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Résumé 

Les maladies cardio-vasculaires (MCV), telles que l’hypertension et l’athérosclérose, 

s’accompagnent de modifications structurales et fonctionnelles au niveau vasculaire. Un 

fonctionnement aberrant de la migration, l’hypertrophie et la prolifération des cellules 

musculaires lisses vasculaires (CMLV) sont des évènements cellulaires à l’origine de ces 

changements. L’endothéline-1 (ET-1) contribue à la pathogénèse des anomalies vasculaires, 

notamment via l’activation des protéines MAPK et PI3-K/PKB, des composantes clés impliquées 

dans les voies prolifératives et de croissance cellulaires. Il a été suggéré que le stress oxydant 

jouerait un rôle intermédiaire dans les effets pathophysiologiques vasculaires de l’ET-1. En 

conséquence, une modulation de la signalisation induite par l’ET-1 peut servir comme éventuelle 

stratégie thérapeutique contre le développement des MCV.  Il apparaît de nos jours un regain 

d’intérêt dans l’utilisation des agents phyto-chimiques pour traiter plusieurs maladies. La 

curcumine, constituant essentiel de l’épice curcuma, est dotée de plusieurs propriétés biologiques 

parmi lesquelles des propriétés anti-oxydantes, anti-prolifératrices et cardio-protectrices. 

Cependant, les mécanismes moléculaires de son effet cardio-protecteur demeurent obscurs. Dans 

cette optique, l’objectif de cette étude a été d’examiner l’efficacité de la curcumine à inhiber la 

signalisation induite par l’ET-1 dans les CMLV. La curcumine a inhibé la phosphorylation des 

protéines IGF-1R, PKB, c-Raf et ERK1/2, induite par l’ET-1 et l’IGF-1. De plus, la curcumine a 

inhibé l’expression du facteur de transcription Egr-1 induite par l’ET-1 et l’IGF-1, dans les 

CMLV. Ces résultats suggèrent que la capacité de la curcumine à atténuer ces voies de 

signalisation serait un mécanisme d’action potentiel de ses effets protecteurs au niveau 

cardiovasculaire. 

 

Mots-clés : CMLV, Curcumine, Egr-1, ERK1/2, ET-1, IGF-1, IGF-1R, PKB. 
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Abstract 

Cardiovascular diseases (CVDs), including hypertension and atherosclerosis, are 

associated with vascular functional and structural changes. Some of the cellular events underlying 

these processes include aberrant vascular smooth muscle cell (VSMC) proliferation, hypertrophy 

and migration. Endothelin-1 (ET-1) has been implicated in the pathogenesis of vascular 

abnormalities through the hyperactivation of key components of growth promoting and 

proliferative signaling pathways, including MAPKs and PI3-K/PKB. Vascular oxidative stress 

has also been suggested to play an intermediary role in mediating ET-1-induced 

pathophysiological effects. Interference with ET-1-induced signaling may therefore serve as a 

potential therapeutic strategy against the progression of cardiovascular disorders. There is 

presently a surge of interest in the use of plant-derived phytochemicals for the treatment of 

various diseases. Curcumin, the main constituent of the spice turmeric, exhibits multiple 

biological properties, amongst them, antioxidant, anti-proliferative and cardioprotective 

properties. However, the molecular mechanisms of its cardiovascular protective action remain 

obscure. Therefore, in the present studies, we investigated the effectiveness of curcumin to inhibit 

ET-1-induced signaling events in VSMC. Curcumin inhibited ET-1-induced as well as IGF-1-

induced phosphorylation of IGF-1R, PKB, c-Raf and ERK1/2, in VSMC. Furthermore, curcumin 

inhibited the expression of transcription factor early growth response-1 (Egr-1) induced by ET-1 

and IGF-1, in VSMC. In summary, these results demonstrate that curcumin is a potent inhibitor 

of ET-1 and IGF-1-induced mitogenic and proliferative signaling events in VSMC, suggesting 

that the ability of curcumin to attenuate these effects may contribute as potential mechanism for 

its cardiovascular protective response.  

 

Keywords: Curcumin, Egr-1, ERK1/2, ET-1, IGF-1, IGF-1R, PKB, VSMC  
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Cardiovascular diseases (CVDs), including hypertension, atherosclerosis and heart failure, 

are among the most encountered pathologies that affect developed countries. Even though 

significant advances in diagnosis and treatment have been introduced, CVDs remain one of the 

leading causes of mortality and morbidity. Many pathways are implicated in the regulation of 

cardiovascular homeostasis and a variety of factors can contribute to the onset of CVDs. Among 

those factors are two important vasoactive peptides, endothelin-1 (ET-1) and angiotensin II (Ang 

II), that play an important physiological role in regulating vascular tone and blood pressure. 

Alterations in the regulation of these vasoactive peptides can contribute to the pathogenesis and 

progression of numerous CVDs. High levels of ET-1, associated with increased activation of 

growth promoting and proliferative signaling, are present and implicated in several CVDs, 

including hypertension, atherosclerosis and heart failure. Therefore, targeting the ET-1 system 

may be helpful for the management of these conditions and their associated complications. In this 

regard, the last decade has witnessed a surge of interest in investigating the potential role of 

various plant derived substances, such as curcumin that exhibit cardiovascular protective effects. 

Therefore, the objective of this section is to provide a brief overview on the aspects of the ET-1 

system and its contribution to the pathophysiology of CVDs, as well as a brief overview on 

curcumin and its mechanism of action at the molecular level, with particular interest to its role in 

the cardiovascular system. 

1.1. Endothelin 

Endothelin (ET), discovered by Dr. Yanagisawa’s group in 1988 (1), is one of the most 

prominent known vasoconstrictors that also exhibits inotropic, chemotactic and mitogenic 

properties, influences salt and water homeostasis, and stimulates the renin-angiotensin-
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aldosterone as well as the sympathetic nervous systems (1, 2). ET plays a crucial role in 

cardiovascular physiology. The overall physiologic action of ET is to increase vascular tone and 

blood pressure (2). Alteration of this system has been associated with several CVDs (3). These 

events establish ET as a potentially important mediator in the pathogenesis of cardiac, vascular 

and renal abnormalities such as hypertension, atherosclerosis, hypertrophy, and restenosis (4). ET 

exerts its physiological action through the activation of several signal transduction pathways 

linked to cellular hypertrophy, migration and proliferation in several cell types, including 

vascular smooth muscle cells (VSMC) (5). 

1.2 Structure of endothelins  

ET exists as three 21 amino acid isopeptides named ET-1, ET-2 and ET-3. Three 

independent genes, located on chromosome 6, 1, and 20, respectively, encode the three 

structurally and pharmacologically distinct isopeptides (6). A proposed fourth member was later 

shown to be rodent homologue to human ET-2, rather than a truly novel isoform (7). ETs possess 

a great sequence homology with four further peptides, known as sarafotoxins, extracted form the 

venom of a snake, Atractaspis engaddensis (8). All ET isopeptides share a common cyclic 

structure that consists of two disulfide bridges joining the cysteine amino acids (positions 1-15 

and positions 3-11) at the N-terminal end, a cluster of three polar charged side chains on amino 

acid residues 8-10 and a hydrophobic C-terminus containing an aromatic indole side chain at  

Trp21 (Figure 1.1). The C-terminal end contains amino acids that bind to the ET receptor while 

the N-terminal determines peptide affinity to the receptor (9). ET-2 contains two amino acid 

substitutions and shares 90% sequence homology with ET-1. ET-3 contains six amino acid 

substitutions and shares 71% sequence  
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Figure 1.1 Structure of the isoforms of endothelin (ET).  

Endothelin (ET) is a 21 amino acid cyclic peptide with two disulphide bridges joining the 
cysteine residues at positions 1-15 and 3-11. The amino acids highlighted in black represent the 
differences in between ET-2 and ET-3 compared to ET-1.  
(Khimji AK : Cellular Signalling 22: 1615-1625, 2010). 
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homology with ET-1 and ET-2. Amongst the three ETs, ET-1 is regarded as the most prominent 

isoform synthesized by the vasculature (1) and accounts for the majority of the pathobiological 

effects exerted by the ETs (10). 

1.3 ET-1 regulation of generation and sites of generation 

The regulation of ET-1 production is achieved at the transcriptional level of the preproET-1 gene 

(11). ET-1 expression is regulated at the promoter region (5’) of the preproET-1 gene where there 

are binding sites for activator protein 1 (AP-1) and nuclear factor 1 (NF-1) transcription factors, 

which mediate the induction of mRNA for ET-1, through regulation by Ang II and transforming 

growth factor-β (TGF-β), respectively (12-14). Further post-transcriptional modulation occurs 

through selective destabilization of the preproET-1 mRNA via adenine-uracil-rich sequences, 

present in the non-translated 3’ region, accounting for its selectively short biological half life of 

15-20 minutes (15). ET-1 mRNA is upregulated by various stimuli, including vasoactive 

hormones, growth factors, hypoxia, low vascular shear stress, lipoproteins, free radicals, 

endotoxin and cyclosporin (16). However, ET-1 production is downregulated by high shear stress 

and by compounds that increase intracellular levels of cyclic guanosine monophosphate (cGMP), 

such as endothelium-derived nitric oxide (NO), nitrovasodilators, natriuretic peptides, heparin 

and prostaglandins (Figure 1.2) (16). 

Vascular endothelial cells are the main site of ET-1 synthesis (6), which also correlates 

with the high expression levels of mRNA for ET-1 precursor molecule preproET-1 and its 

converting enzyme. VSMC also express ET-1 mRNA, but its production is 100 fold less than that 

of endothelial cells (15). Even in very low concentrations, ET-1 is also  
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Figure 1.2 Factors regulating ET-1 synthesis, pathway of ET-1 generation and ET receptor-

mediated actions on smooth muscle cells.  

ET-1 synthesis is regulated by multiple factors; stimulators are highlighted in green and 
inhibitors in red. The synthesis of ET-1 begins with the transcription product preproET-1 (212 
aa), which is cleaved to form proET-1. Pro-ET-1 undergoes cleavage by a furin-like protease to 
form bigET-1 (38aa) that is converted to mature ET-1 (21 aa) by endothelin converting enzyme-1 
(ECE-1). ET type-A (ETA) receptors are found in vascular smooth muscle cells and mediate 
vasoconstriction and cell proliferation, while ETB receptors reside on endothelial and smooth 
muscle cells and mediate vasodilatation. ANP, atrial natriuretic peptide; BNP, brain natriuretic 
peptide; CNP, C-type natriuretic peptide; TGF-β, transforming growth factor β. (Remuzzi et al: 
Nature Reviews Drug Discovery 1: 986-1001, 2002). 
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produced by the heart, kidney, lung, posterior pituitary and central nervous system (10, 16, 17). 

In the cardiovascular system, ET-2 and ET-3 are expressed at very low levels. 

1.4 Biosynthesis of ET-1 

Several processing steps are required before the mature ET-1 peptide is formed (Figure 

1.2). ET-1 synthesis begins with the transcription of the preproET-1 gene. The translation of the 

preproET-1 mRNA yields a large 212 amino acid precursor molecule, preproET-1. The latter is 

converted to proET-1 through the removal of its signal sequence and secreted into the cytoplasm 

(2). ProET-1 then undergoes a proteolytic cleavage at dibasic sites by a furin-like protease to 

form a biologically inactive 38 amino acid peptide, bigET-1 (18). BigET-1 is cleaved between 

Trp21 and Val22, in the rate limiting step in ET-1 synthesis, by the ET-converting enzyme-1 

(ECE-1) metalloproteinase to yield the mature 21 amino acid bioactive ET-1 peptide (9). ET-1 

has been known to be synthesized in a constitutive de novo manner and mature ET-1 is directly 

released into the bloodstream (11). Evidence suggests that in certain cells it is also secreted via 

pathways involving secretory granules (19). In fact, secretory vesicles containing both mature 

ET-1 and ECE have been identified in endothelial cells (20).  ET-1 secretion by endothelial cells 

occurs in a polar manner, where most of ET-1 is secreted on the basal side, resulting in 100 fold 

higher concentrations within the vascular wall compared to plasma levels (21).  Thus, under 

normal physiological conditions, ET-1 is not a circulating hormone but rather a locally-acting 

autocrine/paracrine factor (10). 

1.5 Bioavailability and clearance of ET-1  

In healthy subjects, the circulating concentrations of ET-1 in venous plasma are in the 

range of 1-10pmol/L (15). Circulating concentrations of ET-1 are lower than those which cause 
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vascular constriction in vitro and in vivo, although concentrations at the interface between an 

endothelial cell and VSMC are likely to be higher (15). Indeed, endothelial cells secrete 

substantially more ET-1 towards VSMC than they do luminally (21). Thus, the circulating level 

of ET-1 might not directly reflect the full physiological impact of ET-1. Venous plasma ET-1 

concentrations of bigET-1 and C-terminal fragments, when they are cleaved by ECE-1, appear to 

reflect generation of ET-1 more accurately (22). The low plasma levels of ET may be related to 

rapid elimination from the bloodstream. 

 ET levels are controlled by continuous metabolism/clearance. Clearance of ET-1 from 

circulation is very rapid, and its biological half life is about 1 minute, owing to its efficient 

extraction in the pulmonary and renal vascular beds (23). This extraction involves binding to the 

cell surface ETB receptors, followed by internalization and degradation, probably within 

lysosomes (24). ETs are also degraded by neutral endopeptidases found in kidney proximal 

tubules (24). The liver is also a site of ET-1 clearance (25). On the contrary to its rapid 

elimination, its biological effects last considerably longer, possibly due to the almost irreversible 

binding of ET-1 to its receptor (26). For instance, its pressor effects are sustained for up to an 

hour (27) and it has been shown that ET-1 remains associated with ET receptor up to two hours 

after endocytosis (28). 

1.6 ET-1 receptors 

ET-1 exerts its biological effects in a paracrine/autocrine fashion through the activation of 

its receptors. Two main ET receptor subtypes, ETA and ETB, have been cloned in humans (29, 

30). These receptors belong to the rhodopsin class A of seven transmembrane guanine 

nucleotide-binding protein-coupled receptors (GPCRs), which stimulate cellular events by 
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activation of heterotrimeric guanine nucleotide binding proteins (G proteins). They contain seven 

transmembrane domains of 22-27 hydrophobic amino acids in their estimated 400-amino acid 

sequences with an N-terminal extracellular region and C-terminal intracellular region (29, 30). 

Each receptor is capable of coupling to different G protein families. ETA and ETB receptors share 

59% polypeptide sequence identity and are encoded by distinct genes located on chromosomes 4 

and 13, respectively (31, 32). ET-1 receptors have different molecular and pharmacological 

characteristics and exhibit somewhat different physiological roles based on their location. ETA 

receptors contain 427 amino acids (31) and are predominantly expressed in VSMC but are also 

found in cardiomyocytes, fibroblasts, hepatocytes, adipocytes, osteoblasts and brain neurons (29, 

33), and exhibit higher affinity for ET-1 and ET-2 than for ET-3 (29). ETB receptors contain 442 

amino acids (31) and are predominantly expressed in endothelial cells, however, a relatively low 

level of expression in other cells including VSMC, cardiomyocytes, hepatocytes, fibroblasts, 

osteoblasts, different types of epithelial cells and neurons has been reported (30). ETB receptors 

have equal subnanomolar affinities for all ET peptides (30). 

Stimulation of ETA and ETB receptors elicits diverse physiological responses. ET-1 

binding to ETA and ETB receptors on VSMC produces vasoconstriction, cell growth and cell 

adhesion (18). Conversely, ET-1 binding to endothelial ETB receptors causes vasorelaxation 

through the release of vasodilators acting on VSMC, prevents endothelial cell apoptosis, inhibits 

ECE-1 expression within endothelial cells and is involved in ET-1 clearance (18). Thus, the net 

effect produced by ET-1 on the vasculature is determined on the receptor localization and the 

balance between ETA and ETB receptors. 
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1.7 Biological actions of ET-1 in the cardiovascular system 

In the vasculature, ET-1 is involved in the basal vascular tone regulation. It induces a 

biphasic response represented by a transient vasodilatation followed by a sustained 

vasoconstriction. Endothelial cell ETB receptors mediate vasodilatation through the production of 

endothelium-derived vasodilators, such as NO and prostacyclin, before the development of 

sustained vasoconstriction. Vasoconstriction is mediated by ET-1 activation of ETA and ETB 

receptors located on VSMC. The prolonged vasoconstriction is not dependent on ET-1 plasma 

levels but rather on the slow dissociation from its receptors (34). The vasoconstrictor effect is 

selective for some vascular beds. In animals, the coronary and renal vascular beds exhibit higher 

vasoconstriction to systemic administration of ET-1 (35). Systemic administration of ET-1 in 

humans induces sustained vasoconstriction in coronary vessels (36), but also causes renal and 

splanchnic vasoconstriction (37, 38). The differences among beds may be related to the balance 

between ETA and ETB-mediated effects. 

ET-1 has been also shown to increase blood pressure in vivo in both animals and humans. 

In animals, bolus administration and intravenous infusion of ET-1 increased arterial pressure and 

this effect lasted for at least one hour before arterial pressure returned to base-line levels (39). In 

humans, intravenous infusion of ET-1 increased blood pressure in healthy volunteers (36, 40). 

Bolus administration of ET usually causes a preceding transient hypotension, which is mostly 

marked for ET-3 (6) and is mediated by endothelin ETB receptors. This does not occur when ET 

concentrations rise more slowly, which is more likely to represent physiological conditions (39). 

ET-1 is also synthesized in the heart by cardiomyocytes, cardiac fibroblasts and cardiac 

endothelial cells (41). The reported biological effects of the ET system on the healthy heart are 
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mainly positively inotropic in association with a negative lusitropic effect (33), positively 

chronotropic and hypertrophic (42). However, the ET system is upregulated in chronic heart 

failure, and ET-1-induced sustained coronary vasoconstriction may result in the deterioration of 

cardiac function causing myocardial ischaemia leading to fatal ventricular arrhythmias and 

cardiac hypertrophy (43, 44). Under such conditions, ET-1 exerts systemic and coronary 

vasoconstriction leading to increased afterload and reduced cardiac output (45). ET-1 induces 

cardiac hypertrophy, through its mitogenic properties, as an adaptational mechanism to stresses 

such as pressure overload (46-48).  

ET-1 also exerts long-term effects in the vasculature, such as vascular remodeling, by 

promoting smooth muscle proliferation (49), protein synthesis (50), and production of a variety 

of cytokines (51) and growth factors (52). ET-1 also potentiates the mitogenic effects of growth 

factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and basic 

fibroblast growth factor (bFGF) and is considered as a co-mitogen with these growth factors (53).  

1.8 Role of ET-1 in cardiovascular diseases 

Dysregulation of the ET system is significantly involved in the development of 

cardiovascular pathologies, such as hypertension, atherosclerosis, cardiac hypertrophy, 

congestive heart failure and coronary artery disease, as well as CVDs linked to diabetes, 

pulmonary hypertension, pulmonary fibrosis, kidney failure and other important processes. ET-1 

is believed to play a role in vascular remodeling associated with experimental and human 

hypertension (54). ET receptor antagonists that have been developed help to investigate the role 

of ET-1 in CVDs (48). 
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1.8.1 ET-1 in hypertension 

1.8.1.1 ET-1 in experimental hypertension  

Evidence of pressor action of ET-1 has led to the speculation that ET-1 is involved in the 

pathogenesis of hypertension (1). In fact, ET-1 plasma levels are found to be significantly 

increased in certain animal models of hypertension (55). Deoxycorticosterone acetate (DOCA) 

salt-hypertensive rats, DOCA salt-treated spontaneously hypertensive rats (SHR), Dahl salt-

sensitive rats, Ang II-induced hypertension, 1-kidney 1-clip Goldblatt hypertensive rats, and 

stroke-prone SHR are all experimental models of hypertension that exhibit an increase in 

systemic levels of ET-1. The increased production of vascular ET-1 in these hypertensive models 

is associated with hypertrophic remodeling of resistance arteries, and a response to both selective 

and mixed ET receptor antagonism resulted in a reduction in blood pressure as well as a 

regression of vascular growth (55). ET-1 has been shown to activate nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase and increase reactive oxygen species (ROS) 

production in VSMC, in blood vessels and in hypertensive rats (56, 57). The growth-promoting 

remodeling action of ET-1 may be partly mediated by this increase in ROS production (58). In 

aldosterone-induced hypertension, systolic blood pressure, ET-1 plasma levels, systemic 

oxidative stress, and vascular NADPH activity in association with small artery hypertrophic 

remodeling was increased (59). However, all these aberrant parameters were normalized in this 

model by treatment with ETA receptor antagonist (59). 

ET-1 is involved in renal and cardiac target organ damage in hypertension. An increase in 

renal ET-1 in hypertensive rats is involved in renal fibrosis through the activation of growth 

factors and by inducing inflammation (60). These events were normalized when treated with a 

selective ETA receptor antagonist, and kidney function was restored (60). Rats made hypertensive 
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through exogenous ET-1 infusion showed changes in renal function, and signs of oxidative stress 

that were reduced by a free radical scavenger further imply a role of ROS in this process (61). In 

the heart, ETA receptor (62), ETA/ETB receptor (63) and ECE antagonists (64) prevented target 

organ damage in hypertensive animal models. Blockade of the ET system in transgenic mice with 

inducible malignant hypertension prevented an increase in cardiac ET-1 concentrations, 

suggesting that ET receptor blockade may provide as a protecting tool against hypertensive 

cardiac damage (65).  It should, however, be noted that all animal hypertensive models are not 

the same, and that different hypertensive diseases have different etiologies in which ET-1 plays a 

different role within each form of hypertension. 

1.8.1.2 ET-1 in essential hypertension 

The hallmark of hypertension is an increase in peripheral vascular resistance displayed by 

increased vascular tone of small arteries and vascular remodeling (66, 67). In comparison to 

normotensive patients, there is no significant change in plasma concentrations of ET-1 in 

hypertensive patients from studies that have investigated the role of ET-1 in essential 

hypertension (54).  As such, plasma concentrations of ET-1 do not reflect the presence of 

essential hypertension, presumably due to the fact that ET-1 is generated and is biologically 

active in a paracrine and/or autocrine manner.  Increases in ET-1 levels seem to be related to age, 

smoking and renal dysfunction rather than to hypertension (68). However, in certain ethnic 

groups, such as African American hypertensive subjects, increased plasma ET-1 levels have been 

observed (69). Interestingly, increased preproET-1 is found in the endothelium of small arteries 

of patients with moderate-to-severe hypertension (70) and enhancement of ET-1 generation plays 

a role in hypertrophic signaling in these patients (70). Increased ET-1 messenger and protein 

levels in VSMC cause the formation of larger elastic and muscular arteries of hypertensive 
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patients (71). Increased ET system activity has been suggested in patients with hypertension in 

comparison to normotensive patients. This is based from studies where ETA receptor antagonism 

causes vasodilation in forearm vessels of essential hypertensive patients compared with 

normotensive subjects (72). Conversely, ETB receptor antagonism induced vasoconstriction on 

forearm resistance arteries in normotensive patients (73) and is shown to have a vasodilator 

action on hypertensive subjects (73), indicating a vasoconstricting effect of ETB receptors in 

hypertensive but not in normotensive states. African Americans appear to have an increased 

expression of VSMC ETB receptors that might mediate the ET-1 response (69). Other studies 

have investigated a long-term antihypertensive effect of ET receptor antagonism. A four-week 

treatment with ETA/ETB receptor antagonist, bosentan, significantly lowered diastolic pressure in 

a study with 293 patients with mild-to-moderate essential hypertension (74). Darusentan, a 

selective ETA receptor antagonist, also significantly reduced systolic and diastolic blood pressure 

in human hypertension (75). 

1.8.2 ET-1 in atherosclerosis 

In addition to its effects on blood pressure, ET-1 is pro-inflammatory and is implicated in 

the development of atherosclerosis (76). Evidence supporting a role for the effect of ET-1 in the 

pathogenesis of atherosclerosis comes from data supporting that ET-1 and its receptor levels are 

elevated in experimental models of atherosclerosis (77, 78), and in human coronary artery 

atherosclerotic plaques (79). Additionally, ECE-1 has been shown to be upregulated in VSMC 

and in macrophages from atherosclerotic plaques (80). Further evidence is demonstrated in 

experiments showing that ETA receptor antagonism inhibits the formation of early atherosclerotic 

lesions in hyperlipidaemic hamsters, by decreasing the number and size of macrophage-foam 

cells (81), suggesting a pro-inflammatory role of ETA activation. ETA receptor antagonism also 
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reduced the development of atherosclerosis in apolipoprotein E (ApoE) deficient mice, an animal 

model for atherosclerosis (82). Bosentan inhibited neointimal development in collared carotid 

arteries of rabbits, another known model of atherosclerosis (83). Bosentan also significantly 

attenuated the development of graft atherosclerosis in rat cardiac allografts (84). In humans, 

infusion of selective ETA receptor antagonist BQ123, improves coronary vascular function in 

patients with atherosclerosis (85).  

ET-1 has been associated with the development of atherosclerosis mainly through its 

actions on VSMC. ET-1 stimulates VSMC proliferation (86), migration (87), contraction (88), 

matrix remodeling (89), synthesis of extracellular matrix (90) and the expression of other pro-

atherogenic growth factors such as PDGF and TGF-β (91). 

1.8.3 ET-1 in heart failure 

Circulating ET levels have been shown to be increased in both experimental and human 

heart failure (92, 93). ET-1 is proposed to contribute to acute and chronic increases in vascular 

resistance, ventricular and vascular remodeling, inflammation, and arrhythmogenesis in models 

of heart failure (94). ET-1 stimulates the secretion of other neurohormones and potentiates their 

effects, resulting in long-term effects on the heart and contribution to the progression of chronic 

heart failure (CHF) (47). The gene expression of ET-1 precursor and ECE-1 is up-regulated four 

and three-fold respectively, in the failing human heart (95). This increase is attributed to the 

production from cardiac as well as extra-cardiac tissues such as the lungs (93). The increased 

levels of ET-1 correlate with haemodynamic severity and symptoms (96, 97). Evidence is 

accumulating mostly from animal studies, that ET receptor antagonism can ameliorate the 

deleterious haemodynamics and structural changes associated with heart failure.   
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ETA receptor antagonism in hamsters with CHF and in rat coronary ligation models 

improves their survival (98, 99). In heart failure in dogs, bosentan decreased aortic pressure and 

increased stroke volume (100). Dual ET receptor antagonist TAK-044 and ETA receptor 

antagonist FR 139317 also decreased cardiac pressures, and increased cardiac output (101). In a 

pig model of CHF, combined Ang II receptor blockade with bosentan resulted in greater 

improvement of ventricular function (102). Recently, it has been shown in an acute model of rat 

heart failure that myocardial contractility was restored and cardiac relaxation significantly 

improved after application of PP36, an inhibitor of ECE, suggesting a crucial role of ET 

production in this pathophysiological state (103). 

In clinical trials, short term administration of bosentan or ETA receptor antagonist 

LU135252 exhibited beneficial haemodynamic effects of patients suffering with CHF (104-106). 

In another clinical trial, intravenous infusion of the dual ET receptor antagonist tezosentan 

rapidly and effectively improved haemodynamics in patients suffering from acute decompensated 

heart failure (107). Despite these results and the clear rationale for the use of ET antagonists in 

heart failure, human clinical trials have generally not been proven to be very effective. The 

beneficial haemodynamic effects have been found to be short lived and treatment with ET 

antagonists has been associated with adverse side effects, including hypotension and abnormal 

liver function (108, 109). 

1.9 ET-1-induced signaling in vascular smooth muscle cells 

ET-1 exerts its physiological actions through the activation of multiple signaling 

pathways which include the PLC/DAG/IP3, MAPKs and PI3-K/PKB pathways. Receptor and 

non-receptor tyrosine kinases also play a role in mediating ET-1-induced signaling events. The 
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cellular events triggered by the activation of these pathways are involved in regulating cellular 

growth, proliferation, contraction and survival of VSMC (110).  

1.9.1 Activation of the phosphoinositide cascade by ET-1 in VSMC 

The binding of ET-1 to its receptor induces a conformational change in the heterotrimeric 

G protein, that consists of an α, β and γ-subunit (111). In its inactive form, the α-subunit is ligated 

to guanosine diphosphate (GDP) but when activated, GDP is exchanged for guanosine 

triphosphate (GTP), causing the α-subunit to dissociate from the βγ dimmer complex, while they 

all remain associated to the membrane (111). Activation of the Gα subunit following ET-1 

binding to its receptor initiates downstream G-protein signaling. This leads to the activation of 

phosphoinositide-specific phospholipase C β (PLC β), which then hydrolyzes the membrane 

phospholipid phosphatidylinositol-4’-5’-biphosphate (PIP2) to generate two second messengers: 

hydrophobic diacylglycerol (DAG), and soluble inositol-1’,4’,5’-triphophate (IP3) (112). IP3 

stimulates the release of calcium (Ca2+) from intracellular stores, which plays an important role in 

regulating the contractile response of the cell (113). DAG, together with Ca2+, activate the 

phosphatidylserine-dependent protein kinase, protein kinase C (PKC) (114) (Figure 1.3). 

 PKC is a family of serine/threonine kinases, comprised of 12 currently identified isoforms (114) 

that translocate from the cytosol to the cell membrane, where they become activated and 

phophorylate several cytosolic proteins (115). Many studies have implicated PKC in deleterious 

vascular effects of several pathologies including diabetes and hypertension (116). Growing 

evidence suggest that ET-1-induced activation of PKC in VSMC leads to protein synthesis (117), 

cellular proliferation (115, 118) and contraction (119). Thus, ET-1-induced activation of PKC 

and its downstream effects appears to be important in regulating vascular function. 
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1.9.2 ET-1-induced activation of MAPK cascade in VSMC 

Downstream of PKC, ET-1 receptor activation also results in stimulation of mitogen 

activated protein kinase (MAPK) cascades. MAPK are a family of serine/threonine protein 

kinases which are classically associated with cell growth, proliferation, differentiation, death, and 

contraction (120, 121). Extracellular signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK and 

c-Jun N-terminal kinases (JNK) are the main groups of MAPKs. These MAPK all follow a 

similar system of sequential activation by several upstream signaling components, in which a 

stimulus activates a MAPKKK, which will then phosphorylate and activate a MAPKK, which 

will at last phosphorylate Thr and Tyr residues in the activation loop of the final effector, MAPK, 

leading to its activation and hence cellular response.  ET-1 activates JNK and p38 cascades but to 

a lesser degree than ERKs in VSMC (122). Signals from GPCR to ERK1/2 are transmitted via 

Ras, a small membrane-bound GTP-binding protein. Ras cycles between an active GTP-bound 

conformation and inactive-GDP-bound  
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Figure 1.3 Schematic model showing the activation of ERK1/2 and PI3-K/PKB signaling 
pathways through IGF-1R phosphorylation by ET-1 in VSMC.  
ET-1 receptor stimulation leads to both Gqα, as well as βγ activation, which in turn activate PLC 
β. PLC β converts PIP2 to IP3 and DAG. IP3 is responsible for elevating intracellular Ca2+ 
concentrations. DAG activates PKC. Through the activation of several downstream 
intermediates, Ca2+ alone or in partnership with PKC or other intermediates triggers the 
activation of NR-PTKs, by inducing their phosphorylation on target tyrosine residues. Activation 
of these PTKs leads to the phosphorylation of docking proteins, such as IRS-1, which serve as 
docking sites for Grb-2/SOS. The latter can lead to activation of Ras/Raf/MEK/ERK1/2 pathway. 
Phosphorylated IRS-1 activates PI3-K which goes on to catalyze the phosphorylation of PIP2 to 
PIP3, allowing PKD-1/2 recruitment to the plasma membrane, where PDK-1/2 will 
phosphorylate PKB on threonine and serine residues.  ET-1 also increases ROS generation by 
activating NADPH oxidase, through an unknown mechanism, in VSMC. Endogenously produced 
ROS are able to inhibit PTPases through the oxidation of cysteine residues in its catalytic 
domain. Inhibition of these PTPases favours tyrosine phosphorylation of NR-PTKs and R-PTKs, 
resulting in the ligand-independent activation of R-PTK, such as IGF-1R, that act upstream of 
Ras/Raf/MEK/ERK1/2 and PI3-K/PKB pathways. Activation of ERK1/2 and PKB signaling 
cascades plays a role in mediating various cellular responses such as gene transcription, protein 
synthesis, cell growth and cell survival. 
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form (120). Activated Ras recruits and activates Raf, a MAPKKK, that phosphorylates MEK, a 

MAPKK, at specific serine/threonine residues, which in turn phosphorylates ERK1/2 in threonine 

and tyrosine residues (120). Chen et al. have reported an implication of PKC in ET-1-induced 

ERK activation through ETA receptors in human VSMC (123). Activation of ERK1/2 leads to the 

phosphorylation of downstream cytosolic target substances on serine and threonine residues. 

ERK1/2, along with other MAPK family members, can also be translocated from the cytosol to 

the nucleus where they can phosphorylate and activate several transcription factors which lead to 

the activation of genes involved in cell growth and differentiation (120) (Figure 1.3). 

Several reports have demonstrated that ET-1 activates ERK1/2 signaling pathways in 

cardiomyocytes (124), fibroblasts (125), glomerular mesangial cells (126) and VSMCs (5). 

Activation of ERK1/2 can potentially result to an increased proliferation and hypertrophy of 

VSMC in response to ET-1 given that inhibition of its upstream mediator, MEK1/2, resulted in 

inhibition of ET-1-induced DNA and protein synthesis (127, 128).  

1.9.3 ET-1-induced phosphatidylinositol-3-kinase cascade activation in 

VSMC 

Phosphatidylinositol-3-kinases (PI3-K) are a family of lipid kinases that have emerged as 

important effectors of ET-1 action (110). PI3-K phosphorylates the 3’ position of the inositol ring 

of the membrane-bound phosphoinositides, phosphatidylinositol (PI), PI 4-phosphate, and PI 4,5-

phosphate. This reaction generates biologically active lipids PI 3-P, PI 3,4-biphosphate 

(PI(3,4(P2) and PI(3,4,5)triphosphate (PI(3,4,5)P3), respectively (129). These phospholipids act as 

second messengers to activate several protein kinases such as PI(3,4,5)P3 dependent protein 
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kinase (PDK), protein kinase B (PKB) and 70kDa ribosomal protein S6 kinase (p70S6K) (129) 

(Figure 1.3). 

PI3-Ks are divided into three classes based on their substrate specificity, molecular 

structure and mode of regulation (129). Class I PI3-Ks generates PI(3)P, PI(3,4)P2, PI(3,4,5)P3 

and are activated by receptor protein tyrosine kinases (R-PTK) and GPCRs (129). Class II PI3-Ks 

generate PI(3)P, PI(3,4)P2, and possess a lipid binding domain, whereas, class III PI3-Ks only 

generate PI(3,4,5)P3 (129). Class I PI3-Ks are further subdivided into class IA and IB PI3-Ks and 

are heterodimeric proteins composed of a catalytic and regulatory subunit. Class IA proteins 

consist of a 110 kDa (p110) catalytic subunit and an associated 85 kDa (p85) regulatory subunit. 

Class IA has three isoforms of the catalytic subunit, p110α, p110β and p110δ, and several 

isoforms of the regulatory subunit, p85α, p55α, p50α, p85β and p55γ. In contrast to class IA, 

class IB has only one catalytic member, p110γ, and one form of the regulatory subunit, p101. The 

class IA PI3-Ks are activated by R-PTK, while class IB is activated by GPCR (130). 

The PI3-K pathway plays a pivotal role in cell migration, differentiation, proliferation and 

survival (130). Several studies have reported an involvement of PI3-K as an upstream mediator of 

several ET-1 induced responses. However, except for rat glomerular mesangial cells, where ET-

1-induced PI3-K activation is necessary for hypertrophy (131), no direct activation of PI3-K by 

ET-1 in VSMC has been documented. However, the PI3-K inhibitor wortmannin has been shown 

to have an inhibitory effect on ET-1-stimulated cell proliferation and protein synthesis in A-10 

VSMC (127, 128). 
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1.9.4 ET-1-induced PKB activation in VSMC 

Several downstream targets of PI3-K have been documented, the most studied being PKB, 

also known as Akt (a product of akt proto-oncogene). PKB is a 57 kDa serine/threonine kinase 

with three identified isoforms in the mammalian system, PKBα/Akt1, PKBβ/Akt2 and 

PKBγ/Akt3 (132). All isoforms possess an N-terminal pleckstrin homology (PH) domain that 

binds to phospholipids generated by PI3-K, a central catalytic kinase domain with specificity for 

serine or threonine residues on substrate proteins, and a C-terminal regulatory domain containing 

a hydrophobic motif (132). Full activation of PKB is a sequential two step process where the 

lipid products generated from PI3-K are recognized by the PH domain of PKB, translocating it to 

the plasma membrane, where it then gets phosphorylated on Thr308 by PDK-1 and on Ser473 by 

a putative kinase termed PDK-2 for its complete activation (133) (Figure 1.3). Phosphorylation of 

both sites is mitogen-and PI3-K-dependent (133). 

PKB has been shown to promote a variety of cellular responses including inhibition of 

apoptosis and promotion of cell survival, regulation of cellular proliferation, metabolism and 

hypertrophy (132). PKB substrates include members of cell survival and apoptosis cascade such 

as Bcl-2, BAD (134, 135), caspase-9 (136) and glycogen synthase kinase-3 (GSK-3) (137), as 

well as regulators of protein synthesis and cell growth such as mammalian target of rapamycin 

(mTOR) (138). ET-1 has been shown to activate PKB in cardiomyocytes (139), myofibroblasts 

(140), human umbilical vein endothelial cells (141) and A-10 VSMC (5, 127, 128).  

1.10 ET-1-induced growth factor transactivation 

Recent findings suggest that ET-1 and other vasoactive peptides, such as Ang II, whose 

receptors belong to GPCR family, stimulate intracellular signaling pathways through 
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transactivation of R-PTK, and thereby mediate the ERK1/2 and PKB signaling events. Among 

the main growth factor receptors implicated in this process, epidermal growth factor receptor 

(EGF-R), insulin–like growth factor type 1 receptor (IGF-1R) and platelet derived growth factor 

receptor (PDGF-R) have been investigated in some detail. EGF-R has been studied in some detail 

in response to Ang II and ET-1 (142, 143), as has PDGF-R in response to Ang II (144). However, 

only a few recent studies have investigated the involvement of IGF-1R. 

1.10.1 Role of IGF-1R 

The IGF-1R is a member of the tyrosine kinase class of growth factor receptors that 

shares structural and functional homology with the insulin receptor (IR). Human IGF-1R is a 

ubiquitously expressed product of a single-copy gene located on chromosome 15 (145). The IGF-

1R is a transmembrane heterotetrameric structure that is comprised of two extracellular ligand-

binding α-subunits that are linked by disulfide bonds to each other and to the two transmembrane 

β-subunits that contain intrinsic tyrosine kinase activity, which is believed to be essential for 

most of the receptors biological effects (145). Binding of the ligand to the α-subunit induces a 

conformational change, leading to the activation of the protein tyrosine kinase (PTK) domain of 

the IGF-1Rβ subunit that responds by trans-autophosphorylation of a cluster of tyrosine residues 

within the IGF-1Rβ to provide docking sites for effector proteins (145). Once these residues 

become phosphorylated, the intrinsic PTK activity of IGF-1R is enhanced, thus leading to the 

phoshorylation of several adaptor/scaffolding proteins, including insulin receptor substrate (IRS-

1 or IRS-2) and Src homology collagen (Shc) (146). IRS-1 contains multiple tyrosine 

phosphorylation sites that recognize and bind to SH2 domain-containing signaling molecules, 

such as Grb2, Nck, the p85 subunit of PI3-K, and the SH2 domain-containing tyrosine 

phosphatase-2 (SHP-2) (147). Of these, the binding of Grb2 associated with SOS, a guanine 
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nucleotide exchange factor, to the tyrosine-phosphorylated IRS-1 activates Ras and initiates 

sequential phosphorylation that leads to the activation of ERK1/2 (148). Shc can also interact 

with IGF-1R, in an IRS-1-independent manner (149), to recruit the Grb2/Sos complex and 

activate Ras/Raf/MEK/ERK pathway (148). IGF-1R activation also leads to the activation of PI3-

K/PKB pathway. Tyrosine-phosphorylated IRS-1 interacts with the p85 subunit of PI3-K, leading 

to the activation of the catalytic p110 subunit and to the subsequent activation of the downstream 

substrate PKB (reviewed in (150)). 

In VSMC, a requirement of IGF-1R activity has been recently shown in ET-1-induced 

PKB phosphorylation. These studies demonstrate that ET-1 was able to phosphorylate tyrosine 

residues on IGF-1R β subunit and that use of AG1024, a selective pharmacological inhibitor of 

IGF-1R-PTK activity, attenuated IGF-1R and PKB phosphorylation, as well as protein and DNA 

synthesis induced by ET-1 (151). These results suggest an important role of IGF-1R in mediating 

PKB phosphorylation, as well as hypertrophic and proliferative responses induced by ET-1 in 

VSMC. The mechanism by which ET-1 induces IGF-1R transactivation is not fully understood. 

However, a potential role of ET-1-induced ROS generation in this process has been suggested 

since H2O2 and subsequent inhibition of PTPase have shown to contribute to the activation of 

IGF-1R-PTK in VSMC further resulting in activation of PKB (152, 153) (Figure 1.3).  

1.11 ROS and ET-1 signaling 

ROS are very small, rapidly diffusible, highly reactive molecules that take part in 

physiological reactions and signal transduction but an excessive synthesis can overcome 

antioxidant mechanisms and generate deleterious effects, often resulting in the development of 

CVDs (11). This is in part due to their physicochemical properties which allow them to disrupt 
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biological macromolecules such as lipids, DNA, carbohydrates and proteins. Hydrogen radicals 

(OH˙), superoxide anions (O2˙-), hydrogen peroxide (H2O2), reactive nitrogen radicals and its 

derivative peroxynitrite (ONOO-) are amongst the most important ROS. They are generated both 

enzymatically and non-enzymatically by nearly every cell type including VSMC and endothelial 

cells (11). 

ROS are potent stimulators of ET-1 synthesis in endothelial cells (154) and in human 

VMSC (155). Alternatively, studies demonstrate that ROS can be generated in response to ET-1. 

In fact, ET-1 has been shown to activate NADPH oxidase within several cell types, including 

VMSC (5, 156) and that in vivo, free radicals generated by ET-1 play important roles in 

mineralocorticoid-induced hypertension (57, 157). Both the pressure and vasoconstrictive effect 

of ET-1 were diminished in parallel with the normalization of O2˙- levels after treatment of 

DOCA-salt rats with ETA receptor antagonist (57).  

Increased ROS generation promotes cell growth and proliferation, and is therefore 

associated with a variety of cardiovascular pathologies, including hypertension and 

atherosclerosis (158). The elevated levels of ET-1 during hypertension and atherosclerosis lead to 

excessive production of oxidative stress and a decrease in antioxidant status (159). The 

involvement of ROS in ET-1-induced activation of MAPKs including JNK, p38mapk and 

ERK1/2 has been demonstrated in cardiac fibroblasts (125). Moreover, a role of ROS in ET-1-

induced activation of ERK1/2 and PKB signaling has been demonstrated in VSMC (5) (Figure 

1.3). 
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1.12 Plant-derived cardiovascular protection 

ET-1 is a key player in cardiovascular homeostasis through the activation of the 

previously mentioned signaling pathways, and though this activation is a physiological cellular 

event, aberrant signaling has been implicated in the development and progression of 

pathophysiological events. For instance, upregulation of ET-1-induced signaling through MAPK 

and PI3-K/PKB pathways, particularly in VSMC, is linked to vascular changes observed during 

CVDs such as atherosclerosis and hypertension (160, 161). Many pharmacological interventions 

that have been introduced to target this system failed to show optimal efficacy in diseases other 

than pulmonary hypertension, therefore, interventions are needed to directly target the cellular 

mechanism in order to prevent the effects of ET-1 on VSMC in the development of CVDs. In this 

regard, natural derived products have been extensively researched during the last few decades, 

due to their reported beneficial diverse biological and pharmacological activities on the 

cardiovascular system. Knowledge of traditional medicine has allowed us to identify plants and 

plant-derived substances believed to exhibit such health promoting effects. Plants produce a large 

and diverse array of bioactive substances, known as phytochemicals. These are non-nutritive 

substances that possess health-protective benefits (162). Some of these compounds have been 

shown to exhibit cardiovascular protective effects. Among them, the main constituent of the spice 

turmeric, curcumin, has attracted the attention of scientists and been the subject of their 

investigations. The putative therapeutic properties of curcumin are mainly attributed to its 

antioxidant, anti-inflammatory and anti-carcinogenic properties (163-165). 

1.13 Historical aspects of curcumin 

Curcumin is the main ingredient of the spice turmeric which is an ancient gold-coloured 

spice commonly used in Asiatic countries, mainly India and China, as a culinary ingredient for 
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food flavouring and preservation, as a yellow textile colouring agent, and as a natural remedy for 

medicinal purposes. Turmeric is derived from the rhizomes of the perennial plant Curcuma longa 

Linn, belonging to the Zingiberaceae family, which is distributed in tropical and subtropical 

regions of the world (Figure 1.4). Turmeric contains a wide variety of phytochemicals including 

curcuminoids, a group of polyphenolic compounds that have been shown to deliver beneficial 

effects on health and on events that help in preventing certain diseases. Curcuminoids are mainly 

comprised of three bioactive analogs, curcumin (curcumin I), demethoxycurcumin (curcumin II), 

and bisdemethoxycurcumin (curcumin III) (166) (Figure 1.4). They have all been isolated and 

differ in their methoxy substitution on the aromatic ring.  Curcumin is the most active and 

abundant constituent of turmeric. It is estimated that approximately 2 to 5% of turmeric is 

composed of curcumin (167), while the remainder is made up of mineral matter, carbohydrates, 

proteins, fat and moisture (168). The isolation of pure curcumin is very tedious; consequently, the 

commercially available extracts consist of a combination of the three curcuminoids with 

curcumin as the main constituent (75-81%). Curcumin is responsible for the characteristic yellow 

pigmentation of turmeric and is now acknowledged as being responsible for most of its 

therapeutic effects (167).   

In folk medicine, turmeric and natural curcuminoids have been applied for centuries in 

therapeutic household remedies throughout many parts of the world, particularly in the Orient, 

where it is widely consumed. Its therapeutic use can be traced back to ancient  
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Figure 1.4 Taxonomic position of Curcuma Longa Linn and isolation, extraction and 
structure of parent curcuminoids. (Based on ref (169) and Chattopadhyay et al: Current 
Science 1: 44-53, 2004). 
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Indian and Chinese medicines, where it was used as an anti-inflammatory agent to treat ailments 

associated with abdominal pain, inflammation and pain caused by injury (170). In Ayurvedic 

medicine, it was used against pulmonary disorders, liver disorders, anorexia, rheumatism, 

diabetic wounds, runny nose, cough and sinusitis (171).  

1.14 Chemical properties of curcumin  

Curcumin was first isolated from turmeric in 1815 by Vogel and Pelletier, obtained in 

crystalline structure and identified as 1,6-heptadiene-3,5-dione-1,7-bis(4-hydroxy-3-

methoxyphenyl)-(1E,6E) or diferuloymethane in 1870 by Daube (169). The hydrophobic 

polyphenol feruloymethane skeleton was later elucidated and synthesized in 1910 by J. 

Milodedzka and V. Lampe (169). In chemical terms, it is bis-α, β-unsaturated β-diketone, a linear 

diarylheptanoid compound, where two oxy-substituted aryl moieties are linked together through a 

seven carbon chain (172) (Figure 1.4). The aryl rings may be substituted by hydroxy or methoxy 

groups to produce analogues of curcumin or curcuminoids. It exhibits keto-enol tautomerism and 

in solution it exists predominantly in the enolic form, which is the more stable form (173). In 

neutral and acidic aqueous solutions, the keto form dominates (174). Curcumin has a molecular 

weight of 368.37g/mol, a melting point of 183oC, and its molecular formula is C21H20O6. It is 

insoluble in water or aqueous solvents but soluble in organic solvents such as dimethyl sulfoxide, 

methanol, ethanol and acetone. Spectrophotometrically, curcumin has a maximum absorption in 

methanol at 430nm and it absorbs maximally at 415 to 420nm in acetone, and a 1% solution of 

curcumin has 1650 absorbance units (175). It has a bright yellow colour at pH 2.5 to 7 and takes 

a red hue at pH higher than 7 (175).  
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1.15 Curcumin bioavailability, metabolism, biotransformation and 

pharmacokinetics 

The bioavailability of curcumin is limited by a number of factors, which may be an 

obstacle to its utility as a therapeutic agent. Once absorbed, polyphenolic compounds can directly 

undergo conjugation reactions, predominantly methylation, glucuronidation, and sulfation (176). 

Based on animal studies, poor gastrointestinal absorption, poor water solubility, molecular 

instability, and rapid and efficient metabolism, mainly by the liver and intestine into metabolites 

that are rapidly excreted, are a combination of reasons that contribute to the notion that curcumin 

exhibits poor systemic bioavailability (177, 178). In order to enhance its bioavailability, the co-

administration of curcumin with piperine or its complexation with phospholipids, liposomes and 

micelles has been proposed. Adjuvant co-administration prevents its rapid metabolism by 

interfering with enzymes that catalyze the metabolism of curcumin, while liposomes, micelles 

and phospholipid complexes can reduce the hydrophobicity of curcumin and increase the 

permeability of membrane barriers (166). Other strategies include employing nanoparticle 

technology providing easier penetration through membrane barriers because of their small size 

(166). 

Data on the pharmacokinetics, metabolites, and systemic bioavailability of orally 

administrated curcumin in humans, provided from trials mainly conducted on cancer patients, 

showed that after oral administration of curcumin, no curcumin excretion was detected and that 

serum concentration peaks observed at one to two hours were undetectable at twelve hours (179). 

However, most curcumin conjugates produced by in vivo human metabolism are detectable in 

plasma at greater concentrations than free curcumin with a peak after four hours of dosing (180). 

Although, it has not yet been established if these metabolites are as bioactive as their parent 
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compound, some curcumin metabolites, such as the reduction metabolite tetrahydrocurcumin, 

have been shown to be biologically active in some systems (163).  

An important feature of curcumin is that despite being consumed daily for centuries, it has 

not been shown to cause any toxicity (172). Clinical trial results show that curcumin is well 

tolerated, even at high doses, where it appears non-toxic to animals or humans (179, 181). In 

human trials, only minor side effects of curcumin, namely diarrhoea, have been reported (182). 

These trials however have examined the short term outcome. There is some evidence that long-

term high-dose curcumin administration in rodents can be tumourigenic (183). It has also been 

shown that curcumins predominant activity changes from antioxidant to pro-oxidant with 

increasing concentration (184). 

1.16 Biological actions of curcumin  

Curcumin has been demonstrated to have a wide range of beneficial effects through its 

most pronounced properties which encompass its anti-inflammatory, antioxidant and anti-

carcinogenic activities (177). Modern science has revealed that curcumin is a highly pleiotropic 

molecule that mediates its effects by modulation of several important molecular targets, including 

transcription factors, enzymes, growth factors and their receptors, cell cycle proteins, cytokines, 

cell surface adhesion molecules, and genes regulating cell proliferation and apoptosis (185). 

However, the cellular and molecular mechanisms of the favourable effects of curcumin on human 

health are not fully understood.  
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1.16.1 Anti-inflammatory properties of curcumin  

Most chronic illnesses are believed to be caused by dysregulated inflammation (186). For 

instance, inflammation is involved in cancer, cardiovascular diseases, pulmonary diseases, 

metabolic diseases and neurological diseases (187-191). Although, the mechanism of its anti-

inflammatory action remains unclear, curcumin has been shown to negatively modulate several 

pro-inflammatory responses. Several studies have demonstrated that curcumin was able to 

modulate the production of various inflammatory cytokines, thereby exhibiting potent anti-

inflammatory activity. It has been shown to downregulate nuclear factor-κB (NF-κB), a 

transcription factor that plays a critical role in the induction of many pro-inflammatory mediators 

involved in chronic and acute inflammatory diseases and various cancers (186). Aggarwal and 

Singh were the first to demonstrate that curcumin suppressed NF-κB activation induced by 

different inflammatory stimuli (192), resulting in the suppression of NF-κB-dependent gene 

products that suppress apoptosis and mediate proliferation, invasion, and angiogenesis (186). The 

downregulation of NF-κB by curcumin results in a decrease in the expression of TNF-α, 

interleukin-1 (IL-1), interleukin-6 (IL-6) (169). Therefore, inhibition of pro-inflammatory 

cytokine production by regulation of transcription factors, such as NF-κB, is a potential strategy 

for controlling inflammatory responses. In addition, curcumin has been reported to inhibit the 

activities of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) enzymes that are involved in 

generating lipid mediators intimately implicated in inflammation, thereby indicating that the anti-

inflammatory actions of curcumin can also modulate arachidonic acid metabolism (193).  

The nuclear transcription factor early growth response-1 (Egr-1) is implicated in the 

regulation of a number of genes involved in inflammation as well as growth and development, 

and is also a target of curcumin. Egr-1 regulates several pathophysiologically relevant genes in 
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the vasculature that are involved in differentiation, wound healing and blood clotting (194).  It 

has been shown that curcumin suppressed the induction of Egr-1 in endothelial cells and 

fibroblasts, thereby modulating the expression of Egr-1-regulated genes in both these cell types 

(195). A recent study also showed that curcumin inhibits the inflammatory response and 

chemotaxis of monocytes by inhibiting Egr-1 (196). 

Curcumin also downregulates MAPK pathways, which are activated by many 

inflammatory stimuli (194). Curcumin can contribute to the protection against the adverse 

vascular effect of the pro-inflammatory response through the suppression of TNF-α-stimulated 

ROS generation, monocyte adhesion, phosphorylation of JNK and p38 MAPK, and signal 

transducer and activator of transcription (STAT)-3 in endothelial cells (197). In vitro studies are 

somewhat contradictory since other investigators paradoxically show an activation of MAPK by 

curcumin (198, 199). The mechanism is unexplained, nevertheless; in both cases its final effects 

appear to be anti-inflammatory (172).  

Curcumin thus exerts a protective role against inflammatory responses, through 

modulation of inflammatory mediators, and may therefore represent a therapeutic agent targeting 

the cardiovascular system since the inflammatory process plays a crucial role in the pathogenesis 

of some cardiovascular diseases, mainly atherosclerosis and acute coronary syndrome (200). 

1.16.2 Antioxidant activity of curcumin  

The antioxidant activity of curcumin was reported as early as 1975 (201). Oxidative stress 

associated with overproduction of ROS plays a major role in the pathogenesis of various 

diseases, including CVDs (158). Even though the antioxidant properties of curcumin have been 

shown to have several therapeutic advantages, its antioxidant mechanism remains poorly 
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understood. It has been shown to be a potent scavenger of a variety of ROS, including O2˙- (174), 

OH- (202), nitrogen dioxide radicals (203) and non-free radical species such as H2O2 (174). 

Curcumin has also been shown to enhance the activity of antioxidant enzymes and to counteract 

the activity of ROS generating enzymes (170, 204). Sreejayan and Rao first claimed that the 

presence of phenolic groups in the structure of curcumin was fundamental in its ability to 

eliminate ROS (205). Recent literature proposes that the phenolic and methoxy groups on the 

phenyl ring and the 1,3-diketone system are important structural features that contribute to the 

antioxidant effects. Evermore so, the antioxidant activity increases when the phenolic group with 

a methoxy group is at the ortho position (206). A more recent study concluded that the H-atom 

donation from the phenolic group is responsible for the strong antioxidant properties of curcumin 

(174). Curcumin can also indirectly increase the endogenous cellular antioxidant defenses 

through alternative antioxidant mechanisms. Heme-oxygenase-1 (HO-1) is a widely distributed 

mammalian enzyme that is one of the most prominent protective genes proven to be effective in 

ameliorating cardiovascular problems associated with increased oxidative stress (158), and is yet 

another target of curcumin (207). Curcumin has been shown to protect against oxidative stress 

through an increase in HO-1 production in endothelial cells (206). 

Curcumin has the ability to protect lipids and DNA against oxidative degradation by 

scavenging free radicals and inhibiting free radical generation (203, 208, 209). Lipids are the 

most susceptible macromolecules to oxidative stress (203) and lipid peroxidation consists of a 

series of free radical-mediated chain reaction processes that leads to the damage of cell 

membranes. Many studies demonstrate the potential of curcumin to reduce lipid peroxidation, a 

key process in the onset and progression of many diseases, including atherosclerosis, heart 

diseases and cancer (210-213). Curcumin has been shown to reduce lipid peroxidation by 
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augmenting the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, 

glutathione (GSH), glutathione-s-transferase (GST) and glutathione peroxidase (GPx) (170). 

Curcumin also exhibits a protective role against oxidative ischemic injury through 

inhibition of free radical propagation with subsequent inhibition of ROS generating enzyme 

activity, resulting in decreased ROS production (214). 

Although the exact mechanism by which curcumin promotes these effects remains to be 

elucidated, in vivo and in vitro studies suggest that its antioxidant properties appear to underlie its 

pleiotropic biological activities. 

1.16.3 Anticarcinogenic effects of curcumin  

In vivo and in vitro studies have demonstrated the ability of curcumin to inhibit 

carcinogenesis at three stages: tumour initiation, promotion and metastasis (215). Its anti-

carcinogenic effect has been studied in gastrointestinal, liver, lung, blood, breast, oral, prostate 

and skin cancers. The molecular basis of the anti-carcinogenic and chemopreventive effects of 

curcumin is attributed to its effect on several targets including transcription factors, growth 

regulators, apoptotic genes, angiogenesis regulators and cellular signaling molecules (215). 

Cancer cells are able to evade apoptosis and grow in a rapid and uncontrolled manner. Curcumin 

has been shown to suppress the proliferation of tumor cells through the activation of caspases, the 

induction of tumor suppressor genes, such as p53, the upregulation of proapoptotic proteins and 

the downregulation of anti-apoptosis proteins (216, 217). Curcumin has been shown to induce in 

vitro and in vivo apoptosis of various tumour cell lines such as breast cancer cells, lung cancer 

cells, human melanoma cells, human myeloma cells, human leukemia cells, human 

neuroblastoma cells, oral cancer cells and prostate cancer cells (reviewed in (215)). Besides 
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inducing apoptosis, curcumin also inhibits the expression of PI3-K and the phosphorylation of the 

pro-survival kinase Akt/PKB (217).  

Curcumin has also been shown to suppress growth factor-induced actions on human 

cancer cell growth. Recent in vitro studies have shown that treatment of cancer cells with 

curcumin can inhibit the intrinsic EGF-R tyrosine kinase activity, EGF-R ligand-induced 

activation, as well as the expression of EGF-R (218). Curcumin has been shown to inhibit human 

colon cancer cell growth by suppressing gene expression of EGF-R through reducing the activity 

of transcription factor Egr-1 (219). Recent data further demonstrate that curcumin also inhibits 

the expression and activation of the IGF-1R tyrosine kinase, thereby reversing the IGF-1-induced 

cell growth and apoptosis resistance (220). Moreover, curcumin inhibits PDGF-R-induced 

proliferation and PDGF-induced ERK1/2 phosphorylation of pancreatic stellate cells, through the 

induction of HO-1 gene expression (221). Additional growth factor pathways modulated by 

curcumin include TGF-β, fibroblast growth factor (FGF), hypoxia-inducible factor (HIF)-1α, and 

colony-stimulating factors (CSFs) (reviewed in (175)). 

MAPK signaling is a major pathway used by growth factors to trigger cell proliferation 

and differentiation. In tumor cells, curcumin, through inhibition of JNK phosphorylation, was 

shown to effectively block AP-1 and NF-κB signaling pathways (222). Furthermore, curcumin 

strongly repressed tumor promoter-induced phosphorylation of ERK, JNK and p38 MAPK in 

brain tumor cells (223).  Curcumin inhibition of gene expression of Egr-1 also requires 

interruption of ERK MAPK signal pathway (219). Several ongoing clinical trials still remain 

inconclusive, yet curcumin appears to have therapeutic potential for both prevention and 

treatment of cancer. Pharmacologically, it is safe in humans but its limited bioavailability 

interferes with its therapeutic potential. 
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1.17 Curcumin and cardiovascular diseases 

Most of the earlier studies on curcumin focussed on its beneficial effects in various 

models of cancer, however, its anti-inflammatory and antioxidant properties have generated 

interest to investigate if this compound can also exert cardiovascular protective effects. Even 

though the underlying mechanism of action is not fully understood, evidence that curcumin exerts 

protective effects on the cardiovascular system has been previously described and its use as a 

therapeutic agent to mitigate CVDs is currently being investigated. Evidence indicates that 

curcumin exhibits protective effects against cardiovascular pathologies such as atherosclerosis, 

cardiac hypertrophy and heart failure. 

1.17.1 Curcumin and atherosclerosis 

Atherosclerosis is the most common form of heart disease.  It is considered a chronic and 

progressive disease arising from the inflammatory processes and oxidative stress within the 

vessel wall (224). Curcumin has been shown to exhibit anti-atherosclerotic action through 

inhibition of platelet aggregation (225), protection against inflammation and oxidation, and 

modulation of cholesterol homeostasis. Several lines of evidence strongly suggest that curcumin 

may prevent atherosclerosis by regulating some elements in cholesterol homeostasis. Studies 

have reported that curcumin is beneficial in lowering low-density lipoprotein-cholesterol (LDL) 

and raising high-density lipoprotein-cholesterol (HDL) while reducing lipid peroxidation. Animal 

studies conducted in experimental atherosclerotic rabbits reported that curcumin effectively 

inhibited LDL oxidation, and decreased cholesterol and triglycerides levels (211). 

Supplementation with curcumin also demonstrated a significant prevention of early 

atherosclerotic lesions in thoracic and abdominal aorta, through reduction in oxidative stress and 

decreased lipid peroxidation, resulting in reduction of aortic fatty streak formation, in 
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experimental model of atherosclerosis where rabbits were fed a high cholesterol diet for 30 days 

(226). Orally administered curcumin also decreased the formation of atherosclerotic lesions by 

20% in apoE and LDL receptor-double knockout mice model, an animal model developed for 

experimental atherosclerotic research (227). In a recent study, Liao et al. demonstrated that 

curcumin induced a 50% reduction in atherosclerotic lesion reduction in apoE knockout mice and 

inhibited oxidized-LDL-induced cholesterol accumulation in cultured VSMC (228). Curcumin 

has also proven to be an effective antioxidant through the prevention of oxidation and 

modification of LDL, and the subsequent restoration of prostacyclin release in human endothelial 

cells, thereby indicating a protective role in preventing pathological conditions related to 

oxidative stress and the development of atherosclerosis (229). 

In humans, a study involving the administration of 500 mg of curcumin for 7 days to 10 

healthy volunteers revealed a 29% increase in HDL cholesterol, a 12% decrease in total serum 

cholesterol and a 33% decrease in serum lipid peroxidases (230). The administration of curcumin 

also reduced total and LDL cholesterol levels in patients with acute coronary syndrome (231). 

Another study showed that 10 mg of curcumin given twice daily during 30 days significantly 

lowered the serum LDL levels and increased the serum HDL levels in healthy patients (232). The 

same group reported that 10 mg of curcumin administered twice daily for 15 days significantly 

lowered plasma fibrinogen levels in humans with atherosclerosis (233).  

Abnormal proliferation of VSMC and mononuclear cells also contributes to the 

progression of cardiovascular diseases, including atherosclerosis. Curcumin suppressed mitogen-

induced proliferation of human blood mononuclear cells, inhibited neutrophil activation and 

mixed neutrophil reaction, and also inhibited serum-induced as well as PDGF-dependent 

proliferation of rabbit VSMC (234). VSMC migration and collagen synthesis are also key events 
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involved in the pathological changes occurring with atherosclerosis. Curcumin has potent 

inhibitory effects on PDGF-induced VSMC proliferation, migration and collagen synthesis (235). 

This inhibitory effect on vascular remodeling is attributable to the attenuation by curcumin of 

PDGF-induced PDGF-R, ERK1/2 and Akt signaling in VSMC (235). Using an animal arterial 

balloon-injury model characterized by PDGF-R upregulation to substantiate the in vitro results, 

curcumin significantly inhibited neointima formation, collagen synthesis, cell proliferation and 

the overexpression of PDGF-R (235). Curcumin also decreased cholesterol-induced proliferation 

of aortic rat VSMC and suppressed the phosphorylation of ERK1/2 as well as its translocation to 

the nucleus (236). The vascular anti-proliferative effect of curcumin has also been demonstrated 

through the induction of HO-1 expression in rat and human VSMC (237). Curcumins potential 

role in the prevention of atherosclerosis is further supported through its inhibitory effect on 

VSMC migration (238). This inhibitory effect was observed on TNF-α-induced migration that 

was mediated by decreasing TNF-α-induced ROS production, leading to suppression of matrix 

metallopeptidase 9 (MMP-9) activation and protein expression through the downregulation of 

NF-κB (238). Synthetic curcuminoids have also been shown to exert anti-proliferative effects on 

cell growth. Dehydrozingerone, a biosynthetic structural analogue of curcumin, inhibited PDGF-

stimulated VSMC migration, proliferation, collagen synthesis, and PDGF/H2O2-stimulated 

phosphorylation of PDGF-R and downstream Akt (239). HO-3867, another synthetic 

curcuminoid, significantly inhibited the proliferation of serum-stimulated VSMC (240). 

Hydrazinocurcumin, yet another synthetic curcumin derivative, potently inhibited the 

proliferation of bovine aortic endothelial cells (241). These studies support the notion that 

curcumin confers protection against pathological remodeling of blood vessels, a contributory 

mechanism of atherosclerosis.  
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Since atherosclerosis is a chronic inflammatory disease associated with increased 

oxidative stress in VSMC, it would be possible that the anti-atherogenic effects of curcumin are 

attributable to its antoxidant and anti-inflammatory properties (238). Curcumin modulates several 

targets that mediate an anti-atherosclerotic effect but the detailed anti-atherosclerotic mechanisms 

of curcumin still remain to be elucidated. 

1.17.2 Curcumin effects on the heart 

The effect of curcumin on cardiac hypertrophy and myocardial ischemia (MI) has been 

studied in both in vivo and in vitro models. Cardiac hypertrophy is an adaptive enlargement of the 

myocardium in response to a variety of stresses, such as an increased workload or myocardial 

infarction, and is characterized by an increase in the size of the individual cardiomyocytes and 

the whole heart (242). Cardiac remodeling plays a critical role in the progression of pathologic 

cardiac hypertrophy to heart failure and death (242). Hypertrophic stimuli initiate several 

subcellular signaling pathways and these signals reach the nuclei of cardiomyocytes and activate 

a subset of hypertrophy-responsive transcription factors that change the pattern of the gene 

expression. Activation of these transcription factors is mediated, in part, through post-

transcriptional modifications, such as acetylation by histone deacetylases and an intrinsic histone 

acetyltransferase (HAT), p300 (243). Nuclear acetylation by p300 is a critical event during cell 

hypertrophy. Activation of p300 is not only required for pathological myocyte growth but also 

for normal myocardial development and differentiation. p300 also induces the expression of 

genes encoding atrial natriuretic factor (ANF), ET-1, and β-myosin heavy chain (β-MHC), which 

are well established markers of myocardial cell hypertrophy (244-246). Curcumin was reported to 

be an inhibitor of p300-HAT and was found to repress the p300 induced hypertrophic responses 

in cultured neonatal cardiomyocytes, including the expression of both ANF and β-MHC genes 
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(247). It also inhibited the p300 HAT activity and thereby prevented the development of heart 

failure in two different heart failure models in vivo, a hypertensive heart disease in salt-sensitive 

Dahl rats and in a surgically-induced myocardial infarction in rats (247). 

Heart failure is a process of systemic inflammation with overexpression of local 

inflammatory cytokines including TNF-α (248). Recent reports have shown that TNF-α 

contributes to the process of myocardial remodeling in evolving heart failure (249). Orally 

administered curcumin improved left ventricular function in rabbits exhibiting heart failure-

induced by pressure overload that resulted from the inhibition of myocardial collagen remodeling 

associated with suppression of TNF-α expression (250).  

As previously mentioned, curcumin also behaves as a free radical scavenger and 

antioxidant, inhibiting lipid peroxidation and oxidative DNA damage. Puvanakrishnan et al. 

reported that curcumin plays a protective role against isoproterenol-induced myocardial necrosis 

in rats and that this protective effect is attributed to its antioxidant properties (214). L-

Isoproterenol (ISO) is a synthetic cathecholamine that causes myocardial damage when 

administered in large doses. Orally administered curcumin (200mg/kg) protected against ISO-

induced oxidative myocardial injury in rats through enhancement of the antioxidant defense and 

thereby exhibited cardioprotective activity against ISO-induced cardiotoxicity (251). 

Furthermore, Venkatesan observed a protective effect of orally administered curcumin against 

cardiotoxicity produced by adriamycin in rats, showing a reduction in the parameters that indicate 

lipid peroxidation (252). Moreover, curcumin suppressed neutrophil infiltration into the human 

injured myocardium (164). Neutrophils are a major source of free radicals that characteristically 

invade the myocardial tissue during ischemia (164). 
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Ang II can play a critical role in the genesis of cardiac hypertrophy in hypertension and 

MI (253). Cardiac hypertrophy in response to Ang II is initiated though activation of its 

receptors, which results in marked oxidant stress via NADPH oxidase and NF-κB activation 

(254, 255). Downstream of NADPH oxidase lies the major redox-sensitive transcription factor 

NF-κB, which is perhaps the most critical transcription factor in mediating the transcription of a 

host of pro-inflammatory, pro-oxidant, and pro-growth genes, in response to Ang II (256).  

Freund et al. demonstrated the requirement of NF-κB in Ang II-mediated cardiac hypertrophy in 

vivo (257). Curcumin attenuates Ang II-mediated ROS generation, and the expression of NADPH 

oxidase and NF-κB in cardiomyocytes (253). Attenuation of the redox state by curcumin results 

in the abrogation of Ang II-mediated cardiomyocyte growth as well as the expression of the 

hypertrophic markers, ANP and BNP. Oxidized-LDL receptor-1 (LOX-1) upregulation has a 

central role in cardiomyocyte hypertrophy response to Ang II (253). Curcumin reduced the Ang 

II-mediated upregulation of Ang II type 1 receptor (AT1R) and LOX-1 expression and activation 

which translates into a strong inhibition of redox signaling resulting in a marked inhibition of 

cardiomyocyte growth (253).    

1.17.3 Curcumin and hypertension 

 The effect of curcumin on hypertension has not been explored in detail, yet a recent study 

revealed for the first time, under in vivo conditions, that curcumin attenuated the development of 

hypertension in NO-deficient hypertensive rats (163). Curcumin suppressed blood pressure 

elevation, decreased vascular resistance and restored vascular responsiveness in rats with Nω-

nitro-L-arginine methyl ester (L-NAME)-induced hypertension, through an antioxidant 

mechanism (163). Curcumin has also been shown to induce vasorelaxation on isolated porcine 

coronary arteries through its antioxidant capacity to promote NO release (258). Moreover, 



43 

 

 

curcumin supplementation showed significant attenuation of mean arterial blood pressure in 

streptozotocin-induced diabetic rats (259). In humans, oral turmeric supplementation decreased 

systolic blood pressure in patients with kidney disease, lupus nephritis (260). Curcumin 

supplementation may therefore be beneficial in improving vascular function and preventing 

cardiovascular complications. 

1.17.4 Curcumin and diabetic cardiovascular complications  

A pilot study done in 1972 reported that curcumin lowered blood sugar levels in human 

diabetic subjects (261). Since then, the modulation of curcumin has been extended to elucidate 

the molecular basis for obesity and obesity-related metabolic diseases, including type 2 diabetes 

and cardiovascular diseases. The anti-diabetic effects of curcumin are also linked with the 

inhibition of inflammatory and oxidative markers. Increased oxidative stress has been associated 

with the pathogenesis of chronic diabetic complications, including cardiomyopathy (262). It has 

been suggested that NO pathway is involved in augmenting oxidative stress (263). Many studies 

have shown the implication of eNOS and iNOS in the pathogenesis of cardiovascular 

complications in diabetes (264). In a study where myocardial tissue from diabetic rats exhibited 

increased levels of eNOS and iNOS mRNA, curcumin treatment prevented this NOS mRNA 

upregulation leading to a decrease in the oxidative DNA damage in association with a reduction 

in the expression of transcription factors NF-κB and AP-1 (265).  

 Diabetic cardiomyopathy eventually leads to heart failure (186). Transcriptional co-

activator p300 and its interaction with myocyte enhancer factor 2 (MEF2) play a role in diabetes-

induced cardiomyocyte hypertrophy. Curcumin treatment prevented diabetes-induced 
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upregulation of these transcripts, suggesting a protective mechanism in glucose-induced 

cardiomyocyte hypertrophy in diabetes (266).  

NF-κB, TNF-α and Egr-1 have been closely linked with the induction of insulin 

resistance, a key feature in type II diabetes mellitus. Curcumin has been shown to downregulate 

these biomarkers (195, 267-270), suggesting a putative mechanism in overcoming insulin 

resistance as demonstrated by several animal studies (271-273). 

Hyperglycemia leads to increased oxidative stress resulting in endothelial dysfunction. A 

randomized 8 week-study was performed on 72 patients with type II diabetes to evaluate the 

effects of curcumin on endothelial dysfunction in association with reductions in inflammatory 

cytokines and markers of oxidative stress. Patients receiving 150 mg of curcumin twice daily 

showed an improvement of endothelial function and significant reductions in the levels of 

malondialdehyde, ET-1, IL-6, and TNF-α (274). Curcumin supplementation also improved 

diabetes-induced endothelial dysfunction in streptozotocin-induced diabetic rats through 

decreased PKC expression and decreased ROS production (259). 

The precise mechanism by which curcumin improves vascular homeostasis remains 

unclear. However, the ability of curcumin to ameliorate pathophysiological states, such as 

atherosclerosis, cardiac remodeling and myocardial ischemia, through antioxidant and anti-

inflammatory properties, have been suggested to contribute to this response. 

1.18 Goal of this study 

The broad biological activity of curcumin, including antioxidant and anti-inflammatory 

effects, influences key cellular signal transduction pathways in multiple diseases. Curcumin has 

proven to be beneficial in studies within the cardiovascular system involving atherosclerosis, 
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ischemia-induced diseases, diabetic-induced cardiovascular complications, cardiac hypertrophy 

and myocardial infarction. However, very little is known regarding the molecular mechanisms 

involved in mediating these responses.  

ET-1 is a very potent active molecule that plays an important role in health and disease 

through its ability to regulate various cardiovascular functions. ET-1 activates multiple signaling 

pathways including MAPK and PI3-K/PKB which mediate the hypertrophic and proliferative 

responses in VSMC. An important role of oxidative stress generation in mediating the effect of 

ET-1 has been demonstrated. Moreover, ROS are produced and act as second messengers as part 

of the signaling of receptor protein tyrosine kinases, which are activated after vascular injury. 

Curcumin has been shown to suppress ROS generation and to inhibit several of the mediators 

involved in the ET-1 signaling pathway in several cellular lines. Curcumin has also been shown 

to inhibit cell proliferation, arrest cell cycle progression and induced cell apoptosis in VSMC 

(275). However, the effect of curcumin in ET-1-induced signaling in VSMC has not been 

investigated. Therefore, the present study aims at examining the effect of curcumin on ET-1-

induced phosphorylation of ERK1/2, c-Raf, PKB and IGF-1R. Since ET-1 action requires IGF-

1R transactivation we have also investigated if curcumin modulates IGF-1-induced signaling in 

VSMC. In addition, we tested if the transcription factor Egr-1 is also a target of curcumin in 

response to ET-1 as well as IGF-1. 
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Abstract 

Despite recent advances, mortality from cardiovascular disease remains high, highlighting the 

requirement for improved therapies. Several studies have demonstrated a correlation between 

cardiovascular disease and an increased activation of ET-1-induced signaling in vascular smooth 

muscle cell (VSMC), including protein kinase B (PKB) and extracellular  signal-regulated kinase 

1 and 2 (ERK1/2) pathways, as well as an increase in ET-1-mediated VSMC hypertrophy and 

proliferation. Oxidative stress has been suggested to play an intermediary role in mediating ET-1-

induced cardiovascular pathophysiological effects. Curcumin (diferuloylmethane), a major 

component of the spice turmeric, has been shown to exhibit cardiovascular protective effects 

mainly through its antioxidant and anti-inflammatory properties. The current study was 

undertaken to examine the effectiveness of curcumin to inhibit ET-1-stimulated signaling events 

in A-10 VMSC. ET-1 (100nM) produced a marked phosphorylation of PKB, ERK1/2, c-Raf and 

insulin-like growth factor type 1 receptor (IGF-1R), in VSMC, that was dose dependently 

inhibited by pretreatment with curcumin. Curcumin also attenuated IGF-1-induced 

phosphorylation of PKB, ERK1/2 and c-Raf as well as phosphorylation of IGF-1R. Furthermore, 

curcumin also inhibited ET-1 and IGF-1-induced expression of early growth response-1 (Egr-1), 

a transcription factor downstream of ERK1/2 that plays a regulatory role in several 

cardiovascular pathological processes. In conclusion, these data provide evidence that curcumin 

is a potent inhibitor of ET-1 and IGF-1-induced mitogenic and proliferative signaling responses 

in A-10 VSMC and suggest that the ability of curcumin to attenuate these events may contribute 

as a potential mechanism for its cardiovascular protective effects. 

 

Key words: Curcumin, Early growth response-1, Endothelin-1, Extracellular signal-regulated 

kinase 1 and 2, Insulin-like growth factor type 1, Insulin-like growth factor type 1 receptor, 

Protein kinase B, Vascular smooth muscle cells 
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Introduction 

Endothelin-1 (ET-1) is a potent vasoconstrictor peptide that has been shown to exhibit mitogenic 

and hypertrophic responses in vascular smooth muscle cells (VSMC) (1, 2). A potential role of 

ET-1 in promoting the pathophysiology of cardiovascular diseases such as coronary artery 

disease (3), hypertension (4), heart failure (4) and vascular remodeling (atherosclerosis and 

restenosis) (5) has been suggested. VSMC play a critical role in the structural and functional 

characteristics of the vessel wall, including growth, repair and remodeling (6). ET-1 mediates its 

effects on VSMC through interaction with its two subtypes of heterotrimeric G protein coupled 

receptors (GPCR), ETA and ETB (1, 2). This leads to the activation of multiple signaling 

pathways, including growth promoting mitogen-activated protein kinases (MAPK), of which 

extracellular signal-regulated kinase 1 and 2 (ERK1/2) is the most well characterized, and 

phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB) pathways (1, 2). An intermediary 

role of transactivation of growth factor receptor protein tyrosine kinases (R-PTK) in transducing 

ET-1-induced signaling events has been proposed (7). In this regard, we have recently shown that 

insulin-like growth factor type 1 receptor (IGF-1R) plays a critical role in mediating ET-1-

induced PKB activation, as well as hypertrophic and proliferative responses induced by ET-1 in 

VSMC (7). Although the mechanism of action responsible for R-PTK transactivation is not yet 

fully understood, several factors are suggested to be implicated in this process. Amongst them, 

the generation of reactive oxygen species (ROS) which has been shown to play an important role 

in inducing the activation of ERK1/2 and PKB signaling in VSMC in response to ET-1 (8), has 

also been shown to contribute to the activation of IGF-1R-PTK in VSMC (9). IGF-1R is 

classically activated by its growth factor ligand, insulin-like growth factor type 1 (IGF-1). IGF-1 

can be synthesized and secreted in cultured VSMC (10), and has been shown to act as a potent 

mitogen for VSMC in vitro (11, 12). ERK1/2 and PI3-K/PKB signaling promotes IGF-1-induced 
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mitogenic and proliferative responses respectively, in VSMC (13, 14).  Accordingly, inhibition of 

ET-1 and IGF-1-stimulated VSMC signaling pathways may serve as a potential therapeutic 

intervention to attenuate cellular manifestations associated with the progression of many vascular 

diseases. 

Curcumin, a natural polyphenolic compound found in the spice turmeric (Curcuma 

Longa), has recently attracted much attention as it has been shown to exhibit a vast array of 

biological activities, including antioxidant, anti-proliferative, anti-tumour and anti-inflammatory 

properties (15). Several studies have suggested that curcumin may play a role in the protection 

against certain cardiovascular diseases, including arterial disease (16), atherosclerosis (17), 

cardiac hypertrophy (18-20), heart failure (20), and damage caused by myocardial ischemia (21-

23). The precise mechanisms responsible for the cardiovascular protective effect remains obscure 

however, curcumin has been shown to exert its effects on several signaling pathways linked to 

growth, proliferation and gene expression (24-29). It has been shown to inhibit serum-induced 

and platelet-derived growth factor (PDGF)-dependent mitogenesis in VSMC (26). In a recent 

study, curcumin attenuated PDGF-induced signaling in VSMC through inhibition of PDGF 

receptor, ERK1/2 and PKB phosphorylation (25). Since curcumin exhibits anti-proliferative 

effects and has potent antioxidant properties with its ability to scavenge ROS (30-32), and ET-1 

exerts its effects through the generation of ROS with an intermediary role of IGF-1R 

transactivation (7, 8), the purpose of this study was to investigate the effect of curcumin on ET-1 

and IGF-1-mediated proliferative and hypertrophic signaling responses in VSMC. Therefore, we 

examined the effect of curcumin on ET-1 and IGF-1-induced phosphorylation of IGF-1R, c-Raf, 

ERK1/2 and PKB, key mediators involved in growth-promoting, proliferative and hypertrophic 

responses. In addition, we have also investigated the effect of curcumin on early growth response 
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(Egr)-1, a transcription factor which is a downstream target of ERK1/2 and is implicated in 

multiple cardiovascular pathological processes (33). 
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Materials and Methods 

 

Antibodies and reagents:  

Cell culture reagents were procured from Invitrogen Corp. (Grand Island, NY). ET-1 was 

purchased from American Peptide Inc. (USA). IGF-1 was purchased from Peprotech Inc. (USA). 

Monoclonal phospho-specific-Tyr204 ERK1/2, polyclonal ERK1/2, anti-IGF-1R, Egr-1 and 

GAPDH antibodies, as well as horseradish peroxidase-conjugated goat anti-mouse 

immunoglobulin were from Santa Cruz Biotech (Santa Cruz, CA). The phospho-Ser473-specific-

PKB, anti-PKB, phospho-Ser338-specific-c-Raf, anti-c-Raf and anti-rabbit antibodies were from 

Cell Signaling (Beverly, MA). Curcumin was procured from Calbiochem (San Diego, CA). Anti-

phosphospecific IGF-1R (phospho-Tyr1158/1162/1163) antibody was obtained from Biosource. 

Hoechst 33342 (10mg/ml) was obtained from Invitrogen. The enhanced chemiluminescence 

(ECL) detection kit was from Amersham Pharmacia Biotech (Baie d’Urfé, Qc, Canada).  

 

Cell culture: 

VSMC are derived from embryonic rat thoracic aorta A-10 cells and were maintained in culture 

with Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS) 

and 1% penicillin + streptomycin, at 37oC in a humidified atmosphere of 5% CO2. Cells were 

grown to 80-90% confluence in 60mm plates and incubated in serum-free DMEM 20 hours prior 

to treatment. They were passaged twice a week by harvesting with Trypsin/EDTA. 
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Immunoblotting: 

Cells incubated in the absence or presence of various agents were washed twice with ice-cold 

PBS and lysed in 200μl of buffer (25nM Tris-HCl, pH 7.5. 25mM NaCl, 1mM Na orthovanadate, 

10mM Na fluoride, 10 mM Na pyrophosphate, 2 mM benzamidine, 2 mM ethylenebis 

(oxyethylenenitrilo)-tetraacetic acid (EGTA), 2mM ethylenediamine-tetraacetic acid (EDTA), 1 

mM phenylmethylsulphonyl fluoride (PMSF), 10 μg/ml aprotinin, 1% Triton X-100, 0.1% 

sodium dodecyl sulfate (SDS) and 0.5 μg/ml leuleptin) on ice. The cells were scraped, collected 

and clarified by centrifugation at 12,000g for 10 minutes at 4oC to remove insoluble materials. 

Protein concentrations were measured using Bradford assay. Equal amounts of protein were 

subjected to 7.5% SDS-polyacrylamide gel (SDS-PAGE), transferred to polyvinylidine difluoride 

(PVDF) membranes (Millipore, MA, USA). The membranes were blocked 1 hour with PBS-

Tween 20 containing 5% non-fat dry milk at room temperature and then incubated overnight at 

4oC with respective primary antibodies (Monoclonal phospho-specific-Tyr204 ERK1/2 antibody 

(1:4000), phospho-Ser338-specific-c-Raf (1:2000), phospho-Ser473-specific-PKB antibody 

(1:2000), phosphor-Tyr1131/1135/1136-specific-IGF-1R (1:000), Egr-1 (1:1000), anti-PKB (1:2000), 

polyclonal ERK1/2 (1:4000), anti-c-Raf (1:2000), anti-IGF-1R (1:1000) and GAPDH (1:2000)). 

The antigen-antibody complex was detected by horseradish peroxidase-conjugated second 

antibody (1:4000), and protein bands were visualized by ECL. The intensity of the bands was 

quantified by densitometric analysis using Quantity One imaging and Graphpad Prism 5 software 

programs.  
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Nuclear extraction protocol 

Cells incubated in the absence or presence of various agents were washed twice with ice-cold 

PBS and collected in 500μl of buffer solution containing 10mM Hepes, 10mM KCl, 0.1mM 

EDTA, 0.1mM EGTA, 1mM PMSF, 1mM protease cocktail inhibitor and 1mM Na 

orthovanadate. Lysates were incubated in ice for 15 minutes before the addition of NP40 10% 

detergent and then they were vortexed for 10 seconds at highest setting before being centrifuged 

at 13000RPM for 4 minutes at 4oC. The supernatant (that corresponds to the cytoplasmic 

fraction) was saved and transferred in a clean tube. The pellet was resuspended in 60μl, by 

pipeting up and down several times, in buffer containing 10mM Hepes, 400mM NaCl, 0.1mM 

EDTA, 0.1mM EGTA, 1mM PMSF, 1mM protease cocktail inhibitor and 1mM Na 

orthovanadate. Lysates were sonicated by performing 6 cycles at 10 seconds per cycle with 30 

second intervals and then centrifuged at 13000RPM for 5 minutes at 4oC. Pellet was discarded 

and the supernatant, which corresponds to the nuclear fraction, was collected. Protein 

concentrations were measured using Bradford assay. 

 

Apoptosis assay 

Curcumin-induced apoptosis was monitored by the extent of nuclear fragmentation. Nuclear 

fragmentation was visualized by Hoechst 33342 staining of apoptotic nuclei. Hoeckst 33342 is a 

fluorescent bisbenzimide that stains DNA and penetrates membranes of dead cells. It is excited 

by ultraviolet light of 350nm and emits blue light of 461nm wavelength. After treatment with 

varying concentrations of curcumin for 30 minutes cells were treated with 2% paraformaldehyde 

(diluted in PBS) in 2000µL basal medium. The adhered cells were then stained with 2.5µL of 

Hoechst 33342 (10mg/ml Invitrogen) in 2500µL medium and incubated at room temperature in 

the dark for 15 minutes. The cells were imaged under an Olympus BH-2 fluorescence microscope 
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using 350nm stimulation and 460nm emission. Triplicates samples were used for each treatment. 

Under our assay the treatment of A-10 VSMC for 30 minutes at 50 µM did not cause any 

significant cell death (data not shown). 

 

Statistics: 

Statistical analysis was performed by one-way, repeated-measures analysis of variance 

(ANOVA) followed by a Tukey post hoc test. All data are reported as means + SE. the 

differences between means were considered significant at P<0.05. 
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Results 

Curcumin inhibits ET-1- and IGF-1-induced phosphorylation of PKB in A-10 VSMC 

 

PKB activation has been shown to contribute to hypertrophic responses in VSMC 

(reviewed in (1)). Therefore, we investigated the effect of curcumin on PKB phosphorylation 

induced by ET-1 and IGF-1. As shown in Fig. 1 both ET-1 and IGF-1 enhanced the 

phosphorylation of PKB 3 fold and 15 fold, respectively. However, pretreatment of A-10 VSMC 

with curcumin for 30 minutes dose-dependently attenuated both ET-1 and IGF-1-induced 

phosphorylation of PKB. The attenuating effect of curcumin could be detected at 5µM but was 

more prominent at higher concentrations and at 25µM almost complete inhibition of ET-1-

induced PKB phosphorylation was observed (Fig. 1A). Similarly, curcumin also inhibited IGF-1-

induced phosphorylation of PKB in these cells but appeared to be slightly less potent as 

compared to its effect on ET-1-induced response (Fig. 1B).  

 

Curcumin inhibits ET-1- and IGF-1-induced phosphorylation of c-Raf and ERK1/2 in A-10 

VSMC 

 

Activation of ERK1/2 signaling has been implicated in mediating hypertrophic and 

proliferative effects of ET-1 (34, 35). Therefore, we next investigated the effect of curcumin on 

ERK1/2 signaling (Fig 2). Treatment with ET-1 and IGF-1 increased ERK1/2 phosphorylation in 

A-10 VSMC (Fig. 2). However, pre-treatment of the cells with curcumin prior to stimulation with 

either ET-1 or IGF-1 resulted in a significant inhibition in ERK1/2 phosphorylation induced by 

both ET-1 and IGF-1 (Fig. 2). Curcumin had no effect on the expression of ERK1/2 protein (Fig. 

2). 
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ERK1/2 activation requires sequential activation of Ras, Raf and MEK upstream signaling 

components (1). Therefore, we examined the effect of curcumin on the activated c-Raf levels by 

measuring the phosphorylation level of the c-Raf protein at serine 338 in A-10 VSMC treated 

with ET-1 and IGF-1. As shown in Fig. 3, curcumin pretreatment markedly inhibited the 

phosphorylation of c-Raf stimulated by both agents in a dose-dependent manner without altering 

the levels of this protein. The inhibitory effect of curcumin on both ET-1 and IGF-1-induced 

phosphorylation of c-Raf was quite significant at 25µM and became even more prominent at 50 

µM, where almost complete inhibition was observed (Fig. 3). These data indicate that curcumin 

inhibits the phosphorylation and hence the c-Raf kinase activity of this upstream component of 

ERK1/2 signaling pathway and thereby inhibits ET-1 and IGF-1-induced phosphorylation of 

ERK1/2 in A-10 VSMC.  

 

Attenuation of ET-1- and IGF-1-induced tyrosine phosphorylation of IGF-1R β subunit by 

curcumin in A10-VSMC 

 

 Since, we have previously reported that ET-1 is capable of increasing tyrosine 

phosphorylation of IGF-1R β subunit, which is required for its activation, and that IGF-1R-PTK 

is involved in mediating ET-1-induced PKB activation in A-10 VSMC (7), we next tested the 

effect of curcumin on the ET-1-mediated phosphorylation of IGF-1R. As shown in Fig. 4A, when 

compared with ET-1 alone, curcumin inhibited ET-1-induced phosphorylation of IGF-1R. A 

pronounced attenuating effect was detected at 5µM whereas almost complete inhibition of IGF-

1R phosphorylation was observed at 25µM (Fig. 4A).  In order to distinguish this ET-1-induced 

transactivation of IGF-1R with the ligand-dependent activation of IGF-1R, we investigated the 

effect of curcumin on IGF-1-induced phosphorylation of IGF-1R. As expected, IGF-1 increased 
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IGF-1R phosphorylation and curcumin dose-dependently attenuated this effect with a marked 

attenuation observed at 25µM and an almost complete inhibition observed at 50µM (Fig. 4B).  

 

Inhibition of ET-1- and IGF-1-induced upregulation of Egr-1 by curcumin in A-10 VSMC 

 It has been suggested that Egr-1 plays a regulatory role in multiple cardiovascular 

pathological processes (33). It has a low basal level expression in normal vessels but is rapidly 

and transiently expressed in VSMC and endothelial cells in response to injury (36). Egr-1 protein 

is biologically active and has exerts profound chemotactic and mitogenic effects in injured 

vascular cells, which may contribute to the structural remodeling that typically occurs in the 

pathogenesis of vascular diseases (36). Therefore, we wished to determine if ET-1 or IGF-1 will 

upregulate Egr-1 expression in A-10 VSMC. We observed that Egr-1 protein expression was 

upregulated within 30 minutes and peaked at 60 minutes of ET-1 and IGF-1 exposure of A-10 

VSMC (Fig. 5). Since Egr-1 gene expression has been shown to be dependent on ERK1/2 

signaling (33), and curcumin exerts an inhibitory effect on the ERK1/2 pathway, we were further 

interested in investigating the effect of curcumin on ET-1 and IGF-1-induced Egr-1 expression in 

A-10 VSMC. As shown in Fig. 6, pre-treatment of VSMC with curcumin prior to stimulation 

with either ET-1 or IGF-1 inhibited the expression of Egr-1 induced by these two vasoactive 

agents. 
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Discussion 

Curcumin has been suggested to exert cardiovascular protective effects in a variety of 

experimental models. However, the precise molecular mechanism responsible for this response 

remains poorly understood. ET-1 and IGF-1 are important vasoactive peptides with a key role in 

the pathogenesis of vascular disease. The current study has assessed the effect of curcumin, the 

major active ingredient of turmeric (Curcuma Longa) spice, on ET-1 and IGF-1-induced 

signaling events. Here, we demonstrate that curcumin treatment attenuated ET-1 and IGF-1-

induced phosphorylation of IGF-1R, ERK1/2, c-Raf and PKB in VSMC. We also show that 

curcumin treatment also inhibited the expression of zinc finger transcription factor Egr-1 by these 

vasoactive agents.  

There is growing evidence that curcumin has a potential role in the protection against 

cardiovascular diseases. It was reported that curcumin improved the development of cardiac 

hypertrophy, through deactivation of hypertrophic signaling, and heart failure in animal models 

(18, 20). A recent study demonstrated that curcumin attenuated the development of hypertension, 

improved hemodynamic status and restored vascular function in nitric oxide-deficient 

hypertensive rats through alleviation of oxidative stress (37).  

Although, curcumin has been shown to attenuate the response of several growth factors 

and their signaling pathways in cancerous cell lines (24), there are only limited studies on its 

effect in VSMC. Yang et al. have reported an inhibitory effect of curcumin on PDGF signaling 

and PDGF-stimulated VSMC proliferation, migration, and collagen synthesis (25). They 

demonstrated that curcumin inhibits PDGFR phosphorylation as well as the PDGF-induced 

phosphorylation of ERK1/2 and PKB (25). Dehydrozinzerone, a structurally half-analog and 

biosynthetic intermediate of curcumin, also elicited a similar inhibition of PDGF-stimulated 
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phosphorylation of PDGFR, PKB and ERK1/2 in VSMC, leading to the inhibition of VSMC 

migration, proliferation and collagen synthesis (38). However, our work represents the first study 

to demonstrate that curcumin antagonizes both ET-1 and IGF-1-induced IGF-1R 

phosphorylation, as well as their ability to stimulate the phosphorylation of c-Raf, ERK1/2 and 

PKB in VSMC. Given that an upregulated ET-1 system has been linked to hyperproliferation in 

VSMC from SHR (39), it may be suggested that curcumin-induced attenuation of ET-1 signaling 

might serve as one of the mechanisms by which curcumin exerts anti-hypertrophic effects. Since 

curcumin is an antioxidant and ET-1 as well as IGF-1-induced signaling requires ROS generation 

(8, 40), it may be possible that the ability of curcumin to reduces ROS formation may be one of 

the mechanisms by which curcumin exerts its attenuating effect on these signaling events. 

The zinc finger transcription factor Egr-1 plays an important role in vascular biology. The 

Egr family includes Egr-1, Egr-2, Egr-3, and Egr-4. Among the family members, the best 

characterized is Egr-1. Following activation, Egr-1 is primarily expressed in the nucleus and is 

capable of regulating the transcription of several genes implicated in the development of vascular 

disease (41). Egr-1 is weakly, if at all, expressed in normal vessel wall but has been shown to be 

highly expressed in response to acute injury (36, 42) and vasoactive agents, such as angiotensin II 

(Ang II) (43). It is highly expressed in VSMC of atherosclerotic lesions (44) and plays critical 

roles in regulating VSMC growth and intimal thickening after vascular injury (45). ERK1/2 plays 

a prominent role in activating Egr-1 expression in endothelial cells (46) and VSMC (43, 47). 

Studies have shown that attenuation of Egr-1 gene expression inhibits VSMC migration and 

proliferation (48-51). Thus, it may be suggested that curcumin-induced attenuation of Egr-1 

expression may attribute to its cardiovascular protective role. This notion is further supported by 

studies in which antisense nucleotides against Egr-1 were found to block ET-1-induced cardiac 

protein synthesis, a marker of cardiac hypertrophy (52).  
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The antioxidant activity of curcumin was reported as early as 1975 (53). Oxidative stress 

associated with the overproduction of ROS plays a major role in the pathogenesis of various 

cardiovascular diseases, including hypertension and atherosclerosis (54). The antioxidant 

activities of curcumin may be attributable to many factors, including the ability to scavenge ROS, 

the increase in NO bioavailability, and the enhancement of the antioxidant defense system. 

Curcumin has been proven to be a potent scavenger of a variety of ROS including superoxide 

anion radicals (O2
-) (30), hydroxyl radicals (OH-) (31), nitrogen dioxide radicals (32) and non-

free radical species such as hydrogen peroxide (H2O2) (30). It has also been shown to enhance the 

activity of antioxidant enzymes (55) and to counteract the activity of ROS generating enzymes 

(56). In human endothelial cells, curcumin was shown to abolish ROS production and attenuate 

NADPH oxidase activity (57). In cardiomyocytes, attenuation of the redox state by curcumin 

resulted in the abrogation of Ang II-mediated cardiomyocyte growth (19). In synergy with its 

anti-inflammatory properties, curcumin prevented VSMC migration through its ability to 

suppress ROS generation (58). Moreover, curcumin has been shown to inhibit H2O2-stimulated 

phosphorylation of PDGF receptor in VSMC (38). As previously mentioned, ET-1 has been 

shown to increase the production of ROS in VSMC and this ROS generation has been shown to 

be a critical mediator in ET-1-induced signaling events linked to growth-promoting proliferative 

and hypertrophic pathways in VSMC (8).  Our earlier studies have also shown that tyrosine 

phosphorylation of β-subunit IGF-1R is an important step in transducing the effect of H2O2 on 

the phosphorylation of ERK1/2 and PKB in VSMC (9, 59). Since both ERK1/2 and PKB 

signaling pathways play a critical role in mediating hypertrophic and cell survival responses (1), 

it is reasonable to suggest that the ability of curcumin to inhibit the IGF-1 and ET-1-induced 

activation of these pathways may be due to its antioxidative properties. In light of these findings, 



63 

 

 

it may be suggested that curcumin-induced inhibition of both PKB and ERK1/2 signaling, and 

Egr-1 expression, may at least, partially contribute to the vascular protective effect of curcumin. 

In summary, this is the first report demonstrating that curcumin attenuates the signaling 

responses of ET-1 and IGF-1 in A-10 VSMC. We demonstrated that curcumin attenuated both 

IGF-1 and ET-1-stimulated increase of PKB, c-Raf, ERK1/2 and IGF-1R activation and Egr-1 

expression in A-10 VSMC. Since ERK1/2, PKB and Egr-1 play a key role in mediating VSMC 

growth and hypertrophy, it may be suggested that the ability of curcumin to attenuate these 

pathways may serve as a potential mechanism by which it counteracts the biological response of 

IGF-1 and ET-1 and exerts a vascular protective effect. 
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Figure Legends 

 

Figure 1. Curcumin attenuates ET-1 and IGF-1-induced PKB phosphorylation in A-10 

VSMC. A. Serum-starved quiescent A-10 cells were pretreated without or with the indicated 

curcumin concentrations for 30 minutes, followed by 100nM of ET-1 for 5 minutes. B. Serum-

starved quiescent A-10 cells were pretreated without or with the indicated curcumin 

concentrations for 30 minutes, followed by 6.5nM of IGF-1 for 5 minutes. Cell lysates were 

immunoblotted by phospho-specific-Ser473-PKB antibody (top panels of each section). Blots 

were also analyzed for total PKB (middle panels of each section). Bottom panels (bar diagrams) 

represent average data quantified by densitometric scanning of protein bands shown in the top 

panel. Values are the means ± SE of 6 distinct western blots from 3 independent experiments that 

were performed in duplicate, and are expressed as fold increase over basal phosphorylation, 

which is taken as 1. No results were excluded. P<0.05 considered as statistically significance 

versus ET-1 or IGF-1 alone.* indicates that P<0.05, ** indicated that P<0.005, and *** indicates 

that P<0.0005. 

 

Figure 2. Curcumin attenuates ET-1 and IGF-1-induced ERK1/2 phosphorylation in A-10 

VSMC. A. Serum-starved quiescent A-10 cells were pretreated without or with the indicated 

curcumin concentrations for 30 minutes, followed by 100nM of ET-1 for 5 minutes. B. Serum-

starved quiescent A-10 cells were pretreated without or with the indicated curcumin 

concentrations for 30 minutes, followed by 6.5nM of IGF-1 for 5 minutes. Cell lysates were 

immunoblotted by phospho-specific –Tyr204ERK1/2 antibody as shown in the top panels of each 

section. Blots were also analyzed for total ERK1/2 (middle panels of each section). Bottom 
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panels (bar diagrams) represent average data quantified by densitometric scanning of protein 

bands shown in the top panel. Values are the means ± SE of 6 distinct western blots from 3 

independent experiments that were performed in duplicate, and are expressed as fold increase 

over basal phosphorylation, which is taken as 1. No results were excluded. P<0.05 considered as 

statistically significance versus ET-1 or IGF-1 alone.* indicates that P<0.05, ** indicated that 

P<0.005, and *** indicates that P<0.0005. 

 

Figure 3. Curcumin attenuates ET-1 and IGF-1-induced c-Raf phosphorylation in A-10 

VSMC. A. Serum-starved quiescent A-10 cells were pretreated without or with the indicated 

curcumin concentrations for 30 minutes, followed by 100nM of ET-1 for 5 minutes. B. Serum-

starved quiescent A-10 cells were pretreated without or with the indicated curcumin 

concentrations for 30 minutes, followed by 6.5nM of IGF-1 for 5 minutes. Cell lysates were 

immunoblotted by phospho-Ser338-specific-c-Raf antibody as shown in the top panels of each 

section. Blots were also analyzed for total c-Raf (middle panels of each section). Bottom panels 

(bar diagrams) represent average data quantified by densitometric scanning of protein bands 

shown in the top panel. Values are the means ± SE of 6 distinct western blots from 3 independent 

experiments that were performed in duplicate, and are expressed as fold increase over basal 

phosphorylation, which is taken as 1. No results were excluded. P<0.05 considered as statistically 

significance versus ET-1 or IGF-1 alone.* indicates that P<0.05, ** indicated that P<0.005, and 

*** indicates that P<0.0005. 
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Figure 4. Curcumin attenuates ET-1 and IGF-1-induced IGF-1R tyrosine phosphorylation 

in A-10 VSMC. A. Serum-starved quiescent A-10 cells were pretreated without or with the 

indicated curcumin concentrations for 30 minutes, followed by 100nM of ET-1 for 5 minutes. B. 

Serum-starved quiescent A-10 cells were pretreated without or with the indicated curcumin 

concentrations for 30 minutes, followed by 6.5nM of IGF-1 for 5 minutes. Cell lysates were 

immunoblotted by phospho-specific IGF-1R (phospho-Tyr1158/1162/1163) antibody as shown in the 

top panels of each section. Blots were also analyzed for total IGF-1R (middle panels of each 

section). Bottom panels (bar diagrams) represent average data quantified by densitometric 

scanning of protein bands shown in the top panel. Values are the means ± SE of 6 distinct 

western blots from 3 independent experiments that were performed in duplicate, and are 

expressed as fold increase over basal phosphorylation, which is taken as 1. No results were 

excluded. P<0.05 considered as statistically significance versus ET-1 or IGF-1 alone.* indicates 

that P<0.05, ** indicated that P<0.005, and *** indicates that P<0.0005. 

 

Figure 5. Egr-1 is upregulated by ET-1 and IGF-1 in A-10 VSMC. A. Serum-starved 

quiescent A-10 cells were treated without or with 100nM ET-1 for the identified time periods. B. 

Serum-starved quiescent A-10 cells were treated without or with 6.5nM of IGF-1 for the 

identified time periods. Nuclear fractions of the cell lysates were immunoblotted by Egr-1 

antibody as shown in the top panels of each section. Blots were also analyzed for protein loading, 

using GAPDH (middle panels of each section). Bottom panels (bar diagrams) represent average 

data quantified by densitometric scanning of protein bands shown in the top panel. Values are the 

means ± SE of 6 distinct western blots from 3 independent experiments that were performed in 

duplicate, and are expressed as fold increase over basal phosphorylation, which is taken as 1. No 
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results were excluded. P<0.05 considered as statistically significance versus control.* indicates 

that P<0.05. 

 

Figure 6.  Curcumin downregulates Egr-1 in response to ET-1 and IGF-1 in A-10 VSMC. 

A. Serum-starved quiescent A-10 cells were pretreated without or with the indicated curcumin 

concentrations for 30 minutes, followed by 100nM of ET-1 for 60 minutes. B. Serum-starved 

quiescent A-10 cells were pretreated without or with the indicated curcumin concentrations for 30 

minutes, followed by 6.5nM of IGF-1 for 60 minutes. Nuclear fractions of the cell lysates were 

immunoblotted by Egr-1 antibody as shown in the top panels of each section. Blots were 

analyzed for total nuclear protein by GAPDH (middle panels of each section). Bottom panels (bar 

diagrams) represent average data quantified by densitometric scanning of protein bands shown in 

the top panel. Values are the means ± SE of 6 distinct western blots from 3 independent 

experiments that were performed in duplicate, and are expressed as fold increase over basal 

phosphorylation, which is taken as 1. No results were excluded. P<0.05 considered as statistically 

significance versus ET-1 or IGF-1 alone. *** indicates that P<0.0005. 

 





69 

 

 

 

 

 

Figure 1



70 

 

 

 

 

Figure 1



71 

 

 

 

 

 

 
 

Figure 2



72 

 

 

 
Figure 2 



73 

 

 

 

 

Figure 3



74 

 

 

 
 

Figure 3



75 

 

 

 

 

Figure 4 



76 

 

 

 

 
Figure 4



77 

 

 

 

Figure 5 



78 

 

 

 

 

Figure 5



79 

 

 

 
Figure 6



80 

 

 

 

Figure 6



81 

 

 

Reference List 

 

 1.  Bouallegue A, Daou GB, Srivastava AK. Endothelin-1-induced signaling pathways in 
vascular smooth muscle cells. Curr Vasc Pharmacol 2007;5:45-52. 

 2.  Ivey ME, Osman N, Little PJ. Endothelin-1 signalling in vascular smooth muscle: pathways 
controlling cellular functions associated with atherosclerosis. Atherosclerosis 
2008;199:237-47. 

 3.  Reriani M, Raichlin E, Prasad A, Mathew V, Pumper GM, Nelson RE, et al. Long-term 
administration of endothelin receptor antagonist improves coronary endothelial 
function in patients with early atherosclerosis. Circulation 2010;122:958-66. 

 4.  Touyz RM, Schiffrin EL. Role of endothelin in human hypertension. Can J Physiol 
Pharmacol 2003;81:533-41. 

 5.  Motte S, McEntee K, Naeije R. Endothelin receptor antagonists. Pharmacol Ther 
2006;110:386-414. 

 6.  Jackson CL, Schwartz SM. Pharmacology of smooth muscle cell replication. Hypertension 
1992;20:713-36. 

 7.  Bouallegue A, Vardatsikos G, Srivastava AK. Role of insulin-like growth factor 1 receptor 
and c-Src in endothelin-1- and angiotensin II-induced PKB phosphorylation, and 
hypertrophic and proliferative responses in vascular smooth muscle cells. Can J 
Physiol Pharmacol 2009;87:1009-18. 

 8.  Daou GB, Srivastava AK. Reactive oxygen species mediate Endothelin-1-induced 
activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in 
vascular smooth muscle cells. Free Radic Biol Med 2004;37:208-15. 

 9.  Azar ZM, Mehdi MZ, Srivastava AK. Activation of insulin-like growth factor type-1 
receptor is required for H2O2-induced PKB phosphorylation in vascular smooth 
muscle cells. Can J Physiol Pharmacol 2006;84:777-86. 

 10.  Delafontaine P, Lou H, Alexander RW. Regulation of insulin-like growth factor I 
messenger RNA levels in vascular smooth muscle cells. Hypertension 1991;18:742-
7. 

 11.  King GL, Goodman AD, Buzney S, Moses A, Kahn CR. Receptors and growth-promoting 
effects of insulin and insulinlike growth factors on cells from bovine retinal 
capillaries and aorta. J Clin Invest 1985;75:1028-36. 

 12.  Clemmons DR, Van Wyk JJ. Evidence for a functional role of endogenously produced 
somatomedinlike peptides in the regulation of DNA synthesis in cultured human 
fibroblasts and porcine smooth muscle cells. J Clin Invest 1985;75:1914-8. 



82 

 

 

 13.  Duan C. The chemotactic and mitogenic responses of vascular smooth muscle cells to 
insulin-like growth factor-I require the activation of ERK1/2. Mol Cell Endocrinol 
2003;206:75-83. 

 14.  Duan C, Bauchat JR, Hsieh T. Phosphatidylinositol 3-kinase is required for insulin-like 
growth factor-I-induced vascular smooth muscle cell proliferation and migration. 
Circ Res 2000;86:15-23. 

 15.  Epstein J, Sanderson IR, Macdonald TT. Curcumin as a therapeutic agent: the evidence 
from in vitro, animal and human studies. Br J Nutr 2010;103:1545-57. 

 16.  Soni KB, Kuttan R. Effect of oral curcumin administration on serum peroxides and 
cholesterol levels in human volunteers. Indian J Physiol Pharmacol 1992;36:273-5. 

 17.  Ramirez BA, Soler A, Carrion-Gutierrez MA, Pamies MD, Pardo ZJ, Diaz-Alperi J, et al. 
An hydroalcoholic extract of Curcuma longa lowers the abnormally high values of 
human-plasma fibrinogen. Mech Ageing Dev 2000;114:207-10. 

 18.  Ghosh SS, Salloum FN, Abbate A, Krieg R, Sica DA, Gehr TW, et al. Curcumin prevents 
cardiac remodeling secondary to chronic renal failure through deactivation of 
hypertrophic signaling in rats. Am J Physiol Heart Circ Physiol 2010;299:H975-
H984. 

 19.  Kang BY, Khan JA, Ryu S, Shekhar R, Seung KB, Mehta JL. Curcumin reduces 
angiotensin II-mediated cardiomyocyte growth via LOX-1 inhibition. J Cardiovasc 
Pharmacol 2010;55:176-83. 

 20.  Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, et al. The 
dietary compound curcumin inhibits p300 histone acetyltransferase activity and 
prevents heart failure in rats. J Clin Invest 2008;118:868-78. 

 21.  Dikshit M, Rastogi L, Shukla R, Srimal RC. Prevention of ischaemia-induced biochemical 
changes by curcumin & quinidine in the cat heart. Indian J Med Res 1995;101:31-5. 

 22.  Nirmala C, Puvanakrishnan R. Protective role of curcumin against isoproterenol induced 
myocardial infarction in rats. Mol Cell Biochem 1996;159:85-93. 

 23.  Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J 
Pharmacol 1998;124:425-7. 

 24.  Zhou H, Beevers CS, Huang S. The Targets of Curcumin. Curr Drug Targets 2010. 

 25.  Yang X, Thomas DP, Zhang X, Culver BW, Alexander BM, Murdoch WJ, et al. Curcumin 
inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell 
function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol 
2006;26:85-90. 



83 

 

 

 26.  Huang HC, Jan TR, Yeh SF. Inhibitory effect of curcumin, an anti-inflammatory agent, on 
vascular smooth muscle cell proliferation. Eur J Pharmacol 1992;221:381-4. 

 27.  Pae HO, Jeong GS, Jeong SO, Kim HS, Kim SA, Kim YC, et al. Roles of heme oxygenase-
1 in curcumin-induced growth inhibition in rat smooth muscle cells. Exp Mol Med 
2007;39:267-77. 

 28.  Qin L, Yang YB, Tuo QH, Zhu BY, Chen LX, Zhang L, et al. Effects and underlying 
mechanisms of curcumin on the proliferation of vascular smooth muscle cells 
induced by Chol:MbetaCD. Biochem Biophys Res Commun 2009;379:277-82. 

 29.  Chen HW, Huang HC. Effect of curcumin on cell cycle progression and apoptosis in 
vascular smooth muscle cells. Br J Pharmacol 1998;124:1029-40. 

 30.  Ak T, Gulcin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol 
Interact 2008;174:27-37. 

 31.  Reddy AC, Lokesh BR. Studies on the inhibitory effects of curcumin and eugenol on the 
formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell 
Biochem 1994;137:1-8. 

 32.  Sreejayan, Rao MN. Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm 
Pharmacol 1994;46:1013-6. 

 33.  Khachigian LM. Early growth response-1 in cardiovascular pathobiology. Circ Res 
2006;98:186-91. 

 34.  Hashim S, Li Y, Anand-Srivastava MB. Small cytoplasmic domain peptides of natriuretic 
peptide receptor-C attenuate cell proliferation through Gialpha protein/MAP 
kinase/PI3-kinase/AKT pathways. Am J Physiol Heart Circ Physiol 
2006;291:H3144-H3153. 

 35.  Li Y, Hashim S, Anand-Srivastava MB. Intracellular peptides of natriuretic peptide 
receptor-C inhibit vascular hypertrophy via Gqalpha/MAP kinase signaling 
pathways. Cardiovasc Res 2006;72:464-72. 

 36.  Khachigian LM, Lindner V, Williams AJ, Collins T. Egr-1-induced endothelial gene 
expression: a common theme in vascular injury. Science 1996;271:1427-31. 

 37.  Nakmareong S, Kukongviriyapan U, Pakdeechote P, Donpunha W, Kukongviriyapan V, 
Kongyingyoes B, et al. Antioxidant and vascular protective effects of curcumin and 
tetrahydrocurcumin in rats with L-NAME-induced hypertension. Naunyn 
Schmiedebergs Arch Pharmacol 2011;383:519-29. 

 38.  Liu Y, Dolence J, Ren J, Rao M, Sreejayan N. Inhibitory effect of dehydrozingerone on 
vascular smooth muscle cell function. J Cardiovasc Pharmacol 2008;52:422-9. 



84 

 

 

 39.  Li Y, Levesque LO, Anand-Srivastava MB. Epidermal growth factor receptor 
transactivation by endogenous vasoactive peptides contributes to hyperproliferation 
of vascular smooth muscle cells of SHR. Am J Physiol Heart Circ Physiol 
2010;299:H1959-H1967. 

 40.  Meng D, Lv DD, Fang J. Insulin-like growth factor-I induces reactive oxygen species 
production and cell migration through Nox4 and Rac1 in vascular smooth muscle 
cells. Cardiovasc Res 2008;80:299-308. 

 41.  Blaschke F, Bruemmer D, Law RE. Egr-1 is a major vascular pathogenic transcription 
factor in atherosclerosis and restenosis. Rev Endocr Metab Disord 2004;5:249-54. 

 42.  Houston P, Dickson MC, Ludbrook V, White B, Schwachtgen JL, McVey JH, et al. Fluid 
shear stress induction of the tissue factor promoter in vitro and in vivo is mediated 
by Egr-1. Arterioscler Thromb Vasc Biol 1999;19:281-9. 

 43.  Day FL, Rafty LA, Chesterman CN, Khachigian LM. Angiotensin II (ATII)-inducible 
platelet-derived growth factor A-chain gene expression is p42/44 extracellular 
signal-regulated kinase-1/2 and Egr-1-dependent and mediated via the ATII type 1 
but not type 2 receptor. Induction by ATII antagonized by nitric oxide. J Biol Chem 
1999;274:23726-33. 

 44.  McCaffrey TA, Fu C, Du B, Eksinar S, Kent KC, Bush H, Jr., et al. High-level expression 
of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis. J Clin 
Invest 2000;105:653-62. 

 45.  Harja E, Bucciarelli LG, Lu Y, Stern DM, Zou YS, Schmidt AM, et al. Early growth 
response-1 promotes atherogenesis: mice deficient in early growth response-1 and 
apolipoprotein E display decreased atherosclerosis and vascular inflammation. Circ 
Res 2004;94:333-9. 

 46.  Morimoto M, Kume N, Miyamoto S, Ueno Y, Kataoka H, Minami M, et al. 
Lysophosphatidylcholine induces early growth response factor-1 expression and 
activates the core promoter of PDGF-A chain in vascular endothelial cells. 
Arterioscler Thromb Vasc Biol 2001;21:771-6. 

 47.  Liu QF, Yu HW, Liu GN. Egr-1 upregulates OPN through direct binding to its promoter 
and OPN upregulates Egr-1 via the ERK pathway. Mol Cell Biochem 2009;332:77-
84. 

 48.  Fahmy RG, Khachigian LM. Suppression of growth factor expression and human vascular 
smooth muscle cell growth by small interfering RNA targeting EGR-1. J Cell 
Biochem 2007;100:1526-35. 

 49.  Zhang YM, Shi GG, Tang Z, Zheng JH, Li WQ, Guo FX, et al. Effects of N-n-butyl 
haloperidol iodide on myocardial ischemia/reperfusion injury and Egr-1 expression 
in rat. Acta Biochim Biophys Sin (Shanghai) 2006;38:435-41. 



85 

 

 

 50.  Liu GN, Teng YX, Yan W. Transfected synthetic DNA enzyme gene specifically inhibits 
Egr-1 gene expression and reduces neointimal hyperplasia following balloon injury 
in rats. Int J Cardiol 2008;129:118-24. 

 51.  Chen Y, Zheng J, Zhang Y, Wang J, Liu Q, Huang Z, et al. N-4-tert-butyl benzyl 
haloperidol chloride suppresses Ca2+-dependent Egr-1 expression and subsequently 
inhibits vascular smooth muscle cell proliferation induced by angiotensin II. Cell 
Physiol Biochem 2009;23:295-304. 

 52.  Neyses L, Nouskas J, Vetter H. Inhibition of endothelin-1 induced myocardial protein 
synthesis by an antisense oligonucleotide against the early growth response gene-1. 
Biochem Biophys Res Commun 1991;181:22-7. 

 53.  Sharma OP. Antioxidant activity of curcumin and related compounds. Biochem Pharmacol 
1976;25:1811-2. 

 54.  Levonen AL, Vahakangas E, Koponen JK, Yla-Herttuala S. Antioxidant gene therapy for 
cardiovascular disease: current status and future perspectives. Circulation 
2008;117:2142-50. 

 55.  Araujo CC, Leon LL. Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz 
2001;96:723-8. 

 56.  Shen L, Ji HF. Insights into the inhibition of xanthine oxidase by curcumin. Bioorg Med 
Chem Lett 2009;19:5990-3. 

 57.  Pirvulescu MM, Gan AM, Stan D, Simion V, Calin M, Butoi E, et al. Curcumin and a 
Morus alba Extract Reduce Pro-Inflammatory Effects of Resistin in Human 
Endothelial Cells. Phytother Res 2011. 

 58.  Yu YM, Lin HC. Curcumin prevents human aortic smooth muscle cells migration by 
inhibiting of MMP-9 expression. Nutr Metab Cardiovasc Dis 2010;20:125-32. 

 59.  Azar ZM, Mehdi MZ, Srivastava AK. Insulin-like growth factor type-1 receptor 
transactivation in vasoactive peptide and oxidant-induced signaling pathways in 
vascular smooth muscle cells. Can J Physiol Pharmacol 2007;85:105-11. 



 

 

CHAPITRE 3 
 

DISCUSSION GÉNÉRALE 



87 

 

 

The discovery of endothelin (ET), the potent vasoconstrictor, surfaced only two decades 

ago and the endothelin peptide family has now evolved into an intricate system. Endothelin-1 

(ET-1) is the most predominant isoform synthesized by the vasculature, mainly by the vascular 

endothelium and smooth muscle cells, and is accountable for the majority of the pathobiological 

effects exerted by the endothelin peptide family. In the vascular system, ET-1 mainly exerts a 

basal vascular tone regulation. A long term upregulated ET-1 system has been suggested to 

contribute to the deterioration of vascular function that leads to the development of vascular 

diseases. ET-1 exerts its action through the activation of its endothelin receptors, ETA and ETB, 

but ETA is mainly responsible in the contribution of ET-1 to the pathogenesis of vascular 

abnormalities, such as hypertension, atherosclerosis, restenosis, and other cardiovascular 

diseases. Based on recent research, ET-1 receptor antagonists exhibit inhibition of ET-1-induced 

functional and structural alterations in the vasculature. Nevertheless, ET-1 mediates its 

pleiotropic actions through the activation of several signaling pathways and further investigation 

is required to provide a better knowledge of these ET-1 signal transducing pathways for 

designing specific therapeutic agents directed against critical components of the signaling 

systems implicated in pathological contribution of ET-1-induced vascular remodeling.  

ET-1 elicits its biological effects in a paracrine-autocrine manner through the activation of 

its G-protein-coupled receptors (GPCR). This leads to the activation of multiple signaling 

pathways including mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-

kinase/protein kinase B (PI3-K/PKB) pathways that promote cellular growth, proliferation, 

hypertrophy and survival, and these are all key processes involved in vascular cell remodeling 

often encountered in ET-1 triggered pathophysiological states. Once ET-1 activates its receptor, 

the latter recruits Ras, a small G-protein that leads to the activation of MAPK, including 
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extracellular signal-regulated kinase 1/2 (ERK1/2), c-jun-NH2-terminal kinase (JNK), and 

p38mapk (276). In parallel, ET-1 also activates PI3-K (131) and several downstream targets of 

PI3-K have also been documented, the most studied being protein kinase B (PKB), also know as 

Akt (a product of akt proto-oncogene) (5). Activation of receptor and non receptor protein 

tyrosine kinases (PTK) has been proposed to be implicated in transducing ET-1-induced 

signaling events. Epidermal growth factor receptor (EGFR) (277, 278), c-Src (278, 279), and 

Ca2+ dependent PYK2 (278-280) are amongst the PTK that are activated by ET-1. We have 

recently shown a requirement of insulin-like growth factor type 1 receptor (IGF-1R) in ET-1-

induced PKB activation in VSMC (151). However, the precise molecular mechanism responsible 

for this transactivation still remains unresolved. A possible contribution to this mechanism might 

be mediated through ROS generation. Several studies have demonstrated that ROS play a key 

role in propagating growth factor and vasoactive peptide signaling. The high levels of ET-1 

observed in hypertension and atherosclerosis lead to excessive production generation of ROS and 

in a decrease in the antioxidant status (159). At physiological concentrations, ROS generated 

within the vasculature are important signaling molecules. However, an excessive synthesis of 

ROS can overcome antioxidant mechanisms and generate deleterious effects often seen in 

cardiovascular disorders (11). The involvement of ROS in ET-1-induced activation of MAPKs 

including JNK, p38mapk and ERK1/2 has been demonstrated in cardiac fibroblasts (125). 

Moreover, a role of ROS in ET-1-induced activation of the redox-sensitive ERK1/2 and PKB 

signaling pathways has been demonstrated in VSMC (5). In this context, several studies have 

investigated the possible vascular protective effect of antioxidants. A surge of interest has 

recently erupted around the use of naturally-occurring compounds with antioxidant capacity. 

Medicinal plants are rich in phytochemicals that possess several therapeutic effects, including 

antioxidative properties. Curcumin, the main constituent of the spice turmeric that is extracted 
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from the rhizomes of the Curcuma Longa L. herb, is an ancient known phytochemical that 

exhibits a vast spectrum of biological properties, amongst them, antioxidant and anti-

inflammatory properties. It has mainly been investigated for its effects against cancer. Recent 

studies though have demonstrated that curcumin also exhibits cardiovascular protective effects 

and its actions are pleiotropic and appear to involve the regulation of transcription factors, growth 

factors, cytokines, protein kinases and others (185). Curcumin has been shown to suppress ROS 

generation (174, 202, 203) and to inhibit several of the mediators involved in the ET-1 signaling 

pathway in several cellular lines. However, the therapeutic efficacy of curcumin in ET-1-induced 

signaling has yet to be reported. Therefore, these studies were undertaken to investigate the effect 

of curcumin on ET-1-induced signaling of the redox-sensitive ERK1/2, PKB pathways which are 

believed to be key players in ET-1-induced proliferative and hypertrophic responses. In an 

attempt to understand the mechanism, we studied the effect of curcumin on ET-1-stimulated IGF-

1R, PKB, c-Raf and ERK1/2 signaling in A-10 VSMC.  

Our results are the first to report an inhibitory effect of curcumin on ET-1-stimulated 

hypertrophic and proliferative signaling in VSMC. In the first part of this study, we observed a 

dose-dependent inhibitory effect of curcumin on ET-1 stimulation of IGF-1R, PKB, c-Raf and 

ERK1/2 phosphorylation in A-10 VSMC. Given that ET-1 requires IGF-1R transactivation, we 

further investigated the effect of curcumin on IGF-1-induced signaling in VSMC. A similar dose-

dependent inhibitory effect was observed on the IGF-1-induced IGF-1R, PKB, c-Raf and ERK1/2 

phosphorylation in A-10 VSMC. Moreover, we tested if transcription factor early growth 

response-1 (Egr-1), a downstream component of ERK1/2 that is a key player in multiple 

cardiovascular pathological processes (281), is a target of curcumin in response to ET-1 as well 

as IGF-1. Curcumin attenuated ET-1 and IGF-1-induced expression of Egr-1 in VSMC. 
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 Taken together, we demonstrate that curcumin inhibits ET-1 and IGF-1-stimulated 

increase in the phosphorylation state of IGF-1R, PKB, c-Raf and ERK1/2, as well as Egr-1 

expression in A-10 VSMC. Since ERK1/2, PKB and Egr-1 play a crucial role in mediating 

VSMC growth and hypertrophy, it may be suggested that the ability of curcumin to attenuate 

these pathways may serve as a potential mechanism by which curcumin counteracts the 

biological responses of ET-1 and thus exerts a cardiovascular protective effect. 
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The results presented here demonstrate for the first time a negative modulatory effect of 

curcumin on ET-1-stimulated signaling components: PKB, c-Raf, ERK1/2 and IGF-1R, in A-10 

VSMC. Given the fact the curcumin exhibits a significant inhibitory effect on ET-1-induced IGF-

1R phosphorylation, we expanded our studies to investigate its effect on IGF-1-induced signaling 

and highlighted an inhibitory effect of curcumin on IGF-1-induced phosphorylation of PKB, c-

Raf, ERK1/2 and IGF-1R, in A-10 VSMC. Our work also demonstrates that curcumin inhibits 

the expression of ET-1 and IGF-1-induced transcription factor Egr-1 in VSMC (Figure 4.5). 

  

 Thus, the findings in the present study have uncovered curcumin as a potent antagonist of 

ET-1 action in VSMC. Provided that curcumin exhibits such profound inhibitory effects on ET-1-

induced signaling events that have been shown to promote mitogenic and hypertrophic actions in 

the vasculature, it may be suggested that curcumin may be beneficial in attenuating vascular 

remodeling associated with several cardiovascular diseases. However, due to its vast array of 

biological properties, curcumin is able to interfere with numerous signaling pathways and it is 

suggested that a single site of action is possibly not enough to represent all the effects of this 

substance. 
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Figure 4.5 Schematic hypothetical model summarizing the potential interaction of 

curcumin with ET-1 signaling pathways in VSMC.  

The ability of curcumin to inhibit ET-1-induced IGF-1Rβ phosphorylation and downstream 

phosphorylation of PKB, c-Raf and ERK1/2, along with the expression of Egr-1 suggests that 

curcumin might act upstream of IGF-1R in mediating this inhibitory effect. Curcumin may also 

inhibit oxidative stress generation thereby turn off ET-1-induced signaling in VSMC.
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