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RÉSUMÉ 

Considérons le problème qui consiste à maximiser les profits issus de la tarification 

d'un sous-ensemble d'arcs d'un réseau de transport, où les flots origine-destination 

(produits) sont affectés aux plus courts chemins par rapport aux tarifs et aux coûts 

initiaux. Cette thèse porte sur une structure de réseau particulière du problème ci­

dessus, dans laquelle tous les arcs tarifables sont connectés et forment un chemin, 

comme c'est le cas sur une autoroute. Étant donné que les tarifs sont habituellement 

déterminés selon les points d'entrée et de sortie sur l'autoroute, nous considérons 

un sous-graphe tarifable complet, où chaque arc correspond en réalité à un sous­

chemin. Deux variantes de ce problème sont étudiées, avec ou sans contraintes 

spécifiques reliant les niveaux de tarifs sur les arcs. 

Ce problème peut être modélisé comme un programme linéaire mixte entier. 

Nous prouvons qu'il est Np-difficile. Plusieurs familles d'inégalités valides sont 

ensuite proposées, celles-ci renforçant certaines contraintes du modèle initial. Leur 

efficacité est d'abord démontrée de manière théorique, puisqu'il s'agit de facettes 

des problèmes restreints à un ou deux produits. Certaines des inégalités valides 

proposées, ainsi que plusieurs contraintes du modèle initial, permettent aussi de 

donner une description complète de l'enveloppe convexe des solutions réalisables 

d'un problème restreint à un seul produit. Des tests numériques ont également 

été menés, et mettent en évidence l'efficacité réelle des inégalités valides pour le 

problème général à plusieurs produits. Enfin, nous soulignons les liens entre le 

problème de tarification de réseau étudié dans cette thèse et un problème plus 

classique de tarification de produits en gestion. 

Mots clés: Tarification de réseaux, programmation mixte entière, op­

timisation combinatoire. 



ABSTRACT 

Consider the problem of maximizing the revenue generated by tolls set on a subset 

of arcs of a transportation network, where origin-destination flows (commodi ties) 

are assigned to shortest paths with respect to the sum of tolls and initial costs. 

This thesis is concerned with a particular case of the above problem, in which all 

toll arcs are connected and constitute a path, as occurs on highways. Further, as 

tollieveis are usually computed using the highway entry and exit points, a complete 

toll subgraph is considered, where each toll arc corresponds to atoll subpath. Two 

variants of the problem are studied, with or without specifie constraints linking 

together the tolls on the arcs. 

The problem is modelled as a linear mixed integer program, and proved to be 

NP-hard. Next, several classes of valid inequalities are proposed, which strengthen 

important constraints of the initial model. Their efficiency is first shown theoreti­

cally, as these are facet defining for the restricted one and two commodity problems. 

Also, we prove that sorne of the valid inequalities proposed, together with sever al 

constraints of the linear program, provide a complete description of the convex hull 

of feasible solutions for a single commodity problem. Numerical tests have also 

been conducted, and highlight the practical efficiency of the valid inequalities for 

the multi-commodity case. Finally, we point out the links between the problem 

studied in the thesis and a more classical design and pricing problem in economics. 

Keywords: Network pricing, mixed-integer programming, combina­

torial optimization. 
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CHAPTER 1 

INTRODUCTION 

ln a current context of deregulation, companies need to apply a good tarification to 

their products or services. Indeed, overcapacity, increased competition and higher 

costs have strengthened price competition in many industries. Rowever, pricing is 

one of the most complex decisions facing any company. 

First, customers play an important part in a price decision, because they react 

to prices by purchasing - or not - the products. They are looking for good products 

at lowest priees. But the reaction of competitors is also important. Indeed, as they 

influence cu st omer choice, they impose practicallimitations on pricing alternatives. 

Rence, companies have to find the best possible prices, low enough so that a large 

number of customers buy their products, and at the same time high enough to 

generate large revenues. 

Focusing on the operational research literature, sever al classes of pricing prob­

lems have been considered. These can differ in the objective functions, as weIl as 

in the category of products or services considered. The main objective functions 

deal with the maximization of revenues, social welfare, or a combination of both 

criteria. In what concerns the category of products or services considered, apart 

from papers that address the problem of pricing a generic product, other categories 

of products are, for example, financial assets or transportation routes. 

We deal with a particular case of a pricing problem that involves a transporta­

tion network. Let us define a transportation network as a set of nodes (cities) and 

a set of arcs (routes) linking sorne of these nodes together. Further, a fixed cost is 
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assigned to each arc of the network. Now consider two classes of economic agents. 

The first, a manager, owns a subset of arcs of the network on which hejshe imposes 

toUs so as to maximize revenues. The second category of agents are network users, 

which travel from one node to another of the network while minimizing their costs. 

The Network Pricing Problem consists of devising the toUlevels that should be 

imposed by the manager on the subset of toU arcs such as to maximize its revenues. 

Then, reacting to the toUs, the network users travel on short est paths from their 

origins to their respective destinations, with respect to a cost equal to the sum of 

toUs and initial costs. 

This thesis is concerned with a particular case of the above problem in which 

aU toU arcs are connected and constitute a path, as occurs on highways. As toU 

levels are usuaUy computed using the highway entry and exit nodes, a complete 

toU subgraph is considered, where each toU arc corresponds to a toU subpath. Two 

variants of the problem are studied, with or without specific constraints linking 

together the toUs on the arcs. 

As the manager and the users seek to maximize revenues and to minimize costs 

respectively, the problem belongs to a class of hierarchical, sequential and non co­

operative optimization programs. As in the Stackelberg version of the duopolistic 

equilibrium (see Stackelberg [63]), a leader (the manager) integrates in its opti­

mization process the reaction of a foUower (the network users) to its own decisions. 

More specificaUy, it is a bilevel problem, i.e., a hierarchical optimization problem 

involving two levels of decision. 

This class of problems has many applications: hierarchical structures can be 

found in the field of transportation (network design, airline revenue management, 

transportation of hazardous materials, ... ), management (location of schools, aUot­

ment of funds, ... ), and planning (agricultural, electrical or environmental policies, 

... ). 
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As we will see later, the problem considered in the thesis is very generic. Bence 

the purpose of this study is to better understand the very heart of a network pric­

ing structure, and to develop tools that could be transposed to more realistic or 

complex problems. More precisely, the thesis provides a first study of the polyhe­

dral structure of a Network Pricing Problem. Bence models, valid inequalities and 

proofs of facets are the core of our research. 

The thesis is organized as follows. In Chapter 2, we present the Network Pric­

ing Problem. As it can be modelled as a bilinear/bilinear bilevel program, we first 

formulate a bilevel program. Then the Network Pricing Problem is introduced. We 

summarize the main contributions to this topic from the literature. 

The particular Network Pricing Problem addressed in the thesis, whose network 

structure can represent features specifie to a real highway network, is presented in 

Chapter 3. Mathematically, it is formulated as a linear mixed integer program with 

a single level. Then we prove that this problem is NP-hard using a reduction from 

3 - SAT. 

In Chapter 4, we propose valid inequalities for the problem. These exploit the 

underlying network structure and strengthen important constraints of the model. 

Next, we explore the strength and efficiency of the valid inequalities. 

Chapter 5 provides proofs that the valid inequalities, as well as sever al con­

straints of the initial model, are facet defining for the convex hull of feasible so­

lutions for a restricted problem involving two origin-destination pairs. AIso, we 

prove that sorne of the valid inequalities proposed, together with other constraints 

of the linear program, provide a complete description of the convex hull of feasible 

solutions for a single commodity problem. 

The practical efficiency of the valid inequalities is then confirmed in Chapter 

6 by numerical results. Most of the valid inequalities proposed are very efficient, 
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at least to decrease the gap or number of nodes in the branch and eut algorithm. 

They also allow to decrease the computing time for one variant of the problem. 

Finally, the aim of Chapter 7 is to link the specifie problems studied in the the­

sis with a more standard design and pricing problem in economics. A description 

of these problems, together with an overview of the main contributions from the 

literature, are provided. Then we point out the strong relationships between both 

families of problems. 



CHAPTER 2 

THE NETWORK PRICING PROBLEM 

The aim of this chapter is to present the Network Pricing Problem. As its initial 

formulation is a bilinear /bilinear bilevel program, we first give an introduction 

to bilevel programming. Next, we focus on (bi)linear/(bi)linear bilevel problems, 

i.e., problems in which both constraints and objective function are (bi)linear. We 

also present a more precise bilinear/bilinear bilevel pricing problem. The Network 

Pricing Problem is next introduced. First modelled as a bilinear /bilinear bilevel 

program, we show that it can be reformulated as a single levellinear mixed integer 

model. Then we summarize the main contributions on this topic in the literature. 

2.1 Bilevel programming 

Consider a sequential game with two players, where a leader plays first, taking 

into account the possible reactions of the second player, called the follower. If 

vectors x and y denote the leader and follower decision variables respectively, this 

situation can be described mathematically by a bilevel program1
: 

(BP) min F(x, y) 
x,y 

s.t. G(x, y) ::; 0, 

y E argmin f(x, y) 
y 

s.t. g(x, y) ::; o. 

lSlightly abusing notation, we use y for denoting both the optimal solution and the argument 
of the lower level problem. 
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The mathematical bilevel formulation first appears in 1973, in a document by 

Bracken and McGill (1973, [8]). These authors publish several articles (1973, [8]; 

1974, [9]; 1978, [10]) dealing with military, production and marketing applications. 

The bilevel and multilevel terms come from Candler and Norton (1977, [13]), who 

do not consider upper level constraints involving both x and y variables in their 

models. The more general formulation, involving a constraint of type G(x, y) ::; 0 

at the upper level, appears for the first time in an article by Shimizu and Aiyoshi 

(1981, [59]). 

Also, formulation (BP) ensures that, if there are multiple optimal solutions for 

the lower level problem, the leader most profitable solution is selected. This is an 

optimistic approach, by opposition to a pessimistic approach. In the latter, 

the leader chooses the solution which protects himself against the follower worst 

possible reaction. Such situations have been studied by Loridan and Morgan (1989, 

[45, 46]) or Ishizuka and Aiyoshi (1992, [36]). 

Note that the bilevel problems described here are very close to mathematical 

problems with equilibrium constraints (MPECS). In the latter, the lower level rep­

resents an equilibrium problem, often described by a variational inequality. The 

interested reader could refer to books by Shimizu et al. (1997, [60]), Outrata et al. 

(1998, [56]) or Luo et al. (1996, [47]). 

Generically non differentiable and non convex, bilevel problems are, by nature, 

hard. Even the linear bilevel problem, where the objective functions and the con­

straints are linear, has shown to be NP-hard by Jeroslow (1985, [37]). Hansen et 

al. (1992, [34]) prove strong NP-hardness. Vicente et al. (1994, [68]) strengthen 

these results and prove that merely checking strict or local optimality is strongly 

NP-hard. 

Several authors have presented optimality conditions for bilevel problems. Among 

these ones, let us name Chen and Florian (1991, [15]), Dempe (1992, [21]) or Tuy 
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et al. (1993, [64]) who use non linear analysis techniques, as weIl as Savard and 

Gauvin (1994, [58]) or Vicente and Calamai (1995, [67]) who take into account the 

geometry of the induced region. Liu et al. (1994, [44]) describe geometric features 

of solutions. Unfortunately, because of the difficulty of handling the mathematical 

objects involved in aIl these optimality conditions, they are quite useless in practice 

and do not provide any sufficient stopping criterion for numerical algorithms. 

Let us now briefly summarize the algorithmic contributions to bilevel program­

ming in the literature. Note that most algorithmic research has focused on problems 

involving linear, quadratic or convex constraints and/or objective function. In aIl 

these classes of problems, the lower level problem admits extremal solutions, which 

allows the development of methods with a guarantee of global optimality. In con­

trast, research on nonlinear bilevel problems has mainly focused on algorithms with 

a guarantee of local optimality. 

One of the first method that has been proposed is based on vertex enumeration. 

It has been used by Candler and Townsley (1982, [14]), Bialas and Karwan (1984, 

[6]) or Tuy et al. (1993, [64]) to solve linear bilevel programs. 

Next, when the lower level is convex and regular, it can be replaced by its 

Karush-Kuhn-Tucker conditions. The bilevel problem is then reformulated as a sin­

gle level problem, which contains the primaI-dual constraints and complementarity 

conditions. However, the single level problem stays very difficult to solve, mainly 

due to the complementarity constraints. Several algorithms based on branch and 

bound on these constraints have been proposed to solve different classes of bilevel 

programs, among which linear (Bard and Falk (1982, [30]), Fortuny-Amat and Mc­

Carl (1981, [29])), linear-quadratic (Bard and Moore (1990, [5])) and quadratic 

(AI-Khayal et al. (1992, [3]), Edmunds and Bard (1991, [27])). Combining branch 

and bound, monotonicity principles and penalties as in mixed integer program­

ming, Hansen et al. (1992, [34]) have been able to solve linear bilevel medium size 
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instances. 

Descent methods have also been used to solve bilevel programs. These methods 

assume that the lower level problem has a unique optimal solution for any x, and 

consider y as an implicit function y(x) of x, hence obtaining upper level descent 

directions. Such algorithms have been proposed by Savard and Gauvin (1994, [58]) 

or Vicente et al. (1994, [68]). 

Further, penalty function methods have also been proposed to solve bilevel pro­

grams. Aiyoshi and Shimizu (1981, [59]; 1984, [1]) replace the lower level problem 

by a penalized problem. Ishizuka and Aiyoshi (1992, [36]) use a double penalty 

method in which both objective functions are penalized, the lower level penalized 

problem being replaced by its stationarity condition. 

Finally, trust region methods have also been used for solving nonsmooth bilevel 

programs (see Kocvara and Outrata (1997, [38]), Fukushima and Pang (1999, [4]), 

Marcotte et al. (2001, [50]) or Coison et al. (2005, [17])). 

Motivated by Stackelberg game theory, several authors have studied bilevel 

programming. For a more complete bibliography about bilevel or multilevel pro­

gramming, the interested readers could refer to Vicente and Calamai (.1994, [66]), 

Migdalas et al. (1997, [53]) or, for more recent references, to Dempe (2002, [20]), 

Marcotte and Savard (2005, [49]) or Coison et al. (2007, [18]). 

2.2 (Bi)linear bilevel programming 

As global optimality algorithms are restricted to subclasses of problems involv­

ing specifie mathematical properties, we focus on bilevel programs with linear or 



bilinear objectives. The linear /linear bilevel problem takes the form: 

(LBP) maxclx + dly 
x,y 

x2:0 

y E arg max d2y 
y 

y 2: 0, 

9 

The constraints AIX + ElY::; bl (resp. A 2x + E 2y ::; b2 ) are the upper (resp. 

lower) level constraints. The linear term CIX + dly (resp. d2y) is the upper 

(resp. lower) level objective function, while X (resp. y) is the vector of upper 

(resp. lower) level variables. 

In order to characterize the solution of such a problem, the following definitions 

are required. 

Definition 1 The set of feasible solutions for (LBP) is defined as: 

Definition 2 For every x 2: 0, the lower level feasible set is: 

O(x) = {y: Y 2: 0,E2y::; b2 - A2x}. 
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Definition 3 The trace of the lower level problem with respect to the upper level 

variables is: 

D2 = {x: x ~ O,D(x) -1- 0}. 

Definition 4 For a given vector x E D;, the lower level optimal set is: 

S(x) = {y : y E argmax{d2y : y E D(x)}}. 

Definition 5 The induced region is defined as the set of feasible solutions for the 

upper level problem, i. e., 

These definitions highlight the polyhedral nature of the induced region and 

allow to characterize the set of optimal solutions for (LBP). 

Definition 6, A point (x*, y*) is optimal for (LBP) if: 

• (x*, y*) Er; 

Renee, a direct consequence of the polyhedral nature of the induced region r is 

that, if (LBP) has a solution, an optimal solution is attained at an extreme point 

of D. 

Although much attention has been paid to linear jlinear bilevel programming, 

it appears that bilinear /bilinear bilevel programs better fit real life situations. In­

deed, this allows to model interactions between the leader and the follower in the 

objective function. An interesting class of bilinearjbilinear bilevel problems is the 

class of pricing problems where a firm (leader) imposes taxes on activities while 
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consumers (follower) choose minimal cost activities. 

Consider a vector of activities (Xl, X2), a firm and a set of consumers. At the 

upper level, we assume that the firm seeks to maximize its revenues by imposing 

taxes on the activities corresponding to vector Xl' At the lower level, consumers 

react to the taxes by choosing minimal cost activities. Let (c, d) be the vector of 

initial priees for (Xl, X2), and t be a tax vector linked with the activity vector Xl. 

Note that this model can coyer various situations. lndeed, the tax vector t can 

represent taxes as well as subsidies. AIso, Xl and X2 vectors can be consumption 

as weIl as production levels. One obtains the bilinear jbilinear bilevel pricing 

model: 

(BPP) 

s.t. (XI,X2) E argmin(c+ t)XI + dX2 
Xl,X2 

s.t. AXI + BX2 = b 

We assume that the polyhedron {(XI,X2) : AXI + BX2 = b,XI,X2 ~ O} is 

bounded and non empty, while {X2 : BX2 = b, X2 ~ O} is non empty. Renee the 

lower level problem has a finite optimal solution for every value of the tax vector 

t. These conditions also ensure that the objective function of (BPP) is finite. 

Note that, for a given lower level vector (XI,X2), (BPP) reduees to an inverse 

optimization problem where one must select a tax vector t such that (i) (Xl, X2) 

is optimal with respect to this tax vector and (ii) the revenue tXl is maximal. 

From the leader's perspective, the objective function tXl is piecewise linear and 



12 

discontinuous at points t that induce a change of optimal basis in the lower level 

problem. We illustrate the evolution of the objective function tXI with respect to 

the tax t in Figure 2.1, where (xL X2) is the optimal solution of the lower level 

problem corresponding to a tax t with values between t i and t i + 1
. 

Figure 2.1: Evolution of the objective function tXI with respect to tax t 

An optimal pricing policy consists in setting t high enough to generate large 

revenues for the leader but, at the same time, low enough to promote the use of 

taxed activities corresponding to Xl by consumers. 

The Network Pricing Problem is a particular case of a bilinearjbilinear pricing 

problem, which involves a transportation network and considers the arcs of the 
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network as activities. We present this problem in the next section. 

2.3 The Network Pricing Problem 

Let us define a transportation network as a set of nodes (cities) and a set of 

arcs (routes) linking sorne of these nodes together. At the upper and lower level, 

consider an authority and a set of network users respectively. We also define a 

commodity as a set of network users travelling from the same origin to the same 

destination. 

In addition to a fixed cost associated with every arc, toUs are imposed by the 

authority on a specified subset of arcs of the network. Renee the Network Pricing 

Problem consists of devising toUlevels on the specified subset of toU arcs in order 

to maximize the authority's revenues. Then, reacting to the toUs, each commodity 

travels on the shortest path from its origin to its destination, with respect to a cost 

equal to the sum of toUs and initial costs. 

Let us now introduee additional assumptions. First, in order to avoid trivial 

solutions leading to infinite revenues for the authority, we assume that there exists 

a toU free path for each commodity. Further, we restrict our study to non negative 

toU vectors. 

Rowever, note that there exist models (see Labbé et al. (1998, [43]), Cirinei 

(2007, [16]) or Brotcorne et al. (2001, [12])) which also aUow negative toUs. The 

latter yield compensations with other (positive) toUs, when the corresponding arcs 

are used by multiple commodities. Even if such situations will not be considered 

in the thesis, the reader should know that there exist more realistic (but also more 

complex) models, which consider congestion effects (see for example Fortin (2005, 

[28])) and/or a non uniform distribution of the fixed cost perception in a population 

(see for example Marcotte et al. (2007, [51])). 
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The small network example depicted in Figure 2.2 illustrates the Network Pric­

ing Problem. Assume that a commodity composed by a single user travels from 

node 1 to no de 5, the bolded arcs (2,3) and (4,5) being the toU arcs. 

9 

Figure 2.2: Network example 

If we look closely at that network, we conclude that the user will never pay 

more that 22, which is the cost of the toll free path 1 ---> 3 ---> 5. In contrast, if the 

authority sets all tolls to zero, the user will choose the path 1 ---> 2 ---> 3 ---> 4 ---> 5 

with cost 6. It means that an upper bound on the authority revenues is 22 - 6 = 16. 

However, this bound is not always reached, as in the example. Whatever the 

tolls imposed by the manager, its revenue will never exceed 15. Indeed, the toll 

arc (2,3) can only be selected by the network user if the toll on this arc is less or 

equal to 5, because of the arc (2,4) ((2 + x) + 2 :S 9). In the same manner, the toll 

arc (4,5) can only be used if the corresponding toll does not exceed 10, because of 

the arc (3,5) (2 + x :S 12). An optimal solution for this example consists in setting 

tolls of 5 on the arc (2,3) and 10 on the arc (3,5). 

The bilinear/bilinear bilevel Network Pricing Problem was first introduced by 

Labbé et al. (1998, [43]). Consider a multi-commodity network defined by anode 

set N, an arc set A u B and a set of origin-destination pairs {(ok, dk) : k E Je}, 

called commodities, each one endowed with a demand T/k. Let A be a subset of 

arcs a upon which tolls ta can be added to the original fixed cost vector c and 

B the complementary subset of toll free arcs, for which the cost vector c is also 

given. Assuming that, for a given toll policy t = (ta)aEA, the network users travel 
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on short est paths with respect to the toUs and fixed costs on arcs, the Network 

Pricing Problem consists of devising a revenue maximizing toU policy. Upon the 

introduction of vectors xk = (X~hEJC,aEA that specify the flows on commodities 

k E K (i.e., x~ = 1 if commodity k travels on the toll arc a and x~ = 0 otherwize), 

the Network Pricing Problem can be formulated as the bilevel program (Labbé et 

al. (1998, [43])): 

(TP) 

subject to: 

ta 2: 0 \faEA (2.1) 

X E argm~n L (L(Ca + ta)x~ + L cax~) 
kEJC aEA aEB 

(2.2) 

subject to: 

-1 if i = ok 

L x~+ L x~- L x~- L x~= 1 if i = dk 

aEi+nA aEi+nB o otherwise 

\fk E K, \fi E N (2.3) 

x~ E {O, 1} \fk E K, \fa E A, (2.4) 

where i- (resp. i+) denotes the set of arcs having node i as its head (resp. tail). 

Note that the characterization of lower level solutions as origin-destination paths 

carrying either no flow or the total origin-destination flow aUows to obtain an 

integer programming formulation of (TP) that involves binary variables. Now, in 

view of the unimodularity of the constraint matrix associated with the shortest 

path problem at the lower level, one may drop the integrality requirements for the 

flow variables x. It foUows that the lower level problem can be replaced by its 

primaI dual constraints and primaI-dual optimality conditions, yielding a single-



level program involving complementarity (Le., disjunctive) constraints. 

Through the introduction of auxiliary variables 

{

ta if commodity k uses arc a E A, 
k 

Pa 

a otherwise 
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corresponding to the actual unit revenue associated with arc a E A and commodity 

k E K, Labbé et al. (1998, [43]) der ive a mixed integer linear formulation for this 

problem, namely 

(TP2) max L L rlp! 
kEIC aEA 

subject 1.0: 

Vk E K, Vi EN (2.5) 

>'~(a) >.k t(a) ::; Ca + ta Vk E K, Va E A (2.6) 

>.k >.k h(a) - t(a)::; Ca Vk E K, Va E B (2.7) 

L( k k) L k >.k >.k CaXa + Pa + CaXa = dk - Ok Vk E K (2.8) 
aEA aEB 

p! ::; M:x! Vk E K, Va E A (2.9) 

ta - p! ::; Na {1 x~) Vk E K, Va E A (2.10) 

p! ::; ta Vk E K, Va E A (2.11) 

p! ~ 0 Vk E K, Va E A (2.12) 

x~ E {a, 1} Vk E K, Va E A (2.13) 

xk > 0 a- Vk E K, Va E 8, (2.14) 
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where h(a), t(a) correspond to the head and tail of the toU arc a E A, while M: 

and Na are sufficiently large constants. 

Constraints (2.5) describe fiows on commodities. (2.6), (2.7) and (2.8) are the 

primal dual constraints and optimality conditions of the lower level problem. Con­

straints (2.9), (2.10) and (2.11) come from the modellinearization, and ensure that 

p~ = tax~ for aU k E K, a E A. 

Roch et al. (2005, [57]) and Grigoriev et al. (2005, [32]) prove the NP-hardness 

of this problem, even under restrictive conditions such as a single commodity or 

lower bounded toUs (see Labbé et al. (1998, [43])). However, several particular 

cases are polynomiaUy solvable, such as the Network Pricing Problem with a single 

toU arc (see Brotcorne et al. (2000, [11])). Van Hoesel et al. (2003, [65]) prove 

that, when the number of toU arcs is upper bounded, the optimal solution of the 

Network Pricing Problem can be obtained by solving a polynomial number of linear 

programs. The latter also present other particular polynomial cases of the problem. 

In contrast with (TP2) formulation, in which the paths chosen by commodi­

ties are described by fiows on arcs (latter caUed 'arc formulation'), Bouhtou et al. 

(2003, [7]) and Didi et al. (1999, [24]) propose formulations involving directly fiows 

on paths for commodities. Bouhtou et al. also propose a standard graph represen­

tation of a network together with reduction methods for this last one, which often 

lead to a significant reduction of the network graph. This aUows obtaining good 

numerical results for medium size instances. Tests on randomly generated prob­

lems involving 15 to 80 commodities and 20 to 100 toU arcs (in networks with 75 or 

100 nodes and 2000 or 4000 arcs) show that an optimal solution can be identified 

within a couple of seconds. However, note that these instances lead to only 2 or 3 

non dominated paths on average for each commodity, and thus are rather easy to 

solve. 
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Unfortunately, a commercial solver for linear programs such as Xpress cannot 

solve large size instances, neither of the (TP2) arc formulation presented ab ove nor 

of the path formulation. This is mainly due to the bad quality of the linear relax­

ation in variables x (i.e., (2.13) are replaced by 0 :::; x~ :::; 1 for all k E /C, a E A). 

To overcome this problem, several approaches are considered. 

Dewez et al. (2007, [23]) set values for constants M:, Na : k E /C, a E A of 

(TP2) formulation by computing upper bounds on the tolls on arcs, and propose 

valid inequalities for the various models (arc formulation and path formulation). 

Numerical tests have been carried out on randomly generated problems involving 

20 to 40 commodities and 5% to 20% toll arcs, in networks with 60 nodes and 208 

arcs, latter called 'grid graphs'. The results show that the adjustment of constants 

makes it possible to divide by two the value of the duality gap at the root of the 

branch and bound tree, whereas the valid cuts allow a reduction of the explored 

nodes as well as the computing time. 

Cirinei (2007, [16]) proposes a column generation algorithm for the inverse op­

timization problem, which consists of devising the tolls that should be imposed 

on the network, considering that the reaction of the network users is known and 

maximizing the authority's revenue. Tests on randomly generated problems involv­

ing 10 to 40 commodities and 15% toll arcs in grid graphs show that the method 

performs well in terms of computing time. All instances can be solved in a couple 

of seconds. The column generation algorithm also allows to solve the largest in­

stances much faster than without the algorithm. Further, the author proposes an 

exact resolution algorithm based on an intelligent enumeration of the solutions of 

the lower level problem. This resolution method allows to define improved upper 

bounds on the authority's revenue. 

As solving large size problems to optimality is hard, several authors propose 
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heuristic methods for the Network Pricing Problem. Brotcorne et al. (2001, [12]) 

present two heuristics for the problem: the first consists in setting toUs sequentiaUy 

over the arcs, while the second is based on a primaI-dual approach. Tests on prob­

lems involving 10 to 20 commodities and 5% to 20% toll arcs in grid graphs show 

that heuristic solutions are on average within 1.5% and 7% of optimality respec­

tively. Both heuristics are mu ch faster than an exact resolution. The latter (2000, 

[11]) also examine a very similar problem, in which commodities have to be routed 

from several locations to customers according to their respective demands. 

AIso, Roch et al. (2005, [57]) propose an approximation algorithm for the single 

commodity Network Pricing Problem, with a guaranteed performance of ~ log n+ 1, 

where n is the number of toU arcs in the network. 

FinaUy, Cirinei (2007, [16]) presents a tabu based local search algorithm, which 

exploits the underlying network structure of the lower level problem. This last 

method is very efficient, both in terms of solution quality and computing time, 

producing heuristic solutions within 1% of optimality for instances involving 10 to 

100 commodities and 5% to 20% toU arcs in grid graphs. 

Dewez (2004, [22]) also studies a particular case of the Network Pricing Prob­

lem that deals with specific network structures similar to highways. lndeed, the 

model considered involves a path of toU arcs as weU as Triangle inequalities on the 

toU variables. She proves that, when it reduces to a single commodity, the prob­

lem is polynomiaUy solvable. She presents an exact resolution algorithm for the 

multi-commodity problem, based on an enumeration of the solutions of the lower 

level problem. Unfortunately, due to the enumeration at the lower level, the time 

needed to solve the problem to optimality grows exponentiaUy with the number of 

commodities and the number of nodes in the network. 

The author also proposes several heuristics to set the flow variables for this 

problem. Then the inverse problem aUows to determine the toUs yielding the best 
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revenue for the authority, once flows are fixed. We briefly describe the ide a behind 

the three best heuristics. 

1) For each commodity k E K, set x~ = 1 for the toU arc a with the largest 

upper bound M; : a E A. Then solve the inverse optimization problem to 

find the toUs leading to a maximal revenue for the authority. 

2) For each commodity k E K, set x~ = 1 for the toU arc a with the largest upper 

bound M; : a E A. Then observe that, if two commodities use the same toU 

arc a E A, the leader could take advantage to force the use of another toU arc 

b E A \ {a} (i.e., x~ = 1) for one of both commodities (with respect to the 

demand T/ and the upper bounds M;). Next, solve the inverse optimization 

problem to find the toUs leading to a maximal revenue. 

3) For each commodity k E K and for each toU arc a E A, set x~ = 0 if 

M; < ex maxkEK M; (0 :s: ex :s: 1), i.e., if the upper bound on the revenue 

M: is too smaU with respect to the upper bound on the same arc a for other 

commodities. Then solve the remaining problem. 

When tested on grid graph instances involving 21 to 36 commodities and 10 to 

20 toU nodes in the highway, the best heuristics produce solutions within 5% of 

optimality in a couple of seconds. 

Grigoriev et al. (2005, [32]) consider another particular case of the Network 

Pricing Problem, where each commodity chooses at most one toU arc from its ori­

gin to its destination. As this specifie network structure looks like a town divided 

by a river with crossing bridges or tunnels, this problem is caUed the Cross River 

Network Pricing Problem. The authors prove that this particular problem is 

NP-hard. 

Further, they also show that the Uniform Network Pricing Problem, in which 
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tolls on the arcs are all equal, constitutes an O(n)-approximation algorithm (where 

n is the number of toll arcs in the network) for the Cross River Network Pricing 

Problem. Under sorne particular assumptions, the Uniform Network Pricing Prob­

lem provides an O(log n)-approximation algorithm for the same problem. 

We conclude this chapter with a summary (see Figure 2.3) of the main contri­

butions to the Network Pricing Problem in literature. 
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Figure 2.3: Main contributions to the Network Pricing Problem 



CHAPTER 3 

NETWORK PRICING WITH CONNECTED TOLL ARCS 

In this chapter, we present the specifie Network Pricing Problem addressed in the 

thesis. First modeUed as a bilinear/bilinear bilevel pricing problem, it is reformu­

lated as a single level linear mixed integer model. Next, we propose a new linear 

mixed integer formulation for the problem, together with settings of constants and 

a preproeessing of the network. FinaUy, the complexity of this specifie Network 

Pricing Problem is studied. 

3.1 Network Pricing Problems with Connected ToU Arcs 

We now focus on a particular Network Pricing Problem dealing with structured 

networks in which aU toU arcs must be connected and constitute a path. As these 

structures can represent features specifie to a real highway topology and for the 

sake of clarity, we define a highway as the path of toU arcs in the network. The 

first variant of this problem, caUed Basic NPP, is directly derived from the classical 

Network Pricing Problem. Rowever, the toUs are additive in this network structure, 

while toUlevels are usuaUy determined with respect to given entry and exit points 

on the highway. Renee, a second variant is considered, that involves a complete 

toU subgraph, i.e., each toU arc represents a toU subpath between two entry and 

exit points. It is caUed General Complete ToU NPP. FinaUy, a third variant, caUed 

Constrained Complete ToU NPP, involves a complete toU subgraph together with 

specifie constraints that link toUs on several paths. 
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The first variant is directly derived from the Network Pricing Problem presented 

in Chapter 2. Let us define a commodity as a set of users with the same origin and 

destination nodes. A commodity can either take the short est toU free path from its 

origin to its destination, or foUow the highway, using shortest toU free paths to and 

from the highway. We assume that users who have left the highway are not aUowed 

to reenter, which implies that paths are uniquely determined by their respective 

entry and exit nodes. 

This problem is caUed the Basic Network Pricing Problem with Connected ToU 

Arcs, for short "Basic NPP". It is illustrated in Figure 3.1, where toU arcs are 

dashed. ToU free arcs are inserted between origin and destination nodes, as weU as 

from/to the origin and destination nodes to/from the highway. These arcs represent 

short est toU free paths between the corresponding nodes. We also assume that a 

fixed cost is set on each arc, and provides a measure of the distance, time or gas 

consumed on the arc. The fixed cost set on a toU free arc corresponds to the 

smallest fixed cost of a path between its nodes. 

Set of ongin and 
destination nodes 

Set of entry 

and exit nodes 

Figure 3.1: Basic NPP 
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The mathematical formulation (TP2) presented in Chapter 2 applies to this 

situation. Rowever, additional constraints must be appended to (TP2) in order 

to ensure that a commodity which leaves the highway at sorne exit node does not 

reenter the highway at another entry node. Let us define the set N ç N of aIl 

possible origin and destination nodes, i.e., N = {ok,dk : k E K}. Assuming that 

each shortest toU free path is represented by a single arc, the Basic NPP is described 

by model (TP2), with the additional constraints 

L x~+ L x~ = 0 (3.1) 
aEi+nB 

Rowever, note that the toUs are additive in this network structure, i.e., a com­

modity must pay the sum of the toUs on aU arcs that belong to its path. As toU 

levels are usuaUy determined with respect to given entry and exit points on the 

highway, we consider the Network Pricing Problem with Connected ToU Arcs in­

volving a complete toU subgraph. Rence, as we assume that users who have left 

the highway are not aUowed to reenter, each toU subpath is represented by a single 

toU arc. This problem is depicted in Figure 3.2 and called "General Complete 

ToU NPP". 
Sel of cnLry 

, , , , , , , , , 

Figure 3.2: Complete ToU NPP 
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Let us now introduce sorne notation. For each arc a E A, let t( a), h( a) E N 

be its tail and head nodes respectively. For each commodity k E K and for each 

toU arc a E A, let c~ denote the fixed cost on the corresponding path Ok -----+ t( a) -----+ 

h( a) -----+ dk , where t( a), h( a) E N are the entry and exit nodes on the highway. The 

fixed cost on the toU free path Ok -----+ dk is denoted by C~d' while the corresponding 

fiow variable is X~d' For each commodity k E K and for each toU arc a E A, variable 

x~ represents the fiow on the corresponding path Ok -----+ t( a) -----+ h( a) -----+ dk , while 

variable ta is the toU on the arc a (i.e., toU subpath a). Further, we consider that 

nodes are labeUed by the index 1 to m, leading to lAI = n = m(m - 1) toll arcs. 

One obtains the foUowing bilevel formulation (2004, Dewez [22]): 

(HP1) max L L rltax~ 
t,x 

kEK aEA 

subject to: 

ta :::: 0 'Va E A (3.2) 

x E arg mln L ( Dc~ + t")x~ + c~x~) (3.3) 
kEK aEA 

subject to: 

LX~ + X~d = 1 'Vk E K (3.4) 
aEA 

x~ E {O, 1} 'Vk E K, 'Va E A (3.5) 

X~d E {O, 1} 'Vk E K (3.6) 

Note that, as each toll subpath is now represented by a single toU arc, the fiow 

constraints (3.4) ensure that each commodity chooses either a toU path a (x~ = 1) 

or the toU free path (X~d = 1). 

As for the classical Network Pricing Problem defined in Chapter 2, the con-
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straint matrix associated with the lower level problem is unimodular. As a conse­

quence, the lower level problem can be replaced by its primaI dual constraints and 

optimality conditions, yielding a single level program involving complementarity 

(i.e., disjunctive) constraints. Further, in order to obtain a linear model, variables 

k {ta Pa = 
o 

if commodity k uses arc a E A, 

otherwise 

are introduced, corresponding to the actual unit profit associated with arc a E A 

and commodity k E K. This yields (2004, Dewez [22]): 

(HP2) maxLLr/p~ 
kEK. aEA 

subject to: 

LX~ + X~d = 1 Vk E K (3.7) 
aEA 

)..k < ck + t - a a Vk E K, Va E A (3.8) 

)..k < ck - od Vk E K (3.9) 

L ( k k k) k k )..k caXa + Pa + codXod = Vk E K (3.10) 
aEA 

p~ ~ M:x~ Vk E K, Va E A (3.11) 

ta - p~ ~ Na(l - x~) Vk E K,Va E A (3.12) 

p~ ~ ta Vk E K, Va E A (3.13) 

p~ ~ 0 Va EA (3.14) 

Xk > 0 ad - Vk E K (3.15) 

x~ E {O, 1} Va ~ A,Vk E K, (3.16) 

where M: and Na are suitably large constants. For now, let us assume M: 
maXkEK.{c~d - c~} and Na = N = maXkEK.,aEA M:. 
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Now, consider a network composed of three entry jexit nodes (labeUed 1,2,3) 

on the highway and two commodities k l , k2 E K with respective demands 7]kl = 80, 

7]k2 = 10. The fixed costs on paths c~ : k E K, a E A are described in Table 3.1, 

while c~à = 20 and c~â = 21. The corresponding optimal toUs, according to model 

(HP2), are given in Figure 3.3. 

ToU arc a ch 
a C

k2 
a 

(1,2) 12 11 
(1,3) 15 14 
(2,1) 13 9 
(2,3) 17 15 
(3,1) 11 10 
(3,2) 12 10 

Table 3.1: Fixed costs c~ : k = kl , k2 , a E A for a network example with three 
entry jexit nodes on the highway 
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Figure 3.3: Optimal toUs ta : a E A for a network example with three entryjexit 
nodes on the highway 

At optimality, commodity k i travels on the path Okl -7 3 -7 1 -7 dk1 , while 

commodity k2 travels on the path Ok2 -7 2 -7 1 -7 dk2 . One can observe that 

t2I = 10 < t 3I = 9, i.e., the toU imposed on the path Ok2 -7 2 -7 1 -7 dk2 is less 
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than the toU imposed on the path Ok2 --r 3 --r 1 --r dk2 . While this can make sense 

in the airline industry, where tickets correspond to specifie origin-destination pairs, 

this is unrealistic in a highway. 

In order to prevent such situations, the Triangle and Monotonicity inequalities 

(3.17), (3.18) can be introduced, and the corresponding problem is called "Con­

strained Complete Toll NPP". 

Va,b,c E A: 

t(a) = t(b), h(b) = t(c), h(c) = h(a) (3.17) 

Va,b E A: 

t(a) = t(b) < h(a) = h(b) + 1 or t(a) = t(b) - 1 < h(a) = h(b) 

or t(a) = t(b) > h(a) = h(b) - 1 or t(a) = t(b) + 1 > h(a) = h(b). (3.18) 

Triangle constraints ensure that between two given entry and exit nodes of the 

highway, a commodity would not take benefit from leaving the highway upstream 

and then reentering downstream latter. The Monotonicity constraints imply that 

the toU on a path cannot be less than the toll of any subpath. Subnetworks on 

which these inequalities apply are illustrated in Figure 3.4. 
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1 1 1 le 1 1 , lb , 
Ib/ 

, 
1 

, l , l , l , 

!f @ CD 
l, l, 

cD cD 
Figure 3.4: Subnetworks on which Triangle and Monotonicity constraints apply 

In the next section, we propose an alternative formulation for the problem. The 

latter does not involve dual variables and allows to express the optimality of the 
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lower level problem more explicitly in the constraints. 

3.2 Model reformulation 

While the lower level optimality conditions in (HP2) involve arc fiow variables, 

an alternative is to express the optimality of the lower level problem in terms of 

path fiows, without resorting to dual variables. The primaI dual constraints and 

optimality conditions (3.8), (3.9) and (3.10) of (HP2) are then replaced by the 

equivalent 

Vk E K,Vb E A (3.19) 
aEA 

Vk E K. (3.20) 
aEA 

lndeed, these constraints ensure that the cost of the path chosen by commodity 

k E K at optimality is smaller than (or equal to) the cost of any other path for this 

commodity. 

However, the second family of constraints (3.20) is obviously redundant due to 

constraints (3.7), (3.11) and the definition of constants M~ : k E K, a E A. Next, 

based on constraint (3.7), variables x~d can be removed, yielding the more compact 
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model: 

(HP3) maxLLrlp~ 
kEK aEA 

subject to: 

L x~ :s: 1 Vk E K (3.21) 
aEA 

L (p~ + c~x~) + c~d(l - L x~) :s: ta + c~ Vk E K,Va E A (3.22) 
bEA bEA 

p~ :s: M:x~ Vk E K,Va E A (3.23) 

ta - p~ :s: N a (1 - x~) Vk E K,Va E A (3.24) 

p~ :s: ta Vk E K, Va E A (3.25) 

p~ 2. 0 Va E A (3.26) 

x~ E {O, 1} Vk E K,Va E A, (3.27) 

In the sequel, we consider two variants of this program. In the General Com­

plete ToU NPP (GCT-NPP), tolls are independent, while the Constrained 

Complete ToU NPP (CCT-NPP) imposes Triangle and Monotonicity con­

straints (3.17) and (3.18). The corresponding models are labelled (HP3) and 

(HP3*) respectively. 

Unfortunately, these models contain a large set of variables, especially for de­

scribing flows on paths x~ : k E K, a E A. The next section provide suggestions 

to reduce the size of the problem, i.e., to set several flow variables to zero before 

solving the problem. 
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3.3 Preprocessing 

Thanks to the complete toU subgraph structure, each feasible path from an ori­

gin to a destination contains a single toU arc, and there exists a bijection between 

the toll arc set for a commodity and the corresponding path set. Further, the paths 

that are never used by a given commodity can be deleted, i.e., the corresponding 

flow variables are set to zero. 

Property For each commodity k E K, the toll arcs a E A such that c~ > c~d 

are never used, i.e., one can set x~ O. 

For the Constrained Complete Toll NPP, an improved preprocessing can be 

applied according to the Monotonicity constraints. Let us introduce the following 

definition. An illustration of this definition is provided in Figure 3.5. 

Definition 7 FoT' aU a in A, the following set is defined: 

Ca {b E A: t(a) :::; t(b) < h(b) :::; h(a) OT' t(a) ~ t(b) > h(b) ~ h(a)}. 

In the CCT-NPP, the toll variables must be such that ta ~ tb for all b in 

~. According to the following proposition, for each commodity, several additional 

paths (toU arcs) are never used, and the corresponding flow variables can be set to 

zero. 
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Fig;ure 3.5: Example of a toll arc b E 

Proposition 1 (Constrained Complete Toll NPP) Let a, b E A be two toll arcs of 

the netwo7'k such that b E 12a. If the fixed costs are such that c~ < c~ for a given 

commodity k E K, then one can set x~ = 0 sinee the corresponding path is never 

used. 

Proof 

The cost of the path containing b E A is c~ + tb for commodity k, while the cost of 

the path containing a E A is c~ + ta. As the Monotonicity constraints impose that 

ta ~ tb, the cost of the path containing a E A is always larger than the cost of the 

path containing b E A for commodity k, and one can set x! O. o 

Finally, in order to complete the models (HP3) and (HP3*), the next section 

provides settings for the constants M:, Na : k E K, a E A. 

3.4 Setting the constants M and N 

For each commodity k E K and each toll arc a E A, the constants M:, Na that 

appear in models (HP3) and (HP3*) represent upper bounds for p! and ta variables. 
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Constant M: represents the largest toU that can be imposed on the toU arc 

a E A for commodity k E K. Dewez (2004, [22]) shows that, for aU k E K and 

for aU a E A, constants M: = max{O, C~d - c~} are valid for (HP3*), thus also 

for (HP3). lndeed, the network users travel on shortest paths with respect to a 

cost equal to the sum of toUs and initial costs. Hence it is clear that the largest 

toU that can be imposed on a toU arc a for commodity k is equal to the difference 

between the cost of the toU free path and the cost of the toU path a for commodity k. 

Next, constant Na represents the largest toU that can be set on the toU arc 

a E A among aU commodities. Depending on whether the Constrained or General 

Complete ToU NPP is considered, different settings are applied for these constants. 

In what concerns the General Complete ToU NPP, the constants Na = maXkEIC !vI: 

for aU a E A are clearly valid for (HP3). Unfortunately, when adding Triangle and 

Monotonicity constraints to the problem, the previous settings for Na : a E A are no 

longer valid. By contradiction, assume Na = maXkEIC M: for aU a E A, and consider 

b E Ca' If maxkEIC M: < maxkEIC Mt, there do es not exist any feasible solution of 

the problem which satisfies the Monotonicity constraint ta ~ tb. As a consequence, 

for the Constrained Complete ToU NPP, the constants Na = N = maXkEIC,aEA M: 

are valid for (HP3*). 

With these settings, models (HP3) and (HP3*) can be implemented efficiently. 

We refer the reader to Chapter 6 for numerical results. In the next section, we 

praye that the Constrained and General Complete ToU NPP are NP-hard. 

3.5 Complexity 

As a highway network can take several specific formats, we distinguish three 

cases. First, we consider a single directional highway network, i.e., aU toU arcs are 
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oriented in the same direction: t( a) < h( a) for aU a E A or t( a) > h( a) for aU 

a E A. Next, we consider a more general bi-directional highway network, in which 

toU arcs appear in both directions of the highway. FinaUy, we also consider a third 

case, in which the bi-directional highway network contains feasible access from aIl 

origins to aIl entry nodes of the highway and from aU exit nodes of the highway to 

aU destinations. 

It has been shown by Dewez (2004, [22]) that the Constrained Complete ToU 

Network Pricing Problem is polynomiaUy solvable when either a single commodity 

or a single toU arc is involved. In contrast, we prove that the Constrained Complete 

ToU NPP is NP-hard, using a reduction from 3-SAT. Note that similar reductions 

have been used by Roch et al. (2005, [57]) for the Network Pricing Problem or 

Grigoriev et al. (2005, [32]) for the Cross River Network Pricing Problem, which 

are also based on a reduction from 3 - SAT. 

Definition 8 Let Xl, ... , Xn be n Boolean variables, and F = !\~~l (lil V li2 V li3) be 

a conjunctive normal form of m clauses with literals lij : j = 1,2,3 that represent 

a variable Xi or its negation. Given a su ch conjunctive normal form, 3 - S AT 

consists in fin ding an assignment of value TRUE or FALSE to the variables such 

that the formula is TRUE. 

Proposition 2 The single directional Constrained Complete Toll NPP is NP­

hard. 

Proof 

Any conjunctive normal form F = !\~l (lil V li2 V li3), where lij : j = 1,2,3, repre­

sents a variable Xi : i E {1, ... , n} or its negation, can be polynomiaUy converted to 

an instance of the Constrained Complete ToU NPP, in its decision form. 
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For each variable Xi : i E {l, ... , n}, a subnetwork is constructed as shown in Figure 

3.6. 

3 
2 

3 

Figure 3.6: Subnetwork for variable Xi (single directional Constrained Complete 

Toll NPP). 

Each of these subnetworks contains three commodities (aij
, dij

) : j E {l, 2, 3} with 

unit demand, and two toll arcs ai, ai of zero fixed cost corresponding to the truth 

and false assignment for variable Xi respectively. Further, in any subnetwork, an arc 

is added from the tail no de of arc ai to the head node of arc ai, which corresponds 

tci ai n ai. Toll free arcs of cost zero connect ail (resp. a i3 ) to the tail no de of arc 

ai (resp. ai), the head no de of arc ai (resp. ai) to dil (resp. di3
), ai2 to both tail 

nodes of toll arcs, and both head nodes of toll arcs to di2 . Toll free arcs (ail, dil ) 

of cost 3, (ai3 , di3 ) of cost 3 and (ai2 , di2 ) of cost 2 are also added. 

Henee an upper bound on the revenue for each subnetwork is 7, obtained by setting 

to 2 the toll on either ai or ai and the other ones to 3. In all other cases, the 

revenue cannot exeeed 6. Then, the subnetworks are linked together so that the 

single directional highway corresponds to the set of all connected subnetworks. 

Note that the toll of 3 on arc ai n ai ensures that this arc is never taken. Indeed, 

suppose that commodity i2 chooses this arc ai n ai (there is no path using this arc 

for commodities il and i3). As the revenue on i2 is bounded by atoll free arc of 

cost 2, the toll on the arc ai n ai must be smaller or equal to 2. But then, due to 
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the Monotonicity constraints added to the problem, tolls on the other two arcs of 

the subnetworks cannot exceed 2 and the maximal revenue of 7 cannot be reached, 

which is a contradiction. Aiso note that the toll free arcs that do not appear from 

some origins to tail nodes of toU arcs (resp. from head nodes of toU arcs to some 

destinations) are supposed to be so expensive that they can never be used and they 

are not depicted in the network graph. 

Further, for each clause k, a clause-commodity (ok, dk) with unit demand is con­

structed as depicted in Figure 3.7. 

, 
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, 
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, , 
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Figure 3.7: Part of network for F = ( ... V Xi V Xj) A (Xj V Xz V ... ) A ... (single 

directional Constrained Complete Toll NPP). 

If variable Xi (resp. Xi) is a literaI of clause k, toll free arcs of cost 0 are added from 
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Ok to the tail node of ai (resp. ai) and from the head node of ai (resp. ai) to dk
, 

which means that toU arc ai belongs to the clause-commodity k. Further, if two or 

three toU arcs are connected, in the same direction (in the highway graph) and be­

long to the same clause-commodity, toU arcs are added between the corresponding 

entry and exit nodes of the network. For the part of network example depicted in 

Figure 3.7, a single toU arc is added between the tail node of aj and the head node 

of az . Those addition al toU arcs correspond to the intersection of corresponding 

variables, i.e., for the example the toU arc is aj n az . Note that there is no arc 

linking tail and head nodes of toU arcs belonging to different clause-commodities, 

because there does not exist any path which could include them both. ToUs on the 

new arcs aj n az are set to 2 if aj and az are both set to 2, and to 3 otherwise. 

FinaUy, an addition al toU free arc (Ok, dk ) of cost 2 is added, which defines an upper 

bound of 2 on the revenue from each clause-commodity. 

Now let us show that a satisfying truth assignment for F exists if and only if the 

revenue for the Constrained Complete ToU NPP is equal to 2m + 7n, where m is 

the number of clauses and n is the number of variables. 

Assume there exists a satisfying truth assignment, which means that at least one 

literaI is true in each clause. We set the corresponding toUs to 2, and the other 

toUs (in the corresponding subnetworks) to 3. Then the total revenue from aU 

clause-commodities is 2m. For aU remaining subnetworks, if any (i.e., this situa­

tion only happens if a variable Xi does not appear in any clause), the toU arcs are 

set arbitrarily to 2 and 3 for a variable and its negation respectively. Henee the 

revenue from aU subnetworks is 7n, which means that the total revenue is 2m + 7n. 

Conversely, suppose there exists toUs such that the total revenue is 2m + 7n. The 

maximal possible revenue from aU subnetworks is 7n, only achievable by setting 

one toU per subnetwork to 2 and the other ones to 3. On the other hand, the 

maximal possible revenue from aU clause-commodities is 2m. We set to true the 
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literaIs corresponding to arcs with toU 2, and to false the others. This corresponds 

to a weU-defined assignment for F, since there is exactly one toU of 2 in each sub­

network. Further, each clause-commodity contributes to the total revenue with a 

toU of 2, which means that at least one literaI per clause is true, and there exists 

a truth assignment for F. 0 

Next, we extend the previous result to a more general highway network, which 

contains toU arcs in both directions of the highway. 

Proposition 3 The bi-directional Constrained Complete Toll NPP is NP-hard. 

Proof 

As toU arcs can now appear in both direction of the highway, subnetworks for 

variables Xi : i E {l, ... , n} are constructed in a slightly different way, as shown in 

Figure 3.8. 

3 

Figure 3.8: Subnetwork for variable Xi. 

We consider that toU arcs ai : i E {l, ... , n} are in one direction of the highway, 

while toU arcs ai : i E {l, ... , n} are in the other direction. 

Further, for each clause-commodity and as for the single direction al graph, if two 

or three connected and with same direction (in the highway graph) toU arcs belong 
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to the same clause-commodity, toll arcs are added between the corresponding entry 

and exit nodes of the network. Such a network is depicted in Figure 3.9. 
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Figure 3.9: Subnetwork for F = ( ... V Xi V Xj) 1\ (Xj V Xz V ... ) 1\ ... (bi-directional 

Constrained Complete Toll NPP). 

As the users are supposed to choose one direction or the other of the highway, no 

toll arc is added between the tail node of a toll arc in one direction of the highway 

network to the head node of another toll arc in the other direction of the highway 

network. Then, the same argument as before can be applied. o 

Note that the problem instances constructed in both preceding proofs contain 

non feasible access from several origins to the highway, or from the highway to sev-
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eral destinations. It means that the corresponding path are so expensive that they 

could never be taken. Renee we consider a third case, in which the bi-directional 

highway network contains feasible aceess from aU origins to aU entry nodes of the 

highway and from aU exit nodes of the highway to aU destinations. 

Proposition 4 The bi-directional Constrained Complete Toll NPP is NP-hard, 

even if access to all entry nodes (resp. from all exit nodes) is feasible from all 

origins (resp. to all destinations). 

Proof 

This additional condition means that no path is so expensive that it could never 

be taken, which is slightly different from the situation described before. 

Subnetworks are constructed as before, exeept that several additional toU free arcs 

(the ones that were too expensive) are added so that there is one toU free arc from 

any origin to any tail node of a toU arc, and from any head node of a toU arc to any 

destination. For each commodity k and for each toU arc ai, the cost on the arcs 

(ok, t (ai)) and (h( ai), dk) are set such that the sum of both fixed costs is equal to 

the cost of the toU free arc (ok, dk
). Such a subnetwork is depicted in Figure 3.10. 

2 

3 

Figure 3.10: Subnetwork for variable Xi (AU feasible aceess Constrained Complete 

ToU NPP) 

Renee the new arcs can only be used if toUs are set to zero on the corresponding 
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arcs, which do es not lead to a maximal revenue for the leader. Then, tolls are set 

as before and the same argument can be applied. D 

It is clear that very similar proofs can be derived for the General Complete 

ToU NPP. For space considerations, we omit the proof that the Basic NPP is also 

NP-hard (see the Appendix for a detailed proof). 



CHAPTER 4 

VALID INEQUALITIES 

Solving large mixed integer linear programs is hard. Renee, a common practice 

consists of appending valid inequalities to the initial model. These can, sometimes 

but not ever, help to solve 'faster or better' the initial problem. By 'faster or 

better', we mean to decrease (i) the computing time to solve the problem, (ii) the 

number of nodes in the branch and eut algorithm, or (iii) the gap between the 

optimal solution value of the linear relaxation (i.e., 0 :S x~ :S 1 in our problem) 

and the optimal solution value of the integer problem. 

In this chapter, we propose several new valid inequalities for the Constrained 

Complete Toll NPP and General Complete Toll NPP. We used the open souree 

software Porta (see http:j jwww.zib.dejOptimizationjSoftwarejPortaj for more de­

tails) , which offers a collection of routines for analysing polyhedra. More specifi­

cally, given a set of inequalities, the software returns the set of vertices and extreme 

rays of the corresponding polyhedron. Conversely, given a set of vertices and ex­

treme rays of a polyhedron, it returns the corresponding faeet equations. Using 

this specifie routine, we obtain the faeet equations for very small instancesl of the 

CCT-NPP and GCT-NPP. Next, we generalize sorne of these facet equations, in 

order to obtain valid inequalities for a multi-commodity problem. The efficiency 

of the valid inequalities will be examined, both theoretically and numerically, in 

Chapters 6 and 7. 

1 By very smaU instances, we mean a single commodity and at most five entry and exit nodes 
on the highway for the CCT-NPP, and at most two commodities and five entry and exit nodes for 
the GCT-NPP. lndeed, as the number of commodities or toll arcs increase, so does the number 
of variables and constraints of the problem. 
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In the next sections, we propose valid inequalities that strengthen the 'Shortest 

Path' constraints (3.22) and 'Profit Upper Bound' constraints (3.23) of (HP3) and 

(HP3*). 

4.1 Strengthening the Shortest Path Inequalities 

The valid inequalities presented in this section involve a pair k l , k2 E K of 

commodities, and strengthen the 'Shortest Path' constraints (3.22) of (HP3). RecaU 

that these constraints ensure that the cost of the path chosen by commodity k l 

at optimality is smaUer than (or equal to) the cost of any other path for this 

commodity. The valid inequalities proposed state that the cost of the path chosen 

by commodity k l also depends on the choice of a path b for commodity k2 . 

Proposition 5 Inequalities 

( 4.1) 

L (p~l + C~lX~l) + c~à(1- LX~l)::; c~à + L (p~2 + (C~l - C~à)X~2) (4.2) 
bEA bEA bEA \S 

where k l , k2 E K, a E A and 5 is any subset of A (possibly the empty set), are valid 

for CCT-NPP and GCT-NPP. 

Proof 

Let k l , k2 E K and 5 ç A. If X~l = 0 for aU b E A, then: 

• If there exists b E A \ (5 U {a}) such that X~2 = 1, (4.1)-(4.2) yield c~à ::; 
ta + p~2 + C~l for aU a E A and c~à ::; p~2 + C~l respectively. As p~2 = tb by 

(3.24) and (3.25), the inequalities imply that the cost of the path containing 



45 

b E A must be than the cost of the toll free path for commodity k l , 

and are valid by (3.22) and (3.26). 

• In aIl other cases, (4.1)-(4.2) yield c!à ~ ta + C~l for aIl a E A and c!à ~ c!à 

respectively, which are valid by (3.22). 

Now assume that there b E A such that =1. 

• If there exists d E A \ (SU {a}) such that X~2 = 1, (4.1)-(4.2) yield p~l +C~l ~ 

ta +p~2 for aIl a E A and p~l +C~l ~ p~2 +C~l respectively. As p~l = tb and 

p~2 = td by (3.24) and (3.25), the inequalities me an that the path containing 

b E A must be cheaper than the path containing d E A for commodity k l , 

and are valid by (3.22) and (3.26). 

• In aIl other cases (i.e., if there does not exist any d E A \ (S U {a}) such 

1), (4.1)-(4.2) become p~l + C~l ~ ta + C~l for all a E A and 

p~l + C~l ~ C~d respectively. This means that the path containing b E A must 

be cheaper than any other path for commodity kI , and are valid by (3.22). 0 

Note that the Strengthened Shortest Path inequalities (4.1 )-( 4.2) still hold when 

k1 = k2 = k. In this case, they become 

L (P: + c:x:) + c~d(1 L xt) ~ ta + C~ + L (p: + (c: - c~)x~) (4.3) 
bEA bEA bEA\(SU{a}) 

L (P: + c:x~) + c~Al- LX:) ~ C~d + L (p~ + (c~ - C~d)X~) (4.4) 
~A ~A ~A~ 

for aH k E !C, for aIl a E A and for all S ç A. However, (4.4) can be equivalently 

rewritten as: 

Vk E J(,VS ç A 
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which are redundant by constraints (3.23). 

Any choice for the set 5 is valid. Therefore the number of inequalities (4.1)-(4.2) 

is exponential and an efficient separation procedure is required. Let (E, p, x) be a 

current fractional solution of (HP3). For each commodity k1 E !C, the separation 

problem consists in determining a commodity k2 E !C, a toU arc a E A and a subset 

S of A such that the corresponding inequalities (4.1)-(4.2) are most violated, i.e., 

minimizing the respective right hand sides of these inequalities. For (4.1), we only 

consider inequalities such that C~1 ~ C~1 for aU b E A \ (S U {a} ), as only these 

are stronger than the Short est Path constraints (3.22). Further, as we would like 

to test the efficiency of both inequalities (4.1) and (4.2), we devise a separation 

procedure for each family. 

For each commodity k1 E !C, the separation procedure is the foUowing one. 

First, sort the toU arcs so that c} ~ ... ~ c~ ~ C~d' where n is the number of toU 

arcs in the network. Our goal is to construct the right hand sides of (4.1) and (4.2) 

as smaU as possible. Hence, for a given commodity k2 and a given toU arc a, the 

toU arcs in A \ (5 U {a}) (resp. A \ 5) are these for which: 

l.e., 

(4.5) 

Hence, for any commodity k2 E !C, each toU arc b E Ais assigned to a node of a 
_k2 + k1 _k2 

singly-linked list so that the corresponding values Pb _~b2 X
b are sorted in increasing 

X b 

order, i.e., each node of this list contains a toU arc as data and points to the node 
_k2 + k1 _k2 

which contains the toU arc b E A with the next largest term Pb _~~ X
b 

X b 

Then, for each commodity k2 and for toU arcs a going from 1 to n (i.e., sorted 

in increasing order), the sets A \ 5 are constructed sequentiaUy in order to obtain 

the smaUest values for the respective right hand sides of inequalities (4.1)-(4.2) 



47 

corresponding to commodity k1. Note that, for a given commodity k2 , the smaUest 

right hand si de values of (4.1) do not differ very much from a given toU arc a to 

the next one a + 1 (in terms of increasing order of the corresponding fixed costs), 

as if a E A \ S for a given toU arc, then a + 1 E A \ S by (4.5). FinaUy, we 

deduce the smaUest values for the right hand sides of inequalities (4.1) and (4.2) 

among aU k2 E K. For each commodity k1 E K, this separation procedure can be 

computed in O(knlogn), where k and n are the number of commodities and toU 

arcs respectively. 

We also derive other valid inequalities for the CCT-NPP and GCT-NPP, that 

tighten the 'Profit Upper Bound' constraints (3.23). These are presented in the 

next section. 

4.2 Strengthening the Profit Upper Bound Inequalities 

In this section, we propose valid inequalities for the CCT-NPP and GCT-NPP 

that strengthen the 'Profit Upper Bound' constraints (3.23). For any pair of com­

modities k1, k2 E K and any toU arc a E A, these ones link the profit variables p~l, 

p~2 with flows on both commodities Xkl and Xk2. 

First note that, due to the fixed costs c~ : k E K, a E A, any toU arc for a given 

commodity k1 E K cannot be ch os en alongside with any other toU arc for another 

commodity k2 E K. More formaUy, we have the foUowing definition. 

Definition 9 For any pair of commodities k1 , k2 E K, two toll arcs a, b E A are 

said ta be compatible for k1 and k2 respectively if there exists a feasible solution of 

(HP3) (resp. (HP3*)) su ch that X~l = 1 and X~2 = 1. For clarity of notation, this 

is labelled (b, k1) rv (a, k2 ) (and (b, k1) f (a, k2 ) otherwise). 
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The mam constraints of (HP3) (resp. (HP3*)) that influence compatibility 

are the Shortest Path constraints (3.22). The following lemma states a necessary 

condition such that two toll arcs are compatible for a pair of commodities. 

Lemma 1 For any pair of commodities k1, k2 E K and for any toll arcs a, b E A, 

a necessary condition sa that (b, kI) rv (a, k2 ) is 

Proof 

x~! = 1 = X~2 implies that tb + c~! ::; ta + c~! and ta + C~2 ::; tb + C~2 by the Shortest 

Path constraints (3.22). This yields c~! - c~! ::; ta - tb ::; C~2 - C~2, which proves 

that the condition is necessary. o 

For the GCT-NPP (i.e., model (HP3)), and assuming that the network has 

been presolved according to the Property mentioned in Section 3.3, the necessary 

condition mentioned above is also sufficient to allow compatibility between two toll 

arcs for a pair of commodities. 

Lemma 2 For any pair of commodities k1, k2 E K and for any toll arcs a, b E A 

such that ck! < ck! (resp. Ck2 < ck2 ) and ck2 < ck2 (resp. ck! <_ ck
ad!), a necessary b-ad b-ad a-ad a 

and sufficient condition sa that (b, kI) rv (a, k2 ) for (HP3) is 

Proof 

As we already know that the condition is necessary, let us proof that it is sufficient. 

Assuming that ck2 - ck2 > 0 point xk! = 1 = Xk2 tb = ·pk! = 0 t = pk2 = ck2 _ Ck2 
b a - , b a' b ,a a b a 
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and td = Nd for aU d E A \ {a, b} is a feasible solution of (HP3). lndeed, the 

Shortest Path constraints (3.22) imply that 

thus also 

which are valid sinee C~2 - C~l ~ C~2 - C~l. The other Shortest Path constraints are 

clearly valid sinee variables td have been set sufficiently large for all d E A \ {a, b}. 

Further, C~2 ~ c~â ensures that p~2 ~ M:2, i.e., constraints (3.23) are satisfied. 

In the same way, if C~2 - C~2 < 0, point X~l = 1 = X~2, ta = 0, tb = C~2 - C~2 and 

td = Nd for aU dE A \ {a, b} is a feasible solution of (HP3). o 

Next, given the profit upper bounds M: : k E K, a E A, the ftow values Xkl for 

a commodity k1 E K give information about the feasible ftow values for another 

commodity k2 E K. This is expressed in the foUowing lemma. 

Lemma 3 For any pair of commodities k1 , k2 E K and for any toll arc a E A such 

that M:2 ~ M:l, X~l = 1 implies that there exists b E A such that X~2 = 1, with 

total cast tb + C~2 ~ ta + C~2 . 

Proof 

As X~l = 1, one should have ta = p~l ~ M:l by (3.23), (3.24) and (3.25). Henee 

ta ~ M:2, which means that the path containing toU arc a E A is cheaper than the 

toU free path for commodity k2 . o 
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Now we can present several valid inequalities that link the profit variables p~l, 

p!2 with flows on both commodities Xkl and Xk2. They exploit the notion of compat­

ibility defined above and allow to strengthen the Profit Upper Bound constraints 

(3.23). These rely on the following sets. 

Definition 10 For any pair of commodities k l , k2 E K and for any toU arc a E A, 

we define the set 

(4.6) 

which contain the toU arcs b E A such that (b, kd rv (a, k2 ) and (b, k2 ) rf (a, kl)' 

The complementary subset A \ A~ is denoted A~. 

First we propose valid inequalities that link a given Profit Upper Bound con­

straint p!2 :; M~2X~2 with (i) the flow variables X~l : b E A for another commodity 

k l and (ii) the remaining flow variables X~2 : b E A for commodity k2 . 

Proposition 6 Consider a pair of commodities k1 , k2 E K, a toll arc a E A such 

that jVI~l :; 1\tf~2 and b* argrninb A>'Mk2>Mkl {C~l - C~2}. Under the assumption 
E""a' b - b 

that there do es not exist any b E A \ { a} such that c!2 - c!l = C~2 - C~l, the foUowing 

inequalities are valid for CCT-NPP and GCT-NPP: 

p~2 :; M:2X~2 + (M:2 - M:l) ( I: (X~2 - X~l) - X~l) (4.7) 

bEAh{a} 

p~2 :; lVI:2 X~2 + (M:2 - M:l) ( I: (X~2 - X~l) - X~l) 
bEA~\{a} 

(4.8) 
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Note that, for given kl , k2 E K and a E A, the inequality (4.7) (resp. (4.8)) is 

non redundant if and only if xZ1 1 X!2 for b a (resp. b = a or b E A~), and 

helps to restrain the upper bound on p!2 in this case. 

Proof 

Let k1 , k2 E K and a E A be fixed. If 0 for aIl a E then X~l = 0 for aIl 
~--------------

a E A such that M:2 ;::: M:l by Lemma 3. This yields 0 :; O. 

Now assume that X~2 = 1. The case xZ1 1 with b E A~ \ {a} is avoided by Lemma 

2 and the fact that there does not any b E A \ {a} such that C!2 -C~l = cZ2 -cZl 
. 

Otherwise: 

• If .T~l = 1, inequalities (4.7)-(4.8) become p!2 :; M!;l, which is valid by (3.23), 

(3.24), (3.25). 

• If xZ1 = 1 with b E A~ such that 111;2 ;::: M;l, (4.7)-(4.8) yield p~2 :; M!;2 

and p~2 :; M;'l + c~: - C~2. The first inequality is valid by (3.23). For 

the second inequality, constraint (3.22) imposes that p!2 + C~2 :; tb + cZ2. 

Further, p~l :; M;l by (3.23). As tb = p:l by (3.24) and (3.25), one has 

p~2 :; A1;1 + C~2 - C~2. The result follows from the definition of b*. 

• In aIl other cases, one obtains p!2 :; l\1f/;2, which is valid by (3.23). 

If X~2 = 1 with b E A~ \ {a} and X~l = 0 for aIl a E A or X~l 1 with d E A~ : 

M;2 < lvf;\ inequalities (4.7)-(4.8) become 0 :; M/;2 M/;l. If X~l 

d E A~ such that M;2 ;::: M;l, inequalities (4.7)-(4.8) become 0 :; A1/;2 

1 with 

A1k1 and a 

o :; M/;2 - M!;l - lvf;'2 + M;'l respectively, valid by definition of b*. Otherwise, 

if X~l = 1 with d E A~) one obtains 0 :; O. 

If x:2 = 1 for any b E A~ such that M;2 ;::: M;l and X~l 0 for aIl a E A or 

X~l = 1 with d E A~ : A1;2 < M;l, inequalities (4.7)-(4.8) become 0 :; 0 

and 0 < A1;.2 - M;'l, which is valid by the definition of b*. If X~l 1 for any 
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d E A~ : M;2 2 M;l, one obtains 0 ::; o. Other cases, i.e., X~l = 1 for any d E A~ 

cannot occur due to Lemma 2. Indeed, it would yield C~2 - C~l ::; C~2 - C~l, which 

is impossible by definition of the sets A~ and A~. 

Finally, if X~2 = 1 for any b E A~ such that M;2 < M;l and X~l = 1 with d E A~ : 

M;2 < M;l, inequalities (4.7)-(4.8) become 0 ::; O. The case X~l = 0 for aU a E A 

is avoided by Lemma 3. Other cases are avoided by Lemma 2. Indeed, case X~l = 1 

for any d E A~ would yield C~2 - C~l ::; C~2 - C~l, which is impossible by definition 

of the sets A~ and A~. Case X~l = 1 for any d E A~ such that M;2 2 M~l 

would yield Ck2 - Ckl < Ck2 - Ck1 As one knows that Ck2 - Ckl < Ck2 - Ckl and b b-d d· d d-ad ad 

[J 

Further, we also propose similar valid inequalities that link a given Profit Upper 

Bound constraint (3.23) p~2 ::; M~2X~2 with (i) the profit variable p~l for another 

commodity kI , (ii) the fiow variables X~l : b E IC for this same commodity kI and 

(iii) the remaining fiow variables for commodity k2 . 

Proposition 7 Gonsider a pair of commodities kI , k2 E IC, a toll arc a E A such 

that M~l ::; M~2 and b* = arg minb A> .Mk2 >Mkl {C~l - C~2}. Under the assumption 
E a· b - b 

that there does not exist any b E A \ {a} such that C~2 - C~l = C~2 - C~l, the following 

inequalities are valid for GGT-NPP and GGT-NPP: 

Pk2 _ pkl < M k2 '"""' (xk2 _ Xkl) 
a a- a~b b ( 4.9) 

bEA~ 

(4.10) 
bEA~ 

Note that, for given kI , k2 E IC and a E A, (4.9)-(4.10) are non redundant either 

if Xkl = 1 = Xk2 or if Xkl = 1 = Xk2 for b E A> such that M k2 > Mkl a a b a a b- b· 



Proof 

Let kI , k2 E K and a E A be fixed. 

If x~! = 0 for aIl a E A, then either 

• X~2 = 1, yielding p~2 ::; M:2 which is valid by (3.23); 

• X~2 = 1 for any b E Af \ {a}, which yields 0 ::; lVI:2; 
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• X~2 = 1 with b E A~ such that M;2 ~ M;! and (4.9)-(4.10) become 0 ::; 0 

and 0 ::; M;} - M;}, which is valid by definition of b*. 

• Or, in aIl other cases, one obtains 0 ::; o. 

If x~! = 1, then either: 

• X~2 = 1, and (4.9)-(4.10) become p~2 - p~! ::; 0, which is valid by (3.24); 

• X~2 = 1 for any b E Af \ {a}, which yields to -p~!::; 0, valid by (3.26); 

• X~2 = 1 with b E A~ are avoided by Lemma 2. 

• X~2 = 0 for aIl b E A cannot occur due to Lemma 3. 

If x~! = 1 for any b E Af \ {a} and if X~2 = 1 for any d E Af \ {a}, one 0 btains 

o ::; O. The case X~2 = 0 for aIl a E A is avoided by Lemma 3. AH other cases 

cannot occur due to Lemma 2. lndeed, case X~2 = 1 would yield C~2 -c~! ::; C~2 -c~!, 

which is impossible since b E Af \ {a} and there does not exists any b E A \ {a} 

such that Ck2 - c k ! = Ck2 - c
k

! Case Xk2 = 1 with d E A> would yield Ck2 - c
k

! < a a b b' d a d d-

C~2 - c~!. Or, by definition of the sets Af and A~, one has C~2 - c~! > C~2 - c~! 

and C~2 - c~! ::; C~2 - C~!, which is a contradiction. 

If x~! = 1 for any b E A~ such that M;2 ~ M;!, case X~2 = 0 for aIl a E A is 

avoided by Lemma 3. Case X~2 = 1 with d E A~ such that Mj2 < Mj! cannot 

occur. lndeed, Lemma 1 yields C~2 - C~l ::; C~2 - C~l. But one also knows that 

Ck2 _ c
k

! < Ck2 - c
k

! and Ck2 - c k ! > Ck2 - c
k

! which is a contradiction Otherwise b b - ad ad d d ad ad' ., 
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• if X~2 = 1, (4.9) becomes p~2 ::; M~2, which is valid by (3.23). Further, 

constraints (3.22) and (3.23) impose p~2 + C~2 ::; tb + C~2 and p~l ::; M;l 

respectively. As tb = p~l by (3.24) and (3.25), this yields p~2 ::; M;l + C~2 -

C~2 ::; M~l + c~; - C~2 by definition of b* and (4.10) is valid. 

• If X~2 = 1 for any d E A~ \ {a}, one obtains 0 ::; M~2 and 0 ::; M~2 + M~l -
M~2, valid by definition of b*. 

• The last case X~2 = 1 for any d E A~ such that M;2 2:: M;l leads to 0 ::; o. 

Finally, if X~l = 1 with b E A~ such that M;2 < M;l, then either 

• xk2 = 1 yielding pk2 < M k2 valid by (3 23)· a' a - a' ., 

• X~2 = 1 for any d E A~ \ {a}, and one obtains 0 ::; M~2; 

• X~2 = 1 for any d E A~ such that M;2 2:: M;l, and (4.9)-(4.10) become 0 ::; 0 

and 0 ::; M~2 - M~l, which is valid by definition of b*. 

• Or, in all other cases, one obtains 0 ::; O. o 

Finally, the following valid inequalities link the profit variables p~2, p~l for a 

given toll arc a E A and two commodities k1 , k2 E K with corresponding flow 

variables X~l, X~2 : b E A. Even if they do not really strengthen the Profit Upper 

Bound constraints (3.23), we decide to present these here sinee they are very similar 

to the previous valid inequalities proposed. 

Proposition 8 For any pair of commodities k1 , k2 E K and for any toll arc a E A 

such that M~l ::; M~2, assuming that there does not exist any b E A \ {a} such 

that C~2 - C~l = C~2 - C~l, the following inequalities are valid for GGT-NPP and 

GGT-NPP: 

p~l _ p~2 ::; M:l L (X~2 - X~l). (4.11) 

bEA~\{a} 
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Proof 

Let k1 , k2 E K and a E A be fixed. If X~l = 0 for aU a E A, then either 

• X~2 1, yielding _p~2 ::; 0 which is valid by (3.26), 

• X~2 1 for any b E A~ \ {a}, which yields to 0 ::; M:l. 

• Or, in aIl other cases, one obtains 0 ::; O. 

If X~l = 1, then: 

• If x:2 1, (4.11) becomes p~l - p:2 ::; 0, which is valid by (3.24), 

• If X~2 1 for any b E A~ \ {a}, one obtains p~l ::; M:l, valid by (3.23). 

• Other cases, i.e., X~2 = 1 with b E A~ and X~2 

occur due to Lemmas 2 and 3 respectively. 

o for aH a E A, cannot 

If 1 for any b E , case X~2 = 0 for aIl a E A is avoided by Lemma 
~--------~----~~~ 

3. Further, cases X~2 = 1 or X~2 = 1 with d E A~ cannot occur due to Lemmas 

2. lndeed, X!2 = 1 would yield C~2 - C~l < C;2 - C~l, which is impossible sinee 

b E A~ \ { a} and there does not exists any b E A \ {a} such that C~2 - C~1 = C~2 - C~1 . 

The case X~2 1 with d E A~ would yield C~2 - C~l :::; C;2 - C;1, which is avoided 

b th d fi 't' f h A> d A< 0 h . . 'f kl 1 C y e e m Ions 0 t e sets a an fi' t erwlse, Le., 1 X d = lor any 

d E A~ \ {a}, one obtains 0:::; O. 

Finally, if 1 for any b E , then: 
~--------------~ 

• If X~2 1 for any d E A~ \ {a}, one obtains 0 :::; !vf:1 . 

• The case X~2 = 1 yields to _p~2 ::; 0, which is valid by (3.26). 

• AH other cases yield 0 :::; o. o 
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4.3 Extension 

U pon close inspection of the facet equations returned by Porta for smaIl in­

stances, one can infer that the preceding inequalities, as weIl as constraints of 

model (HP3), can be combined to produce new valid inequalities. 

For example, let us consider the two foIlowing inequalities 

P~2 _ p~l < M~2 ~ (xk2 _ xkl) 
a a- a6b b 

bEAf 

of type (4.9) and (3.23), with b E A~ \ {a} for the second inequality. These can be 

combined to produce the new valid inequality 

ap~2 + p~2 _ p~l < aM_k2 X~2 + M~2 ~ (Xk2 _ xkl) 
b a a- bb a 6 b b' (4.12) 

bEAf\{b} 

with 

Let us prove the validity of (4.12). If X~2 = 0, one obtains (4.9). Hence X~2 

1 = X~l with d E A~ is the only non trivial case, which yields 

But constraints (3.22) ensure that p~2 + C~2 :::; tb + C~2, while constraints (3.23) to 

(3.26) give tb = p~l ::; M;l for aIl b E A~. Thus the a value must correspond to 

the largest possible choice for tb = p~2, and the result foIlows. 

However, given the apparent number of possible combinations, deriving them 
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aU and/or trying to find the better combinations would be too long for this thesis. 

Further, before beginning such an analysis, one should ponder its real usefulness in 

a larger context compared to the difficulty of performing it. 

Also note that, if two toU arcs a, b E A are not compatible for a pair of com­

modities kI , k2 E K, i.e., (a, kI ) cf (b, k2 ), hence inequality X~l + X~2 ::; 1 holds. 

Based on this compatibility notion, one cou Id imagine to construct a confiict graph 

with vertices x~ : k E K, a E A, in which the arcs would represent 'non compat­

ibility' between vertices. In this graph, any clique of vertices would be a subset 

of 'non compatible' vertices and yields a corresponding valid inequality. However, 

this class of inequalities, which only contains fiow variables, does not appear in the 

facet equations given by Porta for smaU instances. Indeed, aU the facet equations 

contain at least one toU or profit variable ta, p~ : k E K, a E A. Hence we decided 

to focus on this second class of inequality, at least for the purpose of the thesis. 

4.4 Conclusion 

In this chapter, we proposed sever al families of valid inequalities for CCT-NPP 

and GCT-NPP. They exploit the underlying network structure, and strengthen 

important constraints of (HP3) and (HP3*) models. In the next chapters, we will 

study the efficiency of these valid inequalities, both theoreticaUy and numericaUy. 



CHAPTER 5 

ASSESSING THE VALID INEQUALITIES 

The aim of this chapter is to assess the valid inequalities presented in Chapter 

4. In that purpose, we restrict our attention to problems involving one or two 

commodities. In Section 1, we focus on single commodity problems. Several (HP3) 

and (HP3*) constraints, as well as valid inequalities from the preceding chapter, 

are proved to be facet defining for the single commodity CCT-NPP and GCT-NPP, 

i.e., for the polyhedron described by the convex hull of (HP3) or (HP3*) feasible 

solutions. Further, for the single commodity GCT-NPP, a complete description of 

the convex hull of (HP3) feasible solutions can be highlighted. Next, in Section 

2, we prove that sever al (HP3) constraints, as well as most valid inequalities from 

the preceding chapter, define facets for the two-commodity GCT-NPP, i.e., for the 

convex hull of (HP3) feasible solutions. 

5.1 Single commodity Problems 

While it is known that the single commodity case is polynomially solvable, yet 

its analysis provides sorne insight. This section aims to highlight several facets 

of the convex hull of (HP3*) solutions, i.e., for the Constrained Complete Toll 

NPP. For the single commodity General Complete Toll NPP, we also show that a 

complete description of the convex hull of (HP3) feasible solutions can be obtained. 

5.1.1 Single commodity CCT-NPP 

Now we focus on the Constrained Complete Toll NPP with a single commodity 

and, for notational simplicity, remove the index k. Let us denote by pc the convex 
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hull of feasible solutions for the Constrained Complete Toll NPP, i.e., 

pC = conv {(t; p; x) E ~~ x ~~ x {a, 1}n : (3.17) - (3.18), (3.21) - (3.27)} , 

where n is the number of toll arcs l . 

In what follows, we assume that the network has been preprocessed according 

to Section 3.3, i.e., the toll arcs that are never used are removed and the set A is 

modified accordingly. 

Note that, in the single commodity case, constraints (3.24) can be removed from 

the model (HP3), allowing to set variables ta : a E A to arbitrarily large values 

when the corresponding toll arcs a E A are not used, i.e., when x~ = a for all 

k E K. We introduce a scalar M such that M > Cod - Ca for all a E A. Further, 

let Ma = max{a, Cod - Ca} as defined in (HP3*), and denote by ea a unit vector in 

the direction a. We also denote by 1 a vector with all coordinat es equal to 1. 

We also recall the definition of the sets {2r that have been introduced in Sec­

tion 3.3, i.e., 

{2r = {b E A : t(a) :::; t(b) < h(b) :::; h(a) or t(a) ~ t(b) > h(b) ~ h(a)}. 

Further, we define similar sets Ca, for all a in A. The corresponding subnetworks 

are depicted in Figure 5.1. 

Definition 11 For each a in A, the following set is defined: 

Ca = {b E A : t(b) :::; t(a) < h(a) :::; h(b) or t(b) ~ t(a) > h(a) ~ h(b)}. 

1 For notational simplicity, dashed letters denote vectors. 
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Figure 5.1: Examples of b E Ca and b E Ca 

Renee, if Triangle and Monotonicity inequalities are included in the problem, the 

toll variables must satisfy ta ~ tb for all b in Ca' Note that an arc b is in Ca if and 

only if a is in Cb' 

Throughout the analysis, we assume that the arcs are totally ordered (labels 1 

to n) in a manner that is compatible with the partial order induced by the Mono­

tonicity and Triangle inequalities. More specifically, the coordinates of toll arcs are 

such that if b E Ca for sorne couple a, b E A, i.e., the corresponding toll variables 

satisfy ta ~ tb, th en a has a sm aller index (also denoted 'a') than b. 

First, we prove that pC is full dimensional. 

Proposition 9 The polyhedron pC has full dimension, i.e., Dim (pC) = 3n. 

Proof 

Suppose by contradiction that the points pC lie on a generic hyperplane at + J1p + 

,x = 6. The points (Ml; 0; 0) and (Ml + ~bEA:b::::a eb; 0; 0) belong to pC for all 
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a E A. It follows that 

ML ab = 8 and Nf L ab + L ab = 8, 
bEA bEA bEA:b:S;a 

thus aa = 0 for ail a E A and 8 = O. Further, the points 

(M(l - L eb) + L eb; 0; ea) 
bEQ" bEA:b<a 

(Ml + L eb + (Ma - M) L eb; Maea;ea) 
bEA:b<a 

are in pC for aU a E A, thus la = 0 = Pa for aU a E A and the result follows. 0 

One can also prove that several constraints of model (HP3*) define facets of 

pC. Let (t; p; x) be points of pC. In order to prove that a given inequality is facet 

defining for pC, we define H as the hyperplane induced by a given inequalîty, and 

9 as a generic hyperplane defined by at + pp + IX = 8. 

pC n H and we deduce that 9 = H. 

we select points of 

Proposition 10 Constraints (3.21), (3.23) and (3.26) are facet defining for pC. 

Proof 

(i) Let H = {(t;p;x): I:aEAxa = 1}. 

For aU a E A, we consider the points (M(l - eb); 0; ea) and 

(M(l I:bE!2a eb) + I:bEA:b<a eb; 0; ea) of pc n H. This yields 

M L ab + la = 8 and 
bEA\Qa 
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Renee aa = 0 and la = 8 for aU a E A. Next, points 

(Ml + (Ma - M) L eh; Maea; ea) 
bEQa 

are also in pC n H for aU a E A. Renee (Ja = 0 for aU a E A. 

(ii) Let H = {(t; p; x) : Pa = M(ix(i, 7i E A}. 

Points (Ml; 0; 0) and (Ml + LbEA:b:Sa eh; 0; 0) are in pC n H for aU a E A, 

which implies that 

bEA bEA bEA:b:Sa 

thus aa = 0 for aU a E A and 8 = O. Points (M(l - LbEQa eh); 0; ea) also 

belong to pC n H for aU a E A \ {ii}, and la = 0 for aU a E A \ {ii}. As 

(Ml + (Ma - M) LbEQa eh; Maea; ea) are in pC n H for aU a E A, it foUows 

that (Ja = 0 for aU a E A \ {ii} and la = -M(if3a. The result foUows. 

(iii) Let H = {(t;p;x): Pa = 0, Ci E A}. 

Points (Ml; 0; 0) and (Ml + LbEA:b:Sa eh; 0; 0) are in pC n H for aU a E A, 

thus aa = 0 for aU a E A and 8 = O. As (M(l - LbEQa eh); 0; e a) also belong 

to pC nH for aU a E A, it foUows that la = 0 for aU a E A. FinaUy, the points 

(Ml + (Ma - M) LbEQa eh; Maea; ea) are in pC nH for aU a E A \ {ii}, thus 

(3a = 0 for aU a E A \ {ii} and the result foUows. o 
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Further, the Triangle and Monotonicity constraints also define facets of pC. 

Proposition 11 The Triangle constraints (3.17) are facet defining for pC. 

Proof 

Let'H = {(t; p; x) : ta = ti; + tê , a, b, è E A S.t. t(a) 

Further, assume that the index are so that b < è. 

belongs to pC n 'H, which implies 

t(b), h(b) t(è), h(è) = h(a)}. 

point (M (1 + 2:.:bEA:b:Sà eb); 0; 0 ) 

MLab + i\1 L ab 8. 
bEA bEA:b::;a 

For all a E A \ {a}, points (i\1(1 + 2:.:bEA\{a}:b::;a eb) + Sea; 0; 0) are in pC n 'H 

with S = M for a < b, S = 21''v1 for b ::; a < c, and S 3M for a ;:::: è. It follows 

that 

MLab+ M L ab+ 8. 
bEA bEA\{a}:b::;a 

From the first case a < b we know that aa = 0 (for a 1= a) ; from the second one 

we conclude that aii = -ai; and that the other index aa 0; from the last one we 

obtain aa = -aè and aa = 0 for the other index. 8 O. 

Further, for aIl a E A such that a, b, c r:J ~, the points 

(M(l + L eb L eb); 0; ea) 

bE<Jâ bEQ., 

belong to pc n 'H. In those point coordinates, the first sum ensures that the given 

Triangle inequality holds at equality, while the second sum ensures that ta Pa 

(as imposed by constraints (3.24) and (3.25) of (RP3*)) and that the Monotonicity 

inequalities hold. For aIl a E A such that either a or b or c in 

(M(l 2:.:bEQa eb); 0; e a ) are in pC n 'H. Renee Îa = 0 for aIl a E A. 

the points 
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one considers points Next, for aIl a E A such that à, b, è rf. 

(1\1(1 + I:bé7â nA eb) + (!vIa - M) eb; Maea; ea ) of pC n Ji. Otherwise, Le., 

if either à or b or c is in the points 

are in pC n Ji. This yields Pa = 0 for aIl a E A and the result foIlows. D 

Proposition 12 The Monotonicity constraints (3.18) ta ~ tb are facet defining 

for pC if and only if Cd ~ Ca for all d E A such that b E ~ and à rf. Cd (see Figure 

5.2). 

,0 
" 1 

1 1 

l , 

d!Q 
1 1 \ 
l ,\ 
, ,b \ 
U-- ',a 
~: 

1 , , 
, 1 

g 

Figure 5.2: Part of network for the assumption of Proposition 29 

Proof 

Let Ji = {(t;p;x): t à = t b, à,b E A S.t. t(à) = t(b) < h(à) = h(b) + 1}. 

First, let us show that the proposition assumption is required. By contradiction, 

suppose that there exists d E A such that b E ~, à rf. and Cd > Ca (see 

5.2). If ed = 1, one must have Cd + td ~ Cà + tà, which implies td < But, as 

b E ~, one also has td ~ t b = t à for points of Ji. Renee aIl points of pC nJi belong 

to the hyperplane Xd = 0, which is a contradiction. 

Now assume that the proposition assumption holds. For aIl a E A \ {à}, points 
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(M(l + I:bEA\{à}:b:Sa eh) + Seà; 0; 0) are in pc n H if the constant S is so that 
- -

S = 0 for a < band S = M for a 2:: b. As (Ml; 0; 0) also belongs to pc n H, it 

follows that 

MLab = 8 and MLab + M 
bEA bEA bEA\{à}:b:Sa 

From the first case a < b we know that aa = 0 (for a =1= a) ; from the second one 

we conclu de that aà = -ab and that the other index aa = O. Renee 8 = O. 

Further, for all a E A, points (M(l - I:bEQaUQà eh); 0; ea ) are in pc n H. Note 

that imposing tb = 0 for all b E Cà allows that the given Monotonicity inequality 

holds at equality when a is so that b E~. This implies that ra = 0 for all a E A. 

Finally, for all a E A such that a, b tJ. Ca' one considers points 

(Ml + (Ma - M) L eh; Maea; ea) 
bEQa 

of pc n H. Otherwise, i.e., when b E ~, points 

(Ml + (Mb - M) L eh; Mbea; ea) 
bEQaUQà 

belong to pc nH. Again, the small change in those point coordinates (Ma becomes 

Mb) allows that the Monotonicity inequality involving a, b E A holds at equality. 

This yields (3a = 0 for all a E A, and the result follows. o 

Renee most constraints of the model (RP3*) define faeets of the convex hull 

of (RP3*) feasible solutions. Now let us focus on the valid inequalities presented 

in Chapter 4. For a single commodity, the Strengthened Profit Upper Bound 

inequalities (4.7) to (4.11) are obviously redundant, thus are not considered here. 
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In contrast, the Strengthened Shortest Path inequalities (4.1) and (4.2) become 

L (Pb + CbXb) + cod(1- LXb) :::; ta + Ca + L (Pb + (Cb - Ca)Xb) (5.1) 
bEA bEA bEA\(SU{a}) 

L (Pb + CbXb) + cod(1 - L Xb) :::; Cod + L (Pb + (Cb - Cod)Xb) (5.2) 
bEA bEA bEA \S 

for aIl a E A and for aIl S <::;; A. However, (5.2) can be equivalently rewritten as: 

LPb :::; L(Cod - Cb)Xb VS<::;;A 
bES bES 

which are redundant by constraints (3.23). 

Let us state the conditions in which the Strengthened Shortest Path inequalities 

( 4.7) define facets of pC. 

Proposition 13 The single commodity Strengthened Short est Pa th inequalities 

(5.1) L (Pb + CbXb) + cod(1 - L Xb) :::; tà + Cà + L (Pb + (Cb - Cà)Xb) 
bEA bEA bEA\(SU{à}) 

are facet defining for pC for all sets S such that Cà 2 Cb for all b in A \ (S U {à} ). 

Proof 

Considering a Strengthened Shortest Path inequality in its generic form, let H be 

defined as 

H = {(t;p;x) : tà - L Pa + L (Cod - Ca)xa + 
aESU{à} aESU{à} aEA\(SU{à}) 

à E A, S <::;; As. t. Cà 2 Ca Va E A \ (S U {à} ) } . 
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First, points 

(Ml + (Mâ - M) L eb;O;O) 
bEQii 

(Ml + (Mâ - M) L eb + L eb;O;O) 
bEA\{â}:b:=;a 

belong to pC n H for all a E A. This implies 

M L Cl'b + Nh L Cl'b = 8 and M L Cl'b+Mâ L Cl'b+ L Cl'b = 8, 
bEA\Qâ bEQa bEQa bEA\{â}:b:=;a 

thus Cl'b = 0 for any b :cf. il, and 8 = MaCl'â' 

The point (Ml + (Mâ - M) eb; Màea; eâ) ofpcnH yields to Mà Cl' à + Maf3a+ 

Îa = MaCl'a, and Îâ = -Maf3à' The point (M(l- I:bEQà eb);O;eà ) also belongs 

to pC n H, leading to Îa -Cl'à. 

Further, for all a E A \ (8 U {il}), points (M(l 

belong to pC n H, which implies "fa MaCl'a. From points 

(M(l L eb) + (Ca Ca - M) L eb); (Ca - ca)ea; ea) 
bEQa\Qii 

of pC n H, it follows that (Cà ca)f3a + Îa = Mà.Cl'â, and f3a = O. 

For aIl a E 8 \ {il}, the points 

(Ml + (Ma M) L eb + (Ma - M) L eb; Maea;ea) 
bEQa \Qâ 

are in pC n H, yielding Îa -Maf3a. If Ca 2': Câ, the point 

(M(l L eb) + (ca Ca - Nf) L eb; 0; ea) 
bEQâ 
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belongs to penH. Renee, (ca Cà)aà+~fi)' = Maaa and la = M(l.aà' Otherwise, i.e., 

if Ca < Ca, points (A1(1 - eb) + (ca Ca - M) LbEQ" \Qà eb; (Ca - ca)ea; ea) 

are in pc n H and (ca - ca)f3a + la IVfaaà' As la -Maf3a, we obtain f3a = -aà 

for ail a ES \ {à} and the result follows. 0 

In the next subseetion, we restriet our attention to the GCT-NPP. In this case, 

the Strengthened Shortest Path inequalities allow to present a complete description 

of the eonvex hull of feasible solutions for the corresponding single commodity 

problem. 

5.1.2 Single commodity GCT-NPP 

Now con si der the single commodity General Complete Toll KPP, and let us 

define p as the convex hull of feasible solutions for this problem, i.e., 

P=conv{(t;p;x) EIR~ xIR~ x {O,l}n: (3.21) (3.27)}. 

As pc ç P, we have the following results. 

Corollary 1 Dim(P) = 3n. 

Corollary 2 Ineq'llalit'ies 

Pa 2 ° Va E A 

L (Pb + CbXb) + cod(1- L Xb) ::;: ta + Ca + L (Pb + (Cb - Ca)Xb) 
bEA bEA bEA\(SU{a}) 

Va E A, VS ç A S.t. Ca 2 Cb Vb E A \ (S U {a}) 
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with Ma = max{O, Cod - Ca}, are facet defining for P. 

Further, this allows us to present a minimal complete description of P. 

Proposition 14 Let 15 = {(t; p; x) E lR~ x lR~ x lR~ : 

Pa 2:: 0 

(5.3) 

Va E A (5.4) 

Va E A (5.5) 

L (Pb + CbXb) + cod(I - L Xb) :S ta + Ca + L (Pb + (Cb - Ca)Xb) 
bEA bEA bEA\(SU{a}) 

Va E A, VS ÇA: Ca 2:: Cb Vb E A \ (S U {a}) (5.6) 

with Ma = max{O,Cod - Ca} }. Then 15 = P. 

Proof 

Let A = {l, ... , n} be the toll arcs of the network. We define a fractional point of 

15 as a point of 15 with a fractional component x, i.e., there exists i in {l, ... , n} 

such that 0 < Xi < 1. Similarly, an integer point of 15 is defined as a point of 15 
with an integer component x, i.e., Xi E {O, I} for aIl i in {l, ... , n}. 

We have proved that (5.3)-(5.6) define facets of P. Now one can show that any 

fractional point of P is not extremal. lndeed, let (t; p; x) be a fractional point of 

15, where 0 :S Xi :S 1 for aIl i E {l, ... , n} and there exists at least one Xi such that 

o < Xi < 1. This point can be presented as a convex combination of integer points 
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of 15: 

(t; p; x) 
. 1 n 

L Xi(t\ xPiei;ei) + (1- LXi) (tn +1;o;o) 
iE{I, ... ,n}:xi#O 2 i=1 

( . L._ Xi ti + (1 -t Xi)t
n
+1; p; X) , 

2E{I, ... ,n}.xi#O 2-1 

with 0 :s; Xi :s; 1 Vi E {1, ... , n}, :J i : 0 < Xi < 1, t i = (t~)j=I, ... ,n+l and 

i {Pi } t = max 0 - + C - C· J ' - 2 J 
Xi 

Vi,j E {1, ... ,n} : Xi i= 0 (5.7) 

t n+1 + j = Cod - Cj Sj Vj E {1, ... ,n}, (5.8) 

with Sj E lR+. 

These integer points belong to 15. lndeed, (5.3)-(5.5) are clearly satisfied. Next, 

for the integer points corresponding to i E {1, ... , n}, (5.6) yields either tj ~ 0 or 

t~ ~ ~+Ci-Cj followingthati E A\(Su{j}) ornot, whichisensured by (5.7). For 

the last integer point n + 1, the null components x and p force taxes t'rI: j E A 

to be larger that Cod - Cj in (5.6), which is also ensured by the definition (5.7) of 

these taxes. 

Next, for each j E A, we introduce the set B(j) = {i E A : Xi i= 0, ~ + Ci - Cj > 0 } 

and let Sj be such that 

Since the fractional point (t, p, x) satisfies (5.6) with Su {j} = B(j), it follows 

that Sj ~ o. 
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Hence we have: 

n 

L xitj + (1 - L XiW;+l (5.9) 
iE{l, ... ,n}:xdO i=l 

. L _ Xi max {o, ;/5i + Ci - Cj} + (1 - tXi) (Cod - Cj + Sj) (5.10) 
tE{l, ... ,n}:xi#O t=l 

= (Cod - cj)(l - t Xi) + . L _ Xi max {o, ;/i + Ci - Cj} (5.11) 
i=l tE{l, ... ,n}:xdO 

n 

+ fj - L (Pi + CiXi - CjXi) - (1 - LXi)(Cod - Cj), (5.12) 
iEB(j) i=l 

which is equal to fj by definition of B(j). 0 

In the next section, we focus on two-commodity instances. We prove that most 

valid inequalities and (HP3) constraints are facet defining for the two-commodity 

GCT-NPP, Le., for the polyhedron described by the convex hull of (HP3) feasible 

solutions. 

5.2 Two-commodity problems 

We now focus on two-commodity problems. Further, as Triangle and Mono­

tonicity constraints are not involved in the valid inequalities presented in Chapter 

4, we restrict the theoretical analysis of two-commodity problems to the GCT-NPP. 

This section aims to point out several facets of the convex hull of (HP3) feasible 

solutions, i.e., for the GCT-NPP. 
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Let P be the convex hull of feasible solutions for the two-commodity GCT-~PP, 

I.e., 

x .lR~n x {D, 1}2n : (3.21) - (3.27)}, 

where n is the number of toll arcs. 

Let us denote by en a unit vector in direction a, and by E a very small 

non negative scalar. Further, let M: max{O, C~d c~} as defined in (HP3), and 

Na = maxkEiC ]'.1[: + E. This last choice, which is not exactly the same as in Chapter 

3, is motivated by the fact that we some fiexibility to be able to vary the 

ta : a E A variables when the corresponding toll arcs are not used by any commod­

ity. However, note that this choice does not change the set of optimal solutions for 

the problem. 

Throughout the analysis, we also make the foUowing assumptions. 

Assumption 1: For all k E K and for all a E A, ivf: > D. 

By contrast, if there exists k E K and a E A with M: 0, aU points of P lie on 

an hyperplane p~ O. Hence P is not full dimensional and the proofs presented 

further need to be transformed accordingly. 

Assumption 2: For aU a E A, either M:! i= A1:2 , or there exists b E A \ {a} 

such that Ck2 - ck1 ...t. ck2 ck
! a a ~ b b 

Note that this assumption is not very restrictive. Indeed, it excludes the particular 

case in which C~2 C~l + K (K E IR) for aU a EAu {od}. In this case, all points 

of P lie on the following hyperplane: 

L(p~l + C!!X!l) + c~à(l L X!l ) + K = L (p!2 + C~2 X!2) + c~â( 1 
aEA aEA aEA 

Renee the cost structure is the same for commodities kl and k2 , and it becomes a 
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single commodity problem. 

Let 'H = {( t; p; x) : J.Lt + IJkl pk1 + IJk2 pkz + ek1xk1 + e2x k2 = <p} and assume 

that aU points of P n 'H lie on a generic hyperplane ç = {(t; p; x) : at + ;3klpkl + 
;3k2 pk2 + ~/l Xk! + Îkzxk2 = (j}. The following lemmas show that properties on the 

coefficients of'H impose conditions on the coefficients of ç. Note that the second 

and third statements of the following lemmas are variants of the corresponding first 

statements, and will be usedfor the proofs of facets of constraints (3.21) and (3.24). 

Lemma.4 Consider that aU points of P n 'H lie on the generic hyperplane ç. 

1. If the coefficients of'H are such that NaJ.La <p and J.Lb = 0 for b E A, 

then ab = 0 and EaEA Naaa = 15. Further, if <p 0 and J.La 0 for all a E A, 

then aa = 0 for all a E A and 15 O. 

2. If the coefficients of'H are such that J.La 0, ~!1 0 and e!2 = <p for ail 

a E A, then aa = 0 and Î!l + Î!2 = 15 for all a E A. 

Proof 

1. The points 

(I: Naea; 0; 0; 0; 0) (5.13) 
aEA 

(I: Naea Œb; 0; 0; 0; 0) (5.14) 
aEA 

are in P n 'H. As they also belong to the generic hyperplane g, it follows that 

I: Naaa Eab = (j, 
aEA 
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thus O'b = 0 and NaO'a <5. Further, if rp = 0 and !-ta = 0 for aIl a E A, 

then the points (5.13), (5.14) are in P n H for aU b E A. Hence O'a 0 for 

aU a E A and <5 = O. 

2. The points 

( L Naea; 0; 0; eb; eb) 

aEA\{b} 

( L Naea tef; 0; 0; eb; eb) 

aEA\{b} 

are in P n H for aIl b E A and for all f E A \ {b}. As they also belong to the 

generic hyperplane Q, it foUows that 

LNaO'a + 1;1 + 1;2 = <5 
aEA 

'" NT kl k2 , L..t aO'a - EO'f + lb + lb = u. 
aEA 

Hence O'a = 0 and I~l + 1~2 <5 for aU a E A. 

Lemma 5 Consider that all points of P n H lie on the generic hyperplane Q. 

1. If the coefficients of H are such that LaEA Na!-ta = rp, !-tb = 0 and ç;l = 

for b E A then ~ykl = _ryk'l Further zf 1}1 = _vk2 then {3kl = _{3k'l 
1 b lb • 'b b , b b . 

o 

2. If the coefficients of H are su ch that !-ta 0, ç~1 = 0, ç~2 = rp for all a E A 

3. If the coefficients of H are su ch that !-ta 0 for all a E A \ {b}, !-tb = - V;2 , 
V;1 = 0 = ç;l and ç;2 = rp = Nb!-tb, then O'b + {3;1 + ,3;2 = 0 and 1;1 + ~f;2 = 
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Proof 

1. As /-Lb = 0 and '2:aEA Na/-La = 4>, one knows that O'.b = 0 and '2:aEA NaO'.a = r5 

by Lemma 4.1. Then, the point ( Naea; 0; 0; eb; eb) is in P n 'H, 

and one obtains 'Y;1 + 'Y;2 = O. Further, if 1.1;1 _1.1;2, th en the point 

('2:aEA\{b} Naea + Œb; Œb; Œb; eb; eb) also belongs to P n 'H, which yields 
(Jk1 __ ~k2 
,b - tJb' 

2. The point ('2:aEA\{b} Naea + Œbi Œb; Œb; eb; eb) belongs to Pn'H. As /-La = 0, 

ç!l = 0 and ç!2 = 4> for all a E A imply O'.a 0 and 'Y!1 + 'Y!2 = r5 for aIl 

a E A by Lemma 4.2, one obtains f3;1 = 

3. As /-La = 0 for all a E A \ {b} and 4> - Nb/-Lb, one knows that O'.a = 0 

for aIl a E A \ {b} and NbO'.b = r5 by Lemma 4.1. Further, the points 

('2:aEA\{b} Naea; 0; 0; eb; eb) and ('2:aEA\{b} Naea + Œb; Œb; Œb; eb; eb) are in 

P n 'H, thus one obtains 

k 1 + k2 N 'Yb 'Yb = bO'.b 

E(O'.b + f3;1 + f3;2) + 'Y;1 + 'Y~2 = NbO'.b. 

and the result follows. o 

Lemma 6 Consider that all points of P n 'H lie on the generic hyperplane 9 and 

let b E A su ch that M~l < JvJ~2 . 

1. If the coefficients of 'H are such that '2:aEA N a/-La = 4> J /-Lb = 0 a nd 1.I~2 0 

ç~2 J then f3;2 = 0 = 'Y;2 . 

2. If the coefficients of'H are su ch that /-La = 0, ç!l = 0, ç!2 4> for aU a E A 

and 1.1;'2 = 0, th en f3;2 = 0 and 'Y;2 = J. 
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$, If the coefficients of ft are 8uch that f-L(, = 0 fOT aU a E A \ {b}, Pb = - vtz 

and ~;2 = <p == Nbf.lry, then Œb = -/3;2 and ft'"' = NbŒb' 

Proof 

The points 

are in P n ft. 

( L Nae,,+A1ileb;0;Mtleb;0;eb) 
aEA\{b} 

( L Nue" + (Mil + t)eb; 0; (J'vIiI + t)eb; 0; eu) 
aEA\{b} 

1. As Pb = 0, LaEA Naf-La = <P imply ab = 0 and 2:aEA Naaa (j by Lernrna 4.1, 

one obtains 

2, As Pa = 0, e!l = 0 and t;:2 = <P for all a E A imply 0:'(, = 0 for all a E A by 

Lemma 4.2, one obtains 

3, As 11.0. = 0 for aH il E A \ {b} and <P = NbPbl one knows that Œa 0 for all 
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a E A \ {b} and Nbab = 8 by Lemma 4.1. 1 t follows that 

AIti ab + JVItl ;3t2 + ~ft2 = 8 

(Mt l + f)ab + (M;l + f),8;2 + ',;2 = 8, 

thus ab = o 

Lemma 7 Consider that aU points of P n 'H lie on the generic hyperplane 9 and 

let b, d E A such that C~2 

1. If the coefficients of'H are su ch that LaEA Na/ka = 4>: /kb = 0 = /kd, çtl = _ç~2 

and vk
! 0 b Vk2 then ;3kl - _;3k'l and (Mkl _ Mkl );3kl + ~ykl + ~yk2 - 0 

d: b- d b db b d-

(resp. (Mt2 M~2);3tl + ,~l + ,;2 = 0). 

2. If the coefficients of 'H are such that /ka = 0 for ail a E A \ {d}, 11d = 

,ç;'l 4> NdlJ'd and V~l = 0 = ç~l, then ad + ;3~1 + ,3~2 = 0 and 

(J'vft l JVI~1 ),3tl + ,~l + ,;2 8 (resp. (J'vItz 1vI~2),3tl + ,tl + ,~2 = 8). 

Proof 

If lVI~l ::; M;2, the points 

( L Na€a + Mtl€b + !vI;l€d; 1VIt1€b; !v[;l€d; €b; €d) 
aEA\{b,d} 

( L Na€a + (Mtl - E)€b + (M;l 
aEA\{b,d} 

are in P n 'H. If Mkl > M k
2 the points 

d - d' 

( L Na€a + lvft2€b + lvf;2€d; Mt2€b; M;2€d; €b; €d) 
aEA\{b,d} 

( L Na€a + UvI:2 E)€b + (M~2 - E)€d; (Mtz E)€b; (N[~2 - f)€d; €b; €d) 
aEA\{b,d} 
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1. As /-Lb = 0 = /-Ld and LaEA Na/-La = cP imply ab = 0 = ad and LaEA Naaa = 8 

by Lemma 4.1, one obtains 

M;1 (3;1 + M;1 (3;2 + ,;1 + ,;2 = 0 

(M;1 - E)(3;1 + (M;1 - E)(3;2 + ,;1 + ,~2 = 0, 

2. As /-La = 0 for aU a E A \ {d} and cP = Nd/-Ld, one knows that aa = 0 for aU 

a E A \ {d} by Lemma 4.1. It foUows that 

M;1 ad + M;1 (3;1 + M;1 (3;2 + ,;1 + ,;2 = 8 

(M;1 - E)ad + (M;1 - E)(3;1 + (M;1 - E)(3;2 + ,;1 + ,;2 = 8, 

o 

Lemma 8 Consider that all points of P n 'H. lie on the generic hyperplane 9 and 

let b d E A such that Ck2 - Ck1 < Ck2 - ck1 
, d d b b . 

1. If the coefficients of'H. are such that LaEA Na/-La = cP, /-Lb = 0 = /-Ld, ç;1 = _ç;2 
and 1/;1 = 0 = 1/;2, then (3;1 = 0 and min {M;1 , M;2} (3;2 + ,;1 + ,;2 = o. 

2. If the coefficients of'H. are su ch that /-La = 0, ç~1 = 0, ç~2 = cP for all a E A 

and 1/;1 = 0 = 1/;2, then (3;1 = 0 and min { M;1 , M;2} (3;2 + ,;1 + ,;2 = 8. 

3. If the coefficients of'H. are such that /-La = 0 for all a E A \ {d}, /-Ld = _1/;2, 
ç;2 = cP = Nd/-Ld and 1/;1 = 0 = ç;l, then (3;1 = 0 and min {M;1 , M;2} (ad + 
(3;2) + ,;1 + ,;2 = 8. 



Proof 

If M;1 :s; M;2, the points 

( L Naea + M;l eb + M:l ed ; M;l eb ; M:l ed ; eb; ed) 

aEA\{b,d} 

( L Naea + (M;1 - E)eb + M;l ed ; (M;1 - E)eb; M;l ed ; eb; ed) 

aEA\{b,d} 

are in P n H. Otherwise, i.e., if M:l > M:2, the points 

( L Naea + M;2 eb + M;2 ed ; M;2 eb ; M;2 ed ; eb; ed) 

aEA\{b,d} 

( L Naea + (M;2 + E)eb + M;2 ed ; (Jvf;2 + E)eb; M;2 ed ; eb; ed) 

aEA\{b,d} 

are in P n H. 

1. As {Lb = 0 = {Ld and L:aEA Na{La = cP , one knows that ab 

L:aEA Naaa = 5 by Lemma 4.1. If M;1 :s; M;2, one obtains 

M;I13:1 + M;I13;2 + Î:1 + Î~2 = 0 

(M;1 - E)13:1 + M;1 13~2 + Î:1 + Î~2 = 0, 

o 
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thus 13:1 = 0 and M;1 13~2 + Î:1 + Î~2 = O. Otherwise, i.e., if M;1 > M;2, one 

obtains 

M:213:1 + M;2 13~2 + Î:1 + Î~2 = 0 

(M:2 + E)13:1 + M;2 13~2 + Î:1 + Î~2 = 0, 

2. As {La = 0, ç~1 = 0 and ç~2 = cP for aIl a E A, one knows that aa = 0 for aIl 
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a E A by Lemma 

M:1 /3~1 + lvI;1 /3~2 + ,~1 + ,~2 = 8 

(M:l E) /3;1 + lv!;1 /3~2 + ,:1 + ,~2 6. 

thus /3;1 0 and Mjl /3~2 + ,~1 + ,~2 = 8. Otherwise, Le.) if Mjl > Mj2, one 

obtains 

Mt2 /3;1 + lvI;z /3~2 + ,;1 + ,~2 = 8 

(Mt2 + E)/3;1 + lvfj2/3~2 + ,;1 + ,~2 8. 

3. As /-La 0 for an a E A \ {b} and <P = Nb/-Lb, one knows that aa 0 for an 

a E A \ {b} by Lemma 4.1. If 1\1;1 :S M;2 , one obtains 

M;l ad + Mtl /3;1 + IvI;1 /3~2 + ~(;l + ~(~2 8 

M:l ad + (M:l - E)/3~1 + 11,1;1/3;2 + ,tl + ,;2 8. 

thus /3:1 0 and 1\1;1 (ad+ /3~2) +,;1 +,;2 = 6. Otherwise, 

one obtains 

lvl:2 ad + lvItz /3;1 + li1;2/3;2 + ,;1 + ,;2 = 6 

M;2 ad + (1'1It2 + E)/3;l + lvf;2 /3~2 + ,;1 + ,j2 8. 

o 
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Lemma 9 Consider that aU points of P n 1{ lie on the generic hyperplane 9 and 

let b E A such that Al;l :s; M;2. 

1. If the coefficients of 1{ are su ch that LaEA N al1a 

_Mk2 vk2 then Î k2 = _Mk2(3k2 
bb' b bb' 

2. If the coefficients of 1{ are 8uch that l1a = 0, ~~1 0, 

and v:2 = 0, then A1;2 (3;2 + Î;2 6. 

Proof 

The points (LaEA\{b} Naea + Nf;2 eb ; 0; i\II;2 eb ; 0; eb) are in P n 1{. 

4> for aU a E A 

1. As /J'b = 0, LaEA Na/-la = 4> imply 0:b = 0 and LaEA N a0:a 6 by Lemma 4.1, 

one obtains Î;2 = -1'vf;2 (3;2. 

2. As /-la = 0, ~~1 = 0 and ~~2 = 4> for aIl a E A imply 0:a 0 for aIl a E A by 

Lemma 4.2, one obtains Nf;2(3;2 + Î;2 = 6. 0 

Lemma 10 Consider that aU points of P n 1{ lie on the generic hyperplane 9 and 

let b E A such that A1;1 > i'vf;2. If the coefficients of1{ are such that Na/-la 

4> , /-lb = 0, ~;1 = - M;2 V;l and ç;2 = - 1\1[;2 v:2, then Î;l = -Nf;2 (3;1 and Î;2 
_Mk2(3k2 

b b' 

Proof 

As /-lb 0, LaEA Na/-la = 4>, one knows that ab = 0 and LaEA N a0:a 6 by 

Lemma 4.1. Further, permuting the commodity indices k1 and k2 in Lemma 6 

yields (3;1 = 0 = Î:1. Hence, as the points 

( I:: Naea + }Vf;2 eb ; Nf;2 eb ; 0; eb; 0) 
aEA\{b} 

( I:: Naea + M;2 eb ; 1'vf;2eb ; M;2 eb; eb; eb), 

aEA\{b} 
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belong to P n H, one obtains 

M;2 ;3~1 + "(~1 = 0 

lvI;2 ;3;1 + 1'..1;2 ;3;2 + "(;1 + "(;2 = o. 

The result follows. o 

Using these lemmas, we can prove that P is full dimensional. 

Proposition 15 The polyhedron P has full dimension, i.e., Dim(P) = 5n. 

Proof 

Let H = {(t; p; x) : Ox = O}. Suppose by contradiction that the points of P n H 

lie on a generic hyperplane Ç}. By Lemma 4.1, one knows that ab = 0 for all b E A 

and {y = o. Further, by Lemma 5.1, one obtains ;3~1 = _;3~2 and "(~1 = _"(~2 for all 

bE A. 

Next, for all b E A such that M;1 < M~2, one has ;3~2 = 0 = "(~2 by Lemma 6.1. 

For all b E A such that M;1 > M~2, permuting the commodity indices k1 and k2 

in Lemma 6.1 yields ;3~1 = 0 = "(~1. Rence ;3~1 = 0 = ;3~2 and "(~1 = 0 = "(~2 for all 

b E A such that M;1 =1 M;2. 

Now, for all b E A such that M;1 = M;2, Assumption 2 ensures that there exists 

dE A \ {b} such that C~2 -C~1 =1 C~2·_C~I. Without loss of generality, we can assume 

that C~2 - C~1 < C~2 - C~I, and Lemma 8.1 yields ;3~1 = O. Further, permuting the 

commodity indices k1 and k2 in Lemma 9.1 yields "(~1 = O. Rence ;3~1 = 0 = ;3~2 

and "(~1 = 0 = "(~2 for all b E A such that M;1 = M;2, and the result follows. 0 

One can also prove that several (RP3) constraints, as well as most valid in­

equalities presented in Chapter 4, are facet defining for P. Let (t; pkl; pk2; Xkl; Xk2) 

be points of P. In order to prove that a given inequality is facet defining for P, 
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we consider h as the hyperplane induced by this given inequality, and ç a generic 

hyperplane. Then, we prove that ç h. 

Proposition 16 Constraints (3.21) X~2 ::; 1 are facet defining for P if and 

only if, for each b E A such that M;l > M;2, the're exists d E A \ {b} such that 

M;l ::; M;2 and C~2 C~1 =1= C~2 C~1 

Proof 

Leth= {(t;p;x): X~2 1 }. By Lemma 4.2, one knows that ab = 0 for aH 

obtains ,t3~1 ,t3~2 by Lemma 5.2. 

Further, for aH b E A such that 1\11;1 < 1',1[;2, Lemma 6.2 yields ;3~2 = 0 and ,~2 = 5, 

thus also ;3:1 = 0 = ,;1. 
For aH b E A such that M;l = .M;2, we know by Assumption 2 that there exists 

d E A \ {b} su ch that C~2 - C~1 =1= C~2 - C~l. If C~2 C~l < C~2 C~l = c~~ c~à, 

Lemma 8.2 yields ;3;1 = 0 = ;3~2. Further, one obtains ,;2 S, thus also ,;1 = 0, 

by Lemma 9.2. If c~~ - c~à = C~2 - C~l < C~2 C~l, permuting k l and k2 in Lemma 

8.2 yields ;3;2 = 0 = ;3;1. One also obtains ,,(~2 0 and ,il 0 by Lemma 9.2. 

Otherwise, i.e., for aIl b E A snch that J'vI;1 > M;2, the proposition hypothesis 

ensures that there exists d E A \ {b} such that Mj1 ::; Mj2 and C~2 C~1 =1= C~2 C~1 , 

which implies C~2 - C~1 ::; c~~ c~à < C~2 - C~l. It follows that ;3~1 0 = ;3:2 and 

I\llj1 ;3~2 +,;1 +,~2 = 0 by Lemma 8.2. As ;3~2 = 0 and ,~2 0, one obtains ",;1 = 0 

and ,~2 = o. 

Finally, assume there exists b E A, M'il > M~;2, such that there does not any 

d E A \ {b} with Mj1 ::; lvlj2 and C~2 C~1 =1= C~2 - C~1. If there does not exist any 

d E A \ {b} with C
k2 

- C
k1 -t. C

k2 
- C

k1 then C
k2 

- c
kl < c k2 c k1 c k2 c k1 for aIl d d Î b b , od od b b d d 

b, d E A, thns J\;fj! > J\;fj2 for aU d E A. Further, if there exists d E A \ {b} with 

C~2 - c~! =1= C~2 - C~1 but Mjl > Mj2) one also obtains Mjl > Mj2 for an d E A. 
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Bence, as points of H must satisfy LbEA X~2 = 1 and M;l > M;2 for aIl b E A, it 

foIlows that points of P n H lie on the hyperplane LbEA X~l = 1 by Lemma 3. The 

result foIlows. D 

Note that the condition imposed in the previous proposition is not very restric­

tive. Indeed, it only excludes the case in which c~â - c~à < C~2 - C~l = C~2 - C~l for 

aIl b, dE A, i.e., C~2 = C~l + K (K E IR) for aIl b E A. 

In the next proposition, we state the conditions in which the Profit Upper 

Bound constraints define facets of P. Let a E A. As the corresponding constraints 

contain constants Mg : k = k1 , k2 which depend on the commodity k, we intuitively 

deduce that these constants will be involved in the conditions. 

Proposition 17 Constraints (3.23) p~2 :S M:2X~2 are facet defining for P if and 

only if M:2 < M:l or there exists b E A \ {a} such that (a, k1 ) rv (b, k2 ). 

Proof 

Let H = {(t;p;x) : p~2 = M;2X~2}. Lemma 4.1 yields ab = 0 for aIl b E A and 

8 = O. Further, for aIl b E A \ {a}, one obtains ;3~1 = _;3~2 and ')'~l = _')'~2 by 

Lemma 5.2. 

Next, for aIl b E A \ {a} such that Mbk1 < M;2, Lemma 6.1 yields ;3~2 = 0 = ')'~2. If 

M;2 < M;l, permuting the commodity indices k1 and k2 in Lemma 6.1 also yields 

;3~1 = 0 = ')'~l. It foIlows that ;3~1 = 0 = ;3~2 and ')'~l = 0 = ')'~2 for aIl b E A \ {a} 

such that M;l i= M;2. 

Otherwise, i.e., if M;l = M;2, we know by Assumption 2 that there exists d E 

A \ {b} (possibly a) such that C~2 - C~l i= C~2 - C~l. 

If ck2 - ck1 < ck2 - Ck1 with d ...j.. a Lemma 8 1 yields ;3kl = 0 thus also ;3k2 = 0 d db b r, . b' b' 

Further, one obtains ')'~2 = 0 by Lemma 9.1. Note that we can assume d i= a. 

Indeed, consider C~2 - C~l < C~2 - C~l and there does not exist any d E A \ {a, b} 
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thus M;l < M;2 and there does not exist any b E A \ {a} such that (a, kl ) rv (b, k2 ) 

by Lemma 2, which is in contradiction with the proposition hypothesis. 

If C~2 - C~l < C~2 - C~l, permuting the commodity indiees kl , k2 in Lemma 8.1 yields 

;3~2 = O. One also obtains 1~2 = 0 by Lemma 9.1. Renee ;3~1 = 0 = ;3~2 and 

I~l = 0 = 1~2 for aU b E A \ {a} such that M;l = M;2. 

Next, if M;2 < M;l, setting b = a and permuting the commodity indices kl , k2 

in Lemma 6.1 yields ;3~1 = 0 = I~l. Further, setting b = a in Lemma 10.1 yields 

'Y~2 = _ M~2 ~~2 
la a /Ja . 

Otherwize, i.e., if M;2 2: M;l, the proposition hypothesis ensures that there exists 

b E A \ {a} such that (a, kl ) rv (b, k2 ). As one can check that M;l ::; M;2, setting 

b = a and d = b in Lemma 7.1 yields ;3~1 = - ;3~2 and (M;l - M;l ) ;3~1 +,~l +,~2 = O. 

As ;3~2 = 0 = 1~2, one obtains ;3~1 = 0 = I~l. Further, setting b = a in Lemma 9.1 

yields 1~2 = - M;2 ;3~2 = O. 

FinaUy, assume M;2 ~ M;l and there does not exist any b E A \ {èi} such that 

(a, kl ) rv (b, k2 ). Renee X~l = 1 implies that either X~2 = 1, or X~2 = 0 for aU b E A. 

Then: 

'f M k2 Mkl kl l' l' h t 'th k2 1 d kl k2 M k2 • 1 a = a' xa = lmp les t a el er X a = an Pa = Pa = a' or 

xk2 = 0 for aU b E A and M~2 < t- = p~l < M~l thus p~l = M~2 This b a-a a- a' a a' 

means that aU points of P n H lie one the hyperplane p~l = M;2 X~l, which 

is a contradiction. 

• If M~2 > M~l X~l = 1 implies that there exists a toU arc b E A such that a a' a 

X~2 = 1 by Lemma 3. Renee X~2 = 1. Rowever, as points of H satisfy 
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P~2 = M~2X~2 this yields p~1 = p~2 = M~2 > M~1 which is a contradiction. a a a' a a a a' 

Rence all points of P n H lie on the hyperplane X~1 = o. 

The result follows. D 

As expected, the conditions imposed in the previous proposition depend on 

the constants Mi : k = k], k2 . Similar conditions must be imposed such that 

constraints (3.24) define facets of P. 

Proposition 18 Constraints (3.24) ta - p~2 ~ N a(1- X~2) are facet defining for 

P if and only if M;l < M;2 or there exists b E A \ {a} such that (b, k1 ) rv (a, k2 ). 

Proof 

Let H = {(t; p; x) : ta - p~2 = N a(1 - X~2)}. Lemma 4.1 yields ab = 0 for all 

b E A \ {a} and !j = Naaa. Further, for all b E A \ {a}, one obtains ;3:1 = _;3:2 
and ,:1 = _,:2 by Lemma 5.3. 

Next, for aU b E A \ {a} such that M:1 < M:2, Lemma 6.3 yields ;3:2 = 0 = ,:2. If 

M;2 < M;l, permuting the commodity indices k] and k2 in Lemma 6.3 also yields 

;3:1 = 0 = ,:1. As ;3:1 = _;3:2 and ,:1 = _,:2 for all b E A \ {a}, one obtains 

;3:1 = 0 = ;3:2 and ,:1 = 0 = ,:2 for aU b E A \ {a} such that M;1 =1= M;2. 

For all b E A \ {a} su ch that M;1 = M;2, Assumption 2 ensures that there exists 

dE A \ {b} (possibly a) such that C~2 - C~1 =1= C~2 - C~I. If C~2 - C~1 < C~2 - C~1 with 

d =1= a, one obtains ;3:1 = 0 = ;3:2 by Lemma 8.1. If d = a, Lemma 8.3 yields the 

same conclusion. One also obtains ,:2 = 0 = ,:1 by Lemma 9.1. 

If C~2 - C~1 < C~2 - C~1 with d =1= a, permuting the commodity indices k1 , k2 in 

Lemma 8.1 yields ;3:2 = 0 = ;3:1. One also obtains ,:2 = a = ,:1 by Lemma 9.1. 

Note that we can assume d =1= a. By contradiction, consider C~2 - C~1 < C~2 - C~1 

and there does not exist any d E A \ {a, b} with C~2 - C~1 =1= C~2 - C~I. It follows 
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that 

any b E A \ {a} such that (b, kl) rv (a, k2 ) 

by Lemma 2, which is in contradiction with the proposition hypothesis. 

Further, setting b a in Lemma 5.3 yields Î~l +Î~2 = Niiaii and aii + f3~1 + f3~2 = O. 

Next, if M;1 < M;2, setting b a in Lemma 6.3 yields aa = -f3~2 and Î~2 = Naaa. 

Otherwize, Le., if 1\1;1 ~ M;2, the proposition hypothesis ensures that there exists 

b E A \ {a} such that (b, k1 ) t'V (a, k2 ). As one can check that 1\1:2 
::; M:1, setting 

b = a, d = band permuting the commodity indices kI, k2 in Lemma 7.2 yields 

aa + f3~l + f3~2 = 0 and (M:2 NI:2)f3~1 + Î:l + Î!2 = 6. As 13:1 = 0 = ~{~1, one 

obtains aii = -f3~2 and Î~2 6 Niiaii. 

Finally, assume NI;1 ~ M;2 and there does not exist any b E A \ {a} such that 

(b, kt) rv (a, k2 ). First note that any point of P n H such that X~l = 1 also satisfies 

kz 1 1 d d .kl Xii = . n ee , assume x a 1 d .k2 - 0 Th - N M k1 h' h . an Xii -. en tii - ii > ii' W lC lS a 

contradiction. Renee: 

• if M:2 = M:l, Assumption 2 ensures that there exists b E A \ {a} such that 

C~2 -C~l =1= C~2 - C~l, which implies either (b, k l ) rv (a, ~) or (a, kd rv (b, k2 ) by 

Lemma 2. As there does not exist any b E A \ {a} such that (b, kd rv (a, k2 ) 

by hypothesis, we conclude that (a, kd rv (b, k2 ). Rowever, any point of PnH 

such that X~l 1 also satisfy X~2 = 1. Rence (a, kl) rv (b, k2 ) cannot happen 

either, which is in contradiction with Assumption 2 . 

• Otherwise, Le.) if M;l > M;2, X~2 = 1 implies that there exists a toU arc 

b E A such that X~l = 1 by Lemma 3. As there does not exist any b E A \ {a} 

such that (b, kd t'V (a, k2 ), one obtains X~l = 1. Further, as any point of 

P n H such that X~l 1 also satisfies X~2 = 1) it means that aU points of 

P n H lie on the hyperplane X~l = X~2 . 0 
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Next, we prove that constraints (3.25) do not define facets of P. As the defini­

tion of p variables is closely related to the t and x variables, i.e., one has pk txk 

for aIl k E K, this result is not surprising. 

Proposition 19 Constraints (3.25) are not facet defining for P. 

Proof 

Let 'H { (t; p; x) : p~2 ta}. Assuming X~2 = 0 for aU b E A yields p~2 0 by 

constraints (3.23), and t~2 ~ c~~ - C~2 > 0 by constraints (3.22) and Assumption 1. 

Hence aIl points of P n 'H lie on the hyperplane LbEA X~2 = 1, thus 'H is not facet 

defining for P. o 

Finally, we state the conditions in which constraints (3.26) define facets of 

P. 1<'Or given a E A, note that these conditions also depend on the constant 

AI:: k = k1,k2• 

Proposition 20 Constraints (3.26) p~2 ~ 0 are facet defining for P if and only if 

one of the following conditions holds: 

• M;2 .A1;l and either there exists b E A \ {â} such that (â, kd rv (b, k2 ), or 

there exists b E A \ {â}, v E IR such that (b, k1) l'V (â, k2 ), 0 :::; v :::; Ivf;1 and 

- ck2 < V < C~l _ Ckl . 
b - - a b 

Proof 

Let'H {(t;p;x): p~2 = O}. Lemma 4.1 yields ab 0 for aU b E A and 6 = O. 

Further, one obtains ,;1 = _,;2 for aIl b E A and t3~1 -t3~2 for aIl b E A \ {â} 

by Lemma 5.1. 
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Next, for all b E A \ {à} such that M:I < M:2
, Lemma 6.1 yields /3;2 = 0 = ,,/;2. If 

M;2 < lW:1
) permuting the commodity indices k1 and k2 in Lemma 6.1 also yields 

/3;1 = 0 = ,,/~l. It follows that /3;1 0 = /3;2 and ,,/;1 = 0 = ,,/;2 for ail b E A \ {à} 

such that M;1 =1= M;2. 

Now, for aIl b E A \ {à} such that M;1 = M;2, Assumption 2 ensures that there 

exists dE A \ {b} (possibly à) such that C~2 - C~I =1= C~2 - C~I. 

If Ck2 _ ckl < ck2 
d d b C~I with d =1= à, Lemma 8.1 yields /3;1 = 0, thus also /3;2 o. 

Further, one obtains ,,/;2 0 by Lemma 9.1. Note that we can assume d =1= à. 

lndeed, consider C~2 C~1 < C~2 - C~1 and there does not exist any d E A \ {à, b} 

thus M:l < Nf:2 and there does not exist any b E A \ {à} such that (à, kd rv (b, k2 ) 

by Lemma 2, which is in contradiction with the proposition hypothesis. 

If C;2 - C;I < C~2 C~l , permuting the commodity indices k1 , k2 in Lemma 8.1 yields 

/3~2 O. One also obtains ,,/;2 = 0 by Lemma 9.1. Renee /3~1 0 /3;2 and 

,,/;1 = 0 = ,,/;2 for aIl b E A \ {à} such that M;I = Nf;2. 

Next, if M:2 < M~l , setting b = à and permuting the commodity indices in Lemma 

6.1 yields /3~1 0 ,,/~l. As ,,/~2 = _,,/~l, one also obtains ,,/~2 O. 

Otherwize, i.e., if lW:2 
;::: Nf~\ assume that there exists b E A \ {à} such that 

(à, k 1 ) rv (b, k2 ). As one can check that Nf;l ::S M;\ setting b à and d b in 

Lemma 7.1 yields/3~l = -/3;2 and (M:l_l'v1;l)/3~1 

one 0 btains /3~1 0 = ,,/~1, thus also ,,/~2 = o. 

Now consider the case M~2 = M:l, and assume that there does not exist any 

b E A \ {à} such that (à, kd rv (b, k2 ). This implies C~2 C~l < C~2 C~l, i.e., 

(b, k1) rv (à, k2 ) for all b E A \ {à} by Lemma 2. Provided there exists b E A \ {à}, 



( L Naea + Veb; Veb; 0; eb; eà) 

aEA\{à,b) 
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belong to P n H. The existence of v is required since points of H must satisfy 

p~2 = O. As (3~1 = 0 = I~l, it foUows that 1~2 =0, thus also I~l = O. Further, 

setting b = a and permuting the commodity indices kI , k2 in Lemma 9.1 yields 

kl Mkl(3kl d bt' (3kl 0 là = - à à' an one 0 alns à = . 

Note that, if there does not exist such a v, then C~2 < C~2 for aU b E A \ {a}. As 

points of H satisfy p~2 = 0, aU points of P n H lie on the hyperplane X~2 = 1. 

FinaUy, assume M~2 > M~l and there do es not exist any b E A \ {a} such that 

(a, kI ) '" (b, k2 ). This means that X~l = 1 implies that either X~2 = 1 or X~2 = 0 

for aU b E A. However, as M~2 > M~l, X~l = 1 implies that there exists a toU arc 

b E A such that X~2 = 1 by Lemma 3. Hence X~2 = 1. As points of H must satisfy 

p~2 = 0, one obtains p~l = p~2 = O. It foUows that aU points of P n H lie on the 

hyperplane p~l = 0, which is a contradiction. o 

Hence most constraints of (HP3) define facets of P. Note that, for a given 

a E A, additional conditions must be imposed in the previous propositions, which 

depend on the constants M! : k = kI , k2 . However, these are not so restrictive, as 

they only exclude very particular cases. 

We can also prove that most valid inequalities presented in Chapter 4 define 

facets of P. The only exception concerns the Strengthened Shortest Path inequal­

ities (4.1), which require several very restrictive conditions to be facet defining for 

P. Note that these restrictive conditions come from the fact that there does not 

exist any point of P n H such that X~2 = 1 with b E A \ (S U {a}). lndeed, 
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• either X~l = 0 for aH d E A, and points in P n 'H are such that p~2 

kl k l t h' h . 1'·' t cod - c b - ii, w lC unp les a o since tb ~ c!à - C~l by (3.22); 

• or X~1 = 1 for d E A, and points in pn'H are sllch that p~1 +C~1 = ta +p~2 +C~l. 

When d =1= a, it implies ta = 0 since p~l + C~l :::; tb + c:1 by (3.22). 

As setting ta = 0 would yield to contradictions in terms of path costs, we deduce 

that lin king variables ta, p~1 : b E A and p~2 : b E A \ (S U {a}) will be difficult. 

Proposition 21 Inequalities 

(4.1) L (p~1 + c:1 x: l
) +c~à(l-L X~1 

~A ~A 

are facet defining for P if the following conditions hold: 

• (a, kd cv (b, k2 ) and C~l C~l ~ 0 for aU b E A \ (S U {a}); 

• there exists b E S \ {a} such that (a,k1 ) t'V (b ,k2 ); 

• for aU b E A such that M~l < !vI~2, there exists dES such that (b, k1 ) cv 

(d, k2 ). 

Note that the first and second conditions implies that li çJ. S. The third and 

fourth conditions yield C~2 C~1 = C~2 C~l for aU b E A \ (S U {Ii}). Hence one 

must also have M~2 :::; M~1 for aIl b E A \ S. 



Proof 

Let H = {(t; p; x) : I:bEA (p~l + C~lX~l) + c~à(1- I:bEA X~l) - tà - C~l 

- I:bEA\(SU{à}) (p~2 + (C~l - C~l )X~2) = O}. 

( L Naea + M~leà; 0; 0; 0; 0) 
aEA\{à} 

( L Naea + M~leà - Œb; 0; 0; 0; 0) 
aEA\{à} 
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are in P n H for all b E A \ {à}, which yields ab 

J: _ Mkl 

o for all b E A \ {à} and 

U - à aà· 

Further, for all b E A such that M;l 2: M;2, points 

( L Naea + M~leà + M;leb; M;leb; 0; eb; 0) 
aEA\{à,d} 

are in P n H, which yields r~l = - M;l j3~1. Otherwise, i.e., for aIl b E A such that 

M;l < M;2, and provided that there exists dES such that (b, k1) f'V (d, k2 ), points 

( " N + Mkl + Mkl + Mkl . Mkl . Mkl . . ) ~ aea à eà b eb d ed, b eb, d ed, eb, ed 
aEA \ {à,b,d} 

( L Naea + M~leà + M;led; 0; M;led; 0; ed) 
aEA\{à,d} 



Next, provided that M;1 < M;2 for aU b E 5, the points 

( L Naea + M~lea + M;l eb ; 0; M;l eb ; 0; eb) 
aEA\{a,b} 

( L Naea + M~lea + (M;1 + E)eb; 0; (M;1 + E)eb; 0; eb) 
aEA\{a,b} 

belong to P n H. It foUows that /3;2 = 0 = ,;2 for aU b E 5. 

Provided that (b, kd "" (a, k2 ) for aU b E A \ {a}, points2 
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( L Naea + M~2ea + (M~2 + C~1 - C;1 )eb; (M~2 + C~1 - C~1 )eb; M~2ea; eb; ea) 
aEA\{a,b} 

( L Naea + (M~2 - E)ea + (M~2 + C~1 - C~1 - E)eb; (M~2 + C~1 - C~1 - E)eb; 
aEA\{a,b} 

are in P n H sinee M~2 ::; M~I, and one obtains /3;1 + /3~2 + aa = O. 

Points 

( L Naea; 0; 0; ea; ea) 
aEA\{a} 

( L Naea + tea; tea; tea; ea; ea) 
aEA\{a} 

also belong to P n H. Renee ,~1 + ,~2 = M~laa and /3~1 + /3~2 + aa = O. Further, 

point 

( L Naea + M~lea;M~lea;O;ea;O) 
aEA\{a} 

is in P n H, thus ,~1 = _M~1 /3~1 and ,~2 = O. 

2Note that this very restrictive condition seems necessary to link variables p~l : b E A and t(i. 



Provided there exists b ES \ {a} such that (a, k1 ) rv (b, k2 ), points 

( L Naea + M:2 eii + jW;2 eb; J\!1:2 eii; M;2 eb ; eii; eb) 

aEA\{b,ii} 

are in P n 'H. As 'V~l = - M~l /Q~l one obtains Œa-la a fJa , , th us ,6;2 = o. 
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Next, provided (a, kr) rv (b, kz) and - C~l ;::: 0 for aIl b E A \ (S U {à}), points3 

aEA\{b,ii} 

In the previous proposition, we proved that the Strengthened Shortest Path 

inequalities (4.1) can define facets of P if several very restrictive conditions are 

imposed on the set S and on the constants M~ : a E A, k = k1 , k2 . Renee these 

inequalities are often not tight. 

Next, we state the conditions in which the Strengthened Shortest Path inequal­

ities (4.2) define facets of P. 

Proposition 22 Inequalities 

(4.2) L (p~l M;lX~l) L (p~2 - J\![;lX~2) ~ 0 

~A ~A~ 

are facet defining for P if M;l < M;2 for aU b ES. 

3Again, this very restrictive condition seems necessary to link variables p~2 : b E A \ (SU {il}) 
and ta. 
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Proof 

Let 'H = {(t; p; x) : L:bEA (p~1 '" (k2 M k
l k2) - o} F' L...,bEA\S Pb - b Xb - . lrst, 

one knows that ab = 0 for aIl b E A and 8 o by Lemma 4.1. Further, for any 

b E Sand provided that M;I < A1;2, one obtains /3:2 = 0 = 1:2 by Lemma 6.1. 

aIl b E A \ S, Lemma 5.1 yields /3;! -/3;2 and 1:1 = _1~2. 

Next, for aIl b E A such that M;1 ;:: M;2, permuting the commodity indices k1 

and k2 in Lemma 9.1 yields 1;1 = -N1;1/3;I. Otherwise, i.e., for aIl b E A such 

that N1;1 < M;z, permuting the commodity indices k1 and k2 in Lemma 10 yields 

1~1 -Iv1;! /3~1 . 

Further, if there exist d E A \ 5, b E A such that (b, kt) rv (d, k2 ) and C~1 < C~I, 

points 

( L Naea + (C~1 C~1 )eb; (C~l - C~1 )eb; 0; eb; ed) 
aEA\{b,d} 

( L Naea + (C~1 C~1 + €)eb + ted; (c~! - C~1 + €)eb; ted; eb; ed) 
aEA\{b,d} 

also belong to P n 'H. This yields /3:1 = - /3~2. Otherwise, i.e., if C~l ;:: C~I, points 

( L Naea + (C~1 C~l )ed; 0; (C~1 - C~1 )ed; eb; ed) 
aEA\{b,d} 

( L Naea + teb + (C~l C~1 + €)ed; teb; (C~I - C~l + €)ed; eb; eb) 
aEA\{b,d} 

are in P n 'H. Renee one obtains f3;1 = -f3~2 for aIl b E A and d E A \ 5. The 

result foIlows. o 

The Strengthened Shortest Path inequalities (4.2) are obviously stronger than 

the Strengthened Shortest Path inequalities (4.1). This will be highlighted numer-
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ically in the next chapter. 

Now we state the conditions in which the Strengthened Profit Upper Bound 

inequalities define facets of P. Let a E A. Intuitively, the conditions will depend 

on the constants Mg : k = kl , k2 and on the sets A~, A~. 

Proposition 23 Inequalities 

(4.7) p!2 - M:2 X~2 (11;1:2 1\11:!) ( L (X~2 - X~l ) - X!!) ~ 0 
bEA~\{a} 

are facet defining fOT P if, fOT aU b E A~ su ch that M;l = 1\11;2, theTe exists d E A~ 

such that C~2 

Proof 

C
k ! 
d • 

Let 11. = {(t; p; x) : p~2 IV1~2x~2 (111;2 - M;l) (2:bEA~\{â} (X~2 - X~l) - X~l) = 

o}. Lemma 4.1 yields Œb 0 for aH b E A and 8 = O. Further, for all b E A \ {èi,}, 

one obtains p~l and ,;1 = -,i2 by Lemma 5.1. 

For any b E A~ \ {à}, setting b = à and d = b in Lemma 7.1 yields p~2 = 

thus also pil 

Further, for aIl b E A~ such that M;l < 1\11;2, Lemma 6.1 yields p;2 = 0 = ,~2. 

If 11;1;2 < 11;1;!, permuting the commodity indices kl and k2 in Lemma 6.1 yields 

pi! = 0 ,i!· Hence P;! = 0 = P:2 and ,il = 0 = ,iz for all b E A~ such that 

Nf;! =1= M;2. 
Otherwise, Le., for aIl b E A~ such that M;l = M;z, Assumption 2 ensures that 

there d E A \ {b} (possibly à) such that C~2 - C~l =1= C~2 - c~!. Then, 

provided there exists such a toll arc d in A~, Lemma 8.1 holds and one conclude 

that pi! 0 pi2
• One also obtains ,iZ = 0 = ,;1 by Lemma 9.1. 

N ext, for aIl b E A~ \ {a}, recall that there does not exist any b E \ {a} such that 
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C~2 - c~! = C~2 - c~! by hypothesis. Henee, setting b = êi and d = b in Lemma 8.1 

yields f3~! = 0 and M;! f3~2 + r~! + r~2 = O. As f3~2 = - f3~! = - f3~!, it follows that 

f3~2 = 0 = f3~! for all b E A~ \ {êi}. One also obtains r~2 = -r~!. 

Finally, setting b = êi in Lemma 9.1 yields r~2 = - M~2 f3~2. As the point 

( ~ lVaea + JVI~!eà;M~!eà;JVI~!eà;eà;eà) 
aEA\{à} 

also belongs to pn1t, it follows that r~! = (M;2 - M;!) f3~2. The result follows. 0 

Note that the conditions imposed in the previous proposition imply that JVI;! of:­

JVI;2 for all b E A~ or there are at least two toll arcs b, d E A~ such that C~2 - c~! of:­

C~2 - c~!. N ow, in order to prove that inequalities (4.8) define faeets of P, we need 

to impose stronger conditions. lndeed, we assume that if there exists b E A~ such 

that M;! :::; M;2 (resp. M;! > M;2), then there exists at least another toll arc 

d E A~ \ {b} such that Mj! :::; Mj2 (resp. Mj! > JVIj2) and C~2 - c~! of:- C~2 - c~!. 

Proposition 24 Inequalities 

(4.8) p~2 - M:2X~2 - (M:2 - M:!) ( L (X~2 - x~!) - X~!) 
bEAt\{a} 

are facet defining for P if, for all b E A~ such that M;! :::; M;2 (resp. M;! > 

M;2), there exists d E A~ \ {b} su ch that Mj! :::; JVIj2 (resp. JVIj! > Mj2) and 

ck2 _ ck! -.L ck2 _ ck! 
b b r d d . 
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Proof 

Let Ji 

Lemma 4.1 yields ab = 0 for aIl b E A and fi O. Further, for aIl b E A \ {il}, one 

obtains /3;1 = -/3;2 and 1;1 = _1;2 by Lemma 5.1. 

For any b E A~ \ {à}, setting b = à and d b in Lemma 7.1 yields /3;2 = -/311, 

thus .B;1 = - /3:1
. 

For all d E A~ such that M;! ~ Nf;2 (resp. M;! > M;2), the proposition hy­

pothesis ensures that there exists b E A~ \ {d} such that Nf;! ~ 11,11;2 (resp. 

M;! > M;2) and C~2 - C~1 1:- C~2 - C~I. Without 10ss of generality, let us as­

sume that C~2 - C~1 < C~2 - C~I. As Lemma 7.1 yields /3;1 = -/3~2, it follows that 

/3;1 0 /3;2 for all b, d E A~ by Lemma 8.1. 

Further, for all b E A~ such that M;l > M;2, permuting the commodity indices 

k1 and k2 in Lemma 9.1 yields 1;1 = M;l ,B;I. As /3;1 = 0, one 0 btains 1;1 = 0, 

thus also 1;2 = O. 

N ext, for aIl b E A~ \ {à}, recall that there do es not exist any b E \ {à} such that 

Ck2 _ Ck1 
b b C~2 - C~I by hypothesis. Hence, setting b = à and d = b in Lemma 8.1 

Yields B~1 = 0 and M k1 Bk
2 + "ï~1 + rvkz 0 A.s akz = - B~1 = - Bk

l it foIlows that , ab, b a lb •• f-Ib ' a ' b , 

Bk 2 , b 0=/3;1 for all b E A~ \ {il}. One also obtains 1;2 = -I~!' 

Next, setting b = il in Lemma 9.1 yields 1~2 

also belongs to P n Ji, it follows that 1~1 = (M~2 - Al;l) ,B~2 . 



99 

Finally, for aIl b E A~ such that Mt! ~ Nft2, points 

( L Naea + (Nf;! + c;; c~2)eâ + (Mt,! + c~; - c;2)eb; 

aEA\{â,b} 

(M"b
k
•1 + Cb

k
: ck2 )e' (Mk

! + Ck2 ck2 )e' e . e ) . b b, b' b' - il â, b, il 

are in P n 'H since xl 1 

for points of 'H, which yields 

Note that we have not proved that, if the conditions imposed in the previous 

proposition are not satisfied, then inequalities (4.7)-(4.8) do not define facets of P. 

As this would require the study of several particular cases, we have tought it would 

not bring any additional relevant information, at least for the purpose of the thesis. 

Next, we state the conditions in which inequalities (4.9) and (4.10) define facets 

ofP. 

Proposition 25 Inequalities 

(4.9) p~2_ p~1 - M:2 L (X~2 - x;!) ~ 0 

bEA~ 

ar'e facet defining for P if the following conditions hold: 

• for ail b E A~ such that AIt! = Mt2
, there exists d E A~ \ {b} such that 

• for all b E A1 \ {â}, there exists d E A1 \ {â} such that C;2 
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• there exists b E A~ \ {à}, v E IR such that C~1 - C~1 ::; V < C~2 - C~2 and 

o ::; v ::; M;2. 

Proof 

Let H = {(t; p; x) : p~2 - p~1 - M;2 2:bEA~(X~2 - X~1) = O}. Lemma 4.1 yields 

ab = 0 for aH b E A and <5 = O. Further, for aH b E A, one obtains ;3;1 = _;3;2 and 

,:1 = _,:2 by Lemma 5.1. 

Next, for any b E A~ \ {à}, there exists d E A~ \ {à} such that C~2 - C~1 =1= 

C~2 - C~1 by the proposition hypothesis. Without loss of generality, let us assume 

that ck2 - Ck1 < ck2 - ck1 As M k1 < Mdk2 for aH d E Aa~ \ {à}, Lemmas 7.1 d d b b' d-

and 8.1 yield /3:1 = - ;3~2 and ;3:1 = 0 respectively. Rence /3:1 = 0 = /3:2 for aH 

b E A~ \ {à}. 

Further, for aH b E A~ such that M;1 < M;2, Lemma 6.1 yields /3:2 = 0 = ,:2. 
If M;2 < M;1, permuting the commodity indices k1 and k2 in Lemma 6.1 yields 

;3:1 = 0 = ,:1. It foHows that /3:1 = 0 = ;3:2 and ,:1 = 0 = ,:2 for aH b E A~ such 

that M;1 =1= M;2. 

Otherwise, i.e., for aH b E A~ such that M;1 = M;2, Assumption 2 ensures that 

there exists d E A \ {b} (possibly à) such that C~2 - C~1 =1= C~2 - C~1. Then, 

provided there exists such a toH arc d in A~, Lemma 8.1 holds and one conclude 

that /3:1 = 0 = /3:2. One also obtains ,:2 = 0 = ,:1 by Lemma 9.1. 

Next, provided there exists b E A~ \ {à}, v E IR such that C~1 - C~1 ::; V ::; C~2 - C~2 

and 0 ::; v ::; M;2, point 

( L Naea + veb; 0; veb; eii; eb) 
aEA\{b,ii} 

is in P n H. The existence of v E IR is required since X~1 = 1 = X~2 ( b E A~ \ {à}) 

implies p~1 = 0 for points of H. This yields ,:2 = _,~1 for aH b E A~ \ {à}. 
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FinaIly, setting b = Ci in Lemma 9.1 yields ')'~2 = - M~2 (3~2. As ')'~l = _')'~2 for aIl 

b E A, one obtains ')'~2 = M~2 (3~2 = _')'~l for aIl b E A. The result foIlows. D 

Proposition 26 Inequalities 

(4.10) p~2 - p~l - M~2 L (X~2 - X~l) - (M;.2 - IVI;n L 
bEAK bEA~:M:2?M:l 

are facet defining for P if the following conditions hold: 

• for all b E A~ such that M;l :S IVI;2 (resp. M;l > M;2 J, there exists 

d E A>\{b} such that M k1 < M k2 (resp M k1 > Mk2J and Ck2 _Ck1 -i- Ck2 _Ck1 . à d - d . d d b br d d' 

• for all b E A~ \ {Ci}) there exists d E A~ \ {Ci} such that C~2 - C~l i= C~2 - C~l ; 

• there exists b E A~ \ {Ci}) v E IR such that C~l - C~l :S v :S C~2 - C~2 and 

0< v < M k2 . - - b 

Lemma 4.1 yields ab = 0 for aIl b E A and 8 = O. Further, for aIl b E A, one 

obtains (3~1 = _(3~2 and ')'~l = _')'~2 by Lemma 5.1. 

Next, for any b E A~ \ {Ci}, there exists d E A~ \ {Ci} such that C~2 - C~l i= C~2 - C~l 

by the proposition hypothesis. Without loss of generality, let us assume that 

C~2 - C~l < C~2 - C~l. As M;l :S M;2 for aIl d E A~ \ {Ci}, Lemmas 7.1 and 

8.1 yield (3~1 = _(3;2 and (3~1 = 0 respectively. Renee (3~1 = 0 = (3~2 for aIl 

b E A~ \ {Ci}. 

For aH d E A~ such that M;l :S M;2 (resp. M;l > M;2), the proposition hy­

pothesis ensures that there exists b E A~ \ {d} such that M:1 :S M:2 (resp. 
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Mkl > Mk2) and Ck2 - Ck1 -1- Ck2 - Ck1 Without loss of generality let us as-d d d d r b b' , 

sume that C~2 - C~l < C~2 - C~l. As Lemma 7.1 yields {3~1 = _{3~2, it foUows that 

{3~1 = ° = {3~2 for aU b, dE Ai by Lemma 8.1. 

Further, for all b E A~ such that M;l > M;2, permuting the commodity indices 

k 1 and k2 in Lemma 9.1 yields I~l = - M;l {3~1. As {3;1 = 0, one obtains I~l = 0, 

thus also 1~2 = O. 

Next, provided there exists b E A~ \ {Ci}, v E lR such that C~l - C~l ::; V ::; C~2 - C~2 

and 0 ::; v ::; M;2, point 

( L Naea + veb; 0; veb; ea; eb) 
aEA\{b,a} 

is in P n Ji. Note that the existence of v E lR is required since X~l = 1 = X~2 

(b E A~ \ {Ci}) implies that p~l = 0 for points of Ji. This yields 1~2 = _I~l for 

aU b E A~ \ {Ci}. Further, setting b = Ci in Lemma 9.1 yields 1~2 = -M~2{3~2. As 

I~l = _1~2 for aU b E A, one obtains 1~2 = M~2 {3~2 = _I~l for aU b E A. 

FinaUy, for aU b E Ai such that M;l ::; M;2, points 

aEA\{a,b} 

are in P nJi since x~ = 1 = X~2 (b E Ai : M;l ::; M;2) implies p~2 = M;'l + c~; - C~2 

for points of Ji, which yields 
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Note that the conditions imposed such that inequalities (4.9) and (4.10) define 

facets of Pare similar to these imposed for inequalities (4.7) and (4.8). Again, we 

did not consider the particular cases in which these conditions are not satisfied. 

FinaIly, we state the conditions in which inequalities (4.11) define facets of P. 

Proposition 27 Inequalities 

(4.11) p~l - p~2 - M:l L (X~2 
bEA1\{ii} 

are facet defining for P if the following conditions hold: 

• for all b E A~ such that AI;l = M;2, there exists d E A~ \ {b} such that 

ck2 _ ck1 .../.. ck2 _ ck1 . 
b bTd d' 

• there exists b E A~, v E IR such that C~2 

Proof 

L t 'l...J {(t··)· kl k2 ~Akl '\""" (k2 kl) - o} L 4 1 . Id e /1. , p, X . Pâ - Pâ - iV1â L..bEAâ\{â} xb - x b - . emma . yle s 

ab = 0 for aU b E A and b = O. Further, for aIl b E A, one obtains ,6;1 = -/3;2 and 

,;1 = _,;2 by Lemma 5.1. 

Next, for any b E A~ \ {à}, the points 

( L Naea + j\1:1 es. + M;l eb ; }vl;leà; j\lf;l eb ; eS.; eb) 
aEA\{b,â} 

( L Naea + .M;leâ + (M;l + é)eb; M~leâ; (AI;l + é)eb; eS.; eb) 
aEA\{b,â} 

belong to pnH. Indeed, one can check that 1\1;1 < l'vI;2 by definition of A~ and the 

hypothesis that there does not exist any b E A~ \ {à} such that C~2 C~l i= C~2 C~l a' 

Rence /3;1 = 0 = /3;2 for aIl b E \ {à}. 
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If j\;ft2 < Mt l
, perrnuting the cornrnodity indices k l and k2 in Lernrna 6.1 yields 

/3;1 0 1:1. Hence /3;1 = 0 = /3:2 and IiI = 0 1;2 for aIl b E A~ such that 

Mt l 
=1= Mt2

• 

Otherwise, for all b E A~ such that .Mtl = Jv1t2, Assurnption 2 ensures that 

there cl E A \ {b} (possibly Ci) such that C~2 C~l =1= C~2 C~l. Then, 

provided there exists such a toll arc cl in A~, Lernrna 8.1 holds and one conclude 

that /3;1 0 /3;2. One also obtains 1;2 = 0 = ~f:1 by Lernrna 9.1. 

Next, provided there exists b E A~, v E IR such that C~2 

O::;v 

( L Naea + veb; veb; 0; eb; eà) 
aEA\{b,ii} 

v 

is in P n H. Note the existence of v E IR is required since X~l 1 = X~2 (b E A~) 

irnplies that p~2 = 0 for points of H. This yields 1~2 0 

Finally, for aH b E A~ \ {à}, points 

( L Naea + Jvl:1eii + 1'vltleb; M~leà; jvltleb; eii; eb) 
aEA\ {ii,b} 

are in P n H. Hence ~f:2 = -A.f:l,B~l for an b E A~ \ {à}. The result follows. 0 

Hence, rnost inequalities presented in Chapter 4 are facet defining for the two 

cornrnodity GCT-NPP, i.e., for the polyhedron described by the convex hull of 

(HP3) feasible solutions. As a consequence, we expect that those valid inequalities 

are also strong in the rnulti-cornmodity case, i.e., they can help to solve faster or 

better (in terms of gap or nurnber of nodes) the multi-cornrnodity GCT-NPP. 
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5.3 Conclusion 

In this chapter, we focused on problems involving one or two commodities. For 

the single commodity problem, we proved that several constraints of model (HP3*), 

as weIl as vaUd inequalities presented in Chapter 4, define facets of the convex hull 

of (HP3*) feasible solutions, i.e., for the CCT-NPP. Further, we highlighted a com­

plete description of the convex hull of feasible solutions for the single commodity 

GCT-NPP. Next, we proved that most of the valid inequalities and (HP3) con­

straints are also facet defining for the corresponding two-commodity problem, Le.) 

for the GCT-NPP. 



CHAPTER 6 

NUMERICAL RESULTS 

This chapter assesses the efficiency of the valid inequalities presented in Chapter 

4 by numerical results. For that purpose, they are tested on randomly generated 

instances for both General and Constrained Complete ToU NPP. Sections 1 and 2 

give technical details concerning the generation of instances and the implementation 

of models. Then, the numerical results for GCT-NPP and CCT-NPP are presented 

in Sections 3 and 4 respectively. 

6.1 Data instances 

The networks considered include 5, 8 or 10 cities with a commodity between 

each ordered pair of cities, i.e., m(m - 1) commodities for m cities. Demands for 

commodities are selected randomly between 10 and 100. The highways consist of 

10 or 15 highway nodes (i.e., the entry and exit nodes of the highway), and lead to 

bi-directional complete toU subgraphs with n( n - 1) toU arcs for n nodes1
. Consid­

ering that the size of an instance is determined by both the number of cities and 

the number of entry and exit nodes in the network, we generate 6 instances of each 

size. 

In order to set fixed costs on paths, fixed costs on aU arcs of the network are gen­

erated randomly as explained further. Note that the random generation intervals 

were chosen after performing an analysis of distances in a real Canadian highway 

network, the highway 10 (autoroute des Cantons de l'Est, Québec). 

Fixed costs on toU arcs a E A such that h(a) = t(a) + 1 are first randomly 

1 Note that we only test bi-directional networks, as we think that this structure is more realistic 
than a single directional structure. 
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generated between 20 and 70. Then fixed costs on toll arcs b E A such that 

h(b) = t(b) + l, l > 1 are set to the sum of fixed costs of aU toU arcs a E Cb such 

that h(a) = t(a) + 1. We set Cb = Ca for all a, b E A : h(b) = t(a), t(b) = h(a). 

Next, fixed costs on toll free arcs linking cities and highway nodes are generated 

as follows. First, the closest highway node i E N from a given city v is selected 

randomly, and the fixed cost on the corresponding arc a E A is randomly generated 

between 2 and 70. The fixed costs on the toll free arcs b E A :t(b) = t(a), h(a) 2::; 

h(b) ::; h(a) + 2 (Le., the toll free arcs linking the given city v and the four closest 

nodes from i) are randomly generated between 15 and 120. Finally, the fixed costs 

on the toll free arcs b E A : t(b) = t(a), h(b) < h(a) - 2 or h(b) > h(a) + 2 are 

randomly generated between 30 and 1000. 

The fixed costs between cities are randomly generated between 150 and 1000. 

Note that these are computed so that the cost from a city VI to a city V2 is equal 

to the cost from V2 to VI. 

Further, we assume that the use of a road besides the highway, compared to 

a road on the highway, often takes more time and requires more attention for a 

network user. Hence the fixed costs on toll free arcs are multiplied by a 1.5 factor. 

Finally, the fixed costs on paths are computed. For each commodity k E K and 

each toll arc a E A, the fixed cost c~ is the SUffi of fixed costs on the arcs that 

belong to the corresponding path. 

For a network with n nodes, each commodity contains initially n(n - 1) paths. 

Then, the preprocessing described in Section 3.3 is performed, which reduces the 

number of feasible paths for each commodity. In order to allow comparisons be­

tween the results obtained for the GCT-NPP and CCT-NPP respectively, the pre­

processing for the CCT-NPP is applied on all instances. 

Hence, in the data instances, each commodity is linked with the corresponding 

set of feasible paths, which allows us to deal with sm aller networks. Table 6.1 
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provides the minimum (MIN), maximum (MAX), mean (M) and variance (0-2
) of 

the number of feasible paths for each commodity in the generated instances. 

Inst. MIN MAX fi (j~ 

5v 10n 1 20 17,3 24,2 
5 v - 15 n 1 35 12,9 53,1 
8v lOn 1 20 7,4 25,6 
8v 15 n 1 35 13,2 66,1 

lOv lOn 1 24 7,5 24,6 
10 v - 15 n 1 35 13,1 60,8 

Table 6.1: Number of feasible paths per commodity 

6.2 Implementation of models 

The numerical experiments are carried out on a Pentium 4.3GHz equipped with 

2Gb of RAM and running Linux Kernel version 2.6.4. models are implemented 

using Mosel of Xpress-MP, Optimizer version 18. We switch on aIl Xpress proce­

dures concerning presolve. However, the Xpress automatic heuristic strategies have 

to be switched off, because they cannot be handled properly when appending our 

own cut procedure to the model. Finally, Xpress automatically selects the variables 

and nodes during the braneh and eut algorithm. 

We test models (HP3*) and (HP3) with the upper bounds M:, Na : k E K, a E 

A and preprocessing deseribed in Chapter 3, and with each class of vaUd inequali­

ties deseribed in Chapter 4. The latter, as weIl as the Triangle and Monotonicity 

eonstraints for model (HP3*), are generated at the root and nodes of the braneh 

and eut algorithm and appended to model (HP3*) or (HP3) when violated (viola­

tion tests are performed at eaeh iteration of the braneh and cut algorithm). 

We also impose an upper bound on the number of Triangle, Monotonicity and 

Strengthened Shortest Path inequalities appended at a single iteration of the branch 
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and eut algorithm, depending either on the maximal number of feasible paths for 

a commodity MaxP (Le.) at most n(n - 1) for n nodes without preprocessing of 

the network, thus obviously less when preprocessing of the network according to 

Section 3.3) or on the number of commodities IKI. These are set to O.5MaxP, 

2NlaxP and 0.51KI respectively, and were chosen during preliminary tests on in­

stances, according to the best results obtained. FinaIly, we set a computation al 

time upper bound of 5 hours (18000 seconds), after whieh the solution pro cess is 

aborted. 

In order to assess the efficiency of the vaUd inequalities, the related number of 

nodes, cpu times and gaps are reported for aIl instances. We call gap of a problem 

the gap between the linear relaxation optimal solution Zlp and the integer problem 

optimal solution Zopt, Le., gap = . If Zopt cannot be determined (i.e., the 

computational time upper bound is reached), Zopt is set to the value of the best 

integer solution. Aiso note that Zlp is computed after addition of violated valid 

inequalities at the root of the branch and cut algorithm. 

The results are presented in tables in the following way. The first column pro­

vides the size of instances, Le., the number of cities m and number of nodes n. 

Next, minimum (MIN), maximum (MAX), me an (I.t) and standard deviation (a) 

values are given for the gaps, cpu times and number of nodes in the branch and 

eut algorithm. The symbol *x* indicates that x instances cannot be solved to opti­

mality because the eomputational time upper bound has been reached. Finally, for 

eaeh class of inequalities, an additionnaI table provides the number of inequalities 

(Nb INEG) appended to the initial model (HP3*) or (HP3), at the root or during 

the braneh and eut algorithm. 

The next section provides numerical results for the General Complete ToU NPP. 
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6.3 Numerical results for GCT-NPP 

In this section, we point out the efficiency of the valid inequalities proposed in 

Chapter 4 for the Constrained Complete ToU NPP, which is described by model 

(HP3). Table 6.2 provides the gaps, cpu times and number of nodes corresp·onding 

to the resolution of (HP3) without any valid inequalities. 

Inst. Gap(%) Time(sec) Nodes 
MIN MAX /-L (J MIN MAX /-L (J MIN MAX /-L (J 

5 v - 10 n 0.28 12.16 6.49 4.4 0 2 1 1 1 121 36 45 
5 v - 15 n 3.48 18.21 9.69 5 1 7 3 2 7 397 117 132 
8 v - 10 n 3.47 27.18 15.40 7.9 1 1020 234 368 39 69837 15309 25049 

*10 8 v - 15 n 9.77 27.83 15.26 6.4 24 18001 3379 6562 551 739553 133233 271484 
10 v - 10 n 12.68 22.27 16.61 3.4 24 5132 895 1895 1625 362460 62785 134021 

*4*10v-15n 11.17 20.82 16.17 3.4 433 18004 12421 7909 10817 437890 256207 169469 

Table 6.2: Model (HP3) 

In the next subsections, each class of valid inequalities is appended to model 

(HP3) and tested on the randomly generated instances described in Section 6.1. For 

the sake of clarity, the results are presented in two subsections, which correspond to 

the Strengthened Shortest Path and Profit Upper Bound inequalities respectively. 

Then, a last subsection provides results for model (HP3) with the best (i.e., most 

efficient) valid inequalities. 

6.3.1 Strengthened Shortest Path inequalities 

In this section, we test model (HP3) with the Strengthened Shortest Path in­

equalities (4.1) and (4.2). In order to differentiate the efficiency of both classes 

of inequalities, tests of these on es are performed separately. Numerical results are 

presented in Tables 6.3 and 6.5. 
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Jnst. Gap(%) Time(sec) Nodes 
MIN MAX f.l, (J' MIN MAX f.l, (J' MIN MAX f.l, (J' 

5v lOn 0.00 10.96 4.30 3.9 0 5 2 2 1 139 37 54 
5v 15 n 1.28 14.90 5.65 4.5. 0 12 5 4 1 167 56 54 
8v 10 n 3.20 20.24 12.14 5.8 2 3974 1295 1564 36 27464 8794 10714 

*3*8 v - 15 n 7.20 22.43 10.32 6.9 85 18014 7179 8015 347 51007 18605 19664 
*hl0 v 10 n 11.34 21.17 15.31 3.4 160 18001 4134 6233 395 60575 14556 20743 
*6*10 V - 15 n 9.14 18.90 14.10 3.6 18000 18025 18015 6 11172 20638 15889 3594 

Table 6.3: Model (HP3) with inequalities (4.1) 

Jnst. Nb Ineq. (total) Nb Ineq. (root) 
MIN MAX f.l, (J' MIN MAX f.l, (J' 

5 v - 10 n 10 337 101 116 10 49 32 14 
5v 15 n 48 895 325 293 33 83 57 18 
8v 10 n 57 64541 25340 28273 13 270 120 91 
8 v - 15 n 1915 323845 110462 135304 82 378 152 115 

10 v - 10 n 1963 123275 30156 42192 53 117 90 20 
10 v - 15 n 69940 138536 111748 23664 123 444 270 107 

Table 6.4: Number of inequalities (4.1) appended to (HP3) 

Inst. Gap(%) Time(sec) Nodes 
MIN MAX f.l, (J' MIN MAX f.l, (J' MIN MAX Il (J' 

5 v IOn 0.00 3.26 1.44 1.3 0 4 1 2 1 29 Il 12 
5 v - 15 n 0.00 4.87 1.58 1.7 0 4 2 2 1 61 21 24 
8v-lOn 1.21 6.94 3.85 2.4 2 693 228 291 17 2874 869 1127 
8v 15 il 2.93 7.57 3.96 1.6 28 8572 1545 3145 63 22343 3961 8222 

lOv-lOn 1.58 5.49 3.63 1.2 10 388 88 135 24 2580 499 932 
*3*10 v - 15 n 1.42 7.13 4.44 1.9 304 18017 9654 8379 316 24594 11435 9548 

Table 6.5: Model (HP3) with inequalities (4.2) 

Inst. Nb Ineq. (total) Nb lneq. (root) 
MIN MAX f.l, (J' MIN MAX f.l, (J' 

5v-lOn 12 191 77 70 12 93 50 33 
5v 15 n 28 244 116 84 28 155 71 40 
8v IOn 103 15151 5329 6527 87 646 335 208 
8 v - 15 n 748 ]04624 19457 38126 226 815 469 184 

IOv IOn 790 9892 2588 3275 420 818 536 132 
IOv 15 n 5947 275338 137897 117995 715 1311 987 186 

Table 6.6: Number of inequalities (4.2) appended to (HP3) 



112 

Observing Tables 6.2 and 6.3, we conclude that the Strengthened Shortest Path 

inequalities (4.1) yield a decrease from 8 ta 42% in the gaps. The number of nodes 

also decreases by 77% for the instances of the largest size solved ta optimality, Le., 

lOv-10n. Note that, from now, we only report the decrease by the number of nodes 

and of the cpu times for the instances of the largest size solved ta optimality, Le., 

lOv-lOn. However, the inequalities also yield a significant increase of the cpu times, 

probably due ta the time required by the separation procedure. 

The Strengthened Shortest Path inequalities (4.2) are mueh more efficient, as 

the results show a decrease from 74 ta 84% in the gaps. For the largest instances 

solved ta optimality (Le., 10v lOnL we observe a deerease by 90% in the number 

of nodes, and of 99% in the epu times. 

Further, Tables 6.4 and 6.6 provide the number of Strengthened Shortest Path 

inequalities appended ta (HP3) at the root and during the branch and eut algo­

rithm. We note that the evolution of the number of violated inequalities is not the 

same for both classes of inequalities. lndeed, more inequalities of class (4.2) are 

appended to (HP3) at the root of the branch and cut algorithm, while there are 

more inequalities of class (4.1) during the braneh and eut algorithm. 

Next, Table 6.7 provides results for model (HP3) with both classes of inequalities 

(4.1) and (4.2). Comparisons with Table 6.2 lead ta the conclusion that bath 

classes are useful. Aiso note that the cpu times are now similar to the ones of 

the initial model (HP3) for the small instances, and better than these for the 

largest instances. However, as we know that adding the first class of inequalities 

(4.1) yields a significant increase of the cpu times, it could be better ta add these 

inequalities only at the root of the branch and cut algorithm. The results obtained 

are presented Table 6.9. 

Comparing Tables 6.7 and 6.9, we observe that adding inequalities (4.1) and 

(4.2) (resp. only at the root of the bran ch and cut algorithm) leads ta a decrease 
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Inst. Gap(%) Time(sec) Nodes 
MIN MAX f.L a- MIN MAX f.L a- MIN MAX f.L a-

5 v - 10 n 0.00 2.14 0.90 0.8 0 5 2 2 1 33 9 12 
5 v - 15 n 0.00 3.76 1.15 1.3 0 11 5 4 1 109 30 40 
8v-lOn 1.19 5.77 3.31 1.9 3 976 294 391 9 1832 479 683 

*h8 v - 15 n 2.42 6.88 3.43 1.6 63 18021 3182 6639 63 16877 2979 6216 
10 v - 10 n 1.34 4.82 2.97 1.3 42 552 155 180 19 1200 337 418 

*3*10 v - 15 n 0.90 6.75 3.23 2.4 616 18052 7194 7792 97 5878 2496 2135 

Table 6.7: Model (HP3) with inequalities (4.1) and (4.2) 

Inst. Nb Ineq. (total) Nb Ineq. (root) 
MIN MAX f.L a- MIN MAX f.L a-

5 v - 10 n 13 286 109 115 13 153 64 53 
5 v - 15 n 34 865 298 296 34 219 122 58 
8v-lOn 146 16163 5575 6988 115 986 484 339 
8 v - 15 n 1296 224526 40231 82454 396 1184 722 245 

10 v - 10 n 1185 9098 3063 2732 531 1090 721 177 
10 v - 15 n 5705 140361 57424 58863 1054 1637 1144 544 

Table 6.8: Number of inequalities (4.1 )-( 4.2) appended to (HP3) 

Inst. Gap(%) Time(sec) Nodes 
MIN MAX f.L a- MIN MAX f.L a- MIN MAX f.L a-

5v-lOn 0.00 2.14 0.90 0.8 0 4 1 2 1 37 12 16 
5 v - 15 n 0.00 3.76 1.15 1.3 0 5 3 2 1 91 28 35 
8 v - 10 n 1.19 5.77 3.31 1.9 2 803 219 307 25 7393 1794 2737 
8 v - 15 n 2.42 6.88 3.43 1.6 28 5352 970 1962 119 25344 4518 9316 

10 v - 10 n 1.34 4.82 2.97 1.3 16 142 45 44 27 3971 766 1438 
*3* 10 v - 15 n 0.90 5.65 3.67 1.6 377 18037 10410 7932 385 43696 22537 16057 

Table 6.9: Model (HP3) with inequalities (4.1) and (4.2) appended only at root 

by 83% (resp. 95%) in the cpu times for the instances of the largest size solved 

to optimality. The number of nodes decreases by 99% (resp. 99%) for instances 

lOv-lOn, while the gaps decrease from 79 to 88%. Rence the inequalities should be 

appended at the root of the branch and cut algorithm only. 

In the next section, we test the Strengthened Profit Upper Bound inequalities 

for model (HP3). 
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6.3.2 Strengthened Profit Upper Bounds inequalities 

We also test the efficiency of the Strengthened Profit Upper Bound inequalities 

for the General Complete Toll NPP. As the development of a separation procedure 

for the inequalities would be a long and possibly arduous task, their efficiency is 

tested as follows. First, the three classes of inequalities (4.7)-(4.8), (4.9)-(4.10) 

and (4.11) are generated at the root of the branch and cut algorithm. Next the 

strongest of each class is appended to the model when violated. The results are 

presented in Tables (6.10), (6.14) and (6.12). 

Inst. Gap(%) Time(sec) Nodes 
MIN MAX f.l a MIN MAX f.l a MIN MAX f.l a 

5 v - 10 n 0.17 11.11 4.91 3.6 0 4 2 2 1 91 29 32 
5 v - 15 n 2.74 16.56 8.03 4.7 1 6 4 2 9 263 102 102 
8v-lOn 2.20 20.18 11.93 6.2 1 1305 310 464 31 48239 11383 17176 
8 v - 15 n 7.54 15.69 11.54 2.9 20 5385 1404 1915 269 74292 24297 27776 

10 v - 10 n 5.81 15.87 10.39 3 17 2175 494 759 153 64672 13678 22897 
*4*lOv-15n 10.08 18.46 14.06 3.1 4353 18016 13485 6401 56587 261491 149044 79142 

Table 6.10: Model (HP3) with inequalities (4.7)-(4.8) 

Inst. Nb Ineq. (root) 
MIN MAX f.l a 

5v-lOn 6 110 37 37 
5 v - 15 n 25 50 32 9 
8 v - 10 n 27 681 268 240 
8 v - 15 n 53 275 136 70 

10 v - 10 n 215 431 309 68 
10 v - 15 n 218 747 396 166 

Table 6.11: Number of inequalities (4.7)-(4.8) appended to (HP3) 

Compared to Table (6.2), the results show a small decrease by the gaps: from 17 

to 37% for inequalities (4.7)-(4.8) and from 12 to 25% for inequalities (4.9)-(4.10). 

The cpu times and number of nodes also decrease for large instances. For the three 

classes of inequalities, we observe a decrease by 45%, 47% and 26% in the cpu 
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Inst. Gap(%) Time(sec) Nades 
MIN MAX J-L a MIN MAX J-L a MIN MAX J-L a 

5 v - 10 n 0.17 11.27 5.32 3.9 0 3 2 2 1 125 33 43 
5 v - 15 n 2.84 16.92 8.52 4.8 1 6 4 2 9 204 82 68 
8v-lOn 2.30 20.78 12.77 6.7 2 657 157 234 53 24522 5635 8802 
8 v - 15 n 8.53 16.30 12.12 2.9 29 4153 1507 1620 519 80169 29307 29444 

10 v - 10 n 7.27 18.99 12.43 3.5 18 2306 478 822 221 75721 14818 27288 
*4* 10 v - 15 n 10.35 19.05 14.76 3.2 1556 18015 12644 7592 27350 443859 215299 160459 

Table 6.12: Model (HP3) with inequalities (4.9)-(4.10) 

Inst. Nb Ineq. (root) 
MIN MAX J-L a 

5v-lOn 5 65 27 23 
5 v - 15 n 21 43 28 7 
8 v - 10 n 26 605 212 201 
8 v - 15 n 43 237 103 64 

10 v - 10 n 173 391 265 73 
10 v - 15 n 194 568 311 121 

Table 6.13: Number of inequalities (4.9)-(4.10) appended to (HP3) 

Inst. Gap(%) Time(sec) Nades 
MIN MAX J-L a MIN MAX J-L a MIN MAX J-L a 

5 v - 10 n 0.17 12.16 6.44 4.4 0 2 1 1 1 113 35 42 
5 v - 15 n 3.38 18.21 9.57 5.1 1 7 3 2 7 397 105 133 
8v-lOn 3.47 26.75 15.24 7.8 1 545 123 192 39 27697 6267 9807 
8 v - 15 n 9.49 17.32 12.89 3 22 1529 544 556 354 44623 16716 16990 

10 v - 10 n 12.46 22.22 16.38 3.3 24 3565 662 1299 435 162860 29278 59755 
*4*lOv-15n 10.94 20.50 16.12 3.5 606 18008 12694 7561 11628 534114 252863 169438 

Table 6.14: Model (HP3) with inequalities (4.11) 

Inst. Nb Ineq. (root) 
MIN MAX J-L a 

5 v - 10 n 0 17 5 6 
5 v - 15 n 0 12 6 4 
8 v - 10 n 0 68 19 24 
8 v - 15 n 0 70 22 23 

10 v - 10 n 8 53 30 16 
10 v - 15 n 14 115 52 36 

Table 6.15: Number of inequalities (4.11) appended to (HP3) 
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times, and of 78%, 76% and 53% in the number of nodes for instances 10v-10n. 

Further, Tables (6.11), (6.15) and (6.13) provide the number of Strengthened 

Profit Upper Bound inequalities appended to model (HP3). We observe that in­

equalities (4.11) are the least violated, thus they could be less efficient that the 

other classes of inequalities. 

We also test combinations of inequalities. In these tests, each class of inequal­

ities is generated at the root of the branch and cut algorithm. Then the most 

violated class - if any - is appended to formulation (HP3*). The results are pre­

sented in Tables (6.16), (6.17) and (6.18). 

Inst. Gap(%) Time(sec) Nodes 
MIN MAX f-t a MIN MAX f-t a MIN MAX f-t a 

5 v - 10 il 0.17 11.60 5.55 3.8 0 2 1 1 1 81 28 28 
5 v - 15 il 3.22 17.50 8.66 5 1 7 3 2 11 687 163 238 
8 v - 10 n 2.69 20.45 12.89 6.2 1 765 161 274 35 36593 7830 13069 
8 v - 15 n 8.76 16.53 12.09 2.9 13 2178 585 759 349 47533 17171 18271 

10 v - 10 il 6.24 16.50 11.79 3 17 905 238 320 295 43817 10131 15394 
*4*10v-15n 10.34 19.44 14.69 3.2 998 18014 12590 7679 32088 484325 249469 150359 

Table 6.16: Model (HP3) with inequalities (4.7)-(4.8) and (4.9)-(4.10) 

Inst. Gap(%) Time(sec) Nodes 
MIN MAX f-t a MIN MAX f-t a MIN MAX f-t a 

5 v - 10 n 0.17 11.11 4.91 3.6 0 2 1 1 1 91 30 32 
5 v - 15 n 2.74 16.56 8.02 4.7 1 3 3 1 9 223 88 79 
8 v - 10 n 2.20 20.18 11.91 6.2 2 1230' 264 439 47 46625 9733 16710 
8 v - 15 n 7.54 15.69 11.53 2.9 15 2630 788 896 273 48106 19648 17154 

10 v - 10 n 5.79 15.86 10.36 3 10 3027 554 1107 239 172138 30359 63415 
*4*10v-15n 10.08 18.58 13.94 3 926 18010 12339 8017 23013 443483 230147 161084 

Table 6.17: Model (HP3) with inequalities (4.7)-(4.8) and (4.11) 

Combining inequalities (4.7)-(4.8) and (4.9)-(4.10) yields a decrease from 11 to 

29% in the gaps, compared to Table 6.2. Further, for the instances of the largest 

size solved to optimality (i.e., 10v-10n), the cpu times and number of nodes de­

crease by 73% and 84% respectively. Observing Tables 6.2 and 6.17, we conclude 
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Inst. Gap(%) Tirne(sec) Nodes 
MIN MAX tt () MIN MAX tt () MIN MAX tt () 

5v-1On 0.17 11.27 5.31 3.9 0 5 2 2 1 125 35 44 
5 v - 15 n 2.84 16.92 8.52 4.8 1 7 5 2 9 367 122 126 
8v-1On 2.3 20.77 12.76 6.7 2 3199 584 1171 53 115845 20702 42589 
8 v - 15 il 8.52 26.62 14.34 6.2 36 18004 4413 6485 585 403053 88481 143778 

1Ov-1On 7.27 18.97 12.37 3.6 22 2571 533 916 190 71593 14049 25792 
_6_ 10 v - 15 n 10.35 19.24 14.62 3.1 2136 18017 13162 6903 25610 267260 148720 80939 

Table 6.18: Model (HP3) with inequalities (4.9)-(4.10) and (4.11) 

that pairing inequalities (4.7)-(4.8) and (4.11) leads to a from 17 to 38% 

in the gaps. The cpu times and number of nodes by 38% and 52% respec-

tively for instances lOv-lOn. Finally, combining inequalities (4.9)-(4.10) and (4.11) 

yields a decrease from 6 to 25% in the gaps. The cpu times and number of nodes 

decrease by 40% and 78% respectively for instances lOv-l0n. 

Henee, for the Strengthened Profit Upper Bound inequalities, we conclude that 

the best results are obtained when combining inequalities (4.7)-(4.8) with (4.9)­

(4.10). 

6.3.3 Final tests for (HP3) 

According to Subsections 6.3.1 and 6.3.2, the best results are obtained with the 

Strengthened Shortest Path inequalities (4.1)-(4.2), or the Strengthened Profit Up­

per Bound inequalities (4.7)-(4.8) and (4.9)-(4.10). In this section, we test model 

(HP3) with these valid inequalities, which are appended at the root of the branch 

and cut algorithm when violated. The results are presented in Table 6.19. 

If we compare Tables 6.2 and 6.19, we observe that the gaps decrease from 78 

to 89% with respect to the initial model (HP3). Further, for the largest instances 

solved to optimality, Le., lOv-lOn, the inequalities yield a decrease by 90% in the 
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Inst. Gap(%) Time(sec) Nodes 
MIN MAX J-L (J MIN MAX J-L (J MIN MAX J-L (J 

5v-lOn 0.00 1.89 0.86 0.7 0 4 2 2 1 37 11 15 
5 v - 15 n 0.00 3.49 1.09 1.2 0 5 3 2 1 95 30 36 
8v-lOn 1.01 5.51 3.02 1.6 2 569 130 203 15 4732 889 1725 
8 v - 15 n 2.42 6.73 3.36 1.5 38 6928 1236 2546 87 28103 4875 10388 

lOv-lOn 1.13 4.63 2.84 1.2 22 347 90 116 5 4613 874 1682 
*3*lOv-15n 0.89 5.78 3.62 1.7 ·202 18076 9621 8462 181 34462 12170 11592 

Table 6.19: Model (HP3) with inequalities (4.1)-(4.2), (4.7)-(4.8) and (4.9)-(4.10) 
(only at root) 

cpu times and of 99% in the number of nodes. 

To illustrate the results, Figures 6.1, 6.2 and 6.3 depict the evolution of the 

lower and upper bounds of the objective function with respect to the cpu time for 

three instances. The lower and upper bounds for the initial model (HP3) are de­

noted 'LB (HP3)' and 'DB (HP3)', while the lower and upper bounds for the final 

model (HP3) with inequalities (4.1)-(4.2), (4.7)-(4.8) and (4.9)-(4.10) are denoted 

'LB (HP3) Final' and 'DB (HP3) Final' respectively. 
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6.4 Numerical results for CCT-NPP 

In this section, we test the valid inequalities proposed in Chapter 4 in the con­

text of the Constrained Complete ToU NPP, i.e., for model (HP3*). First of aU, the 

results obtained for model (HP3*) without any new valid inequalities are presented 

in Tablé 6.20. Note that appending the Triangle and Monotonicity constraints to 

the problem yields a significant increase of the cpu times, which does not aUow us 

to solve instances as large as for the GCT-NPP. 

Inst. Gap(%) Time(sec) Nodes 
MIN MAX IL a MIN MAX IL a MIN MAX IL a 

5v-lOn 8.34 30.25 19.46 7.3 0 4 2 1 41 393 173 140 
5 v - 15 n 12.74 27.86 19.50 4.4 0 9 5 3 29 1067 370 346 
8v-lOn 16.88 39.94 30.54 7.8 3 1105 271 388 175 121461 28430 42968 

*5*8 v - 15 n 30.26 54.24 40.60 8.5 3570 18001 15596 5378 202361 1138242 812369 307804 

Table 6.20: Model (HP3*) 

In the next subsections, we test each class of valid inequalities. Subsection 

6.4.1 provides numerical results for model (HP3*) with the Strengthened Shortest 

Path inequalities, while Subsection 6.4.2 provides results for model (HP3*) with 

the Strengthened Profit Upper Bound inequalities. Finally, model (HP3*) is tested 

with the best valid inequalities in Subsection 6.4.3. 

6.4.1 Strengthened Shortest Path inequalities 

This section aims to test model (HP3*) with the Strengthened Shortest Path 

inequalities (4.1) and (4.2). The results are presented in Tables 6.21 and 6.23. 

If we compare Tables 6.20 and 6.21, we observe that the Strengthened Shortest 

Path inequalities (4.1) yield a decrease by 30% in the number of nodes for the 

instances of the largest size solved to optimality, i.e., Sv-IOn. Note that, from 
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Inst. Gap(%) Time(sec) Nodes 
MIN MAX Ji (J" MIN MAX Ji (J" MIN MAX Ji (J" 

5 v - 10 n 8.34 29.79 19.24 7.1 1 7 4 2 39 349 182 106 
5 v - 15 n 12.70 27.83 19.42 4.4 1 26 13 9 31 1413 554 465 
8 v - 10 n 16.63 39.65 30.36 7.7 13 9801 3550 3556 129 44373 19902 17581 

*5*8 V - 15 il 30.10 58.01 41.01 9.5 3440 18004 15577 5427 100000 649572 473912 172174 

Table 6.21: Model (HP3*) with inequalities (4.1) 

Inst. Nb INEG (total) Nb INEG (root) 
MIN MAX Ji (J" MIN MAX Ji (J" 

5 v - 10 n 16 62 28 16 5 32 13 9 
5 v - 15 n 4 220 104 85 1 36 15 12 
8v-lOn 41 162856 45732 57287 3 44 22 14 
8 v - 15 n 285 550 381 106 12 42 28 10 

Table 6.22: Number of inequalities (4.1) appended to (HP3*) 

Inst. Gap(%) Time(sec) Nodes 
MIN MAX Ji (J" MIN MAX Ji (J" MIN MAX Ji (J" 

5v-lOn 2.84 15.49 7.90 4 0 7 4 3 25 125 68 37 
5 v - 15 n 0.00 8.74 4.78 3.3 0 19 9 6 1 291 132 108 
8v-lOn 8.20 21.59 13.65 4.6 6 13295 2710 4785 37 59424 12376 21224 

*5*8 v - 15 n 16.56 23.18 19.07 2.6 4329 18016 15731 5099 68529 253956 119928 64542 

Table 6.23: Model (HP3*) with inequalities (4.2) 

Inst. Nb INEG (total) Nb INEG (root) 
MIN MAX Ji (J" MIN MAX Ji (J" 

5v-lOn 23 239 140 70 13 143 78 44 
5 v - 15 n 37 244 166 67 37 149 115 37 
8v-lOn 188 295532 61556 106030 114 589 344 175 
8 v - 15 n 483 1589 1009 376 293 923 577 193 

Table 6.24: Number of inequalities (4.2) appended to (HP3*) 

now, we always report the decrease in the number of nodes for the instances of the 

largest size solved to optimality, i.e., Sv-IOn. However, the cpu times increase and 

the decrease by the gaps is insignificant. 

In what concerns the Strengthened Short est Path inequalities (4.2), the results 

show a decrease from 55 to 75% in the gaps, and of 56% in the number of nodes for 
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the instances of the largest size solved to optimality. i.e., 8v-lOn. Hence, although 

an increase of the cpu times due to the time required by the separation procedure, 

this class of valid inequalities is very efficient. 

Further, Tables 6.22 and 6.24 provide the number of Strengthened Shortest 

Path inequalities appended to (HP3*) at the root and during the branch and cut 

algorithm. One can observe that there is mu ch more violated inequalities of class 

(4.2) than of class (4.1). This explains why adding inequalities (4.2) to (HP3*) 

yields a larger decrease in the gaps and number of nodes. 

Next, as the first class of Strengthened Shortest Path inequalities is much less 

efficient than the second one, we also test model (HP3*) with both classes of in­

equalities, in order to decide if the first class (4.1) should be used or not. In this 

case, the most violated among both classes of inequalities is appended to model 

(HP3*), if any. The results are presented in Table 6.25. 

Inst. Gap(%) Time(sec) Nodes 
MIN MAX f.1 !7 MIN MAX f.1 !7 MIN MAX f.1 !7 

5v-lOn 2.22 15.15 6.85 4.1 0 7 4 2 9 103 41 30 
5 v - 15 n 0.00 8.44 4.30 3 0 16 10 6 1 335 108 109 
8v-lOn 7.18 20.75 12.80 4.6 8 10010 2125 3568 31 21941 4913 7697 

*5*8 v - 15 n 16.28 24.47 18.87 3.1 1357 18017 15236 6207 27870 261180 145685 76628 

Table 6.25: Model (HP3*) with inequalities (4.1) and (4.2) 

Inst. Nb INEG (total) Nb INEG (root) 
MIN MAX f.1 !7 MIN MAX f.1 !7 

5v-lOn 31 299 176 89 24 220 109 63 
5 v - 15 n 42 314 241 100 42 218 156 56 
8v-lOn 198 162548 36234 57595 111 820 443 273 
8 v - 15 n 773 1953 1441 386 343 1240 730 276 

Table 6.26: Number of inequalities (4.1)-(4.2) appended to (HP3*) 

If we compare Tables 6.20, 6.23 and 6.25, we conclude that both classes of in­

equalities are useful. One can observe a decrease from 58 to 78% in the average 
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gaps, and of 83% in the number of nodes. However, Table 6.26 points out the 

huge number of violated inequalities appended to (HP3*) during the branch and 

cut algorithm, which explains the significant increase of the cpu times. As a con­

sequence, it cou Id be better to append the Strengthened Shortest inequalities only 

at the root of the branch and cut algorithm, which would yield a more reasonable 

number of additional inequalities in the model. The results obtained are presented 

in Table 6.27. 

Inst. Gap(%) Time(sec) Nodes 
MIN MAX J.L (]" MIN MAX J.L (]" MIN MAX J.L (]" 

5 v - 10 n 2.22 15.15 6.85 4.1 0 6 4 2 11 115 63 39 
5 v - 15 n 0.00 8.44 4.30 3 0 16 8 5 1 239 109 80 
8 v - 10 n 7.18 20.75 12.80 4.6 5 2617 595 937 37 39434 8452 13999 

*5*8 v - 15 n 16.28 26.16 19.52 3.9 5796 18027 15980 4554 72548 166820 110460 33264 

Table 6.27: Model (HP3*) with (4.1) and (4.2) inequalities appended only at root 

To conclude, the Strengthened Shortest Path inequalities (4.1) and (4.2), and 

especially the second ones, are very useful to decrease the gap and number of nodes 

in the branch and cut algorithm. Unfortunately, they are quite costly in terms of 

cpu time. This effect can be reduced by adding the valid inequalities at the root 

of the branch and cut algorithm only. However, it also yields a loss of efficiency 

relative to the number of nodes, as the decreasing factor is now 70% (instead of 

83%, see Table 6.25). Hence, the results can be balanced depending on the relative 

importance of cpu times and number of nodes. 
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6.4.2 Strengthened Profit Upper Bound Inequalities 

Here we test model (HP3*) with the Strengthened Profit Upper Bound Inequal­

ities (4.7)-(4.8), (4.9)-(4.10) and (4.11). The results are presented in Tables (6.28), 

(6.30) and (6.32). 

Inst. Gap(%) Time(sec) Nades 
MIN MAX f-t a MIN MAX f-t a MIN MAX f-t a 

5 v - 10 n 7.06 27.93 16.80 7.8 0 6 4 2 42 475 183 163 
5 v - 15 n 8.56 26.95 17.50 5.4 1 33 13 11 23 1225 512 419 
8 v - 10 n 12.56 36.83 25.32 7.8 5 1749 404 617 109 73944 16330 26061 

*5*8 v - 15 n 28.15 53.70 38.72 8.8 4859 18006 15814 4899 100000 627600 427785 141419 

Table 6.28: Model (HP3*) with inequalities (4.7)-(4.8) 

Inst. Nb INEG (root) 
MIN MAX f-t a 

5v-lOn 8 144 45 46 
5 v - 15 n 23 55 41 11 
8v-lOn 58 674 263 241 
8 v - 15 n 101 312 166 68 

Table 6.29: Number of inequalities (4.7)-(4.8) appended to (HP3*) 

Inst. Gap(%) Time(sec) Nades 
MIN MAX f-t a MIN MAX f-t a MIN MAX f-t a 

5v-lOn 7.47 27.93 17.69 7.1 1 5 3 1 29 217 111 63 
5 v - 15 n 9.46 27.17 18.22 5.1 2 29 12 10 19 1447 475 487 
8 v - 10 n 13.71 37.36 26.74 7.7 4 2579 574 910 47 107406 24315 37934 

*5*8 v - 15 n 28.90 55.61 40.05 9.3 1076 18005 15183 6309 35782 581625 429370 185519 

Table 6.30: Model (HP3*) with inequalities (4.9)-(4.10) 

Comparisons with Table (6.20) lead to the following conclusions. Inequalities 

(4.7)-( 4.8) yield a decrease from 10 to 17% in the gaps, and of 43% in the number 

of nodes. Inequalities (4.9)-(4.10) yield a decrease from 9 to 12% in the gaps and 

of 14% in the number of nodes. However, to generate aU inequalities increase the 
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Inst. Nb INEC (root) 
MIN MAX Jl (J" 

5 v - 10 n 5 89 31 29 
5 v - 15 n 4 48 27 16 
8 v - 10 n 55 604 211 207 
8 v - 15 n 79 229 116 52 

Table 6.31: Number of inequalities (4.9)-(4.10) appended to (HP3*) 

Inst. Cap(%) Time(sec) Nodes 
MIN MAX Jl (J" MIN MAX Jl (J" MIN MAX Jl (J" 

5v-lOn 8.15 30.19 19.38 7.3 0 5 3 2 41 393 173 141 
5 v - 15 n 12.74 27.86 19.41 4.4 1 15 8 6 23 745 386 277 
8 v - 10 n 16.88 39.93 30.33 7.6 3 2800 632 990 57 183141 40731 64970 

*5*8 v - 15 n 30.34 55.43 40.85 8.7 2055 18003 15345 5943 86706 772089 538845 219395 

Table 6.32: Model (HP3*) with inequalities (4.11) 

Inst. Nb INEC (root) 
MIN MAX Jl (J" 

5 v - 10 n 0 18 4 6 
5 v - 15 n 0 6 2 2 
8 v - 10 n 0 76 20 28 
8 v - 15 n 0 17 9 6 

Table 6.33: Number of inequalities (4.11) appended to (HP3*) 

cpu times. Finally, inequalities (4.11) are useless for model (HP3*). lndeed, the 

decrease by the gaps is insignificant, while the cpu times and number of nodes 

increase. 

Further, comparing Tables (6.29), (6.31) and (6.33) with the corresponding ta­

bles for the GCT-NPP, which provide the number of violated inequalities appended 

to model (HP3*) and (HP3) respectively, we conclude that the Strengthened Profit 

Upper Bound inequalities are more useful in the context of the GCT-NPP, i.e., 

without Triangle and Monotonicity inequalities. Further, we observe the very small 

number of inequalities (4.11). It explains why the gaps do not decrease when adding 

this class of inequalities to model (HP3*). 
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In order to know if inequalities (4.7)-(4.8) and (4.9)-(4.10) should be used 

singly or together, we also perform tests of model (HP3*) with both classes of 

Strengthened Profit Upper Bound inequalities, adding the most violated one to 

model (HP3*), if any. The results are presented in Table (6.34). 

Inst. Gap(%) Time(sec) Nades 
MIN MAX f-t 17 MIN MAX f-t 17 MIN MAX f-t 17 

5 v - 10 n 7.68 30.17 17.84 8.5 0 8 3 3 41 499 179 166 
5 v - 15 n 9.55 27.17 18.26 5.1 0 16 9 6 29 739 395 247 
8 v - 10 n 14.81 38.03 26.9 7.3 5 1305 365 462 35 45544 13068 15823 

*5*8v-15n 28.98 51.59 38.53 8 17506 18009 17924 187 100000 666912 559308 85244 

Table 6.34: Model (HP3*) with inequalities (4.7)-(4.8) and (4.9)-(4.10) 

Combining inequalities (4.7)-(4.8) and (4.9)-(4.10) yield a decrease from 6 to 

12% in the gaps and of 54% in the number of nodes, compared to Table 6.20. 

However, the cpu times increase. Further, as these results are similar to the ones 

obtained when adding inequalities (4.7)-(4.8) to model (HP3*) (see Table 6.28), we 

cannot determine if inequalities (4.9)-(4.10) should be used or not. 

6.4.3 Final tests for (HP3*) 

Now we test model (HP3*) with the most efficient valid inequalities, according 

to Subsections 6.4.1 and 6.4.2. The inequalities are appended to model (HP3*) at 

the root of the branch and cut algorithm. Results are presented in Tables 6.35 and 

6.36. 

Comparing these two tables, we observe that the gaps obtained are similar, 

and lead to a decrease from 59 to 78% with respect to the initial model (HP3*). 

However, model (HP3*) with inequalities (4.1)-(4.2) and (4.7)-(4.8) yields better 

results in terms of both cpu times and number of nodes, especially for large in­

stances. These valid inequalities lead to a decrease by 64% in the number of nodes 
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Inst. Gap(%) Time(sec) Nodes 
MIN MAX /-L ()' MIN MAX /-L ()' MIN MAX /-L ()' 

5 v - 10 n 1.93 15.15 6.80 4.2 0 10 5 4 9 211 78 68 
5 v - 15 n 0.00 8.40 4.23 2.9 0 20 11 7 1 213 106 69 
8v-lOn 7.13 20.73 12.74 4.7 7 5119 1263 1782 29 63895 15152 22045 

*5*8v-15n 16.26 23.35 19.05 3.0 2918 18033 15511 5632 71731 163993 115733 28462 

Table 6.35: Model (HP3*) with inequalities (4.1)-(4.2), (4.7)-(4.8) and (4.9)-(4.10) 
(only at root) 

Inst. Gap(%) Time(s) Nodes 
MIN MAX /-L ()' MIN MAX /-L ()' MIN MAX /-L ()' 

5 v - 10 n 1.94 15.15 6.80 4.2 0 10 5 3 9 151 66 50 
5 v - 15 n 0.00 8.37 4.22 2.9 0 20 11 7 1 171 97 64 
8v-lOn 7.16 20.71 12.57 4.7 7 2732 654 964 71 45363 10222 15885 
8 v - 15 n 16.18 22.81 18.92 2.4 6689 18052 16143 4228 41230 124506 78708 29887 

Table 6.36: Model (HP3*) with inequalities (4.1)-(4.2) and (4.7)-(4.8) (only at 
root) 

for the instances of the largest size solved to optimality (i.e., 8v-IOn). 

However, the results obtained for model (HP3*) with only the Strengthened 

Shortest Path inequalities (4.1 )-( 4.2) appended at the root of the branch and cut 

algorithm (see Table 6.27) are slightly better than these ones, both in terms of 

cpu times and number of nodes. Further, the decrease by the gaps obtained when 

adding the Strengthened Profit Upper Bound inequalities (4.7)-(4.8) is insignificant. 

We conclude that the best valid inequalities for the CCT-NPP are the Strength­

ened Shortest Path inequalities (4.1)-(4.2), and should be appended to model 

(HP3*) at the root of the branch and cut algorithm only. However, this increases 

the cpu times. lndeed, the Triangle and Monotonicity constraints make the prob­

lem much more difficult. While the valid inequalities proposed yield a significant 

decrease by both gap and number of nodes in the branch and cut algorithm, they 

also interfere negatively with the Triangle and Monotonicity constraints, which ob­

structs the program to reach quickly optimality. 
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To illustrate the results, Figures 6.4 and 6.5 depict the evolution of the lower 

and upper bounds on the objective function with respect to the cpu time for two 

instances. The lower and upper bounds for the initial model (HP3*) are denoted 

'LB (HP3*)' and 'DB (HP3*)', while the lower and upper bounds for model (HP3*) 

with inequalities (4.1)-(4.2) (appended only at root) are denoted 'LB (HP3*) Final' 

and 'DB (HP3*) Final' respectively. 
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Figure 6.4: Evolution of the objective function with respect to the cpu time for an 
instance of class 8v-l0n 
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Figure 6.5: Evolution of the objective function with respect to the cpu time for an 
instance of class 8v-15n 

6.5 Conclusion 

In this chapter, we é:U:j~,e::,tjeu the vaUd inequalities from Chapter 4 for the GCT-

NPP and CCT-NPP. Obviously, the Strengthened Shortest Path inequalities (4.2) 

lead to the best improvements in terms of gaps, cpu times and number of nodes 

in the branch and cut algorithm. Several other valid inequalities, especially the 

Strengthened Profit Upper Bound inequalities (4.7)-(4.8) and (4.9)-(4.10), but also 

the Strengthened Short est Path inequalities (4.1), are useful. For the the GCT­

NPP, we observe a decrease by 78 to 89% in the gaps, 90% in the cpu times and of 

99% in the number of nodes for the largest instances solved to optimality. In what 

concerns the CCT-NPP, the best results show a decrease by 58 to 78% in the gaps 

and of 70% in the number of nodes for the largest instances solved to optimality. 



CHAPTER 7 

LINKING PRICING PROBLEMS IN TRANSPORTATION 

NETWORKS AND ECONOMICS 

In this last chapter, we highlight the links between the Network Pricing Problem 

studied in the thesis and a more standard design and pricing family of problems 

in economics. While the first family of problems seeks to set tolls on a multi­

commodity transportation network within the framework of bilevel programming, 

the second family intends to design and price a set of products taking into account 

the utility-maximizing customers. Both topics have been extensively studied in the 

literature. However, we focus on problems that can be modelled as mixed integer 

programs. 

In Section 1, we consider a standard design and pricing family of problems. 

General definitions are first provided, foUowed by a summary of the main results 

from the literature. Next, in Section 2, we point out the relationships between this 

family of problems and the Network Pricing Problem. FinaUy, the aim of Section 

3 is to compare a specific pricing problem in economics with the General Complete 

ToU NPP. 

7.1 Designing and pricing a set of products 

Consider the family of problems which intends to design and price a set of 

products in a given economic market. In the mathematical literature dedicated 

to this field, three different paradigms are studied: the Buyer Welfare, the Seller 

Welfare and the Share-of-Choices problems. We first provide a general definition 
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of the three problems. Then we summarize the main mathematical contributions 

to this field. 

7.1.1 Problem definition 

Let K be a set of purchasers, and I a set of products. The purchaser prefer­

ences for the various products are described by a utility matrix u7 : k E K, i E I. 

Each purchaser chooses the product with the largest utility, so far as this utility is 

positive. Otherwise he refrains from buying. 

The Buyer Welfare Problem consists of determining which subset of prod­

ucts S ç I should be introduced in the market so as to maximize the sum of the 

purchaser utilities at optimality, i.e., for the products they have chosen. Consider­

ing binary flow variables Yi, x7 : k E K, i E I that indicate if a product is introduced 

in the market and if a product is chosen by a purchaser respectively, this problem 

can be described by the following mixed integer program: 

(BWP) maxLLu7x7 
kEK iE'I 

subject to: 

~UkXk > uky. 
~JJ- tt 

JET 

where Y is a non negative constant. 

Vk E K, Vi E I 

Vk E K 

Vk E K, Vi E I 

Vk E K, Vi E I, 

(7.1 ) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

Constraints (7.1) ensure that each purchaser chooses his/her best product in 
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terms of utility, constraints (7.2) force each purchaser to choose at most one prod­

uct, constraints (7.3) impose that the products chosen by purchasers are among 

those offered, and constraint (7.4) imposes an upper bound Y on the number of 

products that are introduced in the market. 

Now consider additional parameters vf : i E I, k E K corresponding to the 

incomes perceived by a seller if purchaser k E K buys product i E I. The Seller 

Welfare Problem consists of determining which subset of products S ç l should 

be introduced in the market so as to maximize the seller's income, knowing that 

each purchaser selects the pro du ct with largest utility for him, so far as this utility 

is positive. Rence the problem can be described as the mixed integer program: 

(SWP) max L L v;x; 
kEK iEI 

subject to constraints (7.1) to (7.5). 

The Share-of-Choices Problem is quite different from the two other pricing 

problems. One considers a set A of attributes associated with the various products, 

and a set Ja : a E A of levels for each attribute. A product profile is defined as 

the assignment of a level to each attribute of each product. It is represented by the 

vector p = (jl,j2, ... ,jIAI) of its A attribute levels. Further, each purchaser asso­

ciates a perceived value W~j : a E A, j E Ja, k E ;C to each level of each attribute. 

One also considers that the perceived values are normalized to lie between -1 and 

1. Therefore, purchaser k prefers product profile p = (jl,j2, ... ,jIAI) to status quo 

only if wk(p) = w~Jt + w~h + ... + WIAljlAI is positive. The Share-of-Choices Prob­

lem consists of determining a product profile p so as to maximize the number of 

satisfied purchasers k E ;C, knowing that a purchaser k is satisfied if the sum of its 

perceived values w k (p) is positive for this product profile p. 
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We close this section by mentioning that, in the thesis, we do not consider 

models that involve an underlying probabilistic structure, i.e., the purchaser choices 

are determined by a probabilistic function. The interested reader cou Id refer to 

Krieger and Green (2002, [42]), Shioda et aL (2007, [62]) or Maddah and Bish 

(2008, [48]) for further details. 

7.1.2 Literature review 

Green and (1985, [31]) study the Buyer and the Seller Welfare prob-

lems. For the Buyer Welfare Problem, they consider a subset of products S ç l to 

introduce in the market, with ISI exogenous to the problem, Le., constraint (7.4) 

becomes ISI. Since the two problems cannot be solved efficiently by a 

complete enumeration of the feasible solutions, at least in real applications, the 

authors propose inexact resolution methods, such as Lagrangian relaxation and 

various greedy heuristics. 

Refering to a theoretical study from Cornuéjols et al. [19] for an equivalent 

problem, the ratio of the greedy over the optimal income (latter called 'perfor­

mance ratio') in the worst case, ZGjZo = 1 - ((ISI - 1)ISI-1 )18 1. Rence, as 

ISI ---> 00, the performance ratio is approximately 63%, and will be higher for 

sm aller values of ISI. Green and Krieger also run simulations on small problems, 

randomly generated with IKI = 100, III = 10 and ISI = 4 or 5. In aIl cases, the 

greedy heuristic is within 8% of optimality and gives the optimal solution in over 

50% of the simulations. 

Whereas these methods are effective for the Buyer Welfare Problem, they do 

not perform weIl for the Seller Welfare Problem. According to the authors, neither 

a Lagrangian relaxation nor an exact method can be implemented for problems of 

realistic sizes. Further, the greedy heuristic approach can yield very poor results. 

Indeed, in the worst possible case, the performance ratio is ISI-1
, and becomes 
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arbitrarily bad when ISI -t 00. However, better results can be obtained if the 

parameters vf are almost equal for aIl k E K, i E I. Tests on randomly generated 

instances involving 100 purchasers, 10 products and ISI = 4, shows that the seller's 

greedy heuristic is within 5% of optimality and gives the optimal solution in 78% 

of the simulations. 

Kohli and Krishnamurti (1987, [39]) propose a dynamic programming heuristic 

to solve the Share-of-Choices problem with a single product. In order to highlight 

the efficiency of this new approach, the authors run tests on randomly generated 

problems involving 100 to 400 purchasers, 4 to 8 attributes, and 2 to 5 levels per 

attribute. The results are obtained very quickly. They are always within 9%, and 

on average within 2%, of optimality. The optimal solution is identified in 46% 

cases. 

The authors also compare their approach to an alternative Lagrangian relax­

ation heuristic. They conclude that the dynamic programming heuristic dominates 

the Lagrangian relaxation heuristic in terms of both computation al time and ap­

proximation of the optimal solution, the results obtained by the Lagrangian relax­

ation heuristic being only within 42% of optimality. The dynamic programming 

heuristic is also significantly faster than an enumeration procedure. 

In another article, Kohli and Krishnamurti (1989, [40]) prove the NP-hardness 

of the Share-of-Choices Problem with a single product. They also propose a 

graph representation of the problem, leading to two heuristics, based on dynamic­

programming and on a shortest path problem respectively. 

Both heuristics have arbitrarily bad worst-case bounds. However, when tested 

on random instances (the same as in [39]), the dynamic programming solution is 

on within 2% of optimality (at worst within 12%), while the shortest path 

solution is on average within 6% of optimality (at worst within 13%). Optimal 
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solutions are found in 42% and 14% cases respectively. 

Kohli and Sukumar (1990, [41]) present dynamic-programming heuristics for the 

Buyer Welfare, Seller Welfare and Share-of-Choices problems, considering this time 

a multi-product set for the last problem. However, the Buyer and Seller Welfare 

problems involve a multi-attribute structure like in the Share-of-Choices Problem, 

i.e., levels have to be determined for each attribute of each product. 

The heuristics are tested on randomly generated instances involving 50 to 150 

purchasers, 2 to 4 products, 4 to 6 attributes and 2 to 4 levels per attribute. The 

empirical results are near-optimal, as the performance ratios are on average within 

2%, 5% and 2% of optimality for the three problems, while the worst ratios are 

within 4%, 15% and 8% respectively. Optimal solutions are found in 10%, 12% and 

30% cases respectively. Computationally, solutions are found very quickly. 

Nair et al. (1995, [54]) propose beam search based heuristics for the Buyer 

Welfare, Seller Welfare and Share-of-Choices problems, where the Buyer and Seller 

Welfare problems involve a multi-attribute structure. Such heuristics consist in 

breadth first searches with no backtracking and breadth limited to a given number 

of the most promising nodes. 

In order to compare the efficiency of this new approach with the Kohli and Suku­

mar dynamic programming heuristics, the authors randomly generate instances as 

in [41]. The results show performance ratios within 1% of optimality for the three 

problems, and optimal solutions are found in 38%, 58% and 66% cases respectively. 

Further, the beam se arch based heuristics is approximately two times faster than 

the Kohli and Sukumar heuristics. 

Alexouda and Paparrizos (2001, [2]) present a genetic algorithm based heuristic 

for solving the Seller Welfare Problem with a multi-attribute structure. It is tested 
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on randomly generated problems involving 100 or 150 purchasers, 2 or 3 products, 

3 to 7 attributes and 3 to 6 levels per attribute. When compared to the beam 

search based heuristics proposed by Nair et al. . [54], the methods perform better 

both in terms of cpu time and solution quality. The genetic heuristic are on average 

three times faster than the beam search based method, while the solution found is 

better by 8% on average. Optimal solutions are found in 74% cases. 

The only authors which consider an exact resolution for the Seller Welfare Prob­

lem are McBryde and Zufryden (1988, [52]). Observing that constraints (7.1) are 

only active when there exists j E l such that xJ = 1 and uJ < u~ (then one must 

have Yi = 0), they replace constraints (7.1) by the equivalent: 

Wk Y' W" l . --1-' k k v Ef\v,vz,]E :zr],Ui >uj ' 

Using a generic mathematical solver on the new formulation, the authors solve 

randomly generated instances with 50 to 100 purchasers and 16 products (Y = 10) 

to optimality very quickly. 

They also obtain good results for a particular case in which the seller incomes 

vf : k E ;C, i E l do not depend on the products chosen by the purchasers. lndeed, 

they solve randomly generated instances with 100 to 300 purchasers and 64 to 512 

products (Y = 10) to optimality in at most three seconds. Note that this last case 

is equivalent to a set covering problem, which is often solved using greedy methods. 

7.1.3 Profit and Bundle Pricing Problems 

Dobson and Kalish (1988, [25]) consider an extension of the Seller Welfare 

Problem, in which price variables Ki : i E l are defined explicitly. The authors 

also assume that the introduction of a product i into the market induces a fixed 

cost fi for the seller. The seller's income Vi for product i is the product price Ki, 
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Further, rather than a set of purehasers, the authors eonsider a set of purehaser 

segments with demand Tlk : k E K, a segment being a set of purehasers whieh have 

the same reservation priee. Hence a reservation priee matrix r~ : k E K, i E l is 

ruso defined, providing a measure of the value of each produet for each 

The utility uf for a k E K if it buys the produet i E l is defined as the 

differenee between the reservation priee rf and the produet priee ÎTi. 

The Profit Problem eonsists of determining both a subset of products S ç l 

to introduee in the market and the eorresponding product priees leading to a max­

imum profit for the seller. Let us note that, contrary to Green and Krieger [31], 

the authors eonsider an endogenous subset of produets S. 

In order to manage effieiently the case in whieh a segment would not buy any 

product (i.e., if aU the pereeived utilities for the segment are negative), an artificial 

product a is ereated for each segment, with both reservation and produet priees 

set to zero. With these notations, the authors propose the following mixed integer 

program: 

(PP) max L TlkÎTi X7 - L !iYi 
kEK,iEI iEI 

subjeet to: 

L(rj ÎTj )xJ 2:: (r~ - ÎTi)Yi 
JEI 

LX~=l 
iEI 

ÎTQ = 0 

x7, Yi E {a, 1} 

'ï/k E K, 'ï/i E l 

'ï/k E K 

'ï/k E K, 'ï/i E l 

'ï/k E K, 'ï/i E I. 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 
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To solve this problem, the authors propose a method called 'reverse greedy 

heuristic', which exploit the underlying structure of the problem. If variables 

x~, Yi : k E K, i E l are fixed (i.e., the subset of offered products and the flows are 

known), then the optimal solution of problem (PP) can be found in polynomial time 

by solving the inverse optimization problem, which consists here of a set of shortest 

path problems. It st arts with a solution x~, Yi : k E K, i E l of maximum utility for 

each purchaser segment, and the corresponding optimal priees 'Tri : i E l obtained 

through inverse optimization. At each iteration, a segment is reassigned to another 

product or removed from the market, and corresponding priees are updated. The 

proeedure stops when no further improvement is possible. The selection criterion 

for choosing the segment to reassign at each iteration is the seller profit, i.e., among 

all the segments which prevent the seller from increasing its priees, one selects the 

one which would lead to the largest improvement of the objective function. The 

authors evaluate the heuristic performanees on small randomly generated instances 

involving 5 purchaser segments and 4 products, and obtain profit ratios, i.e., ratios 

of (heuristic profit - worst profit) to (best profit - worst profit), within 10% of op­

timality. 

In another article, Dobson and Kalish (1993, [26]) consider the Buyer Welfare 

and Profit Problems, and extend their previous work. First, they show that the 

Buyer Welfare and the Plant Location Problems are equivalent. The authors also 

evaluate several heuristics for this problem, including greedy (starts with an empty 

subset S of products and adds products one at a time in S), greedy interchange 

(greedy, followed by pairwise product interchanges until no improvement is possi­

ble), reverse greedy (see ab ove , [25]) and reverse greedy interchange. 

These are tested on randomly generated problems involving from 20 to 800 

purchaser segments and from 10 to 80 products. AU heuristics perform weU, with 

average ratio of heuristic to Lagrangian upper bound within 10% of optimality, 
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and within 1% in most cases. Further, the greedy and the greedy interchange 

approaches perform better than the reverse greedy (interchange) method, as op­

timal solutions are found in almost aU problems evaluated and worst case ratios 

are always within 1% of optimality. Computationally, solutions are obtained very 

quickly. 

Next, the authors prove that the Profit Problem is NP-hard by a reduction of 

the vertex cover problem. They also evaluate two heuristics for this problem, one 

of them being the reverse greedy heuristic presented in [25J. The second greedy 

heuristic seeks to include in S, at each iteration, the product that leads to the 

largest improvement of the objective function objective. The order in which the 

products are considered is a decreasing order with respect to the purchaser utili­

ties. Further, each time an addition al product is introduced in S, corresponding 

priees are computed for aIl products so as to maximize the objective function. The 

procedure stops when no further improvement is possible. 

The authors evaluate the heuristics on the same instances as for the Buyer Wel­

fare Problem and conclude that the second greedy heuristic performs better, with 

ratio of heuristic to Lagrangian upper bound within 8% to 22% of optimality. The 

greedy heuristic is the fastest on the largest instances. 

Shioda et aL (2007, [61]) consider the Profit Problem in which aIl products are 

offered, that means Y 00, S I and Yi = 1 for aIl i in l, and without fixed 

costs (in the objective fUI}ction) for the introduction of a product into the market. 

The authors present a heuristic algorithm to solve this problem, similar to the one 

from Dobson et Kalish [25, 26J. They also derive a linear mixed integer model for 

the problem, as well as sorne valid inequalities. Further details are provided in 

Section 7.3. methods seem quite effective, even if the authors do not provide 

any quantitative conclusion concerning their preliminary results. 
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Hanson and Martin (1990, [35]) study the Profit Problem for a particular cat­

egory of products. lndeed, they consider a "global element" (for example a data­

proeessing software) composed of several components. The products are the various 

subsets of components of the global element, i.e., 2n - 1 products for a set of n 

components. As this problem involves a very specifie structure due to the set of 

components, it is called the Bundle Pricing Problem. 

The notations used are similar to those of Dobson and Kalish (1988, [25]). 

However, the authors do not consider fixed costs (in the objective function) cor­

responding to the introduction of a product in the market. Further, they assume 

that the product priees are subject to 'sub-additivity constraints'. It means that, 

if product i E l is the union of several other products, then the priee of i should 

be lower than the sum of the priees of these other products: 

7r < '""' 7r ~-L.-t J 
jES 

Vi E I, VS ç l : i (7.12) 

Note that constraints are very similar to Triangle inequalities. The authors 

present a particular mixed integer formulation for the problem as well as numerical 

results. The problems tested, involving 5 to 10 purchaser segments and 4 compo­

nents (thus 15 products), have integrality gaps ranging from 2 to 4%, and are solved 

to optimality very quickly. However) due to the exponential number of component 

subsets, and thus of products, they note the restricted 

can be solved by an exact method. 

of the instances that 

For a larger number of components, the authors propose a formulation based 

on a limited number of subsets. lndeed, they consider that, when the number 

of components of the global element is large, there often exists a most important 

component, called "key component", which appears in aIl subsets offered in the mar­

ket, and to which less important components could be incorporated. The authors 

present a more complex mixed integer formulation for this particular structure. 



Using an exact resolution method, instances involving up to 4 purchaser segments 

and 20 components in addition to the key component can be solved to optimality 

very quiekly and in one iteration of the proposed bundle algorithm, whieh is prob­

ably due to the large number of possible bundles compared to the small number of 

purchaser segments. 

Guruswani et al. (2005, [33]) study a Bundle Pricing Problem in whieh aH 

products are offered in the market, but without sub-additivity constraints. The 

authors prove that this problem is APX-hard by a reduction from the vertex cover 

problem. They also propose a logarithmic approximation algorithm for this prob­

lem. Further, the authors study several specific cases of the problem, providing 

logarithmic approximation or polynomial-time algorithms together with sorne fur­

ther algorithmic considerations. Unfortunately, they do not provide any numerical 

results. 

Nichols and Venkataramanan (2005, [55]) propose a Conjoint Buyer Welfare 

and Profit Problem, with a formulation to the one suggested by Dobson 

and Kalish [25, 26]. The difference in the fact that the authors consider a 

weighted objective function including both seller profit and purehaser utility. 

Three heuristic methods are proposed, the first one being a pure genetic algo-

rithm included for comparison. other proposed heuristics are genetic relax-

ations. One of them uses a genetic procedure to generate product priees; then, a 

braneh and bound algorithm is applied to the remaining problem, whieh eonsists 

of setting flows so as to the sum of the purehasers utilities. The last 

heuristic starts with a random generation of the products which should be intro­

dueed in the market; then, one determines the flows x~ : k E K, i E l in order to 

maximize purehasers utilities. Finally, the remaining inverse optimization problem, 

that consists in setting produet priees in order to maximize the seller's income, is 
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solved by a shortest path algorithm. 

The three heuristics are compared on problems involving 20 to 1000 purchaser 

segments and 10 to 100 products. The results show that the relaxation methods 

perform better, on large instances, than a pure genetic algorithm. Consequently, 

they encourage the development of genetic resolution approaches in which large 

subsets of the original exact problem would be preserved. The authors do not give 

any further details concerning the performance ratios or the cpu times of their al­

gorithms. 

We conclude this section with three graphs summarizing the main contributions 

to the Buyer Welfare, Seller Welfare and Share-of-Choices Problems in literature. 

These are presented in Figures 7.1 to 7.3. 
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Figure 7.3: Main contributions to the Share-of-Choices Problem 

In the next section, we point out the relationships between the family of design 

and pricing problems and the Network Pricing Problem. 

7.2 Relationships between both families of problems 

This section aims to point out the links between the standard design and pricing 

problems presented in Section 1 and the Network Pricing Problem. 

7.2.1 Seller Welfare, Profit Problems and GCT-NPP 

Wh en looking at their definitions, the Buyer Welfare, Seller Welfare and Share­

of-Choices problems seek to design a set of products to introduce in a given eco­

nomic market, without any specifie reference to pricing. However, we point out 

several similarities between the Seller Welfare Problem and the General Complete 
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Toll NPP. First, one can observe that both problems seek to maximize a seller 

(resp. leader) profit. Second, while a purchaser buys the product which has the 

largest utility for him in the Seller Welfare Problem, a network user travels on the 

cheapest path from his origin to his destination in the General Complete Toll NPP. 

The Profit Problem, which also includes priee variables that have to be deter­

mined in order to maximize the seller profit, is akin to the General Complete Toll 

NPP. Consider a modified problem in which all products are offered in the mar­

ket, that mean Y = 00, S = I and Yi = 1 for an i in I, and called Modified 

Profit Problem. The Modified Profit Problem and the General Complete Toll 

NPP are equivalent. Indeed, let us match purchaser segments with commodities 

and products with toll arcs. The product priees 'Tri : i E I correspond to the tolls 

ta : a E A, while the reservation priee rf of purchaser k for obtaining product i 

becomes (C~d - c~), i.e., the spaee let for tolls on a commodity k travelling on the 

toll arc a (instead of the toll free arc). These correspondanee are summarized in 

Table 7.1. 

Modified Profit Problem General Complete ToU NPP 

Purchaser segments k E K Commodities k E K 
Products i E I Toll arcs a E A 
Reservation priees rf : k E K, i E I Gains C~d - c~ : k E K, a E A 

Priees 'Tri : i E I Tolls ta : a E A 
Flows xf : k E K, i E I Flows x~ : k E K, a E A 

Table 7.1: Links between notations for the Modified Profit Problem and the General 
Complete Toll NPP 

Hence, while a purchaser segment buys the product that maximizes its utility 

rf -'Tri, a commodity travels on the toll arc that maximizes the difference C~d-c~-ta, 

i.e., that minimize its travel cost c~ + ta. However, there is a small differenee be-
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tween the parameter structures rf : k E K, i E l and C~d - c~ : k E K, a E A. 

lndeed, in the General Complete ToU NPP, the cost C~d on the toll free arc for a 

commodity k E K is given and one looks at the difference between this cost and the 

fixed costs ~ : a E A of toll arcs. In the Modified Profit Problem, the reservation 

prices rf : i E l of a given segment k E K for obtaining various products i E l are 

not linked together, so that the main part of the network structure is absent. 

Similar to the Constrained Highway Pricing Problem, the incorporation of 

angle and Monotonicity constraints to the Modified Profit Problem would make 

sense. lndeed, products might be available in various formats, with different 

priees associated with different formats. If quantity X satisfies the relationship 

X y + Z, the triangle inequality 7r x :S 7ry + 7r Z prevents obvious market incon­

sistencies. Furthermore, if X :S Y, one expects that 7r x :S Ky, i.e., the Monotonicity 

inequality holds. 

The above reasoning can be generalized in the following way. Assume that the 

purchase of a product X is equivalent to the purchase of the sum of products Y and 

Z. In this setting, one would expect the inequality 7rx :S 7ry + 7rz to hold. In the 

same way, suppose that the purchase of a product Y is equivalent to the purchase 

of a product X plus something else. Then the inequality: 7rx < 7ry should be valid 

for the same reasons. 

7.2.2 Bundle Pricing and Network Pricing Problem 

The Bundle Prieing Problem intends to design and to price a set of products, 

each product representing a subset of components of a "global element". In the 

Network Pricing Problem, each path is composed of several components which are 

the toll arcs of the network. Renee there exists a link between the two problems, 

but such relationship is less obvious than with the General Complete Toll NPP. 
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7.3 Comparison between a Modified Profit Problem and the GCT-NPP 

To conclude this chapter, we compare the results obtained for the General Com­

plete Toll NPP to these obtained by Shioda et aL (2007, [61]) for the Modified 

Profit Problem. 

We first present the linear mixed integer model of Shioda et aL, together with 

their best valid inequalities. Next, the model and valid inequalities are tested on the 

randomly generated instances described in Section 6.1. The results are compared 

to those obtained for the GCT-NPP. Finally, both models and valid inequalities 

(for the Modified Profit Problem and the GCT-NPP respectively) are tested on 

randomly generated instances proposed by Shioda et al. in [61]. 

Shioda et al. (2007, [61]) consider a linear mixed integer model for the Modified 

Profit Problem, Le., 

(LMPP) max I: 7lkp~ 
kelC,ieI 

subject to: 

I:x~:::; 1 \:fk E ;C (7.13) 
ieI 

I: (rjx; - p;) ~ r~ L x; - Ki \:fk E ;C, \:fi E l (7.14) 
jEI:j#i jeIjfi 

\:fk E ;C, \:fi E l (7.15) 

\:fk E ;C, \:fi E l (7.16) 

\:fk E ;C, \:fi E l (7.17) 

\:fi E l (7.18) 

x~ E {0,1} \:fk E ;C, i E l (7.19) 

where Ni maxk{ rf}, and p~ represents the actual priee of product i for purchaser 
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segment k. 

Excluding constraints (7.14), this model (LMPP) is identical to model (HP3*) 

for the General Complete Toll NPP. Now let us compare constraints (7.14) of 

(LMPP) to the Shortest Path constraints (3.22) of (HP3*). Adding a term 1'fxf -pf 

to both sides of inequalities (7.14) yields: 

Vk E K,Vi E (7.20) 

Then, constraints (7.13) and (7.18) imply that: 

1'k " xk _ pk < 1'~ 
t ~ J t - P 

JEI 

which means that the Shortest Path constraints (3.22) of (HP3*) are stronger than 

constraints (7.14) of (LMPP). Indeed, note that if a purchaser segment k E K does 

not buy any product, constraints (7.14) are redundant for this segment k, which 

constraints (3.22) impose C~d ~ c~ + ta for aIl to11 arcs a E A. 

Shioda et al. [61] also propose the following valid inequalities for model (LMPP): 

Vk1 E K, Vi ET (7.21) 

Vk11 k2 E K, Vi E l : 

7'~2 ~ 7'~1 Vi E T, 7'~1 - 7'~~2 > 1'Jl 1';2 Vj ET \ {i}. (7.23) 

Inequalities (7.21) and (7.22) provide lower and upper bounds for the actual 

product priee variables pr : k E K, i E T, which depend on the reservation priees 

7'7 : k E K, i E Inequalities (7.23) link the flow variables xf : k E K, i E l for 
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different purchaser segments. We refer the reader to Shioda et al. (2007, [61]) for 

further details. 

One can easily check that these inequalities are still valid for the General Com­

plete Toll NPP. In order to compare the efficiency of model (HP3*) with the valid 

inequalities proposed in Chapter 4 to model (LMPP) and inequalities (7.21), (7.22) 

and (7.23), we test the latter on the randomly generated instances described in Sec­

tion 6.1. Inequalities (7.21) and (7.22) are appended to the initial model (LMPP). 

Inequalities (7.23) are generated at the root of the branch and cut algorithm and 

added to the model when violated. The results obtained are presented in Table 7.2. 

Inst. Gap(%) Time (sec) Nodes 
MIN MAX {L a MIN MAX {L a MIN MAX {L a 

5 v - 10 n 8.65 17.70 14.66 3.2 0 24 7 9 19 5473 1273 1989 
5 v - 15 n 7.55 28.29 16.32 6.6 1 261 58 92 93 32563 6853 11580 

*4*8v-10n 6.97 32.70 22.81 8.7 6 18001 12006 8479 491 1910347 959689 718395 
*5*8 v - 15 n 16.79 37.84 24.94 8 8793 18003 16467 3432 100000 486314 362496 90458 

*6*10 v - 10 n 19.38 31.64 26.15 4 18000 18004 18003 1 100000 634355 427870 134430 
*6*10v-15n 19.78 33.35 27.26 4.7 18000 18010 18007 3 62720 221028 144249 57155 

Table 7.2: Model (LMPP) with (7.21), (7.22) and (7.23) inequalities 

Comparing Tables 7.2 and 6.2 (which reports the results for the initial model 

(HP3*)), we observe that formulation (LMPP) provides much worse results than 

formulation (HP3*). Hence constraints (7.14) of (LMPP) are weaker, both theo­

retically and numerically, than constraints (3.22) of (HP3*). 

In order to point out the efficiency of the valid inequalities (7.21), (7.22) and 

(7.23), we test these under model (HP3*). The results are presented in Table 7.3. 

Now comparing Tables 7.3 and 6.2, we conclude that the valid inequalities pro­

posed by Shioda et al. allow a decrease of the gaps, cpu times and number of nodes 

in the branch and cut algorithm. The gaps decrease of 10 to 29%, while the cpu 
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Inst. Gap(%) Time (sec) Nades 
MIN MAX jJ CJ MIN MAX jJ CJ MIN MAX jJ CJ 

5 v - 10 n 0.28 11.68 5.83 3.9 0 5 2 2 1 89 34 38 
5 v - 15 n 2.86 15.54 8.38 4.2 0 7 4 2 5 187 66 64 
8 v - 10 n 2.46 23.25 12.97 7.4 1 860 282 328 21 33811 10351 12787 

'1>8 v - 15 n 7.34 27.22 13.49 6.8 26 18006 4157 6601 297 400197 81832 145428 
10 v - 10 n 7.59 17.06. 11.73 3.9 24 735 201 250 119 19690 4791 7033 

,4, 10 v - 15 n 7.66 19.34 12.81 4.4 868 18029 12304 8083 8589 271246 145109 103612 

Table 7.3: Model (HP3*) with (7.21), (7.22) and (7.23) inequalities 

times and number of nodes decrease by 78% and 92% respectively for the largest 

instances solved to optimality, Le., 10v -IOn. However, the results obtained in the 

final tests for the GCT-NPP (i.e., gaps decrease of 78 to 89%, while cpu times and 

number of nodes decrease of 90% and 99% respectively for instances 10v - IOn) 

clearly outperform Shioda et al. 's results. 

In their numerical experiments, Shioda et al. (2007, [61]) address randomly 

generated instances in the following way. Consider from 40 to 80 purchaser seg­

ments and from 10 to 60 products. For each purchaser segment (resp. commodity) 

k E K, a demand 'Tlk is randomly generated between 500 and 799. For each product 

(resp. toll arc) a E A, reservation prices of this product for purchaser segments 

r! : k E K (resp. C~d - c!) are randomly generated between 512 and 1023. Hence, as 

the model (LMPP) and the valid inequalities (7.21), (7.22) and (7.23) were devel-

oped in a context of product pricing, they could be more effective on corresponding 

instances. 

Let us compare the best results obtained for models (HP3*) and (LMPP) re­

spectively on 3 instances of each size. The results are presented in Tables 7.4, 7.5 

and 7.6. Note that the letters 'k' and 'a' denote the number of commodities (pur­

chaser segments) and the number of toll arcs (products). 
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Inst. Gap(%) Time (sec) Nodes 
MIN MAX IL (J MIN MAX IL (J MIN MAX IL (J 

*~*40 k - 10 a 3.54 9.1 7.03 2.5 862 18003 12290 8081 19523 616169 375901 257045 
*3*40 k - 20 a 2.34 4.65 3.24 1 18000 18009 18008 1 100000 445166 395358 35547 
*h40 k - 40 a 0.51 0.89 0.65 0.2 363 18012 6805 7954 1673 120007 44444 53586 

40 k - 60 a 0.22 0.35 0.29 0.1 180 307 230 55 385 981 612 263 
*3*60 k - 10 a 5.58 11.31 9.27 2.6 18000 18014 18013 1 100000 247984 237077 9350 
*3*60 k - 20 a 4.84 7.56 6.11 1.1 18000 18060 18059 1 100000 168415 146458 16123 
*3*60 k - 40 a 0.95 2.48 1.49 0.7 18000 18036 18033 3 54571 83794 64837 13420 
*3*60 k - 60 a 0.71 0.87 0.8 0.1 18000 18065 18059 5 40866 46390 42898 2480 
*3*80k-10a 9.24 17.04 13.28 3.2 18000 18032 18031 1 100000 132840 124757 6194 
*3*80k-20a 11.25 13.62 12.45 1 18000 18179 18171 11 73376 83427 80074 4736 
*3* 80 k - 40 a 2.99 7.08 4.42 1.9 18000 18695 18577 85 41857 44767 42979 1278 
*3* 80 k - 60 a 0.9 1.18 1.02 0.1 18000 18121 18118 3 27638 30367 28582 1263 

Table 7.4: Model (LMPP) with (7.21), (7.22) and (7.23) inequalities, tested on 
Shioda et al. instances 

Inst. Gap(%) Time (sec) Nodes 
MIN MAX IL (J MIN MAX IL (J MIN MAX IL (J 

40 k - 10 a 1.68 5.77 4.23 1.8 18 61 44 18 228 2267 1380 853 
40 k - 20 a 1.07 2.86 1.72 0.8 57 437 187 177 466 5778 2279 2474 
40 k - 40 a 0.08 0.36 0.20 0.1 67 109 86 17 40 309 155 113 
40 k - 60 a 0.04 0.07 0.06 0 239 371 296 55 12 28 22 7 
60 k - 10 a 3.33 6.77 5.44 1.5 243 1155 772 387 3266 24159 14916 8698 

*2*60 k - 20 a 1.58 3.55 2.55 0.8 1307 18115 12510 7922 5070 117948 75761 50297 
60 k - 40 a 0.36 1.08 0.62 0.3 514 8065 3350 3357 1278 32587 12982 13949 
60 k - 60 a 0.22 0.39 0.31 0.1 1579 6574 4319 2068 833 7365 4659 2782 
80 k - 10 a 3.57 6.36 5.38 1.3 5628 17422 9955 5302 51638 221040 117504 74110 

*3*80k-20a 2.13 3.75 3.15 0.7 18000 18361 18332 21 51477 56982 54901 2440 
*2*80 k - 40 a 0.45 1.59 1.14 0.5 17107 19144 18433 938 27058 44366 35782 7067 
*h80 k - 60 a 0.21 0.28 0.25 0 9295 18326 13778 3687 4893 12067 8869 2980 

Table 7.5: Model (HP3*) with (7.21), (7.22) and (7.23) inequalities, tested on 
Shioda et al. instances 

As before, comparisons between Tables 7.4 and 7.5 show that formulation 

(LMPP) is much weaker than formulation (HP3*). lndeed, the largest instances 

solved to optimality with model (LMPP) involve 40 commodities and 60 toU arcs, 

while model (HP3*) is able to solve instances up to 80 commodities and 10 toU 

arcs. Further, the gaps in Table 7.5, i.e., for model (HP3*), are from 40 to 79% 

lower than the ones for model (LMPP). 
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Inst. Gap(%) Time (sec) Nodes 
MIN MAX f-L (J MIN MAX f-L (J MIN MAX f-L (J 

40 k - 10 a 0.34 1.79 1.28 0.7 14 233 130 90 42 2809 1791 1242 
40 k - 20 a 0.37 1.07 0.66 0.3 88 220 136 60 387 3801 1534 1603 
40 k - 40 a 0.05 0.22 0.11 0.1 100 173 129 32 19 356 137 155 
40 k - 60 a 0.02 0.04 0.03 0 169 228 189 

, 
28 7 14 9 3 

60 k - 10 a 0.97 2.45 1. 78 0.6 222 4821 2283 1908 925 25354 13475 9984 
*h60 k - 20 a 0.46 1.35 0.88 0.4 1422 18057 9553 6796 4145 60553 31684 23048 
*h60 k - 40 a 0.11 0.53 0.28 0.2 346 18333 6568 8325 49 34762 13814 15054 

60 k - 60 a 0.09 0.17 0.14 0 820 5515 2585 2087 189 17405 6346 7836 
80 k - 10 a 1.01 1.76 1.5 0.3 1105 16213· 6520 6870 3706 75237 29498 32430 

*3*80 k - 20 a 0.72 1.51 1.18 0.3 18000 18152 18145 6 13541 22660 19029 3948 
*2*80 k - 40 a 0.17 0.64 0.41 0.2 1461 18752 12925 8106 1928 20585 12180 7728 

80 k - 60 a 0.08 0.11 0.09 0 2175 3057 2614 360 323 1153 732 339 

Table 7.6: Model (HP3*) with (4.1)-(4.2), (4.7)-(4.8) and (4.9)-(4.10) inequalities, 
tested on Shioda et al. instances 

Further, when replacing constraints (7.14) of (LMPP) by the Shortest Path 

constraints (3.22), we obtain a comparison of model (HP3*) with either (7.21), 

(7.22), (7.23) or (4.1)-(4.2), (4.7)-(4.8), (4.9)-(4.10) inequalities. The results are 

presented in Tables 7.5 and 7.6. The latter show that the valid inequalities pre­

sented in Chapter 4 outperform the valid inequalities proposed by Shioda et al. 

[61] in terms of the gaps (which decrease of 45 to 72%), and, for specifie instances, 

in terms of computing times or number of nodes (up to 80% and 60% respectively 

for the largest instances solved to optimality, i.e., 80k - 10a). 

Finally, we test formulation (HP3*) with (7.21), (7.22), (7.23) and (4.1)-(4.2), 

(4.7)-(4.8), (4.9)-(4.10) inequalities. The results are presented in Table 7.7. 

Comparing Tables 7.6 and 7.7, we conclude that adding (7.21), (7.22) and (7.23) 

inequalities to our best formulation (i.e., model (HP3*) with (4.1)-(4.2), (4.7)-(4.8), 

(4.9)-(4.10) inequalities) helps to decrease the gaps and the number ofnodes in the 

branch and eut algorithm. The gaps decrease from 18 to 45%, while the number 

of nodes decrease by 87% for instances 80k - 10a. However, cpu times increase, 



154 

Inst. Gap(%) Time (sec) Nodes 
MIN MAX J-L (J' MIN MAX J-L (J' MIN MAX J-L (J' 

40 k - 10 a 0.08 l.39 0.79 0.5 31 170 111 58 15 710 341 285 
40 k - 20 a 0.21 0.79 0.45 0.2 180 448 338 114 31 801 386 317 
40 k - 40 a 0.02 0.1 0.06 0 112 356 216 103 5 139 71 55 
40 k - 60 a 0.01 0.02 0.02 0 563 866 677 135 7 16 12 4 
60 k - 10 a 0.6 l.36 l.l 0.4 304 2081 1054 752 225 4207 2164 1627 

*1*60 k - 20 a 0.29 l.26 0.74 0.4 1356 18371 8547 7192 472 7455 3411 2956 
*10 60 k - 40 a 0.07 0.43 0.21 0.2 954 18516 9858 7172 136 5518 3450 2367 
*10 60 k - 60 a 0.06 0.15 0.11 0 4529 20730 11759 6728 179 7752 3619 3130 

80 k - 10 a 0.61 l.27 0.97 0.3 1344 8059 4346 2787 949 6643 3302 2427 
*3*80 k - 20 a 0.55 l.32 0.95 0.3 18000 18537 18507 25 3966 6305 4960 987 
*3*80 k - 40 a 0.13 0.6 0.35 0.2 11890 20328 17487 3957 2096 2925 2517 339 
*10 80 k - 60 a 0.04 0.06 0.06 0 6467 15359 11633 3770 483 726 588 102 

Table 7.7: Model (HP3*) with (4.1)-(4.2), (4.7)-(4.8), (4.9)-(4.10), (7.21), (7.22) 
and (7.23) inequalities, tested on Shioda et al. instances 

probably due to the time required by the separation procedure. The latter should 

be improved in future research. 

7.4 Conclusion 

In this chapter, we highlighted the links between standard design and pricing 

problems in economics and the Network Pricing Problem. While both families of 

problems have been extensively studied in literature, it seems that no relationships 

have been noticed so far. However, it is clear that these families of problems are very 

similar and should be interconnected in the future. Especially, the real efficiency 

of valid inequalities has been shown numerically for a pricing problem. Hence, it 

would be interesting to go further in the polyhedral study within the framework of 

a design and pricing problem. 



CHAPTER 8 

CONCLUSION 

In this thesis, we have studied a Network Pricing Problem whose features repre­

sent these of a real highway topology. As tollieveis are usually computed using the 

highway entry and exit nodes, a complete toll subgraph is considered, where each 

toll arc corresponds to atoll subpath. Two variants of this problem are studied, 

with or without Triangle and Monotonicity constraints linking together the tolls 

on the arcs. 

First described by a bilevel formulation, the problem can be modelled as a 

linear mixed integer program with a single level. It is proved to be NP-hard 

by a reduction from 3 - SAT. Next, we have proposed several families of valid 

inequalities for this problem. The latter inyolve pairs of commodities at a time, 

and strenghten important constraints of the initial model. 

Then, focusing on instances involving one or two commodities, we have proved 

that most of the valid inequalities, as well as several constraints of the initial model, 

define facets of the convex hull of feasible solutions for these restricted problems. 

In the single commodity case, a complete description of the convex hull of feasible 

solutions for one variant of the problem is also provided. 

Next, the efficiency of the proposed valid inequalities is highlighted by numerical 

results. With regards to the first variant of the problem, which includes Triangle 

and Monotonicity constraints, several of the valid inequalities are efficient, and 

yield to a significant decrease of the gap and number of nodes in the branch and cut 

algorithm. Unfortunately, the cpu times increase, probably because the Triangle 

and Monotonicity constraints interfere negatively with the valid inequalities, which 
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obstructs the program to reach quickly optimality. 

\Ve have also performed numerical tests for the second variant of the problem, 

which does not include Triangle and Monotonicity constraints. Most of the valid 

inequalities lead to a significant decrease of the gap and number of nodes. Further, 

they also allow a of the cpu time. 

Finally, we have pointed out the links between the Network Pricing Problem 

studied in the thesis and a more standard design and pricing family of problems in 

economics. A description of these problems, together with an overview of results, 

is first provided. Then we have highlighted the strong relationships between both 

families of problems. We have also compared the model and the valid inequalities 

proposed in the thesis to the on es from a very similar work in economics. It shows 

that our results clearly outperform the se obtained for an identical pricing problem. 

To conclude, the polyhedral structure of the specific problems studied in the 

thesis is probably simpler than the one for the classical Network Pricing Problem. 

In view of the efficiency of the proposed valid inequalities, it would be interesting to 

study the validity of these inequalities in the context of a classical Network Pricing 

Problem. With a path formulation, the inequalities would obviously stay valid for 

the Network Pricing Problem. However, in consequence of the exponential number 

of paths in such a formulation, one should find an efficient separation algorithm to 

implement the inequalities. A transformation of the inequalities to an arc formula­

tion, as weIl as a detailed polyhedral study of this formulation, also provide good 

ideas for future research. 

Next, in view of the strong relationships between the problems studied in the 

thesis and several pricing problems in economics, it would interesting to go fur­

ther in the polyhedral study within the framework of a design and pricing problem. 

Especially, the real efficiency of the valid inequalities has been shown numerically 
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for a pricing problem. Renee a deeper analysis should be performed, and could, for 

instance, exploit the compatibility notion described in Chapter 4. 

In a larger context, this study provides sorne major conclusions. even if 

heuristics have been extensively developed during these last years, our results show 

that exact methods still hold promises. Adding valid inequalities (even perhaps 

alrnost valid inequalities) to complex network pricing models cou Id be useful, and 

one should think about their integration in a large real system. AIso, the links with 

another classical pricing problem in economics, mostly solved by inexact methods, 

give possible for future research. 
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Appendix 1 

Proofs of complexity for the Basic NPP 

Here we consider the Basic NPP, which deals with a network where aIl toll arcs are 

connected, i.e. neither complete toU subgraph nor Triangle or Mono inequalities. 

Proposition 28 The single directianal Basic NPP is strongly NP-hard. 

Proof 

Any conjunctive normal form F = I\~l (lil V li2 V li3), where lij for j = 1,2,3 rep­

resents a variable Xi : i E {1, ... , n} or its negation, can be polynomial1y converted 

to an instance of the Basic NPP. 

For each variable Xi : i E {1, ... , n}, a su bnetwork is constructed as shown in Figure 

1.1. 

3 

Figure 1.1: Subnetwork for variable Xi' 

Each of these subnetworks contains three commodities (aij , dij ) : j E {1, 2, 3} with 

unit demand, and two toll arcs ai and ai of zero fixed cost, corresponding to the 

truth and false assignment for variable Xi respectively. Toll free arcs of cost zero 

connect ail (resp. a i3 ) to the tail node of arc ai (resp. ad, the head node of arc 
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ai (resp. ai) to dil (resp. di3 ), Oi2 to both tail nodes of toll arcs, and both head 

nodes of toll arcs to di2 . Toll free arcs (Oil, dil ) of cost 3, (oi3, di3 ) of cost 3 and 

(Oi2, di2 ) of cost 2 are also added. Thus an upper bound on the revenue for each 

subnetwork is 7, obtained by setting one toll to 2 and the other one to 3. In all 

other cases, the revenue cannot exceed 6. Note that the toll free arcs that do not 

appear from sorne origins to tail nodes of toll arcs (resp. from head nodes of toll 

arcs to sorne destinations) are supposed to be so expensive that they can never 

be used. Then the subnetworks are linked together so that the single direction al . 

highway corresponds to the set of all subnetworks. 

Further, for each clause k, a clause-commodity (ok, dk
) with unit demand is con­

structed. If variable Xi (resp. Xi) is a literaI of clause k, toll free arcs of cost 0 are 

added from ok to the tail node of ai (resp. ai) and from the head node of ai (resp. 

ai) to dk . An additional toll free arc (ok, dk ) of cost 2 is added, which defines an 

upper bound of 2 on the revenue from each clause-commodity. This construction 

is depicted in Figure I.2. 
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Figure 1.2: Subnetwork for = ( ... V Xi V Xj) 1\ (Xj V Xz V ... ) 1\ ... (single-directionaI 

Basic NPP). 

Let show that a satisfying truth assignrnent for F exists if and onIy if the revenue 

for the Basic NPP is equal to 2m + 7n. 

Suppose there exists a satisfying truth assignrnent, which rneans that at least one 

literaI is true in each clause. Set the toll on the corresponding arc to 2, and the 

ton on the cornplernentary arc (with respect to the corresponding subnetwork) to 

3. Thus the total revenue for all clause-cornrnodities is 2m. For aIl rernaining sub­

neworks, if any (i.e. this situation only happens if a variable Xi do es not appear 

in any clause), the toll arcs are set arbitrarily to 2 and 3 for a variable and its 

negation, respectively. Thus the revenue for an subnetworks is 7n, which rneans 

that the total revenue is 2m + 7n. 

Conversely, suppose there exists tolls such that the total revenue is 2m + 7n. The 
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maximal possible revenue for aIl subneworks is 7n, only achievable by setting one 

toU per subnetwork to 2 and the other one to 3. On the other hand, the max­

imal possible revenue for aIl clause-commodities is 2m. Set to true aIl literaIs 

corresponding to toIl arcs of cost 2, and false to the other. This corresponds to a 

weIl-defined assignment for F, sinee there is exactly one toIl of 2 in each subnet­

work. Moreover, each clause-commodity contributes to the total revenue with a 

toU of 2, which means that at least one literaI per clause is true, and there exists 

a truth assignment for F. o 

Proposition 29 The bi-directional Basic NPP is strongly NP-hard. 

Proof 

Here subnetworks for variables Xi : i E {l, ... , n} are constructed ln a slightly 

different way, as shown in Figure I.3. 

3 2 

3 

Figure 1.3: Subnetwork for variable Xi. 

ToIl arcs ai : i E {l, ... , n} are in one direction of the highway, while toIl arcs 

ai : i E {l, ... , n} are in the other direction. Such a network is depicted in Figure 

I.4. 
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Figure 1.4: Subnetwork for F = ( ... V Xi V Xj) A (Xj V Xz V ... ) A ... (bi-directional 

Basic NPP). 

Then the same proof as before can be applied. o 

Proposition 30 The Basic NPP where access to all entry points (resp. from all 

exit points) is feasible from all origins (resp. to all destinations) is strongly NP­

hard. 

Proof 

This addition al condition means that there is no so expensive path that it could 

never be taken, which is a little different from the situation described before. 
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Subnetworks are constructed as before, except that some additional toll free arcs 

(those that were too expensive) are added so that there is one toU free arc from 

any origin to any tail Ilode of a toll arc, and from any head node of a toU arc to 

any destination. For each commodity k and for each toU arc ai, the cost on those 

arcs (Ok, t(ai)) and (h(ai), dk ) are set in a way such that the sum of the fixed cost 

of these two arcs is equal to the cost of the toll free arc (Ok, dk ). Such a subnetwork 

is depicted in Figure 1.5. 
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Figure 1.5: Subnetwork for variable Xi (All feasible access Basic NPP) 

Then, as costs of additional paths (the ones that were too expensive) are equal to 

costs on toll free arcs from origins to destinations of commodities, one can only 

choose them if tolls are set to zero on corresponding arcs. But this do es not lead 

to a maximal revenue for the leader, thus those new arcs are not used and toUs on 

arcs are set as before. Then the same proof as before is applied. o 


