to Erlang or gamma 

distributions by the method of stages. He defined an Erlang distribution as a 

non-negative random variable which equals to summation of a fixed number of 

exponential random variables with a common parameter e. Stages refer to the 

number of exponential random variables summed. 

In 1955, Cox (1955) generalized Erlang's notion by allowing for a complex 

parameter (). This construction, although it rarely finds a simple probabilistic 

interpretation, defines the class of distributions with rational Laplace-Stieltjes 
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transform, of which the class of PH distributions is a proper subset. These dis­

tributions are nowadays also known as matrix-exponential distributions. Neuts 

in 1981 generalized in Erlang's method of stages in a different way. He defines a 

phase-type random variable as the time until absorption into an absorbent state in 

a continuous-time Markov chain. PH random variables have very nice properties 

which make them tractable and attractive for applications. 

PH distributions are dense in the class of aIl distributions defined on the non­

negative real numbers. Quantities of interest, such as the distribution and density 

functions, the Laplace-Stieltjes transform, and the moments of PH random va­

riables are given in closed form. However, they also have sorne drawbacks, such as 

the non-uniqueness of the parameter representation. This creates difficulties for 

statistical inference with PH distributions (see Q'Cinneide (1989) and Asmussen 

et al. (1996)). For a comprehensive review of PH distributions see Neuts (1995). 

Consider 1 = {lt; t ~ a}, a right-continuous Markov process on the finite 

state space E = {l, 2, ... , b., b. + 1}, with initial probability vector 0:: and infini­

tesimal generator matrix A, such that only the state b. + 1 is absorbent. Hence, 

absorption in it is certain. 

The infinitesimal generator matrix A can be written as 

where the matrix B = (bij ) is b. x b. and Bo = (boj ) is an b.-dimensional column 

vector. These elements satisfy the conditions bii < 0, for i = 1, ... ,b., bij ~ 0, 

for i # j, and Be + Bo = 0, where e is a column vector of ones. States 1, ... , b. 

are transient if and only if B is nonsingular, see Neuts (1995). In this article, 

we assume that the initial probability 0:.6+1 = 0, and hence 0:: can be written as 

0:: = (,8, 0), with ,8 e = 1. 

A random variable X is called a phase-type (PH), with representation (,8, B), 

if it represents the time until absorption into b. + 1, i. e. 

X = inf {u; lu E {b. + 1}} . 
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If X has a PH distribution, using the theory of Markov chains, it can be shown 

(see Neuts (1995)) that 

for x ~ O. 

Therefore, the probability density function of X is given by 

fx(x 1 j3, B) -j3 eBx B e 

- j3 eBx Bo, for x ~ O. (3.10) 

The pair (j3, B) is known as a representation of order .6. of the PH distribution. 

As a convention, we shall not mention the dimensions of vectors and matrices. 

It is usually possible to determine them from the context. 

Due to the non-uniqueness of the representation of PH distributions, other 

pairs (j3., B*) of same or different dimension may define the same probability 

density function (see O'Cinneide (1989)). 

3.2.2. Credibility theory 

In this section we establish that exact credibility occurs for sorne PH dis­

tributions in the univariate and multivariate cases. Instead of considering the 

probability density function in (3.10) directly, we use a simpler technique. The 

following lemma is needed to relate a PH random variable with sums of expo­

nential random variables. 

Lemma 3.1. Every PH random variable X with representation (j3, B) can be 

written as a sum of.6. random sums of independent exponential random variables 

with parameters fh, ... , (J b., where (Ji = - bii , for i = 1, ... ,.6. and .6. is the dimen­

sion of matrix B. 

Praof. The observation X of a PH random ,variable with representation (j3, B) 

is simply the hitting time of state .6. + 1, which can, be written as the sum of the 

sojourn times Si in each of the non-observable states i = 1, ... ,.6., i.e. 

b. 

X=L:Si' (3.11) 
i=l 

where Si is the total time that the Markov process J spends in state i. Each time 

J visits state i, it stays a random time (which has exponential distribution with 
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parame ter 8i = -bii ) in state i and then moves to another state. Hence, 

Mi 

Si = LYij, (3.12) 
j=l 

where Mi is the total number of jumps out of state i. Indeed, it counts total jumps 

to aU other states. In other words, Mi = ~t/:;i Mij , and Mij is the number of 

jumps from state i to j, while Yij are the sojoum times into state j, coming from 

state i, for i = 1, ... , ~ and j = 1, ... , ~ + 1. The proof is obtained considering 

the Yij 's as independent exponential random variables with parameter 8i , for j = 

1, ... , Mi' For the joint distribution of Mij and (Si)t,l see Asmussen et al. (1996). 

o 

A PH random variable with dimension ~ has ~+~2_1 parameters. Choosing 

the right parameters and giving a prior to these parameters is a delicate problem. 

The more parameters chosen for the prior distribution, the less tractable the 

calculations. On the other hand, too few parameters may not provide an accurate 

description of the risk features. 

As seen from Lemma 3.1 every PH random variable is written as a sum of 

random sums of exponentials. Consider the diagonal elements of the sub-intensity 

matrix B as our choice for the risk parameter. Renee, we can specify a prior 

distribution on the parameters of the distribution of Yij in (3.12). This is a natural . 

choice as each non-diagonal element of B is a fraction of the diagonal element in 

the same row, i. e .. 

-81 Pll 81 

P21 82 -82 

where 0 ::; Plk ::; 1 and ~~=l,kfl Plk ::; 1, for l = 1, ... ,~. 

(3.13) 

Here the mean and variance of Yij in (3.12), exponentially distributed with 

parameter 8i , are given by t and ~. Renee, the bigger 8i , the smaller the mean of , 
Si and of X, the PH random variable in (3.11). We assume that the coefficients 

Plk are constants for k, l = 1, ... ,~, k =1= land that the initial probability vector 
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,13 is 

(1,0, ... ,0), (3.14) 

that is, Jo = 1 with probability 1. 

Now assume X n to be the daim size for period n = 1, ... ,N + 1, and that it 

follows a PH distribution with representation (,13, B) as in (3.13) and (3.14). The 

corresponding embedded Markov chains are denoted by JI, ... ,JN+l . According 

to Lemma 3.1, we can represent Xn-as 

Il Il Min 

X n = LSin = LLYijn, (3.15) 
i=1 i=1 j=1 

where Min is the number of jumps from state i in period n and Yijn is the daim 

in period i, year n. The risk parameter vector is given by 

(3.16) 

As is natural in credibility theory, we assume that, given 8 = B, the JI, ... , JN+l 

in (3.16) are conditionally independent. As a result, given Bi, the sojourn time 

spent in state i after a jump into it (which has an exponential distribution) in 

period n is independent and identically distributed with the time spent in the 

state i after a jump into it in period n', for n' f. n and n' = 1, ... ,N + 1. 

Mathematically, given B the set of Yin, ... , Yi Mn 1 , ... , Yil,N+l"'" Yi M i,N+J,N+l 

are conditionally iid exponential random variables with parameter Bi, for i = 

1, ... , .6.. 

The prior distribution on the risk parameter may be chosen in two ways; 

univariate or multivariate. In the multivariate case the prior is put on each ele­

ment of B in (3.16), independently chosen and from the natural conjugate of an 

exponential distribution (3.2), i.e. with r(Bi) = -Bi and q(Bi) = l/Bi in 

[q(Bi)rk eJ1.i kr(lh)r' (Bi) 
7f(Bi ) = (k) , 

, C /-Li, 

That is the risk parameter is vector valued with independent but not identically 

distributed components, as /-Li may vary for different i = 1, ... , .6.. 

Another possible choice is to consider B of the form 

(3.17) 
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where the fi'S are positive constants and the ei's are iid from the univariate 

natural conjugate prior to the exponential distribution, i. e. 

ek -k ~9· 
eT' 

7r(ei ) = iC(J-L, k) (3.18) 

Then, for both risk parameter cases, defined in (3.16) or (3.17), Landsman and 

Makov's extension of Jewell's theorem lets us condude that exact credibility oc­

curs for daims from this exponential distribution with a natural conjugate prior 

on the parameter e. If the distribution of the number of jumps from state i is 

independent from e, then by Theorem 3.3 we have that 

m. ,,\",N ,,\",min Y'l k 
lE( V 1 - - -) ,L. .. m=l L.."l=l t n + 

.Iil,N+l Yil"",YiN,mi = ---J-Li 
mi+k mi mi+ k 

Sil + ... + SiN (1 ) 
ai + - ai J-Li, 

mi 

and J-Li = J-L/fl. By Theorem 3.3 and (3.15) we have 

Now, again by using the tower property of conditional expectations, Proposition 

3.2 and (3.15) we have 

Cl. 

+ L lE[Si(l- ai) 1 Xl,"" XN] . 
i=l 

Then by definition ai 

Cl. 

~ [Mi,N+l ( . 1 ] = L....J lE m. k Sil + ... + SjN) Xl,···, XN . 
i=l t + 

If, for any i = 1, ... , N, the ratio ":J/:~l is independent of Xl,"" X N and 

Sil, ... , Sil:', then exact credibility occurs under the above assumptions. 
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Theorem 3.4. With a proper gamma prior distribution on the diagonal elements 

of matrix B, then the Bayesian premium equals the linear credibility premium if 

Mi,N+l . . d d t f 
Mi+k 2S zn epen en 0 Xl,'" ,XN. 

Now we consider an example of PH distributions for which exact credibility 

of the above type occurs. 

Example 3.2. Assume that the vector of initial probabilities is f3 = (1, 0, ... , 0) 

and that the sub-intensity matrix B is given by 

° B= 

° ° -eD. 
For this choice of B, the embedded Markov chain always starts from state 1 with 

probability 1. Then, it moves from state i to state i + 1, to finally end in the 

absorbing state ~ + 1. Therefore, the number of jumps from state i or the number 

of jumps into the state i is simply one. If the prior distribution of ei , has the form 
Ok -kw8' 

of 7r(ei ) = i ~ . k; " that is gamma(k + 1, k /-li) distribution, for i = 1, ... ,~, 
c J.L" 

then exact credibility occurs for the related PH random variable. In this case the 

credibility factor equals to Z = N~k' 

3.2.3. Exact credibility for Coxian distributions 

Coxian distributions (see Cox (1955)) are a special case of PH distributions. 

The PH representation of a Coxian distribution with dimension ~ is given by 

-el Pl el ° 
° -e2 P2 e2 ° B= (3.19) 

° ° -eD. 
and 

f3= (1,0, ... ,0). (3.20) 

Let J = {Ju ; u ~ O} be the embedded Markov chain for the Coxian distribu­

tion with space states {l, ... , ~, ~ + 1}, w here ~ + 1 is the absorbing state. Then 
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Jo = 1 with probability l, means that it always starts from state 1. It spends 

there a random exponentially distributed time with parameter 01 and then moves 

either to the absorbing state or to state 2, with probabilities 1-Pl and Pl' If J is 

in state 2, again it sojourns in this state a random time, distributed exponentially 

with parameter O2, then jumps to state ~ + 1 with probability 1 P2 or to state 

3 with probability P2, and so on. 

The number of jumps from state i = 1, ... , ~ is not constant. If state i is 

visited, then the number of jumps from this state is l, otherwise it is O. Hence, 

the conditions of Theorem 3.4 are not met. 

In fact if X is a Coxian random variable with the PH representation (f3, B) 

in (3.19) and (3.20), then it can be written as 

X= 

If we define 

then 

x={ 

with probability (w.p.) 1 - Pl, 

w.p. Pl (1 - P2) , 

YI + Y2 + ... + Y6.-1 w.p. Pl P2 ... (1 - P6.-I) , 

w.p. Pl P2 ... P6.-1 . 

Si W.p. P; = Pl ... Pi-l (1 - Pi), i = l, ... , ~ 1, 

S6. w.p. Pt. = Pl ... P6.-1 , i = ~ . 

(3.21) 

In statistical terms it means that the Coxian random variable X has a distri­

bution that can be written as the mixture of the distributions of the Si's, i. e. 

6. 

fx(x 1 /3, B) = I:p; fSi(X 1/3, B). (3.22) 
i=l 

The exact credibility problem for a Coxian distribution is seen as a special case 

of the exact credibility problem for a mixture of distributions. To the best of our 

knowledge, this is an open problem with no general results available for mixtures 

of distributions. The difficulty is the lack of natural prior conjugates for mixtures 

of distributions (see Frühwirth-Schnatter (2006), p. 53). 
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Despite this difficulty with exact credibility for Coxian distributions, their re­

presentation in (3.22) shows dear advantages for statistical inference. For example, 

an EM algorithm for a Coxian distribution can be obtained by adapting the very 

well-studied EM algorithm for a mixture of distributions (see McLachlan and Peel 

(2000)). 

3.3. EXACT CREDIBILITY FOR MULTIVARIATE PHASE-TYPE DIS­

TRIBUTIONS 

M ultidimensional random variables often arise in insurance contracts. For 

example losses and allocated loss adjustment expenses (ALAE) may be se en as 

bi-dimensionalloss variables. Another example is when the number of daims in a 

portfolio is divided in two categories; one for the number of large or catastrophic 

losses, say bigger than a given threshold, and another for number of small or 

ordinary losses. 

The concept of multidimensional credibility was first introduced by Jewell 

(1974b) and Hachemeister (1975). Exact multidimensional credibility theory is 

discussed in JeweIl (1974b). This section investigates the conditions for which the 

multivariate exponential family, with a proper conjugate prior on the parameters, 

can lead to exact credibility. 

3.3.1. Multivariate phase-type (MPH) distributions 

Multivariate phase-type distributions are introduced in Assaf et al. (1984) as a 

natural extension of univariate PH distributions. Another version of MPH distri­

butions is defined in Kulkarni (1989). As in the univariate case, the family enjoys 

many use fuI properties, such as being dense in aIl multivariate distributions with 

positive support. MPH distributions have Laplace transforms in closed form and 

hence aIl probabilistic quantities, such as aU the moments, are easily derived, see 

Assaf et al. (1984). However, sorne practical problems arise. The non-uniqueness 

of the parameterization and over-parameterization are major problems with MPH 

which make the interpretation of parameters difficult, see O'Cinneide (1990) and 

Assaf et al. (1984). 
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Let J = {Ju , u ;::: O} be a right continuous Markov pro cess on the finite state 

space E = {1, 2, ... ,~, ~ + 1} with initial probability vector Q and infinitesimal 

generator matrix A. Suppose that fI, ... , f pare p nonempty stochastically closed 

subsets of E such that nf=l C = {~ + 1} and only the state ~ + 1 is absorbing 

and hence, the absorption into it is certain. 

The matrix A can be written as 

where B = (bij ) is an ~ x ~ matrix and BD = (boj ) is an ~-dimensional column 

vector whose elements satisfy bii < 0, bij ;::: 0 for i =f. j = 1, ... , ~ and Be + BD = 

0, where e is a column vector of ones. States 1, ... , ~ are transient if and only if 

B is nonsingular, see Neuts (1995). In this section we assume that a~+l = 0, and 

hence, a can be written as Q = ({3,0). 

Let X = (Xl, ... , X p) be the time until absorption in fI, ... r p, respectively. 

We call the joint distribution of X a multivariate PH, abbreviated as MPH, with 

representation ({3,B,f l , ... ,fp). The marginal distributions of Xl,'" ,Xp are 

univariate PH. If X has a MPH distribution, the probability survival function of 

X at a point Xl < ... < x p , can be obtained using the theory of Markov chains 

as follows : 

where the gl' ... , gp, are ~ x ~ diagonal matrices whose i-th diagonal elements 

are 1 if i E f k, and 0 otherwise (see Assaf et al. (1984)) for the details). As 

a convention, we shall omit the dimensions of vectors, it should be possible to 

determine them from the context. 

The joint probability density function of Xl, ... , X p at a point Xl < ... < xP' 

can be obtained from (3.23) as follows : 
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where G k = Bgk-gkB, for k = 1, ... ,p. Similar formulas exist for theprobability 

survival and density functions of any other orders of (Xl, ... , X p ) (see Assaf et 

al. (1984)). 

Henceforth we assume that the state space E is represented in the following 

form 

E={1, ... ,6. l , ... ,6.k,6.k +1, ... ,6.,6.+1} , 

where ro = {l, ... , 6.1} and r k = {6. k + 1, ... , 6.k+l, 6. + 1}, for k = 1, ... ,p, 

with the convention that 6.p+1 = 6.. 

Lemma 3.1 can now be restated for MP H distributions. 

Lemma 3.2. Assume that X = (XI, ... , X p ) is a MPH random variable with re­

presentation (f3, B). Then each component of X can be written as at most 6. sums 

of random sums of independent exponentials with parameters (h = -bu, ... , (J a = 

-baa , where 6. is the dimension ofmatrix B = (bij ). 

Proof. If XiI = min {Xi }f= l' then r il is the first set to be hit after r o. 

Therefore Xii = LjEro Sj, where Sj is the sojourn time in state j. Similarly if 

XiI < ... < X ik _ 1 < X ik < ... < X ip1 then 

X ik = L Si' 
iEuj=ork 

o 

Lemma 3.2 complements the result of Lemma 3.1, in the sense that the mar­

ginal distribution of each component is a univariate PH. 

Henceforth we focus on the special case of MPH when Xl < ... < X p with 

probability 1. 

Assume that Xl," . , XN are N observed past daims. If X t,N+1 

is the l-th element of XN+l, then (3.19) can be restated as follows : 

[lJ [NJ 
"""' [N+IJ 8 j + ... + Sj 

lE(XI,N+IIXl, ... ,XN) = ~ lE(Mj. aj m. IXl,· .. ,XN) 
jEu~=orv J 

+ L lE{Sj(l-aj)l xl'''',XN}' 

jEu~=orv 

As an immediate consequence we get the followingthe multivariate extension of 

Theorem 3.4. 
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Theorem 3.5. With a proper gamma prior distribution on the diagonal elements 

ofmatrix B, as in (3.16) or (3.17), then the Bayesian premium equals the linear 

credibility premium if ~i:~l is independent of Xl, ... , XN. 

The infinitesimal matrix in Example 3.2 provides a good example of MPH 

distributions. In this case we have that 

3.4. CONCLUSION 

This chapter proposes an extension of Jewell's theorem in credibility theory 

outside the exponential family. This extension is obtained by modeling daims in 

a sub-period (called seasons), rather than the total daim in one period. Exact 

credibility is achieved, both when the number of seasons is fixed or is random. 

As an application, we prove that under sorne assurnptions, the Bayesian pre­

mium for phase-type daims with a properly chosen parameter prior, equals the 

linear credibility premium. For phase-type distributions, the time spent in each 

state i = 1, ... ,.6. is interpreted as the daim in season i. Clairns per season are 

unobservable, only the total daim per period is part of the data. 
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CONCLUSION 

Cette thèse a abordé dans un premier temps l'estimation statistique et les 

tests d'adéquation, aussi appelés test d'ajustement, pour des distributions phase­

type (PH) bivariées. Dans un deuxième temps, la thèse a proposé d'utiliser les 

distributions phase-type univariées ou multivariées dans les modèles de crédibilité 

en actuariat. Tous les résultats de la thèse ont utilisé la définition d'une distri­

bution PH obtenue de la structure d'une chaîne de Markov en temps continu. 

La définition d'une distribution PH à partir de la densité (matrix exponential 

distribution) ne suffit malheureusement pas à la tâche qui nous incombait. 

Dans le premier article, on traite de problèmes de nature statistique lors de 

la modélisation conjointe de deux variables positives et corrélées par une distri­

bution PH bivariée. L'algorithme EM est proposé pour obtenir les estimateurs 

du maximum de vraisemblance des paramètres inconnus que sont les probabilités 

initiales des états de la chaîne de Markov et les éléments de la matrice du généra­

teur infinitésim~L Cet algorithme a été programmé en MATLAB et utilisé pour 

ajuster une distribution PH à un jeu de données de 1500 observations bivariées 

du domaine de l'assurance. Le calcul des estimateurs est lourd, car il est de na­

ture itérative et nécessite à chaque itération la résolution numérique de systèmes 

d'équations différentielles par la méthode de Runge-Kutta. Un test d'ajustement 

dans la lignée des tests de Cramér-von Mises est aussi proposé pour vérifier l'adé­

quation d'une distribution PH bivariée comme modèle. La statistique du test 

compare la fonction de survie paramétrique ajustée par l'algorithme EM avec la 

fonction de survie expérimentale, laquelle est non paramétrique. Une simulation 

pour un modèle PH bivarié simple d'ordre trois avec 200 observations et 2000 
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échantillons bootstrap a donné de bons résultats quant au seuil, aussi appelé ni­

veau de signification, du test. Malheureusement, ce test n'a pu être effectué sur 

les données provenant de l'assurance. Le modèle proposé étant d'ordre onze avec 

1500 observations, la lourdeur des calculs dépassait notre puissance de calcul. Une 

programmation des algorithmes en langage C++, par exemple, pourrait possible­

ment rendre réalisable le test d'ajustement proposé. On a observé néanmoins que 

les fonctions de répartition expérimentale et paramétrique des deux distributions 

marginales sont très rapprochées. La dépendance semble aussi avoir été décrite de 

manière satisfaisante, car les coefficients de corrélation paramétrique et non para­

métrique, c'est-à-dire celui basé sur les rangs, sont aussi très rapprochés pour les 

mesures de Spearman et de Kendall. Quant au coefficient de corrélation de Pear­

son, il donne une mesure de la dépendance moins appropriée puisque la régression 

de la variable ALAE sur la variable L088 était manifestement non linéaire. En 

plus de la moyenne conditionnelle, c'est-à-dire de la régression, les distributions 

PH bivariées ont aussi permis de calculer les quantiles de la distribution condi­

tionnelle. Ces quantiles conditionnels sont d'un grand intérêt chez les actuaires 

comme en fait foi l'utilisation répandue de la mesure de risque de perte connue 

sous le nom de VaR, l'acronyme de l'expression anglophone Value at Risk. 

Les perspectives de recherche envisagées comme suite au premier article com­

portent deux volets. Le premier volet consisterait à reprogrammer les algorithmes 

dans un langage compilé et plus efficace du point de vue de la rapidité comme le 

langage C++. Le langage MATLAB est un langage interprété et plus lent d'exé­

cution. Nous l'avons d'abord utilisé parce qu'il offre déjà des fonctions pour le 

calcul de la fonction exponentielle d'une matrice et pour la résolution d'équations 

différentielles. On peut aussi étendre quelque peu le domaine d'application de l'al­

gorithme EM à des modèles où l'une des variables est nullé avec une probabilité 

non nulle. Dans l'exemple sur l'assurance, la variable ALAE peut être strictement 

positive même si aucun paiement à l'assuré n'est fait. Le deuxième volet, le plus 

ambitieux, chercherait à développer des méthodes de sélection de modèles. Un 

modèle PH bivarié comprend en effet plusieurs éléments. On doit d'abord choisir 

l'ordre du modèle, c'est-à-dire le nombre d'états de la chaîne de Markov, et la 
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structure de la matrice du générateur infinitésimal. Un autre choix à effectuer est 

celui des sous-ensembles fermés fI et f 2 dont l'intersection est l'état absorbant. 

Pour l'instant, nous ne disposons pas d'une véritable méthode de sélection de 

modèles comme il en existe pour la régression linéaire multiple. 

Le deuxième article étend le théorème de Jewell en théorie de la crédibilité à 

une plus grande classe de distributions que celles des distributions exponentielles 

linéaires et même de la famille exponentielle. Cette extension est rendue possible 

grâce à l'emploi des chaînes de Markov sous-jacentes dans la définition même 

des distributions PH. Cette approche permet aux actuaires de décomposer les 

réclamations totales d'une période donnée en sous-périodes (saisons). Ici, des 

saisons différentes peuvent avoir des réclamations de distributions distinctes, en 

autant que le facteur de crédibilité reste le même. Par exemple, si Xi = ai Y, 

pour i = 1, ... , M, est la réclamation associée à la saison i, où Y est de la 

famille exponentielle linéaire ou de dispersion et que ai > 0 est une constante, 

alors les variables Xi aurons toutes le même facteur de crédibilité, bien que leur 

distributions diffèrent. La thèse montre aussi que la prime de crédibilité pour le 

total des réclamations dans la période, i. e. Li Xi, associée à sa distribution a 

priori con jugée, est égale à la prime bayésienne. 

La crédibilité exacte est obtenue ici dans le cas spécial de distributions PH 

univariées et multivariées avec matrice de sous-intensité bidiagonale et vecteur de 

probabilités initiales donnant toute la masse à un seul état initial. Si le vecteur de 

probabilités initiales prend une forme plus générale, le résultat de la thèse peut 

être généralisé en conditionnant sur l'état initial, i. e. les distributions coxiennes. 

Les chaînes de Markov sous-jacentes sont utilisées, incluant les paramètres de 

risque non-observables pour les distributions PH. 

Cet article s'attarde à la prime bayésienne, donc le premier moment des ré­

clamations. Le second moment peut aussi être d'intérêt pour déterminer la pré­

cision de l'estimateur de la moyenne. Jewell et Schnieper (1985) prouvent que 

la prédiction exacte de cette variance est une fonction linéaire de la variance de 

l'échantillon et de la déviation carrée de la moyenne de la distribution a priori. 
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Nous croyons, au moins dans certains cas, qu'une modélisation similaire avec des 

distributions PH et MPH est possible. 
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