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Abstract

A single object must be allocated to at most one of n agents. Money
transfers are possible and preferences are quasilinear. We o¤er an explicit
description of the individually rational mechanisms which are Pareto-
optimal in the class of feasible, strategy-proof, anonymous and envy-free
mechanisms. These mechanisms form a one-parameter in�nite family; the
Vickrey mechanism is the only Groves mechanism in that family.

1 Introduction

We revisit the problem of allocating a single valuable object to at most one
of a number of agents when monetary transfers are possible and preferences
are quasilinear. Valuations being private information, an incentive-compatible
mechanism is needed. To avoid delicate assumptions on beliefs, we ask that this
mechanism be strategy-proof. To guarantee feasibiIity, the sum of the transfers
made to the agents should never be positive.
This is the simplest of a variety of assignment problems that have received

considerable attention in the literature. Most of the existing work focuses
on assignment-optimal strategy-proof mechanisms. In our model, assignment-
optimality simply means that the object never remains unallocated and always
goes to a maximal valuation agent. Under assumptions that cover our particu-
lar case, Holmström (1979) showed that the assignment-optimal strategy-proof
mechanisms are precisely the famous Groves (1973) mechanisms. Green and
La¤ont (1979) showed that all feasible Groves mechanisms waste money: the
sum of transfers is (strictly) negative at some valuation pro�les.
Of course, both the assignment and the sum of transfers matter for Pareto-

optimality. Since relaxing the constraint of assignment-optimality obviously

�I thank E. Athanasiou for stimulating conversations, G. de Clippel and H. Moulin for
useful comments, and the FQRSC for �nancial support.
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helps to reduce the amount of money wasted (leaving the object unallocated and
performing no transfers is a strategy-proof and feasible mechanism that wastes
no money), restricting attention to the Groves mechanisms is unwarranted. We
should instead look for mechanisms that are (constrained) Pareto-optimal within
the entire class of feasible strategy-proof mechanisms: not all them need be
Groves mechanisms1 .
Nisan et al. (2007) show that all strategy-proof mechanisms for our problem

have the following structure. Each agent faces a price that varies only with
the other agents� valuations. If he reports a valuation below that price, he
does not get the object but receives a transfer which depends upon the others�
valuations. If he reports a valuation above the price, he receives the object
plus the di¤erence between that transfer and the price of the object. This is a
generalization of Holmström�s (1979) characterization to mechanisms that need
not be assignment-optimal.
Identifying the Pareto frontier of the class of feasible strategy-proof mech-

anisms, however, remains an open problem. The question is di¢ cult because
feasibility imposes complex restrictions on the price and transfer functions in the
Nisan et al. characterization. In the current paper we obtain partial results by
restricting attention to the subclass of anonymous and envy-free mechanisms, for
which the price and transfer functions turn out to be tractable. Notice that not
all envy-free strategy-proof mechanisms are Groves: while no-envy forces an op-
timal assignment of the object whenever the latter is allocated (Svensson, 1983),
it does allow us to leave the object unallocated. We identify a one-parameter
in�nite family of mechanisms �which we call the maxmed mechanisms� that
are Pareto-optimal in the class of feasible, strategy-proof, anonymous and envy-
free mechanisms. We further prove that the maxmed mechanisms are the only
individually rational and Pareto-optimal mechanisms within that class. The
Vickrey (1961) mechanism is the only Groves maxmed mechanism; all others
leave the object unallocated at some pro�le of valuations.
Our paper is related to two di¤erent lines of work. The �rst line studies

envy-free strategy-proof mechanisms in various quasilinear assignment models;
recent papers are Pápai (2003), Svensson (2004), and Ohseto (2006). The most
important di¤erence with our work is that all these papers restrict attention to
mechanisms that never leave an object unallocated, hence, since no-envy implies
assignment optimality, to Groves mechanisms. In a model with several di¤erent
valuable objects, Pápai (2003) proves that no envy-free Groves mechanism exists
on the unrestricted domain of valuations and characterizes the Groves mecha-
nisms that are envy-free on the domain of superadditive valuations. Svensson
(2004) considers a model with n agents and n di¤erent objects where valuations
may be negative but each agent must be assigned one object. He describes the
Groves mechanisms that satisfy no-envy and two auxiliary conditions. Ohseto
(2006) studies a model with n agents and m < n copies of the same object; val-

1 Individual rationality is another good reason to look beyond the Groves mechanisms. In a
large class of assignment models (including ours), Holmström (1979) and Chew and Serizawa
(2007) showed that all Groves mechanisms, except the Vickrey auction, violate individual
rationality.
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uations may be negative, all copies must be assigned, and each agent may get
at most one copy. He characterizes the family of envy-free Groves mechanisms.
The second line of work studies �optimal�strategy-proof assignment mecha-

nisms, usually in a multi-object or multi-unit setting. The class of mechanisms
under consideration as well as the optimality criterion vary.
Here again, most papers focus on Groves mechanisms. Guo and Conitzer

(2009) and Moulin (2009) follow the worst-case approach: they minimize (slightly
di¤erent measures of) the worst relative surplus loss. Guo and Conitzer (2010)
assume that a prior on the preference pro�les is available and minimize the
expected loss. Apt et al. (2008) describe the mechanisms whose total loss is un-
dominated in the sense that no other mechanism in the reference class produces
a smaller loss at all pro�les. Closer to our paper, Ohseto (2006) and Guo and
Conitzer (2008) use the traditional criterion of (constrained) Pareto-optimality.
In the paper already cited above, Ohseto (2006) describes the Pareto frontier
of the class of envy-free Groves mechanisms. In a fairly general multi-object
setting, Guo and Conitzer (2008) o¤er a set of necessary and su¢ cient condi-
tions for Pareto-optimality within the class of Groves mechanisms; they also
provide algorithms which improve upon any given Groves mechanism and reach
or approach the Pareto frontier.
Three recent papers look beyond the Groves mechanisms. In the same model

as ours, Moulin (2010) studies the problem of minimizing the worst relative
surplus loss within the class of feasible, strategy-proof, anonymous, and q-fair
mechanisms2 , where q � 3: He allows for non-Groves mechanisms but the solu-
tion he describes is a Groves mechanism. In the multi-copy, unit-demand model,
de Clippel et al. (2011) propose a mechanism that is not assignment-optimal but
guarantees a relative surplus loss of less than 20% when the number of agents
tends to in�nity. Their mechanism never leaves more than one object unallo-
cated and it assigns the remaining objects e¢ ciently. The paper most closely
related to ours is Athanasiou (2011). In the single-object model, Athanasiou
provides a set of necessary and, under individual rationality, su¢ cient conditions
for Pareto-optimality within the class of feasible, strategy-proof, and anonymous
mechanisms. In the two-agent case, he shows that the maxmed mechanisms are
Pareto-optimal but does not prove that they are the only ones. For more than
two agents, he does not give any example of a mechanism satisfying his condi-
tions for Pareto optimality.

2 Setup

One object is to be allocated to at most one of n agents. Money transfers are
possible and preferences are quasilinear. Each agent�s valuation of the object is a
nonnegative real number: a (valuation) pro�le is a vector v = (v1; :::; vn) 2 RN+ ;
where N = f1; :::; ng is the set of agents. If i 2 N , we often write i instead of

2The notion of q-fairness imposes a lower bound on the welfare gain that each agent enjoys
from participating in the mechanism. The concept was introduced by Porter, Shoham and
Tennenholtz (2004) and applied to assignment mechanisms by Atlamaz and Yengin (2006).

3



fig and we write �i to denote the set N n i: The notation (v�i; v0i) stands for
the valuation pro�le obtained from v by replacing the valuation vi with v0i:
A mechanism is a pair (a; t) where a : RN+ ! f0; 1gN and t : RN+ ! RN :

For any agent i 2 N and any valuation pro�le v 2 RN+ , ai(v) = 1 means that i
receives the object at pro�le v and ai(v) = 0 means that he does not; ti(v) is
the money transfer to agent i: The utility achieved by agent i at pro�le v under
the mechanism (a; t) is viai(v) + ti(v):
A mechanism (a; t) is

� feasible if it is both a-feasible, i.e.,
P

i2N ai(v) � 1 for all v 2 RN+ , and
t-feasible, i.e.,

P
i2N ti(v) � 0 for all v 2 RN+ ;

� strategy-proof if viai(v) + ti(v) � viai(v�i; v
0
i) + ti(v�i; v

0
i) for all v 2 RN+ ;

i 2 N and v0i 2 R+;
� anonymous if v�(i)a�(i)(�v)+ t�(i)(�v) = viai(v)+ ti(v) for all i 2 N , v 2 RN+ ,
and any permutation � on N , where the pro�le �v is de�ned by (�v)�(i) = vi
for all i 2 N;
� envy-free if viai(v) + ti(v) � viaj(v) + tj(v) for all v 2 RN+ and i; j 2 N:
We stress that a feasible mechanism may leave the object unallocated at

some pro�le (i.e.,
P

i2N ai(v) = 0 may hold for some v 2 RN+ ). Note also that
anonymity is de�ned in utility terms.
We letM denote the class of feasible, strategy-proof, anonymous and envy-

free mechanisms. If (a; t); (a0; t0) 2 M, we write (a0; t0) % (a; t) if via0i(v) +
t0i(v) � viai(v) + ti(v) for all v 2 RN+ and all i 2 N: If in addition the inequality
is strict for some v 2 RN+ and some i 2 N; then we write (a0; t0) � (a; t) and
we say that (a0; t0) Pareto-dominates (a; t): If all inequalities are equalities, we
write (a0; t0) � (a; t) and we say that (a; t) and (a0; t0) are Pareto-equivalent.
A mechanism (a; t) 2 M is Pareto-optimal (in M) if there is no mechanism
(a0; t0) 2M which Pareto-dominates it.
A mechanism (a; t) is individually rational if viai(v) + ti(v) � 0 for all

v 2 RN+ and i 2 N: This paper provides an explicit description of the individually
rational Pareto-optimal mechanisms inM.

3 Preliminaries and statement of the result

We begin by proving a number of properties of the mechanisms inM. This is
the purpose of the following three lemmas. Let R+ = R+ [ f+1g :

Lemma 1. A mechanism (a; t) is strategy-proof and anonymous if and only if
there exist two symmetric functions p : Rn�1+ ! R+ and g : Rn�1+ ! R such
that, for all v 2 RN+ and i 2 N;

(ai(v); ti(v)) =

�
(1; g(v�i)� p(v�i)) if vi > p(v�i);

(0; g(v�i)) if vi < p(v�i);
(1)

and

(ai(v); ti(v)) 2 f(0; g(v�i)); (1; g(v�i)� p(v�i))g if vi = p(v�i): (2)
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Proof. The proof is an easy modi�cation of the proof of the characterization
of the strategy-proof mechanisms in Nisan et al. (2007). We omit the details.�

We call a pair of functions (p; g) 2 RR
n�1
+

+ � RR
n�1
+ a (payment) scheme.

If (1) and (2) hold for all v 2 RN+ and i 2 N; we say that the scheme (p; g)
generates the mechanism (a; t): It is clear from (1) that the scheme generating
a strategy-proof and anonymous mechanism is unique.
Conversely, because of (2), a scheme (p; g) generates not just one, but an

entire family of strategy-proof and anonymous mechanisms. In view of (1),
however, these mechanisms coincide at almost all pro�les. Moreover, they are all
Pareto-equivalent since agent i is indi¤erent between (0; g(v�i)) and (1; g(v�i)�
p(v�i)) whenever vi = p(v�i):
From the viewpoint of feasibility, a particularly useful mechanism is the

lexicographic mechanism generated by (p; g), which we de�ne as follows: for
all v 2 RN+ and i 2 N; (ai(v); ti(v)) = (1; g(v�i) � p(v�i)) if [vi > p(v�i)]
or [vi = p(v�i) and vj < p(v�j) for all j < i] ; and (ai(v); ti(v)) = (0; g(v�i)) if
[vi < p(v�i)] or [vi = p(v�i) and vj � p(v�j) for some j < i].
For any k 2 N and x = (x1; :::; xk) 2 Rk; we denote by maxx the maximum

of the numbers x1; :::; xk:

Lemma 2. Let (a; t) be a strategy-proof and anonymous mechanism and let
(p; g) be the scheme generating it.
(i) If (a; t) is a-feasible, then p(x) � maxx for all x 2 Rn�1+ : Moreover,

(a; t) is conditionally a-optimal: for all v 2 RN+ and i 2 N , ai(v) = 1 only if
vi = max v:
(ii) If p(x) > maxx for all x 2 Rn�1+ ; then (a; t) is a-feasible. If p(x) �

maxx for all x 2 Rn�1+ ; then (a; t) is Pareto-equivalent to an a-feasible, strategy-
proof and anonymous mechanism; in particular, the lexicographic mechanism
generated by (p; g) is a-feasible.

Proof. Let (a; t) be a strategy-proof and anonymous mechanism and let (p; g)
be the scheme that generates it.

Ad (i). We �rst prove the contraposition of the �rst sentence. Suppose there
exists x = (x1; :::; xn�1) 2 Rn�1+ such that p(x) < maxx and assume with-
out loss of generality that maxx = x1: Consider the valuation pro�le v =
(x1; x1; x2; :::; xn�1): Since v1 = x1 = maxx > p(x) = p(v�1); we have a1(v) =
1: But since v2 = x1 = maxx > p(x) = p(v�2); we also have a2(v) = 1; meaning
that (a; t) is not a-feasible.
To check conditional a-optimality, let v = (v1; :::; vn) and suppose vi < vj :

Contrary to the claim, suppose ai(v) = 1: Then vi � p(v�i) � max v�i � vj ; a
contradiction.

Ad (ii). In order to prove the �rst sentence in (ii), assume p(x) > maxx for all
x 2 Rn�1+ : Contrary to the claim, suppose there exists v 2 RN+ and two distinct
agents i; j 2 N such that ai(v) = aj(v) = 1: Then vi � p(v�i) > max v�i � vj
and vj � p(v�j) > max v�j � vi; a contradiction.
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In order to prove the second sentence in (ii), assume p(x) � maxx for all
x 2 Rn�1+ and let (aL; tL) be the lexicographic mechanism generated by (p; g):
Suppose, by way of contradiction, that there exists v 2 RN+ and two distinct
agents i; j 2 N such that i < j and aLi (v) = aLj (v) = 1: Then vi � p(v�i) �
max v�i � vj > p(v�j) � vi; which is impossible:�
Statement (i) in Lemma 2 is Proposition 1 in Athanasiou (2011). His di-

rect proof does not exploit Nisan et al.�s characterization of the strategy-proof
mechanisms.

Lemma 3. Let (a; t) 2 M and let (p; g) be the scheme generating (a; t):
Then there exists a function g0 : R+ ! R such that g(x) = g0(maxx) for all
x 2 Rn�1+ :

Proof. We show that g(x) varies only with maxx: Speci�cally, let x = (x1; :::;
xn�1) and assume, without loss of generality, that maxx = x1: We prove that
for each i = 2; :::; n� 1 and each x0i � x1; g(x0i; x�i) = g(x):
Fix i 2 f2; :::; n� 1g ; say, i = 2; and let x02 � x1: Suppose, by way

of contradiction, that g(x1; x02; x3; :::; xn�1) 6= g(x1; x2; x3; :::; xn�1): Let v =
(v1; :::; vn) = (x1; x2; x

0
2; x3; :::; xn�1):

If a2(v) = a3(v) = 0; then g(v�3) 6= g(v�2) implies that either 2 envies 3 or
3 envies 2.
If a2(v) = 1 and a3(v) = 0; then by conditional a-optimality (which holds

by Lemma 2 (i)) v2 = x2 = max v = maxx = x1: Then (a1(v); t1(v)) =
(0; g(v�1)) = (0; g(x2; x

0
2; x3; :::; xn�1)) = (0; g(x1; x

0
2; x3; :::; xn�1)) while (a3(v);

t3(v)) = (0; g(v�3)) = (0; g(x1; x2; x3; :::; xn�1)): Then g(v�1) 6= g(v�3) and ei-
ther 1 envies 3 or 3 envies 1.
If a2(v) = 0 and a3(v) = 1; then by conditional a-optimality v3 = x02 =

max v = maxx = x1: Then (a1(v); t1(v)) = (0; g(v�1)) = (0; g(x2; x02; x3; :::; xn�1))
= (0; g(x2; x1; x3; :::; xn�1)) = (0; g(x1; x2; x3; :::; xn�1)); where the last inequal-
ity holds by symmetry of g: On the other hand, (a2(v); t2(v)) = (0; g(v�2)) =
(0; g(x1; x

0
2; x3; :::; xn�1)): Then g(v�1) 6= g(v�2) and either 1 envies 2 or 2 envies

1.�

We call a pair of functions (p; g0) 2 R
Rn�1+

+ � RR+ a simple scheme. We
say that (p; g0) generates the mechanism (a; t) if the scheme (p; g) de�ned by
g(x) = g0(maxx) generates (a; t):

De�nition 1. A simple scheme (p; g0) is a maxmed simple scheme if there
exists some � 2 R+ such that

p(x) = max (maxx; �) ;

g0(y) = med
�
0; y � �; �

n� 1

�
for all x 2 Rn�1+ and y 2 R+; where max (maxx; �) denotes the maximum of

the two numbers maxx; �; and med
�
0; y � �; �

n�1

�
denotes the median of the
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three numbers 0; y � �; �
n�1 : A mechanism (a; t) is a maxmed mechanism if it

is generated by a maxmed simple scheme.

An illustration is o¤ered in Figure 1. When � = 0; the maxmed simple
scheme (p; g0) of De�nition 1 is just Vickrey�s second-price auction. When
� > 0; any mechanism generated by the scheme leaves the object unallocated at
some pro�les. When the mechanism allocates the object, it does it optimally.

Let M0 denote the subset of mechanisms in M which are individually ra-
tional.

Theorem. (i) Every maxmed simple scheme (p; g0) generates at least one
mechanism (a; t) 2 M0 which is Pareto-optimal (in M). The lexicographic
mechanism generated by (p; g0) is such a mechanism3 .
(ii) Every mechanism (a; t) 2 M0 which is Pareto-optimal (in M) is a

maxmed mechanism.

Before establishing this result, we give an intuition for the constrained op-
timality of the maxmed mechanisms by showing that they are Pareto non-
comparable. Contrast for instance the Vickrey mechanism (parameterized by
� = 0) with a nontrivial maxmed mechanism (parameterized by some positive
value of �). Consider �rst a valuation pro�le v where 0 = vi < v1 < � for all
i 6= 1: The Vickrey mechanism assigns the object to agent 1 and performs no
transfer. The �-maxmed mechanism does not perform any transfer either but it
leaves the object unallocated, an outcome dominated by the Vickrey outcome.
Consider now a pro�le v0 where n�

n�1 = vi < v1 for all i 6= 1: The Vickrey mech-
anism assigns the object to agent 1, charges him n�

n�1 ; and performs no transfer
to the others. The �-maxmed mechanism assigns the object to agent 1, charges
him n�

n�1 �
�
n�1 = � and performs a transfer

�
n�1 to each of the other agents, an

outcome which dominates the Vickrey outcome. By not assigning the object at
low valuations pro�les, a maxmed mechanism with positive � creates bene�ts
for all agents at high valuations pro�les.

4 Proof of the theorem

Lemma 4. If (p; g0) is a maxmed simple scheme and (a; t) is the lexicographic
mechanism generated by (p; g0), then (a; t) 2M0:

Proof. This is just a matter of checking. Since (p; g0) is a maxmed simple
scheme, there exists � 2 R+ such that p(x) = max (maxx; �) and g0(y) =
med(0; y � �; �) for all x 2 Rn�1+ and y 2 R+: By Lemmas 1 and 2, the lex-
icographic mechanism (a; t) generated by (p; g0) is strategy-proof, anonymous
and a-feasible. It is also clear that (a; t) is individually rational. To check this,
�x v 2 RN+ and i 2 N: If ai(v) = 0; then viai(v) + ti(v) = g0(max v�i) � 0 by

3All the mechanisms generated by the maxmed simple scheme (p; g0) are Pareto-equivalent
but not all of them belong to M0: In particular, not all of them are feasible.
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the very de�nition of g0: If ai(v) = 1, then we must have vi � p(v�i); hence
viai(v) + ti(v) = vi + g0(max v�i)� p(v�i) � g0(max v�i) � 0:
It remains to be checked that (a; t) is t-feasible and envy-free. Fix v 2 RN+

and let � : N ! N be a permutation such that v�(1) � ::: � v�(n): There are six
possible cases. In all cases, the no-envy property holds among the agents who
do not receive the object since all of them receive the same transfer, namely,
g0(v�(1)):

Case 1. v�(1) � �:
Then g0(max v�i) = 0 for all i 2 N:
If v�(1) < �; we have (ai(v); ti(v)) = (0; 0) for all i 2 N: Hence

P
i2N ti(v) =

0; ensuring t�feasibility. Since all agents receive the same bundle, there is no
envy.
If v�(1) = �; let i� be the smallest i 2 N such that vi = v�(1) = �: Then

(ai�(v); ti�(v)) = (1;��) and (ai(v); ti(v)) = (0; 0) for all i 2 N n i�: ThusP
i2N ti(v) = �� � 0; ensuring t�feasibility. Agent i� is indi¤erent between

what he gets and what anybody else gets and since vi�� � 0 for all i 2 N n i�;
nobody envies i�.

Case 2. v�(2) � � < v�(1) � n�
n�1 :

Then (a�(1)(v); t�(1)(v)) = (1;��) and (ai(v); ti(v)) = (0; v�(1) � �) for all
i 2 N n �(1): Thus

P
i2N ti(v) = t�(1)+

P
i2Nn�(1) ti(v) = ��+(n� 1)(v�(1)�

�) = (n � 1)v�(1) � n� � 0; ensuring t-feasibility. Agent �(1) is indi¤erent
between what he gets and what anybody else gets and since v�(1) � � � vi � �
for all i 2 N n �(1); no i 2 N n �(1) envies �(1):

Case 3. v�(2) � � � n�
n�1 < v�(1):

Then (a�(1)(v); t�(1)(v)) = (1;��) and (ai(v); ti(v)) = (0; �
n�1 ) for all i 2

N n�(1): Thus
P

i2N ti(v) = ��+(n�1) �
n�1 = 0; satisfying t-feasibility. Since

v�(1)�� � �
n�1 ; agent �(1) does not envy any other agent and since

�
n�1 � vi��

for all i 2 N n �(1); nobody envies �(1):

Case 4. � < v�(2) � v�(1) � n�
n�1 :

Let i� be the smallest i 2 N such that vi = v�(1): Then (ai�(v); ti�(v)) =
(1;�v�(2) + (v�(2) � �)) = (1;��) and (ai(v); ti(v)) = (0; v�(1) � �) for all
i 2 N n i�: Thus

P
i2N ti(v) = ��+ (n� 1)(v�(1) ��) = (n� 1)v�(1) � n� � 0;

satisfying t-feasibility. Agent i� is indi¤erent between what he gets and what
anybody else gets and, since v�(1) � � � vi � � for all i 2 N n �(1); nobody
envies �(1):

Case 5. � < v�(2) � n�
n�1 < v�(1):

Then (a�(1)(v); t�(1)(v)) = (1;�v�(2)+(v�(2)��)) = (1;��) and (ai(v); ti(v))
= (0; �

n�1 ) for all i 2 N n �(1): Thus
P

i2N ti(v) = �� + (n � 1) �
n�1 = 0; sat-

isfying t-feasibility. Since v�(1) � � � �
n�1 ; agent �(1) does not envy any other

agent and, since �
n�1 � vi � � for all i 2 N n �(1); nobody envies �(1):

Case 6. n�
n�1 < v�(2):

Let i� be the smallest i 2 N such that vi = v�(1): Then (ai�(v); ti�(v)) =
(1;�v�(2)+ �

n�1 ) and (ai(v); ti(v)) = (0;
�
n�1 ) for all i 2 Nni

�: Thus
P

i2N ti(v) =
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�v�(2) + �
n�1 + (n � 1)

�
n�1 =

n�
n�1 � v�(2) � 0; satisfying t-feasibility. Since

v�(1) � v�(2) + �
n�1 �

�
n�1 ; agent i

� does not envy any other agent and, since
�
n�1 � vi � v�(2) +

�
n�1 for all i 2 N n i�; nobody envies �(1):�

Our next lemma establishes a number of properties of the mechanisms in
M0:

Notation 1. Given a simple scheme (p; g0), we let �(p) := inf
�
p(x) j x 2 Rn�1+

	
:

When the reference to the scheme is clear, we write � instead of �(p):

Lemma 5. Let (a; t) 2 M0 and let (p; g0) be the simple scheme generating
(a; t): Then,
(i) for all y 2 R+; g0(y) � 0;
(ii) for all x 2 Rn�1+ ; [p(x) > maxx]) [g0(maxx) = 0] ;

(iii) for all y 2 R+; g0(y) � �
n�1 ;

(iv) for all y; z 2 R+; [y � z]) [g0(y) � g0(z) and y � g0(y) � z � g0(z)] :

Proof. For any i 2 N; de�ne e(i) 2 Rn�1+ by ei(i) = 1 and ej(i) = 0 for all
j 2 N n i:
Ad (i). Let y 2 R+ and consider the valuation pro�le v = (v1; :::; vn) =
(y; :::; y): By feasibility, ai(v) = 0 for some i 2 N: By individual rationality,
viai(v) + ti(v) = g0(max v�i) = g0(y) � 0:

Ad (ii). Let x = (x1; :::; xn�1) 2 Rn�1+ be such that p(x) > maxx: By de�nition
of (a; t); an(x1; :::; xn�1;maxx) = 0 and since p is symmetric, ai(x1; :::; xn�1;maxx) =
0 for all i 2 N such that xi = maxx: Since (a; t) is conditionally a-optimal
(by Lemma 2), it follows that a(x1; :::; xn�1;maxx) = (0; :::; 0): By feasibility,P
i2N

ti(x1; :::; xn�1;maxx) = ng0(maxx) � 0: Combining this with (i), we obtain

g0(maxx) = 0:

Ad (iii). Note �rst that � � 0: Now let y 2 R+: If p(y; :::; y) > y; then (ii)
implies g0(y) = 0 � �

n�1 . From now on, assume p(y; :::; y) = y: Distinguish two
cases.

Case 1. p(y; :::; y) = �:
Let v = (v1; :::; vn) = (y; :::; y): If a(v) = (0; :::; 0); then t-feasibility implies

ng0(y) � 0; hence g0(y) � 0 � �
n�1 : If there exists i 2 N such that a(v) = e(i);

then t-feasibility implies (n � 1)g0(y) + g0(y) � p(y; :::; y) = ng0(y) � � � 0;
hence g0(y) � �

n �
�
n�1 :

Case 2. p(y; :::; y) > �:
Fix " such that 0 < " < y � � (= p(y; :::; y) � �): Let x" = (x"1; :::; x"n�1) 2

Rn�1+ be such that p(x") � �+": Such a point x" exists by de�nition of �:More-
over, maxx" < y (otherwise, p(x") � maxx" � y; hence �+" � y; contradicting
our assumption on "). Consider the valuation pro�le v" = (x"1; :::; x

"
n�1; y): Since

y > � + " � p(x"); we have an(v") = 1; hence by a-feasibility a(v") = e(n): By
t-feasibility, (n � 1)g0(y) + g0(maxx") � p(x") � 0 ) (n � 1)g0(y) � p(x") )
g0(y) � �+"

n�1 : Letting "! 0 yields g0(y) � �
n�1 :
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Ad (iv). Let y; z 2 R+ be such that y < z: Let v = (v1; :::; vn) = (z; y; :::; y):
By conditional a-optimality, a(v) = (0; :::; 0) or a(v) = e(1):
If a(v) = (0; :::; 0); preventing agent 2 from envying agent 1 requires g0(z) �

g0(y) while preventing 1 from envying 2 requires g0(y) � g0(z); hence y�g0(y) �
z � g0(z):
If a(v) = e(1); preventing 2 from envying 1 requires g0(z) � y + g0(y) �

p(y; :::; y) and preventing 1 from envying 2 requires z+g0(y)�p(y; :::; y) � g0(z):
If g0(y) > 0; then (ii) and Lemma 2(i) imply p(y; :::; y) = y and the two no-envy
conditions reduce to g0(z) � g0(y) and y� g0(y) � z � g0(z): If g0(y) = 0; then
g0(z) � 0 = g0(y) holds by (i) and the second no-envy condition reduces to
z � p(y; :::; y) � g0(z); hence z � g0(z) � p(y; :::; y) � y = y � g0(y); where the
last inequality follows from Lemma 2(i).�
Notation 2. Given a simple scheme (p; g0), letX(p) =

�
x 2 Rn�1+ j p(x) = maxx

	
and 
(p) := inf fmaxx j x 2 X(p)g : When the reference to the scheme is clear,
we write 
 instead of 
(p):

Observe that for any simple scheme (p; g0); 
(p) = inf fmaxx j x 2 X(p)g
= inf fp(x) j x 2 X(p)g � inf

�
p(x) j x 2 Rn�1+

	
= �(p):

The next lemma is the heart of the proof of our theorem.

Lemma 6. Let (a; t) 2 M0 and let (p; g0) be the simple scheme generating
(a; t): For all x 2 Rn�1+ let

p�(x) = max(maxx; �(p)):

For all v 2 RN+ and i 2 N; let (a�i (v); t�i (v)) = (1; g0(max v�i) � p�(v�i)) if
[vi > p

�(v�i)] or [vi = p�(v�i) and ai(v) = 1] ; and (a�i (v); t
�
i (v)) = (0; g0(max v�i))

if [vi < p�(v�i)] or [vi = p�(v�i) and ai(v) = 0]. Then (a�; t�) 2M0:

Proof. By Lemma 1, (a�; t�) is a strategyproof and anonymous mechanism. By
Lemma 5, g0 is nonnegative, hence (a�; t�) is individually rational. It remains
to be shown that (a�; t�) is feasible and envy-free.
Write �(p) = � and 
(p) = 
: By Lemma 2 (i) and the de�nition of �;

p(x) � maxx and p(x) � � for all x 2 Rn�1+ ; hence

p(x) � p�(x) � maxx for all x 2 Rn�1+ : (3)

Step 1. Proving a-feasibility.
Suppose, by way of contradiction, that there exists v 2 RN+ such that, say,

a�1(v) = a
�
2(v) = 1: By de�nition of (a

�; t�); there are only three possible cases:
(i) v1 > p�(v�1) and v2 � p�(v�2): Then, by (3), v1 > max v�1 � v2 �

max v�2 � v1; a contradiction.
(ii) v2 > p�(v�2) and v1 � p�(v�1): Then, by (3), v2 > max v�2 � v1 �

max v�1 � v2; a contradiction.
(iii) v1 = p�(v�1) and v2 = p�(v�2): Then a1(v) = a2(v) = 1; contradicting

a-feasibility of (a; t).
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This proves that (a�; t�) is a-feasible. Note that it follows from Lemma 2
that (a�; t�) is also conditionally a-optimal.

Step 2. Proving t-feasibility.
Fix v = (v1; :::; vn) and assume without loss of generality v1 � ::: � vn:

Case 1. v1 < vn:
Let m be the largest i 2 N such that vi�1 < vi: By assumption, 1 < i � n,

so we have v1 � ::: � vm�1 < vm = ::: = vn: Observe that

for all i = 1; :::;m� 1; ai(v) = a�i (v) = 0; (4)

and
for all i 2 N; a�i (v) = 0) ai(v) = 0: (5)

(To see why (4) holds, suppose there exists i � m � 1 such that ai(v) = 1:
Then vi � p(v�i) � max v�i = vn; contradicting our assumption that vi < vn:
Likewise, if there exists i � m � 1 such that a�i (v) = 1; then by de�nition of
(a�; t�) and (3), we have vi � p�(v�i) � max v�i = vn; contradicting vi < vn
again. To check (5), suppose there exists i 2 N such that ai(v) = 1: Then vi �
p(v�i) � p�(v�i) and it follows from the de�nition of (a�; t�) that a�i (v) = 1:)
Now distinguish two subcases.

Case 1.1. a�(v) = (0; :::; 0):
Then (4) and (5) imply a(v) = (0; :::; 0): By de�nition of (a�; t�);

P
i2N t

�
i (v) =P

i2N g0(max v�i) =
P

i2N ti(v) � 0; where the last inequality holds by feasi-
bility of (a; t):

Case 1.2. a�(v) 6= (0; :::; 0):
Since (a�; t�) is conditionally a-optimal (by Step 1), there exists i� 2 fm; :::; ng

such that a�(v) = e(i�): It follows from (4) and (5) that a(v) = e(i�) or
a(v) = (0; :::; 0):
If g0(max v�i�) > 0; then Lemma 5 (ii) and Lemma 2 (i) imply p(v�i�) =

max v�i� : Hence v�i� 2 X(p) and by de�nition of 
, max v�i� � 
: By de�nition
of p�; p�(v�i�) = max v�i� ; hence p�(v�i�) = p(v�i�): ThereforeX

i2N
t�i (v)

=
X

i2Nni�
g0(max v�i) + g0(max v�i�)� p�(v�i�)

=
X

i2Nni�
g0(max v�i) + g0(max v�i�)� p(v�i�)

�
X
i2N

ti(v)

� 0;

where the �rst inequality holds because a(v) = e(i�) or a(v) = (0; :::; 0):
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If g0(max v�i�) = 0; thenX
i2N

t�i (v)

=
X

i2Nni�
g0(max v�i) + g0(max v�i�)� p�(v�i�)

= (n� 1)g0(vi�)� p�(v�i�)
� � � p�(v�i�)
� 0;

where the �rst inequality holds by Lemma 5 (iii) and the second by de�nition
of p�:

Case 2. v1 = vn:

If p�(v1; :::; v1) = p(v1; :::; v1); then by de�nition of (a�; t�) we have (a�(v);
t�(v)) = (a(v); t(v)); hence

P
i2N t

�
i (v) =

P
i2N ti(v) � 0:

If p�(v1; :::; v1) < p(v1; :::; v1); then by (3) p(v1; :::; v1) > p�(v1; :::; v1) � v1:
By Lemma 5 (ii), g0(v1) = 0: Then

P
i2N t

�
i (v) � ng0(v1) = 0:

Step 3. Proving no-envy.

Fix v = (v1; :::; vn) 2 RN+ and two distinct agents i; j 2 N:We show that i; j
do not envy each other at (a�(v); t�(v)):

Case 1. a�i (v) = a
�
j (v) = 0:

If vi = p�(v�i); then the de�nition of (a�; t�) implies ai(v) = 0: If vi <
p�(v�i); then by (3) vi < p(v�i); hence by de�nition of (a; t); ai(v) = 0: So
ai(v) = 0 in all cases. Similarly, aj(v) = 0: By de�nition of (a�; t�), t�i (v) =
g0(max v�i) = ti(v) and t�j (v) = g0(max v�j) = tj(v): Since (a; t) is envy�
free, ti(v) = tj(v): Hence t�i (v) = t�j (v) and i; j do not envy each other at
(a�(v); t�(v)):

Case 2. a�i (v) = 0; a
�
j (v) = 1:

By conditional a-optimality, vi � vj :
We �rst check that i does not envy j: Note that vi � vj implies max v�i �

max v�j : Since (a; t) is envy-free, Lemma 5 (iv) then implies g0(max v�i) �
g0(max v�j): Moreover, vi � max v�j � max(max v�j ; �) = p�(v�j): Taking
these inequalities into account,

via
�
i (v) + t

�
i (v) = g0(max v�i)

� g0(max v�j)

� vi + g0(max v�j)� p�(v�j)
= via

�
j (v) + t

�
j (v);

as desired.
Next we check that j does not envy i: Since a�i (v) = 0; (5) implies ai(v) = 0:

12



If aj(v) = 1; then

vja
�
j (v) + t

�
j (v) = vj + g0(max v�j)� p�(v�j)

� vj + g0(max v�j)� p(v�j)
= vjaj(v) + tj(v)

� vjai(v) + ti(v)

= g0(max v�i)

= vja
�
i (v) + t

�
i (v);

where the �rst inequality holds by (3) and the second because (a; t) is envy-free.
If aj(v) = 0; then

vja
�
j (v) + t

�
j (v) = vj + g0(max v�j)� p�(v�j)

� g0(max v�j)

= vjaj(v) + tj(v)

� vjai(v) + ti(v)

= g0(max v�i)

= vja
�
i (v) + t

�
i (v);

where the �rst inequality holds because a�j (v) = 1 implies vj � p�(v�j).�
We now turn to Pareto-dominance and Pareto-optimality. We begin with

an elementary result. For any set Z and any two functions f; f 0 2 RZ+; we write
f � f 0 if f(z) � f 0(z) for all z 2 Z.

Lemma 7. Let (a; t); (a0; t0) 2M and let (p; g0); (p0; g00) be the simple schemes
generating (a; t); (a0; t0): If p0 � p and g00 � g0; then (a0; t0) % (a; t):
Proof. The straightforward proof is omitted.�
Lemma 8. If (a; t) 2M0; then there exists a maxmed mechanism (a0; t0) 2M0

such that (a0; t0) % (a; t):
Proof.
Step 1. Let (a; t) 2M0 and let (p; g0) be the simple scheme generating (a; t):
De�ne p� and (a�; t�) as in Lemma 6. By Lemma 6, (a�; t�) 2 M0: By Lemma
7, (a�; t�) % (a; t):
Step 2. Write � = �(p): We claim that

(n� 1)g0(z) + g0(y) � y for all y; z 2 R+ such that � � y � z: (6)

To prove this claim, �x y; z 2 R+ such that � � y � z: By de�nition of p�;
p�(y; :::; y) = max(y; :::; y) = y: Let v = (y; :::; y; z):
If a�i (v) = 0 for all i 2 N n n, feasibility of (a�; t�) implies (n � 1)g0(z) +

g0(y) � y = (n � 1)g0(z)+ g0(y) � p�(y; :::; y) �
P

i2N t
�
i (v) � 0; hence (n �

1)g0(z) + g0(y) � y:
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If a�i (v) = 1 for some i 2 N nn, then by conditional a-optimality of (a�; t�) we
have y = z: Feasibility of (a�; t�) then implies (n�1)g0(y)+g0(y)�p�(y; :::; y) �
0; hence again (n� 1)g0(z) + g0(y) � y:
Step 3. Now let �0 = (n� 1) sup fg0(y) j y 2 R+g and de�ne

p0(x) = max(maxx; �0);

g00(y) = med
�
0; y � �0; �0

n� 1

�
for all x 2 Rn�1+ and all y 2 R+: Let (a0; t0) be the lexicographic mechanism
generated by the simple scheme (p0; g00): By Lemma 4, (a

0; t0) 2 M0: We claim
that p0 � p� and g00 � g0:
The �rst assertion is easy to check. Applying Lemma 5 (iii) to (p�; g0); we

get g0(y) � �
n�1 for all y 2 R+: Therefore sup fg0(y) j y 2 R+g �

�
n�1 ; hence

�0 � �: It follows that p0 � p�:
To prove the second assertion, note �rst that by de�nition of �0;

g0(y) �
�0

n� 1 for all y 2 R+: (7)

By de�nition of p�; p�(y; :::; y) > y for all y < �. Applying Lemma 5 (ii) to
(p�; g0);

g0(y) = 0 for all y < �: (8)

Finally, from (6), g0(y) � y � (n� 1)g0(z) whenever � � y � z

) g0(y) � y � (n� 1) sup fg0(z) j z � yg for all y � �
) g0(y) � y � (n� 1) sup fg0(z) j z 2 R+g for all y � �;

where the second implication holds because g0 is nondecreasing (by Lemma 5
(iv)). Hence, by de�nition of �0;

g0(y) � y � �0 for all y � �: (9)

Combining (7), (8) and (9) yields g0 � g00:
Since p0 � p� and g00 � g0; Lemma 7 implies (a0; t0) % (a�; t�): Combining

this with Step 1 yields (a0; t0) % (a; t):�

Proof of the Theorem.
Ad (i) Let (p; g0) be a maxmed simple scheme as in De�nition 1. Let (a; t) be
the lexicographic mechanism generated by (p; g0): By Lemma 4, (a; t) 2 M0:
We check that (a; t) is Pareto-optimal inM.
Suppose not: then there exists (a0; t0) 2 M such that (a0; t0) � (a; t): Since

(a; t) 2M0; we have (a0; t0) 2M0: By Lemma 8, there exists a maxmed mech-
anism (a00; t00) 2M0 such that (a00; t00) % (a0; t0): Therefore (a00; t00) � (a; t):
But since both (a; t) and (a00; t00) are maxmed mechanisms, this is clearly im-

possible. Indeed, let (p00; g000 ) be the maxmed simple scheme generating (a
00; t00);
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say,

p00(x) = max(maxx; �00);

g000 (y) = med
�
0; y � �00; �00

n� 1

�
for all x 2 Rn�1+ and all y 2 R+:
If � = �00, then (a00; t00) � (a; t); contradicting (a00; t00) � (a; t):
If � < �00; pick y; z 2 R+ such that y < � < �00 < z and consider the

valuation pro�le v = (y; :::; y; z): Then vnan(v)+tn(v) = z+g0(y)�p(y; :::; y) =
z � � > z � �00 = z + g000 (y) � p00(y; :::; y) = vna

00
n(v) + t

00
n(v); contradicting

(a00; t00) � (a; t) again.
If � > �00; pick y; z 2 R+ such that n�

n�1 < y < z and consider the valuation

pro�le v = (y; :::; y; z): Then v1a1(v) + t1(v) = g0(z) = �
n�1 >

�00

n�1 = g
00
0 (z) =

v1a
00
1(v) + t

00
1(v); contradicting (a

00; t00) � (a; t) again.

Ad (ii). Let (a; t) 2 M0 be Pareto-optimal in M. By Lemma 8, there exists
a maxmed mechanism (a0; t0) 2 M0 such that (a0; t0) % (a; t): Since (a; t) is
Pareto-optimal, we must have (a0; t0) � (a; t): This proves that (a; t) is Pareto-
equivalent to a maxmed mechanism.
To complete the proof, we check that (a; t) is a maxmed mechanism. To

see this, let (p; g0) be the simple scheme generating (a; t) and let (p0; g00) be the
maxmed simple scheme generating (a0; t0): We claim that (p; g0) = (p0; g00):
We �rst prove that g0 = g00: Suppose there exists y 2 R+ such that g0(y) >

g00(y): Let v = (y; :::; y): Using anonymity of (a; t); (a0; t0); viai(v) + ti(v) =
g0(y) > g00(y) = via

0
i(v) + t

0
i(v) for all i 2 N , contradicting (a; t) � (a0; t0): A

similar contradiction arises if there exists y 2 R+ such that g0(y) < g00(y):
Next we prove that p = p0: Suppose there exists x = (x1; :::; xn�1) 2 Rn�1+

such that p(x) > p0(x): Pick y > p(x) and let v = (x1; :::; xn�1; y): Then
vnan(v)+tn(v) = y+g0(maxx)�p(x) < y+g00(maxx)�p0(x) = vna0n(v)+t0n(v),
contradicting (a; t) � (a0; t0): A similar contradiction arises if there exists x 2
Rn�1+ such that p(x) < p0(x):�

5 Discussion

No-envy is essential to our characterization. The maxmed mechanisms are
generally not Pareto-optimal within the larger class of feasible, strategyproof
and anonymous mechanisms. For instance, the Vickrey mechanism is Pareto-
dominated by the mechanism described in Cavallo (2006) and previously stud-
ied in di¤erent contexts by Bayley (1997) and Porter, Soham and Tennenholtz
(2004).
No-envy is redundant when n = 2: In that case, Athanasiou (2011) shows

that the maxmed mechanisms are Pareto-optimal among the feasible, strategy-
proof and anonymous mechanisms and our theorem implies that no other indi-
vidually rational mechanism is Pareto-optimal in that class.
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The role of anonymity is unclear. To be sure, there exist feasible, strategy-
proof, envy-free mechanisms which are not anonymous. For a two-agent exam-
ple, let 0 � �1 < �2 and let

(a1(v); t1(v)) =

�
(1;med(0; v2 � �2; �1)�max(�1; v2)) if v1 � max(�1; v2);

(0;med(0; v2 � �2; �1)) otherwise;

(a2(v); t2(v)) =

�
(1;med(0; v1 � �2; �1)�max(�2; v1)) if v2 > max(�2; v1);

(0;med(0; v1 � �2; �1)) otherwise.
We do not know whether the maxmed mechanisms belong to the Pareto frontier
of the class of feasible, strategy-proof and envy-free mechanisms. We also do
not know whether that frontier contains nonanonymous mechanisms.
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