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1 Introduction

Binary relations are at the heart of much of economic theory, both in the context of indi-

vidual choice and in multi-agent decision problems. A fundamental coherence requirement

imposed on a relation is the well-known transitivity axiom. If a relation is interpreted

as a goodness relation, transitivity postulates that whenever one alternative is at least

as good as a second and the second alternative is, in turn, at least as good as a third,

then the first alternative is at least as good as the third. However, from an empirical as

well as a conceptual perspective, transitivity is frequently considered too demanding and

weaker notions of coherence have been proposed in the literature. Two alternatives that

have received a considerable amount of attention in the literature are quasi-transitivity

and acyclicity. Quasi-transitivity demands that the asymmetric factor of a relation (the

betterness relation) is transitive, whereas acyclicity rules out the presence of betterness

cycles. Quasi-transitivity is implied by transitivity and implies acyclicity. The reverse

implications are not valid.

Suzumura (1976b) introduced an interesting alternative weakening of transitivity and

showed that it can be considered a more intuitive weakening than quasi-transitivity. This

notion of coherence is called consistency, and it rules out the presence of cycles with at

least one instance of betterness. Thus, the axiom is stronger than acyclicity. Moreover,

consistency is weaker than transitivity and is equivalent to it in the presence of reflexivity

and completeness. Quasi-transitivity and consistency are independent.

Consistency is exactly what is needed to avoid the phenomenon of a money pump. If

consistency is violated by an agent’s goodness relation, there exists a cycle with at least

one instance of betterness. In this case, the agent under consideration is willing to trade

an alternative for another alternative (where ‘willing to trade’ is interpreted as being at

least as well-off after the trade as before), the second alternative for a third and so on

until an alternative is reached such that getting back the original alternative is better

than retaining possession of the last alternative in the chain. Thus, at the end of such a

chain of exchanges, the agent is willing to give up the last alternative and, in addition, to

pay a positive amount in order to get back the original alternative.

An important property of consistency is that it is necessary and sufficient for the

existence of an ordering extension of a relation. Szpilrajn (1930) showed that, for any

asymmetric and transitive relation, there exists an asymmetric, transitive and complete

relation that contains the original relation. An analogous result applies if asymmetry is

replaced with reflexivity. Suzumura (1976b) has shown that the transitivity assumption
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can be weakened to consistency without changing the conclusion regarding the existence

of an ordering extension. Moreover, consistency is the weakest possible property that

guarantees this existence result. Because extension theorems are of considerable impor-

tance in many applications of set theory, this is a fundamental result and illustrates the

significance of the consistency property.

The purpose of this paper is to review the uses of consistency in a variety of appli-

cations and to provide some new observations, with the objective of further underlining

the importance of this axiom. The first step is a statement of Suzumura’s (1976b) exten-

sion theorem in the following section, followed by an application in the theory of rational

choice due to Bossert, Sprumont and Suzumura (2005a) in Section 3. The last two sec-

tions provide new observations. In Section 4, a variant of the welfarism theorem that

assumes consistency instead of transitivity is provided, and Section 5 illustrates how an

impossibility result in population ethics can be turned into a possibility by weakening

transitivity to consistency.

2 Relations and Extensions

Suppose X is a non-empty set of alternatives and R ⊆ X ×X is a (binary) relation on X

which is interpreted as a goodness relation, that is, (x, y) ∈ R means that x is considered

at least as good as y by the agent (or society) under consideration. The asymmetric factor

of R is defined by

P (R) = {(x, y) | (x, y) ∈ R and (y, x) �∈ R},
and the symmetric factor of R is

I(R) = {(x, y) | (x, y) ∈ R and (y, x) ∈ R}.

Given the interpretation of R as a goodness relation, P (R) is the better-than relation

corresponding to R and I(R) is the equally-good relation associated with R.

The transitive closure tc(R) of a relation R is defined by

tc(R) = {(x, y) | there exist M ∈ N and x0, . . . , xM ∈ X such that

x = x0, (xm−1, xm) ∈ R for all m ∈ {1, . . . , M} and xM = y}.

A relation R is reflexive if, for all x ∈ X,

(x, x) ∈ R
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and R is asymmetric if

R = P (R).

Furthermore, R is complete if, for all x, y ∈ X,

x �= y ⇒ (x, y) ∈ R or (y, x) ∈ R.

and R is transitive if, for all x, y, z ∈ X,

(x, y) ∈ R and (y, z) ∈ R ⇒ (x, z) ∈ R.

R is consistent if, for all x, y ∈ X,

(x, y) ∈ tc(R) ⇒ (y, x) �∈ P (R).

A quasi-ordering is a reflexive and transitive relation and an ordering is a complete quasi-

ordering.

The notion of consistency is due to Suzumura (1976b) and it is equivalent to the

requirement that any cycle must be such that all relations involved in this cycle are in-

stances of equal goodness—betterness cannot occur. Clearly, this requirement implies

(but is not implied by) the well-known acyclicity axiom which rules out the existence of

betterness cycles (cycles where all relations involve the asymmetric factor of the relation).

Consistency and quasi-transitivity, which requires that P (R) is transitive, are indepen-

dent. Transitivity implies consistency but the reverse implication is not true in general.

However, if R is reflexive and complete, consistency and transitivity are equivalent.

A relation R′ is an extension of a relation R if

R ⊆ R′ and P (R) ⊆ P (R′).

If an extension R′ of R is an ordering, we refer to R′ as an ordering extension of R. One of

the most fundamental results on extensions of binary relations is due to Szpilrajn (1930)

who showed that any transitive and asymmetric relation has a transitive, asymmetric and

complete extension. The result remains true if asymmetry is replaced with reflexivity,

that is, any quasi-ordering has an ordering extension. Arrow (1951, p. 64) stated this

generalization of Szpilrajn’s theorem without a proof and Hansson (1968) provided a

proof on the basis of Szpilrajn’s original theorem.

While the property of being a quasi-ordering is sufficient for the existence of an ordering

extension of a relation, this is not necessary. As shown by Suzumura (1976b), consistency

is necessary and sufficient for the existence of an ordering extension. This observation is

stated formally in the following theorem; see Suzumura (1976b, pp. 389–390) for a proof.
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Theorem 1 A relation R has an ordering extension if and only if R is consistent.

Theorem 1 is an important result. It establishes that consistency is the weakest pos-

sible property of a relation that still guarantees the existence of an ordering extension.

Note that quasi-transitivity (which, as mentioned earlier, is logically independent of con-

sistency) has nothing to do with the possibility of extending a binary relation to an

ordering.

3 Rational Choice

Consistency has recently been examined in the context of rational choice. Observed (or

observable) choices are rationalizable if there exists a relation such that, for any feasible

set, the set of chosen alternatives coincides with the set of greatest or maximal elements

according to this relation.

Following the contributions of Richter (1966; 1971), Hansson (1968), Suzumura (1976a;

1977; 1983, Chapter 2) and others, the approach to rational choice analyzed in this paper

is capable of accommodating a wide variety of choice situations because no restrictions

(other than non-emptiness) are imposed on the domain of a choice function. Letting

X denote the power set of X excluding the empty set, a choice function is a mapping

C: Σ → X such that C(S) ⊆ S for all S ∈ Σ, where Σ ⊆ X with Σ �= ∅ is the domain of

C.

The direct revealed preference relation RC ⊆ X × X of a choice function C with an

arbitrary domain Σ is defined as

RC = {(x, y) | there exists S ∈ Σ such that x ∈ C(S) and y ∈ S}.

The (indirect) revealed preference relation of C is the transitive closure tc(RC) of the

direct revealed preference relation RC .

A choice function C is greatest-element rationalizable if there exists a relation R on X

such that

C(S) = {x ∈ S | (x, y) ∈ R for all y ∈ S}.
If such a relation R exists, it is called a rationalization of C. The most common alternative

to greatest-element rationalizability is maximal-element rationalizability which requires

the existence of a relation R such that, for all feasible sets S, C(S) is equal to the set of

maximal elements in S according to R, that is, no element in S is strictly preferred to any
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element in C(S). Bossert, Sprumont and Suzumura (2005b) provide a detailed analysis

of maximal-element rationalizability. Logical relationships between and characterizations

of various notions of rationalizability, both on arbitrary domains and under more specific

domain assumptions, can be found in Bossert, Sprumont and Suzumura (2006).

In order to interpret a rationalization as a goodness relation, it is usually required that

it satisfy additional properties such as the richness axioms reflexivity and completeness, or

one of the coherence properties acyclicity, quasi-transitivity, consistency and transitivity.

The full set of rationalizability notions that can be obtained by combining one or both

(or none) of the richness properties with one (or none) of the coherence properties is

analyzed in Bossert and Suzumura (2005). They show that, if all these combinations

are available, it is sufficient to restrict attention to greatest-element rationalizability:

for each notion of maximal-element rationalizability, there exists a notion of greatest-

element rationalizability (possibly involving different richness and coherence properties)

that is equivalent. Thus, restricting attention to greatest-element rationalizability does

not involve any loss of generality.

Bossert, Sprumont and Suzumura (2005a) have characterized all notions of rational-

izability when the coherence property required is consistency. As mentioned earlier, con-

sistency and transitivity are equivalent in the presence of reflexivity and completeness.

Thus, greatest-element rationalizability by a reflexive, complete and consistent relation is

equivalent to greatest-element rationalizability by an ordering and Richter’s (1966; 1971)

results apply; see the next theorem. Moreover, greatest-element rationalizability by a

complete and consistent relation implies greatest-element rationalizability by a reflexive,

complete and consistent relation, and greatest-element rationalizability by a consistent re-

lation implies greatest-element rationalizability by a reflexive and consistent relation, and

analogous observations apply in the case of maximal-element rationalizability; see Bossert,

Sprumont and Suzumura (2005a, Theorem 1). As pointed out in Bossert, Sprumont and

Suzumura (2006), as soon as the coherence properties quasi-transitivity or acyclicity are

imposed, reflexivity no longer is guaranteed as an additional property of a rationaliza-

tion. Thus, consistency stands out from these alternative weakenings of transitivity in

this regard: as is the case for transitive greatest-element (or maximal-element) rational-

izability, any notion of consistent greatest-element (or maximal-element) rationalizability

is equivalent to the definition that is obtained if reflexivity is added as a property of a

rationalization.

Richter (1971) showed that the following axiom is necessary and sufficient for greatest-

element rationalizability by a transitive relation and by an ordering. Thus, the existence
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of a rationalizing relation that is not merely a quasi-ordering but an ordering follows

from greatest-element rationalizability by a transitive relation. This observation sets

transitive greatest-element rationalizability apart from other notions of greatest-element

rationalizability involving weaker coherence requirements.

Transitive-closure coherence. For all S ∈ Σ, for all x ∈ S,

(x, y) ∈ tc(RC) for all y ∈ S ⇒ x ∈ C(S).

We now obtain the following result; see Bossert, Sprumont and Suzumura (2005a) for a

proof.

Theorem 2 C is greatest-element rationalizable by a (reflexive,) complete and consistent

relation if and only if C satisfies transitive-closure coherence.

If completeness is dropped as a requirement imposed on a rationalization, a weaker

notion of greatest-element rationalizability is obtained. In contrast to greatest-element

rationalizability by a quasi-transitive or an acyclical relation which leads to much more

complex necessary and sufficient conditions (see Bossert and Suzumura, 2005), requiring

a rationalization to be consistent preserves the intuitive and transparent nature of the

characterization stated in Theorem 2. As is the case for the transitive closure, there is a

unique minimal consistent relation that has to be respected by any consistent rational-

ization, namely, the consistent closure of RC . The consistent closure cc(R) of a relation

R is defined by

cc(R) = R ∪ {(x, y) | (x, y) ∈ tc(R) and (y, x) ∈ R}.

Clearly, R ⊆ cc(R) ⊆ tc(R). Moreover, just as tc(R) is the unique smallest transitive

relation containing R, cc(R) is the unique smallest consistent relation containing R. This

latter property is crucial in obtaining a clear-cut and intuitive rationalizability result even

without imposing completeness (in which case consistent greatest-element rationalizability

is not equivalent to transitive greatest-element rationalizability). In contrast, there is no

such thing as a quasi-transitive closure or an acyclical closure of a relation, which explains

why rationalizability results involving these coherence properties are much more complex.

Greatest-element rationalizability by means of a consistent (and reflexive but not

necessarily complete) relation can now be characterized by employing a natural weakening
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of transitive-closure consistency: all that needs to be done is to replace the transitive

closure of the direct revealed preference relation by its consistent closure.

Consistent-closure coherence. For all S ∈ Σ, for all x ∈ S,

(x, y) ∈ cc(RC) for all y ∈ S ⇒ x ∈ C(S).

The following characterization is due to Bossert, Sprumont and Suzumura (2005a).

Theorem 3 C is greatest-element rationalizable by a (reflexive and) consistent relation

if and only if C satisfies consistent-closure coherence.

4 Welfarism

Following Arrow’s (1951; 1963) impossibility theorem, one route of escape from its neg-

ative consequences that has been chosen in the subsequent literature is to assume that

a social ranking is established on the basis of a richer informational framework. In Ar-

row’s setup, the individual goodness relations form the informational basis of collective

choice. This approach rules out, in particular, interpersonal comparisons of well-being.

An informationally richer environment is obtained if a social ranking is allowed to depend

on utility profiles instead of profiles of goodness relations, and these utilities can be as-

sumed to carry more than just ordinally measurable and interpersonally non-comparable

information regarding the well-being of the agents. Under an implicit regularity assump-

tion that guarantees the existence of representations of the individual goodness relations,

the Arrow framework is included as a special case: it corresponds to the informational

assumption of ordinal measurability and interpersonal non-comparability.

The universal set of alternatives X is assumed to contain at least three elements. The

set of all utility functions U : X → R is denoted by U and its n-fold Cartesian product is

Un. A utility profile is an n-tuple U = (U1, . . . , Un) ∈ Un.

A collective choice functional is a mapping F : E → B where E ⊆ Un is the domain

of this functional, assumed to be non-empty, and B is the set of all binary relations on

X. For each utility profile U ∈ E , F (U) is the social preference corresponding to U. A

reflexive and consistent collective choice functional is a collective choice functional F such

that F (U) is reflexive and consistent for all U ∈ E , and a social-evaluation functional is a

collective choice functional F such that F (U) is an ordering for all U ∈ E . Informational

assumptions regarding the measurability and interpersonal comparability of individual
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utilities can be expressed by requiring the collective choice functional to be constant on sets

of utility profiles that contain the same information. For example, if utilities are cardinally

measurable and fully comparable, any utility profile U′ that is obtained from a profile U

by applying the same increasing affine transformation to all individual utility functions

carries the same information as U itself. Thus, the collective choice functional must assign

the same social ranking to both profiles. See Blackorby, Donaldson and Weymark (1984)

or Bossert and Weymark (2004) for discussions of information assumptions in social-choice

theory.

A fundamental result in this setting is the welfarism theorem; see, for instance,

d’Aspremont and Gevers (1977) and Hammond (1979). A social-evaluation functional

F is welfarist if, for any utility profile U and for any two alternatives x and y, the social

ranking of x and y according to the social ordering assigned to the profile U by F depends

on the two utility vectors U(x) = (U1(x), . . . , Un(x)) and U(y) = (U1(y), . . . , Un(y)) only.

Thus, a single ordering of utility vectors is sufficient to rank the alternatives for any pro-

file. The welfarism theorem states that, provided that the domain of the social-welfare

functional consists of all possible utility profiles, welfarism is equivalent to the conjunction

of Pareto indifference and independence of irrelevant alternatives.

In this section, it is illustrated that the welfarism theorem has an analogous formula-

tion for reflexive and consistent collective choice functionals: even if every social ranking

is merely required to be reflexive and consistent rather than an ordering, the conjunction

of the two axioms is (under the unlimited-domain assumption) equivalent to the existence

of a single reflexive and consistent relation R defined on utility vectors that is sufficient

to obtain the social ranking for any utility profile. This relation R ⊆ R
n × R

n is referred

to as a social-evaluation relation. The requisite axioms are the following.

Unlimited domain. E = Un.

Pareto indifference. For all x, y ∈ X and for all U ∈ E ,

Ui(x) = Ui(y) ∀i ∈ N ⇒ (x, y) ∈ I (F (U)) .

Independence of irrelevant alternatives. For all x, y ∈ X and for all U,U′ ∈ E such

that Ui(x) = U ′
i(x) and Ui(y) = U ′

i(y) for all i ∈ N ,

(x, y) ∈ F (U) ⇔ (x, y) ∈ F (U′) and (y, x) ∈ F (U) ⇔ (y, x) ∈ F (U′).

The following theorem generalizes the standard welfarism theorem by allowing social

relations to be intransitive and incomplete while retaining the consistency requirement.
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Theorem 4 Suppose that a reflexive and consistent collective choice functional F sat-

isfies unlimited domain. F satisfies Pareto indifference and independence of irrelevant

alternatives if and only if there exists a reflexive and consistent social-evaluation relation

R ⊆ R
n × R

n such that, for all x, y ∈ X and for all U ∈ Un,

(x, y) ∈ F (U) ⇔ (U(x),U(y)) ∈ R. (1)

Proof. The ‘if’ part of the theorem is straightforward to verify. To prove the con-

verse implication, suppose that F is a reflexive and consistent collective choice functional

satisfying unlimited domain, Pareto indifference and independence of irrelevant alterna-

tives. Define the relation R ⊆ R
n × R

n as follows. For all u, v ∈ R
n, (u, v) ∈ R if

and only if there exist x, y ∈ X and U ∈ Un such that U(x) = u, U(y) = v and

(x, y) ∈ F (U). That R is well-defined follows as in the standard welfarism theorem;

see, for instance, Blackorby, Donaldson and Weymark (1984) or Bossert and Weymark

(2004). Once R is well-defined, (1) is immediate and, furthermore, R is reflexive be-

cause F (U) is reflexive for all U ∈ Un. The proof is completed by showing that R

is consistent. Let u, v ∈ R
n be such that (u, v) ∈ tc(R). By definition of the transi-

tive closure of a relation, there exist M ∈ N and u0, . . . , uM ∈ R
n such that u = u0,

(um−1, um) ∈ R for all m ∈ {1, . . . , M} and uM = v. By definition of R, there exist

x0, . . . , xM ∈ X and U1, . . . ,UM ∈ Un such that Um−1(xm−1) = um−1, Um−1(xm) = um

and (xm−1, xm) ∈ F (Um−1) for all m ∈ {1, . . . , M}. By unlimited domain, there ex-

ists V ∈ Un such that V(xm) = um for all m ∈ {0, . . . , M}. Using (1), it follows that

(xm−1, xm) ∈ F (V) for all m ∈ {1, . . . , M}. Because F (V) is consistent, it follows that

(xM , x0) �∈ P (F (V)). Thus, by (1), (v, u) =
(
V(xM),V(x0)

) �∈ P (R) and R is consistent.

5 Population Ethics

The traditional social-choice framework with a fixed population is unable to capture

important aspects of many public-policy decision problems. For example, decisions on

funds devoted to prenatal care, the intergenerational allocation of resources and the design

of aid packages to developing countries involve endogenous populations: depending on

the selected alternative, some individuals may or may not be brought into existence.

To address this issue, a social ranking must be capable of comparing alternatives with

different population sizes.
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The possibility of extending the welfarist approach to a variable-population environ-

ment has been examined in a variety of contributions, most notably in applied ethics;

see, for instance, Parfit (1976, 1982, 1984). Impossibility results arise frequently in this

area, and it is therefore of interest to examine the possibilities of escaping these negative

conclusions. The purpose of this section is to illustrate that weakening transitivity to

consistency turns these impossibilities into possibilities. Of course, in order to ensure

that consistency is indeed weaker than transitivity, we cannot impose reflexivity, com-

pleteness and consistency—as mentioned earlier, consistency and transitivity coincide in

the presence of the two richness conditions. Therefore, the question arises whether re-

flexivity and completeness rather than transitivity are, to a large extent, responsible for

the impossibilities. This is not the case: although most of the impossibility results in this

area have been established for orderings, they remain true if reflexivity and completeness

are dropped.

A variable-population version of a social-evaluation relation is defined on the set of

utility vectors of any dimension, that is, it is a relation R ⊆ Ω × Ω, where Ω = ∪n∈ R
n.

The components of a utility vector u ∈ Ω are interpreted as the lifetime utilities of those

alive in the requisite alternative. For an individual who is alive, a neutral life is one which

is as good as one without experiences. A life above neutrality is worth living, a life below

neutrality is not. Following standard practice in population ethics, a lifetime-utility level

of zero is assigned to neutrality.

In Blackorby, Bossert and Donaldson (2006), it is shown that there exists no variable-

population social-evaluation ordering satisfying four axioms that are common in the lit-

erature. This result can be generalized by noting that it does not make use of reflexivity

of completeness—all that is needed is the transitivity of R.

The first axiom is minimal increasingness. It requires that, for any fixed population

size, if all individuals have the same utility in two utility vectors, then the vector where

everyone’s utility is higher is better according to R. We use 1n to denote the vector of

n ∈ N ones.

Minimal increasingness. For all n ∈ N and for all β, γ ∈ R,

β > γ ⇒ (β1n, γ1n) ∈ P (R).

Minimal increasingness is a weak unanimity property: it only applies if everyone has the

same utility in both alternatives to be compared.
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Another fixed-population axiom is weak inequality aversion. This axiom demands

that, for any fixed population size, perfect equality is at least as good as any distribution

of the same total utility.

Weak inequality aversion. For all n ∈ N and for all u ∈ R
n,((

1

n

n∑
i=1

ui

)
1n, u

)
∈ R.

Sikora (1978) suggests a variable-population version of the Pareto principle. The axiom

usually is defined as the conjunction of the strong-Pareto principle and the requirement

that the addition of an individual above neutrality to a utility-unaffected population is a

social improvement. Because strong Pareto will be introduced as a separate axiom later

on and is not needed for the impossibility result, we use the second part of the property

only.

Pareto plus. For all n ∈ N, for all u ∈ R
n and for all a ∈ R++,

((u, a), u) ∈ P (R).

In the axiom statement, the population common to u and (u, a) is unaffected and, thus,

in order to defend the axiom on individual-goodness grounds, it must be argued that a

level of well-being above neutrality is better than non-existence. Thus, the axiom extends

the Pareto condition to situations where a person is not alive in all alternatives to be

compared. While it is possible to compare alternatives with different populations from

a social point of view (which is the issue addressed in population ethics), it is not clear

that such a comparison can be made from the viewpoint of an individual if the person is

not alive in one of the alternatives. It is therefore difficult to interpret this axiom as a

Pareto condition because it appears to be based on the idea that people who do not exist

have interests that should be respected. There is, therefore, an important asymmetry in

the assessment of alternatives with different populations. It is perfectly reasonable to say

that an individual considers life worth living if the person is alive with a positive level of

lifetime well-being, but that does not justify the claim that a person who does not exist

gains from being brought into existence with a lifetime utility above neutrality.

As is the case for Pareto plus, the final axiom used in our impossibility result applies

to comparisons across population sizes. A variable-population social-evaluation relation
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leads to the repugnant conclusion if population size can always be substituted for well-

being, no matter how close to neutrality the utilities of a large population are. That

is, mass poverty may be considered superior to some alternatives in which fewer people

lead very good lives. This property has been used by Parfit (1976, 1982, 1984) to argue

against classical utilitarianism, the variable-population social-evaluation ordering that

ranks utility vectors on the basis of their total utilities. If Parfit’s view is accepted, R

should be required to avoid the repugnant conclusion.

Avoidance of the repugnant conclusion. There exist n ∈ N, ξ ∈ R++ and ε ∈ (0, ξ)

such that, for all m > n,

(ε1m, ξ1n) �∈ P (R).

Blackorby, Bossert and Donaldson (2006, Theorem 2) show that there exists no variable-

population social-evaluation ordering satisfying the above four axioms; see Blackorby,

Bossert and Donaldson (2005), Blackorby, Bossert, Donaldson and Fleurbaey (1998),

Blackorby and Donaldson (1991), Carlson (1998), McMahan (1981) and Parfit (1976,

1982, 1984) for similar observations. The following theorem shows that reflexivity and

completeness are not required—transitivity of R is sufficient to generate the impossibility.

Theorem 5 There exists no transitive variable-population social-evaluation relation sat-

isfying minimal increasingness, weak inequality aversion, Pareto plus and avoidance of

the repugnant conclusion.

Proof. Suppose R satisfies minimal increasingness, weak inequality aversion and Pareto

plus. The proof is completed by showing that R leads to the repugnant conclusion. For

any population size n ∈ N, let ξ ∈ R++, ε ∈ (0, ξ) and δ ∈ R++ be such that 0 < δ < ε < ξ.

Choose any integer r such that

r > n
(ξ − ε)

(ε − δ)
. (2)

Because the numerator and denominator on the right side of the inequality are both

positive, r is positive. By Pareto plus,

((ξ1n, δ1r), ξ1n) ∈ P (R). (3)

Average utility in (ξ1n, δ1r) is (nξ + rδ)/(n + r) so, by minimal inequality aversion,((
nξ + rδ

n + r

)
1n+r, (ξ1n, δ1r)

)
∈ R. (4)
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By (2),

ε >
nξ + rδ

n + r

and, by minimal increasingness,(
ε1n+r,

(
nξ + rδ

n + r

)
1n+r

)
∈ P (R). (5)

Combining (3), (4), (5) and using transitivity, it follows that (ε1n+r, ξ1n) ∈ P (R) and

avoidance of the repugnant conclusion is violated.

If transitivity is weakened to consistency, the axioms in the theorem statement are

compatible. Moreover, three of them can be strengthened and other properties that are

commonly imposed in population ethics can be added without obtaining an impossibility.

Expressed in the current setting, the strong-Pareto principle is another fixed-population

axiom. If everyone alive in two alternatives with utility vectors u and v has a utility in u

that is at least as high as the utility of this person in v with at least one strict inequality,

u is better than v. Clearly, this axiom is a strengthening of minimal increasingness.

Strong Pareto. For all n ∈ N and for all u, v ∈ R
n,

ui ≥ vi for all i ∈ {1, . . . , n} and u �= y ⇒ (u, v) ∈ P (R).

Continuity is a condition that prevents the social-evaluation relation R from exhibiting

‘large’ changes in response to ‘small’ changes in a utility vector. Again, the axiom imposes

restrictions on fixed-population comparisons only.

Continuity. For all n ∈ N and for all u ∈ R
n, the sets {v ∈ R

n | (v, u) ∈ R} and

{v ∈ R
n | (u, v) ∈ R} are closed in R

n.

Weak inequality aversion can be strengthened by requiring the restriction of R to

R
n×R

n to be strictly S-concave for any population size n ∈ N; see, for instance, Marshall

and Olkin (1979). Strict S-concavity is equivalent to the conjunction of the strict transfer

principle familiar from the theory of inequality measurement and anonymity. The strict

transfer principle requires that a progressive transfer increases goodness, provided the

relative rank of the individuals involved in the transfer is unchanged; see Dalton (1920)

and Pigou (1912). A social-evaluation relation is anonymous if the individuals in a fixed

population are treated impartially, without paying attention to their identities; see Sen
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(1973) for a detailed discussion. A bistochastic n×n matrix is a matrix whose entries are

between zero and one and all row sums and column sums are equal to one.

Strict S-concavity. For all n ∈ N, for all u ∈ R
n and for all bistochastic n× n matrices

B,

(i) (Bu, u) ∈ R;

(ii) Bu is not a permutation of u ⇒ (Bu, u) ∈ P (R).

Independence of the utilities of unconcerned individuals is a fixed-population separa-

bility property introduced by d’Aspremont and Gevers (1977). It requires that only the

utilities of those who can possibly be affected by a choice between two fixed-population

alternatives should determine their ranking.

Independence of the utilities of unconcerned individuals. For all n, m ∈ N, for

all u, v ∈ R
n and for all w, s ∈ R

m,

((u, w), (v, w)) ∈ R ⇔ ((u, s), (v, s)) ∈ R.

We now turn to further variable-population axioms. Existence of critical levels requires

that non-trivial trade-offs between population size and well-being are possible. For any

utility vector u ∈ Ω, it is assumed that there exists a utility level c ∈ R (which may

depend on u) such that the ceteris-paribus addition of an individual with utility level c

to an existing population with utilities u is a matter of indifference according to R.

Existence of critical levels. For all u ∈ Ω, there exists c ∈ R such that

((u, c), u) ∈ I(R).

The negative expansion principle is dual to Pareto plus. It requires any utility distri-

bution to be ranked as better than one with the ceteris-paribus addition of an individual

whose life is not worth living—that is, with a lifetime utility below neutrality.

Negative expansion principle. For all n ∈ N, for all u ∈ R
n and for all a ∈ R−−,

(u, (u, a)) ∈ P (R).

Finally, a strengthening of avoidance of the repugnant conclusion is defined. It is ob-

tained by replacing the existential quantifiers in the original axiom with universal quan-

tifiers and replacing the negation of betterness in the conclusion with the negation of the
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at-least-as-good-as relation. This is a strong property and one might not want to endorse

it; the reason why it is used to replace the weaker condition is that it makes the possibility

result logically stronger.

Strong avoidance of the repugnant conclusion. For all n ∈ N, for all ξ ∈ R++, for

all ε ∈ (0, ξ) and for all m > n,

(ε1m, ξ1n) �∈ R.

We do not impose avoidance of the sadistic conclusion or any of its variants (see

Arrhenius, 2000) because it is implied by some of the properties already defined.

Theorem 6 There exists a reflexive and consistent variable-population social-evaluation

relation satisfying strong Pareto, continuity, strict S-concavity, independence of the util-

ities of unconcerned individuals, existence of critical levels, Pareto plus, the negative ex-

pansion principle and strong avoidance of the repugnant conclusion.

Proof. An example is sufficient to establish the theorem. Let g: R → R be a continuous,

increasing and strictly concave function such that g(0) = 0 and define the relation R∗ by

letting, for all n, m ∈ N, for all u ∈ R
n and for all v ∈ R

m,

(u, v) ∈ R∗ ⇔ n = m and
n∑

i=1

g(ui) ≥
m∑

i=1

g(vi)

or m = n + 1 and ∃α ∈ R− such that v = (u, α)

or n = m + 1 and ∃β ∈ R+ such that u = (v, β).

Strong Pareto is satisfied because g is increasing, continuity is satisfied because g is

continuous, strict S-concavity follows from the strict concavity of g and independence

of the utilities of unconcerned individuals is satisfied because of the additively separable

structure of the criterion for fixed-population comparisons. Existence of critical levels is

satisfied because zero is a critical level for all u ∈ Ω, and Pareto plus and the negative

expansion principle follow immediately from the definition of R∗. Strong avoidance of the

repugnant conclusion is satisfied because (ε1m, ξ1n) �∈ R∗ for all n ∈ N, for all ξ ∈ R++,

for all ε ∈ (0, ξ) and for all m > n. That R∗ is reflexive is immediate.

It remains to show that R∗ is consistent. The first step is to prove that, for all

n, m ∈ N, for all u ∈ R
n and for all v ∈ R

m,

(u, v) ∈ R∗ ⇒
n∑

i=1

g(ui) ≥
m∑

i=1

g(vi) (6)
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and

(u, v) ∈ P (R∗) ⇒
n∑

i=1

g(ui) >
m∑

i=1

g(vi). (7)

To prove (6), suppose that n, m ∈ N, u ∈ R
n, v ∈ R

m and (u, v) ∈ R∗. According to the

definition of R∗, there are three possible cases.

Case 1. n = m and
∑n

i=1 g(ui) ≥ ∑m
i=1 g(vi). The conclusion is immediate in this

case.

Case 2. m = n + 1 and ∃α ∈ R− such that v = (u, α). Thus,

m∑
i=1

g(vi) =

n∑
i=1

g(ui) + g(α) ≤
n∑

i=1

g(ui)

where the inequality follows because α ≤ 0 and, by the increasingness of g and the

property g(0) = 0, g(α) ≤ 0.

Case 3. n = m + 1 and ∃β ∈ R+ such that u = (v, β). This implies

n∑
i=1

g(ui) =

m∑
i=1

g(vi) + g(β) ≥
m∑

i=1

g(vi)

where the inequality follows because β ≥ 0 and thus g(β) ≥ 0.

To prove (7), suppose n, m ∈ N, u ∈ R
n and v ∈ R

m are such that (u, v) ∈ P (R∗).

Again, there are three cases.

Case 1. n = m and
∑n

i=1 g(ui) ≥ ∑m
i=1 g(vi). If

∑m
i=1 g(vi) ≥ ∑n

i=1 g(ui), we

obtain (v, u) ∈ R∗ and thus a contradiction to our hypothesis (u, v) ∈ P (R∗). Therefore,∑n
i=1 g(ui) >

∑m
i=1 g(vi).

Case 2. m = n + 1 and ∃α ∈ R− such that v = (u, α). Thus,

m∑
i=1

g(vi) =

n∑
i=1

g(ui) + g(α) ≤
n∑

i=1

g(ui) (8)

as established in the proof of (6). If α = 0, it follows that v = (u, 0) which leads to

(v, u) ∈ R∗, contradicting our hypothesis (u, v) ∈ P (R∗). Thus, α < 0 and g(α) < 0

because g(0) = 0 and g is increasing. Therefore, the inequality in (8) is strict.

Case 3. n = m + 1 and ∃β ∈ R+ such that u = (v, β). This implies

n∑
i=1

g(ui) =

m∑
i=1

g(vi) + g(β) ≥
m∑

i=1

g(vi) (9)

as established in the proof of (6). If β = 0, it follows that u = (v, 0) which leads to

(v, u) ∈ R∗, again contradicting the hypothesis (u, v) ∈ P (R∗). Thus, β > 0 and the

inequality in (9) is strict.

16



To complete the proof, suppose n, m ∈ N, u ∈ R
n and v ∈ R

m are such that (u, v) ∈
tc(R∗). By repeated application of (6), it follows that

∑n
i=1 g(ui) ≥

∑m
i=1 g(vi). If (v, u) ∈

P (R∗), (7) implies
∑m

i=1 g(vi) >
∑n

i=1 g(ui), a contradiction. Thus, (v, u) �∈ P (R∗) and

R∗ is consistent.

Another impossibility result in population ethics is due to Broome (2004, Chapter

10). Broome suggests that existence is in itself neutral and, thus, the ceteris-paribus

addition of an individual to a utility-unaffected population should lead to an equally-good

alternative, at least as long as the utility of the added person (if brought into being) is

within a non-degenerate interval. This intuition, which Broome calls the principle of equal

existence, is incompatible with strong Pareto, provided that the social-evaluation relation

R is transitive. The impossibility persists if transitivity is weakened to consistency. The

following axiom is a weak form of the principle of equal existence.

Principle of equal existence. There exist u ∈ Ω and distinct α, β ∈ R such that

((u, α), u) ∈ I(R) and ((u, β), u) ∈ I(R). (10)

We obtain the following impossibility result.

Theorem 7 There exists no consistent variable-population social-evaluation relation sat-

isfying strong Pareto and the principle of equal existence.

Proof. Suppose R satisfies strong Pareto and the principle of equal existence. The proof

is completed by showing that R cannot be consistent. By the principle of equal existence,

there exist u ∈ Ω and distinct utility levels α and β such that (10) is satisfied. Without loss

of generality, suppose α > β. By strong Pareto, ((u, α), (u, β)) ∈ P (R) which, together

with (10), leads to a violation of consistency.
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