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Résumé

La thèse présente une description géométrique d�’un germe de famille générique

déployant un champ de vecteurs réel analytique avec un foyer faible à l�’origine

et son complexié : le feuilletage holomorphe singulier associé. On montre que

deux germes de telles familles sont orbitalement analytiquement équivalents si

et seulement si les germes de familles de difféomorphismes déployant la com-

plexication de leurs fonctions de retour de Poincaré sont conjuguées par une

conjugaison analytique réelle. Le �“caractère réel�” de la famille correspond à sa

Z2-équivariance dans R4, et cela s�’exprime comme l�’invariance du plan réel sous

le ot du système laquelle, à son tour, entraîne que l�’expansion asymptotique de

la fonction de Poincaré est réelle quand le paramètre est réel. Le pullback du plan

réel après éclatement par la projection monoidal standard intersecte le feuilletage

en une bande de Möbius réelle. La technique d�’éclatement des singularités permet

aussi de donner une réponse à la question de la �“réalisation�” d�’un germe de fa-

mille déployant un germe de difféomorphisme avec un point xe de multiplicateur

égal à −1 et de codimension un comme application de semi-monodromie d�’une

famille générique déployant un foyer faible d�’ordre un. An d�’étudier l�’espace

des orbites de l�’application de Poincaré, nous utilisons le point de vue de Glut-

syuk, puisque la dynamique est linéarisable auprès des points singuliers : pour les
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valeurs réels du paramètre, notre démarche, classique, utilise une méthode géo-

métrique, soit un changement de coordonée (coordonée �“déroulante�”) dans lequel

la dynamique devient beaucoup plus simple. Mais le prix à payer est que la géo-

métrie locale du plan complexe ambiante devient une surface de Riemann, sur

laquelle deux notions de translation sont dénies. Après avoir pris le quotient par

le relèvement de la dynamique nous obtenons l�’espace des orbites, ce qui s�’avère

être l�’union de trois tores complexes plus les points singuliers (l�’espace résultant

est non-Hausdorff). Les translations, le caractère réel de l�’application de Poincaré

et le fait que cette application est un carré relient les différentes composantes du

�“module de Glutsyuk�”. Cette propriété implique donc le fait qu�’une seule compo-

sante de l�’invariant Glutsyuk est indépendante.

Mots clés: Feuilletage, application de Poincaré, éclatement, réalisation, équi-

valence, conjugaison, classification, module.



Abstract

The thesis gives a geometric description for the germ of the singular holomorphic

foliation associated with the complexication of a germ of generic analytic family

unfolding a real analytic vector eld with a weak focus at the origin. We show that

two such germs of families are orbitally analytically equivalent if and only if the

germs of families of diffeomorphisms unfolding the complexied Poincaré map of

the singularities are conjugate by a real analytic conjugacy. The Z2-equivariance

of the family of real vector elds in R4 is called the �“real character�” of the system.

It is expressed by the invariance of the real plane under the ow of the system

which, in turn, carries the real asymptotic expansion of the Poincaré map when

the parameter is real. After blowing up the singularity, the pullback of the real

plane by the standard monoidal map intersects the foliation in a real Möbius strip.

The blow up technique allows to �“realize�” a germ of generic family unfolding

a germ of diffeomorphism of codimension one and multiplier −1 at the origin

as the semi-monodromy of a generic family unfolding an order one weak focus.

In order to study the orbit space of the Poincaré map, we perform a trade-off

between geometry and dynamics under the Glutsyuk point of view (where the

dynamics is linearizable near the singular points): in the resulting �“unwrapping

coordinate�” the dynamics becomes much simpler, but the price we pay is that the
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local geometry of the ambient complex plane turns into a much more involved

Riemann surface. Over the latter, two notions of translations are dened. After

taking the quotient by the lifted dynamics we get the orbit space, which turns out

to be the union of three complex tori and the singular points (this space is non-

Hausdorff). The Glutsyuk invariant is then dened over annular-like regions on

the tori. The translations, the real character and the fact that the Poincaré map is

the square of the semi-monodromy map, relate the different components of the

Glutsyuk modulus. That property yields only one independent component of the

Glutsyuk invariant.

Keywords: Foliations, Poincaré, blow-up, realization, equivalence, conju-

gacy, classification, modulus.



Notations

(z,w) : Natural ambient coordinates of the afne space C2

M : Complex Möbius strip or blow up manifold

µ : Complex surface {z= µw : µ ∈ C∗}
+ : {z= w} $ R2 : Plane of symmetry or real plane embedded in C2

RM : Real Möbius strip or blow up in real coordinates

C (w) = w : Standard complex conjugation in one complex variable

C (W ) =W : Standard complex conjugation in the Fatou coordinate

!(Z) = Z : Non-standard complex conjugation on the surfaceR

S (z,w) = (z,w) : Standard conjugation in two complex variables

(z,w) = (w,z) : Standard shift of two complex variables

H (w) = 1
w : Inversion map in the sphere coordinate w

T (Z) = Z+ : Translation in ∈R in the unwrapping coordinate

T (W ) =W + : Translation in ∈ C in the Fatou coordinate

L (w) = w : Linear mapL

E (W ) = e−2i W : Exponential map E

µ0( ),µ±( ) : Multipliers of the eld
2 w( ±w2)
1+A( )w2 w

( ) =− i
2

: Distance between the holes for %= 0
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0( ) =
2 i
µ0( )

: Translation number around zero

( ) =
2 i
µ±( )

: Translation number around innity
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Preface

The thesis is part of a program that aims to study the holomorphic classica-

tion of generic unfoldings of the simplest codimension-one singularities of ana-

lytic dynamical systems, the latter being given by germs of diffeomorphisms (in

which case we study classication under conjugacy) or germs of vector elds (in

which case we can study either classication under orbital equivalence or under

conjugacy). The moduli space for these singularities has been described by J.

Ecalle, S. M. Voronin (cf. [14],[51]) and J. Martinet-J. P. Ramis (cf. [35],[36]).

In spite of the �“simple�” shape of these germs, except for the case of the node

of a planar vector eld, the moduli space is a huge functional space, while, on

the other hand, the formal invariants are in nite number. This means that there

is an innite number of analytic obstructions for the analytic equivalence of two

germs, that cannot be seen at the formal level. The former idea of V. I. Arnold et

al. is that the modulus associated with the singularity can be explained by rst,

complexifying the underlying space and then, by unfolding the singularity. Thus,

the singularity of the dynamical system comes from the coallescence in a generic

unfolding of a nite number of hyperbolic singularities or special hyperbolic �“ob-

jects�” (like a periodic orbit or a limit cycle). Each hyperbolic object has its own

geometric local model, and the modulus measures the mismatch of these local
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models in the limit. It is also a measure of the divergence of the normalizing

series to the formal normal form.

So far, and still in the case of codimension-one, this program involves notably

the case of the germ of the generic unfolding of a diffeormorphism with a double

xed point, also called parabolic diffeomorphism (cf. [11] and [32]), the case of

a germ of generic unfolding of a resonant diffeomorphism (one multiplier being

a root of unity, cf. [10] and [43]), the study of germs of generic unfoldings of

saddle-node (resp. resonant saddle) singularities of planar vector elds (cf. [44],

resp. [10]), and the case of the generic unfolding of a saddle point of a real vector

eld (cf. [43]). The modulus of the unfolding is always constructed in the same

way. The formal normal form for the unfolding is identied and called the model

family. The germ of family is then compared to the formal normal form on special

domains. When one restricts to parameter values for which the special objects

are hyperbolic, then these domains are neighborhoods of the special objects. For

parameter values for which these neighborhoods intersect, the modulus is given by

the comparison of the two normalizations over the intersection of the two domains.

This is what is called the Glutsyuk point of view and the corresponding modulus

is called the Glutsyuk modulus. This was the point of view suggested by V. I.

Arnold and J. Martinet [33] and studied systematically by A. A. Glutsyuk [21]

when the unfolding is considered only in certain conic regions of the (complex)

parameter space. However, in the codimension-one case, this point of view does

not allow to cover a full neighborhood of the origin in the parameter space and

another approach is required in order to cover the remaining directions, where the

dynamics is non-hyperbolic. This approach comes from A. Douady and his school

and has been formerly introduced in the thesis of P. Lavaurs ([28]). This point
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of view is known as the Lavaurs point of view and it allows to give a modulus

of analytic classication for all values of the parameters (the modulus being a

ramied family in the parameter).

The case of the weak focus.

The thesis addresses the problem of the orbital analytic classication of a

generic family of planar vector elds unfolding a weak focus of order one, in

the Glutsyuk point of view. A weak focus of a real 2-dimensional analytic vector

eld is dened as a singular point of the vector eld with a pair of pure imag-

inary eigenvalues and which is not a centre. When the codimension is one, it

corresponds to the generic coalescence of a focus with a limit cycle. A germ of

generic analytic family of vector elds unfolding a weak focus is then the germ of

a holomorphic family with a generic Hopf bifurcation.

Some germs of singular holomorphic (complex) foliations are uniquely de-

ned, up to equivalence, by the germ of a holomorphic application called the

holonomy map: two foliations with holomorphically conjugate holonomy germs

are holomorphically equivalent themselves. This is the case for simple singular-

ities, for instance when the singularity is a nondegenerate 2-dimensional saddle

(having negative rational ratio of the eigenvalues of the linearization, cf. [37]).

Moreover, it was proved (cf. [42]) that in this case any germ of diffeomorphism

with a xed point can be �“realized�” as the holonomy of a suitable saddle foliation,

and that in presence of extra parameters analytically deforming the singularity,

the correspondence between holomorphic types of the foliation and its holonomy

remains holomorphic (cf. [43]). As the generic family unfolding the weak focus

corresponds to a particular generic family unfolding a resonant saddle point with

ratio of eigenvalues equal to -1, the foliation of this family is characterized by
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the dynamics of the holonomy of one separatrix. However, for generic unfoldings

of elliptic singularities of weak focus or centre type (with pure imaginary eigen-

values) the germ of a real self-map P : (R+,0)→ (R+,0), called the Poincaré

monodromy (or Poincaré rst return map), is well dened and one is naturally

led to the question whether the germ of the monodromy denes the analytic con-

jugacy class of the real foliation. The natural way to answer this question is via

complexication, as suggested by M. Berthier, D. Cerveau and A. Lins Neto in

the 90�’s (cf. [2]). The complexied family of elliptic vector elds inherits a global

property of symmetry under the complex conjugation. Such a symmetry is called

the �“real character�” of the family. This property means that the real plane is invari-

ant under the ow of the system when the parameter of the unfolding is real, and

it also reects the fact that the eigenvalues at the origin are complex conjugate.

The complexication of the ambient spaces allows to understand why the

holonomy map is not an ideal candidate to describe the foliation in the case of

elliptic singularities: the complex separatrices are not detected in the real plane

and, consequently, the germ of the holonomy map is not real. This motivates a

different approach. Indeed, the Poincaré map, which can be represented as the

second iterate of the holonomy of the exceptional divisor of the complex folia-

tion after standard desingularization or blow-up, keeps track of the fact that the

system has been complexied and then it stands as a �“bridge�” between the real

and complex foliations. Through this observation, we obtain a rst result after

blowing-up the singularity: the equivalence problem for the generic holomorphic

family of vector elds unfolding the weak focus can be reduced to the conjugacy

problem for the associated holomorphic (complex) family unfolding the Poincaré

monodromy. More precisely, we show that two germs of generic families of an-
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alytic vector elds unfolding a vector eld with a weak focus at the origin of

coordinates are analytically orbitally equivalent, if and only if the families unfold-

ing their Poincaré monodromies are analytically conjugate by a real conjugacy

(see Theorem 4.2.3). This provides a �“real�” characterization of the foliation.

Once the foliation has been characterized by the Poincaré monodromy, we pro-

ceed to solve the �“inverse problem�”, also known as the �“realization problem�”, by

means of quasiconformal surgery, as suggested by Y. Ilyashenko and his school.

This problem can be explained as follows. Being given an admissible generic

representative Q of the class of real germs of families of holomorphic diffeo-

morphisms (with coefcients depending analytically on the parameter) unfolding

a codimension-one resonant diffeomorphism with multiplier equal to −1 at the

origin, there exists a germ of family of real holomorphic elliptic foliations whose

Poincaré monodromy coincides with the squared map Q◦2, see Theorem 6.1.4.

We rst construct a family of abstract complex 2-manifolds endowed with a fam-

ily of integrable almost complex structures (ACS) and a family of C -foliations

whose Poincaré monodromy coincides with the prescribed family of diffeomor-

phisms. Then the Newlander-Nirenberg Theorem (cf. [40]) gives us a family of

C -coordinates that straightens the family of ACS and, consequently, the fam-

ily of C -foliations into a family of holomorphic foliations. We prove that the

smooth coordinates system is real and then it respects the real character of the

family unfolding the weak focus.

Both the characterization of the foliation by the Poincaré monodromy and the

realization problem ll a gap in the literature. Everybody believed this to be true

but, because the proof was substantial, it was never accurately written. We expect

our results to be useful and cited in the future.
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We will now describe the second part of the thesis, which is concerned with

the analytic classication of families of diffeomorphisms. Indeed, both the �“real�”

characterization of the foliation by the Poincaré monodromy and the realization

problem imply that, in order to compute the modulus of analytic classication as-

sociated with the generic family unfolding the weak focus, it sufces to describe

the modulus of analytic classication of the real holomorphic family unfolding

the Poincaré monodromy of the foliation. In this second part our result is partial:

we could only give a modulus of analytic classication (in the Glutsyuk point of

view) under orbital analytic �“weak equivalence�”. Roughly speaking, two generic

analytic families unfolding weak foci are analytically weakly equivalent if there

exists an analytical change of coordinates, which depends analytically on the pa-

rameter at %= 0 and continuously at = 0, that sends orbits of the rst system

into orbits of the second system with no regard on the parametrization. In addi-

tion, the domain of the (complex) parameter consists of the union of two sectors

which does not cover a whole neighborhood of the origin = 0, but which does

contain the real line instead, see Figure 7.1.

This gives the modulus of analytic classication under analytic weak conju-

gacy (in the Glutsyuk point of view) for germs of generic holomorphic families

undergoing a generic codimension-one Hopf bifurcation, by means of the Glut-

syuk modulus associated with the germ of the family unfolding the Poincaré map

of the weak focus. We shall come over the study of the modulus under analytic

orbital equivalence in near future.

Symmetries and the invariant of analytic classification.

The thesis provides also a contribution in the area of symmetries in dynam-

ical systems. Indeed, the real character of the family of vector elds yields a
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symmetry on the modulus of analytic classication, with respect to complex con-

jugation (Schwarz reection). In order to introduce the Glutsyuk invariant we

need to dene �“intrinsic�” coordinates (unique up to linear changes of coordinates)

in the orbit space of the Poincaré monodromy. The orbit space is the quotient of

fundamental domains by the Poincaré map. It turns out to be non-Hausdorff and

composed of the union of three complex tori plus the xed points of the Poincaré

map. The Glutsyuk invariant is dened to be the equivalence class of pairs of

analytic diffeomorphisms ( G
1, ,

G
2, ) dened on annular-like regions of the orbit

space endowed with almost intrinsic coordinates, modulo composition by real lin-

ear changes of coordinates in the source and target spaces, see Figure 7.2. These

analytic diffeomorphisms identify the points in different tori corresponding to the

same orbit in those intrinsic coordinates. We prove that special symmetries arise

out of the real character of the germ of the family unfolding the weak focus, and

that there are two different ways of keeping track of the real underlying frame-

work of the foliation, see Theorem 9.1.3 and Theorem 9.1.7, respectively, for

further details.

The thesis is organized in three parts and it contains ten chapters and three

appendices. Chapter 1 contains a description of the codimension-one Hopf bi-

furcation. In Chapter 2 we recall the desingularization technique and Chapter 3

describes the main feature of the family of vector elds: its real character, which is

the birth point of the forthcoming theory. Chapter 4 contains the proof of the char-

acterization of the germ of the foliation through the Poincaré map. In chapters 5

and 6 we study integrability and the conditions for realization of the foliation (the

inverse problem). In Chapters 7, 8 and 9 we study the orbit space, the symmetries

on the modulus and the invariant of weak orbital classication.
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Chapter 1

The Hopf bifurcation

1.1 Normal form.

Definition 1.1.1. [27] A singular point of a planar vector field is elliptic, if the

eigenvalues of its linearization are non-real complex conjugate (in particular,

nonzero).

By this denition, if the two eigenvalues are imaginary (with zero real part)

a linear elliptic singularity can be a center (all orbits are periodic in a neighbor-

hood of the singular point) or a weak focus, and if the eigenvalues have real part

different to zero it corresponds to a strong focus. In the latter case, the speed of

convergence of orbits to the singular point is of logarithmic order. A weak focus

is a singular point which can naturally be embedded in a family unfolding a Hopf

bifurcation.

Consider the system
!X = F (!X) (1.1.1)

3
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where !X = (x,y)T and F (x,y) = F(x,y, ) is a real analytic local family of planar

vector elds dened in a small neighborhood of the origin on the real plane R2

and depending analytically on a real parameter . Suppose that for = 0 the sin-

gular point is elliptic. This assumption immediately implies that the singular point

itself depends analytically on the parameter (by the Implicit Function Theorem).

Moreover, the local coordinates (x,y) can be chosen so that the linear part of F

has the form

( ( )x− ( )y)
x
+( ( )y+ ( )x)

y

with real analytic coefcients (germs) ( ) and ( ).We require also:

(0) = 0, (1.1.2)

(0) := > 0, (1.1.3)

(the ellipticity assumption means that the real analytic function ( ) is non-

vanishing) and that the family F has the equilibrium !X = (0,0).

By introducing a complex variable z= x+ iy, system (1.1.1) can be written for

sufciently small | | as a single equation:

z= ( )z+
j+k≥2

b jk( )z jzk, (1.1.4)

with ( ) = ( )+ i ( ) and where the coefcients b jk( ) depend analytically

on the parameter.

Theorem 1.1.2 (Poincaré normal form). [29] The equation (1.1.4)where ( )=

( )+ i ( ), (0) = 0 and (0) ≡ 0 > 0, can be transformed by an invertible

parameter-dependent change of complex coordinate, analytically depending on
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the parameter, for all sufficiently small | |, into an equation with only the reso-

nant cubic term, up to order 4:

z= ( )z+ c1z2z+O(|z|4), (1.1.5)

where c1 = c1( ).

Bifurcations of the phase portrait of the system (1.1.5) as ( ) passes through

zero can easily be analyzed using the polar form when ′(0) %= 0. The system

always has an equilibrium at the origin. This equilibrium is always a stable focus

for ( )< 0 and an unstable focus for ( )> 0.

Definition 1.1.3.

1. At the critical parameter value ( ) = 0 the equilibrium is topologically

equivalent to the focus or a centre. In the case of a focus, such an equilib-

rium is called a weak focus.

2. The weak focus is of codimension (order) 1 if Re(c1(0)) %= 0.

Suppose ′( ) > 0 in a neighborhood of = 0 in the parameter space, and

Re(c1(0)) < 0. As said before, the origin is a stable focus when ( ) < 0. In

the limit ( ) = 0 the weak focus remains stable and as the parameter moves to

positive real values, it gives rise to an (unstable) equilibrium !X = (0,0) which

is surrounded by an isolated stable closed orbit (or stable limit cycle, see Figure

1.1c). All orbits starting outside or inside the cycle, except for the origin, tend to

the cycle as t→+ , see Figure 1.1.

On the contrary, if Re(c1(0)) > 0, the origin is stable and an unstable limit

cycle is created for negative values of the parameter. As passes through the

bifurcation value = 0 the closed orbit disappears and the origin loses its stability
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(a) ( )< 0 (b) ( ) = 0 (c) ( )> 0

Figure 1.1: The supercritical Hopf bifurcation.

and becomes an unstable weak focus which gives rise to an unstable focus on

( )> 0, see Figure 1.2.

(a) ( )< 0 (b) ( ) = 0 (c) ( )> 0

Figure 1.2: The subcritical Hopf bifurcation.

Definition 1.1.4. The local bifurcation of the phase portrait the Equation (1.1.5)

taking place at the value = 0 under the condition Re(c1(0)) %= 0, is called

the codimension one Poincaré-Andronov-Hopf-Takens bifurcation (or simply, the

codimension one Hopf bifurcation). It is said to be “supercritical” if Re(c1(0))<

0, and “subcritical” if Re(c1(0))> 0 when ′( )> 0.
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1.2 Orbital preparation.

Proposition 1.2.1. Suppose, in addition, that ′(0) %= 0 and Re(c1(0)) %= 0 in

equation (1.1.5) above. Then, the equation can be transformed by a parameter-

dependent linear coordinate transformation and a nonlinear time reparametriza-

tion into an equation of the form

z= ( +i)z+ sz|z|2+O(|z|4), (1.2.1)

where s= SIGN(Re(c1(0))) =±1.

Proof. Put ̂= ( )t. The time direction is preserved since ( ) > 0 for small

| | (because of hypothesis (1.1.3)). Then

dz
d̂ = (˜+ i)z+d1(˜)z|z|2+O(|z|4),

where ˜= ˜( ) =
( )

( )
and d1(˜) =

c1( (˜))
( (˜))

. We can consider ˜ as a new pa-

rameter because ˜(0) = 0 and ˜′(0) =
′(0)
(0)

%= 0, and then the Inverse Function

Theorem guarantees that local existence and analyticity of as a function of ˜.

Change the time parametrization along the orbits by introducing a new time

= ( ,̂˜), where

d = (1+ e1(˜)|z|2)d̂

with e1(˜) = Im(d1(˜)). The time change is a near-identity transformation in a

small neighborhood of the origin. Using the new denition of the time we obtain

dz
d

= (˜+ i)z+ "1(˜)z|z|2+O(|z|4),

where "1(˜) = Re(d1(˜))−˜e1(˜) is real and

"1(0) =
Re(c1(0))

(0)
. (1.2.2)
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Finally, introduce a new complex variable z :

z=
z√

|"1(˜)|
,

which is possible due to Re(c1(0)) %= 0 and, thus, "1(0) %= 0. The equation then

takes the required form:

dz
d

= (˜+ i)z+ "1(˜)
|"1(˜)|

z|z|2+O(|z|4)

= (˜+ i)z+ sz|z|2+O(|z|4),
(1.2.3)

with s= SIGN("1(0)) = SIGN(Re(c1(0))) =±1.

Definition 1.2.2.

1. The real function "= "1(˜) is called the first Lyapounov coefficient.

2. A one-parameter planar family of differential equations of the form (1.1.4),

exhibiting a codimension one Hopf bifurcation at the parameter value = 0

is called “generic” if:

– The pair of complex-conjugate eigenvalues ( ) = ( )± i ( ) crosses

the imaginary axis with non-zero speed:

d
d

Re ( )
∣∣∣
=0

= ′(0) %= 0, (1.2.4)

– The first resonant monomial is non null at the origin, which is equivalent

to:

"1(0) %= 0. (1.2.5)

Such requirements are called “genericity conditions” for the one-parameter

family.
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1.3 Embedding of the family.

The family (1.2.1) may be naturally embedded in C2. This is done by com-

plexifying the real coordinates (x,y) of the planar system (1.1.1), and then writing

the equations of such families in the new complex variables given by

z = x+ iy,

w = x− iy.
(1.3.1)

Definition 1.3.1. The variables (z,w) thus defined will be called the ambient co-

ordinates.

Notice that in the particular case x,y ∈ R the ambient coordinates are related

through z= w.

1.4 The orbital form.

The embedding of (1.2.1) into C2 by ambient coordinates is given by

z = ( +i)z+ sz2w+
j+k≥4

a jk( )z jwk

w = ( −i)w+ sw2z+
j+k≥4

a jk( )zkw j,
(1.4.1)

where the coefcients a jk( ) depend analytically on the parameter. Thus, restrict-

ing (x,y) to R2 allows to recover the system (1.2.1). The value s=±1 is the cubic

coefcient.

Definition 1.4.1. The family of vector fields defined by the right side of the system

(1.4.1) will be henceforth noted v . Such a family is called the “orbital form” of

the family F (Equation (1.1.1)). It is said to be “generic” if the two genericity

conditions (1.2.4) and (1.2.5) are satisfied by its restriction (1.2.1).
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Proposition 1.4.2 (Formal classification Theorem for order one weak foci). A

germ of generic family of differential equations unfolding a weak focus v0 of order

one, is formally orbitally equivalent to:

z = z
i+ ±u
1+A( )u

w = w
−i+ ±u
1+A( )u

(1.4.2)

with u = zw and for some family of constants A( ) which is real on ∈ R and

A(0) %= 0.

Proof. Consider only the sign+ in (1.2.1). By a formal change of coordinates we

bring the system to the form:

z = z(i+ +
j≥1

Ã j( )u j) := P(z,w)

w = w(−i+ +
j≥1

Ã j( )u j) := Q(z,w)
(1.4.3)

where Re(Ã1) %= 0. In order to simplify the form, we iteratively use changes of

coordinates (z,w) = (z(1+ cUn),w(1+ cUn)) for n≥ 1. Such a change allows to

get rid of the term Ãn+1Un+1 provided that n+1> 2.When n= 1 it allows to get

rid of iIm(Ã2U2). Indeed, the constant c must be chosen so as to verify

Ã1(c+ c)−nc(Ã1+ Ã1) = Ãn+1,

which is always solvable in c as soon as Re(Ã1) %= 0 and n > 1. However, when

n= 1 we get

Ã1(c+ c)−nc(Ã1+ Ã1) = Ã1c− Ã1c= 2iIm(Ã1c) ∈ iR.
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Hence, in that case only the equation Ã1(c+ c)− nc(Ã1+ Ã1) = iIm(Ãn+1) is

solvable in c. Finally, one divides (1.4.3) by
wP− zQ
2izw

. This brings all the Im(Ã j)

to 0. Then we repeat the procedure above with c real to remove all higher terms

in u j except for the term in u2. A scaling in u yields the formal normal form

z = z(i+( +u)(1+ Ã( )u))

w = w(−i+( +u)(1+ Ã( )u))
(1.4.4)

which is formally equivalent to (1.4.2).
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Chapter 2

Möbius strip and Poincaré map

2.1 Algebraic blow up.

Consider the quasi-projective variety

M= {([t2 : t1],(z,w)) ∈ CP1×C2 : zt1−wt2 = 0} (2.1.1)

where [t2 : t1] ∈CP1 is the line at innity passing through (t2, t1) ∈C2 (the homo-

geneous coordinates on CP1). Projection onto the factor C2 induces a surjective

morphism

:M→ C2

and

−1(z,w) =





CP1×{0} if (z,w) = (0,0)

([z : w],(z,w)) if (z,w) %= (0,0).
(2.1.2)

The ber S = −1(0,0) is a projective line, which is called the exceptional line.

Away from the origin, gives an isomorphism between C2\{0} andM\S.

13
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Definition 2.1.1. [23] The map :M→ C2 between two 2-dimensional complex

manifolds is called the (standard) monoidal map. The analytic curve S ⊂M is

referred to as the (standard) exceptional divisor. The pair ( , ) is called the

blow up of C2 at the origin.

By construction the surface M is embedded in the complex 3-dimensional

space CP1×C2 and carries the compact curve (Riemann sphere) CP1×{0}= S

on it, that is, the points of S correspond to the lines through the origin in C2, see

Figure 2.1.

S

M

C2 (0,0)

Figure 2.1: The blow up of the origin.

Remark 2.1.2. [27] The real projective line RP1 is diffeomorphic to the circle S1

so the realified surface RM (obtained by restriction of complex coordinates to R)

is constructed as a submanifold of the cylinder S1×R2, see Remark 3.3.5 in the

next chapter. This submanifold is homeomorphic to the Möbius strip. Having this
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analogy in mind, the blow upM is sometimes referred to as the complex Möbius

strip, see Subsection 2.1.2 for further details.

2.1.1 A complex atlas on the blow up.

The standard afne covering CP1 =U1 ∪U2 with U1 = {[t2 : t1] : t1 %= 0}

andU2 = {[t2 : t1] : t2 %= 0}, induces a covering

M=V1∪V2, V1,V2 ⊂ C2×C,

where

V1 = {([t2 : t1],(z,w)) ∈ CP1×C2 : t1 %= 0, z−w
t2
t1

= 0},

V2 = {([t2 : t1],(z,w)) ∈ CP1×C2 : t2 %= 0, z
t1
t2
−w= 0}.

(2.1.3)

Thus, using coordinates (Z,w) = (
t2
t1
,w) forV1, and (W,z) = (

t1
t2
,z) forV2, we see

thatV1 andV2 are both isomorphic to C2. The transition map between these charts

is a monomial transformation

: V1→V2

(Z,w) := (
1
Z
,Zw)≡ (W,z)

(2.1.4)

with inverse
−1(W,z) = (

1
W

,Wz), (2.1.5)

and so ◦2 = id. Thus M is indeed a nonsingular 2-dimensional complex ana-

lytic manifold. It remains to observe that the map :M→ C2 in these charts is

polynomial, hence globally holomorphic:
∣∣∣
V1

= c1,
∣∣∣
V2

= c2, (2.1.6)
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where

c1 : (Z,w) .→ (Zw,w), c2 : (W,z) .→ (z,zW ). (2.1.7)

Definition 2.1.3.

1. The chart (V1,c1) covering the complex Möbius strip will be referred to

either as the first chart, as the first direction, or as the c1 direction of the

blow up space. The chart (V2,c2) will be called either as the second chart,

the second direction or the c2 direction the blow up space.

2. The blow up of a singular foliationF of (C2,0) is the singular holomorphic

foliation F̃ = ∗F extending the preimage foliation −1(F ) ofM\S.

One may have a priori two possibilities for the blown up foliation F̃ : either

the exceptional divisor S is a separatrix of F̃ , or different points of S belong to

different leaves of F̃ . In the latter case leaves of this foliation cross S transversally

at all points, eventually except for nitely many tangency points.

Definition 2.1.4. [27] A singular point of a holomorphic foliation F on (C2,0)

is called non-dicritical, if the exceptional divisor S= −1(0) is a separatrix of the

blow up foliation ∗F by the simple monoidal transformation . Otherwise the

singular point is called dicritical.

Notice that the exceptional divisor in the charts (Z,w) and (W,z) is given by

the equations

S∩V1 = {z= 0}, S∩V2 = {w= 0}.

As the two sets are isomorphic to C, they can be �“realied�”. This is what we do

in the next paragraph.
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2.1.2 The realified atlas.

The real projective line RP1 is a closed loop on the Riemann sphere CP1

which is visible as the real line R in the afne charts S∩V1 and S∩V2 (which

are isomorphic to C). The complex Möbius strip M intersects the real variety

RP1×R2 ↪→ CP1×C2 at {t1 = t2} and {z= w}. The intersection is given by the

real Möbius strip

RM= {([a : b],(z,w)) ∈ RP1×R2 : xb+ ya= 0}. (2.1.8)

for z = x+ iy and t1 = a+ ib. Such a surface can be explicitly computed in real

charts.

Theorem 2.1.5. The covering M = V1 ∪V2 yields a real covering of the real

Möbius strip RM=R V1∪RV2, where RV1 is parametrized by two real coordinates

(x,u), and RV2 is parametrized by two real coordinates (v,y).

Proof. The neighborhoods V1,V2 intersect the real variety RP1×R2 at w= z and

t2 = t1, for coordinates z= x+ iy and t1 = a+ ib with x,y,a,b ∈ R. Then:

V1 ∩ ({w= z}×{t2 = t1})

= {([t2 : t1],(z,w)) ∈ CP1×C2 : t1 %= 0, zt1− zt1 = 0}

= {([t2 : t1],(z,w)) ∈ CP1×C2 : t1 %= 0, Im(zt1) = 0}

= {([a : b],(z,w)) ∈ RP1×R2 : (a,b) %= (0,0), xb+ ya= 0}.

If a %= 0 the chart

RV1 = {([a : b],(x,y)) ∈ RP1×R2 : a %= 0, xb
a
+ y= 0}

is parametrized by (x,u) ∈ R2, where u=−b
a
. If b %= 0, the chart

RV2 = {([a : b],(x,y)) ∈ RP1×R2 : b %= 0, x+ y
a
b
= 0}
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is parametrized by (v,y) ∈ R2, where v = −a
b
. The real coordinates (x,u),(v,y)

cover the real Möbius strip.

As in the complex case, real coordinates on RV1 and on RV2, prove that these

sets are isomorphic to R2. The monoidal map :M→C2 induces a real mapping

(noted again) between RM and R2. Such a map is given in charts:
∣∣∣RV1

= Rc1,
∣∣∣RV2

= Rc2, (2.1.9)

where
Rc1 : (x,u) .→ (x,xu), Rc2 : (v,y) .→ (vy,y). (2.1.10)

The exceptional divisor CP1×{0} ⊂CP1×C2 intersects RP1×R2 as RP1×

{0} $ S1. The unit circle is then given in charts by (see Figure 2.2)

(RP1×{0})∩ (RV1) = {x= 0}, (RP1×{0})∩ (RV2) = {y= 0}.

yx

u

vRP1

Figure 2.2: The real charts on RP1.

2.1.3 The tangent form.

Let

= f dx+gdy
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be a real holomorphic 1-form having an isolated singularity of order 1. By def-

inition, this means that the Taylor expansion of the coefcients f ,g begin with

homogeneous polynomials f1,g1 of degree 1 and at least one of these two homo-

geneous polynomials does not vanish identically. Consider the pullback ∗ on

the complex Möbius stripM in the coordinates (x,u). In this chart the form is

computed as

1 = [ f (x,xu)+ug(x,xu)]dx+ xg(x,xu)du

= x−1[(Rc∗1)(h)dx+(Rc∗1)(g′)du],
(2.1.11)

where h= x f + yg and g′ = x2g.

Definition 2.1.6. [27]

1. The real homogeneous polynomial

h2 = x f1+ yg1 (2.1.12)

of degree 2 is called the tangent form of the singularity .

2. The singular point associated to is called generalized elliptic if the tan-

gent form h2 is non-vanishing except at the origin (0,0) ∈ R2.

Remark 2.1.7. [27] The singular points on the exceptional divisor after real blow

up, are roots of the polynomial

f1(1,u)+ug1(1,u) = x−2h2(x,xu). (2.1.13)

For a generalized elliptic singularity this polynomial is not identically zero, hence

the blow-up is always non-dicritical and Definition 2.1.6 guarantees that there

are no singular points on the real line R ⊂ S in the chart (x,u), that is, the real

projective line RP1. For similar reasons the point u= (mapped as v= 0 in the

second chart) is also non-singular.



20 CHAPTER 2. MÖBIUS STRIP AND POINCARÉ MAP

Corollary 2.1.8. [27] A real analytic singularity is generalized elliptic if and

only if it is non-dicritical and after the blow-up has no singularities on the real

projective line RP1 ⊂ CP1 of the exceptional divisor.

Proposition 2.1.9. Planar singularities whose linearization matrix A is normal-

ized to

A=



 −




after real blow up (2.1.10) have two singular points at (x,u) = (0, i) and (x,u) =

(0,−i) (or (v,y) = (−i,0) and (v,y) = (i,0) respectively in the second real chart)

on the exceptional divisor. Such singular points correspond to (Z,w) = (0,0) and

(Z,w) = ( ,0) respectively, in complex coordinates in the first direction of the

blow up (in the second chart, they are given by (W,z)= ( ,0) and (W,z)= (0,0)).

Such singularities are generalized elliptic povided %= 0. In this case the

points on the equator of the Riemann sphere (x,u) = (0,0) and (x,u) = (0, )

are non singular. These points are given by (Z,w) = (1,0) and (Z,w) = (−1,0)

(mapped as (W,z) = (1,0) and (W,z) = (−1,0) again in the second complex

chart), respectively.

Proof. The dual form corresponding to the linear part is = ( x+ y)dy+( x−

y)dx, and the tangent form is the polynomial

h2(x,y) = x( x− y)+ y( x+ y) = (x2+ y2),

which is non-vanishing outside the origin if %= 0. The pullback of the tangent

form into (x,u) coordinates is the polynomial

h2(x,xu) = x2(1+u2),
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so Equation (2.1.13) yields the singular points on CP1 : u=±i. Such points cor-

respond to v = ∓i in the (v,y) chart. Then u = 0, (mapped as v = ,0 in the

other chart) are non singular. Let us compute how they embed in complex charts

V1 and V2.

Inasmuch as u=−b
a
, the real point (x,u) = (0,0) yields b= 0 when t1= a+ ib

on the equator of CP1. This means Z =
t2
t1

=
a
a
= 1. By similar reasons, the real

point (x,u) = (0, ) yields a = 0 by denition, and then Z =
−ib
ib

= −1. From

whence the points Z = 1,−1 (mapped asW = 1,−1 in the second complex chart)

are non singular.

On the other hand, the imaginary point (x,u) = (0,+i) implies by denition

that b=−ia. Then i(a− ib) = 0. As t2 = t1 = a− ib in the real coordinates, we get

t2 = 0, whence Z = 0. On the contrary, the point (x,u) = (0,−i) leads to b = ia

or i(a+ ib) = 0, i.e., t1 = 0 and this is Z = . The singular points of the complex

chart (V1,c1) are therefore located at (Z,w) = (0,0) and (Z,w) = ( ,0) on the

Riemann sphere.

Remark 2.1.10. In particular, the singular points of a weak focus are not detected

in the real plane after blow up, see Figure 2.3 for a picture of complex and real

coordinates and their organization in the blow up.

Definition 2.1.11. The complex surface {z = w} is henceforward noted in am-

bient coordinates. It will be the target set of definition of the Poincaré map.

2.2 Holonomy of the field v0.

The holonomy map of the weak focus v0 along the loopRP1 in the c1 direction

of the blow up, is well dened for the cross section with the coordinate w as a
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{z= w} −i

0

+i

u

x

v

y

R

RP1

CP1

Figure 2.3: The exceptional divisor S$ CP1 in real coordinates (x,u).

local chart on it. As the eld v0 is analytic, there is a well dened real singular

foliation on the Möbius strip which is the neighborhood of the central circle of

the exceptional divisor S, see Figure 2.1. The holonomy map along this circle is

therefore real analytic. Note, however, that this loop does not belong entirely to

any of the two canonical real charts RV1 and RV2 : to compute the holonomy in

real chart (x,u) one has to �“continue�” across innity u = that is, pass to the

other chart.

Still this problem can be easily avoided after complexication: if the singular-

ity is generalized elliptic, the holonomy can be computed in the chart (x,u) as the

result of analytic continuation along the semi-circular loop

[−R,R]∪{|u|= R, Im(u)> 0}, R> 1

which is homotopic to RP1, see Figure 2.4.

Recall that v0 is a generic weak focus that is given in ambient coordinates
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0

R

−R
S$ CP1

+i

−i

Figure 2.4: �“Bypass�” of the innity in the real chart (x,u).

(z,w) by
z = iz+ sz2w+

j+k≥4
a jkz jwk,

w = −iw+ sw2z+
j+k≥4

a jkzkw j.
(2.2.1)

Definition 2.2.1.

1. The holonomy mapQc1 : → of the field vc10 = (c−11 )∗v0 ◦c1 in the (Z,w)

chart of the blow up is called the semi-Poincaré map (or semi-monodromy

map) of the weak focus v0.

2. The standard monodromy P ≡P0 of the field v0 is the square Qc1 ◦Qc1

of the holonomy. It is called the Poincaré map of the weak focus v0.

3. The holonomy map of the field vc20 = (c−12 )∗v0 ◦ c2 for the section in the

(W,z) chart of the blow up is noted Qc2 : → .

The complex description of the semi-monodromy immediately allows to prove

its analyticity and that of the monodromy map.

Theorem 2.2.2. [27] The semi-monodromy Qc1 of a generalized elliptic singular

point is an orientation reversing (with Qc1 ′(0) = −1) germ of diffeomorphism,

which is also real analytic on (R,0), including the origin.
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w∗
Q(w∗)

RP1

CP1

z

w

x∗
P(x∗)Q(x∗)

0
R

Figure 2.5: The complexication of the real line and its blow up.

The holonomy operator Qc1 of the eld v0 is visible on the real plane (R2,0)

before the blow-up: we have seen already that the cross-section blows down

as the x-axis on the (x,y)-plane. Indeed, the section blows down as {z = w}

and since z = w (the real system) we get Im(z) = y = 0, which is the x-real axis.

By construction, (Qc1(x),0) is the rst point of intersection with the x-axis of a

solution starting at (x,0), after continuation counterclockwise, see Figure 2.5.

2.3 The embedded Poincaré family.

We embed the Poincaré map P = P0 of the weak focus v = v0 in a generic

family of diffeomorphismsP which is analytic in the parameter.

Definition 2.3.1. Let be fixed in a neighborhoodV of the origin in the parameter

space.

1. The holonomy mapQc1 : → of the field vc1 = (c−11 )∗v ◦c1 in the (Z,w)

chart of the blow up is called the semi-Poincaré map (or semi-monodromy

map) of the system v .
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2. The standard monodromy P of the field v is the square Qc1 ◦Qc1 of the

holonomy. It is called the Poincaré map of the the system v .

3. The holonomy map of the field vc2 = (c−12 )∗v ◦ c2 for the section in the

(W,z) chart of the blow up is noted Qc2 : → .

Theorem 2.3.2. [29] The Poincaré mapP : → of the complex family (1.4.1)

unfolding the weak focus v≡ v0 is an analytic germ of diffeomorphism which has

the form

P (w) = e2 w± e2 [2 +O( )]w3+O(w4). (2.3.1)

Proof. The analyticity follows from its denition (the eld v is analytic for

xed). Write system (1.2.1) in polar coordinates (r, ) :




r = r( +sr2)+g(r, )

 = 1+h(r, ),
(2.3.2)

where s=±1, g= O(|r|4), h= O(|r|3), and the -dependence of these functions

is not indicated to simplify notations. An orbit of (2.3.2) starting at (r, ) = (r0,0)

has the following representation: r = r( ,r0), r0 = r(0,r0) with r satisfying the

equation
dr
d

=
r( +sr2)+g

1+h
= r( +sr2)+R(r, ), (2.3.3)

where R = O(|r|4). Notice that the transition from (2.3.2) to (2.3.3) is equivalent

to the introduction of a new time parametrization in which  = 1 which implies

that the return time to the half-axis = 0 is the same for all orbits starting on this

axis with r0 > 0. Since r( ,0)≡ 0 we can write the Taylor expansion for r( ,r0),

r = u1( )r0+u2( )r20+u3( )r30+O(|r|4). (2.3.4)
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Substituting (2.3.4) into (2.3.3) and solving the resulting linear differential

equations at corresponding powers of r0 with initial conditions u1(0) = 1, u2(0) =

u3(0) = 0, we get

u1( ) = e , u2( )≡ 0, u3( ) = se
(
e2 −1
2

)
.

Notice that these expressions are independent of the term R(r, ). Therefore, the

standard monodromy r0 .→ rP = r(2 ,r0) has the form

rP = e2 r0+ se2 [2 +O( )]r30+O(r40) (2.3.5)

for all R= O(r40). This yields the expression (2.3.1) in the w coordinate.

Remark 2.3.3.

1. The semi-monodromy is simply r( ,r0) in the proof above.

2. Since P0 = Qc1
0 ◦Qc1

0 , the Theorems 2.2.2 and 2.3.2 prove that the form of

the semi-monodromy is given by

Qc1
0 (w) =−e w± e [ +O( )]w3+o(w3). (2.3.6)

3. In the next chapter we shall see that the family P is real under the condi-

tion ∈ R (Proposition 3.1.6).

Denote by f (x, ) the displacement function f = P − id for some choice of

a cross-section, say, the semiaxis + = {y = 0,x > 0}, and an analytic chart x

on this cross-section. By denition, sufciently small limit cycles of the eld v

intersect + at isolated zeros of f . The map (2.3.1) can easily be analyzed for

sufciently small r0 and | |. For instance, if the third order coefcient of the eld

v is negative (i.e. s=−1) there is a neighborhood of the origin in which the map



2.3. THE EMBEDDED POINCARÉ FAMILY. 27

has only a trivial xed point for small < 0 and an extra xed point,
√

+ ... for

small > 0. The stability of the xed points is also easily obtained from (2.3.1).

Taking into account that a positive xed point of the map corresponds to a limit

cycle of the system, we can conclude that system (2.3.2) (or (1.2.1)) with any

O(|w|4) terms has a unique (stable) limit cycle bifurcating from the origin and

existing for > 0. If s=+1 an unstable limit cycle appears on < 0.
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Chapter 3

The real character of the foliation

3.1 Z2-equivariance of the family.

Recall that a generic (orbital) analytic family v locally unfolding an embed-

ded order 1 weak focus in a neighborhood around the origin of coordinates in C2

is an analytic one-parameter dependent family of differential equations:

z= ( +i)z+ sz2w+
j+k≥4

a jk( )z jwk,

w= ( −i)w+ sw2z+
j+k≥4

a jk( )zkw j.





= v (z,w) (3.1.1)

where the coefcient s=±1, and a jk( ) is the complex conjugate of a jk( ), and

the domain of is a symmetric neighborhood V ⊂ C around the origin in the

complex plane. Inasmuch as the coefcients depend analytically on they can be

written as
a jk( ) =

n∈N
(b jkn+ ic jkn) n, (3.1.2)

with b jkn,c jkn ∈ R for all j+ k ≥ 4 and n ∈ N. The parametric family of systems

above corresponds to a generic unfolding of a saddle point in C2 with ratio of

29
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eigenvalues equal to −1. Let stand for the Pfafan form associated to the

system v , and letF be its holomorphic foliation.

Definition 3.1.1. In ambient coordinates (z,w) and parameter space, we define

1. The standard complex conjugation in one variable:

C (z) = z, C (w) = w, C ( ) = . (3.1.3)

2. The standard complex conjugation in two variables:

S (z,w) = (z,w). (3.1.4)

3. The standard shift of two complex variables:

(z,w) = (w,z). (3.1.5)

An easy calculation shows that the family of complex systems (3.1.1) is in-

variant under the conjugacyS ◦ and a Schwarz reexion in the parameter:

v = S ◦ ◦ vC ( ) ◦ ◦S , (3.1.6)

and thus, the family of vector elds v shows a particular behavior for real values

of the parameter.

Definition 3.1.2. [29] Let G be a (compact) group which can be represented in

Rn by matrices {Tg} :

Te = In, Tg1g2 = Tg1Tg2 ,

for any g1,g2 ∈ G. Here e ∈ G is the group unit (eg = ge = g), while In is the

n× n unit matrix. A continuous time family of differential equations depending

analytically on a parameter ∈ R

!X = f (!X), !X ∈ Rn (3.1.7)
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is called invariant with respect to the representation {Tg} of the group G, or simply

G-equivariant, if

Tg f (!X) = f (Tg!X) (3.1.8)

for all g ∈ G, ∈ R and all !X ∈ Rn.

Notice that the composition S ◦ (z,w) = (w,z) corresponds in R4 to the

linear transformation TS ◦ represented by the premultiplication by the matrixM :

M =





0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0





i.e., the equationS ◦ (z,w) = (w,z) in C2 is equivalent to

M(x1,y1,x2,y2)T = (x2,−y2,x1,−y1)T (3.1.9)

in R4 for ambient coordinates z= x1+ iy1 and w= x2+ iy2. Moreover, it is easily

seen that

M2 = I4

i.e., T is an involution: T ◦2S ◦ = Te. Thus, if Rv is the realication of the family

(3.1.1), and if G = {Te,TS ◦ } with Te = I4 (i.e. G ∼ Z2), then the family Rv is

�“Z2-equivariant�” for real values of the parameter:

MRv (!X) = Rv (M!X), (3.1.10)

for all !X ∈ R4. In addition, this representation decomposes R4 into a direct sum

R4 = +⊕ −,

whereM!X = !X for !X ∈ +, andM!X =−!X for !X ∈ −.
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Definition 3.1.3. The Z2-equivariance (3.1.6) in C2 (or (3.1.10) in R4) of a

generic family of vector fields v , is called the real character of the family.

The space + is the xed point subspace associated with G and is canonically

identied with the real plane R2 ⊂ C2. Indeed, the equation M!X = !X , for !X =

(x1,y1,x2,y2) ∈ R4, yields
z = x1+ iy1,

w = x1− iy1
or z= w.

Definition 3.1.4. The 1-dimensional complex surface + : {z = w} is called the

plane of symmetry or the real plane, because it is canonically identified with R2

in the ambient space C2 in (z,w) coordinates.

Let us write

v (z,w) = P (z,w)
z
+Q (z,w)

w
, (3.1.11)

where P ,Q : U ⊂ C2 → C2 are germs of analytic families of functions on an

open set of C2.

Proposition 3.1.5. The real character (3.1.6) of the family v is equivalent to the

invariance of the real plane + under the flow of the system, when ∈ R.

Proof. In terms of the families P ,Q the real character (3.1.6) means (P (z,w),Q (z,w))=

(Q (w,z),P (w,z)). Thus, on + : {z= w} we get for real :

P = Q (3.1.12)

whence follows that the ow of v is real too. Conversely, if the ow of the

family is real for real , then it is easily seen that the components P ,Q are re-

lated through (3.1.12). Hence, v = S ◦ ◦ v ◦ ◦S , ∈ R. Inasmuch as the
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dependence of v on the parameter is analytic, and the neighborhood V is sym-

metric (with V ∩R %= /0), the Schwarz reection principle yields the real character

(3.1.6).

The real character of the family v allows to show easily the

Proposition 3.1.6. The generic family of diffeomorphismsP unfolding the Poincaré

map P0 of the system v0 is an analytic germ of family, verifying the identity

C ◦PC ( ) ◦C = P

for all ∈V. In particular, it is real whenever ∈ R.

Proof. The analyticity follows by denition. We show that it is a real family on

real values of the parameter. Let us x ∈ R and take an orbit of the system

(3.1.1) (i.e., a trajectory for real time) starting at the point z0 = w0 ∈ and return-

ing to a point z1=w1 ∈ close to w0 : w1=P (w0). If z0=w0, the real trajectory

of this point coincides with (which is then contained in R2) so z1 = w1, because

the ow is real for real values of the parameter (that is, the orbits starting at real

initial conditions are contained in +, due to the real character of the family) and

then

P (z0) = z1 = w1 = P (w0) = P (z0).

By the symmetry of the neighborhoodV in the parameter space, again the Schwarz

reection principle yields the conclusion.

Definition 3.1.7.

1. Recall that : {z= w} in ambient coordinates. Define as well

R := ∩ + $ R,

µ := {z= µw : µ ∈ C∗}
(3.1.13)
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and endow these surfaces with a parametrization in the w coordinate.

2. The pullback of µ is denoted by

c1
µ := c∗1 µ = {Z = µ} (3.1.14)

in the c1 direction of the complex Möbius strip, and by

c2
µ := c∗2 µ = {W = µ−1} (3.1.15)

in the c2 direction of the complex Möbius strip.

Proposition 3.1.8. The affine collection { µ}µ∈C∗ of complex surfaces is a local

transverse fibration for F , in a small neighborhood of the origin.

Proof. By denition, µ = {z = µw} = { z
w

= µ}, for µ ∈ C∗. Using equations

(3.1.1) we get
d
dt

( z
w

)
=
zw− z w
w2

=
z
w

(
2i+O(|z,w, |)

)
.

Thus, on µ
d
dt

( z
w

)
= µ

(
2i+O(|z,w, |)

)
%= 0

for sufciently small z,w.

In particular, all the vertical and horizontal surfaces dened separately by Z =

µ (in the (V1,c1) chart of the blow up), or W = µ (in the (V2,c2) chart), where

µ ∈ C∗, are transverse to the foliation on a small neighborhood of the origin.

3.2 Blow up of the family v .

The 1-parameter dependent family v is a generic family of vector elds un-

folding the weak focus v0. In order to describe the geometry of the foliation, equa-

tions (3.1.1) are blown up by the complex standard monoidal map = (c1,c2),
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dened in (2.1.7). The blow up space (or the complex Möbius strip) is equipped

with the two charts (V1,c1) and (V2,c2) which overlap away from Z = 0 ∈ CP1

and Z = ∈CP1. It is seen that the singularity at the origin of the system in (z,w)

coordinates splits in two singularities located at Z = 0 and Z = on the Riemann

sphere and those points are seen as u=+i and u=−i in the real chart (x,u), see

Figure 2.3. Inasmuch as the singularity is non-dicritical, the Riemann sphere CP1

is a common separatrix in the two charts of the blow up space.

Definition 3.2.1. Let vc1 ,vc2 be the pullback fields of the vector field v , respec-

tively, under the maps c1,c2 :

vc1 = (c−11 )∗v ◦ c1,

vc2 = (c−12 )∗v ◦ c2.
(3.2.1)

F Z and FW are the foliations of vc1 and vc2 .

A short calculation proves that vc1 is given by the eld on the right of the

equation

Z = 2iZ+
j+k≥4

(a jk( )−ak+1, j−1( ))Z jwk+ j−1

w = ( −i)w+ sw3Z+
j+k≥4

a jk( )Zkwj+k





:= vc1(Z,w). (3.2.2)

In the same way, vc2 is given by the eld on the right of

W = −2iW +
j+k≥4

(a jk( )−ak+1, j−1( ))W jzk+ j−1

z = ( +i)z+ sz3W +
j+k≥4

a jk( )Wkz j+k





:= vc2(W,z),

(3.2.3)

where the coefcients a jk( ) are given in (3.1.2).
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w

z

vc1

vc2
CP1

Figure 3.1: The two elds vc1 and vc2 in the blow up space.

3.3 The real character in the blow up.

We now investigate how the elds found in the blow up are related. Recall that

the change of coordinates between charts of the blow up is the monomial map

: V1→V2

(Z,w) := (
1
Z
,Zw)≡ (W,z)

(3.3.1)

with inverse
−1(W,z) = (

1
W

,Wz). (3.3.2)

This function is a holomorphic diffeomorphism and, in fact

= c−12 ◦ c1, (3.3.3)

see Figure 3.1. Notice also that the change between charts is the identity on the

product ×C :

(1,w) = (1,z)

where z= w, so it sends the section onto . The proof of the following proposi-

tion is plain.
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Proposition 3.3.1. The field vc2 is the pushforward of the field vc1 by the map :

vc2 = ∗vc1 ◦ −1. (3.3.4)

This is a global identity in the blow up.

Remark 3.3.2. The standard complex conjugation in two complex variables S

lifts as
c−11 ◦S ◦ c1(Z,w) = (Z,w)

c−12 ◦S ◦ c2(Z,w) = (W ,z)
(3.3.5)

respectively, in the first and second directions of the blow up space. Such a lifting

is noted S as well.

3.3.1 The real strip RM revisited.

The real Möbius strip RM is given by the pullback of the real plane (symmetry

plane) into the blow up spaceM :

RM= ∗ + (3.3.6)

(see (2.1.1) for the dention ofM). The real Möbius strip can be explicitly com-

puted in terms of the complex charts (Z,w) and (W,z) covering the blow up space

(see Paragraph 2.1.2 in the previous chapter for details on the real covering of
RM).

Proposition 3.3.3 (RealMöbius strip in complex coordinates). The real Möbius

strip RM is defined in complex charts, by

RMc1 := {(Z,w) : Z =
w
w
, w ∈ C} (3.3.7)
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S1

RM

R2

L

eiL′

−
2

x
y

(0,0)

Figure 3.2: The real Möbius strip in complex coordinates.

in the c1 direction of the blow up space, and by

RMc2 := {(W,z) : W =
z
z
, z ∈ C} (3.3.8)

in the c2 direction of the blow up. Such a surface can be seen as the embedding

R2\{0} ↪→ R4\{0}

(x,y) .→ (
x2− y2

x2+ y2
,
2xy

x2+ y2
,x,−y).

Proof. Indeed, points in polar form (ei ,re−i 2 ) ∈ RP1×R2 are in 1-to-1 corre-

spondence with points
(
w
w
,w

)
∈ RMc1 , for the complex number w= re−i 2 , ∈

[0,2 ). Here, the second component re−i 2 stands for the direction of the real line

through the origin L in the real plane R2. The rst component ei gives the point

of the unit circle (which is homeomorphic to the exceptional real line RP1×{0})
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in correspondence with the line L′ projecting as L on the real plane R2, see Pic-

ture 3.2. Of course, the manifold
{
(ei ,re−i 2 ) ∈ RP1×R2 : ∈ [0,2 )

}
is

non-orientable.

Corollary 3.3.4. The real Möbius strip is invariant under the change of charts:

(RMc1) =
R Mc2 . (3.3.9)

Indeed, ≡S on RM.

Proof. This is a tautology:
(
w
w
,w

)
=

(w
w
,w

)
=

(
z
z
,z
)

each time that z= w.

Remark 3.3.5. The real Möbius strip RM is strictly contained in the subvariety

:=RP1×R2, which is given in complex charts by {|Z|= 1}= {|W |= 1} within

the product CP1×C2, and by {|z|= |w|} in ambient coordinates. Furthermore,

RM!

as real spaces. The real dimension of is 3 and is topologically equivalent to the

product S1×R2 in the blow up space, see Figure 3.3.

Proposition 3.3.6. The real character (3.1.6) of the family v is equivalent to the

symmetric equations

vc1 = (S ◦ )∗vc1C ( ) ◦ ◦S ,

vc2 = (S ◦ )∗vc2C ( ) ◦ ◦S
(3.3.10)

in the complex Möbius strip. Since = ◦−1, this yields

vc1 = S ◦ vc2C ( ) ◦S .
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= RP1×R2

CP1
RM

Figure 3.3: The 2-dimensional real Möbius strip RM embedded in $ S1×R2.

Proof. Recall Denition 3.1.1. Inasmuch asS∗=S and ∗= (the differentials

are computed in R4), the real character (3.1.6) of the family v and the rst of

Equations (3.2.1) lead to:

vc1 = (c−11 )∗v ◦ c1
= (c−11 )∗(S ◦ ◦ vC ( ) ◦ ◦S )◦ c1
= (S ◦ c−11 ◦ )∗vC ( ) ◦ ◦ c1 ◦S ,

but an easy calculation shows that = c1 ◦ c−12 and ◦ c1 = c1 ◦ . Thus

vc1 = (S ◦ c−12 )∗vC ( ) ◦ c1 ◦ ◦S

= (S ◦ c−12 ◦ c1 ◦ c
−1
1 )∗vC ( ) ◦ c1 ◦ ◦S

= (S ◦ ◦ c−11 )∗vC ( ) ◦ c1 ◦ ◦S

= (S ◦ )∗(c−11 )∗vC ( ) ◦ c1 ◦ ◦S

= (S ◦ )∗vc1C ( ) ◦ ◦S .

with the help of (3.3.3). The same procedure proves the second equality. Let us

show the converse statement. By denition

c1 ◦S (W,z) = S ◦ ◦ c2(W,z) (3.3.11)
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globally for (W,z) coordinates. This yields, in terms of the differentials,

c1∗S = S ◦ ◦ c2∗. (3.3.12)

Since

vc2C ( ) = (c−12 )∗vC ( ) ◦ c2,

the hypothesis (3.3.10) implies

vc1 = S ◦
(
(c−12 )∗vC ( ) ◦ c2

)
◦S .

But since v = c1∗vc1 ◦ c−11 , Identity (3.3.12) leads to

v = c1∗S ◦
(
(c−12 )∗vC ( ) ◦ c2

)
◦S ◦ c−11

= S ◦ ◦ c2∗ ◦
(
(c−12 )∗vC ( ) ◦ c2

)
◦S ◦ c−11

= S ◦ ◦ vC ( ) ◦ c2 ◦S ◦ c−11

= S ◦ ◦ vC ( ) ◦ ◦S ,

the last equality being a direct replacement from (3.3.11).

Definition 3.3.7. The Equations (3.3.10) are referred to as the real character in

the blow up of the family v .

Thus, the real character of the family v in ambient coordinates is equivalent

to the real character in the complex Möbius stripM.

Proposition 3.3.8. The real character in the blow up of the family v is equivalent

to the invariance of the real Möbius strip RM under the flows of the systems (3.2.2)

and (3.2.3) when ∈ R.



42 CHAPTER 3. THE REAL CHARACTER OF THE FOLIATION

3.4 Holonomies.

In the general case, the holonomy map (for instance, in the c1 chart of the

complex Möbius strip) between two bers c1
µa : {Z = µa : µa ∈ C∗} and c1

µb :

{Z = µb : µb ∈ C∗} is obtained by lifting the radial path dened by the segment

between the intersection of the ber c1
µa with the exceptional divisor (the common

separatrix of the foliations of the two charts), and the unit circle S1 and continuing

the lifting along S1 in the counterclockwise direction, and, nally, lifting the radial

path dened by the segment between the intersection of the ber c1
µb with the

separatrix, and the unit circle S1, see Figure 3.4 below.

+

c1
µa
µa c1

µb
µb

S1

CP1

Figure 3.4: The holonomy map in the (Z,w) chart between the sections c1
µa and

c1
µb .

Definition 3.4.1. In each chart of the divisor, the counterclockwise direction will

be the positive orientation, and the clockwise direction, the negative orientation.

The direction of the parametrization in the two radial segments depends on

whether the modulus of the projection of the bers on the separatrix, namely |µa|

and |µb|, are greater or smaller than 1. In the picture above |µa|, |µb|< 1.

Definition 3.4.2.
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1. The holonomy between the complex sections c1
µa and

c1
µb is noted as h in

the first direction of the blow up space.

2. The holonomy between the complex sections c2
µa and

c2
µb is noted as " in

the second direction of the blow up space.

Im(w)

Im(z)

−

RP1

RP1

+

+

Z

W =
1
Z

Figure 3.5: The + sign stands for the positive orientation (counter-clockwise).

We are interested in the particular case µb = 1, see the Figure 3.5.

3.4.1 The case µb = 1.

Definition 3.4.3.

1. The holonomy h : {Z}×Dw→ {1}×Dw in the first direction of the blow

up is denoted by h ,Z.

2. The holonomy " : {W}×Dz→{1}×Dz in the second direction of the blow

up is denoted by " ,W .

Remark 3.4.4. Notice that if µa = µb = 1, then h ,1 = Qc1 (the semi-monodromy

of the field v for the section in the first chart of the blow up, see Definition
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2.3.1) and " ,1 = Qc2 (the semi-monodromy of the field v for the section in the

second chart of the blow up, see Definition 2.3.1).

w

z
RP1

−
CP1

Figure 3.6: Monodromies of in the blow up.

Corollary 3.4.5. The holonomies Qc1 and Qc2 for the cross section in the first

and second charts of the complex Möbius strip, respectively, are inverses of each

other:

Qc1 = Qc2◦−1.

Proof. The equator RP1 is positively parametrized as (ei ,0), ∈ [0,2 ] in the

rst chart of the blow up. The lifting of this loop in the leaf of F c1 through the

point w0 ∈ is given by the trajectory : (ei ,w( )), where w(0) =w0. Consider,

on the other hand, the lifting of the loop (ei ,0), ∈ [0,2 ] in the leaf of F c2

passing through the point w(2 ) ∈ and positively oriented (i.e. oriented in the

counter-clockwise direction) in the second chart of the blow up. Such a lifting is

given by (ei ,z( )), where z(0) = w(2 ). Since vc2 = ∗vc1 ◦ ◦−1, the trajectory
− given by (ei ,w( )) = (e−i ,ei w( )) is a well-dened lifting in the leaf of

the foliationF c2 passing through the point (1,w(2 )). However, such a lifting is
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negatively parametrized (i.e. oriented in the clock-wise direction) in the second

chart of the blow up space, because the orientation of the equator is switched by

. Changing the parametrization by

.→ 2 −

yields the trajectory + given by

+ : (ei ,e−i w(2 − )),

which is positively oriented in the second chart of the blow up, see Figure 3.6.

Therefore, by unicity of the solution to (3.2.3) in polar coordinates with initial

condition (1,w(2 )),

z( )≡ e−i w(2 − ).

Thus,

Qc2 ◦Qc1(w0) = Qc2(w(2 )) = Qc2(z(0)) = z(2 ) = w(0) = w0.

The conclusion follows.
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Chapter 4

Orbital characterization

4.1 Real character of a family of orbital equivalences.

Definition 4.1.1. Two germs of analytic families of vector fields v 1(z1,w1) and

v̂ 2(z2,w2), unfolding weak foci at the origin for the values 1 = 2 = 0, are ana-

lytically orbitally equivalent if there exists a germ of map

K ≡ (k, , ) : ( 1,z1,w1) .→ (k( 1), ( 1,z1,w1), ( 1,z1,w1)) (4.1.1)

fibered over the parameter space, where

i) k : 1 .→ k( 1) = 2 is a germ of analytic diffeomorphism preserving the

origin. Moreover, it is real for real values of the parameter:

C ◦k◦C = k.

ii) There exists a representative 1(z1,w1)
def
= ( 1,z1,w1) which is an ana-

lytic diffeomorphism on a fixed small neighborhood of the origin in (z1,w1)

space, for every 1 in a neighborhood of the origin of the parameter space.

47
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In addition, 1 enjoys the following property:

1 = S ◦ ◦ C ( 1) ◦ ◦S . (4.1.2)

iii) There exists a representative 1(z1,w1)
def
= ( 1,z1,w1) depending analyt-

ically on ( 1,z1,w1) in a small neighborhood of the origin in ( 1,z1,w1)

space with values in C∗, and it satisfies:

1 = C ◦ C ( 1) ◦S ◦ .

iv) The change of coordinates 1 and the time scaling 1 define an equiva-

lence between v 1(z1,w1) and v̂k( 1)(z2,w2) over a polydisk B0(r)×B0(r),

where B0 is a ball of small radius r > 0, for in a small neighborhood of

the origin:

v̂k( 1)( 1(z1,w1)) = 1(z1,w1)( 1)∗(v 1(z1,w1)). (4.1.3)

Definition 4.1.2. In general, any germ of family of smooth diffeomorphisms

satisfying (4.1.2) over a symmetric neighborhood V of the origin in the parameter

space, is said to possess real character.

Of course, if we know that two families are orbitally equivalent, we can al-

ways change the parameter 2 of the second family by 1, where 2 = k( 1) and

suppose that the two families are parametrized by the same parameter, as we do

later.

Proposition 4.1.3. Let (z1,w1) = (z2( ,z1,w1),w2( ,z1,w1)) be a holomor-

phic change of coordinates (depending analytically on the parameter) between

two families of vector fields v , v̂ unfolding a weak focus. Then has real char-

acter (4.1.2) if and only if sends the plane of symmetry into itself ( +)⊂ +

for real values of the parameter.



4.2. THE MAIN THEOREM. 49

Proof. If the change of coordinates has real character, then:

(z1,w1) = (z2( ,z1,w1),w2( ,z1,w1))

= S ◦ ◦ C ( ) ◦S ◦ (z1,w1)

= (w2( ,w1,z1),z2( ,w1,z1))

and then, the equivalences sends the symmetry plane of the source space (parametrized

by z1=w1) into the symmetry plane of the target space (parametrized by z2=w2)

on ∈ R. On the other hand, the equation ( +) ⊂ + is equivalent to =

S ◦ ◦ ◦ ◦S . Inasmuch as the equivalence depends analytically on the pa-

rameter, it extends to (4.1.2) by Schwarz reection.

4.2 The main theorem.

Lemma 4.2.1. Suppose G : V ⊂ C2 → C, (z,w) ∈ V .→ G(z,w) ∈ C is a germ

of holomorphic map defined locally in a small neighborhood V containing the

origin, such that G(0,0) %= 0 and G = C ◦G ◦S ◦ . Then
G
z
(0,0) %= 0 and

G
w
(0,0) %= 0.

Proof. This is straightforward, since

G
w
(0,0) = lim

h→0

G(0,h)−G(0,0)
h

= lim
h→0

[G(h,0)−G(0,0)
h

]
=

G
z
(0,0).

Definition 4.2.2. [10] Two germs of analytic families f and f̂̂ of diffeomor-

phisms with a fixed point at the origin are conjugate if there exists a germ of
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analytic diffeomorphism H ( ,w) = (k( ),h( ,w)) fibered over the parameter

space such that:

h ◦ f = f̃k( ) ◦h , (4.2.1)

where h (w) def
=h( ,w). The conjugacy is said to be real if

C ◦k◦C = k

and

C ◦hC ( ) ◦C = h . (4.2.2)

Theorem 4.2.3 (Orbital analytical characterization of the foliation). Two germs

of generic families of analytic vector fields unfolding a vector field with a weak

focus at the origin of coordinates in C2 are analytically orbitally equivalent, if

and only if the families unfolding their Poincaré maps are analytically conjugate

by a real conjugacy.

Proof. Let the germs of the two different families of vector elds be given by

v 1 and v̂ 2 . If the systems are analytically orbitally equivalent, then there exists a

change of coordinates ( 1, ·, ·) = 1(·, ·) as in Denition 4.1.1, bringing leaves

into leaves. A real reparametrization 2 = k( 1) of v̂ 2 is possible by denition.

Such a reparametrization allows to work only with the parameter 1, which will

be noted . Accordingly, we shall write v̂ instead of v̂k( ). In addition, will

stand for the family of Pfafan forms dened by v , and ̂ will denote the family

of Pfafan forms dened by v̂ . A theorem on the existence of invariant analytic

manifolds (see Appendix B) ensures that , ̂ are always equivalent to =

( +i)zdw− ( −i)w(1+ zw(...))dz in ambient coordinates, and then

c1 = Zdw− ( )w(1+A (Z,w))dZ (4.2.3)
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in the rst chart of the blow up, and

c2 =Wdz− ′( )z(1+A′ (W,z))dW (4.2.4)

in the second chart of the blow up, so that

∗ c2 = c1 (4.2.5)

is plain, with A (Z,w) =O(Zw) and A′ (W,z) =O(Wz). The numbers ( ), ′( )

correspond to the ratio of eigenvalues of the singular points (Z,w) = (0,0) and

(W,z) = (0,0) in the rst and second directions of the blow up, respectively:

( ) :=
−i
2i

, ′( ) :=− +i
2i

. (4.2.6)

The functions A ,A′ depend analytically on the parameter and are holomorphic on

a neighborhood C∗×Ds of the exceptional divisor, for each xed value of (here

Ds is the open disk of radius s in the complex plane). Moreover, the coordinates

can always be scaled before blowing up, to ensure:

|A (Z,w)|, |A′ (W,z)|< 1
2

(4.2.7)

inC∗×Ds. In the following,F and F̂ are the foliations of and ̂ in ambient

coordinates. To avoid confusions, ̂ denotes the local transverse section {z = w}

to the foliation F̂ . The familiesP ,P̂ are the monodromies of ,̂ computed

along the leaves ofF and F̂ , respectively.

I) THE NECESSARY CONDITION.

Let the parameter be real. Let (z1,w1) denote the ambient coordinates of v and

(z2,w2) the coordinates of v̂ . By Proposition 4.1.3, the image of the embedded
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{w1 = z1}

R

( R)

̂R

̂

( )

Figure 4.1: The real line and its image by the equivalence .

real line R : {w1 = z1} ∩ {w1 = z1} is a real analytic curve ( R) in {z2 =

w2} $R2, not necessarily coinciding with ̂R (the real line in ̂), see Figure 4.1.

The surface ( ) is transverse to F̂ by denition. Therefore, it is given by

the zero level set of an analytic family of germs G on an open V ⊂ C2 :

( ) = {(z2,w2) ∈ V : G (z2,w2) = 0}.

The family G veries G (0,0) = 0, (z,w)G (0,0) %= 0 and G =C ◦GC ( ) ◦S ◦

on V (and thus, is real on the real plane when ∈R). By Lemma 4.2.1 and the

Implicit Function Theorem, there exists a product neighborhood U ×V ⊂ C2

and an analytic family g satisfying g (0) = 0, such that G (z2,w2) = 0 if and

only if z2 = g (w2) for all w2 ∈ V . Such a family can be written as g (w2) =

w2Z0+w22h( ,w2) for some |Z0|= 1. Thus ( ) is given by the set:

{(Z2,w2) : Z2 = Z0+w2h( ,w2)}

in the rst direction c1 of the blow up space. Then one takes a simply connected

open set U on the exceptional divisor containing 1 and Z0 but not containing

neither 0 nor . Inasmuch as the two sections ( ) and ̂ are locally transverse
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to the foliation F̂ in the blow up space, a transition between ̂ and ( ) can be

constructed. This is done as follows. Any leaf of the foliation induced by F̂ in

the blow up space and lying over the openU is given as the graph w2= f (Z2,w∗),

for a germ of function f depending analytically on near the origin and such that
f
Z2

(Z2,w∗) is small for Z2 ∈U and |w∗| small. Such a leaf is parametrized by

the point w∗ which is the intersection of the leaf with ̂. By transversality, this

intersection is not empty if the leaf is close to the Riemann sphere (the divisor).

Therefore, the system 



w2 = f (Z2,w∗)

Z2 = Z0+w2h( ,w2)

leads to

w2 = f (Z0+w2h( ,w2),w∗) (4.2.8)

and then the Implicit Function Theorem yields a unique solution w∗2 = (w∗) ∈

( ), see Figure 4.2. The induced depends on the w2 coordinate and is an

z

w
̂

( )
1
Z0

w∗
w∗2

U

Figure 4.2: The sections ̂ and ( ) in the blow up.

analytic germ of diffeomorphism in a local neighborhood of the origin, depending

analytically on ∈ R. Thus, it gives rise to a germ of analytic diffeomorphism in

ambient coordinates (z2,w2) :

: ̂→ ( )
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which veries (0,0) = (0,0). Such a map is called a local transition. Let us

show that it sends (̂R) into ( R). Let z∗ = w∗ ∈ ̂. If z∗ = w∗, the real

trajectory of this point is contained in the leaf parametrized by w∗. This real tra-

jectory intersects ( ) in a real point (z,w) if ∈ R, so z = w. Since the leaf

passing through w∗ intersects ( ) in a unique point (z2(w∗2),w∗2) (i.e. the solu-

tion to (4.2.8) is unique), it turns out that w= w∗2. Hence:

(̂R)⊂ ( R).

Consider the diagonal injection i : w .→ (w,w) dened inF and F̂ . The compo-

sition

h := i−1 ◦ −1 ◦ ◦ i

is an analytic germ of diffeomorphism whose coefcients are real when is real,

and they depend analytically on the parameter. As xes the origin, −1 ◦

(0,0) = (0,0) and then h (0) = 0. By construction, it is a conjugacy between

Poincaré maps:

P = h◦−1 ◦P̂ ◦h .

It depends analytically on the parameter. Thus, it extends to an analytical conju-

gacy for values ∈ C in a neighborhood V of the origin in the parameter space.

II) THE SUFFICIENT CONDITION.

Notation and methodology. The converse statement is achieved in several steps.

Suppose that the Poincaré mapsP 1 : → and P̂ 2 : ̂→ ̂ of two generic fam-

ilies of vector elds v 1 , v̂ 2 unfolding weak foci, are conjugate in a neighborhood

V of the rst parameter 1, as in Denition 7.2.1:

P 1 = h
◦−1
1 ◦P̂k( 1) ◦h 1 ,
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where the conjugacy h 1(w) : D ⊂ → ̂ depends analytically on the parameter

1 and veries C ◦hC ( 1) ◦C = h 1 and k( 1) = 2 is real: C ◦k ◦C = k. The

set D ⊂ is the standard open disk of radius > 0, where is a small positive

number such that h is dened on D for every 1 ∈V. Note that the map k yields

a reparametrization in the second family of diffeomorphisms and it allows to write

P̂ 2 = P̂k( 1) := P̂ 1 .Modulo the reparametrization, the parameter is henceforth

called . For each ∈ V, a local equivalence (depending analytically on the pa-

rameter) is constructed between the two foliations in ambient coordinates. For

this, the origin of ambient coordinates is blown up. Two families of equivalences

are constructed in the rst and second charts of the blow up. In the c1 direction the

family is noted ̂ c1 , while in the c2 chart the family is noted ̂ c2 , see Figure 4.3.

The foliations induced by in the c1,c2 charts of the blow up are notedF c1 and

F c2 respectively, and F̂ c1 ,F̂ c2 are the foliations of ̂ in those complex charts.

ww

̂ c2

̂ c1

z z

̂

SS

F F̂

Figure 4.3: The two equivalences in charts, on a vicinity of the divisor S.
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4.2.1 The equivalence in the first chart.

i) The equivalences on ×D . Consider w∗ ∈ such that |w∗| < (i.e., w∗ ∈

D ). The equivalence ̂ c1 on ×D is dened by:

̂ c1 : (1,w∗) .→ (1,h (w∗)) (4.2.9)

in the (V1,c1) chart of the complex Möbius strip.

ii) The equivalences on a subset of S1×C. The restriction of the form c1 to the

cylinder RP1×R2 is non-singular and holomorphic. Thus, this restriction denes

a local foliation in RP1×R2. Consider (cylindrical) solutions to c1 = 0 (the rst

coordinate is to be parametrized by Z = ei , ∈ [0,2 ]).

Lemma 4.2.4. Any (cylindrical) solution to

u1′ = ( )u1(1+A(ei ,u1)), ∈ [0,2 ] (4.2.10)

satisfies

|u1(0)|e− {| |+ 1
4} < |u1( )|< |u1(0)|e {| |+ 1

4},

for any ∈ [0,2 ].

Proof. The parameter is written as = 1+i 2, with 1, 2 ∈ R. As we consider

solutions in the cylinder |Z| = 1, the time is parametrized by t = i , and then

(4.2.10) implies

d lnu1 =
1
2
( −i)(1+A (ei ,u1))d .

Thus, taking real parts,

ln
∣∣∣∣
u1
u1(0)

∣∣∣∣=
1
2

∫

0
{ 1(1+Re(A ))+ Im(A )(1− 2)}d
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and now we bound the absolute value of this quantity, using the hypothesis (4.2.7):
∣∣∣∣ln

∣∣∣∣
u1
u1(0)

∣∣∣∣

∣∣∣∣ ≤ 1
2

∫

0
{| 1 |(1+ |Re(A )|)+ |Im(A )|(1+ | 2 |)}d

<
1
2

∫

0
{2| |+ 1

2
}d =

{
| |+ 1

4

}
,

and the conclusion follows.

Definition 4.2.5. Put r = e− . We let Sr be the set of (cylindrical) solutions u1
to (4.2.10), for which there exists 0 ∈ (0,2 ) such that u1( 0) ∈ Dr.

Since the local foliation dened by c1 in RP1×R2 is holomorphic, the set Sr
is non-empty.

Corollary 4.2.6. If u1 ∈ Sr, then u1(0) ∈ D , provided | |< 1
4
.

Proof. Using the rst inequality of Lemma 4.2.4 we have:

|u1(0)| < |u1( 0)|e 0(| |+ 1
4 )

≤ e− + 0(| |+ 1
4 )

< e− + 0
2

≤ .

Choose a point (ei 0 ,w0) ∈ S1×Dr. By Denition 4.2.5, the path : (ei ,0) is

lifted in the leaf of F c1 containing w0 ∈ Dr as (ei ,u1( )), for a certain u1 ∈ Sr
and u1( 0) = w0. By Corollary 4.2.6, the point w̃ := u1(0) belongs to D . If is

lifted in the leaf of F̂ c1 passing through the point h (w̃) ∈ ̂ as (ei ,u2(ei , w̃)),

with u2(1, w̃) = h (w̃), then we dene the analytic change of variables by:

̂ c1 : S1×Dr→ S1×C,
̂ c1 : (ei 0 ,u1( 0)) .→ (ei 0 ,u2(ei 0 , w̃)).

(4.2.11)
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The change (4.2.11) respects the transversal bration given by Z =Cst and is in-

deed analytic since the germ h is analytic and bounded. It is clear that (4.2.11)

is the restriction of a (unique) holomorphic diffeomorphism conjugatingF c1 and

F̂ c1 in a neighborhood of S1×Dr.

iii) The equivalences on a neighborhood of CP1. The equivalence (4.2.11) ex-

tends analytically to a neighborhood ofCP1 by means of the lifting of radial paths.

The set

D1 = {(Z,0) : |Z| ≤ 1}

is the standard unit (closed) disk of the complex plane in the rst chart of the com-

plex Möbius strip.

a) Definition of ̂ c1 in D1×Dr. Radial paths contained in the unit disk D1, in the

c1 direction of the blow up, are given by:

Z1 : [0,− log |Z1|]→ C

s .→ Z1(s) = (Z1es,0)

for 0< |Z1|< 1. This curve lifts in the leaves ofF c1 as a path

Z1,w1 : s .→ (Z1es,r1(s,w1)), r1(0,w1) = w1,

for a given w1 small. This implies that, in terms of the form (4.2.3) dening the

foliationF c1 , the solution r1(s,w1) of the equation with parameter 0< |Z1|< 1,

dr1
ds

= ( )r1(1+A (Z1es,r1)), (4.2.12)

and initial condition r1(0,w1) = w1 is dened on [0,− log |Z1|].
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Lemma 4.2.7. If | | < 1
4
, then any solution to (4.2.12) on an interval [0,T ],

T > 0, is bounded by the initial condition w1.

Proof. Equation (4.2.12) yields:

log
∣∣∣
r1
w1

∣∣∣= sRe( ( ))+
∫ s

0
Re

(
( )A (Z1et ,r1)

)
dt.

Write the parameter as

= 1+i 2 . (4.2.13)

The hypothesis (4.2.7) shows that

log
∣∣∣
r1
w1

∣∣∣ =
s
2
( 2−1)+

1
2

∫ s

0
{( 2−1)Re(A )+ 1 Im(A )}dt

≤ s
2
( 2−1)+

1
2

∫ s

0
{| 2−1||Re(A )|+ | 1 ||Im(A )|}dt

<
s
2
( 2−1)+

1
4

∫ s

0
{| 2−1|+ | 1 |}dt

= s
{
2( 2−1)+ | 1 |+ | 2−1|

4

}

≤ s
{
| |− 1

4

}
.

Thus,

|r1| ≤ |w1|es{| |− 1
4} < |w1|. (4.2.14)

b) Inverse paths. If 0< |Z1|< 1, the inverse path of Z1 ,

−1
Z1 : [0,− log |Z1|]→ Ĉ

s .→ −1
Z1 (s) = (Z1e−(s+log |Z1|),0)
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lifts in the leaf of F̂ c1 through a point (
Z1
|Z1|

,w0) as a path

−1
Z1,w0

: s .→ −1
Z1 (s) = (Z1e−(s+log |Z1|), r̃1(s,w0)),

where r̃1(s,w0) = r1(−(s+ log |Z1|)) and r̃1(0,w0) = r1(− log |Z1|) = w0. This

path starts in (
Z1
|Z1|

,w0) and ends at (Z1, r̃1(− log |Z1|,w0)). Obviously, inverse

paths are bounded by nal conditions:

|r̃1(s,w0)| ≤ |r̃1(− log |Z1|,w0)|es{| |− 1
4} < |r̃1(− log |Z1|,w0)|. (4.2.15)

Consider the only solution u1,Z1,w1 to (4.2.10) satisfying

u1,Z1,w1(argZ1) = r1(− log |Z1|,w1)

and dene the point

w̃(Z1,w1) := u1,Z1,w1(0) ∈ .

By Lemma 4.2.7, u1,Z1,w1 ∈ Sr if w1 is taken in Dr. In this case, Corollary 4.2.6

ensures that w̃(Z1,w1) belongs toD . The equivalence in the rst chart of the blow

up is dened to be the map

̂ c1 : D∗1×Dr→ D∗1×C
̂ c1 : (Z1,w1) .→ (Z1,r2(Z1,w1)),

(4.2.16)

with r2(Z1,w1)= r̃1(− log |Z1|,u2(eiarg(Z1), w̃(Z1,w1))) and where the maps u1,u2
were dened in the previous paragraph (recall that u2(1, w̃)= h(w̃)).As the change

of coordinates is bounded, the Riemann�’s removable singularity Theorem implies

the existence of a unique holomorphic extension ̂ c1 to D1×Dr.



4.2. THE MAIN THEOREM. 61

c) Extension of ̂ c1 to a subset of |Z|> 1. Dene the set:

D1(r) = {(Z,w) ∈ CP1×C : |Z| ≥ 1, |Zw| ≤ r}. (4.2.17)

Radial paths contained in |Z|> 1 are given by:

Z1 : [0, log |Z1|]→ C

s .→ Z1(s) = (
Z1
|Z1|

es,0)

for |Z1|> 1. This curve lifts in the leaves ofF c1 as a path

Z1,w1 : s .→ (
Z1
|Z1|

es,r(s,w1)), r(log |Z1|,w1) = w1

ending at (Z1,w1), for a given w1 ∈ Dr. In terms of the form (4.2.3) dening the

foliationF c1 , the solution r(s,w1) of the equation with parameter |Z1|> 1,

dr1
ds

= ( )r(1+A (
Z1
|Z1|

es,r)), (4.2.18)

and condition r(log |Z1|,w1) = w1 is dened on [0, log |Z1|].

Lemma 4.2.8. Any solution to (4.2.18) satisfies

|r(0,w1)|e−s{| |+ 1
4} < |r(s,w1)|< |r(0,w1)|es{| |+ 1

4}. (4.2.19)

for every s ∈ [0, log |Z1|] and |Z1|> 1.

Proof. The proof follows the same steps done in the proof of Lemma 4.2.4.

For a given (Z1,w1) ∈ D1(r), we lift the path Z1 starting at (
Z1
|Z1|

,0) and ending

at (Z1,0) on the leaf passing through (Z1,w1). Such a lifting starts at the point

(
Z
|Z| ,r(0,w1)), where r is solution to (4.2.18), and ends at (Z1,r(log |Z1|)) =
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(Z1,w1). By the rst inequality of Lemma 4.2.8, the initial condition r(0,w1)

belongs to Dr provided | | ≤ 3
4
:

|r(0,w1)| < |r(log |Z1|,w1)|e{| |+ 1
4} log |Z1|

≤ |r(log |Z1|,w1)|elog |Z1|

= |w1Z1|

≤ r.

Thus, the leaf L1 ′ containing the point (Z1,w1) intersects the cylinder S1×C in

a curve u1 = u1( ) ∈ Sr, with u1(argZ1) = r(0,w1) ∈ Dr. By Corollary 4.2.6,

u1(0) ∈ D and then ̂ c1( Z1|Z1|
,r(0,w1)) is well dened, where ̂ c1 is the change

of coordinates (4.2.16). In F̂ c1 the inverse of Z1 is lifted on the leaf passing

through the point ̂ c1( Z1|Z1|
,r(0,w1)). The endpoint of this radial path denes ̂ c1

on D1(r).

4.2.2 The equivalence in the second chart.

In the second direction of the blow up space, the change of coordinates is

dened plainly. The set

D2 = {(W,0) : |W | ≤ 1}

is the standard unit (closed) disk of the complex plane in the second complex

chart. Put

D2(r) = {(W,z) ∈ CP1×C : |W | ≥ 1, |Wz| ≤ r}. (4.2.20)

Lemma 4.2.9.
(D1(r)) = D∗2×Dr,

◦−1(D2(r)) = D∗1×Dr.
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Proof. This is a tautology: if (Z,w) ∈ D1(r) is given, then W =
1
Z
and z = Zw

trivially belong to D∗2×Dr and vice-versa.

Definition of ̂ c2 on (D2×Dr)∪D2(r). By Lemma 4.2.9 the equivalence on the

punctured product (D∗2×Dr)∪D2(r) may be dened by the formula

̂ c2 := ◦ ̂ c1 ◦ ◦−1, (4.2.21)

where ̂ c1 is the equivalence of the above paragraph (which is not dened at

the point at innity). As it is bounded, the Riemann�’s Theorem yields a unique

holomorphic extension ̂ c2 : (D2×Dr)∪D2(r) .→ C2. It turns out that the two

changes of coordinates thus obtained ̂ c1 , ̂ c2 are analytical continuations of each

other over CP1×Dr.

w

z

RP1

Figure 4.4: The neighborhood CP1×Dr and the union D1(r)∪D2(r).

4.2.3 The equivalence in ambient coordinates.

Dene the global change of coordinates in complex charts by

̂ :=





̂ c1 on D1×Dr

̂ c2 on D2×Dr
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(notice that (D1×Dr)∪(D2×Dr) is a neighborhood of height r of the exceptional

divisor, see Figure 4.4). By construction, ̂ is a local equivalence betweenF c1∪

F c2 and F̂ c1 ∪ F̂ c2 around S1×C. It depends holomorphically on ∈ V by

dependence of initial conditions of a differential equation. Let stand for this

diffeomorphism in ambient (z,w) variables:

=





c1 ◦ ̂ c1 ◦ c◦−11

c2 ◦ ̂ c2 ◦ c◦−12 .
(4.2.22)

Since the Riemann sphere CP1 retracts to the origin by c1,c2 charts, the equiva-

lence is dened on (Dr×Dr)\{(0,0)} and is analytic there, because the maps

c1,c2 are isomorphisms away from the exceptional divisorCP1×{0}. By Hartogs

Theorem, can be extended until the origin.

The equivalence is constructed by lifting paths, and when the parameter is

real the holonomy map of a point with real coordinates (x,y)∈ +$R2 is dened

as the projection of this point on the real x-axis, following the orbits of the planar

system. Since the x-axis coincides with the intersection ∩ +, over which the

conjugacy h is real (when ∈R), we have ( +)⊂ + locally near the origin.

By Proposition 4.1.3, has real character.
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Chapter 5

Almost complex manifolds

5.1 Almost complex structures.

The Denitions, examples, theorems, etc. of this paragraph have been taken

from [24].

Definition 5.1.1. LetV be an m-dimensional real vector space. An almost-complex

structure on V (ACS for brevity) is a linear operator J : V → V with J2 = −Id.

Complex scalar multiplication is defined in terms of J by (a+b
√
−1)v= av+bJv.

The operator −J is also an almost-complex structure on V, called the conjugate

structure, and the space (V,−J) is often denoted V for brevity. The standard com-

plex vector space is V = Cn with J induced by multiplication by
√
−1.

Lemma 5.1.2. If V admits an almost-complex structure, thenV is even-dimensional

and has an induced orientation.

Proof. The proof follows plainly, since J2 = −Id implies (detJ)2 = (−1)m, and

then m is even. On the other hand, the ACS J induces naturally an orientation on

67
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V, for if {ei}ni=1 is chosen so that {ei∧ Jei}ni=1 is a basis for V, then the sign of the

volume element

e1∧ Je1∧ ...∧ en∧ Jen

is independent of {ei}ni=1.

Definition 5.1.3. An almost-complex manifold is a smooth manifold M equipped

with a smooth endomorphism field J : TM → TM satisfying J2x = −Idx for all

x ∈M.

The complexied tangent bundle is

TCM = TM⊗C,

where C is regarded as a trivial vector bundle. It is customary to write v⊗ 1 = v

and v⊗ i = iv. If M has an ACS J, then J extends to TCM by J(v⊗ ) = Jv⊗ .

The tensor eld J splits the complexied tangent bundle into the direct sum of

bundles of eigenspaces

TCM = T 1,0M⊕T 0,1M (5.1.1)

where

T 1,0M = {Z ∈ TCM : JZ = iZ}= {X− iJX : X ∈ TM}

T 0,1M = {Z ∈ TCM : JZ =−iZ}= {X + iJX : X ∈ TM}.

The complex vector space (TM,J) is C-linearly isomorphic to (T 1,0M, i) via the

map

X = Re(Z) .→ (X − iJX) = Z.

Similarly, TM = (TM,−J) is C-linearly isomorphic to (T 0,1M,−i). Complex

conjugation induces a real-linear isomorphism of TCM which exchanges T 1,0M
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and T 0,1M. The xed point set is exactly the maximal real subspace TM = TM⊗

1. A (local) section Z of T 1,0M is called a vector eld of type (1,0), though Z is

not a vector eld on M in the sense of being tangent to a curve in M. If ordinary

tangent vectors are regarded as real differential operators, then (1,0) vectors are

complex-valued differential operators. If TM is equipped with an almost-complex

structure J, then the dual pairing induces an almost-complex structure on TM∗ -

also denoted by J- via

< J ,v>=< ,Jv>, (5.1.2)

where ∈ TM∗. The associated eigenspace decomposition of TCM∗ = TM∗ ⊗C

is
T1,0M∗ = { ∈ TCM∗ : J = i }= { + iJ : ∈ TM∗}

T0,1M∗ = { ∈ TCM∗ : J =−i }= { − iJ : ∈ TM∗}

By equation (5.1.2), the space V ∗1,0 is the annihilator of V 0,1; similarly V ∗0,1 an-

nihilates V 1,0. The exterior algebra
∧
TM∗ has a decomposition into tensors of

type (p,q), namely, fully skew-symmetric elements of
p∧
T1,0M∗ ⊗

q∧
T0,1M∗.

For convenience, the space of skew-symmetric (p,q)-tensors is denoted
p,q∧
TM∗.

The splitting of the set of complex-valued skew-symmetric r-tensors into skew-

symmetric (p,q)-tensors gives rise to spaces of (p,q)-forms. If Ar and Ap,q denote

the space of smooth r-forms and the space of smooth (p,q)-forms respectively,

then

Ar =
⊕

p+q=r
Ap,q.

In local coordinates, Ap,q is generated by the forms dzI ∧ dzJ with |I| = p and

|J|= q.
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Example 5.1.4. Complex Euclidean space Cn is an almost-complex manifold.

Explicitly, let z = x +
√
−1y be the usual coordinates on Cn, identified with

coordinates (x,y) on R2n. The real tangent bundle and its complexification have

the standard frames
{

x
,
y

}
,

{

z
=
1
2

(

x
−
√
−1

y

)
,
z

=
1
2

(

x
+
√
−1

y

)}

while the real cotangent bundle and its complexification have coframes

{dx ,dy }, {dz = dx +
√
−1dy ,dz = dx −

√
−1dy }.

Mutiplication by
√
−1 acts only on tangent spaces, not on the actual coordinates.

Thus

J
x

=
y

, J
y

=−
x

. (5.1.3)

The tensor field J has constant components with respect to a holomorphic co-

ordinate system. The exterior derivative operator d : Ar → Ar+1 maps Ap,q to

Ap+1,q⊕Ap,q+1, and the corresponding boundary operators are denoted and .

On functions,

d f =
f
z
dz+

f
z
dz=: f + f .

Definition 5.1.5. A map f : (M,J)→ (M′,J′) between almost-complex manifolds

is almost-complex or pseudoholomorphic if ( f∗)J = J′( f∗).

The following is a straightforward consequence of the Chain Rule and the

Cauchy-Riemann equations.

Proposition 5.1.6. [24] Let Dn be a polydisk. A map f :Dn→Cm is pseudoholo-

morphic if and only if it is holomorphic.

Two consequences follow at once.
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Corollary 5.1.7. An almost-complex manifold has a natural orientation. A com-

plex manifold has a natural almost-complex structure.

5.2 Integrability.

On an arbitrary almost-complex manifold, the exterior derivative has four type

components, namely d : Ap,q→ Ap−1,q+2⊕Ap,q+1⊕Ap+1,q⊕Ap+2,q−1⊂ Ap+q+1.

This is easily seen from dA1,0 ⊂ A2,0⊕A1,1⊕A0,2 and induction on the total de-

gree. Under a suitable rst order differential condition, the unexpected compo-

nents are equal to zero. To introduce this condition, rst dene the Nijenhuis (or

torsion) tensor NJ of J by

NJ(X ,Y ) = 2([JX ,JY ]− [X ,Y ]− J[JX ,Y ]− J[X ,JY ]) (5.2.1)

for local vector elds X and Y. Here, [·, ·] is the Lie bracket of elds X and Y.

Definition 5.2.1. A function f :M→C on a manifold M2n with an almost complex

structure defined by the subbundle T1,0M∗ is called holomorphic with respect to

this structure, if its differential d f belongs to the subbundle T1,0M∗ at each point.

Equivalently, the function is holomorphic if its differential is C-linear. In terms

of the Example 5.1.4, f is holomorphic if and only if f = 0. More generally, a

holomorphic p-form is a (p,0)-form with = 0.

Grosso modo, an almost complex structure is integrable, if there exists an

atlas of charts U → Cn,∪ U =M, such that every coordinate of each chart is

holomorphic with respect to the almost complex structure.

Definition 5.2.2. [50] Let M be an n-dimensional manifold and let E ⊂ TM a

class C1 fiber subbundle of rank k. Such an E is called a distribution on M. The
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distribution is said to be integrable if M is covered by open sets {Ui}i, such that

for every i there exists a class C1 mapping

:Ui→ Rn−k

such that, for every x ∈ Ui, the fiber at the point x, Ex ⊂ TxM, coincides with

Ker(d x).

Then such a is a submersion, and each ber −1(v) is a closed submanifold

ofU with the following property: its tangent space at each point x coincides with

the ber Ex ⊂ E. Next theorem characterizes the integrable distributions.

Theorem 5.2.3 (Frobenius integrability criteria). A distribution E is integrable

if and only if for every pair of class C1 vector fields , contained in E, the Lie

bracket [ , ] is also contained in E.

For the case of a differentiable manifold M equipped with an almost-complex

structure J, integrability is equivalent with either of the conditions in the next

theorem.

Theorem 5.2.4. [24] The following are equivalent:

(a) If Z andW are (1,0) vector fields, then so is [Z,W ]. In other words, T 1,0M

is involutive.

(b) T 0,1M is involutive.

(c) dA1,0 ⊂ A2,0⊕A1,1 and dA0,1 ⊂ A1,1⊕A0,2.

(d) dAp,q ⊂ Ap+1,q⊕Ap,q+1 for p,q≥ 1.

(e) If X and Y are local vector fields, then NJ(X ,Y ) = 0.

Consequently, if NJ vanishes identically then there is a decomposition d =

+ as in the example 5.1.4 above. Considering types and using d2 = 0, it
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follows that

2 = 0, + = 0, 2
= 0. (5.2.2)

Vanishing of the torsion tensor is a necessary condition for an ACS J to be induced

by a holomorphic atlas; since the components of J are constant in a holomorphic

coordinate system by equation (5.1.3), the torsion of the induced ACS vanishes

identically. More interestingly, vanishing of the torsion (together with a mild

regularity condition) is sufcient for an almost-complex structure to be induced by

a holomorphic atlas. When (M,J) is real-analytic, this amounts to the Frobenius

theorem. When (M,J) satises less stringent regularity conditions, the theorem is

a difcult result in partial differential equations, and is known as the Newlander-

Nirenberg Theorem. The weakest hypothesis is that (M,J) be of Hölder classC1,

for some > 0. These are the contents of the next subsection.

A historical note ([39]). Any smooth foliation of a manifold M can be described

as the set of solutions to an associated system of differential equations on M. If

the foliation dimension is 2 or more, then these differential equations are �“overde-

termined�”, so that appropriate integrability conditions must be satied.

These facts are described in the classical result which is often called the �“Frobe-

nius Theorem�” ([17]). Actually, as Frobenius himself pointed out, the theorem in

question has been proved a decade earlier by A. Clebsch ([8]). In fact, a recogniz-

able version had been proved already in 1840, by F. Deahna ([12]).

It is sad to relate that Deahna did not prot by being so far ahead of his time.

According to the entry in Poggendorff, Deahna had barely attained the rank of

�“Hülfslehrer�” in a secondary school when he died in 1844, at the age of 28.
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5.3 Newlander-Nirenberg’s Theorem.

The problem of introducing analytic coordinates is purely local. In the general

case of an almost complex structure on a manifold M2n, in any coordinate patch

we may choose complex valued coordinates z1, ...,z2n with z j+n = z j. We shall

refer to them as z1, ...,zn and we denote z j = z j. Suppose that the almost complex

structure is given by a matrix J = [h ji ]i, j with i, j = 1, ...,2n. If we are given local

complex analytic coordinates 1, ..., n then, it is shown (see [40]) that each of

these coordinates satisfy the integrability conditions
2n

j=1 z j
(h j − i j) = 0, = 1, ...,2n. (5.3.1)

In addition, we have

2id j =
k

j

zk
(hk + i k)dz =

k

j

zk

[
(hk + i k)dz

]
.

It follows that the system of forms d j, j = 1, ...,n, is equivalent to the system

(hk + i k)dz , k = 1, ...,2n.

Definition 5.3.1. A complex valued function satisfying (5.3.1) is called holo-

morphic with respect to the given almost complex structure.

Since J2 = −Id, only the last n equations (i.e. those corresponding to =

n+ 1, ...,2n) are independent. After solving these for the derivatives j =
z j

we rewrite Equations (5.3.1) in the useful form

Lj( ) := j −
n

k=1
akj k = 0, (5.3.2)

with akj = 0 at z1 = ...= zn = 0, for all j = 1, ...,n, and where k = / zk. Notice

that Lj is a derivation, and hence a vector eld. In terms of the akj, the system of



5.3. NEWLANDER-NIRENBERG�’S THEOREM. 75

forms d j, j = 1, ...,n is equivalent to the system

dzk+
"

ak"dz
", k = 1, ...,n. (5.3.3)

Indeed, using (5.3.2), it is easily seen that

d j =
2n

k=1

j

zk
dzk =

n

k=1

j

zk
dzk+

n

"=1

j

z"
dz"

=
n

k=1

j

zk
dzk+

n

"=1

[
n

k=1
ak" k

j

]
dz" =

n

k=1

[
j

zk
dzk+

n

"=1
ak"

j

zk
dz"

]

=
k

j

zk
(dzk+

"

ak"dz
"),

so the subspace generated by the d j coincides with that generated by the dzk+

"

ak"dz
". The integrability conditions (5.3.1) can also be written under the form

[Lj,Lm] = 0, which yields

ma
k
j−

n

p=1
apm pa

k
j = ja

k
m−

n

p=1
apj pa

k
m, j,k,m= 1, ...,n. (5.3.4)

For n= 1, in a complex chart z∈C any subbundle L1,0 is spanned by a single form

= adz+ bdz̄, with a %= 0. Since makes sense only up to proportionality, we

can without loss of generality assume that the 1-form dening an arbitrary almost

complex structure on C or its subdomain, is given by

= dz+µdz̄, |µ(z)|< 1. (5.3.5)

It will be referred to as the µ-complex structure. The sufcient condition for

integrability of the µ-complex structure in dimension one is given in the next

theorem.
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Theorem 5.3.2 (L. Ahlfors - L. Bers). A µ-complex structure on the domain

⊂ C is integrable if µ = µ(z) is a L -measurable function with the norm

||µ||L ( ) < 1. (5.3.6)

The smooth version of this result in dimension 1 is as follows.

Theorem 5.3.3 (L. Ahlfors - L. Bers). [27] For a µ-complex structure with a

C -smooth function µ : →C satisfying the integrability condition (5.3.6), there

exists an infinitely smooth chart gµ : → C that is holomorphic in the sense of

this structure.

In higher dimension, this result is known as the Newlander-Nirenberg Theo-

rem. It looks surprisingly simple; however, its proof is highly non-trivial. It states

that every integrable almost-complex structure is dened by a unique analytic

structure.

Theorem 5.3.4 (A. Newlander - L. Nirenberg. General case). [40] If the co-

efficients akj in (5.3.2) are of class C2n in a neighborhood of the origin, and sat-

isfy the integrability conditions (5.3.4), then, in some neighborhood of the origin,

there exists n solutions 1, ..., n of (5.3.2) such that the Jacobian of the collection
1, ..., n,

1
, ...,

n
with respect to z1, ...,zn,z1, ...,zn is different from zero, so that

the equations (5.3.2) reduce to
z j

= 0, for each function which turns out to

be of class C2n+ , for any positive < 1. If, in addition, the coefficients aij are of

class Ck+ , for integer k ≥ 2n, and 0< < 1, then each j is of class Ck+1+ .



Chapter 6

Realization of a Poincaré family

6.1 Realization of an admissible family.

Recall that, by the formal classication Theorem 1.4.2, a germ of generic fam-

ily v unfolding a weak focus is formally orbitally equivalent to

z = z
i+ +su
1+A( )u

w = w
−i+ +su
1+A( )u

(6.1.1)

for some family of real constants A( ) with A(0) %= 0, where u= zw, and s=±1

has been dened in Proposition 1.2.1 (the two signs dening two non-orbitally

equivalent cases). Notice that the linear part of the family above is given by

z( +i)
z
+w( −i)

w
. Since the eigenvalues are analytic invariants, then the

parameter is also an analytic invariant. This justies the following denition.

Definition 6.1.1. The parameter of the formal normal form (6.1.1) is called the

“canonical parameter”.

77
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Remark. Note that the multiplier at the origin of the Poincaré map of the eld

(6.1.1) is equal to

e2 . (6.1.2)

We will show (Theorem 7.1.1) that there is a simultaneous �“preparation�” of the

families unfolding the eld (i.e. v ) and the Poincaré map, such that the multi-

plier at the origin coincides with (6.1.2), so that the parameter is also an analytic

invariant of the Poincaré map. In these coordinates the invariant manifold of the

system has equation zw=−s , and the family of diffeomorphisms is of the form

P̂(w) = w+w(̂±w2)[1+D(̂)+E(̂)w2+w(̂±w2)h(̂,w)] (6.1.3)

with xed points w0 = 0, and w± =±
√
−ŝ, where s=±1, the coefcient of the

third order term of the eld.

Definition 6.1.2. Consider a family Q unfolding a codimension one resonant

diffeomorphismQ with multiplier equal to−1. Then the formal normal formQ0,

of Q is the semi-Poincaré map (or semi-monodromy) of the vector field (6.1.1),

namely

Q0, = L−1 ◦ , (6.1.4)

where is the time -map of the equation:

w=
w( ±w2)
1+A( )w2

(6.1.5)

(this field is obtained when one computes the equation satisfied by
√
u, in (6.1.1)),

and L−1(w) =−w, for any w ∈ C.

Lemma 6.1.3. Let Q a prepared family (i.e. such that Q◦2 has the form (6.1.3))

unfolding a codimension one resonant diffeomorphism Q with multiplier equal to
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−1, and let Q0, be its formal normal form (i.e. the map (6.1.4)), with the same

canonical parameter . Then, for any N ∈N∗ there exists a real germ of family of

diffeomorphisms f tangent to the identity such that:

Q ◦ f − f ◦Q0, = O(wN+1(w2− )N+1). (6.1.6)

Proof. The proof is a slight modication of Theorem 6.2 in [43], being given that

the preparation of the family of diffeomorphisms is slightly different as well.

Theorem 6.1.4 (Realization of a generic real family of diffeomorphisms). Con-

sider the class of prepared germs of holomorphic diffeomorphisms Q : (C,0)→

(C,0) verifying the hypotheses of Lemma (6.1.3), with real coefficients ck( ) de-

pending analytically on the canonical parameter , such that 2c2( )2+c3( )[1+

c1( )2] %= 0 for values of in a small symmetric neighborhood V ⊂ C of the ori-

gin in the parameter space. Then the square Q◦2 is always the Poincaré map (or

monodromy) P of a generic family unfolding an order one weak focus.

Proof. For every xed in a neighborhood V of the origin, the family of diffeo-

morphisms is realized on an abstract manifold constructed in the covering space of

the foliation induced by the normal form (6.1.1). This manifold may be identied

with a neighborhood of the origin minus the axes in C2, by means of Newlander-

Nirenberg Theorem. We show that, in this particular case, the smooth chart re-

spects the real character of the foliation. By construction, the Poincaré map will

coincide withQ . Every step in the construction is analytic in the parameter. We

recall that the monoidal map is given by

c1 : (Z,w) .→ (Zw,w),

c2 : (W,z) .→ (z,zW )
(6.1.7)
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in complex charts covering the blow up space or complex Möbius strip. By

Lemma 6.1.3,Q has a �“decomposition on the right�”

Q = (id+g )◦Q0, (6.1.8)

for a large integer N ∈ N, where the family g is (N+1)-at in w at the origin:

g (w) = O(wN+1(w2− )N+1)). (6.1.9)

Consider also the �“decomposition on the left�”

Q = Q0, ◦ (id+ ĝ ), (6.1.10)

where

ĝ := Q◦−1
0, ◦g ◦Q0, (6.1.11)

is, by denition, (N+1)-at in w at the origin: ĝ (w) = O(wN+1(w2− )N+1).

6.1.1 The foliation in the first chart.

First off, we pull the formal eld (6.1.1) back into (Z,w) coordinates by the

map c1 (6.1.7):
Z = Z

2i
1+A( )Zw2

w = w
−i+ ±Zw2

1+A( )Zw2
.

(6.1.12)

Let vc10, be the normal form dened by (6.1.12), and F c1
0, be its foliation on the

product C∗ ×Dw, where Dw is the standard unit disk of the w axis. Consider the

global region dened as

K̃c1 =
{
Z̃ ∈Cov(C∗) :−

4
< arg(Z̃)< 2 +

4

}
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in the covering space Cov(C∗) of the exceptional divisor minus the origin and

the point at innity, see Figure 6.1. The pullback of vc10, by the covering map

0

0

SS′ $

Figure 6.1: The domain of Z̃ in the covering spaceCov(C∗).

c1 : K̃c1×Dw→ C∗ ×Dw, denes a eld ṽc1 = ṽc1(Z̃,w) and a foliation F̃ c1 on

the product

M̃ := K̃c1×Dw.

The leaves of F̃ c1 around the flaps

S′c1 = {Z̃′ ∈ K̃c1 :− 4 < arg(Z̃′)<
4
}

Sc1 = {Z̃ ∈ K̃c1 : 2 −
4
< arg(Z̃)< 2 +

4
}

are identied by means of a sealing map : S′c1×Dw→ Sc1×C,which preserves

the rst coordinate and respects the eld ṽc1 and the foliation F̃ c1 . The sealing

is constructed as follows. For small values of w, the holonomy map h ,Z :

{Z}×Dw → {1}×Dw along the leaves of the foliation F c1
0, is covered by two

holonomy maps, h ,Z̃′ : {Z̃′}×Dw→ ′×Dw and h ,Z̃ : {Z̃}×Dw→ ×Dw along

the leaves of F̃ c1 .

Definition 6.1.5 (Sectorial holonomy in the c1 chart). The holonomies h ,Z̃′,h ,Z̃

on the sectors S′c1 and Sc1 are oriented in the following way, see Figure 6.2:
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1. If Im(Z̃′), Im(Z̃) > 0, then the holonomy is negatively oriented (clockwise)

and is denoted by h−
,Z̃′
and h−

,Z̃
respectively on S′c1 and Sc1 .

2. If Im(Z̃′), Im(Z̃) < 0, then the holonomy is positively oriented (counter-

clockwise) and is denoted by h+
,Z̃′
and h+

,Z̃
respectively over S′c1 and Sc1 .

The convention:

lim
Z̃→1̃

h+
,Z̃
= id (6.1.13)

will be taken into account when Z̃ ∈ K̃c1 .

Then the sealing : S′c1×Dw→ Sc1×C is given by:

(Z̃′,w) = (Z̃, (Z̃′,w)) (6.1.14)

where the family : {Z̃′}×Dw→×C is dened using the decomposition (6.1.8):

(Z̃′,w) = (h+
,Z̃
)◦−1 ◦ (id+g )◦h+

,Z̃′
(w), (6.1.15)

and the points Z̃′ ∈ S′c1 and Z̃ ∈ Sc1 both project by c1 onto the same point Z on the

separatrix. The map is, indeed, well dened in S′ ×{|w| ≤ r} and holomorphic

on its image for r > 0 small. It depends analytically on the parameter.

Remark 6.1.6.

1. By definition, the sealing may be analytically extended to a larger do-

main

{Z̃ ∈ K̃c1 :− 4 < arg(Z̃)< }×Dw.

2. The holonomy Q0, of F c1
,0 lifts as the holonomy of F̃

c1 on M̃. Extending

the definition of the sectorial holonomy map to all of M̃, the holonomy of M̃

decomposes as

h+
,Z̃
◦ (h−

,Z̃
)◦−1 = Q0, , (6.1.16)
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for all Z in a neighborhood of the origin in the c1 chart of the blow up,

where Z̃ is a point in the covering space projecting as Z. Note that (6.1.13)

yields:

(h−
,1̃
)◦−1 = Q0, . (6.1.17)

6.1.2 The foliation in the second complex chart.

The pullback of the formal normal form (6.1.1) by the map c2 (6.1.7) is the

equation:
W = W

−2i
1+A( )Wz2

z = z
i+ ±Wz2

1+A( )Wz2
.

(6.1.18)

Remark 6.1.7. Corollary 3.4.5 ensures that the holonomy " ,1 : {W = 1}→{W =

1} of (6.1.18) coincides with Q◦−1
0, .

As this is a global eld, again we will work on a global region dened as

K̃c2 =
{
W̃ ∈Cov(C∗) :−2 −

4
< arg(W̃ )<

4

}
.

Call vc20, the normal form dened by (6.1.18) andF c2
0, its foliation. The eld v

c2
0,

is the pushforward of vc10, by the change of coordinates = c−12 ◦ c1 :

vc20, = ∗vc10, ◦ .

In addition, an easy calculation shows that the families vc10, ,v
c2
0, are related through:

vc20, = S ◦ vc10,C ( ) ◦S . (6.1.19)

where S (Z,w) = (Z,w), see Remark 3.3.2. This is not surprising since the eld

v0, is the formal normal form of a weak focus (Proposition 3.3.6). The pullback
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of this normal form by the covering map c2 : K̃c2×Dz→ C∗ ×Dz, yields a eld

ṽc2 = ṽc2(W̃ ,z) and a foliation F̃ c2 on the product

Ñ := K̃c2×Dz.

Remark 6.1.8. The families ṽc1 , ṽc2 still satisfy the property:

ṽc2 = S ◦ ṽc1C ( ) ◦S , (6.1.20)

because ∗
c1 ,

∗
c2 commute with S .

A sealing map : S′c2×Dz→ Sc2×C is built between local foliations around

the aps

S′c2 = {W̃ ′ ∈ K̃c2 :− 4 < arg(W̃ )<
4
}

Sc2 = {W̃ ∈ K̃c2 :−2 −
4
< arg(W̃ ′)<−2 +

4
}.

Notice that, by denition,
(S′c1) = S′c2
(Sc1) = Sc2 .

(6.1.21)

The sealing is constructed as follows. Let " ,W̃ ′ : {W̃
′} ×Dz → ′ ×Dz and

" ,W̃ : {W̃}×Dz → ×Dz be the holonomies induced by the elds around the

aps, obtained by lifting the holonomy " ,W : {W}×Dz → {1}×Dz of the W

separatrix along the leaves of the foliationF c2
0, in the second chart of the complex

Möbius strip. The map " ,W is always well dened for small values of w.

Definition 6.1.9 (Sectorial holonomy in the c2 chart). The holonomies " ,W̃ ′ and

" ,W̃ on the sectors S′c2 and Sc2 are oriented in the following way, see Figure 6.2:

1. If Im(W̃ ), Im(W̃ ′)> 0, then the holonomy is negatively oriented (clockwise)

and is denoted by "−
,W̃ ′

and "−
,W̃
respectively on S′c2 and Sc2 .
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2. If Im(W̃ ), Im(W̃ ′) < 0, then the holonomy is positively oriented (counter-

clockwise) and is denoted by "+
,W̃ ′

and "+
,W̃
respectively over S′c2 and Sc2 .

Again, the convention:

lim
W̃→1̃

"−
,W̃

= id (6.1.22)

will be considered for values W̃ ∈ K̃c2 .

Im(W )

Im(Z)

Re(Z)
S1 +

+

h−
,Z̃

h+
,Z̃

"+
,W̃

"−
,W̃

S1
Re(W )

Figure 6.2: The holonomy on the sectors.

The sealing : S′c2×Dz→ Sc2×C is dened by:

(W̃ ′,z) = (W̃ , (W̃ ′,z)) (6.1.23)

where W̃ ′ ∈ S′c2 and W̃ ∈ Sc2 project by c2 onto the same pointW on the separatrix.

Notice that respects the brationW =Cst. The family : {W̃ ′}×Dz→×C

is dened by means of the decomposition (6.1.10):

(W̃ ′,z) = ("+
,W̃
)◦−1 ◦ (id+ ĝ )◦ "+

,W̃ ′
(z). (6.1.24)

Remark 6.1.10.

1. By definition, the sealing may be analytically extended to a larger do-

main

{W̃ ∈ K̃c2 :− < arg(W̃ )<
4
}×Dw.
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2. The holonomy Q◦−1
0, of F c2

,0 lifts as the holonomy of F̃
c2 on Ñ. Extending

the definition of the sectorial holonomy map to all of Ñ, the holonomy of Ñ

decomposes as

"+
,W̃
◦ ("−

,W̃
)◦−1 = Q◦−1

0, , (6.1.25)

for all W in a neighborhood of the origin in the c2 chart of the blow up,

where W̃ is a point in the covering space projecting as W. Then, (6.1.22)

yields:

"+
,1̃
= Q◦−1

0, . (6.1.26)

Lemma 6.1.11. The maps and are related by Schwarz reflection:

C ◦ C ( ) ◦S = (6.1.27)

on a symmetric neighborhood V of the parameter.

Proof. Tildes are dropped. Suppose that is real. Choose a point (Z,w) ∈
−1
c1 (RMc1). It is shown that |RM ≡S (Corollary 3.3.4). Then the point (Z,w)

is read as

(W,z) =
(
1
Z
,Zw

)
= (Z,w) = S (Z,w) = (Z,w)

in the second complex chart of the blow up in the covering space. Consider the

holonomies h ,Z : {Z}×Dw → {1}×C and " ,W : {W}×Dz → {1}×C in the

rst and second charts of the blow up of the covering space. The sectorial orien-

tation is chosen according to Denitions 6.1.5 and 6.1.9. The image of the point

(1,h±,Z(w)) under is the point (1, "∓,W (z)) = (1,h±,Z(w)). Notice that orienta-

tion is reversed because the map is orientation reversing. Since the holonomy

is real analytic, the choice of (Z,w) on the preimage of the real complex Möbius

strip leads to

(1, "∓,W (z)) = (1,h±,Z(w)).
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Inasmuch as Z =W , w= z and the parameter is real, the equality

"∓,W (z) = h±
,W (z) (6.1.28)

follows on −1
c1 (RMc1).Notice that the holonomy h ,Z(w) is solution of a differen-

tial equation with parameters ,Z and initial condition w. It follows that (6.1.28) is

veried for all ( ,Z,w) in the symmetric product V × (S′c1 ∪Sc1)×Dw. The same

argument holds for the holonomy " ,W (z) in the second chart of the blow up of the

covering space. The assumption on the coefcients of the familyQ implies that

Q (w) = Q (w) for all w ∈ Dw. It turns out that:

(W ′,z) = ("+,W )◦−1 ◦ (id+ ĝ )◦ "+,W ′(z)

= ("+
,W̃
)◦−1 ◦ [Q◦−1

0, ◦ (id+g)◦Q0, ]◦ "+,W̃ ′(z)

= (Q0, ◦ "+,W )◦−1 ◦ (id+g )◦ (Q0, ◦ "+,W ′)(z)

= ("−,W )◦−1 ◦ (id+g )◦ "−,W ′(z)

= (h+
,W )◦−1 ◦ (id+g )◦h+

,W ′
(z)

= C ◦ C ( ) ◦S (W ′,z),

where the second equality comes from the decomposition (6.1.10), the fourth

equality comes after (6.1.25) and the fth equality, after (6.1.28).

6.1.3 The global sealing in the covering.

Definition 6.1.12. Let
mZ(w) := Zw,

mW (z) :=Wz
(6.1.29)

be the multiplication by Z andW in the first and second directions of the complex

Möbius strip, respectively.
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Lemma 6.1.13. The holonomies h ,Z̃, " ,W̃ are related by multiplication and switch

in the orientations:

h±
, 1
W̃
= "∓

,W̃
◦m 1

W̃
. (6.1.30)

Proof. Choose a point (Z̃,w) ∈ Sc1×Dz in the rst chart of the complex Möbius

strip. Since the change of charts is the identity on the transversal section , the

holonomy map is read as (1,h±
,Z̃
(w)) = (1,h±

,Z̃
(w)) in the second chart of the

blow up, where

(W̃ ,z) = (
1
Z̃
, Z̃w).

Therefore, the point (1,h±
,Z̃
(w))must be given here as the image by the holonomy

of the point (W̃ ,z). Inasmuch as SIGN(Im(Z̃)) = −SIGN(Im(W̃ )), the sectorial

orientation of the holonomy (see Denitions 6.1.5 and 6.1.9) yields

(1,h±
,Z̃
(w)) = (1, "∓

,W̃
(z))

= (1, "∓
,W̃
(Z̃w))

= (1, "∓
,W̃
(
w
W̃

))

which means h±
, 1
W̃
= "∓

,W̃
◦m 1

W̃
.

Lemma 6.1.14. Furthermore, the families and are related through:

mZ ◦ = ◦

mW ◦ = ◦ ◦−1
(6.1.31)

in the first and second charts of the blow up space, respectively.

Proof. Let W̃ ′ ∈ S′c2 be given. According to Denition 6.1.9:

(W̃ ′,z) = ("+
,W̃
)◦−1 ◦ (id+ ĝ)◦ "+

,W̃ ′
(z)

= ("+
,W̃
)◦−1 ◦ [Q◦−1

0, ◦ (id+g)◦Q0, ]◦ "+,W̃ ′(z)

= (Q0, ◦ "+,W̃ )◦−1 ◦ (id+g)◦ (Q0, ◦ "+,W̃ ′)(z),
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by denition of ĝ . By (6.1.25):

(W̃ ′,z) = ("−
,W̃
)◦−1 ◦ (id+g)◦ "−

,W̃ ′
(z)

= m 1
W̃
◦ (h+

, 1
W̃
)◦−1 ◦ (id+g)◦h+

, 1
W̃ ′
◦m◦−11

W̃ ′
(z)

by Lemma 6.1.13. Thus

(W̃ ′,z) = m◦−1
W̃
◦ (h+

, 1
W̃
)◦−1 ◦ (id+g)◦h+

, 1
W̃ ′
(W̃ ′z)

= m◦−1
W̃
◦ (

1
W̃ ′

,W̃ ′z)

= m◦−1
W̃
◦ ◦ ◦−1(W̃ ′,z)

and the conclusion follows. The other identity follows by symmetry.

Corollary 6.1.15 (Global sealing in the covering space). The sealing maps are

related through

= ◦−1 ◦ ◦ . (6.1.32)

Thus, there is a canonical sealing map in the covering space of the complex

Möbius strip.

Proof. For every given (Z̃′,w) ∈ S′c1×Dw write

W̃ ′ =
1
Z̃′
∈ S′c2 ,

and let W̃ ∈ Sc2 be the only point in Sc2 whose projection on the exceptional divisor

coincides with that of W̃ ′. Dene as well

z= Z̃′w.

It is clearly seen that
◦−1 ◦ ◦ (Z̃′,w) = ◦−1(W̃ , (W̃ ′,z))

= (
1
W̃

,W̃ (W̃ ′,z))

= (
1
W̃

,mW̃ ◦ (W̃ ′,z))
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by denition of the change of coordinates between complex charts. Thus,

Lemma 6.1.14 above leads to

◦−1 ◦ ◦ (Z̃′,w) = (
1
W̃

, ◦ ◦−1(W̃ ′,z))

= (Z̃, (Z̃′,w))

≡ (Z̃′,w),

where Z̃ =
1
W̃

.

Definition 6.1.16. This common set after blow down into (z,w) coordinates is

noted:

M̃ :=





(c−11 )∗M̃

(c−12 )∗Ñ.
(6.1.33)

The families of vector fields (ṽc1 , ṽc2) and foliations (F̃ c1 ,F̃ c2) induce a vector

field ṽ and a foliation F̃ on M̃ .

Remark 6.1.17. A short calculation shows that the coordinates on M̃ are well

defined and given by (z,w), where (Z̃,w) are the coordinates of M̃ in the first chart

of the blow up, and (W̃ ,z) those of Ñ in the second complex chart.

As the sealing ( , ) is canonical it denes a sealing family

: M̃ → M̃

in (z,w) coordinates. Such a family is dened in charts as

:=





c1 ◦ ◦ c−11
c2 ◦ ◦c−12 .

(6.1.34)
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This means either:

(z,w) =






( z
w

( z
w
,w

)
,

( z
w
,w

))

( (
w
z
,z
)
,
w
z

(
w
z
,z
))

.

(6.1.35)

Definition 6.1.18. Coordinates (z,w) on M are called ambient coordinates. The

family is called the sealing in ambient coordinates.

Corollary 6.1.19. For all µ ∈ C∗, the sealing in ambient coordinates preserves

the transversal fibers µ .

Lemma 6.1.20. The sealing in ambient coordinates has real character:

= S ◦ ◦ C ( ) ◦ ◦S .

Proof. By Lemma 6.1.11 and (6.1.35):

S ◦ ◦ C ( ) ◦ ◦S (z,w) =

( (
w
z
,z
)
,
w
z

(
w
z
,z
))

=

( (
w
z
,z
)
,
w
z

(
w
z
,z
))

= (z,w).

Notice that, by denition,

( )∗ṽc1 = ṽc1

( )∗ṽc2 = ṽc2 ,
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thus, the eld ṽ is invariant under the sealing in ambient coordinates:

( )∗ṽ = ṽ (6.1.36)

and then respects the foliation F̃ . By Corollary 6.1.19, the quotient M :=

M̃ / is thus well dened. By (6.1.36), the vector eld ṽ induces a vector eld

v and a foliationF in the quotientM .

Proposition 6.1.21. The monodromy h : → of the field v along the leaves of

F is well defined and it coincides with Q .

Proof. Standard arguments show that the sections µ are transversal toF (Propo-

sition 3.1.8). The family v is the unfolding of an elliptic singularity, and the

monodromy of the transversal section is well dened. The holonomy h ,1̃ :

{1̃′}×Dw → {1̃}×Dw of ṽc1 coincides, by construction, with the normal form

Q0, on M̃. Back into ambient coordinates, the image of the point (w,w) ∈ is

then (Q0, (w),Q0, (w)) ∈ , whose image under the sealing is:

(Q0, (w),Q0, (w)) = ( (1,Q0, (w)), (1,Q0, (w)))

= ((id+g )◦Q0, (w),(id+g )◦Q0, (w))

= (Q (w),Q (w)) ∈ ,

where the second equality comes after (6.1.13).

Corollary 6.1.22. The elliptic family v has real character:

v = S ◦ ◦ vC ( ) ◦ ◦S ,

where S , are the complex conjugation and shift of coordinates in the two vari-

ables induced in the quotient.
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Proof. Since the projections c1 , c2 are real, it is certainly true that the family of

vector elds ṽ on M̃ possesses real character. The manifoldM is obtained after

gluing with the sealing in ambient coordinates, which sends the real plane into

the real plane.

6.1.4 Identification of the abstract manifoldM

In the rst chart of the blow up, we introduce a smooth real nonnegative cutoff

function = (arg(Z̃)) depending only on the argument of Z̃, and dened by:

(arg(Z̃)) =





1, arg(Z̃) ∈ (−

4
,
4
],

0, arg(Z̃′) ∈ ( ,2 +
4
].

An �“identication map�” in (Z̃,w) coordinates is dened on M̃ :

H̃c1 : (Z̃,w) .→ (Z̃,w+ (arg(Z̃)){ (Z̃,w)−w}), (6.1.37)

Notice then:

H̃c1 |S′c1×Dw ≡ (idZ, )

H̃c1 |Sc1×Dw ≡ (idZ, idw),

and so this map respects the sealing . Similarly in the second chart of the blow

up, an �“identication map�” in (W̃ ,z) coordinates is dened on Ñ :

H̃c2 : (W̃ ,z) .→ (W̃ ,z+ (−arg(W̃ )){ (W̃ ,z)− z}), (6.1.38)

where:

(−arg(W̃ )) =





1, arg(W̃ ) ∈ (−

4
,
4
],

0, arg(W̃ ′) ∈ (−2 −
4
,− ]
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by denition. Notice that:

H̃c2 |Sc2×Dw ≡ (idW , idz)

H̃c2 |S′c2×Dw ≡ (idW , ),

and so, this map respects the sealing . Back into ambient coordinates, the func-

c1c1

c2c2

M̃

Ñ

H̃c1

H̃c2

H̃

Figure 6.3: Identication maps before quotient.

tion yields a smooth map ̂(z,w) = (arg(
z
w
)) = (−arg(w

z
)), which depends

only on the argument of the quotient
z
w
:

̂(z,w) =






1, |arg(z)− arg(w)|<
4
,

0, |arg(z)− arg(w)− 13
8

|< 5
8

,

and satisfying,

̂(w,z) = ̂(z,w). (6.1.39)

Since = c−12 ◦c1, Lemma 6.1.14 shows that H̃
c1 , H̃c2 express the same family of

diffeomorphisms in (z,w) coordinates. As usual, such a family is given by:

H̃ :=





(c−11 )∗H̃c1 = c1 ◦ H̃c1 ◦ c−11
(c−12 )∗H̃c2 = c2 ◦ H̃c2 ◦ c−12 ,
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which is well dened, by construction. This family provides the target space with

coordinates (z,w) :

(z,w) = H̃ (z,w)

= (z+ ̂(z,w){ ◦ c−12 (z,w)− z},w+ ̂(z,w){ ◦ c−11 (z,w)−w}).
(6.1.40)

By denition, H̃ induces an �“identication family�” in the quotient:

H :M → C2.

The latter depends analytically on the parameter and for every xed , it is a

diffeomorphism which provides the target space with an almost complex structure

induced from the standard complex structure onM , as shown later.

Proposition 6.1.23. The family H has real character:

H = S ◦ ◦HC ( ) ◦ ◦S .

Proof. A simple calculation proves that

S ◦ ◦ H̃C ( ) ◦ ◦S =
{
H̃ (w,z)

}

=
(
z+ ̂(w,z)

{
◦ c−11 (w,z)− z

}
,w+ ̂(w,z)

{
◦ c−12 (w,z)−w

})
.

Lemma 6.1.11 and the symmetry (6.1.39) show that this is equal to (6.1.40). The

family H inherits this property in the quotient, by Lemma 6.1.20. Its global real

character is shown.
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6.1.5 Asymptotic estimates on H

The ratios of the eigenvalues of the formal families vc10, ,v
c2
0, (the elds (6.1.12)

and (6.1.18)) in the blow up are given by:

=
−i
2i

′ = − +i
2i

,

(6.1.41)

respectively. We shall see that if the number N in (6.1.9) is large enough, then the

identification H is tangent to the identity. Write the parameter as

= 1+i 2,

where 1, 2 ∈ R are small real numbers.

Proposition 6.1.24. If the function g in (6.1.9) is (N+ 1)-flat at z = w = 0, then

(6.1.15) and (6.1.24) admit the asymptotic estimate:

| (Z̃,w)−w|= O(|Z̃|
N
2 (1− 2)|w|N+1), as Z̃→ 0,

for all w in Dw, and

| (W̃ ,z)− z|= O(|W̃ |
N
2 (1− 2)|z|N+1), as W̃→ 0

for all z in Dz.

Proof. The eigenvalues of ṽc1 , ṽc2 are given by (6.1.41) as well, because the cov-

ering map does not alter the linear part of the elds. The estimates obtained in

the Theorem C.1.1 in the Appendix may be applied. The inequality (C.1.2) yields
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the following estimate for the holonomy map h ,Z̃ : {Z̃}×Dw→ {1̃}×C of the

foliation in the rst chart of the blow up:

e−M| (Z̃−1)|− 1 arg Z̃
2 |Z̃|

1− 2
2 |w| ≤ |h ,Z̃(w)| ≤ eM| (Z̃−1)|− 1 arg Z̃

2 |Z̃|
1− 2
2 |w|,

where M = M(Z̃,w) < is a positive constant depending on a bound for the

nonlinear part of the foliation along the segment with endpoints Z̃,1. By (6.1.9),

h−1
,Z̃
◦ (id+g)◦h ,Z̃′ = h−1

,Z̃
◦ (h ,Z̃′+g◦h ,Z̃′) = id+O(|Z̃|

N
2 (1− 2)|w|N+1).

In the second direction of the blow up, the estimate is obtained by symmetry.

Corollary 6.1.25. If the function g in (6.1.8) is (N+1)-flat at z= w= 0, then the

asymptotic estimates:

| ◦ c−11 (z,w)−w| = O(|z|
N
2 (1− 2)|w|

N
2 (1+ 2)+1)

| ◦ c−12 (z,w)− z| = O(|z|
N
2 (1+ 2)+1|w|

N
2 (1− 2))

(6.1.42)

are valid for all (z,w) in the bidisk Dz×Dw.

Corollary 6.1.26. If the function g in (6.1.8) is (N + 1)-flat at z = w = 0 for

a sufficiently large integer N then, for small , the family H is tangent to the

identity.

6.1.6 Integrability on H (M ) and preparations.

The pullback of the complex structure on M by the map H−1 is an almost

complex structure dened by the pullback of the (1,0)-subbundle on M , which

is spanned by the following families of forms on the manifold H̃ (M̃ ) (see Figure
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6.3):
1̃, = dz= d(z+ ̂ · { ◦ c−12 − z}),

2̃, = dw= d(w+ ̂ · { ◦ c−11 −w}),
(6.1.43)

where the coordinates z,w have been introduced in (6.1.40). The forms d( ◦

c−12 ) and d( ◦c−11 ) are holomorphic on their domains and 1̃, and 2̃, have two

different sectorial representatives:

1̃, =






0
1, = dz, |argz− argw−13 /8|< 5 /8,
1
1, = d( ◦ c−12 ), |argz− argw|< /4,

2̃, =






1
2, = d( ◦ c−12 ), |argz− argw|< /4
0
2, = dw, |argz− argw−13 /8|< 5 /8,

(6.1.44)

so that 1
1, = ∗ 0

1, and 1
2, = ∗ 0

2, . Thus they yield forms 1, and 2, on the

quotient M . The almost complex structure induced on H (M ) by the complex

structure onM is dened by the two forms

1, = (H−1)∗ 1, , 2, = (H−1)∗ 2, . (6.1.45)

Theorem 6.1.27 (Existence and symmetry of the smooth chart). There exists a

small ball B(r)⊂H (M ) around the origin, and a smooth family of charts =

( 1, 2) : B(r)→ C2 depending analytically on in a symmetric neighborhood

V around the origin in the parameter space, such that i : B(r)→ C, i = 1,2 is

holomorphic in the sense of the almost complex structure (6.1.45). Furthermore,

this family has real character:

= S ◦ ◦ C ( ) ◦ ◦S , (6.1.46)

and is tangent to the identity at the origin.
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Proof. The set H (M )⊂C2 does not contain the axes of coordinates: its closure

isC -diffeomorphic to a closed neighborhood of the origin ofC2. The next lemma

shows that the almost complex structure generated by 1, and 2, on H (M )

can be extended as 1, = dz along the z-axis, and as 2, = dw along the w-axis,

until a well-dened order.

Lemma 6.1.28. Let be a small positive number. If and are the orders of

flatness in z and w (resp. w and z) of the difference 1, − dz (resp. 2, − dw),

then form 1, (resp. 2, ) can be extended as dz (resp. dw) along the z-axis

(resp. w-axis) until the order if the number N in (6.1.9) is sufficiently large so

as to verify

N >max
{
2( −1)
1− ,

2
1−

}
, (6.1.47)

and | |< .

Proof. By (6.1.45), it sufces to study the difference

H̃ (z,w)− (z,w) = (̂(z,w){ ◦ c−12 (z,w)− z}, ̂(z,w){ ◦ c−11 (z,w)−w}).

Since z= |z|eiarg(z) and w= |w|eiarg(w), it is easily seen that:

̂(z,w) =

(
1
i
log

(
z|w|
w|z|

))
,

whence follows that
∣∣∣∣

i+ ĵ
zp zq wr ws

∣∣∣∣<Cst ·
Mi+ j
|z|i|w| j

(6.1.48)

for all i= p+q ∈ N, j = r+ s ∈ N and

Mi+ j := max
0≤k≤i+ j

∈I

| (k)( )|
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with I = [−
4
,2 +

4
]. To lighten the notation, put

f (z,w) = ◦ c−12 (z,w)− z.

A short calculation after the second equality in Corollary 6.1.25 implies that for

all k, l ∈ N, there exists a positive constant ĈN = ĈN(k, l) such that
∣∣∣∣

k+l f
zk wl

∣∣∣∣ ≤ ĈN |z|
N
2 (1+ 2)+1−k|w|

N
2 (1− 2)−l, (6.1.49)

where = 1+i 2 with 1, 2 ∈ R. Thus, (6.1.48) and (6.1.49) imply that, for

p+q= and r+ s= , there is a real constant L= L(N, , )> 0 such that
∣∣∣∣∣

+ (̂ · f )
zp zq wr ws

∣∣∣∣∣≤ L · |z|
N
2 (1+ 2)+1− · |w|

N
2 (1− 2)− . (6.1.50)

Hence, if | |< << 1 and the order (6.1.9) of the family g satises the condi-

tion

N >max
{
2( −1)
1− ,

2
1−

}
, (6.1.51)

then

lim
w→0

∣∣∣∣∣
+ (̂ · f )

zp zq wr ws

∣∣∣∣∣= 0

uniformly in |z| < 1, and thus 1, and dz coincide until the order along the

z-axis. The assertion for the difference 2, −dw follows by duality.

The almost complex structure (6.1.45) is integrable when there are coordinates

( 1, 2) depending analytically on the parameter, such that

< d 1,d 2 >C=< 1, , 2, >C,

where 1, and 2, are dened in (6.1.45). In that case there is a 2×2 invertible

matrix A whose entries areC functions such that

 1,

2,



= A



 d 1

d 2



= Ad .
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In particular, d



 1,

2,



 = dA∧d contains no (0,2) forms. The Newlander-

Nirenberg Theorem asserts that this necessary condition is also sufcient for inte-

grability. If L1,0 is the span of the forms 1, , 2, , then this integrability condition

holds for L1,0 on the surface H (M ), and by continuity it remains valid after ex-

tension of (6.1.45) until the axes. Indeed, 1, is obtained from the pullback of

1, and since the forms d( ◦ c−12 ) and d( ◦ c−11 ) are holomorphic on their

domains (for the sake of simplicity and will be written instead of ◦ c−12
and ◦ c−11 , respectively), a short calculation in local coordinates shows, after

(6.1.43):

d 1̃, = d { ẑdz+ ̂wdw+ ẑdz+ ̂wdw} · { − z}

+ 2{ ẑdz+ ̂wdw+ ẑdz+ ̂wdw} · { zdz+ wdw−dz}

+ ̂ ·d { zdz+ wdw−dz}

(here the subscripts stand for partial differentiation). Inasmuch as ̂ is of class

C the rst term of the sum is null, i.e. d 1̃, contains no forms of type (0,2).

By symmetry, the same holds for the second form d 2̃, . Hence, for each ∈ V

the Newlander-Nirenberg Theorem ensures the existence of a C1 smooth chart
˜ = ˜ (z,w) given by:

˜ = (˜1, ˜2) : H̃ (M̃ )→ C2, (6.1.52)

which is holomorphic in the sense of the almost complex structure ( 1̃, , 1̃, ).

Notice that the sealing in ambient coordinates lifts as two different sealing

families:

1. A sealing ∗ : H̃ (M̃ )→ H̃ (M̃ ) in (z,w) coordinates:

∗ := H̃ ◦ ◦ H̃−1. (6.1.53)
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2. A sealing ∗∗ : ˜ (H̃ (M̃ ))⊂ C2→ ˜ (H̃ (M̃ ))⊂ C2 between open sets

of C2 :
∗∗ := (˜ ◦ H̃ )◦ ◦ (˜ ◦ H̃ )−1. (6.1.54)

Remark 6.1.29. By Lemma 6.1.20 and Proposition 6.1.23, the family ∗ has real

character as well.

By denition,
∗∗ ◦ ˜ = ˜ ◦ ∗, (6.1.55)

hence ˜ induces a family of charts

= ( 1, 2) : H (M )→ C2 (6.1.56)

in the quotient. This chart is, by denition, holomorphic in the sense of the ex-

tended almost complex structure (6.1.45). In order to show the real character of

, it sufces to prove the real character of the family ˜ (Proposition 6.1.42).

So we need to look into the details of Newlander-Nirenberg Theorem. Some tools

are required.

The family of diffeomorphisms H̃ = (z,w) (6.1.40) is analytic with respect

to the structure (6.1.43). It follows that:

dz = u1, dz+u2, dw+u3, dz+u4, dw

dw = v1, dz+ v2, dw+ v3, dz+ v4, dw
(6.1.57)

where
u1, = 1+ z( − z)+ ( z−1)

u2, = w( − z)+ w

u3, = z( − z)

u4, = w( − z)

(6.1.58)
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and
v1, = z( −w)+ z

v2, = 1+ w( −w)+ ( w−1)

v3, = z( −w)

v4, = w( −w).

(6.1.59)

Lemma 6.1.11 and the symmetry (6.1.39) yield the equivalences:

u1, (w,z) = v2, (z,w)

u2, (w,z) = v1, (z,w)

u3, (w,z) = v4, (z,w)

u4, (w,z) = v3, (z,w).

(6.1.60)

Modulo a linear combination, the space induced by the two forms (6.1.57) is easily

seen to be the same as the space generated by the two forms

1 = dz+ e11, dz+ e12, dw

2 = dw+ e21, dz+ e22, dw,
(6.1.61)

where
e11, =

u3v2−u2v3
u1v2−u2v1

, e12, =
u4v2−u2v4
u1v2−u2v1

,

e21, =
u1v3−u3v1
u1v2−u2v1

, e22, =
u1v4−u4v1
u1v2−u2v1

(6.1.62)

(their dependence on z,w is not explicitly written). Hence, (6.1.60) leads to:

e11, (w,z) = e22, (z,w),

e12, (w,z) = e21, (z,w).
(6.1.63)

By Corollary 6.1.25, these functions satisfy e ji, =
o(1)

1+o(1)
, thus giving:

e ji, (0,0) = 0 (6.1.64)
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for all i, j= 1,2 and ∈V. Suppose that the image H̃ (M ) contains a small bidisk

Ds×Ds, and write G := H̃−1. Consider the pullback

a ji, : Ds×Ds→ C2

of the functions (6.1.62) by the family G . The functions a ji, are dened by the

equations a ji, = G∗(e ji, ), that is:

a ji, (z,w) = G∗(e ji, )(z,w)≡ e ji, (G (z,w)), i, j = 1,2, ∈V, (6.1.65)

for all (z,w)∈Ds×Ds.By Proposition 6.1.23 and identities (6.1.63) the collection

a ji, satises again:

a11, (w,z) = a22, (z,w),

a12, (w,z) = a21, (z,w),
(6.1.66)

and by (6.1.64):

a ji, (0,0) = 0 (6.1.67)

for all i, j = 1,2 and ∈V. From now on, we will write

z1 = z, z2 = w.

Definition 6.1.30 (The differentials). The holomorphic and antiholomorphic dif-

ferentials are given, respectively, by:

j = z j , j =
z j
, j = 1,2. (6.1.68)

Definition 6.1.31. [40] A complex valued function satisfying the equation:

j − (a1j 1 +a2j 2 ) = 0, j = 1,2 (6.1.69)

is called holomorphic with respect to the given almost complex structure.
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Let (˜1, ˜2) = (˜1(z,w), ˜2(z,w)) be the smooth chart given by Newlander-

Nirenberg Theorem. Instead of considering the new coordinates (˜1, ˜2) as solu-

tions to (6.1.69) and functions of (z,w), the coordinates z,w are supposed to be

functions of ˜1, ˜2 and their complex conjugates.

Remark 6.1.32. Inasmuch as it suffices to study only the real character of the

chart ˜ , the tildes on the chart (˜1, ˜2) are dropped from now on.

Definition 6.1.33 (The dual differentials). The holomorphic and antiholomor-

phic dual differentials are given, respectively, by:

d j, = j , d j, =
j
, j = 1,2, (6.1.70)

where

j =
1
2

(

u j
− i

v j

)
,

j
=
1
2

(

u j
+ i

v j

)
, (6.1.71)

with j = u j + iv j for u j ,v j ∈ R.

Lemma 6.1.34. If f is a smooth function, then:

d j, f = d j, f , j = 1,2.

Proof. This becomes immediately apparent by (6.1.71).

Proposition 6.1.35 ([41], pp. 445). For every ∈V, the map G from Ds×Ds ⊂

C2 to the almost complex manifold M̃ is holomorphic if and only if the induced

functions (z,w) = G∗(z,w) satisfy the differential equations

d j, zk+akm, d j, zm = 0, j,k = 1,2. (6.1.72)



106 CHAPTER 6. REALIZATION OF A POINCARÉ FAMILY

In such a case, (6.1.69) yields:

d j, p = k
pd j, zk+ k

pd j, zk

= k
p{d j, zk+akm, d j, zm}

= 0

(6.1.73)

for j = 1,2. Notice that the replacement of (6.1.72) in the term after the rst

equality of (6.1.73), yields:

d j, p = d j, zk{ k
p−aik, i

p}, p= 1,2.

Thus the parametric Cauchy-Riemann equations d j, p = 0 are equivalent to the

system (6.1.69) if z,w satisfy (6.1.72) with the matrix [d j, zk] non-singular for all

in the symmetric neighborhood V. Then the idea is to nd solutions to (6.1.72)

and study their real character. This is done by solving a corresponding integral

equation to which iterations can be applied succesfully.

Denote by T 1,T 2 the integral operators

T 1 f (z,w) = 1
2i

∫∫

| |<

f ( ,w)
z− d d ,

T 2 f (z,w) = 1
2i

∫∫

| |<

f (z, )

w− d d ,
(6.1.74)

with > 0 xed and f = f (z,w) has suitable differentiability properties and,

eventually, it depends on additional complex coordinates.

Lemma 6.1.36. If f1, f2 are as above and satisfy f1(z,w) = f2(w,z), then

T 1 f1(z,w) = T 2 f2(w,z). (6.1.75)
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Proof. By denition:

T 1 f1(z,w) =
1
2i

∫∫

| |<

f1( ,w)
z− d d

=
1
2i

∫∫

| |<

f2(w, )

z− d d

=
1
2i

∫∫

| |<

f2(w, )

z− d d

=
1
2i

∫∫

| |<

f2(w, )

z− d d .

= T 2 f2(w,z)

The fourth equality comes from the fact that the form d d is invariant under the

change Im( ) .→ −Im( ) on the symmetric domain | |< .

Let us dene:

f11(z,w)( 1, 2)( ) :=−(a11, d1, z+a12, d1, w),

f21(z,w)( 1, 2)( ) :=−(a11, d2, z+a12, d2, w),

f12(z,w)( 1, 2)( ) :=−(a21, d1, z+a22, d1, w),

f22(z,w)( 1, 2)( ) :=−(a21, d2, z+a22, d2, w).

(6.1.76)

Lemma 6.1.37. The maps f jk are related through:

f11(z,w)( 1, 2)( ) = f22(w,z)( 2, 1)( )

f21(z,w)( 1, 2)( ) = f12(w,z)( 2, 1)( ),
(6.1.77)

for real values of the parameter.

Proof. Let ∈V ∩R. Equivalences (6.1.66), the denition of the dual differentials

and Lemma 6.1.34 allow to conclude:

f22(w,z)( 2, 1)( ) = −(a21, (w,z)d1, w+a22, (w,z)d1, w)

= −(a12, (z,w)d1, w+a11, (z,w)d1, z)

= f11(z,w)( 1, 2)( ).
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The same procedure shows that f12, f21 are related by Schwarz reection when

the parameter is real.

Definition 6.1.38 (Nijenhuis-Woolf operators). The operators:

TF1 := T 1 f11+T 2 f21−
1
2
(T 1d1, T 2 f21+T 2d2, T 1 f11)

TF2 := T 1 f12+T 2 f22−
1
2
(T 1d1, T 2 f22+T 2d2, T 1 f12).

(6.1.78)

are called the first and second Nijenhuis-Woolf symmetric operators.

The non-linear differential system corresponding to (6.1.72) is given by the

integral equation ([41]):

z( 1, 2) = 1+TF1[z,w]( 1, 2)−TF1[z,w](0,0)

w( 1, 2) = 2+TF2[z,w]( 1, 2)−TF2[z,w](0,0).
(6.1.79)

Definition 6.1.39. The pair of coordinates ( 1, 2) is referred to as the initial

value of (6.1.79).

For = 0, the system is solved by means of a Picard iteration process (xed

point Theorem) which converges in a small ball B(r0) of radius r0 > 0 around

the origin of (z,w) coordinates ([40],[41]). It turns out that for all | | small and

xed, the solution to (6.1.79) is well dened on B(r), with r = r0
2
.Moreover, if r

is small enough, then the solution (z,w) is unique:

Lemma 6.1.40. [40] For r sufficiently small, and ∈V fixed, the integral system

(6.1.79) admits a unique solution (z,w) satisfying also (6.1.72) and such that the

parametric transformation ˜◦−1 from the ( 1, 2) coordinates to (z,w) coordi-

nates has non-vanishing Jacobian.
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Proposition 6.1.41. For every (z,w) in a neighborhood of the origin and for ev-

ery initial value ( 1, 2), the Nijenhuis-Woolf symmetric operators TF1,TF2 are

related through Schwarz reflection:

TF1[z,w]( 1, 2)( ) = TF2[w,z]( 2, 1)( ) (6.1.80)

when the parameter is real.

Proof. Let the parameter be real. A direct calculation and the denition of the

dual differentials prove:

TF2[w,z]( 2, 1)( ) = T 1 f12+T 2 f22−
1
2
[T 1d2, T 2 f22+T 2d1, T 1 f12]

where the second member is evaluated at (w,z)( 2, 1)( ). Then Lemma 6.1.37

and property (6.1.75) yield:

TF2[w,z]( 2, 1)( ) = T 1 f11+T 2 f21−
1
2
[T 1d1, T 2 f21+T 2d2, T 1 f11]

= TF1[z,w]( 1, 2)( ).

where the member on the right of the rst equality is evaluated at (z,w)( 1, 2)( ).

Proposition 6.1.42. The chart (6.1.52) has real character:

˜ = S ◦ ◦ ˜C ( ) ◦ ◦S

and is tangent to the identity.

Proof. First, the parameter is supposed to be real. Let ( 1, 2) be the initial

value and (z,w) be the solution to (6.1.79). If the initial condition satises 1 =

2, then Proposition 6.1.41 leads to

w = 1+TF1[w,z]( 1, 2)−TF1[w,z](0,0)

z = 2+TF2[w,z]( 1, 2)−TF2[w,z](0,0).
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Thus the unicity of the solution in Lemma 6.1.40 implies that z = w. Inasmuch

as ˜ has non-vanishing Jacobian, it is a local isomorphism if r > 0 is small.

In particular, ˜◦−1 sends isomorphically a local neighborhood of the origin in the

surface { 1= 2} of the space of initial values ( 1, 2), into a local neighborhood

of the origin in the plane of symmetry {z = w} of the space of solutions (z,w),

when ∈ R. The real character of the chart ˜ is then proven over the subset

∈V ∩R. Since ˜ depends analytically on the parameter, its real character ˜ =

S ◦ ◦ ˜C ( ) ◦ ◦S for values ∈ V is also proven. By (6.1.79), the chart ˜

is tangent to the identity at the origin.

End of the proof of Theorem 6.1.27. Passing to the quotient, the chart : B(r)⊂

H (M )→C2 induced by ˜ , has real character as well (Remark 6.1.29). Indeed,

(6.1.55) means that the diagram dened by ∗, ∗∗ and ˜ is commutative. Thus,

the chart : B(r)→ C2 inherits the real character of ˜ . It is clearly tangent to

the identity at the origin.

End of the proof of Theorem 6.1.4. Let = ( 1, 2) be the family of smooth

charts of Theorem 6.1.27 dened locally on a neighborhood B(r)⊂H (M ). The

composition

= ◦H : H−1(B(r))→ C2

between complex analytic manifolds is honestly biholomorphic. The closure

W := (H−1(B(r))) contains the origin in its interior. It remains to check that

the family of vector elds dened on W by the pushforward v = ( )∗v , is

orbitally equivalent to a generic family unfolding a weak focus with formal nor-

mal form (6.1.1). Notice that v is also monodromic because the family v is

monodromic, and by Theorem 6.1.27, the composition = ◦H is tangent



6.1. REALIZATION OF AN ADMISSIBLE FAMILY. 111

to the identity for every ∈ V. By Proposition 6.1.21, the monodromy of v co-

incides with P := Q◦2. Since the Poincaré map Q◦2
0, of the family (6.1.1) and

the monodromy of the family v are formally conjugate by construction, it will be

sufcient to show that the quotient of the eigenvalues of the family v is
+i
−i , see

Corollary C.2.4 in the Appendix C.

Lemma 6.1.43. The monodromic family of vector fields v has real character.

Proof. This becomes apparent directly from Corollary 6.1.22 in local coordinates,

and from the real character of the pushforward ∗ which, in turn, is a consequence

of Proposition 6.1.23 and Theorem 6.1.27.

Proposition 6.1.44. The quotient of the eigenvalues of the monodromic family v

is equal to
+i
−i .

Proof. By Lemma 6.1.43, the eigenvalues of the vector eld v are complex con-

jugate. We call them ( ), ( ), with

( ) = a( )+ ib( ) (6.1.81)

and a( ),b( ) depend analytically on small and are real on ∈R. The Poincaré

map of the family v has multiplier µ( ) = P ′ (0) = exp
(
2i

+

−

)
. Indeed, if

(z,w) are the coordinates of the family of vector elds v , then in the rst chart of

the blow up v gives rise to a family of equations of the form:

Z = ( − )Z+ ...

w= w+ ...
(6.1.82)

The Poincaré map of this family is given by ([37]):

P (w) = exp
(
2i

(
2
−

))
w+ ...



112 CHAPTER 6. REALIZATION OF A POINCARÉ FAMILY

In the second chart of the blow up, the family v gives rise to the system:

W = ( − )W + ...

z= z+ ...
(6.1.83)

and then the Poincaré map is given by P (z) = exp
(
−2i

(
2
−

))
z+ ...

(computed on the cross section z = w in ambient coordinates). It is easily seen

that:

µ( ) = exp
(
2i

(
2
−

))
= exp

(
−2i

(
2
−

))
= exp

(
2i

(
+

−

))
.

On the other hand, µ( ) = exp(2 ) by Proposition 2.3.2. Thus,

2 = 2
2a( )

2b( )
+2i m,

for some m ∈ N. This means that

a( )

b( )
= −im. (6.1.84)

Inasmuch as a( ),b( ) are real on ∈R, the equation (6.1.84) implies thatm= 0,

which yields

=
+i
−i .

This shows that the family of vector elds v unfolds a vector eld with a

weak focus. Inasmuch as the order ofQ is one, the order of the family of vector

elds is one as well.



Part III

Modulus of analytic classification

(orbital equivalence)
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Chapter 7

Preparation and the orbit space

7.1 Preparations.

A generic family of equations unfolding an order 1 weak focus:

z = ( +i)z± z2w+
j+k≥4

a jk( )z jwk

w = ( −i)w±w2z+
j+k≥4

a jk( )zkw j,
(7.1.1)

(where the coefcients a jk( ) depend analytically on the parameter) is a family

with a generic Hopf bifurcation of codimension 1. Recall that the family of vector

elds on the right is noted v . The Theorem 4.2.3 allows to describe the dynamics

of such a family through the dynamics of the family of diffeomorphisms unfolding

the Poincaré map of the system v0. We have seen (Theorem 2.3.2) that such a

family is of the form

P (w) = e2 w± e2 [2 +O( )]w3+O(w4). (7.1.2)

115
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when the family of vector elds v has been brought into normal form (1.4.1).

Proposition 3.1.6 implies that its coefcients are real when ∈ R and thus

C ◦P ◦C = P .

The family P is the unfolding of the Poincaré map P of the system v = v0,

which is a germ of codimension one resonant analytic diffeomorphism with a

xed point of multiplicity 3 at the origin which corresponds to the coalescence

of a xed point with a periodic orbit of period 2. In the previous literature issues

(e.g. [10], [11], [25], [32]) a generic family of vector elds was prepared with

respect to the canonical parameter if h′z(0) = e− (where hz is the holonomy

map of the z separatrix) and, at the same time, the invariant manifold had equation

zw= . (7.1.3)

Such a preparation is not well adapted to the chosen formal normal form (1.4.2).

Indeed the formal classication for weak foci must respect the real character

(3.1.6) of the singularity. Instead, we will prefer another preparation respect-

ing the real character of the unfolding v , and that is compatible with the formal

normal form (1.4.2), such that:

P ′ (0) = e2 (7.1.4)

and, again, the invariant manifold corresponds to (7.1.3). The condition (7.1.4)

uniquely determines (the canonical parameter). When studying the equivalence

of two families this allows to conclude that the canonical parameter is preserved

and it allows also to work for xed values of it. The preparation performed on the

family of vector elds introduced in the next theorem, brings the Poincaré map
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into a �“prepared�” form as well. Once we have properly prepared the family of

diffeomorphisms, we can compute its invariant of analytic classication.

Strategy. In order to compute the modulus of the unfolding of the Poincaré map,

we compare the latter with the time-one map 1 of the vector eld:

2 w( ±w2)
1+A( )w2 w

, (7.1.5)

which is called the model family.

Theorem 7.1.1. There exists an analytic change of coordinates

(z,w) .→ (z,w)

bringing the family of vector fields into a “prepared” form, for which the invariant

manifold of the system has equation zw=−s , and the new coordinates preserve

the real character of the field. Here, s = ± is the coefficient of the third order

term (defined in Proposition 1.2.1). In addition, the Poincaré map of the section

: {z= w} (parametrized with the w coordinate) has the form:

P (w) = w+w( ±w2)[2 +D( )+E( )w2+w( ±w2)h( ,w)] (7.1.6)

with fixed points w0 = 0, and w± = ±
√
−s . The constants D( ),E( ) and the

function h are real when ∈ R. The multiplier 0 of the fixed point w0 = 0 satis-

fies:

0 = P ′ (0) = e2 (7.1.7)

In particular, the parameter is an analytic invariant for P (w). We call it the

“canonical parameter”. The multipliers of the fixed points w± = ±
√
−s are

given by:

± = P ′ (w±) = exp
{

−4
1− sA( )

}
, (7.1.8)
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so that they coincide exactly with the multipliers of the time-one map of the model

family (7.1.5). The “formal parameter” A( ) is defined by:

A( ) =
2 s
ln 0

+
2 s
ln +

+
2 s
ln −

. (7.1.9)

It depends analytically on and is real when ∈ R. It is an analytic invariant of

P .

Proof. According to the formal classication (Theorem 1.4.2), the equation of the

invariant manifold of the formal normal form (1.4.2) is

±u= 0.

Even if the change of coordinates to normal form is generically divergent, the

invariant manifold is analytic ([26]). Coming back to the variables z and w the

invariant manifold has an equation of the form:

=−s 1( )u+o(u) =−su 1( )(1+m(z,w)), (7.1.10)

where u = zw and m(z,w) = O(u) satises m(z,w) = m(w,z) for all z,w near the

origin. Let us dene the following change of coordinates:

z = z
√

1( )(1+m(z,w))

w = w
√

1( )(1+m(z,w)).

Then, in these coordinates, the invariant manifold has equation:

zw= u 1( )(1+m(z,w)) =−s . (7.1.11)

Notice that this change of coordinates preserves the symmetric form of the original

system (i.e. its real character).
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The analytic invariant manifold intersects the cross-section {z = w} at w2 =

−s . Let Q (w) be the semi-Poincaré map of the family in the variable w. We

know thatw2+s = 0 is the equation of the 2-periodic points of the semi-Poincaré

family coming from the intersection of the invariant manifold with z = w. Then

the second iterate ofQ (w) has the form

Q◦2(w) = w+w( ±w2)h( ,w), (7.1.12)

where h( ,w) = (2 +O( )+O(w)). Indeed,

(Q◦2)′(0) = 1+ h( ,0)≡ e2 ,

and then h( ,0) =
e2 −1

= 2 +O( ).

Definition 7.1.2. The family of vector fields in coordinates (z,w) and parameter

, obtained in Theorem 7.1.1, is called orbitally prepared. The family of diffeo-

morphisms (7.1.6) obtained after preparation of the family of vector fields and

satisfying (7.1.7) is, by analogy, called prepared. From now on, we shall work

with families of vector fields and the corresponding families of diffeomorphisms

only in prepared form, so the tuple (z,w, ) will be noted (z,w, ). The prepared

families of fields and diffeomorphisms in these coordinates will be noted v and

P , respectively.

7.2 Glutsyuk point of view.

We will only discuss the case s = +1. We choose a xed neighborhood U of

the origin on which P0 is a diffeomorphism. If is a positive number we dene
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VG
,l VG

,r

Figure 7.1: Sectorial domains for the parameter.

sectorial domains in the universal covering of the the parameter space, see Figure

7.1:

VG
,l = { ∈ C : | |< ,arg( ) ∈ (

2
+ ,

3
2
− )}

VG
,r = { ∈ C : | |< ,arg( ) ∈ (−

2
+ ,

2
− )}

(7.2.1)

and is a small real number depending on . The number is chosen so that for

values ∈ VG
,lr, there exists orbits connecting the xed points in U. In this case,

we say that we work in the Glutsyuk point of view (Figure 7.2):

�– If < 0 the origin is attractor and the two real singular points w± =±
√
−

are repeller inU.

�– If = 0 the origin is the only (non-hyperbolic) xed point.

�– If > 0 the origin is repeller and two additional imaginary attracting singu-

lar points are created inU.

Definition 7.2.1 (Analytic conjugation). [10] Two germs of analytic families f

and f̂ of diffeomorphisms with a fixed point at the origin are conjugate if there

exists a germ of analytic diffeomorphism H ( ,w) = (k( ),h( ,w)) fibered over

the parameter space such that:

h ◦ f = f̃k( ) ◦h , (7.2.2)
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where h (w) def
=h( ,w). The conjugacy is said to be real if C ◦k◦C = k and

C ◦hC ( ) ◦C = h . (7.2.3)

The family of diffeomorphisms P may be conjugated to the time-one map 1

of the eld (7.1.5) on the sectorial domains (7.2.1). The modulus measures the

obstruction to get a conjugacy on a full neighborhood of the origin in the w-space.

The vector eld (7.1.5) has singular points w0 = 0, with eigenvalue µ0( ) = 2 ,

and w± =±
√
− with eigenvalues:

µ±( ) =
−4

1−A( )
. (7.2.4)

Notice that µ0 and µ± are analytic invariants of (7.1.5), which also depend analyt-

ically on . It follows that and A( ) are analytic invariants of the eld (7.1.5).

The multipliers of the time-one map 1 of v are j = eµ j , i.e. they are precisely

the multipliers of the xed points ofP . In order to compareP with the model

diffeomorphism 1 we compare their orbit space. The orbit space of P is ob-

S2,0

S1,0

S01,0

S02,0

= 0

0
2,0 1,0

2,0
0
1,0

< 0

T0

T1,

T0

T2,

G
2,

G
1,

G
2,

G
1,

> 0

G
1,

G
1,

G
2,

G
2,

T2,

T1,

T0

Figure 7.2: The orbit space of the Poincaré map and the transitions G
j, .

tained by taking 3 closed curves {"0, "+, "−} around the xed points, and their
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images {P ("#)} where # ∈ {0,+,−}. Since the xed points are hyperbolic the

closed regions {C#} between the curves and their images are isomorphic to three

closed annuli. We identify "#∼P ("#). Then the quotientC#/∼will be shown to

be a conformal torus. Hence, the orbit space turns out to be a non-Hausdorff space

conformally equivalent to a collection of three tori T0,T1, ,T2, plus the three sin-

gular points, which represent the orbit space of the hyperbolic xed points, such

that

�– each orbit has at most one point in each torus,

�– each orbit is either a xed point or is represented in a torus,

�– some orbits may have representatives in two different tori.

The Glutsyuk modulus can be described as follows. For specic values of ∈

V ,lr, the singular points x0,x± are hyperbolic, thus normalizable. Hence, there

exists in the neighborhood of each xed point a diffeomorphism #, #∈ {0,+,−}

conjugating the Poincaré mapP with the model family, i.e. the time one map of

the model family (7.1.5). It is shown ([21]) that for a sufciently small choice of

the sectorial neighborhood in the covering of the parameter space, the domains of
# overlap, allowing to dene:

G,+ = + ◦ ( 0)−1

G,− = − ◦ ( 0)−1




 for ∈V ,l,

and
G,+ = 0 ◦ ( +)−1

G,− = 0 ◦ ( −)−1




 for ∈V ,r.

Note that # is unique up to left composition with a symmetry of 1, i.e. a time-

t map of v . Hence, since the domains of 0 and ± intersect for ∈ V ,lr for

sufciently small , the collection {( G,+, G,−)} ∈VG,± is an analytic invariant
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of the family P under analytic families of change of coordinates preserving the

canonical parameter. This is one presentation of the Glutsyuk modulus. We now

study how the normalization is performed. It is natural to introduce coordinates

on the orbit space. The Glutsyuk modulus only concerns the orbits represented in

the tori. One way to introduce coordinates on a torus T is to consider the latter as a

quotientT=C∗/LC (whereLC(x)=Cx is the linear map) for someC∈C∗. Then

a natural coordinate on T is the projection of a coordinate on C∗ = CP1\{0, },

i.e. a �“spherical�” coordinate.

Fatou coordinates were introduced in 1920 by former P. Fatou ([16]). They are

changes of coordinates which allow to transform the prepared familyP into the

�“model family�” 1 over the sectorial domains (7.2.1). We will construct a special

kind of Fatou coordinates: we show that it is possible to choose them respecting

the real character ofP . This choice yields a symmetry property on the Glutsyuk

invariant in the unfolding. We will study the properties of the Glutsyuk invariant

by �“unwrapping�” the spherical coordinate.
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Chapter 8

Real Fatou Glutsyuk Coordinates

8.1 The unwrapping coordinate.

From now on, the parameter belongs to either of the Glutsyuk sectors (7.2.1).

Consider the �“unwrapping�” change of coordinates p :R →U\{w0,w±} dened

by:

w= p (Z) =






( s
se−4 Z−1

) 1
2 for %= 0

(
− s
4 Z

) 1
2 for = 0

(8.1.1)

whereR is the 2-sheeted Riemann surface of the function (see Figure 8.1)





(1− se−4 Z

s

) 1
2 for %= 0

(2s Z)
1
2 for = 0,

and s = ±1 is dened in Proposition 1.2.1 (the sign of the third order coefcient

of the family). Notice that for all ∈ VG
,rl, the map p is periodic with period

− i
2

:

p (Z) = p (Z− k i
2

), k ∈ Z. (8.1.2)
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Without loss of generality, the neighborhoodU can be taken as a small ball B(0,r).

By (8.1.2), the image p◦−1(U = B(0,r)) consists of the Riemann surface R mi-

nus a countable number of holes. The smaller the radius ofU, the larger the radius

of such holes (of order
1
r
).

P±

P0

P
B

Figure 8.1: The surfaceR , domain of the lifting P .

Definition 8.1.1. The distance between two consecutive holes, for %= 0, is the

complex number:

( ) =− i
2

. (8.1.3)

The Poincaré familyP = P (w) is lifted into a family:

P := p−1 ◦P ◦ p . (8.1.4)

By (8.1.2), the family P is dened onR minus the countable collection of holes.

The dynamics of P goes always from left to right on R .We denote P0 and P±

the points at innity located in the direction orthogonal to the line of holes, in such

a way that their images by p be equal to w0 = 0 and w± =±
√
−s , respectively:

Definition 8.1.2.
P0 = p◦−1(w0),

P± = p◦−1(w±).
(8.1.5)
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In a neighborhood of the points P± (there are two such points, in correspon-

dence with the leaves of R ) the two sheets go to different singular points in the

w coordinate, while on the side of P0 both sheets go to the origin, see Figure 8.1.

Definition 8.1.3. For any complex number Z ∈ C whose imaginary part is of

order ∼ | | in a neighborhood of P±, we define the translation in TZ :

TZ (·) = Z + ·. (8.1.6)

P±

P0Z0

Figure 8.2: Analytic extension of T to a neighborhood of P0, when > 0.

By connexity, the translation (8.1.6) can be analytically extended along the leaves

ofR to all Z in a neighborhood of the point P0, see Figure 8.2. The extension is

noted TZ as well. We shall use specic values for Z , the rst one being :

Lemma 8.1.4. The family P commutes with T :

P ◦T = T ◦P (8.1.7)

along the leaves of R .

Definition 8.1.5. By (8.1.2), the sequence of equidistant holes can be denoted as:

{T ◦k( )(B )}k∈Z, (8.1.8)
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where T 0( )(B ) = B corresponds to the integer k = 0. It will be called the prin-

cipal hole, and we will write:

Û := p◦−1(U) = R \
⋃

k∈Z
T ◦k( )(B ) (8.1.9)

the domain for the dynamics of the family P .

Remark. Notice that the inverse p◦−1 of the change (8.1.1) is the multivalued

function:

Z = p◦−1(w) =






1
4

log
( w2

+sw2
)

for %= 0

− s
4 w2

for = 0
(8.1.10)

where log(·) is the principal branch of the logarithm. A simple integration shows

that the coordinate Z is the time of the differential equation:

w= 2 w( ±w2),

which is a small �“deformation�” of the model family (7.1.5). The coordinate Z has

been called the �“unwrapping coordinate�” by Shishikura ([47]).

8.2 The real and imaginary axis onR .

Remark. Here we discuss the case s=+1.

Definition 8.2.1. The images of the positive and negative real and imaginary

semi-axes by the map p◦−1 will be noted

± := p◦−1(R±)

± := p◦−1(iR±),
(8.2.1)

respectively, in the Z coordinate.
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By (8.1.2), there is a countable number of such semi-innite segments onR ,

and by (8.1.10), + and − lie on the same side on R , but in different leaves.

The same holds for + and −, see Figure 8.3. The half-lines (8.2.1) organize dif-

< 0 = 0 > 0

−

±±
s
−

−

+
− −−

±

±
P0

P0 P±

P±

+

P0 = P±

s
+

+ ±B BB

+

+ ±

±

s
+

s
+

Figure 8.3: The choice of the cuts onR for real values of the parameter.

ferently in the cases ≤ 0 and > 0. However, it is always possible to coherently

(and continuously) choose the cuts on the Riemann surfaceR :

1. When the parameter is negative, the location of the xed points in the w

coordinate yields the decomposition

± = s
±∪ ±,

where s
± is the image by p◦−1 of the straight real segment joining 0 and

w±, and ± is the image by p◦−1 of the straight real segment joining w±

and the boundary of the neighborhood U in the w coordinate. Again, one

has an innite number of such segments s,
± at distance ( ) from each

other in the Z coordinate. The cuts are located along the half-lines ±. In

this case, the preimage p◦−1(R±) forms an alternating sequence +,
s
+

and −,
s
−, respectively on the two different leaves. Along with ±, these
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sequences respect the rule:

T ( )( ±) = ±,

T ( )( ±) = ±,

T ( )(
s
±) =

s
±

and the half-line in the leaf below the one containing the half-line s,
± is

s,
∓ . The half-line ± intersecting the principal hole B will be noted ̂±,

and the half-line ± intersecting the principal hole B will be noted ̂±.

2. If = 0, there are four half-lines ± and ± in the Z coordinate. They will

be noted ̂± and ̂±, respectively. The �“hat�” means that they intersect the

hole B0. The cuts are located along ̂±.

3. For positive values of the parameter, the image of the imaginary axis by the

map p◦−1 consists in the union

± = s
±∪ ±,

where s
± is the image of the straight imaginary segment joining 0 with w±,

and ± is the image of the straight imaginary segment joining w± and the

boundary of the neighborhood U in the w coordinate. By periodicity, one

has an innite number of such segments s,
± at distance ( ) from each

other in the Z coordinate. As indicated in the picture, the cuts of R are

located along the half-lines ±. On the other hand, the preimage p◦−1(R±)

forms an alternating sequence +, − on the same leaf, thus giving the

alternating rule:
T ( )( ±) = ∓,

T ( )(
s
±) =

s
∓,

T ( )( ±) = ±,
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and the half-line in the leaf below the one containing the half-line ± is ∓

as well. The half-line ± intersecting the principal hole B will be noted
̂±, and the half-line ± intersecting the principal hole B will be noted
̂±.

Definition 8.2.2. The distinguished line ̂± is called the axis of symmetry in the

Z coordinate.

8.3 Translation domains.

Definition 8.3.1 (The Glutsyuk point of view of the dynamics). Given any >

0, there exists > 0 such that for | | < , there exists an orbit of the lifting P

connecting P0 with P±. In such a case, we say that we are in the “Glutsyuk point

of view” of the dynamics.

Proposition 8.3.2. [32] There exist K > 0 and B> 0, such that for Z and small,

one has
|P (Z)−Z−1|< KB

|P′ (Z)−1|< KB2
(8.3.1)

where B depends on the size of the neighborhood of the point w= 0.

Consider a slanted line " ⊂ R and its image P ("), such that the image is

placed at the right of " and the strip between " and P (") belongs to p◦−1(U).

Definition 8.3.3. The region of the Z coordinate between the line and its image is

a strip Ĉ (") called admissible strip. The line " giving birth to Ĉ (") is called an

admissible line.
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Ĉ (") P±

P0

Q0+,

" P (")

Figure 8.4: A translation domain Q0+, and an admissible strip on it.

Definition 8.3.4. Let " be an admissible line for P . The translation domain as-

sociated to " is the set

Q (") = {Z ∈ Û : ∃n ∈ Z,P◦n(Z) ∈ Ĉ ("),∀i ∈ {0,1, ...,n},P◦i(Z) ∈ Û }.

Among other properties, Q (") is a simply connected open subset of Û ; the

region Ĉ (")\{"} is a fundamental domain for the restriction of P to Q (") : each

P -orbit in Q (") has one and only one point in this set. In the Glutsyuk point of

view the admissible strips are placed parallel to the line of holes, i.e. according to

the ( ) direction of the covering transformation T ( ). The induced translation

domains, called Glutsyuk translation domains, are noted as Q and Q0 according

to whether they contain a neighborhood of P± or P0, respectively, see Figure 8.4.

Definition 8.3.5. For values of in VG
,rl, there exists four different Glutsyuk trans-

lation domains Q0,±, in the Z-space, which are defined, depending on the sign of

∈ R, as follows.

1. If ≥ 0, then Q±, is a simply connected neighborhood of P± containing

all the segments s
±, while Q0±, is a simply connected neighborhood of P0

containing the distinguished half-line ̂±, see Figure 8.5.
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2. If > 0, then Q±, is a simply connected neighborhood of P± containing

all the segments s
±, while Q0±, is a simply connected neighborhood of P0

containing the distinguished half-line ̂±.

Q0+,

Q0+, Q+,

Q+,

s
+

s
+

P0

P0 P+

P+

̂
+

> 0< 0

̂
+

s
+

s
+

Figure 8.5: The translation domains Q0,+, .

Lemma 8.3.6. The translation T satisfies:

T (Q0±, ) = Q0∓, ,

T (Q±, ) = Q±, ,
(8.3.2)

see Figure 8.5.

Proof. The second is clear, by denition: T is formerly dened in a neighbor-

hood of the point P± along the leaves ofR , thus leaving invariant the translation

domains Q±, . On the other hand, the rst equality is certainly true because all the

possible paths dening the analytic extension of T to a neighborhood of P0 must

be contained in Q±, . Let us consider for instance Q0+, above the principal hole.

It intersects Q+, and because of the denition of T , when we apply T (resp.

T− ) we are below the principal hole if > 0 (resp. < 0). In that region Q+,
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intersects Q0−, . Thus, each translation domain Q±, shares a common region with

a translation domain of the kind Q0±, . The conclusion follows.

8.4 Conjugation in the Z coordinate.

Fix a translation domain QG and let Z ∈ QG be any point on it. Choose any

simple arc joining Z with the axis of symmetry ̂ , and let be its image under

the map p : = p ( ). Consider the reection of the path with respect the

real axis R in the w coordinate. Then dene

:= p◦−1( ).

Definition 8.4.1. The path is well defined and is called the reflection of the arc

with respect to the axis of symmetry ̂ in the Z coordinate, see Figure 8.6. The

starting point of is called the conjugate of Z, and is noted !(Z).

Since the translation domains are connected, the conjugation Z .→ !(Z) is well
dened: its denition is independent of the arc . Indeed, if + is any simple

path joining Z with the semi-axis of symmetry ̂
+ in the Z coordinate, then the

reection of the arc + with respect to ̂
+ induces a map

Z .→ !+(Z)

along the leaves of , which is independent of the free homotopy class with end-

point on ̂
+.Choose now any simple arc − joining the point Z with the semi-axis

of symmetry ̂−. The reection of the arc − with respect to ̂− induces in turn

a map

Z .→ !−(Z).
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Then, it is easily seen that !+(Z) = !−(Z). Indeed, the arc + induces a path + in

the w coordinate whose reection + with respect the real axis starts at the same

starting point of the reection − of the path − induced by the arc − in the w

coordinate, see Figure 8.6.

+

+

w

w

−

−

w− w+̂
+ R̂−

!(Z)

Z

Figure 8.6: The conjugation in the Z coordinate.

Remark 8.4.2. It becomes clear by definition that:

!◦!= id (8.4.1)

for real values of the parameter.

Proposition 8.4.3. The lifted family P is invariant under the conjugation in the

Z coordinate when ∈ R :

P = !◦P ◦! . (8.4.2)

Proof. This is because the family P leaves invariant the real line when ∈ R.

The image of the latter by p is, by denition, the axis of symmetry ̂ in the Z

coordinate, which provides an invariant curve for the dynamics of the lifting P

on the translation domains. Such a curve is invariant only if ∈ R.
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8.5 Real Fatou Glutsyuk coordinates.

8.5.1 The Beltrami Equation ([38]).

We explain the concept of measurable conformal structure on an open set A⊂

C. A conformal structure at a point z ∈ A can be prescribed by choosing some

ellipse centered at the origin in the tangent space TzA$ C.We are to think of this

ellipse as a �“circle�” in the new conformal structure. In more technical language,

a conformal structure at the point z ∈ C is determined by a complex dilatation

µ(z) ∈ D, where D is the open unit disk of the complex plane. First, consider the

case where µ is constant. Then the function h(z) = z+ zµ satises the Beltrami

differential equation
h
z
= µ(z)

h
z

(8.5.1)

(named after Eugenio Beltrami, 1835-1900). Here the derivatives / z and / z

are to be dened by the formula

/ z=
1
2

(

x
+ i

y

)
, / z=

1
2

(

x
− i

y

)
,

where z= x+ iy.

If h satises (8.5.1) with constant µ ∈ D, then a round circle |h| = constant

in the h-plane corresponds to an ellipse |z+ zµ| = constant in the z-plane, with

direction of the major axis controlled by the argument of µ and with eccentricity

controlled by |µ|. If |µ| = r < 1, then the ratio of the major axis to minor axis is

equal to
1+ r
1− r , which tends to innity when r→ 1.

More generally, if the function h is real analytic, then Gauss, in his construc-

tion of �“isothermal coordinates�”, showed that an equation equivalent to (8.5.1)

always has local solutions. Morrey extended this to the case where µ is measur-
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able, with

|µ(z)|< constant < 1 (8.5.2)

almost everywhere, constructing a solution z .→ h(z) which maps a region in the

z plane homeomorphically onto a region in the h plane. Furthermore, if h1,h2 are

two distinct solutions, he showed that composition h2 ◦h−11 is holomorphic.

Here some explanation is needed, since we are considering a differential equa-

tion involving nondifferentiable functions. For any open set A ⊂ C let L1(A) be

the vector space consisting of all measurable functions : A→ C with
∫ ∫

A
| (x+ iy)|dxdy<

(where we identify two functions which agree almost everywhere). Consider also

the vector space of test functions on A, consisting of all C functions : A→ C

which vanish outside of some compact subset of A.

Definition 8.5.1. A continuous function h : A→ C has “distributional deriva-

tives” in L1 if there are complex valued functions hz and hz defined almost every-

where in A and belonging to L1(A) such that
∫ ∫

A
(hz(z) (z)+h(z) / z)dxdy= 0

∫ ∫

A
(hz(z) (z)+h(z) / z)dxdy= 0

(8.5.3)

for every such test function . (Note that we can change hz and hz on a set of

Lebesgue measure zero without affecting (8.5.3)).

The Beltrami equation for h now requires that

hz(z) = µ(z)hz(z)
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for almost every z ∈ A. This makes sense, since the pointwise product of an L1

function and a bounded measurable function is again in L1. By denition, any

continuous one-to-one solution h is called quasiconformal mapping on A, with

complex dilatation µ.

More generally, we can consider such a measurable conformal structure on

a Riemann surface R. However, it is no longer described by a complex-valued

function, but rather by a section of a real analytic D-bundle which is canonically

associated with R. Given a local coordinate z on an open set A, we can still de-

scribe the conformal structure on A by a dilatation function µ : A→ D, but on the

overlap between two local coordinates z and z′ a brief computation shows that the

equation

µ ′(z′) = µ(z)
z′

z

/ z′
z

must be satised in order to make sense of this structure globally. 1 Note that

|µ ′(z′)| = |µ(z)|, so that condition (8.5.2) is independent of the choice of co-

ordinate system. If this conformal structure is measurable and satises (8.5.2)

everywhere, then the local solutions h form the atlas of local conformal coordi-

nates for a new Riemann surface Rµ which is topologically identical to R, but

conformally (and even differentiably) quite different. In the special case where

R is the Riemann sphere, it follows from the Uniformization Theorem ([19],[38])

that Rµ is conformally equivalent to the Riemann sphere. In particular, there is

a unique conformal isomorphism h :R →Rµ which xes the points 0,1 and .

1. In more geometric language, a Beltrami differential at a point x of a Riemann surface can

be described as an additive homomorphism from the tangent space Tx to itself which is antilinear,

µx( t) = µx(t), and which multiplies the length of any vector t ∈ Tx by a constant |µx| < 1. In

particular, if R is an open subset of C so that Tx $ C, then µx will have the form µx(t) = µt with

|µx|= |µ |< 1.
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If we remember that Rµ is identical to R = CP1 as a topological space, then we

can also describe h= hµ as a quasiconformal homeomorphism from CP1 to itself

(or briey a qc-homeomorphism) with complex dilatation µ(z).

We can also study the dependence of hµ on the dilatation µ. For each xed z0,

Ahlfors and Bers ([1], 1960) showed that the correspondence µ .→ hµ(z0) denes

a differentiable function from the appropriate space of dilatation functions to the

Rieman sphere.

8.5.2 Construction of Fatou coordinates.

Theorem 8.5.2. For values of the parameter in VG
,lr it is possible to construct four

different changes of coordinates W = 0,
±, ,lr(Z) defined on R , and conjugating

P with the translation by one:

0,
±, ,lr(P (Z)) = 0,

±, ,lr(Z)+1, (8.5.4)

for every Z ∈ Q0,±, ,lr ∩P
◦−1(Q0,±, ,lr). These change of coordinates (see Figure

8.9) are associated with translation domains Q0,±, ,lr whose admissible strips in

R lie in a direction parallel to the line of the holes T ◦k( )B . Moreover, if we let

W .→ C (W ) :=W be the complex conjugation in the W coordinate then:

– For (real) negative values of the parameter these maps satisfy:

0
±, ,l = C ◦ 0

∓, ,l ◦!,

±, ,l = C ◦ ±, ,l ◦! .
(8.5.5)

– For (real) positive values of they are related through:

0
±, ,r = C ◦ 0

±, ,r ◦!,

±, ,r = C ◦ ∓, ,r ◦! .
(8.5.6)
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Proof. The construction of the coordinates exists in the literature ([10]) but we

wish to show additionally (8.5.5) and (8.5.6). So we will describe the construction

when the parameter is real. Let Q (") be a translation domain generated by an

admissible line " on the left side of the holes (real parameter). Thus, " and the

axis of symmetry ̂ are perpendicular. This distinguished line ̂ separates the

translation domains Q (") in two connected symmetric regions which are noted

Q+ (the one above ̂ ) and Q− (the one below ̂ ), see Figure 8.7.

"

̂

Q−

Q+

Z∗

Figure 8.7: The distinguished curve ̂ separates the translation domain.

By Proposition 8.4.3:

P (̂ )⊂ ̂ . (8.5.7)

Let us write Z∗ = "∩ ̂ . Notice that points of " can be written as Z∗+ iy for

y ∈R. PutC0 := {(x,y) ∈R2 : 0≤ x≤ 1} and dene f :C0→ Ĉ(") as the convex

combination

f (x+ iy) = (1− x)(Z∗+ iy)+ xP (Z∗+ iy).
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It is shown ([10]) that for z= x+ iy,
∣∣∣∣
f
z

/ f
z

∣∣∣∣< 1,

so f is a quasi-conformal map onto the strip Ĉ(") and it satises f−1(P (Z)) =

f−1(Z)+1 for every Z ∈ ". If we identify ̂± with R±, then f sends the interval

[0,1] into a real interval [Z∗,P (Z∗)] and then the function dened as

µ := f ∗µ̂0

(the pullback of the standard conformal structure µ̂0 of C on the strip C0, dened

by the 0 function) is a real measurable function which veries (due to (8.5.7)):

µ(z) = µ(z)

because of the symmetry of its domain (Schwarz reection principle). The eld

µ is dened on C0 and it is extended to all of C by µ = (T ◦n
1 )∗µ on {z= x+ iy :

−n ≤ x ≤ −n+ 1}, so the extended µ has norm ||µ||L (C) < 1 and it is periodic

of period 1. Thus it is a Beltrami eld on C still verifying µ(z) = µ(z) for all

z ∈ C. The Ahlfors-Bers Theorem ([1]) yields the existence of a unique quasi-

conformal map gµ : C→ C normalized to gµ(0) = 0, with complex dilatation µ,

i.e. satisfying the Beltrami equation

gµz
/
gµz = µ,

that leaves 0,1, xed and such that µ = (gµ)∗µ̂0. In addition, gµ commutes with

the translation T1 ([10]). Indeed, the homeomorphismG := gµ ◦T1◦gµ◦−1 induces

the identity on the sphere S2 and must thus, be a power of the deck transformation

T1 of the universal covering map E (·) = e−2i (·), namely: G = T ◦m1 for some
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m∈Z. But G(0) = gµ ◦T1(0) = gµ(1) = 1, which implies m= 1 and then G= T1.

Since

C ◦ (g
µ)z

(gµ)z
◦C = C ◦µ ◦C = µ

and as C ◦ (gµ)z ◦C = (C ◦gµ ◦C )z and C ◦ (gµ)z ◦C = (C ◦gµ ◦C )z, the map

C ◦ gµ ◦C is another solution to the Beltrami equation, leaving the same points

0,1, xed. By unicity of the solution, gµ(z) = gµ(z) for all z ∈ C. We dene

then : Ĉ(")→ C by

= gµ ◦ f ◦−1.

If Z ∈ " one has T1 ◦ (Z) = ◦P (Z) (because both gµ and f commute with T1)

whence follows that can be extended in a map : Q→ C by

(Z) = ◦P◦n(Z)−n(Z) (8.5.8)

where n(Z) ∈ Z is such that P◦n(Z)(Z) ∈ Ĉ("). The map is a holomorphic

diffeomorphism which depends analytically on the parameter and which veries

◦P = T1 ◦ . Since (̂ )⊂ R, we get

(̂ )⊂ R (8.5.9)

when the parameter is real. In addition, Z ∈ dom( ) yields !(Z) ∈ dom( ), by

denition of ! . Notice that in the case < 0 we have ̂± ⊂ Q±, , while if > 0,
̂± ⊂ Q0±, (i.e. translations domains �“on the right�” do not contain the symmetry

axis ̂ , see Figure 8.5). Accordingly, if < 0 the diffeomorphism (8.5.8) is noted

±, : Q±, → C and (8.5.9) yields

±, ,l = C ◦ ±, ,l ◦! .
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On the other hand, if > 0 the diffeomorphism (8.5.8) is noted 0
±, : Q0±, → C

and the invariance (8.5.9) implies

0
±, ,r = C ◦ 0

±, ,r ◦! .

For the case of a translation domain on the right, we rst construct 0
+, ,l (when

< 0) or +, ,r (when > 0), and note that C ◦ 0
+, ,l ◦ ! (resp. C ◦ +, ,r ◦ !)

is again a Fatou coordinate when < 0 (resp. when > 0). Then we dene

0
−, ,l = C ◦ 0

+, ,l ◦!

for < 0, and

−, ,l = C ◦ +, ,r ◦!

if > 0 and the construction is done.

Q+, ∩Q0+,

Q+, ∩Q0+,

Q+, ∩Q0−,

Q+, ∩Q0−,

P0

P0 P±

P±

Q0+, ∩Q−,

Q0+, ∩Q−,

Q0+, ∩Q+,

Q0+, ∩Q+,

> 0

BB

< 0

Figure 8.8: The non-connected intersection of the translation domains.

Definition 8.5.3. Changes of coordinates in Theorem 8.5.2 are called admissible

real Fatou Glutsyuk coordinates. Theorem 8.5.2 shows that the symmetry axis ̂

is invariant under real Fatou coordinates when the parameter is real.
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Remark.

1. Although real Fatou Glutsyuk changes of coordinates always exist for ∈

VG
,lr, the curve ̂ is not invariant if /∈ R.

2. The subscripts l,r will be dropped when the context allows no confusion.

3. If %= 0, the geometry of R yields a countable alternating sequence com-

posed of connected intersections of translation domains, over which the real

Fatou Glutsyuk coordinates are dened. The order of the sequence depends

on the sign of the parameter, see Figure 8.8.

+,

−,

0
+,

0
−,

0
−,

0
+,

0
+,

0
−,

+,

−,̂
+

̂
+

−,

+,

> 0

BB

< 0

Figure 8.9: The real Glutsyuk coordinates around the principal hole.

Denition 8.3.5 and the remark above yield the organization of the domains of

denition for the different real Glutsyuk coordinates. Due to periodicty, it sufces

to describe only these domains around the fundamental hole B , see Figure 8.9.

Proposition 8.5.4. If 1 and 2 are two Fatou Glutsyuk coordinates solving

(8.5.4) on the same translation domain, then there exists C ∈ C, such that

2(Z) =C + 1(Z).
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In particular, for every Z0( ) ∈R there is a unique Fatou coordinate satisfy-

ing (Z0( )) = 0.

Proof. Since 1, 2 satisfy (8.5.4) they are related by 2 ◦( 1)◦−1(Z+1) = 2 ◦

( 1)◦−1(Z)+1, whence the composition 2 ◦ ( 1)◦−1 is a translation TC .

Definition 8.5.5. A point Z0( ) ∈R such that (Z0( )) = 0, as in Proposition

8.5.4, is called the base point of the Fatou Glutsyuk coordinate .

The choice of the base point provides a degree of freedom in the choice of the

Fatou Glutsyuk coordinate. Since there are four Fatou Glutsyuk coordinates we

have four degrees of freedom. Later, we shall use 3 of these degrees of freedom

to �“normalize�” the Fatou Glutsyuk coordinates.

Remark. The family P is, by denition, the square of a family of germs of

diffeomorphismsQ unfolding the mapQ0,which is tangent to−id. This implies

that the orbits of the family Q form a 180◦-degrees alternating sequence along

the orbits of the prepared family of elds at each iteration (i.e. the points w and

Q (w) stand on opposite sides of the origin, see Figure 8.10). In other words, the

lifting Q := p−1 ◦Q ◦ p induced on the surfaceR exchanges the two leaves.

w

Q(w)

Figure 8.10: The �“jumps�” of the orbits ofQ in the case = 0.
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The fact that the family of diffeomorphismsP is a square (namely,P = Q◦2)

is now exploited.

Definition 8.5.6. For every W = (Z), the map:

TW (·) =W + · (8.5.10)

is called the translation in W ∈ C.

Lemma 8.5.7. For every ∈VG, it is possible to construct admissible real Fatou

Glutsyuk coordinates 0
±, , ±, depending analytically on ∈V ,lr with contin-

uous limit at = 0, and such that they are related through:

0
±, ◦Q = T 1

2
◦ 0

∓, ,

±, ◦Q = T 1
2
◦ ∓, .

(8.5.11)

Proof. For each , the map Q commutes with P . Hence Q = p−1 ◦Q ◦ p

commutes with P . Let the pairs of Real Fatou Glutsyuk coordinates 0,
+, ,

0,
−,

be constructed as in the proof of Theorem 8.5.2. Then:

0,
±, (P (Q (Z))) = 0,

±, (Q (Z))+1= ( 0,
±, ◦Q )(P (Z)), (8.5.12)

the rst equality being consequence of the fact that 0,
±, is a solution to (8.5.4),

and the second is true because P and Q commute. Equation (8.5.12) says that
0,
±, ◦Q is a Fatou Glutsyuk coordinate. By the remark above, the latter is

dened on the same translation domain as 0,
∓, . Hence, according to Proposition

8.5.4, there exists C0,±, ∈ C with the following property:

0,
±, ◦Q = TC0,±,

◦ 0,
∓, . (8.5.13)
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We will drop the subscript in the constants. Using Q◦2 = P and iterating

(8.5.13) yields:
0,
±, (Z)+1 ≡ 0,

±, ◦P (Z)

= ( 0,
±, ◦Q )◦Q (Z)

= TC0,±
◦ ( 0,

∓, ◦Q )(Z)

= TC0,±
◦TC0,∓

◦ 0,
±, (Z)

= 0,
±, (Z)+C

0,
± +C0,∓ ,

(8.5.14)

which means

C0,+ +C0,− = 1. (8.5.15)

We want to prove that it is possible to choose the Fatou coordinates so thatC0,+ =

C0,− = 1/2. That is consequence of Q = !◦Q ◦ ! when ∈ R. Indeed, in the

case < 0, Equation (8.5.13) and Theorem 8.5.2 yield

TC0±
◦ 0

∓ = (C ◦ 0
∓ ◦!)◦Q

= C ◦ ( 0
∓ ◦Q )◦!

= C ◦ (TC0∓
◦ 0

±)◦!
= C ◦TC0∓

◦C ◦ 0
∓.

(8.5.16)

HenceC0∓ =C0±, and then Re(C0+) = Re(C0−).We show now that a �“correction�” is

possible, so that C0± can be taken real (for every ), without loss of generality. If

we change Fatou coordinates by
0
+, .→ TK ◦ 0

+,

0
−, .→ TK ◦

0
−,

in (8.5.13), for K ∈ iR to be chosen, then (8.5.5) remains valid and we get the

equations:
(TK ◦ 0

+, )◦Q = TK+C0+−K ◦ (TK ◦
0
−, )

(TK ◦
0
−, )◦Q = TK+C0−−K ◦ (TK ◦ 0

+, ).
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Put Ĉ0+ = K+C0+−K and Ĉ0− = K+C0−−K. The choice

K =−i
Im(C0+)
2

= i
Im(C0−)
2

∈ iR

ensures that Ĉ0+ = Ĉ0− = Re(C0+) = Re(C0−) = 1/2. Thus, we can always suppose

that C0+ =C0− = 1/2.

As for the coordinate ±, the proof is straightforward. Indeed, (8.5.13) and

Theorem 8.5.2 yield this time:

TC± ◦ ∓ = (C ◦ ± ◦!)◦Q
= C ◦ ( ± ◦Q )◦!
= C ◦ (TC± ◦ ∓)◦!
= C ◦TC± ◦C ◦ ∓

(compare to (8.5.16)), thus C± = C± and C± ∈ R. So we can perform a change

±, .→ TK± ◦ ±, , where K± = −
C±
2
∈ R, in order to bring C+ = C− = 1/2,

respecting (8.5.5).

The case > 0 is completely analogous, using (8.5.6).

Definition 8.5.8. When real Fatou Glutsyuk coordinates satisfy (8.5.5), (8.5.6)

and (8.5.11), we shall say that the Fatou Glutsyuk coordinates are normalized.

8.5.3 Translations.

Consider the numbers:

0( ) =
2 i
µ0( )

=
i

( ) =
2 i
µ±( )

=− i(1− sA( ) )

2
,

(8.5.17)
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where µ0( ) = logP ′ (0) = 2 , and µ±( ) = logP ′ (w±) =
−4

1− sA( )
are the

eigenvalues of the singular points w0 = 0 and w± =±
√
−s , respectively.

Remark. The coefcient s=±1 denes two different cases which are not equiva-

lent by real conjugacy. We will only describe the �“+ �” case:

P (w) = w+w( +w2)[1+D( )+E( )w2+w( +w2)h( ,w)]. (8.5.18)

In the �“−�” case, each picture in the Figure (7.2) must be rotated in 90◦ degrees in

the clockwise direction and, moreover, the familyP−1 is of the form (8.5.18).

Definition 8.5.9. The Glutsyuk normalization domains are

U0, := p (Q0,±, ).

Lemma 8.5.10. The quotients U0/P and U /P are conformally equivalent

to non-separated spaces

T0∪{w0}, T±, ∪{w±}

which are the union of a point with complex tori T0 and T±, , of modulus 0( )

and ( ), respectively.

Proof. Indeed take, for instance, the xed point w+ =
√
− . Since we are in the

Glutsyuk point of view of the dynamics, onU the mapP admits w+ as a global

hyperbolic point. Consider any loop around w+ and consider its image P ( )

as well. The Jordan region J of the complex plane between these two curves is a

fundamental domain (i.e. a domain where each point represents one and only one

orbit of the Poincaré mapP ) for the dynamics around w+. It is easily seen that

U /P $ J/P ∪{w+},
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(they are conformally equivalent). Moreover, we can change J by any iterate

P◦n(J) in the quotient, and the resulting space remains the same. By the Poincaré

Theorem, the map P is linearizable around w+. As n→ , the modulus of the

quotient complex torus P◦n(J)/P converges towards the modulus of the torus

C∗/Lµ+( ),which is given by =
2i
µ+( )

. Inasmuch as the spaceP◦n(J)/P ∪

{w+} is conformally equivalent to U /P , the latter is the union of a com-

plex torus T+, of modulus , and the singular point {w+}. This space is non-

separated because the point {w+} belongs to the adherence of any orbit of P .

Proposition 8.5.11. For all ∈VG
,rl, it is possible to choose nomalized real Fatou

Glutsyuk coordinates 0,
±, : Q

0,
±, → C satisfying (in addition to (8.5.5), (8.5.6)

and (8.5.11)) the equations:

0
±, ◦T = T− 0

2
◦ 0

∓, ,

±, ◦T = T ◦ ±, .
(8.5.19)

In particular, they have the same limit at = 0.

Proof. Consider the translation T and a real Fatou Glutsyuk coordinate ±, :

Q±, → C. By (8.1.7):

±, ◦T ◦P = ±, ◦P ◦T

= T1 ◦ ±, ◦T

whence follows that ±, ◦T is a Fatou coordinate. By Lemma 8.3.6, the latter

preserves the translation domains Q±, and then, ±, ◦T and ±, are dened

on the same translation domain. By Proposition 8.5.4, there exist constants C±,

such that:

±, ◦T = TC±, ◦ ±, . (8.5.20)
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Thus, the Fatou coordinate conjugates the pair of commuting diffeomorphisms

{P ,T } with the pair of translations {T1,TC±, }. Moreover, the Fatou Glutsyuk

coordinate induces a holomorphic diffeomorphism:

Q±, /{P ,T } ∼= C/{T1,TC±, }

between complex surfaces. The latter is, of course, the canonical torus C/(C×

C±, C). Notice that the quotient Q±, /T coincides with the neighborhood U

with coordinate w, where the map P is induced by P . Hence, the quotient

Q±, /{P ,T } is conformally equivalent toU±/P .On the other hand, the trans-

lation T has been formerly dened on a neighborhood of the points P±, thus the

positive orientation of the translation T in theW (Fatou) coordinate coincides

with the positive orientation of T , by denition. By (8.5.20) and Lemma 8.5.10,

the modulus of the torus C/{T1,TC }, i.e. the constants C±, , coincide and must

be equal to on Q±, :

±, ◦T = T ◦ ±, . (8.5.21)

The behavior of the Fatou coordinate 0
±, :Q0±, →C with respect the translation

T is more involved. Indeed, by Lemma 8.3.6, T sends the translation domains

Q0±, into Q0∓, and then, reasoning as above, 0
±, ◦T and 0

∓, are two Fatou

Glutsyuk coordinates dened on the same translation domain. Proposition 8.5.4

shows then that there exist two constantsC1,C2 such that:

0
+, ◦T = TC1 ◦

0
−,

0
−, ◦T = TC2 ◦

0
+, ,

(8.5.22)

thus yielding:
0
±, ◦T2 = TC1+C2 ◦

0
±, . (8.5.23)
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The quotientsQ0±, /{P ,T2 } are conformally equivalent toU0/P , i.e. the union

of a complex torus of modulus 0 with the singular point w0.Moreover, in theW

(Fatou) coordinate, positive orientation of the translation T 0 corresponds to neg-

ative orientation of T , as shown in Figure 8.11. Since the positive orientation

of the translationT coincides with that of T , we get 0
±, ◦T2 =T− 0 ◦

0
±, ,

or, in terms of the constants,C1+C2 =− 0. Let us show thatC1 =C2. Since the

Fatou coordinates 0
± are normalized, Lemma 8.5.7 tells us that

0
± ◦Q = T 1

2
◦ 0

∓, (8.5.24)

and then

0
+, ◦T = (T− 1

2
◦ 0

−, ◦Q )◦T (by (8.5.24))

= T− 1
2
◦ (TC2 ◦

0
+ ◦T− )◦Q ◦T (by (8.5.22))

= TC2 ◦T− 1
2
◦ 0

+ ◦Q (because Q = T− ◦Q ◦T )

= TC2 ◦
0
− (by (8.5.24)).

Comparing with the rst equation in (8.5.22), we getC1 =C2 =− 0
2
.

T T 0 T

Figure 8.11: The positive orientations of T 0 ,T .

Grosso modo, (8.5.19) says that, in order to make a full turn around the origin

in w coordinate, it is necessary to iterate twice the translation around the origin in
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the unwrapping coordinate. On the contrary, an iteration of the translation around

innity in the Z coordinate yields a full turn around w±.

Lemma 8.5.12. When the parameter is (real) positive, the Real Fatou Glutsyuk

coordinates of Theorem 8.5.2 and Proposition 8.5.11, satisfy as well:

0
{
Im(Z) =±

2i

}
⊂

{
Im(W ) =∓ 0

4i

}
,

{
Im(Z) =±

2i

}
⊂

{
Im(W ) =±

2i

}
.

Proof. Both (8.5.6) and (8.5.19) imply:

T∓ 0
2
◦C ◦ 0 = 0 ◦T± ◦!,

T∓ ◦C ◦ = ◦!◦T± .
(8.5.25)

Put Im(Z) = ±
2i
. Thus, Z = !(Z)± = T± ◦ !(Z) and if we write 0(Z) =

A+ iB, for A,B ∈ R, then (8.5.25) yields:

A+ iB = 0(Z)

= 0(T± ◦!(Z))
= 0(Z)∓ 0

2
= A− iB∓ 0

2
,

whence B=∓ 0
4i

. The second inclusion follows similar steps.



154 CHAPTER 8. REAL FATOU GLUTSYUK COORDINATES



Chapter 9

Glutsyuk invariant and symmetries

Remark. Here again we only treat the case s=+1.

9.1 Glutsyuk invariant.

Fix four Fatou Glutsyuk coordinates 0,
±, ,lr on the leaves of R , whose base

points depend analytically on the parameter, see Figure 8.9 and dene:

a) For ∈V ,l :

++
,l = 0

+, ,l ◦ ( +, ,l)
◦−1,

+−
,l = 0

−, ,l ◦ ( +, ,l)
◦−1,

−+
,l = 0

+, ,l ◦ ( −, ,l)
◦−1,

−−
,l = 0

−, ,l ◦ ( −, ,l)
◦−1.

(9.1.1)

155
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b) For ∈V ,r :

++
,r = +, ,r ◦ ( 0

+, ,r)
◦−1,

+−
,r = −, ,r ◦ ( 0

+, ,r)
◦−1,

−+
,r = +, ,r ◦ ( 0

−, ,r)
◦−1,

−−
,r = −, ,r ◦ ( 0

−, ,r)
◦−1.

(9.1.2)

In either case, this collection will be noted G. By periodicity, it sufces to de-

scribe the dynamics around the principal hole. Since P = Q◦2, it is possible to

reduce these four components to two independent ones.

Definition 9.1.1. The Glutsyuk invariant is the family of equivalence classes of
G with respect to composition with translations TC( ) in the source and target

spaces where the constant C( ) is real on real and it depends holomorphically

on the parameter overV ,l∪V ,r with a continuous limit at = 0, such thatC(0) %=

0.

Lemma 9.1.2. By choosing normalized Real Fatou Glutsyuk coordinates, it is

possible in turn to choose components ±,± of a representative of the Glutsyuk

invariant G which are related through:

++ = T− 1
2
◦ −− ◦T 1

2
,

−+ = T− 1
2
◦ +− ◦T 1

2

(9.1.3)

for every ∈VG.

Proof. It sufces to take normalized Fatou Glutsyuk coordinates, so that (9.1.3)

is satised by denition.
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9.1.1 Real Glutsyuk invariant.

When the Glutsyuk invariant is dened using Real Fatou Glutsyuk coordi-

nates, we get a natural property of symmetry under the Schwarz reection, re-

specting the real normalization of the Glutsyuk coordinates.

Theorem 9.1.3. There exists a representative G = ( ±±) of the Glutsyuk mod-

ulus associated with the family of diffeomorphisms P satisfying, in addition to

(9.1.3), the identities:

– If ∈V ,l :
++
,l = T− 0

2
◦ +−

,l ◦T− ,

−−
,l = T− 0

2
◦ −+

,l ◦T− .
(9.1.4)

– If ∈V ,r :
++
,r = T ◦ −+

,r ◦T 0
2
,

−−
,r = T ◦ +−

,r ◦T 0
2
.

(9.1.5)

– Moreover, for every ∈V ,lr :

++ = C ◦ +−
C ( ) ◦C ,

−− = C ◦ −+
C ( ) ◦C .

(9.1.6)

Such a representative can be constructed so as to have a limit at = 0, which is

the Ecalle modulus.

Proof. It sufces to take normalized Real Fatou Glutsyuk coordinates depending

analytically on the parameter with continuous limit at = 0, (this is the same limit

for the two cases ∈ V ,l and ∈ V ,r). Then (9.1.4) and (9.1.5) are immediate

consequences of (9.1.1), (9.1.2) and Proposition 8.5.11. On the other hand, (9.1.6)

comes after Theorem 8.5.2 and the idempotency (8.4.1) on the conjugation in the
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Z coordinate, when the parameter is real. Since the dependence of the modulus is

analytic in the parameter, the equality extends to values ∈V ,lr. Notice that the

symmetry axis still exists in the limit = 0, and the invariance exists in the limit

as well.

Definition 9.1.4. The equivalence class of a representative G of the Glutsyuk

invariant chosen as in Lemma 9.1.2 and Theorem 9.1.3 for values ∈V ,lr will be

called the Real Glutsyuk modulus.

Corollary 9.1.5. For every ∈V ,lr, a representative of the Real Glutsyuk modu-

lus is completely determined by one of the maps ±±.

In this rst presentation, the symmetry (conjugation ! in the time Z coordi-
nate) is taken with respect the symmetry axis ̂ . Since the Real Fatou Glutsyuk

coordinates send the symmetry axis ̂ into R, the real line is invariant under the

Real Glutsyuk invariant when the parameter is real. This means that in the x-

coordinate the symmetry has been taken with respect the real segment I+ ∪ I−
joining the singular points x± with the boundary of U, see Figure 9.1. Moreover,

in the limit → 0 the segment I+∪ I− tends to R∩U. Thus, in the Fatou coordi-

nate, the conjugation C is still dened when = 0 and the Ecalle invariant inherits

the symmetry (9.1.6).

The Ecalle modulus. Since ( ) = − i
, the distance between two consecutive

holes becomes innite in the limit → 0, and then each diffeomorphism ±±,

for ∈V ,lr, gives rise to an independent component of the Ecalle invariant, with

preimage in a region around the principal hole. Figure 9.2 shows the domains

around the principal hole (connected strips) on the surface R whose image by
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̂
+

ww

w∗w∗

Z

!(Z)

Figure 9.1: The symmetry in the First Presentation.

the Fatou Glutsyuk coordinates and subsequent quotient by the translation T1,

correspond to annuli-like domains for the different components of the Glutsyuk

invariant. However, we can choose the representative of the Real Glutsyuk mod-

ulus so as to give rise to the same invariant in the limit → 0, no matter whether

∈V ,l or ∈V ,r.

++
,l

+−
,l

1

0
1

++
,r

+−
,r

∈V ,l = 0 ∈V ,r

Figure 9.2: The Glutsyuk invariant in the limit → 0.

Proposition 9.1.6. The Ecalle modulus can be deduced from the Real Glutsyuk

invariant. It is given by:

1 = lim
→0

++
,lr,

0
1 = lim

→0
+−
,lr,

2 = lim
→0

−−
,lr,

0
2 = lim

→0
−+
,lr,

(9.1.7)
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see Figure 9.2. Moreover, its components may be chosen conjugate as well:

1 = C ◦ 0
1 ◦C

2 = C ◦ 0
2 ◦C ,

(9.1.8)

and, in addition,

1 = T− 1
2
◦ 2 ◦T 1

2
0
1 = T− 1

2
◦ 0

2 ◦T 1
2
.

(9.1.9)

Proof. Each component of the modulus at = 0 is the limit of two representatives

in the two cases ∈V ,l and ∈V ,r.More specically, we have:

1 = lim
→0l

0
+, ,l ◦ ( +, ,l)

◦−1 = lim
→0r +, ,r ◦ ( 0

+, ,r)
◦−1,

0
1 = lim

→0l
0
−, ,l ◦ ( +, ,l)

◦−1 = lim
→0r −, ,r ◦ ( 0

+, ,r)
◦−1,

2 = lim
→0l

0
−, ,l ◦ ( −, ,l)

◦−1 = lim
→0r −, ,r ◦ ( 0

−, ,r)
◦−1

0
2 = lim

→0l
0
+, ,l ◦ ( −, ,l)

◦−1 = lim
→0r +, ,r ◦ ( 0

−, ,r)
◦−1,

(9.1.10)

where → 0l (resp. → 0r) means → 0 and ∈ V ,l (resp. ∈ V ,r). The

symmetries on the Ecalle modulus follow from Theorem 9.1.3.

9.1.2 Symmetric Glutsyuk invariant.

When we use Real Fatou Glutsyuk coordinates and allow a subsequent imag-

inary translation on them, we break the symmetries (9.1.6). If the translations are

well chosen we get a different form of symmetry in the x-coordinate, under the

Schwarz reection with respect to the line segments joining the points x±. This

presentation is also very interesting and deserves a detailed discussion.

Theorem 9.1.7. There exists a representative G = ( ±±) of the Glutsyuk mod-

ulus satisfying (9.1.3), (9.1.4) and (9.1.5), that carries the real character of the
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family of vector fields as follows. Let # ∈ {++,+−,−+,−−} be a shortcut for

the superscripts.

– If ∈V ,l\{0} then:

#
,l = C ◦ #

C ( ),l ◦C , (9.1.11)

i.e. the representative is “symmetric” with respect to the image of the line
s
±.

– If ∈V ,r\{0} then:

#
,r = T− 1

2
◦C ◦ #

C ( ),r ◦C ◦T 1
2
, (9.1.12)

i.e. the representative is “symmetric” with respect to the image of the line
s
±.

Proof. We start taking Real Fatou Glutsyuk coordinates 0,
±, . By analytic depen-

dence of the Glutsyuk coordinates in ∈V ,lr\{0}, it sufces to show the theorem

for real values of the parameter.

�– The case < 0. The induced Real Glutsyuk invariant already veries (9.1.6),

so we must show that a correction is possible so that (9.1.11) be satised.

Theorem 9.1.3 yields:

++
,l = T− 0

2
◦ +−

,l ◦T−

= T− 0
2
◦C ◦ ++

,l ◦C ◦T− .

Consider the translations Td( ),Td′( ), where the constants d( ),d′( ) are

to be chosen later. Replacing ++
,l .→ Td( ) ◦ ++

,l ◦Td′( ) in the equation

above, we get:

Td( ) ◦ ++
,l ◦Td′( ) = T− 0

2
◦C ◦Td( ) ◦ ++

,l ◦Td′( ) ◦C ◦T−

= T− 0
2 +d( ) ◦C ◦ ++

,l ◦C ◦T− +d′( ).
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If d( ) =− 0
4

=− i
2

and d′( ) =−
2

=
i (1−A( ) )

2
(where A( ) is

the real formal invariant), then we get

++
,l = C ◦ ++

,l ◦C .

The same procedure shows #
,l = C ◦ #

,l ◦C , for # ∈ {+−,−+,−−}.

�– The case > 0. By (9.1.5) and (9.1.6) we have:

++
,r = T ◦ −+

,r ◦T 0
2

= T ◦C ◦ −−
,r ◦C ◦T 0

2
.

The procedure used above shows that the corrections ++
,r .→Td( ) ◦ ++

,r ◦

Td′( ) and −−
,r .→Td( ) ◦ −−

,r ◦Td′( ), for d( ) =
2

=− i (1−A( ) )

2
and d′( ) = 0

4
=
i
2

yield

++
,r = C ◦ −−

,r ◦C . (9.1.13)

In the same spirit, we show:

−+
,r = C ◦ +−

,r ◦C . (9.1.14)

Then (9.1.13), (9.1.14) and Lemma 9.1.2 yield the conclusion:

#
,r = T− 1

2
◦C ◦ #

,r ◦C ◦T 1
2
.

Notice that this new �“renormalized�” representative still respects (9.1.3), (9.1.4)

and (9.1.5).

The composition with translations Td( ),Td′( ) in the proof above has de-

stroyed the real normalization of the Real Fatou Glutsyuk coordinates 0,
±, , and
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also the continuity at = 0. However, this non-real normalization is very interest-

ing even if it does not pass to the limit when → 0. Indeed, in the Z coordinate

the imaginary translations Td( ),Td′( ) have displaced the symmetry axis to the

line s
± if < 0, and to the line s

± if > 0, right above the principal hole. In the

Fatou coordinate, the two imaginary translations have displaced the real axis to

the lines Im(W ) = 0
4i
and Im(W ) =

2i
, according to Lemma 8.5.12, thus break-

ing the real normalization of the Fatou Glutsyuk coordinates. The three real cases

deserve explanation.

̂
+

w

w∗

Z

!(Z)

s
±

Figure 9.3: The symmetry when the parameter is negative.

i) The parameter is real and negative. The normalization reects the natural sym-

metry of the invariant with respect the image (by p−1) of the real segment joining

x0,x± in the x-coordinate, see Figure 9.3. Inasmuch as the symmetry is taken

with respect a �“real�” line in the Fatou coordinate, the invariant still carries the real

character of the foliation, as can be seen from formula (9.1.11).

ii) The parameter is (real) positive. The imaginary translations have brought the

symmetry axis to the image (by p−1) of the imaginary segment I joining the sin-

gular points x0,x±, see Figure 9.4. Thus, the non-real normalization yields an
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invariant in the x-coordinate which is symmetric with respect to I. That is exactly

the meaning of the formula (9.1.12). This �“imaginary�” symmetry is explained by:

�– the real symmetry carried by the former Real Fatou Glustyuk coordinates,

so that the components of G are 2-by-2 symmetric images one of another

(this is (9.1.13) and (9.1.14));

�– the fact that the Poincaré map of the family is a square: P = Q◦2. In

the x-plane this can be viewed as a sort of �“symmetry with respect to the

origin�”. Composing this symmetry with the symmetry with respect the real

axis, yields a symmetry with respect to the imaginary axis.

̂
+

w∗ w Z

!(Z)

s
±

Figure 9.4: The symmetry when the parameter is positive.

iii) The parameter is null. As the lines s
±,

s
± no longer exist when = 0, this

presentation does not pass to the limit when → 0. The Ecalle modulus cannot be

deduced from this presentation. Indeed, the real (resp. imaginary) segment in the

x-coordinate joining the xed points disappears when → 0− (resp. → 0+).

Definition 9.1.8. Any representative G of the Glutsyuk invariant chosen as in

Theorem 9.1.7 will be called Symmetric Glutsyuk modulus.

Corollary 9.1.9. A representative of the Symmetric Glutsyuk modulus is com-

pletely determined by one of its components ±±.
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9.2 Expansion in Fourier series.

We take Fatou Glutsyuk coordinates depending continuously on ∈V ,lr. The

domain of G contains a union of four horizontal strips S±± located right above

(resp. below) the principal hole B . As the Glutsyuk invariant satises G(W +

1) = G(W )+1 we can expand the difference G− id in Fourier series on S±± :

( ++(W )−W )
∣∣∣
S++

=
n∈Z

c++
n ( )exp(2i nW ),

( +−(W )−W )
∣∣∣
S+−

=
n∈Z

c+−n ( )exp(2i nW ),

( −+(W )−W )
∣∣∣
S−+

=
n∈Z

c−+n ( )exp(2i nW ),

( −−(W )−W )
∣∣∣
S−−

=
n∈Z

c−−n ( )exp(2i nW ).

(9.2.1)

Then, using (9.1.4) in the case ∈V ,l we deduce:





c++
0 ( )− c+−0 ( ) = c−−0 ( )− c−+0 ( ) =−i sA( ),

c++
n ( ) = c+−n ( )e−

2n 2(1−sA( ) )

, for n %= 0,

c−−n ( ) = c−+n ( )e−
2n 2(1−sA( ) )

, for n %= 0,

and using (9.1.5) in the case ∈V ,r we get:





c++
0 ( )− c−+0 ( ) = c−−0 ( )− c+−0 ( ) = i sA( ),

c++
n ( ) = c−+n ( )e−

2n 2
, for n %= 0,

c−−n ( ) = c+−n ( )e−
2n 2

, for n %= 0.

Corollary 9.2.1. The differences c++
0 ( )− c+−0 ( ) and c−−0 ( )− c−+0 ( ) when

∈V ,l (resp. c++
0 ( )−c−+0 ( ) and c−−0 ( )−c+−0 ( ) when ∈V ,r) are analytic

invariants of the system. Moreover, if the Glutsyuk modulus is prescribed on ∈

V ,lr, then the formal parameter A( ) is known for values of the parameter in

V ,lr.



166 CHAPTER 9. GLUTSYUK INVARIANT AND SYMMETRIES

9.3 Invariants under weak conjugacy.

Definition 9.3.1. Two germs {P 1} 1∈V ,lr , {P̂ 2} 2∈V ,lr of analytic families of

diffeomorphisms are “weakly conjugate” as real families if there exists a germ

of bijective map H ( 1,x) = (k( 1),h( 1,x)) fibered over the parameter space,

where:

i) k : 1→ 2 = k( 1) is a germ of real analytic diffeomorphism preserving

the origin.

ii) There exists > 0 and r> 0, such that for each 1 ∈V ,l( )∪V ,r( ), there

is a representative h 1(x) = h( 1,x) of the germ depending analytically on

x ∈ Dr and is real for real 1,x such that h 1 conjugates P 1 ,P̂k( 1) :

h 1 ◦P 1 = P̂k( 1) ◦h 1 . (9.3.1)

The representative h 1 depends analytically on 1 %= 0 and it is continuous

at 1 = 0.

Theorem 9.3.2. Two families {P 1} 1∈V ,lr and {P̂ 2} 2∈V ,lr (with the same sign

s before the cubic coefficient) are weakly conjugated by a real conjugacy that

depends analytically on the parameter ∈V ,lr\{0} and continuously at = 0, if

and only if the Glutsyuk moduli of their associated prepared families coincide.

Proof. Since two families are conjugate if and only if the associated prepared

families ae conjugate, it sufces to work with prepared families. The preparation

shows that the parameters 1 and 2, the canonical parameters of the families, are

analytic invariants, thus we can consider the conjugacy over the identity ( 1 =

2 := ) and then it sufces to compare the two families for a given ∈V ,lr.
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Since for values ∈V ,lr the singular points x0,x± are hyperbolic, they are lin-

earizable. Hence, there exists in the neighborhood of each xed point two sectorial

diffeomorphism 0,± = q ◦ G,0,
,± ◦ p−1 and ̂0,± = q ◦ ̂G,0,,± ◦ p−1 conjugat-

ing, respectively, the Poincaré mapsP and P̂ with the model diffeomorphism,

i.e. the time one map 1 of the eld (7.1.5). The maps q are the time-W ow of

the latter. The Fatou coordinates G,0, , ̂G,0, are real (Denition 8.5.3). The

neighborhoods of the singular points in the x coordinate where the normalization

is possible are noted, respectively,U−,U0 andU+.

For the choice of a sufciently small neighborhoodV ,lr the domains of −, 0, +

overlap, and thus the maps:

G,+ =






0 ◦ ( +)−1, for < 0,
+ ◦ ( 0)−1, for > 0,

(9.3.2)

and

G,− =






0 ◦ ( −)−1, for < 0,
− ◦ ( 0)−1, for > 0,

(9.3.3)

are well dened and are one presentation of the Glutsyuk modulus of the family

P . In the same way, the maps:

̂G,+ =





̂0 ◦ (̂+)−1, for < 0,

̂+ ◦ (̂0)−1, for > 0,
(9.3.4)

and

̂G,− =





̂0 ◦ (̂−)−1, for < 0,

̂− ◦ (̂0)−1, for > 0,
(9.3.5)

are well dened on U and they are the Glutsyuk modulus of the family P̂ . Of

course, 0,±, ̂0,± are unique modulo left composition with time maps of the eld
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(7.1.5), so it is possible to suppose that the representatives are equal. The map:





f− = (̂−)−1 ◦ − = p ◦ (̂G,,− )−1 ◦
G,
,− ◦ p−1,

f 0 = (̂0)−1 ◦ 0 = p ◦ (̂G,0)−1 ◦ G,0 ◦ p−1,

f+ = (̂+)−1 ◦ + = p ◦ (̂G,,+)−1 ◦ G,
,+ ◦ p−1,

is clearly a change of coordinates conjugating the two families of diffeomor-

phisms, since the local changes of coordinates are extensions of each other over

the neighborhood U when ∈ V ,lr : f 0 ≡ f− on U− ∩U0, and f 0 ≡ f+ on

U0∩U+. The conclusion follows.

Theorem 9.3.3. We consider a generic family unfolding a generic weak focus of

order one. The Glutsyuk invariant of analytic classification of the Poincaré return

map of the unfolded vector field, namely, the family of equivalence classes

( G/∼) ∈VG,lr , (9.3.6)

together with the sign s is a complete modulus of orbital analytic classification

under weak orbital equivalence. The parameter is the “canonical parameter”.

The equivalence relation ∼ is defined by

G ∼ ̂G⇐⇒∃c( ),c′( ) ∈ C : G = Tc( ) ◦ ̂G ◦Tc′( ),

where the constants c( ),c′( ) depend analytically of the parameter, and are real

on real values of it.

Proof. First of all, Lemma 9.1.2 relates the components of the Glutsyuk invariant

lying in different leaves ofR , namely, ++ is related to −− and +− to −+.

So, two indepenent components remain.
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Real Glutsyuk invariant. In this case, for instance, Equation (9.1.6) makes the link

between the remaining components. Therefore, only one component of the real

Glutsyuk modulus is independent.

Symmetric Glutsyuk invariant. For values ∈ VG
,l, we use Equation (9.1.11) to

reduce the number of independent components. Otherwise (i.e. if ∈ VG
,r), we

use Equation (9.1.12) (the latter relates ++
,r with −+

,r , and −−
,r with +−

,r ).

So it sufces to represent the modulus by one of the two components. The

invariant can be chosen depending analytically on the parameter.

If two generic orbitally prepared families unfolding weak foci are analytically

orbitally equivalent, then Theorem 4.2.3 implies that the family of diffeomor-

phisms unfolding their Poincaré maps are conjugate by a real conjugacy. Hence,

Theorem 9.3.2 yields the equivalence of the moduli.

Conversely, if the real Glutsyuk moduli of the families are equivalent then,

by Theorem 9.3.2, the families of diffeomorphisms unfolding the Poincaré maps

of the two systems are weakly equivalent by a real equivalence. Theorem 4.2.3

yields the weak orbital equivalence of the families of vector elds.
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Chapter 10

The Glutsyuk invariant on the tori

In this chapter we look forward to �“visualize�” the phenomena described before

in the unwrapping Z coordinate. We assume, as usual, the sign invariant s=+1.

10.1 The sphere coordinate.

The non-Hausdorff spaces T0∪{w0} and T ,±∪{w±} are conformally equiv-

alent to the quotientsU0/P andU /P , respectively (Lemma 8.5.10). Dene a

coordinate w= 0,
,± : T

0,
,± → T0,,±, induced by the real Fatou coordinate

G,0,
,± :

w= 0,
,± := E ◦ G,0,

,± ◦ p−1, (10.1.1)

where E (W ) = e−2i W and T0,,± = C/(C× 0, C) are the canonical tori. When

→ 0 the tori To,,± tend to Ecalle cylinders {S
0,
1,0 ,S

0,
2,0 } (they are innite cylinders

conformally equivalent to CP1 minus the two points 0, ). This means that the w

coordinate induced by the map (10.1.1) on the tori T0,,± (spheres S
0,
j,0 ) is related

to the Fatou coordinate by:

w= E (W ). (10.1.2)

171
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The Glutsyuk modulus G induces holomorphic diffeomorphisms G in the sphere

coordinate by means of (9.1.4) and (9.1.5) . They are dened in annular-like re-

gions A0,,± on the tori T
0,
,±.

Remark. We will use the sphere coordinate as the natural coordinate of the orbits

space. Since the map p◦−1 is multivalued the collection ( ±) gives birth to only

two different diffeomorphims in the sphere coordinate. They will be noted

G
j, : A ,± → A0, j = 1,2 (10.1.3)

between two annuli A ,± and A0 located respectively in T ,± and in T0 for %= 0.

Definition 10.1.1. The maps ( G
1, ,

G
2, ) are called the “first and second compo-

nents” of the Glutsyuk invariant in the sphere coordinate.

1. If ∈ VG
,l, the �“rst component�” of the Glutsyuk invariant in the W coor-

dinate is the pair G
1, = ( ++

,l ,
+−
,l ). The �“second component�” is the pair

G
2, = ( −−

,l ,
−+
,l ).

2. If ∈ VG
,r, the �“rst component�” of the Glutsyuk invariant in theW coor-

dinate is the pair G
1, = ( ++

,r ,
−+
,r ). The �“second component�” is the pair

G
2, = ( −−

,r ,
+−
,r ).

It turns out that the w-Glutsyuk invariant G = ( G
1, ,

G
2, ) is related to the rst

and second components of theW -Glutsyuk invariant by:

G
j, = E ◦ G

j, ◦E −1, j = 1,2. (10.1.4)

�– If ∈ VG
,l, then (10.1.4) means that

G
1, is represented by the pair G

1, =

( ++
l , +−

l ), and G
2, is represented by the pair G

2, = ( −−
l , −+

l ) along

the leaves ofR , see Figure 10.1.
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B
s

s

P0

P±

++

+−

G
1,

G
2,

Figure 10.1: The Glutsyuk invariant on the tori, for < 0.

�– If ∈ VG
,r, then (10.1.4) means that

G
1, is represented by the pair G

1, =

( ++
r , −+

r ), and G
2, is represented by the pair G

2, = ( −−
r , +−

r ) along

the leaves ofR , see Figure 10.2.

s

s

P0

B

P±

++

+−

G
1,

G
2,

Figure 10.2: The Glutsyuk invariant on the tori, for > 0.

Definition 10.1.2. The inversion w→ 1
w in the sphere coordinate is noted H .

Lemma 10.1.3. Complex conjugation C , inversion in the sphere coordinate H ,

exponential E , translation T− 1
2
and linear map L−1 are related through:

1. C = H ◦E ◦C ◦E ◦−1.

2. E ◦T− 1
2
= L−1 ◦E .
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Proof. The rst equivalence comes fromC (E (W ))=C (w)= e−2i W = e2i C (W ) =

H (e−2i C (W )) = H ◦E ◦C (W ). The second is plain.

10.2 Real Glutsyuk invariant.

Lemma 10.1.3 proves the Theorem 9.1.3 in the sphere:

Proposition 10.2.1. There exists a representative G = ( G
1, ,

G
2, ) of the real

Glutsyuk invariant in the sphere coordinate, that carries the real character of the

family of vector fields, in the following sense:

1. If ∈VG
,l :

G
j, = C ◦H ◦ G

j,C ( ) ◦H ◦C , j = 1,2 (10.2.1)

2. If ∈VG
,r :

G
1, = C ◦H ◦ G

2,C ( ) ◦H ◦C . (10.2.2)

The Écalle-Voronin modulus in the sphere. The Écalle-Voronin invariant can

be deduced in the limit = 0, and the symmetries above yield:

0
1,0 = C ◦H ◦ 1,0 ◦H ◦C ,

0
2,0 = C ◦H ◦ 2,0 ◦H ◦C .

(10.2.3)

Since p◦−10 is not multivalued, it is easily seen that:

1,0 = E ◦ 1 ◦E −1 = lim
→0

E ◦ G
++ ◦E −1

0
1,0 = E ◦ 0

1 ◦E −1 = lim
→0

E ◦ G
+− ◦E −1

2,0 = E ◦ 2 ◦E −1 = lim
→0

E ◦ G
−− ◦E −1

0
2,0 = E ◦ 0

2 ◦E −1 = lim
→0

E ◦ G
−+ ◦E −1,

(10.2.4)
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and this is consequence of (9.1.7), see Figure 10.3. By Proposition 9.1.6 a repre-

sentative of the Écalle-Voronin modulus can be chosen so as to verify:

0
2,0(w) =− 0

1,0(−w)

2,0(w) =− 1,0(−w).
(10.2.5)

1

0
1

1,0
0
2,0

2,0
0
1,0

Figure 10.3: The Écalle-Voronin modulus in the sphere.

Definition 10.2.2. Any representative G of the Glutsyuk invariant satisfying

(10.2.1), (10.2.2) and (10.2.5) for values ∈ VG
,lr, will be called Real Glutsyuk

modulus in the sphere.

In this rst presentation, the real line R is invariant under the real Glutsyuk

invariant in the sphere when the parameter is negative, see Figure 10.2.

10.3 Symmetric Glutsyuk invariant.

The imaginary translation on the real Fatou Glutsyuk coordinates destroys the

symmetries (9.1.6). This is reected in the sphere coordinate as well. The equa-

tions reect the fact that the symmetry axis corresponds to the imaginary axis.



176 CHAPTER 10. THE GLUTSYUK INVARIANT ON THE TORI

This presentation does not pass to the limit → 0. The Écalle-Voronin modulus

cannot be deduced from the Symmetric Glutsyuk modulus.

Proposition 10.3.1. There exists a representative G = ( G
1, ,

G
2, ) of the Glut-

syuk invariant in the sphere, that carries the real character of the family of vector

fields as:

1. If ∈VG
,l :

G
j, = C ◦H ◦ G

j,C ( ) ◦H ◦C , j = 1,2. (10.3.1)

2. If ∈VG
,r :

G
j, = L−1 ◦C ◦H ◦ G

j,C ( ) ◦H ◦C , j = 1,2. (10.3.2)

The Écalle-Voronin modulus cannot be deduced from this presentation of the Glut-

syuk invariant.

Definition 10.3.2. Any representative G of the Glutsyuk invariant satisfying

(10.3.2) and (10.3.1) for values ∈VG
,lr will be called Symmetric Glutsyuk mod-

ulus in the sphere.

Aword on the formula (10.3.2). This equation comes from (9.1.11) and is conse-

quence of two facts. First, there is a symmetry on the two components of the real

Glutsyuk invariant G with respect to the real axis when the parameter belongs

to VG
,r. Such a symmetry relates the two components of the Glutsyuk invariant,

namely,
G
1, = C ◦H ◦ G

2,C ( ) ◦H ◦C . (10.3.3)

Second, the Poincaré map is a square: P = Q◦2. This means that the compo-

nents of the Glutsyuk invariant standing on opposite sides of the origin are related.
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Thus, (10.3.2) is the �“overlap�” of (10.3.3) and Lemma 9.1.2, and it expresses the

symmetry of the Glutsyuk modulus with respect the imaginary axis when ∈VG
,r,

see Figure 10.2.





Conclusion

The thesis is a small contribution to the eld of analytic differential equations.

Our aim has been to summarize hidden aspects of the unfolding of the foliation

associated with a singular point of weak focus type and that only become appar-

ent after complexication. The rst aspect states that the equivalence class of

the foliation under orbital equivalence coincides with the equivalence class of the

Poincaré map under conjugacy. Second, we have shown that it is locally possi-

ble to recover the foliation when a family of admissible diffeomorphisms is pre-

scribed. Both properties allow to compute the modulus of analytic classication

under �“weak orbital equivalence�”. We have constructed the invariant of the un-

folding in the Glutsyuk point of view, where the xed points of the Poincaré map

are linearizable. The construction depends analytically on the parameter for val-

ues in the covering of the parameter space different from zero, and continuously

at = 0.

It has been proven ([10]) that for any sufciently small neighborhood of the

origin and for any ∈ (0, ), there exist neighborhoods VL
,+ and VL

,− in the

parameter space, such that the orbit space is described as follows:

�– There exists four crescents with endpoints at the two singular points bounded

by curves "0,j, and their imagesP ("0,j, ).
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�– The crescents in which we identify the curves with their images have the

conformal structure of spheres with the singular point
√

(resp. −
√

)

located at (resp. 0).

�– Points in the two neighborhoods of 0 and on the spheres are identied

modulo holomorphic maps dened in the neighborhoods of 0 and , re-

spectively. These maps are one presentation of the Lavaurs modulus. The

maps are uniquely dened up to the linear choice of coordinates on the

spheres.

This is the Lavaurs point of view, the crescents and maps are depicted in Figure

10.4. In order to give the invariant of analytic classication under �“orbital equiva-

lence�” we need to establish the link between Lavaurs and Glutsyuk points of view

in the intersection of the sectorial neighborhoods of the parameter space. This

will be done in forthcoming publications.

Figure 10.4: The crescents in the Lavaurs point of view (borrowed from [43]).

A highly non-trivial problem that deserves profound study has to do with the



dependence of the modulus on the parameter. Recent works (e.g. [11],[43]) have

shown the existence of a �“compatibility condition�” that must be met so that the

Lavaurs modulus describes an analytic family in the parameter. This compatibil-

ity condition states that the two sectorial (in the parameter) families are orbitally

equivalent on the intersection of the two sectors in the parameter space. In the

Glutsyuk point of view we do not cover a full neighborhood in the parameter

space.

To study the equivalence classes of germs of vector elds under conjugacy we

need to study a time part of the vector eld. There exists a �“temporal�” prepara-

tion which uncouples the family of vector eld in a time part, and an orbital part.

The former has to do with the parametrization of the ow curves in the (com-

plex) phase space, while the latter concerns the organization of the leaves. The

invariants involved in the time part are not detected in the modulus of (weak) or-

bital equivalence given in the thesis, though we have started working on the the

obstructions for the family to be �“temporally normalizable�”. Indeed, we have al-

ready done a preparation which allows to decompose the eld as an orbital part (a

vector eld) multiplied by a nonzero temporal part (a function). The vector eld

is temporally normalizable if we can bring the temporal part to its polynomial

normal form. In particular, we prove that a system is �“isochronous�” if its time

part is equivalent to a constant time part. A great deal of work has been done to

characterize isochronicity in systems with a focus or a center. Pioneers are the

works of Lukashevich, Villarini, Volotkin and Ivanov on conditions under which

a polynomial vector eld:

x = p(x,y)

y = q(x,y)



possesses an isochronous section in R2 (see also [20],[45]). Our methodology

should extend the theory to the case of generic unfoldings of a weak focus em-

bedded in C2. This should allow to spread new light on the analytical class of the

�“temporal part�” of the modulus of such a system. As far as formal invariants are

concerned, we nd one formal invariant, which yields the time for the return map

near the singular point and we get a second formal invariant which expresses the

difference between the time for return near the singular point and the period of the

periodic orbit. If the weak focus is isochronous, then the latter invariant is zero.

At this point, some obstructions to isochronicity come from the fact that the focus

and limit cycle have different periods and this persist to the limit = 0.

In the higher codimension cases we have the coalescence of several limit cy-

cles with the singular point. This is clearly a more challenging problem. More

subtle analytic obstructions also exist, which we hope to explain in near future.



Appendix A

Holonomy And Fundamental Group

A.1 Preliminaries.

Denote by (a,b)m the m-fold product of the open interval (a,b). The product

(a,b)m is an open subset of Euclidean n-space Rm.

Let Mn be an n-dimensional Cs manifold. Let F = {L : ∈ A} be a Cr

codimension q foliation of Mn and S (r)
F be its foliated atlas, r ≥ 1. Dene a

projection map �ˆ : (−1,1)n→ (−1,1)q by

�ˆ(x1, ...,xn) = (xn−q+1, ...,xn).

We say that (U , ) inS (r)
F is a distinguished chart if it satises the following.

1. (U ) = (−1,1)n.

2. There exists (U�ˆ , �ˆ ) ∈S (r)
F such thatU ⊂U�ˆ , and �ˆ |U = .

3. For each leaf L ∈F , L∩U is a graph over �ˆ( (U )).

It is evident that each interior point p of Mn belongs to some distinguished chart

(U , ) with (p) = (0, ...,0).
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If (U , ) is a distinguished chart and x is a point of (−1,1)q, we see that
−1( �ˆ−1(x)) is contained in a leaf ofF . The set −1( �ˆ−1(x)) is called a plaque

ofU (see Figure A.1, where q= n− k) and is often denoted by Q .

Mn

L

U

�ˆ

Rn−k

Rk

Figure A.1: A chart (U , ) on a leaf L . Also, the projection is shown.

Each plaque ofU is Cr diffeomorphic to (−1,1)n−q, and we have

U =
⋃

x∈(−1,1)q

−1( �ˆ−1(x)).

Let C be a sequence

C = {U 1,U 2, ...,U m}

of distinguished charts (U i , i), i= 1,2, ...,m. Let x belong to a plaqueQ1 ofU 1 ,

and let L be a leaf containing x. If there exists plaques Qi of U i , i = 2,3, ...,m

such that

Qi∩Qi+1 %= /0, i= 1,2, ...,m−1,

we call C a chain at x (see the Figure A.2) and the Qi, i = 1,2, ...,m a plaque

chain associated with C . From the denition it is evident that

Qi ⊂ L , i= 1,2, ...,m.
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We say that m is the length of the chain C .

We recall now some topological properties of the foliationF of Mn.

Lemma A.1.1. [49] Let C = {U 1,U 2, ...,U m} be a chain at x. Denote by O1
the set of all points z ∈U 1 such that C forms a chain at each z. Then the set O1
is open in U 1 and it is a union of plaques of U 1.

Lemma A.1.2. [49] Let L be a leaf and let x and y be points in L . Then there

exists a chain C = {U 1,U 2, ...,U m} at x which has the following properties.

1. x ∈U 1 , y ∈U m.

2. Suppose that C also forms a chain at a point z of U 1 and that z is on a leaf

L . Let Q′i be a plaque chain associated with C at z such that

Q′i ⊂U i ∩L , z ∈ Q′1, i= 1,2, ...,m.

Then Q′i+1 is the only plaque of U i+1 which intersects Q
′
i, and Q′i is the only

plaque of U i which intersects Q
′
i+1, i= 1,2, ...,m−1.

Two additional results complete the issue.

Theorem A.1.3. [49] Let x and y be points on a leaf L . Given a distinguished

chart (U , ) about y, there exists a distinguished chart (Uµ , µ) about x such

that for any leaf L with L ∩Uµ %= /0 we have L ∩U %= /0. Further, Uµ can be

chosen in such a way that if Uµ has a plaque Q′1 with Q′1 ⊂ L and x %∈ Q′1, then

L contains a plaque of U not containing y.

Theorem A.1.4. [49] Let O be an open set in Mn. Then the union of all leaves

which intersect O :

Y =
⋃

L ∩O %= /0
L ,

is open in Mn.
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A.2 Coherent charts system.

In order to describe the behavior of the foliation in a neighborhood of one of

its leaves, it turns out that we must construct a system of distinguished charts with

certain properties. The following theorem gives one way to do it.

TheoremA.2.1. Let K be a compact subset of a leaf �ˆL . Then there exists a family

N(K) = {(Ui, i) : i= 1,2, ...,v} of distinguished charts (Ui, i) i= 1,2, ...,v, with

the following properties:

1. K ⊂ ∪vi=1Ui

2. For each Ui,Ui∩K is contained in a plaque Qi of Ui :

Ui∩K ⊂ Qi, i= 1,2, ...,v.

3. If Ui∩Uj %= /0, then Ui∩Uj∩K %= /0.

4. For Ui,Uj such that Ui∩Uj %= /0, there exists a distinguished chart (Ui j, i j)

which satisfies:

(a) Ui∪Uj ⊂Ui j.

(b) Let Qi j be a plaque of Ui j. Then Qi j∩Ui is a plaque of Ui if Qi j∩Ui %=

/0, and Qi j∩Uj is a plaque of Uj if Qi j∩Uj %= /0.

5. Let (Ui j, i j), (Ukl, kl) be distinguished charts specified in the point above,

with Ui j ∩Ukl %= /0. Then we can select a distinguished chart (Ui jkl, i jkl)

satisfying the following properties:

(a) Ui j∪Ukl ⊂Ui jkl.

(b) Let Qi jkl be a plaque of Ui jkl. Then Qi jkl ∩Ui j is a plaque of Ui j if

Qi jkl ∩Ui j %= /0, and Qi jkl ∩Ukl is a plaque of Ukl if Qi jkl ∩Ukl %= /0.
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The family N(K) is called a coherent chart-system on K. Notice that, by de-

nition, charts in a coherent system are distinguished.

In what follows, we assume that K is a compact subset of a leaf L �ˆ and that

N(K) is a coherent system of charts onK. For x∈K, a chainC = {U 1,U 2, ...,U m′
}

at x is called a coherent chain at x if the distinguished charts (U i , i), i =

1,2, ...,m′, belong to N(K).

Lemma A.2.2. [49] Let C be a coherent chain at x. Suppose that C also forms a

chain at a point z ∈U 1 . Then a plaque chain

Q′i, Q′i ⊂U i , i= 1,2, ...,m′, z ∈ Q′1,

associated with C at z is uniquely determined by z.

Definition A.2.3. [49] Let l : [0,1]→ K be a C0 curve in K. By a coherent chain

over l we mean a coherent chain C = {U 1 ,U 2, ...,U m′
} at l(0), for which there

exists numbers ti, i= 0,1,2, ...,m′ :

0= t0 < t1 < ... < tm′ = 1

such that

l([ti−1, ti])⊂U i , i= 1,2, ...,m′.

It is obvious that given aC0 curve l in K, one can nd a coherent chain C with

l(0) ∈U 1 and l(1) ∈U m′
(see the picture below).

Lemma A.2.4. [49] Let C = {Ui1 ,Ui2, ...,Uim′ }, C ′ = {Uj1 ,Uj2, ...,Ujm′′ } be co-

herent chains over l such thatUi1 =Uj1 andUim′ =Ujm′′ . Suppose that m
′,m′′ ≤m,

and let z ∈Ui1 be an admissible point of the coherent chains at l(0) of length at
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Q1 Q2 Q3
Qm−1 Qm

U 1

U 2 U 3
U m−1

U m

L

· �ˆx

Figure A.2: A coherent chain on aC0 path.

most m. Consider C and C ′ as chains at z, and let their respective plaque chains

be

Q′i, i= 1,2, ...,m′, Q′′j , j = 1,2, ...,m′′, Q′1 = Q′′1.

Then Q′m′ = Q′′m′′ .

We now consider twoC0 curves in K :

l0 : [0,1]→ K, l1 : [0,1]→ K,

with x= l0(0) = l1(0), y= l0(1) = l1(1), which are homotopic, l0 ∼ l1, relative to

x and y; in other words, there is a family ofC0 curves

ls : [0,1]→ K, 0≤ s≤ 1,

such that ls(0) = x, ls(1) = y, and the change of ls is continuous in parameter s,

0≤ s≤ 1.

Now suppose C = {Ui1,Ui2, ...,Uim′ }, is a coherent chain over l0 and C ′ =

{Uj1 ,Uj2, ...,Ujm′′ } a coherent chain over l1, and assume that

Ui1 =Uj1 , Ui′m =Ujm′′ .
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Clearly if > 0 is small enough, C is a coherent chain over ls, 0≤ s≤ . Hence,

we can nd a suitable subdivision 0= s0 < s1 < ... < su = 1 and coherent chains

at x :

C (k) = {U (k)
1 ,U (k)

2 , ...,U (k)
mk }, k = 0,1,2, ...,u−1,

such that

C (0) = C , C (u−1) = C ′, U (k)
1 =Ui1 , U (k)

mk =Uim′ ,

and each C (k) is a coherent chain over ls for s, sk ≤ s ≤ sk+i. Such chains C (k),

k = 0,1,2, ...,u−1 are said to be a homotopy between C and C ′ and max
k
mk the

length of the homotopy.

A.3 The holonomy.

In the following we denote by Gqr the set of all germs of Cr diffeomorphisms

of Rq at the origin xing the origin and by [ f ] the equivalence class of f . Let [ f ],

[g]∈Gqr be represented by f :U→Rq, g :U ′ →Rq respectively. Dene aCr map

g◦ f : f−1( f (U)∩U ′)→ Rq

by g ◦ f (x) = g( f (x)). Then g ◦ f is a local diffeomorphism of Rq at the origin.

Dene the product [ f ] · [g] of both germs by

[ f ] · [g] = [g◦ f ].

Then the germ [ f ] · [g] is determined by [ f ] and [g], and is independent of the

choice of their representatives. With this product, Gqr becomes a group: the unit

element of Gqr is [id], where id : Rq→ Rq is the identity map. The inverse of [ f ]
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is represented by f−1 : f (U)→U, where f :U → Rq is a representative of [ f ];

moreover, [ f ]−1 = [ f−1].

Let Mn be an n−dimensional Cs manifold and let F = {L : ∈ A} be a

Cr codimension q foliation of Mn. Fix a point �ˆx on a leaf L and consider the

fundamental group 1(L , �ˆx) of L based at �ˆx.

Let be an element of 1(L , �ˆx) represented by aC0 curve

: [0,1]→ L , (0) = (1) = �ˆx

so that = { }. Take a compact subset K of L with ([0,1]) ⊂ K, and con-

sider a coherent system N(K) = {(Ui, i) : i = 1,2, ...,v} of charts on K. Choose

a coherent chain C over (i.e., a chain for the coherent charts above:

C = {U 1,U 2, ...,U m−1,U 1}, �ˆx ∈U 1 .

By the Lemma A.1.1, the set �ˆO of all z ∈U 1 such that C is a chain at z is open in

U 1 containing Q1,U 1 ∩K ⊂Q1, and it is a union of plaques of the chartU 1. By

the Lemma A.2.2, the plaque chain associated with C at z:

Q(z)
i , i= 1,2, ...,m, z ∈ Q(z)

1 , Q(z)
1 ,Q(z)

m ⊂U 1 ,

is uniquely determined by z. Dene a map f : �ˆ ◦ 1(
�ˆO)→ Rq by

f ( �ˆ ◦ 1(Q
(z)
1 )) = �ˆ ◦ 1(Q

(z)
m )), z ∈ �ˆO,

where �ˆ : (−1,1)n→ (−1,1)q is the projection map (see Figure A.1). Then the

map f is a localCr diffeomorphism of Rq at the origin.

Let C ′ = C = {Uµ1 ,Uµ2, ...,Uµm′−1 ,Uµ1} be a coherent chain over different

from C with �ˆx ∈Uµ1, and dene the local diffeomorphism f ′ of Rq as we dened

f above. Now dene h : �ˆ ◦ 1(U 1 ∩Uµ1)→ Rq by

h( �ˆ ◦ 1(Q
′
1∩U 1)) = �ˆ ◦ µ1(Q

′
1∩Uµ1),
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where Q′1 is a plaque. Then h is a local diffeomorphism of Rn at the origin satis-

fying the identity

[ f ] = [h][ f ′][h]−1. (A.3.1)

Hence it follows that determines an element of Gqr uniquely up to the inner

automorphisms of Gqr .

Next we pick another C 0 curve

¯ : [0,1]→ L , ¯ (0) = ¯ (1) = �ˆx,

such that = { } = { ¯ } (i.e. is parametrized either by and ¯ ). Choose K

so that K contains a homotopy between the curves and ¯ . Consider a coherent

chain over ¯ :

C = {U 1 ,U ′
2
, ...,U ′

m′′−1
,U 1},

and let f̄ be the local diffeomorphism ofRn dened in the same manner as the map

f above. We have [ f ] = [ f̄ ]; so for each element of 1(L , �ˆx) there is an element

of Gqr uniquely dened up to the inner automorphisms. If we write ({w}) = [ f ]

for this correspondence, we have a map

: 1(L , �ˆx)→ Gqr .

It is immediate from the denition of f that is a homomorphism. To see this, x

aU 1 with �ˆx ∈U 1 and always take a coherent chain over the path starting from

and ending in U 1 . For a change of the base point �ˆx the change in is by inner

automorphisms of Gqr : we have the well-dened automorphism : 1(L , �ˆx)→

Gqr up to the inner automorphisms of the group Gqr .
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Definition A.3.1. [49] The homomorphism is called the holonomy of the leaf

L , and the subgroup ( 1(L , �ˆx)) of Gqr is called the holonomy group of L .

The holonomy group of a leaf L is nitely generated, provided that its fun-

damental group is nitely generated.
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Holomorphic Integral Manifolds

Let us consider a germ of holomorphic vector eld v around the origin of

coordinates in C2, such that its linear part is given by

J10v= 1z z
+ 2w w

.

We study the case 1 2 %= 0. In order to lighten the process, consider v as a holo-

morphic differential equation

dz
dt

= 1z+ 1(z,w)

dw
dt

= 2w+ 2(z,w),

(B.0.1)

where

k(z,w) =
i, j≥1

k
i jz

iw j, k = 1,2

are convergent series. Let us take the formal change of coordinates

z = z+ 1(z,w)

w = w+ 2(z,w)
(B.0.2)

193
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where k(z,w) =
i, j≥1

k
i jziw j for k = 1,2 and let

dz
dt

= 1z+ 1(z,w)

dw
dt

= 2w+ 2(z,w),

(B.0.3)

stand for the system (B.0.1) under the change above. It is easily seen that changing

the system (B.0.1) into new coordinates (B.0.2) leads to

i, j≥1
( k
i j

k
i j+

k
i j)ziw j = k(z+ 1,w+ 2)− k

z 1−
k
w 2, (B.0.4)

where
k
i j = i 1+ j 2− k.

In fact, nding a formal change of coordinates bringing (B.0.1) into (B.0.3) is

equivalent to nd series (B.0.2) verifying (B.0.4). The coefcient on the right

hand side of (B.0.4) is a polynomial in the variables k
i j,

k
i j, with k = 1,2. It is

always possible then to formally reduce the eld v into a eld (B.0.3) such that

k
i j = 0, if k

ij %= 0, k = 1,2, (B.0.5)

which is called the normal form of v. For instance, if the ratio 1

2
∈Q−\0

1

2
=− p

q

such that g.c.d.(p,q) = 1, the eld v can be written in formal coordinates (z,w)

as

v= A(zpwq)z z +B(zpwq)w w , (B.0.6)
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where A and B are power series of one variable. These transformations are not

convergent in general.

Real character. In terms of the eld (B.0.6), the real character (Denition 3.1.3)

means

A(zpwq) = B(zpwq).

From now on, we suppose that the eld v has real character.

Proposition B.0.2. Let us suppose that 1, 2 are non zero complex numbers, such

that the ratios 1

2
and 2

1
are not integer numbers strictly greater than 1. Then

there exists analytic coordinates (z,w) transforming the field v into

v= 1z(1+ ...) z + 2w(1+ ...) w . (B.0.7)

and respecting the real character of the field. The equations z= 0 and w= 0 are

the invariant manifolds of the field v.

Proof. By Hadamard-Perron Theorem for holomorphic ows ([27], Theorem 7.1)

the system has invariant manifolds z= 1(w) and w= 2(z) which are tangent to

the invariant subspaces and, due to the real character of the eld,

1(w) = 2(w).

The change of coordinates




z = z− 1(w)

w = w− 2(z)

brings the system into the desired form (B.0.7).



196 APPENDIX B. HOLOMORPHIC INTEGRAL MANIFOLDS

Theorem B.0.3. Under the hypotheses of the above proposition, there exists ana-

lytical coordinates (Z,W) bringing the field v into

v= 1Z(1+ZW(...)) Z + 2W(1+ZW(...)) W , (B.0.8)

and respecting the real character of the singularity.

Proof. Proposition B.0.2 allows to write the system in the linearizing Poincaré

coordinates as
z = 1z(1+A1(z,w))

w = − 2w(1+A2(z,w))
(B.0.9)

where A1(z,w) = zwb1(z,w) +wc1(w) and A2(z,w) = zwb2(z,w) + zc2(z). In

order to annihilate both c1,c2 one takes a change of the form

z = Z(1+ 1(W))

w = W(1+ 2(Z))

for unkown functions 1(Z), 2(W). This yields the system in the new variables

Z = 1Z(1+O(ZW))

W = − 2W(1+O(ZW)).

Thus, on the one hand,

z = Z(1+ 1(W))+Z ′
1(W) W

= 1Z(1+O(ZW))(1+ 1(W))− 2WZ ′
1(W)(1+O(ZW)),

(B.0.10)

while, on the other hand

z = 1Z(1+ 1(W)){1+ZW(1+ 1(W))(1+ 2(Z))b1(Z+ ...,W+ ...)

+W(1+ 2(Z))c1(W+ ...)}.
(B.0.11)
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Identifying (B.0.10) with (B.0.11) and simplifying terms in Z, we get the linear

equation
′
1+

1

2
1c1+

1

2
c1 = 0,

with analytic solution

1(W) =− 1

2
e−

1
2

∫W
0 c1(µ)dµ

∫ W

0
c2(µ)e

1
2

∫ µ
0 c2( )d dµ.

The same procedure in the w coordinate yields the solution

2(Z) =− 2

1
e−

2
1

∫ Z
0 c2(µ)dµ

∫ Z

0
c1(µ)e

2
1

∫ µ
0 c1( )d dµ.

By denition, the new equation in the (Z,W) coordinates has real character as

well.
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Appendix C

Monodromy and formal aspects

C.1 Holonomy of the unfolding of a saddle-point.

Theorem C.1.1. Let ∈ C∗ be a family of complex numbers such that 0 ∈ R∗−,

and belongs to a symmetric neighborhood V of the origin. For each ∈ V,

suppose that the differential equation

dw
dz

=
w
z
(1+ zwA (z,w)) (C.1.1)

is defined on the productDr1×Dr2, where 0< r1≤+ , 0< r2≤ 1 andA (0,0) %=

0. Then, for all z0,z1 ∈Dr1 fixed, and such that the straight path [z0,z1] contains no

singular point of the system (C.1.1), the holonomy map hz0(w) : {z= z0}×Dr2→

{z= z1}×C of the separatrix w= 0 verifies

e−r2M| (z1−z0)|
∣∣∣
(
z1
z0

)
w
∣∣∣≤ |hz0(w)| ≤ er2M| (z1−z0)|

∣∣∣
(
z1
z0

)
w
∣∣∣, (C.1.2)

where M =M(z0,z1) :=max{|A (z,w)| : ( ,z,w) ∈ adh(V × [z0,z1]×Dr2)}.

199



200 APPENDIX C. MONODROMY AND FORMAL ASPECTS

Proof. Let be the path with initial point z0 ∈ Dr1 and ending at z1 ∈ Dr1 . A

simple calculation shows that the holonomy mapping of the horizontal separatrix

of the linear system
dw
dz

=
w
z

along is given by hlinz0 : {z= z0}×Dr2 →{z= z1}×C,

hlinz0 : w .→
(
z1
z0

)
w. (C.1.3)

Dene the coordinate

u(z) =
(
z0
z

)
h−z+z0+z1(w0),

where h�ˆz(w0) : {z= �ˆz}×{w= w0} → {z= z1}×C is the holonomy of the point

w0 ∈ {z = �ˆz} along the leaves of the foliation induced by (C.1.1) and with image

on the section {z= z1}, for a given �ˆz ∈ [z0,z1]. Notice that

u(z0) = hz1(w0) = w0 (C.1.4)

and

u(z1) =
(
z0
z1

)
hz0(w0). (C.1.5)

Put w = h−z+z0+z1(w0) and compute the variation of u along the leaves of the

foliation :

du = u′(z)dz

=

[
− z− −1z0 w+

(
z0
z

)
dw
dz

]
dz

=

[
− u

z
+
u
w
dw
dz

]
dz.
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This yields
du
u =

[
−
z
+
1
w
dw
dz

]
dz. (C.1.6)

But then, (C.1.1) implies

du
u =

[
−
z
+

z
+ wA (z,w)

]
dz

= wA (z,w)dz.

(C.1.7)

Consider the numberM=M(z0,z1) :=max{|A (z,w)| : ( ,z,w)∈ adh(V× [z0,z1]×

Dr2)}< . Equation (C.1.7) yields
∣∣∣
du
u

∣∣∣≤ r2M| ||dz|,

and then, integrating over the interval [z0,z1] we obtain:

| logu(z1)− logu(z0)| ≤ r2M| ||z1− z0|.

By (C.1.4) and (C.1.5):

log
u(z1)
u(z0)

= log

(
z0
z1

)
hz0(w0)

w0
= log

hz0(w0)(
z1
z0

)
w0

= log
hz0(w0)
hlinz0 (w0)

.

This yields the following estimate:

0< e−r2M| (z1−z0)| ≤
∣∣∣
hz0(w0)
hlinz0 (w0)

∣∣∣≤ er2M| (z1−z0)| < ,

where hlinz0 (w0) is given in (C.1.3).

If the points z0,z1 coincide, the holonomy hz0(w) : {z = z0}×Dr2 → {z =

z0}×C of the horizontal separatrix is usually called the semi-monodromy of the

section {z= z0} and is denotedQ.
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Proposition C.1.2. The holonomy (semi-monodromy) map Q : {z = 1}×Dr→

{z= 1}×C of the horizontal separatrix w= 0 of the vector field

v= z(1+ zw(...))
z
+ w(1+ zw(...))

w
(C.1.8)

has the form:

Q (w) = e2i w+ ... (C.1.9)

Proof. Indeed, the system associated with (C.1.8) can be written as:

z = z

w = w(1+ zw(...)).
(C.1.10)

Consider the loop : (z,w) = (e2i ,0) on the z-separatrix. Then if t( ) = 2i

for ∈ [0,1], Equation (C.1.10) yields:

w
= 2i w(1+ e2i w(...)). (C.1.11)

Let w( ) =
k≥0

ck( )wk0 be the lifting of the loop on the leaf of the foliation de-

ned by (C.1.10), passing through an initial conditionw0 ∈{z= 1}. Then (C.1.11)

leads to:

k≥0
c′k( )wk0 = 2i

k≥0
ck( )wk0[1+ e2i w(...)]

and then, comparing former coefcients, we get

c′0( ) = 2i c0( ), c′1( ) = 2i c1( ).

Solving these equations with initial conditions c0(0) = 0 and c1(0) = 1, respec-

tively, yields c0( )≡ 0 and c1( )= e2i . Thus, this denes the semi-monodromy

map when = 1 :

Q (w0) = w( = 1) = e2i w0+ ...
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C.2 Orbital formal normal forms.

A generic family unfolding a weak focus is a generic family unfolding a com-

plex resonant saddle point with ratio of eigenvalues equal to −1. In the blow up

space, such a family gives birth to two families around the poles of the Riemann

sphere unfolding complex saddle-points both with ratio of eigenvalues equal to

−2. The orbital formal normal form of a family unfolding a saddle point is ei-

ther linear or rational. For instance, in the rst direction of the blow up (with

coordinates (Z,w), see Chapter 3) the formal normal form of the family is given

by

vc10, = Z
Z
+w(− ( )+q (u))

w
(C.2.1)

with ( ) =
−i
2i

, u= Zw2 and

q (u) =
up−

1+ ( )up (C.2.2)

for a certain p ∈ N and ( ) ∈ C.

Definition C.2.1. For in a symmetric neighborhood V of the origin in the pa-

rameter space let

1. Bp, ( ), ( ) denote the class of all germs of families unfolding complex res-

onant saddles with the same formal normal form (C.2.1), and same canon-

ical parameter .

2. Ap, ( ), ( ) denote the class of families of germs of conformal diffeomor-

phisms with multiplier e2i ( ) (where (0) =
m
n
), unfolding conformal

germs with multiplier equal to e2i
m
n and whose nth iteration is formally

equivalent to the time-one map of the field

v ,p, ( )(w) =
w(wp− )

1+ ( )wp w
(C.2.3)
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for some p ∈ N and ( ) ∈ C.

LemmaC.2.2. The semi-monodromy map of the germ of normalized family (C.2.1)

and (C.2.2) belongs to the class A2p,− ( ), ( ) with ( ) =
( )

2i
.

Proof. PutU = u
1
2 = Z 0w. This is a multivalued function whose restriction to the

section {Z = 1} provides it with a local coordinate. The analytic continuation of

such a restriction over the circular loop {ei : ∈ [0,2 ]} (notedU again) on the

leaf of the foliation dened by the family (C.2.1) passing through the point (1,w),

is equal to e2i h ,Z. Here, h ,Z : {Z = Z}×Dr2→{Z = 1}×C is the holonomy

map of the family vc10, with image on the section {Z = 1}, which is supposed to

be dened in a small disk Dr2 around the origin in the w coordinate. On the other

hand, a simple calculation (using (C.2.2)) shows that U satises

U = Uq (u)

= Uq (U2)

=
U(U2p− )

1+ ( )U2p

= v ,2p, ( )(U),

(C.2.4)

whence follows that the analytic continuation ofU satises

e2i h ,Z = exp2i v ,2p, ( ),

where exp2i v ,2p, ( ) is the phase ow transformation of the family of elds

v ,2p, ( ). The rescalingw .→
w

(2i )
1
2
brings the family of vector elds 2i v ,2p, ( )

into the family v ,2p, ( ), where ( ) =
( )

2i
. Therefore h ,Z, after the rescaling,

takes the form

h ,Z = e−2i expv ,2p, ( ) ∈A2p,− ( ), ( ).
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Theorem C.2.3. Suppose that the ratios of the eigenvalues of two generic families

of vector fields v ,v′ (with the same canonical parameter, modulo a reparametriza-

tion) unfolding complex resonant saddle vector fields coincide, and that the holonomies

of their Z-axis are formally conjugate. Then the families of vector fields are or-

bitally formally equivalent.

Proof. The holonomies of the families v ,v′ are either linearizable or belong to

some class Ap, ( ), ( ). Assume that the family v belongs to the formal class

Bp, ( ), ( ) and that the family v′ belongs to the formal class Bp′, ′( ), ′( ).

Then, by Lemma (C.2.2) the holonomies of their orbital formal normal form

(C.2.1) belong to the classes Anp,− ( ), ( ) and An′p′,− ′( ), ′( ), respectively,

where ( ) =
( )

2i
, ′( ) =

′( )

2i
, and (0) =

m
n
, ′(0) =

m′

n′
. It turns out that

( ) = ′( ), because the two latter classes coincide. By hypothesis, the numbers

( ), ′( ) (the ratios of eigenvalues) must coincide as well, for all in a symmet-

ric neighborhoodV of the parameter space. Since g.c.d.(m,n) = g.c.d.(m′,n′) = 1

we get m = m′ and n = n′. Since np = n′p′, the formal invariants p, p′ coincide.

Thus the families v and v′ belong to the same formal classBp, ( ), ( ) and hence

are formally equivalent.

Inasmuch as the family of diffeomorphisms unfolding the semi-Poincaré map

of a weak focus is the holonomy map of the generic family of vector elds un-

folding the resonant saddle point in the (Z,w) direction of the blow up (and the

inverse of the holonomy in the (W,z) direction), where the ratio of eigenvalues is

equal to −2, the Theorem C.2.3 yields the
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Corollary C.2.4. If the ratios of the eigenvalues of two germs of generic families

of analytic vector fields unfolding weak foci coincide, and if the families of diffeo-

morphisms unfolding their semi-Poincaré maps are formally conjugate, then the

families of vector fields are formally orbitally equivalent.
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[9] C. CHRISTOPHER, P. MARDE SIĆ AND C. ROUSSEAU, �“Normalizability,

synchronicity and relative exactness for vector elds in C2�”, J. Dynam. Con-

trol Systems, 10 (2004), pp. 501-525.

[10] C. CHRISTOPHER AND C. ROUSSEAU, �“Modulus of analytical classica-

tion for the generic unfolding of a codimension one resonant diffeomorphism

or resonant saddle�”, Annales de l�’Institut Fourier 57 (2007), pp. 301-360.

[11] C. CHRISTOPHER AND C. ROUSSEAU, �“The moduli space of germs of

generic families of analytic diffeomorphisms unfolding a parabolic xed

point�”, preprint 2008.

[12] F. DEAHNA, �“Ueber die Bedingungen der Integrabilität lineärer Differen-

tial gleichungen erster Ordnung zwischen einer beliebigen Anzhal veränder-

licher Grössen�”, Jour. reine angew. Math 20 (1840), 340-349.

[13] H. DULAC, �“Recherches sur les points singuliers des équations différen-

tielles�”, J. École polytechnique, vol. 2, sec.9, (1904), pp. 1-125.

[14] J. ECALLE, Les fonctions résurgentes, Publications mathématiques d�’Orsay,

(1985).

[15] P. ELIZAROV, Y. IL�’YASHENKO, A. SHCHERBAKOV AND S. VORONIN,

�“Finitely generated groups of germs of one-dimensional conformal map-

pings and invariants for complex singular points of analytic foliations of

the complex plane�”, �“Nonlinear Stokes phenomena�”, Y. Il�’yashenko editor,

Advances in Soviet mathematics, vol. 14, Amer. Math. Soc., Providence RI

(1993), 57-105.

[16] P. FATOU, �“Sur les équations fonctionelles�”, Bull. Soc. Math. France, Paris

47 (1919-1920), pp. 161-271, and 48, 33-94, 208-314.



BIBLIOGRAPHY 209

[17] F. G. FROBENIUS, �“Ueber das Pfaffsche Problem�”, Jour. reine angew. Math,

82 (1877); pp. 267-282, (Gesamelte Abh. I, 286-301).

[18] A. FRÖLICHER, �“Zür Differentialgeometrie der komplexen Strukturen�”,

Math. Annalen, Bd. 129, S. 50-95 (1955).

[19] S. GALLOT, D. HULIN, J. LAFONTAINE, Riemannian geometry third edi-

tion, Springer-Verlag Universitext, 2004.

[20] J. GINÉ AND M. GRAU, �“Characterization of isochronous foci for planar an-

alytic defferential systems�”, Proc. Roy. Soc. Edinburgh Sect. A 135 (2005),

pp. 985-998.

[21] A.A. GLUTSYUK, �“Conuence of singular points and nonlinear Stokes phe-

nomenon�”, Trans. Moscow Math. Soc. 62, pp. 49-95, 2001.

[22] L. HÖRMANDER, An introduction to complex analysis in several variables,

North-Holland Publishing Company-Amsterdam-London, 1973.

[23] K. HULEK, Elementary Algebraic Geometry, AMS, student mathematical

library, V. 20 - 2003.

[24] A. D. HWANG, Complex manifolds and hermitian differential geometry, on-

line MAT1360 Lecture notes, University of Toronto, Spring term, 1997.

[25] Y. IL�’YASHENKO, �“Nonlinear Stokes phenomena�”, �“Nonlinear Stokes phe-

nomena�”, Y. Il�’yashenko editor, Advances in Soviet mathematics, vol. 14,

Amer. Math. Soc., Providence RI (1993), 1-55.

[26] Y. IL�’YASHENKO AND A.S. PYARTLI, �“Materialization of Poincaré reso-

nances and divergence of normalizing series�”, J. Sov. Math., 31, (1985),

3053-3092.



210 BIBLIOGRAPHY

[27] Y. IL�’YASHENKO AND S. YAKOVENKO, Lectures on analytic differen-

tial equations, Graduate Studies in Mathematics, vol. 86, Amer. Math.

Soc.,Providence RI (2008).

[28] J. J. KOHN, �“Harmonic integrals on strongly pseudo-convex manifolds�”, (I)

Ann. Math. 78, 206-213 (1963) & (II) Ann. Math. 79, 450-472 (1964).

[29] Y. A. KUZNETSOV, Elements of applied bifurcation theory, Springer-

Verlag, Applied Mathematical Sciences vol. 112, 1995.

[30] P. LAVAURS, Systèmes dynamiques holomorphes: explosion de points péri-

odiques paraboliques. Thèse, Université Paris-Sud, 1989.

[31] F. LORAY, 5 leçons sur la structure transverse d’une singularité de feuil-

letage holomorphe en dimension 2 complexe, Monographies Red TMR Eu-

ropea Sing. Ec. Dif. Fol., 1 (1999), pp. 1-92.
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