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Résumé 

L'objectif général de cette thèse était d'explorer et d'identifier les substrats 

anatomiques impliqués dans les différents stades de l'apprentissage d'une adaptation 

visuomotrice à l'aide de l'imagerie par résonance magnétique fonctionnelle (lRMf). Deux 

expériences ont été réalisées pour atteindre ce but. La première étude avait pour objectif 

l'investigation du stade automatique de l'exécution de l'habileté motrice, tandis que la 

deuxième expérience a exploré la rétention à long terme de cet apprentissage. Ces 

expériences ont utilisé des sujets normaux, et ont fait usage d'une tâche de poursuite 

visuelle requerrant l'utilisation d'une manette de jeux. Les résultats ont révélé qu'une 

réorganisation fonctionnelle des régions anatomiques a eu lieux au travers des phases 

d'apprentissages, et que ces changements ont suivi le model d'apprentissage moteur 

proposé par Doyon et collaborateur (2002, 2003, 2005). En effet, les résultats de notre 

série d'expériences ont mis en évidence l'implication des circuits cortico-cerebelleux (CC) 

et cortico-striatal (CS) au stage initial d'apprentissage, tandis que seul le circuit CC était 

impliqué dans le stade lent, la rétention, et l'automatisation de l'habileté motrice. De plus, 

nos résultats ont aussi mis en évidence l'importance de considérer et de contrôle la stratégie 

d'exécution utilisée par les sujets pour compléter la tâche et lors de l'interprétation des 

résultats de l'imagerie cérébrale. 

Mots-clés: Apprentissage moteur, Adaptation visuomotrice, IRMf, Rétention, et 

Automatisation. 
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Abstract 

The general objective of this thesis was to explore and describe the underlying brain 

circuits involved at different leaming phases of a visuomotor adaptation skill through the 

use of functional magnetic resonance imaging (fMRI). Two experiments were designed to 

achieve this goal. The first study had for objective to investigate the automatic execution 

stage of leaming, whereas the second experiment investigated the long-term retention of 

procedural memory. AU experiments involved normal subjects, and employed a visuaUy­

guided adaptation skill requiring subjects to use a joystick to complete the task. The results 

reveal that functional neural reorganisations take place throughout the leaming phases, and 

these changes foUow Doyon and colleagues' (2002, 2003, 2005) model of motor leaming. 

In fact, the results of our series of experiments revealed that both the cortico-cerebellar 

(CC) and the cortico-striatal (CS) systems play an important role during the early leaming 

stage of motor leaming, while only the CC circuit plays a pre-eminent role during the later 

leaming stage, and is the only system implicated in the recall and automatic execution of 

the visuomotor adaptation skill. What' s more, our results also suggest that the execution 

strategy used by subjects to complete the task has important consequences on the 

subcortical regions recruited for task completion, and is an important factor to consider 

when interpreting functional imaging data. 

Keywords : Motor skillleaming, Visuomotor adaptation, fMRI, Retention, and 

Automatisation. 
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Chapter 1. Introduction 

Although the study of human memory dates back to Plato's work five centuries 

before this era, the subject matter was mostly limited to philosophical writings and 

introspective probing like the kind practiced by Sigmund Freud. 

It was only in the 1930's that a resourceful researcher, by the name of Karl Lashley, 

began a systematic quest for the exact location of memory in the brain (Viney & Brett 

King, 1998). His approach was fairly simple, he taught rats and monkeys a variety of tasks, 

then destroyed a part of their brain. He reasoned that if the animaIs could not remember 

after the lesion, then he must have found the place where memories reside. After countless 

experiments, Lashley's results lead him to conc1ude that nothing short of near complete 

destruction of the cortex caused the animaIs to forget their tasks. Tired and frustrated, he 

conc1uded that the biological study of memory was impossible. 

He was proven wrong less than 25 years later when, in 1953, twenty-seven year old 

Henry M. entered the hospital for radical brain surgery that was to cure his epilepsy. 

Living with debilitating epileptic seizures, H.M. was hopeful that the procedure would 

change his life for the better. Instead, it trapped him in a mental time warp where television 

is always a new invention and Truman is forever president of the United States of America. 

This devastating si de effect made H.M. the most studied individual in the history of brain 

exploration and revolutionised the field of memory research. Following the resection of a 

large portion ofhis temporal lobes, H.M. was cured ofhis seizures, but was left with severe 

anterograde amnesia. Impressively however, H.M. did preserve sorne mnemonic abilities. 

For instance, he was able to hold sorne information in storage for very short periods oftime 

(short-term and working memory), and he could still leam various motor skills (Milner, 

2005). Such observations of HM's case have lead to sorne of the seminal findings about 

memory. SpecificaIly, it was shown that the hippocampus is required for the formations of 

explicit long-term memories, but not for the short-term recall ofthese memories, nor for the 

acquisition of various motor skills. More importantly, H.M.'s case study had vividly 
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illustrated that there is a biological basis for memory, and that it lS possible to use 

biological techniques to study it. 

Since then, a plethora of studies have given rise to a number of models suggesting 

that memory is not a single entity, but rather a heterogeneous phenomenon that can be 

broken down into different systems, each of which is sub-served by a distinct neural 

network (Cohen & Squire, 1980; Schacter, 1987; Squire, 1982; Tulving, 1985). Although 

aIl these researchers agreed that memory research should be understood as the study of 

various systems ofmemories, they disagreed on the classification scheme and terminology 

that should be used to describe and define aIl its components. Sorne researchers believe 

that a distinction should be made between "explicit" and "implicit" memories (Schacter, 

1992a; Schacter, 1992b), "cognitive memories" and "habits" (Mishkin, Malamut & 

Bachevalier, 1984), "procedural" and "declarative" memories (Cohen, Eichenbaum, 

Deacedo & Corkin, 1985), or between "declarative" and "non-declarative" memories 

(Squire, 1992; Squire, Knowlton & Musen, 1993). Other models propose the existence of 

not two, but several distinct classes of memory: "semantic memories", "episodic 

memories", "procedural memories", "perceptual representation systems", and "working 

memory" (Schacter & Tulving 1994). 

Despite these differences, the model proposed by Squire and colleagues (1992, 

1993) is probably the conceptual framework that has gained the most recognition in 

neuropsychological research over the last decade. Part of its success is that in addition to 

dividing memories in two broad classes (declarative and non-declarative), their model goes 

a step further in decomposing memories into smaller subtypes (Fig. 1.1). Another reason 

for its success lies in the fact that this model is based on a wide variety of evidence, ranging 

from animal research to investigations in both normal and pathological human populations. 

A considerable amount of data now supports the existence of such functionally and 

neuroanatomically dissociable subsystems. This model, as weIl as the motor skill under 

investigation in this thesis, will be reviewed in sorne detail in the following lines. 
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Figure 1.1 A taxonomy ofmemory and associated brain structures adapted from Squire & Knowlton (1995). 

Briefly, Squire and colleagues propose that declarative memories are made up of 

facts and events that can be expressed in words. As such, two types of declarative 

memories have been distinguished: semantic memories, which refer to factual information 

that a group of people can share (e.g. who is the prime minister of Canada?), and episodic 

memories, which refer to autobiographical information for events (e.g. where you were on 

September Il th 2001 ?). The acquisition of these types of memories is rapid, as it often 

takes only a brief exposure for them to be acquired, and their expression is conscious and 

explicit, meaning that they require conscious thought to be leamed or expressed (Cohen & 

Squire, 1980). In contrast, Squire & Knowlton (1995) define non-declarative memories as 

skills or habits that are acquired gradually with practice (priming and taste aversion 

conditioning are exceptions since they can be acquired after a single trial). In general, 

however, non-declarative memories are leamed slowly and often require many repetitions 

over several training sessions to develop (Fitts, 1964). The acquisition of such abilities can 

be explicit and/or purely impIicit, as they do not require conscious thought to be leamed or 

expressed (Squire, 1992). The non-declarative memory system is comprised of four 

. subtypes; skills and habits, priming, simple classical conditioning and non associative 
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leaming. Of particular importance for this work is the acquisition of ski1ls. Skililearning 

refers to the leaming of motor, cognitive or perceptual skills, whereby performance on a 

given task improves with repetition, such that after a critical amount of training, highly 

skilled performance levels can be attained (Mishkin, Malamut & Bachevalier, 1984; Squire 

& Knowlton, 1995; Squire & Zola, 1996). 

As 1 will present in greater detail further, researchers differentiate between three 

general types of skills: cognitive, perceptual and motor skills. Motor skills themselves are 

subdivided into two smaller categories: sequence learning and motor adaptation. The work 

completed in this thesis has concentrated on studying a particular class of motor adaptation, 

namely visuomotor adaptation. Briefly defined, visuomotor adaptation skills refer to a set 

of abilities that allow an individual to change motor commands in response to alterations in 

sensory feedback. These motor capacities are essential to complete several everyday tasks, 

and actively contribute in such tasks as walking, driving, using a computer mouse, etc. In 

fact, their presence in our everyday functioning is ubiquitous, and researchers' interest in 

the leaming of such skills is justifiable. 

However, although the cerebral structures and circuits involved in the leaming of 

declarative memories are weIl known (Meunier, Bachevalier, Mishkin & Murray, 1993; 

Squire, 1992; Squire, Knowlton & Musen, 1993), an analogous circuitry for motor skill 

leaming is only beginning to be defined. Based on animal and human work, several brain 

structures, including the basal ganglia, cerebeIlum, and motor cortical regions of the frontal 

lobe are thought to be critical for the acquisition and/or retention of skilled motor 

behaviours (e.g. Bloedel, 1992; Nezafat, Shadmehr & Holcomb, 200la; Della-Maggiore & 

McIntosh, 2005; Krebs et a1., 1998; Doyon et a1., 2002a; Ungerleider, Doyon & Kami, 

2002; Doyon et al., 2004; Doyon & Benali, 2005). The exact nature of their involvement in 

motor skill leaming, however, is far from being weIl understood. In fact, contradictory 

findings conceming the involvement of these structures in skill learning is quite common 

(Garavan, Kelley, Rosen, Rao & Stein, 2000). The general objective of the present thesis is 
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thus to use modern neuroimaging tools to contribute to our CUITent understanding of the 

memory system underlying motor skill learning. Based on the recent models presented by 

Doyon and collaborators (2002, 2003, 2005) that attempts to predict the involvement of the 

different brain regions during the learning of motor skills, we derived a-priory hypotheses 

concerning the automatisation and long-term retenti on of a visuomotor adaptation that we 

set out to test. 



Chapter 2. The experimental study of motor 

adaptation 

2.1. Defining and differentiating between motor skills 

19 

As was previously stated, our understanding of the memory system in the early part 

of the 1990s was of two broad categories of learning exists (Le dec1arative and non­

declarative), and that these two categories were further subdivided into sm aIl er 

subcategories. The specific subcategory of interest in this thesis was referred to as skills 

and habits. It is generally agreed that three broad types of skill can be learned (cognitive, 

perceptual and motor) (Mishkin & Murray, 1994; Squire & Knowlton, 1995; Squire & 

Zola, 1996). Their acquisition is usually measured by a graduaI reduction in reaction time, 

decrease in number of errors, and/or a reduction in the number of trials needed to reach 

successful completion criterion. 

Cognitive skill learning can be defined as the process by which the procedures and 

strategies relevant to the performance of a task demanding mental operations come to be 

combined and used effectively following repeated practice (Ouellet, Beauchamp, Owen & 

Doyon, 2004). The learning and use of mathematics and arithmetic is a good example of 

cognitive skilllearning in everyday life. On the other hand, visual-perceptual skills involve 

the ability to accurately interpret and give meaning to what is seen. A number of specific 

skills fall into this category. They include; vi suaI discrimination -or the ability to 

distinguish one visual pattern from one another; and visual closure -or the ability to 

perceive a whole pattern when shown only parts of that pattern (R.Clay Reid, 1999). 

The skill that has attracted most attention, and prompted the largest body of the 

research, including the experiments in this thesis, has been motor learning. The fact that 

motor learning has generated a great deal of investigations and deliberations is equitable to 
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the amount of activities in everyday life that require the graduaI acquisition of motor skills. 

Simply brushing our teeth necessitates the co-articulation of arm, hand and finger 

movements into specific and smoothly executed sequences of action. Motor ski111eaming 

can be operationally defined as the process by which movements, either produced al one or 

in a sequence, come to be performed effort1ess1y through repeated practice (Willingham, 

1998). As one can readily recognise, this operation al definition is rather vague and can 

encompass a wide variety of tasks that are quintessentiaHy different. For instance, although 

knitting and playing consol games can be regarded as tasks that require the graduai 

acquisition of motor skills, they are essentially very different in nature. Just as memory 

research has invariably lead us to consider memory as a wide architecture of complex and 

distinguishable subtypes, so has the specific study of motor skills directed investigators to 

dissociate various forms of motor skills subtypes. Although varying in their complexity and 

nature, investigators agree to distinguish between two general categories of motor skill 

tasks: motor sequences and motor adaptation tasks. 

Knitting is considered a motor sequence tasks because it requires the incremental 

acquisition of movements into a well-executed behaviour. To study the neural substrates 

mediating our agility to leam motor sequences, investigators have used a number of 

different experimental procedures. Researchers have tested subjects as they leamed to 

repeat sequences of fingers or limb movements (Kami et al., 1995; Doyon et al., 2002), to 

move a pen through a eut-out maze by trial and error (Van Mier, Tempel, Perlmutter, 

Raichle & Petersen, 1998), and ev en while subjects knit (Doyon, pers comm). 

On the other hand, consol games are considered motor adaptation tasks because 

they require subjects to map new representations between the various motor commands and 

the sensory feedback involved in the tasks' execution (Klassen, Tong & Flanagan, 2005). In 

order to study motor adaptation leaming, researchers have employed a number of different 

paradigms. For instance; tasks requiring subjects to maintain contact between a metal 

stylus and a small target located on a disk that can be adjusted to rotate at different 
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velocities (rotor pursuit task) (Maquet, Schwartz, Passingham & Frith, 2003; Smith & 

Smith, 2003), or asking subjects to draw figures through the reflection of a mirror (mirror­

drawing task) (Gabrieli, Stebbins, Singh, Willingham & Goetz, 1997), or to adapt to 

changes in the relationship between the movements of a joystick and those of a cursor on a 

screen (tracking task) (Della-Maggiore & McIntosh, 2005; Contreras-Vidal & Kerick, 

2004; Krakauer, Ghez & Ghilardi, 2005; Graydon, Friston, Thomas, Brooks & Menon, 

2005), or even to adapt to changes created by a force field applied to a robotic arm when 

pointing to visual targets (force field adaptation task) (Diedrichsen, Hashambhoy, Rane & 

Shadmehr, 2005; Smith, Brandt & Shadmehr, 2000; Smith & Shadmehr, 2005; Shadmehr 

& Wise, 2005). 

Learning from the errors of our predecessors, we can now recognize that comparing 

the results obtained while subjects learn to manipulate a joystick in a novel movement 

relationship to that of subjects learning a sequence of finger movements, is probably not 

very valid and clearly should be avoided. Ghilardi and his colleagues (2000) have argued 

that the different kinematic features and performance criteria of these tasks should 

discourage investigators from comparing the patterns of brain activity measured through 

one task to the other (Ghilardi et al., 2000). As these authors have pointed out, the simple 

act of reaching for an object requîres the learning of both the sensorimotor representatîons 

of external space and of internaI models of the dynamic properties of the musculoskeletal 

system. This kind of learning is believed to occur without the conscious awareness on the 

part of the subjects since they cannot describe the individual feedback events, the precise 

sequence of motor responses or the nature of the learned behaviour. On the other hand, 

subjects are generally aware of the specific responses during the learning of ordered 

sequences ofrequired movements (Ghilardi et al., 2000). 

Just as these researchers have suggested, we now know that different patterns of 

brain activations follow the acquisition of these different type of motor learning. 

Furthermore, recent evidence has also suggested that motor adaptation themselves should 
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be further subdivided into two distinct categories (kinetic vs. kinematic adaptation), and 

that each form of motor adaptation constitute distinct processes that may require the use of 

separate neural substrates (Shadmehr & Wise, 2005). 

This idea has stemmed from work completed by Krakauer and collaborators (1999) 

where in they elaborated a simple yet elegant series of experiments in which it was 

hypothesised that, should the processes underlying their acquisition be distinct, learning a 

novel dynamics adaptation should not interfere with the consolidation of a previously 

leamed kinematic transformation. In addition, they hypothesised that, if distinct, these 

pro cesses should be learned in paraUel (Krakauer, Ghilardi & Ghez, 1999). In hne with 

their hypotheses, they observed that the leaming of novel dynamics do es not interfere with 

the consolidation of a newly learned kinematic transformation, whereas the leaming of 

another kinematic or dynamic interferes with the consolidation of a previously leamed 

transformations of the same type. They also conc1uded that novel kinematic and dynamic 

transformations can be leamed in paraUel, supporting the idea that their acquisition is 

independent (Krakauer, Ghilardi & Ghez, 1999). One can therefore predict that these 

,different forms of motor adaptation would involve separate regions of the motor system. 

Functional imaging data are consistent with a separation in the systems that mediate the 

different motor adaptations. In fact, kinematic leaming has been associated with activations 

in posterior parietal areas , whose inputs are predominantly visual, whereas Kinetic 

adaptation has been associated with activations in the anterior regions of the parietal cortex 

(Stickgold, 2005; Walker & Stickgold, 2005). 

In a more recent imaging study, Diedrichsen et aL (2005) investigated the neural 

responses evoked by these two adaptation tasks using fMRI and concluded that kinetic and 

kinematic transformations are not performed in two anatomical separate areas but rather in 

one continuous, overlapping cascade (Diedrichsen, Hashambhoy, Rane & Shadmehr, 

2005). This issue certainly requires further investigation, however, one can readily assert 
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the relevance of closely considering the type of motor adaptation tasks when interpreting 

imaging data, and when comparing our results to previous findings ofbrain imaging. 

Although important in the context of skill leaming, the acquisition of motor 

sequences constitutes, in itself, a vast domain of research which exceeds the aim of this 

thesis. For a more complete review on the matter, review the work of such authors as Ashe, 

Lungu, Basford & Lu (2006). Moreover, motor skillleaming has been empirically studied 

for more then 70 years to date, and over 15 400 studies have been completed on this 

specifie subject since 1935. These research endeavours include animal experiments in 

rodents and non-human primates, as well as research efforts in healthy hum ans and humans 

suffering from a range of debilitating conditions such as strokes and neurodegenerative 

diseases. More recently, the emergence of new imaging technologies have allowed 

researchers to expand this search and investigate the in-vivo implications of different brain 

structures in healthy humans. Considering the sc ale and magnitude of this research effort in 

the domain of motor skill leaming, the short review that follows will focus on the 

contribution of modem imaging techniques to our state of knowledge regarding motor 

adaptations. 

2.2. The neuroimaging of motor adaptations 

A brief Pubmed review of articles published since 1990 reveals that over 4000 

imaging studies concemed with motor adaptations have been completed. AIl of these 

studies have suggested the implication of a number of brain structures believed to be 

critical for the leaming and the execution of the motor adaptations. Not surprisingly, most 

of these studies have reported very different results, some were even contradictory. The 

objective of the following sections is to review some of the seminal studies in the field of 

motor adaptation leaming, to list and explain the contradictory findings, and discuss the 

important ]essons we keep from them. 
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lt is a well known fact that people demonstrate an impressive ability to acquire an 

almost unlimited repertoire of complex motor skills. The skills of musicians and athletes 

are good examples of such incredible learning feats. However, in the early 1990s, little was 

known about the neural systems that are required for motor control and task execution. 

Although the involvement of the cortical motor areas, the cerebellum and the striatum were 

derived from medical knowledge (i.e. stroke and neurodegenerative diseases), their 

implication and that of other brains structures was not weIl understood. 

Grafton and colleagues (1992) completed sorne of the very first work specifically 

aimed at identifying the functional anatomy of the initial stages of motor skill acquisition 

(Grafton et al., 1992). Their study was designed to distinguish activations associated with 

the execution of the visuomotor task from the longitudinal changes associated with learning 

of the skill. These authors scanned six healthy subjects using positron ernission tomography 

(PET) while they learned to perform a rotor pursuit task with their dominant right hand. 

The experiment was carried out during a single scanning session in which six scan runs 

were completed. Between each of these runs, a short practice period was given so as to 

accelerate learning of the pur suit performance. Grafton and colleagues (1992) reported that 

motor execution was associated with the activation of a widely distributed set of cerebral 

areas that included the left and right primary motor cortices and supplementary motor areas 

(SMA), the left putamen, globus pallidus and substancia nigra, the middle and left 

parasaggital zones of the cerebellum, as well as bilaterally within the visual systems of the 

occipital lobes (Grafton et al., 1992). As the subjects' performance became smooth and 

continuous, and learning of the task had improved significantly, the authors measured 

increases in relative cerebral blood flow in only three regions: left SMA, left motor cortex 

and left thalamus. They concluded that early learning of the visuomotor task occurs within 

this small subset of the neural network where the behaviour is actualised (Grafton et al., 

1992). Although the authors found it interesting that no longitudinal changes of activity 

were measured in the cerebellum and in the motor cortex during the learning of the 
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visuomotor skill, they conclude that their implication may be relate to the consolidation of 

skill following additional practice. 

The cerebellum's role during the leaming of a visuomotor adaptation tasks was 

specifically investigated by Plament and his colleagues a few years later (Plament, 

Ellermann, Kim, Ugurbil & Ebner, 1996). These authors used functional magnetic 

resonance imaging (fMRI) to study the changes in cerebellar activation that occur during 

the acquisition of a pointing task. In this study, the experimenters scanned fourteen right 

handed healthy subjects while they used a joystick to superimpose a cursor onto a visual 

target. Two variations of this visuomotor adaptation task could be performed: 1) while the 

joystick and cursor movement were reversed (reversed paradigm), and 2) while the joystick 

and cursor relationship changed randomly for every trial (random paradigm). As such, this 

random condition kept subjects from making any significant gains in their leaming, and 

therefore subjects remained in the early leaming stages. The experiment was carried out 

during a single scanning session in which four scan runs were completed. No practice 

period was given between the scanning runs. Imaging the cerebellum only, the authors of 

this study observed a clear relationship between the activation in the cerebellum and the 

leaming of the motor skill. They reported the cerebellum's involvement was highest during 

the entire random paradigm and during the early leaming stages of the reversed paradigm. 

Inversely, cerebellar activation decreased when the subjects leamed to perform the reverse 

paradigm more efficiently and smoothly (Plament, Ellermann, Kim, U gurbil & Ebner, 

1996). As such, the authors reported a negative correlation between the cerebellum's 

involvement and amount of leaming on the visuomotor adaptation task; as leaming 

progressed, the cerebellum became less involved in the task's execution. In line with this 

statement, the authors reported that repeated practice on the random condition paradigm did 

not produce improvements in performance and cerebellar activity remained high. Plament 

and his colleagues (1996) concluded that their results were consistent with the role of the 

cerebellum in error detection and correction during tasks in which there is a need to remap 
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sensory and mot or information (i.e. visuomotor adaptation) (Flament, Ellermann, Kim, 

Ugurbil & Ebner, 1996). 

A pnsm-adaptation task was used to investigate visuomotor adaptation by Clower 

and his colleagues in 1996 (Clower et al., 1996). In their expenment, seven right handed 

healthy subjects wore goggles over each eye that created a visual displacement field of 17°. 

The subjects' task was to reach a visual target presented on a touch screen using their right 

index finger while viewing the distorted visual image. Using PET to investigate the 

underlying brain structures involved in the acquisition ofthis task, subjects were scanned in 

one session composed of several runs. During these scanning runs, subjects completed one 

of three different conditions of the above mentioned task. In four of these runs, subjects 

were asked to complete the experimental task described above. In another four runs, 

subjects were asked to complete a control condition in which the target's location was 

randomly displaced to either the left or the right while the subject was in mid-reach. In the 

final condition, subjects were simply asked to passively view the visual targets without 

making any reaching movements. These researchers reported that the net effect of the 

adaptation process was associated to selective activations limited to the left posterior 

parietal cortex (Clower et al., 1996). Surprisingly, no activation in other regions were 

identified as being involved in the adaptation process per se, as activations in other cerebral 

areas were cancelled out by their control procedures. The authors therefore argued that 

these other areas were probably implicated in the error correction that typically 

accompanies prism adaptation, a mechanism that could be anatomically and functionally 

distinct from the coordinative remapping between the visual and proprioceptive 

representations (Clower et a1., 1996). 

In a series of experiments conducted by Shadmehr and Brashers-Krug in 1997, it 

was suggested that the formation of hum an long-term memory for mot or skills proceeds 

through functional stages that are anatomically distinguishable (Shadmehr & Brashers­

Krug, 1997). These authors employed a robotic manipulandum that produces a force field 
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to the ann holding the handle. The subjects' task was to grip the handle of the robot and try 

to make reaching movements in order to move a cursor presented on a computer screen to 

attain a target. In effect, the subjects had to adapt to the task by compensating the forces 

produced by the robot. These authors gathered evidence that argues for a distinct change in 

the state of resistance of a motor memory within a few hours after its acquisition. In fact, 

their data suggested that the ability to learn a second task (similar to the first) dependent on 

the time elapsed since the learning of the first. They therefore argued that it is possible that 

neural basis of motor memory changes after its acquisition (Shadmehr & Brashers-Krug, 

1997). 

A few months later, Shadmehr and colleagues (1997) used positron emission 

tomography (PET) to investigate the neural correlates of early, late and delayed recall of 

the same force field adaptation task (Shadmehr & Holcomb, 1997). In their study, 16 

healthy subjects were asked to execute rapid reaching movements to a series of targets 

while holding the handle of a robot that produces a force field. Their experiment was 

carried out on a single day and was divided into two sessions separated by a 5.5 hour 

period. Shadmehr et al. (1997) measured significant increase in activity in the right 

thalamus, medial occipital gyrus and dorsal prefrontal cortex during the early stages of 

learning. No significant differences where observed in brain activations as subjects 

progressed to the late learning stage. However, when subjects were required to recall the 

newly learned skill 5.5 hours later, these researchers observed a shift from the pre frontal 

cortical regions to the premotor, posterior parietal, and the anterior cerebellar cortex 

(Shadmehr & Holcomb, 1997). They interpret this shift in brain region activation as 

specific to the recall of an established motor skill, and conc1ude that there is a change in the 

neural representation of the internaI model that accompanies the passage of time. 

A study undertaken by Krebs and colleagues (1998) had a similar goal, and used 

PET with the same force field adaptation task to investigate the early and late phases of 

adaptation learning (Krebs et al., 1998). They scanned 8 healthy subjects in a single 
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session that lasted only a few hours. These investigators observed a very different pattern 

of results as their subjects progressed from the early to the late stage of learning. In fact, 

the early learning stage was associated with increased activity in the right striatum and right 

parietal area, as weIl as in the left parietal and primary sensory cortex, whereas the late 

learning stage resulted in increased activity in the left motor and premotor cortex, as weIl as 

in the right cerebellar cortex (Krebs et al., 1998). Although these researchers identified 

different cortical and subcortical regions than those reported by Shadmehr and colleagues 

(1997), their conclusions are similar in that they suggest a shift in neural structures that 

accompanies the progressive stages of motor learning. 

In 1998, Inoue and colleagues designed an imaging study to examine where in the 

human brain vi suai feedback of hand movement is processed and utilised to permit the 

accurate pointing required in visuomotor adaptation (Inoue et al., 1998). This team of 

researchers use PET to measure the regional cerebral blood flow in nine right handed 

healthy subjects as they completed two different version of a visually guided reaching task. 

In one version of the task, subjects had to point to the target with their right index finger 

while their right hand was visible to them (with visual feedback). In the other version, the 

same task was completed, but the subjects' hand was not made visible to them (without 

visual feedback). According to the authors, both conditions yield increased activity in the 

supramarginal cortex, the premotor cortex and the posterior cingulated cortex of the left 

hemisphere, as weIl as in the right caudate nucleus, thalamus and cerebellum. Interestingly, 

however, the authors report identifiable fields of activation within these regions that are 

specific to the visual feedback condition (Inoue et al., 1998). According to Inoue et al. 

(1998), these patterns of activity suggest that specific regions within a larger network may 

play important roi es in integrating visual feedback from hand movements and execution of 

right hand pointing (Inoue et al., 1998). 

In an effort to better understand the cerebellum's role in the acquisition and 

maintenance of a visuomotor adaptation task, Imamizu and colleagues (2000) used fMRI to 
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try to identify reglOns within the cerebellum that are specifically involved in the 

maintenance and storage of the internaI model representing the motor task (Imamizu et al., 

2000). These experimenters scanned ten healthy right handed subjects in six scanning runs 

in which they completed two versions of a tracking task using a computer mouse. In 

between these scanning runs, subjects completed a practice sessions on the tasks to 

accelerate learning and improve performance to an almost asymptotic level. In the 

visuomotor adaptation version of the task, the relationship between the mouse's movement 

and those of the cursor it controlled inc1uded a rotational transformation of 120°, while the 

second version was a control task in which the computer mouse normally controlled the 

cursor. As a result, the authors observed two types of activations in the cerebellum. One 

was spread out over wide areas of the cerebellum and was proportional to the error signal 

that guides the acquisition of internaI models during learning. The other was confined to the 

area near the posterior fissure and remained after learning, when the error levels had 

reduced and were equalised (lmamizu et al., 2000). According to Imamizu and his 

collaborators (2000), their findings are poof that the cerebellum in not simply involved in 

the early phases of learning, but that specific sites within the cerebellum are involved in the 

creation and st orage of an internaI model representing the altered relationship between the 

cursor and mouse movements (Imamizu et al., 2000). 

In 2001, Nezafat et al. also used PET and the same robot arm as the one used by 

Shadmehr et al. (1997) and Krebs et al. (1998) to investigate the learning and delayed recall 

of the adaptation skill. These researchers asked 8 subjects to complete 3 scanning sessions 

that were each separated by periods of two weeks, and reported on the involvement of the 

cerebellum during this period. Their results demonstrated an inverse relationship between 

the posterior regions of the right cerebellum and ipsilateral deep cerebellar nuc1ei (DCN). 

As learning progressed during the first session, decreased activity measured in the 

cerebellar cortex was accompanied by increased activity in the DCN. Across time, and 

with improvement in performance, the same negative correlation between regions was 
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measured, and the strength of the latter significantly increased during the four-week period 

(Nezafat, Shadmehr & Holcomb, 2001). 

Building on the results reported in their 2000 study, Imamizu and his colleagues 

(2003) investigated the cerebellum in more detail to determine if it could inc1ude a modular 

organisation for internaI models (Imamizu, Kuroda, Miyauchi, Yoshioka & Kawato, 2003). 

As such, Imamizu et al. (2003) asked whether or not the use of two separate tools could 

produce different patterns of activation within the cerebellum. Through the use of fMRI, 

the authors scanned seven healthy subjects while they performed three version of the same 

pointing task they employed in 2000. Two of the versions were identical to the on es used in 

2000 (rotational mouse and control mouse), but the third computer mouse task did not 

create a rotational transformation, but rather a speed adaptation (velocity mouse). In this 

version of the task, the speed of the cursor's movements was determined by the mouse's 

position at the beginning of the trial. Following an extensive training period that was 

intended to make subjects proficient enough on both tasks so that they may easily switch 

between the two, subjects underwent four scanning runs: the rotated mouse followed by the 

control task, and the velocity mouse followed by the control task. Their results indicated 

that the two different tools were spatially segregated within the cerebellum (Imamizu, 

Kuroda, Miyauchi, Yoshioka & Kawato, 2003). In fact, activations resulting from the use 

of the rotational mouse were more anterior and lateral to those resulting from the use of the 

velocity mouse, which were more posterior and medial (Imamizu, Kuroda, Miyauchi, 

Yoshioka & Kawato, 2003). The authors do, however, bring up the difficulties in 

controlling and analysing the different kinetic components of the tasks, and conc1ude by 

stating that although these trends were common to aIl subjects, their precise location 

differed among them. 

Similar to the work of Imamizu and colleagues (2003) with regard the multiplicity 

of internaI models, and building on the psychophysical data accumulated throughout the 

better part of the 1990s, Krakauer and his colleagues (2004) investigated the possibility of 
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separate anatomical substrates for the processing and storage of directional and extent 

errors needed for adapting to rotational and gain transformation. According to these 

authors, these two types of adaptation tasks are fundamentally different, and should 

therefore involve distinct functional and anatomical substrates (Krakauer et al., 2004). 

Furthermore, according to their hypothesis, activations measured in these substrates should 

change with the progressive leaming from the rapid to the slow stages. To investigate their 

hypothesis, the authors used a reaching task in which subject manipulated a joystick in 

order to move a cursor displayed on a computer screen to a visual target in synchrony with 

a tempo. The adaptations were produced by changing the gain between the cursor and 

joystick movements (gain adaptation), or the direction of the cursor movement relative to 

the direction of the joystick movements (rotational adaptation). Leaming on these tasks was 

manipulated by randomly altering the gain and rotation within blocs of trials. That is, when 

the changes are manipulated randomly, no leaming is made and subjects should remain 

within the fast leaming phase (Krakauer et al., 2004). Using PET and twelve right handed 

healthy subjects, Krakauer and his colleagues partly confirmed their theory. Firstly, the 

authors reporte~ the regions activated in rotation adaptation were principally cortical for 

both rapid and slow leaming phases. As such, activations were measured in the right 

posterior parietal cortex, right ventral premotor cortex and in the left lateral cerebellum 

during the slow leaming phases. The fast leaming of a rotation adaptation only revealed 

activation in the supplementary premotor area. In contrast, they found that the rapid phase 

of gain leaming involves subcortical components; left medial cerebellum and bilateral 

putamen. No significant activation changes were measured outside of the areas with 

increased leaming (Krakauer et al., 2004). Based on their imaging results, the authors come 

to two conclusions: 1) that the time course of rotation adaptation is paralleled by a 

frontoparietal shi ft in activated cortical regions, and 2) early gain adaptation involves only 

subcortical structures, which they suggest reflects a more automatic process of contextual 

recalibration of a scaling factor (Krakauer et al., 2004). 
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In 2004, Floyer-Lea and Matthews scanned fifteen subjects using fMRI to 

characterise the changes in brain activity that take place between early visuomotor learning 

and greater automaticity on the task (Floyer-Lea & Matthews, 2004). Unlike previous 

research exploring visuomotor adaptations, these experimenters used a task in which 

subjects had to visually track a moving target by varying the isometric force applied to a 

pressure plate held in the right hand. Also unlike previous work, this research tried to move 

beyond the early and late learning phases, and explored the changes in brain networks that 

accompany the later automatic execution stage. Their experiment was carried out in a single 

scanning session in which subjects completed ten scanning runs. The attainment of 

automaticity was verified in a separate experiment following the scanning session and used 

a dual task paradigm to validate the subjects' performance levels. The authors identified 

two distinct and time-dependent patterns of functional changes in the brain associated to the 

automatisation process. According to Floyer-Lea and Matthews (2004), the initial stage of 

learning, which was more attentionally demanding, was associated with the greatest relative 

activity in widely distributed cortical regions including the prefrontal, bilateral 

sensorimotor and parietal cortices (Floyer-Lea & Matthews, 2004). Activity at this stage 

was also measured in the caudate and ipsilateral cerebellar hemisphere. As learning 

progressed, the activity in these regions decreased, and activity increases were measured in 

subcortical motor regions including that of the cerebellar dentate, thalamus and putamen. 

These researchers interpreted their data by stating that the early performance gain in 

visuomotor adaptation rely strongly on prefrontal-caudate interactions, however as the task 

becomes automatic, activity increases in a subcortical circuit involving the cerebellum and 

the basal ganglia (Floyer-Lea & Matthews, 2004). 

More recently, Della-Maggiore and her colleagues (2005) also used PET to 

investigate the time course of changes in brain activity and functional connectivity 

associated with the early and slow learning phase of a task that required a rotational 

transformation (Della-Maggiore & McIntosh, 2005). These researchers used a reaching 
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task that required their twenty healthy subjects to adapt to distorted visual feedback similar 

to a mirror image. This study took seven days to complete, and subjects were scanned on 

the second and last day in order to monitor the brain plasticity mediating the early and slow 

learning stages. Early learning on the adaptation skiU was associated with greater activity 

in bilateral dorso- and ventrolateral prefrontal cortices, frontal eye field, and the human 

homologue of area MT. As adaptation proceeded, however, the improvement in 

performance was associated with greater activity in the left sensorimotor cortex, bilateral 

anterior cerebellar regions, left cingulated, right putamen and middle temporal gyrus. 

As we can see, although aU of these studies focussed on the acquisition of a motor 

adaptation skill learning, and aU studies dealt with the importance of specific brain regions 

during learning, their conclusions differ greatly. What are the reasons for such 

discrepancies? Can the differing pattern of results be explained away on methodological 

ground? The following section will be devoted to addressing this last question and 

enumerating sorne of these important experimental factors. 

2.3. The discrepant factors in the imaging studies 

2.3.1. Different imaging technologies 

The first and most obvious discrepancy between the above reviewed studies is the 

imaging technology used to investigate the underlying brain structures. In fact, although 

fMRI and PET imaging are based on the increase in blood flow to the local vasculature that 

accompanies neural activity in the brain, they measure activity in different manners. The 

source of the fMRI signal cornes from the local reduction in deoxyhemoglobin that foUows 

neural activity in a brain regions. It is this relative reduction in deoxyhemoglobin as 

compared to the oxyhemoglobin that is measured and analysed (Fox & Raichle, 1985). On 

the other hand, PET technology measures the decay of a short-lived radioactive tracer 

isotope after it has been injected into the bloodstream of a living subject. As such, PET 
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rneasures the flow of this tracer through the blood stream into the brain areas that are more 

active during the task, whereas the fMRI measures the difference between 

deoxyhemoglobin and oxyhemoglobin in the activated region. Another factor to consider is 

the discrepancies within studies using PET technology; the different investigators used 

assorted tracers to monitor and measure regional cerebral blood flow. For instance, Krebs 

and colleagues asked subjects to inhale the tracer 15 O-C02 30, while Nezafat and Della­

Maggiore's groups used a bolus injection of mCi H2015. Since radioactive tracers are 

designed to examine different aspects of brain functions, it follows that this divergence in 

PET methodology may have lead the researchers to measure dissimilar brain functions. 

2.3.2. Different regions of interest 

The second factor of importance is the regions visuaHsed and investigated by the 

research teams. For instance, while researchers like Shadmher et al. (1997), Inoue et al. 

(1998), Floyer-Lea et al. (2004) and Della-Maggiore et al. (2005) looked at activity in the 

entire brain, other researchers like Flament et al. (1996), Krebs et al. (1998) and Imamizu et 

al. (2000, 2003) focussed on cerebellum's involvement in the learning process. One can 

readily understand the consequences of such a difference on the investigation ofbrain areas 

involved in the process. 

2.3.3. Different methodological factors 

Yet another factor to consider when interpreting the discrepancies between studies 

is the different methodological techniques used to analyse the data. It was previously 

thought that one of the most important limitations of modern neuroimaging is that the 

results are greatly underdetermined by the data, and that any particular finding is open to a 

number of interpretations. Going further, sorne authors have suggested that every data 

point can be disputed as being either real or artefactual (Poldrack, 2000; Ashe, Lungu, 

Basford & Lu, 2006). Although this may appear to be an extreme viewpoint, the fact 
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remains that a number of data analysis approaches have been applied to identify plastic 

changes in neuroimaging data, and relatively little is known about their comparative 

virtues. Because leaming the adaptation task includes components associated to visual 

perception, force production, attention and error reduction processes, subtracting the 

adaptation condition to the rest condition cannot reveal leaming related activity per se. For 

instance, Although Shadmehr (1997) and Krebs (1998) used contrast analyses to interpret 

their data, they each used a different control task in the subtraction. Shadmehr and 

colleagues (1997) contrasted the adaptation condition to another adaptation condition 

(random field condition) that could not be leamed. On the other hand, Krebs and his 

colleagues (1998) contrasted the motor adaptation task with a condition in which subjects 

completed the robot arm task while it did not pro duce any force field. It therefore follows 

that they each removed different condition-related activations from their data. For their 

part, Nezafat (2001) and Della-Maggiore (2005) employed a combination of contrast and 

parametric designs, and both were also interested in observing changes in the strength of 

functional connectivity between brain regions. These differences limit the interpretations 

and the conclusions researchers can come to conceming a region's role in the leaming 

process, and therefore greatly undermines the consistency of the results reported in the 

literature. 

Another methodological factor that we need to consider is the experiments' time 

line. In fact, because the studies described above varied in their leaming time-line, the 

amount of sleep that subjects had is also likely to have varied across these studies. This 

may be an important factor since we now know that sleep is an important variable to 

consider when studying leaming and it's consolidation (Stickgold, 2005; Walker & 

Stickgold, 2005). Interestingly however, recent data acquired in our laboratory confirms 

the importance of sleep in the consolidation of a motor sequence task, but the data also 

suggests that sleep has little effect in the consolidation of a visuomotor adaptation (Morin, 

pers comm). 
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2.3.4. Different experimental tasks 

The fourth factor that can cause important discrepancies in the results of the different 

studies deals with the motor adaptation tasks investigated. In the studies reviewed above, 

we counted several different motor tasks that required subjects to adapt their movement to 

various kinds of distorted feedback. Sorne teams of researchers used reaching tasks in 

which the vi suaI feedback was distorted through a rotational transformation (Flament, 

Ellermann, Kim, Ugurbil & Ebner, 1996; Inoue. et al., 1998; Imamizu et al., 2000), through 

a gain in movement of the manipulated cursor (Imamizu, Kuroda, Miyauchi, Y oshioka & 

Kawato, 2003), or in its speed (Krakauer et al., 2004). Other tasks measure subjects' 

adaptation to miscalibration of dynamics in which subjects have to adapt to a change in 

force (Shadmehr & Brashers-Krug, 1997; Krebs et al., 1998; Nezafat, Shadmehr & 

Holcomb, 2001). The differences in the nature of these tasks is very important to consider 

since research has shown that not only is there a difference between kinetic and kinematic 

types of adaptation (Ghilardi et al., 2000), but that different kinds of kinematic adaptation 

also pro duce anatomically distinct patterns of brain activation (Imamizu, Kuroda, 

Miyauchi, Y oshioka & Kawato, 2003). Other researchers have also suggested that 

visuomotor adaptation mechanisms engaged during perceptual recalibration (e.g. prism 

adaptation tasks) differ from those employed during visuomotor skill acquisition (e.g. 

pointing task with distorted visual feedback) (Clower & Boussaoud, 2000). Such a 

statement cornes from findings that indicate that prism adaptation paradigms produce a shift 

in the entire visual field, including the targets, an may also engage recalibration of the 

visual system with respect to neck or trunk position (Ingram et al., 2000). 

2.3.5. Different stages of learning 

The amount of practice that subjects received prior to each stage of learning is the 

fifth point of contention. Even if we only consider the studies that investigated the earlier 

stages of acquisition, important differences exist in the way they defined and measured the 
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attainment of the leaming stages. For instance, when Shadmehr's (1997) subjects were said 

to have attained the slow leaming stage, they had completed 800 trials on the adaptation 

condition, whereas Kreb's (1998) subjects had completed 640 trials on the task, and 

Nezafat's (2001) participants had completed 622 trials. Della-Maggiore (2005) and 

colleagues did not measure practice in terms of trials, but rather as time spent on the task, 

and when Della-Maggiore's (2005) subjects had attained the slow leaming phase they had 

spent 168 minutes practicing the visuomotor adaptation task. As was made evident, ev en in 

studies examining within-session leaming, there is little consistency in the amount of 

practice subjects have received and the degree to which the motor skill has been acquired 

(e.g. Jenkins, Brooks, Nixon, Frackowiak & Passingham, 1994b; Jueptner et al., 1997; 

Jueptner, Frith, Brooks, Frackowiak & Passingham, 1997). 

Over the last decade, a large body of research has demonstrated that four main 

leaming phases characterize the acquisition and execution of such skills: a highly attention­

demanding early (fast) leaming phase, an intermediate consolidation stage, a late (slow) 

leaming phase, and an eventual automatic execution phase during which individuals are 

able to carry out these motor commands with little attentionnal resources needed for their 

successful completion. It is believed that considerable improvement in performance can be 

observed within a single trial or a few training sessions during the early (fast) leaming 

stage. This is followed by a second (slow) stage in which further gains in motor skill can 

be observed with additional sessions of practice (Kalaska & Crammond, 1992; Korman, 

Raz, Flash & Kami, 2003; Kami et al., 1998; Luft & Buitrago, 2005). In addition to these 

two stages, there is an intermediate phase where spontaneous gains in performance can be 

observed and this without any additional practice on the task. This period is called the 

consolidated stage and it is dependent on the fa ct that little or no interference from a 

competing task is presented during a critical time window of 4-6 hours after the first 

training session has been presented (Appel, 1992; Korman, Raz, Flash & Kami, 2003; 

Krakauer, Ghez & Ghilardi, 2005; Kami & Sagi, 1993). Once the task has been weIl 

leamed and consolidated, and subjects can, without any additional practice, recall and carry 
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out the skill at a similar level at a future date, retenti on of the skill is believed to have 

occurred (Della-Maggiore & McIntosh, 2005; Hikosaka et al., 2002; Nezafat, Shadmehr & 

Holcomb, 2001a). Finally, once the task is over-leamed and subjects are capable of 

executing it with minimal demands on cognitive resources, the skilled behaviour is believed 

to have reached the automatisation stage (synonymous to expert, easiful and efficient 

behaviours) (Anderson, 1990; Floyer-Lea & Matthews, 2004; Lang & Bastian, 2002; 

Logan, 1992). 

However, much controversy remains with regards to what is the true definition of 

automatic leaming stage, and thus will be specifically reviewed in the following Chapter. 

Nonetheless, our series of experiments went to great length to define thé different leaming 

phases, and therefore assure that the imaging data specifically represented the brain circuits 

implicated in the execution of a visuomotor adaptation skill at a very particular leaming 

phase. 

2.3.6. Different cognitive factors 

Another source of variability that contributes to the inconsistency in imaging 

results, even when the same task is used, is the condition that elicits the different cognitive 

processes. As was mentioned previously, the acquisition of skills can either be explicit or 

purely implicit, as they do not require conscious thought to be leamed or expressed (Squire, 

1992). For example, in motor sequence leaming studies, sorne investigators have used an 

implicit form of leaming during which they must acquire a sequence of movements through 

practice without knowledge of the sequence, whereas others have employed an explicit 

form of leaming during which subjects are practicing a motor sequence for which they have 

complete declarative knowledge (Grafton, Waters, Sutton, Lew & Couldwell, 1995; Rauch 

et al., 1995b). Recent data has demonstrated that subjects leaming a task explicitly engage 

a very different set ofbrain regions than subjects leaming the same task implicitly (Grafton, 

Hazeltine & Ivry 1995a; Hazeltine, Grafton & Ivry, 1997). Such findings suggest that well-
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designed supplemental behavioural tasks or questionnaires and open ended questions, to 

determine if the execution is based on explicit or implicit knowledge, may often be 

necessary to fully understand the results of imaging studies. Another possibility is to 

control such factors by making the subjects explicitly aware of the task being executed, and 

the strategy they should use to complete the task. For instance, in our series of 

experiments, subjects were presented the task in detail, the dependent variables used to 

calculate their performance were explained to them, and they were asked to complete the 

task putting equal emphasis on speed and precision. In this way, we attempted to control 

for differences in awareness and strategy, and consequently, we are more confident in the 

interpretation of our imaging results as representing similar cognitive processes. 

2.4. Conclusion 

This chapter reviewed the 'important variables that need to be considered wh en 

investigating skill leaming in the laboratory. Taking the methodological differences 

between these studies into account can help us appreciate the reasons that may lead to 

discrepancies in imaging results reported in the literature. In fact, previous works have 

generally paid little attention to the experimental task used in the study, assuming that aIl 

motor skills are, by and large, similar and that they therefore recruit identical brain circuits 

during their execution. We now know this to be false. Furthermore, we integrated the 

concepts of cognitive processes and leaming phases into our research by controlling 

subjects' awareness of the task used and the overall goal they sought. FinaIly, we also 

controlled the leaming phase during which we acquired the imaging data by firstly defining 

the leaming phases in a manner of task performance, and secondly, by manipulating the 

amount of practice subjects received on the experimental task in order to reach the specific 

performance criteria previously defined. 

The following chapter will focus on one of the particular leaming phase under study in 

this thesis (automaticity), and will provide the operational definition used to recognise and 
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measure its attainment. In fact, this will help us differentiate between brain circuits 

involved in the long term retention of a consolidated skill and those involved in the 

retention of an automatised skil!. 
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Chapter 3. Automaticity reviewed 

Since there is much confusion regarding the definition of automaticity, this chapter 

has the important role of c1arifying the terms and concepts surrounding this criticalleaming 

phase. As will be made c1earer in this chapter, automaticity can refer to a number of very 

different processes, most of which were not studied in this thesis. The important point this 

chapter makes is that the type of automaticy investigated in our first experiment is 

explicitly sought after by conscious subjects who are trying to achieve a stage of expertise 

on a specific task. This kind of automatic execution is referred to as goal-dependent 

process. 

At the tum of the century, automaticity was defined as the process in which there is 

a rapid increase in the speed of performance, a lack of memory for the automatically 

processed events, and most importantly, a significant reduction in the amount of effort and 

attention required to perform the task (Roth et a1., 1996). The present day understanding of 

automaticity has changed enormously, yet our definition of it has changed very little. 

Automaticity, however, is much more complex than the previous definition suggests. In 

fact, many assumptions have been circulating about automaticity and its defining qualities, 

leading to no small confusion and muddying of the waters. This chapter' s primary goal is 

to c1arify the concept of automaticity, and to dissipate any confusion regarding its 

fundamental characteristics. In the following paragraphs, we will explore the different 

definitions that are advocated for this term, what they imply, where automaticity fits into 

the various leaming stages, and finally how to use the dual-task paradigm to measure it in 

the laboratory. 

3.1. What is automaticity? 

Automaticity can be understood as a level of performance that is expert-like, over­

leamed, and/or executed to perfection. Researchers have traditionally believed automatic 
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behaviours could occur without the need of an act of will from the individual, and that this 

automatic behaviour did not interfere with other concurrent processes (Decety, 1996b; 

Shiffrin & Schneider, 1977). On the other hand, these same researchers referred to 

controlled (or conscious) processes as under intentional control, flexible in responses to 

novel environmental conditions, and their occurrence were believed to be effortful and 

limited by the availability of processing resources (Decety, 1996a; Decety & Jeannerod, 

1996). 

According to these definitions, the two types of processes (automatic and 

controlled) exhausted the universe of possible procedures executed by man. Under this 

dual-mode model, researchers working up until the mid-eighty's classified every possible 

process as either controlled or automatic, Le. possessing all of the features of one and none 

of the other (Bruyer, 1982). The problem with this unitary (all-or-none) definition of 

automatic and contro11ed processing is that they have been repeatedly disconfirmed 

empirically over the years. Reviews by Bargh (1989) and Zbrodoff & Logan (1986) have 

demonstrated that the defining features just do not hang together in an all-or-none fashion, 

but rather seem to be able to co-occur in just about any combination. 

In addition to the empirical demonstrations, this mutua11y exclusive 

conceptualisation of automatic and contro11ed processes has run into logical difficulties. As 

Logan & Cowan (1984) have noted, people must intend to engage in any of these activities, 

and they can stop them whenever they want t~. In fact, a11 of the common examples of 

automatic pro cesses -such as reading, driving, walking and typing- are in reality highly 

contro11ed. In addition, people are usually aware of engaging in the activity, even though 

such routine actions sequences are autonomous. Therefore, the four defining features of 

automaticity -attention-demanding (vs. highly efficient), awareness (vs. phenomenally 

outside awareness), intentional (vs. unintentional), and controlled (vs. uncontro11ed)- do 

not co-occur perfectly, but instead, are relatively independent qualities. 
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3.2. Different kinds of automaticity 

As we have seen, there are roughly four pairs of core components that combine to 

define an automatic pro cess -attention-demanding (vs. highly efficient), awareness (vs. 

phenomenally outside awareness), intentional (vs. unintentional), and controlled (vs. 

uncontroIled)-. Unfortunately, researchers have tended to assume the existence of aIl 

these characteristics, simply by observing the presence of one of them. 

Bargh (1992) proposed that this practice ends, and be replaced by a more empirical 

approach. Namely, taking these four fundamental characteristics as the starting point for a 

definition of automaticity, we should classify varieties of automaticity in terms of these 

components' necessary preconditions. Bargh suggested that there are three important 

reasons for describing automatic processes as being composed of these fundamental 

characteristics. First and foremost, to avoid miscommunicating our beliefs about the 

phenomenon we are studying. Secondly, if we routinely classified processes in terms of 

which of the several features we have evidence for, and which we do not, it would leave 

open the question of whether any of the non-manipulated features are essential for the 

automatisation to occur. FinaIly, this knowledge pertaining to the necessary conditions for 

automatisation is essential if we are to generalise our findings from the laboratory to the 

"real world". 

BasicaIly, Bargh recommended that we avoid the danger of assuming implicitly the 

presence of an automatic feature given the presence of other features. Therefore, classified 

according to what is necessary for their occurrence, three major forms of automaticity have 

been suggested by Bargh (1992). Although finer discrimination of varieties of automaticity 

can be made within these three basic types, they will not be discussed in this paper (for 

more details see Bargh, 1989 & 1992). 
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I-Preconscious automaticity. As the term insinuates, for preconscious processes to occur, 

only the relevant (or triggering) stimulus event is needed. That is, these processes do not 

require the individual's conscious awareness. In fact, preconscious processes operate 

autonomously, involuntarily, nearly effortlessly, uncontrollably, and prior to and even in 

absence of conscious awareness of the stimulus event (Bruyer, 1982). As such, it can be 

said that it incorporates the preattentive processes concepts described by Triesman et al. 

(1992). However, whereas preattentive processes are largely innate or developed early in 

life, preconscious processes also inc1ude those that have developed through extensive 

practice. AIso, unlike preattentive processes, preconscious pro cesses may require sorne 

spatial attention to the triggering stimulus event; i.e. preconscious processes are also 

postattentive. Moreover, whereas preattentive processes appear limited to the coding of 

simple physical features such as colour, size, and shape orientation, the more general c1ass 

of preconscious processes has been shown to be capable of performing interpretations and 

evaluations of complex social stimuli (Isaac & Marks, 1994). FinaI1y, in regard to its 

occurrence, preconscious processes are understood as being the most corn mon form of 

automatic process in the natural environment. 

2-Postconscious automaticity. The c1assical example of postconscious automaticity is the 

priming effect. In other words, for postconscious events to occur, recent conscious 

experience (or thought) in the same stimulus domain as the automatic process is needed, or 

as Bargh (1989) puts it, "the unconscious consequence of conscious thought". Ultimately, 

postconscious and preconscious automaticity are comparable effects, the only difference 

between them is the necessity of priming (or pre activation) of the relevant construct for a 

preconscious process to become a postconscious process. 

3-Goal-dependent automaticity. Just as we now believe that prior conscious thoughts 

affects the processing of a stimulus (postconscious automaticity), one can conc1ude that an 

experimental design that gives subjects the explicit goal to engage in a task invariably 

affects the processing needed to execute the task. Automatic processes of this kind require 
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the guidance of the processing goal plus the presence of the relevant triggering stimulus. 

The best example of a goal-dependent automatic process is the over-Ieaming of a 

procedural skill such as knitting or riding a bicycle. In sum, the fact that someone has a 

goal to achieve when performing a task cannot be overlooked and dismissed as being 

irrelevant. 

AlI in aH, Bargh (1989, 1992) distinguishes between a preconscious automatic 

process that is independent of attention and intention, postconscious automaticity that is 

independent of intention but not of attention, and goal-dependent automaticity that depends 

on both attention and intention. 

3.3. The dual-task paradigm 

Although most experiments in the field of motor leaming use proficiency-based 

criteria measures (time and errors) to qualify performance on a motor task, these measures 

may not provide the most accurate assessment of performance (Maggill, 2004). In fact, the 

performance of two individuals may be indistinguishable based on measures of time, errors 

and precision, but significantly different when other metrics are used, such as limb 

kinematic, psychophysical measures, and measures of mental workload. Therefore, subjects 

may demonstrate an "automatic" level of performance based on time, errors or precision, 

but may faH short of true automaticity because these measures are not sensitive enough to 

reveal differences between automatic and near automatic performances. 

As we have seen, the most important characteristic of an automatised pro cess is its 

requirement for attention al resources; the less attention a task requires to be completed, the 

more automatic it is believed to be. Experts (i.e. automatic performances) can often 

perform multiple tasks simultaneously with little or no performance decrement. In contrast, 

beginners often struggle with new and difficult tasks, and their performance is severely 

impaired if they attempt to engage in another task at the same time. Consequently, the 
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ability to effectively time-share attention among multiple tasks provides an index of 

automaticity and is a standard method for assessing skilled performances across a variety of 

domains (Logan, 1988). The dual-task paradigm allows researchers to measure the 

attentional resources that are spared, as the task is being over-leamed. The dual-task 

paradigm involves performing the primary task simultaneously with a secondary task. The 

rational being that the dual-task methodology allows researchers to test for the attentional 

resources that can be devoted to a second task, as subjects are becoming more efficient at 

performing the initial leamed behaviour. As skills develop, more attentional resources are 

available to perform the secondary task. Thus, performance on the secondary task provides 

an index of automaticity on the primary task (Logan, 1988). 

Stefanidis and his colleagues (2007) have recently tested this automaticity theory by 

testing surgi cal students' expertise while they used a simulator (Stefanidis, Scerbo, 

Komdorffer & Scott, 2007). These researchers wanted to identify true experts on a suturing 

task. Their subjects counted novices, surgery residents, suturing experts, and subjects 

trained on the simulator without any surgery experience. Using the dual-task paradigm, 

Stefanidis et al. (2007) reported that only the expert in suturing were able to allocate 

attentional resources to complete the secondary task, whereas aIl other subjects quickly 

abandoned the secondary task to concentrate on the primary suturing task. In fact, although 

aIl subjects could perform the task at similar levels as based on suturing scores (time and 

errors), the dual-task paradigm allowed them to identify true automatic performances. 

3.4. Conclusion 

We now find ourselves in a very murky pool of concepts and insights. Research 

groups have tested an extensive amount of subjects, and identified many important factors 

conceming automaticity. The problem with aIl these researches is that, while they aIl called 

the concepts under study automaticity, they aIl evaluated very different things. We can 

now understand that the term automaticity has been, and is still being used to qualify a wide 
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range of cognitive and motor processes. In fact, automatic processes have referred to tasks 

that are attention-demanding or highly efficient, tasks that require sorne awareness or that 

lie outside of it, to tasks that are controlled or uncontrolIed, and finalIy, to tasks that 

subjects in tend to perform or that are unintentional. What's more, an automatic process can 

be composed of any combination of these previous four pairs of criterion. This c1early is 

problematic for a number of reasons, the most obvious one being the communication of 

results; what exactly do researchers mean wh en they refer to the automatisation of a skill? 

Bargh (1992) was evidently on to something very pertinent when he advocated the 

use of more terms to differentiate between aU the different kinds of automatic processes 

possible. His three terms and their definition seem pertinent, and should be used in 

developing an even c1earer and more elaborate lexicon for the vast theme automaticity 

encompasses. In regards to pre & post attentive processes, Logan (1992) argues that it 

would be possible to capture the main property of preattentive processes with the words 

"independent of attention" instead of automaticity, and reserve this last term for 

postattentive processes. This would allow researchers to communicate with a much more 

concise vocabu1ary the concept and idea under study. 1 would go further and suggest that 

the term automaticity not be used to define any particular process, but rather the term 

automatic should be part of the characteristics referring to the over-Ieamed process. 

AlI things considered, what we need is to develop a new vocabulary concemed with 

the over-Ieaming of various skills, a vocabulary that does not need to be economical with 

terms, and a vocabulary that c1early expresses the process we are measuring. Perhaps the 

first terms of this new automaticity lexicon could be goal-dependent-automatic-motor­

adaptation-skill, which would strictly refer to: attention demanding, intentionally leamed 

motor adaptation skill, at the fourth and final phase of motor skill leaming. Although not 

economical in words, they state with precision the exact topic under study in the first 

experiment composing this thesis. 
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Chapter 4. Doyon and colleagues' model 

The nature of modem neuroimaging techniques brings us to discuss about the basic 

need of hypothesis driven experiments. Indeed, neuroimaging has advanced by leaps and 

bounds in the past decade, with a number of analysis tools and techniques being introduced 

on an almost monthly basis. This results in a steady increase of methods available for 

researchers to analyse their data, and consequently results in a greater ways the same data 

can be interpreted. This, of course, is not a good outcome of advancement, and the issue 

must be addressed by having researchers apply a hypothesis driven methods to their 

analysis. As such, we developed experimental hypothesis from Doyon and colleagues' 

models of motor skillleaming, which we then set out to test. 

When the model was first elaborated, these researchers considered the fact that 

much of the variability reported in neuroimaging studies can be accounted for if one 

considers two important factors. The first being the type of motor task studied, and a 

second being the leaming phase at which subjects are scanned. According to Doyon and 

Ungerleider (2002), the acquisition of motor skills produces representational changes in 

different cerebral structures over the course of leaming (Doyon & Ungerleider, 2002). 

Their model of cerebral plasticity suggested that representational changes depend not only 

on the stage of leaming, but also on whether subjects are required to leam a new sequence 

of movements or leam to adapt to environmental perturbations (Fig. 4.1). They proposed 

that early in leaming, during the fast leaming phase, both motor sequence and motor 

adaptation tasks recruit similar cerebral structures: the striatum, cerebellum, motor cortical 

regions, as well as prefrontal and parietal areas. As leaming progresses, however, 

representational changes can be observed, so that when a task is well leamed and 

asymptotic performance is achieved, the representation of the motor skill may be 

distributed in a network of structures that involves either the cortico-striatal (CS) or the 

cortico-cerebellar (CC) circuit, depending on the type of leaming acquired (Doyon & 
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Ungerleider, 2002). They suggested that, at this final stage of motor adaptation, the 

striatum is no longer necessary for the retenti on and execution of the acquired skill; regions 

representing the skill will involve the cerebellum and related cortical regions. By contrast, 

a reverse pattern of plasticity is proposed to occur in motor sequence learning, such that 

with extended practice, the cerebellum is no longer essential, and the long-lasting retenti on 

of the skill will involve representational changes in the striatum and its associated motor 

cortical regions. 
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Figure 4.1. Model presented by Doyon and Ungerleide (2002) describing the cerebral plasticity within the 
cortico-cerebellar and cortico-striatal circuits during the course of leaming. Adapted from Neuropsychology 
ofMemory, 3rd Edition. 
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The authors stipulate that dynamic interactions between the structures are likely ta 

be critical for establishing the motor routines necessary to leam the skilled motor 

behaviour. This idea is at the center of their model, and suggests that the leaming and 

maintenance of the motor skills is not the responsibility of a specific region, or set of 

regions, but rather that active interaction between regions are critical for establishing the 

motor routines underlying the skilled behaviours. The exact nature and process by which 

these interactions occur is still not weIl established. However, research strongly suggests 

that leaming, including motor leaming, is dependent on the basic cellular mechanism 

described by Hebb in 1949 (Dudai, 2004). This basic Hebbian principle suggest that 

synaptic plasticity is modulated by a cascade of neurochemical signaIs that either amplify 

the post-synaptic response (long-tenn potentiation) or diminish it (long-tenn depression) 

(Stanton, 1996). 

Although the preCIse mechanism by which these interactions occur are not 

completely understood, the leaming process is now considered as emergent properties of 

interacting neural networks, rather then an effect of local variations of neural properties 

alone (McIntosh, 2000). It was therefore postulated that leaming must be accounted for, not 

just in tenns of synaptic plasticity, but also in tenns of the infonnation flow across specific 

cerebral networks (Toni, Rowe, Stephan & Passingham, 2002). Since the inception of such 

the idea, a number of studies have specifically investigated the use of structural equation 

modeling in the investigation of leaming-related dynamics among the neural elements 

composing brain circuit (Vare1a, Lachaux, Rodriguez & Martinerie, 2001; Horwitz, 

Tagamets & McIntosh, 1999; Marrelec et al., 2006; Bellec et al., 2006). It is now widely 

accepted that this direct, indirect and stimulus-Iocked interactions between spatially remote 

brain regions can be measured by correlation of their fMRI time series. This correlation 

procedure has been called functional connectivity. Although connectivity maps have 

proved to be a powerful tool, its use to explore the functional networks relies heavily 0 the 

choice of the seed region (for more detail see Bellec et al., 2006). However, the use of these 
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seed regions allow modellers to get insight only into networks associated with these 

particular regions. A more reliable and proven method to investigate the pathways or 

interconnectivity between cortical and sub corti cal structures is through the use tracer 

injections. 

Using this method, investigators have been able to map the pathways linking the 

cerebellum and basal ganglia to each other and to other cortical structures (Middleton & 

Strick, 2000; Graybiel, 1998). These regions have been thoroughly investigated, and large 

numbers of cortical neurons have been found to project to both the inputs stages of the 

basal ganglia (the caudate and putamen) and the cerebellum (pontine nuclei). In a similar 

way, the output nuclei of the basal ganglia (internaI globus pallidus and substancia nigra) 

and the cerebellum (deep cerebellar nuclei) project to subdivisions of the thalamus, which 

then project back to the cerebral cortex (Percheron, Francois, Talbi, Yelnik & Fenelon, 

1996). A major architectural featureof these circuits is the formation of multiple "loops" 

between cerebral cortex and basal ganglia and cerebellum, which Doyon and colleagues 

refer to as the cc and CS circuits. 

Since its original publication, new evidence called for a revision of Doyon and 

Ungerleider's (2002) mode1 of motor learning. First, recent evidence from a fMRI study 

conducted at 3.0 Tesla has shown that both implicit and explicit motor sequence learning 

measured with the seriaI reaction time task does not only activate the usual cortical and 

subcortical motor regions in the early learning phase, but also the hippocampus and related 

cortices (Schendan, Searl, Melrose & Stem, 2003). These findings suggest that, in addition 

to the CS and cc systems, the limbic structures of the medial temporal lobe contribute to 

the acquisition of sequential movements, regardless of the subject's awareness. It should 

be noted, however, that the limbic involvement might not be necessary for the leaming to 

occur and to be maintained over time, because contrary to lesion studies in clinical 

populations with striatal or cerebellar dysfunctions, amnesic patients with damage to the 

limbic system can typically acquire habits and motor skills normaIly. 
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Second, cerebral functional plasticity within the striatum and the cerebellum has 

also been observed during motor leaming. Indeed, in collaboration with colleagues 

(Lehericy et al., 2005), it has recently been demonstrated in a tMRI study at 3.0T that there 

is a shift of motor representations from the associative to the sensorimotor territories of the 

striatum during the explicit learning of motor sequences, supporting the notion that motor 

skills are stored in the latter territory of the basal ganglia. Furthermore, a transfer of 

activity from the cerebellar cortex to the dentate nucleus has also been observed as subjects 

are acquiring implicit knowledge of a declaratively known sequence of movement (Doyon 

et al., 2002b), learning to track a continuously changing force target using a pressure sensor 

(Biernaskie & Corbett, 2001), or adapting to a force field in a target reaching task (Nezafat, 

Shadmehr & Holcomb, 2001b). Taken together, these findings thus suggest that in the fast 

learning phase, functional and physiological changes occur at both intra- and inter-system 

levels, and that this plasticity is necessary to build the motor routines that will then be 

consolidated over time as weIl as after additional practice (see Fig. 4.2). 

In sum, new evidence confirms that interactions among cortico-striatal, cortico­

cerebellar and limbic (hippocampal) structures are crucial for building the motor memory 

trace, which will then be consolidated and maintained over time within a more specialized 

subsystem depending on the type of motor skilled behaviours (i.e. motor sequence versus 

motor adaptation) acquired through repeated practice. It should be noted, however, that the 

model reviewed here is specifie to conditions that require the acquisition of new spatio­

temporal motor sequences or the modification of an internaI motor representation necessary 

to adapt to environmental manipulations. Indeed, one would hypothesize that different 

forms of visuomotor learning, that are more cognitive and associative in nature, are going 

to recruit slightly different cerebral networks which will then undergo other patterns of 

cerebral pl asti city with learning. New perspectives, in line with the previous statement, 

will be discussed in detail in the concluding chapter. Meanwhile, the models proposed by 
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Doyon and colleagues allow experimenters to develop a-priory hypotheses which they can 

set out to disconfirm. 
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Current.Opinion in Neurobiology(l5), page 164. 
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Chapter 5. The thesis' objectives and hypotheses 

There is a considerable amount of data suggesting that the striatum, cerebellum, and 

other related structures that form the cortico-stiatal (CS) and cortico-cerebellar (CC) 

systems are important for the leaming and execution of various motor leaming skills. Yet, 

despite these empirical data, the exact nature and extent of their involvement is far from 

being fully understood, and the contribution of the striatal and cerebellar circuits in this 

process is still unclear. For instance, we do not know if these systems participate in a 

redundant manner to the same operations, or if they operate in complementary fashion to 

different aspects of the same task. The available evidence to answer the questions is rather 

limited, and contains numerous inconsistencies and controversies. It was proposed that this 

is a result of a lack of knowledge and control procedures regarding the important variables 

that need to be considered. In an effort to reconcile the results of brain imaging 

investigations, Doyon and colleagues (2002, 2003 & 2005) have proposed a model that 

makes predictions with regards to the cerebral networks believed to be implicated at 

different leaming phases of new movement adaptations (Doyon & Ungerleider, 2002; 

Bruyn, Dots & Dom, 1979; Bustini et al., 1999). The major advantage of this theoretical 

framework is that it makes several testable predictions with regards to the contribution of 

the neural circuits based on the stage (fast, slow, consolidation and automatisation) and 

nature of the motor leaming process (motor sequence vs adaptation leaming). Little 

research has investigated the acquisition of motor adaptation skills as compared to motor 

sequences. In addition, a number of studies have identified the neural system involved in 

the early phases ofmotor adaptation leaming (Flament, Ellermann, Kim, Ugurbil & Ebner, 

1996b; Imamizu et al., 2000; Krebs et al., 1998; Shadmehr & Holcomb, 1997a; Shadmehr 

& Holcomb, 1999), whereas little is known of the circuitry mediating the later leaming 

phases (retenti on and automatic), as subjects are rarely given enough practice trials to reach 

such a level of expertise (Della-Maggiore & McIntosh, 2005; Lang & Bastian, 2002). The 

objective of this thesis is to describe the neural activity that accompanies the attainment of 
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a goal-dependent-automatic-visuomotor-adaptation-skiIlleaming and long term retention of 

a new visuomotor adaptation skill, and consequently test and validate a part of Doyon and 

colleagues' model. 

The visuomotor adaptation task used in the experiments comprising this thesis was a 

laboratory version of a well known tracking task (Hadj, Blanchet & Doyon, 2004). It 

required subjects to use a joystick in order to move the cursor positioned at the centre of a 

computer screen to one of eight possible targets, following an elliptic trajectory. At the 

beginning of every trial a starting point emerged in the middle of the computer screen and 

the cursor, a cross-shaped figure, appeared superimposed on top of the starting point. At 

the same time, the target represented by a red circle appeared sorne distance from the 

starting point. Simultaneously, a hne which indicated the ellipse shaped trajectory the 

subjects should follow to reach the target with the cursor came to view. The subjects' task 

was to reach the targets with the cursor following the curved path as fast and as accurately 

as possible while adapting to a novel directional bias. In fact, this represents a visuomotor 

adaptation task because the cursor's movements were made opposite to those produces by 

the joystick; moving the joystick to the top right caused the cursor to move towards the 

bottom left part of the screen. 

5.1. Experiment 1: Automatisation of a visuomotor 

adaptation skill 

This first study was designed to describe the functional cerebral plasticity that 

accompanies the automatisation of a motor adaptation skil!. Briefly, subjects were 

introduced to the experimental conditions on Day 1 (baseline performance) and scanned 

immediately thereafter. Beginning on Day 2, and for as long as they needed, subjects were 

asked to practice the motor adaptation task. In addition to these practice sessions, subjects 

completed a dual-task paradigm in which they were required to complete atone 

discrimination task (TDT) administered either alone, or while simultaneously completing 
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the motor adaptation task. Automaticity on the adaptation task was believed to have been 

attained when subjects executed the motor adaptation task with minimal interference 

generated by the secondary tone discrimination task being completed simultaneously 

(Passingham, 1996). Finally, subjects underwent a second fMRI scanning session after 

automatisation had been confirmed. Based on Doyon and colleagues' (2002,2005) model, 

it was hypothesised that early leaming of a motor adaptation skill would engage neural 

activity in both CC and CS systems, while automatic performance of the skill would only 

implicate the CC circuit. 

5.2. Experiment 2: Retention of a consolidated visuomotor 

adaptation skill 

In the second experiment we asked whether with the passage of time, and with no 

additional practice, there is a change in the neural representation underlying the retention of 

the consolidated visuomotor skill, and if these regions differed from those involved in the 

long-term maintenance of the task once automatised. Eight subjects were contacted two 

months after they completed a previous study in which they had completely consolidated 

the visuomotor adaptation skill, and after a very brief reminder session on the experimental 

tasks, were asked to complete a fMRI scanning session. The brain activity measured in this 

experiment is therefore believed to represent the brain structures mediating the long term 

retenti on of the consolidated motor adaptation skill. Based on Doyon and colleagues' 

(2002, 2005) model, it was hypothesised that the retenti on of a motor adaptation skill 

would engage neural activity in CC only. 
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Chapter 6. Experiment 1: Differentiai contributions of 

the cortico-cerebellar and cortico-striatal circuits in 

the automatisation of a motor adaptation skill 

6.1. Abstract 

This study used functional magnetic resonance imaging (fMRI) to explore the 

underlying brain structures implicated in the automatisation of a visually guided motor 

adaptation skill (kinematic adaption). Subjects were introduced to the experimental tasks 

on Day 1 (baseline performance) and scanned immediately thereafter. Beginning on Day 2, 

and for as long as they needed, subjects practiced the motor adaptation task until they 

reached automatic performance. Once automatisation on the motor adaptation task had 

been reached, subjects underwent a second fMRI scan identical to the first. Our results 

revealed that the progress from early leaming to automatic execution stage was associated 

with a reorganisation of the functional anatomy underlying kinematic adaptation with 

decreased activity in the striatum and increased activity in the cerebellum and its related 

cortical structures. In addition to confirming the essential role of the cerebellum in the 

automatisation of a kinematic adaptation skill, between subject correlation analyses 

revealed that distinct cerebellar regions are involved in different execution strategies used 

to completed the adaptation task. As such, our results suggest that the anterior cerebellar 

regions are involved in the rapid execution of the automatised skill, whereas the posterior 

regions are recruited to complete the task with more precision. 
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6.2. Introduction 

When subjects adapt their movements to compensate for perturbations in visual 

feedback they are said to produce a kinematic adaptation. Although trivial in appearance, 

these skills are essential to complete visually-guided tasks su ch as walking, driving and 

using a computer mouse. However, to complete these tasks as efficiently and expertly as in 

everyday life, one needs to automatise them. Once automatised, the subject needs to devote 

much less attentional resources to complete it, and can attend to another piece of work in 

the immediate environment. In the laboratory, automaticity is measured through the use of 

a dual-task paradigm (DT). The dual-task paradigm involves performing the primary task 

simultaneously with a secondary task. The rational being that DT allows researchers to 

quantify attention al resources devoted to a secondary task, as subjects are becoming more 

efficient at performing the primary task (Bucher, 1993). Although previous imaging studies 

have identified a number of motor structures involved in the early phase of kinematic 

adaptation (Flament, Ellermann, Kim, Ugurbil & Ebner, 1996; Imamizu, Kuroda, 

Miyauchi, Yoshioka, & Kawato, 2003; Della-Maggiore & McIntosh, 2005; Krebs et al., 

1998; Imamizu et al., 2000), comparatively little is known with respect to the circuitry 

mediating the automatic stage of leaming. 

In an effort to reconcile the results of brain imaging investigations looking at motor 

adaptation, Doyon and colleagues (2002, 2003 & 2005) have proposed a model that 

differentiates the structures implicated in the leaming of different motor skills, and that 

makes predictions with regards to the cerebral networks believed to be involved at the 

different phases of the acquisition process (Doyon & Ungerleider, 2002; Doyon & Benali, 

2005; Doyon, Penhune & Ungerleider, 2003). This model proposes that during the fast 

leaming phase, the acquisition of a new motor adaptation skill recruits several structures 

within the CS and the cc. At this stage, dynamic interactions between these circuits are 

thought to be critical for establishing the motor routines necessary to leam this skill. 



59 

However, when performance has become automatic, the neural representation of the 

adaptation skill is then believed to be distributed in a network of structures that mainly 

involves the cc circuit. 

The present study was designed to describe the functional cerebral plasticity that 

accompanies the automatisation of a kinematic adaptation skill, and thus test the model' s 

predictions. Kinematic adaptation was created by inverting the spatial correspondence 

between the direction of movements made by the hand and the location of the cursor 

reflected on the screen (lnversed Mode or lM). In addition, a motor control task was also 

completed by the subject, in this task the hand and cursor movements were kept normal 

(Direct Mode or DM). 

Briefly, subjects were introduced to the experimental conditions on Day 1 (baseline 

performance) and scanned immediately thereafter. Beginning on Day 2, and for as long as 

they needed, subjects were asked to practice the adaptation task and to complete atone 

discrimination task (TDT) administered either al one, or while simultaneously completing 

the lM task (dual-task sessions). Once automatisation on the adaptation task was confirmed, 

subjects underwent a second fMRI scanning session. Based on Doyon et al.'s model of 

motor adaptation, it was hypothesised that as subjects progressed from the early learning to 

the automatic execution stage, we would observe a reorganisation of functional activations 

from the cc and cs systems towards the cc system. 

6.3. Materials and methods 

6.3.1. Subjects 

Ten university students (4 males) between 20-23 years of age (mean 21.5 years, 

SD 1.18 years) participated in the study. AlI were strongly right-handed as assessed by 

the Edinburgh Handedness Inventory. They were screened to ensure that none suffered 

from medical complications, or neurological difficulties that could impede leaming and 
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execution of the motor skill. AlI of the subjects were recruited at the University of 

Montreal according to the review board guidelines, provided written informed consent, and 

received financial compensation for their participation. 

6.3.2. Materials 

The Spike 4 software and CED 1401 data acquisition peripheral (both from 

Cambridge Electronic Design Inc.) were respectively used to generate the computer 

programs necessary to present the sequence of targets in both motor adaptation and control 

tasks, and to record the subjects' performance. Subjects used a MRI compatible joystick 

(Resonance Technology Inc) to reach the targets, which were displayed onto a sere en 

behind the subject's head via a LCD projector (NEC MultiSync MT 1030+). They were 

able to observe the screen through its reflection on a mirror embedded within the head coil. 

During the laboratory sessions, subjects were also asked to practice the lM task in the 

supine position using the same MRI-compatible joystick. In the tone discrimination task 

(TDT) performed either alone or in dual-task condition, the sounds were generated by two 

piezo electric speakers placed near the subject's head. 

The BOLD signal was acquired using a standard head coil with a 1.5 Tesla Siemens 

Sonata magnetic resonance system located at Hôpital Notre-Dame of the Centre Hospitalier 

de l'Université de Montréal. Using scout images of the midline sagital plane, 35 slices 

were positioned on the axial plane so as to cover the entire brain. First, T2*-weighted 

functional scans were acquired using a mosaic sequence (TR 3000 msec, FOV 256 mm, in­

plane resolution 64 x 64 mm, 4 mm voxe1 size, and 4 mm slice thickness with no 

separation), and a standard high resolution T1-weighted scan was obtained last. 

6.3.3. Experimental Tasks 

The lM and DM tasks were completed using a version of the eight-target tracking 

task designed in our laboratory (Flament, Ellermann, Kim, U gurbil & Ebner, 1996). Both 
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tasks required subjects to use the joystick in order to move the cursor from a starting point 

positioned in the center of the computer screen to a distant target foIlowing an eIliptical 

trajectory. At the beginning of every trial, a starting point, represented by a white circle 

(0.75 cm in diameter), appeared in the middle of the computer screen. The cursor, a cross­

shaped figure, appeared superimposed on top of the starting point. At the same time, the 

target represented by a red circle (1.5 cm in diameter), appeared 10 cm from the starting 

point. Appearing simultaneously was a line (0.5 cm in thickness) indicating the eIlipse­

shaped trajectory the subjects had to foIlow (radius of 2.5 cm) to reach the target with the 

cursor. The use of an eIliptic trajectory, as opposed to a straight tine, obliged subjects to 

implement a more complicated spatial transformation to complete the task, and therefore 

aIlowed us to rule-out the possibility that task improvement could have been due to leaming 

an explicit reversaI rule (i.e. move hand in opposite direction). Contrary to the lM, which 

served in both scanning and laboratory training sessions, the DM only served as a motor 

control condition during flVIRI scanning sessions, and was therefore not administered in the 

laboratory sessions. The subject's performance on the lM and the DM were measured by 

computing a precision index based on the distance between the cursor's trajectory and the 

ideal curved path leading to the target, as weIl as a speed index based on the time subjects 

took to complete each trial. These indices were then combined to calculate a global 

performance index (GPI). AlI these indices ranged from 0 to 1, and can be interpreted as 

the probability distribution for the subject's performance on both the spatial and/or 

temporal aspects of the task (Fig. 6.1 ABC). Expressed mathematicaIly, the latter index can 

be described as: 

GPI = exp(-dS/S * (TT(ms)-T ri/T al 

Where exp is the value given to the trial (1 for successful and 0 for failed), the dS 

represents the differential surface area between the actual path foIlowed to reach a target 

and the optimal path of the curved line, S is defined as the differential surface area between 

the optimal path of the curved line and a straight line between the starting point and the 
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target center, TT constitutes the total time, TO the minimal time needed (500 ms), and Ta 

the time allowed (2,900 ms) to reach the target. 

Insert figure 6.1 

In addition, subjects were tested in two other conditions: (1) a tone discrimination 

task (TDT), and (2) a dual-task paradigm combining the lM and TDT tasks. In the TDT, 

streams of audible sounds composed of high (3600 Hz) and Iow (300-500 Hz) pitch tones 

were presented to the subjects who were asked to respond, as quickly as possible, to every 

tone by saying whether they were of high or low pitch. The sequences of tones were 

composed of 50% high and 50% low pitches, and were presented randomly every 4 sec. 

Two dependent variables were measured in this task: the correctness of the response, and 

the subject's reaction time. Although mean reaction times were calculated for successful 

trials only, subjects rare1y failed any trials in either the single or the dual-task conditions 

(average number of trials fai1ed during TDT b10cks = 0.96, SD = 0.71). When the TDT 

was completed as a secondary task in the dual-task condition, the tones were presented 900 

ms after the targets appeared, therefore ensuring that subjects did not simply wait to give 

the verbal answer to the TOT before completing the lM trial. Along with the TDT, the dua1-

task condition was only employed in the laboratory training sessions to evaluate the 

subjects' level of performance at different time points during the study, and was therefore 

not used as an experimenta1 condition in fMRI scanning sessions. 

It is important to understand that the goal of the training sessions was to have 

subjects practice the experimental task until they had reached the automatic execution level. 

As such, the practice schedule was subjects tailored and did not count a specific number of 

training sessions. What' s more, the TOT was only completed a few times during this 

training schedule, not more then once a week. This was decided early on in the experiment 

because we did not want subjects to become better at the TOT, but rather simply use the 

TOT to measure the subjects' 1evel of performance on the primary task. 
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6.3.4. Procedure 

The experiment was broken up into three phases. In Phase 1, subjects were given a 

brief introduction to the experimental tasks, followed by the first series of fMRI runs. The 

fMRI scans lasted approximately 75 min, during which subjects underwent ten runs. These 

runs included 4 randomly presented blocks of 8 trials on the lM and 4 blocks of 8 trials on 

the DM, separated by rest (5 sec) and instruction (3sec) periods. We used a mixed fIVIRI 

paradigm that combined both block and event-related designs to acquire the functional data. 

To sample the BOLD signal at different moments during the execution of the task, jittering 

within each run was achieved by varying the inter-trial intervals during both motor blocks 

(Visscher et al., 2003). Therefore, in addition to the 3000 msec given to a subject to 

complete a trial (i.e., 2900 msec given to reach the target and the 100 msec needed to 

validate the target), one of 5 possible time intervals (500, 750, 1000, 1250, 1500 msec) was 

insert between trials. In Phase 2, subjects practiced the motor adaptation task for an 

extended time period in order to reach automatisation of the skill. During this phase, 

training on the task was subject-tailored, i.e. the subject's performance on the tasks 

determined how much practice was needed for them to reach the automatic execution 

criterion. During each day of practice, subjects completed five runs composed of 64 trial of 

the lM. The dual-task condition was completed during this period at a frequency of not 

more then one session per week. FinaIly, in Phase 3, subjects had reached complete 

automatisation and were asked to complete a second and final series of ten fMRI runs 

identical to the first scanning session. 

6.3.5. fMRI data analysis 

The functional data were analysed using statistical parametric mapping (SPM2) 

(www.fil.ion.ucl.ac.uklspm). Data pre-processing included slice timing, EPI and MPRAGE 

realignment, as weIl as EPI and MPRAGE spatial normalisation according to the Montreal 

Neurological Institute (MNI) space. The data was then convolved with a three-dimensional 
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Gaussian Kernel (12 mm FWHM) to enhance the signal-to-noise ratio. The fMRI 

acquisition mns were analysed as a mixed block and event-related paradigrn, with 5 

variables defined and measured in every mn: (1) successful lM trials; (2) failed lM trials; 

(3) successful DM trials; (4) failed DM trials; and (5) rest period. Since no motor output 

was required during the instruction periods, they were combined to the actual rest period 

and model1ed as a block, whereas the 4 other variables were model1ed as event-related. 

The data were then convolved with a canonical hemodynamic response functions, and a 

high-pass filter was applied for filtering low frequency noise (cut off, 128 sec). Finally, 

realignrnent parameters (translation and rotation in x, y, z dimensions) were inc1uded as 

covariates of no interest to correct for head movements. In order to deterrnine the pattern 

of activations in the various conditions, three different contrast images were calculated per 

subject, and aIl of the contrasts used events associated to successful trials only. Two 

contrasts were calculated to reveal the cerebral regions implicated in the learning of the 

motor adaptation per se at both the early and automatic execution stage [lM VS DM]. 

Because visuomotor adaptation requires various cognitive processes such as visual 

perception, attention, sensory integration, and motor control for its execution, activations 

associated with these processes need to be removed in order to assess brain activation 

patterns specifically related to learning of the adaptation skill per se. Thus, functional data 

acquired while subjects completed the motor control task (DM) were contrasted to those of 

the visuomotor adaptation (lM). The third and final contrast was calculated to reveal the 

regions differentially involved in the automatisation process of the motor adaptation skill 

[(lM vs DM in the automatic learning stage) VS (MI vs DM in the early learning stage)]. 

The corresponding images were then entered into a second level random-effects analysis 

for group comparisons, as calculated by a one-sample t-test model. Based on predictions 

derived from Doyon and colleagues' (2002, 2003. 2005) model of motor adaptation 

learning, as weIl as results of previous fMRI studies (Doyon & Ungerleider, 2002; Doyon, 

Penhune & Ungerleider, 2003; Doyon & Benali, 2005; Nezafat, Shadmehr & Holcomb, 

2001; Della-Maggiore & McIntosh, 2005; Smith & Shadmehr, 2005; Ghilardi et al., 2000; 
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Shadmehr & Brashers-Krug, 1997), a statistical threshold of puncorrected < 0.001 in brain 

structures composing the CS and CC circuits (with a spatial extent of 3 voxels for 

subcortical structures, and 6 voxels for cortical structures) was considered to show 

significant activations. 

Lastly, to examine the association between subjects' behavioural performance on 

the task and the brain structures, we conducted correlation analyses coupling the mean 

behavioural performance (i.e. precision and speed indices) per session with the effect size 

at every voxel in individual statistical maps derived from relevant motor adaptation-related 

contrasts [lM vs Rest]. As such, the correlation analyses looked at brain structures involved 

in the automatic execution of the motor adaptation for which BOLD responses (as assessed 

by statistical effect size at the random effect level) were specifically correlated with 

average precision or speed during the scanning session. 

6.4. Results 

6.4.1. Behavioural results: Training sessions 

Figure 6.2 (A, B) displays the behavioural results measured in the laboratory for 

both the lM and TDT, executed al one (blue) or in the dual-task condition (red). Although 

completed an average 20 sessions (SD = 1.1) of practice, only seven laboratory training 

sessions are presented in this figure. As such, we had to present the data on another time 

scale. We chose to represent the number of sessions in percentage, and expose the subjects' 

performance at every 14%. As expected, the data revealed weak and variable performance 

in the lM condition during the early leaming stage (DayI). However, this performance 

rapidly improved as shown by a sharp progress in performance across the two blocks of 

trials completed al one, and with the additional two blocks completed in the dual-task 

condition. Immediately starting on Day 2, and as subjects leamed the lM during the 

extended practice stage, their performance stabilised, quickly reaching an asymptotic level 
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of perfonnance. An analysis of variance (ANOV A) for repeated measures confinned this 

behavioural trend, the results revealing a significant improvement in perfonnance between 

the first and last training sessions (F(1,9) = 112.92, P < 0.001), a difference between the 

single and dual-task conditions (F(1,9) = 46.18, P < 0.001), as weIl as a significant session 

by condition interaction (F(l,9) = 53.42, P < 0.001). Most important1y, at the end of the 

experiment, the subjects' performance on the lM executed in the dual-task condition was 

identical to their performance on the lM when executed alone (F(1 ,9) = 0.72, P = 0.418). 

Insert figure 6.2 

The dual-task paradigm involves performing the primary task simultaneously with a 

secondary task. The rational being that the dual-task methodology allows researchers to 

test for the attentional resources that can be devoted to a second task, as subjects are 

becoming more efficient at performing the initial leamed behaviour. As skills develop, 

more attentional resources are available to perfonn the secondary task. Thus, perfonnance 

on the secondary task provides an index of automaticity on the primary task (Logan, 1988). 

Consequently, subject tested on the TDT in the dual-task condition were expected to show 

an improvement in perfonnance that would gradually approach the values obtained when 

they completed the TDT alone. Consistent with this hypothesis, a repeated measures 

ANOV A revealed significant effects between the first and last session (F(1,9) = 74.72, P < 

0.001), between the single and dual-task conditions (F(1 ,9) = 58.26, P < 0.001), as weIl as a 

significant session by condition interaction (F(l,9) = 25.34, P < 0.001). Simple effect 

analyses also showed that during the early leaming stage, subjects' reaction times in the 

TDT executed alone differed si gni fi cantl y from their performance in dual-task condition 

(F(1,9) = 40.28, P < 0.001). With additional practice, differences in reaction time between 

the TDT in the single and dual-task conditions gradually decreased, reaching almost 

identical level in the automatic execution stage (43 msec difference on average). Although 

the latter difference remained significant (F(1,9) = 49.81, P < 0.001), the overall results on 



67 

the TDT and lM strongly suggest that automaticity on the motor adaptation task had been 

attained. 

6.5. Behavioural results: Scanning sessions 

Figure 6.2C displays the average behavioural results for aIl subjects measured on 

both the lM and the DM tasks in the ten mns of each of the two scanning session. Similar 

to their pattern of results during the introductory session, subjects' performance on the lM 

and DM tasks was variable at first but then rapidly improved throughout the mns. In fact, 

subjects showed a great deal of leaming during this first session as confirmed by a repeated 

measures ANOVA that revealed a significant effect between the subjects' performance in 

the first and last mns (F(1,9) = 17.14, P < 0.003), but no effect between the lM and DM 

tasks (F(l ,9) 0.001, P > 0.98), nor a mn by task interaction (F(l ,9) 4.14, P > 0.072). By 

contrast, the subjects' performance during the second scanning session (i.e., following the 

extensive training period) was much more stable, as they performed at an asymptotic level. 

An ANOVA for repeated measures on these results confirmed the trend as it yielded no 

significant effect of mns (first and last) (F(1,9) = 4.21, P > 0.70), of task (lM and DM) 

(F(1,9) 5.062, P > 0.51), nor any interaction during this session. 

6.6. Imaging results 

Early learning stage. The first contrast was intended to uncover brain regions 

implicated in the early stage of the skill's acquisition. Contrary to our hypotheses, 

subtracting the DM from the lM revealed activations limited to the striatum in the left 

putamen and right caudate nucleus (Fig. 6.3A and Table 6.1), and none in the CC system. 

Insert Figure 6.3 and Table 6.1 

Automatisation process. Here we sought to uncover regions involved in the 

automatisation process by contrasting the BOLD signal obtained during the second 
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scanning session from that of the first. However, because non-specifie related factors 

might influence metabolic activity of the brain on different days, comparisons between 

days of scanning are difficult to interpret (Rajah, Hussey, Houle, Kapur & McIntosh, 1998). 

To overcome this limitation, we contrasted the neural activity obtained by subtracting the 

DM trom the lM in the eady learning stage trom that of the same subtraction obtained 

during the automatic stage; the reasoning being that non-specifie factors present during the 

execution of the adaptation skill would also be present during the control condition. The 

results yielded activations in the left cerebellar crus 1 and the right parahippocampal gyrus, 

hence suggesting that these structures play a critical role in this process (Fig. 6.3B and 

Table 6.1). 

Automatic execution. Finally, to reveal brain activation patterns related to the 

automatic performance of the motor adaptation skill, we subtracted the DM trom the lM 

obtained during the second series of images. Consistent with Doyon et aL's model, our 

results revealed activation located bilaterally in cerebellar lobules V-VI, and in the 

supplementary motor areas (SMA), as weIl as in the left superior parietal lobule, left 

primary motor cortex (Ml), and left dorsal premotor region (PMd) (Fig. 6.3C and Table 

6.1). 

Correlation analysis: Precision index. To investigate better (or poorer) 

performances associated with the automatic execution of the adaptation skill, the subjects' 

precision at following the curved path during task execution was correlated with the BOLD 

response in this condition. The between-subject correlation analysis revealed that subjects 

completing the adaptation task with better precision showed greater activations in the 

posterior region of the cerebeIlum, more precisely in the right crus 1 area (32 -64 -32, 

5.3, r= .88) (Fig. 6.4A). Conversely, poorer precision was correlated with increased 

activity in the anterior region of the cerebellar cortex involving the left lobule IV (-20 -32 -

24, T= 6.32, r= -.91) and lobule V (-20 -44 -24, T= 5.06, r= -.87) (Fig. 6.4B and Table 6.2). 

Insert Figure 6.4 and Table 6.1 
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Correlation analvsis: Speed index. Similar correlation analyses using the speed 

index during the automatic execution stage of the motor adaptation task, revealed that 

subjects who completed the task fastest had increased BOLO signaIs in the anterior region 

of the cerebellar cortex located in the left lobule IV (-20 -32 -28, T=: 4.92, r= .87) (Fig. 

6.5A). Conversely, BOLO activity that correlated negatively with speed performance was 

seen in the posterior region of the cerebellar cortex, that is in the right lobule IX (12 -40 -

44, 4.87, r= -.86) (Fig. 6.5B and Table 6.2). 

Insert Figure 6.5 

6.7. Discussion 

Our resuIts indicate that experience-dependent neural activity was limited to striatal 

regions during the early learning stage of a visuomotor adaptation skill, but then shifted and 

remained circumscribed to the cc circuit once the skill was automatised. Further analyses 

revealed that the process of automatising the adaptation skill predominantly implicated the 

cerebellum and the parahippocampal gyrus. Additional correlation analyses coupling the 

subjects' behavioural data with the BOLO signal acquired during the automatic stage 

demonstrated that distinct regions of the cerebellum are differentially involved in the speed 

and precision with which subjects execute the task. 

Early motor adaptation learning. AIthough similar striatal activations were 

measured in previous imaging studies investigating the early stages of acquisition, these 

researchers employed a different, kinetic adaptation as their experimental task (Krebs et al., 

1998). With the exception of Seidler et al. (2006) and Krakauer et al. (2004), the BOLO 

signal measured in the left putamen and right caudate nucleus are novel findings with 

respect to the striatums' involvement in the early learning phase for this kind of adaptation 

(Seidler, Noll & Chintalapati, 2006; Krakauer et al., 2004). In fact, while a number of 

previous experiments investigated the early learning phase of a kinematic adaptation 
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(Clower et al., 1996; Inoue et al., 1997; Ghilardi et al., 2000; Imamizu et al., 2000), they 

did not measure any activations in these regions. 

Several reasons can be advanced to explain this discrepancy. For one, the majority 

of the prior studies used PET rather than FMRI, which may have limited their temporal and 

spatial resolution. Second, sorne studies did not scan these brain regions, and focused 

mostly on the cerebeIlum's contribution. Although these data suggest that the neural bases 

of early kinematic adaptation are similar to those for kinetic adaptation and sequence 

leaming, it is not clear that the underlying contributions of the striatal system have to be the 

same for aIl types of leaming. This topic requires further investigation. 

Fram early learning ta autamatic executian. To identify brain structures 

specifically implicated in the pracess of automatising the adaptation skill, we subtracted the 

BOLD signal obtained in the early leaming phase from that in the automatic execution 

stage. This contract revealed activations limited to the left lateral cerebellar region and the 

right parahippocampal gyrus. These results are consistent with the idea that the cerebellum 

is needed for motor performance to shift from an attention demanding state to an automatic 

mode (Doyon et al., 1998; Jenkins, Brooks, Nixon, Frackowiak & Passingham, 1994; 

Thach, 1998). Similar conclusions conceming the cerebeIlum's contribution to movement 

automaticity have been reported by Floyer-Lea and Matthews (2004). Indeed, using a 

motor task combining sequence and isometric force adaptation, the latter investigators have 

reported that the development of movement automaticity is particularly associated with 

greater recruitment of the cerebellum (Floyer-Lea. & Matthews, 2004). Additional 

corroborating evidence conceming the role of the cerebellum in this process has come from 

a clinical study completed by Lang and Bastian (2002), who showed that patients with 

cerebellar damage can leam to coordinate their arm and shoulder to make a figure-8 

movement, but cannot perform the skill at an automatic level (Lang & Bastian, 2002). 

Although unexpected, the activation observed in the parahippocampal gyrus 

suggests that this structure contributes to the automatiation process. In fact, functional 
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activations in the vicinity of this structure have been associated with the consolidation of a 

visuomotor tracking task (Maquet, Schwartz, Passingham & Frith, 2003), and with the 

integration of a motor network representing a consolidated motor adaptation skill (Della­

Maggiore & McIntosh, 2005). Moreover, the later findings are in accord with recent fMRI 

studies conducted at 3 Tesla, which have demonstrated that in addition to the CS and CC 

systems, the limbic structures of the medial temporal lobe also contribute to the acquisition 

of motor sequences (Schendan, Searl, Melrose & Stem, 2003a; Schendan, Searl, Melrose, 

& Stem, 2003b). Such results suggest that in addition to the potential reliance on the 

dec1arative memory system to acquire and consolidate motor skills, this region may also be 

involved in the latter process of automatisation. However, this issue requires further 

investigation, as damage to the limbic structures does not impede amnesic patients from 

leaming various motor tasks. 

Automatic skill execution. In line with our a priori hypothesis, automatic execution 

of the adaptation skill only engaged structures composing the cc circuit. This level of 

execution was associated with increased activity in cerebellar lobules V-VI bilaterally, 

along with significant activations in Ml, SMA, PMd, and superior parietal lobule. Our 

results are corroborated by a series of studies that reported increases in cerebellar 

activations as motor adaptation leaming progressed (Della-Maggiore & McIntosh, 2005; 

Imamizu et al., 2000; Krebs et al., 1998; Shadmehr & Holcomb, 1997). In fact, similar 

lateral cerebellar regions have been identified by Imamizu et al. as being involved in the 

maintenance of the acquired internaI model of an analogous visuomotor adaptation task 

(lmamizu et al., 2000; Imamizu, Kuroda, Miyauchi, Yoshioka & Kawato, 2003). 

As was hypothesised, our results also show that the Ml, SMA, PMd, and superior 

parietal lobule contribute to the execution of the automatised adaptation skill. In fact, the 

increase of BOLD signal in Ml is consistent with other imaging studies that reported a 

progressive increase of activity in this region during motor sequence and adaptation 

leaming (Grafton et al., 1992; Hazeltine, Grafton & Ivry, 1997; Kami et al., 1995; Kami et 
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al., 1998). Although conjectural, this result thus agrees with the notion that Ml may be the 

storage site for motor memories that are highly overlearned. The PMd activation is in line 

with previous studies, which have shown that this cortical area plays a role in the temporal 

aspect ofmotor planning (van Mier, Tempel, Perlmutter, Raichle & Petersen, 1998), and in 

the execution of smooth automatic movements (Krebs et al., 1998). The bilatera1 activity in 

SMA is also consistent with suggestions that it contributes to the organisation of sequential 

movements (Jenkins, Brooks, Nixon, Frackowiak & Passingham, 1994; Jueptner, Frith, 

Brooks, Frackowiak & Passingham, 1997; Jueptner et al., 1997), as well as in the timing of 

internally generated actions (Rao et al., 1997). And finally, increased activity in the 

parietal cortex may be attributed to its involvement in somatosensory processing, with the 

anterior regions playing a role in motor preparation based on sensory information, and the 

posterior regions participating in the correct selection of the movements based on spatial 

attention (Deiber, Ibanez, Sadato & Hallett, 1996; Della-Maggiore & McIntosh, 2005). 

Although the exact contribution of these structures requires further investigation, these 

results are in accord with Doyon and colleagues' model of motor adaptation learning, and 

suggest that the cerebellum and its related motor structures are important for the execution 

of an automatised visuomotor adaptation skill. 

Different execution strategies and the cerebellum. Although specific instructions 

were given to the subjects to complete the motor task as fast and as accurately as possible, 

once debriefed at the end of the study, most of them declared having used one of two 

strategies to complete the adaptation task. They either focussed on performing the trials as 

fast as they could, or completing them as accurately as possible. Correlation analyses using 

the speed and precision indices revealed that the strategy employed during automatic 

execution generated two general patterns of cerebellar activity. Activations in the left 

anterior cerebellar regions were linked to a strategy based on fast performances, but low 

precision, whereas activations in the right posterior cerebellar regions were common to 

subjects executing the task with high precision, but slow execution. These results are in 

agreement with conclusions presented by Hikosaka et al. (2002) who stated that motor 
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skills are acquired and retained in two different forms within the basal ganglia (Hikosaka et 

al., 2002). They proposed that the anterior parts of the basal ganglia are responsible for 

accurate performance, whereas more posterior regions of the putamen are responsible for 

speedy performances. These researchers thus maintained that at least two neural 

mechanisms operate independently to represent a motor skill. A similar finding regarding 

the segregation of specific execution strategies in the cerebellum was reported by Imamizu 

and his colleagues in 2003 (Imamizu, Kuroda, Miyauchi, Yoshioka & Kawato, 2003). 

Using visuomotor adaptation tasks that required subjects to either adaptation to a rotational 

transformation or to a difference in speed, Imamizu and his colleagues (2003) identified to 

distinct regions within the cerebellum that were significantly and differentially activated by 

the two different kinds of adaptations. Their results indicated that the use of the rotational 

mouse were more anterior and lateral to those resulting from the use of the velocity mouse 

which were more posterior and medial (Imamizu, Kuroda, Miyauchi, Y oshioka & Kawato, 

2003). Our results agree with this statement, and further support the functional dissociation 

between speed and precision execution within the cerebellum. 

6.7.1. Conclusion 

First, this study confirms the importance of using a dual-task paradigm to measure 

automatic execution on a motor task, as evidenced by the fact that subjects required several 

more weeks of practice from the moment they had attained the asymptote, to when they 

reached an automatic level of performance. Second, although the striatal activity observed 

during the early leaming stage partially fit Doyon and colleagues' model of motor 

adaptation leaming (Doyon & Ungerleider, 2002; Doyon, Penhune & Ungerleider, 2003; 

Doyon & Benali, 2005), our results follow very c10sely their hypothesis conceming the role 

of the CC in the automatic execution of this skill. Moreover, in addition to confirming the 

essential role of the cerebellum in the automatisation of a visuomotor adaptation skill, our 

results suggest the involvement of the limbic structures in the leaming process. Finally, our 

correlation analyses reveal that distinct cerebellar regions are involved in different 
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execution strategies used to complete the task, and consequently, future investigations of 

motor ski11leaming should pay close attention to the various strategie approaches subjects 

may use to complete the experimental paradigm. 
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Table 6.1 Brain areas activated at different learning stages of a motor adaptation skill. 

Contrast 

lM vs DM during early leaming 

Putamen (L) 

Caudate (R) 

Brain region 

([lM vs DM early] VS [lM vs DM auto]) 

Cerebellar crus 1 (L) 

Parahippocampal gyrus, BA 36 (R) 

lM vs DM during auto ma tic execution 

Cerebellar lobule VI (L) 

lobule VI (R) 

lobule V (L) 

lobule V (R) 

Superior parietal lobule, BA 7 (L) 

SMA, BA6 (L) 

SMA, BA 6(R) 

Ml, BA 4 (L) 

PMd, BA6 (L) 

MNI coordinates 

-20 

20 

-48 

32 

-16 

20 

-28 

32 

-28 

-4 

8 

-56 

-24 

x 

-12 

12 

-52 

-36 

-64 

-60 

-52 

-52 

-56 

-26 

-4 

-8 

-20 

y z 

12 

16 

-36 

-12 

-16 

-20 

-20 

-20 

64 

76 

76 

44 

76 

5.23 

5.03 

9.10 

7.67 

7.82 

5.15 

6.21 

6.53 

5.18 

6.69 

9.82 

5.75 

5.59 

T-value 

Table 6.1 Activation peaks are given using the MNI coordinates. AlI coordinates are significant as defined 
by puncorrected < 0.001. Abbreviations; L: left, R: right, PMd: dorsal premotor cortex, SMA: supplementary 
motor area, Ml: primary motor cortex, BA: Broadman's area. 
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Table 6.2 Brain areas significantly correlated with the precision and speed 

performance indices du ring automatic execution of the motor adaptation skill. 

Correlation Brain region 

Positive corr b/w PI and BOLD signal 

Cerebellar crus 1 (R) 

Negative corr b/w PI and BOLD signal 

Cerebellar lobule V (L) 

lobule IV (L) 

Positive corr b/w SI and BOLD signal 

Cerebellar lobule IV (L) 

Negative corr b/w SI and BOLD signal 

Cerebellar lobule IX (R) 

MNI coordinates 

x y z 

32 -64 -32 

-20 -44 -24 

-20 -32 -24 

-20 -32 -28 

12 -40 -44 

T-value 

5.30 

5.06 

6.32 

4.92 

4.87 

r 

0.88 

-0.87 

-0.91 

0.87 

-0.86 

Table 6.2 Activation peaks are given using the MNI coordinates. All coordinates are significant as defined 
by puncorrecled < 0.001. Abbreviations; lYw: between; r: correlation coefficient; PI: precision index, SI: speed 
index. 
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Figure 6.1: AB & C 
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Figure 6.1 (A) Visual interface of the Eight Target Tracking task (ETT). At the beginning of every trial, a 
starting point, represented by a white circ1e (0.75 cm in diameter), appeared in the middle of the computer 
screen. The cursor, a cross-shaped figure, appeared superimposed on top of the starting point. At the sa me 
time, the target represented by a red circ1e (1.5 cm in diameter), appeared 10 cm from the starting point. 
Appearing simultaneously was a hne (0.5 cm in thickness) indicating the elhpse-shaped trajectory the subjects 
had to follow (radius of 2.5 cm) to reach the target with the cursor. (B) Timeline describing a possible 
configuration for one of the ten runs in one of the two scanning sessions. Subjects completed 2 tasks in these 
runs: DM stands for eight target tracking in direct mode, lM stands for eight target trac king in indirect mode, 
1 stands for instructions, and R stands for rest. Total duration of a run was 315 seconds. Each bloc was 
composed of 8 trials, and each trial was separated by a pseudo-randomly varied interval ranging from 500 to 
1500 msec. This is known as a jittered design, and has the advantage of combining both the block and event­
related run configurations. (C) Formula used to ca1culate the global performance index (GPI) on ETT trials. 
The GPI was ca1culated by combining the precision (dS/S) and speed performances ([TT-TO]/Ta) on the ETT. 
In the formulas exp is the value given to the trial (1 for successful and 0 for failed), the dS represents the 
differential surface area between the actual path followed to reach a target and the optimal path of the curved 
hne, S is defined as the differential surface area between the optimal path of the curved hne and a straight line 
between the starting point and the target center, TT constitutes the total time, T 0 the minimal time needed 

(500 ms), and Ta the time allowed (2,900 ms) to reach the target. 
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Figure 6.2 Average group performance across-subjects (mean ± SD) on (A) the visuai-tracking task in the 
inversed mode (lM) executed aione (blue diamonds), and in the duai-task condition (red squares); (B) the 
Tone Discrimination Task (TDT) completed aione (blue diamonds), and in the duai-task condition (red 
squares); and (C) the visuai-tracking task in the inversed mode (lM, blue diamonds) and direct mode (DM, 
red squares) measured during the two scanning sessions. In both figures A & B, every data point corresponds 
to the subjects' performance during a bloc of trials, whereas in figure C, each data point corresponds to the 
subjects' performance during an fMRI mn. 
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Figure 6.3: A, B & C 
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Figure 6.3 Statistical parametric maps of brain activity during motor adaptation. (A) Brain regions activated 
during the early leaming phase (lM vs MD in the early stage). (B) Results ofthe contrast ([lM vs DM] early 
stage vs [lM vs DM] automatic stage) revealing the brain structures involved in the automatisation process. 
(C) Brain regions activated during the automatic execution of the task (lM vs MD in the automatic stage). Ail 
contrast images were obtained for subject individually and then used in the second level random-effects 
analyses as calculated by a one-sample t-test model, a statistical threshold ofP < 0.001 uncorrectecl was considered 
to show significant activations. Color bars code for the value of the t statistic associated with each voxel. 
Right side of the image corresponds to the right side of the brain. 
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Figure 6.4: A & B 
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Figure 6.4 Between-subjects regression analyses coupling the subjects' average precision index (Pl) and the 
BOLD signal measured during the automatic execution stage of the motor adaptation skil\. (A) Blue 
crosshair: right cerebellar crus 1 (32 -64 -32). The scatter plot shows that the brain response at this coordinate 
was positively correlated with precision (bIue; r = .88). (B) Red crosshair: left cerebellar lobule IV (-20 -32 -
24). The scatter plot shows that the brain response at this coordinate was negatively correlated with precision 
(red; r -.91). Note that a negative correlation was obtained for the left lobule V (-20 -44 -24, r= -.87), but 
that it is not plotted on the graph. 
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Figure 6.5: A & B 
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Figure 6.5 Between-subjects regression analyses coupling the average subjects' speed index (SI) and the 
BOLD signal measured during the automatic execution stage of the motor adaptation skill. (A) Blue 
crosshair: left cerebellar lobule IV (-20 -32 -28). The scatter plot shows that the brain response at this 
coordinate was positively correlated with speed (blue; r = .87). (B) Red crosshair: right cerebellar lobule IX 
(12 -40 -44). The scatter plot shows that the brain response at this coordinate was negatively correlated with 
speed (red; r = -.86). 
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Chapter 7. Experiment 2: The long-ternl retention of a 

visuomotor adaptation skill: a mMI study 

7.1. Abstract 

In a previous experiment completed in our laboratory, eight healthy volunteers were 

scanned using fMRI (3.0 Tesla) on two consecutive days: first while leaming to complete a 

kinematic visuomotor adaptation task (Day 1), and after extensive practice was given such 

that subjects reached asymptotic performance (Day 2). In the present study, we intended to 

investigate the brain structures implicated in the long-term retenti on of this type of 

visuomotor adaptation skill by scanning the same eight subjects completing the same task 

approximately two months after the initial leaming phase. Consistent with the model of 

motor leaming proposed by Doyon and col1eagues (2002, 2003, 2005), the results revealed 

that the functional reorganisation that take place during the slow leaming phase (i.e. the 

functional specialisation of the cortico-cerebel1ar (CC) system) is reactivated when the 

skilled behaviour is recalled at a later time. 

7.2. Introduction 

In this past decade, a plethora of brain imaging studies interested in motor ski11 

leaming has demonstrated that activations in different brain regions depend on the leaming 

phase in which subjects are scanned in (Grafton et al., 1992). As such, four leaming phases 

have been identified; the early [fast] phase, consolidation, late [slow] phase, and 

automatisation (Doyon & Ungerleider, 2002; Kami et al., 1998; Doyon & Ungerleider, 

2002; Doyon, Penhune & Ungerleider, 2003; Friston, Frith, Passingham, Liddle & 

Frackowiak, 1992; Kami et al., 1995; Doyon, Owen, Petrides, Sziklas & Evans, 1996; 

Doyon, 1997). AIso, it has been demonstrated that the roles of the cortico-striatal (CS) and 

cortico-cerebel1ar (CC) systems can be dissociated in late phases of the acquisition process 
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wh en subjects are either perforrning a leamed motor sequence, or motor adaptation task 

(Doyon & Benali, 2005). 

While the plastic changes associated with the leaming and long-terrn maintenance 

of movement sequences have been studied extensively (Kami et al., 1998; Penhune & 

Doyon, 2002; Jueptner, Frith, Brooks, Frackowiak & Passingham, 1997; Toni, Krams, 

Turner & Passingham, 1998), our knowledge base of the neural structures mediating the 

retenti on of a motor adaptation skill remains largely incomplete. Indeed, most of the 

imaging work looking at the latter type of leaming has focussed on the fast leaming phase 

(Brashers-Krug, Shadmehr & Bizzi, 1996; Shadmehr & Holcomb, 1997; Shadmehr & 

Holcomb, 1999; Imamizu et al., 2000; Imamizu, Kuroda, Miyauchi, Yoshioka & Kawato, 

2003), while only a few experiments have scanned subjects after the y attained the slow 

leaming stage (Krebs et al., 1998; Nezafat, Shadmehr & Holcomb, 2001; Della-Maggiore 

& McIntosh, 2005). Amongst these studies, Krebs and colleagues (1998) did not 

investigate the long terrn retention of the skill, and Della-Maggiore and her colleagues 

(2005) only acquired behavioural data describing the skill' s long-terrn retention. As for 

Nezafat et al. (2001), they obtained imaging data regarding the long terrn retenti on of a 

force field adaptation task, however their study employed positron emission tomography 

(PET) and the y focused primarily on the cerebellum's involvement in the process. The 

objective of the present study was use functional magnetic resonance imaging (fMRI) of 

the en tire brain to identify regions responsible the recall of a visuomotor adaptation skill, 

and to compare them to the structures implicated in the long-terrn retenti on of the skill. 

In a recent model, Doyon and colleagues (2002, 2003, 2005) proposed that the fast 

acquisition of a new visuomotor adaptation skill depends upon dynamic interactions within 

the CS and the CC systems. However, once consolidated, the neural representation of the 

adaptation skill is believed to be distributed in a network of structures that involves the CC 

circuit only (Doyon & Ungerleider, 2002; Doyon, Penhune & Ungerleider, 2003; Doyon & 

Benali, 2005). In a previous investigation designed to test this hypothesis (Doyon et al., 
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2004), eight healthy volunteers were scanned using a 3.0 Tesla fMRI on two separate days, 

i.e. while subjects were leaming to complete a visualIy-guided motor adaptation task on 

Day 1, and once subjects had attained the asymptotic level of performance on Day 2. The 

results of standard and functional connectivity analyses revealed that leaming was tirst 

characterized by a transient overall increase within the CS and CC systems, followed by 

sustained activity limited to the CC structures on Day 2. In the present experiment, the 

same eight subjects were scanned again two months after completing the previous study. 

The results of this experiment are thus believed to reflect the brain networks mediating the 

retenti on of a consolidated visuomotor adaptation skill. Based on the model of motor 

adaptation, it was hypothesised that similar brain regions composing the CC system would 

be involved in long-term retenti on of the adaptation skill. 

7.3. Materials & methods 

7.3.1. Subjects 

Eight right-handed healthy volunteers (5 males) participated in this study. The 

subjects were aged between 19 and 26 years (Mean: 23.1), with 13 to 20 years of education 

(Mean: 16.6). Subjects were screened to exclude those with expertise in video games, as 

well as those with a history of neurological, psychological or psychiatrie disorder. AlI 

subjects provided written informed consent, and received tinancial compensation for their 

participation. The study was approved by the Local Ethic's Committee (Comité Consultatif 

de Protection des Personnes dans la Recherche Biomédicale, CCPPRB) in Paris. 

7.3.2. Materials 

The Spike 4 software and CED 1401 data acquisition peripheral (both from 

Cambridge Electronic Design Inc.) were respectively used to generate the computer 

programs necessary to present the sequence of targets in both motor adaptation and control 
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tasks, and to record the subjects' perfonnance. Subjects used a MRI compatible joystick 

(Resonance Technology Inc) to reach the targets, which were displayed onto a screen 

behind the subject's head via a LCD projector (NEC MultiSync MT 1030+). They were 

able to observe the screen through its reflection on a mirror embedded within the head coil. 

7.3.3. Task Description 

Subjects were scanned while completing two experimental conditions: a motor 

adaptation and motor control task. Both tasks were completed using a version of the eight­

target tracking task designed in our laboratory (Hadj, Blanchet & Doyon, 2004). Subjects 

were required to use a joystick to move a cursor from a starting point positioned in the 

center of the computer screen to a distant target following an ellipticai trajectory. Motor 

adaptation was measured by inversing (inversed mode [lM]) the relation between the 

joystick's movement and the cursor's direction (i.e. moving the joystick to the right caused 

the cursor to move to the left). In contrast, the relation between the joystick's movements 

and the cursor's direction were the same (direct mode [DM]) in the motor control condition. 

The subject's perfonnance on the lM and the DM were measured by computing a precision 

index based on the distance between the cursor's trajectory and the ideal curved path 

leading to the target, as well as a speed index based on the time subjects took to complete 

each trial. These indices were then combined to calculate a global perfonnance index 

(GPI). AlI these indices ranged from 0 to 1, and can be interpreted as the probability 

distribution for the subject's perfonnance on both the spatial and/or temporal aspects of the 

task. Expressed mathematically, the latter index can be described as: 

GPI = exp(-dS/S * (TT(ms)-T rI/T al 

Where exp is the value given to the trial (1 for successful and 0 for failed), the dS 

represents the differential surface area between the actual path followed to reach a target 

and the optimal path of the curved line, Sis defined as the differential surface are a between 

the optimal path of the curved line and a straight line between the starting point and the 
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target center, TT constitutes the total time, TO the minimal time needed (500 ms), and Ta 

the time allowed (2,900 ms) to reach the target. 

7.3.4. Procedure 

The subjects were contacted approximately two months after they completed 

training in the previous study (Doyon et al., 2004), and were reacquainted with the motor 

tasks before scanning. This reminder session was composed of 24 trials in the DM and 48 

trials in the lM condition. Subjects then completed a fRMI scanning session (i.e. retenti on 

scan) comprised of five runs that were identical to the ones completed in the previous 

study. Each of the five runs consisted of a buffer period of 12 sec, a block of 16 DM trials 

(64 sec), a block of 64 lM trials (256 sec), and a rest period of 20 seconds between the two 

experimental conditions to prevent accumulation of fatigue in subjects. The order of 

presentation of the two conditions was counterbalanced on every run. Finally, 4 sec 

instruction periods were included before each experimental condition to guide subjects, for 

a total run duration of 360 sec. 

It is important to clarify that the five runs completed by subjects in the experiment 

reported here was originally accompanied by another five runs in which subjects performed 

a motor sequence task. This is important to keep in mind since the subject's fatigue while 

they were in the scanner needed to be considered. As such, we opted to limit the number of 

trial in the motor control condition so as to diminish a run's duration. Another reason for 

the important difference between the number of trials completed in the lM block versus the 

DM blocs was the need for supplementary lM data in order to complete connectivity 

analyses. 

A mixed fIVIRI paradigm that combined both block and event-related designs was 

used to acquire the functional data. To sample the BOLD signal at different moments 

during the execution of the task, jittering within each run was achieved by varying the inter-
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trial intervals during the motor conditions (Visscher et al., 2003). Therefore, in addition to 

the 3000 msec given to a subject to complete a trial (i.e., 2900 msec given to reach the 

target and the 100 msec needed to validate the target), one of 5 possible time intervals (500, 

750, 1000, 1250, 1500 msec) was insert between trials. In addition, since the number of 

trials in every block was a multiple of eight, every trial within a bloc was designed to last 

4000 msec on average. Blood oxygenation level dependent (BOLD) signaIs were recorded 

in 103 volumes, which were acquired using a single-shot echo-planar imaging sequence 

(TR = 3,486 ms, TE = 35 ms, 64 x 64 matrix, 42 slices, FOV = 19.2 cm and flip angle = 

90°) on a Bruker 3.0T system at the fMRI Center at La Timone hospital, Marseille, France. 

7.3.5. fMRI data analysis 

The functional data were analysed using statistical parametric mapping (SPM2) (on 

line at www.fil.ion.ucl.ac.uklspm). Data pre-processing inc1uded EPI realignment and 

spatial normalisation according to the Montreal Neurological Institute (MNI) space. The 

data was th en convolved with a three-dimensiona1 Gaussian Kernel (12 mm FWHM) to 

enhance the signal-to-noise ratio. The fMRl acquisition runs were analysed as an event­

related paradigm, with 4 variables defined and measured in every run: (l) successful lM 

trials; (2) failed lM trials; (3) successful DM trials; and (4) failed DM trials. The data set 

was then convolved with a canonical hemodynamic response function, and a high-pass 

filter was applied for filtering low frequency noise (cut off, 128 sec). Finally, realignment 

parameters (translation and rotation in x, y, z dimensions) were inc1uded as covariates of no 

interest to correct for head movements. In order to determine the pattern of activations in 

the various conditions, two contrast images were calculated per subject, using events 

associated to successful trials only. The first contrast was calculated to reveal the regions 

involved in the reactivation of the adaptive movements necessary to complete the reaching 

task two months post-consolidation, i.e. long-term retention ([lM VS DM] on retention 

scan). The second and final contrast was intended to reveal the regions specifically 

involved in the retention of the motor adaptation skill ([lM vs DM on retention scan] VS 
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[lM vs DM on Day 2]). The corresponding contrast images were entered into a second 

level random-effects analysis for group comparisons, as calculated by a one-sample t-test 

model. Based on the predictions derived from Doyon & colleagues' (2002, 2003, 2005) 

model regarding the involvement of the CC and CS circuits in motor adaptation leaming, as 

weIl as results of previous fMRI studies (Nezafat, Shadmehr & Holcomb, 2001; DeIla­

Maggiore & McIntosh, 2005; Krebs et al., 1998; Doyon & Ungerleider, 2002; Doyon, 

Penhune & Ungerleider, 2003; Doyon & Benali, 2005), a statistical threshold ofpuncorrected < 

0.005 (with a spatial extent of 3 voxels for subcortical structures, and 10 voxels for cortical 

structures) was considered to show significant activations. 

7.4. Results 

7.4.1. Behavioural results 

Figure 7.1 displays the subjects' average performance measured during the first two 

scanning sessions (Days 1-2) conducted previously by Doyon and colleagues (Doyon, J. et 

al., 2004), and that observed in the present experiment (retention). An ANOV A for 

repeated measures revealed a significant effect of task (F(l,7) = 1l.699, P < 0.011). 

Although an improvement with time seems to occur, no significant effect oftime (F(2,14) = 

6.694, P < 0.09) or interaction effect was measured (F(2,14) = 0.158, P < 0.855). 

Subsequent Newman-Keuls post-hoc comparison, using an alpha level of 5%, showed that 

contrary to the performance improvement observed on the first two days of the experiment, 

subjects recalled the task two months later with no significant improvement or deterioration 

in performance. 

Insert figure 7.1 
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7.4.2. Imaging results 

Recall of the skill. The execution of a visuomotor adaptation requires various 

cognitive processes inc1uding visual perception, attention, and sensory integration for its 

execution. To assess brain activation patterns specifically related to recall of the adaptation 

skill per se, the latter processes were removed by subtracting the DM from the lM 

condition as measured on Day 3. Consistent with the hypotheses derived from Doyon and 

colleagues' model of motor leaming (2002, 2003, 2005), contrasting these two conditions 

revealed activations bilaterally in cerebellar lobules VI and in the left lobule VIIIB. 

Increased activity was also observed in left parahippocampal gyrus, uncus, and dorsal 

premotor cortex (PMd) (see Fig. 7.2A and Table 7.1). 

Retention orthe skill. The second contrast sought to uncover regions differentially 

involved in the long-term retenti on of the motor adaptation skill by subtracting activations 

measured in the slow learning phase (Day 2) from those measured during recall (retention). 

However, because non-specifie related factors can influence metabolic activity of the brain 

on different days, comparisons between days of scanning are difficult to interpret (Rajah, 

Hussey, Houle, Kapur & McIntosh, 1998). To overcome this limitation, we proceeded to 

contrast the neural activity obtained by subtracting the DM from the lM on Day 2, from 

those resulting of the same contrast at retenti on; the reasoning being that any non-specifie 

factors present during the execution of the adaptation skill would also be present during the 

control condition. The results of this contrast (Fig. 7.2B) revealed significantly brain 

activations located in left cerebellar lobule V, left parahippocampal gyrus, and right 

fusiform gyrus (see Table 7.1). 

Insert figure 7.2 and table 7.1 
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7.5. Discussion 

This study sought to uncover the implication of different brain regions in the recall 

and long-term maintenance of a previously consolidated kinematic visuomotor adaptation 

task. As such, eight subjects were recruited who, two months prior, had practiced the same 

task until their performance had reached asymptote. In the present study, and with no 

additional practice, subjects were scanned through fRMI while they recalled the task. No 

significant improvement or deterioration in performance was measured, demonstrating that 

long-term maintenance of the skill had been achieved. As such, after contrasting the 

images acquired on this day, while subjects recalled the adaptation task with those acquired 

during the execution of a control task, revealed the implication of similar structures also 

identified as being involved in the slow learning phase during the previous experiment. 

Additionally, a between session subtraction was calculated to uncover the structures 

specifically implicated in the long-term maintenance of the skill. The results of this 

contrast revealed that a redistribution of activations took place, but that this reorganisation 

was limited within these same brain regions. 

Brain circuits implicated at recall. The results of the present study reveal that the 

delayed recall of the visuomotor adaptation task is mediated by regions located bilaterally 

in cerebellar lobules VI, left lobule VIIIB, as weIl as in left parahippocampal gyrus, uncus, 

and PMd. This pattern of activity closely resembles the pattern associated to the slow 

learning of the task as measured in the previous experiment. Furthermore, it complies with 

Doyon's model, and suggests that only the CC circuit is involved in the maintenance of an 

adaptation skill beyond the slow learning phase. Another study completed by Nezafat and 

colleagues (2001) also examined the recall and long-term retenti on of dynamic motor 

adaptation skill through positron emission tomography (PET) (Nezafat, Shadmehr & 

Holcomb, 2001). These researchers, however, had subjects learn a force field adaptation 

task, and measured blood flow changes during three scanning sessions; on the first day, two 
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weeks, and four weeks later. As compared to day 1, two weeks after initiaJly learning the 

adaptation skill (day 15), only one region with significant increases in activity was 

identified in the medial gyrus ofleft temporal lobe. However, these researchers employed a 

time-by-condition interaction to identify this region, that is, they reported the difference 

between adaptation and a control on day 15 as contrasted by the same difference on day 1. 

They therefore did not present data that represent the recall of the skill, but rather brain 

structures that differed from those measured on the previous scanning session. In addition, 

and unlike our study, Nezafat and colleagues' (2001) subjects did not attain the asymptotic 

level of performance by the end of day 1, and therefore, they may still have been learning 

the skill when completing the scans two weeks later. In fact, on aIl three scanning days 

(days 1, 15 & 29), subjects were given additional practice on the adaptation task between 

scanning runs. Consequently, their results cannot be interpreted as the recall of an 

adaptation task in the same manner as our data. 

AIthough we are not aware of other previous work that has explored and described 

the delayed recall of an adaptation skill, very similar results concerning the CC circuit were 

obtained by researchers who investigated late learning stages of a similar kinematic 

adaptation task (Della-Maggiore & McIntosh, 2005). Using PET, Della-Maggiore and 

colleagues reported that the graduaI improvement in performance, and the eventual 

attainment of the slow learning stage (following 5 days of practice), was associated greater 

activity in the parietal and temporal regions, as weIl as in the cerebellum and striatum. ln 

addition, and similar to (Doyon et a1., 2004), functional connectivity results indicated that 

this later learning phase was related the functional links between the anterior cerebellum, 

left sensorimotor cortex and left middle temporal gyrus. Another study completed by 

Krebs et al. (1998) combined PET and a dynamic adaptation to study the functional 

changes in brain areas participating in the incremental learning of a motor adaptation 

(Krebs et aL, 1998). ln Une with our results and with those reported by Della-Maggiore et 

al. (2005), these researchers reported that as subjects became skilled at performing the task, 

the pattern of neural activity implicated the left premotor, left primary motor, and sensory 
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areas, as weIl as right cerebellar cortex (Krebs et al., 1998). Although these studies cannot 

attest to the involvement of these structures in the recall of the adaptation skill, their 

conclusions are in line with ours as they maintain that the interactions between cerebeIlar, 

and the temporal/parietal cortical areas are necessary to learn the visuomotor task beyond 

the fast learning phase. 

Brain circuits implicated in long-term retention. Our results show that few changes 

occur in functional activity from the time the task is weIl learned (slow learning stage) to 

the moment the skill is recalled two months later. In fact, consistent with the model, when 

brain regions implicated on Day 2 were compared to those of the retention, activity was 

observed only in left cerebellar lobule V, left parahippocampal gyrus, and right fusiform 

gyrus. In Nezafat and colleagues' (2001) study, they examined the long-term retenti on of a 

dynamic motor adaptation four weeks after subjects were initially presented to the task 

(Nezafat, Shadmehr & Holcomb, 2001). In line with our results, they found no significant 

differences across weeks with regards to the cerebellar regions they had identified on the 

first training day, but as the weeks passed, there was a significant decrease in the regional 

cerebral blood flow (rCBF) in a region ofthe right anterior cerebellar cortex. This decrease 

in activation was interpreted as increased neural efficiency, which in turn, is believed to 

correspond to a sharpening of the response in a particular neural network representing the 

internaI model (Poldrack, 2000). Interestingly, a cerebellar region in the vicinity of lobule 

V was also identified by Imamizu et al. (2000) as being involved in the maintenance of the 

acquired internaI model of a kinematic visuomotor adaptation task (Imamizu et al., 2000). 

In fact, these researchers maintained that the specific internaI model representing the 

altered relationship learned by the subjects to execute the adaptation task was maintained in 

the lateral regions of the cerebellum. Therefore, our results add to the growing literature 

confirming the importance of the cerebellum in the acquisition and long term maintenance 

of motor visuomotor adaptation (Shadmehr & Holcomb, 1997; Jueptner & Weiller, 1998; 

van Mier, Tempe], Perlmutter, Raichle & Petersen, 1998; Imamizu, Kuroda, Miyauchi, 

Yoshioka & Kawato, 2003; Imamizu et al., 2000). 
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The measured activity in the parahippocampal gyrus is also consistent with data 

from brain imaging studies investigating visuomotor adaptation. In fact, a reliance on 

structures supporting the dec1arative memory system to maintain the motor skill has been 

suggested to account for such activity. This is corroborated by studies which demonstrate 

that dec1arative and procedural memories, although subserved by two different cerebral 

systems, may interact with one another on a given task (McDonald & White, 1993; Doyon 

& Benali, 2005). Therefore, the activation pattern reported in this study testifies to the 

involvement of this region in the long-term maintenance of a motor adaptation skill. 

However, this issue requires further investigation, since research has also demonstrated that 

the limbic structures are not required by amnesic patients to learn motor abilities. 

Our results therefore suggested that once the task is weIl learned, the long-term 

maintenance is mediated specifically by the cerebellum and parahippocampal gyrus, while 

the other regions composing the CC circuit are involved in the execution of the learned 

task. In sum, our results are consistent with the model of motor leaming proposed by 

Doyon and colleagues (2002, 2003, 2005), confirm the particular importance of the of the 

cerebellum and parahipocampal regions in the process of leaming, maintaining and 

recalling a kinematic visuomotor adaptation skill. 
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Table 7.1 Brain areas implicated in the long-term retention of a visuomotor adaptation 

skill 

Contrast Brain region MNI coordinates T-value 

X y Z 

(lM vs DM] Day 3 

Cerebellar lobule VIII B (L) -27 -57 -51 5.71 

Lobule VI (L) -39 -66 -21 4.19 

Lobule VI (L) -36 -45 -33 3.86 

Lobule VI (R) 33 -45 -33 5.19 

Parahippocampal gyms, BA 36 (L) -36 -36 -15 4.43 

Uncus, BA 28 (L) -21 -9 -36 3.79 

PMd, BA 6, (L) -18 3 60 11.64 

((lM vs DM) Day 3 VS [lM vs DM] Day 2) 

Cerebellar lobule V (L) -6 -63 -12 4.05 

Fusiform gyms, BA 37 (R) 39 -48 -15 6.94 

Parahippocampal gyms, BA 36 (R) -36 -36 -18 5.71 

Table 7.1 The coordinates are given in MNI coordinates. AU coordinates are significant as defined by 
puncorrected < 0.005. Abbreviations; L: left, R: right, PMd: dorsal premotor cortex, BA: Broadman's area. 
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Figure 7.1 
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Figure 7.1 Average group performance (across-subjects mean ± SD) on the visual-tracking task in inversed 
mode (lM, blue diamonds), and in direct mode (DM, red squares). Every point corresponds to the average of 
trials completed during a scanning mn, and the axe represents the three da ys of experimentation: Days 1 and 2 
completed du ring the previous study, and the present retention experiment (Day 3). 
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Figure 7.2: A & B 
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Figure 7.2 Statistical parametric maps of brain activity representing long-term retention of the visuomotor 
adaptation task. (A) Brain regions identified following the contrast subtracting the direct mode (DM) from 
the inversed mode (lM) during the delayed recall of the learned task (lM VS MD on Day3). (B) Brain 
regions identified following the contrast subtracting the direct mode (DM) from the inversed mode (lM) 
during the delayed recall on Day3 and the same contrast on fMRI data acquired on Day2 ([lM vs DM] Day3 
VS [lM vs DM] Day2). Ali contrast images were obtained for every subject individually and then used in the 
second level random-effects analyses as calculated by a one-sample t-test model, a statistical threshold ofP < 
0.005 was considered to show significant activation. Color bars code the value of the t statistic associated 
with each voxel. 
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Chapter 8. General conclusion 

8.1. Thesis overview 

This conc1uding chapter contains a brief overview of the principle findings of the 

thesis in relation to the goals that were initially set, as well as an overview of the issues and 

questions that remain unanswered. The thesis' main objective was to contribute to our 

knowledge and understanding of visuomotor adaptation leaming by examining the 

activation in the brain circuits underlying its acquisition and maintenance and those 

involved in its automatisation. 

Just as initial concepts of a unitary memory systems evolved to inc1ude different 

kinds of memory subdivided into memory systems, our understanding of motor skill has 

evolved to inc1ude different types of skills. In the first chapter, we introduced the reader to 

early concepts and models of the memory system, and detailed the conceptual framework 

that has gained the most recognition in neuropsychological research over the last decade; 

Squire and colleagues' (1992, 1993) model. In chapter 2, we reviewed the three main types 

of skills leamed by individuals (cognitive, perceptual and motor) and outlined how motor 

skill leaming is itself further subdivided into mot or sequence and motor adaptation skills. 

We then reviewed sorne of the most important factors that need to be considered and 

controlled for in the study of motor skillleaming, and showed how not doing so has helped 

generate the contradictory findings reported in imaging studies. In chapter 3, we explored 

the topic of automatic execution of skills and the different operational definitions that have 

been given to this specific leaming stage. We also detailed the rational behind the use of the 

dual-task condition in laboratory exploration of automatisation, and how it is really 

subjects' performance on the secondary task that provides an index of automaticity on the 

primary task being investigated. Chapter 4 examined the different models introduced by 

Doyon and colleagues (2002, 2003, 2005) that describe the implication of the cortico-



106 

striatal (CS) and cortico-cerebellar (CC) circuits during the leaming and maintenance of the 

different motor skills. They take into consideration the important experimental variables 

described previously, and make predictions with regards to the cerebral networks involved 

at different leaming phases during motor skill acquisition. The major advantage of this 

theoretical framework is that it makes several testable predictions with regards to the 

contribution of the neural circuits based on the stage of leaming (fast, slow, consolidation, 

retention and automatisation), and the nature of the motor leaming process (motor sequence 

vs. adaptation leaming). In order to investigate the model's validity, we set out to test it in 

the two experiments reported in this thesis. 

8.2. Overview of the experimental results and other recent 

experimental data 

In the first experiment, the brain structures mediating the complete automatisation 

of a visuomotor adaptation skill were investigated. We examined subjects over several 

weeks while they leamed to automatise the eight target tracking task, and used fMRI to 

monitor areas of increased cerebral blood flow both on their first day of practice and after 

they had reached an automatic level of performance. Based on Doyon and colleagues' 

(2002, 2003, 2005) model, it was hypothesised that early leaming of the visuomotor 

adaptation skill would involve functional interaction of both the cortico-striatal (CS) and 

cortico-cerebellar (CC) circuits, while the retenti on and automatisation of the skill would 

engage neural activity in the CC only. In the second experiment we asked whether with the 

passage of time, and with no additional practice, there was a change in the neural 

representation underlying the retenti on of the previously leamed skil1. As such, eight 

young and healthy subjects were trained on the visuomotor adaptation task over a period of 

two consecutive days so as to reach a stable level of high performance. These same 

subjects were contacted approximately two months after they had leamed the experimental 

adaptation task, and after a very brief reminder session on the same tasks, they were asked 
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to undergo an fMRI scan. The brain activity measured in this latter experiment was 

therefore likely to represent the brain structures that mediate the long-term retention of a 

weIl learned visuomotor adaptation skill. 

As hypothesised, our results revealed that a functional reorganisation took place 

among the brain structures composing the cc and CS systems throughout the learning 

process. First, a "true" reorganisation took place between structures from the moment the 

task was initially learned (early), to when it was performed at a more asymptotic level 

(late). There was a change in the location of activations from brain regions composing the 

CS system towards structures that form the CC circuit. This was followed by a second 

pattern of functional changes thought to reflect a "pseudo" reorganisation, or redistribution. 

This was exemplified by the pattern of brain activations observed on the long-term 

retenti on of the skill as compared to the late learning phase. This redistribution resulted in 

activations that generally contained similar brain areas at different phases of learning, 

although the level of activations changed within the CC system. Interestingly, and as 

expected, the CC system was engaged in the automatic learning phase and the long term 

retenti on of the adaptation skill. The results of our automatisation study also demonstrated 

that different cerebellar regions are activated during different execution strategies at the 

automatic phase. Correlational analyses using speed and precision indices revealed that the 

strategy employed during automatic execution generated two general patterns of cerebellar 

activity. On one hand, activity in the left anterior cerebellar regions was linked to a 

strategy based on fast performance, but low precision. The second pattern was associated 

with activations in the right posterior cerebellar region, and was most commonly observed 

in subjects executing the task with higher precision, but slow execution. 

Our findings are therefore consistent with Doyon and colleagues' (2002, 2003, 

2005) model of skill acquisition, and confirm that both the cerebellar and striatal systems 

sontribute to the early learning process, whereas only the cerebellar system contributes the 

later stages of retention and automatisation of the kinematic adaptation skill. These findings 
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are consistent with imaging studies that have preceded and followed our own experiments, 

and confirm the different contribution of the cerebeIlum, striatum and their related circuits 

in the learning process (Clower et al., 1996; Shadmehr & Holcomb, 1997; Imamizu, 

Kuroda, Miyauchi, Yoshioka & Kawato, 2003; Floyer-Lea & Matthews, 2004; DeIla­

Maggiore & McIntosh, 2005; Seidler, NoIl, & Chintalapati, 2006). The implication ofthese 

neural structures in motor control and learning is now weIl established in the imaging 

literature. However, the specific contribution of these circuits in the motor 

execution/learning process cannot completely be elucidated through imaging technologies 

alone. On the other hand, the study of the effects of human cerebral degenerative diseases, 

such as Parkinson's, Huntington's and cerebellar degeneration, provides interesting insights 

in this process. 

Kinematic adaptation was investigated by Contrera-Vidal and his colleagues (2003) 

in Parkinson's disease (PD) patients (Contreras-Vidal & Buch, 2003). Using a pointing task 

that can pro duce a distorted visual feedback (90° counterc1ockwise rotation), these 

researchers compared the performance of PD patients to those of age-matched controls as 

the y progressively learned the visuomotor adaptation task. Contreras-Vidal and his 

collaborators showed that PD patients displayed impairments in visuomotor adaptation to a 

90° rotation distortion, when compared with age-matched controls. As such, PD subjects 

were not as efficient as the control to displace the cursor in the correct initial direction to 

reach the target. However, PD patients showed sorne adaptation in terms of the spatial 

variability of their movements, although not as important as that showed by the control 

subjects. Their results showed that with enough practice, PD patients were able to complete 

the adaptation task with sorne degree of precision, but their initial movement towards the 

target was never acquired. The authors used this data to argue that there are two processes 

operating during the course of adaptation learning. The first, rapid portion of the leaming 

curve may be attributed to the initial acquisition and/or selection of the behaviourally 

appropriate internaI model. On the other hand, the latter, linear component may involve 

processes that progressively fine-tune the selected internaI model to the specific task 
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condition. Considering the damage to the basal ganglia caused by PD, and their apparent 

inability to acquire this initial selection of internaI model, the authors argued that the basal 

ganglia may be involved in the selection of appropriate movements based on external cues 

(Contreras-Vidal & Buch, 2003). Since no cerebellar damage is expected to occur in the 

course of PD, and subjects were able to demonstrate sorne adaptation to the distorted 

feedback during execution, the researchers suggested that the cerebellum is involved in the 

recalibration of motor commands through adjustment and optimisation of movement 

parameters (Contreras-Vidal & Buch, 2003). Their conclusion are in line with previous 

hypothesis concerning the basal-ganglia's and cerebellum's role in motor learning and 

execution (Jueptner & Weiller, 1998; Krakauer, Pine, Ghilardi & Ghez, 2000; Robertson & 

Miall, 1999). 

Other researchers have found somewhat contradictory findings with regards to the 

role of the basal ganglia in motor adaptation learning. Investigating reaching movements 

through a kinetic adaptation task (miscalibration of dynamics through force-field) in 

patients suffering of Runtington's disease (RD), Smith and his colleagues (2000) observed 

a disturbance in error feedback control (Smith & Shadmehr, 2005). Unlike the findings of 

previous studies (Jueptner & Weiller, 1998; Krakauer, Pine, Ghilardi & Ghez, 2000; 

Robertson & Miall, 1999), Smith et al. (2000) reported that RD patients' errors made in the 

early part of the movement were poorly compensated by the motor commands in the 

remainder of the movement (i.e. feedback control). According to these authors, one of the 

many computational mechanisms that are involved in error feedback control was affected 

by damage to the basal ganglia (Smith & Shadmehr, 2005). 

In a follow-up experiment, Smith and Shadmehr (2005) set out to investigate how 

the internaI model with which subjects perform a subsequent movement is modified by the 

on-li ne feedback control mechanisms (Smith & Shadmehr, 2005). Testing RD and 

cerebellar patients with roughly comparable movement disorders during reaching, they 

studied how these patients adapted to the altered limb dynamic produced by the robot 
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manipulandum. These authors found this ability to be intact in patients suffering from HD, 

but was profoundly impaired in cerebellar degeneration patients. Whereas control and HD 

groups used errors in a given trial to produce compensatory changes in the motor 

commands that initiated the next trial, the cerebellar damaged group changes in motor 

commands were unrelated to the errors in the previous trial. According to the authors, their 

data suggest that in HD, there is an intact ability of the motor system to respond to sensed 

errors from movement-to-movement but a reduced ability to form an appropriate response 

during the execution of the movement. In contrast, degeneration of the cerebellum does not 

affect in-flight error-correcting responses, but severely undermines the subjects ability to 

use this information to adjust motor output from trial to trial (Smith & Shadmehr, 2005). 

Just as in the imaging literature, the clinical studies reviewed above report sorne 

contradictory findings that need to be addressed. What can account for the contradictions 

with regards to the roles the basal ganglia and cerebellum are hypothesised to play? One 

factor that could have helped generate the discrepancies may be the adaptation task 

employed; Smith and his colleagues (2000, 2005) used a kinetic adaptation as their 

experimental task, whereas Contrera-Vidal and his collaborators (2003) used a kinematic 

adapttion task. In fact, and as was previously described in detail, research has shown that 

not only is there a difference between kinetic and kinematic types of adaptation (Ghilardi et 

al., 2000), but that different kinds of kinematic adaptation also produce anatomically 

distinct patterns of brain activation (Imamizu, Kuroda, Miyauchi, Y oshioka & Kawato, 

2003). Other researchers have also suggested that visuomotor adaptation mechanisms 

engaged during perceptual recalibration (e.g. prism adaptation tasks) differ from those 

employed during visuomotor skill acquisition (e.g. pointing task with distorted visual 

feedback) (Clower & Boussaoud, 2000). It is therefore possible that the distinct neural 

circuits employed to produce these kinds of adaptations are differently affected by the 

progression of the degenerative diseases. 
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Another important factor that could have contributed to the discrepancies is the 

nature of the degenerative disease the subjects presented. In fact, just as PD and HD are 

different neurodegenerative diseases that cause different patterns of atrophy in different 

structures of the basal ganglia, cerebellar degenerations can be brought about by either 

cardiovascular accidents, tumours and/or various accidents. What's more, the cognitive and 

motor dysfunctions associated with the cerebral atrophy that accompany the neurological 

conditions progress differently from one subject to the next (Thompson et al., 1988). As 

such, the patients composing the same experimental group may be at different stages of the 

degeneration, and patients between studies may also differ in the extent of their 

neurological damage. 

Another important factor that could have contributed to the discrepancies between 

studies can be the presence of neural circuits that were not considered and/or appreciated in 

previous years. In fact, until very recently, more emphasis was placed on the dichotomy 

between the striatal and the hippocampal memory systems than on their eventual 

complementary/cooperative role (Packard & McGaugh, 1992; Teather, Packard, Smith, 

Ellis-Behnke & Bazan, 2005; Pych, Chang, Colon-Rivera & Gold, 2005). Direct 

anatomical connections between the hippocampus and the striatum have been recently 

documented (Voorn, Vanderschuren, Groenewegen, Robbins & Pennartz, 2004). According 

to these authors, the connections are abundant, complex and very weIl systemised. In 

addition, connections between the striatum and hippocampus via the entorhinal and 

pre frontal cortex have also been weIl studied (Christakou, Robbins & Everitt, 2004). Since 

we know that the hippocampus is involved in declarative memory, and that sorne motor 

task can be learned through cognitive strategies (explicit knowledge of the task demands), 

one can therefore speculate that the intact hippocampal memory circuit could have 

contributed to the learning of the adaptation tasks in the PD, HD and cerebellar 

degeneration patients. 
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This possibility has been recently investigated by Rossato and his colleagues 

(2006). Using the Morris water maze (MWM) as their experimental task, these researchers 

have made a solid case for the linkage between the striatal and hippocampal memory 

systems in the learning of a procedural task (Rossato et al., 2006). As Rossato et al. (2006) 

argue, the MWM is a form of learning that closely mimics human situations of daily life 

because it requires the formation of both a declarative component and the formation of a 

habit (Rossato et al., 2006). The cued version MWM requires rodents to learn to swim the 

shortest possible distance in a water tank to a hidden platform by learning the platform's 

position through visual cues external to the apparatus. This spatial version of the task is 

dependent on the hippocampus (Morris, 2006). There is also a non-spatial version of the 

MWM in which no external spatial cues are presented. This version is purely procedural, 

and depends on the striatum (Teather, Packard, Smith, Ellis-Behnke & Bazan, 2005). Using 

bilateral intra-CAI (entorhinal cortex) infusion of anisomycin, or a placebo, to explore the 

acquisition, retention and reversaI learning of the MWM, their results reveal that the 

declarative component of the task is changed, but the procedural component (to swim to 

safety) persists and needs to be re-linked with a different set of spatial cues. According to 

Rossato et al. (2006), their findings endorse the view that the borders between memory 

systems are not so clear that tasks or forms of learning may be defined as just "declarative" 

or "non-declarative". Such a suggestion has very important implications, particularly to 

clinical studies investigating learning in patients. In fact, a link between these systems (and 

possibly between others that have not yet been identified) might explain why in Parkinson's 

disease there may occur an amnesic syndrome that is remindful of temporal lobe amnesia, 

and why in Alzheimer's disease there may be disruptions of forms of memory usually 

considered non-declarative (Rossato et al., 2006). These findings also bring up interesting 

questions pertaining to the implication of the hippocampal memory system in motor 

learning, and how the circuitry between these regions needs to be considered in models of 

motor learning. 
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8.3. A critical review of our work 

Although our findings help validate Doyon and colleagues' model, the results of our 

experiments suggest that, in addition to the three variables considered in the learning model 

we used (cognition, learning phase and motor skill), other factors need to be taken into 

account when designing and interpreting brain imaging studies of motor skill acquisition. 

With regards to the experiments carried out to complete this thesis, much effort was 

invested in creating a kinematic adaptation task with a valid motor control and precise 

performance indices which served in all our experiments. AIso, the same subtractive 

technique was employed in both experiments for analysing the imaging data, assuring us 

reliable and vaUd comparison between studies. Thirdly, we set out to define the learning 

stages of interest and used behavioural measures of interest to assure their attainment. 

Finally, we developed subject tailored approaches to take into account inter subject 

variability and ensured that aIl subjects understood and were conscious of the task's 

execution. However, our experiences reveal that important questions remain which must be 

addressed before a comprehensive interpretation of brain circuits mediating motor skill 

learning can be advanced. 

First among these factors is the kinematic adaptation and motor control task we used 

to investigate visuomotor adaptation. A close inspection of the behavioural data presented 

in our first experiment reveals that no significant performance difference between tasks was 

observed when subjects were performing the experimental and control tasks in the series of 

fMRI runs. That is, their level of performance, as measured by the global performance 

index (GPI), were relatively similar at both learning stages. This brings about questions 

pertaining to the task's difficulty level and the methods we have used to measure the 

subjects' performances. Using the results of the secondary task completed in the dual task 

condition, we can state with confidence that the subjects' performances on the adaptation 

task showed significant learning from the early to the automatic execution stage. However, 



114 

the fact remains that this is not visible when we only consider the performances on the 

adaptation task alone. This therefore suggests that our performance index (aPI) was not 

sensitive enough to display this difference in performance. Future work should invest a 

good deal of time and resources to develop proper methods of measuring subject 

performances on experimental tasks. Work needs to be done to develop specifie 

performance indices that are more sensitive, reliable and valid with respect to the different 

tasks; indices that reflect the acquisition and performance on the motor task under study, 

rather th en simply expose the inevitable gains in speed and precision that follows practice. 

This is being actively pursued in our laboratory, and we are confident that a new 

performance index will be developed shortly. 

With regards to our first experiment, another limitation of the study was the lack of 

activation in the CS circuit in the early stages of leaming. The subtraction method we used 

(lM-DM) was believed to reveal brain regions specifically involved in leaming per se, 

because it is hypothesised to control for non-specifie factors confounding leaming, such as 

the sensory and purely motoric components of the task. Based on Doyon and colleagues' 

model (2002, 2003, 2005), we hypothesised that this subtraction would reveal activations in 

both the CS and CC circuits. The missing activations are intriguing because they suggest 

that the control task we used was perhaps too complicated, and may have implicated more 

visuomotor adaptation in the early stages of leaming then we anticipated. However, this is 

rather unlikely because subjects showed no leaming effect across the block of trials, or 

across the extended practice period. It is therefore more likely that the missing activations 

result from the statistics used, and a greater number of subjects in our experiment would 

have revealed activations in those regions. Nevertheless, we have corrected this in the 

recent experiments completed in our laboratory, and aIl new investigations of visuomotor 

adaptation uses a simpler version of the motor control task which requires subjects to make 

straight lines in order to reach four targets separated by 90°. 
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Individual differences between subjects' learning capacities also need to be 

investigated more fully to account for the different learning and execution strategies. In 

fact, the correlation data in the first study suggests that different strategies lead to different 

patterns of cerebellar activation. Even though the task was simple and subjects were asked 

to perform it by putting equal amounts of care to speed and precision, they did not. Future 

experiments should explore "learning styles" and preferences by differentiating these 

preferences on the basis of performance profiles. Such insight in the individual approaches 

to motor learning will help control and limit the noise introduced by inter-subject 

variability. This line of work will also allow researchers to determine the implication of 

different neural circuits in the acquisition and maintenance of a skill on the basis of 

"learning styles". 

Furthermore, should we continue to use small samples of subjects in imaging 

studies and consequently incorporate the noise brought in by data pre-processing? Or 

rather, should we favour single subject experiments? Another possibility might be to create 

groups of subjects sharing the same learning capabilities or with similar "learning styles". 

What these questions bring about is the need to re-examine the goals we set out to achieve 

through modem neuroimaging experiments. Before trying to label brain regions as playing 

specific roles in the motor learning process, we should work to identify the variables that 

create confounds in the paradigms, to propose and agree on the operation al definitions to 

distinguish between tasks and learning phases, as weIl as to standardise data analyses 

procedures and keep up with the high rate of development of imaging technologies. Future 

dissection of factors that affect experimental tasks will undoubtedly lead to more consistent 

and reliable data and also lead to a better understanding of the cognitive processes that 

underlie motor learning and execution. Certainly, the models presently used to 

conceptualise and understand motor skill learning should, and will, evolve to include more 

hypotheses that take into account recent physiological data (e.g. hypocampal circuits), 

which will inevitably lead to clearer interpretations ofbrain imaging data. 
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The incredible diversity of skills we have leamed since birth and continue to exhibit 

in everyday life represent a fascinating facet of human behaviour. In fact, 1 would argue 

that these skills allow us to live our lives to the extent we do. It is therefore easy to believe 

that a better understanding of the cognitive and neurological systems that underlie their 

leaming and execution would lead us to make incredible breakthroughs in the treatment of 

patients suffering from degenerative brain diseases. 



1 

Reference List 

Anderson, J. R. (1990). Cognitive Psychology and its Implications. New York: 

Freeman,W.H. and Company. 

Appel, P. R. (1992). Performance enhancement in physical medicine and rehabilitation. 

AmJ.Clin.Hypn., 35,11-19. 

Asanuma, H. & Arissian, K. (1984). Experiments on functional role of peripheral input to 

motor cortex during voluntary movements in the monkey. J.Neurophysiol., 52, 212-

227. 

Asanuma, H. & Mackel, R. (1989). Direct and indirect sensory input pathways to the motor 

cortex; its structure and function in relation to learning of motor skills. 

JpnJ.Physiol., 39, 1-19. 

Ashe, J., Lungu, O. V., Basford, A. T., & Lu, X. (2006). Cortical control of motor 

sequences. CUIT.Opin.Neurobiol., 16,213-221. 

Bellec, P., Perlbarg, V., Jbabdi, S., Pelegrini-Issac, M., Anton, J. L., Doyon, J., & Benali, 

H. (2006). Identification of large-scale networks in the brain using tMRI. 

Neuroimage., 29,1231-1243. 

Biernaskie, J. & Corbett, D. (2001). Enriched rehabilitative training promotes improved 

forelimb motor function and enhanced dendritic growth after focal ischemic injury. 

Journal ofNeuroscience, 21,5272-5280. 

Bloedel, J. R. (1992). Functional Heterogeneity with Structural Homogeneity : How Does 

the Cerebellum Operate? Behavioral and Brain Sciences, 15, 666-678. 

Bruyer, R. (1982). Neuropsychology of mental imagery. Annee.Psychol., 82,497-512. 

Bruyn, G. W., Dots, G. T., & Dom, R. (1979). Huntington's chorea: CUITent 

neuropathological status. In T.N.Chase, N. S. Wexsler, & A. Barbeau (Eds.), 

Huntington's disease (pp. 83-93). New York: Raven Press. 

Bucher, L. (1993). The effects of imagery abilities and mental rehearsal on learning a 

nursing ski1l. J.Nurs.Educ., 32, 318-324. 



II 

Bustini, M., Stratta, P., Daneluzzo, E., Pol lice, R., Prosperini, P., & Rossi, A (1999). 

Tower of Hanoi and WCST performance in schizophrenia: problem-solving 

capacity and clinical correlates. J.Psychiatr.Res., 33, 285-290. 

Christakou, A, Robbins, T. W., & Everitt, B. J. (2004). Prefrontal cortical-ventral striatal 

interactions involved in affective modulation of attentional performance: 

implications for corticostriatal circuit function. J.Neurosci., 24, 773-780. 

Clower, D. M. & Boussaoud, D. (2000). Selective use of perceptual recalibration versus 

visuomotor skill acquisition. J.Neurophysiol., 84,2703-2708. 

Clower, D. M., Hoffman, J. M., Votaw, J. R., Faber, T. L., Woods, R. P., & Alexander, G. 

E. (1996). Role of posterior parietal cortex in the recalibration of visually guided 

reaching. Nature., 383, 618-621. 

Cohen, N. J., Eichenbaum, H., Deacedo, B. S., & Corkin, S. (1985). Different memory 

systems underlying acquisition of procedural and dec1arative knowledge. Annals of 

the N ew York Academy of Sciences, 444, 54-71. 

Cohen, N. J. & Squire, L. R. (1980). Preserved leaming and retention ofpattem-analyzing 

skill in amnesia: dissociation of knowing how and knowing that. Science, 210, 207-

210. 

Contreras-Vidal, J. L. & Buch, E. R. (2003). Effects of Parkinson's disease on visuomotor 

adaptation. Exp.Brain Res., 150,25-32. 

Contreras-Vidal, J. L. & Kerick, S. E. (2004). Independent component analysis of dynamic 

brain responses during visuomotor adaptation. Neuroimage., 21, 936-945. 

Damasio, A R. (1994). Descartes' error and the future of human life. Scientific American, 

27l, 144. 

Decety, J. (1996a). Do imagined and executed actions share the same neural substrate? 

Cognitive Brain Research, 3, 87-93. 

Decety, J. (1996b). The neurophysiological basis ofmotor imagery. Behav.Brain Res., 77, 

45-52. 



III 

Decety, J. & Jeannerod, M. (1996). Mentally simulated movements in virtual reality: does 

Fitts's law hold in motor imagery? Behav.Brain Res., 72, 127-134. 

Della-Maggiore, V. & McIntosh, A R. (2005). Time course of changes in brain activity and 

functiona1 connectivity associated with long-tenn adaptation to a rotational 

transfonnation. J.Neurophysiol., 93, 2254-2262. 

Diedrichsen, J., Hashambhoy, Y., Rane, T., & Shadmehr, R. (2005). Neural correlates of 

reach errors. J.Neurosci., 25, 9919-9931. 

Doyon, J., Bellec, P., Burnod, Y., Jolivet, O., Posé, C., Pélégrini-Isaac, M., Ungerleider, L. 

G., & Benali, H. How the human brain learns new adaptive movements. 

Neuroimage 22 [supplemental 1], C02-S95. 2004. 

Ref Type: Abstract 

Doyon, J. & Benali, H. (2005). Reorganization and plasticity in the adult brain during 

learning ofmotor skills. Curr.Opin.Neurobiol., 15, 161-167. 

Doyon, J., Owen, A M., Petrides, M., Sziklas, V., & Evans, A C. (1996). Functional 

anatomy of visuomotor skill learning in human subjects examined with positron 

emission tomography. European Journal ofNeuroscience, 8,637-648. 

Doyon, J., Song, A W., Kami, A, Lalonde, F., Adams, M. M., & Ungerleider, L. G. 

(2002a). Experience-dependent changes in cerebellar contributions to motor 

sequence learning. Proc.Natl.Acad.Sci.U.S.A, 99, 1017-1022. 

Doyon, J. & Ungerleider, L. G. (2002). Functional anatomy of motor skill learning. In 

L.R.Squire & D. L. Schacter (Eds.), Neuropsychology of memory (3rd edition ed., 

New York: The Guilford Press. 

Dudai, Y. (2004). The neurobiology of consolidations, or, how stable IS the engram? 

Annu.Rev.Psychol., 55:51-86., 51-86. 

Fahn S, M. C. C. D. G. M. (1987). Recent Developments in Parkinson's Disease. (Vols. 2) 

Florham Park, NJ: Macmillan Health Care Infonnation. 

Fitts, P. M. (1964). Perceptual-motor skill learning. In AW.Melton (Ed.), Categories of 

human learning (New York: Academic Press. 



IV 

Flament, D., Ellermann, J. M., Kim, S. G., Ugurbil, K., & Ebner, T. J. (1996a). Functional 

Magnetic Resonance Imaging of Cerebellar Activation During the Learning of a 

Visuomotor Dissociation Task. Hum.Brain Mapp., 4, 210-226. 

Flament, D., Ellermann, J. M., Kim, S. G., Ugurbil, K., & Ebner, T. 1. (1996b). Functional 

Magnetic Resonance Imaging of Cerebellar Activation During the Learning of a 

Visuomotor Dissociation Task. Hum.Brain Mapp., 4, 210-226. 

Floyer-Lea, A & Matthews, P. M. (2004). Changing brain networks for visuomotor control 

with increased movement automaticity. J.Neurophysiol., 92, 2405-2412. 

Fox, P. T. & Raichle, M. E. (1985). Stimulus rate determines regional brain blood flow in 

striate cortex. Ann.Neurol., 17,303-305. 

Friston, K. J., Frith, C. D., Passingham, R. E., Liddle, P. F., & Frackowiak, R. S. (1992). 

Motor practice and neurophysiological adaptation in the cerebellum: a positron 

tomography study. Proc.R.Soc.Lond.B.Biol.Sci., 248, 223-228. 

Gabrieli, J. D., Stebbins, G. T., Singh, J., Willingham, D. B., & Goetz, C. G. (1997). Intact 

mirror-tracing and impaired rotary-pursuit skill learning in patients with 

Huntington's disease: evidence for dissociable memory systems in skill learning. 

Neuropsychology., Il,272-281. 

Garavan, H., Kelley, D., Rosen, A, Rao, S. M., & Stein, E. A (2000). Practice-related 

functional activation changes in a working memory task. Microscopic Research 

Techniques, 51, 54-63. 

Ghilardi, M., Ghez, C., Dhawan, v., Moeller, J., Mentis, M., Nakamura, T., Antonini, A, 

& Eidelberg, D. (2000). Patterns of regional brain activation associated with 

different forms ofmotor learning. Brain Res., 871, 127-145. 

Grafton, S. T., Hazeltine, E., & Ivry, R. (1995). Functional mapping of sequence learning in 

normal humans. Journal of Cognitive Neuroscience, 7, 497-510. 

Grafton, S. T., Hazeltine, E., & Ivry, R. B. (1998). Abstract and Effector-Specific 

Representations of Motor Sequences Identified with PET. J Neurosci., 18, 9420-

9428. 



v 

Grafton, S. T., Mazziotta, J. C., Prest y, S., Friston, K. J., Frackowiak, R. S., & Phelps, M. 

E. (1992). Functional anatomy of human procedural learning detennined with 

regional cerebral blood flow and PET. J.Neurosci., 12,2542-2548. 

Grafton, S. T., Waters, C., Sutton, J., Lew, M. F., & Couldwell, W. (1995). Pallidotomy 

increases activity of motor association cortex in Parkinson's disease: a positron 

emission tomographic study. Annals ofNeurology, 37, 776-783. 

Graybiel, A M. (1998). The basal ganglia and chunking of action repertoires. 

Neurobiol.Learn.Mem., 70, 119-136. 

Graydon, F. x., Friston, K. J., Thomas, C. G., Brooks, V. B., & Menon, R. S. (2005). 

Learning-related fMRI activation associated with a rotational visuo-motor 

transfonnation. Brain Res.Cogn Brain Res., 22, 373-383. 

Hadj, T. A, Blanchet, P. J., & Doyon, J. (2004). Motor-learning impainnent by amantadine 

in healthy volunteers. Neuropsychophannacology., 29, 187-194. 

Hazeltine, E., Grafton, S. T., & Ivry, R. (1997). Attention and stimulus characteristics 

detennine the locus of motor-sequence encoding. A PET study. Brain, 120, 123-

140. 

Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of 

mot or ski11learning. Curr.Opin.Neurobiol., 12,217-222. 

Hikosaka, O., Rand, M. K., Nakamura, K., Miyachi, S., Kitaguchi, K., Sakai, K., Lu, x., & 

Shimo, y. (2002). Long-tenn retenti on of motor skill in macaque monkeys and 

humans. Exp.Brain Res., 147,494-504. 

Horwitz, B., Tagamets, M. A, & McIntosh, A R. (1999). Neural modeling, functional 

brain imaging, and cognition. Trends Cogn Sci., 3, 91-98. 

Imamizu, H., Kuroda, T., Miyauchi, S., Yoshioka, T., & Kawato, M. (2003). Modular 

organization of internaI models of tools ln the human cerebellum. 

Proc.Nat1.Acad.Sci.U.S.A, 100,5461-5466. 



VI 

Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Putz, B., Yoshioka, T., & 

Kawato, M. (2000). Human cerebellar activity reflecting an acquired internaI model 

of a new too1. 192-195. 

Imamizu, H., Kuroda, T., Miyauchi, S., Yoshioka, T., & Kawato, M. (2003). Modular 

organization of internaI models of tools in the hum an cerebellum. 

Proc.Natl.Acad.Sci.U.S.A, 100,5461-5466. 

Ingram, H. A., van Donkelaar, P., Cole, 1., Vercher, J. L., Gauthier, G. M., & Miall, R. C. 

(2000). The role of proprioception and attention in a visuomotor adaptation task. 

Exp.Brain Res., 132, 114-126. 

Inoue, K., Kawashima, R., Satoh, K., Kinomura, S., Goto, R., Koyama, M., Sugiura, M., 

Ito, M., & Fukuda, H. (1998). PET study of pointing with vi suai feedback of 

moving hands. J.NeurophysioL, 79,117-125. 

Isaac, A. R. & Marks, D. F. (1994). Individual differences in mental imageryexperience: 

developmental changes and specialization. BrJ.Psychol., 85,479-500. 

Jenkins, I. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S., & Passingham, R. E. (1994b). 

Motor sequence learning: a study with positron emission tomography. Journal of 

Neuroscience, 14,3775-3790. 

Jenkins, 1. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S., & Passingham, R. E. (1994a). 

Motor sequence learning: a study with positron emission tomography. Journal of 

Neuroscience, 14,3775-3790. 

Jueptner, M., Frith, C. D., Brooks, D. J., Frackowiak, R. S., & Passingham, R. E. (1997). 

Anatomy of motor learning. 11. Subcortical structures and learning by trial and error. 

J.Neurophysiol., 77, 1325-1337. 

Jueptner, M., Stephan, K. M., Frith, C. D., Brooks, D. 1., Frackowiak, R. S., & Passingham, 

R. (1997). Anatomy of motor learning. I. Frontal cortex and attention to action. 

J .Neurophysiol., 77, 1313-1324. 



VII 

Jueptner, M. & Weiller, C. (1998). A review of differences between basal ganglia and 

cerebellar control of movements as revealed by functional imaging studies. Brain, 

121, 1437-1449. 

Kalaska, J. F. & Crammond, D. J. (1992). Cerebral cortical mechanisms of reaching 

movements. Science, 255, 1517-1523. 

Kami, A, Meyer, G., Rey-Hipolito, c., Jezzard, P., Adams, M. M., Turner, R., & 

Ungerleider, L. G. (1998). The acquisition of skilled motor performance: fast and 

slow experience-driven changes in primary motor cortex. Proc.Nat1.Acad.Sci.U.S.A, 

.2l, 861-868. 

Kami, A & Sagi, D. (1993). The time course of leaming a visual skil1. Nature, 365, 250-

252. 

Klassen, J., Tong, C., & Flanagan, J. R. (2005). Leaming and recall of incremental 

kinematic and dynamic sensorimotor transformations. Exp.Brain Res., 164, 250-

259. 

Korman, M., Raz, N., Flash, T., & Kami, A (2003). Multiple shifts in the representation of 

a motor sequence during the acquisition of skilled performance. 

Proc.Nat1.Acad.Sci.U.S.A, 100, 12492-12497. 

Kosslyn, S. M., Holtzman, J. D., Farah, M. J., & Gazzaniga, M. S. (1985). A computational 

analysis of mental image generation: evidence from functional dissociations in split­

brain patients. J.Exp.Psychol.Gen., 114, 311-341. 

Krakauer, J. W., Ghez, C., & Ghilardi, M. F. (2005). Adaptation to visuomotor 

transformations: consolidation, interference, and forgetting. J.Neurosci., 25, 473-

478. 

Krakauer, J. W., Ghilardi, M. F., Mentis, M., Bames, A, Veytsman, M., Eidelberg, D., & 

Ghez, C. (2004). DifferentiaI cortical and subcortical activations in leaming 

rotations and gains for reaching: a PET study. J.Neurophysiol., 91,924-933. 



VIII 

Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Leaming of visuomotor 

transfonnations for vectorial planning of reaching trajectories. J.Neurosci., 20, 

8916-8924. 

Krebs, H. 1., Brashers-Krug, T., Rauch, S. L., Savage, C. R., Hogan, N., Rubin, R. H., 

Fischman, A J., & Alp ert , N. M. (1998). Robot-aided functional imaging: 

application to a motor leaming study. Hum.Brain Mapp., 6, 59-72. 

Lang, C. E. & Bastian, A J. (2002). Cerebellar damage impairs automaticity of a recently 

practiced movement. J.Neurophysiol., 87,1336-1347. 

Logan, G. D. (1988). Automaticity, resources, and memory: theoretical controversies and 

practical implications. Hum.Factors., 30, 583-598. 

Logan, G. D. (1992). Shapes of reaction-time distributions and shapes of leaming curves: a 

test of the instance theory of automaticity. J.Exp.Psychol.Leam.Mem.Cogn., 18, 

883-914. 

Luft, A R. & Buitrago, M. M. (2005). Stages of motor skillleaming. Mol.Neurobiol., 32, 

205-216. 

Maggill R (2004). Motor Leaming and Control: Concepts and Applications. New York, 

NY: McGraw Hill. 

Marrelec, G., Krainik, A, Duffau, H., Pelegrini-Issac, M., Lehericy, S., Doyon, J., & 

Benali, H. (2006). Partial correlation for functional brain interactivity investigation 

in functional MRI. Neuroimage., 32, 228-237. 

Maquet, P., Schwartz, S., Passingham, R., & Frith, C. (2003). Sleep-related consolidation 

of a visuomotor skill: brain mechanisms as assessed by functional magnetic 

resonance imaging. lNeurosci., 23,1432-1440. 

Mclntosh, A R. (2000). Towards a network theory of cognition. Neural Netw., 13, 861-

870. 

Meunier, M., Bachevalier, J., Mishkin, M., & Murray, E. A (1993). Effects on visual 

recognition of combined and separate ablations of the entorhinal and perirhinal 

cortex in rhesus monkeys. J Neurosci., 13,5418-5432. 



IX 

Middleton, F. A. & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and 

cognitive circuits. Brain Res.Brain Res.Rev., 31, 236-250. 

Milner, B. (2005). The medial temporal-lobe amnesic syndrome. Psychiatr.Clin.North Am., 

~ 599-611, 609. 

Mishkin, M., Malamut, B. L., & Bachevalier, J. (1984). Memories and Habits: Two Neural 

Systems. In G.Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of 

Leaming and Memory (pp. 65-77). NY: The Guilford Press. 

Mishkin, M. & Murray, E. A. (1994). Stimulus recognition. Current opinion III 

Neurobiology, 4, 200-206. 

Morris, R. G. (2006). Elements of a neurobiological theory of hippocampal function: the 

role of synaptic plasticity, synaptic tagging and schemas. Eur.J.Neurosci., 23, 2829-

2846. 

Nezafat, R., Shadmehr, R., & Holcomb, H. H. (2001a). Long-term adaptation to dynamics 

ofreaching movements: a PET study. Exp.Brain Res., 140,66-76. 

Nezafat, R., Shadmehr, R., & Holcomb, H. H. (2001b). Long-term adaptation to dynamics 

ofreaching movements: a PET study. Experimental Brain Research, 140,66-76. 

Ouellet, M. C., Beauchamp, M. H., Owen, A. M., & Doyon, J. (2004). Acquiring a 

cognitive skill with a new repeating version of the Tower of London task. 

CanJ.Exp.Psychol., 58, 272-288. 

Packard, M. G. & McGaugh, J. L. (1992). Double dissociation of fomix and caudate 

nucleus lesions on acquisition of two water maze tasks: further evidence for 

multiple memory systems. Behav.Neurosci., 106, 439-446. 

Passingham, R. E. (1996). Attention to action. Philos.Trans.R.Soc.Lond B Biol.Sci., 351, 

1473-1479. 

Percheron, G., Francois, c., Talbi, B., Yelnik, J., & Fenelon, G. (1996). The primate motor 

thalamus. Brain Res.Brain Res.Rev., 22, 93-181. 

Poldrack, R. A. (2000). Imaging brain plasticity: conceptual and methodological issues--a 

theoretical review. Neuroimage., 12, 1-13. 



x 

Pych, J. C., Chang, Q., Colon-Rivera, C., & Gold, P. E. (2005). Acetylcholine release in 

hippocampus and striatum during testing on a rewarded spontaneous alternation 

task. Neurobiol.Learn.Mem., 84, 93-101. 

Rauch, S. L., Savage, C. R., Alpert, N. M., Brown, H. D., Curran, T., Kendrick, A, 

Fischman, A J., & Kosslyn, S. Functional Neuroanatomy of Implicit Sequence 

Learning Studied with PET. Hum.Brain Mapp. First International Conf. on 

Functional Mapping of the Human Brain[Suppl.l], 409. 1995b. 

RefType: Abstract 

Rauch, S. L., Savage, C. R., Alpert, N. M., Brown, H. D., Curran, T., Kendrick, A, 

Fischman, A J., & Kosslyn, S. Functional Neuroanatomy of Implicit Sequence 

Learning Studied with PET. Hum.Brain Mapp. First International Conf. on 

Functional Mapping of the Human Brain[Suppl.l], 409. 1995a. 

Ref Type: Abstract 

Rauch, S. L., Whalen, P. J., Savage, C. R., Curran, T., Kendrick, A, Brown, H. D., Bush, 

G., Breiter, H. C., & Rosen, B. R. (1997). Striatal recruitment during an implicit 

sequence learning task as measured by functional magnetic resonance imaging. 

Hum.Brain Mapp., 5,124-132. 

R.Clay Reid (1999). Vision. In M.J.Zigmon, F.E.Bloom, S.C.Landis, J.L.Roberts, & 

L.R.Squire (Eds.), Fundamental Neuroscience (pp. 821-854). San Diego: Academic 

Press. 

Robertson, E. M. & Miall, R. C. (1999). Visuomotor adaptation during inactivation of the 

dentate nucleus. Neuroreport., 10, 1029-1034. 

Rossato, J. 1., Zinn, C. G., Furini, C., Bevilaqua, L. R., Medina, J. H., Cammarota, M., & 

Izquierdo, 1. (2006). A link between the hippocampal and the striatal memory 

systems of the brain. An.Acad.Bras.Cienc., 78, 515-523. 

Roth, M., Decety, J., Raybaudi, M., Massarelli, R., Delon-Martin, C., Segebarth, C., 

Morand, S., Gemignani, A, Decorps, M., & Jeannerod, M. (1996). Possible 



XI 

involvement of primary motor cortex in mentally simulated movement: a functional 

magnetic resonance imaging study. Neuroreport, 7,1280-1284. 

Sakai, K., Hikosaka, O., Miyauchi, S., Takino, R., Sasaki, Y., uuml, & tz, B. (1998). 

Transition of Brain Activation from Frontal to Parietal Areas in Visuomotor 

Sequence Learning. Journal ofNeuroscience, 18, 1827-1840. 

Schacter, D. L. (1987). Implicit memory: history and current status. 

J.Exp.PsychoI.Learn.Mem.Cogn., 13,501-518. 

Schacter, D. L. (1992a). Implicit knowledge: new perspectives on unconscious processes. 

Proc.NatI.Acad.Sci.U.S.A., 89,11113-11117. 

Schacter, D. L. (1992b). Priming and multiple memory systems: Perceptual mechanisms of 

implicit memory. Journal of Cognitive Neuroscience, 4, 244-256. 

Schacter, D. L. & Tulving, E. (1994). what are the memory systems of 1994? In 

D.L.Schacter & E. Tulving (Eds.), Memory Systems 1994 (pp. 7-33). Cambridge: 

MIT Press. 

Shadmehr R & , W. S. (2005). Computational Neurobiology of Reaching and Pointing: A 

Foundation for Motor Learning. Cambridge MA: MIT press. 

Shadmehr, R. & Holcomb, H. H. (1997). Neural correlates ofmotor memory consolidation. 

Science, 277,821-825. 

Shadmehr, R. & Holcomb, H. H. (1999). Inhibitory control of competing motor memories. 

Exp.Brain Res., 126,235-251. 

Shiffrin, R. M. & Schneider, W. (1977). Controlled and automatic human information 

processing: II Perceptual learning, automatic attending, and general theory. 

Psychological Review, 84,127-190. 

Smith, C. & Smith, D. (2003). Ingestion of ethanol just prior to sleep onset impairs memory 

for procedural but not dec1arative tasks. Sleep., 26, 185-191. 

Smith, M. A., Brandt, J., & Shadmehr, R. (2000). Motor disorder in Huntington's disease 

begins as a dysfunction in error feedback control. Nature, 403, 544-549. 



XII 

Smith, M. A. & Shadmehr, R. (2005). Intact ability to learn internaI models of ann 

dynamics in Huntington's disease but not cerebellar degeneration. J.Neurophysiol., 

.2l, 2809-2821. 

Squire, L. R. (1982). Comparisons between fonns of amnesia: sorne deficits are unique to 

Korsakoffs syndrome. J.Exp.Psychol.Learn.Mem.Cogn., 8, 560-571. 

Squire, L. R. (1992). Declarative and nondeclarative memory: Multiple brain systems 

supporting learning and memory. Journal of Cognitive Neuroscience, 4, 232-243. 

Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of 

memory. Annu.Rev.Psychol.. 44:453-95, 453-495. 

Squire, L. R. & Knowlton, B. J. (1995). Memory, hippocampus, and brain systems. In 

M.S.Gazzaniga (Ed.), The Cognitive Neurosciences (pp. 825-837). London: MIT 

Press. 

Squire, L. R. & Zola, S. M. (1996). Structure and function of declarative and 

nondeclarative memory systems. Proc.Natl.Acad.Sci.U.S.A., 93, 13515-13522. 

Stanton, P. K. (1996). LTD, LTP, and the sliding threshold for long-tenn synaptic 

plasticity. Hippocampus., 6, 35-42. 

Stefanidis, D., Scerbo, M. W., Korndorffer, J. R., Jr., & Scott, D. J. (2007). Redefining 

simulator proficiency using automaticity theory. Am.J.Surg., 193, 502-506. 

Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature., 437,1272-1278. 

Teather, L. A., Packard, M. G., Smith, D. E., Ellis-Behnke, R. G., & Bazan, N. G. (2005). 

DifferentiaI induction of c-Jun and Fos-like proteins in rat hippocampus and dorsal 

striatum after training in two water maze tasks. Neurobiol.Learn.Mem., 84, 75-84. 

Thompson, P. D., Berardelli, A., Rothwell, J. C., Day, B. L., Dick, J. P., Benecke, R., & 

Marsden, C. D. (1988). The coexistence of bradykinesia and chorea in Huntington's 

disease and its implications for theories of basal ganglia control of movement. 

Brain., 111, 223-244. 

Toni, I., Krams, M., Turner, R., & Passingham, R. E. (1998). The time course of changes 

during motor sequence learning: a whole-brain fMRI study. Neuroimage, 8, 50-61. 



XIII 

Toni, 1., Rowe, J., Stephan, K. E., & Passingham, R. E. (2002). Changes of cortico-striatal 

effective connectivity during visuomotor leaming. Cereb.Cortex., 12, 1040-1047. 

Tulving, E. (1985). How many memory systems are there? American psychologist, 60, 

385-398. 

Ungerleider, L. G., Doyon, J., & Kami, A. (2002). Imaging brain plasticity during motor 

skillleaming. Neurobiol.Leam.Mem., 78, 553-564. 

Van Mier, H., Tempel, L. W., Perlmutter, J. S., Raichle, M. E., & Petersen, S. E. (1998). 

Changes in brain activity during motor leaming measured with PET: effects ofhand 

of performance and practice. J Neurophysiol., 80, 2177-2199. 

Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: phase 

synchronization and large-scale integration. Nat.Rev.Neurosci., 2, 229-239. 

Viney, W. & Brett King, D. (1998). History of Psychology, ideas and context. (2nd ed.) 

Needham Heights: Allyn and Bacon. 

Voom, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. 

(2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci., 

R 468-474. 

Walker, M. P. & Stickgold, R. (2005). H'S practice, with sleep, that makes perfect: 

implications of sleep-dependent leaming and plasticity for skill performance. 

Clin. Sports Med., 24, 301-17, ix. 

Willingham, D. B. (1998). A neuropsychological theory of motor skill leaming. 

Psychological Review, 105,558-584. 


