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†Université de Montréal, Departement de Sciences Economiques, CP 6128, succursale Centre-
ville, Montréal, Canada. Email: sidartha.gordon@umontreal.ca, Tel: (1)(514)343-2398. Fax:
(1)(514)343-7221.

1



Abstract

A public decision model specifies a fixed set of alternatives A, a variable

population, and a fixed set of admissible preferences over A, common to all

agents. We study the implications, for any social choice function, of the princi-

ple of solidarity, in the class of all such models. The principle says that when

the environment changes, all agents not responsible for the change should all

be affected in the same direction: either all weakly win, or all weakly lose. We

consider two formulations of this principle: population-monotonicity (Thom-

son, 1983); and replacement-domination (Moulin, 1987). Under weak addi-

tional requirements, but regardless of the domain of preferences considered,

each of the two conditions implies (i) coalition-strategy-proofness; (ii) that

the choice only depends on the set of preferences that are present in the so-

ciety and not on the labels of agents, nor on the number of agents having a

particular preference; (iii) that there exists a status quo point, i.e. an alterna-

tive always weakly Pareto-dominated by the alternative selected by the rule.

We also prove that replacement-domination is generally at least as strong as

population-monotonicity.

Key words. Population-monotonicity, replacement-domination, solidarity,

strategy-proofness, coalition-strategy-proofness, public decision, status quo.
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1 Introduction

Several authors have studied the implications of solidarity conditions in particular

models of pure public choice.1 This paper unifies results obtained in each of these

particular models into a general theory, applicable to a large class of pure public

decision models.

Solidarity is a general principle of justice. It says that when circumstances

change, all agents not responsible for the change should all be affected in the same

direction: either they all weakly win, or they all weakly loose. We investigate

here two particular formulations of this principle. Population-monotonicity (Thom-

son, 1983a, 1983b) applies to the arrival and departure of agents. Replacement-

domination (Moulin, 1987) applies to changes in preferences. We restrict attention

to models of pure public decision.2

A model of public decision specifies a fixed set of alternatives A, a variable

population, and a fixed common set of admissible preferences over A. This definition

implies the three following important assumptions. (i) The set of alternatives A is

fixed and does not depend on the population. (ii) Each admissible preference is

defined over the fixed set A. (iii) The set of admissible preferences is common to

all agents and fixed.

In particular, alternatives are “anonymous”, in the sense that they do not contain

agent-specific provisions, such as transfers, or the allocation of commodity bundles

to particular agents, and that the set of admissible preferences is the same for

each agent. This excludes any resource allocation problem with any type of private
1See [2] , [3] , [4] , [5] , [9] , [10] , [11] , [12] , [13] , [14] , [21] , [27] and [25] .
2Besides models of public decision, population-monotonicity and replacement-domination have

been studied in a very large number of contexts, including baragaining theory, coalitional games,
quasi-linear cost allocation problems, fair allocation in economies with private goods, with pro-
duction, with individible objects, and with single-peaked-preferences. For a survey on population-
monotonicity, see Thomson (1995) and Thomson (1999b). For a survey on replacement-domination,
see Thomson (1999a).
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consumption, or phenomena such as crowding.

For example, the citizens of a nation choose the location of their capital, the

colors and design of the national flag, the philosophical and moral principles under-

lying the Constitution and the laws governing the nation. A company’s executives

and board choose a name, an image, etc.

Pure public decision models also serve as benchmarks in the study of models

of non-pure public decision, for situations where assumptions (i), (ii) and (iii) can

only be thought of as approximations.

All existing studies on solidarity conditions in pure public choice rely on a partic-

ular underlying geometric structure. For example, Thomson (1993) and Ching and

Thomson (1997) model the set of alternatives as a segment over which agents have

single-peaked preferences (see section 2). Other models depart from this benchmark

by analyzing different underlying geometric structures. Our starting point is the ob-

servation that, although, in each of these models, solidarity conditions characterize

a certain model-specific class of social choice functions, many properties common to

all these functions do not depend on the geometry, nor on any other specificity of

the model. As we show, solidarity conditions, together with weak additional require-

ments, have the same implications in any model of pure public decision, regardless

of its specific underlying geometry, and regardless of any other type of specificity in

the model.

In this paper, we first establish that solidarity with respect to changes in pref-

erences is generally a stronger requirement than solidarity with respect to the

arrival and departure of agents, in the following sense. Any social choice func-

tion f for a pure public choice problem (with a variable population), that sat-

isfies replacement-domination, together with weak additional conditions, must be

population-monotonic (section 4). In addition, any social choice function f for a

pure public choice problem, that satisfies at least one of our conditions of solidarity,
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together with weak additional conditions, must have the following properties. (a)

The decision only depends on which preferences are represented in the population

by at least one agent, not on how many agents represent each of these preferences,

nor on their labels. In other words, neither labels nor numbers matter (section

4). We call this property “represented-types-only”. (b) The social function admits

at least one status quo point, i.e. an alternative always Pareto-dominated by the

choice of the function (section 5). In particular, whenever the status quo point is

Pareto-efficient, either it is chosen, or an alternative Pareto-indifferent to it is se-

lected. (c) The social choice function satisfies coalition-strategy-proofness, which

means that no coalition of agents can manipulate the choice so as to benefit all

members of the coalition (section 6). In particular, it satisfies the weaker condition

of strategy-proofness.

We prove that all these implications are general. They hold regardless of the

specifics of the particular model under consideration, such as the cardinality of the

set of alternatives, the cardinality of the set of admissible preferences, the richness

of this set, and whether or not it has any kind of geometric structure. In particular,

single-peakedness of the preferences is not required for any of the above implications

to hold. Even completeness of the preferences is not required for most of them to

hold. We then turn to the particular geometric models studied in the literature

on pure public decisions (section 7). We show that in almost all of these models,

(existing or new) characterizations of solidarity can be obtained as corollaries of our

previously listed general implications of solidarity. Last, we verify that no further

unexpected general logical relations hold among the conditions we study (section

8).
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2 A class of models

Let A be a set of alternatives, finite or infinite, with generic element denoted by

a. Let N be an infinite set of potential agents with generic agent denoted by i.

This set can be either countable or uncountable. A population is a non-empty

finite subset N ⊂ N of the set of potential agents. This set can be interpreted as

the set of agents actually present in the economy. Agents have preferences over the

alternatives. A preference R is a binary relation on A that is reflexive and transitive.

We do not require preferences to be complete. We say that two alternatives a and

b are comparable for the preference R if either a R b or b R a. Let P and I be the

associated strict preference and indifference relations. Preferences may be restricted

to belong to a certain set, which represents the constraints imposed on the model by

the situation to which the model applies. One important assumption is that these

constraints affect all agents in a symmetric way, so that this set is common to all

agents. Throughout the paper, let R be a set of admissible preferences, common

to all agents. A pure public choice model with a variable population is a triple

(N , A,R) .

For all population N, a preference profile for N is a list RN = (Ri)i∈N ∈ RN of

|N | preferences indexed by N. Let U (R) be the union of all RN for all (non-empty

and finite) populations N. This is the set of all admissible preference profiles, for all

populations. A choice function f prescribes an outcome for any population and any

profile of admissible preferences. It is a therefore a mapping

f : U (R) → A.

Our critical assumptions in the above setup are the following. (i) The set of

alternatives A is fixed and does not depend on the population. (ii) Each preference
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R ∈ R is defined over the fixed set A. (iii) The set of admissible preferences R is

common to all agents and fixed. This excludes in particular any resource allocation

problem with any type of private consumption, or phenomena such as crowding.

We do not impose any additional assumptions on A and R. In particular, these sets

may be finite or infinite. Preferences may or may be geometric structured, and may

or may not satisfy regularity assumptions.

3 Conditions

To define our conditions, it is useful to define the Pareto-domination relation. For all

RN ∈ U (R) , let a weakly Pareto-dominate b for RN , if for all i ∈ N, we have a Ri b.

This is denoted a RN b. Let a and b be Pareto-indifferent for RN if for all i ∈ N, we

have a Ii b. This is denoted a IN b. Let a Pareto-dominate b if a RN b and not a IN

b. This is denoted by a PN b. Let a ∈ A be Pareto-efficient for RN if there exists no

b ∈ A such that b PN a. The Pareto solution is the correspondence Π : U (R) � A

that assigns to each profile RN the set of Pareto-efficient alternatives for RN . A

highly desirable property, for a social choice function is that, for any profile, the

function select a Pareto-efficient outcome for this profile.

A social choice function f satisfies Pareto-efficiency if for all RN ∈ U (R) , we

have f (RN ) ∈ Π (RN ) .

Let us now present two formulations of the principle of solidarity. The princi-

ple says that when changes in the economy occur, all agents who are not directly

responsible for these changes should be affected in the same direction: either they

all weakly win or they all weakly loose. The first formulation applies to changes in

population. It says that when a new agent joins the economy, the agents who were

present before the change and whose preferences were kept fixed should all weakly

loose, or they should all weakly win.
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A social choice function f satisfies population-monotonicity if, for all profile

RN ∈ U (R), for all agent i ∈ N \ N , and for all preference R′
i ∈ R, either we have

f (R′
i, RN ) RN f (RN ) , or we have f (RN ) RN f (R′

i, RN ).

If f is Pareto-efficient, the choice f (RN ) is Pareto-efficient for the initial profile

RN , and an increase in population by exactly one agent cannot lead to a Pareto-

improvement for RN . From this observation, it follows that population-monotonicity

and Pareto-efficiency generally imply the following stronger condition.

A social choice function f satisfies population-monotonicity+ if, for all two

profiles RN , R′
M ∈ U (R) satisfying M ∩ N = ∅, we have f (RN ) RN f (R′

M , RN ) .

Lemma 1 Let f be a social choice function that satisfies population-monotonicity

and Pareto-efficiency. Then it satisfies population-monotonicity+.

Proof. Let RN , R′
M ∈ U (R) satisfying M ∩ N = ∅. Let i ∈ M. By population-

monotonicity, either f (R′
i, RN ) RN f (RN ) or f (RN ) RN f (R′

i, RN ) . Since we

have f (RN ) ∈ Π (RN ) , the previous statement implies f (RN ) RN f (R′
i, RN ) .

Introducing one-by-one each of the agents in M , we obtain the desired conclusion.�

The second formulation of the principle of solidarity applies to a change in the

preference of exactly one agent within a same population. It says that when the

preference of one agent changes, all the other agents whose preferences are kept fixed

should either all weakly loose or they should all weakly win.

A social choice function f satisfies replacement-domination if, for all profile

RN ∈ U (R), for all agent i ∈ N \ N , and for all two preferences R′
i, R

′′
i ∈ R, either

f (R′
i, RN ) RN f (R′′

i , RN ) or f (R′′
i , RN ) RN f (R′

i, RN ).

We will study separately the implications of each of these two formulations of

the principle of solidarity. Population-monotonicity restricts the behavior of a social

8



choice function f across populations, but replacement-domination does not require

any sort of consistency across populations. Since in our model, the population is

variable, it is natural, when studying replacement-domination to impose a condition

that restricts the social choice across populations with similar compositions. For all

RN , R′
M ∈ U (R) , we say that R′

M is a replica of RN if there exists an integer k

such that for all preference R ∈ R, the number of agents in R′
M having preference

R is exactly k times the number of agents in RN having the same preference R, i.e.

|{j ∈ M : R′
h = R}| = k |{i ∈ N : Ri = R}| . Our next condition, which we use when

studying replacement-domination requires a social choice function to select, up to

Pareto-indifference, the same alternative for any economy an all of its replicas.

A social choice function f satisfies replication-indifference if, for all profiles

RN , R′
M ∈ U (R) such that R′

M is a replica of RN , we have f (RN ) IN f (R′
M ) .

In particular, this condition restricts a social choice function to select, up to

Pareto-indifference, the same alternative for any two economy such that one is ob-

tained from the other by relabeling agents. This last weaker requirement is the

condition of anonymity.

A social choice function f satisfies anonymity if, for all RN , R′
M ∈ U (R) such

that R′
M is a replica of RN and such that |M | = |N | , we have f (RN ) IN f (R′

M ) .

In this paper, we investigate the implications of population-monotonicity and

Pareto-efficiency on the one hand, and replacement-domination, Pareto-efficiency

and replication-indifference, on the other hand. The next three sections are devoted

to an analysis of the implications of each of these two combinations of axioms.
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4 Represented-types-only

In this section, we obtain two types of results. First, we observe that solidarity and

additional conditions imply represented-types-only, a significantly stronger indiffer-

ence condition than anonymity (Lemma 2). Represented-types-only requires that the

choice for any profile only depend on the preferences that are present in the profile,

not on the labels or number of the agents who have each of these preferences, up to

Pareto-indifference for these preferences. Second, we establish a general relation be-

tween the two solidarity conditions. We prove that replacement-domination together

with Pareto-efficiency and replication-indifference implies population-monotonicity,

regardless of the set of admissible preferences (Theorem 1). This establishes as a gen-

eral result the observed pattern, in the literature on solidarity in public decision mod-

els, that replacement-domination is at least as strong as population-monotonicity.

A social choice function f satisfies represented-types-only if, for all RN , R′
M ∈

U (R) such that {Ri : i ∈ N} = {R′
h : h ∈ M} , we have f (RN ) IN f (R′

M ) .

Lemma 2 Let f satisfy Pareto-efficiency. (i) If f satisfies population-monotonicity,

then it satisfies represented-types-only. (ii) If f satisfies replacement-domination

and replication-indifference, then it satisfies represented-types-only.

Proof. Implication (i) Let RN , R′
M ∈ U (R) such that {Ri : i ∈ N} = {R′

i : i ∈ M} .

Let R′′
L ∈ U (R) satisfying L ∩ N = ∅ and L ∩ M = ∅ and {R′′

h : h ∈ N ′′} =

{Ri : i ∈ N} . By population-monotonicity+, we have f (RN ) RN f (R′′
L, RN ) . Since

f (R′′
L, RN ) ∈ Π (R′′

L, RN ) = Π (RN ) , we have in fact f (RN ) IN f (R′′
L, RN ) . Re-

producing three times the same argument, we obtain f (R′′
L, RN ) I ′′L f (R′′

L) , f (R′′
L)

I ′′L f (R′′
L, R′

M ) and f (R′′
L, R′

M ) I ′M f (R′
M ) . Since IN , I ′M and I ′′L define the same

transitive relation, we have f (RN ) IN f (R′
M ) , the desired conclusion.

Implication (ii) . Let RN , R′
M ∈ U (R) such that {Ri : i ∈ N} = {R′

i : i ∈ M} .
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Let L be a population such that |L| = |N | |M | . Let RL,RL ∈ RL such that RL is a

replica of RN and RL is a replica of R′
M . By replication-indifference, we have f (RN )

IN f (RL) and f (R′
M ) I ′M f

(
RL

)
. There exists a natural integer K and a sequence

{
Rk

L

}K

k=0
of profiles in RL satisfying the following four conditions: (i) R0

L = RL,

RK
L = RL. (ii) For all k = 0, ..., K, we have

{
Rk

h : h ∈ L
}

= {Ri : i ∈ N} . (iii) For

all k = 0, ..., K, for all R ∈ R, we have
∣∣{h ∈ L : Rk

h = R
}∣∣ ≥ 2 |{i ∈ N : Ri = R}| .

(iv) for all k = 0, ..., K − 1, the profiles Rk
L and Rk+1

L only differ by the preference

of exactly one agent h (k). Consider such a sequence. For all k = 0, ..., K − 1,

by replacement-domination, either f
(
Rk+1

L

)
Rk

L\h(k) f
(
Rk

)
, or f

(
Rk

)
Rk

L\h(k)

f
(
Rk+1

L

)
. By conditions (ii) and (iii) , this statement is equivalent to the con-

dition that either f
(
Rk+1

L

)
RN f

(
Rk

L

)
, or f

(
Rk

L

)
RN f

(
Rk+1

L

)
. Since both

f
(
Rk

L

)
∈ Π

(
Rk

L

)
= Π (RN ) and f

(
Rk+1

L

)
∈ Π

(
Rk+1

L

)
= Π (RN ) , we obtain

f
(
Rk

L

)
IN f

(
Rk+1

L

)
, for all k = 0, ..., K − 1. Since IN and I ′M define the same

transitive relation, we have f (RN ) IN f (R′
M ) , the desired conclusion.�

As an immediate corollary of Lemma 2, under Pareto-efficiency, population-

monotonicity implies anonymity. Observe that replication-indifference alone implies

anonymity, but in general, it does not imply represented-types-only.

Theorem 1 Let f satisfy replacement-domination. Suppose further that f satisfies

either (i) represented-types-only, or (ii) Pareto-efficiency and replication-indifference.

Then f satisfies population-monotonicity.

Proof. By Lemma 2, it suffices to prove case (i). Let RN ∈ U (R), let i ∈ N\N , and

R′
i ∈ R. Let j ∈ N and define R′′

i := Rj . First, by represented-types-only, f (RN )

IN f (R′′
i , RN ) . Second, by replacement-domination applied to profiles (R′′

i , RN )

and (R′
i, RN ), either f (R′′

i , RN ) RN f (R′
i, RN ) or f (R′

i, RN ) RN f (R′′
i , RN ) . Since
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f (RN ) IN f (R′′
i , RN ) , we obtain that either f (RN ) RN f (R′

i, RN ) , or f (R′
i, RN )

RN f (RN ) , the desired conclusion.�

Do the conditions of population-monotonicity and Pareto-efficiency conversely

imply replacement-domination? The answer is no. Miyagawa (1998, 2001), Ehlers

(2002, 2003) and Gordon (2003) each provide models that disprove this claim. In

each of these models, the set of social functions satisfying population-monotonicity

and Pareto-efficiency strictly contains the set of functions satisfying replacement-

domination, Pareto-efficiency and replication-indifference.

5 Status quo points

An alternative a∗ is a status quo point for a social function f if a∗ is always weakly

Pareto-dominated (for the relevant preference profile) by any alternative selected by

f . In other words, a∗ ∈ A is a status quo point for f , if for all RN ∈ U (R) , we have

f (RN ) RN a∗.

This definition implies, in particular, that if a∗ is a status quo point for f, then

either a∗ or an alternative that is Pareto-indifferent to a∗ is selected whenever a∗ is

Pareto-efficient. Following the definition, the set of status quo points for f is

⋂
RN∈U(R)

{a ∈ A : f (RN ) RN a} .

For a general social function f , this set may contain more than one element, and it

may also be empty. Our main results in this section say that, in any model (A,R)

satisfying certain minimal requirements, if f satisfies one of the solidarity conditions

and additional weak assumptions, then f admits at least one such point. To state

the first result of this type, we need the following definition. Given a topology T on

A, a preference Ri over A is lower-hemi-continuous for T if, for all b ∈ A, the set
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{a ∈ A : b Ri a} is closed for T .

Theorem 2 Suppose that there exists a compact topology T on A such that all pref-

erences in R are lower-hemi-continuous for T . Let f satisfy either (i) population-

monotonicity+ and anonymity; or (ii) population-monotonicity and Pareto-efficiency;

or (iii) replacement-domination, Pareto-efficiency and replication-indifference. Then

f admits at least one status quo point.

Proof. By Lemmas 1 and 2, and Theorem 1, it suffices to prove that (i) is sufficient.

First, we show that for any finite subcollection C ⊆ U (R) , the intersection

⋂
R∈C

{a ∈ A : f (RN ) RN a}

is nonempty. Let {RNk
}K

k=1 be such a collection. For each k = 1, ..., K, let Mk be a

population with cardinality |Nk| that does not contain any agents from M1, ..., Mk−1.

For each k = 1, ..., K, let R′
Mk

∈ RMk be a profile obtained by relabelling each

agent in profile RNk
, while keeping its preference fixed. By anonymity, for each

k = 1, ..., K, we have f
(
R′

Mk

)
INk

f (RNk
) . Let M = M1 ∪ ... ∪ Mk and R′

M =(
R′

M1
, ..., R′

MK

)
. By population-monotonicity+, for each k = 1, ..., K, we have

f
(
R′

Mk

)
R′

Mk
f (R′

M ) , and thus f
(
R′

Mk

)
RNk

f (R′
M ) since R′

Mk
and RNk

define the

same relation. Thus for all k = 1, ..., K, we have f (RNk
) RNk

f (R′
M ) . Thus f (R′

M )

is an element of the above finite intersection for the family {RNk
}K

k=1, which is there-

fore nonempty. Since each preference in R is lower-hemi-continuous, then each set

{a ∈ A : f (RN ) RN a} is closed for T . Thus {{a ∈ A : f (RN ) RN a} : R ∈ U (R)}
is a collection of closed sets that satisfies the finite intersection property. Since T is

compact, then the set of status quo points of f is nonempty.�

The existence of a topology satisfying the conditions of Theorem 3 should be

understood as a joint condition on A and R. Indeed, when such a topology exists,

13



then the topology T ∗ generated by the collection

{A\ {a ∈ A : b Ri a} : Ri ∈ R, b ∈ A} ,

is compact. All preferences in R are lower-hemi-continuous for this topology. There-

fore the conditions on A and R in Theorem 3 can be replaced by the compacity of

T ∗. These conditions are also equivalent to the condition that any subcollection of

the above collection admit a finite subcollection that covers A. When A is finite,

the conditions on (A,R) in Theorem 2 are obviously satisfied. We thus have the

following result.

Corollary 1 Let A be finite. Let f satisfy either (i) population-monotonicity+ and

anonymity, (ii) population-monotonicity and Pareto-efficiency, or (iii) replacement-

domination, Pareto-efficiency and replication-indifference. Then f admits a status

quo point.

When A is infinite, but R is finite (and the conditions on (A,R) of Theorem 2

are violated), then conditions (ii) or (iii) of Theorem 2 are still sufficient for the

existence of a status quo point for f . In fact, we will prove a stronger result in

Theorem 3.

At this point, a few remarks are in order. First, it is clear that under the general

assumptions of Theorem 2, the status quo point need not be unique. Second, there

are models (A,R) (even satisfying the assumptions of Theorem 2) such that all social

choice functions (not necessarily satisfying solidarity) admit a trivial status quo

point, and for which Theorem 2 holds in a trivial way. For an example illustrating

both remarks, suppose that A contains an element a∗ that is at least weakly worse

than all other elements in A for all preferences in R, so that a∗ is weakly Pareto-

dominated for R by all other alternatives. Then all social choice functions admit a∗
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as a trivial status quo point. Moreover, if several such alternatives exist, then all

social choice functions admits several trivial status quo points. Third, even under

the assumptions of Theorem 2, a social choice function may admit a unique status

quo point a∗, that is nevertheless Pareto-dominated by another alternative b∗ for

the entire set of admissible preferences. Miyagawa (1998, 2001) studies a particular

model (A,R) that satisfies the assumptions of Theorem 2, where this phenomenon

occurs. The remarks brings up two natural questions. First, under what conditions

is the set of status quo points (at least essentially) a singleton? Second, which

conditions on (A,R) ensure that all social choice functions satisfying our conditions

admit a status quo point not Pareto-dominated by another alternative for the entire

domain R? Our next theorem partially answers both of these questions, by providing

sufficient conditions. The following definition and lemma are useful. For all profiles

RL, RN ∈ U (R) , say that the profile RL is at least as rich as RN if for all a, b ∈ A,

(a RL b) ⇒ (a RN b) .

Lemma 3 Let f satisfy Pareto-efficiency and either (i) population-monotonicity;

or (ii) replacement-domination and replication-indifference. Then for all R∗
L and

RN in U (R) such that R∗
L is at least as rich as RN , we have f (RN ) RN f (R∗

L) .

Proof. By Theorem 1, it suffices to prove that (i) is sufficient, which we do

next. Let R′
M ∈ U (R) such that M ∩ N = ∅ and {R′

i : i ∈ M} = {R∗
i : i ∈ L} .

By population-monotonicity+, we have f (R′
M ) R′

M f (R′
M , RN ) . Since R∗

L is at

least as rich as RN , then R′
M is at least as rich as RN . Therefore f (R′

M ) RN

f (R′
M , RN ) . Since f (R′

M , RN ) ∈ Π (R′
M , RN ) and by the two previous relations, we

have in fact f (R′
M , RN ) IN f (R′

M ) . By population-monotonicity+, we have f (RN )

RN f (R′
M , RN ) . By the two previous relations, we have f (RN ) RN f (R′

M ) . By

represented-types-only, f (R′
M ) I ′M f (R∗

L) . Since R′
M is at least as rich as RN , this

implies f (R′
M ) IN f (R∗

L) . Therefore f (RN ) RN f (R∗
L) .�
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An immediate consequence of Lemma 3 is that if f is a social choice function

satisfying the assumptions of the lemma, and RL and RN are equally rich, then

f (RL) and f (RN ) are Pareto-indifferent for both RN and RL. In other words, the

social choice essentially only depends on the richness of the preference profile, an

indifference property even stronger than represented-types-only.

For all (finite or infinite) set of preferences R∗, we define in the obvious way,

by analogy with these notions for a preference profile, the relations of weak-Pareto-

domination for R∗, Pareto-domination for R∗, and Pareto-indifference for R∗, and

the set Π (R∗) of Pareto-efficient alternatives for R∗. For all two (finite or infinite)

sets of preferences R′ and R′′, we extend the definition of the relation ”at least as

rich as” in the obvious way. Observe that when two sets R′ and R′′ are as rich as

each other, then in particular Π (R′) = Π (R′′) .

The following result applies to a set of admissible preferences R that contains

at least one finite subset as rich as itself. Obviously, any finite domain R belongs to

this category (proving the theorem in this special case is very easy). In particular,

any model with a finite set of alternatives A belongs to this category. Other models

in this class are domains that contain two strict preferences such that one is obtained

reversing the other, like the single-peaked domain on a segment.

Theorem 3 Let the set R contain a finite subset as rich as R. Let f satisfy Pareto-

efficiency and either (i) population-monotonicity; or (ii) replacement-domination

and replication-indifference. Then f admits a status quo point that is Pareto-

efficient for R. This point is unique, up to Pareto-indifference for R.

Proof. By Theorem 1, it suffices to prove that (i) is sufficient, which we do next.

Let R∗
L ∈ U (R) be a finite profile as rich as R. Let a∗ := f (R∗

L) . Let RN ∈ U (R) .

It is clear that R∗
L is at least as rich as RN . Therefore by Lemma 3, f (RN ) RN a∗.

Since this is true for all RN ∈ U (R) , then a∗ is a status quo point for f. Since R∗
L
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is as rich as R, then Π (R∗
L) = Π (R) . Since a∗ ∈ Π (R∗

L) , then a∗ ∈ Π (R) . We now

show that a∗ is the unique status quo point for f in Π (R) , up to Pareto-indifference

for R. Let b∗ such a point. Since b∗ is a status quo point for f, we have a∗ R∗
L b∗.

Since R∗
L is at least as rich as R, then a∗ weakly Pareto-dominates b∗ for R. Since

b∗ ∈ Π (R) , then a∗ and b∗ are Pareto-indifferent for R, thus a∗ is unique up to

Pareto-indifference for R.�

5.1 Counterexample

The assumptions on (A,R) in Theorems 2 and 3 are weak. We now show that

when they do not hold, the conclusion of the theorem fails. Let A = [0, 1] . For all

a ∈ A, let Ra be the preference relation such that for all x ∈ A we have a P a b and

for all x, y ∈ A\ {a} , we have x Ia y. Let a be the “peak” of preference Ra. Let

R := {Ra : a ∈ A} . For the usual topology on [0, 1] , for which it is a compact set,

none of the preferences in R is lower-hemi-continuous (notice however that they are

all upper-hemi-continuous). In fact, any topology of A for which all preferences in

this domain are lower-hemi-continuous must have all singletons {a} as open sets.

It it clear that such a topology cannot be compact. Therefore the conditions of

Theorem 2 are not satisfied. Moreover, the only subset of preferences as rich as R
is R itself, and is not finite. Therefore the conditions of Theorem 3 are not satisfied

either. For all RN ∈ U (R) , the set of Pareto-efficient alternatives for RN is the set

of peaks in profile RN . Therefore, the Pareto set for any profile in U (R) is a finite

subset of [0, 1]. Let f : U (R) → A that selects the highest peak in [0, 1) whenever

the profile contains at least one peak in this set and otherwise selects 1, when 1 is
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the common peak of all agents in the profile. For all RN ∈ U (R) ,

f (RN ) ≡ max {x ∈ Π (RN ) : x < 1} if {Ri : i ∈ N} 
=
{
R1

}

f (RN ) ≡ 1 if {Ri : i ∈ N} =
{
R1

}
.

This social choice function is Pareto-efficient and population-monotonic. It even

satisfies replacement-domination. But it has no status quo point.

6 Coalition-strategy-proofness

In this section, we analyze the relation between solidarity and the two following

important conditions of robustness to preference manipulation. A social choice

function satisfies strategy-proofness if no agent can benefit from misrepresenting

her true preferences, regardless of the preferences reported by all other agents:

For all RN ∈ U (R) , all i /∈ N, all Ri, R
′
i ∈ R, we do not have f (R′

i, RN ) Pi

f (Ri, RN ) .

A social choice function satisfies coalition-strategy-proofness if no coalition

of players can jointly benefit from jointly misrepresenting their preferences, regard-

less of the preferences reported by all agents outside the coalition:

For all RN , RM , R′
M ∈ U (R) such that M ∩N = ∅, we do not have f (R′

M , RN )

PM f (RM , RN ) .

The most important and useful result in this section, Corollary 2, says that in

a domain of complete preferences, under Pareto-efficiency, a social choice function

satisfies population-monotonicity iff it satisfies strategy-proofness and represented-

types-only, and iff it satisfies coalition-strategy-proofness and represented-types-only.

For a general set of (not necessarily complete) preferences, only an implication holds,
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which is our first result in this section.

Theorem 4 Let f satisfy Pareto-efficiency. If f further satisfies either (i) population-

monotonicity or (ii) replacement-domination and replication-indifference, then f is

coalition-strategy-proof.

Proof. By Theorem 1, it suffices to prove case (i) . Let RN , RM , R′
M ∈ U (R) such

that M ∩ N = ∅. We now prove that we do not have f (R′
M , RN ) PM f (RM , RN ) .

Let L be a population such that L ∩ N = L ∩ M = ∅ and |L| = |M | . Let RL ∈ RL

be a profile obtained by relabelling agents in profile RM , while keeping preferences

fixed and let R′
L ∈ RL be a profile obtained by relabelling agents in profile R′

M ,

while keeping preferences fixed. First, by population-monotonicity+, f (RM , RN )

RM f (R′
L, RM , RN ) . By anonymity , f (R′

L, RM , RN ) IM f (RL, R′
M , RN ) . There-

fore f (RM , RN ) RM f (RL, R′
M , RN ). Second, by population-monotonicity+, we

have f (R′
M , RN ) RN f (RL, R′

M , RN ) and f (R′
M , RN ) R′

M f (RL, R′
M , RN ) . More-

over, since f (RL, R′
M , RN ) ∈ Π (RL, R′

M , RN ) , it is not the case that f (R′
M , RN )

PL f (RL, R′
M , RN ) . Since PL and PM define the same relation, this is equivalent

to say that we do not have f (R′
M , RN ) PM f (RL, R′

M , RN ) . This last statement

and f (RM , RN ) RM f (RL, R′
M , RN ) imply that we do not have f (R′

M , RN ) PM

f (RM , RN ) , the desired conclusion.�

When preferences are incomplete, the condition of strategy-proofness can be

strengthen as follows. A social choice function f satisfies strong-strategy-proofness

if each agents weakly prefers to report his true preferences, regardless of the prefer-

ences reported by all other agents:

For all RN ∈ U (R) , all i /∈ N, all Ri, R
′
i ∈ R, we have f (Ri, RN ) Ri f (R′

i, RN ) .

Our next result provides a partial converse to Theorem 4.
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Lemma 4 If f satisfies strong-strategy-proofness and represented-types-only, then

f satisfies population-monotonicity.

Proof. Let RN ∈ U (R), let i ∈ N\N and let R′
i ∈ R. We show that f (RN )

RN f (R′
i, RN ) . This is shown in two steps. Let j ∈ N and define Ri := Rj .

First, by represented-types-only, f (RN ) Ij f (Ri, RN ) . Second, by strong-strategy-

proofness, we have f (Ri, RN ) Ri f (R′
i, RN ) . Since Ri = Rj , this is in fact equivalent

to f (Ri, RN ) Rj f (R′
i, RN ) . This last statement and f (RN ) Ij f (Ri, RN ) imply

that f (RN ) Rj f (R′
i, RN ) . Since this holds for all j ∈ N, we obtain f (RN ) RN

f (R′
i, RN )the desired conclusion.�

In the case where R is a set of complete preferences, this notion and the gen-

erally weaker notion previously defined coincide. Thus for complete preferences,

strong-strategy-proofness can be replaced with strategy-proofness, in Lemma 4. This

observation and Theorem 4 yields the following important equivalence.

Corollary 2 Let R be a set of complete preferences. Let f satisfy Pareto-efficiency.

The three following requirements on f are equivalent.

i). Population-monotonicity.

ii). Strategy-proofness and represented-types-only.

iii). Coalition-strategy-proofness and represented-types-only.

When preferences are complete, strategy-proofness and strong-strategy-proofness

coincide, so that together with weak additional conditions, either condition of soli-

darity implies the strong notion, as a consequence of Theorem 5. How much com-

pleteness is needed in the set R for solidarity (together with weak additional as-
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sumptions) to imply3 strong-strategy-proofness? To formulate our next result, we

need the following definition. A set of preferences R is weakly complete if for all list

of preferences R1, ..., Rk, Rl ∈ R, with l > 1, and for all a ∈ Π
(
R1, ..., Rl

)
and all

b ∈ Π
(
R1, ..., Rk

)
, such that for all j = 1, ..., k, we have a Rj b then a and b are

comparable for Rl.

Theorem 5 Let R be weakly complete. Let f be a social choice function that

satisfies Pareto-efficiency. (i) The social function f is population-monotonic iff

f is strongly-strategy-proof and satisfies represented-types-only. (ii) If f satisfies

replacement-domination and replication-indifference, then f is strongly-strategy-proof.

Proof. Equivalence (i). The converse implication is implied by implication (iii)

of Theorem 3 We now prove the direct implication. Let RN ∈ U (R) , let i ∈
N\N and Ri, R

′
i ∈ R. We now prove that f (Ri, RN ) Ri f (R′

i, RN ) . By Theo-

rem 4(i) , f is strategy-proof. Therefore it suffices to prove that the two alterna-

tives are comparable for Ri. Let l ∈ N\ (N ∪ {i}) , let R′
l := R′

i and Rl := Ri.

First, by population-monotonicity+, f (Ri, RN ) Ri f (R′
l, Ri, RN ) . By anonymity,

f (R′
l, Ri, RN ) Ii f (Rl, R

′
i, RN ) . Together, these two relations yield f (Ri, RN ) Ri

f (Rl, R
′
i, RN ). Second, by population-monotonicity+, f (R′

i, RN ) RN f (Rl, R
′
i, RN )

and f (R′
i, RN ) R′

i f (Rl, R
′
i, RN ) . Since f (R′

i, RN ) ∈ Π (R′
i, RN ) , f (Rl, R

′
i, RN ) ∈

Π (Rl, R
′
i, RN ) , then by weak-completeness of R, the alternatives f (R′

i, RN ) and

f (Rl, R
′
i, RN ) are comparable for preference Rl = Ri. Since comparability for Ri is

transitive, f (Ri, RN ) and f (R′
i, RN ) are comparable for Ri, the desired conclusion.

Implication (ii) follows from equivalence (i) and Theorem 1.�
3Similarly, we can define a stronger notion of coalition-strategy-proofness, that coincides with

the notion used here only when preferences are complete. A second question, analogous to the one
we ask here for strong strategy-proofness, arises for coalition-strategy-proofness. We do not have
an answer to this second question, except that the conditions of Theorem 4 are not sufficient (see
also note 5 in section 7).
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For an application of Theorem 5 to a specific model with incomplete preferences,

see Corollary 8 in the next section.

7 Implications for particular models

In this section, we examine several particular models of pure public choice. In

some of them, solidarity conditions have been studied, in other they have not. We

show that many of the existing results can be obtained as corollaries of the general

implications obtained in this paper and known results on strategy-proofness. We

provide a new characterization on one domain where solidarity was never studied,

the domain of single-plateaued preferences over a segment.

7.1 From strategy-proofness to solidarity

For each of the particular models we consider next, we show how our results in

previous sections yield characterizations of solidarity. In each model, we follow

an identical reasoning, which we explain once and for all. For each model, we

start from an existing characterization of the rules that satisfy strategy-proofness,

Pareto-efficiency and possibly another property X. Let F be the class of such rules.

Corollary 2 then tells us that the rules that satisfy population-monotonicity, Pareto-

efficiency and X form a subclass G ⊆ F, which is exactly the set of rules in F which,

in addition, satisfy represented-types-only. When F is known, identifying the sub-

class G is very easy. In most cases, the class F can be described as a parametrized

family with a parameter in a certain set. Further imposing represented-types-only

simply further restricts the set of admissible parameters to a subset. Finally, The-

orem 1 tells us that the class of rules that satisfy replacement-domination, Pareto-

efficiency and replication-indifference, and X form a subset H ⊆ G. In many cases,

G and H turn out to be equal, but this is not always the case.
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A natural starting point is to consider the set RGS of all complete strict or-

derings over a set of alternatives AGS containing at least three elements. Solidarity

conditions were never analyzed in this model. Theorem 3 enables us to do it. Unsur-

prinsingly, this leads to a negative result. Gibbard (1973) and Satterthwaite (1975)

proved that on such a domain, any social choice rule that satisfies Pareto-efficiency

and strategy-proofness must be dictatorial. This well-known result, together with

our Corollary 2 and Theorem 1 implies the following.

Corollary 3 There exists no social choice function U (RGS) → AGS that satis-

fies Pareto-efficiency and population-monotonicity. There is no social choice func-

tion U (RGS) → AGS that satisfies Pareto-efficiency, replication-indifference and

replacement-domination.

This negative result motivates the search for existence results for solidarity con-

ditions on restricted set of admissible preferences. Let A be the interval [0, 1] . A

preference Ri is single-peaked if there is a number p (Ri) ∈ [0, 1] , the “peak”, such

that for all a, b ∈ [0, 1] , if a < b ≤ p (Ri) or p (Ri) ≤ b < a, then b Pi a. Let RSP be

the set of continuous single-peaked preferences over [0, 1] . Moulin (1980), Barberà

and Jackson (1991) and Ching (1992) characterized a family of rules, called the

generalized median voters schemes, as the social choice functions that are Pareto-

efficient and strategy-proof on this domain. Thomson (1993) and Ching and Thom-

son (1997) defined a subfamily, the target rules. Each rule in this family is identified

with a target in [0, 1] and is defined as follows. For any population of agents and any

preference profile for these agents, if the target is located between the most extreme

peaks in the profile, the rule selects the target; otherwise, the rule selects among all

peaks in the profile, the one closest to the target. The aforementioned characteriza-

tions of strategy-proofness and Pareto-efficiency, together with our Corollary 2 and

Theorem 1, imply the following results.
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Corollary 4 (Ching and Thomson, 1997; Thomson4, 1993). The only social choice

functions U (RSP ) → [0, 1] that satisfy Pareto-efficiency and population-monotonicity

are the target rules. The only social choice functions U (RSP ) → [0, 1] that satisfy

Pareto-efficiency, replication-indifference and replacement-domination are the target

rules.

The above model of social choice on a segment can easily be extended to a more

general setting where the location set A is a tree. Schummer and Vohra (2002)

define a tree as a “closed connected subset of an Euclidean space, that is composed

of the union of a finite number of closed lines of finite length.” The definition of

single-peaked preferences over a segment naturally extends to a tree. Let AT be a

tree. Let RT be the set of single-peaked preferences over AT . Target rules in this

model are the natural generalization of target rules on a segment. A version of

Corollary 4 was established in the case of a tree, respectively by Klaus (1999, 2001)

and Vohra (1998). Similar results (Corollary 5) are easily obtained as implications

of the characterization of strategy-proof location rules on networks, by Schummer

and Vohra (2002), together with our Corollary 2 and Theorem 1.

Corollary 5 (Klaus, 1999, 2001; Vohra, 1998). The only social choice functions

U (RT ) → AT that satisfy Pareto-efficiency and population-monotonicity are the

target rules. The only social choice functions U (RT ) → AT that satisfy Pareto-

efficiency, replication-indifference and replacement-domination are the target rules.

What if the location set is a cycle? The definition of single-peaked preferences

over a segment naturally extends to a cycle and to a graphs containing cycles. Let

AG be such a graph and let RG be the set of single-peaked preferences over AG.

Gordon (2003a) proves directly that there are no rules satisfying either solidarity
4Thomson (1993) proves a stronger version of this result, without the requirement of replication-

indifference and with a fixed population of n ≥ 3 agents.

24



condition and Pareto-efficiency in this model. Again, this result can be obtained as

an implication of a result by Schummer and Vohra (2002) showing that a strategy-

proof and Pareto-efficient location rule on such a graph must be locally dictatorial,

together with our Corollary 2 and Theorem 1.

Corollary 6 (Gordon, 2003a). There are no social choice functions U (RG) →
AG that satisfy Pareto-efficiency and population-monotonicity. There are no social

choice functions U (RG) → AG that satisfy Pareto-efficiency, replication-indifference

and replacement-domination.

We now turn to a model in which results on strategy-proofness exist, but noth-

ing is known on solidarity. This is the domain of single-plateaued preferences,

studied by Berga (1998). Let A be the interval [0, 1] . A preference Ri is single-

plateaued if there is are numbers p− (Ri) , p+ (Ri) ∈ [0, 1] , p− (Ri) ≤ p+ (Ri) such

that {a ∈ A : ∀b ∈ A, a Ri b} = [p− (Ri) , p+ (Ri)] and, for all a, b ∈ [0, 1] , if a <

b ≤ p− (Ri) or p+ (Ri) ≤ b < a, then b Pi a. Let RPL be the set of continuous

single-plateaued preferences over [0, 1] . Berga (1998) characterizes a certain family

of rules as the set of social choice functions that are plateau-only and strategy-proof

on this domain. One can define a set of target rules as a subfamily of the family

described by Berga. Each target rule is identified by a parameter a ∈ [0, 1] . For

any population N and any profile of preferences R, let N− (R) be the set of agents

in N whose preferences Ri are such that p+ (Ri) < a, and let N+ (R) be the set of

agents in N whose preferences Ri are such that a < p− (Ri) . If none of these sets is

empty, then the target rule selects a. If N− (R) is not empty, but N+ (R) is, then let

f (R) ≡ max {p− (Ri) : i ∈ N− (R)} . If N+ (R) is not empty, but N− (R) is, then

let f (R) ≡ min {p+ (Ri) : i ∈ N+ (R)} . If both of the sets are empty, the rule select

a. The following result follows immediately from Berga’s Theorem 1, together with

our Corollary 2 and Theorem 1.
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Corollary 7 The only social choice functions U (RPL) → [0, 1] that satisfy Pareto-

efficiency, population-monotonicity and plateau-only are the social choice functions

that are Pareto-indifferent to a target rule. These are also the only social choice

functions U (RPL) → [0, 1] that satisfy Pareto-efficiency, replication-indifference,

replacement-domination and plateau-only.

The previous domains are all complete. The following is an example of a do-

main that is not complete, but is still weakly complete. This domain was introduced

by Ehlers, Peters and Storcken (2001) and was also studied by Ehlers and Klaus

(2001). Let A be the set of probability distributions on [0, 1] , denoted by Δ (0, 1) .

Each single-peaked preference Ri over (deterministic alternatives of) the segment

naturally extend to incomplete preferences over Δ (0, 1). Let Ri be a complete pref-

erence over deterministic alternatives, and let α, β ∈ Δ (0, 1). Let α Ri β if, for all

weak-upper contour set U for preference Ri, the measure of U under α is greater

or equal than the measure of U under β. In other words, α is weakly preferred to β

under Ri if α weakly first-order stochastically dominates β for preference Ri. Fur-

thermore, let α Pi β if, α Ri β and there exists an upper contour set V for preference

Ri such that the measure of V under α is strictly greater than the measure of V

under β. In other words, α is strictly preferred to β under Pi if α strictly first-order

stochastically dominates β for preference Ri. For any domain of complete prefer-

ences over deterministic alternatives, this defines a set of admissible preferences

over lotteries, which are incomplete. It is straightforward, however, to prove that

all preferences in this set are weakly complete. Ehlers and Klaus (2001) define target

rules in this model and show the result stated below, which can also be obtained as a

corollary of a result by Ehlers, Peters and Storcken (2002) on strong-strategy-proof

social choice functions in this model, together with our Theorem 5.

Corollary 8 (Ehlers and Klaus, 2001). The only social choice functions U (RSP ) →
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Δ (0, 1) that satisfy Pareto-efficiency and population-monotonicity are the target

rules. The only social choice functions U (RSP ) → Δ (0, 1) that satisfy Pareto-

efficiency, replication-indifference and replacement-domination are the target rules.

Interestingly, the target rules in this model are strongly strategy-proof, and

weakly coalition-strategy-proof, but not strongly coalition strategy-proof, which

proves that weak completeness is not a sufficient condition for solidarity and Pareto-

efficiency (and replication-indifference) to imply strong coalition-strategy-proofness.

7.2 From solidarity to strategy-proofness?

In some models, the implications of solidarity conditions are well understood, even

though the implications of strategy-proofness are not. The models studied by Gor-

don (2003a, the discrete case), Miyagawa (1998, 2001), and Ehlers (2002, 2003) fall

in this category5. These authors characterize in these models the set of social choice

functions that satisfy population-monotonicity and Pareto-efficiency, along with

the subset of social choice functions that satisfy replacement-domination, Pareto-

efficiency and replication-indifference. Corollary 2 tells us that these characteriza-

tions provide a starting point and a hint towards a characterization of strategy-

proof and Pareto-efficient social choice. Indeed, strategy-proofness is population-

monotonicity without represented-types-only.
5Gordon (2003a) studies a model where the set of alternatives is a circle and the set of admissible

preferences R is a finite set of symmetric single-peaked preferences. Gordon provides characteriza-
tions of solidarity in this model when R has a symmetric structure with respect to the circle and
its cardinality is sufficiently small. For larger cardinalities, a negative result is obtained. Miyagawa
(1998, 2001) considers a model where two locations have to be chosen from an interval, when agents
have single-peaked preferences over single locations. Preference comparisons of pairs of locations are
solely determined by the preferred location in each pair. Ehlers (2002, 2003) considers a variation
of this model, where preferences over pairs of locations are lexicographic. Preference comparisons
of pairs of locations are determined first by the preferred location in each pair. Only in case of a
tie is the second location taken into account.
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8 Axioms independence

In this section, we examine the role of each axiom in Lemma 1, Corollary 2 and 3,

by the means of examples.

Example 1 shows a social choice function that satisfies population-monotonicity,

replacement-domination, coalition-strategy-proofness, and anonymity, but not Pareto-

efficiency, represented-types-only, nor replication-indifference. Therefore population-

monotonicity, without Pareto-efficiency, does not imply represented-types-only (see

Lemma 2(i)). It is easy to construct a non-anonymous variant of this example.

Example 1: Let A = {a, b} . Let R be the set of strict preferences on A. Let f

be such that for all profile RN , if |N | = 1, then f selects the preferred alternative

of the unique agent in the population. If |N | > 1, then f is constant f (R) = b.

Example 2 shows a social choice function that satisfies Pareto-efficiency, coalition-

strategy-proofness, anonymity, and replacement-domination, but not population-

monotonicity, represented-types-only nor replication-indifference. Therefore Pareto-

efficiency, without population-monotonicity, does not imply represented-types-only

(see Lemma 2(i)). The example also shows that Pareto-efficiency and replacement-

domination, without replication-indifference, do not imply represented-types-only,

(see Lemma 2(ii)) nor population-monotonicity (see Theorem 1(ii)). The exam-

ple also shows that coalition-strategy-proofness without represented-types-only does

not imply population-monotonicity (see Corollary 2 (iii)). It is easy to construct a

non-anonymous variant of this example.

Example 2: Let A and R as in Example 1. Let f be such that for all population

N with even cardinality, for all profile R, if all agents unanimously prefer a to b at

R, then let f (R) = a and otherwise, let f (R) = b; and for all population N with
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odd cardinality, for all profile R, if all agents unanimously prefer b to a at R, then

let f (R) = b and otherwise, let f (R) = a.

Example 3 shows a social choice function satisfying Pareto-efficiency, replication-

indifference (therefore anonymity), coalition-strategy-proofness, but not population-

monotonicity, replacement-domination nor represented-types-only. Therefore Pareto-

efficiency and replication-indifference, without replacement-domination, do not im-

ply represented-types-only (see Lemma 2(ii)), nor population-monotonicity (see The-

orem 1(ii)).

Example 3: Let A and R as in Example 1. Let f be such that for all profile RN ,

if, at the profile RN , the cardinality of the set of agents who prefer a is at least

as large as the cardinality of the set of agents that prefer b, then f (RN ) = a, and

otherwise f (RN ) = b.

Example 4 shows a social choice function that satisfies replacement-domination,

replication-indifference (and therefore anonymity), but not population-monotonicity,

Pareto-efficiency, represented-types-only nor strategy-proofness. Thus replacement-

domination and replication-indifference, without Pareto-efficiency, do not imply

represented-types-only (see Lemma 2(ii)), population-monotonicity (see Theorem

1(ii)), nor strategy-proofness.(see Corollary 2(ii)).

Example 4: Let A = {a, b, c} . Let R = {Ra, Rc} be the set of strict preferences

on A such that a P a c P a b and c P c a P c b. Let f be such that for all profile

RN , if, at the profile RN , the proportion of agents with preference Ra is exactly
1
2 , then f (RN ) := a, if this proportion is exactly 3

5 , then f (RN ) := c, otherwise

f (RN ) := b.
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Example 5 shows a function that satisfies Pareto-efficiency, represented-types-

only (therefore also anonymity and replication-indifference) but not population-

monotonicity, replacement-domination, nor strategy-proofness. Therefore Pareto-

efficiency, without population-monotonicity does not imply strategy-proofness (see

Corollary 2(i)). Similarly, the example shows that Pareto-efficiency, and replication-

indifference, without replacement-domination, do not imply strategy-proofness (see

Corollary 2(ii)). Finally, the example also proves that represented-types-only, with-

out strategy-proofness, does not imply population-monotonicity (see Corollary 2(iii)).

Example 5: Let A = [0, 1] . Let R be the set of single-peaked preferences over A

(for a definition, see section 6). Let f be such that for all profile R, f (R) is the

average of the two most extremes peaks in the profile R.

Example 6 shows a social choice function that satisfies population-monotonicity,

replacement-domination, represented-types-only, (therefore replication-indifference

and anonymity), but not strategy-proofness, nor Pareto-efficiency. Thus population-

monotonicity, without Pareto-efficiency, does not imply strategy-proofness (see Corol-

lary 2(i)).

Example 6: Let A and R as in Example 1. Let f be such that for all profile R,

if all agents unanimously prefer a to b at R, then let f (R) = b and otherwise, let

f (R) = a.

Example 7 shows a social choice function that satisfies replacement-domination

and Pareto-efficiency, but not population-monotonicity, strategy-proofness, replication-

indifference ( therefore also not represented-types-only) nor Pareto-efficiency. There-

fore replacement-domination and Pareto-efficiency, without replication-indifference,

do not imply strategy-proofness (see Corollary 2(ii)).
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Example 7: Let A = {a, b, c} . Let R =
{
Ra, Rb, Rc

}
be the set of strict prefer-

ences on A such that a P a c P a b, b P b a P b c and c P c b P c a. Let f be such that

if all agents in the profile have the same preference Rh, then f (RN ) = h. If at least

preferences Rc and Ra (or all three preferences) are represented at profile RN , then

f (RN ) = a. If preferences Ra and Rb are represented at profile RN , then f (RN ) = b

if |N | = 2 and f (RN ) = a otherwise. If preferences Rb and Rc are represented at

profile RN , then f (RN ) = c if |N | = 2 and f (RN ) = b otherwise.

9 Conclusion

This paper raises mainly two types of open questions for future work.

First, we developed a systematic way to study solidarity in public choice models.

In any new public choice model that anyone could come up with, our results provide

a list of implications that provide a solid starting point towards a characterization

on the basis of solidarity in any such model. In section 7, we have shown that old

and new results on solidarity can be obtained as by-products of results on strategy-

proofness.

An example of a public choice problem that is not well understood, is the model

studied by Ehlers (2002, 2003), on the provision of multiple public goods, when

agents have lexicographic preferences. In these papers, Ehlers provides a complete

answer to the problems we address here, but only for the case of the provision

of two goods. How to extend his results to more goods is not obvious, but our

results provide steps towards this goal. All of our results apply, and yield several

solid starting points. For example, we know that any social choice function that

satisfies population-monotonicity and Pareto-efficiency admits a status quo point.

In the model with k goods, this means that there exists a vector of k locations that

is always Pareto-dominated by the function, and is selected whenever it is Pareto-
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efficient. We also know that such a function satisfies coalition-strategy-proofness and

represented-types-only. A similar remark applies to the model studied by Miyagawa

(1998, 2001).

Second, for public choice models where strategy-proofness is not well understood,

we propose the study of solidarity as a preliminary step, that can potentially suggest

what kind of functions are strategy-proof in these models. For example, in the

model of Ehlers (2002, 2003) with two public goods, the set of Pareto-efficient

and strategy-proof social choice functions is not known. But our Corollary 2 says

that the intersection of this set with the set of rules that satisfy represented-types-

only is exactly the class of functions characterized in Ehlers (2003). Therefore,

Corollary 2 suggests the conjecture that the set of Pareto-efficient and strategy-

proof functions consist of functions resembling those described by Ehlers, but freed

from an obligation to satisfy represented-types-only. A similar remark applies to the

model studied by Miyagawa (1998, 2001) and to any new model of public choice.

In such a model, our work indicated that studying solidarity is a natural starting

point to study strategy-proofness.

Finally, an important question that we leave open is whether anything remains

of our strong implications once our two public choice assumptions are relaxed. Ob-

vious ways to relax these assumptions are the presence of money transfers, or to let

preferences depend on the population, so as to allow phenomena such as ”crowding”.
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