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RÉSUMÉ 

Le développement d‘un médicament est non seulement complexe mais les retours 

sur investissment ne sont pas toujours ceux voulus ou anticipés.  Plusieurs médicaments 

échouent encore en Phase III même avec les progrès technologiques réalisés au niveau de 

plusieurs aspects du développement du médicament.  Ceci se traduit en un nombre 

décroissant de médicaments qui sont commercialisés.  Il faut donc améliorer le processus 

traditionnel de développement des médicaments afin de faciliter la disponibilité de 

nouveaux produits aux patients qui en ont besoin.  Le but de cette recherche était 

d‘explorer et de proposer des changements au processus de développement du 

médicament en utilisant les principes de la modélisation avancée et des simulations 

d‘essais cliniques. 

Dans le premier volet de cette recherche, de nouveaux algorithmes disponibles 

dans le logiciel ADAPT 5® ont été comparés avec d‘autres algorithmes déjà disponibles 

afin de déterminer leurs avantages et leurs faiblesses.  Les deux nouveaux algorithmes 

vérifiés sont l‘itératif à deux étapes (ITS) et le maximum de vraisemblance avec 

maximisation de l‘espérance (MLEM).  Les résultats de nos recherche ont démontré que 

MLEM était supérieur à ITS.  La méthode MLEM était comparable à l‘algorithme 

d‘estimation conditionnelle de premier ordre (FOCE) disponible dans le logiciel 

NONMEM® avec moins de problèmes de rétrécissement pour les estimés de variances.  

Donc, ces nouveaux algorithmes ont été utilisés pour la recherche présentée dans cette 

thèse. 

Durant le processus de développement d‘un médicament, afin que les paramètres 

pharmacocinétiques calculés de façon noncompartimentale soient adéquats, il faut que la 
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demi-vie terminale soit bien établie.  Des études pharmacocinétiques bien conçues et bien 

analysées sont essentielles durant le développement des médicaments surtout pour les 

soumissions de produits génériques et supergénériques (une formulation dont l'ingrédient 

actif est le même que celui du médicament de marque, mais dont le profil de libération du 

médicament est différent de celui-ci) car elles sont souvent les seules études essentielles 

nécessaires afin de décider si un produit peut être commercialisé ou non.  Donc, le 

deuxième volet de la recherche visait à évaluer si les paramètres calculer d‘une demi-vie 

obtenue à partir d'une durée d'échantillonnage réputée trop courte pour un individu 

pouvaient avoir une incidence sur les conclusions d‘une étude de bioéquivalence et s‘ils 

devaient être soustraits d‘analyses statistiques.   Les résultats ont démontré que les 

paramètres calculer d‘une demi-vie obtenue à partir d'une durée d'échantillonnage réputée 

trop courte influençaient de façon négative les résultats si ceux-ci étaient maintenus dans 

l‘analyse de variance.  Donc, le paramètre de surface sous la courbe à l‘infini pour ces 

sujets devrait être enlevé de l‘analyse statistique et des directives à cet effet sont 

nécessaires a priori.  Les études finales de pharmacocinétique nécessaires dans le cadre 

du développement d‘un médicament devraient donc suivre cette recommandation  afin 

que les bonnes décisions soient prises sur un produit.  Ces informations ont été utilisées 

dans le cadre des simulations d‘essais cliniques qui ont été réalisées durant la recherche 

présentée dans cette thèse afin de s‘assurer d‘obtenir les conclusions les plus probables. 

Dans le dernier volet de cette thèse, des simulations d‘essais cliniques ont 

amélioré le processus du développement clinique d‘un médicament.  Les résultats d‘une 

étude clinique pilote pour un supergénérique en voie de développement semblaient très 

encourageants.  Cependant, certaines questions ont été soulevées par rapport aux résultats 
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et il fallait déterminer si le produit test et référence seraient équivalents lors des études 

finales entreprises à jeun et en mangeant, et ce, après une dose unique et des doses 

répétées.  Des simulations d‘essais cliniques ont été entreprises pour résoudre certaines 

questions soulevées par l‘étude pilote et ces simulations suggéraient que la nouvelle 

formulation ne rencontrerait pas les critères d‘équivalence lors des études finales.  Ces 

simulations ont aussi aidé à déterminer quelles modifications à la nouvelle formulation 

étaient nécessaires afin d‘améliorer les chances de rencontrer les critères d‘équivalence.  

Cette recherche a apporté des solutions afin d‘améliorer différents aspects du processus 

du développement d‘un médicament.  Particulièrement, les simulations d‘essais cliniques 

ont réduit le nombre d‘études nécessaires pour le développement du supergénérique, le 

nombre de sujets exposés inutilement au médicament, et les coûts de développement.  

Enfin, elles nous ont permis d‘établir de nouveaux critères d‘exclusion pour des analyses 

statistiques de bioéquivalence. 

La recherche présentée dans cette thèse est de suggérer des améliorations au 

processus du développement d‘un médicament en évaluant de nouveaux algorithmes pour 

des analyses compartimentales, en établissant des critères d‘exclusion de paramètres 

pharmacocinétiques (PK) pour certaines analyses et en démontrant comment les 

simulations d‘essais cliniques sont utiles. 

 

Mots clés : ADAPT 5®; simulations d‘essais cliniques; développement du 

médicament; demi-vie; MLEM; ITS. 
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SUMMARY 

Drug development is complex with results often differing from those anticipated 

or sought after.  Despite technological advances in the many fields which are a part of 

drug development, there are still many drugs that fail in the late stages of clinical 

development.  Indeed, the success rate of drugs reaching commercialization is declining.  

Improvements to the conventional drug process are therefore required in order to 

facilitate development and allow new medications to be provided more rapidly to patients 

who require them.  The aim of this Ph.D. project was to explore and propose ways to 

improve this inefficient drug development process with the use of advanced modeling 

and clinical trial simulations. 

For the first part of this research, new algorithms available in ADAPT 5® were 

tested against other available algorithms in order to determine their potential strengths 

and weaknesses.  The two new algorithms tested were the iterative two-stage and the 

maximum likelihood expectation maximization (MLEM) methods.  Our results 

demonstrated that the MLEM algorithm was consistently better than the iterative two-

stage algorithm.  It was also comparable with the first order conditional estimate method 

available in NONMEM®, with significantly fewer shrinkage issues in the estimation of 

the variances.  Therefore, these new tools were used for the clinical trial simulations 

performed during the course of this Ph.D. research. 

In order to calculate appropriate noncompartmental pharmacokinetic parameter 

estimates during the drug development process, it is essential that the terminal 

elimination half-life be well characterized.  Properly conducted and analyzed 

pharmacokinetic studies are essential to any drug development plan, and even more so for 
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generic and supergeneric (a formulation similar to the reference product, containing the 

same active ingredient; however differing from the original reference product it its 

delivery process) submission where they often are the only pivotal studies that need to be 

done to decide if a drug product is good or not.  Thus, the purpose of the second part of 

the research was to determine if the pharmacokinetic (PK) parameters obtained from a 

subject whose half-life is calculated from a sampling scheme duration that is considered 

too short could bias the bioequivalence conclusions of a study and if these parameters 

should be removed from statistical analyses.  Results demonstrated that subjects with a 

long half-life relative to the duration of the sampling scheme negatively influenced 

results when these were maintained in the analysis of variance.  Therefore, these subjects 

should be removed from the analyses and guidelines to this effect are required a priori.  

Pivotal pharmacokinetic studies done within the drug development process should 

therefore follow this recommendation to make sure that the right decision be taken on a 

drug product formulation.  This information was utilized with the clinical trial 

simulations that were subsequently performed in this research in order to ensure the most 

accurate conclusions. 

Finally, clinical trial simulations were used to improve the development process 

of a nonsteroidal anti-inflammatory drug.  A supergeneric was being developed and 

results from a pilot study were promising.  However, some results from the pilot study 

required closer attention to determine if the test and reference compounds were indeed 

equivalent and if the test compound would meet the equivalence criteria of the different 

required pivotal studies.  Clinical trial simulations were therefore undertaken to address 

the multiple questions left unanswered by the pilot study and these suggested that the test 
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compound would probably not meet the equivalence criteria.  In addition, these results 

helped determine what modifications to the test drug would be required to meet the 

equivalence criteria.  This research brought forward solutions to improve different 

aspects of the drug development process.  Notably, clinical trial simulations reduced the 

number of studies that would have been done for a supergeneric, decreased the number of 

subjects unnecessarily exposed to a drug, lowered costs and helped established new 

criteria for the exclusion of subjects from analyses. 

Research conducted during this Ph.D. provided concrete ways to improve the 

drug development process by evaluating some newly available tools for compartmental 

analyses, setting standards stipulating which estimated PK parameters should be excluded 

from certain PK analyses and illustrating how clinical trial simulations are useful to 

throughout the process. 

 

Key words: ADAPT 5®, Clinical Trial Simulations, Drug Development, Half-life, 

MLEM, Iterative two-stage 
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GENERAL ORIENTATION OF THE THESIS 

 

Despite technological advances in the many fields which are a part of drug 

development, there are still many drugs that fail in the late stages of clinical development.  

These failures negatively affect the numerous monetary and scientific resources that 

could have been best allocated to improve the development of other medications.  The 

overall result is that the development of drugs is significantly slowed down.  Reasons for 

the drug development failures include poorly designed studies, extracting insufficient 

information from the data collected and a generally poor understanding of the drug being 

developed.  These problems highlight the inefficiencies of the conventional drug 

development process and indicate why improvements are essential.  Positive changes 

would allow new medications to be provided more rapidly to patients who require them. 

This research aimed at bringing forward solutions that may provide a more 

efficient drug development process.  More specifically, this work focused on the use of 

advanced modeling and clinical trial simulations to achieve this objective.  Clinical trial 

simulations have the potential to predict study outcomes, reduce unnecessary studies, 

decrease the number of volunteers exposed to drugs and lower development costs. 

This thesis is divided into three sections, namely an introduction, a description of 

the research performed, and finally a general discussion and conclusion. The introduction 

discusses the cost of the drug development process, general pharmacokinetic concepts 

including noncompartmental and compartmental approaches for calculating parameters, 

their importance within the drug development process, and examples of the use of clinical 

trial simulations in the industry.  It also includes a short summary of the different clinical 
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phases of the drug development process and explains how clinical trial simulations could 

improve it. 

The second section presents the work accomplished through this research and 

includes three articles as the research was conducted in three main parts.  The first aimed 

at determining if the new algorithms available in the software ADAPT 5® were adequate 

to be used for clinical trial simulations.  The article is entitled ―Performance of different 

population pharmacokinetic algorithms using clinical simulations‖.  The second part of 

this research used clinical trial simulations to determine if an additional criterion should 

be required when estimating the noncompartmental apparent terminal elimination rate in 

pivotal pharmacokinetic studies performed during the drug development process.  This 

second article is entitled ―How critical is the duration of the sampling scheme for the 

determination of half-life, characterization of exposure and assessment of 

bioequivalence?‖.  The last part of this research provides an example of how clinical trial 

simulations can help optimize and speed up the development of a new drug.  The title of 

this last article is ―Improved Drug Development and Bioequivalence Potential of a New 

Extended-Release Formulation Determined by Clinical Trial Simulations‖. 

Finally, the thesis ends with a general discussion and conclusion discussing the 

main results of the research and its potential applicability as a whole to the drug 

development process. 
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1. INTRODUCTION 

The drug development process requires huge investments in order to produce a 

marketable drug.  It is estimated that the cost to produce a new drug varies from 800 

million to close to 2 billion United States (US) dollars.
1,2,3

  In addition, costs are 

increasing at a higher rate than inflation further reducing profitability.
4
  The above quoted 

cost includes approximately 400 million dollars in opportunity lost.
1
  In addition, the cost 

includes research and development (R&D) costs for all failed drugs.  The money invested 

in these failed drugs cannot be recovered.  The average success rate of drugs entering the 

clinical phase of development is approximately 8 to 16%.
5,6

  In order for a 

pharmaceutical company to be profitable, income from marketed drugs has to cover its 

production costs and the costs for the failed drugs.  Because of that, pharmaceutical 

companies typically spend between 12 and 20% of their overall revenues in R&D.  

Despite this figure, the whole drug development process is at the present time anemic and 

inefficient.  Besides the extremely high development cost, the time spent to produce a 

new drug is also on average disappointingly long.  It generally takes 12 to 15 years for a 

new drug to arrive on the market.
7,8

  Pharmaceutical companies in the US only benefit 

from exclusivity patents for 20 years, most of which is taken by the time to develop the 

drug, and a market exclusivity of a minimum of 5 year.  The length of time to develop a 

drug is attributed to the fact that many different steps of development are needed must be 

very closely monitored and sometimes directly inspected by regulatory agencies to ensure 

public safety.  It takes on average approximately 4 years for a drug to go through the pre-

clinical stage and 7 years to go through the clinical stage until its regulatory submission, 

1 to 2 years in Phase I, 2 years in Phase II, and 2 to 4 years in Phase III.
7,9

 Regulatory 
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agencies may take after that 1.5 to 2.5 years to review the data and approve the 

submission.
7,10

  The time and cost discussed above does not include any Phase IV post-

marketing studies or activities that may be required. 

Stage Time 

(years) 

Test Population 

Pre-clinical 4 In vitro or animals 

Phase I 1-2 Healthy volunteers 

Phase II 2 Patient volunteers 

Phase III 2-4 Patient volunteers 

FDA Approval 1.5-2.5 
 

Total 10-15 

 

Table I: Timeline for the development of a new drug 

In order for pharmaceutical companies to remain competitive as a business model, 

it is imperative that they make changes to their current practices.  Based on the cost and 

time invested in developing a new drug, there are two ways that this can be 

accomplished.  The first approach is that drugs that are not successful need to be 

abandoned as quickly as possible in the development process.  There are still 

approximately 50% of drugs entering Phase III that fail to be marketed.
6,7,11

  Phase III 

studies are the longest and include the most number of patients which are very expensive 

to enroll.  Phase III should never fail due to foreseeable reasons such as having the wrong 

choice of regimen to prove efficacy.  Thus, if a new compound reaches clinical testing, it 

should be known before Phase III if it has any chances of success.  Phase I and II studies 

should be planned accordingly and data collected in the most efficient matter to extract 

all possible information from the drug before reaching Phase III.  Reducing the 

development costs of failed drugs will decrease the overall cost and free funds to be 

invested in other compounds that have better chances of succeeding.  In addition, the 

sooner a drug that is not marketable can be set aside, the faster scientists can spend their 
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time and energy on other potentially marketable products.  The second way to improve 

pharmaceutical profitability is to reduce the number of unnecessary studies for successful 

drugs.  Even if a drug is successfully marketed, the program may have conducted studies 

that were poorly planned or did not prove what they were intended to show.  If the 

number of studies can be reduced or conducted more efficiently, this will lower costs and 

shorten the time period it takes to market the drug.  Consequently, drugs that have a 

quicker turn around time between discovery and submission to regulatory agencies will 

benefit from a longer exclusivity time which in turn will increase profitability. 

Pharmaceutical companies have successfully changed trends in the past.  

Previously, Phase I accounted for close to 40% of all clinical drug failures.  This attrition 

level is now below 10%.
12

  This was made possible because pharmaceutical companies 

recognized the problem and came up with a solution.  The solution was that companies 

verified more diligently the pharmacokinetics (PK) of drugs including drug metabolism 

within the discovery and pre-clinical phases.  Nonlinear products, compounds not well 

absorbed and drugs that may cause significant metabolite interactions are removed from 

the development process in the discovery or pre-clinical phases rather than in Phase I.  

However, the biggest problem right now is that drugs are failing mostly in the late stages 

of development.  The main reasons for these failures are lack of efficacy and safety 

issues.  The pharmaceutical industry is conscient of these problems and is trying to look 

for solutions. 

The Food and Drug Administration (FDA) recognized the need to improve the 

drug development process and published a document entitled ―Challenge and 

Opportunity on the Critical Path to Medical Products‖.
5
  In this paper, the FDA suggests 
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that pharmaceutical companies need to improve the development process and reduce 

failures.  The FDA goes on to specify that tools such as pharmacokinetic and 

pharmacodynamic (PD) modeling could help bring a drug to market more efficiently. 

In creating such a document, the FDA has shone a light on pharmacometrics, 

which is the science of applying mathematical and statistical methods to better 

understand and predict a drug‘s PK/PD behavior.
13

  One aspect of pharmacometrics is the 

use of clinical trial simulations.  With a better pharmacometrics-based understanding of a 

drug‘s PK/PD profile obtained as early as possible in the development process, it is 

anticipated that less drugs will fail in the late clinical stages.  In addition, the more that is 

known about a drug, the greater its potential to benefit patient care as well as increase its 

likelihood to be efficiently pushed through the different stages of development. 

In light of the challenges faced by those who attempt to bring a new drug on the 

market, the objective of this thesis is to propose solutions to improve the drug 

development process.  One such solution is the more widespread application of 

pharmacometrics and the use of clinical trial simulations (CTS) during different stages of 

the drug process.  To better understand how pharmacometrics can lead to more efficient 

drug development, a clear understanding of pharmacokinetic concepts is required and 

will be discussed hereafter.  This will be followed by a short summary of the different 

clinical phases of drug development and how clinical trial simulations can improve the 

process. 
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1.1. PHARMACOKINETICS 

Pharmacokinetics is the study of what the body does to a drug.  It is a branch of 

pharmacology that studies the movement of the drug through the organism.
14

  This 

movement through the body is generally divided into three main categories which are the 

absorption, distribution and elimination of the drug.  Absorption is the process by which 

the drug enters the body; distribution is the description of how and where the drug will 

disperse throughout the body while the elimination process characterizes how the drug is 

finally cleared from the organism.  Elimination can be further sub-divided into 

metabolism and excretion. 

Pharmacokinetics is often studied in conjunction with pharmacodynamics.  

Pharmacodynamics is often referred to as what the drug does to the body.  It relates the 

effects over time experienced by volunteers to the drug‘s PK.  The characterization of the 

pharmacokinetics will first establish the systemic concentrations and consequently, the 

theoretical concentrations at the site of action.  It is these concentrations at the site of 

action that are responsible for the PD effect.
15

  If we assume that the systemic plasma 

concentrations have a relationship with those at the site of activity, then we can use these 

plasma concentrations to predict the theoretical concentrations at the site(s) of activity 

and build PK/PD relationships.
16-19

  The PK/PD correlation is crucial in understanding 

the relationship between the systemic concentrations of the drug (exposure) and its 

effects on the body.  The effect can be either wanted (beneficial) or unwanted (harmful).  

It is this relationship between the pharmacokinetic and pharmacodynamic properties of a 

drug that will help determine its level of  activity. 
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Therefore, the first step in understanding a drug and its effect on the body is to 

describe its pharmacokinetics.  There are two main approaches for determining the 

pharmacokinetics of a drug.  The first is to use a noncompartmental approach
20-21

 while 

the second is the compartmental approach.
22-23

  Both have advantages and disadvantages 

and are not mutually exclusive.
24

  When determining the pharmacokinetics of a drug, we 

can either choose to describe the PK parameters of an individual, known as individual 

PK, or those of a population which is known as population PK.  The noncompartmental 

approach is better suited to the description of individual‘s pharmacokinetics while 

compartmental analyses are well suited for both.  Each approach is useful during the drug 

development process, but to perform clinical trial simulations, compartmental models are 

required.  However, study outcomes are sometimes based on noncompartmental analysis, 

so clinical trial simulations often simulate profiles which are then used to calculate 

noncompartmental parameters.  The decision to use noncompartmental, compartmental or 

both approaches will depend on the purpose of the analyses as well as the available data 

collected.  The following two sections will provide a general review of the two different 

approaches used to characterize the pharmacokinetics of a drug. 
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1.1.1. Noncompartmental analysis 

 

The noncompartmental approach calculates pharmacokinetic parameters based on 

the graphical interpolation and extrapolation of concentrations over time.  This approach 

is based on the theory of statistical moments which is a mathematical concept explaining 

the distribution of data.
25-29

  Although statistical moments theory was used in other fields 

of research before being applied to pharmacokinetics, it was regularly used for PK 

analyses by the early 1980s.  In PK, statistical moments are calculated from a set of 

concentration-time data and represent an estimate of the true moment.  It is an estimate of 

the true relationship between concentration and time. 

Typically, only the first two moments are used in PK.
30

  The first moment defines 

the area under the concentration curve from time zero to infinity (AUCinf) and relates the 

exposure of the drug to the concentrations as defined in Equation 1. 





0

* dtCAUC  (1) 

Area under the curve to infinity is typically calculated using the trapezoidal method.  

Multiple trapezoidal methods exist such as the linear trapezoidal and the log-linear 

trapezoidal rules.
31

  These methods consists of adding multiple small trapezoidal areas 

and an example of how this is calculated for the linear trapezoidal method in given in 

Equation 2. 

)(*2/)(t-AUC0 121

0

2 ttCC
t

  (2) 

AUCinf is defined in Equation 3 and is the sum of the area under the curve from time 0 to 

the last measurable concentration (AUC0-t) and the area under the curve that is 
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extrapolated beyond the last measurable concentration to infinity (AUCt-inf).  The first 

term, AUC0-t, is calculated as per Equation 2.  The second term, the extrapolated area, is 

calculated as the last measurable concentration (CLast) divided by the apparent terminal 

elimination rate constant (Kel). 

AUCinf = AUC0-t + (CLast/Kel) (3) 

If a drug follows first-order elimination, Kel is calculated from the slope of the plot of the 

logarithm of concentration versus time.  The slope has to be estimated during the 

apparent terminal phase of the profile. 

The second statistical moment is involved in the measurement of the mean 

residence time (MRT) determined by the area under the moment curve (AUMC).  AUMC 

is estimated by Equation 4. 





0

** dtCtAUMC  (4) 

AUMC has no physiological value and is simply a mathematical variable used to 

determine other pharmacokinetic parameters which have more useful physiological 

meaning.  MRT is simply the AUMC divided by AUCinf for a bolus intravenous 

administration.
32-33

  If a drug is administered intravenously via an infusion, then half the 

time of the infusion has to be subtracted from the MRT calculation.  The third moment is 

the variance associated with the calculated parameter and is usually estimated with too 

much uncertainty to be useful.
29

 

Using the graphical representation of the concentration versus time profile and 

statistical moment theory, other useful PK parameters of interest can be obtained.  The 

first parameter is the observed maximum concentration (Cmax) and the time associated 

with this maximum concentration (Tmax).  Both of these parameters are associated with 
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the rate of absorption and are taken directly from the profile without any interpolation of 

the data. 

A crucial PK parameter is the clearance.  It is a measure of the volume of blood or 

plasma from which the drug is removed per unit of time
25,26,34-35

.  The total clearance 

(CL) of a drug is calculated by Equation 5. 

inf

*

AUC

FDose
CL   (5) 

Where bioavailability (F) is defined in Equation 6 

IVoral

oralIV

AUCDose

AUCDose
F

*

*
  (6) 

Clearances are additive and therefore total clearance represents the sum of all the 

clearances from different organs, except for the lung as the blood supply to the lungs is in 

series rather than in parallel with other organs.
26

  Another essential parameter is the total 

volume of distribution (Vss).  This is a virtual volume and provides information on the 

extent to which the drug is distributed in the body.  The formula is described in Equation 

7. 

MRTCLVss   (7) 

Clearance and volume of distribution are two independent parameters.  The elimination 

half-life (T½) is a parameter dependent on these two PK parameters and it represents the 

time it takes the organism to eliminate half of the drug or reduce its concentrations by 

half.  For drugs displaying first-order elimination, this half-life is independent of the 

amount of drug that is administered.  It is estimated based on Kel and the calculation is 

shown in Equation 8. 
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Kel
T

)2ln(
2

1   (8) 

The relationship between the elimination half-life, Vss and CL parameters is 

demonstrated in Equation 9, assuming a one compartment model. 

CL

Vss
T




)2ln(
2

1  (9) 

From Equation 9, the larger the volume of distribution, the longer the elimination half-

life since a greater volume of distribution results in a lower blood or plasma 

concentrations.  A lower concentration implies that a smaller amount of drug is reaching 

the eliminating organ so it will take longer to eliminate the drug.  The opposite is true 

with clearance since the larger the clearance, the shorter the elimination half-life.  This is 

evident as clearance represents the capacity of an organ to eliminate drug and the more 

efficient it is at eliminating the drug, the less time it will take to reduce the amount of 

drug by half. 

Based on the noncompartmental equations, it is imperative that both the AUC0-t 

and Kel be well characterized to adequately calculate the noncompartmental parameters, 

as most of the noncompartmental PK parameters are dependent on both the AUC0-t 

and/or Kel.  In order to properly characterize the AUC0-t parameters using the linear 

trapezoidal method, a sufficient number of samples are required.  Generally, it is 

recommended that at least 15 samples be collected in each subject after a single dose 

administration.
36

  These samples have to be collected at specific moments, with 

approximately 5 samples each taken during the absorption and distribution phase to 

properly characterize Cmax and Tmax, and 5 samples in the elimination phase to robustly 

characterize the Kel.  The extrapolated portion of the AUCinf parameter is dependent on 
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both the last measurable concentration as well as the Kel parameter, so improper 

characterization of the Kel will lead to poor estimates of the extrapolated portion of the 

AUCinf.  The CL, Vss and MRT parameters are dependent on AUCinf.  Therefore, any 

poor estimate of AUCinf due to either a poor Kel or to improper sample selection for 

AUC0-t will lead to poor estimates of these parameters.  Clearance is calculated using the 

AUCinf parameter and any error in the AUCinf estimation leads directly to the same 

error in the clearance estimation.
37

  The error doubles for the estimated MRT and Vss 

parameters as these parameters are dependent on both AUCinf and AUMCinf (i.e., both 

are dependent on extrapolation error).
21,27,29,37

  In addition, the half-life is based directly 

on the Kel and thus a poor Kel estimate will lead to a poor T½ estimate. 

Advantages of the noncompartmental approach are that it is relatively simple, 

robust and almost model-independent (e.g., except for the extrapolation of the last trapeze 

which is based on a monoexponential decline).  Because it is virtually model-

independent, its results are not dependent on the scientist‘s ability at modeling data.  In 

addition, the noncompartmental approach is usually not significantly influenced by 

experimental errors associated with each individual measured concentration as long as 

there are enough samples taken, as previously described.  A certain experimental error is 

associated with each concentration, which includes the variability in the analytical 

analysis, dosing errors, collection errors and other clinical errors.  However, the error 

associated with each concentration does not contribute to the overall variability of the 

AUC parameter.  This is due to the fact that with numerous concentrations collected, the 

individual errors associated with each concentration cancel themselves out.  More 

specifically, one concentration might be higher than expected while another 
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concentration may be lower than expected.  The addition of all the overestimated and 

underestimated errors in the concentrations cancel each other out and the overall AUCinf 

is generally unaffected by the experimental errors. 

Even though AUCinf determination is robust with respect to experimental errors, 

it is still influenced by the Kel precision.  Previously published research suggests that to 

have a proper Kel value and consequently a proper AUCinf value, a minimum number of 

samples collected in the elimination phase is required, the predicted CLast should be used 

rather than the observed CLast and the extrapolated portion of the AUCinf should be 

maintained to a minimum (e.g., maximum 20%).
38-40,41

  Based on prior experience, 

another criterion suspected to be important was the sample collection duration.  

Generally, a study is planned based on average PK parameters that are expected (from 

literature or previous studies).  Sometimes the PK study is the first one ever conducted in 

humans, and therefore a priori data is not available.  Due to this and to individual subject 

variability or unexpected PK values, it is our hypothesis that some subjects may not have 

the optimal sampling scheme to appropriately determine their PK parameters robustly.  

Consequently, it is important to understand how the sample collection duration may 

influence PK parameters values, and how subjects that may not have an optimal sampling 

scheme may influence the conclusions of a study.  Therefore, a research study presented 

in this thesis aimed at determining the influence of the sample collection duration on the 

precision of PK parameter estimates.  This work is presented in Chapter 2 (Article 2). 
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1.1.2. Individual compartmental analysis 

 

The compartmental approach is the classical PK approach and is the foundation of 

the field of pharmacokinetics.  The aim of compartmental analyses is to explain observed 

concentrations with the use of mathematical and statistical models.  These models are 

comprised of hypothetical compartments representing the body and are used to explain 

how the drug reacts within the body.  With empirical models, each compartment 

represents a group of tissues or organs with similar blood flow.  Each compartment has a 

volume of distribution and all compartments together represent the extent to which the 

drug distributes in the body.  The more compartments that are required for an analyte, the 

greater normally the volume of distribution a drug will have.  Movement between 

compartments is comprised of rate constants. These are often labeled as Kij (where i and j 

are different compartments) or as CLd.  With the exception of physiologically-based 

pharmacokinetic models which attempt to reproduce the physiological aspects of the 

body, compartmental PK analyses attempt to find the simplest model to best explain the 

observed concentrations while still remaining true to being physiologically relevant. 

Individual compartmental analyses have been around since the 1960s and made 

popular by many including Levy
42-47

 in the 1960s and Sheiner in the early 1970s.
48-54

  A 

basic model to explain the observed concentration from an individual can be written as in 

Equation 10. 

iiXPf  ),(yi  (10) 

Where yi is the i
th

 concentration for an individual 

 P is the vector of pharmacokinetic parameters of the model 
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 Xi is the vector of independent variables (such as time and dose) associated 

with yi 

 i is the statistical error that corresponds to the measurement error, the 

change in PK over time for the subject and also the model misspecifications. 

In Equation 10, the predicted concentration at time i for an individual is the value 

determined by ),( iXPf .  Therefore, the difference between the predicted and observed 

concentrations is the error term i in Equation 10 and is represented differently in 

Equation 11 and graphically in Figure I. 

iiz iy  (11) 

Where zi represents the predicted i
th

 concentration 
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Figure I: Error distribution between predicted and observed concentrations 
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The errors i are assumed to be independent and have a mean of 0 with a variance 


2
.
51,55-57

  Unlike noncompartmental analyses which does not estimate the errors i, 

compartmental analyses take these errors into consideration and try to find predicted 

concentrations to minimize the individual i. 

There have been many methods proposed to minimize the differences between the 

predicted and the observed concentrations.  The first method, well known in statistics, is 

the ordinary least square (OLS) estimates.
58-60

  The OLS function (OLS) minimizes the 

squared errors between the observed (yi) and predicted (zi) concentrations and is the value 

obtained in Equation 12. 

2

1

)( i

n

i

iOLS zy  


 (12) 

This value is relatively easy to obtain; however, it is not ideal if there is a wide range of 

concentrations.  Concentrations in a profile vary greatly and may even span multiple logs 

(i.e., Cmax might be 2 to 3 logs higher than the minimum concentration (Cmin)).  Using 

Equation 12, high concentrations will have a greater impact on the OLS function than 

low concentrations.  For example, a 10% error on a concentration value of 1000 is 100 

while the same 10% error on a concentration of value of 1 is 0.1.  Therefore the OLS 

function will minimize the distance between the higher predicted and observed 

concentrations and ignore this difference for low concentrations.  Since we assume that 

all concentrations have the same percentage error, they should be considered equally as 

important when trying to determine the optimal PK parameters.  Therefore, a weight is 

often added to this OLS function and the function becomes a weighted least squares 
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estimate (WLS).  The weight most often used is the error variance
61

 as shown in Equation 

13. 







n

i

ii
WLS

zy

1
2

2)(


 (13) 

Where σ
2
 is the variance 

The two previous methods used to minimize the error between the predicted and 

observed concentrations are not the most efficient.  A superior method to these functions 

is the maximum likelihood function.  The observed data are approximated by a model 

function consisting of the parameters being estimated.  This approach maximizes the 

probability of obtaining the observed data by estimating the best possible parameter 

estimates.  In other words, the solution to the function is the best set of system and 

variance model parameters (θ and β) that renders the observed concentrations the most 

likely from any other estimates.
56

  The maximum likelihood objective function (ONLL) is 

described in Equation 14. 
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
  (14) 

Where where i is the type of data (e.g., plasma concentration and urinary output) 

 j is the number of samples 

 l and m are the total number of output data and total number of samples, 

respectively 

 
2)),()(( jiji tytZ   is the square of distance between the predicted and 

observed concentrations 
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 gi is the weight for the predicted concentrations which is the variance 

var{v(tj)}. 

Another method to minimize the error between the predicted and observed 

concentrations is the generalized least squares (GLS) estimates.
62

  With this method, the 

observed data are also approximated by a function consisting of system and variance 

model parameters (θ and β).  Unlike the maximum likelihood approach, the system and 

variance parameters are estimated separately.  In the first iteration, the system parameters 

are estimated using a least squares estimation.  Then in a second iteration, the variance 

parameters are estimated using a maximum likelihood function and the parameters 

estimated in the first iteration.  In a third iteration, the system parameters are re-evaluated 

using a weighted least squares estimate and the variance parameters estimated from the 

second iteration.  The second and third iterations are repeated until convergence. 

There is also a Bayesian method (Maximum a Posteriori Probability – MAP) that 

can be used to minimize the difference between predicted and observed 

concentrations.
60,62-64

  The Bayesian method uses an objective function that takes into 

consideration the results of the individual and those from the population.  The MAP 

objective function that is minimized is described in Equation 15. 

][][),,(ln
),,(

)),()((

2

1
 O 1

1

2

1

MAP 



















 

 

 T
l

i

ji

ji

jiji
m

j

tg
tg

tytZ
 (15) 

Where ),,(  ji tg  is the weighting for the predicted concentration which is the 

variance var{v(tj)} 

  is the individual PK parameter vector 

  is the population PK parameter vector 
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 T is the transpose of the matrix 

 is the covariance matrix.   

In this equation, the algorithm minimizes two distinct terms to obtain the 

individual PK parameters.  The first term is the distance between the individual predicted 

concentrations and the observed concentrations while the second half of the equation 

represents the distance between the individual PK parameter estimates and the population 

PK parameter estimates.  Therefore, if an individual has many observations, the equation 

add more weight to the individual‘s observations and the impact from the population 

parameter values will be minimal while the opposite is true when an individual has fewer 

observations.  In this case, more weight will be given to the population PK parameter 

values and the subject‘s individual parameter estimates will tend to more closely 

resemble the population values. 
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1.1.3. Population compartmental analysis 

 

Because of its superior robustness, the population approach is the preferred 

analysis when performing compartmental analyses.
39,65

  This approach was first 

introduced in the 1970s to analyze sparse observational data collected from different 

clinical trials.  In addition to estimating the mean PK parameters in a target population, 

the aim of population compartmental analysis is to determine the dispersion of these PK 

parameters (inter-individual variability) as well as the residual error (which includes 

intra-subject variability and measurement error).  This is what differentiates this type of 

analysis from individual compartmental analysis which will only determine the PK 

parameters for each individual separately without considering any data from the other 

subjects in the analysis.  Describing the variation of the PK parameters adds parameters 

to be estimated and contributes to the complexity of the analysis.  In spite of these 

challenges, a proper population analysis not only predicts the results of the subjects that 

were analyzed but permits the user to make inferences on the population and future 

outcomes.  Generally, decisions in drug development are based on the typical or average 

parameters of a drug in the population.  However, knowledge of the typical 

concentration-time profile of the drug and how patients‘ profiles can vary is crucial to the 

regulatory agencies and the pharmaceutical companies to ensure efficient and safe 

administration of a drug. 

In population PK analysis, to explain the observed data of a particular subject, 

Equation 10 is expanded to reflect the population in Equation 16.
60

 

ijijXPf  ),(y jij  (16) 
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Where yij is the ith concentration for the jth individual of the population analyzed 

 Pj is the vector of pharmacokinetic parameters for the jth individual 

 Xij is the vector of independent variables (such as time and dose) associated 

with yij 

 ij is the independent identically distributed random error with a mean of zero 

and a variance of 
2
. 

Using a population analysis, Pj is further expanded to include every subject in the 

population as defined in Equation 17. 

),,(Pj jjXq   (17) 

Where q is a vector value function, 

  is the vector of the population PK parameters 

 Xj are the covariates that may influence Pi 

 j is the vector of independent identically distributed random error having 

means of zero and variances of 
2
.  This is a covariance matrix often referred to 

as . 

 

It is this distribution of i for all the subjects around the mean PK parameter 

that provides information on the variability of the PK parameter .  This variability is 

presented as the variance (i
2
) of .  This variance represents the inter-subject variability.  

To clarify the above, we can use a simple 1-compartment model which has CL and 

volume of central compartment (Vc) as PK parameters.  To explain an observation for a 

jth individual, such as a concentration, you have to determine the population PK 

parameters CL and Vc as well as the distance the subject‘s own PK parameter estimates 
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are from the population PK parameters.  This distance between the population and 

individual value is presented as eta (); therefore, the jth individual would have jCL and 

jVc.  Using these individual parameters for the jth individual, a concentration can be 

predicted at any given time for this particular individual.  To explain the observed 

concentration, an additional error term is required that accounts for the distance between 

the predicted concentration and the observed concentration and it is represented by 

epsilon ij.  It is the distribution of these ij that provides information on the residual 

variability.  As specified previously, this residual variability is a combination of the intra-

subject variability (inter-occasion variability in the individual PK parameter), analytical 

error and model misspecification.  Just like in an individual compartmental PK analysis, 

it is the magnitude of ij that is minimized.  However, minimization is for the population 

data and not for each individual separately. 

An appropriate population analysis not only predicts the results of the subjects 

that were analyzed but enables the user to make inferences on other populations and 

future outcomes.  Using all population PK parameters and their estimated variability, a 

typical concentration-time profile can be determined for a specific population.  It can also 

be determined how this profile can vary within individuals.  It is this variation in 

subjects‘ profiles that enable scientists to make appropriate decisions as to the 

acceptability of a compound to be developed.  If the variation is too big and too many 

subjects are expected to have sub-efficacious or toxic concentrations, then the drug may 

be judged unacceptable.  This information is crucial to regulatory agencies and 

pharmaceutical companies to ensure efficient and safe administration of a drug. 
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Compartmental pharmacokinetic analysis often uses non-linear equations to 

explain concentration-time profiles.  As these equations are non-linear, there are no 

numerical solutions to the problem.  Therefore, to provide solutions to the differential 

equations, numerous algorithms have been proposed.  Some of these include the 

Livermore Solver for Ordinary Differential equations with Automatic method switching 

for stiff and nonstiff problems (LSODA) included with ADAPT® and NONMEM® 

algorithms which are based on work from the Lawrence Livermore Laboratory and 

modified by the NONMEM Project Group.  In the latter, the user has to choose between 

stiff and nonstiff solutions.  

Different methods exist to estimate the population PK parameters and their 

variances.  In addition, new methods are being proposed in the quest to provide the most 

precise results possible.  The following sub-sections will describe some of the methods 

available to perform population analyses. 

 

1.1.3.1 Standard two-stage (STS) 

The two-stage method is so called as it proceeds in two stages.  The first step is to 

analyze all of the subjects individually.  The second step is to calculate the population PK 

parameters (mean PK parameters, their variance and residual variability) directly from 

the individual results by simply taking the arithmetic mean and variances of the 

individual results.  Using this method, no covariance matrix is obtained.  Only the 

diagonal elements of omega are computed, so it is not possible to determine if there are 

any correlations that exist between parameters.  In addition, the variability of the PK 

parameters is not a parameter estimated by the model.  Therefore, it is not possible to 
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model the variability of a PK parameter using two terms or to estimate it using a log-

normal distribution.  Another drawback with this method is that there are no standard 

errors for the variability estimates.  However, this method is easy, straightforward and 

uses techniques that are understood by most scientists. 

This method is available in many software package including both ADAPT 5®
66

 

and its predecessor, ADAPT-II®
67

.  ADAPT 5® was utilized for the STS analyses in this 

research. 

 

1.1.3.2 Mixed effect modeling approaches 

The first mixed effect modeling approach was introduced in the 1970s with the 

work of Stuart Beal and Lewis Sheiner.
51,53,60,68-71

  Most nonlinear mixed effect 

approaches use maximum likelihood method to estimate the parameters.  Different 

algorithms are available to estimate this maximum likelihood objective function and 

those used during this Ph.D. analyses are discussed hereafter. 

 

1.1.3.3 NONMEM® 

NONMEM®
72

 stands for nonlinear mixed effect model.  This was the first robust 

tool globally available for doing population analyses and has since been extensively used.  

It is often referred to as the gold standard for nonlinear mixed effect analyses and was 

demonstrated from the beginning by Sheiner and Beal to be superior to the standard two-

stage approach.
51,53,65,70,73-77

  Starting with the version IV, this tool proposed multiple 

algorithms besides the original first-order method.  This is a first-order (FO) Taylor series 
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expansion around the mean mixed effects i and i.  It linearizes the random effects in the 

PK model.  These random effects are independent normally distributed with a zero mean 

(i.e., distributed around the population value) and a variance matrix .  The algorithm 

will simultaneously obtain estimates of the population parameters , population variance 

 as well as the residual variability 
2
.  In order to obtain the most likely estimates, this 

algorithm will minimize an objective function which is the negative of twice the 

logarithm of the population likelihood as described in Equation 18. 
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Where Ci represents the first derivative estimates of the model function with respect 

to i when i equal 0 

Ei are the model predictions for yi. 

Individual results are obtained in a second step using a post hoc Bayesian analysis once 

the population parameters are estimated. 

Although this is the original NONMEM® method and is still being used, it has 

been shown to have a potential to provide biased estimates especially if the 

inter-individual variability is large.
78-81

  In addition it simplifies the PK parameter 

distribution to a normal one even when a log normal distribution is assumed in the 

equations.  Therefore, two other algorithms were implemented in NONMEM® and are 

more efficient and provide less biased estimates.  One of these is the first order 

conditional estimation (FOCE) method.  The main difference between the FO and FOCE 

methods is that FOCE makes the expansion around the individual predicted values of i 

and i and not around the population average predicted value (i.e., zero). It also does not 

simplify the PK parameter distribution to a normal one.  The other method is the 
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Laplacian method. The FOCE and Laplacian methods are both considered to be excellent 

and robust methods, but they obviously require more computing power and so the 

population analyses take longer to run and converge. 

 

1.1.3.4 Iterative two-stage (IT2S®, ITS®) 

This was a method derived from the work of Prevost and subsequently Steimer.
76

  

This approach has also been shown to be superior to the STS approach
76,82-87

 at the same 

time as it was proposed by Steimer.  The algorithm derives its results in an opposite 

manner from NONMEM®.  As the name specifies, the calculations are completed in two 

steps.  It first calculates the individual parameters for every patient.  For the initial 

iteration, prior information of the population parameters is required.  This can be 

obtained from the literature, previous studies or using the final results from STS.  

Individual PK parameters in the first iteration are determined using a maximum 

likelihood algorithm. All other iterations use a MAP Bayesian approach with a set of 

prior distribution estimates to determine the individual PK parameters.  A Bayesian 

approach has no constraints on the number of samples each subject may have. 

In the second step, population estimates for the population PK parameters, their 

variances as well as the population residual variability are determined from these newly 

calculated individual estimates.  These population values are then used as prior 

distribution estimates for a subsequent iteration.  This is repeated until the iterations have 

converged (i.e., iterations are stable and population values fluctuate minimally). 

This algorithm was first implemented in a fortran tool called IT2S® by Collins 

and Forrest and that was built using subroutines from ADAPT-II® release III 
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(1992).
82,83,88

  The latest version of ADAPT-II called ADAPT 5® now directly provides 

an iterative two-stage algorithm (ITS).  This algorithm is similar to the previous 

algorithm and functions in a similar manner.  The main differences are that unlike its 

predecessor, ITS updates the residual variability parameter estimates automatically at 

each iteration and convergence is often achieved automatically.  In the previous IT2S 

algorithm, the user had to update the variability parameters at random iterations and had 

to declare when the iterations were converged. 

 

1.1.3.5 Maximum Likelihood Expectation Maximization 

In the latest version of ADAPT-II (eg. ADAPT 5®), a maximum likelihood 

expectation maximization (MLEM) algorithm is implemented.  This algorithm was based 

on the work done by Dempster, Laird and Rubin in 1977.
89

  These authors proposed this 

algorithm to solve certain problems with maximum likelihood noted with linear mixed 

effects models.  In 1995, Schumitzky used the expectation maximization (EM) algorithm 

to solve the nonlinear mixed effects maximum likelihood estimation problem.
90

  Unlike 

FO and FOCE, this exact maximum likelihood solution to parametric population 

modeling does not require the linearization of the nonlinear equations.  Instead, 

Schumitzky suggested the use of sampling-based methods (including importance 

sampling) to calculate the required integrals and to avoid a linearization approximation.  

The EM algorithm proceeds in two steps.
91

  In the first step (estimation or E step), the 

conditional mean and covariance for each individual‘s parameters are estimated using the 

latest predicted parameter values and the observed data and Monte Carlo sampling.  

Integrals in the E-step are approximated by using a number of random samples known as 
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importance sampling, which provides an unbiased estimate of the integral.  Basically, a 

normal density distribution near the mean is taken to reflect the posterior density 

distribution which may not be normally distributed.  Then other normal density 

distribution samples are taken which are corrected by an importance sampling weight.  

The average of these samples provides an accurate estimate of the distribution curve.  

This allows population parameters to converge towards the position of exact maximum 

likelihood.  The second step (Maximization-M step) updates the population mean, 

covariance and error variance parameters in order to maximize the log-likelihood 

function in the E-step.  The new values are then reused for the subsequent iteration(s). 

The proposed importance sampling is a practical solution to the challenging 

calculations of the conditional mean and covariance matrix required by the EM 

algorithm.
92-94

  It is this EM algorithm with an importance based sampling that has been 

introduced in ADAPT 5® by Wang. 

 

1.1.3.6 Testing of the new algorithms in ADAPT 5® 

As described in Sections 1.1.3.4 and 1.1.3.5, two new algorithms have been 

implemented in the ADAPT 5® software.  They include an iterative two-stage algorithm 

(ITS) as well as a maximum likelihood expectation maximization (MLEM) algorithm.  

Different algorithms (new and old) may provide different advantages and disadvantages.  

As part of the work performed for this thesis, the new methods available in ADAPT 5® 

were tested versus STS, FOCE, and IT2S to understand their strengths and weaknesses.  

In order to confidently use the new ITS and MLEM algorithms available in ADAPT 5®, 

it was necessary to verify if they were adequate to use in a clinical setting and if they 
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provided accurate (precision and bias)
95-96

 results for population PK parameters, 

variances and residual variability.  Therefore, prior to performing compartmental 

analyses and subsequent clinical trial simulations for this Ph.D., these algorithms were 

tested to ensure they were adequate and to research when and how they would be best 

used versus other tools routinely utilized at our laboratory such as NONMEM® version 

VI and IT2S®.  This is critical to know so that the best tools are utilized in order to 

propose new ways of estimating the PKPD of drugs and optimize their development 

process.  This is the work presented in Chapter 2 (Article 1). 

During these analyses, the STS analyses were conducted using the software 

ADAPT 5®.  For these analyses, maximum likelihood was used as no prior information 

was known for the PK parameters estimated (hypothetical drugs were simulated) and this 

method is considered as the best option when prior information is inexistent.
56

  In order to 

ensure the best results, this analysis was always carried out in two steps.  The first was to 

estimate the PK parameters for each individual by fixing the residual parameters to a low 

value (approximately 5%).  The second step was to recalculate the individuals‘ PK 

parameters; however, the residual variability parameters (both additive and proportional) 

were simultaneously estimated with the PK parameters and the mean results from the first 

step was used as prior information for the second step.  Using results from the first step 

allowed a more efficient estimation of the PK parameters and lowered the chances of 

obtaining results from a local minimum.  Final parameter results were simply the mean 

and variance of the PK parameters and the mean of the residual variability obtained from 

the individuals. 
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1.1.3.7 Construction of PK models 

With the use of empirical modeling, the first step in compartmental analyses is to 

build the structural model.
97

  The characteristics of the medication as well as the 

observations collected will dictate the complexity of the model.  A simple model, such as 

a 2-compartment linear model, may be used first to explain the observations.  The 

structural model includes mean PK parameters, inter-subject variability parameters 

(variances) as well as residual variability parameters.  Then, extra parameters are added 

to the population model in an attempt to better explain the observations.  The added 

parameters can be PK parameters or different variance parameters.  The more 

complicated models are tested to determine whether the additional parameters result in an 

observable improvement in goodness-of-fit graphs and/or statistically significant 

improvement in the description of the data.  The final model chosen is the simplest model 

possible to explain the data.  The assessment of the significance of the additional 

parameters is described in the following sections. 

 

1.1.3.8 Objective function 

Objective functions in both ADAPT® and NONMEM® are minimized using 

simplex algorithms.  The lowest objective function is wanted.  In NONMEM®, the 

assessment of the statistical significance of the additional parameters is based on the 

difference between the objective function values between two hierarchical models.  In 

hierarchical or nested models, the more complex model can be reduced to the simpler 

model by making the additional terms equal 0.  In theory, a more complicated model 
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should explain the observations at least as well as a simpler model.  Therefore, to 

determine if the reduction in the objective function is significant for a more complex 

model, certain criteria are used.  Sheiner had proposed that the difference may follow a 

chi-squared distribution and a reduction in the objective function of 3.8 and 10.8 would 

therefore represent a significant difference at levels of 5% and 1%, respectively.
98

  This is 

true if the hierarchical models differ by one degree of freedom (i.e., one parameter).  If 

the model differs by more than one parameter, then the appropriate chi-squared value 

must be used.  However, this method has been criticized by many and appears to 

overestimate the inclusion of covariates in the model (eg, covariates are too easily viewed 

as significantly improving the fit).  Another test that is older and more conservative 

would be the Akaike information criterion (AIC). 

 

1.1.3.9 Akaike information criterion 

This criterion is built upon a sum of squares such as the objective function, but it 

imposes a penalty for the number of parameters included in the model.
99-100

  This penalty 

is directly related to the number of parameters used in the model.  This criterion is not 

associated with any p-values.  As with the objective function and the sum of squares, this 

criterion has to be minimized.  The AIC is calculated as described in Equation 19. 

)(*2*2 AIC qpNLL   (19) 

Where p is the number of PK parameters, q is the number of variance parameters and 

ONLL is the objective function.  Based on this formula, if a more complex model does not 

significantly lower the objective function, the AIC will be higher due to the penalty 
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imposed by the increased number of parameters.  Therefore, a model is chosen based on 

the smallest AIC value. 

 

1.1.3.10 Goodness of fit figures 

Although graphical goodness of fit is subject to individual‘s interpretation and is 

therefore subjective, they can often indicate problems with the model.  Concentration-

time profiles for the predicted versus the observed concentrations of each individual can 

be constructed, allowing the modeler to determine if there is a negative or bias trend in 

the fitting, such as a Cmax always being over or under estimated.  A second plot that can 

be completed is a plot of all observed versus predicted concentrations.  The figure should 

show a uniform spread of the results around the line of identity.  If there is a spread of 

observations that is always below or above the line of identity, then this might mean that 

the model has difficulty explaining certain concentrations.  Other figures prepared are 

residual by time plots and weighted residuals versus predicted concentrations.  These 

allow the user to determine if there is any trend in how the observations are fitted over 

time and if there are any outlier concentrations that need to be further investigated.  If 

there is a trend over time in the residuals, it may demonstrate that the PK changes over 

time due to a saturable or auto-induction process. 
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1.2. CLINICAL TRIAL SIMULATIONS 

It is interesting to note that Levy, Jelliffe, Rodman, Sheiner, D‘Argenio and others 

initially proposed advanced PK/PD analyses and nonlinear mixed effect modeling to 

improve patient care with drugs that were already commercialized.
57,69,101-112

  By the 

early 1990‘s, several scientists proposed to expand its use to the drug development field 

and Carl Peck, Thomas Ludden and other regulators in the early 1990‘s have been key in 

this regard to push the population approach at the US FDA.
73,112-118

  This eventually led 

to the development of the first US FDA guidance on population pharmacokinetics 

published in 1997 (draft) and 1999 (final).
119

  Several key players in Europe, North 

America and other countries met in the late 1990‘s to push the population approach 

within the drug development process and resulted in a book and several paper.
117-118,120-124

  

Finally a key seminal paper published by Lewis Sheiner in 1997 proposed the ―learn and 

confirm‖ paradigm within the drug development process to explain simply how modeling 

and simulations had to be done throughout the drug development process and not just 

within Phase III work.
125

  The ultimate goal of modeling as described in Section 1.1 is to 

gain better knowledge of the drug, reduce development costs as well as decrease the 

number of volunteers exposed to the drug.  This has led to the recent use of clinical trial 

simulations to optimize drug development. 

Clinical trial simulations attempt to integrate important information already 

gathered to critically assess the known assumptions about the drug as well as the 

outcomes of a study being designed.  This allows drug developers to determine the 

consequences if changes are made to the drug, the population or the study design.  

Clinical trial simulations allow the simulation of multiple different scenarios without 
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having to actually perform the studies, thereby avoiding costly clinical studies and 

unnecessarily exposing volunteers to the drug.  Recent examples of the benefits of 

clinical trial simulations have been published;
126-130

 however, the widespread use of this 

technique to improve drug development has yet to become mainstream. In most 

instances, clinical trial simulations are used to explain unexpected results or concerns 

from regulatory agencies. The consistent use of clinical trial simulations beginning in the 

early phases of development has the potential to reduce the number of studies that are 

done by the pharmaceutical industry.  The possibility to reduce the number of studies is 

very real.  For example, in the 1990s, there were on average 60 studies submitted in a 

new drug application or submission (NDA / NDS) and half of these studies were 

unnecessary as they failed to demonstrate efficacy in a statistically significant manner.  

The need to better design such studies is obvious.  One way to achieve this goal is to 

simulate the study outcome before dosing and determine if the design and number of 

subjects meet the aims of the study.  An example of a simple question that could be 

answered with clinical trial simulations is that one might wish to understand whether a 

drug could be as efficacious if administered once a day instead of twice a day and if a 

change in daily dose is required.  Using data from previous studies, a PK/PD model can 

be built to incorporate both efficacy and toxicity endpoints.  This would permit the 

developers to see if a once daily regimen could be as efficacious and if Cmax would 

attain unacceptable levels when the dose is administered as a single dose.  The number of 

simulations and the different clinical scenarios possible are unlimited and may enable 

scientists to have a better understanding of the consequences of the proposed changes.  

Once an optimal study design is found based on simulations, then an actual study could 
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be performed to confirm the expected results of the clinical trial simulations.  In order to 

have the best possible outcomes, it is important that simulations take into account what is 

known of the product and the uncertainty of the parameters.  In order to make optimal use 

of clinical trial simulations, a multi-disciplinary approach is required.  An added benefit 

is that this forces scientists from different divisions to discuss what information is 

available and what is still unknown about the drug being developed. 

The following sections will describe the different clinical phases of a drug 

development program (DDP) and set the stage for the research to show how PK/PD 

modeling and clinical trial simulations could be used throughout these phases to optimize 

the DDP.  Although modeling can be used earlier in the drug development process (pre-

clinical), this Ph.D. research focused on the use of pharmacometrics in the clinical phases 

of development because of the drug products selected.  However, we believe that for a 

new chemical entity the research shown here would need to be started directly from the 

preclinical stage. 
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1.3. CLINICAL DRUG DEVELOPMENT 

To bring a new drug to market is expensive, time consuming and inefficient.  

Currently, new drugs take more than 12 years to be developed and cost between 500 

million and 2 billion dollars.
131-132

  Part of the cost to bring a new medication to the 

market includes costs for drugs that were unsuccessful and never marketed.  In the 1980s 

and 1990s, the main reasons for drug failure were poor bioavailability, unacceptable 

pharmacokinetics from poor understanding of drug metabolism and transporters such as 

ABCB1, lack of efficacy and toxicity.  The reasons for late stage failures have since 

changed with poor PK accounting for less than 10% of failures.
12,133

  Pharmaceutical 

companies made conscious efforts to reduce drug attrition due to poor PK and have 

succeeded.  More specifically, in order to avoid bringing drugs to the clinical stage that 

did not have a chance of succeeding for PK reasons, researchers focused their efforts on 

determining the PK of a drug earlier in development.  Absorption, distribution, 

metabolism and elimination (ADME) studies are now performed in the discovery and 

pre-clinical stages of development process.  By focussing earlier research on better 

understanding the PK properties of drugs, scientists are able to predict how the drug will 

perform in the clinical stage and avoid surprises.  The net benefit is to discontinue poor 

drugs sooner and have a better understanding of the drug.  However, drugs failing in late 

clinical stages remain an important problem.  In addition to being costly for the 

pharmaceutical companies, the time and effort of scientists that are spent on drugs that 

fail could be used on other products.  The main reasons that contribute to late stage 

failure have shifted from PK to safety, toxicity and lack of efficacy.  Safety and toxicity 
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attrition rates have even increased.  In fact, even when a drug is successfully marketed, it 

might be removed from the marketplace due to safety and toxicity concerns.   

In order to reduce the number of drugs that fail in late stage, we can inspire 

ourselves from the work performed in the 1990s and early 2000s to reduce drugs that 

failed due to unacceptable PK characteristics.  Similarly, knowledge of the drug‘s 

efficacy and safety is required earlier in drug development in order to understand the true 

potential of a compound before conducting expensive multi-center Phase III studies.  We 

propose using modeling and simulations within Phase I instead of the later phases in 

order to optimize the drug development process and render it more efficient.  We believe 

that by using modeling and simulations and performing clinical trial simulations as early 

as possible, the drug‘s dose-response and dose-safety characteristics can be better 

understood.  This will lead to better designed studies, optimized dosing, fewer required 

studies, fewer patients who are exposed to unsafe or inefficient drugs and to a more 

efficient drug development process. 

The following sections will describe the different clinical phases of a drug 

development program and set the stage for this research to show how PK/PD modeling 

and clinical trial simulations could be used throughout these phases to optimize the DDP.  

Although modeling can be used earlier in the drug development process (pre-clinical), 

this research focused on the use of pharmacometrics in the clinical phases of 

development because of the drug products selected.  However, we believe that for a new 

chemical entity the research shown here would need to be started directly from the 

preclinical stage. 
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1.3.1. Phase I 

 

These studies are the first time a drug is administered to humans.  The typical 

mindset in drug development is that the purpose of studies performed in Phase I is to 

understand the tolerated doses, the adverse effects associated with increasing doses, the 

pharmacokinetics of the drug, more specifically the absorption, distribution, metabolism 

and elimination, and to gain initial knowledge of drug-exposure in humans.  However, 

efficacy needs to be a clear motivator in Phase I if we are to optimize the drug 

development process.  Any early evidence of effectiveness should be collected as this 

will increase the knowledge of the drug earlier in the process and improve clinical trial 

simulations to be performed. 

The first study dosed in humans is known as the First Time in Human study 

(FIH).
134

  Phase I studies will normally enroll a small number of volunteers.  The drug is 

more often than not administered to healthy volunteers unless the anticipated adverse 

effects of the drugs are severe or if the drug is intended to be administered for life-

threatening conditions.  An example of a drug that would not be administered to healthy 

volunteers in a Phase I study would be an anticancer drug. 

The initial drug dose administered to the volunteers in Phase I will depend on the 

information collected in the pre-clinical studies and may be chosen empirically or with 

the help of PK/PD modeling performed on the animal data collected.
135-138

  However, any 

initial dose chosen will incorporate a safety factor to avoid any serious or permanent 

adverse effects.  Therefore, studies in Phase I often incorporate a dose escalation process 

where the doses are increased in each subset of volunteers until the maximum tolerated 
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dosed is attained.  This is performed in single dose and multiple ascending dose studies in 

order to have a better understanding of the drug‘s PK.  It is in this stage, with the 

different strengths of the dose administered as well the single and multiple 

administrations, that it could be determined if a drug is linear and dose proportional.  

Other studies that might be conducted in Phase I include drug-drug interaction studies, 

food-effect studies and special population studies.  Drug-drug interaction studies will 

verify the in-vivo impact of potential inhibitors or inducers that might have been 

demonstrated in-vitro or with drugs that are likely to be co-administered with the new 

drug.  Special population studies often include a renal impaired study or a hepatic study.  

Another study that might be performed in Phase I is a radioactive study in which a small 

radioactive dose is administered in order to determine the metabolic pathways. 

The design for Phase I studies is such that a wealth of information is collected.  

Blood or plasma samples are collected from most volunteers, if not all of them, using a 

rich sampling design with blood draws collected at set times throughout the collection 

period.  Certain Phase I studies also collect other samples such as urine in order to 

determine with greater precision the pharmacokinetics of the drug.  Samples are 

measured for the parent analyte and any major active metabolites. 

To continue to later phases of development, scientists use the data collected in 

Phase I to determine if the drug had acceptable pharmacokinetic and safety profiles, if the 

expected efficacy concentrations were attained in the dose escalation studies and if the 

PK parameters show tolerable variability to avoid having volunteers with excessively 

high or low drug concentrations.  Often, the maximum tolerated dose from Phase I is 

chosen to be administered in Phase II.  This is inefficient and often leads to the selection 
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of a dose that is not optimal.  The data should be used to determine a dose-response 

relationship in order to estimate the desired exposure in the target population and to 

choose the optimal dose to be developed.  Thus, the use of PK/PD modeling is crucial in 

Phase I.  Modeling in Phase I has the potential to reduce the number of subsequent 

studies required.  Initial modeling should be developed linking drug exposure to response 

(safety and efficacy, if collected) using the different strengths of drug administered, the 

different sub-populations and some covariates such as gender, age, weight and others.  

This modeling permits a better dose selection for subsequent development of the drug. 

 

1.3.2. Phase II 

 

Phase II studies are normally conducted in patients.  Unless the drug tested 

required patients in Phase I, studies in Phase II will be the first time the drug is 

administered to patients for whom the drug is indicated.  Phase II studies are usually 

performed in a larger number of volunteers than in Phase I; however, the number of 

subjects remains limited to a maximum of a few hundred.  As Phase II studies are usually 

the first studies conducted in patients, inclusion and exclusion criteria are usually very 

strict in order to limit external factors that would influence results and render 

interpretations harder to explain.  The purposes of Phase II studies are to determine if the 

drug shows efficacy in the target population and to continue to collect safety data in a 

greater number of volunteers.  Phase II is often divided into two different sections.  A 

proof of concept (POC) study is performed in a small number of subjects and is 

considered a Phase IIa study.  Unfortunately, the POC study often consists of 
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administering the maximum tolerated dose and determining if the effect is better than the 

placebo.  This mindset should be avoided if at all possible as this will often lead to use of 

the wrong dose in subsequent studies and often lead to inacceptable toxicity.  Instead, an 

optimal dose or set of doses could be established based on the data collected from Phase I 

studies and a PK/PD dose-response model could be developed.  This would reduce 

adverse effects, maximize the possibility of success and avoid having to change the dose 

when administered in large Phase III studies.  The proof of concept study is often a 

crucial step in the drug development process and is often used to decide if the 

development of the drug should be continued.  Therefore, to increase drug development 

efficacy, it is imperative that the interpretation of the results at this step is done with the 

utmost precision.  The purpose of Phase IIb studies is to repeat what was determined in 

the Phase IIa study with a larger set of volunteers.  This study will also collect valuable 

efficacy and safety data. 

In Phase IIa studies, there might still be a relatively large number of PK samples 

collected.  However, the focus will be on the active analyte which is usually collected in 

blood or plasma.  In addition to these PK samples, multiple efficacy measurements may 

be taken in order to construct a proper PK/PD model.  Efficacy measurements can be 

taken directly from laboratory results (such as bacteria growth to test if an antibiotic is 

really effective or not) or they can be surrogate biomarkers when discussing long term 

diseases such as the LDL for cholesterol.  The use of these PK and PD samples are of 

great help to build the structural PK/PD model.  Phase IIb studies will usually have less 

PK samples collected, often using a sparse sampling design.  However, PD data should 
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be collected often if the drug acts quickly and has a short duration of action.  If changes 

in PD data are expected to be slow, then data can be collected more sporadically. 

Prior to advancing to the next phase of development, scientists will use all of the 

data collected in Phases I and II.  At this stage, the objective is to determine if the drug 

should go to Phase III where studies are expensive to conduct.  If the drug is being 

developed for a new indication, it has to be safe and efficacious.  However, if the drug is 

for an indication where there is already an acceptable treatment, then the new drug has to 

not only be safe and efficacious but also has to have an advantage over drugs already 

available.  Modeling will help understand the potential of the drug at this stage and 

determine if Phase III studies are warranted.  Data from Phase I and Phase II can be 

combined to increase the available data.  At this stage, modeling can be performed to 

confirm results from the Phase I model and refine this model based on the collected data 

from Phase II.  Ultimately, the objective is to determine the optimal dose for Phase III.  

Ideally, this dose will provide maximal efficacy while reducing expected adverse effects.  

For a drug competing with already accepted treatments, clinical trial simulations can 

determine if it is superior to the accepted treatments and if development is worth 

continuing. 
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1.3.3. Phase III 

 

Phase III studies are pivotal for submission to regulatory agencies.  The purpose 

of the Phase III studies is to prove that the drug is safe and efficacious in the target 

population.  They usually consist of two studies performed at multiple clinical sites and 

include many patients, often in the thousands.  Inclusion and exclusion criteria are often 

less stringent than Phase II studies which permits the drug to be administered under 

conditions that have not been tested until this phase such as patients with other conditions 

or diseases, and patients taking other drugs which could influence the PK of the drug 

being tested.  The drug will most often be administered over a long period of time and 

adherence to the regimen is often not perfect. 

Safety will be judged based on the drug‘s intended indication and different safety 

profiles will be acceptable depending on the benefits of the drug.  If a drug is already on 

the market for the same indication, then the pivotal Phase III efficacy study will include 

the approved marketed drug.  This is done in order to determine if the new drug is 

superior, has a better safety profile or is as safe and efficacious but with something novel 

such as a different route of administration (eg. oral formulation instead of a suppository).  

If no drug exists for the targeted indication, then the Phase III studies will contain a 

placebo as a control for the interpretation of the results.  Typically, the drug used in Phase 

III trials will be the formulation that will be marketed.  Information such as precautions 

that should be taken, contraindications and adverse effect frequency will be collected 

during Phase III studies and used for the labeling. 
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For these studies, it is recommended to still collect sparse blood samples and PD 

variables.  This data may be useful to support the registration or help explain Phase III 

results that might differ from the previous phases.  The cost of these studies in patients is 

extremely high and the cost of sparse sampling is minimal compared to the wealth of 

information it can provide, especially if the regulatory agencies demand explanation of 

some results.  Contrary to the previous phases, the data collected in Phase III will be very 

sparse, will not be identical between subjects and often have a greater variability since 

the studies are being carried out in different sites with different personnel.  In addition, 

the population being studied is less homogeneous. 

The focus of modeling after Phase III serves a slightly different purpose than the 

modeling performed after Phases I and II.  The main reason for modeling at this stage 

will be to confirm results and answer lingering questions.  It will often bridge results 

from the different phases of development to show consistency between results.  It will 

use the different covariates collected to establish possible dose adjustments for sub-

populations.  In addition, modeling and simulation can be used to respond to regulatory 

agencies‘ concerns that they might express over some results.  For instance, they can be 

used to explain results that may at first appear unexpected. 

 

1.3.4. Phase IV 

 

If a Phase IV study is required, it occurs once the drug has been accepted by 

regulatory agencies and is marketed.  Often, these studies are demanded by the regulatory 

agencies in order to improve the drug‘s safety profile, explore the treatment of other 
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conditions, confirm or add to the label claims or even determine its effect in special 

populations such as pediatrics.  No matter how many volunteers and patients receive the 

drug during its development, this can never compare to the number of people who will 

take the drug once it is marketed.  In addition, for drugs intended for chronic use, the 

effects of long time use are often unknown before a drug is available on the market.  Rare 

complications or adverse events of the drug such as those that occur once in every 10000 

or 100000 patients (ex: terfenadine, celecoxib or thioridazine) cannot be detected during 

the development process.  The same can be true of carcinogenic products where effects 

can take many years to manifest.  These will be detected with the everyday use of the 

medication in the population at large.  These rare or long term use effects may change the 

risk/benefit ratio of a drug and regulatory agencies may need to determine if the drug is 

still acceptable for its marketed use. 

Phase III study designs are usually controlled, randomized and double-blinded.  

However, designs for Phase IV studies will depend on the purpose of the study.  It is 

possible to have a similar design as a Phase III study.  However, other study designs may 

include a historical retrospective design, a longitudinal observational design, the use of a 

large computerized database, drug-drug interaction study, etc.  Samples may or may not 

be collected depending on the actual design of the study.  The application of modeling 

and simulation in Phase IV is not as well documented as with other phases of 

development. 
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1.3.5. Generic Drug Development 

 

A generic drug product is a drug which is considered similar or identical to the 

brand (reference) product.  A generic drug must contain the same active ingredient(s) as 

the original formulation.  Generally, a generic drug is considered therapeutically 

equivalent to the original formulation if it has the same active ingredient(s), strength, 

dosage form, route of administration, quality, performance characteristics and therapeutic 

indications.  Generic products can only be made available to the public once the patents 

of the original developer have expired.  When generic products become available, the 

market competition often leads to substantially lower prices for both the original brand 

name product and the generic forms. 

In order to meet the criteria established to consider  therapeutic equivalence, most 

generic drug manufacturers will perform a bioequivalence study.  According to the FDA, 

bioequivalence is ―the absence of a significant difference in the rate and extent to which 

the active ingredient or active moiety in pharmaceutical equivalents or pharmaceutical 

alternatives becomes available at the site of drug action when administered at the same 

molar dose under similar conditions in an appropriately designed study‖.
135

  Based on this 

definition, the relative bioavailability of the two compounds has to be similar in terms of 

rate and extent of exposure.  Therefore, the two products are compared in terms of 

formulation performance.  If the release and relative bioavailability of two products are 

equivalent, then the concentration-time profile between the two products should be 

equivalent.  The focus of bioequivalence is to determine if two compounds have similar 

concentration-time profiles because if two products have similar systemic profiles, it is 
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assumed that they will have similar concentrations reaching the site of action either for 

efficacy or for adverse effects.  It is believed that the greatest difference that can exist 

between two different formulations of the same active ingredient rests on how it is 

absorbed.  The difference does not arise from the actual active ingredient as the two 

formulations are supposed to have very similar ingredients and in-vitro dissolution 

profiles.  However, the two formulations will have different non-active ingredients which 

will influence the in-vivo release of the active ingredient and absorption parameters.  The 

inter-occasion variability in the elimination process of a volunteer is considered 

negligible over short periods of time (i.e., when the medical status of the volunteer does 

not change). 

The most common study design to assess bioequivalence is a 2-way crossover 

study in which the parent drug concentrations are measured systemically in a biological 

fluid such as plasma or blood.  Crossover studies are not always feasible, so it is possible 

that a parallel study is required to prove bioequivalence.  However, a crossover study 

design is preferred as the two different formulations are administered to the same subjects 

after a suitable washout period.  The highest formulated dose is normally used to perform 

bioequivalence studies.  Unless there is an ethical issue, healthy volunteers are enrolled in 

these studies.  Following drug administration, a concentration versus time curve is 

obtained for the two formulations.  Typically, in a bioequivalence study, a 

noncompartmental approach is used to determine the PK parameters.  The major 

parameters of interest are the observed Cmax, AUC0-t and AUCinf.  These parameters 

are obtained directly from the concentration versus time curve for each formulation as 

depicted in Figure II.  Other parameters of interest are Tmax, Kel and half-life.  
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Bioequivalence is declared to be met most of the time only when Cmax and AUC 

parameters meet the pre-defined criteria. 

 

Figure II: Noncompartmental PK parameter determination 

 

Bioequivalence studies are not only performed for generic compounds.  Many 

bioequivalence studies are required by innovator companies in order to prove equivalence 

between formulations undergoing changes.  For example, the formulation that is 

marketed by an innovator company is rarely, if ever, the same as the formulation that was 

used with the first studies in Phase I.  In order to bridge the information gap between 

studies, bioequivalence studies are performed on the different formulations administered 

during the development process.  In addition, any significant changes in production 

procedures or the relocation of a manufacturing plant entails bioequivalence studies.  

Regulatory agencies have to be assured that these changes do not affect the PK 

parameters of the drug.  This is true for both innovator and generic companies. 

Although bioequivalence based on systemic concentrations is always preferred, 

there are instances where this is not possible.  One example is when systemic 
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concentrations of the parent or active compound cannot be measured because a sensitive 

analytical method does not exist.  Another example is studies in which doses are 

administered locally, providing local responses, and systemic concentrations are not 

reflective of the concentrations at the site of action.  These include studies involving 

topical cream for dermatological diseases, nasal sprays used for local response to 

allergies, ophthalmic drugs or even oral drugs not absorbed but acting locally in the 

gastrointestinal tract.  Therefore, in these instances, the best approach to determine 

bioequivalence is to use pharmacodynamic endpoints or clinical endpoints.  The choice 

of endpoints is crucial in demonstrating bioequivalence and should reflect the label 

indication of the product.  These studies are usually blinded, may contain a placebo 

group, and are more variable than comparative studies based on systemic concentrations, 

which is often why more subjects are enrolled.  In these studies, the dose which is chosen 

is important.  For example, the onset, duration and strength of the PD response depend on 

the dose that is administered.  In many, if not most instances, the response will follow a 

maximum effect (Emax) curve.  The dose that is selected has to be in the linear portion of 

the Emax curve.  Usually, the dose providing 50% of maximal response (ED50) is the best 

choice and should be used in the study.  That way, if the formulations are not 

bioequivalent, a significant change in response between the two formulations can be 

measured and distinguished.  If doses are chosen in the upper region of the Emax curve, 

any difference in dose between formulations would only give rise to a small change in 

response.  Therefore, it becomes practically impossible to distinguish two formulations 

that are not bioequivalent and the PD study is inappropriate.  This is depicted in Figure 

III.  Obviously, in order to perform such a study, knowledge of the Emax model for a 
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particular drug has to be known.  If not, then using a low, middle and high dose of the 

drug plus a placebo should be used to build the Emax model and test bioequivalence.  

This approach is one that is recommended by the regulatory agencies (FDA) and has been 

used successfully on numerous occasions.
139-142
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Figure III: Pharmacodynamic response versus dose on a log scale 
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In order to demonstrate bioequivalence, statistical tests have to be performed.  

These tests aim to show that the rate and extent of exposure for the compared 

formulations are equivalent.  In a typical 2-way crossover, two-treatment study design, 

the statistical test performed is called a two one-sided test which was proposed by 

Schuirmann in the 1980s.
143

  Basically, the average bioequivalence of the two products 

will be compared to show that the test formulation‘s rate and extent of absorption is 

equivalent with respect to the reference formulation.  In order to be able to perform such 

a test, an acceptable equivalence limit has to be defined.  The consensus is that for most 

drugs, a 20% difference in drug concentrations does not produce a significant change in 

clinical effects.  Therefore, an analysis of variance (ANOVA) is performed on the 

test/reference ratio of the average Cmax and AUC parameters.  The 90% confidence 

intervals (CI) for the ratios must be within 20%.  Previously, non-transformed data was 

used and the ratio had to be between 80 and 120%.  However, since the 1990s, the log-

transformed Cmax and AUC data have been used and the 90% CI must be within 80 and 

125%.  This means that the full range of the 90% CI has to be within 80-125% in order 

for two products to be declared bioequivalent.  As the 90% CI are constructed around the 

geometric mean ratio, the test to reference ratio will have to be close to 100% for the test 

formulation to be bioequivalent to the reference one using a ―manageable‖ number of 

subjects.  In a crossover study design, the 90% confidence intervals are dependent on the 

intra-subject variability and the range of the interval reflects the within-subject 

variability.  If a parallel study design is used, the CI reflects the between-subject 

variability which will always be greater than within-subject variability.  Therefore, 
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parallel studies will always require more subjects than a crossover design study.  Figure 

IV shows the different ways in which a study can pass or fail. 

 

Figure IV: Possible bioequivalence results 

 

Data are log-transformed prior to performing the ANOVA in order to follow a 

normal distribution, an important assumption for the statistical tests.  The 90% CI are 

used as this allows a 5% alpha error on both sides of the intervals.  When designing 

studies, the Type I error is set at 5% which means that there is a 5% chance that two 

formulations will be declared bioequivalent when in reality they are not.  Type II error, 

which can be translated as the chance that two formulations are not declared 
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bioequivalent when they really are, is set by the manufacturer although it needs to be a 

maximum of 20% (1- 80% power).  There is a price to pay to lower the Type II error.  

The lower a manufacturer sets this error, the greater the number of subjects required to 

perform the study.  In other words, in order to decrease the risk of failing a study, a 

greater number of subjects is required to run the study. 

Bioequivalence testing is the opposite of the classical statistical test to show that 

there are no differences.  In classical statistics, H0 is 1 = 2 and HA is 1 ≠ 2.  For 

example, if you want to prove that a drug is better than the placebo, this would be the 

statistical alternate hypothesis to the null hypothesis of the study.  In such a study design, 

enough subjects would be included in the study to try and prove a difference.  Therefore, 

in classical statistics one aims to show that two products are different.  This is 

accomplished by designing the study to prove that the two compounds are the same and if 

this hypothesis is rejected, the alternative hypothesis is that the two products are 

different.  However, in bioequivalence testing, this would not be acceptable.  The aim of 

the study is not to prove that the two products are the same but that the two products do 

not differ significantly one from the other.  If the classical hypothesis testing were to be 

used, it would be easy to show two products are similar.  All one would have to do is 

make sure there are insufficient subjects (i.e., power) to show a difference and it would 

be concluded that the two products are bioequivalent.  Thus, in a bioequivalence study, 

the hypothesis testing is done differently where H0 is 1 ≠ 2 and HA is 1 = 2.  

Therefore, enough subjects must be included in the study to show that the two products 

are equivalent. 
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Summary 

There is an urgent need to improve the drug development process.  We believe 

that Clinical trial simulations and advanced modeling and simulations are one way to 

respond to this need.  The potential would be there to prepare better study designs, lower 

the number of unnecessary studies and individuals receiving the drug, better predict study 

outcomes and improve knowledge of the drug being tested.  This should be true for both 

innovator and generic drug compounds.  The objective of this thesis is therefore to 

propose ways to hopefully improve the development success of drugs by using advanced 

modeling and simulation techniques.  To this end, three articles are presented.  The first 

presents the results of the assessment of new tools available to perform population 

compartmental PK analyses, which are the foundation of proper PK/PD characterization 

of drugs and a better understanding of their safety and efficacy.  The second article 

presents a novel technique to ensure that the PK of drugs is correctly characterized in 

Phase I studies by focusing on the better characterization of the terminal half life, a key 

parameter used to derive other key parameters such as the total exposure (AUCinf) of a 

drug.  Without the correct characterization of the PK of a drug, its development process 

cannot be optimized.  The last article provides a concrete example of how modeling and 

simulations can be used to simulate clinical trials and how we proposed and used it 

successfully to improve and optimize the development process of an innovator drug. 
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1. ARTICLE #1 

 

 

 

 

Performance of different population pharmacokinetic algorithms using 

clinical simulations 
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1.1. INTRODUCTION 

 

The main objective for the first part of this research project was to determine if 

the new algorithms available in ADAPT 5® are adequate for population compartmental 

analyses.  Compartmental population analysis has been evolving since its conception over 

40 years ago.  New tools are available and researchers require the knowledge of their 

strengths and weaknesses in order to understand when their use is appropriate. 

Population analyses are useful as they not only permit to predict the individual‘s 

data but allow quantification of the inter-individual and intra-individual variability.  This 

information is crucial to predict results for future subjects receiving the drug as well as 

predicting outcomes of studies.  However, an improper estimation of the variability could 

lead to inaccurate predictions and wrong outcome conclusions.  It was therefore 

important to test if the two new methods available in ADAPT 5® (ITS and MLEM) 

would provide more accurate results of the variability estimates than the algorithms often 

used in the past.  A better accuracy in these estimates would provide greater confidence 

in predictions. 

The two new ADAPT 5® non-linear mixed effect algorithms are described in 

Sections 1.1.3.4 and 1.1.3.5 on pages 27-29.  The following article compared these 

methods to established ones.  They are first compared to a standard two-stage method as 

this method is considered to be less precise in the estimates of variability parameters than 

mixed effect methods.  Therefore, these new methods are expected to provide better 

results than the STS method.  They are also compared to an iterative two-stage method 

(IT2S) available in IT2S® and FOCE in NONMEM®.  The iterative two stage algorithm 
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available in ADAPT 5® is expected to perform better than the previous IT2S method due 

to the changes in the residual variability calculation as discussed on page 28 of Section 

1.1.3.4. Unlike FOCE which approximates the maximum likelihood estimates, the new 

MLEM algorithm offers an exact estimation of the maximum likelihood estimates.  

Although similar MLEM algorithms already exist, these were dependent on Monte Carlo 

parametric maximization. MLEM algorithms based on importance sampling like the one 

offered in ADAPT 5® has only been offered recently.  It is unclear if this method would 

perform differently than the FOCE method which is known to be an excellent population 

algorithm. 

Thus, the following article presents the results of the comparisons between the 

previously described algorithms. 
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Abstract 

 

Background There has been an increased focus on population pharmacokinetics (PK) by 

pharmaceutical companies since the FDA documented the essential need to improve the 

drug development process in their ―Critical Path paper‖. The increased interest in 

population PK analyses has given rise to additional algorithms to perform these analyses. 

Objectives The main purpose of this exercise was to compare the new algorithms 

Iterative Two Stage (ITS) and Maximum Likelihood Expectation Maximization (MLEM) 

available in ADAPT 5® with other methods established in the industry. A secondary 

purpose was to determine if the results were impacted when reducing the number of 

samples taken in the expectation maximization step of the MLEM algorithm. 

Methods A total of 29 clinical trials were simulated using different types of drug 

administration, number of subjects, number of samples per subject and number of PK 

parameters. Drug concentrations were simulated in plasma or plasma and urine. Using the 

simulated concentrations, different algorithms were used to fit the data and estimated 

parameters were compared to the true values. The algorithms ITS and MLEM were 

compared to Standard-Two-Stage (STS) analyses and to other nonlinear mixed effect 

modeling approaches including Iterative-2-Stage (IT2S) method in the IT2S® package 

and First Order Conditional Estimate (FOCE) method in NONMEM Version VI®. 

Precision and bias in the population PK parameters and their variances as well as the 

individual PK parameter estimates were used to compare the different methods. The 

scientist performing the fitting was blinded to the true values. 

Results Population PK parameters were well estimated and bias was low for all nonlinear 

mixed effect modeling approaches. These approaches were superior to the STS analyses.  
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The MLEM algorithm was better than IT2S and ITS to predict the PK and variability 

parameters. Residual variability was better estimated using MLEM and FOCE. A 

difference in the estimation of the variance exists between FOCE and the other methods. 

Variances estimated with FOCE often had shrinkage issues while MLEM in ADAPT 5® 

had practically no shrinkage problems. Using MLEM, a reduction from 3000 to 1000 

samples in the expectation maximization (EM) step had no impact on the results. 

Conclusion The new algorithm MLEM in ADAPT 5® was consistently better than IT2S 

and ITS in its prediction of PK parameters, their variances as well as the residual 

variability. It was comparable to the FOCE method available in NONMEM with fewer 

shrinkage issues in the estimation of the variances. The number of samples used in the 

EM step with MLEM did not influence the results. 
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Introduction 

 

Pharmacokinetic (PK) modeling and simulations have been part of drug 

development for decades.
1
 However, it is only recently that its use has become 

widespread in an attempt to improve the process and reduce the cost associated with 

bringing a new drug to market. Two papers have helped bring a conscious effort to 

improve and strengthen model-based drug development. The first, by Sheiner
2
, discussed 

the use of multiple cycles of predictive and confirmatory PK modeling (learn and 

confirm) throughout the drug program while the second, a ―Critical Path paper‖ 

published by the Food and Drug Administration (FDA)
3
, emphasized the importance of 

improving the process in order to expedite the development of new drugs and reduce 

associated costs. The consequence has been to increase the use of population PK analyses 

over the years where practically every new drug submitted to the FDA has population PK 

analyses included in the submission.
4
 The increased use of population PK analyses has 

given rise to new tools and algorithms to perform these analyses. In order to make the 

best use of these new algorithms, one has to better understand their strengths and 

limitations. 

One new tool that was made available in 2009 was ADAPT 5®.
5
 This is an 

updated version of the ADAPT-II® software created by the Biomedical Simulations 

Resource (BMSR) at the University of Southern California. Within this software, two 

new nonlinear mixed effect algorithms were implemented. The first is an iterative two-

stage (ITS) algorithm and the second is a maximum likelihood expectation maximization 

(MLEM) algorithm. 
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Objectives 

The main purpose of this exercise was to compare the new algorithms ITS and 

MLEM available in ADAPT 5® with other methods established in the industry, such as 

the standard two-stage (STS), the iterative two-stage (IT2S) in the IT2S® program
6
 and 

the First Order Conditional Estimate (FOCE) in NONMEM version VI®.
7
 Different 

study designs were used to determine if any of the algorithms performed differently 

under varying conditions. A secondary purpose was to determine if the results were 

impacted when reducing the number of samples taken in the expectation maximization 

step of the MLEM algorithm of ADAPT 5®. 

 

Hypotheses 

Based on our previous work with all of these methods, it was hypothesized that 

the new available algorithms in ADAPT 5® would be better than STS and IT2S. We 

believed that ITS would be better than IT2S for population PK parameters, variances and 

residual variability because residual variability parameters with ITS are updated 

automatically with every population iteration steps whereas with IT2S they are updated 

manually by the scientist at random iterations determined by the modeler. Based on the 

literature and our previous experience, it was expected that MLEM would be a good 

alternative to the FOCE method. 
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Methods 

Algorithms 

The new ADAPT 5® algorithms were compared against different approaches of 

obtaining population parameters. It was compared to STS, IT2S and FOCE methods. 

The first approach used as a reference was the STS approach. In this approach, 

PK parameters as well as the unexplained variability (residual variability) are determined 

for each subject individually and the population values are directly obtained from the 

individual results by simply taking the mean and variances of the individual results. This 

method served as a control as it was expected that mixed effect population analyses 

would procure more precise and less biased results. Indeed, it has been already 

documented by many that a mixed effect population analysis is superior to STS.
8-13

 The 

individual analyses methods implemented in ADAPT 5® are identical to the ones found 

in the previous version, ADAPT-II® release IV. Some of the important new features in 

ADAPT 5® are the population algorithms and the automation of the creation of tables 

listing the STS results. 

The first new algorithm tested from ADAPT 5® was ITS. This iterative two-stage 

algorithm is a modification of the algorithm as implemented in IT2S®. This approach is 

based on the work done by Prevost and Steimer and implemented by Collins and Forrest 

in IT2S® program.
6,14

 In both ITS and IT2S, the first iteration uses a standard STS 

approach as previously described. However, multiple individual and population iterations 

are performed after this first iteration using a maximum a posteriori (MAP) analysis. 

More specifically, the average PK parameters and their variances from the previous 

iteration are used as new prior information in a subsequent iteration. These updated 
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iterations continue until stable population results are obtained and convergence is 

achieved. The main difference between the two algorithms is how the residual variability 

is obtained. In the previous IT2S® program, the residual variability(ies) was(were) 

updated periodically by the user until it was(were) found to be stable. In contrast to the 

IT2S analyses, the ITS algorithm in ADAPT 5® updates the residual variability 

parameters automatically at every population iteration using maximum likelihood. In 

addition, ITS stops its iterations (i.e., converges) when all subjects‘ results are converged 

and no additional iterations are required whereas the user had to declare convergence 

manually in IT2S®. 

The second new algorithm available in ADAPT 5® is a new MLEM approach. A 

MLEM algorithm was first proposed by Schumitzky and Walker in the mid 1990s
15

 

based on work published by Dempster, Laird and Rubin in the 1970s.
16

 Unlike other 

parametric algorithm methods such as FOCE in NONMEM® which use an approximate 

maximum likelihood to solve the nonlinear problem, MLEM uses an exact maximum 

likelihood solution. For all methods, maximum likelihood (ML) estimates model 

parameters that are most likely to explain the observed data. In the MLEM algorithm, ML 

is combined with an expectation maximization (EM) algorithm. The EM algorithm 

consists of two steps, the E-step and the M-step. In the E-step, parameter variables are 

estimated using the latest predicted parameter values and the observed data. In the M-

step, parameter values are updated in order to maximize the log-likelihood function in the 

E-step. These new values are then reused for the subsequent iteration. To avoid a 

linearization approximation, an importance sampling-based estimation is proposed. 

Integrals in the E-step are approximated by using a number of random samples known as 
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importance sampling, which provides an unbiased estimate of the integral. In ADAPT 

5®, the number of random samples can be set from 1000 to 3000. Similarly to the IT2S 

algorithm, convergence using this algorithm in ADAPT 5® has to be determined by the 

user. 

Finally, the last mixed effect algorithm evaluated was the FOCE algorithm. 

NONMEM® and its available algorithms are based on the work by Beal and Sheiner.
7
 

FOCE uses a different approach than the previous algorithms discussed. Unlike the 

previous approaches, the subject‘s individual results are obtained in a post hoc step using 

a MAP-Bayesian algorithm once the population parameter values are obtained. In order 

to obtain these population values, all individual data are simultaneously fitted. An 

approximate maximum likelihood method is employed and FOCE uses a first-order 

Taylor expansion of the nonlinear model around the variance estimators (known as  in 

NONMEM®). 

 

Simulation of different studies 

To replicate the different types of clinical data one typically has to analyze, a total 

of 29 studies were simulated. These simulated studies varied in the number of subjects 

from low to high (n = 6 to 200), different sampling strategy (sparse vs. rich), route of 

drug administration (oral and intravenous), number of compartments to describe the PK 

(1, 2 and 3), and the matrix in which the concentrations were simulated (plasma with or 

without urine). For simplicity purposes, population PK parameters and their variances 

were assumed to be normally distributed. The simulated variances corresponded to an 
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inter-individual coefficient of variation (CV%) for PK parameters ranging from 7 to 

250%. 

Studies with sparse and rich sampling were simulated. When there were fewer 

samples than the number of parameters to be estimated, the sampling was considered to 

be sparse. These studies contained between 2 and 5 plasma samples and between 2 and 3 

urine samples. This corresponded to a ratio of concentrations to parameters of 0.6 to 0.9. 

Sparse sampling studies either had a fixed sampling scheme for each subject or different 

collection time points for the subjects. In either case, samples were collected so that all 

phases of the PK profile could be characterized. Simulated studies having a rich sampling 

had a ratio of concentrations to parameters ranging between 1.6 and 5.7. Again for 

simplicity purposes, absorption and elimination followed first order linear processes. 

Table 1 summarizes the different study designs used for the analyses.  

Simulations were performed by an independent scientist who did not participate 

in the fitting of the data.  The studies were simulated using ADAPT-II® release IV. 

Concentrations were directly simulated using a known residual variability that was 

different for each study. All residual errors were simulated using a proportional and 

additive error model. 

 

Fitting of the simulated data 

The scientist performing the fitting of the data was blinded to the true values of 

the parameters, however was informed of the structural model and the distribution of the 

PK parameters (i.e., normal distribution). In addition, a proportional and additive error 
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model was used to estimate all residual variabilities. This was done to avoid comparing 

results obtained from different structural models. 

The first step in the fitting process was to obtain results using an STS approach 

with ADAPT 5®. No prior knowledge of the parameter values was provided. Therefore, 

in order to obtain the best STS estimations, the analysis was performed in two steps. The 

first was to set the priors of the PK parameters to 1 and fix the residual variability to a 

small number such as 5% and estimate the PK parameters. The second step was to use the 

median results from the first step as priors for the second STS analysis. In this second 

step, the residual variability was not fixed. Final parameter results were simply the mean 

and variance of the PK parameters and the mean of the residual variability obtained from 

the individuals. Results from the STS analyses were then used as prior information for all 

mixed effect analyses. 

For all IT2S analyses, the proportional and additive components of the residual 

variability were updated with maximum likelihood at Iterations 10, 30, 60, 100 and 150. 

The residual variability parameters were updated automatically in all other algorithms. 

In the work conducted for this exercise, results from the IT2S and MLEM 

analyses were considered converged when population estimates varied by no more than 

1% for at least 200 consecutive population iterations. From the iterations where estimates 

varied less than 1%, the optimal iteration was the iteration representing the median 

estimates of these converged iterations. 

For MLEM analyses, the maximum number of samples was used, which was 

3000. As a secondary objective, the MLEM analyses were redone with the number of 
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samples set to 1000 to determine the impact on the PK results when reducing the number 

of samples taken in the expectation maximization step. 

For each simulated study, FOCE was permitted to converge and results were only 

used if optimization was concluded successfully with significant digits being greater than 

3. If FOCE was not able to converge, then prior parameter values were modified first by 

using the median STS values instead of the average STS values, then by increasing the 

residual variability and then using the FO algorithm to obtain different population priors. 

 

Precision and Bias 

Algorithms were compared based on their estimates of population PK parameters, 

population PK variances, individual PK parameters and residual variability. The true 

values for these estimations were determined a priori by an independent scientist, as 

previously described. For each simulated study, an overall precision and bias of the 

population PK parameter estimates with respect to the true values was assessed using the 

following formulas: 
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where i is the i
th

 population PK parameter estimate and n is the total number of 

population PK parameters in a study. Overall precision and bias for the population PK 

variances, plasma residual variability and urine residual variability were estimated in the 

same manner. 
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Similarly, in each study an overall precision and bias of the individual PK 

parameter estimates was calculated with respect to the true values. However, the median 

was used instead of the mean as the mean values were occasionally inflated by the 

difficulties in estimating some individual values. This was true for all algorithms. For the 

remainder of the text, the median or mean precision and bias will be referred to as 

precision and bias. 

 

Variance shrinkage 

It has been reported in the literature that variances may be underestimated during 

the modeling process. Underestimated variances have been described in detail by 

Karlsson.
17

 This issue has been labeled as -shrinkage (sh). The author proposed a 

formula in order to determine which parameters have too small of a variance associated 

with them. The formula is presented below. 





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1s EBESD

h   

In this formula, SD(EBE) is the standard deviation of the individual estimates of  for 

each parameter and  is the estimate of the standard deviation of the estimated 

population variance. A shrinkage value close to zero corresponds to minimal shrinkage 

while a value close to 1 corresponds to severe shrinkage. As these were simulated studies, 

the true variances were known and the exact percentage by which a variance was 

underestimated were also calculated. For the purposes of this paper, a severely 

underestimated variance was defined as a percentage bias value between -95 and -100%. 
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Results 

Bias 

Mean and median biases for each of the different algorithms are presented in 

Table 2. The median bias for the population PK parameters, their variances as well as 

individual PK parameters estimates were all close to zero. 

 

Precision 

Mean and median precision values are also presented in Table 2 for the 

population PK parameters, their variances, individual PK parameters estimates as well as 

the residual variability for plasma and urine. To better understand the different 

algorithms‘ overall precision results, box plots are presented showing the 25
th

, 50
th

, 75
th

 

and the 95
th

 percentiles of the precision. These precision results are discussed in details in 

the following subsections. 

 

Population PK Parameters Estimates 

Of all parameters estimated, the population PK parameters were the parameters 

that were most precisely estimated by all algorithms. Figure 1A represents the box plots 

for the mean precision in PK parameters of the different studies for each of the 

algorithms. The 50
th

 percentile of the mean precision was 9 and 10% for FOCE and 

MLEM, respectively. These methods were followed by the ITS, IT2S and STS methods 

at 14, 22 and 36%, respectively. When looking at the dispersion of the full box plot, both 

FOCE and MLEM had smaller ranges than the rest of the methods. STS was the least 

precise method. 
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Variance Estimates  

Figure 1B represents the box plots for the mean precision in variance estimates of 

the different studies for each algorithm. These parameters were not as precisely estimated 

as the population PK parameters. The results varied greatly from one study to the next as 

well as from one algorithm to the other. However, all mixed effect modeling fared better 

at estimating the variances than the STS method. Again, FOCE and MLEM algorithms 

were better at estimating the population variances with the 50
th

 percentile of the mean 

precision being 76 and 208% respectively. These methods were followed by IT2S, ITS 

and STS methods at 557, 580 and 7064%, respectively. However, if the box plot was 

compared as a whole and not just the 50
th

 percentile, FOCE and MLEM fared better than 

the other methods. In addition, ITS had less variable estimates as a whole than IT2S. 

In the 29 simulated studies that were analyzed, a total of 158 variances for PK 

parameters were estimated. Of these 158 estimated variances, the FOCE algorithm 

produced a severely underestimated variance in 38 instances or for 24% of the 

parameters. In contrast, the MLEM algorithm only had five instances of a severely 

underestimated variance corresponding to 3% of the parameters. More importantly, of the 

29 studies that were simulated and fitted, the FOCE method severely underestimated the 

variance for either the elimination clearance or the volume of the central compartment or 

both in 9 studies. The MLEM algorithm never severely underestimated the variances of 

these parameters. 

Applying the shrinkage formula proposed by Karlsson to the results of our 29 

studies revealed that 28 of the 38 variance parameters that had a bias between -95 and -

100% had a shrinkage value of 0.95 and greater. All ten other severely underestimated 
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variances had a shrinkage value > 0.9. None of the MLEM estimated values had a 

shrinkage value > 0.95. In fact, of the 158 variances estimated with MLEM, only 13 sh 

values were greater than 0.5 with almost half of these coming from 1 study while FOCE 

had 70 estimated variances with a sh value above 0.5. 

 

Residual Variability 

Figure 1C and 1D represent the box plots for the mean precision in plasma and 

urine residual variability. The precision in estimating the true residual variability for 

plasma and urine varied depending on the algorithm chosen. The best algorithm in 

determining the residual variability was FOCE with the 50
th

 percentile of the mean 

precision being 5 and 10% for plasma and urine, respectively. This was closely followed 

by the MLEM algorithm which had a 50
th

 percentile of 9 and 15% for plasma and urine, 

respectively. The width of the boxes was very similar for FOCE and MLEM concerning 

the plasma residual variability while the precision for urine was slightly better with 

FOCE. All three other methods fared poorly against these two methods. The 50
th

 

percentile for plasma and urine were 11 and 33%, 12 and 30% and 16 and 38% for IT2S, 

ITS and STS, respectively. Looking at the whole box plot, ITS did not fare any better 

than the previous IT2S algorithm nor the STS method. 

 

Individual PK Parameter Estimates 

Box plots of the precision for the individual estimates can be found in Figure 2. 

The 50
th

 percentile of the median precision was 9 and 10% for FOCE and MLEM, 

respectively. These methods were followed by the ITS, IT2S and STS methods at 12, 19 
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and 24%, respectively. When looking at the dispersion of the full box plot, both FOCE 

and MLEM had a smaller range than the rest of the methods. The others were all very 

similar. 

In order to determine if certain methods performed better than others under 

different conditions, other graphs were created to assess the precision in individual PK 

estimates with studies having rich or sparse sampling and less than 24 subjects or 24 

subjects and more. These box plots are in Figure 3A to 3D. Under a rich sampling design, 

all methods performed reasonably well with FOCE and MLEM having the best precision. 

ITS was slightly better than IT2S and STS. However, the box plots representing the 

results under sparse sampling showed that MLEM was the most precise algorithm 

followed by FOCE. The other three methods were not as precise, with the new ITS 

algorithm having the best results of the three. The number of subjects appeared to have a 

great impact on the precision of the individual PK parameter estimates. With only 6 or 12 

subjects in a study (Figure 3D), all mixed effect algorithms had a 50
th

 percentile at 7%; 

however, the box plot was narrower for ITS and FOCE followed by MLEM. When a 

study had many subjects (24 and above), FOCE and MLEM had the best precision while 

ITS seemed to have difficulties at estimating the individual PK parameters for some 

studies. 

 

MLEM Population Estimates Using 3000 Samples versus 1000 Samples 

The population PK parameter estimates and the population PK variance estimates 

obtained from the MLEM analyses using 1000 samples were compared to the results 

obtained from the analyses using 3000 samples. Excluding the one study in which 
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iterations were prematurely terminated (i.e., crashed), the mean difference between the 

population PK parameter estimates using 1000 samples was less than 1% of those 

obtained from the analyses using 3000 samples. However, there was a greater difference 

in the estimation of the variances if 1000 or 3000 samples were used. The mean 

difference was 7% (excluding the same study). 

 

Discussion 

Comparisons between different algorithms were made using 29 simulated clinical 

studies where the mean and variance values for the PK parameters as well as the residual 

variability and the individual PK parameters were known to an independent scientist. 

Having the fitting of the data performed by a scientist blinded to the true values removed 

any potential preferred bias this scientist had toward a particular algorithm. Including 

multiple studies permitted the testing of the algorithms under varying conditions such as 

different types of drug administration (oral vs. IV), number of subjects (6 to 200), 

number of samples per subjects (sparse vs. rich) and number of PK and variability 

parameters (6 to 21). 

For all comparisons, mixed effect modeling approaches provided better results 

than a standard method of STS. Mixed effect modeling provided better population PK 

parameters, variances, residual variability as well as individual PK parameters. This was 

not surprising and was in agreement with previously published papers demonstrating this 

fact.
8-13

 This was true regardless of the condition of the study such as sparse or rich 

sampling, little or many subjects, oral versus IV administration and plasma or plasma 

with urine collection. The most profound difference between mixed effect modeling and 
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a STS approach was the fact that STS grossly over estimated the variances of the 

population PK parameters which was in accordance with the literature.
8-13

 Therefore, the 

values obtained from STS analyses should not be used as final results but rather as 

starting priors for mixed effect modeling algorithms. 

The new MLEM algorithm performed better than the IT2S and ITS algorithms in 

the estimation of the population PK parameter estimates, their corresponding variances, 

residual variability and individual PK estimates. For individual PK parameters, ITS was 

slightly more precise for studies with less than 24 subjects. However, the difference was 

marginal. MLEM was more precise than the other two algorithms for all parameter 

estimates for all the different study designs. 

Of all the mixed effect algorithms tested, MLEM was the only one that used an 

exact estimation of the maximum likelihood estimates instead of a linear approximation 

of the maximum likelihood. In order to avoid a linearization of the model, MLEM uses a 

sampling-based method implemented in the expectation step. In ADAPT 5®, the number 

of samples used for the estimation of the parameter values is set by the user and can vary 

from 1000 to 3000 samples. Wang et al demonstrated that accuracy to the second 

significant digit was obtained for all parameters using 1000 samples when compared to 

estimation obtained with 2000 and 3000 samples.
18

 However, the author only 

demonstrated this finding using 1 study. In our analyses, we simulated 29 studies with 

different study designs. The use of 1000 samples versus 3000 had little impact in 

population PK parameter estimates. There was a greater difference in the estimation of 

the variances if 1000 or 3000 samples were used. However, in our analyses, choosing 

3000 samples instead of 1000 samples did not guarantee better variance estimates. In 
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fact, the precision in estimates even worsened in some cases. Considering that the 

analysis time was approximately 50 to 60% faster using 1000 samples and that the 

estimates were no worse than when 3000 samples were used, 1000 samples could safely 

be used for population analyses. 

In our analyses, FOCE was considered as a control analysis to benchmark the new 

algorithms, as this algorithm is used extensively by the scientific community and is a 

widely accepted population PK tool. Of the new algorithms available in ADAPT 5®, 

MLEM was the best algorithm. It compared favorably with FOCE in all estimates. 

Individual PK estimates fared better with a sparse sampling design using MLEM 

although only seven of the studies used in the analyses utilized a sparse sampling ). This 

was a surprising result considering how the two algorithms function. FOCE in 

NONMEM® analyzes the population parameters first and then uses a post hoc Bayesian 

analysis to obtain its individual PK parameters. This is contrary to MLEM in ADAPT 5® 

which computes the individual PK parameters to then update the population parameters at 

each iteration. With a sparse sampling design, it was expected that it may be harder to 

obtain individual results with precision when determined as a first step as in ADAPT 5®. 

In contrast, FOCE might have a slight edge when there are many subjects included in the 

analyses. 

The main difference between FOCE and the other algorithms was its estimation of 

the variances. A word of caution is required when looking at the variance results for 

FOCE. With the exception of FOCE, all methods over-inflated the variance when the 

variance parameter was poorly estimated while FOCE under estimated and often 

estimated a value very close to zero for a variance parameter that was difficult to 
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estimate. FOCE was the only algorithm to have a negative median bias of the variances. 

That means that the median variances estimated for a study was underestimated in more 

than 50% of the studies. This had a consequence on the precision comparisons. When a 

variance parameter was under estimated (i.e., near zero), the precision obtained for that 

estimate will be close to 100% as determined by the following formula: absolute(0-True 

value)/True*100 value ≈ 100. On the other hand, a precision value toward infinity can be 

obtained for a variance parameter that was over estimated as seen in the next formula: 

absolute(High value – True value)/True*100 ≈ very high value. In our exercise, 24% of 

population PK parameters had variances estimated by NONMEM that were very close to 

zero. This problem has been well described by Karlsson and is known as -shrinkage.
17

 

This author specified that a level of shrinkage above 20 to 30% should be viewed with 

caution. Using published data, Karlsson suggested that shrinkage occurred in 

approximately one third of the clearances estimated in studies. This was in line with our 

simulated studies where clearance or volume of the central compartment had variances 

with a severe shrinkage issue in approximately one third of the studies (9 out of 29). In 

fact, in the 29 simulated studies, almost half of the variances estimated by FOCE had 

shrinkage issues (shwhile MLEM had shrinkage issues with less than 10% of the 

estimated variances. Often, the primary goal of the population pharmacokinetic analysis 

is to estimate or predict individual profiles and PK parameters. If variances are close to 

zero, then it becomes difficult to estimate the differences between subjects. Thus, if 

shrinkage occurs, it may be wise to switch to another algorithm especially if the model 

will be used to simulate individual results or profiles. 
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The new ITS algorithm in ADAPT 5® is a modification of the iterative two-stage 

algorithm found in IT2S®. In general, ITS fared slightly better than IT2S with population 

PK parameters, their corresponding variances and with the estimation of the individual 

PK parameters. However, it had difficulties with the residual variability estimates. It had 

a tendency to shrink the additive error parameter very quickly preventing some analyses 

from converging. To avoid this problem, the additive error had to be fixed in those 

analyses to a small value after a few iterations. In ITS, residual variability parameters can 

be fixed to different values by the user at any time if it is judged that the values were 

converging to a local minimum. The problem is that it can never be known if the residual 

variability estimates are acceptable or converging to incorrect values. 

The major advantage of the new ITS algorithm in ADAPT 5® was the speed at 

which results were obtained. In most instances, convergence was obtained automatically 

and after few iterations. In addition, iterations did not need to be interrupted by the user 

to update the residual variability parameters. Therefore, ITS can be a useful tool 

depending on the required analyses. However, to ensure more precise results, MLEM or 

FOCE are recommended. 

To have the most success with population PK analyses, one should exploit the 

strengths of every existing tool in order to ensure the most accurate results. In population 

analyses, it is always important to keep in mind the purpose of the analyses. It is possible 

that STS results fulfill the purpose of the analyses. In fact, STS is very useful for 

structural model discrimination and for obtaining prior information for mixed effect 

modeling. If more precise analyses are required, then mixed effect modeling should be 

favored over a STS method regardless of the study design or the number of subjects.  
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At the time at which these analyses were performed, NONMEM 7® was not 

available. The NONMEM 7 ® package offers ITS and MLEM algorithms, as well as a 

STS methodology which were not previously part of NONMEM VI®. Therefore, further 

work will be required to determine if the MLEM algorithm in the latest NONMEM® 

version will reduce the number of shrinkage issues. 

 

 

Conclusions 

 

The algorithms offered in the new ADAPT 5® software fared well compared with 

other established methodologies. In addition, the number of samples used in the 

expectation maximization step of the MLEM algorithm in ADAPT 5® did not influence 

the obtained results. 

The FOCE and MLEM algorithms offered the most precise estimations of the 

population PK parameters, their variances, residual variability and individual PK 

estimates. The MLEM algorithm in ADAPT 5® was slower than the FOCE algorithm in 

NONMEM VI®. However, it had less shrinkage issues for the variance estimates. 

All methods of analyses have their strengths and weaknesses and no method is 

clearly superior under all conditions. Scientists should use all available tools at their 

disposal to provide the best results. 
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Figures 

Figure 1 Box plot of mean % precision on estimates for the different algorithms. 
A) population PK parameters; B) population PK variances; C) plasma residual 

variability; D) urine residual variability. The bar in the box represents the 50
th
 

percentile, the box boundaries are the 25
th
 and 75

th
 percentiles, and the limits of the 

whiskers are the 10
th
 and 90

th
 percentiles. The dots are outliers. 
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Figure 2 Box plot of median precision on individual estimates for the 

different algorithms including all studies. The bar in the box 

represents the 50
th

 percentile, the box boundaries are the 25
th

 and 

75
th

 percentiles, and the limits of the whiskers are the 10
th

 and 90
th

 

percentiles. The dots are outliers. 
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Figure 3 Median precision on individual estimates for the different 

algorithms. A) Rich sampling; B) Sparse sampling; C) ≥ 24 

subjects; D) < 24 subjects. The bar in the box represents the 50
th

 

percentile, the box boundaries are the 25
th

 and 75
th

 percentiles, and 

the limits of the whiskers are the 10
th

 and 90
th

 percentiles. The dots 

are outliers. 
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Tables 

 

 

Table 1: Study design for the different simulated studies 

 

Study 
# 

# of 
subjects 

# of 
compartments 

Route of 
Administration 

Type of 
sampling Matrix 

1 6 3 IV Rich Plasma + Urine 

2 6 3 IV Rich Plasma 

3 6 2 IV Rich Plasma + Urine 

4 6 2 IV Rich Plasma 

5 6 1 IV Rich Plasma + Urine 

6 12 3 IV Rich Plasma 

7 12 3 IV Rich Plasma + Urine 

8 12 2 IV Rich Plasma 

9 12 2 IV Rich Plasma + Urine 

10 16 2 IV Rich Plasma + Urine 

11 18 2 Oral Rich Plasma 

12 24 2 IV Rich Plasma + Urine 

13 24 1 Oral Rich Plasma 

14 30 2 IV Rich Plasma 

15 30 2 Oral Rich Plasma 

16 30 2 IV Rich Plasma + Urine 

17 30 2 Oral Rich Plasma + Urine 

18 30 2 IV Sparse Plasma 

19 30 2 Oral Sparse Plasma 

20 30 2 IV Sparse Plasma + Urine 

21 30 2 Oral Sparse Plasma + Urine 

22 50 3 IV Rich Plasma + Urine 

23 200 2 IV Rich Plasma 

24 200 2 IV Rich Plasma + Urine 

25 200 2 IV Sparse Plasma + Urine 

26 200 2 Oral Rich Plasma 

27 200 2 Oral Rich Plasma + Urine 

28 200 2 Oral Sparse Plasma 

29 200 2 Oral Sparse Plasma + Urine 

Total 1850 
2x1cpt             

22x2cpt            
5x3cpt 

19 IV              
10 Oral 

22 rich                  
7 sparse 

13 plasma            
16 plasma + 

urine 
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Table 2: Mean and median precision and bias for the population PK parameters, their variances, plasma residual 

variability, urine residual variability and individual parameters for each algorithm 

 

 

Individual Individual

Parameter Variance Parameter Plasma Urine* Parameter Variance Parameter

Mean 38 197 37 6 22 20 116 14

Median 7 84 9 5 10 -1 -5 -1

Mean 63 14817 81 23 43 37 14796 52

Median 10 104 19 11 33 0 94 0

Mean 47 4887 51 11 26 29 4860 31

Median 8 87 10 9 15 1 45 1

Mean 45 7981 50 31 43 17 7965 18

Median 9 111 12 12 30 0 119 -1

Mean 88 176470 102 33 47 58 176459 64

Median 18 1817 24 16 38 4 1817 -2

* n = 16

STS

Precision Bias
Population Residual Variability Population

FOCE

IT2S

MLEM

ITS
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2. ARTICLE #2 

 

 

 

 

How critical is the duration of the sampling scheme for the 

determination of half-life, characterization of exposure and assessment 

of bioequivalence? 
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2.1. INTRODUCTION  

 

In drug development, noncompartmental PK analysis is often the preferred choice 

by the regulatory agencies especially in the early phases when many samples are 

collected.  For instance, noncompartmental analysis is used for bioequivalence studies.  It 

is simple, robust and not dependent on the scientist‘s ability at modeling data.  However, 

as discussed in Chapter 1, Section 1.1.1, AUCinf has to be well characterized in order to 

produce appropriate results.  Previous experiences with bioequivalence studies have 

shown that subjects with a long half-life relative to the duration of the sampling scheme 

possibly influenced study conclusions when these were maintained in the ANOVA 

analyses.  Therefore, the purpose of this part of the research was to determine and 

confirm if a subject whose half-life is calculated from a sampling scheme duration that is 

considered too short could affect bioequivalence conclusions of a study and if these 

parameters should be removed from statistical analyses. 

One tool that can be used to answer the above questions is clinical trial 

simulations.  Indeed, these can be used to answer multiple ―what if‖ questions or to 

predict study outcomes, since the number of simulations that can be conducted is 

limitless.  Because so many simulated profiles can be simulated, this method is ideal for 

testing our hypotheses since some simulated individual concentration-time profiles may 

be associated with longer half-lives and thus influence the predicted outcomes.  

In order to perform clinical trial simulations, subjects‘ concentration-time profiles 

are required.  Therefore, to test the objectives described above using clinical trial 

simulations, subjects‘ concentration-time profiles were simulated with different sampling 
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scheme durations in order to calculate noncompartmental PK parameters from these 

profiles.  It is the same principle when efficacy and safety clinical trials are simulated.  

Efficacy and safety of a drug are often correlated with the concentration-time profiles and 

it is these profiles that are simulated.  Monte Carlo simulations, which form the basis of 

clinical trial simulations, will thus provide PK parameters for subjects based on the 

population PK parameters and their expected variability (variance).  The next step to 

obtain simulated individual subject concentration-time profiles is to use these individual 

PK parameters obtained from the Monte Carlo simulations to produce the expected 

profile for each subject.  However, the individual concentrations are simulated with a 

variability error, which reflects analytical and clinical errors. 

To answer the objectives of this part of the research, subject profiles were 

therefore simulated and the sampling scheme was progressively shortened to determine 

the impact on the estimated noncompartmental PK parameters.  In addition, 

bioequivalence studies were simulated to determine the impact of maintaining subjects 

with a long half-life relative to the sampling scheme in the ANOVA results.  Results are 

presented in the following article. 
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Abstract 

 

In noncompartmental analysis, poor characterization of the terminal elimination rate 

constant (Kel) will lead to biased results for half-life and total exposure (AUCinf), 

providing incorrect relative bioavailability and bioequivalence conclusions. We set out to 

determine if the sampling scheme duration was crucial for proper half-life and AUCinf 

determination. Profiles for 1000 subjects were simulated with a sampling scheme 

covering five half-lives. Concentrations were gradually removed from the end of the 

profile to determine if precision and bias in the half-life and AUCinf values were 

affected. Additionally, 30 bioequivalence studies were simulated to determine the 

influence of unreliable AUCinf PK parameter on BE conclusions. Precision and bias 

became unacceptable for AUCinf and half-life if Kel was not determined with a sampling 

scheme covering at least 2 and 4 half-lives, respectively. Bioequivalence conclusions also 

deteriorated if unreliable PK parameters were maintained. Sampling scheme duration is 

important when calculating noncompartmental parameters. In conclusion, sampling 

scheme duration should be at least 4 times the average measured half-life in order to have 

confidence in the reported half-life values. In a bioequivalence setting, individual 

subject‘s pharmacokinetic parameter AUCinf should be removed from the pivotal 

statistical ANOVA analysis when their associated calculated half-life is longer than half 

of the total sampling interval. 



 94 

 

Introduction 

Bioequivalence (BE) studies usually assess and compare the rate and extent to 

which the active ingredient or active moiety becomes available into the systemic 

circulation.
1
 Theoretically, if two formulations of the same active product produce similar 

systemic concentration-time profiles, they will also produce similar concentration-time 

profiles at the site of action and therefore produce comparable pharmacological effects.
1,2

  

To properly characterize relative bioavailability (BA) or establish BE in terms of 

extent of exposure, total exposure is measured by the PK parameter area under the curve 

from time zero to infinity (AUCinf).
3
 This parameter is calculated as the area under the 

curve from time zero to the last measurable concentration (AUC0-t) plus the last 

measurable drug concentration divided by the terminal elimination rate constant (λz if 

calculated compartmentally or Kel if calculated noncompartmentally).
4,5

 Therefore, in 

order to properly characterize AUCinf, the terminal rate constant and terminal 

elimination half-life (T½) must be properly determined. 

For a drug displaying linear PK properties, the terminal phase seen in a graphical 

log-concentration versus time profile decreases in a straight line, independently of 

concentrations, and represents either the true elimination or the absorption of the drug 

(e.g., in the case of flip-flop pharmacokinetics). In noncompartmental analyses, Kel is 

estimated by linear regression from the slope of the terminal log-linear portion of the 

drug concentration versus time curve. The terminal elimination half-life is calculated 

from this constant as ln(2)/Kel. 

An improper characterization of the PK parameters Kel and T½ will lead to a 

poor determination of the total exposure (i.e., AUCinf), an unacceptable characterization 
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of the relative BA and therefore may lead to an incorrect BE conclusion. As such, certain 

criteria are useful in the determination of the Kel parameter. These include having at least 

three measurable concentration time-points in the terminal phase,
3
 excluding the 

maximum observed concentration (Cmax) from the regression analysis and having a 

regression coefficient of at least 0.8.
6-9

 In addition to these common criteria, an additional 

important criterion that should be considered is the sampling scheme duration. 

Simulations were thus undertaken to determine how the duration of a sampling 

scheme could affect the proper determination of the extent of exposure. The objectives of 

the work presented in this article are first to assess how the sampling duration affects the 

noncompartmental half-life or AUCinf determination and secondly to assess if these 

parameters should be excluded from the overall pivotal statistics based on the sampling 

duration to ensure adequate BA calculations and BE conclusions. 

 

Methods 

Simulations 

Concentration data for one thousand (1000) subjects receiving a single 100 mg 

dose of a fictitious drug were simulated by Monte Carlo techniques in ADAPT 5®.
10

 The 

model used to perform these simulations exhibited linear absorption (Ka) and elimination 

characteristics, included a central compartment (Vc/F), a peripheral compartment (Vp/F), 

a clearance from the central compartment (CL/F) and a distributional clearance (CLd/F). 

Figure 1 depicts the model used. The simulated concentration data were based on the 

following hypothetical PK population mean and variability values: 
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Table 1: Hypothetical population PK and variability parameters  

Parameter Population mean Inter-individual CV% 

Ka (h
-1

) 1 60 

CL/F (L/h) 2.65 50 

Vc/F (L) 8.5 30 

CLd/F (L/h) 1.75 75 

Vp/F (L) 16.7 75 

T½* (h) 12 hours 

* T½ was calculated based on the population parameters. Average T½ presented. 

 

The simulated concentration-time profiles included the following 21 sample time 

points: 0 (pre-dose), and 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 30, 

36, 48 and 60 hours after dosing. Simulations were performed using a residual variability 

of 10%. To determine the impact of a shorter sampling scheme, the concentration data at 

the end of the simulated profiles were progressively removed so that the duration of the 

entire sampling profile varied from 1 to 5 half-lives (i.e., 12 to 60 hours).  

 

Noncompartmental PK Analysis 

The simulated subjects‘ data were then analyzed using a standard 

noncompartmental approach with SAS® to obtain Kel, T½ and AUCinf. These 

noncompartmental PK parameters were re-calculated for each different sampling scheme. 

Kel, T½, and AUCinf were only set to missing if Kel was positive. Kel was calculated as 

the apparent first-order elimination rate constant calculated from a semi-log plot of the 

plasma concentration versus time curve.  The parameter was calculated by linear least-

squares regression analysis to the terminal log-linear phase. 
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Precision and Bias 

True and known values for AUCinf and T½ for each subject were those obtained 

from the simulation in ADAPT 5® (i.e., ADAPT values were the true values). True 

AUCinf for each subject was calculated by dividing dose by CL/F and true T½ was 

calculated from the parameters CL/F, CLd/F, Vc/F and Vp/F.
4
 To determine how the 

duration of a sampling scheme affected the robustness of the calculated 

noncompartmental parameters, bias and precision as described by Sheiner
11

 were 

evaluated for the noncompartmental parameters AUCinf and T½. Precision of the 

noncompartmental AUCinf and T½ results with respect to the true results were assessed 

using the following formula: 100*ABS(noncompartment value – ADAPT value)/ADAPT 

value. Bias of the noncompartmental AUCinf and T½ results with respect to the true 

results were evaluated using the following formula: 100*(noncompartment value – 

ADAPT value)/ADAPT value. Precision and bias judged acceptable were set a priori to 

10% and 5%, respectively. 

Simulated subjects with an absorption half-life that was longer than the terminal 

elimination half-life (i.e., flip-flop profiles) were excluded from the precision and bias 

calculation. This was done in order to avoid mixing different half-life types. The apparent 

terminal noncompartmental half-life would be a reflection of the absorption half-life and 

comparing this value to the known elimination half-life from the compartmental analysis 

would be wrong and would affect the precision and bias. 
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Bioequivalence studies 

In addition to verifying the robustness (precision and bias) of the 

noncompartmental parameters, the impact of including or not data from subjects with 

unreliable noncompartmental AUCinf estimates on bioequivalence conclusions was 

evaluated using simulated studies. Using the same population PK parameters and 

variability parameters, thirty 2-way crossover studies each having 24 subjects were 

simulated. Ten studies per sampling scheme were derived based on sampling schemes 

that covered on average 2 half-lives (24 hours), 2.5 half-lives (30 hours) and 3 half-lives 

(36 hours). This resulted in some subjects in each study with potentially unreliable half-

life estimates. Noncompartmental parameters were obtained in the same way as 

previously described and comparisons were made between the true values obtained from 

ADAPT 5® and the noncompartmental estimates. Noncompartmental results were 

considered the test results while the ADAPT results were considered the reference 

results. 

AUCinf were determined to be reliable or not using two different methods. The 

first method (Method 1) considered an AUCinf to be unreliable if it did not meet both the 

acceptable a priori precision and bias of 10% and 5%, respectively. For this first method, 

an AUCinf was considered to be unreliable if the associated T½ was longer than half of 

the duration of the sampling scheme (as demonstrated in the results section). The second 

method (Method 2) ignored the overall length of the sampling scheme as it considered 

only the duration of the sampling scheme over which Kel was determined. For this 

second method, an AUCinf was considered to be unreliable if the associated T½ was 

longer than the time span over which Kel was estimated as proposed by Purves.
5
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Analysis of Variance 

Analysis of variance (ANOVA) with Proc Mixed model in SAS® (Version 9.1.3) 

was performed to calculate the ratio and 90% confidence intervals (CI) on the ln-

transformed AUCinf parameter (noncompartmental vs. true value). Three different ratios 

and 90% confidence intervals were calculated for each of the 30 simulated 

bioequivalence studies. Firstly, with all AUCinf included (i.e., without the removal of 

any unreliable AUCinf); secondly, with the removal of unreliable AUCinf as determined 

by Method 1 and thirdly, with the removal of unreliable AUCinf as determined by 

Method 2. These ANOVA were performed to determine the consequences on 

bioequivalence conclusions if unreliable results were included or not. 

 

Results 

Precision & Bias 

The precision and bias of the noncompartmental method to estimate the true PK 

parameters AUCinf and T½ are presented in Figure 2 A and B. Results are presented for 

sampling schemes covering 1 to 5 half-lives (i.e., 12 to 60 hours). As the sampling 

scheme duration was shortened from five half-lives to one half-life, the precision and bias 

in the noncompartmental PK parameters AUCinf and T½ deteriorated. The median 

precision and bias for AUCinf changed from 2.1% and -0.1% to 14.0% and -13.4%, 

respectively. Similarly, the precision and bias for T½ deteriorated from 5.0% and -1.4% 

to 65.5% and -64.7%, respectively. 

Results indicated that to have both acceptable precision and bias in the 

noncompartmental AUCinf or T½ estimates, a sampling scheme that spanned ≥ 2 and 4 
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half-lives was required, respectively. Sampling schemes covering less than 2 half-lives 

led to unreliable AUCinf estimates. In other words, AUCinf were judged to be unreliable 

with Method 1 when they were calculated using half-life values observed to be longer 

than half of the overall sampling scheme. 

Based on the bias results from all sampling schemes, the noncompartmental 

method estimated a shorter half-life than the true value (negative bias) and the shorter the 

sampling scheme, the shorter the noncompartmental half-life that was obtained. 

 

ANOVA - Bioequivalence studies 

The mean ratio and 90% confidence intervals comparing the noncompartmental 

ln-transformed AUCinf to the true ln-transformed AUCinf for the different sampling 

schemes are presented in Table 2. Bioequivalence results from the 30 simulated studies 

are presented in Appendix 1. These results are presented with and without the unreliable 

AUCinf data based on the two already mentioned methods. Results indicated that if 

unreliable AUCinf were removed from within each BE study, the ratios were closer to 

100% indicating that the noncompartmental estimates were closer to the true values. A 

longer sampling scheme reduced the number of unreliable AUCinf and decreased the 

magnitude of the improvement associated with removing these unreliable parameters. 

When 10 different BE studies were simulated per sampling scheme covering 2 (24 

hours), 2.5 (30 hours) and 3 half-lives (36 hours), removing the unreliable AUCinf 

improved mean BE ratio by 6% (from 93.6% to 99.7%), 4% (from 95.3% to 99.1%) and 

3% (from 96.9% to 99.6%), respectively (Table 2). The ln-transformed AUCinf mean 

confidence interval ranges (Upper CI – Lower CI) for each sampling scheme including or 
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not the unreliable values are depicted in Figure 3. On average, the 90% CI were narrower 

if the unreliable AUCinf were not included in the ANOVA. 

 

Discussion 

Pharmacokinetic parameters calculated using noncompartmental methods do not 

require much technical a priori expertise, and are considered to be the gold standard 

approach to be used for the vast majority of BE studies. It is generally appreciated 

though, that this method will only be reliable if the terminal half-life has been properly 

characterized. The absence of any formal guidance in this regard led us to perform 

simulations to determine the exact impact of the sampling scheme duration on the 

robustness of the half-life and AUCinf parameters. One thousand subjects were simulated 

with a sampling scheme covering 5 half-lives. Then, for these 1000 subjects, sampling 

schemes of shorter duration were created by progressively removing concentration data at 

the end of the simulated profiles. This approach avoided having to simulate different 

subjects for each sampling scheme which would have added variability to the 

comparisons. By removing concentrations from the end of the profile, it was possible to 

directly compare the effect a shorter sampling scheme had on the precision and bias of 

the Kel and T½ determinations.  

The noncompartmental method estimated a shorter half-life than the true value. 

The difference between the estimated and true half-life was more pronounced as the 

sampling scheme was shorten. This was expected, because with fewer samples collected 

during the elimination phase, the half-life determined from the noncompartmental 
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method incorporated concentrations in the distribution phase instead of concentrations 

from only the elimination phase.  

A shorter sampling scheme had a greater impact on the determination of the 

noncompartmental half-life than on the AUCinf parameter. This was also expected as 

AUCinf is dependent on both the half-life determination as well as AUC0-t. Therefore, 

any error on the half-life can only affect the extrapolated portion of AUCinf. With a 

sampling scheme spanning two half-lives, the extrapolated portion of AUCinf is only 

25%. Consequently, even a 20% bias of the half-life would only lead to a 5% error of the 

total AUCinf. The extrapolated portion is even smaller as the duration of the sampling 

scheme increases. This limits the impact a poor half-life determination could have on the 

AUCinf calculation. 

For a pivotal PK study, a sampling scheme spanning greater than or equal to 4 

half-lives was required to adequately characterize the half-life of a drug in order to 

maintain the bias and precision below 5% and 10%, respectively. This is in line with the 

office of generic drugs of the US FDA requirements, but stricter than what is required in 

Canada or Europe (e.g., 80% of the AUCinf has to be observed, which is equivalent to a 

sampling duration spanning 2.3 half-lives).
12,13

 Therefore, in drug development, one can 

have confidence in the half-life estimates of a drug if it was obtained from studies in 

which the sampling scheme duration spanned the equivalent of 4 half-lives or more. 

In a bioequivalence setting, AUCinf precision and bias quickly deteriorated if the 

sampling scheme did not cover at least 2 half-lives, with bias being greater than +/-5%. 

When designing a BE study, the sample size of a study is often based on a predicted ratio 

that is ± 5%. Therefore, a bias greater than 5% in the calculation of a PK parameter may 
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add uncertainty and lead to a study that will be under-powered to prove BE. However, if 

subjects with AUCinf calculated using an unreliable half-life (eg, based on a value that is 

greater than half the sampling scheme or if the calculated T½ is less than the time span 

used in the calculation of Kel) were removed from the ANOVA results, ratios of ln-

transformed AUCinf improved and were closer to the true ratio of 100%. In addition, the 

average confidence intervals for ln-transformed AUCinf tightened if the unreliable 

subject‘s data were removed from the ANOVA. Improvement in the ratios and 

confidence intervals for ln-transformed AUCinf was noted even with the loss of degrees 

of freedom due to the removal of data from subjects with AUCinf considered unreliable. 

Therefore, the loss of degrees of freedom was more than offset by the removal of 

variability caused by keeping these unreliable values. 

Increased bias in the AUCinf PK parameter with decreasing time span for Kel 

determination was previously noted by Purves.
5
 This author reported that the variance of 

the extrapolation in the AUC estimates rapidly increased if the time span for Kel 

determination was less than the half-life and suggested that the Kel determination should 

be obtained from a regression that spanned at least two half-lives. Other authors also 

determined the impact of large bias in the extrapolation portion of the AUCinf or area 

under the moment curve (AUMC) parameters.
14,15

 However, their work focused on the 

impact on the mean residence time (MRT). The analyses presented in this paper aimed to 

determine the duration of a sampling scheme that was required to obtain robust half-life 

and AUCinf results. In addition, this work demonstrated the negative consequences of 

maintaining unreliable AUCinf on BE conclusions. 
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As previously mentioned, many scientists in industry and academia use different 

criteria to avoid having an improper characterization of the PK parameters Kel, T½ and 

AUCinf. These typically include determining Kel with at least three terminal time points 

without including the Cmax, and having a regression coefficient (R
2
) of at least 0.8.

 6-9
 To 

precisely determine the impact of the sampling scheme duration on the PK parameters 

Kel, T½ and AUCinf, these criteria were not used. However, it is possible that by adding 

these criteria, the influence of the sampling scheme duration may be further reduced. 

Therefore, the noncompartmental parameters were recalculated with these criteria added 

to determine if the criterion of the sampling scheme had the same impact on the 

conclusions. Although precision and bias were slightly improved when these criteria were 

used in addition to sampling scheme duration, conclusions remained identical. 

Two methods were used to identify the unreliable AUCinf values and verify the 

impact of removing them on the 90% confidence intervals of bioequivalence studies. 

Based on the BE results, both methods were comparable and helped to obtain results that 

were closer to the truth and reduce the overall uncertainty. A difference that exists 

between the two methods is that the criterion of half the sampling scheme (Method 1) is 

identical for all subjects within a study making it easier to use as a criterion, while the 

time span of the Kel (Method 2) is different for every subject. 
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Conclusions 

The results of this study suggest that the sampling duration of any pivotal PK 

study be at least 4 times the average measured half life in order to have confidence in the 

reported half-life values and thereby in the extent of exposure parameter AUCinf. The 

analyses also suggest that individual subject‘s PK parameters AUCinf, kel and T1/2 

should be removed from the pivotal statistical ANOVA analysis (i.e. such as in a BE 

study) when their associated calculated half-life is longer than half of the total sampling 

interval, as this will reduce the overall uncertainty and provide results closer to the true 

values. 
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Figure 1 Model used to simulate concentrations 
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Figure 2A Bias and precision of the half-life PK parameter 
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Figure 2B Bias and precision of the AUCinf PK parameter 
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Note1: For Method 1, AUCinf based on half-lives greater than half of the sampling scheme

          duration was considered unreliable.

Note2: For Method 2, AUCinf based on half-lives greater than the sampling duration over which

          Kel was determined was considered unreliable
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Figure 3 Ln-transformed AUCinf confidence interval range for the different 

studies with and without unreliable AUCinf values 
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Tables 

 

 

Table 2: Average ln-transformed AUCinf BE results from 10 studies (n=24 subjects in each study) per sampling scheme 

that covered only 2 half-lives (24 hours), 2.5 half-lives (30 hours) and 3 half-lives (36 hours) with and without 

unreliable AUCinf removed from analyses 

 

 

Mean 

All AUCinf values  Without unreliable AUCinf values (Method 1) Without unreliable AUCinf values (Method 2) 

Ratio (%) Lower CI (%) Upper CI (%) Ratio (%) Lower CI (%) Upper CI(%) Ratio (%) Lower CI (%) Upper CI(%) 

24h sampling scheme 93.55 89.52 97.80 99.72 98.02 101.46 99.13 97.18 101.12 

30h sampling scheme 95.29 91.67 99.07 99.08 97.51 100.69 98.79 96.71 100.71 

36h sampling scheme 96.90 93.67 100.28 99.57 98.20 100.95 99.27 97.65 100.93 
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Appendix 1: Ln-transformed AUCinf BE results from 30 studies (n=24 subjects in each study) with and without unreliable 

AUCinf removed from analyses 

 

 24h sampling scheme        

Study 

All AUCinf values  Without unreliable AUCinf values (Method 1) Without unreliable AUCinf values (Method 2) 

Ratio (%) Lower CI (%) Upper CI (%) Ratio (%) Lower CI (%) Upper CI(%) Ratio (%) Lower CI (%) Upper CI(%) 

1 92.87 87.49 98.57 100.50 98.12 102.93 98.86 96.60 101.18 

2 95.91 92.84 99.08 99.84 97.51 102.22 99.05 96.88 101.28 

3 93.51 90.19 96.95 99.50 98.55 100.46 99.18 97.77 100.61 

4 95.80 93.40 98.27 101.76 98.95 104.65 100.48 98.12 102.89 

5 88.67 84.20 93.38 99.45 97.93 101.00 99.41 97.21 101.66 

6 96.91 93.25 100.71 99.41 97.89 100.96 98.54 96.46 100.67 

7 92.58 90.10 95.13 97.47 96.40 98.55 97.39 95.23 99.60 

8 96.89 93.21 100.71 100.24 98.73 101.77 99.86 98.69 101.04 

9 88.28 80.07 97.33 99.00 97.04 100.99 99.45 97.78 101.14 

10 94.09 90.43 97.90 100.05 99.05 101.05 99.09 97.07 101.15 

Mean 93.55 89.52 97.80 99.72 98.02 101.46 99.13 97.18 101.12 

          

          

 30h sampling scheme        

Study 

All AUCinf values  Without unreliable AUCinf values (Method 1) Without unreliable AUCinf values (Method 2) 

Ratio (%) Lower CI (%) Upper CI (%) Ratio (%) Lower CI (%) Upper CI(%) Ratio (%) Lower CI (%) Upper CI(%) 

11 96.06 91.39 100.98 99.56 97.65 101.51 99.27 96.62 102.00 

12 95.91 92.84 99.08 98.98 96.98 101.03 97.93 95.42 100.51 

13 93.59 88.60 98.86 99.20 98.03 100.38 99.20 98.03 100.38 

14 98.84 97.23 100.47 99.97 98.59 101.37 99.00 97.39 100.63 

15 93.29 89.43 97.32 98.73 96.62 100.89 99.69 96.16 101.28 

16 95.85 92.36 99.48 99.03 97.44 100.64 99.02 97.69 100.38 

17 95.07 92.92 97.28 97.38 96.28 98.49 96.67 95.21 98.15 

18 97.55 94.78 100.39 99.07 97.33 100.84 97.93 94.71 101.26 

19 91.78 85.93 98.03 99.05 97.23 100.90 99.16 96.88 101.48 

20 94.94 91.24 98.80 99.86 98.90 100.84 100.00 98.98 101.04 
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Mean 95.29 91.67 99.07 99.08 97.51 100.69 98.79 96.71 100.71 

          

          

 36h sampling scheme        

Study 

All AUCinf values  Without unreliable AUCinf values (Method 1) Without unreliable AUCinf values (Method 2) 

Ratio (%) Lower CI (%) Upper CI (%) Ratio (%) Lower CI (%) Upper CI(%) Ratio (%) Lower CI (%) Upper CI(%) 

21 96.10 91.94 100.44 99.26 97.51 101.04 99.45 97.65 101.29 

22 95.91 92.84 99.08 99.30 97.33 101.30 99.58 97.56 101.65 

23 95.39 91.21 99.77 100.33 99.35 101.32 100.00 99.01 101.01 

24 99.42 97.39 101.50 100.37 99.29 101.45 99.90 98.49 101.33 

25 96.71 92.71 100.88 99.37 97.50 101.28 99.73 97.90 101.60 

26 98.01 94.50 101.65 99.73 98.68 100.79 100.04 98.95 101.16 

27 97.40 96.17 98.66 98.31 97.14 99.50 97.83 96.85 98.81 

28 97.84 95.79 9.92 100.13 98.80 101.49 98.44 96.03 100.91 

29 94.42 89.73 99.35 99.04 97.55 100.55 98.12 95.57 100.74 

30 97.82 94.43 101.54 99.83 98.88 100.78 99.64 98.53 100.76 

Mean 96.90 93.67 91.28 99.57 98.20 100.95 99.27 97.65 100.93 
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3. ARTICLE #3 

 

 

 

 

Improved Drug Development and Equivalence Potential of a New 

Extended-Release Formulation Determined by Clinical Trial 

Simulations 
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3.1. INTRODUCTION  

 

The article presented in this section provides an example of how drug 

development can be improved by using clinical trial simulations, which were performed 

using information acquired from the first two articles.  A pharmaceutical company was 

developing a supergeneric drug.  The new compound was formulated to reduce the 

frequency of administration of an oral suspension non-steroidal anti-inflammatory drug 

(NSAID) from four times a day to two times a day.  A pilot study was performed and the 

90% confidence intervals were within the typical equivalence boundaries.  However, 

there were some issues with the design of the pilot study and a potential food effect was 

observed for the reference product.  Clinical trial simulations were undertaken to 

determine the equivalence potential of the two products with and without the observed 

food effect while correcting for the study design flaws of the pilot study.  Modeling and 

simulation have a greater chance of success at attaining their objectives when all 

knowledge of the drug is used.  Thus, literature data was available for the NSAID 

compound and was used as prior information for the PK model.  The innovator drug was 

an immediate release compound.  It is quickly absorbed with a Tmax at approximately 1 

hour and bioavailability of over 80%.  Protein binding is above 98%.  Exposure increases 

in a dose dependent fashion.  The drug is eliminated by CYP2C9 followed by 

glucuronidation.  It is mostly eliminated in the urine as metabolites.  Food effect in the 

literature was unclear.  Some studies reported a reduction in exposure while others did 

not. 
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Unlike simple generics which are formulations that are manufactured to copy as 

closely as possible the brand products, supergenerics try to improve on the innovator 

compound.  In that aspect, companies manufacturing supergenerics can be regarded as 

innovator companies.  In fact, patents are sought after and market exclusivity is often 

awarded to companies that succeed in developing a supergeneric.  These can differ from 

the original product in formulation or method of delivery.  However, if a supergeneric 

compound can show similar concentration-time profiles to the reference product, the 

company can file an abbreviated new drug application based on the aforementioned 

reference product and avoid many pre-clinical and clinical studies.  It is therefore 

advantageous for a company to try and avoid expensive studies and produce drugs that 

are an improvement to the older formulations while still respecting the principles of 

generic drug development and bioequivalence.  This was another reason for which 

clinical trial simulations were performed for this study.  The aim was to help the 

formulation experts understand the differences in absorption processes between the test 

and reference products and determine if changes in the supergeneric formulation were 

required to meet the equivalence criteria. 

The absorption of orally administered drugs is often affected by external factors 

such as co-administration of drugs or food.  These can lead to significant changes in the 

concentration-time profiles of the subjects.  This can also cause some difficulties in the 

comparison of a supergeneric to an innovator compound if these compounds are 

administered at different times and under different conditions.  For example, with the 

study presented in the article, the supergeneric was administered twice a day making it 
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easier to administer it relatively to meals versus the reference compound that had to be 

administered four times a day. 

Effects on absorption pharmacokinetics can be divided into different categories.  

First, a delay in absorption can occur.  This will translate into longer lag times (greater 

Tmax) and smaller Cmax.  When modeling, this change in PK is reflected in longer lag 

times (Tlag) and smaller absorption rate constants (Ka).  A delayed absorption may also 

be associated with a reduction in the bioavailability of a formulation.  A decrease in 

bioavailability results in lower AUCinf and Cmax values, which  can be observed with 

the co-administration of food.  With a decrease in bioavailability, the PK model would 

require a parameter that lowers the bioavailability of an administered dose following the 

consumption of food.  The opposite is also possible with food intake.  Food can increase 

absorption, thereby increasing the bioavailability.  This will increase AUCinf and Cmax 

and possibly lower the lag time prior to the start of absorption.  When modeling, this 

would translate into an increased Ka value and a parameter increasing bioavailability 

after a meal.  These changes in PK parameters are obvious on a concentration-time 

profile.  However, when performing clinical trial simulations, changes in the inter-subject 

variability of the PK parameters are also important, because between subject variability 

can also be affected by food intake.  This is less obvious from looking at the profiles.  

Clinical trial simulations require both the population PK parameters and their variances.  

Therefore, it is important to also model the changes in the variance parameters to have 

accurate predictions.  Absorption that is significantly increased by food tends to have 

lower variability while the opposite is usually true with variability in PK parameters 

increasing when food decreases significantly the absorption.
147,148
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As will be demonstrated in the following article, clinical trial simulations were 

used together with previous knowledge to answer questions pertaining to a drug‘s 

bioequivalence potential and food effect. 
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Abstract 

 

Background: The benefits of modeling and simulation in drug development is well 

documented, however its use in generic and supergeneric drug development is still in its 

early stages. The purpose of this work is to illustrate the benefits of modeling in the 

supergeneric drug development. More precisely, a model will be developed to describe 

the PK of two formulations of a drug and using this model, clinical trial simulations will 

be performed to assess the equivalence potential of the new formulation versus a 

reference one. Based on simulation results, recommendations will be made pertaining to 

study design or formulation. 

Methods: A compartmental model was built using data from a pilot study. Using this 

model, clinical trial simulations were performed under different conditions in order to 

determine if a supergeneric compound would be considered equivalent to a reference 

product in pivotal single-dose and steady-state studies. Individual subject concentration 

data were obtained from these simulations to determine noncompartmental 

pharmacokinetic (PK) parameters. Analyses of variance were determined for each study 

and predicted confidence intervals for pivotal PK parameters were obtained. 

Results: The products were well-described by a 2-compartment model with different 

absorption processes for each formulation. Simulations suggested that it would be 

difficult to prove equivalence between the two formulations at steady-state and possibly 

at single dose. Based on the modeling, the absorption half-life that corresponded to the 

sustained-release portion of the test formulation was too long. Modifications to the 

absorption process of the test formulation were postulated and further simulations 
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indicated that these modifications would increase the chance of meeting the equivalence 

criteria.  

Conclusion: Concentrations for both formulations were well described by the final model 

and improved the understanding of the drug formulations. Results of the clinical trial 

simulations played a critical part in the plans to modify the test formulation, thereby 

avoiding unnecessary studies and reducing overall development costs. 
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Introduction 

Currently, a low percentage of medications is successfully commercialized in the 

United States, in stark contrast with the last decade.
1
 The Food and Drug Administration 

(FDA) has recognized this problem and has published a document entitled ―Challenge 

and Opportunity on the Critical Path to Medical Products‖
2
 asking stakeholders to 

improve the development process to help bring new medications more efficiently to 

patients who require them. One method to improve drug development suggested in the 

document was to utilize tools such as pharmacokinetic (PK) and pharmacodynamic (PD) 

modeling. Sheiner had previously published on the use of multiple cycles of predictive 

and confirmatory PK modeling (learn and confirm) throughout the drug development 

process.
3
  

Occasionally in drug development, results are interpreted using a ―check box‖ 

approach (i.e., do the results answer the regulatory criteria). This will often lead to an 

inadequate understanding of the drug and to surprising and most times unwanted results 

in later studies. In contrast, multiple cycles of PK modeling allow us to use all available 

relevant information in order to have a better understanding of the drug being developed. 

Available data can be obtained from a current study, previous studies or the literature. 

Once models have been established, they can predict future outcomes with clinical trial 

simulations, help better understand the drug, avoid uninformative studies, minimize 

unnecessary exposure to subjects and reduce drug development costs. 

The use of multiple cycles of predictive and confirmatory PK modeling has been 

demonstrated to be useful in optimizing drug development.
4,5,6

 Furthermore, PK or PD 

modeling is not only limited to innovator products but can also be useful for the 
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development of generic products. However, few published examples of the value of 

PK/PD modeling exist for generic or supergeneric compounds. Most examples are for 

drugs for which noncompartmental analyses have limited usefulness such as data in 

patients or when systemic blood draws are not collected.
7,8,9

 However, modeling could 

and should be used throughout generic and supergeneric drug development to ensure a 

better understanding of the drug being developed. 

This paper illustrates the benefits of PK modeling in the development of a 

supergeneric drug. A supergeneric of an NSAID was being developed to be administered 

every 12 hours.  In contrast, the reference product is administered every 6 hours. 

Noncompartmental results from a pilot study were promising as ratios and 90% 

confidence interval (90% CI) for ln-transformed AUC0-t, AUCinf and Cmax were within 

the FDA equivalence criteria of 80-125%. Therefore, the normal development process 

would have been to plan for the definitive studies using these results and this formulation. 

However, upon closer inspection of the results of the pilot study, it was determined that 

some information/results required further attention to determine the impact on the future 

development of the drug. The first issue was that concentrations after the second 

administration of the reference formulation were lower than after the first dose, implying 

a potential food effect which influenced the absorption process even though lunch was 

served two hours prior to the second administration. The second observation was that 

there were a total of six additional blood draws taken within the first two hours of 

administration at Time 0h in comparison with the administration at Time 6h. It was 

possible that the Cmax and AUC of this second dose administration were not properly 
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characterized. Lastly, 24 hours of sampling for the test formulation was insufficient (i.e., 

AUC0-t/AUCinf < 80%). 

Although the results of the study were positive from a relative bioavailability 

perspective, it was unclear if the test product would be equivalent to the reference 

product under pure fasting (without a meal given at 4 hours or food effect from 4-hour 

meal removed) or fasting/fed conditions (conditions similar to the pilot study where 

concentrations after second reference administration are lower), and whether or not 

steady-state equivalence conclusions would be similar to the pilot single dose results. To 

better understand the pharmacokinetic behavior of the drug, modeling and simulations 

were therefore undertaken with data from the pilot study. The objectives of the modeling 

and simulations were: 

1) Develop a model to describe the PK of the test and reference formulations 

2) Perform clinical trial simulations of different scenarios using the final model to 

determine if the two products would be equivalent in a single-dose and steady-

state study design under fasting/fed or true fasting conditions 

3) Help design definitive studies if clinical trial simulations show that the two 

products are probably equivalent 

4) Determine what modifications could be made to the test formulation to improve 

chances of meeting the equivalence criteria if simulations show that the two 

products are probably not equivalent 
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Methods 

 

Brief Study Design of Pilot 

The design of the pilot study was a single-dose, randomized 2-way crossover 

fasted equivalence study where a dose of a supergeneric extended-release oral suspension 

was compared in terms of relative bioavailability to the same equivalent dose of the 

reference formulation (eg given twice over 12 hours). The first treatment was a single 

extended-release oral suspension dose (equivalent to twice the reference dose) of a test 

formulation (supergeneric) administered at Time 0 after an overnight fast. The second 

treatment consisted of two immediate-release doses of a reference product. The first dose 

was administered at Time 0 and the second administration was 6 hours after the first 

which corresponded to two hours after the start of lunch. The total daily dose 

administered was identical for both formulations and the washout between periods was 

seven days. Plasma samples for the parent compound were collected over 24 hours (0, 

0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20 and 24 hours). 

A total of 11 healthy subjects (men and women) completed both periods and data from 

these subjects were used in the modeling and clinical trial simulations. 

 

Model Buildup and Discrimination 

All modeling and simulations were performed using ADAPT 5®.
10

 Individual 

analyses were first conducted using maximum-likelihood. Model discrimination was 

based on the minimization of the average Akaike information criterion and the Negative 

Log Likelihood score as well as the maximization of the R
2
 of the fits. Visual inspection 
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of figures was used to confirm the appropriateness of the model by determining that there 

were no trends in the observed versus predicted concentrations or in the residual graphs 

and by ensuring that Cmax, distribution and the elimination phases were properly 

characterized in individual graphs. A population PK analysis was then performed with 

the final model by the iterative two-stage method (ITS) using priors obtained from the 

individual maximum-likelihood analysis in order to obtain the most accurate population 

PK parameters, variance, residual variability and individual results. 

Compartmental PK analyses were performed using the plasma parent data from 

all available subjects in the pilot study. Concentrations below the limit of quatitation were 

set to missing. All systemic concentrations were modeled using a weighting procedure of 

Wj=1/Sj
2
 where the variance Sj

2
 was calculated for each observation using the equation 

Sj
2
=(a+b*Y)

2
. The parameters a and b are the intercept and slope of the variance model. 

The slope is the residual variability proportional to each concentration and the intercept is 

the additive component of the error. Three different models were created: a) one for the 

reference formulation, b) one for the test formulation and c) one combining both 

formulations. 

 

Model for reference formulation 

A model was first constructed based only on the reference data. Doses and 

concentration data were simultaneously modeled. Basic 1-, 2- and 3-compartment models 

were tested for their ability to predict the observed concentrations.  Although this product 

was an immediate-release formulation that was absorbed quickly, multiple absorption 

peaks occurred following dosing.  Therefore, different absorption models were tested 
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(e.g., single first-order absorption rate_Ka, multiple Ka which were identical after each 

administration or multiple Ka which were different after each administration). 

Concentrations after dosing at Hour 6 were lower than the concentrations measured after 

the initial dose which suggested a food-effect. Therefore, a change in bioavailability (F2nd 

dose) was also included as a parameter to describe the second dose. 

 

Model for test formulation 

The parent concentration data was also fitted after the test formulation was 

administered. Like the model for the reference formulation, basic 1-, 2- and 3-

compartments were also evaluated for the test formulation. Because this was an 

extended-release formulation, different absorption rates were tested for inclusion in the 

model (single to multiple absorption peaks using the same Ka and multiple absorption 

peaks using different Ka). Only one dose of this formulation was administered; therefore, 

no parameter explaining a change in bioavailability was required. 

 

Model combining both formulations 

In order to achieve results consistent with a crossover design, the test and 

reference models were combined. Combining the models ensured that all subjects had the 

same parameters for volume of distribution and elimination regardless of the formulation. 

However, each formulation had a different absorption process. This model reflected the 

actual conditions of the study. 

Population analysis was performed on this final combined model. 

 



 128 

 

Clinical Trial Simulations 

Using the PK parameters and variances from the final combined model, clinical 

trial simulations were performed using a Monte Carlo technique in Adapt 5® for the 

following study designs: single-dose under true fasting conditions (ignoring the food 

effect after the second reference administration), steady-state under true fasting 

conditions, single-dose under similar conditions as the pilot (fasting/fed for reference 

formulation) and steady-state under similar conditions as the pilot (fasting/fed for 

reference formulation). 

Concentrations for the single-dose study were collected over 24 hours. The times 

chosen corresponded to the times that would be used in a single-dose equivalence study 

between the two products, with the same number of plasma samples after each 

administration of the reference formulation. For the steady-state design, identical 

concentration time points up to and including the 12-hour time point were simulated. 

Concentrations were only simulated for a 12 hour period as this corresponds to the dosing 

interval for the test formulation.  

For each study design, 10 studies varying from 20 to 42 subjects were simulated 

in order to determine a range of expected equivalence criteria results. 

Noncompartmental PK Analysis 

Using simulated concentrations, standard noncompartmental analysis with SAS® 

(Version 9.1.3) was performed to determine the area under the curve from time 0 to 24 

hours post-dose (AUC 0-t for single-dose), area under the curve to infinity (AUCinf for 

single-dose), area under the curve during the dosing interval (AUC0-τ for steady-state), 

maximum concentration (Cmax single-dose and steady-state) and minimum 
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concentration (Cmin for steady-state) for each subject. Using these noncompartmental 

PK parameters, an analysis of variance (ANOVA) with the Proc Mixed model in SAS® 

was performed for each study to calculate the ratio and 90% confidence intervals (CI) for 

the primary PK parameters (AUC0-t, AUCinf, AUC0-τ, Cmax and Cmin). The ANOVA 

model included formulation as a fixed effect and subject as a random effect. ANOVA 

were conducted to determine if the 90% confidence intervals would meet the FDA 

equivalence criteria of 80-125%. This was also performed for simulated studies under 

true fasting conditions (i.e., food effect after the second reference administration was 

removed). 

 

Results 

The ratios for AUC0-t, AUCinf and Cmax from the original noncompartmental 

analysis of the pilot study were 97.7, 112.4 and 103.5%, respectively. The estimated 

terminal half-lives for the reference and test formulations were 3 and 11 hours, 

respectively. Intra-subject variability was low and all 90% confidence intervals fell 

within the 80-125% acceptance criteria. 

Compartmental analyses were performed on the available data from the pilot 

study. Based on the model discrimination process, a 2-compartment model was chosen. 

This was not surprising as the parent compound exhibited a biphasic profile following the 

administration of both the reference and test formulations.  The final model included a 

central compartment and a peripheral compartment with a clearance from the central 

compartment. It had the following PK parameters: volume of the central compartment 
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(Vc/F), volume of the peripheral compartment (Vp/F), total clearance (CL/F ) and 

distributional clearance (CLd/F). 

For the reference compound, the absorption process included a rate of absorption 

(Ka) that was different after each dose; however, three absorption peaks appearing at 

different times were required to properly fit the data. The addition of multiple absorption 

peaks to the model reduced the Akaike's Information Criterion value from 135.8 to 94.0 

and the residual variability from 18.7% to 8.0%. Each absorption peak was associated 

with a different lag time (time before the start of absorption for each peak) and fraction of 

the dose. Therefore, the model had the following PK parameters: 2 absorption rate 

constants (Ka1 and Ka_6h), 6 different lag times (Tlag1, Tlag2, Tlag3, Tlag1_6h, 

Tlag2_6h and Tlag3_6h) and a change in bioavailability for the second dose (F2nd dose). 

The F2nd dose represented the relative bioavailability of the reference product under fed 

conditions versus its bioavailability under fasting conditions.  

As is often the case with extended-release formulations, different absorption rates 

were required to fit the multiple absorption peaks of the test formulation. The absorption 

process included 3 different rates of absorption (Ka1, Ka2 and Ka3) each associated with 

a different lag time (Tlag1, Tlag2 and Tlag3). A parameter for relative bioavailability 

(Frel) of the test formulation (with respect to the reference formulation) was also 

required. The final combined modeled is depicted in Figure 1. 

Goodness of fit plots are presented in Figures 2 and 3. As demonstrated by these 

plots, the model adequately describes all observed concentrations. Predicted versus 

observed concentrations were randomly scattered around the line of identity. No trends 

were observed with respect to the standardized weighted residuals. In addition, the 
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residual variability was only 8.4%, further demonstrating that the model adequately 

described the observed concentrations. 

The estimated PK parameters for the final model are presented in Table 1. The 

relative bioavailability for the test reference was 129% which would make total exposure 

outside of the usual accepted equivalence range of 80-125%. The main difference 

between the two compounds was in the absorption process. The absorption rate constants 

are summarized in Table 2. The absorption of the test formulation was characterized by 

two different absorption rates; the absorption half-life for one of these absorption rate 

constants was approximately 15 hours. Fifty percent (50%) of the dose was absorbed with 

a sustained-release (SR) rate (i.e, slower rate) while the remaining 50% of the dose was 

absorbed with an immediate-release (IR) rate (i.e., faster rate). The immediate-release 

portion was described by two peaks (one Ka, two lag times) with the first peak 

accounting for 40% and the second for 10% of total dose. Both peaks started within 1.7 

hours of administration and lasted approximately 2 hours. The sustained-release peak 

started at 0.7 h and would theoretically last 108 hours. 

Clinical trial simulations were conducted for single-dose and steady-state 

equivalence studies under true fasting conditions and with the same conditions as the 

pilot study (i.e., fasting/fed for reference formulation). Average ANOVA results are 

tabulated in Table 3. When comparing the single dose simulation under the same 

conditions as the pilot study, the ratios for AUC0-t, AUCinf and Cmax were similar to 

the original noncompartmental results; however Cmax was slightly lower. If the food 

effect was removed, then the ratio for both simulated AUC0-t and Cmax decreased. 

Although the ratio for AUC 0-t under a fasting/fed single-dose design was approximately 
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100%, the fasting/fed steady-state ratio for AUC 0- was significantly above 100%. 

Therefore, simulations suggested that it would be difficult to prove equivalence between 

the two formulations at steady-state (Cmin) and possibly at single dose for Cmax (true 

fasting condition) or AUCinf (fasting/fed conditions). 

Based on these simulation results and the differences in the absorption process 

that existed between the formulations, further clinical trial simulations were undertaken 

to determine the likelihood of meeting the BE requirements if modifications were made 

to the test formulation absorption process. Two options were recommended to increase 

the chances of meeting the equivalence criteria. The first option was to delay the 

sustained release portion of the formulation by 2 hours and to increase its rate by 6.5 fold. 

The second option was to have a portion of immediate-release being absorbed at 6 hours, 

to delay the absorption of the sustained release portion of the formulation by 2 hours and 

to increase its absorption rate by 2.3 fold. Figures 4 and 5 depict the predicted mean test 

concentrations for these two options versus the observed reference concentrations. 

 

Discussion 

Although the drug name was not specified for confidentiality purposes, the 

objective of this article was still fulfilled, which was to demonstrate the utility of 

modeling and simulations in order to better develop generic and supergeneric 

formulations. Furthermore, the PK results reported for this NSAID agent are consistent 

with what is known about its pharmacokinetic characteristics. 

When two formulations of the same drug are given to the same subjects on two 

different occasions, only the rate and extent of absorption differ between the two products 
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to possibly cause significant changes to a profile, while the distribution and elimination 

process remain constant because they are drug and not formulation specific processes.
7,11

 

Therefore, to avoid having different mean population and variance parameters for the 

distribution and elimination processes between the two formulations, the final model 

fitted both formulations simultaneously. This reduced the variability in the results, 

allowed the use of a relative bioavailability parameter for the test formulation and 

reflected the actual conditions of the study. However, prior to reaching this step, the two 

formulations were fitted separately. This was done to permit a better understanding of the 

absorption process for each formulation. 

Clinical trial simulations conducted under the conditions of the pilot study (i.e., 

change in bioavailability after the second dose for reference) reflected what was observed 

in the pilot study. The original noncompartmental ratio for AUC0-t and Cmax were 

approximately 100% and the ratios estimated by compartmental analysis were also close 

to 100%. However, if the change in relative bioavailability for the reference formulation 

was not taken into consideration, then the ratios for both AUC0-t and Cmax decreased. 

This is understandable, as observed concentrations under true fasting conditions (first 

dose) were greater than under fed conditions (second dose). Therefore, removal of F2nd 

dose parameter increased the simulated reference concentrations after the second dose, 

leading to a greater Cmax and AUC for the reference formulation. Conversely, increased 

reference parameters caused a reduction in the ratios (i.e., ratio = test/reference). 

Although the ratio for AUC0-t under a fasting/fed single-dose design was 

approximately 100%, the simulated fasting/fed steady-state ratio for AUC0- was 

significantly above 100%. The ratio of approximately 117% for AUC0- at steady-state is 
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similar to the single dose AUCinf ratio. The AUCinf ratio was greater than the AUC0-t 

ratio due to significant amount of AUC extrapolated for the test formulation. This 

demonstrated that there was still a significant amount of the test formulation still being 

absorbed at the end of the profile (24 hours post-dose) while the reference product was 

completely absorbed. For the test formulation, this translates into accumulation and a 

high ratio for AUC0-. 

The absorption half-life corresponds to the time for half of the administered dose 

to be liberated and absorbed into the systemic circulation. The absorption half-life for the 

reference formulation was short under both fasting and fed conditions although multiple 

absorption peaks were included in the model. Food slightly delayed the lag times of these 

absorption peaks and increased the absorption half-life. However, the absorption half-life 

for the reference formulation was still short even after lunch and no flip-flop kinetics was 

observed with the modeling. On the other hand, three different absorption rates were 

required to model the absorption process for the test product with two absorption rates 

similar to those observed with immediate-release reference formulation and a third 

absorption rate that corresponded to the sustained portion of test formulation which had a 

half-life that was approximately 20 to 135 times longer than the reference absorption 

half-life. This led to flip-flop kinetics for the test formulation which explained why the 

apparent terminal half-life was much longer for the test formulation using the 

noncompartmental analysis. Furthermore, approximately 50% of the test product was 

liberated at this rate and after 24 hours, approximately 20% of the formulation was still 

being absorbed. 
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An advantage of clinical trial simulations is the possibility of determining the 

impact that a change to an aspect of the study will have on the study conclusions.
12,13

 For 

example, clinical trial simulations have been used to determine the impact on a drug‘s 

profile if renally impaired volunteers are included instead of healthy volunteers.
14,15

  In 

this study, clinical trial simulations showed that in order to optimize the chances of 

meeting bioequivalence requirements, the test formulation would require some 

modification. Based on the compartmental analyses, the absorption of the test dose 

associated with the sustained release rate was the main difference between the two 

products. Simulations of different proposed modifications to the test product were 

performed to optimize chances of meeting the equivalence criteria. With the formulation 

scientists‘ input on the feasibility of the proposed changes, two proposed modifications 

were retained. Both the proposals required a delay in the start of the sustained-release rate 

and an increase in this rate. Clinical trial simulations using the proposed changes to the 

test product suggested that it would meet all equivalence criteria under both a single dose 

and steady-state design under fasting/fed conditions. For these clinical trial simulations, 

the fasting/fed study design was used based on literature studies performed with the 

reference formulation which showed a constant food effect. 

A limitation to this work is the lack of knowledge on the effect of food on the 

relative bioavailability of the test formulation administered at steady-state. Clinical trial 

simulations discussed in this paper were performed assuming no food effect on the test 

formulation at steady-state. If a food effect is observed with the test formulation in future 

multiple dose studies, it is assumed that the AUC0-t, AUCinf and Cmax would be lower; 

therefore lowering the ratio and 90% CI for these parameters. Another limitation is the 



 136 

 

lack of concentration data collected after 24 hours for the test formulation. This did not 

allow the proper characterization of the slow absorption rate for the test formulation. 

Physiologically, it is possible that absorption stopped prior to the 108 hours predicted by 

the modeling. If absorption would cease prior to the complete absorption of the test 

formulation, the ratio for AUCinf would be decreased.  It is therefore possible that the 

situations described here could be associated with lower ratios for PK parameters, 

however results would still indicate that changes need to be brought about in order to 

meet BE criteria.  Thus, none of these limitations affect the conclusions about the 

differences in the profiles and absorption process between the two formulations. It is 

clear that in order to achieve more comparable profiles, the test formulation would 

require changes. 
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Conclusions 

Concentrations for both formulations were well described by a 2-compartment 

model with 3 absorption phases. The results of the modeling were similar to the results of 

the noncompartmental analysis which supports the selection of the final model. Modeling 

and simulations permitted a better understanding of the potential food effect and the 

differences between the two formulations. 

Clinical trial simulations suggested that it would be difficult to prove equivalence 

between the two formulations under a fasting single-dose design or fasting/fed steady-

state design. To improve the chances of meeting the equivalence criteria, the test 

formulation had to be modified to be more similar to two doses of the reference product. 

Results of these clinical trial simulations played a critical part in the plans to 

modify the test formulation. Once the formulation is modified, in vitro dissolution 

information will be used to predict in vivo bioequivalence potential. 
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Figure 1 Final model used to simulate concentrations 

 

Legend: Ka is an absorption rate constant;  and  are the portion of the available dose associated with an absorption process; F2nd 

Dose is the relative bioavailability of the 2
nd

 reference dose; Frel is the relative bioavailability of the test versus the reference 

product; Vc/F is the volume of the central compartment (reference); Vp/F is the volume of the peripheral compartment 

(reference); CL/F is the total clearance (reference); CLd/F is the distributional clearance (reference)
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Figure 2 Observed versus predicted concentrations 
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Figure 3 Weighted residual versus time 
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Figure 4 Simulated test formulation profile using Option 1 modification 

versus observed reference concentrations 

 

Note: This simulation is for a single-dose study. The test formulation is simulated 

as an administration at Time 0 hour while the reference formulation is 

simulated as an administration at Times 0 hour and 6 hour. 
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Figure 5 Simulated test formulation profile using Option 2 modification 

versus observed reference concentrations 

 

Note: This simulation is for a single-dose study. The test formulation is simulated 

as an administration at Time 0 hour while the reference formulation is 

simulated as an administration at Times 0 hour and 6 hour. 
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Tables 

 

Table 1: Estimated PK parameters 

 

  Reference Fasting Model Test Model 

Parameters Mean Median Variance Mean Median Variance 

CL/F (L/h) 2.76 2.86 1.12 Same Same Same 

Vc/F (L) 6.88 6.88 4.69 Same Same Same 

CLd/F (L/h) 0.28 0.31 0.02 Same Same Same 

Vp/F (L) 1.31 1.41 0.38 Same Same Same 

Ka1 (h
-1

) 6.34 6.34 7.50 2.09 2.37 0.48 

Ka1 for 6 hour 

reference dose (h
-1

) 

0.93 0.92 0.07 - - - 

Ka2 (h
-1

) - - - 0.043 0.039 0.0003 

Ka3 (h
-1

) - - - 1.31 1.29 0.53 

Tlag1 (h) 0.076 0.069 0.003 0.059 0.048 0.004 

Tlag2 (h) 1.11 1.04 0.044 0.74 0.74 0.028 

Tlag3 (h) 1.90 1.88 0.034 0.64 0.68 0.11 

Tlag1 for 6 hour 

reference dose (h) 

0.076 0.069 0.003 - - - 

Tlag2 for 6 hour 

reference dose (h) 

1.11 1.04 0.044 - - - 

Tlag3 for 6 hour 

reference dose (h) 

1.90 1.88 0.034 - - - 

F2nd Dose 0.92 0.93 0.011 - - - 

Frel - - - 1.29 1.34 0.026 

 

Legend: Ka is an absorption rate constant;  and  are the portion of the available dose 

associated with an absorption process; Tlag is the time before the start of an 

absorption rate constant; F2nd Dose is the relative bioavailability of the 2
nd

 reference 

dose; Frel is the relative bioavailability of the test versus the reference product; Vc/F 

is the volume of the central compartment (reference); Vp/F is the volume of the 

peripheral compartment (reference); CL/F is the total clearance (reference); CLd/F 

is the distributional clearance (reference)
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Table 2: Estimated absorption PK parameters for the reference and test 

formulations 

 

 

    

Parameters associated 

with absorption process Reference Test 

Before lunch 

1st Absorption peak 

Lag time before start (h) 0.06 0.07 

% associated to peak (%) 85.0 40.8 

Absorption half life (h) 0.11 0.31 

2nd Absorption 

peak 

Lag time before start (h) 1.0 0.71 

% associated to peak (%) 12.0 50.2 

Absorption half life (h) 0.11 14.9 

3rd Absorption 

peak 

Lag time before start (h) 2.7 1.68 

% associated to peak (%) 3.0 9.0 

Absorption half life (h) 0.11 0.47 

After lunch 

4th Absorption peak 
Lag time before start (h) 0.08 - 

% associated to peak (%) 77.7 - 

Absorption half life (h) 0.74 - 

5th Absorption peak 

Lag time before start (h) 1.3 - 

% associated to peak (%) 12.5 - 

Absorption half life (h) 0.74 - 

6th Absorption peak 

Lag time before start (h) 2.9 - 

% associated to peak (%) 9.7 - 

Absorption half life (h) 0.74 - 

 

Note: For the 4th to 6th absorption peaks, the lag times does not include the 

dosing time (6h) 
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Table 3: Average ratio and 90% confidence intervals for each dosing regimen 

 

 

 

Note: 10 studies per dosing regimens were simulated. 

 

 

Predicted PK 
Parameters 

SD       
Fasting 

SS               
Fasting 

SD               
Fasting/Fed 

SS        
Fasting/Fed 

Ln AUC0-t             
91.7                

(88.5 - 95.1) NA 
103.1                

(100.6 - 105.6) NA 

Ln AUCinf             
102.9              

(99.0 - 106.9) NA 
117.0                 

(113.6 - 120.4) NA 

Ln Cmax              
89.4             

(84.1 - 95.1) 
106.3               

(100.5 - 112.4) 
99.9                    

(93.9 - 106.4) 
105.6                

(98.4 - 113.4) 

Ln AUC0-  NA 
103.8                 

(100.0 - 107.6) NA 
117.7                

(114.2 - 121.4) 

Ln Cmin           NA 
124.3                   

(114.9 - 134.5) NA 
139.0                 

(129.4 - 149.2) 
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CHAPTER III: DISCUSSION 
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Modeling and simulations rely heavily on compartmental PK/PD analyses.  To 

this end, new tools are made available in order to constantly improve analyses.  One such 

new tool is ADAPT 5® with its new nonlinear mixed effect algorithms MLEM and ITS.  

It was to better understand the new tools available in ADAPT 5® that the first part of this 

thesis was performed.  It was important to determine if these new available algorithms 

would perform better and/or provide better predictions than other tools that are already 

utilized, such as NONMEM® and IT2S®.  In order to test these algorithms, twenty-nine 

studies were simulated.  The use of simulated data instead of real clinical data allowed 

parameter estimations of the different algorithms to be compared directly to the true 

values of the parameters.  Indeed, the main objective of using a nonlinear mixed effect 

modeling approach is to characterize with the utmost precision the population PK 

parameters and the inter-individual and intra-individual variability of these parameters.  

This information allows researchers to obtain accurate predictions to correctly anticipate 

future study outcomes.  Thus, the precision and bias of each method were obtained by 

comparing estimated values against the true values.  The use of precision and bias to 

compare method has been used in the past.
31,53,70,144

  To the author‘s knowledge, this 

version of the software has never been tested in such a way before. 

As expected and demonstrated by others,
65,73,76,145

 results showed that all 

population PK analyses were superior to the standard two-stage analyses in determining 

the population PK parameters and their variabilities.  PK estimates from this last method 

should therefore never be used to provide predictions results of future studies.  Similarly, 

it was clear based on the results of this study that the new algorithms as implemented 

within ADAPT 5®, ITS and MLEM, were superior to IT2S® and we therefore 
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recommend the use of either MLEM or ITS rather than IT2S®.  Based on our analyses, 

the two best methods to estimate variances were the MLEM and FOCE algorithms, 

implemented within ADAPT 5® and NONMEM® respectively.  However, some 

differences existed between the two methods.  The FOCE method often underestimated 

variance parameters.  This shrinkage of the variance estimates has been well documented 

of late and is not a new issue.
146

  Based on the literature, standard errors of the PK 

parameter estimates were often considered too small.  It is for this reason that standard 

errors from NONMEM® are not often used to build confidence intervals around the 

estimates.  Instead, bootstrapping is the method of choice to correctly provide confidence 

intervals of the estimates when NONMEM® is used.
137-150

  In our analyses, the new 

MLEM algorithm almost never had any issues with variance shrinkage and in the 29 

simulated studies it never severely underestimated the clearance or volume of the central 

compartment.  Therefore, MLEM is an interesting alternative to FOCE in NONMEM® in 

this regard.  Overall, results showed that of all the nonlinear mixed effect algorithms 

tested, MLEM in ADAPT 5® and FOCE method implemented within NONMEM® were 

the most precise.  MLEM is comparable to FOCE with fewer shrinkage issues and its use 

in the drug development process should be increased. 

The research presented in this thesis focused on compartmental PK analyses and 

clinical trial simulations used in the context of the Phase I drug development process.  

These studies enrolled healthy volunteer subjects selected from a generally homogeneous 

population.  Therefore, no covariate analyses were required, although both NONMEM® 

and ADAPT 5® are capable of performing such analyses.  Both continuous and discrete 

variables are easily modeled in NONMEM® and the difference in the objective function 



 151 

 

serves as comparison between models with and without covariates.
151,152

  Continuous 

variables are also easy to model with ADAPT 5®.  However, in the beta version of this 

software, an option for the modeling of discrete covariates did not exist.  Therefore, all 29 

studies in the analyses were not designed to include testing of covariates.  In the later 

stages of clinical drug development, covariates are important and may influence both the 

expected PK estimates and the study design.  Clinical trial simulations for late clinical 

phases almost always include covariates in the model.  It would be interesting to test this 

new module in ADAPT 5® to determine if it is a valuable tool for covariate testing and if 

it compares favorably to NONMEM®.  This would facilitate the use of the software 

throughout the drug development process. 

In terms of computational time for each of the nonlinear mixed effect algorithms, 

ITS was the fastest followed by FOCE, IT2S and MLEM.  When modeling, it is always 

crucial to remember the purpose of the analyses.  This will help guide the choice of the 

algorithm required for the analyses.  If an ITS analysis suffices, then this analysis will 

save much time.  The time difference between algorithm analyses can reach up to several 

days for a complex model containing many subjects. 

Overall, the new algorithms available in ADAPT 5® performed very well and this 

new tool was used for all compartmental analyses and clinical trial simulations performed 

for the research projects undertaken within this thesis.  In addition to confirming the 

choice of algorithm and software to be used for subsequent research, the results presented 

in the first part of the thesis will be useful to scientists applying these new algorithms and 

will help them better understand their strengths and weaknesses. 



 152 

 

Despite the availability of new methodologies such as those explored in the first 

article, noncompartmental analysis remains a useful tool for the pharmaceutical industry 

and regulatory agencies to characterize the pharmacokinetics of drugs.  Conclusions for 

many clinical studies depend on this approach.  This is the case for the vast majority of 

Phase I studies including those having a bioequivalence or equivalence endpoint.
119

  

However, for noncompartmental PK parameters to be considered robust, the terminal 

elimination half-life is a critical parameter that must be properly calculated, as it is 

essential to the calculation of the overall exposure of a drug (e.g., AUCinf), total 

clearance, and total volume of distribution.  Therefore, in these studies, the sampling 

scheme duration is important and regulatory agencies have set criteria to ensure proper 

analysis.  For example, the Therapeutic Products Directorate (TPD) of Health Canada 

stipulates that the extrapolated portion of the AUCinf cannot be more than 20% of the 

total value,
41

 while the office of generic drugs (OGD) of the US FDA recommends a 

value less than or equal to 12.5%.
36

  These criteria are based on the mean results of a 

study and are meant to ensure the validity of the entire study.  Criteria for individual 

results are not, however, clearly defined.  To our knowledge, there was a gap in the 

understanding of what makes a half-life result robust or not in an individual subject.  

Based on past experiences, we believed that the conclusion of certain studies may have 

been biased or affected by individual results in which the PK parameters may not have 

been well estimated because of a sampling scheme duration that may have been too short 

(e.g., for these individuals‘ particular PK characteristics).  We hypothesized that the 

exclusion of such inaccurate individual subject data would improve the reliability of the 

overall conclusions.  Thus, the purpose of our analyses presented in the second article 
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was to determine if individual PK estimates judged unreliable negatively influenced the 

confidence intervals and if these individual subjects‘ kel, half-life and AUCinf should be 

removed from the ANOVA analyses. 

Results from the analyses presented in the second research article of this thesis 

clearly showed that it was better to remove results from individuals whose PK parameters 

were estimated from a sampling scheme considered to be too short from ANOVA 

analysis.  More specifically, the criterion that we proposed was to remove any subject‘s 

half-life value from the pivotal dataset in the ANOVA analysis when it was longer than 

half of the overall sampling duration.  Maintaining subjects with unreliable estimates in 

the ANOVA adds uncertainty to the results while removing these subjects‘ parameters 

improves the accuracy of the overall results.  This improvement outweighed the loss in 

degrees of freedom due to the exclusion of subjects.  Although Purves
153

 had previously 

stated that to have an acceptable precision in the half-life estimation, the Kel parameters 

had to be estimated from an appropriate terminal phase, his specific recommendation is 

not easy to implement, and the impact on the 90% confidence intervals of pivotal PK 

parameters had never been investigated.  In contrast, our simulations determined the 

overall impact of including or excluding data judged unreliable on the 90% confidence 

interval for pivotal analyses. 

Our results do not attempt to salvage poorly designed bioequivalence studies.  It is 

not acceptable for a bioequivalence study to have a sampling scheme that spans only 2 

half-lives on average.  However, all studies are based on expected mean values and a 

certain amount of inter-subject and intra-subject variability.  Occasionally, results will be 

unexpected or an individual subject‘s results will fall outside the anticipated limit of 
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variability.  Our results suggest that the additional suggested criterion should be set a 

priori even if the mean results (e.g., AUCt/AUCinf ratio) are within accepted criteria set 

by the regulatory agencies.  This will provide confidence intervals that are closer to the 

truth. 

The results also suggested that the sampling duration should be at least 4 times the 

average measured half-life in order to have confidence in the reported half-life value.  

This is true for both noncompartmental and compartmental analyses.  This result is not 

surprising and further specifies the required duration of the sampling scheme for 

appropriate half-life estimation.  Such information is crucial in clinical trial simulations 

for a new drug.  Often, Phase II and III studies are simulated based on Phase I results.  

However, Phase I studies are the first time the drugs are administered in humans.  These 

studies are sometimes based on short sampling schemes resulting in a half-life that might 

be underestimated, and consequently a clearance that might be overestimated.  If clinical 

trials are simulated based on results from Phase I studies that have inaccurate estimated 

PK parameters, simulations will be incorrect and the actual study outcomes will be 

different than those expected.  Therefore, before making any predictions, one must 

always ensure that the PK parameters are based on sampling schemes that span at least 

four half-lives. 

Our research study did not compare the actual degree of bias in the alpha and beta 

error when we implemented this recommendation in pivotal Phase I studies to situations 

when the criterion was not applied. This would be an interesting avenue of research that 

could be investigated.  One possible way to achieve this would be to retrospectively look 

back at a database of studies and determine how many studies would have had different 
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conclusions based on the new sampling scheme duration criterion.  If a study has a proper 

design and results are those which are expected, the chance of a wrong conclusion would 

be inside the usual alpha and beta errors of 5% and 20%, respectively.  If the same study 

were reproduced with clinical trial simulations, many subjects and study designs (with 

different sampling schemes) could be simulated.  These designs would occasionally be 

less than optimal due to the different scenarios tested.  Therefore, the chances of having 

an individual subject‘s data judged unreliable are greater due to the different study 

designs simulated. 

Finally, when noncompartmental analysis is used during the drug development 

process, we recommend that the criterion to remove a subject‘s half-life value from the 

pivotal dataset when it is longer than half of the overall sampling duration be 

implemented in all pivotal Phase I studies (bioequivalence studies) to ensure that results 

are as accurate as possible.  This is also true for clinical trial simulations as to have 

precise predictions by the simulations, the criteria to remove data for some individuals 

should be the same for the simulations as for the actual study that is performed.  

Therefore, we suggest that the added criterion be applied to both actual bioequivalence 

studies as well as any clinical trial simulations. 

The use of new tools and the definition of subject inclusion criterion described in 

the first two articles lay the foundation for other innovative approaches used in the last 

article presented in this thesis.  Because the current drug development process has been 

referred to be inefficient by many,
5,154

 new approaches are required to extract meaningful 

information from collected data.  The use of clinical trial simulations is one such new 

approach which has much potential to improve the drug development process.  It is our 
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hypothesis that clinical trial simulations throughout the drug development plan will 

improve the efficiency of the process.  In the last article presented in this thesis, clinical 

trial simulations were used to improve the drug development process for one compound.  

With ADAPT 5®, the new tool tested in the first article, and the new criteria established 

in the second article, population compartmental analyses and clinical trial simulations 

were used to extract valuable information for a new formulation of a NSAID which 

would have otherwise been impossible to determine using typical noncompartmental 

approaches.  Only additional Phase I trials would have provided this information, which 

would have taken considerable time and money. 

A pilot study was dosed in which a new sustained-release twice a day suspension 

was compared to an immediate-release four times a day reference suspension.  

Unfortunately, the pilot study did not properly capture the absorption phase of the second 

dose of the reference drug and the sampling scheme was somewhat short for proper 

characterization of the total exposure of the test product.  In addition, a food effect was 

observed after the second dose of the reference drug.  Using modeling and simulations, it 

was possible to characterize the absorption process of the reference product, establish the 

reduction in bioavailability for the reference product due to the food effect and calculate 

the absorption half-life for the two different products.  The terminal half-life for the test 

formulation was representative of the absorption rate constant instead of the elimination 

rate constant due to flip-flop kinetics.  The simulations also revealed that it would be 

difficult to demonstrate equivalence of the products in single-dose and multiple-dose 

pivotal studies.  Therefore, although the pilot study demonstrated promising results with 

the 90% confidence intervals for the noncompartmental parameters AUC0-t, AUCinf and 
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Cmax being within the equivalence criteria, the drug development of this product was put 

on hold because of the modeling and simulation results, and until a new formulation be 

designed. 

Clinical trial simulations permit researchers to answer many ―what if‖ questions 

that are left unanswered by previously performed studies.
154,155

  For example, Zhang et al 

have shown that clinical trial simulation could be used to answer certain questions.
126

  

Importantly, these questions can be answered without requiring the conduct of new 

studies.  This was the case with the pilot study presented in the last article which had 

many unresolved issues.  The first question was to determine if the observed food effect 

would impact the equivalence results.  It was crucial to know whether or not conclusions 

would be different if a study was completed with a true fasting state throughout dosing 

for the reference product.  Simulations demonstrated that conclusions would be different 

and that it would be important to know if all doses could be administered under true 

fasting conditions, especially for a multiple-dose study.  When performing clinical trial 

simulations, it is critical to gain as much information as possible on the drug being 

simulated in order to provide the best predictions.  In addition to the simulation results, 

literature data on studies conducted with the active ingredient demonstrated an 

observable food effect.
156,157

  The food effect was similar to the one observed in the pilot 

study.  In addition, one study showed that the effect was present for two of the four 

administered daily doses.  This exemplifies how the use of information from two 

different sources (a previously dosed study and literature data) can help establish the 

most likely expected exposure.  Thus, based on the literature data and simulation results, 

a food effect would most likely be present for the second administration of the reference 
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product. It is not uncommon to try and extract information from different sources. 

Lockwood presented an example of the use of previous data, either from literature or 

other drugs in the same class to improve the results of clinical trial simulations.
158

 

When interpreting the data from the pilot study presented in the last part of this 

thesis, a second question that was answered by the clinical trial simulations concerned the 

impact of a change in the absorption rate constant of the test formulation.  The 

formulation scientists had planned to use a slower sustained-release portion in the hopes 

that this would increase chances of meeting the equivalence criteria.  The plan was to 

make these changes to the formulation and run another pilot study.  Using clinical trial 

simulations, it was obvious that this would not help meet the equivalence criteria and 

would actually lower the chances of being equivalent at steady state.  Using this tool 

made it easier for scientists with different backgrounds and expertise to comprehend the 

consequences of proposed changes.  Discussions ensued, feasible changes to the 

formulation were proposed and clinical trial simulations were performed to determine 

which changes would have the best chance of helping the product meet equivalence 

criteria.  These simulations helped the formulation scientists understand what changes 

should be made to the test formulation to increase chances of meeting equivalence 

criteria. This also reduced the number of hit and miss changes they would have done to 

their formulation and pilot studies that would have been performed. 

Answering these questions and performing clinical trial simulations avoided the 

unnecessary dosing of additional studies.  If the company had continued with a normal 

development plan based solely on the pilot results, pivotal studies would have been 

performed.  These include one single dose study under fasting conditions, one single dose 
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study under fed conditions and two steady-state studies under fasting and fed conditions.  

These studies would most likely have failed to meet the equivalence criteria.  Thus, 

potentially up to four unsuccessful studies were avoided thanks to clinical trial 

simulations.  In addition, once it was determined from clinical trial simulations that the 

product would probably not meet the equivalence criteria, scientists had planned to make 

modifications to the product that they believed were necessary and dose another pilot 

study.  As these changes were very different from those dictated by the clinical trial 

simulations, this new pilot study would have provided no additional useful information 

and further formulation changes would have been required.  Therefore, clinical trial 

simulations reduced tremendously the number of subjects exposed unnecessarily to Phase 

I studies.  This allowed the pharmaceutical company to save time, money and provided a 

better study design and formulation design for the pivotal studies. It also yielded a greater 

understanding of their compound‘s absorption process.  This helped the formulation 

scientists determine what changes were required in order to produce a drug that would be 

acceptable to the regulatory agencies.  These change would have otherwise been made 

without knowledge of their impact on the BE potential of the drug.Lalonde presented an 

example with gabapentin where clinical trial simulations were used to avoid additional 

Phase III studies.
159

  Although this provides an example where money was saved with 

clinical trial simulations, the clinical trial simulations were only performed after the 

regulatory agency had raised concerns with study designs.  Therefore, the use of clinical 

trial simulations should be used throughout drug development rather than simply waiting 

for regulatory agencies to raise concerns. 
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For a supergeneric drug, the impact of formulation changes on equivalence 

conclusions are not as obvious to predict as for a simple generic drug.  Although a 

supergeneric has the same active ingredient as a reference product, it has different 

delivery characteristics than the reference product. Therefore, formulation changes to the 

supergeneric product cannot be directly linked to the reference product‘s characteristics 

and non-active ingredients.  The generic industry has yet to take advantage of population 

pharmacokinetics or clinical trial simulations.  Even though an agency such as the Office 

of Generic Drugs (OGD) at the FDA prefers noncompartmental analysis as part of an 

abbreviated new drug submission, this should not stop the industry from using modeling 

and simulations to extract information whenever possible to minimize costs.  Not all 

generic compounds are easy to market.  Multiple reasons exist for which a typical 

bioequivalence study does not produce the desired results, and this is when researchers 

sometimes turn to compartmental analyses.  Population compartmental analyses have 

been used for generic drug development when the compound was highly variable, could 

only be tested in patients or systemic and PD endpoints were hard to measure.
160

  

However, this article showed how clinical trial simulations can be used in a different 

equivalence context.  Innovative, scientifically sound approaches to improve drug 

development should always be taken advantage of whether or not it is for the innovator or 

generic industry. 

Our research was conducted on Phase I healthy subjects.  No covariates or PK/PD 

modeling was required. For example, the genotype or phenotype for the CYP2C9 enzyme 

was not collected; therefore, it was not determined if the population in the Phase I study 

included any poor metabolizers. Therefore, the PK model did not contain genotype or 
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phenotype as a covariate. Although this could have helped explain the variability of the 

clearance, the observed half-life for the reference product only varied from 1.8 to 4.3 

hours. Thus, even if a subject in a future study had a half-life that was two to three times 

longer than the longest observed half-life from this Phase I study, the AUCinf determined 

for this subject would still be included even if taking into consideration the new a priori 

criteria for rejecting individual AUCinf parameter. Therefore, the results of the modeling 

and simulations were able to provide valuable information even without this covariate 

information.  However, it is expected that clinical trial simulations would be even more 

beneficial with covariates information or with the use of PK/PD modeling.  PK/PD 

models are usually very variable and covariates are added to the model in an attempt to 

explain this variability.  Many more questions arise from such data and careful planning 

for later clinical phases is crucial to avoid studies that fail to demonstrate efficacy or 

safety. 

The clinical trial simulations performed in the last portion of this thesis 

demonstrated how clinical trial simulations can be used starting in Phase I and how it can 

reduce the number of inefficient studies.  It allowed the extraction of meaningful data 

from a single pilot study, was instrumental in changing the planned development course 

of action and helped scientists have a better understanding of the compound being 

developed and bring appropriate changes to the formulation to increase the likelihood that 

the drug could be marketed.  Clearly, clinical trial simulations were influential in the 

development of the drug being tested.  The company has since changed their philosophy 

and after most pilot studies, clinical trial simulations are performed to determine the 

equivalence potential of their compound and to determine if the planned study designs for 
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the pivotal studies are adequate.  In addition, steady-state concentrations for their 

supergeneric compounds are simulated to determine if they will meet equivalence criteria 

at steady-state. 
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CHAPTER IV: CONCLUSIONS 
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1. GENERAL CONCLUSIONS 

 

The pharmaceutical industry cannot rely on previous business paradigms going 

forward.  Medications for uncomplicated diseases have already been developed.  Today, 

the focus of research and development is on diseases that are more complex, with 

mechanisms that are not as straightforward and which have drug targets that are harder to 

reach.  These factors have contributed to making the current drug development process 

inefficient and have led to many studies that did not fulfill their objectives.  Thus, this 

research aimed at providing some possible solutions to this issue and thereby improving 

drug development. 

The first part of the research helped to better understand new tools available for 

compartmental analyses.  The MLEM algorithm proved to be very stable, provided better 

results than other tools available and was associated with less shrinkage of the variance 

parameters estimated by the models.  Accurate variance estimates are essential if 

simulations are to portray the expected variability in concentration-time profiles for the 

population.  Simulations performed using a smaller population variability than the true 

variability will lead to decisions that do not account for some expected subjects‘ 

responses.  The opposite is also true, in which simulations using a larger population 

variability than the true variability will lead to decisions that account for some subjects‘ 

responses that are unlikely to happen in the population. In both cases, an inaccurate 

quantification of the variability in the population will lead to false predictions and wrong 

conclusions. 
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Having the right tools to perform modeling and simulations is important; 

however, it is also crucial to understand how certain subjects could influence conclusions 

and set appropriate guidelines regarding these subjects to ensure that the correct 

conclusions are obtained.  Otherwise, incorrectly performed clinical trial simulations will 

have the opposite effect and hinder drug development.  Therefore, the second portion of 

the research focused on which subject‘s PK parameters might unduly influence study 

conclusions due specifically to a short sampling scheme.  Results demonstrated that 

maintaining a subject whose PK parameters are based on an unreliable profile will 

probably be more detrimental than beneficial in the analyses.  With clinical trial 

simulations, numerous study designs are tested in order to answer many different 

questions.  Consequently, with multiple simulations it is likely that subjects with 

unreliable profiles are simulated, so this aspect of my research project is especially 

important because it examines the influence of such subjects and proposes how to deal 

with them. 

Lastly, the research demonstrated how clinical trial simulations could be used to 

improve the development process with a drug under development.  Information was 

extracted from one study in order to answer many questions which would only have been 

possible by performing additional studies.  They were also helpful in explaining how the 

drug could be modified to help achieve the profiles that were sought after by the 

researchers.  Ultimately, clinical trial simulations allowed a better understanding of the 

compound being developed.  This permitted the scientists to focus on ways to improve 

the compound while removing guesswork from the development process.  More 

importantly, clinical trial simulations were able to improve our understanding while 
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reducing the number of subjects exposed unnecessarily to the compound, decrease the 

number of studies actually dosed and save time and money.  The results were also 

instrumental in changing the way a specific pharmaceutical company is developing their 

drugs.  Clinical trial simulations are now included in their drug development process with 

the goal of better understanding their drugs and reducing unnecessary studies. 

Research presented in this thesis provided concrete ways to improve the drug 

development process by demonstrating the strengths and weaknesses of some newly 

available tools for compartmental analyses, setting standards stipulating which estimated 

PK parameters should be excluded from certain PK analyses and illustrating how clinical 

trial simulations are useful to answer many questions in the drug development process. 
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