

Direction des bibliothèques

AVIS

Ce document a été numérisé par la Division de la gestion des documents et
des archives de l’Université de Montréal.

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

This document was digitized by the Records Management & Archives
Division of Université de Montréal.

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal

Nouvelles approches pour la conception d'outils CAO pour le domaine des systèmes
embarqués

Par

James Lapalme

Département d'informatique et de recherche opérationnelle
Faculté des arts et des sciences - Secteur des sciences

Thèse présentée à la Faculté des études supérieures
en vue de l'obtention du grade de Doctorat

en Informatique

Février, 2009

© James Lapalme, 2009

/.'
, .';.

, ..
l: " :, , ~ ... , , (: .,

!
,1 .", t~/'

' " ",' ;',' 1

<':,~,,: il,;. :""t'.:. ,/, ~:,.::;:'S'· .'

Université de Montréal
Faculté des études supérieures

Cette thèse intitulée:

Nouvelles approches pour la conception d'outils CAO pour le domaine des systèmes
embarqués

présenté par:

James Lapalme

a été évaluée par un jury composé des personnes suivantes:

.RI:.Ji9."l:lxi.S~hnmJJi.
président-rapporteur

,P.x:.~.I..Mg~.tl:lp.h~.AJ?gJJnmmj.d
directeur de recherche

,P'x~,.Q~J?r.iç.tlit .. ~".i.ç.QJ.ç~ç.1J.
codirectrice de recherche

Px,. C. tlit.1J:9:ç. f.Œ~$.9.n
membre du jury

PX:.Mm~4J~rrlity.,!
examinateur externe

lli,.IniçITY..~.~r.4ü1i
représentant du doyen de la FES

Résumé

Notre société de consommation exerce des pressions énormes sur l'industrie des

systèmes embarqués. Ces pressions sont causées en grande partie par des attentes

souvent contradictoires et difficilement conciliables. Afin de répondre à la situation,

l'industrie fait évoluer de manière fulgurante les techniques et les processus de

fabrication des systèmes électroniques. Malgré cette évolution, un gouffre important

sépare notre capacité d'intégrer des transistors et notre habileté pour la conception de

systèmes les utilisant de façon efficace. Ce gouffre ne fait qu'exacerber les difficultés

de l'industrie à répondre aux exigences du marché. Les outils CAO sont un moyen

prometteur pour combler ce gouffre. L'efficacité de ces outils est un critère important

pour leur réussite et peut être grandement influencée par les technologies et les

approches de conception utilisées pour leur réalisation. La communauté du logiciel a

développé plusieurs technologies et approches pouvant servir à l'élaboration des

outils CAO.

Ce travail présente des idées innovatrices pour la conception et la réalisation d'outils

CAO. Ces idées s'appuient sur l'utilisation de technologies modernes provenant de la

communauté du logiciel. Les technologies principales qui seront abordées dans le

cadre de ce travail sont la plateforme .Net, le Web Sémantique, la conception dirigée

par les modèles et les patrons de conception. Ce travail présente aussi plusieurs

réalisations afin d'appuyer les idées proposées.

Mots clés: système embarqué, .Net, Web Sémantique, CAO, conception dirigée par

les modèles, Y -Chart

III

Summary

Our society of consumption exerts enormous pressures on the embedded systems

industry. These pressures are mainly due to expectations which are often

contradictory and not easily reconcilable. In order to cope with the situation, the

industry has rapidly developed and evolved techniques and manufacturing processes

for electronic systems. In spite of this evolution, an important gap exists between our

capacity to integrate transistors and our systems design capabilities to use these

transistors effectively. This gap does nothing but exacerbate the difficulties of

industries to fulfill the expectations of the market. CAD tools are a promising means

to cross this gap. The effectiveness of these tools is an important criterion for their

success. Their effectiveness is largely influenced by the technologies and the design

approaches used for their implementation. The software community has developed

several technologies and approaches which can be greatly beneficial to CAD tools

development. This thesis presents innovative ideas for the design and the realization

of CAD tools. These ideas are based on the use of modern software technologies.

Several accomplishments will also be presented which support these ideas. The main

technologies that will be discussed within this work are the Net platform, the

Semantic Web, model-driven design\development and design patterns.

Key words: embedded systems. Net, Semantic Web, CAD, model-driven design,

Y-Chart

v

Table des matières

R~umé i
--------~---

Summary __ iii

Table des matières v --
Liste des figures ___ vii

Liste des abréviations ix --

Remerciements xi --
Introduction 1

1.1

1.2

1.3

1.4

La conception assistée par ordinateur _____________________________ 4

Les technologies modernes du logiciel 5

Motivations 6

Contribution et l'organisation 7

Revue de la littérature ___ 9

1.5 Les SDL ________________________ 10

1.5.1 Les HDLlSDL indépendants 10

1.5.2 HDLlSDL orientés bibliothèques 12

1.6 Les méthodologies 14

1.6.1 L'élaboration par raffinements successifs _____________________________ 14

1.6.2 La conception à base d'IP 17

1.6.3 Le paradigme « Y -Chart » 18

1.7 Les nouveaux défis 19

Le paradigme ((Y-Chart» : une discussion sur le développement dirigé par les

modèles _____________________________ 21

VI

Une nouvelle méthodologie pour la conception d'outils CAO ________ 57

La séparation des aspects de modélisation et de simulation dans les langages

orientés-« framework » de modélisation matérielllogiciel __________ 85

L'impact du Web sémantique sur la conception des systèmes assistée par ordinateur

__ 109

Conclusion et Travaux Futurs ____________________ 151

1.8 Développements possibles __________________ 154

Sources documentaires ______________________ 157

Liste des contributions xvii -----------------------

VIl

Liste des figures

Figure 1 Système de guidage Autonetics D-17 du missile Minuteman 1 ___________ 2

Figure 2 Systèmes embarqués modernes 2

Figure 3 Gouffre de productivité 4

Figure 4 Raffinements Successifs 15

Figure 5 Y-Chari 18

CAD
CAO
CIL
CLI
CLS
CTS
ECMA
EDA
EDIF
FIFO
FPGA
HDL
IC
IEEE
IP
ISO
JVM
NOC
OOP
OSCI
PCB
RTL
SCV
SDL
STOC
DCI
VES
VHDL
XML

IX

Liste des abréviations

Computer Assisted Design
Conception assistée par ordinateur
Common Intermediate Language
Common Language Infrastructure
Common Language Specification
Common Type System
European Computer Manufacturers Association
Electronic Design Automation
Electronic Design Interchange Format
First In, First Out
Field-Programmable Gate Arrays
Hardware Description Language
Integrated Circuit
Institute of Electrical and Electronics Engineers
Intellectual Property
International Organization for Standardization
Java Virtual Machine
Network On Chip
Object-Oriented Programming
Open SystemC Initiative
Printed Circuit Board
Register Transfer Level
SystemC Verification Library
System Description Language
SpecC Technology Open Consortium
University of California Irvin
Virtual Execution system
Very High Speed Integration circuit Hardware Description Language
Extensible Markup Language

Xl

Remerciements

Je voudrais remercier Dr. El Mostapha Aboulhamid et Dre. Gabriela Nicolescu pour

l'aide et l'encadrement dont ils m'ont fourni durant mes études de doctorat. Je

voudrais tout particulièrement remercier Mostapha pour sa grande générosité et son

appui quasi paternel qui m'ont aidé lors des moments plus difficile de ce parcours.

Je voudrais remercier profondément les personnes proches de moi qui n'ont jamais

arrêté de croire en moi; dont leur encouragement et leur support ont été cruciaux à la

réussite de ce travail (thx Mom, Dad and MJ).

En terminant, je voudrais remercier sincèrement Steven, Christian et Marie-Josée

pour avoir participé à la correction de cette thèse et/ou pour avoir écouté mon

« blabla» interminable sur le contenu de celle-ci ... :0)

1 would like to dedicate this to my mother and father
who have always pushed me to better myself,

and to Zachary, Jacob and Marie-Josée, the three loves of my life,
without whom this would have no meaning

1 would also like to dedicate this to my maternaI grand-parents for their love

cc l began this joumey to understand the worZd around me.
l have Zeamt very Uttle about it but have leamt a great deal about
myself » - Anonymous

Introduction

Les systèmes embarqués (systèmes enfouis) sont fondamentaux à notre style de

vie contemporain. Malgré leur omniprésence, la majorité de la population est

ignorante du rôle important que joue ces petits systèmes cachés qui font fonctionner

comme par magie, les nombreuses choses qui nous entourent. Juste en prenant une

petite pause de la rédaction de ce texte, en regardant autour de moi, dans mon bureau,

je peux percevoir rapidement une multitude d'items à 1'apparence anodine contenant

un système embarqué :

• imprimante

• routeur

• téléphone multifonctionnel

• thermostat électronique

• montre électronique

• téléphone cellulaire

Puisque le terme système embarqué est omniprésent dans ce texte et pour en faciliter

la compréhension, voici une définition informelle permettant de mieux comprendre la

portée et le sens du terme :

« Un système embarqué peut être défini comme un système électronique et
informatique autonome, qui est dédié à une tâche bien précise. Ses ressources
disponibles sont généralement limitées. Cette limitation est généralement
d'ordre spatial (taille limitée) et· énergétique (consommation restreinte). »
(Wikipedia.)

Les systèmes embarqués ont évolué grandement depuis leur apparition initiale. La

figure 1 présente un des premiers systèmes embarqués à être produit en série durant

les années 60: le système de guidage pour le missile Minuteman 1.

2

,-------_._---_._ ... _. _ _--_

1

Figure 1 Système de guidage Autonetics D-17 du missile Minuteman 1

De nos jours, les systèmes embarqués sont plusieurs ordres de grandeur plus petits et

supportent un très grand nombre de fonctionnalités. La figure 2 (à gauche) présente

le ©iPod touch de Apple, un produit de consommation de masse très populaire, qui

possède plusieurs fonctionnalités telles que le décodage vidéo, le décodage de

musique, la communication réseautique sans-fils, etc. La figure 2 (à droite) illustre

bien la taille de certains des plus petits systèmes embarqués pouvant être produits de

nos jours: les Smartdusts motes. Les Smartdusts motes sont des systèmes micro­

électro-mécaniques capables de communiquer via un réseau sans-fil. De plus,

généralement, ils sont sensibles aux divers aspects de leur environnement: son,

lumière, température, etc.

Figure 2 Systèmes embarqués modernes

Malgré l'évolution fulgurante des techniques et des processus de fabrication des

systèmes électroniques (dont les systèmes embarqués), l'industrie de la

micro électronique fait face à de grands enjeux afin de répondre aux attentes du

marché. Notre société de consommation exerce des pressions énormes sur cette

3

industrie. Ces preSSIOns sont causées en grande partie par des attentes souvent

contradictoires ou difficilement conciliables. Le marché demande à la fois des

produits avec de plus en plus de fonctionnalités, mais dont le coût d'achat est moindre

et le temps de mise en marché plus court.

La loi de Moore [2], une loi fondée sur des extrapolations empmques faites par

Gordon Moore chez Intel, énonce « la quantité de transistors pouvant être intégrés

par superficie sur une puce double approximative aux 2 ans ». Cette capacité

d'intégration des transistors est due à l'amélioration continue des processus de

fabrication. Cette capacité d'intégration croissante est un élément essentiel afin de

pouvoir répondre aux besoins du marché. Néanmoins, elle n'est pas un critère

suffisant.

Depuis plusieurs décennies maintenant, un fossé énorme se crée entre notre capacité

d'intégrer des transistors et notre habileté pour la conception de systèmes les utilisant

de façon efficace. La figure 3 illustre graphiquement ce fossé. La ligne noire

représente la loi de Moore avec un niveau d'intégration doublant aux 36 mois. La

ligne grise du bas représente l'évolution de la productivité de l'industrie en

conception de système matériel. On peut percevoir un écart qui croit à un rythme

exponentiel entre ces deux lignes. La figure 3 illustre aussi la croissance des besoins

additionnels pour du logiciels spécifiques nécessaires au support des systèmes

matériels. Cette croissance double aux 10 mois. Donc le vrai gouffre de productivité

incluant les besoins de logiciel est énorme (la flèche rouge verticale).

log

1 LoC SWIChip 1

1 Gates/Chlp 1

1 GatesJOay 1

1 LoC/Day 1

, Additional SW required for HW
2:tJ1û montli,

Technology capabillties
2)(/36 months

HW design produlltivil:y
Filling with lP'and memory

_ - -1 HW design productivlty 1

LI!!!!::::::::::~----------- - ---- SW productlvil:y 245 years

1"1 g :9
C) N

Figure 3 Gouffre de productivitë

C'")
C)
N

t::: tlme C)
N

Les causes freinant la productivité sont grandement attribuables à la complexité du

processus de conception des systèmes modernes, et de leur validation. Les grands

aspects devant être maîtrisés pour vaincre ce gouffre sont [40] :

• la réutilisation;

• la vérification et le test;

• l'optimisation de la conception de système guidée par les coûts;

• la conception de logiciel embarqué;

• la robustesse des plateformes matérielles d'implémentation;

• la gestion du processus de conception.

4

La maîtrise du processus de conception des systèmes modernes requiert un grand

éventail de techniques, d'outils et de méthodologies qui permettent d'établir de

manière prévisible une transformation des exigences en un produit fini.

1.1 La conception assistée par ordinateur

Le domaine de la conception assistée par ordinateur (CAO) a comme cheval de

bataille les grands enjeux entourant la conception des systèmes modernes dont les

1 Source ITRS 2007

5

systèmes embarqués. La CAO facilite la transformation d'exigences fonctionnelles en

produits finis par l'utilisation d'outils informatisés supportant des techniques et des

méthodologies de conception. Typiquement, cette assistance augmente de façon

significative la productivité des concepteurs en offrant plusieurs fonctionnalités clés:

• la capture et la validation de besoins fonctionnelles;

• le raffinement des spécifications fonctionnelles en implémentation;

• l'exploration et l'analyse des implémentations alternatives;

• la vérification des implémentations.

Dans le passé, le domaine de la CAO a mis beaucoup l'accent sur la dimension

outillage et a négligé celui de la méthodologie. Les outils CAO inflexibles au soutien

de nouvelles méthodologies rendant ceux-ci mal adaptés et inefficaces sont une

conséquence de cette négligence. Il est clair que la tendance des systèmes embarqués

est de se complexifier en raison de leur capacité multifonctionnelle de plus en plus

ciblée à un domaine précis, ainsi que leur conception incluant un nombre croissant de

composantes hétérogènes (micromécanique, micro-optique, etc.). Afin de maintenir

cette tendance, il est nécessaire d'avoir des méthodologies de conception éprouvées,

efficaces et adaptées pour guider les concepteurs durant le cycle complet de mise en

marché - du concept au produit fini testé. Les prochaines générations d'outils CAO se

doivent d'être plus flexibles afin de répondre aux besoins méthodologiques.

1.2 Les technologies modernes du logiciel

Parallèlement et indépendamment de l'industrie des systèmes embarqués, les

domaines du logiciel et du génie logiciel ont évolué énormément au cours des 20

dernières années. Cette évolution est due aux mêmes facteurs de pression que subit

l'industrie des systèmes embarqués: plus de fonctionnalités livrées à moindre coûts et

en moins de temps. Afin de faciliter la création de logiciels de meilleure qualité et

d'augmenter la productivité des développeurs, la communauté du logiciel a mis au

point plusieurs technologies innoyatrices. Quatre de ces grandes technologies sont:

• les langages et les plateformes de programmation modernes tel que C# et .Net
[1][28];

• le développement à base de patron de conception [31];

• le développement dirigé par les modèles [45][11];

6

• les technologies du Web sémantiques [1 Ol

En plus de permettre le développement de logiciels de manière plus efficace, ces

technologies permettent de produire de meilleurs logiciels étant souvent plus flexibles

et adaptables. Puisque le domaine de la CAO est à la base un domaine axé sur le

logiciel, ce domaine peut bénéficier grandement de l'utilisation des technologies

mentionnées plus haut afin d'améliorer leur conception et leur degré de flexibilité.

Donc l'utilisation du savoir faire du domaine du logiciel peut amener des solutions

intéressantes aux problématiques de productivité du domaine des systèmes

embarqués.

1.3 Motivations

Les méthodologies de conceptions, les langages de description systèmes ainsi que les

environnements de conception implémentant ces deux éléments sont des outils

importants pour la conception des systèmes embarqués (ces éléments seront présentés

davantage dans le prochain chapitre). Malgré les efforts investis pour l'avancement de

ceux-ci, il n'existe pas encore de solutions parfaites. Plusieurs difficultés persistent:

• les environnements de conception ne supportent pas adéquatement les

méthodologies; plusieurs discontinuités sont présentes.

• les environnements de conception permettent difficilement l'intégration

d'outils tierce-partie afin de supporter des flux de conception personnalisés.

• les langages hôtes utilisés pour les langages de description systèmes

indépendants (voir chapitre 2) ajoutent souvent inutilement des complexités

rendant leur utilisation et leur personnalisation difficiles.

• les langages de description système orientés bibliothèque (voir chapitre 2)

supportent difficilement la conception par blocs de propriété intellectuelle (IP)

(voir chapitre 2) en raison d'un manque de séparation entre les aspects de

modélisation et de simulation.

• les environnements de conception ne facilitent pas adéquatement la

conception par IP; la consommation, le partage et l'analyse des informations

décrivant les systèmes et les IP sont souvent difficiles.

7

Ce travail cible ces enjeux et propose des solutions utilisant les technologies

modernes du logiciel. Plus précisément, ce travail s'attarde particulièrement à:

• la conception des langages de description orientés bibliothèque afin de

faciliter leur utilisation, leur personnalisation et l'intégration d'outils tierce­

partie

• la séparation des aspects de modélisation et simulation chez les langages de

description orientés bibliothèque afin de faciliter la conception par IP et

l'exploration de partitionnement.

• la gestion des informations décrivant les systèmes et les IP basée sur les

technologies sémantiques afin de faciliter la consommation, le partage et

l'analyse de celles-ci.

De plus, ce travail porte une attention particulière à l'implémentation du paradigme

« Y-Chart» (voir chapitre 2) comme méthodologie pour la conception des systèmes

puisque celui-ci propose un flux de conception complet qui ressemble beaucoup à la

conception dirigée par les modèles utilisés par la communauté du logiciel.

1.4 Contribution et l'organisation

Les principales contributions de cette thèse sont les suivantes:

• la présentation du lien entre le développement orienté modèle et le paradigme
du «y -Chart ». Une discussion sur ce paradigme est faite, ainsi qu'une
comparaison de plusieurs implémentations de celui-ci (chapitre 3).

• la définition d'une nouvelle méthodologie pour la conception des outils CAO
basée sur les technologies .Net et une vision orientée modèle (chapitre 4);

• l'élaboration d'une plateforme nommée Esys.Net pour la modélisation et la
simulation de systèmes qui utilise cette nouvelle méthodologie (chapitre 4);

• la définition d'une nouvelle architecture cible pour les plateformes de type
« Framework » pour la modélisation et la simulation de systèmes
matériel/logiciel (chapitre 5);

• l'élaboration d'une plateforme nommée SoCML implémentant cette
architecture cible (chapitre 5);

• la définition d'une approche innovatrice utilisant les technologies du
« Semantic Web» pour palier au problème de l'utilisation des technologies
XML dans le demain de la CAO (chapitre 6);

8

• la présentation d'une étude de cas basée sur le standard IP-XACT pour
l'application des technologies sémantiques (chapitre 6);

Un ensemble précis de technologies logicielles a été crucial pour la réalisation de ces

contributions. Ces technologies seront présentées, discutées et appliquées dans le

contexte de la CAO et des systèmes embarqués, elles sont:

• le langage C# et la plateforme .Net;

• les patrons de conception avancés tel que le «Proxy» et le «Dependency
Injection »;

• le développement dirigé par les modèles;

• les technologies du Web sémantiques.

La forme de cette thèse est « par articles ». Le noyau de son contenu est constitué de

quatre articles. Le chapitre 2 présente une revue de la littérature sur les outils de

modélisation et de simulation des systèmes embarqués. Ce chapitre présente aussi

trois méthodologies de conception de systèmes couramment utilisées. Le chapitre 2

résume aussi des revues déjà présentes dans les articles. Le contenu des chapitres 3 à

6 est essentiellement celui des articles. Le chapitre 7 est une conclusion plus globale

que celles se trouvant dans chacun des articles.

Revue de la littérature

La réalité qui nous entoure ,surpasse de loin notre capacité d'analyse et de

synthèse. Pour faire face à cette insuffisance, nous utilisons les outils

d'abstraction et de simplification pour créer des modèles de notre réalité qui sont

compréhensibles et manipulables. Les systèmes embarqués sont très complexes. Ils

comportent une énorme quantité de détails dont ceux-ci se manifestent sur plusieurs

échelles de grandeurs - des effets de leurs fonctions perceptibles à notre niveau

jusqu'aux phénomènes atomiques de leur implémentation. Donc, le domaine des

systèmes embarqués ne peut être abordé sans faire des abstractions et des

simplifications.

La modélisation de systèmes matériels complexes discrets ainsi que des langages

pour exprimer ces modèles sont en utilisation depuis près de 40 ans [21:1 [13]. Ces

langages portent le nom de « hardware description language» (HDL). Avec la

standardisation en 1987 par l'IEEE du langage VHDL, l'industrie a rapidement

adopté les HDL comme des outils essentiels. Depuis l'apparition initiale des premiers

HDL, les systèmes matériels ont évolué vers des formes plus complexes combinant le

matériel et le logiciel: les systèmes embarqués. Afin de permettre aux éoncepteurs de

modéliser ces nouveaux systèmes, les HDLs ont évolué aussi vers des langages

appelés « system description languages» (SDL).

De concert avec le développement des HDLlSDL, des méthodologies de conception

ont été élaborées. Ces méthodologies définissent des paradigmes de conception et/ou

des cadres généraux d'activités pour guider le cycle de vie d'élaboration des systèmes

complexes. Les trois méthodologies les plus utilisées aujourd 'hui sont le raffinement

successif, le paradigme « Y-Chart» et la conception à base de IP.

10

1.5 Les SDL

Il existe deux grandes familles de HDLlSDL soit les indépendants et les orientées

bibliothèque. Les HDLlSDL indépendants sont caractérisés par le fait qu'ils ont des

syntaxes, des compilateurs et des analyseurs qui leur sont propres. Contrairement à

ceux-ci, les HDLlSDL orientés bibliothèques sont définis au moyen de bibliothèques

de code implémenté avec un langage de programmation général déjà existant tel que

C++, C et Java. Chaque approche a ses avantages et ses inconvénients.

1.5.1 Les HDLlSDL indépendants

Cette première famille de HDLlSDL est composée de langages conçus uniquement

pour la description de systèmes matériels et/ou embarqués. La grande majorité de ces

langages ont été conçus par l'industrie pour l'industrie. Certains de ceux-ci s'inspirent

de proche ou de loin aux langages programmation déjà existants.

1.5.1.1 VHDL [39J

Le développement de VHDL a été initié en 1981 par le « United States Department of

Defence» afin d'adresser la crise du cycle de vie des systèmes matériels. VHDL est

fortement inspiré du langage de programmation Ada. Les principaux objectifs de

VHDL sont:

• définir une notation unifiée pour la description de systèmes électroniques
modélisés à divers niveaux d'abstraction;

• être lisible par l'homme et les systèmes informatisés;

• supporter la communication de métadonnées reliées au processus de
conception;

,
• faciliter la maintenance, la modification et l'acquisition de composantes

matérielles;

• supporter le développement, la vérification, la synthèse et validation de
description matérielle via un langage agnostique des outils.

VHDL est un langage dédié pour la description des systèmes matériels. Plusieurs des

concepts nécessaires pour la description adéquate de composantes logiciels sont

absentes. Malgré ce fait, VHDL est un langage très bien adapté pour la description de

systèmes matériels aux niveaux d'abstraction des portes logiques et des transferts

inter registres (RTL). Présentement, plus d'une quinzaine de standards IEEE sont

Il

reliés au VHDL tel que VHDL-AMS [38] pour la description des systèmes

analogiques.

1.5.1.2 Verilog [37J

Verilog était le principal compétiteur à VHDL avant l'arrivée de SystemC en 1999.

Malgré son apparition initiale en 1985, le langage est devenu un standard IEEE

seulement en 1995. Verilog a l'avantage d'avoir une syntaxe beaucoup moins

verbeuse que celle de VHDL au détriment d'une expressivité moindre. De plus, la

simulation de modèle Verilog est généralement beaucoup plus rapide. Depuis

quelques années, VHDL et Verilog convergent de plus en plus offrant ainsi des

capacités similaires [5].

1.5.1.3 System Verilog [65J

System V erilog est une extension de Verilog. Il a été proposé par le consortium

Accellera en 2002 et standardisé par IEEE en 2005. SystemVerilog étend Verilog

avec des éléments nécessaires pour la modélisation et la vérification de systèmes

embarqués. System Verilog offre une expressivité très riche en matière de vérification

et de validation. Cette expressivité est grandement due à l'intégration du langage

OpenVera dans le standard. [6] fait la comparaison entre VHDL, Verilog et

System Verilog. Par ce travail, on peut percevoir que System Verilog est un quasi

surensemble de VHDL et Verilog.

1.5.1.4 Handel-C et OCAPI [14J

Quelques articles discutent des avantages à utiliser des HDLs basés sur des langages

de programmation existants [16]. OCAPI est un langage basé sur le C++. Il est très

efficace pour effectuer de l'exploration à un niveau d'abstraction système. Handel-C

est un langage basé sur le C. Il permet la traduction de ceux-ci vers EDIF et VHDL

pour l'exécution sur FPGAs. Ces deux technologies ont la particularité qu'elles

s'intègrent facilement ensemble pour offrir un environnent capable de supporter un

processus de conception de systèmes ciblé pour les FPGA.

12

1.5.1.5 SpecC [68J

SpecC a été développé en 1997 à l'University of Califomia Irvine. Le langage SpecC

est une extension du langage de programmation ANSI-C. SpecC augmente C avec

des concepts essentiels pour la conception de systèmes. Il offre une notatiort formelle

destinée aux spécifications et à la conception des systèmes embarqués. En 1999, le

SpecC Technology Open Consortium (STOC) a été fondé pour guider l'évolution de

SpecC. En décembre 2002, la deuxième génération du langage, SpecC 2.0, a été

approuvé par le STOC. SpecC est l'un des rares langages à supporter la spécification

explicite d'éléments comportementaux hiérarchiques. De plus, d'autres langages

comme SystemC ont été fortement influencés par les concepts de canal de

communication, ainsi que les divers niveaux d'abstraction de ceux-ci développés dans

SpecC. SpecC a été conçu pour bien supporter par une méthodologie de conception

de système basé sur l'assemblage d'IP.

1.5.2 HDLlSDL orientés bibliothèques

La deuxième famille de HDLS/SDLs est celle dont les langages sont définis par

l'entremise d'une bibliothèque de code développé avec un langage de programmation

déjà existant tel que C++, C et Java. Via une bibliothèque de code, ces langages

ajoutent les concepts nécessaires pour la conception de systèmes embarqués. Les

concepts typiquement ajoutés sont:

• comportement concurrent;

• notion du temps;

• élément pour la modélisation d'élément de communication.

Pour l'élaboration de ce type de langage, ce sont souvent les langages orienté objet

qui sont utilisés comme langage hôte pour les bibliothèques.

1.5.2.1 JHDL [9J

JHDL est un environnement orienté objet qui exploite exclusivement les capacités du

langage de programmation Java. JHDL permet la modélisation, la simulation et

l'implémentation efficace sur FPGA de systèmes matériels définis au niveau RTL. Le

principal objectif de JHDL est de développer un environnement pour la CAO

13

exploratoire pour l'identification des dispositifs principaux et les fonctionnalités clés

que celui-ci doit offrir pour le développement de systèmes ciblé pour les FPGA.

1.5.2.2 Systeme [64J

SystemC, annoncé en 1999 par The Open SystemC Initiative (OSCI), a été reçu avec

beaucoup d'enthousiasme de la part de l'industrie et de la communauté académique.

SystemC a été le premier SDL orienté bibliothèque basé sur le langage C++. En

2003, l'OSCI a annoncé le SystemC Verification Library (SCV) [27], une

bibliothèque ajoutant des fonctionnalités de vérification et d'introspection. En 2005,

SystemC a été standardisé par l'IEEE. À l'heure actuelle, c'est un langage très

populaire pour la conception des systèmes embarqués. SystemC offre tous les

concepts qu'on retrouve typiquement dans les HDLs traditionnels tel que VHDL et

Verilog. Il offre aussi un ensemble de concepts supplémentaires permettant la

spécification de systèmes à divers niveau d'abstraction. Toutefois, la version courante

de SystemC n'offre pas tous les concepts nécessaires pour la modélisation de

composantes logicielles. Il est possible d'utiliser les capacités intrinsèques du langage

C++, mais le standard ne définit pas formellement comment ses éléments devraient

être pris en considération par la bibliothèque. Une étude fait par Doulos [26] illustre

que la majorité des compagnies utilisant SystemC font des études de performance, de

l'exploration d'architecture, de la modélisation au niveau transactionnel et de la

conception logiciel-matériel. L'étude illustre aussi que ces compagnies utilisent

généralement des HDL standards comme VHDL pour la modélisation de systèmes

matériels et pour la synthèse.

14

1.6 Les méthodologies

Les méthodologies de conception sont un élément essentiel pour la réalisation de

systèmes. Elles définissent un cadre de travail permettant de guider de manière

répétitive et prévisible le processus d'élaboration d'un système. Généralement, ces

cadres de travail comportent deux composantes: une liste d'artéfacts de travail et un

ensemble de flux d'activités. Les artéfacts sont des intrants ou des extrants aux

activités du cadre de travail. Le type d'artéfacts utilisés, le processus de réalisation de

ceux-ci, ainsi que leur importance dans le processus global d'élaboration sont des

éléments différenciant les diverses méthodologies sur le marché. Les trois

méthodologies les plus présentes sont:

• l'élaboration par raffinements successifs;

• le paradigm « Y -Chart »;

• la conception à base d'IP.

La plus ancienne mais encore la plus répandue est l'élaboration par raffinements

successifs. Le rôle des flux d'activités est d'organiser les différentes catégories

d'activités nécessaires pour la conception d'un système afin d'avoir une recette

répétable. Les catégories d'activités les plus typiques sont la modélisation, la

vérification, la validation, l'analyse de performance et la synthèse. Chaque

méthodologie organise différemment les activités.

1.6.1 L'élaboration par raffinements successifs

Au plus simple, l'élaboration par raffinements successifs consiste à créer le modèle

d'un système à un haut niveau de détails qui est par la suite détaillé par raffinements

successifs afin de produire une description du système pouvant être implantée [71].

Cette approche est orientée « top-down » ou de « haut vers le bas ». Typiquement, le

premier modèle du système est très orienté fonctionnel. Celui-ci abstrait tous les

aspects d'implémentation afin de cibler uniquement les exigences, les fonctions et

l'interaction entre celles-ci. Ce modèle est ensuite vérifié pour valider sa complétude

et sa cohérence. Il est finalement raffiné pour obtenir de nouveaux modèles

comportant des détails d'implémentation de plus en plus précis. L'objectif de chaque

raffinement est d'explorer divers choix de conceptions pour évaluer leurs impacts

15

(performance, pUIssance, etc.). Généralement, chaque itération de raffinement

comporte un ensemble de tâches réalisées plus ou moins en série:

• raffinement du modèle afin de créer un modèle plus détaillé;

• validation de l'alignement entre le nouveau modèle et les exigences afin de ne
pas introduire d'erreur;

• analyse des performances (temps d'exécution, puissant, etc.) du système
défini. Cette analyse est soit faite avec des méthodes d'analyse statiques
(model checking) ou dynamiques (simulation);

• analyse des résultats;

• définition de la stratégie pour la prochaine itération de raffinement.

Modélisation Fonctionnelle

Vérification

Raffinement

Validation

Analyse

Synthèse

Figure 4 Raffinements Successifs

La figure 4 illustre le flux d'activités de la méthodologie. Les diverses

implémentations de cette méthodologie identifient deux axes de raffinement:

• calcul;

• communication.

Les raffinements sur l'axe du calcul consistent à ajouter des détails tels que le temps

nécessaire pour faire les calculs, la répartition des fonctions en logiciel ou matériel, la

gestion du partage de ressources de calcul, etc. Les raffinements sur l'axe de la

communication consistent à ajouter des détails tels que le temps nécessaire pour faire

les communications, la gestion du partage des ressources de communication, les

protocoles de communication, la médiation entre les divers protocoles de

16

communication, etc. Dans [24] un raffinement selon des axes est présenté amSI

qu'une taxonomie de modèles ciblant des niveaux de détails précis sur ces axes. [30]

présente une autre taxonomie de modèles ainsi que leur position dans un flux de

travail.

Les grandes difficultés de cette approche sont d'explorer rapidement des solutions

alternatives de raffinement et de garantir que ces raffinements n'introduisent pas

d'erreurs. La première problématique est due au fait que généralement les modèles

sont biaisés par une certaine conception générale du système. Ce biais est souvent

introduit aussitôt que la modélisation initiale. Chaque raffinement introduit de

nouveaux biais. Ces biais sont quasiment inévitables, en raison du caractère « top­

down» de la méthodologie. Puisque le dernier raffinement fait doit aboutir une

spécification d'implémentation avec une architecture bien définie, il est sans contre

dit que chaque raffinement amènera le modèle à posséder des caractéristiques de cette

architecture finale. Ce biais rend difficile l'exploration de raffinement pouvant

aboutir à des architectures très différentes. Chaque raffinement contraint donc les

possibles explorations.

La deuxième problématique est due au fait que chaque raffinement nécessite de

retoucher au modèle afin d'introduire des nouveaux détails. Les raffinements peuvent

consister à ajouter que de simples annotations liées au temps ou la consommation

énergétique jusqu'à des modifications majeures nécessitant la réécriture/substitution

de certaines portions du modèle. Ce dernier cas est typique lors du passage d'un

niveau d'abstraction à un autre tel que le passage d'une modélisation au niveau d'un

protocole de communication à un niveau de détails RTL. Donc, chaque raffinement

fait que le modèle peut introduire des erreurs qui sont parfois difficiles à détecter tôt.

SystemC et SpeC sont des environnements bien adaptés à cette méthodologie.

17

1.6.2 La conception à base d'IP

À l'opposée de la méthodologie par raffinements successifs, la conception à base d'IP

utilise une approche «bottom-up » [55]. L'idée générale est de concevoir un système

par l'assemblage d'un ensemble de composantes existantes offrant des fonctionnalités

et des interfaces d'intégration standardisées. On peut facilement faire le parallèle avec

le jeu de bloc ©Lego. Chaque bloc ©Lego à une forme précise et une interface

standardisée qui permettent de le connecter à d'autres blocs ©Lego. Donc, je peux

facilement construire une entité aussi complexe fonctionnelle ment qu'un château

avec un ensemble de composantes très simples. Le développement de cette

méthodologie a grandement été poussé par le besoin de concevoir rapidement des

systèmes complexes pour répondre à des besoins du marché. Puisque typiquement,

chaque bloc a été préalablement testé, analysé et synthétisé, il est généralement facile

de concevoir un système valide et synthétisable avec les caractéristiques de

performance désirées.

Malgré la simplicité théorique de cette méthodologie, l'implémentation de celle-ci

n'est pas triviale en raison de plusieurs difficultés pragmatiques. Le support

informatisé d'une méthodologie par des outils pour la CAO est important. Il y a

plusieurs outils commerciaux sur le marché supportant l'approche, mais il n'y a pas

de standard non-propriétaire très répandu pour la description d'IP afin que ceux-ci

soit supportés par les outils. Chaque fabriquant doit en pratique prendre la décision de

rendre son IP disponible à un sous-ensemble d'outils sur le marché. De plus, il est

souvent difficile d'offrir une représentation suffisante d'un IP pour supporter le

processus de conception (simulation, test, synthèse), mais dont le détail de la

représentation ne dévoile pas les secrets de conception propriétaire du IP. Une autre

grande difficulté est qu'il n'existe pas de standard unique d'interface pour les

composantes, donc pour des raisons purement pratiques, les fabricants doivent se

limiter à supporter un nombre limité d'interface. Donc l'ensemble de ces difficultés

fait en sorte qu'il est difficile d'avoir un ensemble de composantes couvrant

l'ensemble de nos besoins pouvant être facilement interconnectés et dont le système

total peut être facilement testé et synthétisé.

18

1.6.3 Le paradigme « Y -Chart »

PWicaticn(s)

Comspo da œ

Figure 5 Y-Chart

Le paradigme « Y-Chart» est caractérisé par un flux d'activité débutant avec deux

branches indépendantes qui se rejoignent pour se terminer avec une série d'activités

[43]. Le tout forme un Y comme illustre la figure 5 d'où le nom « Y-Chart». Cette

méthodologie est basée sur l'idée qu'il est important de séparer le problème de

conception de systèmes en deux sous problèmes: (i) définir les fonctions d'un

système de matière agnostique d'une implémentation (l'application) et (ii) définir une

plateforme (matériel et logiciel) offrant un ensemble de ressources de calcul, de

communication et de stockage pouvant supporter les besoins fonctionnels. Les

exigences de l'application sont typiquement définies au moyen d'éléments de calcul

communiquant ensemble via des éléments de communication. Généralement, ce type

de définition permet d'expliciter le parallélisme pouvant être exploité dans

l'application. Il est difficile d'être plus précis, car chaque implémentation du

paradigme utilise son propre formalisme pour la portion application et plateforme,

donc nous essayons juste de peindre un portrait général de l'approche.

Une fois ces deux sous problèmes résolus, une correspondance est définie entre les

éléments de l'application et les ressources de la plateforme. Cette correspondance

établie une configuration entre la ressource de la plate forme utilisée pour

implémenter un certain élément applicatif. Une fois la correspondance faite, il est

possible d'évaluer les performances (temps d'exécution, puissance, etc.) de

19

l'implémentation des besoins sur la platefonne selon la configuration établie. Selon

les résultats obtenus, le concepteur peut revoir sa correspondance, la conception de la

platefonne et la définition des besoins. Il peut boucler dans ce flux aussi longtemps

qu'il n'a pas obtenu les résultats voulus.

Les grandes difficultés de cette méthodologie sont la séparation d'un problème en

deux modèles agnostiques l'un de l'autre et la mise en correspondance des deux

modèles. Ces deux problèmes sont intrinsèquement reliés, car généralement plus

l'éloignement des 'deux modèles est grand plus la mise en correspondance est

difficile.

Il n'est pas rare de voir cette méthodologie utilisée avec les deux autres et cela surtout

pour la portion platefonne. Originalement, le paradigme « Y -Chart » a été conçu pour

adresser la problématique de l'implémentation d'un besoin fonctionnel sur une

platefonne existante dont celle-ci pouvait accommoder les besoins de diverses

manières. Cette méthodologie pennettait donc de faciliter l'exploration de ces

diverses implémentations afin de trouver la meilleure. Pour cette raison, les

compagnies ciblant une stratégie de réutilisation de platefonnes flexibles et puissantes

pour implémenter plusieurs produits utilisent souvent cette approche. On appelle cette

approche de la conception orienté platefonne ou « platefonn-based design» [18]. La

définition de cette platefonne peut être le produit d'une conception à base d'IP ou par

raffinements successifs. Métropolis [8] est un exemple d'environnement utilisant

cette méthodologie.

1.7 Les nouveaux défis

Une autre révolution importante dans le domaine des circuits intégrés est l'intégration

d'éléments non-microélectroniques sur silicium tel que les composants micro­

optiques et micromécaniques. La conception de systèmes complexes et hétérogènes

incluant ces composantes est caractérisée par un ensemble de nouveaux problèmes

devant être résolus au niveau de la modélisation et de la vérification.

Le paradigme « Y-Chart » : une discussion

sur le développement dirigé par les

modèles

Malgré sa grande complexité si on s'attarde aux détails, le processus de

développement d'un logiciel ou d'un système embarqué peut être résumé par

deux grandes étapes :

• comprendre et décrire le besoin (le quoi);

• implanter la solution (le comment).

La communauté du logiciel s'intéresse à ces deux étapes ainsi que le passage de l'un

à l'autre depuis plusieurs années. Dans les années 70, des techniques structurées pour

aborder ces sujets ont vu le jour afin de pallier aux nombreux problèmes reliés aux

approches précédentes généralement très ad hoc [23]. Au fil des années, influencées

par l'émergence de nouveaux paradigmes tel que l'orienté objet, les techniques

structurées ont donné place aux techniques d'analyse et de conception orienté objet

[12]. Malgré les énormes efforts investis pour avancer la science de l'élaboration des

logiciels, le passage du « quoi» au « comment» reste toujours très difficile. Une

cause principale de cette difficulté est que le passage du « quoi» au « comment» se

traduit souvent par une intervention humaine qui fait l'élaboration d'artéfacts pour

implémenter le « comment» basé sur sa compréhension du « quoi ». Ce type

d'intervention est souvent long et sujet à l'erreur.

Au début des années 80, une nouvelle approche a été proposée pour rapprocher le

« quoi» du « comment », la méthode d'analyse orienté objet et de conception

récursive Shaler-Mellor [66]. Cette approche consiste à modéliser le « quoi» de

manière assez précise qu'il soit possible d'utiliser une approche par traduction

automatisée pour générer le « comment» final. Cette approche préconise aussi, basée

sur le principal de l'orthogonalité des aspects, une modélisation séparée des aspects

22

purement logiciel des aspects de contraintes architecturales, ainsi que la spécification

des « ponts» afin de faire le lien entre les deux aspects. Cette approche a été raffinée

dans les années 90 et 2000 afin de donner lieux à la conception dirigée par les

modèles [11] et l'architecture dirigée par les modèles [45]

Le paradigme « Y -Chart » développé en 1997 peut être clairement classifié comme

une approche dirigée par les modèles au même titre que la méthode Shaler-Mellor

Quoi que le travail original de [43] ne fait mention que de l'approche orienté objet et

non le travail de [66], il est difficile de croire que l'approche n'a pas été influencée

par ce dernier ou du moins par les principes véhiculés dans le milieu du logiciel grâce

à celui-ci au début de années 90.

L'article qui suit présente le paradigme «Y-Chart », un exemple d'une méthodologie

pour la conception de systèmes embarqués dirigé par les modèles. Une grande portion

de l'article est consacrée à la présentation/discussion de diverses approches pour

l'implémentation de cette méthodologie, un sujets qui n'ont pas beaucoup été traités

dans la littérature. Cet article peut-être perçu comme une extension de l'état de l'art

de cette thèse.

Les contributions principales de cet article sont:

• une présentation à caractère pédagogique de la méthodologie « Y-Chart)), des
modèles de calcul et des modèles d'architecture;

• une présentation de trois implémentations de la méthodologie « Y -Chart » afin
de faire la comparaison de leurs choix de conceptions.

Les pages suivantes contiennent une copie de l'article [50], dans son format original

(sauf la numérotation des pages), soumis à ACM Transactions on Embedded

Computing Systems.

Y-Chart Based System Design:
A Discussion on Approaches

JAM ES LAPALM E

University of Montréal, Department of Computer Science and Operations Research,

Canada

and

BART THEELEN

Eindhoven University of Technology, Department of Electrical Engineering, Netherlands

and

NIKOLAY STOIMENOV

ETH Zürich, Computer Engineering and Networks Laboratory, Switzerland

and

JEROEN VOETEN

Eindhoven University of Technology, Department of Electrical Engineering; Embedded

Systems Institute; Netherlands

and

LOTHAR THIELE

ETH Zürich, Computer Engineering and Networks Laboratory, Switzerland

and

EL MOSTAPHA ABOULHAMID

University of Montréal, Department of Computer Science and Operations Research;

Canada

Permission to make digital/hard copy of ail or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specifie permission and/or a fee.
© 2009 ACM 0000-0000/2009/0000-0001 $5.00

ACM Journal Narnc, Vol. V, No. N, M 2009, Pages 1-34.

23

2 James Lapalme et al.

Embedded systems are a source of technology that facilitates our modern lifestyle. In order to
do so, they tend to increase in complexity as weil as integrate in are day-to-day activities. To
meet the market's expectations on technological improvement, time-to-market objectives for in­
troducing innovative embedded systems are shorter than ever. Over the last decade, model-based
design has been a subject of great interest as a means to accelerate the design of embedded
systems. The Y-chart paradigm is a principal approach to model-based embedded system de­
sign. Despite the simplicity and conciseness of this paradigm, 'it has been implemented in several
different ways by various methodologies. This variety in implementation designs is due to the
particular emphasis a methodology puts on the different steps of the paradigm (application mod­
eling, platform modeling, mapping, analysis and synthesis). This article explores this variety by
examining and comparing three Y-chart based design methodologies: Metropolis, the Distributed
Operation Layer incorporating Modular Performance Analysis and the Y-chart variant of the Soft­
ware/Hardware Engineering methodology. These methodologies have been chosen because they:
coyer a broad domain of applications, have been developed on a relatively long period of time
and are representative of typical Y chart approaches. Moreover, these implementations of the
paradigm present interesting design approaches which are worth comparing.

This article (i) presents the concepts underlying the Y-chart paradigm as weil as models of com­
putation and models of architecture, (ii) discusses the three mentioned implementations, and (iii)
compares these implementations to highlight important design differences. The examination and
comparison show that the Y-chart paradigm is a very flexible framework that can be implemented
in many ways.

Categories and Subject Descriptors: C.D [Computer Systems Organization]: Modeling of
Computer Architecture, System Architectures, Systems Specification Methodology; F.l.l [Com­
putation by Abstract Deviees]: Models of Computation; B.l.2 [Performance and Reli­
ability]: Performance Analysis and Design Aids; 1.6.4 [Simulation and Modeling]: Model
Validation and Analysis; 1.6.5 [Simulation and Modeling]: Model Development-Modeling
Methodologies

General Terms: Design, Languages, Measurement, Performance, Verification
Additional Key Words and Phrases: Design-Space Exploration, Embedded Systems, Model of
Architecture, Model of Computation, Y-Chart

1. INTRODUCTION

The decreasing time-to-market for modern embedded systems encourages the indus­
try to strive for design reuse between multiple products. Moreover, the constantly
increasing consumer demands for full featured systems requires the use of high­
performance platforms. In order to cope, systems designers often consider plat­
forms such as Multi-Processor Systems-on-Chip (MPSoC) because they allow reuse
and offer high-performance. MPSoC include a combination of multiple pro cess ors
and specialized processing elements to allow the execution of multiple applications
in parallel. They also offer the flexibility to optimise aspects such as performance
and energy consumption. When elaborating a system, designers face sorne crucial
questions:

- Which platform is most suitable for realizing the requested functionality?

-How to exploit the parallelism provided by the chosen platform efficiently?

-ls the application software parallelized in a suitable way?

Figure 1 illustrates how the Y-chart paradigm introduced in [Kienhuis et al. 1997]
provides a framework for answering these questions. This work should must not

ACM Journal Narnc, Vol. V, No. N, M 2009.

24

\
\
\
\
\
\
\

-----+

\~" -.{-
, , , , , , , , , ,

Y-Chart Based System Design: A Discussion on Approaches 3

Application(s)

Mapping

Analysis

, ,

Platform
,

a....._-:;;:~~;:::::~--.----;_-.-----, ''.

"""'. ~
\ 1

~ ~ // m / //
------_//:/,/

1
1

1

\
\
1 ,

1
1

1

Fig. 1. Design-space exploration with the Y-chart paradigm

be confused with the Gajski and Kuhn Y-chart [Gajski and Kuhn 1983] which is
a taxonomy for visualizing design views as weil as design hierarchies. Modern em­
bedded systems such as mobile phones support multiple applications such as MP3
players and Internet browsers. These applications are targeted to execute on a
collection of processors (and specialized processing elements) that make up a plat­
form [Martin 1998; H. Chang and Todd 1999; Sangiovanni-Vincentelli and Martin
2001]. By defining a mapping to specify which processor (or specialized processing
elements) executes what functions of each application (allocation and binding) and
at which moments in time (scheduling), one can predict the resulting performance
of the overall solution design. The analysis of these results may give hints for im­
proving the application software, the platform design and/or the mapping. The
Y-ch art paradigm envisions to iteratively apply such improvements until finding a
solution that satisfies the end requirements. The final solution is then implemented
to produce the desired product. The Y-chart paradigm was initially introduced by
Kienhuis et al. [Kienhuis et al. 1997] in the context of dataflow-oriented systems.
It was also independently applied in the POLIS project [Balarin 1997] for control
dominated systems (e.g. automotive). Recently, it has also been used in others
control-oriented domains [Baleani et al. 2000; Sgroi et al. 2001; Zeng et al. 2006].
The work introduced by Kienhuis consisted of Stream-Based Functions for describ­
ing applications, a C++ inspired Pamela library for specifying platforms, and a
simulator called ORAS to perform the analysis part [Kienhuis 1999].

Although the key concept underlying the Y-ch art paradigm of explicitly sepa­
rating application descriptions from a platform specification is relatively simple,
methodologies like POLIS, Metropolis [Balarin et al. 2003], SPADE [Lieverse et al.
2001], and Cadence's Virtual Component Co-Design Environment [Krolikoski et al.
1999] use very different implementations of the paradigm. This article discusses the

ACM Journal Narnc, Vol. V, No. N, M 2009.

25

4 James Lapalme et al.

Y-ch art paradigm for design-space exploration of distributed embedded systems by
investigating alternative approaches to implement it. To this end, we focus on al­
ternative formalisms for specifying applications and platforms as weil as different
views on how a mapping can be described. In addition, we elaborate on the pos­
sible analysis and design-space exploration capabilities that various Y-ch art based
design methodologies support and how they assist a designer in finding a suitable
solution for a design problem. We have chosen to write this paper because there
are few papers which compare various design approaches for the implementation of
the Y-Chart paradigm.

The objective of this paper is not to offer the reader an in-deep comparison of
various implementations in order to determine ranking. The objective is rather to
present and discuss sorne interesting design approaches the authors have observed
for implementing the different steps of the Y-Chart paradigm. These approaches
will be compared in order to highlight capabilities, limitations and trade-offs. The
authors would also like to stress that great emphasis will be put on design and
not implementation of these approaches, hence issues such as performance and
scalability will not be greatly discussed. The three specific implementations of the
Y-Chart paradigm used in this paper are Metropolis, the Distributed Operation
Layer incorporating Modular Performance Analysis and the Y-chart variant of the
Software/Hardware Engineering methodology. The paper also presents the history
and key underpinning concepts of the Y-Chart paradigm in order to offer an in-deep
presentation of the paradigm. The secondary objectives of this paper are to offer
a good introduction to the Y-Chart paradigm as weil as contribute to the design
debates surrounding its implementation.

This article is organized as follows. After presenting the background of the
Y-chart paradigm in more detail, we summarize related work on various design
methodologies that implement it. Subsequently, we elaborate on formalisms for
describing applications and for specifying hardware platforms. After a detailed
overview of three particular methodologies, we give a concise comparison that high­
lights alternative approaches for implementing the Y-chart paradigm. The exami­
nation and comparison of the methodologies show that the implementation of the
Y-chart paradigm maybe done in various ways.

2. BACKGROUND

2.1 Y-Chart Based Design-Space Exploration

The Y-chart paradigm is an example of a model-driven engineering framework
[Bezivin 2005]. The crux of explicitly separating applications (functionality) from
the platform (architecture) as shown in Figure 1 leads to the following five-step
approach to minimize overall design time:

(1) Create a model of the functionality performed by each application in a fashion
that is independent of any specific platform and which expresses opportunities
for parallel execution;

(2) Create a model of the platform that captures key characteristics of the services
it can provide to applications using resources like processors, busses, memories
and power; as weil as the cost of these services in terms of area, performance,
energy, etc;

ACM Journal Narnc, Vol. V, No. N, M 2009.

26

Y-Chart 8ased System Design: A Discussion on Approaches 5

(3) Define a mapping of how the platform is deployed to execute the applications;

(4) Evaluate the quality of the parallelized applications mapped onto the platform
in terms of area, performance, energy, etc and decide on improvements for
the application software, platform design or mapping in case the results are
unsatisfactory. If so, repeat step 1, 2 or 3 respectively according to the new
insights until a solution is found that satisfies ail design requirements;

(5) Realize the solution in terms of synthesising hardware and compiling software.

Y-chart based design methodologies assist designers by providing: (i) a coherent
set of formalisms, (ii) techniques for analyzing design solutions and (iii) techniques
for searching the design space. They often offer computer aided design tools. For­
malisms refer to languages for writing down models. To efficiently exploit platforms
with multiple processing elements, it is necessary to make potential parallelism in
applications explicit. Models of Computation (MoC) are formalisms that describe
systems in terms of computation and communication entities. Computation entities
(or tasks) capture functional behaviour, whereas communication entities represent
data and control dependencies between concurrently executed tasks. Most MoCs
will help designers to make explicit potential parallelism. An application model
created in step 1 expresses the services required for executing functional behaviour.
These service requests are often characterized by the number of instructions to
execute or the amount and size of data to be communicated. The term Model of
Architecture (MoA) is sometimes used to denote a MoC that is specifically intended
for describing platforms. A platform model for step 2 specifies the services that the
resources of a platform can provide as weil as the co st of using them (cycles, energie,
etc.). Notice that although we use MoC and MoA to emphasize the pur pose of for­
malisms, Y-chart based design methodologies may actually use the same formalism
for describing both applications and platforms. A mapping in step 3 basically rep­
resents a possibly interesting match between the service requesting computation
and communication entities in applications and the service providing resources in
a platform. When a specifie combination of application models, a platform model
and a mapping yields satisfactory results with respect to the design requirements,
then step 5 realises this particular design solution using appropriate software and
hardware synthesis tools.

The Y-chart paradigm is very suitable for design problems where platforms offer
multiple resources in order to execute a particular computation. The suitability
is a consequence of the ease of defining various mappings between an application
and a platform which are defined separately. For design problems where mapping
alternatives are fairly absent, such as in telecommunication networks or traditional
control systems, applying the Y-chart paradigm can be counterproductive. The rea­
son for this is that su ch systems actually benefit from a higher degree of coupling
between the functionalities they offer and implementation of latter. Methodologies
supporting the development of su ch integrated models include SystemC based ap­
proaches [Grotker et al. 2002], System-on-Chip Environment [Gajski et al. 2000]
and Software/Hardware Engineering [Theelen et al. 2007]. These methodologies
often rely on successive refinement of the integrated model towards a synthesisable
design where a distinction between applications and the platform on which they
run is less prominent than in the Y-chart paradigm.

ACM Journal Narnc, Vol. V, No. N, M 2009.

27

6 James Lapalme et al.

2.2 Models of Computation

An interesting view on MoCs is given in [Burch et al. 2001]:
"A model of computation is a distinctive pamdigm for computation, communi­

cation, etc. For example, the Mealy machine model of computation is a pamdigm
where data is communicated via signais and ail agents opemte in lockstep (we use
"agent" as a generic term that includes both hardware circuits and software pm­
cesses). The Kahn Pmcess Network model is a pamdigm where data carrying tokens
pmvide communication and agents opemte asynchmnously with each other (but co­
ordinate their computation by passing and receiving tokens). Different pamdigms
can give quite different views on the nature of computation and communication.
In a large system, different subsystems can often be more natumlly designed and
understood using different models of computation. "

Having different views on the nature of computation and communication implies
that modeling an application with various MoCs may result in models that differ
significantly in the amount of details that is expressed about computation and
computation. In the context of the Y-chart paradigm, MoCs that explicitly express
(potential) concurrency between computations are of special interest. We categorize
MoCs as control-oriented, dataflow-oriented and process-oriented:

-Contml-oTiented MoCs consider systems as automata, which consist of states
and transitions between these states. A state captures a certain status reachable
by executing a (collection of) computation(s), while transitions describe possible
changes in this status (i.e., the execution steps). Although automata are mostly
suited for describing pure sequential systems, sorne control-oriented MoCs such
as Communicating Finite State Machines (CFSM) [Brand and Zafiropulo 1983]
and Co-design Finite State Machine (CDFSM) [Balarin 1997] allow describing a
system as a collection of concurrent state machines that can communicate with
each other.

-Datafiow-oTiented MoCs describe systems in terms of tasks (actors or processes),
channels and tokens. A task is a computation entity that can potentially be
executed in parallel with other tasks. Tasks communicate with each other by
exchanging tokens through channels. Such a token denotes an indivisible unit of
information. The channels often include FIFO buffers to enable the sending and
receiving tasks to run at a different rate, while successively communicated tokens
are processed in-order.

-Pmcess-oTiented MoCs use pro cesses and events as major modeling entities. A
process represents a computation entity that may be executed in parallel with
other processes. Pro cesses can synchronise based on communication events,
which can for example be in terms of signaIs or passing messages.

It is sometimes possible to express a MoC of one type by using a MoC of another,
however such alternative representations are not always very intuitive. Such an ex­
ample is the process-oriented MoC of SystemC [Grotker et al. 2002] that can express
various control-oriented, dataflow-oriented and other process-oriented MoCs. An­
other such example is use of certain types of automata (i.e., control-oriented MoCs)
to formally express the semantics of dataflow- and process-oriented MoCs such as
Synchronous Dataflow [Lee and Messerschmitt 1987; Ghamarian 2008] and the Par-

ACM Journal Narnc, Vol. V, No. N, M 2009.

28

l

FmUe Slate Ma­
chines

DJscrcle-Tunc
Mnrlc.ovChams

Tuncd PrubablhstÎc
Sy:;lems

Synchronous
Dalallow

Cyclo-StallC
Dmallow

Sccnario-Awarc
Dalallow

5 Boolean Dallillow

~ g
~

KLlhnProccss
Nclworks

Dynamlc DalanoW

RCoiCIlveProccss
Nclworks

Real-Tlme Cakulus

E~lercl

CommuOLcaling
SequcnlLaI Pmc-

CommuOLcaling
ConellITL'Ol Systcms

Melmpohs Mela
Model

Timcd Automalll

Y-Chart Based System Design: A Discussion on Approaches

IHopçroll Md
Uliman 1979]

IChllng 1967J

[Alllr 1991]

[Lee and Mes~cr­
~chmil119871

[Bllsenet al
1995}

IThcclenel al
2006)

[Buck 1993)

[Kahn 1974J

[Buck 1993)

[Gcllenllnd
Ba~ten 2004)

[Thîeleellli
20001

[BOUsSUlOllind
Sunune 1991)

[Hollrc 1978)

[Milncr1989J

[Balarmetal
2(03)

[Alur and DIli
1994J

Asynchronous

Asynehrunou~

Asynehronous

A$ynchronou~

Asynchronous

Asynchronous

Asynchrunuu~

Synchronous

Asynchronom

Asynchronous

Asynchronous

Asynchronou~

(lwolevels)

Asynchrunous flFO
bulTcred,loken-drlven

Asynehronous FlFO
huffered, loken-driven

A~ynehronou$ FlFO
buffercd,loken-dnven

Asynchrunous flFO
huffercd, loken-driven

Asynchrunous AFO
huffercd,loken-drlven

Asynchronous FlFO
huffered, loken-dri\'en

Asyncluunou'i AFO
huffered, lokcn-drl\'cn

and synchnmoU! cunlrol

AsynchronouJ (FlFO)
huffered,datll-driven

Inlegcr-valucd·

DL~LTclcrcal­

valucd distnhu­
tians

DISCfclcrcal­
value.:! dLslnbu-

lnlcger-vnlucd·,
dllCfclcmlcger­
vlllued distribu-

lions·

Integcr-valucd'"

Discrclcrcal­
\'1l1ued distribu­

tions

Continuous

Unhuffereli asynchronoU! Dl~crelc inleger
slgnllb vlllucd

Synchronous mcs\age
passing

Synchronous message
passmg

Unhulfercrl asynchronous DISCfcle rcal­
valued

Synchronous message
passmg

Synchronolls message
passmg

Dl~crelerclll­

valued or
conlmuous

DÎscrclerea1-
valucd

+'

DL~crcle dlSlnhuuons

Discrclc dlStnbutions
on hChaVlOf and lune

Discrclc dlllnbUlions
onlunc·

DIScrc:te dlStnhutîous
on hchavlOr and lime

+'

DlScrcte dio;lnbu!ionJ
on behavlOr and dl\­
crele or continuou~
di'ilribullODSlune olo

DL~crctc dIStributions
on hchavîor and lune

Table 1. Comparing some example models of computation

7

allel Object-Oriented Specification Language [Bokhoven 2002]. Sorne research has
been done on unifying various MoCs. Such unification is important wh en defining
subsystems with different MoCs. Examples of unifying MoCs are the Tagged Signal
Model Framework (TSM) [Lee and Sangiovanni-Vincentelli 1998] and the Ptolemy
Project [Brooks et al. 2005].

Table l gives an overview of a number of widely used MoCs. It summarize their
approach to concurrency, communication and time. These aspects are essential for
modeling distributed embedded system. A * indicates that the aspect is supported
by sorne variant of the MoC. The table also indicates whether the abstraction
mechanisms of explicit non-determinism (i.e., not implied by concurrency but by
sorne other language construct) and stochasticity are supported. The last column
gives sorne impression to what extend the basic form of a MoC is analytically
tractable. Comparing MoCs on this last aspect is very difficult and the results in
Table l should therefore be taken with precaution. A -- indicates that (nearly)
ail properties are undecidable at design time. In case sorne design-time analysis
is possible, such as structural consistency checks, a - is used. Conversely, ++

ACM Journal Narnc, Vol. V, No. N, M 2009.

29

8 James Lapalme et al.

indicates that (nearly) ail models expressed in the considered MoC are fully design­
time analyzable, both for correctness and performance. A + expresses that not
ail but many models are fully analyzable. A problem could for example be the
implication of an infinite state space by certain models. A 0 denotes analytical
tractability between - and +.
2.3 Models of Architecture

As the previous section suggests, the concept of MoCs is very mature. Conversely,
the concept of MoAs has only started to emerge in the last decade. Although there
exists no formai definition of the term, two major views on MoAs can be identified:

(1) Describe platform components using existing MoCs;

(2) Specify platforms using dedicated formalisms.

The earliest uses of the first approach are Cadence Alta VCC [Martin 1998] and
POLIS. Others examples are SystemC-based solutions, Metropolis [Balarin et al.
2001] and the automated design fiow of [Stuijk 2007]. Each of these uses the same
modeling constructs to define applications and platform models.

Dedicated formalisms for specifying platforms are also known as Architecture De­
scription Languages (ADL) [Medvidovic and Taylor 2000; Mishra and Dutt 2008].
It is very difficult to categorize ADLs (or MaAs) in a manner similar to Table 1
since very few ADLs focus on the same platform types or on the same platform
details. [Qin and Malik 2002] presents major contributions for ADLs to describe
general-purpose processors. [Gries and Keutzer 2005] presents Mescal, an ADL
focused on Application-Specific Instruction-set Processors (ASIP). The IP-XACT
Standard (www.spiritconsortium.org) [Kruijtzer et al. 2008] is an example of an
ADL that focuses on IP-based platforms. Other examples are proprietary lan­
guages that configure certain template descriptions in another MoA or MoC. These
typically require special compilers to expand (generate) a full specification. Exam­
pies of this approach are Colif [Cesario et al. 2001] and the XML specifications for
the tool in [Theelen 2007].

ln the context of distributed embedded systems, many researchers recognized
processing (e.g., general-purpose processors, accelerators and dedicated controllers),
communication (e.g., busses, network-on-chip, and i/o interfaces) and storage (e.g.,
memories and hard disks) resources as elements of a MoA. The need for storage
resources originates from using a certain processing or communication resource,
which means that storage resources only provide a service to applications via these
resources. Another indirectly provided resource is power (or energy), w hich is
consumed by any of the other resource types. Figure 2 illustrates the hierar­
chical relation between the services that resources provide to each other and to
the service requesting computations and communications of applications through
mappings. Notice that sharing a processing, communication and storage resource
requires scheduling the moments at which each ofthe involved service requesting en­
tities accesses this resource. Depending on the exact evaluation criteria a designer
is interested in (area, performance, energy, etc), a MoA should allow describing
the indicated four resource types, thereby taking the service providing relations be­
tween resource types and potential contention due to resource sharing into account.
Notice that the service providing relations between the different resources are in

ACM Journal Narnc, Vol. V, No. N, M 2009.

30

Y-Chart 8ased System Design: A Discussion on Approaches 9

Mapping

Fig. 2. Hierarchy of providing services between resources in platforms to applications

reality realized by physical connections (in hardware). A MoA may or may not re­
quire specifying the physical architecture of how the resources are interconnected,
see also Section 4.2. The next section discusses sorne examples of special languages
for describing the services provided by platforms.

3. METHODOLOGIES AND LANGUAGES

The Y-chart paradigm has been integrated into various design methodologies. The
earliest weil known implementations are Cadence VCC and POLIS. Other well­
known examples include SPADE [Lieverse et al. 2001], Daedalus[Thompson et al.
2007] and SymTA/s [Hamann et al. 2004]. This section presents three implemen­
tations that will be used for design comparison. This particular selection was
made because each implementation proposes sorne interesting design approaches.
Metropolis differentiates itself from the others by its strict adaption of the Y-Chart
paradigm. Moreover, it uses an interesting combination of informai specification
for models and formai specifications for mappings. The Y-chart variant of the
Software/Hardware Engineering methodology differentiates itself by adapting an
existing methodology in order to incorporate the Y-Chart paradigm. Moreover, it
uses a single formai language for both modeling and mappings. The Distributed
Operation Layer incorporating Modular Performance Analysis differentiates itself
by using Modular Performance Analysis which permits high-level performance anal­
ysis.

3.1 Metropolis

The Metropolis project [Balarin et al. 2003] has been running since 1999 and is a
joint initiative of the Gigascale Silicon Research Center, the University of California
and the Cadence Berkeley Laboratories. The project focuses on the modeling and
the design of systems using a platform-based approach, as weil as on the integration

ACM Journal Name, Vol. V, No. N, M 2009.

31

10 James Lapalme et al.

process X
nameC

(onstra;nt { 1tl Ge beg(PO. M,write)-> lbeg(Pl. M.write) u end(PO, M,write) M
beg(Pl. M.wr;te)-> !beg(PO, M.write) u end(pl, M,wr;te»;}

constra;nt { 1tl Ge beg(PO, pO.foo) <-> beg(TI, CPU.execute(SO» &&
end(PO, PO.foo) <-> end(Tl, (Pu.execute(SO» &&
beg(pO, M.write) <-> beg(TI, cpu.write) &.

end{Pl. p1.foo) <-> endCT2. CPU.execute(SO» &&

end(c, (.foo) <-> end(T3, CPU.execute(50» &&
...)}

Fig. 3. Metropolis example (application model, platform model and mapping)

of multiple MoC in order to describe heterogeneous systems at various abstraction
levels [Sgroi et al. 2001].

The primary objective of Metropolis is to enable the development of design flows
for different application domains. To achieve this objective, Metropolis promotes
separation of concerns and platform-based design [Pinto 2004]. It ·strongly relies
on the Y-chart paradigm and therefore follows its five step design approach ex­
plicitly. Metropolis advocates the concept of reuse by explicitly decoupling the
specification of independent aspects over a set of abstraction levels. Other research
has focused on a compositional modeling methodology around Metropolis [Goessler
and SangiQvanni-Vincentelli 2002]. The Metropolis framework [Davare et al. 2007]
consists of three main elements:

-An infrastructure which encompasses the Metropolis Meta-Model formalism, a
compiler and an Abstract Syntax Tree specification;

-A Meta-Model Library for MoCs and architecture platforms;

-A tool set for simulation, verification and synthesis.

The Metropolis-Meta-Model (MMM) forms the core of Metropolis. It is a Java
inspired language that adds the necessary semantic and syntactical elements for
system design (i.e., processes, communication channels, ports, etc.). MMM sup­
ports sorne novel features such as denotational formulas in Linear-Temporal Logic
(LTL) and the predicate Logic of Constraints (LOC)[Balarin et al. 2001; Burch
et al. 2001]. Moreover, the event model of MMM is based on the Tagged Signal
Model Framework (TSM) [Lee and Sangiovanni-Vincentelli 1998]. Metropolis is not
a formaI method in the sense that it is not based on strict mathematical definitions.
However, portions of the MMM language such as the LTL and LOC expressions
are formaI. These can be verified with model checking technologies [Yang et al.
2006]. Having said this, the MMM language does have precise semantics for mod­
eling and execution. To integrate formai methods into Metropolis, mechanisms are
incorporated in MMM that enable tools to process suitable subsets of a design. The
work in [Densmore 2004a] is an example of this principle for control graph analysis.

ACM Journal Name, Vol. V, No. N, M 2009.

32

Y-Chart Based System Design: A Discussion on Approaches 11

Metropolis has been applied in many academic and industrial case studies ranging
over various domains such as automotive, wireless multimedia, analog/mixed sig­
nal systems and micro-processor design [Sgroi et al. 2001; Meyerowitz 2004; Zeng
et al. 2006]. Similar to SystemC-based methodologies, Metropolis sc ales to fairly
complex systems.

3.1.1 Application Modeling. Conforming to the Y-chart paradigm, Metropolis
promotes developing application models which are called functional descriptions. As
mentioned previously, Metropolis encourages a plat for m- based design fiow, hence
an application model is considered as a platform (functional platform) with a high
degree of abstraction [Pinto 2004]. In the Metropolis literature, the term denota­
tional definition is often used for functional descriptions. The MMM language is
based on the TSM denotational framework which has been proven to support a
vast amount of MoCs [Lee and Sangiovanni-Vincentelli 1998]. In [Densmore et al.
2006], it is suggested that Metropolis can support any (non-stochastic) MoC.

The basic concepts of MMM [Balarin et al. 2003] are processes, interfaces, ports,
events and media. A process represents a sequential program and is also called a
thread. A process communicates with its environment through one or more ports.
A port is specified with an interface, which refers to a communication contract for
exchanging information with the environment. Interfaces are implemented with
media. Once a network of connected pro cesses and media is defined, like the exam­
pie shown in Figure 3, the behavior of the network can be specified with the concept
of events, which represent specific behavioral actions in the application model.

Once an application model is completed, it is possible to add various constraint
specifications by using LTL and LOC expressions to it as illustrated in Figure 3.
LTL formulas specify coordination constraints between processes. LOC formulas
describe performance constraints. The Metropolis framework provides a library of
functional platforms elements in YAPI [Kock et al. 2000] and TTL [Pinto 2004].
Metropolis also offers sorne support for using non-determinism as an abstraction
mechanism. Two constructs exist; non-determinate variable assignment and a lim­
ited form of non-deterministic code execution.

3.1.2 PlatfoTm Modeling. As indicated, Metropolis describes application and
platform models both as platform models in MMM but at different levels of ab­
straction. Where application models are concerned with the definition of functional
aspects, they do not define any resource utilization aspects. Resource utilization
aspects are expressed in platform models. Nevertheless, platform models are de­
fined with the same primitives as application models (processes, interfaces, ports,
media and events) capturing the functionality they offer and the cost (efficiency)
of that functionality. Platform functionalities are modeled as services (methods)
defined in interfaces. The cost of a service is modeled by associating events with
the various portions of the implementation of a service and then annotating each
event with a value that represents its cost. With the language primitives of MMM,
any resource type can in theory be modeled. References [Balarin et al. 2003; Pinto
2004; Meyerowitz 2004] illustrate the modeling of processor, communication and
storage resources. The way in which resources are interconnected must be modeled
explicitly. To take aspects such as scheduling and power consumption into account,

ACM Journal Name, Vol. V, No. N, M 2009.

33

12 James Lapalme et al.

the concept of quantity managers is introduced. Quantity managers are responsible
for the assignment of tags to events and for the ordering of events. Figure 3 shows
an example of a platform composed of a single processor, a bus and a memory. The
computation resources of the processor are modeled explicitly using tasks.

An important aspect of the platform-based design approach followed by Metropo­
lis is the ability to refine high-Ievel platform models into more detailed ones. The
MMM language supports this by providing primitives for declaratively specifying
that a particular model is a refinement of an element or a group of elements of
another model. The primitives also enable to specify in detail how the original
model can be replaced by the more detailed model to achieve refinement [Balarin
et al. 2003; Densmore et al. 2004; Densmore 2004b; 2004a]. The latter reference
discusses a formaI approach to verify that a refinement preserves certain properties
of the original model.

3.1.3 Mapping. Metropolis offers a novel way of mapping an application model
to a platform model based on formaI synchronization expressions. LTL is used to
specify these expressions. Platform models may contain non-determined values,
such as the memory address of a variable or the priority of a task. These non­
determined values are fixed by means of value mappings in the synchronization
expressions. Hence, it is possible to map a value from an application model to a
value in the platform model during synchronization. Figure 3 shows an example of
mapping expressions.

3.1.4 Evaluation (Analysis and Exploration). The primary vehicle for analysis
in Metropolis is simulation. Two simulation tools are available for MMM mod­
els, which respectively generate SystemC or pure C++ specifications for simulation
purposes. The compiler provided with Metropolis is also capable of generating mon­
itors in order to verify LTL and LOC expressions during simulation [Balarin et al.
2003; Yang et al. 2006]. The work in [Chen et al. 2005] discusses a simulation-based
deadlock analysis technique. Any quantities that have been explicitly added to a
model can be traced and analyzed aftel- a simulation. Instead of using simulation,
parts of an MMM model can be formally verified using model checkers. Metropolis
offers a tool to produce PROMELA code from an LTL expression, which can then
be verified using SPIN [Yang et al. 2006]. The framework also provides a LOC
expression checker [Balarin et al. 2003].

The design-space exploration step of the Y-chart paradigm is not automated in
Metropolis [Zeng et al. 2006]. Designers must manually create alternative platform
models and mappings for an application model and use the supported analysis
techniques for evaluation. The work in [Balarin et al. 2003] presents a quasi-static
scheduling technique in order to schedule a concurrent specification on shared re­
sources. One may consider that the technique allows automatic design-space ex­
ploration for shared resource utilisation.

3.2 Distributed Operation Layer and Modular Performance Analysis

The design framework DOL (Distributed Operation Layer) as described in [Thiele
et al. 2007] closely follows the Y-Chart paradigm of Figure 1. It is targeted to­
wards the mapping of applications to multi-processors on a chip (MPSoC). The
approach is based on a very early implementation of the Y-chart paradigm pre-

ACM Journal Narnc, Vol. V, No. N, M 2009.

34

Y-Chart 8ased System Design: A Discussion on Approaches 13

Fig. 4. Y-chart based optimization cycle in the DOL environment

sented in [Teich et al. 1998]. This latter approach uses graph structures to formally
specify the application and target platform. The mapping is also modeled as a
graph, which captures not only the binding information, but also scheduling. Only
the feedback-edges regarding the improvement of the platform and mapping shown
in Figure 1 are supported by [Teich et al. 1998], where the necessary optimizations
are performed automatically based on multi-objective evolutionary algorithms. The
DOL environment, see Figure 4, applies the same principle but with a much more
refined application/platform modeling and analysis approach. In particular, the ap­
plication is specified with a set of communicating tasks, where the communication
structure is provided as an XML specification. The individual tasks are sequential
programs that are given in a programming language for which an appropriate com­
piler is available; the API of DOL only provides the necessary semantical interfaces
to the communication channels. In a similar way, the underlying hardware platform
and its capabilities are described by an annotated graph structure, including pro­
cessing and memory resources and their interconnection through communication
resources like buses and networks. The mapping, again specified by means of an
XML specification, relates tasks to computing resources and memories. It also links
tasks to paths on the communication platform and specifies the applied resource
sharing mechanism.

The analysis is performed using a hierarchy of various methods. The fastest eval­
uation of a system configuration is do ne using the Modular Performance Analysis
(MPA) framework [Chakraborty et al. 2003; Wandeler et al. 2006], a compositional
performance analysis method for heterogeneous distributed embedded systems. In
addition, the necessary parameters are determined using a simulation-based profil­
ing of the application and the underlying hardware platform. The multi-objective
optimization is based on evolutionary algorithms and uses the PISA environment

ACM Journal Name, Vol. V, No. N, M 2009.

35

14 James Lapalme et al.

[Bleuler et al. 2003] that is publicly available. The mapping information is used to
generate highly efficient code for the target platform using a dedicated generation
of the hardware-dependent software including calls to the underlying operating sys­
tem. Finally, a trace-based simulation can be used to determine the extra-functional
properties of mapped applications with high accuracy.

We now give a short overview of the theoretical core underlying the design-space
exploration framework of MPA. It is a very efficient method due to the high-level
of abstraction of the models that it uses. MPA is an analytical approach based on
the Real-Time Calculus [Thiele et al. 2000], which has its foundations in methods
for worst-case analysis of communication networks (Network Calculus) [Cruz 1991].
MPA is an example of exact performance analysis approaches that can determine
guaranteed performance limits. While these techniques can compute hard perfor­
mance bounds, they abstract from the complex interactions and state dependent
behavior in the system. MPA uses a unifying model for the representation of dif­
ferent event patterns in the form of arrivai curves known from the communication
domain [Cruz 1991]. In addition, it uses a similar concept called service curves
to represent the resources and their computational or communication capabilities,
which allows MPA to model complex hierarchical scheduling schemes in distributed
embedded systems. The detailed modeling of the capabilities of the shared re­
sources and the event streams can lead to highly accurate performance results, see
for example [Chakraborty et al. 2003].

An MPA model is a performance network of components, where application tasks
are mapped to computation and communication resources. One can differentiate
between three main entities: event streams represented as arrivai curves, resource
streams represented as service curves, and application tasks represented as pro cess­
ing components. Application tasks are activated by event streams which they pro­
cess by considering the interaction of the event streams with the resource streams.
On a higher level, the model is a network of components that communicate with
each other through event interfaces. Performance metrics for the whole applica­
tion are computed by combining the behavior of the individual components. This
modularity aspect achieves short analysis times even for large systems. Typical
performance metrics computed with MPA are upper and lower bounds on buffer
levels, end-to-end delays expèrienced by events, and the number of events that can
be processed in a time unit (throughput). MPA supports refinement of the ele­
ments of a performance networ k with the extension Real-Time Interfaces [Thiele
et al. 2006]. It promotes interface-based design of embedded systems with the
concept of adaptive interfaces.

The method has been implemented as a Matlab toolbox [Wandeler and Thiele
2006b] where a system is described as a Matlab script file. The toolbox implements
the Min-Plus and Max-Plus algebraic operators and provides the facilities to repre­
sent the arrivai and service curves, and the processing components. It also contains
a library of predefined components that assist the designer in building a system per­
formance mode!. Different. case studies have been performed, covering for example
car infotainment systems, MPSoC platforms for multimedia applications, digital
signal processing systems and network processors.

ACM Journal Narnc, Vol. V, No. N, M 2009.

36

Y-Chart Based System Design: A Discussion on Approaches

5,
VHR~~~~(\
v----r~~

15

Fig. 5. Task graph description of an application processing two MPEG2 video streams in parallel

3.2.1 Application Modeling. Modeling an application in DOL-MPA involves
capturing the application tasks and the event flows between them. The application
task model provides information about the processing semantics of the tasks. An
example of an application task graph for parallel decoding of two MPEG2 video
streams is shown in Figure 5.

The goal of MPA is to analyse the timing behavior of an application considering a
large class of possible event flow characteristics. Traditionally, the timing behavior
of event flows is modeled as being periodic or periodic with jitter. Rowever, such
abstract representations cannot adequately capture the complex timing behavior
of event flows in a highly parallel or distributed system. Rence, a more powerful
abstraction is needed. Variability Characterization Curves (VaCC) substantially
generalise the traditional representations and can express any possible timing be­
havior of an event stream. Event streams in MPA are captured by a special kind
of VaCCs, denoted as arrivaI curves. They provide upper and lower bounds on the
number of events in any time interval. For an event stream a, there are at most
aU(~) and at least al(~) events within any time interval [t, t +~) for ail moments
t. Figure 6 illustrates how arrivaI curves bound the behavior of a periodic event
stream. Information about the arrivaI curves representing the interactions with the
environment can come from several sources. Firstly, they can be computed ana­
Iytically if an interaction has sorne pattern such as periodic, periodic with jitter,
sporadic, etc. In case that they are unknown, they can be computed as an envelope
of a set of recorded traces. Finally, they can be derived from specifications like UML
sequence diagrams that describe the behavior of the event-generating devices.

t
ti

Periodic event stream

t t t
ti+1 --T

ti+1 - ti = T

number
of events

Abstract representation
with arrivai curves

T 2T

Fig. 6. Modeling periodic event streams in MPA

ACM Journal Narnc, Vol. V, No. N, M 2009.

37

16 James Lapalme et al.

communication network

0 processor D hw_channel ,.
port

0 rncmory 0 palh node conneclion

Fig. 7. Platform model in the DOL environment

For an accurate performance analysis, it is vital that the resource demands asso­
ciated to individual events are modeled precisely. To this end, MPA supports the
conversion between event-based arrivai curves and resource-based arrivai curves.
Besides simple models based on best-case and worst-case behavior, automata can
be used to model arrivai patterns of different event types and the corresponding
resource requirements [Wandeler and Thiele 2007]. A similar approach is used in
MPA to model state-dependent workload demands as introduced by cache memories
[Chakraborty et al. 2007].

3.2.2 PlatfoTm Modeling. The DOL environment extracts non-functional prop­
erties of the platform and builds abstract models of the resource services offered
by the platform based on the MPA model. More specifically, MPA models the
resource capabilities of ail computation and communication resources and it can
provide information on how these capabilities are affected by the workload of tasks
and communications. Resources in MPA are modeled explicitly and therefore con­
sidered 'first class citizens' of the approach. Figure 7 shows a simple platform
specification in the DOL environment.

Resource capabilities, like event streams, can be described with VCCs. The
service curves fJU(b.) and fJl(b.) provide upper and lower bounds on a service fJ
within any time interval [t, t + b.) for ail moments t. The unit of service depends on
the kind of resource, for example instructions or cycles for computation, and bytes
for communication. The service curves of a resource can be determined using data
sheets, analytically derived properties, or by measurements. Figure 8 illustrates the
service curves that bound the service offered to a single task by a single slot in a
Time Division Multiple Access (TDMA) resource. Using service curves, MPA can
model any arbitrarily complex resource capabilities and is able to model arbitrary
scheduling hierarchies.

3.2.3 Mapping. In a real-time system, an incoming event stream is usually pro­
cessed by a set of Hardware/Software components. After the mapping of tasks to
computing resources and streams to communication paths in the DOL environment,
a performance model of the system is determined. Based on the MPA method, this
performance model is a network of performance components where each of them has
as inputs abstract event streams and abstract resource streams. More specifically, a

ACM Journal Narnc, Vol. V, No. N, M 2009.

38

Y-Chart 8ased System Design: A Discussion on Approaches

Service
offered to Task 1

in a TOMA schedule

b - bandwidth

T t

Abstract representation
of the offered service
with service curves

~" ri' b't
/ / T 2T ~

't T-'t

Fig. 8. Modeling a TDMA service in MPA

17

performance component defines equations for functional transformations of arrivaI
and service curves where the actual equations depend on the processing semantics
of the modeled task. In other words, the abstract resource streams interact with the
abstract event streams in a performance component. This performance component
produces as outputs a transformed abstract event stream and a remaining abstract
resource stream that is available to other tasks mapped onto the same resource.
The mapping and the respective MPA performance network of the task graph from
Figure 5 are shown in Figure 9.

Given a specifie mapping, MPA also needs information about the workloads in­
duced by the mapped application tasks running on the specifie resource. This
information is needed by the performance components for the transformations of
arrivaI and service curves. Usually, it represents upper and lower bounds on the
service needed by the component to process one, two, and more consecutive events
from the incoming event stream. Such information can come from cycle-accurate
simulations of the application tasks or from static analysis of the program code and
the chosen hardware architecture [Wilhelm et al. 2008], see also Figure 4.

If several tasks are mapped to the same resource, a resource sharing policy needs
to be determined. Scheduling in MPA is modeled by the way performance compo­
nents are interconnected. Supported scheduling policies are preemptive and non­
preemptive fixed priority, TDMA, earliest deadline first (EDF), generalised proces­
sor sharing (GPS), first-in first-out (FIFO), hierarchical scheduling, and different
server strategies [Wandeler and Thiele 2006a]. An example for modeling of pre­
emptive fixed priority scheduling are tasks P2 and P4 in Figure 9 sharing CPU2.

Network
Interface

MPEG2 Decoder MPSoC system
for two video streams

Video
Interface

Fig. 9. Specifying a mapping configuration as an MPA performance network

ACM Journal Narnc, Vol. V, No. N, M 2009.

39

18 James Lapalme et al.

3.2.4 Evaluation (Analysis and Exploration). The DOL design environ ment
closely follows the Y-chart approach. The exploration is done using a multi­
objective evolutionary optimization approach using the PISA platform [Bleuler
et al. 2003]. In terms of performance estimation, DOL is not bound to a par­
ticular method. It can use analytical methods such as MPA or simulation-based
ones such as functional and trace-based, see Figure 4.

MPA can determine the characterisations of ail event and resource streams in
the network of performance components using the abstract characterisations of
the workloads and the input event and resource streams. From the computed
arrivai and service curves, MPA deducts information about the utilisations of the
resources, the end-to-end delays between any two components, the necessary buffer
spaces for event and packet queues, and the throughput. The modularity, efficiency
and scalability of the MPA models makes the method highly suit able for quickly
analysing a large number of different mappings and resource sharing policies during
design space exploration. Extension of applications by adding tasks is modeled by
simply adding components in the performance network. A single performance model
can include different resource sharing strategies without affecting the accuracy of
the performance analysis results.

MPA provides hard upper and lower bounds on the computed performance re­
sults. However, it is a worst-case approach that covers ail possible corner cases
regardless of their probability of occurring. Even if the results can be very close to
simulation results [Chakraborty et al. 2003], in sorne cases a designer is interested in
the average case behavior of a distributed embedded system. In this sense, MPA is a
complementary method to other simulation-based or stochastic analysis techniques.
It is able to analyse the timing non-determinism of complex distributed embedded
systems while providing hard guarantees on the resulting end-to-end behavior.

3.3 Software/Hardware Engineering

Originally introduced in [Putten and Voeten 1997], Software/Hardware Engineering
(SHE) evolved into an industrial-strength system-level design methodology accom­
panying many methods, techniques and tools for the design, analysis and synthesis
of distributed real-time hardware/software systems [Theelen et al. 2007]. SHE
considers the Y-chart paradigm as a way to specialise its generic model-driven
engineering framework to facilitate a flexible approach towards multi-processor de­
sign for streaming multi-media applications [Wijk et al. 2003; Florescu et al. 2007;
Theelen 2008]. Because the provided methods, techniques and tools are not specif­
ically targeted to the Y-chart paradigm, SHE is more generally applicable than
methodologies that enforce a separation between application and platform models.

SHE is built around the Par ail el Object-Oriented Specification Language
(POOSL), which is a very expressive general-purpose modeling language with a
process-algebraic formai semantics [Bokhoven 2002]. It includes powerful primi­
tives for intuitively describing (hierarchical) structure, concurrency, communica­
tion, data, time and stochasticity. POOSL distinguishes three types of object
classes originating from the idea of modeling active and passive system components
separately. Data objects represent passive information that is generated, communi­
cated, processed, etc. by active components, which are modeled with pro cesses and
clusters. Processes represent basic active components that may initiate both se-

ACM Journal Narnc, Vol. V, No. N, M 2009.

40

Y-Chart Based System Design: A Discussion on Approaches

Sjoople'SQEAppliealjoQ

Cl'SpFChaonel C2'SpEChannei

OutPort;-----, ln Oui ;r-----, InPort OutPort;r-----, ln Oui :r-----1 InPort

Mapping

.1.

Mapplng

OSl'Scheduler

Resource

1
Scheduler

Pl'ProcessorVojt

Mammy Power

Mapping Mapplng

Mapping

ArbjterSchedyler

'.1.
1 1

1
1
1

processes
........ 1\

.... "" 1 \
Resource 1 \ '-_...,...._---J " '-

l ,

r---~--~/ r---'.~--~
Scheduler

Bys'Communiça'jooUnit
Buffermernory'

~

Memory I-----i Access
Powet Power

, \

',\
.\

l

channels

DualprocessorSyslem'Platfoan

Mapplng Mappmg

.1.

1

Mapping

OS2'$cheduler

Resouroo

1
Scheduler

P2'ProcessorUnj'

Memory lT1 Ac:c:ess
Power Power

'-----'j'--'

Output,

~
'EnergySource

19

Fig. 10. Instances of process and cluster class modeling patterns capturing a streaming system

quential and concurrent behavior. Clusters allow describing hierarchical structures
between active components (processes and clusters). Processes and clusters can
communicate with each other by passing messages over channels through ports.
Such messages may include data objects to specify the exchange of information.
Figure 10 illustrates a structure of active components in POOSL, where a simple
application with 3 tasks (actors) is mapped onto a battery-powered dual-processor
platform.

The mathematically defined semantics of POOSL is the crux in supporting

-Interactive simulation of models [Geilen 2002; Bokhoven 2002] to facilitate vali­
dation of whether a model adequately represents the system under design;

-Mo deI checking and simulation-based analysis of functional correctness [Geilen
2002] and performance [Theelen 2004] like absence of deadlock and throughput;

-Generation of real-time control software [Huang 2005], which relies on a step-wise
refinement approach that guarantees preservation of functionality and timing.

Combining the Y-chart paradigm with SHE currently exploits only the first two
aspects and hence does not cover the step of synthesising the final design solution
(see also Section 2.1). The Y-chart variant of SHE is primarily based on modeling
patterns. Modeling patterns are parameterised model components for capturing
typical aspects of systems in a certain modeling language [Theelen 2004]. In this
case, it refers to a collection of template data, process and cluster classes targeted
to the application domain of streaming multi-processor systems. Several modeling
patterns have been developed to ease constructing performance models for Y-chart
based design-space exploration. Hence, these modeling patterns cover both ap­
plication modeling and platform modeling. A specialised tool called PREMADONA

ACM Journal Narnc, Vol. V, No. N, M 2009.

41

20 James Lapalme et al.

automates constructing POOSL models by properly instantiating the modeling pat­
terns from an MPSoC specification given in XML [Theelen 2008].

SHE has been applied in many academic and industrial case studies [Theelen
et al. 2007] ranging from communication protocols, internet routers, television sys­
tems, car-infotainment systems, network-on-chip based multi-processors, printer
systems up to wafer scanners. Although model checking has proven to be feasible
for relatively small systems, most case studies relied on simulation-based analysis.
The simulation tools of SHE have shown to be competitive with tools like OPNET
and SystemC in terms of simulation speed. Analysing models with over 106 parallel
processes demonstrated scalability to systems of industrial complexity.

3.3.1 Application Modeling. Modeling applications following the Y-chart vari­
ant of SHE is based on capturing service requesting behaviors, such as those shown
in Figure 2, in POOSL. Because of its expressive power, any MoC can in essence be
represented, even when including ail functional details. However, considering the
Y-chart 's focus on performance analysis, expressing applications in POOSL urges
to abstract from functional details, which conforms to SHE's strategy. Relevant
aspects like the structure of how computations interact with each other and re­
source requirements like execution times and memory usage must be taken into
account. To ensure an adequate representation of any dynamism in applications,
one may even use probabilistic and non-deterministic approaches as abstraction
mechanisms. Moreover, POOSL allows data or control events to originate from
files, which facilitates evaluating how a system reacts for example to observed user
interactions.

To ease using the Y-chart paradigm with SHE, sever al POOSL modeling patterns
have been developed for MoCs that abstract from functional details but still allow
annotations with key resource requirement characteristics similar as to what SHE
advocates for performance modeling. These include the dataf1ow-oriented MoCs of
Synchronous Dataf10w (SDF), Cyclo-Static Data-f1ow (CSDF) and Scenario-Aware
Dataf10w (SADF) [Theelen 2008]. The top cluster in Figure 10 shows actually
a combination of the modeling patterns for an SDF application. For time-driven
and event-driven task specifications similar to those common in traditional schedul­
ing theory, POOSL modeling patterns have been developed that probabilistically
mimic the behavior of such tasks for uncertainties regarding activation latency, re­
lease jitter and output jitter [Florescu 2007]. Figure 11 illustrates how the modeling
patterns for SDF capture the typical interaction between computation and commu­
nication entities in such applications. It also shows how the scheduler of a platform
acknowledges a request for executing a computation.

Although modeling patterns form the crux to Y-chart based design with SHE,
specifying POOSL may not be the most convenient way of constructing application
models. Therefore, the more intuitive XML specification formats for specifying
SDF, CSDF and SADF models defined in [Stuijk 2007; Theelen 2007] have been
adopted as input language for the model generation tool PREMADONA. Similarly,
task graphs consisting of time-driven and event-driven tasks can be described in
the XML format defined in [Florescu 2007]. Given such an XML specification, PRE­

MADONA automatically instantiates the appropriate combination of the patterns.

ACM Journal Narnc, Vol. V, No. N, M 2009.

42

Y-Chart Based System Design: A Discussion on Approaches 21

1 CheckTokensAvallable(ConsumptlonRate)
r-------~ • r-------~

3 ReserveRoom(ProductlonRate)
~

Cl'SDFChannel .. C2:SDEChanne!

ln
2: TokensAvallable

Oulll--f---...=..;===:.....------olnPort
4: ReservationSucœssful

OutPortll---~~====~;"'-~ln OuI

'-__ M....Iap"-pm_g __ :.J,/.:/ ..

l
, Senl Whe:~ sufficlent tokens
have been wrrtten

;nlo C1

7: ReleaseRoom Mapping

OSl'Schadyler

Resource

8: WnteTokens ~ \\1'-_\ __ M....Iap,,-pm_g __ ..J

SentwheA
sufflclent memory

was alloC8led
sucœssfully

Fig. Il. Example of an interaction between an SOF application and a scheduler of a platform

3.3.2 Plat/arm Madeling. Modeling platforms with SHE is based on captur­
ing service providing behavior in POOSL. In essence, any resource type can be
expressed, even at a fully synthesizable cycle-accurate register transfer level. How­
ever, since the Y-chart paradigm aims at performance evaluation of design alter­
natives, SHE advocates abstraction from implementation details; hence, only cap­
turing crucial aspects that affect performance. These include the number and type
of resources, the way in which they provide services to each other, and any aspect
related to contention that arises from sharing resources, including any scheduling or
arbitration mechanisms. To ensure an adequate representation of contention when
abstracting implementation details, one may use probabilistic and non-deterministic
approaches. These allow capturing technology-dependent uncertainties like unreli­
able communication media or deep submicron issues.

Various POOSL modeling patterns have been developed to represent ail four re­
source types (processor, communication, storage and energy resources) of MPSoCs
together with various types of non-preemptive and preemptive schedulers that can
be used when sharing processor and communication resources [Theelen 2008; Flo­
rescu 2007]. In addition, a basic resource manager is available [Kumar et al. 2006].
Figures 12 and 13 show sorne behavioral details of two modeling patterns using
activity diagrams and the corresponding POOSL code. The PREMAOONA tool in­
stantiates the modeling patterns when generating platform models from an XML
specification that contains key parameters like clock frequencies, voltagejfrequency
scaling factors, and power consumption characteristics. The current collection of
modeling patterns together with the XML specification format give a MoA for de­
scribing relatively simple network-on-chip based multi-processor platforms, which
differs in various ways from other approaches such as those in [Balarin et al. 2003;
Gries 2004; Thompson et al. 2007]. An example of such a difference is that no
actual data processing is done, nor are instruction sets emulated (i.e., execution of
the model does not provide a functional result). It is also not required to specify
for example the size of memories or the number of concurrent connections that a
network-on-chip can realize. These aspects are considered to be a result of the
evaluation step. The abstraction goes even further in not requiring to specify how

ACM Journal Narnc, Vol. V, No. N, M 2009.

43

22 James Lapalme et al.

ScheduleTaskCl Cl 1 Ne\lTask , OldTask: Taskl

sel

or

Tasks ?Execute (NelolTask)

{TaskList register (Ne\lTask)};
if TaskList nextTask == Ne\lTask then

sel

or

les
fi

Processor! Execute (Ne\lTask)

Processor! Preempt i
Processor?Stopped (OldTask)

{TaskList updateState(OldTask)};
Processor! Execute (Ne\lTask)

Processor?Stopped (OldTask)

{TaskList remove(OldTask)};
Tasks! Execut ionCompleted (OldTask) ;
if TaskList notEmpty then

Processor! Execute CTaskList nextTask)
fi

lesj

ScheduleTask Cl Cl .

Fig. 12. POOSL Modeling pattern for preemptable scheduling of computations by a Schedu1er

resources are interconnected, not even the topology of routers for a network-on­
chip must be specified. These are seen as a result of the dependencies between
application tasks and the chosen mapping.

3.3.3 Mapping. Figure 10 clearly shows that the Y-chart variant of SHE requires
explicit specification of which processor resources execute what computations and
which communication resources realize what communications [Wijk et al. 2003].
Explicitly mapping communications enables to abstract from the physical struc­
ture of how resources in the platform are interconnected, which conforms to the
focuses on the service relations in Figure 2. By assuming a single interconnect
between processor resources (i.e., a network-on-chip), the PREMADONA tool can
automatically derive the mapping of communications from a mapping specified for
computations. In that case, specifying the mapping of communications is obsolete
[Theelen 2008].

The mapping of computations to processor resources and communications to
communication resources is accomplished by means of exchanging service request -
service acknowledgment messages between the involved modeling patterns, see also
Figure ll. The fact that an application model gets feedback on what is going on
in the platform is essential to model QoS and resource management as weil as the
reaction of the system to unpredictable events like user interactions [Goldschmidt
and Hennessy 1993]. This approach differs from traditional trace-based mapping

ACM Journal Narnc, Vol. V, No. N, M 2009.

44

Y-Chart 8ased System Design: A Discussion on Approaches

ExecuteTaskO 0 IStartTime: Real,

Preempt: Boolean, Task: Task 1

OS?Execute(Task) {StartTime := currentTime} j
par

Power! StartConsumpt ion (ProcessorPolJer)
and

if Task neverPreempted then

Memory! Allocate (Task getRequiredMemory)
fi

rap;
Preempt : = taIse;
abort

delay Task getExecutionTime
vith

OS?Preempt {Preempt : "" true j

23

Task reduceTime (currentTime - StartTime)} j

OS! Stopped (Task) ;
par

Power! StopConsumpt ion(ProcessorPolJer)
and

if Preempt not then
Memory! Free (Task getRequiredMemory)

fi
rapi
ExecuteTask 0 0 .

Fig. 13. POOSL modeling pattern for preemptive execution of computations by a Processor

strategies as used in for example [Lieverse et al. 2001; Kienhuis et al. 2000].

3.3.4 Evaluation (Analysis and Exploration). SHE offers a broad spectrum of
analysis opportunities based on the formaI semantics of POOSL [Theelen et al.
2007]. The theory supports model checking by specifying functional correctness
properties as weil as best/worst-case, average-case and (expected/probabilistic)
reachability performance properties in real-time temporallogics such as MTL [Koy­
mans 1990], MITL [Alur 1991] and Temporal Rewards [Voeten 2002] using tools like
SPIN [Holzmann 1991], UPPAAL [Larsen 1997] and PRISM [Kwiatkowska et al.
2002]. In case model checking is expected to suffer too much from state-space ex­
plosion, SHE offers simulation-based analysis of the mentioned property types as
an alternative based on requiring explicitly extending a model with monitors ex­
pressed in POOSL. Predefined monitors for evaluating common types of long-run
average metrics include accuracy analysis based on confidence intervals [Theelen
2004], where the estimation results are proven to converge to exactly the same re­
sults obtainable with model checking. SHE focuses on the evaluation of individual
design alternatives. However, feeding the performance results obtained from mod­
els into approaches like those exploited in [Noonan and Flanagan 2006; Gries 2004;
Thompson et al. 2007] would facilitate fully automated design-space exploration.

The PREMADONA tool utilises the simulation-based analysis techniques of SHE to
enable evaluating various performance metrics as specified by the user in XML, see
[Theelen 2008]. PREMADONA can add monitors to an application model for evaluat-

ACM Journal Name, Vol. V, No. N, M 2009.

45

24 James Lapalme et al.

ing throughput, latency (minimum, maximum, average, variance), response delay,
buffer occupancy (maximum, average, variance) and deadline miss probabilities.
For platforms, it can add monitors to evaluate for example processor utilisation,
memory occupancy (maximum, average, variance), communication load (maximum,
average, variance) and power consumption (peak, average). PREMADONA could eas­
ily be extended to add monitors for evaluating any other metric of interest.

4. COMPARISON

This section compares the various design decisions and approaches used for imple­
menting the methodologies discussed in the previous Sections. Table n l23 lists the
features of Metropolis, DOL-MPA and the Y-chart variant of SHE.

4.1 Abstraction and Refinement

An important aspect of developing models during design is the necessity to abstract
from implementation details [Theelen 2004]. Although literature mostly emphasises
the advantage of increasing analysis efficiency, the key advantage of abstraction is
actually the ability to focus on answering specifie design questions. In case of the
Y-chart paradigm, the focus is on performance-related questions and hence, one
should abstract implementation details that do not affect performance to a great
extend. Another reason for abstraction is the fact that the system is actually being
designed and hence the implementation details are still to be decided.

The inherent difficulty of model-driven engineering is to make good abstractions
such that a model properly represents the system, while still being able to answer
the design questions of interest. On one hand, abstraction urges discarding many
implementation details, while on the other hand, obtaining credible analysis results
requires including those aspects that impact the performance (in our case). Models
that properly capture ail relevant aspects affecting the performance are sometimes
called adequaie [Theelen 2004]. Notice that adequacy is a property of a model,
while accuracy is a property of an analysis result. The accuracy of a result depends
highly on the type of analysis technique that is used for deriving the result; ap­
proximation, estimation or heuristic approaches will give less accurate results than
exact techniques. Notice that adequacy of a model and accuracy of results are
two orthogonal concepts. A 100% adequate model can give very inaccurate results
for example due to combining it with inappropriate analysis techniques or by re­
lying on simulations that ran way too short for the modeled behaviour to stabilise
in the operation mode of interest. Conversely, a model can be very inadequate
while analysing it gives 100% accurate results by using exact analysis techniques.
Any model-driven engineering exercise includes a point in time where a constructed
model must be considered as being adequate such that the analysis phase can start.

1 Although Metropolis supports any behavior, resource, scheduling to be modeled in MMM, the
table lists only those aspects for which elements are available in the Meta-Model library.
2 Although DOL supports any behaviour to be specified, the table lists only features relevant to
modeling and analysing systems with MPA
3 Although SHE supports any behavior to be modeled in POOSL, the table lists only those aspects
for which modeling patterns have been developed. The table also lists only those performance
metrics for which the PREMADONA tool allows automatic addition of monitors to a mode!.

ACM Journal Name, Vol. V, No. N, M 2009.

46

Y-Chart 8ased System Design: A Discussion on Approaches 25

Y-chart Variant 0 SHE

5
''il y API, TIL and muhi-rate Task Graphs for Real-Ti me Sys- SDF. CSDF. SADF and Task ." Supponed MoCs
"i5. synchronous dataflow lems Graphs for Real· Time Systems

"" ..:

Supporled Re-
nia Processor. Communication

Processor, Conununication,
sources Stora te, EnerJ?;Y

Preemptive and non-preemplive Preemplive and non-
Fixed Priority and Rate Mono- preemplive policies, including
tonie, preemptive Earliest Dead- Round Robin (with or without

Supponed Schedu/-
nia

line Fifst, First-Come First-Serve, skipping), Earliest DeadIine
ers Generalised Processor Sharing, First, First-Come First-Serve,

Il Time Division Multiple Access Rate Monotonie. Generalised
.2 and any hierarchical combinations Processor Sh<Uing and Time
F.i
0: of these Division Multiple Access

Model refinement with Real-Time
SHE includes a mode! refine-

Interfaces which eosure preserva-
ment approach ensuring pres-

Refinement Model element substitution
tion of non-functional properties

ervation of functionality and

such as timing
timing, wIDch is not used by
the Y -chan variant

lnterconncction Explicit platform interconnec- lmplicit platfonn intereonnection lmplieit platforrn interconnec-
Type tion structure structure tion structure

Binding specification which de-

LTL expressions extended with
fines mappings between processes Service request - acknowl-

Où and processor, software channels edgemenl interactions between
.5 Approach value mapping between appli-

and conununication paths. application and platfonn mod-
"" cation and platform events

l Resource streams are inputs for els
perfonnance components

Mapped Elements Computations only
Computations and cornrnuniea- Computations and conununica-
lÎons tions

lluoughput, response delay,

Application
lluoughput, end-to-end delays, Throughput, end-l(}-end delays, inter-firing latency, buffer
buffer occupancy buffer occupancy occupancy, deadline miss

probabilities

Processor load, utilization of Processor load, utilization of
Processor Joad, utilization of

Platform conununication resources, conununication resources, mem-
conununication resources,
memory occupancy, power

memoryoccupancy ory occupancy consumption
Simulation-based analysis of

Simulation: functional correctness and

'i. Worst, best and average case. worslfbest-ca'ie, average case
»

Type
LTL and LOC monitors.

Worst and best case
and probabilistic/expected

-a Model checking : reachability perfonnance met-c ..: LTL via SPIN ries. SHE has model-checking
LOC via Checke, techniques for these metrics but

there are no automated tools
Observation results for fune-
tional correctness and

Ali results from model check-
worslfbest case and probabilis-

Accuracy ing are exact. Ali results from Hard upper and lower bounds
tic/expected reachability per-
fonnance metrics. Contldence

i
simulatIOn are approxlfilations.

intervals with accuracy result

1

for average-case perfonnance
rnetrics

~.
Use of DOL; Manual exploration

Manual exploration or the
Manual exploration via alterna- or automatic with an optimization a Type tive platfonns and alternative framework such a'i 1 Bleuler et al.

approach of 1 N oonan llild

% mappings 20031 based on multi-objective
Ranagan 20061 based on eVI}-

.:l evolutionary a1gorithms
lutionary a1gorithms

Table II. A comparison of Y-chart based design methodologies

Ali three methodologies in Table II focus on the evaluation of performance prop­
erties and therefore prescribe or require abstraction from functional details and the
actual content of data that is being processed. Both Metropolis and SHE would
III principle allow refining these aspects to complete implementation details, but

ACM Journal Name, Vol. V, No. N, M 2009.

47

26 James Lapalme et al.

they encourage a designer to capture only those aspects that (potentially) affect
the performance. By relying on the Real-Time Calculus, MPA goes even a step
further in disabling the possibility of specifying implementation details completely.
As a consequence, developing adequate models in MPA may be more difficult than
when using Metropolis or SHE but the advantage is a better analysis efficiency and
scalability. Conversely, all three methodologies support model refinement towards
a more detailed specifications. Both SHE and MPA include formaI techniques for
model refinement by means of decomposing model components into a collection of
more detailed components. Metropolis also supports such model refinement but
only certain approaches can guarantee that properties don't change by refinement.
SHE furthermore includes formaI techniques for synthesising real-time control soft­
ware on single-processor platforms that guarantee preservation of functionality and
performance as specified and analyzed in a model. This work needs however further
extension to allow application in the MPSoC setting of the Y-ch art paradigm.

Popular abstraction mechanisms are the use of probabilistic distributions and
non-determinism. Both these mechanisms allow abstract specification of choices.
As opposed to non-determinism, using stochasticity requires knowledge about the
relative occurrence of each possible alternative. The ability to use these mech­
anis ms strongly depends on the formalisms underlying a methodology (see also
Table I). Both Metropolis and SHE support the use of non-deterministic choices
between alternative behaviours or alternative data items. Metropolis offers the use
of non-determinate variables to express the latter. However, such variables be­
come con crete data items when interpreting a mapping specification for a system.
POOSL allows non-determinism between alternative data values by using different
assignments (possibly of different types of data) in a non-deterministic behavioural
choice. Non-deterministic behaviour is supported by a specific language primitive
in POOSL, which concerns a selection between alternative actions. MMM includes
a similar language primitive. There is however also a difference between the non­
deterministic choice in MMM and POOSL. In case no alternatives are enabled for
the non-deterministic choice in MMM, the overall behaviour will block forever. In
POOSL, a similar situation may occur but other behaviour running in parallel with
the blocked non-deterministic behaviour may unblock one or more of the alterna­
tives. For MPA, non-determinism is inherently present in the arrivaI/service curves
due to abstracting from the exact moments in time that data is communicated.

The use of probabilities is only supported in the SHE methodology. The SADF
application models accepted by the PREMADONA tool are an example of where
probabilistic choices between alternative behaviour and timing can be specified.

4.2 Explicit versus Implicit Resource Interconnects

Table II states that Metropolis, DOL-MPA and the Y-chart variant of SHE use
different ways to specify the topology of platform resources as shown in Figure 14.

Platform models in Metropolis have an explicit resource topology, see top half
of Figure 14. Hence, the models explicitly capture how for example processor re­
sources are interconnected via communication resources. Because of this explicit
topology, the mapping specification only defines the correspond en ces between com­
putations in the application model and processors in the platform model. The
path that messages take between computations is implicitly defined by the chain

ACM Journal Name, Vol. V, No. N, M 2009.

48

Y-Chart Based System Design: A Discussion on Approaches 27

Implicit Mapping of Communications 1 Explicit Platform Topology

Design A Design B

Explicit Mapping of Communications Iimplicit Platform Topology

r'

i ---\~?~~;:~~~:J~-:_-::~::: ..
B8BGB

Design A Design B

Fig. 14. Approaches to capture mapping and the topology of resources in platforms

of communication resources between the processors that execute the computations
and the mapping. This approach has the benefit that it is easy to define complex
(hierarchal) combinat ions of communication or storage resources, where busses or
memories serve other busses and memories respectively, while having a small map­
ping specification. The disadvantage is that changing the mapping may require to
change the platform model as weil in order to ensure that resource interconnections
are consistent with dependencies between computations and the chosen mapping.

On the other hand, the Y-chart variant of SHE uses platform models that do not
contain any topological information. This approach is illustrated in the lower half
of Figure 14. The mapping specification contains a binding for both computations
and communications of an application. Hence, the topology of how the processor
and communication resources are interconnected emerges from the mapping spec­
ification. This gives much flexibility when evaluating alternative mappings since
there is no need to change the platform model to ensure that resource intercon­
nections are consistent with dependencies between computations and the chosen
mapping. However, in case complex (hierarchical) combinations of communication
or storage resources are to be considered, one would need to introduce artificial
elements in the application model that are not part of the real application. These
would represent the tasks of bridging proto cols between communication resources
or the transfer of data between two storage resources respectively. The reason for
the need to introduce these artifacts in the application model is that the mapping
rules do not allow distributing for example a communication in the application over
multiple communication resources such as a hierarchy of busses.

ACM Journal Narnc, Vol. V, No. N, M 2009.

49

28 James Lapalme et al.

Platform models in the context of DOL-MPA are closer to the approach taken
by Metropolis. Platform models define explicitly the resources which are available
such as processors, memories and their interconnections. Moreover, end-to-end
communication paths with nodes on the affected resources are used in order to
model communication. This allows networks-on-chip to be modeled adequately.
As discussed earlier, mapping must be do ne in the spatial domain as weil as in
the temporal domain. The domain mapping specification explicitly de fines
the binding between processes and software channels to their corresponding pro­
cessors and communication paths. This is very similar to Metropolis but with the
extra task of mapping the communication paths. The approach has the advan­
tage of explicitly stating which communication path should be used between two
resources when multiple paths are present. This facilitates end-to-end communica­
tion performance analysis. The temporal mapping specification explicitly defines
the scheduling pohcy on each resource and the corresponding parameters. DOL­
MPA differs from Metropolis and the Y-ch art variant of SHE in that scheduling is
part of the mapping and not part of the platform model.

4.3 Exact Analysis versus Simulation-Based Analysis

According to Table II, Metropolis, DOL-MPA and the Y-chart variant of SHE ac­
complish the fourth step of the Y-chart paradigm (See Section 2.1) on evaluating a
proposed design solution in different ways. The considered approaches can be cat­
egorised in exact analysis and simulation-based analysis. Metropolis and SHE offer
state-space exploration based analysis techniques for correctness and performance
properties, while DOL-MPA supports exact analysis based on the Real-Time Cal­
culus [Thiele et al. 2000; Chakraborty et al. 2003]. Metropolis utilises traditional
model checking techniques for determining whether LTL and LOC properties are
satisfied. For exact analysis of functional correctness, SHE follows the approach
of linear-time temporal logic verification, where typically the logical negation of a
required property is converted into an automaton by méans of a so-called tableau
construction [Geilen 2001]. Subsequently, automata theoretic techniques are used
to test whether the property is satisfied. Although the properties that can be model
checked include certain types of timing properties, the traditional approach is not
suitable for amongst others long-run average performance metrics like throughput.
To compute exact results for such metrics, SHE supports a more liberal form of
model checking that relies on Markov theory [Theelen et al. 2007; Theelen 2004]
Nevertheless, SHE does not include automatic tools to actually perform these calcu­
lations as opposed to Metropolis. An important disadvantage of state-space based
analysis is that it does not scale to large systems. MPA circumvents this problem
by using Real-Time Calculus as an alternative exact analysis approach. The Real­
Time Calculus is derived from the Max-Plus algebra [Baccelli et al. 1992], which
allows computing the latest moment in time at which events (e.g., the arrivaI of
data) can occU!. Using this as a basis, analysis with MPA is limited to determining
performance bounds.

Since Metropolis and SHE suffer from state-space explosion issues when using
their exact analysis techniques, they offer simulation-based analysis as a scalable
alternative. However, simulations are never exhaustive (in general) and the ob­
tained results are only valid for that part of the state-space that is actually covered

ACM Journal Name, Vol. V, No. N, M 2009.

50

Y-Chart Based System Design: A Discussion on Approaches 29

during a simulation. Hence, simulation-based analysis gives estimations of the
actual performance of a system. An essential problem is therefore how long a simu­
lation should run before the results are considered accurate. While Metropolis do es
not provide support to evaluate the accuracy of results, SHE includes techniques
to evaluate the accuracy of results for any type of long-run average performance
metric based on confidence intervals [Theelen 2004]. Another crucial feature of
SHE is that the simulation-based estimation results converge to the same results
that would be obtainable with its exact techniques. This originates from founding
both approaches on the same mathematical model defined by the formai semantics
of POOSL. Informai simulation-based approaches (including those for Metropolis)
cannot guarantee such correspondence between exact and estimation results.

5. CONCLUSION AND FUTURE TREt\IDS

Embedded systems become more complex with each generation. A good portion
of this complexity originates from the growing level of heterogeneity. Modern sys­
tems include a variety of components types that are not electronic such as micro­
mechanical and micro-optical. In addition, there is a certain momentum in the
industry toward IP based design. In order to adequately support these tendencies,
implementations of the Y-chart paradigm will have to support MoCs and MoAs
with sufficient expressivity. New MoCs or adaptations of existing ones will have to
be developed. A long-standing challenge in this area are MoCs supporting the inte­
gration of various abstraction levels. On the other hand, MoAs are currently fairly
immature - most are adaptations of existing MoCs. Henee, developing sufficiently
expressive MoAs is an interesting challenge for future research.

Application of the Y-chart paradigm to domains other than streaming multi­
media systems is a subject of current research. The domain of high-tech mecha­
tronic systems is a good example that cou Id benefit for the Y-chart paradigm.
Problems that originally arose in streaming multi-media systems are now also ob­
served in these types of systems, where feedback and feedforward control strategies
have to be implemented with tight performance requirements.

Most current Y-chart based design methodologies focus on the tasks of modeling
and analysis. However, in order to meet the objective of shortening time-to-market,
a new generation of methodologies are required, which incorporate extensive syn­
thesis capabilities. The main challenge to address is the issue of heterogeneity.
Analysis models are of a different nature than synthesis models. They are opti­
mised for efficient determination of properties of interest and therefore only contain
the essential information. The focus of synthesis is efficient implementation. Syn­
thesis models are therefore more detailed, but they also need to be complete. In
general analysis models cannot simply be refined into synthesis models, making it
difficult to establish proper relations between them. Understanding these relations
is a prerequisite to integrate them into seamless design flows.

This article explores the richness of how design methodologies have implemented
the Y-chart paradigm . The Y-chart paradigm was developed more then 10 years
ago in order to address the challenges surrounding the exploration of the design­
space of streaming systems. It is defined by a simple Y-shaped sequence of tasks
(functional application modeling, platform architecture modeling, mapping, evalu-

ACM Journal Narnc, Vol. V, No. N, M 2009.

51

30 James Lapalme et al.

ation and synthesis). The philosophy of separating functional design and platform
design offers a very effective solution to design problems, where alternative deploy­
ments of platforms are an essential aspect. Despite the simplicity and straight­
forwardness of the Y-ch art paradigm, many variations exist in implementing it in
design methodologies. Key areas of differences are (i) the supported MoCs and
MoAs, (ii) the approaches used for mapping, and (iii) the type of metrics that can
be analyzed as weil as the level of accuracy of results.

The comparison has highlighted that each design approach has its advantages and
inconveniences. Metropolis has the advantage of offering a simple yet very powerful
mapping approach by using LTL expressions. Moreover, by using LTL expressions,
application and platform models are truly kept separate. A relative weakness of
Metropolis vs the other implementations is the informaI nature of models which
limits evaluation to mostly simulation. The Y-Chart variant of SHE/POOSL offers
a great deal of expressivity due to the POOSL language and simulation analysis
because of SHE. Moreover, integration with other design paradigms it possible be­
cause the implementation of the Y-Chart approach is achieved in the context of
a broader methodology framework (SHE). A relative weakness of the implementa­
tion is that the application models must make explicit calls to the platforms models
which bind them. Moreover, the implicit platform topologies of the platform be­
cause harder to use for complex cases. DOL-MPA has the advantage of offering
exact analysis through the means of Real-Time Calculus on models with no imple­
mentation details. However, the use of Real-time Calculus has the disadvantage of
being harder to use.

REFERENCES

ALUR, R. 1991. Techniques for Automatic Verification of Real-Time Systems. Ph.D. thesis,
Stanford University, California, USA.

BACCELLI, F., COHEN, G., OLSDER, G., AND J.P.QUADRAT. 1992. Synchronization and Linearity.
John Wiley & Sons.

BALARIN, F., BURCl!, J., LAVAGNO, L., PASSERONE, R., SANGIOVANNI-VINCENTELL, A., AND
WATANADE, Y. 2001. Constraints Specification at Higher Levels of Abstraction. In Proceedings
of HLDVT. IEEE, 129-133.

BALARIN, F., WATANADE, Y., HSIEH, H., LAVAGNO, L., PASSERONE, C., AND SANGIOVANNI­
VINCENTELLI, A. 2003. Metropolis: An Integrated Electronic Design Environment. IEEE
Computer 36, 4, 45-52.

BALARIN, F., G. P. J. A. P. C. S. E. T. B. C. M. H. H. L. L. S.-V. A. S. K. 1997. Hardware­
Software Co-Design of Embedded Systems: The POLIS Approach. Springer.

BALEANI, M., FERRARI, A., SANGIOVANNI-VINCENTELLI, A., AND TURCHETTI, C. 2000. HW/SW
Codesign of an Engine Management System. In Proceedings of DATE. IEEE, 263-267.

BEZIVIN, J. 2005. On the Unification Power of Models. Software and System Modeling 4, 2,
171-188.

BLEULER, S., LAuMANNs, M., THIELE, L., AND ZITZLER, E. 2003. PISA - A Platform and Program­
ming Language Independent Interface for Search Aigorithms. In Evolutionary Multi-Criterion
Optimization (EMO 2003). Springer Verlag, Faro, Portugal, 494 - 508.

BOKHOVEN, L. v. 2002. Constructive Tooi Design for Formai Languages: From Semantics to
Executing Models. Ph.D. thesis, Eindhoven University of Technology, Eindhoven, Netherlands.

BRAND, D. AND ZAFIROPULO, P. 1983. On Communicating Finite-State Machines. Journal of the
ACM 20, 2,.323-342.

BROOKS, C., LEE, E., LIU, X., NEUENDORFFER, S., ZHAO, Y., AND ZHENG, H. 2005. Heterogeneous

ACM Journal Name, Vol. V, No. N, M 2009.

52

Y-Chart Based System Design: A Discussion on Approaches 31

Concurrent Modeling and Design in Java (Volume 1: Introduction to Ptolemy II). Tech. Rep.
UCB/ERL M05/21, University of California, Berkeley, USA.

BURCH, J., PASSERONE, R., AND SANGlOVANNI-VINCENTELLI, A. 2001. Overcoming Heterophobia:
Modeling Concurrency in Heterogeneous Systems. In Proceedings of ACSD. IEEE, 13-32.

CESARIO, '.V., NICOLESCU, G., GAUTHIER, L., LYONNARD, D., AND JERRAYA, A. 2001. Colif: A
Design Representation for Application-Specifie Multiprocessor SoCs. Design & Test of Com­
puters 18, 5, 8-20.

CHAKRABORTY, S., KÜNZLI, S., AND THIELE, L. 2003. A General Framework for Analysing System
Properties in Platform-Based Embedded System Designs. In Design Automation and Test in
Europe (DATE). IEEE Press, Munich, Germany, 190-195.

CHAKRABORTY, S., KÜNZLI, S., THIELE, L., HERKERSDORF, A., AND SAGMEfSTER, P. 2003. Perfor­
mance Evaluation of Network Processor Architectures: Combining Simulation with Analytical
Estimation. Computer Networks 41, 5 (April), 641-665.

CHAKRABORTY, S., MITRA, T., ROYCHOUDHURY, A., THIELE, L., BORDOLOI, U., AND DERDIYOK,
C. 2007. Cache-Aware Timing Analysis of Streaming Applications. In Proceedings of the 19th
Euromicro Conference On Real-Time Systems. IEEE Computer Society Washington, DC, USA,
159-168.

CHEN, X., DAvARE, A., HSIEH, H., SANGJOVANNI-VINCENTELLI, A., AND WATANA13E, Y. 2005.
Simulation based deadlock analysis for system level designs. In Proceedings of DAC. IEEE,
260-265.

CllUZ, R. 1991. A Calculus for ;'>Ietwork Delay, Part 1: Network Elements in Isolation. IEEE
Transactions on Information Theory 37, 1, 114-131.

DAvARE, A., DENsMoRE, D., MEYEROWITZ, T., PINTO, A., SANGIOVANNI-VINCENTELLI, A., YANG,
G., ZENG, H., AND ZHU, Q. 2007. A Next-Generation Design Framework for Platform-Based
Design. In Proceedings of DVCon. IEEE.

DENSMORE, D. 2004a. FormaI Refinement Verification in Metropolis. Tech. rep., University of
California, Berkeley, USA. UCB/ERL M04/1O.

DENsMoRE, D. 2004b. Metropolis Architecture Refinement Styles and Methodology. Tech. rep.,
University of California, Berkeley, USA. UCB/ERL M04/36.

DENsMollE, D., PASSERONE, R., AND SANGIOVANNI-VINCENTELLI, A. 2006. A Platform-Based
Taxonomy for ESL Design. IEEE Design f!j Test of Computers 23, 5, 359-374.

DENSMORE, D., REKHI, S., AND SANGIOVANNI-VINCENTELLI, A. 2004. Microarchitecture Develop­
ment via Metropolis Successive Platform Refinement. In Proceedings of DATE. IEEE, 10346-
10357.

FLORESCU, O. 2007. Predidable Design for Real-Time Systems. Ph.D. thesis, Eindhoven Univer­
sity of Technology, Eindhoven, Netherlands.

FLORESCU, O., VOETEN, J., VERHOEF, M., AND COllPORAAL, H. 2007. Reusing Real-Time Sys­
tems Design Experience through Modeling Patterns. In Advances in Design and Specification
Languages for Embedded Systems, S. Huss, Ed. Springer, Chapter 20, 329-348.

GAJSKI, D. AND KUIIN, R. H. 1983. New VLSI Tools. Computer, 11-14.

GAJSKI, D., SHU, J., RAIDER, D., GERSTLAUER, A., AND ZHAO, S. 2000. SpecC: Specification
Language and Methodology. Springer.

GEILEN, M. 2001. On the Construction of Monitors for Temporal Logic Properties. In Proceedings
of the l st Workshop on Runtime Verification (RV'Ol).

GEILEN, M. 2002. Formai Techniques for Verification of Complex Real-Time Systems. Ph.D.
thesis, Eindhoven University of Technology, Eindhoven, Netherlands.

GHAMARIAN, A. 2008. Timing Analysis of Synchronous Data Flow Graphs. Ph.D. thesis, Eind­
hoven University of Technology, Eindhoven, Netherlands.

GOESSLER, G. AND SANGIOVANNI-VINCENTELLI, A. 2002. Compositional Modeling in Metropolis.
In Proceedings of EMSOFT. Springer, 93-107.

GOLDSCHMIDT, S. AND HENNESSY, J. 1993. The Accuracy of Trace-Driven Simulations of Multi­
processors. Performance Evaluation Review 21, 1, 146-157.

ACM Journal Name, Vol. V, No. N, !vi 2009.

53

32 James Lapalme et al.

GRIES, M. 2004. Methods for Evaluating and Covering the Design Space during Early Design
Development. Integration, the VLSI Journal 38, 2, 131-183.

GRIES, M. AND KEUTZER, K. 2005. Building ASIPs: The Mescal Methodology. Springer.

GROTKER, T., LIAO, S., MARTIN, G., AND SWAN, S. 2002. System Design with SystemC. Kluwer
Academic Publications.

H. CHANG, L. COOKE, H. H. G. M. A. M. AND TODD, L. 1999. Surviving the SOC Revolution:
A Guide to Platfrom-Based Design. Klumer Academic.

HAMANN, A., JERSAK, M., RICHTER, K., AND ERNST, R. 2004. Design Space Exploration and
System Optimization with SymTA/S - Symbolic Timing Analysis for Systems. In Proceedings
of RTSS. IEEE, 469-478.

HOLZMANN, G. 1991. Design and Validation of Computer Protocols. Prentice-Hall.

HUANG, .1.2005. Predictability in Real-Time System Design. Ph.D. thesis, Eindhoven University
of Technology, Eindhoven, Netherlands.

KIENHUIS, B. 1999. Design Space Exploration of Stream-based Dataflow Architectures: Methods
and Tools. Ph.D. thesis, Delft University of Technology, Delft, Netherlands.

KIENHUIS, B., DEPRETTERE, E., VISSERS, K., AND WOLF, P. v. 1997. An Approach for Quantita­
tive Analysis of Application-Specific Dataflow Architectures. In Proceedinsg of ASAP. IEEE,
338-349.

KIENHUIS, B., DEPRETTEREL, E., VISSERS, K., AND VAN DER WOLF, P. 1997. An Approach for
Quantitative Analysis of Application-Specific Dataflow Architectures. ASAP, 338-349.

KIENHUIS, B., RI.JPKEMA, E., AND DEPRETTERE, E. 2000. Compaan: Deriving Pro cess Networks
from Matlab for Embedded Signal Processing Architectures. In Proceedings of CODES. IEEE,
13-17.

KOCK, E. D., ESSINK, G., SMITS, W., WOLF, P. V., BRUNEL, .1., KRUIJTZER, W., LIEVERSE, P., AND
VISSERS, K. 2000. YAPI: Application Modeling for Signal Processing Systems. In Proceedings
of DAC. ACM, 402-405.

KOYMANS, K. 1990. Specifying Real-Time Properties with the Metric Temporal Language. Real­
Time Systems 2, 4, 255-299.

KROLIKOSKI, S . .1., SCHIRRMEISTER, F., SALEFSKI, B., ROWSON, .1., AND MARTIN, G. 1999. Method­
ology and Technology for Virtual Compone nt Driven Hardware/Software Co-Design on the
System-Leve!. ISCAS, 456-459.

KRUIJTZER, W., WOLF, P., KOCK, E., STUYT, .1., ECKER, W., MAYE, A., HUSTIN, S., AMERIJCKX,
C., PAOLIAND, S., AND VAUMORIN, E. 2008. Industrial IP Integration Flows based on IP-XACT
Standards. In Proceedings of DATE. IEEE, 26-31.

KUMAR, A., MESMAN, B., THEELEN, B., AND CORPORAAL, H. 2006. Resource Manager for Non­
Preemptive Heterogeneous Multiprocessor System-on-Chip. In Proceedings of ESTIMedia.
IEEE, 33-38.

KWIATKOWSKA, M., NORMAN, G., SEGALA, R., AND SPRONTSTON, J. 2002. Automatic Verifi­
cation of Real-Time Systems with Discrete Probability Distributions. Theoretical Computer
Science 282, l, 101-150.

LARSEN, K. 1997. UPPALL in a Nutshell. Journal on Software Tools for Technology Transfer 1, 1-
2, 134-152.

LEE, E. AND MESSERSCHMITT, D. 1987. Synchronous Data Flow. IEEE Proceedings 75, 9, 1235-
1245.

LEE, E. AND SANGIOVANNI-VINCENTELLI, A. 1998. A framework for Comparing Models of Com­
putation. Transactions on Computer-Aided Design of Integrated Circuits and Systems 17, 12,
1217-1229.

LIEVERSE, P., WOLF, P. V. D., VISSERS, K., AND DEPRETTERE, E. 2001. A Methodology for
Architecture Exploration of Heterogeneous Signal Processing Systems. Journal of VLSI Signal
Processing Systems for Signal, Image and Video Technology 29, 3, 197-207.

MARTIN, G. 1998. Design Methodologies for System Level IP. In Proceedings of DATE. IEEE,
286-289.

ACM Journal Narnc, Vol. V, No. N, M 2009.

54

Y-Chart 8ased System Design: A Discussion on Approaches 33

MEDVlDOVIC, N. AND TAYLOR, R. 2000. A Classification and Comparison Framework for Software
Architecture Descripton Languages. Transactions on Software Engineering 26, 1, 70-93.

MEYEROWITZ, T. 2004. Metropolis ARM CPU Examples. Tech. Rep. UCB/ERL M04/39, Uni­
versity of California, Berkeley, USA.

MISHRA, P. AND DUTT, N. 2008. Processor Description Languages: Applications and Methodolo­
gies. Morgan Kaufmann.

NOONAN, L. AND FLANAGAN, C. 2006. Utilising Evolutionary Approaches and Object-Oriented
Techniques for Design-Space Exploration. In Proceedings of DSD. IEEE, 346-352.

PINTO, A. 2004. Metropolis Design Guidelines. Tech. Rep. UCB/ERL M04/40, University of
California, Berkeley, USA.

PUTTEN, P. V. D. AND VOETEN, .1. 1997. Specification of Reactive Hardware/Software Systems.
Ph.D. thesis, Eindhoven University of Technology, Eindhoven, Netherlands.

QIN, W. AND MALIK, S. 2002. Architecture Description Languages for Retargetable Compilation.
In The Compiler Design Handbook: Optimizations êf Machine Code Generation. CRC Press,
535-562.

SANGIOVANNI-VINCENTELLI, A. AND MARTIN, G. 2001. Platform-Based Design and Software De­
sign Methodology for Embedded Systems. Design and Test of Computers 18, 6, 21-33.

SGROI, M., SHEETS, M., MIHAL, A., KEUTSER, K., MALIK, S., RAI3AEY, J., AND SANGIOVANNI-
VINCENTELLI, A. 2001. Adressing the System-on-a-Chip Interconnect Woes Through
Communication-Based Design. In Proceedings of DAC. IEEE, 667-672.

STUI.JK, S. 2007. Predictable Mapping of Streaming Applications on Multiprocessors. Ph.D.
thesis, Eindhoven University of Technology, Eindhoven, Netherlands.

TEICH, J., BLICKLE, T., AND THIELE, L. 1998. System-Level Synthesis Using Evolutionary Algo­
rithms. J. Design Automation for Embedded Systems 3, 23-58.

THEELEN, B. 2004. Performance Modelling for System-Level Design. Ph.D. thesis, Eindhoven
University of Technology, Eindhoven, Netherlands.

THEELEN, B. 2007. A Performance Analysis Tool for Scenario-Aware Streaming Applications. In
Proceedings of QEST. IEEE, 269-270.

THEELEN, B. 2008. Performance Model Generation for MPSoC Design-Space Exploration. In
Proceedings of QEST. IEEE.

THEELEN, B., FLORESCU, O., GEILEN, M., HUANG, J., PUTTEN, P. V., AND VOETEN, J. 2007.
Software/Hardware Engineering with the Parallel Object-Oriented Specification Language. In
Proceedings of MEMOCODE. IEEE, 139-148.

THIELE, L., BACIVAROV, 1., HAlD, W., AND HUANG, K. 2007. Mapping Applications to Tiled
Multiprocessor Embedded Systems. In Proc. 7th Intl Conference on Application of Concurrency
to System Design (ACSD 2007). IEEE Computer Society, Bratislava, Slovak Republic, 29-40.

THIELE, L., CHAKRABORTY, S., AND NAEDELE, M. 2000. Real-time Calculus for Scheduling Hard
Real-time Systems. In Proc. IEEE International Symposium on Circuits and Systems (ISCAS).
Geneva, Switzerland, 101-104.

THIELE, L., WANDELER, E., AND STOIMENOV, N. 2006. Real-Time Interfaces for Composing Real­
Time Systems. In International Conference On Embedded Software (EMSOFT 06). Seoul,
Korea, 34-43.

THOMPSON, M., NIKOLOV, H., STEFANOV, T., PIMENTEL, A., ERI3AS, C., POLSTRA, S., AND DE­
PRETTERE, E. 2007. A Framework for Rapid System-Level Exploration, Synthesis, and Pro­
gramming of Multimedia MP-SoCs. In Proceedings of CODES/ISSS. IEEE, 139-148.

VOETEN, J. 2002. Performance Evaluation with Temporal Rewards. Performance Evalua­
tion 50, 2/3, 189-218.

WANDELER, E. AND THIELE, L. 2006a. Interface-Based Design of Real-Time Systems with Hi­
erarchical Scheduling. In 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). San Jose, USA, 243-252.

WANDELER, E. AND THIELE, L. 2006b. Real-Time Calculus (RTC) Toolbox.

WANDELER, E. AND THIELE, L. 2007. Workload Correlations in Multi-processor Hard Real-time
Systems. Journal of Computer and System Sciences 73, 2 (March), 207-224.

ACM Journal Name, Vol. V, No. N, M 2009.

55

34 James Lapalme et al.

WANDELER, E., THlELE, L., VERHOEF, M., AND LIEVERSE, P. 2006. System Architecture Evalu­
ation using Modular Performance Analysis: A Case Study. Internat20nal Journal on Software
Tools for Technology Transfer 19,649-667.

WJJK, F. V., VOETEN, J., AND BERG, A. T. 2003. An Abstract Modeling Approach Towards
System-Level Design-Space Exploration. In System Specification and Design Languages, E. Vil­
lar and J. Mermet, Eds. Kluwer Academie Publishers, Chapter 22,267-282.

\VILHELM, R., ENGBLOM, J., ERMEDAHL, A., HOLSTI, N., THESING, S., WHALLEY, D., BERNAT,
G., FERDI!'!AND, C., HECKMA!'!!'!, R., MUELLER, F., PUAUT, L,. PUSCH!'!ER, P., STASCHULAT,
J., AND STE!'!STRM, P. 2008. The Determination of \Vorst-Case Execution Times-Overview
of the Methods and Survey of Toois. ACM Transactions on Embedded Computing Systems
(TECS) 7, 3 (April).

YA!'!G, G., HSlEH, H., CHE!'!, X., BALARIN, F., AND SANGIOVAN!'!I-VINCENTELLI, A. 2006. Con­
straints Assisted Modeling and Validation in Metropolis Frarnework. In Proceedings of Astlomar
Conference on Signal, Systems and Computers. IEEE,]469-]474. .

ZENG, H., DAVARE, A., SANGIOVA!'!NI-VINCENTELLI, A., SONALKAR, S., KANAJAN, S., AND PINELLO,
C. 2006. Design SPace Exploration of Automotive Platforrns in Metropolis. In Scociety of
AutomotivE Engineers Congress.

Received Month Year; Revised MOllth Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, M 2009.

56

Une nouvelle méthodologie pour la

conception d'outils CAO

M algré tous les efforts investis par l'industrie et le milieu académique, les

concepteurs de systèmes embarqués ont besoin de nouvelles solutions pour la

modélisation et la simulation. Ce besoin est une conséquence du fait qu'il n'existe

toujours pas de solution bien intégrée répondant à un ensemble de critères clés

nécessaires pour l'obtention d'une solution de modélisation et de simulation efficace

et flexible. Ces critères sont:

• permettre la spécification de composantes logicielles de manière simple ainsi
que l'intégration de celles-ci dans la spécification globale d'un système
embarqué;

• offrir des syntaxes de modélisation et de programmation simples permettant la
définition de modèle moins sujets à l'erreur, facilitant la spécification de
systèmes complexes ainsi que leur réutilisation [26];

• offrir des fonctionnalités d'introspection pour faciliter l'analyse et de
débogage de spécifications complexes;

• permettre l'annotation de modèles pour divers besoins tels que pour diriger les
outils de synthèse et guider l'intégration d'outils de vérification [62];

• supporter la transformation de modèles et de spécifications en format
intermédiaire standardisé afin de permettre la conception d'outils CAO de
manière agnostique des langages de description [51]. Ces formats doivent être
assez riches pour supporter les outils durant toutes les activités de conception
(simulation, vérification, raffinement, etc.);

• être multi-plateformes et multi-langages afin de décrire des systèmes à base de
composantes hétérogènes [41];

• offrir la gestion de mémoire afin d'accélérer le processus de spécification et
pour éliminer une source importante d'erreurs [65]

• intégrer avec des environnements de conception distribués basé sur le Web
afin de permettre de la conception coopération à distance et du traitement
distribué [22].

Malgré leur popularité et leurs fonctionnalités, les environnements de conception tels

que SystemC et System Verilog ont plusieurs lacunes fondamentales. Ils ne supportent

58

qu'un seul langage et ont des capacités très limitées à rendre leurs modèles et leurs

spécifications disponibles à des outils externes. La programmation sujette aux erreurs,

et le manque d'un système de typage strict et de l'introspection dans C++ constituent

un obstacle dans le développement avec Systeme. SystemVerilog n'est pas un

environnement dont les sources sont ouvertes donc il est difficile de construire des

outils CAO autour de celui-ci pour supporter des méthodologies de conceptions

personnali sés.

En 2000, un an après le déploiement de SystemC, le .Net Framework a été annoncé.

Cette technologie possède des caractéristiques et des fonctionnalités qui auraient

sûrement influencé le choix d'utiliser de C++ pour la construction de Systeme. La

plateforme .Net a introduit le langage C#. Une excellente comparaison entre C#, C++

et Java est faite dans [3]. Cette comparaison démontre que C# est conçu avec les

forces de Java et ceux de C++ afin de d'offrir un langage puissant et élégant.

Plusieurs des fonctionnalités prévues pour SystemC et la deuxième version de

SystemVerilog sont déjà présentes dans C#. Un avantage clé de la plateforme .Net est

sa capacité de supporter plusieurs langages [59][67], une caractéristique important

pour la conception et la modélisation des systèmes embarqués.

Les contributions principales de cet article sont:

• l'introduction des technologies .Net à la communauté des systèmes
embarqués;

• la définition d'une nouvelle taxonomie pour les représentations de modèles;

• la présentation de l'importance d'aborder les flux de conception de système
selon une perspective de représentation de modèle, ainsi que l'influence de
cette perspective sur la conception d'outils CAO;

• la définition d'une nouvelle méthodologie de conception d'outils CAO pour
les systèmes embarqués. Cette méthodologie met beaucoup l'accent sur la
représentation de modèles, leur consommation ainsi que leur transformation.
De plus, elle repose sur la technologie .Net. Cette méthodologie offre
plusieurs bénéfices tels que son efficacité, mais aussi, par son emploi, elle
procure des caractéristiques importantes aux outils conçus tels que le support
multi-Iangage, l'utilisation d'un format standardisé ouvert riche en
métadonnées et l'introspection;

• la construction d'un outil CAO pour la modélisation et la simulation de
systèmes embarqués dont la conception de celui-ci suit cette nouvelle

59

méthodologie. Cet outil, au nom de « Embedded Systems with .Net»
(eSys.Net), offre la majorité des fonctionnalités de SystemC avec une
performance similaire. De plus, elle comporte plusieurs avantages importants
sur Systeme.

Les pages suivantes contiennent une copie de l'article [49], dans son format original

(sauf la numérotation des pages), publié dans ACM Transactions on Embedded

Computing Systems Special Issue on Concurrent Hardware-Software Design Methods

for MPSoC, vol 5, Num 2, 2006.

A New Efficient EDA Tooi Design
Methodology

JAMES LAPALME

Université de Montréal
EL MOSTAPHA ABOLILHAMID

Université de Montréal

and

GABRIELA NICOLESCU

Ecole Polytechnique de Montréal

New sophisticated EDA tools and methodologies will be needed to make products viable in the
future marketplace by simplitying the various design stages. These tools will pennit system design
at a high abstraction level and enable automatic refinement through several abstraction levels
to obtain a final prototype. They will have to be based on representations that are clean, com­
plete, and easy to manipulate. In order to develop these new EDA tools, key features such as
standardization, metadata programming, reflectivity, and introspection are needed. This work pro­
poses a .Net Framework-based methodology, which possesses ail these required key features. This
methodology simplifies specification, synthesis, and validation of systems and enables the efficient
creationlcustomization of EDA tools at low cost and development time. We show the effectiveness
of this methodology by presenting its application for the design of a new EDA tool called ESys .Net
(Embedded System design with .Net). We emphasize the specification and simulation aspects of
this too!.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids-Hardware description
languages, Simulation, Verification, VHDL, Verilog; D.3.2 [ProgrammingLanguages]: Language
Classifications-Design languages, C#, C++, Concurrent, distributed, and parallellanguages; 1.6.2
[Simulation and Modeling]: Simulation Languages; 1.6.5 [Simulation and Modeling]: Model
Development-Modeling methodologies; 1.6.7 [Simulation and Modeling]: Simulation Support
Systems-Enuironments

General Terms: Algorithms, Documentation, Perfonnance, Design, Reliability, Experimentation,
Standardization, Languages, Verification.

Additional Key Words and Phrases: ESys.Net, .Net Framework, C#, SystemC, VHDL, attribute
programming, SoC, CoDesign, embedded systems, modeling and simulation.

Authors' addresses: James Lapalme and El Mostapha Aboulhamid, Université de Montréal,
CP 6128, Succ. Centre-Ville, Montréal, Québec, Canada, H3C 3J7; email: e

 Gabriela Nicolescu, Ecole Polytechnique de Montréal, Montréal, Canada.
Permission to make digital or hard copies of part or ail ofthis work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components ofthis work owned by others than ACM must be
honored. Abstracting with credit is pennitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component ofthis work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
© 2006 ACM 1539-9087/06/0500-0408 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006, Pages 408-430.

61

A New Efficient EDA Tooi Design Methodology 409

1. INTRODUCTION

By 2010, transistor integration in the order of billions will be achievable; con­
sequently, it will be possible to build an entire multiprocessor system on a
single chip [ITRS 2005]. These systems will have to be fast, cheap, reliable, and
ready for the market in minimum time. In order to be competitive under these
constraints, new EDA tools will be required. These tools will permit system-on­
chip (SoC) design at a very high level of abstraction and will support automatic
abstraction refinement through severallevels.

In the domain of system-on-chip modeling and simulation, many efforts have
been invested and several contributions have been proposed. Designers cur­
rently have at their disposaI efficient standard solutions for hardware modeling
and simulation (e.g., VHDL, Verilog), but none are close to perfecto

SystemC [The Open SystemC Initiative (OSC!) 2005], announced in Septem­
ber 1999 is very popular for system-on-chip design. It is based on a li­
brary/framework approach implemented with C++. At its core is an event­
driven simulation kernel. SystemC provides aIl the basic concepts used by HDLs
(e.g., modules, ports, signaIs, and time); it also provides additional concepts of
higher abstraction, such as interfaces, communication channels, and events.
SystemC is a very good solution, but it currently lacks most of the features
needed for software modeling, such as dynamic process creation, process control
(suspend, resume, kill, etc.), preemption, and software-specific communication
primitives, such as monitors.

There exist several other approaches that pro vide higher level modeling
and verification solutions as extensions to existing HDLs. One solution that
is representative ofthis approach is SystemVerilog [Rich 2003; ... Bailey 2003],
which is an extension of Verilog. System Verilog adds to its predecessor a sig­
nificant set of features, such as high-Ievel concepts for abstract system mod­
eling and simulation, test-bench automation, and a better C interoperability
API.

Despite aIl the efforts of the community, SoC designers still need new mod­
eling and simulation solutions. This is mainly because of a set of requirements
that is mandatory for an efficient modeling and simulation solution, but is still
not provided by a single existing environment:

• Easier software component specification and their integration into an overall
HW/SW system specification;

• Clean programming features to achieve less error-prone models, easier spec­
ification for complex systems and reuse of such specification for further de­
signs [Doulos 2003];

• Introspection features for easier debugging and analysis of complex specifi­
cations [Keating and Bricaud 1999; Doucet et al. 2003];

• Possibility of annotating models for different purposes, Ce.g., directing syn­
thesis or hooking to verification tools, and creating user friendly HDL syntax)
[Newkirk and Vorontsov 2002];

• Translation to a standard intermediate format to permit the design of EDA
tools independently of description languages [Lee and Neuendorffer 2000],

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

62

410 J. Lapalme et al.

but also be able to offer accurate information for the different stages of the
design (simulation, verification, and refinement, etc.),

• Integration in a distributed web-based design environment to allow remote
processing and easy system documentation to facilita te cooperation between
different groups of designers [Dalpasso et al. 2002];

• Multiplatform and multilanguage features for describing and designing em­
bedded systems composed of heterogeneous components [Jerraya and Ernst
1999];

• Easier memory management to accelerate the specification process and to
eliminate an important source of errors [Rich 2003].

The contribution of our paper is to propose a new, .Net-based methodology
enabling fast and efficient creation of EDA tools for complex systems design.
This methodology enabled the design of a new tool called ESys.Net (Embedded
system design with .Net). This tool: (1) provides most of the concepts of the
presented high-level modeling and simulation solutions, (2) respects aIl the
requirements enumerated above, and (3) preserves comparative performances
with existing environments.

The reminder ofthis paper is organized as follows. Section 2 constitutes the
background ofthis contribution: it presents the .Net characteristics arguing our
choice ofthis framework and gives a classification ofthe model representations
used in the current tools. Section 3 presents the core ofthe methodology that we
propose: it presents its originality from the model representations point ofview
and shows how we can take advantage of .Net Framework's attribute program­
ming and reflectivity capabilities. Section 4 presents ESys.Net, a powerful tool
that we designed with our methodology. Section 5 is devoted to the implemen­
tation of ESys.Net simulator and illustrates the use of reflectivity. Section 6
discusses the performance and the different features of the environment, such
as the multilingual aspects and hooking to verification tools. Section 7 summa­
rizes the current status and presents sorne perspectives. Section 8 concludes
the paper.

2. BACKGROUND

2.1 The .Net Framework-General Presentation

The .Net Framework is a new platform that simplifies application development
for the highly distributed Internet environment [Microsoft 2005]. The .Net core
represented by the CLI (Common Language Infrastructure) was standardized
in December 2001 by ECMA and in April 2003 by ISO [ECMAlISO 2003]. CLI
unifies the design, development, deployment, and execution of distributed com­
ponents or applications. Its architecture is mainly composed of:

• A Common Intermediate Language (CIL) that supports high-level notions
(e.g., classes) and is independent of platforms and programming languages.

• Metadata that enables the addition of information about the context, quality,
condition, and characteristics of data. Metadata is used by the .Net Frame­
work to describe programs and their elements. It is possible to add custom

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

63

A New Efficient EDA Tooi Design Methodology 411

VHDL
Specification

Propriotary
format

Commercial
transation tools

Elaboration

C++, SystemC
specification

Complling

Object of
executable fix

OS fic loading

Cl

o

Textual model
represantion

Executable
model
represantion

Fig. 1. VHDUSystemC textual and executable models used in the simulation flow.

metadata to a program by using attributes (attribute programming). A pro­
gram's metadata may be accessed by using a mechanism called reflection. In
the context of embedded system design, metadata may be used to parameter­
ize or de scribe embedded system components (e.g., abstraction level, refine­
ment, and consign). Advantages of .Net's custom attributes are discussed in
Newkirk and Vorontsov [2002].

• A virtual machine that represents the model of an execution environment
for applications. The virtual machine simplifies programming by providing
a rich run-time infrastructure for applications, such as automatic memory
management (garbage collection), remoting, metadata management, and
type checking, just to name a few. It should be noted that memory manage­
ment is planned for the implementation of SystemVerilog, which shows its
importance.

• A set of classes providing important functionalities, such as thread manage­
ment and reflection. It also provides XML [The World Wide Web Consortium
(W3C) 2005] data manipulation, text management, collection functionality,
and web connectivity, etc.

Alongside the CL! core, .Net Framework presents a set of classes that add
supplementary features, such as web services, native and web forms, transac­
tion, scalability, and remote services. The .Net architecture may help system­
on-chi p tools designers in their efforts to manage complexity of systems, but also
with the complexity of design flows. We will give more information in section 3,
by explaining how we exploited this methodology.

2.2 Model Representations and Tools

In a traditional SoC development process, many different but complementary
model representations are used. We can divide model representations into two
categories: textual and executable (Figure 1).

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

64

412 J. Lapalme et al.

As their name implies, textual model representations are system descriptions
that are kept in text files. Textual models are not meant to be interacted with
during runtime. We analyze textual models by the means of parsing and seman­
tic analysis. Textual models may be language-oriented or metadata-oriented. An
example of a language-oriented textual representation would be a VHDL spec­
ification. Language-oriented representations permit designers to describe cir­
cuits and hardware/software systems. Since these descriptions are stored using
a standard format, it is possible to manipulate them with tools without having
any knowledge of previous manipulations. Very often, these descriptions lack
information that would be necessary to better inform tools about them, such as
f1.agging a part of a description, indicating that it represents a CPU or indicat­
ing what parts of a description should be synthesized; this optional information
is called metadata. Comments can be used to add metadata; but the format of
the information within the comments is not standard resulting in compatibility
issues between tools.

Thus, from the language-oriented representation, a metadata-oriented tex­
tuaI representation can be derived. In the case ofVHDL, this second represen­
tation, also called intermediate format is generally a proprietary nondisclosed
format. It will contain aIl the hierarchy expressed by the designer, such as
entities, architectures, packages, reconfigurations, and processes. In the case
of SystemC, this level is an object file which may be very poor in metadata,
especially if the model has been compiled to optimize execution speed.

At the opposite oftextual model representations, executable model represen­
tations only exist at run-time and can be dynamically interacted with. Exe­
cutable model representations are usually created from a textual model rep­
resentation. In the case of VHDL, this representation is obtained from the
intermediate format by the process of elaboration where aIl the details about
the configurations, entities, and architectures are removed to ob tain a repre­
sentation of the system as "a sea of processes connected by signaIs." It is this
representation that is used by the VHDL simulator. It is through these model
representations that EDA tools manipulate system models.

Figure 1 illustrates the different representations used by VHDL and
SystemC. We note that the executable models used by VHDL and SystemC are
very weIl adapted for simulation: the information that they generate is use­
fuI for this stage of the design, but it may be incomplete for other stages (e.g.,
verification or refinement). Since these representation models are adapted to
a certain design phase (e.g., simulation) and will be exploited by a specific tool
(e.g., a simulator), we calI them tool-specifie exeeutable representations.

Taking into account these definitions, three categories of tools may be de­
fined:

1. Tools using textual representations-this category oftools is generally used
for synthesis and static model verification.

2. Tools using executable representation as their input-this category is gener­
ally used for custom verification tools binding to an executable model repre­
sentation that is being managed by a simulator or another verification tool,
e.g., assertion-based verification by simulation.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

65

A New Efficient EDA Tooi Design Methodology 413

Table 1. Model Representations and Tools Manipulating Them

Model Representation Tools
Textual representation Static analysis

Metric tools
(Non) FormaI static representation
Format translation tools
Static synthesis tools

Executable model representation Dynamic analysis and metric tools
Assertion and observer tools
Simulation tools
Dynamic synthesis tools

Executable and textual Profiling

3. Tools using both mentioned inputs-this category is generally used for pro­
filing certain parts of a model execution that have not changed in the exe­
cutable model representation compared to the earlier textual format, or if
the EDA framework maintains enough information about the mapping from
one representation to the next one.

Table l gives sorne tools ex amples for each presented category. Current com­
mercial development methodologies offer tools that manipulate textual and
executable models. As mentioned earlier, the problem with these solutions is
their closeness.

Custom textual model analysis tools are very costly to create because of the
complexity ofparsing and analysis of corn pIe x model description languages. De­
velo pers are almost condemned to using commercial software for textual model
representation analysis. AIso, current commercial tools do not give access to
simple clean executable model representations, ex ecu table models are usually
hidden behind complex APIs, such as Verilog's PLI [.Sutherland 2002], or are
cluttered with simulation elements, which is the case in SystemC after macro
expansion. This really makes the development of custom tools very difficult.

3. OUR METHODOLOGY FOR EDA TOOLS DESIGN

Our methodology exploits the advance capabilities of the .Net framework in
order to achieve considerable advantages for SoC EDA tool design. Using .Net
for system model representation has several benefits [Lapalme et al. 20051-
Attribute programming, introspection, and reflectivity are key elements that
we have intensively exploited to facilitate EDA tool design and implementation.
This will be presented in more detail in sections 3.2 and 3.3.

3.1 Model Representation

The backbone of our methodology is the use of the .N et framework and the C#
programming language in order to create different model répresentations.

A language-oriented representation is considered to be the first textual model
representation of our methodology. It can be written with one or more pro­
gramming languages supported by .Net (Figure 2). Since these languages were
not intended for SoC design, a software framework, which implements specific
SoC concepts, is required (modules, communication channel s, ports, and system

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

66

414 J. Lapalme et al.

.Net Framework
representation models

Elaboration

model
representatio

Language - oriented
representation

(System Specification in
C#. C++)

Introspection
for verification

erfication
Model

D

o

Fig. 2. Proposed methodology.

}

Textual model
representation

Executable model
representation

Tooi-specific
executable representations

clocks). We will present such a framework in section 4. At this level of system
specification, .Net brings several advantages, the most important being:

• the garbage collector, which alleviates the designers memory management
task;

• the thread management functionality, which can be exploited for software
component descriptions;

• the metadata, which may be used to annota te models;
• web services, which enable web-based designs.

Our methodology permits the system specification to be compiled into a
metadata-oriented textual representation, a CIL file. Through the help of the
reflective capabilities of .Net, a CIL textual model representation may be ana­
lyzed. Because of the inherited symbolic nature of the CIL representation, aIl
the "plumbing code" of a design tool is hidden so we bbtain a "clean" model rep­
resentation. A CIL textual model representation may easily be transformed by
the .Net Virtual Execution System into a rich executable model representation.
This executable representation is seen as a rich one, because it contains aIl the
information contained in the CIL textual representation, for example, class hi­
erarchy is still present. It is not specific to a particular simulator and can be
manipulated by or interacted with different tools. We calI this kind of repre­
sentation a tool agnostic executable representation. Any model created with the
methodology will produce an executable model representation (Figure 2).

In summary, using our methodology, a language-oriented representation
is transformed into a metadata-oriented one (CIL file), then a tool agnostic

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

67

A New Efficient EDA Tooi Design Methodology 415

executable is generated, and finally a tool-specific executable view is obtained.
Thus, if we compare our methodology with those presented in Figure 1, the
main difference is that before we generate a tool specifie model representation,
we first generate a tool-agnostic executable representation. The latter brings
a lot of flexibility and scalability to the development process of design tools: it
generally enables the easy addition ofnew tools into an existing platform. This
is mainly because of the fact that it brings information that can be available
only at the run-time, such as class polymorphism or variables values at a given
time instance. Sections 3.2 and 3.3 will discuss how this information may be
retrieved and exploited from the agnostic tool representation.

3.2 Metadata and Attribute Programming

We believe that because of the proliferation oftools other than simulators that
use descriptions as their source, a standard mechanism for adding metadata to
the description is vital in order to create better EDA tools.

Both the C# and the CLI standards defined a way for adding declarative infor­
mation (metadata). Since the .Net has at its core the CLI, it also has metadata
support. The mechanism through which metadata may be added to a pro gram is
called attribute programming. Attributes can be defined and added to basically
aIl the elements of a program [. .. ECMAlISO 2003].

The mechanism for retrieving these attributes (metadata) has also been stan­
dardized, permitting software components developed by different teams or even
companies to interact and discover each other through metadata. Metadata
may even be used to control how the program interacts with different run-time
entities; it is this capability that we will exploit.

3.3 Introspection and Reflectivity

Generally the capabilities of EDA tools depend heavily on the accuracy of the
collected information concerning the system to design and/or the design require­
ments. A common source of information used by EDA tools is a specification.
Tools may extract information by the means of static analysis of a model spec­
ification and may ev en extract more information by inferring data from this
static analysis. However, static analysis may be very tedious and confines the
model to be predetermined before an EDA tool can be of use-Ieaving no room
for dynamic model construction and analysis-all dynamic elements of a model
may not be determined (like signal values, resolution of polymorphism, etc.).
Reflection and automated introspection fill the gap left by static analysis and
are regarded as necessary for the development and use of EDA tools Nicolescu
et al. [2002].

In the system-Ievel modeling context, various kinds of important information
may be reflected. The three main information categories are (i) design informa­
tion (structural and behavioral), (ii) run-time infrastructure information, and
(iii) modeling information provided by attribute programming or other means.
This information when reflected can allow one to design EDA tools to navigate,
manipulate, compose, and connect components, verify the interface compatibil­
ities, and synthesize appropriate interfaces.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

68

416 J. Lapalme et al.

1. public cJass Metadatalnspecter{
2. public static void MainO{
3. Type type = typeof(master);
4. Methodlnfo[] methods = type.GetMethods(lnstanceINonPublic»;
6. foreach(Methodlnfo method in methods){
7. Objects!:] objs = type.GetCustomAttributes(typeof(EventListAttribute),false);
8. if(objs. Length == I){
9. EventListAttribute eventList = objs[O] as EventListAttribute;
10. Console.WriteLine("Event: "+ eventList.ev + " Port: " + eventList[O]);
II.
12. }
13. }
14. }

Fig. 3. Static analysis of a user mode!.

These concepts are illustrated in the reflection capabilities of C#, where it is
possible to query the CL! to know the structure of an object. To such a query,
the CLI returns an object that is an instance of a metaclass named Type that
fully describes the type. Figure 3 represents the code to introspect the class
master defining a module of a system. The class has been hard-coded in line 3
for simplification. Lines 4-10 look for aIl the methods that have an EventList
attribute and print the associated event and port. This shows how easy it is
to introspect a class and, therefore, a model. An example of C# class defining
the master module will be explained later, in Section 4, Figure 5b. For that
example, the output would be: Event: posedge Port: clk.

Note that aIl the functions that we have used in order to retrieve metadata
(see the highlighted named in Figure 3) are already provided by .Net.

As we have seen, attribute programming allows the creation of metadata rich
models that can be analyzed easily by EDA tools with the help of introspection
and without the need to parse source code. These EDA tools, if constructed
while respecting the .Net interoperability rules can be customized by the users
to their proper need, other tools can also be created and integrated seamlessly
in the design flow.

Using our methodology, we created the ESys.Net (Embedded Systems with
.Net) tool based on .Net, Framework and the C# language. It was announced in
December 2003 [Goering 2003]. We chose the C# language because it is an ISO
standard; it is also the de facto language of the .Net Framework and ensures
an efficient use of the framework's capabilities. C# is a strongly typed object­
oriented language designed to give the optimum blend of simplicity, expres­
siveness, and performance. C# and .Net are quite symbiotic [Albahari 2000].
ESys.N et will be presented in the next section.

4. MODELING AND SIMULATING SYSTEMS IN THE ESYS.NET
ENVIRONMENT

As we stated in Section 2, the first prerequisite to model and simulate embedded
systems in the C# language is the implementation ofthe basic concepts specific
to these systems. Thus, for a better explanation, we start by presenting briefly

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

69

A New Efficient EDA Tooi Design Methodology 417

the basic concepts specific to SoC and that have to be provided by the ESys.Net
environment.

4.1 Concepts for Modeling and Simulation

In terms of modeling, we represent systems as a set of interconnected modules
communicating through communication channels by the intermediary of their
interfaces. Modules may be hierarchical-composed of several modules---or they
may be a leaf in the hierarchy and only con si st of an elementary behavior, which
may be described with one or several processes. Processes may be methods
(that cannot be explicitly suspended) or threads (that may be suspended and
reactivated) or light threads, called fibers, that cannot be preempted [Shankar
2003].

The same concepts (module, communication channel, and interface) may be
represented at different abstraction levels. ESys.Net aims the abstraction lev­
els defined in Nicolescu et al. [2002]. At the highest abstraction level, the func­
tionallevel, a system is described as a set of collaborating functions. The next
abstraction level is the architecture level, where a system is described as a set of
components communicating through abstract channels. Each component rep­
resents a component in the final architecture, but the hw/sw partitioning is not
yet decided.

After the HW/SW partitioning, we consider different abstraction levels for
communication, hardware, and software modules. For the hardware modules,
we consider the classical abstraction levels (the transaction level and the Reg­
ister Transfer level). For the communication, we consider the physical signaIs
and abstract channels (encapsulating complex behaviors). Our work also takes
into account abstractions for software models. For the design of software com­
ponents, such as applications and operating systems (OS), higher abstraction
levels than the ISA (Instruction Set Architecture) level are required because of
their complexity:

• at the OS architecture level, the OS is abstracted and only system calls cor­
responding to the OS services are visible;

• at the driver level, the implementation of the OS's services is fixed but device
drivers are still abstracted. Thus, the hardware on which software is executed
(e.g., CPU, memory) can be variable. The application code is extended with
OS layers implementing OS services (e.g., task scheduling management, and
interruption management).

These levels (especially the driver level) are still difficult to model using
the existing specification solutions [Yoo et al. 2003]. This underlines the ad­
vantage of using the .Net Framework: the thread management functionality
(e.g., threads creation and threads control) that is already provided by the
framework; it is the main features required to describe software at the driver
level.

In addition, our environment presents sorne concepts related to verification.
Thus, it provides the possibility to insert preconditional and postconditional

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

70

418 J. Lapalme et al.

statements for the different processes of the model Cthis will be illustrated in
Section 4.1.). In terms of simulation semantics, our environment is based on an
event-driven simulation kernel.

In the following, we will present the modeling and simulation capabilities of
ESys.Net for embedded systems with .Net by the means of the C# language.
In order to specify a system, designers must manipulate the presented basic
concepts that are provided by the environment core.

4.1.1 The Core of ESys.Net Environment. The core of ESys.Net is based
on a set of classes, which encapsulate the concepts of modules, communication
channels, signaIs, interfaces, and events.

User-defined modules are obtained by derivation from the abstract Base­
Module class. ESys.Net is able to detect aIl instances, whose class derives
from the BaseModule class, present within the model and registers them au­
tomatically. AlI modules, channels, events, or interfaces instantiated within the
hierarchy of a user module are also automatically registered in the simulator's
database. This is possible because of the reflection mechanism provided by .N et.
In addition, aIl classes derived from the BasedModule class can access infor­
mation stored in the simulator about the system and execution status Ce.g., the
current simulation time and the current module name).

User-defined communication channels are derived from the abstract
BaseChannel class. Since the BaseChannel class derives from the Base­
Module class, aIl user channels inherit the presented features of a user module
Cautomatic registration of included elements and access to simulator informa­
tion). The BaseChannel class offers the functionality of updating channels at
the end of a simulation cycle.

User-defined signaIs derive from the abstract BaseSignal class. This class
provides the functionality of storing information that will be readable only at
the next simulation cycle. It also provides a transaction event Cthat indicates
that a new data is stored in the signal and its value is equal to the precedent
stored value) and a sensitive event Cthat indicates that a new data is stored and
its value is different from the precedent stored value).

Interfaces are directly provided by the .Net Framework. An interface is com­
posed of a set of declarations of methods, but provides no implementation for
these methods. Our environment unifies the concept of high-Ievel interfaces
and ports. In fact, ports are implemented as predefined interfaces provided by
ESys.Net Ce.g., inBool, outBool, inoutBool and inInt).

One ofthe important characteristics of ESys.Net is that it offers the designer
the possibility to easily specify execution directives by tagging the different con­
cepts in the specification. These directives concern the association of a thread or
parallel method CMethodProcess) semantics to a class method, the addition of a
sensitivity li st for a method or a thread, the calI ofmethods before or after the
execution of a certain process, and the execution of a class method at a specifie
moment during the execution. This was implemented by exploiting attribute
programming provided by .N et and the C# language.

Table II summarizes the available attributes, their semantics, and the con­
cepts to which they are applied.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

71

A New Efficient EDA Tooi Design Methodology 419

Table II. Attributes and Their Role in ESys.Net

Attribute Description Applied to concept
Process Associate a thread to a class method Class method
MethodProcess Associate a method process to a class method Class method
FiberProcess Associate a fiber process to a class method Class method
EventList Oist of Add sensitive list for a process Process

events)
ManualRegistration Manually registration of the element Field
PreCall (Name of Method to be called Process

Method) before the process
PostCali (N ame of Method to be called Process

Method) Directives indicating after the process
Simlnit (N ame of methods execution Simulation init Class method

Method) in explicit points of
SimEnd (Name of the execution flow Simulation end Class method

Method)
Cyclelnit (N ame of Cycle initialization Class method

Method)
CycleEnd (Name of Cycle end Class method

Method)
Deltalnit Delta cycle Class method

initialization
DeltaEnd Delta end Class method
FinalDelta Last delta Class method
Reset Simulator reset Class method

Memory Master Memory Master

Interface Interface ~~ ..rt....rl....r

1 1
Communication channel 1

11 T 11T
(a) High level system representation (b) RT level system representation

Fig. 4. Simple system example.

In summary, using the implemented concepts described previously, the prin­
cipal stages of system specification process are:

1. Modules definition;
2. Communication channels definition;
3. Instantiation and interconnection of all the defined modules and communi­

cation channels in the overall system specification;
4. Specification of different execution directives.

We will now use an example to better illustrate the use of our system. The
example consists of a simple system composed oftwo communicating modules: a
memory module and a master module writing or reading data from the memory.
The system is represented at the transaction and RT level (Figure 4). Note that,
for clarity, we highlighted the key words specific to our environment.

Figure 5a gives the definition of the Master module from the system il­
lustrated in Figure 4(a). This module has an interface to the communication

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

72

420 J. Lapalme et al.

l. public class master : BsseModule

2.
1. public class master : BaseModule
2. (

3. Iimodule interface 3. Iimodule interface
public outBool Pl;
public InBool P2;
public Clock Clk;

4. public bus_interface 4.
5.
6.
7.

interface;
5. (,..)

(...) 6. [processl
8. I/process sensitive to the

7. public void main_action()
8. {while (true) (. .,)}

positive edge of the clock
9. [processl

9. 10. [EventList ("posedge" , "Clk") 1
II. public void main_action ()
12. {while (true) (... n
13.

(a) Transaction level case (b) RT level case

Fig. 5. Example of module definitÎon.

1. public cJass simple_bus :BaseChannel, Simple_bus_direct_if {
2.
3.
4.
5.
6.
7.
8.
9.
10.

Il interface of the bus
public Siaveintf slave jntf;
public Event write _ done;

Il funetion that is executed at the simulation initializat/on
[Simlnit]
public void end_of_elaborationO{ ... }

II. Il bus interface ta the master module
12. public bool read(ref in! data, uint address){ ... }
13. public bool write(ref int data, uint address){
14. (...)
15. write_done = new EventO;
16. (...)
17.
18.

Fig. 6. Communication channel definition example.

channel (line 4). !ts behavior is described in a function named main..action (see
line 7). This function is encapsulated in a process, using an attribute (line 6).
In the case where the same module is specified at the RT level, its interface
becomes a set of explicit ports (Figure 5b). We consider that alongside the dock
connection port (line 6), the module presents an output port and an input port
(Iines 4 and 5), both of them transferring Boolean data types. The method de­
scribing the behavior of the module is encapsulated in a process sensitive to the
positive edge of the dock signal. As we explained above, this is specified using
attributes (see Unes 9 and 10), note that keywords between brackets designate
defined attributes.

Figure 6 gives the definition of the high-Ievel communication channel illus­
trated in Figure 5a. This channel presents an interface for the connection to the
memory module Oine 4) and an interface for the master module consisting in

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

73

A New Efficient EDA Tooi Design Methodology

1. public class simple_bus_test: SystemModel {
2.
3.
4.
5.
6.
7.
8.
9.
10.
II.
12.
13.
14.
15.
16.
17.
Ill.
19.

Il channels declara/ions
public simple_bus bus;

Il module declara/ions
public master master _instance;
public memory memory_instance;

Il allaching syslem la Ihe simulalor
Pulic simple_bus_test(ISystemManage manager):base(manager) {

Il channel and module inslanlialion
master_instance = master('"masterjnstance");
memory _instance = memory("memory _instance");
bus = ncw simplc_bus("bus");

Il connecllhe difJerent modules la Ihe c/wnnels
master_instance_interface = bus;
bus.slave _intf = memory _instance;

20.)
21. }

Fig. 7. Overall system specification example.

421

the communication primitives for reading and writing data Oines 12 and 13). It
encapsulates a function which is executed only once, during the initialization
of the simulation Oine 9). This is specified using the Simlnit attribute Oine 8).
This module also illustrates the use of events for synchronization. The lines 5
and 15 show the declaration and, respectively, the instantiation of an event.
Processes may wait for this event (using the syntax wait (evenLname)) or no­
tif Y this event (using the syntax eventfiame.notify()). Events can be also part
of a sensitivity list specified by an attribute.

Finally, Figure 7 gives the specification of the overall system illustrated in
Figure 4a. This specification requires the declarations ofthe necessary top level
modules and channels Oines 4, 6, 7, respectively). The declared modules and
channels are then instantiated Oines 13-15) and interconnected Oines 18 and
19). To enable its simulation in ESys.Net, each system has to be attached to the
simulator, called, in our case, manager Oine 10).

ESys.Net is intended to be an evolution ofSystemC by offering a user-friendly
environment free of eclectic implementation details like macros, pointers, func­
tion, and prototyping. It is also intended to be a supers et of SystemC's core
functionalities extending it with features like automatic memory management,
system level primitives, strong typing, native interfaces, safe pointers, reflec­
tive capabilities, remoting, and dynamic thread crea ting/control, etc. We have
also added hooking points within the kernel which are easily used by third­
party tools, written in specialized languages [Kilgore 2002], permitting the
analysis, synthe sis, verification, and viewing of models. It would have been
possible to port SystemC to the .Net Framework, but at the price of using
nonstandard extensions to C++. It is, however, possible to execute SystemC
models in cooperation and in parallel with our models in the same binary
file.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

74

422 J. Lapalme et al.

XIvIL data m"anipuÎation
Web setvices

Intennedi~Je fonnat

.NET

Fig. 8. Layered architecture of ESys.Net.

4.1.2 Implementation Issues Provided by .Net Framework and C# Language.
The .Net Framework and the C# language provided us with several implemen­
tation advantages.

First, to implement the event-based simulation kernel, we exploited the
thread management functionality provided by the .Net Framework. Thus, in
the ESys.Net environment, a process that describes an element of a module's
behavior may be mapped to a .Net thread. ESys.Net processes are very use­
fuI for hardware/software modeling and are also very efficient compared to
the full-ftedged processes. Using the threads provided by .Net eliminated the
need of implementing thread management mechanisms. ESys.Net also per­
mits the modeling of processes without the use of threads. These processes are
called MethodProcess. MethodProcess are similar to SC..METHODs in Sys­
temC. MethodProcess and SC..METHODs do not rely on an underlying thread
library or complex synchronization mechanisms. They only have one entry and
exit point. There is also no preservation of context from one execution to the
next.

The reftection and attribute programming capabilities of the .N et Framework
were also useful for the implementation of ESys.N et. The C# language allowed
us to exploit efficiently these features by offering the possibility of adding meta­
data to various programming entities (e.g., objects and methods). As illustrated
in the previous section, the various entities in the system (e.g., modules) are
automatically registered in the simulator; this is accompli shed with the help of
reftection. Actually, the implementation of the overall event-based simulation
kernel is based on reftection and metadata.

As a summary, Figure 8 illustrates the layered architecture of ESys.Net. As
the figure shows, the core presents a reduced number of elements that we have
to implement on top of .Net or C#. This highlights the advantage of building the
environment on the top of a framework, comparing to building on a language.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

75

A New Efficient EDA Tooi Design Methodology 423

The framework gives us several features and parts of them were exploited
efficiently because ofthe use ofthe C#.

The power of expressiveness provided by the C# language enables us to make
a clean and simple implementation ofthe environment. Thus, aIl the presented
concepts for modeling and simulation were implemented in approximately 1550
lines of code.

5. METHODOLOGY APPLICATION FOR ESYS.NET SIMULATION
ENGINE IMPLEMENTATION

This section illustrates the application of the proposed methodology in creat­
ing custom tools using attribute programming and introspection. Taking into
account future possible interaction between these tools is also discussed. We
will use as an example the building of ESys.Net simulator. We will focus on
elaboration, initialization, and the event-driven simulator semantics and we
will highlight the advantages given by our methodology.

5.1 Elaboration

It is during this phase that ESys.Net model element instances are created and
connected together. However, unlike most environments, the elaboration phase
is done dynamically at run-time. ESys.Net models do not take for granted a
specific simulator. At run-time, a model is bound to a simulator, that, in turn,
through .Net's introspection capabilities, analyzes the model (structure and
directives) and creates a simulation representation of the model. This per­
mits models to be compiled separately from a specific simulator and to bind
the models at a later time to a specific simulator. This also allows having dif­
ferent simulators or tools work on different models or parts of models in a
unique binary execution. Verilog, VHDL, and System Verilog take for granted
that there is only one simulator, so it is implicit and it is during compilation
that a model is bound to it. SystemC is bound to an implicit simulator, but part
of the elaboration is done at compile time by macro expansion and the rest at
runtime.

Figure 9 is a simplified and partial pseudocode of the algorithm we use to
discover the elements of a model. As we can see we are interacting with the rich
dynamic representation to generate the executable representation pertinent to
simulation (Figure 2), by calling the different Register methods.

5.2 Initialization

lnitialization is the first step in the ESys.Net scheduler. Processes are not ex­
ecuted by default and only processes that have been tagged with a Simlnit
attribute or processes that do not have a sensitivity list, are executed during
this phase.

5.3 ESys.Net Scheduler

The semantics ofthe ESys.N et simulation scheduler are defined by the following
steps. A simulation cycle (delta cycle) consists of steps 3 through 11.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

76

424 J. Lapalme et al.

SubModelEltRegistration(ModelObject elementl
type := GetType(element)
fields:= GetAIIFields(type)
foreach field in fields

fieldinstance:=GetFieldlnst(field,element)
select(field instance)

case Clock:
RegisterClock(field instance)

case Channel:
RegisterChannel(fieldinstance)
SUbModelEltRegister (fieldinstance)

case Module:
RegisterModule(field instance)
SubModelEltRegister (field instance)

case Signal:
RegisterSignal(field instance)

case Event:
RegisterEvent(field instance)

Fig. 9. Registration of aspects related to simulation.

1) Initialization Phase.
2) Execute cycle initialization callbacks
3) Execute delta initialization callbacks
4) Evaluate Phase. Select a process from the set ofthose that are ready to run. The
order in which processes are selected for execution from the set of processes that are
ready to run is unspecified.
5) Execute pre-method callbacks for the current process
6) Resume current process execution
7) Execute post-method callbacks for the current process
The execution of a process may cause immediate event notifications to occur, possibly
resulting in additional processes becoming ready to run in the same evaluate phase.
8) Repeat Step 4 for any other ready process
9) Execute pre-update callbacks
10) Update Phase. Update delta-cycle dependant elements that requested updates
(signaIs and primitive channels)
11) Ifthere are pending delta-delay notifications, determine which process is ready
to run and go to step 3.
12) Execute last delta callbacks
13) If there are no more timed event notifications, go to step 18.
14) EIse, execute cycle end callbacks
15) Advance the current simulation time to the time of the earliest (next) pending
timed event notification.
16) Determine which processes become ready to run due to the events that have
pending notifications at the current time. Go to step 2.
17) Execute simulation-end callbacks
18) Simulation end

As illustrated by the steps of a simulator scheduler, we have added many
hooking points (steps in bold) within the simulation kernel. Since these hooking
points are implemented with delegates and events, it is possible to ho ok many
callbacks to a same point and callbacks may be class instance methods or static
class methods, which is more general than System Verilog's callbacks, which

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

77

A New Efficient EDA Tooi Design Methodology 425

1. public c1ass SimpleBusApp{
2. static public void MainO{
3. My VeriTool tool = new VeriToolO;
4. MyModel model = new MyModel(sim);
5. Simulator sim = new Simulator(sbt);
6. sim.cyclelnit += new HookPoint(tool.verify);
7. sim.Run(\OOOOO);}}

Fig. 10. Hooking two collaborative tools by callbacks.

are only global C functions. Since we are also using delegates, it is possible to
bind a method to a ho ok point at run-time because it is not necessary to know
at compile time the names of the methods we want to bind to a delegate.

Figure 10 is a simple code that illustrates the instantiation of a model, a
simulator and a verification tool [Gorse et al. 2004], and their binding. Notice
that with a simple line of code, we can bind a method to the Cyclelnit event of
a simulator (line 6). The Cyclelnit event is triggered at the beginning of every
simulation cycle.

6. ANALYSIS AND EVALUATION

We believe that for system-Ievel modeling and tool building/customization, this
environment possesses many advantages over the CUITent ones, because of the
following characteristics.

6.1 Safe Modeling and Tooi Building

.Net provides a large number ofsafety features that can be applied to modeling
as weIl as tool creation or customization, such as type checking and automatic
memory management.

6.2 Separation of Concerns between Models and Simulation

The intermediate format of .Net (CIL) is used as a neutral and public format
between tools. The intermediate format is clean and complete-complete in the
sense that aIl of the metadata present within the model description and code
structure and organization are kept. We say that the format is clean because
very little nonmodel-dependent information is present. In order to illustrate
the two points, we will take SystemC as an example.

Being based on a C++ library, SystemC has inherited aIl the wonders of the
C++ language: speed, power, and flexibility, but has also inherited aIl its evils:
error-prone, complex, and, most importantly, lacking run-time features like:
memory management, type verification, and introspective capabilities. When
C++ IP blocks are compiled, a lot of information is lost: structures are flat­
tened, abstract data structures are minimized, and it is not possible to obtain
precise information on elements found in the model. Thus, even though C++
IP block are fast to simulate, this reduced observability makes them hard to
manipulate.

In regard "cleaness" in SystemC's, its source code has a fairly clean layout
that can be used for static analysis, but when it is compiled aIl the macros are

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

78

426 J. Lapalme et al.

expanded adding a lot of code that has nothing to do with the model, but is
necessary for SystemC's elaboration phase and for binding the model to the
simulator kernel. Tools that must analyze SystemC IP blocks must deal with a
polluted model description.

Thus, we can say that our methodology offers a fairly clear separation of
concerns between description models and simulation kernel. We believe that
the strong separation is better than the environment for component-based ap­
pro aches.

6.3 Dynamic Models

An important downfall of most CUITent system level design environments is
that they only manipula te static models, meaning that a model cannot be as­
sembled or modified without changing the models description and recompiling
it. This enormously hinders the automatic exploration of different architectures
and model organizations that could help with partitioning issues. Since current
environments have an implicit and unique simulator, it is also not possible to
simulate either multiple models with different simulators or split a model be­
tween different simulators (software/hardware cosimulation) within the same
binary simulation.

Consequently, since dynamic model composition with IPs cannot be done in
existing environments, the creation of Rapid Application Development (RAD)
is very difficult. As explained in Section 3, this drawback has been alleviated
by this methodology.

6.4 Easier Madel Analysis

In the case of ESys.Net, since it is based on the .Net framework, it inherits
a clean intermediate format and an agnostic tool-executable representation,
which leads to powerful reftective run-time capabilities. These two important
points permit the easy creation of custom EDA tools that can use high-level
languages to explore and analyze models. By using logic languages cou pIed
with introspection, it would be possible to rapidly develop verification engines
for ESys.Net. By using rich pattern-matching language, it could be possible to
quickly analyze the intermediate format for synthesis. Visual Basic and Java
open the door for the creation of elegant visualization tools. This is the first
time we have a rich intermediate format that can be manipulated by multiple
languages within the same binary execution.

This multilanguage interoperability allowed us to use fibers (lightweight pro­
cesses managed by the simulator application) instead offull-ftedged threads to
implement processes equivalent to those ofSystemC. This resulted in increased
performance compared to results published in Lapalme et al. [2004]. Since fibers
are accessible through C++, but not yet in C#, the use ofthese processes is do ne
using C++. Figure 11 shows that the fibers may be one order of magnitude
more efficient than the threads provided in .Net C#. The base of comparison is
sCJllethods and sc_threads of Systeme. The heavier threads of .Net can still be
used when preemption, priority, or other system features are needed.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

79

80

70

60

50

40

JO

20

A New Efficient EDA Tooi Design Methodology 427

--+- threadlsc_ thread

-.- fiberlsc_metho d

--+<- fiberlsc_ thread

10 100 500 1000 5000 1001D

instructions between two context swttches

Fig. Il. Performances offibers and threads vs. sc_threads.

1001D
o

6.5 Easier EDA Toois Hooking

Our methodology fulfills the need for third-party tool binding with its multiple
hooking points that are easily accessible. The need for complex API's such as
PLI [.sutherland 2002] or the need for kernel modification that can lead to tool
incompatibility are removed.

7. CURRENT STATUS AND FUTURE WORK

Our methodology conferred to ESys.Net several interesting characteristics: the
connection to a metadata-oriented standard intermediate format, the multilan­
guage features of the .Net Framework, and the expressiveness, the reflectivity,
and the attribute programming model provided by the C# language. These
advantages allow us to consider very interesting perspectives for the future
development of ESys.Net.

We are currently working on the implementation ofthe software abstractions
presented in Section 4. We successfully modeled in our environment an existing
OS at the various abstraction levels.

Our future work will have as prime objective the exploration of refinement
under its many facets. First, the standard intermediate format will permit
the creation of new refinement tools that can be guided in better ways by the
use ofmetadata, which annotates and extends manipulated models. Moreover,

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

80

428 J. Lapalme et al.

in order to bridge the gap between our environment and other existing tools
(and environments) for hardware synthesis and model analysis (ex. CoCentric
[Synopsys 2001]), we will focus on the automatic translation ofC# specification
to SystemC and/or VHDL models. We have recently started working on a new
approach that will extend the ESys.Net environment with HW/SW partitioning
features. The implementation is facilitated by the use of attributes (for parti­
tioning directives) and the reflective capabilities of .Net (for in-line checking of
the respect of constraints and even system hw/sw

Concerning the issues of simulation, we intend to prove the multilanguage
and distributed capabilities of .Net by exploiting them in the study of software
application and operating systems executed at different abstraction levels (see
Section 3.1).

In the mid-term, our team will address the problems surrounding the ver­
ification of specifications and models [Gorse et al. 2004]. When we designed
the simulation core of ESys.Net, we had in mind the future needs required
by verification and analysis tools; for instance, many hooking points within the
simulation kernel have been provided enabling the integration of external tools.
Several APIs also enable the introspection of the system's status at any given
moment during a simulation.

8. CONCLUSION

Today, in order to respect the time to market and strict cost constraints,
embedded system designers need new modeling and simulation solutions.
These solutions must enable easier memory management. They must also
permit software component modeling, compone nt integration in a distributed
web-based environment, easier debugging of complex specifications, multi­
language features, and mitigated connection with other existing or new CAD
tools.

In this paper, we presented a methodology for tool design. The main ad­
vantage of this methodology is the ability to ob tain a tool-agnostic executable
representation of the system under design. This representation is the common
reference for aIl the designers of new tools. This increases dramatically the pos­
sibility to create a complete, consistent, and unique solution that pro vides tools
for different key stages in SoC design (simulation, verification, partitioning,
etc.). Since the methodology is based on .Net, this common reference represen­
tation is already standardized and aIl the APIs needed for its manipulation are
currently provided.

This methodology enabled us to design a new environment for SoC modeling
and simulating. This environment fulfills the set ofrequirements that we enu­
merated in the paper and with no important performance cost. The key point of
our approach is the use ofthe advanced features present in the .Net Framework
and the C# language.

This work also confirms that EDA tools efficiency is influenced by the method­
ology used for their design and that software expertise might bring substantial
contribution for the design of SoC; a design flow thàt will require more and
more the "coming together" of several do mains of expertise.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

81

A New Efficient EDA Tooi Design Methodology 429

REFERENCES

ALBAHARI, B. 2000. A Comparative Overview of C#. Available from: http://genamics.com/
developer/csharp_comparative.htm.

BAILEY, S. 2003. "Comparison ofVHDL, Verilog and SystemVerilog," Model Technology, Digital
Simulation White Paper.

DALPASso, M., BENINI, 1. AND BOGLIOLO, A. 2002. Virtual simulation of distributed IP-based de­
signs. Design and Test ofComputers, IEEE, 19,92-104.

DOUCET, F., SHUKLA, S. AND GUPTA, R, 10382. 2003. Introspection in system-Ievellanguage frame­
works: meta-Ievel vs. integrated. In Proceedings of the Conference on Design, Automation and
Test in Europe, March 03 - 07, IEEE Computer Society, Washington, DC.

DouLOs 2003. SystemC in Europe-current usage and future requirements. Available from:
http://www.doulos.com/systemcJeport/

ECMAlISO 2003. ECMA and ISO /IEC C# and Common Language Infrastructure Standards.
Available from: http://msdn.microsoft.com/netframework/ecma/.

GOERING, R 2003. Researchers tap .Net, C# for system-level design. Available from:
http://www.eetimes.com/.

GORSE, N., METZGER, M., LAPALME, J., ABOULHAMID, E. M., SAVARIA, y. AND NICOLESCU, G. 2004. En­
hancing ESys.Net with a semi-formal verification layer. In Proceedings of the 16th IEEE Inti
Conference on Microelectronics (lCM'04), Tunis, Tunisia, Dec. 2004. 388-391.

ITRS 2005. International Technology Roadmap for Semiconductors, Edition 2003. Available from:
http://public.itrs.netl.

JERRAYA, A. AND ERNST, R 1999. Multi-Ianguage system design. In Proceedings of the Conference
on Design, Automation and Test in Europe DATE '99, Munich, Germany, ACM Press, New York,
NY,134.

KEATING, M. AND BRICAUD, P. 1999. Reuse Methodology Manual, K1uwer Academic Publi., Boston,
MA.

KILGORE, R. A. 2002. Open source initiatives for simulation software: multi-Ianguage, open­
source modeling using the microsoft .NET architecture. In Proceedings of the 34th Conference on
Winter Simulation: Exploring New Frontiers, San Diego, CA, December 08-11,2002.629-633.

LAPALME, J., ABOULHAMID, E. M., NICOLESCU, G., CHAREST, 1., DAVID, J.-P., BOYER, F. AND BOIS, G. 2004.
ESys.NET: A new solution for embedded systems modeling and simulation. In Proceedings of the
ACM SIGPLAN / SIGBED 2004 Conference on Languages, Compi/ers, and Tools for Embedded
Systems (LCTES'04), Washington, DC, June 11-13, 2004.107-114.

LAPALME, J., ABOULHAMID, E. M. AND NICOLESCU, G. 2005. Leveraging model representations for
system level design tools. In Proceedings of the 16th IEEE International Workshop on Rapid
System Prototyping (RSP'05), Montreal, Canada, June 2005. 33-39.

LEE, E. A. AND NEUENDORFFER, S. 2000. "MoML--A Modeling Markup Language in XML, Version
0.4," U. of California, Berkeley, Technical Memorandum UCBIERL MOO/12.

MICROSOFT 2005. Microsoft .NET Framework. Available from: http://msdn.microsoft.com/
netframework/.

NEWKIRK, J. AND VORONTSOV, A. A. 2002. How .NETs custom attributes affect design. IEEE Soft­
ware, 19, 18-20.

NICOLESCU, G., Yoo, S., BOUCHHIMA, A. AND JERRAYA, A. A. 2002. Validation in a component-based
design flow for multicore SoCs. In Proceedings of the 15th international Symposium on System
Synthesis ISSS '02, Kyoto, Japan, October 02-04, ACM Press, New York, NY. 162-167.

RICH, D. 1. 2003. The Evolution of System Verilog. IEEE Design and Test ofComputers, 20. 82-84.
SHANKAR, A. 2003. Implementing Coroutines for .Net by Wrapping the Unmanaged Fiber

API. Available from: http://msdn.microsoft.com/msdnmag/issues/03/09/CoroutinesinNET/
defauIt.aspx.

SUTHERLAND, S. 2002. The Verilog PLI Handbook, K1uwer, Acad. Pub\., Boston, MA.
SYNOPSYS 2001. CoCentric® System Studio.
THE OPEN SYSTEMC INITIATIVE (OSC!). 2005. SystemC 2.1 Language Reference Manual. Available

from: http://www.systemc.org/.
THE WORLD WIDE WEB CONSORTIUM (W3C). 2005. Extensible Markup Language (XML). Available

from: http://www.w3.orgIXML.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

82

430 J. Lapalme et al.

Yoo, S., BACIVAROV, L, BOUCHHIMA, A., PAVIOT, Y. AND JERRAYA, A. A. 2003. Building fast and accu­
rate SW simulation models based on hardware abstraction layer and simulation environment
abstraction layer. In Pro;:eedings of the Conference on Design, Automation and Test in Europe,
March 03-07,2003, IEEE Computer Society, Washington, OC.

Received February 2005; accepted June 2005

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 2, May 2006.

83

La séparation des aspects de modélisation

et de simulation dans les langages

orientés-« framework » de modélisation

matériel/log iciel

A
' l'heure actuelle, les concepteurs de systèmes embarqués ont plusieurs solutions

relativement efficaces pour la modélisation et la simulation (e.g. SystemC,

SystemVerilog, etc.). Les langages utilisés par ces solutions pour la spécification et la

modélisation de systèmes peuvent être catégorisés comme des langages dédiés. Ces

langages sont dédiés à des domaines applicatifs précis, donc ils se distinguent des

langages généralistes, comme Java et C ++, qui n'ont pas de biais pour un domaine en

particulier. Depuis quelques années, dans le monde du logiciel, les langages dédiés

sont devenus un sujet de recherche important quant à leur conception et leur

utilisation. Plusieurs avantages sont souvent attribués à l'utilisation de ces

langages [60] :

• ils permettent d'exprimer des solutions avec les tournures diomatiques au
niveau d'abstraction du domaine traité. En conséquence, les experts du
domaine eux-mêmes peuvent comprendre, valider, modifier, et souvent même
développer des programmes en langage dédié.

• ils facilitent la documentation du code.

• ils améliorent la qualité, la productivité, la fiabilité, la maintenabilité, la
portabilité et les possibilités de réutilisation.

• ils permettent la validation au niveau du domaine. Aussi longtemps que les
éléments du langage sont sûrs, toute phrase écrite avec ces éléments peut être
considérée comme sûre.

Il existe deux catégories de langages dédiés, soit les indépendants et les enfouis. Les

langages dédiés indépendants sont caractérisés par le fait qu'ils ont des syntaxes, des

compilateurs et des analyseurs qui leur sont propres. Les langages dédiés enfouis sont

caractérisés par le fait qu'il utilise un langage hôte, typiquement un langage

86

généraliste, pour leurs syntaxes, les compilateurs, etc. Ce type de langage est

généralement défini via une bibliothèque de code qui implémente la sémantique

nécessaire pour traiter du domaine visé par celui-ci. Puisque les langages généralistes

orienté objet sont bien adaptés pour la conception de bibliothèques bien conçues, ils

sont souvent utilisées comme langage hôte. On peut faire le parallèle entre les deux

familles de SDL présentées dans la revue et les deux catégories de langage dédié. Les

SDL indépendants sont des langages dédiés indépendants et les SDL orienté

bibliothèque sont des langages dédiés enfouis.

Beaucoup d'effort ont été investis dans la définition de langages enfouis pour le

domaine des systèmes tel que Systeme. Malgré ces efforts, très peu de travail a été

fait sur l'investigation des techniques de conception et technologies logiciels qui

seraient les plus appropriées pour la définition de ces langages dédiés. Les

bibliothèques de codes, donc par conséquence les langages dédiés enfouis, sont très

difficiles à concevoir. Leur conception influence grandement:

• leur efficacité;

• leur facilité d'utilisation;

• leur capacité à promouvoir des solutions biens conçues;

• leur capacité à être étendu.

Depuis plusieurs décennies, la communauté du logiciel a vu émerger plusieurs

technologies de grande valeur telles que la conception par patron [31], le principe de

conception par séparation d'aspects, et les plateformes de développement évoluées

comme .Net. Par l'assemblage de ces technologies, il est possible de concevoir une

nouvelle génération d'environnements et de langages pour la conception de systèmes

embarqués. Cette nouvelle génération d'outils offre une séparation non ambiguë entre

les diverses facettes de la conception des systèmes telles que la modélisation, la

simulation, la vérification, etc. Cette séparation offre plusieurs bénéfices.

Les contributions principales de cet article sont:

• l'introduction du concept des langages dédiés à la communauté des systèmes
embarqués;

• l'application du principe de la séparation des aspects aux langages dédiés
enfouis pour les systèmes embarqués;

87

• la présentation de diverses technologies modernes du geme logiciel qui
peuvent être appliquées à la conception des langages dédiés enfouis pour les
systèmes embarqués;

• la définition d'une architecture cible d'outils CAO pour les systèmes
embarqués. Cette architecture met en pratique la séparation des aspects et les
technologies modernes du génie logiciel. Cette architecture confère aux outils
plusieurs bénéfices par rapport aux autres solutions disponibles;

• la construction de deux outils, un pour la modélisation et l'autre pour la
simulation de systèmes embarqués utilisant cette nouvelle technologie. Le
langage de modélisation porte le nom de « SoCML». Ces outils offrent la
majorité des fonctionnalités de Systeme. De plus, ils comportent plusieurs
avantages importants sur SystemC;

Les pages suivantes contiennent une copie de l'article [47], dans son format original

(sauf la numérotation des pages), publié dans The Arabian Journal for Science and

Engineering, Vol 32, Num 2e, 2007.

SEPARA TING MODELING AND SIMULATION ASPECTS IN
HARDWARE/SOFfWARE FRAMEWORK-BASED

MODELING LANGUAGES

James Lapalmet, El Mostapha Aboulhamid
Laboratoire LASSO, lR,OUniversilé de Montréal

c.P. 6128, Suce. Centre-Ville, Montréal, Québec, Canada H3C 3J7

Gabriela Nicolescu

École Polytechnique de Montreal, Canada

c.P. 6079, suce. Centre-Ville, Montréal Québec, Canada H3C 3A7

and Frédéric Rousseau

TIMA, 46 av. FeUx Viallet, 3803/ Grenoble CEDEX France

:~I

~t.;.....,t""~tù't"~1 ÛJlj • ..>..>.I.,lI'-....jy!JI..,J ûl.)ji..jllyll J.>..<:. Jlj WS, I uJ~1 <>-
~I ,) u:-,J' <.S.>; ~ .~ I..;IJj 0-'>:us...:...J1 ~ ~4110-'> ~I <.!ll~ .tc.1....:;1 .;,fi:lL..Jl
.>..o:W ..,.:>JI ~I ûW ~1.liû....1 ,.". ~ J..l1 .;,1 wyi,i <.Sy. ù!""" Ji...,. ûW ,.". ~
<>- 41 ';'Î ~IJ .J..ll JÀ ~IJ • .>ia..ll ûlJJ\'1 r'~1 .;,1 yi,i Ji.) <.Sy.J .W'\ ~I '-':!.;. "'"
rL...l;,.; ~ u~I..)! <...;0..;;11.)<:-~I JS.4fJ1 "'" Wi.f.Il J.,l.J\.;,~ 1:'" t"J .~LS ~ ~ J.,l.JI.:...
d....i Jy..JI.:... y.~ ~I <>- ;ijJ;;,..J1 ~~I JS. <>- ri'-y..;J .~u.....Jl <>- 'i.JiiJI~ w"j ~ (C)
JS4fJI..,..k -'.....;\.i J.,.h y..,J..:;l j)l\\ ~J,IlI ~ ûl,i:.i.J .t..1.)J ~I <>- û1~.,;l' </,.\.lfo b-*,,"
J~ "::"~J,Il'.t...;;.,. ûl,i:.i.J r'~! ~...,...~ JÀ).,ll.:... <>-~)I ...,...yJl.;,~ <.!ll~J .~I
........ Wl ..::..1)""", ':il Ùl-I ~I.,ll J...o..il4 ~ Jy..J1 ':UJ .JS4fJ1 .)<:- Wi.f.Il""':....ll J..;.ll J.,l... "'"
~ J (SoCML) ~ ~I 4:....ll '''':1';;' u,.;. U.).,ll ~~J .• LSI......l4 Wl ..!l..l:iJ 4i..il4
<.!lljSJ • ...,...ljiI::.':il rl~4 ~I ~'-':f.lC <.Syi,i l.jlj.o,l t..:..;1 (SoCML) FJ .fi:')1 J..il1..J1 ,-;-W4

.• LSI......Jl J;.l,.\1 <",".>lI

t To whom correspondence should be addressed.

E-mail:

Paper Received: 16 April 2007; Revlsed: 15 November 2007; A«epted: 28 November 2007

December 2007 The Arabian Journal/or Science and Engineering, Volume 31, Number le 41

89

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

ABSTRACT

As transistor integration reaches the order of billions, the already significant
productivity gap which plagues the silicon industry will only widen further. Many
are working on the problem from different angles. Some regard domain-specific
modeling languages as a solution. Others believe in modeling languages which are
based on a library/framework approach. Yet others believe in sophisticated
proprietary tools. None of the current paths seem to be silver bullets. However,
object-oriented framework-based solutions, such as SystemC, are gaining a great deal
of momentum and acceptance from the industry. Despite ail the efforts which have
been spent on the development of the se types of solutions, very few efforts have been
spent on the cornerstone task of investigating which software design techniques and
technologies should be used to develop effective framework-based solutions. The
main objective of this article is to present how modem software engineering
technologies may be used to create bet!er framework-based modeling solutions.
These solutions are characterized by a clear separation of concerns between modeling
and simulation aspects. A novel modeling framework called SoCML is presented
which possesses the above characteristic. SoCML has many benefits such as
verification by interception and alternative simulation support.

Key words: logic design hardware description languages, simulation, verification,
VHDL, programming languages: design languages, C#, C++, concurrent, simulation
and modeling: simulation languages, modeling methodologies, environments

42 The Arabian Journalfor Science and Engineering. Volume 32. Number 2e

90

December 2007

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

SEPARA TING MODELING AND SIMULATION ASPECTS IN HARDWARE/SOFTWARE
FRAMEWORK-BASED MODELING LANGUAGES

1. INTRODUCTION

As transistor integration reaches the order of billions [1], the already significant productivity gap which plagues the
Electronic Design Automation (EDA) industry will only widen further. Many are working on the problem from different
angles:

• Sorne are working on design flows based on dedicated modeling languages in order to aid designers model
complex systems effective\y and at higher levels of abstractions then was previously possible [2].

• Others have taken the path of Iibrary/framework-based solutions which rely on existing mainstream
programming languages. These solutions capitalize on existing tools and technologies and allow the integration
of new on es in order to achieve novel design flows [3].

• Others are looking towards sophisticated tools---electronic design automation (EDA)--based on proprietary
technology in order to offer "out of the box" design-flow solutions [4].

None of the mainstream approaches seem to be silver bullets; however, object-oriented framework-based solutions
such as SystemC [3] are gaining a great deal ofmomentum and acceptance by the industry. Given this fact, we started, in
2003, working on a new .Net based methodology which enabled the fast and efficient creation of EDA tools for complex
systems design. This methodology made the design of a new tool ca lied ESys.Net [5] (Embedded System Design with
.Net) possible. Esys.Net: (1) provides most of the concepts of high-level modeling and simulation solutions, (2) inherits
features from .Net which allow less error prone modeling, (3) facilitates tool interoperability, (4) permits custom
annotation definition, (5) enables mode\ enrichment by annotation (e.g. directing synthesis or hooking to verification
tools, creating user rriendly HDL syntax, etc.); and (6) preserves comparative performances with existing modeling and
simulation solutions [6,7].

Despite ail the efforts which have been made to develop framework-based solutions, as weil as the numerous satellite
tools, very few efforts have been made on the comerstone task of investigating which software design techniques and
technologies should be used to develop effective solutions.

Software frameworks are quite difficult to build; their design has tremendous impact on:

• Their effectiveness,

• Their ease of use,

• Their ability to promote good designs,

• Their capability to be extended easily.

The software community, over the past decade, has invested a great deal of effort in the domain of software design;
pattem-oriented designs are the fruits of these efforts [8]. Moreover, the conflicting needs of the software industry for
"rapid time-to-market" (quick design and implementation) solutions which have a low "cost of ownership" (flexible and
may easily evolve) has caused the emergence of novel software engineering technologies. The "container-based"
implementation approach and 3GL programming languages which support rapid development exemplifY these new
technologies. Software design principles such as "separation of concerns" have also been maturing, becoming more
present in technologies such as software containers, aspect-oriented programming, and strategic programming.

By combining the advanced capabilities of a modem object-oriented programming language such as C#/.Net and the
flexibility and elegance of modem software design patterns such as Inversion of Control and Proxy, it is possible to
create a novel framework-based solution for hardware/software system modeling and simulation. We will present a
solution which permits a c1ear and unambiguous separation between the mode\ing, the verification and the simulation
aspects, hence achieving perfect separation of concems. The level of separation of concerns offered by the solution
permits the elaboration and refinement of various simulation engines such as software, distributed and emulation without
any modification to those system models which were previously created.

The main objective of this article is to present how new software engineering technologies may be used to create
better framework-based modeling solutions. We will (1) present interesting software engineering technologies; (2) show

December 2007 The Arabian Journal/or Science and Engineering, Volume 32, Number 2e 43

91

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

how CUITent solutions lack "separation of concems" in their design and discuss the impact; (3) present a novel modeling
framework based on the technologies presented earlier; (4) present a simulation framework for the modeling framework;
and (5) discuss the benefits of the solution with regards to simulation, synthesis, and verification of the modeled
hardware/software systems.

2. BACKGROUND

2.1. Separation of Concerns (SoC)

Probably coined by Edger W. Dijkstra in his paper on the role of scientific thought [9], the concept of separation of
concems is an important principle which lies at the heart of modem software engineering. The basis of SoC is the
decomposition of a problem into sub-problems which are orthogonal to each other. SoC takes a c\assical divide-and­
conquer approach to problem solving but relies on aspect decomposition instead of traditional functional decomposition.

Within the context of system modeling and simulation, it can be said that the problem of modeling a system is
orthogonal to the problem of simulating a system. Even though both problems are related to one another by common
modeling semantics, one is concemed about the "what to simulate" and the other about "the how to simulate". For
example, ifwe have a system such as a cruise control unit which must be modeled and simulated, it should be possible to
model the system with certain modeling semantics, such as a hierarchical sea of process, without taking in consideration
whether the system will be simulated or emulated.

2.2. C#/.Net 2.0 and Generics

At the end of 2005, Microsoft released the next official versions of .Net and the C# programming language, both
versioned 2.0 [10], [II]. Of the many enhancements made to .Net and C#, the implementation of generics types is
especially important.

Generic programming, popularized by C++ (templates), is a programming paradigm used by statically type languages
in which a piece of software is specified in a way abstracting type information. When a piece of generic software must be
used, a programmer must specify a type binding which specializes the software for a given type. Most often, the
compiler will duplicate the original generic code but with the type information added in order to enforce static typing.
Both Java 1.5 and C++ used this kind of compile time resolution in order to implement the generic programming
paradigm.

The designers of .Net took a different approach than the above when implementing generics. The .Net technology is
built from the ground up on metadata. In .Net, when a piece of software is compiled, it is transformed into a language
agnostic intermediate format called CIL. The CIL instruction-set is based on an abstract stack machine. The intermediate
format con tains a lot a metadata about the structure of the software that was compiled. The concept of generics was
implemented as an extension of the metadata and instruction-set. Because of its implementation strategy, .Net generics
are resolved at run-time and not compile time. This makes a big difference at runtime. Through the use of reflection, it is
possible to determine if an object is an instance of a generic type as weil as the bound types of a generic instance. It is
also possible to dynamically bind a generic type and create instance of that binding.

Here is a simple example of dynamic binding and instantiation:

Type aType = anObject.GetType();

if (aType.IsGenericType)

if (aType.GetGenericTypeDefinition() == typeof(signal<»)

Type signalType = aType.GetGenericArguments() [0];

Type newType = typeof(GenericSignal<» .MakeGenericType(signalType);

Object newObj = Activator.Createlnstance(newType));

This implementation of generics allows the runtime analysis of generic bindings, the creation of new bindings and the
instantiation of those bindings which are very powerful features that we shall explore later in the article. These
capabilities, to our knowledge, are unique for a statically type programming environment.

44 The Arabian Journalfor Science and Engineering, Volume 32, Number 2e December 2007

92

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

Moreover, the implementation of generics proposed by ,Net permits the definition of constraints in order to restrict
the types that may be bound to a generic definition,

public class Dictionary<K, v> where K : IComparable {l

ln the above example, a generic dictionary class must be bound to a type for its keys (K) and a type for its values (V),
The generic binding is constrained by the fact that the type which is used for the keys must support the IComparable
interface,

3. MODELlNG AND SIMULATION FRAMEWORK

Many efforts have been invested and severa 1 contributions have been proposed for system-on-chip modeling and
simulation, Current designers have at their disposai efficient solutions for hardware modeling and simulation (e,g,
VHDL, Verilog); however, few would argue that these solutions are close to being perfee!. Most currently available
modelinglsimulation solutions fall into one of two categories: those which are implemented using a framework based
approach and those which are dedicated languages, SystemC [3], ESys,Net [5], JHDL [13], and Ptolemy 2[12] are
representative solutions of the first category which may be referred to as domain-specifie embedded languages (DSEL)
[14]. SpecC [15], VHDL [16], and SystemVerilog [17] are representative solutions of the seeond category which ntay be
referred to as domain-specifie languages (DSL) [14], ln this paper we are coneemed with the first category of solutions,
The design of a system-oriented DSEL offers an interesting challenge, Since DSELs are implemented using
gcneral-purposc programming langnages, DSEL designers are constrained by two clements of thc host language when
defining the necessary system modeling and simulation concepts: (1) syntaeticallimitations (lexical and grammatical)
and (2) a finite set of semantic building blocks,

3.1. Current Solutions

SystemC [3], announced in September 1999, is very popular for system-on-chip design, ft is based on a
library/framework approach implemented with C++, At its core is an event-driven simulation kemel. SystemC provides
ail the basic concepts found in HDLs (e,g, modules, ports, signais, time, etc.). It also provides additional concepts of
higher abstraction such as interfaces, communication channels and events,

ESys,Net is a modeling and simulation framework which is based on Systeme. A research tcam from the Université
de Montréal ported the core concepts of SystemC to ,Net in order to capitalize on many interesting capabilities of the
platform such as threading, reflection and attribute programming,

Ptolemy Il is a software framework developed as part of the Ptolemy Project. It is a Java-based component assembly
framework with a graphical user interface called VergiL Vergil itself is a component assembly dcfined in Ptolemy IL The
Ptolemy project studies modeling, simulation, and design of concurrent, real-time, embedded systems. Hs focus is on the
assembly of concurrent components, The key underlying principle in the project is the use of well-defined models of
computation that govem the interactions between components, A major problem area being addressed by the project is
the use ofheterogeneous mixtures of models of computation,

3.2. Lack of Separation in Current Framework 8ased Solutions

Traditional HDLs such as Verilog and VHDL were developed from the start with modeling in mind; the simulation
of models describe with those languages was a secondary objective, This had a great influence on those standards for
there is very Iittle simulation semantics in them, This separation of concems between modeling and simulation semantics
is at the very opposite of environments such as SystemC, ESys,Net, and Ptolemy, We intentionally omit the terminology
of "language" to describe these solutions for they are tmly simulation solutions and not modeling languages, Our
reluctance to qualify the later solutions as modeling languages lies in the fact that therc exists no c1ear boundary between
the aspects for simulations and modeling; one cannot model with these solutions and easily change the simulation
implementation, especially after the model has been compiled with the simulation framework, ln a perfeet object­
oriented framework, a model should "at aIl times" be dependent only on the modeling aspects of the framework and not
the simulation aspects, The "glue" element between the model and the simulation framework would be the modeling
framework which would serve as a contractual interface, Figure J represents the dependency architecture of current
simulationlmodeling frameworks, Figure 2 represents and idealized dependency architecture,

December 1007 The Arabian Journal for Science and Engineering, Volume 32, Number 2e 45

93

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

____ âodel

Simulation!
Modeling

Figure J. Currentframeworks
dependencies

3.2.1. Examplesfrom Systeme and ESys.Net

Il

Simulation -, ~

E~r~~t:::J
Figure 2. Jdealized dependencies

In SystemC and ESys.Net, a designer has the responsibility to instantiate modeling concepts such as Event and
Signal c1ass instances. The issue here is that since the objects are instantiated by the designer, the implementation of
those objects are determined indirectly by the designer. Since the Event and Signal objects contain code that are directly
related to the implementation of the simulation environ ment, the model created by the designer is indirectly coupled to a
simulation implementation. One could argue that it is possible to change the simulation implementation binding of a
model changing the implementation to which it is link (such as with Space [18]), but when the model is compiled the
binding becomes permanent. As stated earlier, a model should, at a1l times, only be dependent on the modeling
constructs and not the simulation implementation. Since a SystemC and ESys.Net model is directly and indirectly
dependant on a simulation implementation, it does not respect true separation of concems. Another example from
SystemC is the concept of a ResquestUpdate in primitive channels. This c1ass method is used to synchronize a primitive
channel instance with the delta cycles of a simulation implementation. The concept of a delta cycle should not be present
in a pure mode l, for it has nothing to do with modeling. The only true advantage, with respect to separation of concems,
which ESys.Net has over SystemC is that the simulation infrastructure is not present once models are compiled.

3.2.2. Examplesfrom Ptolemy

In the Ptolemy environment, domains, which are implementations of models of computation, rely on the concept of
actors and a director. The actors implement the computation that must take place and the director orchestrates the
implementation of the domain. A designer when creating a model must implement and/or assemble predefined actors of
the domain. When implementing an actor, the designer must make calls to the director. This implementation style do es
not respect true separation of concems for the director has much more to do with simulation then with modeling; hence,
there is not true separation between modeling and simulation semantics.

4. SOC MODELING LANGUAGE (SOCML)

4.1. Overview

SoCML is a modeling framework inspired by SystemC and ESys.Net; its implementation only offers a subset of the
modeling semantics of the later but a complete implementation could easily be achieved. The main objective of the
SoCML project was not the implementation of a modeling framework but rather the demonstration of software
framework design techniques which could achieve separation of concems between system modeling and simulation
aspects. SocML con tains the concepts of ports, signais, modules, and channels with posses the same semantics as the
same named concepts in SystemC and ESys.Net. The major difference is that the semantics are defined only with the aid
of abstract classes, virtual empty methods, interfaces, and attributes. Here is the complete Iist of aIl the interfaces defined
in the modeling framework :

46 The Arabion Journalfor Science and Engineering, Volume 32, Number 2e December 2007

94

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

public interface Input { }
public interface Output { }
public interface InOut : Input, Output { }

public interface inPort<t> : Input { t Value { get;} }
public interface outPort<t> : Output { t Value { set;} }
public interface inoutPort<t> : inport<t>, outPort<t> { }

public interface isensitive { inEvent Sensitive { get;}
public interface ipositive { inEvent Pedge { get;} }
public interface inegative { inEvent Nedge { get;} }

public interface sinPort<t> : inPort<t>, isensitive {
public interface sinoutPort<t> : sinPort<t>, outPort<t> { }

public interface binport : sinPort<bool>, ipositive, inegative {}
public interface binoutPort : binport, outPort<bool> { }

public interface signal<t> : sinoutPort<t> { }
public interface bsignal binoutPort { }

public interface clock : binPort {}

public interface inEvent {}
public interface outEvent {

void Cancel(};
void Notify(};
void Notify(long time);

public interface biEvent : inEvent, outEvent{}}
public interface var<t> : isensitive { t Value { get;set} }

Here is a complete Iist of the classes defined in the framework:

public abstract class BaseModule (
//Methods with the name Initialize are special to the environment
//These methods act like constructor and should only contain call to
//initialize methods of sub-modules and sub-channels

public virtual void Initialize() {}
protected virtual void SectionPortBinding () { }
protected virtual void Wait() {}
protected virtual void Wai t (long time) { }
protected virtual void Wait(inEvent ev) { }

public abstract class BaseChannel : BaseModule{}

The only semantic differences between SoCML and SystemC that are worth noting are:

• the separation of the Event concept into three sub/super concepts which have directionality;

• a new concept called Var which represents a variable that may be updated and read in parallellike a signal;

• the SectionPort8inding which is a c1ass method that should contain only port binding code in user defined
modules and channels;

December 2007 The Arabian Journal for Science and Engineering, Volume 32, Number 2e 47

95

James Lapa/me. E/ Mosfapha Abou/hamid. Gabrie/a Nico/escu. and Frédéric Rousseau

• the special trealment of methods found in modules and ehannels called Initialize, These methods are equivalent
to constructors and should only contain method calls to Initialize methods on sub-modules and sub-channels,
lnitialize methods should only be called once and c1ass constructors should not be used for reasons that will be
explained later.

• A top level module which represents a complete model should use a c1ass constructor; however, the constructor
must delegate directly and immediately to an lnitialize method,

It should be noted that there is no implementation code at ail in the modeling framework. This is intentional for as
stated earlier: "a modeling framework should only contain modeling semantics",

Here is a simple example of a produce-consume model:

public class Consumer : BaseModule

public inEvent sync;
public sin?ort<int> input;

[NonBlockableProcess, Sensitive ("input"»)
protected void Consumel) {

Console.WriteLine(input.Value.ToString(»);
Wait (sync) ;

The model looks very similar to SystemC and ESys.Net. ln the consumer module, the NonBlockableProcess
attribute is equivalent to an SC_METHOD in Systeme. The Sensitive attribute indicates that the process is bound to the
sensitive event of the signal bound to the port called input. The sensitive event has a clear semantic meaning which is
"sensitive to writes on the signais no matter what the value. ln the context of a NonBlockableProcess, the Wait method
cali has the same meaning as a in SystemC,

ln the producer module, the Blockable attribute IS equivalent to an SC _ THREAD in Systeme. The semantics of the
producer should be interpreted in the same manner it would be in Syseme.

public class Producer : BaseModule {

public outEvent sync;
public binPort clock;
public out?ort<int> output;
private int i 0;

[BlockableProcess , Sensitive ("clock") 1
protected void Produce() {

output. Value ++i;
Wait(35);
sync.Notify(25);
output. Value ++i;

48 The Arabian Journal/or Science and Engineering, Volume 32. Number 2e December 2007

96

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

[ClockDomain(20)]
public class Model : BaseModule

private signal<int> sig;
private clock clk;
private Producer producer;
private Consumer consumer;
private biEvent sync;

protected override void SectionPortBinding()
producer,clock = clk;
producer.output = sig;
consumer. input = sig;
producer.sync sync;
consumer.sync = sync;

Here is an example of a model which used the producer and consumer modules, we can notice the use of the
SectionPortBinding method. The ClockDomain attribute defines a clock frequence for ail clocks defined in ils scope. A
ClockDomain attribute may be assigned to a particular clock in order to override its parent's scope. The objective ofthis
example is not to demonstrate ail the possibilities of the modeling framework but to show how semantic found in
SystemC and Esys.NET may be defined.

Il should be noticed that there are no object instantiations in the mode!. This information is intentionally left out for
two main reasons:

• Object instantiation adds no information to the mode!. One only has only to imagine that as in C++ the objects
are instantiated on the stack and not on the heap because the new keywork is not used.

• By delaying the instantiation of the objects until need (such as at simulation time), we allow the implementation
of the semantics to be chosen depending on the context; for example this allows a simulator to instantiate its
implementation of the semantic in order to construct the mode!.

4.2. Design Constraints imposed on SoCML

As mentioned earlier, the main objective of SoCML was the implementation of clear and unambiguous modeling
semantics through the use of an object-oriented framework-based approach. In order to keep the framework "clean" of
ail simulation semantics and artefacts we started with the analysis of ESys.Net in order to determine the implementation
elements that had to be eliminated from the framework.

There were two main types of elements which had to be eliminated: method bodies within the framework which
where biased towards a certain simulation implementation and framework classes which had to be instantiated which
contained code which was biased towards a certain simulation implementation. The two types of elements are clearly
exemplified by the code in the Wait methods of the BaseModule class and the Event class.

The Wait method contains code which pauses the CUITent executing thread in order to switch to the simulation kemel
thread. The method also contains code which makes calls to internaI methods of the simulation keme!. The Event class
con tains code which permits the scheduling of event instances by making ca Ils to internaI methods of the simulation
keme!.

One design approach which could be used to loosely couple the core modeling classes from the core simulation
classes is the use of a service contract. With this approach, the service contract offered by the simulation core to the
modeling core would have been define using an interface type. The modeling core would use the interface type to
interact wilh the simulation core. The only difficulty with this approach is the passing of an implementation of the
service contract to the modeling core, however many implementation strategies exist. We did not adopt this approach
because il did not fulfill the need to have a complete separation between the two concems; il only weakened the coupling
between both concems. In order to achieve the required separation, we used only software interfaces to describe ail the
modeling semantics which we needed. By using interfaces, we eliminated both the problem ofinstantiation and ofbiased
code fragments. The only semantics which we decided to keep as classes within the framework were Module and

December 2007 The Arabian Journal/or Science and Engineering, Volume 32, Number 2e 49

97

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

Channel. We made this choice because the use of c1ass inheritance in order to use those semantics permitted a simple and
elegant solution

5. A SIMULATOR FOR SOCML

ln order to complete the demonstration of our modeling framework design approach, we created a simulation
framework for SoCML. In order to achieve our implementation goals, it was necessary to find solutions to the constraints
we imposed on the modeling framework. We had to find a way to instantiate implementations for variables contained
within a model which where of interface types defined by the modeling framework. We also had to find a way to
implement the method bodies ofvirtual Wait methods in the BaseModule c1ass.

5.1. Class Instantiation Problem

The problem of instantiation of an implementation of a variable of a given type is basically the problem of c1ass
instantiation. The software design pattern called Inversion of Control is a perfect solution for this kind of problem.

5.1.2. Inversion of Control

The software community has a software design pattern which is a solution for a similar problem: Inversion of
Control.

10C is a design pattern which enables the decoupling between types [19]. Decoupling is achieved through (1) the use
of explicit contract dependency declarations - the term declaration is used here in an implementation agnostic way; (2)
the elimination of direct instantiation of a contract implementation by a type instance; and (3) the consummation of a
dependency through an interface. Put simply, a type instance designed according to 10C does not instantiate objects
which fulfils its dependency needs but rather delegates the instantiation responsibility to an execution environment and
consumes the dependencies through interfaces which hide the implementations of the contracts. The execution
environment, through the use of a defined dependency need declaration paradigm, locates an implementation for each
required dependency of a c1ass instances and instantiates il. Once the implementation instantiated, the environment gives
the requester access to it through another defined convention. The environment portion of the pattern is often referred to
as a container. 10C is sometimes referred to as Dependency Injection or The Hollywood Principle (Don't cali us we'lI
cali you).

.. «Interface»
IEvent

~
""" IEventlmplementation

Figure 3. Typical type instantiation

The basic principals ofIoC to remember are:

• High level modules should not depend upon low level modules. 80th should depend upon abstraction.

• Abstraction should not depend upon details. Details should depend upon abstractions.

Figure 3 represents a typical UML diagram depicting c1ass dependencies between a requestor and a dependency. The
Module object uses the IEvent interface in order to interact with an Event object but is must also instated the
implementation of the IEvent interface. The Module object is the requestor and the Event object is the dependency. In
most current modeling solutions (ESys.Net and Systeme), the IEvent interface does not exist but in substituted for the
implicit interface of their respective event classes.

50 The Arabian Journal/or Science and Engineering, Volume 32, Number 2e December 2007

98

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

Figure 4 represents a UML diagram depicting a modified version of Figure 3 using the 10C pattern.

c.--.. __ ~«".ses>.>
_ Module ! «Interface»

IEvent

fEventimplementation

Figure 4. Inversion o/control

«sets»

Assembler

ln the modified diagram, the Module object no longer has the responsibility of instantiating the implementation of
the interface. The instantiation task is delegated to an Assembler object.

5.1.3. Typica/1mp/ementation Techniques

Three mainstream techniques exist in order to implementation the declaration of dependencies and the passing of
dependency instances between a dependency requestor and a container: contextualized lookup, constructor injection and
setter injection. The three techniques use the concept of a container which is an execution environment for the requestor
which acts as the Assembler.

Contextualized Lookup

Contextualized Lookup is a technique in which the container makes dependencies available via an interface/method
that the requestor implements to indicate that is has dependencies. The interface/method, which is implemented by the
requester, typically receives a reference to a lookup service.

public class Module : Serviceable!
IEvent event;
public void service(ServiceManager sm)

event = (event) sm.lookup("IEvent");

The above implementation uses a lookup service which instantiates the \Event object for the Module; dependency
information is often stored in a configuration file for the lookup service to use.

Constructor Injection

Constructor Injection is a technique in which the container makes dependencies available to a requestor via a c1ass
constructor. Dependency declaration information is often retrieved via reflection on the constructor. The container is
responsible for instantiating objects and passing dependency implementations.

public class Module (
private IEvent event;
public Module (IEvent event)

this. event = event;

Setter Injection

Setter Injection is a technique in which the container makes dependencies available via setter methods after
instantiation.

December 2007 The Arabian Journal/or Science and Engineering, Volume 32, Number 2e 51

99

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

public class Module (
private IEvent event;

/**
* @service name="IEvent"
*/

public void setIEvent(IEvent event)
this. event = event;

By its very nature IoC involves loss coupling between service requesters and services providers. This loss coupling
promotes easier code maintenance, easier code reuse, and a lot of flexibility.

5.1.4. Inversion o/Control With Reflection

The mainstream techniques used to implement IoC are usually satisfactory in the context of business applications, but
they are not sufficiently transparent to be used in the context of a modeling framework. It would be necessary to
"poIlute" the modeling framework with IoC implementation mechanisms which have nothing to do with modeling.

If we come back to the IoC design pattern, the basis of the pattern is to create a contract with the aid of an interface,
which permits a service requestor to declare the need of a service whose implementation will be chosen by a container.
This pattern applies very weil to the model/modelingisimulation tuplet :

• the model may be seen as the requestor;

• the modeling framework may be seen as the service interface definitions;

• the simulator may be seen has the container;

• the interface declaration in the model may be seen as a service requests.

Through the used of reflection [5, 20] , a simulator can dynamically discover the interface declarations and
understand them as service requests.

Our SoCML simulation frameworks uses model analysis through reflection in order to act has a container. The core
of the analysis is very similar to the one used in ESys.Net, the only significant difference is the instantiation upon
detection of the modeling semantic declarations. The analysis and implementation strategy used by the simulator of the
simulation framework is made possible by the runtime resolution of generic in the .Net framework. The strategy could
not have been used by an implementation in Java or C++.

Here is a fragment of the pseudo-code used by the core model building algorithm of our simulator.

52 The Arabian Journalfor Science and Engineering, Volume 32, Number 2e December 2007

100

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

BuildModel(BaseModule module)
mduleType = GetType(module);
fieldDefinitions = GetFields(moduleType);

foreach field in fieldDefinitions {
fieldlnstance = Getlnstance(field,module);
fieldType = GetType(field)
If(fieldlnstance is unset){
Select (fieldType){

Case inEvent,outEvent,biEvent
Fieldlnstance new Eventlmplementation;

Case clock :
fieldlnstance new Clocklmplementation;

Case signal :
boundType = GetGenericBoundType(fieldType)
customeSignalType =

CreateSignalType(boundType,ImplSignalType)
fieldlnstance = new customeSignalType

Case module
proxy = CreateProxy(fieldlnstance)
fieldlnstance = proxy;

Foreach subModule in module BuildModel(subModule)

We can clearly see the use of the 10C design pattern in the above code fragment. We may view the model as the
service requestor and the simulator as the container. The handing over of the service is done in an alternative way trom
the ones presented earlier. The model declares its need of a service by declaring a variable of a type defined in the
modeling framework. Through introspection of the model, the simulator finds the service declarations and sets them with
an instance of an appropriate implementation. The simplicity and elegancy of the solution is made possible by the
reflective and dynamic generic capabilities of .Net.

5.2. Virtual Method Implementation Problem

The problem of implementing a virtual method without the consumer being aware often arises in the context of
distributed applications. In traditional distributed applications, consumers use an object which impersonates a remote
object. The responsibility of the impersonating object is to offer a simple interface - usually an interface which is
identical to the remote object - to the consumer and marshal the calls to the remote object. The same basic technique
can be use for a virtual method implementation problem. The technique is based on the proxy design pattern.

5.2.1. Proxy Design Pattern [8]

The proxy design pattern is one the structural patterns defined by the GoF. The GoF defines structural patterns as:

"Structural patterns are concerned with how classes and objects are composed to form larger structures. Structural
class patterns use inheritance to compose interfaces or implementations. As a simple example, consider how multiple
inheritances mixes two or more classes in/o one. The result is a class that combines the properties ofits parent classes.
This pattern is particularly useful for making independently developed class libraries work together. "

The intent of a proxy is to provide a surrogate or placeholder for another object to control access to it. There are
various flavors of proxies depending on their usages such as:

• remote, where you represent a remote object through a local object;

• virtual, which provides on demand creation of expensive objects;

• protection, which con troIs access to the original object;

101

December 2007 The Ambian Journaljor Science and Engineering, Volume 32. Number 2e 53

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

• smart reference, also known as a smart pointer, which provides "decorated" functionality to the proxied object
(such as a smart pointer, persisted object loader, or wrapper object for multithreaded operations to a single­
threaded object.)

Here is the UML diagram of the pattern:

Cllont SubJocr

,;'

+RequestO

4> 4>
1 1

RoalSubJoct Proxy
,;"

~RequestO
realSubject

+RequestO

realSubject. RequestO

Figure 5. Proxy pattern

The proxy maintains a reference that lets the proxy access the real subject. The proxy may refer to a Subject if the
RealSubject and Subject interfaces are the same. lt also provides an interface identical to Subject's so that a proxy can by
substituted for real subject and controls access to the real subject and may be responsible for creating and deleting il. The
proxy may have other responsibilities depending on the kind ofproxy.

The Subject de fines the common interface for RealSubject and Proxy so that a Proxy can be used anywhere a
RealSubject is expected.

RealSubject defines the real object that the proxy represents.

5.2.2. Combining laC and Proxy Design Pattern

ln traditional distribution applications, the developer is aware that he is using a proxy object for he usually either
requests an instance of the proxy from a factory style software layer or he must explicitly instantiate il. 80th of these
approaches were not suitable for the implementation of the simulation framework for we did not want the system
modeler to have to be aware of the underlying mechanics of the simulator in order to achieve separation of concerns.

ln order to solve the problem, we used a combination of the 10C and proxy design patterns. ln the simulation
implementation that we propose, the implementation of the Wait methods of a Module or Channel are achieve by the
use of a proxy which catches the calls and delegates them to the simulator. The interception of the ca Ils is achieved by:

• Creating dynamically a derive type from a user-defined module/channel type at runtime.

• Overriding ail the virtual Wait methods with an implementation which delegates the cali to directly/indirectly the
simulator.

ln our implementation, the Subject and RealSubject are both the same type; a user defined module or channel type. To be
more precise, we can state that the Subject is the public interface of a user-defined module/channel and the RealSubject
is the implementation of that public interface. In order to obtain a type which derives from the Subject we must derive
from the user-defined type.

54 The Arabian Journalfor Science and Engineering. Volume 32, Number 2e December 2007

102

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

~ ~ t:==J---------
SubjectlRealSubject

+RequeslO

1
Proxy Overrides the base

class implementation ---1

+RequestO

We achieve the creation of the proxy c1ass by using the DynamicProxy.Net framework distributed by the CastIe
project [21]. The framework supports the creation of proxy type from generic types.

proxyGenerator.CreateClassProxy(type, new Mylnterceptor(this)));

The above line of the code is the true method cali which creates the dynamic proxy, the method cali takes as
parameters a type and an interceptor object. The interceptor object will receive ail the methods calls made on virtual
methods overridden in the proxy c1ass.

internal class Mylnterceptor : Standardlnterceptor
private Simulator manager;
public Mylnterceptor(Simulator manager)

this.manager = manager;

public override object Intercept(IInvocation invocation,

params object[] args)
if (invocation.Method.Name

if (args.Length == 0) (
manager.Wait();

"Wait")

else if (args.Length == 1)
if (args [0] is long) {

else

long t = (long)args[O];
manager Wait(t);
else (
manager.Wait(args[O] as Event);

base.Proceed{invocation, args);

return null;

The above code is the interceptor type we use to catch the wait method calls. In the DynamicProxy.Net framework,
aIl the calls made on a generate proxy are delegate to the Intercept method of a user-defined interceptor from
management. Our decision to use the DynamicProxy.Net framework was made because it was the simplest and quickest
way for us to achieve are proof of concept implementation.

6. BENEFITS OF OllR APPROACH

The design approach we used for the implementation of our modeling and simulation solutions has many subtle but
very important benefits that we will present in this section. The benefits that we will presents do not add significant value
to the semantic capabilities of the modeling solution or the efficiency of the simulation solution but rather "opens the

103

December 2007 The Arabian Journal for Science and Engineering, Volume 32, Number 2e 55

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

door" to news possibilities. These new possibilities are enabled because of the separation of concerns that we have
achieved between modeling and simulation aspects.

6.1. Perfeet Separation of Concerns

As mentioned earlier, to our knowledge, ail CUITent modelinglsimulation solutions that are based on a framework­
oriented approach do not posses a clear boundary between modeling and simulations aspects in their design and/or
implementation.

The modeling framework that we have presented possesses no dependencies on a simulation solution
implementation. lt depends only on a weil defined set of modeling concepts and a particular model of computation.
Because ofthis separation, system models that used the modeling framework, by transitivity, are themselves independent
of a simulation solution. These models, by the means of .Net, may have multiple "c1ean" representations as depicted in
the diagram below. The importance ofthese clean models ofrepresentation is explained in [5].

Madel
Construction

Instantiationl
Madel Building

Compilation

CIL Madel

Source Code Madel

Figure 6. Madel representa/ion s/acking

Textual Madel
Representation

Runtime Madel
Representation

We believe that compiled versions of these "clean" models and modules may serve as the backbone for simulation
implementation agnostic intellectual property (lP) block-based designs. lt is very difficult to achieve true IP block reuse
in solutions such as SystemC, for once compiled, IP blocks are statically bound to a specific simulation solution
implementation. Separation from specific simulation solutions is fairly important, especially in the context of SystemC,
for multiple implementations of the SystemC framework exist and each supports a different toolset. In this context, an IP
block which is not independent of a simulation implementation may probably not be used with certain tools. The
artificial binding to specific simulation implementations hinders the creation of custom design flows.

6.2. Verification by Interception

The utilization of design patterns such as 10C and Proxy enable a simulation solution to create chains of interceptors
which can monitor different aspects of a model under simulation without having to add the verification e!ements in the
model itself or having to create a complex verification enabled layer (API) such as SystemC's SVe.

One can easily imagine an implementation of the Var modeling interface we presented which allows a tool external
to the simulator to be notified on modification in order to drive linear temporal logic (L TL) expression verification.
Another example could be a simulation implementation which allows a verification tool to chain interceptors in a proxy
chain in order to monitor the number of method calls on a channel. The combination of a flexible framework design and
the reflective capabilities of the .Net framework offers many possibilities for the creation of effective tools at low co st.

6.3. Alternative Model Simulations

Since ail models created with the modeling framework are independent of a particular simulation solution
implementation, it becomes possible to use a model with different simulators in order to take advantages of alternative
implementations. Alternative simulation implementations could offer:

• different performance characteristics

56 The Arabian Journalfor Science and Engineering, Volume 32. Number 2e December 2007

104

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

• different monitoring characteristics

• different verification characteristics

• different tool support

• distributed simulation

• software vs hardware simulation for Co-design (Space)

• support heterogeneous Model Of Computation simulation [12,23].

It is difficult to imagine ail the possible simulation solution implementations but what is c1ear is that a model could
be transparently used with various simulation implementations without having to be modified or recompiled, as long as
both use the same modeling semantic contract.

81ntulatlon COncem8
ModeIInglllntulation Madel Repreaanlatlon

Solution Stsck Refinement
1(l

Cfeate8 Ir) 8ImuIaIIon Framewortc SyaIem Mode! Simulation il11)lemenlallon
I\. .. J \.

S1mulatla8 Implementa

r
r

'"
Deflnes

() Modell,. F~rk.
J \..

SyâmModel
\..

Modeling concerna

Figure J. Modeling concerns

Figure 1 iIIustrates the various relations which exist between the elements of our approach. By using a stack-based
approach between the modeling and simulation concerns, it is possible to create various modelinglsimulation solutions
without affecting models. An emulation solution could he implemented by using the same model analysis techniques
based on reflection and 10C but could instantiate the user-defined modules types. The simulation would be achieve not
by using a proxy pattern but by orchestrating the execution of multiple hardware elements in the simulation kemel and
by updating the variables orthe instantiate mode l, giving the illusion that it is the user model which is being simulated by
the kernei. In this context, the instantiate model serves the role of a projection of the emuIation.

6.4. Simplicity and Elegancy of Modeling

In our opinion, a model designer shouId only have to worry about the structural and hehavioral aspects of his model
and not the implementation constraints oftooIs which will process the model (e.g. simulator). Our statement might seen
trivial but in frameworks such as ESys.Net and SystemC, a designer must respectively \Ise the ReguestUpdate and
Update c1ass methods of the Channel base c1ass in order to schedule a primitive channel to be updated during delta
cycles in order to perform variable "housekeeping". Should a system designer have to know that the mode! might be
executed with a simulator which implements the concept of a delta cycle? What he really wants is the concept of a
variable that can support concurrent reading and writing.

December 2007 The Arabian Journal for Science and Engineering. Volume 32. Number 2e 57

105

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

class APChannel<t> :PChannel<t>{
public Event sensitive = new

Event;
private t currentvalue;
private t oldvalue;
private t newvalue;

public t Value
get { return currentvalue;
set (

newvalue = value;
RequestUpdate(this);

public override void Update()
if (currentvalue ! = null) {

if
(!currentvalue.Equals(newvalue))

oldvalue = currentvalue;
currentvalue = newvalue;
sensitive.Notify(O);

else (
oldvalue = currentvalue;
currentvalue = newvalue;
sensitive.Notify(O);

Esys.Net

class APChannel <t> : signal<t>{
private var<t> value;

public t Value
get { return value.Value;
set (value.Value = value;)

public inEvent Sensitive {
get (

return value. Sensitive;

SoCML

The above side-by-side code comparison demonstrates the simplicity with which a primitive channel may be modeled
using our example modeling framework SoCML. The SoCML based model only contains modeling semantics; no
simulation related elements are present. As mentioned earlier, the Var data type has the semantic meaning of a variable
which supports concurrent reading and writing. The implementation of the Var concept would probably be similar to
implementation approach of the RequestUpdate/Update protocol used in ESys.Net.

Having a simple modeling framework which is free of simulation implementation related information will definitely
help designers be more productive. Software tools will also have an easier time analyzing models for they will not have
to discard non-modeling related elements. In a perfect dedicated modeling language, each necessary semantic notion
would probably be expressed using a small and simple li st of key words. We believe that a modeling framework based
only on attribute programming, interfaces, and abstract class containing only virtual methods brings modeling
framework-based languages much closer to a dedicated modeling language than traditional solutions.

7. FUTURE RESEARCH

The ideas in this article illustrate our vision for the next generation of framework-oriented system modeling
languages. This next generation of solutions will be characterized by perfect separation of concems between modeling
and simulation aspects, which may be achieved by applying our design guidelines.

This work opens the door to many other projects such as creating a new SystemC-style modeling solution. It would
be interesting to explore the impact of our design guidelines on the design and implementation of a heterogeneous model
of computation environment. Il would also be interesting to revise the syntax of Metropolis according to the guideline of
this work.

Our team is currently working on a redesign of the ESys.Net modeling/simulation framework according to the
guidelines we have presented and we are investigating different backend implementation for the simulation engine. We

58 The Arabian Journal/or Science and Engineering, Volume 32, Number 2e December 2007

106

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

are also working on the same kind of separation of concerns concept but applied to verification and mode! constraint
aspects,

8. CONCLUSION

Many believe that framework-based modeling/simulation solutions will allow designers to model systems more
effectively and will facilitate the creation of custom design flows. Moreover, many believe that framework-based
solutions are a good approach to heterogeneous "model of computation" (MOC) and "co-design" simulation. In the mist
of ail the work which has been done in order to create such framework-based solutions, very few have worked on the
design guidelines that such solutions should follow in order to create effective object-oriented frameworks.

ln this article, we presented the CUITent lack of separation of concerns which is present in most mainstream
modeling/simulation framework-based solutions. We argue about the importance of such separation and its benefits. We
present "state of the art" software design patterns and technologies which can promote better separation of concerns
between modeling and simulation aspects when applied to mode ling/simulation frameworks. Finally we present a novel
modeling framework called SoCML which follows our guidelines. By ils design, SoCML presents ail the benefits which
were enabled by the approach:

• simplicity and elegance of the models which use the framework;

• independence of models from a particular simulation implementation allowing their reuse with alternative
simulation approaches;

• verification by inception enabled;

• "clean" model representations.

ln order to demonstrate the feasibility of our approach, we present a simulation implementation for SocML.

REFERENCES

[1] ITRS 2005. International Technology Roadmap for Semiconductors, Edition 2003. Available from:
http://publ ic.itrs.net/

[2] David 1. Rich, "The Evolution of SystemVerilog," IEEE Journal Design & Test of Computer, 20(2003), p. 82.

[3] THE OPEN SYSTEMC INITIATIVE (OSCI) 2005. SystemC 2.1 Language Reference Manual. Available from:
http://www .systemc.orgl

[4] SYNOPSYS, COCENTRlC® SYSTEM STUDIO, 2001.

[5] James Lapalme, El Mostapha Aboulhamid, and Gabriela Nicolescu, "A New Efficient EDA Tooi Design
Methodology", Journal of ACM Transactions on Embedded Compllting Systems (TECS), 5(2006), p. 408

[6] Nicolas Gorse, Michel Metzger, James Lapalme, El Mostapha Aboulhamid, Yvaon Savaria and Gabriela Nicolescu,
"Enhancing ESys.Net with a Semi-Forrnal Verification Layer", in Proceedings of the 16th IEEE Inti Conference on
Microelectronics (ICM04), 2004, p. 388.

[7] James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, Luc Charest, Jean-Pierre David, Francois Boyer, and
Guy Bois, "ESys.NET: A New Solution for Embedded Systems Modeling and Simulation," in Proceedings of the ACM
SIGPLAN/SIGBED 2004 Conference on Languages, Campi/ers, and Toolsfor Embedded Systems (LCTES'04), 2004, p.
\07.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Massachusetts: Addison-Wesley, 1994.

[9] Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective. New York: Springer-Verlag, 1982, p. 66.

[10] MICROSOFT 2005. Microsoft .NET Framework. Available from: http://msdn.microsoft.comlnetframework/

[II] ECMA/ISO 2006. ECMA (334-335) and ISO/IEC (23270-23271), C# and Common Language Infrastructure
Standards. Available from: http://www.ecma-international.org/

[12] Ptolemy Project. http://ptolemy.eecs.berkeley.edu!

[13] Peter Bellows and Brad Hutchings, "JHDL: AN HDL for ReconfigurabIe Systems," in Proceedings of the IEEE
Symposium on FPGAs For Custom Computer Machines, 1998, p. 175.

107

December 2007 The Arabian Journal for Science and Engineering, Volume 32, Number 2e 59

James Lapalme, El Mostapha Aboulhamid, Gabriela Nicolescu, and Frédéric Rousseau

[14] Marjan Mernik, Jan Heering, and Anthony M. Sioan, "When and How to Develop Domain-Specific Languages", in
ACMComputing Surveys. New York: ACM, 2005, p. 316.

[15] Daniel D. Gajski, Jianwen Zhu, Rainer Domer, Andreas Gerstlauer, and Shuqing Zhao, SpecC: Specification
Language and Methodolog. New York:, Springer, 2000, p. 336.

[16] IEEE 2006. IEEE 1076.3 VHDL.

[I7] IEEE 2006. IEEE 1800 SystemVerilog.

[18] Jerome Chevalier, Olivier Benny, Mathieu Rondonneau, Guy Bois, El Mostapha Aboulhamid, and Francois-Raymond
Boyer, "Space: A Hardware/Software SystemC Modeling Platform Including an RTOS", in Source Languages for
System Specification. Massachusetts: Kluwer Academic Publishers, 2004, p. 91.

[19] Griffin Caprio, "Dependency Injection", MSDN Magazine, 20(2005).

[20] Frederic Doucet, Sandeep Shukla, and Rejest Gupta, "Introspection in System-Level Language Frameworks: Meta­
Level vs. Integrated.", in Proceedings of the Conference on Design, Automation and Test in Europe (DATE), 2003, p.
382.

[21] The Castle Project- DynamicProxy.Net. http://www.castleproject.orgl

[22] Gabriela Nicolescu, Sungjoo Yoo, Aimen Bouchhima, and Ahmed A. Jerraya, "Validation in a Component-Based
Design Flow for Multicore SoCs.", in Proceedings of the 15th international Symposium on System Synthesis (ISSS),
2002, p. 162.

[23] Ahmed Jerraya and Rolf Ernst, "Multi-Language System Design.", in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE), 1999, p. 696.

60 The Arabian Journal/or Science and Engineering, Volume 32, Number 2e December 2007

108

L'impact du Web sémantique sur la

conception des systèmes assistée par

ordinateur

La vision du Web sémantique a été définie, pour la première fois en 1999, par

Tim Berners-Lee [10]. Cette vision décrit la prochaine évolution du Web. Un

Web qui s'autodéfinit et dont la consommation est aussi simple pour les machines

que pour les humains. Le Web sémantique n'est pas une remise en question du Web

« Classique» mais une extension de celui-ci qui va au-delà de la simple publication et

consultation de documents. L'objectif principal du Web sémantique est le partage de

la connaissance. Ce partage de la connaissance ne se fait pas seulement par le partage

des données et des formats d'encodage mais par le partage de métadonnées non

ambiguës.

La vision du Web sémantique a aidé les domaines des sciences de la vie et de la

pharmaceutique [7][61]. L'utilisation du Web sémantique a permis l'émergence de

nouvelles connaissances par l'utilisation d'une base de connaissances collective.

Cette émergence du savoir par le partage des connaissances a permis la découverte de

nouveaux mécanismes d'interactions génomiques et pharmaceutiques.

Dans le domaine de la CAO, la gestion des données et des métadonnées joue un rôle

clé dans le contexte de la conception niveau système. Plusieurs flux de conception

utilisent un patron consistant à faire l'assemblage de composantes relativement

simple - sous-systèmes et IP - afin de définir des systèmes complexes. Ce

processus d'assemblage est très dépendant sur les métadonnées qui décrivent les

composantes assemblables.

Depuis l'adoption des technologies XML par l'industrie, plusieurs utilisent celles-ci

pour la gestion des données et des métadonnées. Cette adoption est grandement due

110

au fait que XML a démocratisé l'implémentation de format de représentation de

données.

Dans le domaine de la conception des systèmes embarquées, plusieurs projets tel que

Colif [17]et MoML [51] ont utilisé XML pour représenter des architectures de

systèmes embarqués. XML est une solution très efficace pour la définition et la

manipulation de syntaxe pour la représentation d'information, par contre elle n'a pas

été conçue pour la gestion des métadonnées ainsi que leur sémantique. Par

conséquent, les solutions qui se fondent sur XML pour l'échange de données

sémantiquement non ambiguëes doivent traiter beaucoup de points faibles. Puisque le

Web sémantique est la prochaine étape en technologies de représentation de

métadonnées, elle peut être un outil de grande valeur pour l'industrie de la CAO. La

gestion de métadonnées basée sur RDF et OWL [4], deux technologies du Web

sémantique, bénéficie d'une fondation très robuste dédiée à la sémantique. Les

travaux tel que [70] démontrent que les technologies du Web sémantique peuvent être

effectivement appliquées au domaine des systèmes embarquées. [70] présente

comment les technologies du Web sémantique peuvent être utilisées conjointement

avec les technologies .orientées services afin de créer un environnement de

développement intégré flexible pour la conception de système embarqués.

Le projet SPIRIT est un autre exemple d'efforts investis dans la définition d'un

environnement de développement pour la conception de systèmes embarqués [46].

Son principal objectif est la définition de normes et de standards pour la conception

d'un environnement de développement (ide) intégré pour la conception de systèmes

basés sur les IP. Actuellement, le projet SPIRIT a adopté une approche plus

traditionnelle basée sur XML que [70] pour la gestion des métadonnées et des

données connexes par IP. Cette approche a inutilement complexifié les normes et les

standards produits, ainsi que la gestion de leurs versions.

Les contributions principales de cet article sont:

• la présentation détaillée des concepts du Web sémantique dans le contexte de
la CAO;

111

• la présentation et la discussion des avantages des technologies du Web
sémantiques par rapport aux technologies XML pour la gestion des données et
des métadonnées dans le contexte de la conception de systèmes;

• la présentation de l'application des technologies du Web sémantique aux
standards du projet SPIRIT, ainsi que la présentation des bénéfices de celle-ci;

Les pages suivantes contiennent une copie du chapitre de livre [48], dans son format

original (sauf la numérotation des pages), qui sera publié dans System level design

with .Net technology, E.M Aboulhamid and F. Rousseau Eds., CRC Press.

1

The Semantic Web Applied ta IP-Based
Design: A Discussion on IP-XACT

James Lapalme

DIRO Université de Montréal - Canada

El Mostapha Aboulhamid

DIRO Université de Montréal - Canada

Gabriela Nicolescu

Polytechnique de Montréal - Canada

1.1 Introduction .. .
1.2 Models of Architecture and XML ... 3
1.3 SPIRIT. 6
1.4 The Semantic Web .. 10
1.5 XML and its shortcomings ... 20
1.6 Advantages of the Semantic Web ... 26
1.7 Case Study - SPIRIT .. 30
1.8 Cost of adoption ... 40
1.9 Future Research ... 40
1.10 Conclusion.. 41

1.1 Introduction

The Semantic Web [7] was first envisioned by Tim Berners-Lee in 1999 as the next
evolution of the Web. A Web that was self-describing and easily consumable by
machines, not just humans. The Semantic Web is ail about knowledge sharing. The
sharing of knowledge cannot be achieved solely with the sharing of data and encod­
ing formats but through the sharing of unambiguous metadata and meaning.

The Semantic Web vision has already helped the domains of life sciences and
pharmaceutics [3, 27]. The Semantic Web has allowed researchers to inferred new
knowledge and understanding by creating a collective knowledgebase. This sharing
of knowledge has permitted the discovery of new genes and drug interactions. The
Semantic Web has not only helped the sciences but also the field of resource manage-

113

2 System level design with .Net

ment. The NASA has implemented a successful project [18] to manage the expertise
profiles of human resources. In this project the Semantic Web was a key enabler to
integrate information across multiple systems.

In the Electronic Design Automation (EDA) domain, the management of data and
metadata plays an important role in the context of system-Ievel design. Many design
flow methodologies use a pattern which consists of assembling reusable sub-systems
and/or intellectual proprietary blocks (IP) to construct complex system platforms.
This design process relies heavily on metadata. The formalisms used to de scribe
system architectures within this process are often referred to as models of architec­
ture (MoA). Over the last decade, special architecture-oriented languages have been
developed in order to support these formalisms; we called them architecture descrip­
tion languages (ADL) [26]. Many projects such as Colif [12] and MoML [25] have
built the syntax of their ADLs on the XML [15] technology stack as a means for
metadata management and its manipulation.

From the perspective of syntax, XML based solutions are very effective. A vast
number of free open source solutions are available which support the XML technol­
ogy stack. Rowever, XML was never intended for the management of metadata and
its semantics. Rence solutions which rely on XML for the exchange of semantically
unambiguous data must deal with many shortcomings. Since the Semantic Web is
the next step in metadata representation technologies, it can be a valuable tool for
the EDA industry. Metadata management based on RDF and OWL [2], both tech­
nologies of the Semantic Web, benefits from a very robust foundation focused on
semantics. Work such as [31] demonstrates that the Semantic Web technologies can
be effectively applied to the domain of embedded systems. The former presents how
the Semantic Web technologies can be used in conjunction with service-oriented
technologies in order to create a flexible integrated development environment for
embedded system design.

Another project focused on the definition of a development environment for em­
bedded system design is SPIRIT [24]. The SPIRIT project has gained a lot of mo­
mentum over the last couple of years. The project's principal objective is the defi­
nitions of standards for the design of an open integrated development environment
(IDE) tool for IP-based system design. Currently, the SPIRIT project has taken a
more traditional approach based on XML than [31] for the management of IP re­
lated metadata and data. This approach has overly complicated the standards of the
projects, as weil as the management of their versioning. This paper continues the
discussion started in [31] by presenting the benefits of using the Semantic Web over
XML for metadata and data management. It will also discuss how the SPIRIT project
could benefit from using the Semantic Web.

The objectives of this paper are to introduce the Semantic Web to the EDA com­
munit y, as weil as discuss how initiatives such as the SPIRIT project can greatly
benefit by adopting OWL instead of XML as a medium for metadata and data.
The paper is organized as follows: sections 2-4 present background information on
MoAs, IP-XACT and the Semantic Web technologies, section 5 discusses the seman­
tic shortcomings of XML, section 6 discusses the advantages of the Semantic Web
over XML, section 7 presents how SPIRIT could benefit form using the Semantic

114

The Semantic Web Applied to IP-Based Design: A Discussion on IP-XACT 3

Web technologies and section 8 discuses the cost of adoption.

1.2 Models of Architecture and XML

Models of architecture (MoA) [30, 22] are closely related to models of computa­
tion (MoC) [10]. In the same way that MoCs define semantic frameworks which
permit the definition of computational-oriented applications, Mo As define semantic
frameworks which allow the definition of system platform architectures. Presently,
the state-of-the art of MoCs compared to MoAs is fare more mature. Many MoCs
have been formally defined and studied in order to understand their inherent char­
acteristics as weil those of the applications which are defined with them. A mature
concept of MoA has only begun to emerge in the last couple of years. Although no
generally accepted definition of the term exist, two major approaches to MoA can be
identified:

1. Describeplatform components using existing MoCs;

2. Specify platforms using dedicated formalisms.

Sorne examples of the first approach are SystemC [17] , Metropolis [4] and the
automated design f10w based on Synchronous Dataflow in [29]. Each of these uses
the same modeling constructs to define applications and platforms.

MoA is a key concept of sorne modem system design f10w paradigms such as the
Y-Ch art approach [22]. In the Y-Chart approach, application models are defined
using MoCs and platform models are defined using MoAs. A mapping is then de­
fined between both models in order to specify how the application components are
executed on the resources offered by the platform.

MoAs and ADLs are usually focused on describing the resources of architectures
(platforms), their properties (area, energie, etc.) as weil as their interconnection
topology. In the context of distributed embedded systems, many researchers ob­
served the existence of processor (e.g., general-purpose processors, accelerators, and
dedicated controllers), communication (e.g., busses, network-on-chip, and i/o inter­
faces) and storage (e.g., memories, and hard disks) resources as elements of a MoA.
There are many examples of ADLs which use XML as a meta-language for their
definition. Through XML, these ADLs capture de definition of various architectural
resources such as computational, communication and storage. They also allow the
capture of system designs which are defined as interconnections of these resources.
Hence, these ADLs manage both the metadata about resources as weil as data about
the designs which use the resources. The reminder of this section will present three
key examples of ADLs which use XML.

115

4 System level design with .Net

1.2.1 GSRC and MoML

MoML is an XML modeling markup language [25]. Il is a concrete syntax for
the GSRC abstract syntax which was developed at UC Berkley in the context of the
Ptolemy project. GSRC can be perceived as a MoA. GSRC, hence MoML, allows the
specification of interconnections of parameterized, hierarchical components. MoML
is extensible in that components and their interconnections can be decorated with
data specified in sorne other language (such as another XML language). Figure 1.1 (a)
illustrated the key elements of the GSRC semantics, hence the elements which are
encoded using MoML. The main concepts are entities, port and links.

('\ "'IIIt---Connection------+-
Entily Entity

Port
Unk UnI<.

Port
A

Relation
out

)

\ 1 j c
~\ JI"

in

B
Port

out

Entity

(a) MoML concepts (b) MoML example

FIGURE 1.1: MoML concepts and example

Figure 1.2 is the MoML representation of the example illustrated in Figure 1.1 (b).

<model name="top" class;;lIclassname",.
<:entity name:::::!lA" class=lIclassname ll >

<port name"'" Uaut 11/:>
<!entity>

<port name= lI out ll />
<:entity name=lISU class:"classname",.
<!entity>
<:entity name="C" class="classname ll >

<port name=!' in'!:>
<property name="multiport ll />

<relation name.!:l"rl" class="classname"/>
<relation name="r2" class="classname"/>
<:link port=IIA, Qut ll relation."rl "/>
<link port=uB,out" relation=Nr2 1'!>
<link port="C.in" relation="rl"/>
<link port::::::'lC.in" relation="r2 u />

</model:>

FIGURE 1.2: MOML XML example

116

The Semantic Web Applied to IP-Based Design: A Discussion on IP-XACT 5

1.2.2 CoUf and Middle-ML

In a similar fashion to the GSRC abstract syntax, Colif [12] defines a MoA with
a focus on the description of application-specific multiprocessor SOC architectures
(ASMSA). A key objective of Colif is to model on-chip communication at different
abstraction levels while separating component behavior from the communication in­
frastructure. The con crete syntax for Colif is Middle ML, an intermediate language
defined with XML. Middle-ML offers simple constructs in order to layer another
languages on-top; Colif is one such language. Both Colif and Middle-ML have been
developed by a research group at TIMA.

o module 0 lask C port

• blackbox _ nel

(a) Colif concepts

FIGURE 1.3: Colif and Middle-ML

<?xml version-"ll.O II encoding=IIUTF-8"?>
< 1 DOCTYPE middle SYSTEM "middle.dtd">
<middle>

<typedef name="MQDULE" structure=lIset ll >

<type field name="description">
<typeref base=lI s tr ll />

</typefield>
<type field name=lIentity">

<typedef structure="ref">
<typeref base="MODULE ENTITY"/>

</typedef> -
</typefield>
<typefield name=lIcontent">

<typedef structure="ref ll >

c::typeref base="MODULE CONTENT"/>
</typedef> -

</typefield>
</typedef>

</middle>

(b) Middle-ML example

Figure 1.3(a) illustrates the main semantic elements of Colif. The core concepts of
Colif are: Modules, Ports and Nets. Figure 1.3(b) illustrates the use of Middle-ML
to describe a Colif based architecture.

1.2.3 Premodona

Premadona [30] offers a tool for generating abstract performance models of Network­
on-Chip based Multi-Processor System-on-Chips (MPSoCs) which are expressed wit
the Parallel Object-Oriented Specification Language (POOSL) [32]. POOSL is an
object-oriented system specification language which is based on a formai mathemat­
ical mode!. Moreover, is it the specification language for the Software/Hardware
Engineering (SHE) methodology developed at the University of Eindhoven [32].
The Premadona tool follows the Y-Chart paradigm. Figure lA illustrates the de­
sign flow with Premadona. Application models are defined using an XML language
which uses the SDF3 specification language. SDF3 support the description of appli-

117

6

Platform

System level design with .Net

Trace & Analysis
Settlng

Analysis
Results

Trace
Results

FIGURE 1.4: Premadona tool f10w

c::?xml version;"l.O" encoding"'''UTF-B"?:>
c::platform name="MPSoCIi veraionc"l.O"

xmlns: xsi,,,http://www . w3 . org/2001/XMLSchema- instance
xmlns", "uri :platform l1 xsi: schemaLocation= "uri: platform
http://www.es.ele.tue.nl/premadona/tools/platforrn. xsd":>
c::node name="Nodel" proces8or_type="MIPSII schedulingyolicy="PS"

voltage scale factor","!" local bandwidth=11400000000 11

local s;tup latency=IIO.OoooP 7;;-
c::node name=rrN~de2" processor_type="ARM7" schedulingyolicy=tIPB"

voltage Bcale factor="!" local bandwidth=1I400000000"
local aetup latency="O.OOOOl" 1>

c::node name=IIN~de3" processor type="TriMedia" schedulingyolicy=" PB Il
voltage scale factor'" "1" l~cal bandwidth= "4 00000000"
local aetup latency::01l0.00001 11 1>

<node name=IINode4" processor_type="MIPS" schedulingyolicy=IIPB II

voltage Bcale factor="l" local bandwidth="400000000"
local setup 1~tency=1I0.00001" 1>

<noc ba~dwidth="200000000" setup latency="0.00002" />
<power storagerz"0.00000111 communication="0.0000005" />
<processor_type name=IIMIPS" clock_frequency= 11167000000"

context_swi tching_time=" 1500" power=" 0.075" / >
<processor_type name= IIARM7" clock_frequency= 11100000000 tt

context_swi tching_time=" 1200" power=!! 0.07 11 / >
<processor_type name= "TriMedia" clock_frequency;1I200000000"

context awitching time;"3200 11 power:::"0.085" />
</platform> - -

FIGURE 1.5: Platform model

cation models using one of three Moe: synchronous dataflow, cyclo-static dataflow
and scenario-aware dataflow. The specification language for platforms is also an
XML based language which support MoA constructs such as processors, storage,
etc. The Premadona tool generates POOSL models which can be simulated in order
to evaluated performance.

Figure 1.5 illustra tes a simple platform models composed of 2 MIPS processors,
1 ARM7 processor and 1 TriMedia processor.

118

The Semantic Web Applied to IP-Based Design: A Discussion on IP-XACT 7

IP-XACT CompUant
Object Descriptions

IP-XACT Compliant
Design Environment

~c;p
~

IP-XACT Compliant
Object Descriptions

FIGURE 1.6: SPIRIT design environ ment architecture

1.3 SPIRIT

IP-XACT Compliant
Generators

IP-XACT
TGI c===::;
~

The SPIRIT Consortium [24] is a non-profit organization dedicated to the devel­
opment of standards to empower the vision of IP-based development. At the heart
of the SPIRIT vision is an open design environ ment (DE) which can support an IP­
based design flow for the elaboration of embedded systems. The necessity of the
SPIRIT vision has emerged because of the absence of standards for the packaging
of IP descriptions and their related metadata. Currently, there is no design environ­
ment which can support IP descriptions across ail vendors as weil as întegrate the
necessary tools to supports them. Figure 1.6 iIlustrates the architecture of the design
environment which is part of the SPIRIT vision.

In order to realize its vision, the consortium has defined a specification called IP­
XACT which defined 3 mains sub-specifications: the IP-XACT metadata format, the
Tight Generator Interface (TOI) and the Semantic Constraint Rules (SCRs). There
are two obvious interfaces expressed in Figure 1.6: from the DE to the extemal object
description libraries and from the DE to the generators. The IP-XACT metadata
format is used for the interface between the DE and the object description Iibraries.
The TOI is used between the DE and generators.

119

8 System level design with .Net

FIGURE 1.7: IP-XACT object description types

Defines the t

enerators.

FIGURE 1.8: IP-XACT object descriptions

1.3.1 IP-XACT metadata format

IP-XACT metadata format specification is a metadata description for documenting
IPs. The metadata format is an XML schema which creates a common and language­
neutral way to describe IPs compatible with automated integration techniques and
enabling integrators to use IPs from multiple sources with IP-XACT enabled tools.
IP-XACT enabled tools are able to interpret, configure, integrate and manipulate IP
blocks that comply with the proposed IP metadata description. The CUITent version
is 1.4. The XML schema which defines the metadata format is composed of seven
top-level schema definitions. Each schema definition can be used to create object
descriptions of the cOITesponding type. Figure 1.7 gives an overview of the main
concepts defined with the IP-XACT metadata format.

120

The Semantic Web Applied to IP-Based Design: A Discussion on IP-XACT 9

<?xml version="l.OIl encoding=I1UTF-8" ?>
<spirit:busDefinition xmlns:spirit=

http://www.spiritconsortium.org/XMLSchema/SPIRIT/1.4
xmlns:xsi=http://www.w3.org/2oo1/xMLschema-instance
xsi:schemaLocation=''http://www.spiritconsortium.org/XMLSchema/SPIRIT/l.4
http://www . spiritconsortium. org/XMLSche'ma/SPIRIT /1. 4/index .xsd" >

<spirit:vendor>amba.COffi</spirit:vendor>
<spirit:library>AMBA</spirit:library>
<spirit:name>AHB</spirit:name>
<spirit:version>vl.O</spirit:version>
<spirit:directConnection>false</spirit:directConnection>
<spirit:isAddressable>true</spirit:isAddressable>
<spirit:extends spirit:vendor="amba.com" spirit:library="AMBA"

spirit:name=IIAHBlite" spirit:name="vl.O" />
<spirit:maxMasters>16</spirit:maxMasters>
<spirit:maxSlaves>16</spirit:maxSlaves>
<spirit:systemGroupNames>
<spirit:systemGrOupName>ahb clk</spirit:systemGroupName>
<spirit:systemGrOupName>ahb-reset</spirit:systemGrOupName>
</spirit:systemGroupNames> -

</spirit:busDefinition>

FIGURE 1.9: AHB bus definition

The links between he main schema objects are illustrated in Figure 1.8. The arrows
illustrate a reference of one object to another (e.g., reference of object B from object
A). Figure 1.9 is an example of the AHB portion of the AMBA specification [1]
described using the IP-XACT metadata format.

1.3.2 TGI

The second interface of the SPIRIT Design Environment Architecture is one which
defines the interaction API between the DE and Generators. This interface is defined
by the TGI portion of the IP-XACT specification. Generators are an important part
of the design environment architecture. They are executable objects (e.g., scripts or
binary programs) which may be integrated within a design environment (referred to
as internaI) or provided separately as an executable (referred to as external). Gen­
erators may be provided as part of an IP package (e.g., for configurable IP, such as
a bus-matrix generator) or as a way of wrapping point tools for interaction with a
design environment (e.g., an external design netlister, external design checker, etc.).
An internai generator may perform a wide variety of tasks and may access IP-XACT
compliant metadata by any method a DE supports. IP-XACT does not describe these
protocols.

The DE and the generator communicate with each other by sending messages
utilizing the Simple Object Access Protocol (SOAP) standard specified in the Web
Services Description Language (WSDL). SOAP pro vides a simple means for send­
ing XML format messages using the Hyper Text Transfer Protocol (HTTP) or other
transport protocols.

121

10 System level design with .Net

1.3.3 SeRs

Since the schema of the IP-XACT metadata format is defined using the XML schema
technology, it is bound by the expressive limits of this technology. There are a cer­
tain number of consistency rules that are important for the coherence of the meta­
data schema and conforming documents which can not be expressed with XML
schemas. In order to define these rules, the IP-XACT specification defines a list con­
sistency rules called the Semantic Consistency Rules (SCR) which complements the
IP-XACT metadata schema. The intent is that tools implement these rules in order
to validate the coherency of documents which use the IP-XACT metadata schema.

1.4 The Semantic Web

The core technology for knowledge representation in the Semantic Web is RDF. Fig­
ure 1.IOa illustrates the position of RDF and ail the other Semantic Web technologies
relative to XML technologies. The Semantic Web is often seen as a layer above XML
but as Figure 1.10a iIlustrates, it can be layered on other standards such as N3 no­
tation [6]; hence it is independent of XML. Figure 1.l0a also illustrates how the
various IP-XACT standards can be implemented with the SW and positions a design
environment as an application which uses the stack. Figure 1.10b serves to illustrate
how the SW approach compares to the CUITent XML approach of implementing the
IP-XACT standards.

Application: IP-XACT Design Envlronment

œ·XA CT Schema lœ.XA cr SCB
œ·XAr:t.rrli/ Ontologies: OWL Rules: SWRL

Application: IP.J(ACT Design Envlronment Querying: SPARQL

Taxonomies: RDFS /p·XAr:t.rTGI lœ-XAcr Schema Querylng: Web
Data Interchange: RDF Services

Schema: XSD

œ-XAr:t.r~r:t.B

Syntax: XML or N3 Syntax and Data Interchange: XML Rules: Engllsh

Identiflers: URI
1

Character Set: Unicode Identlfiers: URI 1 Character
Set: Unicode

(a) SW based stack (b) CUITent XML based stack

FIGURE 1.10: Semantic Web and IP-XACT stack

1.4.1 RDF

RDF [2] perceives the world as a collection ofresources. A resource can be anything
(a web page, a fragment of a web page, a person, an object, etc.) and is refeITed
to in the Semantic Web with a Uniform Resource Identifier (URI). RDF is built on

122

The Semantic Web Applied to IP-Based Design: A Discussion on IP-XACT II

,----------------------------------,
1 Concepts 1
1 1
1 1
1 hw:Networ1< hw:Communication 1
1 Processor Bus 1
1 1

~ _ _ _ _ _ _ rdf:type _ _ _ _ _ _ _ _ _ _ _r~:~~ _)

----- ,
1
1
1
1
1
1

1 hw:madeBy hw:supports 1
,~~~~~ _____________________________ J

FIGURE 1.11: RDF example

3 concepts: resources, properties (relations) and statements. As mentioned earlier,
a resource can be anything which is referred to by an URI. A property (or relation)
is a resource which gives information on an aspect of a resource. Since a property
is a resource, ail properties have a unique URI. A statement is a triple of the form
<Subject, Property, Object> which puts a Ressouce (the subject of the statement)
in relation with another Ressouce (the object of the statement). The property (rela­
tion) of a statement indicates the aspects which the statement is giving information
about. A set of statements form an RDF graph. RDF defines a small set of standard
resources. The most important is the type property (relation) which expresses a "is
a" relation. A triple which uses the type relation such as <aSubject, type, anObject>
generally indicates that the subject of the triple is a conceptualization and the object
is an instance of the conceptualization. Figure 1.11 is a simple RDF graph which
describes sorne common hardware conceptualizations and instances of those con­
ceptualizations which relate to the IXP45X Intel network processor [21]. Each oval
depicts an RDF resource which represents a conceptualization. The arrows depict
property resources. Ali resources are identified with a URI (URI prefix are used for
conciseness). The model states that an IXP45X is a network processor (a special kind
of processor) which is made by a specific manufacturer called Intel and supports a
specific communication bus called PCI v2.2

The RDF specification defines a standard serialization format called RDFIXML
for its abstract syntax. As mentioned earlier, other serialization formats exist such as
N3 [6]. These serialization formats are not typically consumed directly but through
tools. Figure 1.12 illustrates the serialization on the example presented in Figure
1.11. In the reminder of this article we shall use N3 notation. The N3 notation
expresses each triple on a single line.

123

12 System level design with .Net

<rdf :Description rdf: about: "#IXPA45X":>
<rdf: type rdf: resource="#NetworkProcessor" />
<hw:madeBy rdf: resource= "#Intel" />
<hw: supports rdf: reSDurce= "jj.PClv2. 2" />

</rdf: Description>
<rdf :Description rdf: about=- "#Intel":>

<rdf: type rdf: resource .. "#ProcessorManufacturer" />
</rdf: Description>
<rdf :Description rdf: about; "#PClv2. 2":>

<rdf: type rdf: resource="#CommunicationBus Il />
</rdf: Description>

(a) RDF/XML senalization

FIGURE 1.12: RDF serialization

Class Me8JÛn
Class This is the c1ass

classes. rdfs:Class is
instance of rdfs:Class

pert y rdf:Property i'tite doss
of RDF,/.p",pertiss.
nlf:Pro~ity,Js ~'inst3fi'
of rdfs:èlas;: • . .

Relation

FIGURE 1.13: Main RDFS concepts

1.4.2 RDF Schema

hw:IXPA4SX hw:madeBy hw:lntel.
hw:IXPA45X hw:supports hw:PClv2.2.
hw:IXPA4SX rdf:type hw:NetworkProcessor.
hw:lntel rdf:type hw:ProcesSOrManufacturer.
hw:PClv2.2rdf:type hw:CommunicationBus.

(b) N3 senalization

The property rdfs:range 15 an instance 0

rdf:Property that is used to stute that the values
of a property are instances of one or more
classes.

RDF Schema (RDFS) [2] extends RDF along 2 axes: it defines a precise list of
resources (meaning and URIs) and a set of entailment rules which allow the inference
of new triples from RDFS graphs. RDFS allows the definition of classes of resources
as weIl as their organization. The concept of a class in RDFS must be understood as
a set. Figure 1.13 summaries the main concepts found in RDFS.

Figure 1.14 is an extension of Figure 1.11 which defines relations between con cep­
tualizations. For ex ample, Figure 1.14 expresses that the set of aIl network processors
is a sub-set of the set processors. We often refer to networks of conceptualizations as
schema hence the name RDF Schema. Based on the semantic of RDFS and under­
Iying entailment rules, 2 implicit triples should be understood : <hw:Intel, rdf:type,
hw:Manufacturer> and <hw:IXP45X, rdf:type, hw:Processor>.

The previous implicit triples may be inferred because of the semantic of the rdfs:subClassOf
property. Since the rdfs:subClassOf expresses the relation of parent set and sub-set
between 2 sets, aIl individuals in the sub-set are necessarily individuals of the parent
set.

1.4.3 Web Ontology Language (OWL)

OWL [2] is a knowledge representation language which can be used to represent the
tenninological knowledge of a domain in a structured and fonnally well-understood
way. More specificaIly, OWL is a description logic language. Description logics

124

The Semantic Web Applied to IP-Based Design: A Discussion on IP-XACT 13

(' _. -. _. _. _. _. _. _. _. _. _. -.
Concepts

rdf:type. __ ~:...-",,-~

rdf:type

Instances
hw:madeBy

FIGURE 1.14: RDFS example

rdfs:Class

rdf:type
rdf:type

hw:Communication
Bus

hw:supports

rdf:type . ../

. ""

express conceptual descriptions with first-order predicate logic. OWL is defined on
top of RDFS in the same way RDFS extends RDF. OWL defines a li st of resources
(meaning and URIs) and a set of entailment rules which allow the inference oflmowl­
edge in the form of new triples. In particular, OWL adds to RDFS the capability to
express the admissibility criteria of a given class (set). It is possible to define a class
not only by defining its relationship with other classes but also by defining the criteria
which a resource must respect to be classified as an individual of the class. There are
many semantically rich elements in the OWL specification but for the context of this
paper we will focus on the concept of a Restriction. The concept of a Restriction de­
fines a resource of type owl:Class. This class defines the set of ail individuals which
express restriction (criteria) specifications with are used to define other owl:Class.
These criteria are typically on the existence of relations (property statement) which
an individual resource must be part of. Figure 1.15 defines in greater detail the con­
ceptualization of a Processor and a Network Processor. The example defines the
class Processor as all resources which are part of exactly 1 relation madeBy as weil
at least 1 relation supports. The class Network is defined to be a subset of ail Pro­
cessor which are part of exactly 1 relation madeFor and the object of this relation
must be "networking". The example retakes the IXPA45X resource of the previous
examples but does not express anything about it association with a class. Based on
the semantic of OWL, reasoning over the example would conclude that the resource
hw:IXPA45X is a Processor and a Network Processor because it fulfils ail the criteria
for both sets.

The OWL specification defines 3 sub-sets of the language which extent each oth-

125

14 System level design with .Net

hw:processor rdf:type owl:Class.
hw:processor rdfs:subClassOf _:processorRestrictionl.
_:processorRestrictionl rdf:type owl:Restriction.

:processorRestrictionl owl:onproperty hw:madeBy.
=:processorRestrictionl owl:Cardinality "l"AAxsd:int.

hw:processor rdfs:subClassOf _:processorRestriction2.
_:processorRestriction2 rdf:type owl:Restriction.
_:processorRestriction2 owl:onproperty hw: supports.
_:processorRestriction2 owl:min "l"AAxsd:int.

hw:NetworkProcessor rdf:type owl:Class.
hw:Networkprocessor rdfs:subClassOf hw:processor
hw:NetworkProcessor rdfs:subClassOf :processorRestriction3.

:processorRestriction3 rdf:type owl:Restriction.
_:processorRestriction3 owl:onproperty hw:madeFor.
_:processorRestriction3 owl:hasValue "networking"AAxsd:string.
_:processorRestriction3 owl:Cardinality "l"AAxsd:int.

hw:IXPA45X hw:madeBy hw:lntel.
hw:IXPA45X hw:madeFor "networking"AAxsd:string.
hw:IXPA45X hw:supports hw:PClv2.2.

FIGURE 1.15: OWL example in N3

ers: OWL Lite, OWL DL and OWL Full. Each subset is balanced between expressiv­
ity and the computational complexity to reason over a model defined with the subset.
Since OWL builds upon RDFS and RDF, it uses the same serialization formats.

1.4.4 SPARQL

SPARQL [28] is a query language for RDF graphs. SPARQL is very much to RDF
what SQL [14] is to relational databases. SPARQL is based on a pattern matching
paradigm like XPath [5]. In the same way that an XPath de scribes an XML pattern
which is usually hierarchical, a SPARQL query describes a graph pattern. A basic
SPARQL query has 2 portions: a SELECT portion that defines a list of variables
returned by the query and a WHERE portion that defines a list of triple statements
used to matched. The variables in the SELECT portion are used as unbound ele­
ments (subject, property or object) in the statements. The query defined in Figure
1.16 searches for ail NetworkProcessor which support PCIv2.2. If executed on the
example illustrated in Figure 1.14, the result set would contain hw:IXP45X.

If the query had requested ail Processors which support PCIv2.2, the result set
would have been empty because there is no explicit relation (rdf:type) between hw:IXP45X
and Processor. A SPARQL engine will only search for matches based on what is ex­
plicitly present in the queried graph. As discussed previously, the OWL language has
precise semantics which includes entailment rules. By processing an OWL model
with an inference engine such as Pellet [16] , new statements can be added to the

126

The Semantic Web Applied to IP-Based Design: A Discussion on IP-XACT 15

Select Query
SELECT ?x
WHERE(

?x rdf:type hw:NetworkProcessor.
?x hw:supports hw:PClv2.2.

}
hw:IXP45X

FIGURE 1.16: Select query

Comtroct e Ask e

ÇO~~T~~~T~ype ?cl. AS~W;IXP45X hw:madeBy

}WHERE{ hw: Intel.
7c:Z rdfs: subClassOf 7el

~ 7% rd!: type ?c:2.

hw: IXP45X rdf· type yes
hw: Processor.

FIGURE 1.17: Construct and Ask queries

model based on the entailment rules. If we apply entailment rules to the OWL exam­
pie, the RDF statement <hw:IXP45X, rdf:type, hw:Processor> will be added. The
execution of the query would now return the expected result. This capability to infer
new knowledge from a given model is a great added value over typical approaches.

The SPARQL specification also defines three other query types:

1. The CONSTRUCT query form returns a single RDF graph specified by a
graph template. The result is an RDF graph formed by taking each query
solution in the solution sequence, substituting for the variables in the graph
template, and combining the triples into a single RDF graph by set union.

2. The ASK query is used to test whether or not a query pattern has a solution.
No information is returned about the possible query solutions, just wh ether or
not a solution exists.

3. The DESCRIBE form returns a single result RDF graph containing RDF data
about resources. This data is not prescribed by a SPARQL query, where the
query client would need to know the structure of the RDF in the data source,
but, instead, is determined by the SPARQL query processor. The query pattern
is used to create a result set.

Figure 1.17 give examples of the CONSTRUCT and an ASK query as well as
the results of the queries if execute on Figure 1.14. In conjunction to the SPARQL
specification, the SPARQL Protocol specification [13] was established in order to

. define a communication interface over HTTP for remote SPARLQ query execution.
In addition to the operators defined by the official SPARQL standard, others have

been proposed and implemented by tools. A specification called SPARQL/Update [28]
has been propose to the W3C for standardization. This specification defines two op­
erators which enable to insert and delete triples, hence given write, update and dei ete

127

16 System level design with .Net

UPdate uerv
DELETE{

?x hw:madeBy hw:lntel.
}INSERT{

?x hw: madeBy hw: AMD .
}WHERE(

?x hw:madeBy hW:lntel.
} ?x rdf:type hw:Networkprocessor.

FIGURE 1.18: Update query

FIGURE 1.19: TopBraid Composer

capabilities. Figure 1.18 illustrates the use of the SPARQLlUpdate extension in order
to change the madeBy poperty of ail NetworkProcessor from "Intel" to "AMD".

1.4.5 Tooi for the Semantic Web: Editors and Jena

The Jena framework [11J is a Java-based open source toolkit for the Semantic Web.
The CUITent version implements a programmatic framework for RDF, RDFS, OWL
and SPARQL. Jena also provides sorne interesting features su ch as a rule-based in­
ference engine and a persistence storage framework for large RDF graph. Jena also
provides sorne very powerful extensions to the SPARQL languages su ch as free text
searches and property functions. In the context of this paper, the most important
extension is the SPARQLlUpdate specification.

Web Semantic development is usually done using an editor. Multiple commercial
and academic editors are available such as as Protege [23] and TopBraid Composer
(see http://www.topbraidcomposer.com/). These editors, in addition to facilitating
model edition, they commonly support visualization of semantic models, integration
with inference engines, SPARQL integration and various kinds of analysis.

128

The Semantic Web Applied to IP-Based Design: A Discussion on IP-XACT 17

rdfs:subClassOf(?x,?y)rdfs:subClassOf(?y,?z)->rdfs:subClassOf(?x,?z)

FIGURE 1.20: Rule example

1.4.6 SWRL and Jena rules

The Semantic Web Rule Language (SWRL) [20] Îs a W3C member submitted stan­
dard since 2004. It is based on a combination of the OWL DL and the UnarylBinary
Datalog RuieML sublanguages of the Rule Markup Language. SWRL extends OWL
with Hom-Iike rules [19]. As such, SWRL defines a high-Ievel abstract syntax for
the definition of rules as weil has a formai semantic definition for the interpretation
of these rules in the context of an OWL ontology. SWRL rules are in take the form of
an implication between an antecedent (body) and consequent (head). The intended
meaning can be read as:

"Whenever the conditions specified in the antecedent hold, then the conditions
specified in the consequent must also hold."

Both the antecedent (body) and consequent (head) con si st of zero or more atoms.
An empty antecedent is treated as trivially true (i.e. satisfied by every interpretation),
so the consequent must also be satisfied by every interpretation; an empty consequent
is treated as trivially false (i.e., not satisfied by any interpretation), so the antecedent
must also not be satisfied by any interpretation. Multiple atoms are treated as a
conjunction. Atoms in these rules can be of the form C(x), P(x,y), sameAs(x,y),
ditTerentFrom(x,y) or built-in(x,y,z, ...) where C is an OWL description, Pis an
OWL property, and x,y are either variables, OWL individu aIs or OWL data values.
The specification proposes a library of functions which reuses the existing built-ins
in XQuery [8] and XPath. The list of built-ins may be extended by users.

Figure 1.20 iIIustrates the use of SWRL to define an entailment rule for the rdfs:subClassOf
property of RDFS. The rule state that if x is a subset of y and that y is a subset of z
then x is also a subset of z. Figure 1.21 i lIustrates the concrete syntaxes of the exam-
pIe of Figure 1.20. The Jena framework also includes a general purpose rule-based
reasoner which is used to implement both its RDFS and OWL reasoners, however
it is also available for general use. This reasoner supports rule-based inference over
RDF graphs and provides forward chaining, backward chaining and a hybrid execu-
tion mode\. The syntax of the rules is very similar to the abstract syntax of SWRL.
Jena also defines a similar buHt-in library such as the one defined by SWRL. TooI
such as TopBraid Composer support both the edition of SWRL and Jena rules. Sorne
inference engines such as Pellet support the execution of SWRL rules. When using
Top Braid composer, the editor translate SWRL rules to Jena rules and then uses the
Jena reasoner; this approach means that the editor only support the sub-set of SWRL
which maps to Jena mIes.

129

18 System level design with .Net

XMLsyntax RDF/XML syntax
<ruleml: imp> <swrl :Variable rdf: ID-"xl" />

c::ruleml: _rlab ruleml: href="#examplel" / > <swr!: Variable rdf: ID="x2" />
c::ruleml: body> <swrl: Variable rdf: ID= "x3" />

<swrlx~ indi vidualPropertyAtom <:ruleml: Imp>
swrlx: property="hasParent" > <ruleml: body rdf: parseType"= "Collection 11 >

<:ruleml: var>xl</ruleml: var> <swrl: Indi vidualPropertyAtoffi>
<ruleml: var>x2</ruleml: var> <swrl: propertyPredicate

</swrlx: individualPropertyAtom> rdf: resource=" &eg i hasParent" / >

<swrlx: indi vidualPropertyAtom <swrl : argumentl rdf: resaurce= u#xl n / >
swrlx: property= "hasBrother" > <swrl : argument2 rdf: resource= "#x2" / >

<:ruleml :var>x2</ruleml :var> </swrl: IndividualPropertyAtom>
<ruleml : var>x3</ruleml: var> <swrl: Indi vidualPropertyAtom>

</ swrlx: individualPropertyAtom> <swrl : propertyPredicate
</ruleml: body> rdf: resource=" ⪚ hasBorther" / >
<ruleml: _ head> <swrl! argument l rdf: resource= "#x2" / >

<swrlx: individualPropertyAtom <swrl: argument 2 rdf: resource= "#x3" / >
swrlx: property="hasUncle" > </swrl: IndividualPropertyAtom>
<ruleml: var>xl </ruleml: var> </ruleml: body>
<ruleml: var>x3</ruleml : var> <ruleml! he ad rdf! parseType= "Collection" >

</swrlx: indi vidualPropertyAtom> <swrl: Indi vidualPropertyAtom>
</ruleml :_head> <swrl :propertyPredicate

</ruleml: imp> rdf: resource=" ⪚ hasUncle" />
<swrl : argument l rdf: resource= "#xl" / >

<swrl: argument2 rdf! resource= "#x3" / >
</swrl: IndividualPropertyAtom>

</ruleml :head>
</ruleml: Imp>

FIGURE 1.21: SWRL serializarion examples

1.5 XML and its shortcomings

Pre-XML data ex change was characterized by a vast amount of proprietary file for­
mats; most of which were either binary or flat (comma-delimited, tab-de!imited,
etc.). Consumption of these files came at a high cost, each software system had to
implement a parser and interpreter for each file format; very !ittle reuse was possible
because of the diversity of data encoding and data structuring. Renee, enab!ing M
software systems to exchange infonnation bi-directionality with one anotherrequired
M*(M-l) parser/interpreter bridges. This high number of software data exchange
bridges made data ex change and data interoperability between systems a fairly chal­
lenging and expenses endeavor.

The advent of the XML technology stack (XML, XSD, XPatn, XSLT and XQuery) [15]
has democratized the exchange and consumption of data because XML-based data
exchanges uses a predefined data encoding scheme (Unicode) as weil as a meta­
structure for syntax. This has enabled the development of generic file parsers which
tools can embed and reuse. Moreover, since ail the technologies in the XML stack
are based on open standards, many free implementations are availab!e which has
greatly lowered the cost of data exchange and interoperability.

CUITent data exchanges based on XML on!y require parties to define a precise
XML data model which is defined using the XML schema standard. Once a data
mode! has been defined, software systems on!y have to imp!ement an interpreter
which extracts data fragments (using XPath or XQuery) and consume them in a

130

The Semantic Web Applied ta IP-Based Design: A Discussion on IP-XACT 19

ExampleA ExampleB
<networkProcessor> <networkProcessor name="IPX45X">

<name>IPX45X</name> <supports>
<supports> <communicationBus name="PClv2.2"/>

<communicationBus> </Supports>
<name>PClv2.2</name> </networkProcessor>

</communicationBus>
</supports>

</networkProcessor>

FIGURE 1.22: Multiple possible syntaxes

fashion which is coherent with the meaning or intent of the fragments. Even though
XML stack has solved a vast number of problems with regards to data exchange, it
has sorne very important shortcomings.

1.5.1 Multiple Grammars

XML allows multiple valid syntaxes for a particular semantic mode!. An XML data
model consists of two aspects one is syntax (syntax model) and the other is semantic
(semantic model). To achieve a consensus around a data model requires a consensus
on both models as weIl as the mapping between them. To be more precise, when
defining an XML based format, it is necessary to define the schema that will de­
fine the structure which aIl XML files based on the schema must respect, the syntax
model. The syntax modelconsists of the element definitions, the attribute definitions
and the nesting rules for elements just to name a few. The consensus with regards
to semantics is the definition of "what" the data contained in the file structure means
independently of how it is expressed in the file. This consensus is important because
even if a data structure is clearly defined and accessing the data in the structure is
simple, if multiple parties interpret the meaning (semantic) of the information dif­
ferently, data interoperability has not been achieved. For example, if a data model
defines an element ca lied POWER which contains an integer value; it is possible that
one parties interprets the value in KiloWatts and other party in MegaWatts; this is
called a semantic gap.

The problem with having multiple syntax models is that it complicates achieving a
consensus on the syntax model for multiple schools of thought exist which advocate
different styles. Also as the need for data exchange evolves, the structuring of the
information will change for maintenance raisons in order to facilitate the integration
of new data in the exchange. This causes incompatibilities between syntax models
which requires software systems to be modified even if the semantic models are
fully compatible because new data concepts are added or refined which does not
invalidate earlier interpretation. For example, between SPIRIT 1.2 and 1.4 sorne
attributes have become elements. We must consume meaning and not encoding and
syntax. Figure 1.22 is an example of multiple syntaxes for the same meaning if the

131

20 System level design with .Net

statement "IPX45X, a network processor, supports PCIv2.2, a communication bus."

1.5.2 Documentation-centric

By design, XML is intended for simple message-oriented data exchanges, it is document­
centric. Rence the capabilities of storing data in multiple files - files which have no
knowledge of one another but which the data they contain is complementary - and
then easily combine these files dynamically in order to query the consolidated data
set as a virtual file is not possible. For example, it is difficult to have an XML doc­
ument which defines the structure of a system which is composed of modules, have
multiple documents which contain detailed information of each module and then
combine ail of the documents and query across them.

Another problem with the documentation-oriented nature of the XML is that if one
wishes to use XPath, XQuery, or XSLT it is necessary to know the physicallocation
of a file in order to load it in memory and then manipulate it. Rence software systems
which consume XML documentations must have inherent knowledge of the physi­
cal file names and locations in order to consume their contents. This makes XML
consumption brittle from a physical data exchange point of view. For example, just
changing the name of a file or its location can easily break data exchanges. Software
system are tied to the physical location of files even though it is the consumption of
their content semantics which is important.

Typically, both the consolidation and the location transparency problems are avoided
by using a consolidation repository which stores ail the information in the XML doc­
uments. This repository is usually based on relational database systems because of
the omnipresence of the technology and supporting tools. This is a very effective
way to consolidate data and to offer a mostly transparent access to the information
(one must still know the connection string ofthe database) but it bring a new problem
: it is necessary to define a new data model- a relational data model- which bring the
same two consensus aspects we described with XML data models. Moreover, a new
technologies stack must be leamed and exploited. SPIRIT uses this consolidation
repository approach.

Again, in order to avoid this new problem, a typical solution is to hi de the data
store behind a Web Services layer which exposes an XML data mode!. By reusing
the initial data mode!, no new consensus must be achieved, only the communica­
tion and the maintenance of the APIs which is not necessarily an ease task. More­
over, hiding the consolidated documents behind an API typically narrows greatly the
consumption capabilities of a software bec au se APIs usually only exposes specific
consolidated fragments so querying can only be done on those fragment and not on
everything in the data store. SPIRIT uses this approach for the TOI.

1.5.3 Biased Grammar model

Database technologies have evolved from tree-based data models (hierarchically
database) to network-based models (network databases) to relation data models over
the last 30 years; the XML data model brings us back to the beginning.

132

The Semantic Web Applied to IP-Based Design: A Discussion on IP-XACT 21

The meta-model of XML data models is biased toward tree-like structures; the
nesting of elements is the principal mechanism which allow syntax model defini­
tions. Using graph structures such as in UML [9] class models and table structures
in relation models is a more natural ways of modeling the world. Since an XML data
model requires a single top level root, it is necessary to either promote a concept in
the data model to the top element or create an artificial one which has no semantic
meaning and is present for only syntactic reasons.

Through the use the IDIIDREF from XSD 1.0 or key/keyref pairs from XSD 2.0 it
is possible to create implicit graph-Iike structure attributing identifiers to nodes in an
XML document and allowing nodes to refer other nodes by using their IDs. However,
these are implicit graphs and querying through implicit graph is not trivial. With
XPath and XQuery, it is not possible to request the XML node witch is referenced by
another node, it is necessary to explicitly search for the referred node by using query
predicates on the keys which identify the node.

1.5.4 Limited Metadata

XML offer more semantics than flat-file because metadata is present in the form
of element name and attribute name, however semantic expressiveness is Iimited.
For example the nesting of an element in another elements has no semantics, e.i. if
element a has a nested element b, does it mean that a poses b or that b belongs to a
etc.

File formats such as comma-delimited posses no inherent metadata, only the data
is present. Hence, the consumption of these files requires an intrinsic knowledge
of the content of the file and its meaning. XML documents, by the presence of
element and attribute names, deliver metadata as weil as data. Moreover, the scoping
of elements and attributes with namespaces makes them unique because there are
based on URIs. A consensus on an XML data models implies that a consensus of
the mapping of the semantic model to the syntax model as been achieved, which
implies that a consensus on each XML elements - which is unique because of the
URIs sc heme- and its meaning as been reach. This allows a software system to
consume a previously unknown XML file because it may search the file for elements
and attributes with specific URIs which the software systems knows how to correctly
interpret. Having said this, XML does not convey ail the necessary metadata which
is implied by an XML data model. The mechanism of nesting has no semantics; an
XML element may be nested under another XML element in order to represent very
different meanings. For example, given the concept of a hardware module which
is represented as an XML element and the fact that we wish to express two lists of
modules which are related to a specific module:

1. the list of modules which this module is backward compatible with

2. the Iist of modules which the module is not backward compatible with

We cannot simply Iist each module in both of these Iists under the module of dis­
cussion because it will not be possible to distinguish the modules in the compatible

133

22 System level design with .Net

list from the incompatible list. This problem is typically solved by either creating
two XML elements that respectively represent both of these lists under which we
nest the appropriate module entries. We then nest these two XML elements under
the module under discussion. In this solution nesting still does not have any sem an­
tics but we have created an unambiguous data structure which can be interpreted by
a software system.

UML c1ass models and ER data models do not have this issue, for in both, asso­
dations between either classes or entities are named. Moreover, in a UML classes it
is possible to define role for each c1ass which participates in an association. Rence,
in UML c1ass models and ER models, the semantics of associations are precise and
c1ear. Ifwe wished to represent the above problem in a UML c1ass diagram we would
have only one c1ass definition and two recursive associations, one called is compat­
ible whit and the other is incompatible with. The cardinality of both associations
would probably be many to many

1.6 Advantages of the Semantic Web

The advent of XML technologies enabled a simpler data manipulation paradigm than
the one supported by fiat file approaches. It also brought data manipulation at a
higher-Ievel of abstraction. Data manipulation was no longer focused on encoding
and parsing but on grammar and data exchange. The Semantic technologies do the
same with respect to the XML technologies. These new technologies bring many
important benefits over its predecessor with regards to data manipulation and also
bring the bring data manipulation at a higher-Ievel of abstraction. The focus now
is on semantics, data integration and queries over consolidated information sources.
Figure 1.23 is a summary of this section.

1.6.1 Richer Semantic Expressivity

OWL offers a rich, formaI and non-ambiguous language to de scribe information and
knowledge. In many regards, its expressive capabilities go weil beyond that of XML.
By defining information using OWL, it is possible to infer additional information,
hence creating knowledge; this is not possible with XML. This capability is enhanced
when combining OWL with SWRL rules. Another distinction advantage that OWL,
RDFS and RDF has over XML is that the schemas are also information to which
inferencing may be applied.

As discussed earlier, most modem data model schemas such as UML and Relation
schemas are inherently graph-oriented; XML is tree-oriented which can often be
an inconvenience. By the very nature of the triple basis of the RDF, semantic data
models are directed graphs. In addition, the meaning of a model which used semantic
technologies is unambiguous. Each element of data that is in a relation with another

134

The Semantic Web Applied to IP-Based Design: A Discussion on IP-XACT 23

Xl\'JL OWL

1. Syntax and grammar focused 1. Semantic focused which abstracts
syntax

2. InformaI Semantics 2. FormaI Semantics
3. Document and centra!ized oriented 3. Distributed oriented
4. Supports federation with but not 4. Supports federation by design and

transparently transparently
5. Hierarchica! data mode! with 5. Explicit Graph data mode!

implicit graph structures
6. Multip!e grammar for a specifie 6. Single grammar for a specifie

semantic mode! semantic model
7. Support syntax transformation 7. Support semantic integration
8. Doesn't support entailment 8. Supports enta il ment

FIGURE 1.23: IP-XACT object description types

element of data is done so with a predicate; hence the meaning of the relation is
unambiguous. RDF based models do not suffer from the semantic gaps which XML
do es such as element imbrications which defines ambiguous relations between data
element.

1.6.2 Separation between semantics and encoding

The Semantic Web stack is focused on the modeling/expression of semantics and
not encoding/data structure. The serialization of OWL to an RDFIXML encoding
and grammar is defined in the OWL specification, hence only one grammar model
exists of a specific semantic model for that particular encoding/structuring scheme.
Even though multiple encoding/structuring schemes exist for OWL, consumption is
always done at the semantic level through tools such as SPARQL and Jena. Since
the consumption of OWL at the semantic level and Jena, software applications do
not know which file format was used to express the OWL model, hence are not af­
fected by encoding changes or file location etc. Moreover, software applications are
also isolated from changes to the semantic models which are backward compatible.
As long as semantic definitions are not removed or the meaning (semantic element
should never change meaning), software application will not break.

1.6.3 Federated data mode)

The semantic technology stack is based on the premise that "anybody can say any­
thing about anything" on the web which implies that data is scattered throughout the
Web. Because of this premise, technologies of the semantic stack have been devel­
oped in order to federate this information and allow its consumption in a manner
which is agnostic of this distribution. Through federation, consumers have the per­
ception that ail the information is local and storage in a single "virutal file". Toois
such as Jena and SPARQL engines are design to stitch RDF statements from mul-

135

24 System level design with .Net

tiple sources together in order to achieve a global picture, a single graph structure.
This focus on federation is at the opposite of XML which is mostly focus data ex­
changes patterns in the context of peer to peer communication were distribution is
not a con cern. Renee, semantic technologies have a distinct advantage in scenarios
which require data consolidation (file consolidation) even when the consolidation is
not on the Web. The newest generation of XML technologies (XQuery 1.0, XPath
2.0 and XSLT 2.0) has the capability to manipulate data from multiple files, hence
offering a certain level of federation capabilities. Rowever, the physical local of files
has not been abstracted and the consolidated view is achieved by the user defining
the necessary joins between data elements. With the Semantic Web technologies,
file location is not important because it is managed by SPARQL engines which also
stitches data element base on semantics without human intervention.

1.6.4 Simpler Data Manipulation

Data manipulation can often be reduced to three simple areas of focus: data queries,
data updating and data transformation. In the context of the XML technologies, the
XQuery and XSLT languages support these areas. Even though they are simpler than
previous technologies, these technologies still have various aspects which are overly
complicated.

XQuery offers querying capabilities over XML documents. It has a syntax which
is similar to combination of SQL and XPath. It is not a very complicated language
but because of the underlying data model which is XML, queries must always take in
consideration the tree-oriented structure of the data which is not as simple as a graph
structure. Moreover, has discussed earlier, it is difficult to navigate in the implicit
graph structure of an XML document. Both of these aspects are simpler with the
Semantic Web technologies because ail nodes have an explicit identifier which is
universally unique and which is independent of the relation in which the node is
part of. It is this node which is used to define the explicit graph structure of the
data mode\. Because of this explicit graph structure based on simple identifiers it
is simple to navigate along relations by means of the name of the relation and the
identifier of the starting node.

An extension for the XQuery language has been proposed in order to manage
update operations. Prior to this, updates cou Id only be achieved by either using
transformations to generate a new document from an older one with the updates or
to use a coding library which supported DOM which is a standard API for XML
document manipulation. Both of these older approaches were overly complicated
for a simple attribute value update. The new XQuery extension offers a number of
update operators which allows the insertion, modification, deleting of XML content.
This approach is much simpler than the older approaches but it still exposes users to
the tree structure requirements of the manipulation such as:

1. under which element must another element be added

2. if other element are already present between which elements should the insert­
ing be done.

136

The Semantic Web Applied ta IP-Based Design.' A Discussion on IP-XACT 25

With the semantic technology, additions are as simple as adding them to the
"cloud" of existing statements because each statement is independent of the oth­
ers. Removal or modification of statements is just a manner of finding the statements
which must be manipulated and applying the manipulation, ail the operations are
done at the semantic level.

With regards to the area of transformation, transformations which are focused on
the massaging of various data sources into a canonical format is where the Seman­
tic web is at its best. Because semantic data models use a formai model to define
their structure and their means, it is possible to uses declarative axioms to define the
semantic equivalence between various sources. Examples of such axioms are:

1. Equivalence c1ass axiom;

2. SubClassOfaxiom;

3. Equivent property axiom;

4. SubPropertyOfaxiom.

These types of transformations are referred in the semantic web as data or semantic
integrations. [2] discusses in great details the capabilities of the semantic web to
fulfill this task. The execution of the declarative statements is achieved with an
inference engine. Using SWRL rules can also augment the expressive capabilities
in order to define transformations. The Semantic Web is only focused on semantics;
hence it is only interested in transformation with regards to semantics in order to
either:

1. do semantic alignment (semantic integration);

2. define rules which will help deduce new knowledge in a semantic model from
knowledge in another semantic mode!.

The Semantic Web does not address transforming information in a certain encod­
ing format into another encoding format. This capability is XSLT's strong point.
This is to be expected because the XML technologies were designed to facilitate
manipulations at the syntax and encoding level. However, this same focus on syn­
tax and encoding makes semantic data integration more complex because it must be
achieved at a lower level of abstraction. Because this article is mainly concerned
with semantics, the advantage is given to the semantic technologies.

1.7 Case Study - SPIRIT

SPIRIT, as discussed earlier, uses XML to represent and share information. IP ven­
dors use the IP-XACT metadata format for the definition of metadata which describes

137

26 System level design with .Net

autoConfigure.xsd.

bus Tnterface.Xsd 0

busDefmition.xsd

FIGURE 1.24: Breaking semantic changes summary

their IPs. The SPIRIT development environment uses the IP-XACT metadata format
schema as a MoA formalism in order to define system-model designs based on IP
aggregation. If the SPIRIT consortium was to based the IP-XACT specification on
the Semantic Web technologies, IP-XACT would benefit in a number of ways. This
section will discuss these advantages.

1.7.1 Advantages applied to version management (SPIRIT 1.2 to SPIRIT
1.4)

Like most specifications and standards, the IP-XACT specification will be rectified
over time. This evolution process generally will come at the cost of incompatibili­
ties between version increments. On many occasions these incompatibilities will be
unavoidable because changes are made to the semantics of the specification. These
changes will require consuming tools to be modified in order to interpret the new
version correctly. For example, changes to the IP-XACT metadata format have been
made between versions 1.2 and 1.4. Many of these changes are semantic in nature
hence modification to the semantics and syntax of the metadata format have been
made. Figure 1.24 summaries semantic breaking changes between versions 1.2 and
1.4 of IP-XACT. These changes cause incompatibilities which are unavoidable and
this independently of the specification technology which is used.

On the other hand, figure 1.25 summaries changes between both versions which
do not break semantics but only syntax; if semantic level data exchange was used
this would have been avoided.

1.7.2 Advantages applied to modeling

The semantic modeling technologies such as RDF, RDFS and OWL have an ad­
vantage over XML when modeling because many encoding details which have no
semantic significance are abstracted. This abstraction of encoding details allows for
a simpler modeling experience.

138

The Semantic Web Applied to IP-Based Design: A Discussion on IP-XACT 27

Chan2cType Examples Impacted Files
Attribute Renaming The spirit:signalName is renamed to buslnterface.xsd

spirit:portMap inside spirit:signalMap
Element Renaming The spirit:remapSignalelément has buslnterface.xsd

been renamed to spirit:remapPort
Changes from attribute to element The spiritname attribut of the sublnstances.xsd

spirit:adHocConnection element has
become a sub-element.

New collections tags A container element called Global
spiritparameters has be created in

l,"
order to organize multip\" following /
spirit:parameter element~, ' .

FIGURE 1.25: Non-breaking semantic changes summary

A common practice in XML is to use container style elements in order to organize
file content. An example of this technique is the uses of parameters elements which
contain parameter elements in the IP JeACT specification. These container tags add
no semantic meaning, they only facilitate human readabiIi ty. From a modeling and
computational processing perspective, these tags only add "noise" to the mode\.

A similar subject of great debate which is most often stylistic in nature is the use
of element vs attribute in order to encode data. As discussed earlier, XML support
the use of elements or attributes for the encoding of properties. Wh en an entity can
be associated with multiple values for a same property it is often necessary to use el­
ements, because only elements may be repeated. In mostly aIl other situations, from
a modeling perspective, there is no sem an tic difference between both approaches.
Rence, this again just complexifies the modeling process and Ieavers room for un­
necessary debates.

Another area where XML has added complexity is then management of element
cardinality when using nesting. XML schema offers two options for defining nesting
rules: sequence and ail. The sequence option allows nesting an unlimited sequence
of elements (order is important), the number of times an element may be present can
be specified using a minimum and maximum cardinality constraints. The ail option
allows nesting of an unlimited set of elements (order is not important) but each ele­
ment can appear at most once. There is no option which allows the nesting of a set of
elements (order not important) and that allows the specification of occurrence using
minimum and maximum constraints. As a consequence, XML schemas when using
the sequence option in order to manage cardinality without constraints becomes sen­
sitive to element reordering and addition. This added complexity is only because of
encoding concems and not for semantic concems. Since the IP-XACT specification
uses the sequence it is overly sensitive to element adding and re-ordering both of
which do not break semantic compatibility but which break grammar compatibility.

The concept of uniqueness is at the core of the Semantic Web technologies and this
across files. RDF has implemented this requirement with URIs, a very simple but ef­
fective construct. Since XML is document oriented, it do es not have any construct to

139

28 System level design with .Net

spirit:AbstractDefinition rdf:type owl:Class.
spirit:Port rdf:type owl:Class.
spirit:hasPort rdf:type owl,ObjectProperty.
spirit:hasldentifier rdf,type owl,DataProperty.
spirit:hasLogicalName rdf,type owl,DataPorperty.
spirit:isAddress rdf, type owl:DataProperty.
spirit:AbstractDefinitionlnstance rdf,type AbstractDefinition.
spirit:Portlnstance rdf,type :Port.
spirit:AbstractDefinitionlnstance :hasport :Portlnstance.
spirit:Portlnstance :hasldentifier IImyID" .

spirit:portlnstance :isAddress true.
spirit: Port Instance :hasLogicalName !lm Name ll •

SELECT ?logicalName ASK{
WHERE{ ?aPort rdf,type ,Port.

?aPort rdf,type spirit:Port. ?aPort spirit:hasldentifier "myID" .
?aPort spirit:hasldentifier IImyID II • ?aport spirit:isAddress true.
?aPort spirit:hasLogicalName.)
?logicalName.

)

FIGURE 1.26: SPARQL implementation of TOI example

manage unique references across files. Moreover, even if XML schema offers capa­
bilities to manage identifiers and references within a file, it is not common practice
to uses them. The IP-XACT specification does not use the key capabilities of XML
schema, it has defined it own concept called VLNVs, a 4 part identifier. Using cus­
tom identifiers shemes adds unnecessary complexity and weil has added developed
in order for tool to very consistency. The 4 part scheme of IP-XACT could be easily
encoded within a URI.

1.7.3 Impact on TGI

The TOI portion of the SPIRIT standard exemplifies the Web Services approach
to the XML location and consolidation problem. By using the Semantic Web tech­
nologies, the entire API could be eliminated for federated SPARQL queries over a
collection of RDF files.

The quasi-totaly of the TGI API is composed of "getter" and "setter" operations.
There are two types of "getter" operation in the API, those that retum values con­
tained in the model and those that retum computed values based on values in the
mode!. In the CUITent version, ail of the operations that retum computed values are
test operations which retum Boolean values. The first class of "getter" operations
can be substituted with simple SPARQL queries using the SELECT construct. The
second class of "getter" operation can be substituted with simple SPARQL queries
using the ASK construct. Respectively the getAbstractionDefPortLogicalName and
getAbstractionDefPortIsAddress are examples of the two types of "getter" opera­
tions. Figure 1.26 illustrates the implementation of these two operations.

The TOI API also has a number of "setter" type operations which allow the modifi­
cation of the data contained in the data store. These methods cannot be implemented
with basic SPARQL queries however they could be implemented using the JENA
framework library or the UPDATE SPARQL extensions which Jena supports. The

140

The Semantic Web Applied ta IP-Based Design: A Discussion on IP-XACT 29

INSERT(
?aPort spirit: hasLogicalName "newName Il • }

DEL ETE (
?aPort spirit: hasLogicalName ?oldName.}

WHERE(
?aPort spirit:hasldentifier "myID".

FIGURE 1.27: SPARQL Update implementation of TOI example

two other type of operation are the "add" and "rem ove" which can be implemented
in the same way as the "setter" operation. Figure 1.27 is an example of the using the
SPARQLIUPDATE for the setAbstractionDefPortLogicalName operation.

1.7.4 Implications for SPIRIT Semantic Constraint Rules (SCRs)

The SPIRIT 1.4 specification contains a Iist of SeRs which define constraints that
cannot be expressed or easily expressed with XML Schemas. By using semantic
technologies such as SWRL or JENA rules, SeRs which could be expressed using
these technologies could be used to verify the consistency of designs. Verification
would be achieved by processing the design using an inference engine which sup­
ports rules. This utilization of the semantic technologies would bring two key bene­
fits:

1. Unless specified using controlled vocabularies, rules expresses in natural lan­
guages may be ambiguous. This ambiguity may result in different interpreta­
tions of the rules, hence different validations. By using formai rule languages
such as SWRL, rules can be specified in a non ambiguous fashion.

2. Rules describe in a specification document, hence not as a constraint in a
schema language such as XML schema, must be translated into a program
in order to be applied to models for validation purposes. By using a formalism
which is executable, this extra translation step is eliminated, thus adding value.

The reminder of this section will present a number of SeRs rules which may be
expressed using OWL and/or SWRL. We will also present rules which cannot be
expressed formally in order to present possible limitations. The objective of this
section is not to discuss thoroughly ail the SeRs but rather to demonstrate that it is
possible to define formally sorne of the rules with OWL and SWRL which cannot be
expressed with XML Schema. Even if only a fraction of the SeRs can be expressed
formally this capabilities is a benefit over the CUITent XML implementation which
cannot.

The specification contains a certain number of rules which pertain to referential in­
tegrity between design elements. The main objective of these rules is to express that
a design element which references another design elements must reference a valid el­
ement. The XML Schema 1.0 standard allows the definition of element attributes as
identifier by using the ID type. These identifiers must be unique with the context of

141

30 System leve! design with .Net

spirit:Buslnterface rdf:type owl:Class.
spirit:AbstractionDefinition rdf:type owl:Class.
spirit:BusDefinition rdf:type owl:Class.
spirit:hasBusType rdf:type owl:ObjectProperty.
spirit:Buslnterface rdfs:subClassOf _:BuslnterfaceRestrictionl.
_:BuslnterfaceRestrictionl owl:onProperty spirit:hasBusType.
_:BuslnterfaceRestrictionl owl:allValuesFrom spirit: spirit:BusDefinition.
spirit: AbstractionDefinition rdfs:subClassOf

: AbstractionDefinitionRestrictionl.
AbstractionDefinitionRestrictionl owl:onProperty spirit:hasBusType.
AbstractionDefinitionRestrictionl owl:allValuesFrom

spirit:spirit:BusDefinition.

FIGURE 1.28: Implementing SCR 1.4 using OWL

a document. These identifiers may be used as values for element attributes which are
decIared as type IDEF. Using this feature, it is not possible to decIare that a certain
element may refer, by means of its ID attribute, to another element of a specifie type.
It is only possible to decIare that an element may refer to another element by means
of its ID. With OWL, aIl resources must have a unique ID (its URI) and resources
may be associated with specifie owl:Class. By means of "aIlValuesFrom" axioms it
is possible to define precise cIass criteria on range constraints from relations. The
SCR 1.4 is defined as follows : The VLNV in a busType element in a bus interface or
abstraction definition shall be a reference to a bus definition.

Figure 1.28 illustrates how this mIe cou Id be implemented using OWL. The model
defines that aIl instances which are in a relation with an busInterface or an astrac­
tionDefinition instances using the hasBusType property must be a busDefinition.
The owl:aIlValuesFrom decIares this constraint on the range of the hasBusType prop­
erty. This example also demonstrates the substitution of VLNVs by URls.

SCRs such has SCR 2.4-2.9 express more complex conditional constraint on val­
ues. These mIes define constraints on the allowed combinations of interfaces that
may be connected together using an interconnection. For example SCR 2.4 states:
An interconnection element shall only connect a master interface to a slave interface
or a mirrored-master. These mIes could be express using only OWL and restriction
criteria. Figure 1.29 illustrates the implementation of SCR 2.4.

SCRs which express constraint on values which are in simple equality relations
can be expressed using OWL and SWRL. For example SCR 2.10 states: In a direct
master to slave connection, the value if bitslnLAU in the master's address space shall
match the value of the bitslnLAU in the slave's memory spa ce. Figure 1.30 illustrates
the implementation of SCR 2.10 using OWL and SWRL.
As stated earlier, no ail mIes may be expressed using OWL and/or Jena mIes. An
example of such a mIe is SCR 3.3 which states: A channel can be connected to
no more mirrored-master buslnterfaces then the least value of maxMAsters in the
busDefinitions referenced by the connected buslnterfaced. The main issue is that
since OWL and Jena are based on first-order logic, there is no direct way to express
mIes which require counting. Renee we cannot express a mIe that states that the sum
of the relations which an instance participates in must be lower then a value which is

142

The Semantic Web Applied ta IP-Based Design: A Discussion on IP-XACT 31

spirit:Masterlnterface rdf:type owl:Class.
spirit:Slavelnterface rdf:type owl:Class.
spirit:MirroredMasterlnterface rdf:type owl:Class.
spirit:MirroredSlavelnterface rdf:type owl:Class.
spirit:MirroredSystemlnterface rdf:type owl:Class.
spirit:Directlnterface rdf:type owl:Class.
spirit:Masterlnterconnection rdf:type owl:Class.
spirit:hasMainlnterface rdf:type owl:ObjectProperty.
spirit:hasSecondarylnterface rdf:type owl:ObjectProperty.
spirit:Masterlnterconnection rdfs:subClassOf

:MasterlnterconnectionRestrictionl.
_:MasterlnterconnectionRestrictionl owl:onProperty spirit:hasMainlnterface.

:MasterlnterconnectionRestrictionl owl:allValuesFrom
spirit:spirit:Masterlnterface.

spirit:Masterlnterconnection rdfs:subClassOf
:MasterlnterconnectionRestriction2.

_:MasterlnterconnectionRestriction2 owl:onProperty
spirit:hasSecondarylnterface.

:MasterlnterconnectionRestriction2 owl:allValuesFrom :Unionl.
:Unionl owl:unionOf (spirit:Slavelnterface spirit:MirroredMasterlnterface) .

FIGURE 1.29: Implementing SCR 2.4 using OWL

itself defined by another relation. Our examples with the concept of cardinality have
always been with an absolute value which is part of the schema, hence ail instance
must respect the same cardinality.

1.7.5 Dependency XPATH

The IP-XACT metadata specification allows design models to contain values which
are defined with mathematical equations based values present in the design models.
These equations are expressed using XPath 1.0 expressions. The specification also
defines a list of XPATH functions which ex tend the default Iibrary for expressing
these equations. Figure 1.31 illustrates a typical example for the use of dependency
expressions. The example defines the "base address of a certain memory map" as a
function of parameters of another memory map. By using SWRL rules, such depen­
dency expression may be defined. Execution of the SWRL rule by an engine will
result in the evaluation of the expressions. Figure 1.31 iIIustrates the XML oriented
approach defined by IP-XACT as weil as the equivalent using SWRL. The SWRL
portion de fines custom built-ins which have a prefix of spiritb, these are functions
which are not part of the default SWRL built-ins; they have the same meaning as
their equivalent in the XML version. The main differences between both approaches
are:

1. In the SWRL version, because of the predicate nature of the rules, it is not
possible to define expressions which use imbricate built-ins. It is necessary to
define variables for each intermediate calculation.

2. In the IP-XACT version, it is necessary to use spirit id for values in order to
references them in calculations.

143

32 System level design with .Net

spirit:AddressSpace rdf:type owl:Class.
spirit:hasBitsInLAU rdf:type rdf:DataTypeProperty.
spirit:hasAddressspace rdf:type rdf:ObjectProperty.
spirit:Interface rdfs:subClassOf _:InterfaceRestriction1.
_:InterfaceRestriction1 owl:onProperty spirit:hasAddressSpace.
_:InterfaceRestriction1 owl:cardinality 1.
spirit:AddressSpace rdfs:subC1assOf _:AddressSpaceRestriction1.

:AddressSpaceRestriction1 owl:onProperty spirit:hasBitsInLAU.
_:AddressSpaceRestriction1 owl:cardinality 1.
spirit:MasterInterface rdfs:subClassOf spirit: Interface.
spirit:SlaveInterface rdfs:subClassOf spirit: Interface.
spirit:Masterlnterconnection(?connection)
spirit:hasMainInterface(?connection, ?x)
spirit:hasSecondaryInterface(?connection, ?y)
spirit:MasterInterface(?x)
spirit:SlaveInterface(?y)
spirit:AddressSpace(?space1)
spirit:hasAddressSpace(?x, ?space1)
spirit:hasBitsInLAU(?space1?,
spirit:AddressSpace(?space2)
spirit:hasAddressSpace(?y, ?space2)
spirit:hasBitsInLAU(?space2?, bits_y)
->

swrlb:equal(?bits x, bits y)

FIGURE 1.30: Implementing SCR 2.10 using OWL

The SWRL approach is a more verbose than the XPATH approach, but it has the
added advantage of:

1. Not requiring spirit:id to be define. hence it is possible to use values which
were not initially intended to be referred.

2. Not requiring the implementation of a pre-proeessing stage of XML models.
The IP-XACT approach requires custom code to written to interpret the em­
bedded XPATH expressions

1.8 Cost of adoption

Migration of the SPIRIT standards to the Semantic Web would offer many benefits
which are important with regards to expressivity, simplicity and tlexibility. However,
nothing cornes without a priee. The migration of the SPIRIT standard as weil as
tools which have been developed by vendors which have adopted the standard would
consist of three primary tasks:

144

The Semantic Web Applied ta IP-Based Design: A Discussion on IP-XACT 33

<spirit:memoryMaps>
<spirit:memoryMap>

<spirit:name>mmap</spirit:name>
<spirit:addressBlock>

<spirit:name>abl</spirit:name>
<spirit:baseAddress spirit:resolve="user"

spirit: id= "baseAddr" >0</ spiri t: baseAddress>
<spirit:range spirit:id="rangel!>786432</spirit:range>
<spirit:width>32</spirit:width>
<spirit:usage>memory</spirit:usage>
<spirit:access>read-write</spirit:access>

</spirit:addressBlock>
</spirit:memoryMap>

<spirit:memoryMap>
<spirit:name>dependent_mmap</spirit:name>

<spirit:addressBlock>
<spirit:baseAddress spirit:resolve=lIdependent ll

spirit:dependency="spirit:
pow(2,

floor(spirit:log(2,spirit:decode(id('baseAddr'))+

spirit:decode(id('range'I))+ll) "
spirit:id="dependentBaseAddresslI>O</spirit:baseAddress>

<spirit:range>4096</spirit:range>
<spirit:width>32</spirit:width>
<spirit:usage>register</spirit:usage>
<spirit:access>read-write</spirit:access>

</spirit:addressBlock>
</spirit:memoryMap>

</spirit:memoryMaps>
spirit:MemoryMap(?mm1)
spirit: hasName (?mm, "mmap")
spirit:MemoryMap(?mm2)
spirit:hasName (?mm, "dependent_mmapll)
spirit:hasRange(?mm,?range)
spirit:hasBaseAddress(?mm,?baseAddr)
spiritb:decode(?deCRange,?rangel
spiritb:decode(?deCBaSeAddr,?baseAddr)
swrlb:add(?tmpRange,?decRange II
spiritb:log(?tmpLog, 2, ?decBaseAddr)
swrlb:floor(?floorTmp, ?tmpLog)
swrlb:pow(?powTmp, 2, ?floorTmp)
swrlb:add(?dependent_baseAddr, ?powTmp, ?tmpRange)

spirit:hasBaseAddress(?mm2, ?dependent baseAddr)

FIGURE 1.31: Dependency XPATH example

1. Develop an OWL and SWRL based model for the IP-XACT standards;

2. Migrate ail IP descriptions and design models to the new ontology;

3. Replace the XML consumption portion of current tools with an implementa­
tion based either SPARQL or on the JENA toolkit.

The first task would not be very difficult for the most demanding portion of cre­
ation an OWL model is determining the required semantics and achieving consensus.
This has already been achieved through the development of the IP-XACT metadata
format. The second task will probably be the most demanding, however by using a

145

34 System leve/design with .Net

combination of XSLT scripts and Perl scripts, it would probably be possible to auto­
mate a large portion of the migration. The third task, des pite being straight forward
once an OWL model has been established, will require a fair am ou nt of develop­
ment, however we believe that the mid to long term benefits out-weigh by far the
cost. Sorne of the secondary tasks would be the selection of an inferences engine as
weil as the development of the necessary extension functions for SWRL rules.

1.9 Future Research

This article discusses a possible path for the use of the Semantic Web technologies
in the context of EDA. Based on this work, many other aspects are left to be explored.
The development of a complete ontology for the IP-XACT standards would offer
many interesting challenges with regards to semantic modeling. It would also be vary
interesting to apply the ideas in the paper to other work su ch as Colif and MoML. A
discussion on the quantity of code required to implement a Semantic Web approach
versus a traditional XML approach would be interesting in order to guide further
implements. The whole aspect of performance benchmarking is also to be explored
and discussed. Moreover, comparing the effectiveness of modeIing with regards to
time and complexity would be interesting in order to measure designers comfort with
this approach compared to approaches based on XML.

1.10 Conclusion

The XML technology stack has significantly helped the EDA industry over the last
decade by simplifying the exchange of information between tools. It has also given
developers an effective mean for the creation of simple markup-based languages. We
believe that the Semantic Web technology stack is the next step. The next genera­
tion of EDA tools will benefit in multiples ways by adopting a technology which
is focused solely on semantics and not syntax. This paper has presented the major
benefits of the Semantic Web technologies over XML in general. It also discussed
key benefits for the IP-XACT standard if it adopts these new technologies. We be­
Iieve that the benefits of adopting the semantic web technologies outweigh by far it
inconveniences.

146

2

References

[1] Amba specification (rev2.0) and multi layer ahb specification, 2001.

[2] Dean Allemang and James A. Hendler. Semantic web for the working on­
tologist: modeling in RDF, RDFS and OWL. Morgan Kaufmann Publish­
erslElsevier, Amsterdam; Boston, 2008.

[3] Christopher J.O. Baker and Kei-Hoi Cheung, editors. Semantic Web: Revolu­
tionizing Knowledge Discovery in the Life Sciences. Springer, 2007.

[4] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio
Passerone, and Alberto Sangiovanni-Vincentelli. Metropolis: An integrated
electronic system design environment. Computer, 36(4):45-52, 2003.

[5] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Femndez, Michael
Kay, Jonathan Robie, and Jrme Simon. Xml path language (xpath) 2.0. Tech­
nical report, 23 January 2007.

[6] T. Bemers-Lee. N3 notation - http://www.w3.orgldesignissues/notation3.

[7] T. Bemers-Lee, 1. Hendler, and O. Lassila. The semantic web. Scientific Amer­
ican, 284(5):28-37, 2001.

[8] Scott Boag, Don Chamberlin, Mary F. Femndez, Daniela Florescu, Jonathan
Robie, and Jnne Simon. Xquery 1.0: An xml query language. Technical report,
W3C Recommendation - http://www.w3.org/TR/xquery/, 23 January 2007.

[9] Rumbaugh J. Jacobson 1. Booch, G. The Unified Modeling Language User
Guide 2 ed. Addison Wesley Professional, 2005.

[10] Jerry Burch, Roberto Passerone, and Alberto L. Sangiovanni-Vincentelli.
Overcoming heterophobia: Modeling concurrency in heterogeneous systems.
Application of Concurrency to System Design, International Conference on,
0:13,2001.

[Il] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy
Seabome, and Kevin Wilkinson. Jena: implementing the semantic web recom­
mendations. In WWW Ait. '04: Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, pages 74-83, New
York, NY, USA, 2004. ACM.

35

147

36 System level design with .Net technology

[12] W.O. Cesario, G. Nicolescu, L. Gauthier, D. Lyonnard, and A.A. Jerraya. Co­
lif: A design representation for application-specific multiprocessor socs. De­
sign and Test of Computers, IEEE, 18(5):8-20, Sep-Oct 2001.

[13] Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. Sparql protocol for
rdf. Technical report, W3C Recommendation, 15 January 2008.

[14] C. 1. Date. An Introduction to Database Systems 7ed. Addison Wesley Long­
man, 2000.

[15] S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. Klein, J. Broekstra,
M. Erdmann, and 1. Horrocks. The semantic web: the roles of xml and rdf.
Internet Computing, IEEE, 4(5):63-73, Sep/Oct 2000.

[16] E. Sirin et al. Pellet: A practical owl-dl reasoner. In Web Semantics: Science,
Services and Agents on the World Wide Web, pages 51-53,2007.

[17] T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with Systeme.
Kluwer Academic Publications, Boston, 2002.

[18] Michael Grove and Andrew Schain. Pops nasas expertise lo-
cation service powered by semantic web technologies. Techni­
cal report, W3C Semantic Web Case Studies and Use Cases -
http://www.w3.orgI2001/sw/sweo/public/UseCaseslNasalNasa.pdf, 2008.

[19] A. Hom. On sentences which are true of direct unions of algebras. Journal of
symbolic logic, pages 14-21, 1951.

[20] lan Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Ben­
jamin Grosof, and Mike Dean. Swrl: A semantic web rule language
combining owl and ruleml. Technical report, W3C Member Submission
- http://www.w3.org/Submission/2004/SUBM-SWRL-200405211, 21 May
2004.

[21] Intel. Ixp45x datasheet, http://www.intel.comldesignlnetwork/datashts/306261.htm.

[22] Albert Carl Jan KIENHUIS Kienhuis. Design Space Exploration of Stream­
based Dataflow Architctures: Methods and Tools. PhD thesis, Delft University
of Technology, 1999.

[23] Holger Knublauch, Mark A Musen, and Alan L Rector. Editing description
logic ontologies with the protege owl plugin. In In Description Logics, 2004.

[24] Wido Kruijtzer, Pieter van der Wolf, Erwin de Kock, Jan Stuyt, Wolfgang
Ecker, Albrecht Mayer, Serge Hustin, Christophe Amerijckx, Serge de Paoli,
and Emmanuel Vaumorin. Industrial ip integration flows based on ip-xact stan­
dards. Design. Automation and Test in Europe, 2008. DATE '08, pages 32-37,
March 2008.

[25] E. A. Lee and S. Neuendorffer. Moml a modeling markup language in xml,
version OA. Technical Report ERL/UCB M 00112, University of Califomia at
Berkeley" 2000.

148

Bibliography 37

[26] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Transactions
on Software Engineering, 26(1):70-93, 2000.

[27] E. K. Neumann and D. Quan. Biodash: A semantic web dashboard for drug
development. In Pacific Symposium on Biocomputing, pages 176-187, 2006.

[28] E. Prudhommeaux and A. Seabome. Sparql query language for rdf. Technical
Report REC-rdf-schema-2004021O, World Wide Web Consortium, Jan. 2008.

[29] S. Stuijk. Predictable Mapping of Streaming Applications on Multiprocessors.
PhD thesis, Eindhoven University of Technology, 2007.

[30] B.D. Theelen. Performance model generation for mpsoc design-space explo­
ration. Quantitative Evaluation of Systems, 2008. QEST '08. Fifth Interna­
tional Conference on, pages 39-40, Sept. 2008.

[31] K. C. Thramboulidis, G. Doukas, and G. Koumoutsos. A soa-based embed­
ded systems development environment for industrial automation. EURASIP J.
Embedded Syst., 2008(1):1-15, 2008.

[32] P.H.A. van der Putten and J.P.M. Voeten. Specification of Reactive Hard­
ware/Software Systems: The method Software/Hardware Engineering (SHE).
Ph.d., Eindhoven University of Technology, 1997.

149

Conclusion et Travaux Futurs

Malgré les complexités liées à la conception des systèmes embarqués, ces petits

« bidules» jouent un rôle clé dans notre quotidien en raison de leur

omniprésence. De plus, il serait fort peu probable que leurs rôles cessent de croître

dans le futur. Au contraire, on peut facilement imaginer une évolution exponentielle

de leur présence. Afin de soutenir cette forte croissance, il est impératif de définir de

nouvelles approches pour leur réalisation supportant adéquatement les exigences

spécifiques de conception de chacun. Ces approches devront donc être facilement

personnalisables afin de répondre à cette diversité d'exigences.

La génération courante d'outils CAO, malgré tous les bénéfices qu'ils apportent, ne

supporte pas, généralement, complètement les méthodologies de conception. Les

discontinuités engendrées dans .le flux de conception causées par ce support

incomplet rend inefficace le travail des concepteurs de systèmes. De plus, les outils

actuels, pour de multiples raisons, supportent médiocrement la personnalisation ainsi

que l'intégration avec des outils tierce partie afin de permettre la spécialisation des

flux de conception.

La communauté du logiciel est riche en techniques et technologies pour gérer la

complexité du processus de développement de systèmes logiciels d'envergure ainsi

que leur intégration. Ce savoir-faire a émergé en raison de facteurs très similaires que

ceux présents dans la communauté des systèmes embarqués: la complexité croissante

des systèmes et la décroissance du temps de mise en marché attendue. Le domaine de

la conception des systèmes embarqués peut gagner beaucoup en mettant à profit le

savoir-faire de la communauté du logiciel afin de concevoir une nouvelle génération

d'outils CAO. Ces outils seront plus personnalisables et supporteront d'avantage les

méthodologies de conception ainsi que leurs spécialisations.

Plus particulièrement, en combinant l'utilisation d'une plateforme moderne de

développement de logiciels tel que la plateforme .Net et des patrons de conception de

152

logiciels, il est possible de créer une nouvelle génération d'outils de modélisation et

de simulation de systèmes avec des caractéristique fort intéressantes. Ces outils

prennent la forme de langages de spécification orientée bibliothèque n'ayant pas

certain des inconvénients majeurs des outils actuels (i.e. SystemC). Ils offrent:

• des langages hôtes plus simple en matière de syntaxe et de gestion de

mémoire rendant la modélisation plus efficace et moins prompt à l'erreur;

• des environnent d'exécution fonctionnellement riche (i.e. introspection,

intégration web, multitâches, etc.) permettant:

o le développement rapide d'outils d'analyse,

o le support de plusieurs langages hôtes,

o l'intégration d'outils de tierce partie plus efficace,

o la simulation parallèle plus simple;

• une séparation d'aspect entre la modélisation et la simulation permettant:

o un meilleur support pour la conception par IP,

o l'intégration d'outils de tierce partie plus efficace,

o une exploration de l'espace de conception plus simple.

Les points ci-haut sont des avantages importants pour cette nouvelle génération

d'outils comparativement à la génération précédente et ceci malgré une perte de

rapidité d'exécution lors de la simulation, le désavantage principal de l'approche. Ce

désavantage devrait s'amoindrir dans le temps avec le raffinement de la compilation

dynamique ainsi que l'implémentation plus efficace des engins de simulation.

L'incorporation des technologies du Web Sémantique dans la conception des outils

d'aide à la conception est une autre approche prometteuse. Cette approche permettra

de concevoir des outils supportant plus efficacement la conception par IP. Cette

efficacité est attribuable à :

• une utilisation et un partage plus simple des métadonnées décrivant les IP et

les systèmes (les connaissances);

153

• la conception collaborative via la fédération de connaissances distribuées;

• l'incorporation simple du support à la prise de décisions via l'inférence de

connaissances ainsi que la validation formelle.

Les points ci-haut permettent d'entrevoir une génération d'outils supportant mieux la

conception par IP ainsi que la démocratisation des technologies de gestion des

connaissances.

Les contributions de ce travail se sont effectuées sur deux grandes lignes. La première

est une étude à caractère pédagogique sur l'approche «Y-Chart». Dans un premier

temps, cette étude présente l'influence de la conception dirigée par les modèles, une

technique de la communauté du logiciel sur l'approche «Y-Chart». Dans un

deuxième temps, cette étude présente et discute des diverses facettes de cette

approche: son histoire, ses principaux concepts, son implémentation et son utilisation

dans divers domaines d'applications. Une grande partie de cette

présentation/discussion se fait par l'entremise d'une comparaison de trois

méthodologies qui ont implanté l'approche soit Metropolis, SHE-POOSL et DOL­

MPA.

La deuxième grande ligne est sur trois travaux qui transposent les technologies et

techniques de pointes du domaine du génie logiciel au domaine de la CAO des

systèmes embarqués. Cette transposition a permis l'élaboration de nouvelles

approches innovatrices. Dans un premier temps, une nouvelle méthodologie pour la

conception d'outils CAO a été présentée. Cette méthodologie s'appuie sur: (i) un

nouveau flux de conception ciblé sur les représentations de modèle et (ii) l'utilisation

des technologies .Net pour concevoir de meilleures architectures d'outils CAO. Afin

de démontrer cette méthodologie,' une réalisation de celle-ci a été faite: Esys.Net.

Dans un deuxième temps, les idées de ce dernier travail ont été approfondies afin de

proposer une architecture cible innovatrice pour la prochaine génération d'outils

CAO. Cette architecture cible réussit à créer une séparation parfaite des aspects

entourant la conception des systèmes embarqués. Cette architecture a été possible

grâce à la nouvelle génération des technologies .Net. Afin de démontrer cette

architecture, une réalisation de celle-ci a été faite: SoCML.

154

Dans un troisième temps, les technologies du Web sémantique ont été introduites à la

communauté du matériel, ainsi qu'une étude de cas sur l'utilisation de celle-ci pour la

conception à base d'IP. Dans ce travail, une présentation à caractère pédagogique des

technologies du Web sémantique est proposée afin d'introduire tous les concepts et

technologies clés. Ensuite, une discussion sur les avantages de ces technologies (vs

les technologies XML) pour gestion de la sémantique et la conception à base d'IP est

présentée. Le travail conclut sur une étude de cas dans lequel la spécification

IP-XACT est utilisée afin de démontrer les bénéfices que ce standard pourrait tirer

s'il utilisait une implémentation basée sur les technologies du Web sémantique.

1.8 Développements possibles

Les travaux effectués dans le cadre de cette thèse peuvent être approfondis selon deux

grandes voies. Une première voie de recherche serait de pousser les travaux de

SoCML plus loin afin de :

• définir une solution de modélisation et de simulation plus complète et
d'optimiser les divers aspects d'implémentation de celles-ci (syntaxe,
performance, etc.) ;

• expérimenter avec des solutions de simulation intégrant des capacités
d'émulation, de vérification, de « CoDesign », etc.

La deuxième voie de recherche serait de continuer les travaux reliés au Web

sémantique afin d'élaborer une solution complète pour le standard IP-XACT basée

sur OWL et SWRL. Une fois cette solution développée, une étude comparative

pourrait être faite afin de discuter de l'ensemble des implications de l'approche.

De plus, il serait fort intéressant de développer un environnement intégré à la

conception des systèmes embarqués s'appuyant sur l'ensemble des idées discutées

dans cette thèse. Cet environnent aurait au minimum les caractéristiques suivantes:

• le cœur de la solution serait basé sur une plateforme de type « Framework »
pour la modélisation et la simulation de système matériel/logiciel offrant une
séparation des aspects parfaites comme SoCML. Cette plateforme serait
développée avec les technologies .Net;

• l'environnement et la plateforme de modélisation/simulation supporteraient
les trois méthodologies de conceptions suivantes: (i) l'élaboration par

155

raffinements successifs, (iî) le paradigme « Y -Chart ~} et la conception à base
d'IP;

• la gestion et le partage des métadonnées de l'environnent serait fait avec une
ontologie élaborée avec les technologies sémantiques, ainsi que l'API de
l'environnent.

Sources documentaires

[1] .NET Framework Home Page, http://www.microsoft.comlnet. 2003

[2] "Moores Law", http://www.webopedia.comlTERMlMlMoores_Law.html.

2003

[3] Albahari B. A, Comparative Overview ofC#. Available from:

ttp://genamics.comldeveloper/csharp comparative.htm., 2000

[4] Allemang D. and Hendler J., "Semantic Web for the Working Ontologist:

Effective Modeling in RDFS and OWL ", Morgan Kaufmann , 2008

[5] Bailey S. "VHDL-200X improves design and verification ", EEDesign, Nov 7,

2003

[6] Bailey S., "Comparison ofVHDL, Verilog and System Verilog ", Model

Technology, Digital Simulation White Paper, 2003

[7] Baker C. J.O., and. Cheung K.-H (Eds.), "Semantic Web: Revolutionizing

Knowledge Discovery in the Life Sciences", Springer, 2007

[8] Balarin F. et al., "Metropolis: An Integrated Electronic System Design

Environment". IEEE Computer, 36(4), pp. 45-52, 2003

[9] Bellows P. and Hutchings B., "JHDL - an HDLfor recorifigurable systems ",

IEEE Symposium on FPGAs for Custom Computing Machines, pp. 175-184,

1998

[10] Bemers-Lee T., Hendler 1. and Lassila O., "The Semantic Web." New York:

Scientific America, 284(5), pp. 34-43,2001

[11] Bezivin, J, "On the Unification Power of Models ", Software and System

Modeling 4(2), pp. 171-188, 2005

[12] Booch G., "Object-Oriented Design", Ada Letters Volume 1 (3), pp. 64-76,

1982

[13] Borrione D. et al, "Three decades of HDLs. II. Conlan through Verilog",

Design & Test ofComputers, IEEE, vol. 9, pp. 54-63, 1992

[14] Buchenrieder K., Pyttel A. and Sedlmeier A., "A powerful system design

methodology combining OCAPI and Handel-C for concept engineering",

Design, Automation and Test in Europe, pp. 870-874, 2002

[15] Burch 1. R., Passerone R. and Sangiovanni-Vincentelli A., "Overcoming

Heterophobia: Modeling Concurrency in Heterogeneous Systems. ",

Proceedings of ACSD, pp. 13-32,2001

[16] Cai L, Verma S. andGajski D., "Comparison ofSpecC and SystemC

Languages for System Design" ,Technical Report CECS-03-11, 2003

158

[17] Cesario W.O., et al, "Colif: A Design Representationfor Application-Specifie

Multiprocessor SOCs", IEEE Design and Test ofComputers, pp. 8-19,2001

[18] Chang H et al, "Surviving the SOC Revolution: A Guide to Platfrom-Based

Design, ", Klumer Academic, 1999

[19] Charest L. and Aboulhamid E.M., "A VHDL/SystemC Comparison in

Handling Design Reuse", International Workshop on System-on-Chip for

Real-Time Applications, pp. 79-85, 2002

[20] Charest L., Aboulhamid E.M., and Bois G., "Applying patterns and multi­

paradigm approaches to hardware/software design and reuse ", in Patterns

And Skeletons For Parallel And Distributed Computing, F. Rabhi and S.

Gorlatch, Eds. London: Springer-Verlag, pp. 297-325, 2002

[21] Chu Y. et al, "Three decades of HDLs. 1 CDL through TI-HDL ", Design &

Test ofComputers, IEEE, vol. 9, pp. 54-63, 1992

[22] Delpasso M., Bogliolo A. and Benini L., "Virtual Simulation of Distributed

IP-Based Designs ", Design Automation Conference, 1999

[23] DeMarco T., "Object Structured Analysis and System Specification" Prentice­

Hall, 1979

[24] Donlin A., "Transaction Level Modeling: Flows and Use Models",

CODES+ISSS'04, pp. 75-80,2004

159

[25] Doucet F., Shuk1a S. and Gupta R., "Introspection in system-levellanguage

frameworks: meta-level vs. integrated", Design, Automation and Test in

Europe,2003

[26] Doulos, "SystemC ln Europe: Current Usage and Future Requirements",

http://www.dou10s.com/. 2003

[27] Drucker L., "SystemC Verification Library speeds transaction-based

verification ", EEdesign, Feb 24, 2003

[28] ECMA International, "ECMA and ISO/IEC C# and Common Language

Infrastructure Standards ", http://msdn.microsoft.com/net/ecma/ ISO/IEC

23270 to ISO/IEC 23272, 2003

[29] Ferrandi F., "Functional verification for SystemC descriptions using

constraint solving", Design, Automation and Test in Europe, pp. 744-751,

2002

[30] Gajski D. and Kuhn R.H., "New VLSI Tools", IEEE Computer, pp. 11-14,

1983

[31] Gamma E., et al, "Design Patterns: Elements of Reusable Object-Oriented

Software" , Addison-Wesley, 1994

[32] Gorse N, et al., "Enhancing ESys.Net with a semi-formal verification layer ".

In Proceedings of the 16th IEEE Inti Conference on Microelectronics

(lCM'04), pp. 388-391. 2004

[33] Gough K. 1., "Stacking them up: a comparison ofvirtual machines ",

Computer Systems Architecture Conference, pp.·55-61, 2001

[34] Grove M., et al, "Case Study: POPS - NASA 's Expertise Location Service

Powered by Semantic Web Technologies", availab1e at :

http://www.w3.org/2001/sw/sweo/publiclUseCaseslNasa/Nasa.pdf, 2008

[35] Hara Y. , "Researchers describe embedded processor design tool ",

EEDesign, May 9, 2002

[36] Hutchings, B. et al, "Developing and debugging FPGA applications in

hardware with JHDL ", Thirty-Third Asilomar Conference on SignaIs,

Systems, and Computers, Vol 1, pp. 554-558 1999

160

[37] IEEE, "IEEE standard hardware description language based on the Verilog(R)

hardware description language", in IEEE Std 1364-1995, 1996

[38] IEEE, "IEEE standard VHDL analog and mixed-signal extensions", in IEEE

Std 1076.1-1999,1999

[39] IEEE, "IEEE standard VHDL language reference manual", in IEEE Std 1076-

1987, 1988

[40] ITRS, "International Technology Roadmap for Semiconductors, Design ",

2007

[41] Jerraya A. and Ernst R., "Multi-language system design ", Design,

Automation and Test in Europe, 1999

[42] Keating M. and Bricaud P., "Reuse Methodology Manual", Kluwer Academic

Publisher, 1999

[43] Kienhuis B., " Design Space Exploration ofStream-based Datajlow

Architctures." Methods and Tools. ", Unpublished doctoral dissertation, Delft

Univesity Technology, The Netherlands, 1999

[44] Kilgore R.A., "Multi-language, open-source modeling using the Microsoft

.NET architecture ", Win ter Simulation Conference, 2002

[45] Kleppe A., Warmer 1. and Bast W, "MDA Explained, The Model Driven

Architecture." Practice and Promise", Addison-Wesley, 2003

[46] Kruijtzer W., et al., "Industrial IP Integration Flows based on IP-XACT

Standards", Design, Automation and Test in Europe, pp. 26-31, 2008

[47] Lapalme J., Aboulhamid EM., Nicolescu G., and Rousseau F., « Separating

Modeling and Simulation Aspects in Hardware/Software Framework-Based

Modeling Languages », The Arabian Journal for Science and Engineering,

2007.

161

[48] Lapalme 1., Aboulahmid E.M. and Nicolescu G. « The Semantic Web Applied

to IP-Based Design: A Discussion on IP-XA CT» in System level design with

.Net technology, E.M. Aboulhamid and F. Rousseau Eds., CRC Press. (to be

published)

[49] Lapalme J., Aboulahmid E.M. and Nicolescu G., « A New Efficient EDA Tooi

Design Methodology », ACM Transactions on Embedded Computing Systems

Special Issue on Concurrent Hardware-Software Design Methods for MPSoC,

2006

[50] Lapalme J., Theelen B., Stoimenov N., Voeten J., Thiele L. and Aboulhamid

EM., " Y-Chart Based System Design: A Discussion on Approaches", ACM

Transactions on Embedded Computing Systems. (submitted)

[51] Lee E. A. and Neuendorffer S., "MoML - A Modeling Markup Language in

XML, Version 0.4", Technical Memorandum UCB/ERL M00I12, U. of

California, Berkeley, 2000

[52] Lutz M. H. L. and Laplante P.A., "C# and the .NET framework: ready for

real lime?", IEEE Software, vol. 20, pp. 74-80,2003

[53] Manola F. and Miller E., "RDF Primer", W3C Recommendation, 2004

[54] Martignano M. D., Fummi N. and Martini S., "A combined approach to

validate the design of embedded network devices", IEEE International

Symposium on Circuits and Systems (ISCAS), pp. III-169-III-I72 vol.3, 2002

[55] Martin G. "Design Methodologies for System Level IP", Design, Automation

and Testin Europe, pp 286-289, 1998

[56] Martin G. "SystemC and the Future of Design Languages: Opportunities for

Users and Research", SBCC, 2003.

[57] McGuinness D. L. and Harmelen F. v., "OWL Web Ontology Language

Overview", W3C Recommendation, Feb, 2004

162

[58] Medvidovic N. and Taylor R. N. "A Classification and Comparison ",

Frameworkfor Software Architecture Description Languages. Transactions

on Software Engineering, 26 (1), pp. 70-93,2000

[59] Meijer E., Miller J. Technical "Overview of the Common Language Runtime"

research.microsoft.com/~emeijer/Papers/CLR.pdf, 2003

[60] Mernik M. et al, "When and How to Develop Domain-Specific Languages ",

in ACM Computing Surveys. New York: ACM, 2005, p. 316.

[61] Neumann E. K., and Quan D., "Biodash: A Semantic Web Dashboardfor

Drug Development", Pacific Symposium on Biocomputing, 2006, pp. 176-187

[62] Newkirk J. V. and Vorontsov A.A., "How .NET's custom attributes affect

design", IEEE Software, vol. 19, pp. 18-20,2002

[63] Nicolescu G. et al., "Validation in a Component-Based Design Flow for

Multicore SoCs", International Symposium on Systems Synthesis, 2002

[64] OSC!. SystemC 2.1 Language Reference Manual. Available from:

http://www.systemc.org/., 2005

[65] Rich D.I , "The evolution ofSystemVerilog", IEEE Design & Test of

Computers, Volume: 20 Issue: 4, July-August, 2003

[66] Shaler S. and Mellor SJ., "Object Lifecycles: Modeling the World in States",

Yourdon Press, 1991

[67] Singer 1. , "JVM versus CLR: A Comparative Study", International

Conference on Principles and Practice ofProgramming in Java, p. 167-169,

2003

[68] SpecC Home Page, http://www.ics.uci.edu/~specc/index.html, 2003

[69] Theelen B.D., "Performance Model Generationfor MPSoC Design-Space

Exploration. ", Proceedings of QEST. IEEE., 2008

[70] Thramboulidis K.c., Doukas G., and Koumoutsos G., "A SOA-Based

Embedded Systems Devleopment Environment for lndustrial Automation ",

EURASIP Jounal on Embedded Systems, 2008

[71] Vahid F. et al, "Specification and design of embedded systems ", Prentice­

Hall, 1994

163

[72] Van Der Putten P.H.A., and Voeten lP.M. "Specification of Reactive

Hardware/Software Systems. ", Unpublished doctoral dissertation, Eindhoven

University of Technology, Eindhoven, The Netherlands, 1997

[73] W3C. Extensible Markup Language (XML). Available from:

http://www.w3.org/XML., 2005

[74] Wikipedia, "Hardware Description Language Definition ",

http://en2.wikipedia.org/wikilHardware description language, 2003

[75] Yoo S. et al., "Building Fast and Accurate SW Simulation Models Based on

Hardware Abstraction Layer and Simulation Environment Abstraction

Layer", Design, Automation and Test in Europe, 2003

XVII

Liste des contributions

Sections de livre

~ F. Rousseau, E.M. Aboulhamid and J. Lapalme, « Introduction» in System level

design with .Net technology, E.M. Aboulhamid and F. Rousseau Eds., CRC Press.

(To be published)

~ 1. Lapalme, E.M. Aboulahmid and G. Nicolescu «The Semantic Web Applied to

IP-Based Design: A Discussion on IP-XACT » in System level design with .Net

technology, E.M. Aboulhamid and F. Rousseau Eds., CRC Press. (To be

published)

4 1. Lapalme «Esys.Net Environment» III System level design with .Net

technology, E.M. Aboulhamid and F. Rousseau Eds., CRC Press. (To be

published)

Journals

~ 1. Lapalme, B. Theelen, N. Stoimenov, 1. Voeten, L. Thiele and EM. Aboulhamid,

« Y-Chart Based System Design: A Discussion on Approaches », ACM

Transactions on Embedded Computing Systems, 34 pages (submitted)

~ 1. Lapalme, EM. Aboulhamid, G. Nicolescu, and F. Rousseau,« Separating

Modeling and Simulation Aspects in Hardware/Software Framework-Based

Modeling Languages », The Arabian Journal for Science and Engineering, 2007,

20 pages

4 1. Lapalme, EM. Aboulhamid, and G. Nicolescu, « A New Efficient EDA Tooi

Design Methodology », ACM Transactions on Embedded Computing Systems

Special Issue on Concurrent Hardware-Software Design Methods for MPSoC,

2006, 23 pages

XVlll

Actes de conférence

~ M. Kastle, 1. Lapalme and EM. Aboulhamid, « Dynamic proxy generation for a

Service-Oriented Architecture simulator », NEWCAS-TAISA, 2008, 4 pages

~ H. Balen and 1. Lapalme , «Panel on : Domain Specific Languages - Another

Silver Bullet? », 22th ACM Object-Oriented Programming, Systems, Languages

& Application 2007 (OOPSLA), Montreal, Quebec, Canada, Oct 21- 25, 2007, 2

pages

~ 1.Lapalme, E.M. Aboulhamid, G. Nicolescu and F. Rousseau, « Separating

Mode1ing and Simulation Aspects in Hardware/Software System Design », 18th

International Conference on Microelectronics (ICM) IEEE, Dec 16-19, Dhahran,

Saudi Arabia, 2006, 6 pages

~ 1. Lapalme, EM. Aboulhamid et G. Nicolescu « Leveraging Model

Representations for System Level Design Tools. »,16th IEEE International

Workshop on Rapid System Prototyping, June 8-10, Montreal, Canada, 2005, 6

pages

~ N. Gorse, EM. Metzger, 1. Lapalme, E.M. Aboulhamid, Y. Savaria and G.

Nicolescu « Enhancing ESys.Net With a Semi-Formal Verification Layer », l6th

International Conference on Microelectronics (lCM) IEEE, Dec 6-8, Tunis,

Tunisia, 2004, 6 pages

~ 1. Lapalme, EM. Aboulhamid, G. Nicolescu, L. Charest, F. Boyer, J-P. David et

G. Bois, « ESys.Net - A New Solution for Embedded Systems Modeling and

Simulation », Proceedings of ACM SIGPLAN/SIGBED Conference

onLanguages, Compilers, and Tools for Embedded Systems (LCTES),

Washington, DC, USA, June 11-13,2004,6 pages

Autres

~ 1. Lapalme, « Separating DSL Semantics form Implementation », MSDN

(http://msdn.microsoft.comlen-us/library/bb896746.aspx), 2007, 13 pages

