
2005-22

SPRUMONT, Yves
MOULIN, Hervé

Fair Allocation of Production Externalities:
Recent Results



Département de sciences économiques 
Université de Montréal 
Faculté des arts et des sciences 
C.P. 6128, succursale Centre-Ville 
Montréal (Québec) H3C 3J7 
Canada
http://www.sceco.umontreal.ca  
SCECO-information@UMontreal.CA
Téléphone : (514) 343-6539 
Télécopieur : (514) 343-7221 

Ce cahier a également été publié par le Centre interuniversitaire de recherche en 
économie quantitative (CIREQ) sous le numéro 28-2005.

This working paper was also published by the Center for Interuniversity Research in 
Quantitative Economics (CIREQ), under number 28-2005. 

ISSN 0709-9231 



Fair Allocation of Production Externalities:
Recent Results

Hervé Moulin and Yves Sprumont†

December 8, 2005

Abstract

We survey recent axiomatic results in the theory of cost-sharing. In
this litterature, a method computes the individual cost shares assigned
to the users of a facility for any profile of demands and any monotonic
cost function.
We discuss two theories taking radically di erent views of the

asymmetries of the cost function. In the full responsibility theory,
each agent is accountable for the part of the costs that can be unam-
biguously separated and attributed to her own demand. In the partial
responsibility theory, the asymmetries of the cost function have no
bearing on individual cost shares, only the di erences in demand lev-
els matter.
We describe several invariance and monotonicity properties that

reflect both normative and strategic concerns. We uncover a num-
ber of logical trade-o s between our axioms, and derive axiomatic
characterizations of a handful of intuitive methods: in the full respon-
sibility approach, the Shapley-Shubik, Aumann-Shapley, and subsidy-
free serial methods, and in the partial responsibility approach, the
cross-subsidizing serial method and the family of quasi-proportional
methods.
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1 Introduction

Managing production facilities shared by multiple users is a vast empirical
problem because externalities in production are the key to a host of en-
vironmental issues, from pollution to global warming, to the congestion of
communication networks, roads, telephone, internet, and more generally to
the limits on the rivalry and excludability in consumption of countless com-
modities. We review here a literature focusing on a simple yet foundational
model of production externalities involving a single facility, in which each
user’s property rights are defined by the principle of user sovereignty. The
goal is to define a fair allocation of the production externalities.
User i provides a quantity xi of a certain idiosyncratic input and receives

an amount yi of a common output commodity. Alternatively, agents may
demand various commodities produced from a single input: xi is then inter-
preted as agent i’s indiosyncratic demand and yi is her share of the total cost.
We speak of an output-sharing problem in the first case, of a cost-sharing
problem in the second. If N denotes the set of users, a production function
F (or a cost function C) imposes the following technological constraint:

F (x) =
X
i N

yi or C(x) =
X
i N

yi.

User Sovereignty means that each agent chooses freely the amount of
input she wishes to contribute (or the amount of output she demands) and
these contributions (or demands) are honored: no other input goes into the
production process in the case of an output-sharing problem, all individual
demands are exactly met in a cost-sharing problem. The design problem we
address is how to share total output F (x) (or total cost C(x)) among the
agents of N .

Examples of the output-sharing problem include the following:

1) Exploitation of common property resources. A set of fishermen exploit
a lake: they supply labor and share the catch. Because labor is homogeneous,
the production function takes the form F (z) = g(z(N)), where we use the
notation z = (z1, ..., zn) and z(N) = z1 + ... + zn. When average product
g(z(N))/z(N) is decreasing, this is the standard model of the “tragedy of
the commons” (Hardin, 1968, Case, 1979). When it is increasing, this is the

“natural monopoly” problem (Sharkey, 1982).
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2) Producers cooperatives. Agents supply labor and share profits. Skills
di er: the production function is F (z) = g( 1z1+ ...+ nzn), where 1, ..., n

are productivity parameters (Israelsen, 1968). Alternative assumptions on F
are possible: complementary inputs (coordination games) F (z) = g(minN izi),
a Cobb-Douglas technology F (z) = Nz i

i , or general partnerships where no
restriction on F can be imposed.

3) The problem of sharing a communication link with fixed total capacity
can be approached as an output-sharing game where inputs are the users’
bids for a share of the link: Johari and Tsitsiklis (2004), Yang and Hajek
(2004), Sanghavi and Hajek (2004).

Examples of application of the cost-sharing model are more numerous:

1) Buyers cooperatives. The agents are interested in a homogeneous
good and form a monopsony. This is a cost-sharing problem where C(z) =
c(z(N)); average cost c(z(N))/z(N) is typically decreasing.

2) Capacity sharing. Agents share a facility (ship channel, irrigation
ditch, runway) and each requests a certain capacity zi (depth of the channel
or of the ditch, length of the runway). The facility is a nonrival good: the
cost of meeting the demands is C(z) = c(maxN zi).(Littlechild and Owen,
1973, Moulin, 1994, Aadland and Kolpin, 2004).

A number of cost-sharing problems emerged recently in the literature on
networks:

3) Access to a network: each potential user chooses to be connected or
not, xi = 0 or 1; the mechanism divides the cost C(S) of serving the subset
S of agents. The function C is typically submodular (Moulin and Shenker,
2001, Feigenbaum et al., 2001, Archer et al., 2004, Immorlica et al., 2005).

4) Congestion and queues. Users share a link or a server, demands xi are
transmission rates and cost is delay in transmission or a monetary charge. In
many queuing models, the server can achieve any profile of delays yi such thatP

S yi c(
P

S zi) for all subsets S of users, where c is convex. For instance in
the classic M/M/1 queue, c(z(N)) = z(N)/(a z(N)): see Shenker (1995),
Demers et al. (1990), Clarke et al.(1992). With quadratic or more general
costs, see Johari and Tsitsiklis (2005), Johari et al. (2005), Chen and Zhang
(2005).

We focus on the cost-sharing terminology throughout most of the paper.
Although most of our axioms and results can be rephrased identically in the
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output-sharing context, there are some discrepancies in the interpretation of
some properties, particularly the upper bound property: see Section 7.1.
In our approach, the mechanism consists of a simple formula computing

the cost shares yi for any profile of demands x and any monotonic cost func-
tion C. We do not model individual preferences explicitly and think of each
individual demand xi as inelastic. This is in contrast with the axiomatic lit-
erature on cooperative production where a mechanism elicits individual pref-
erences (and perhaps other characteristics) and selects an allocation (xi, yi)
for each participant. See e.g., Moulin (1990), Roemer and Silvestre (1993),
Fleurbaey and Maniquet (1996).
Two important assumptions are that cost shares are nonnegative and

budget-balanced. The former is often a feasibility constraint, as when the cost
yi measures the waiting time until service is complete. When yi represents
cash, subsidies are often ruled out on normative grounds: because we limit
attention to monotonic cost functions1, non-negativity of the cost shares is a
weak form of demand responsiveness.
It makes sense to relax the budget balance assumption when preferences

are explicitly modeled and we consider the “demand game” where each par-
ticipant chooses her demand strategically. If preferences are quasi-linear,
the inherently budget-imbalanced Vickrey-Clarke-Groves mechanisms are of
particular interest. Another argument is that the equilibrium of the demand
game induced by a cost-sharing method violating budget balance may Pareto-
dominate that of the game induced by a budget-balanced method (see e.g.,
Moulin (2005)).
In our axiomatic discussion below, we focus on the role of variable indi-

vidual demands. We discuss two theories taking a radically di erent view of
the asymmetries of the cost function C with respect to the various inputs.
In the full responsibility theory, each agent is accountable for “her costs”,
namely for the part of the costs that can be unambiguously separated and
attributed to her own demand. In the partial responsibility theory, the asym-
metries of the cost function have no bearing on individual cost shares, only
the di erences in demand levels matter. We also define several monotonic-
ity properties of the mapping x 7 y for a given function C, that have
a dual normative and incentive compatibility interpretation. We uncover a
number of logical trade-o s between our axioms, and end up recommending

1There are natural examples of non monotonic cost functions. See, e.g., Flam and
Jourani (2003).
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a handful of intuitive methods, each one defining a coherent interpretation
of fairness for managing production externalities. These methods are, in
the full responsibility approach, the Shapley-Shubik, Aumann-Shapley, and
subsidy-free serial methods, and in the partial responsibility approach, the
cross-subsidizing serial method and the family of quasi-proportional meth-
ods. We state the main axiomatic characterizations of these methods. We
conclude with a brief overview of the sources of the results we survey.

2 The model

Each agent i in a set N = {1, ..., n} demands an integer quantity xi N =
{0, 1, ...} of an indiosyncratic good. The cost of meeting the demand profile
x NN must be split among the members of N. A cost function is a mapping
C : NN R+ that is nondecreasing and satisfies C(0) = 0. A (cost-sharing)
method assigns to each problem (C, x) a vector of nonnegative cost shares
(C, x) RN+ such that

P
i(C, x) = C(x).

The key axiom is the following invariance property.

Additivity. For all C,C 0 and x, (C + C 0, x) = (C, x) + (C 0, x).

Additive cost-sharing methods are very convenient in practice. When
production can be decomposed into the sum of several independent processes
(like research, production and marketing; or construction and maintenance),
applying the method to each subprocess and adding the resulting cost shares
is equivalent to applying the method to the consolidated cost function. The
proper level of application of the method is not a matter of dispute.
While devoid of ethical content, Additivity drastically reduces the set of

cost-sharing methods. One consequence is that (C, x) only depends upon
the restriction of C to the “rectangle” [0, x]. Moulin and Vohra (2003) o er
a representation of all additive methods in terms of flow on [0, x], that plays
an important role in our results below.
For simplicity we only discuss symmetric methods, even though most of

the theory extends to possibly asymmetric methods. If is a permutation
on N and z is a demand profile, define z by ( z) (i) = zi for all i N. For
every cost function C, define C by C( z) = C(z) for all z.

Symmetry. For every permutation on N , and all C and x, ( C, x) =
(C, x).
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This axiom expresses the familiar idea that the names of the agents should
be ignored when computing the cost shares: it is generally accepted as a basic
notion of fairness. It implies weaker symmetry properties frequently used in
the literature: for instance, agents with equal demands pay the same cost
share when the cost function is symmetric.

The early work on axiomatic cost sharing was developed in a continuous
variant of the above model: demands are real numbers and a cost function
is a mapping C : RN R+ that is nondecreasing, continuously di eren-
tiable, and satisfies C(0) = 0. This model is technically more demanding
than the discrete model, but the results are often parallel; many are iden-
tical in both models. However the literature on the continuous model has
discussed exclusively the “full responsibility” theory: so far the alternative
“partial responsibility” theory has only been developed in the discrete model.
In order to discuss the latter approach in the continuous model, a required
step is to adapt the Moulin-Vohra characterization of Additivity.

3 Full responsibility in costs and demands

Externalities in production render the naive principle “I am responsible for
my own costs” ambiguous because Donald’s level of demand a ects the (mar-
ginal) cost of Daisy’s demand. However, the interpretation of the principle
is straightforward in one simple case, namely, when the cost function is ad-
ditively separable. This leads to the following requirement.

Separability. For all C and x, {C(z) =Pi N ci(zi) for all z} { i(C, x) =
ci(xi) for all i}.
Under Additivity, Separability is equivalent to the more familiar and in-

tuitively less demanding Dummy axiom. For all i and C, define i’s marginal
cost function iC : N

N R+ by iC(z) = C(z + e
i) C(z), where eii = 1

and eij = 0 for j 6= i.
Dummy. For all C, x, and i, { iC(z) = 0 for all z} { i(C, x) = 0}.
The simplest cost-sharing problems (C, x) are those where individual de-

mands are binary, that is, x belongs to {0, 1}N . All the relevant information
is then captured in the corresponding “stand-alone cost cooperative game”
(N,Cx) where the cost associated with a coalition S N is just the cost
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of meeting the consumptions of its members: in straightforward notation,
Cx(S) = C(xS, 0N\S).
The Shapley cost-sharing rule Sh, which is restricted to such binary-

demand problems, solves the original problem by applying the familiar Shap-
ley value Sh to its stand-alone game. We use the notation eS for the vector
eSi = 1 if i S, eSi = 0 otherwise. For every permutation on N and every
i N, let S(i, ) = {j N | (j) < (i)} and compute agent i0s cost share as

Sh
i (C, x) = Shi(N,Cx) =

1

n!

P
iC(e

S(i, )), (1)

where the summation is taken over all n! permutations on N.

Theorem 1. On the subset of binary-demand problems, the Shapley cost
sharing method is the only method satisfying Additivity, Dummy and Sym-
metry.

Removing Symmetry leads to the so-called random-order values. The in-
cremental method based on the permutation charges to agent i the share

i (C, x) = iC(e
S(i, )); Additivity and Dummy characterize the convex com-

binations of the n! incremental methods.
Theorem 1 is the founding result of the literature we are surveying. When

demands can take more than two values, Additivity, Separability and Sym-
metry allow many more methods: the goal of this survey is to discuss the
most important ones.

A stronger requirement than Separability applies to the fairly large classes
of submodular and supermodular cost functions. For any C, i, j, and z,
define ijC(z) = iC(z + e

j) iC(z). A cost function C is submodular if
ijC(z) 0 for all z and distinct i, j, and supermodular if ijC(z) 0 for
all z and distinct i, j.
Under such cost functions, externalities in production are unambiguous:

positive in the case of submodular costs, negative in the case of supermodular
costs.

Stand-Alone Principle. For allC, x and i, {C is submodular} { i(C, x)
C(xi, 0N\i)}, and {C is supermodular} { i(C, x) C(xi, 0N\i)}.
This is an appealing requirement because the stand-alone cost is a nat-

ural benchmark. Note that the Stand-Alone Principle implies Separability
since an additively separable function is both submodular and supermodular.
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Conversely, one can show that Additivity and Separability together imply the
Stand-Alone Principle.

Even stronger is the requirement that, when externalities are unambigu-
ous, any increase in an agent’s demand a ects all other users in the “correct”
direction.

Unambiguous Externalities. Fix C and let x, x0 and i be such that xi < x0i
and xj = x0j for all j N\i. Then {C is submodular} { j(C, x)

j(C, x
0) for all j N\i}, and {C is supermodular} { j(C, x) j(C, x

0)
for all j N\i}
We call the first part of the axiom Negative Externalities and the

second part Positive Externalities. Unambiguous Externalities guaran-
tees that all agents face common and correct incentives: if the cost function
is submodular (respectively, supermodular), everyone supports an increase
(respectively, a decrease) in everyone else’s demand. This is also appealing
from a normative point of view: because i’s cost share depends only upon
the marginal cost function iC (as explained below), an increase in j’s de-
mand must not increase i’s share if C is submodular (or decrease it if C is
supermodular).
Note that, even under Additivity, Unambiguous Externalities is a strictly

stronger requirement than the Stand-Alone Principle.

Finally, we consider one more simple-minded principle: “I am responsible
for my own demand”. This is even more vague than “I am responsible for my
own costs”, yet it suggests another normatively compelling property. Because
raising my demand never decreases the total cost shared by all users -for any
cost function-, this move should not allow me to lower my share of the cost.

Monotonicity. For all C, x, x0, and i, {xi < x0i and xj = x0j for all j
N\i} { i(C, x) i(C, x

0)}.
Monotonicity is a compelling ethical requirement in any cost-sharing the-

ory holding agents responsible for their demand; it is meaningful in both the
full and partial responsibility approaches. Alternatively, it may be defended
on strategic grounds: a monotonic method is not vulnerable to artificial in-
flation of individual demands.

The combination of all axioms above leaves us with a rich class of cost-
sharing methods.

8



Consider first the combination of Additivity and Dummy: it implies that
an agent’s cost share must be an average of her marginal costs at the de-
mand profiles below the actual demand x. In order to express the budget
balance condition, define a flow to x to be a mapping f(., x) : [0, x[ RN+
satisfying the convention that fi(z, x) = 0 whenever zi = xi, the normal-
ization

P
i N fi(0, x) = 1, and the conservation constraints

P
i N fi(z, x) =P

i N(z) fi(z ei, x) for all z ]0, x[, where N(z) = {i N |zi > 0}. An im-
portant lemma states that a method satisfies Additivity and Separability
if and only if, for every x, there is a (necessarily unique) flow f(., x) to x
such that

i(C, x) =
X
z [0,x[

fi(z, x) iC(z) (2)

for all C and all i; we call f the flow system associated with .

Next, Unambiguous Externalities and Monotonicity connect the flows to
the various demand profiles in a simple way: the flow to a demand profile
is simply the projection of the flow to any higher demand profile. Formally,
the projection of the flow f(., x) to x on [0, x0[ [0, x[, denoted px0f(., x), is
defined as follows: for any i and z [0, x0[ write K = {j N | zj = x0j} and
let

px0fi(z, x) = fi(z, x) if K =

and

px0fi(z, x) = 0 if K 6= and i K,

=
X

wK [x0K ,xK ]

fi((wK , zN\K), x) if K 6= and i / K.

Note that px0f(., x) is a flow to x0. A method is a fixed-flow method if its
associated flow system f is such that f(., x0) = p[0,x0]f(., x) whenever x0 x.
Note that is entirely determined by the subsystem {f(., keN)|k N}.
Theorem 2. The fixed-flow methods are the only methods satisfying Addi-
tivity, Unambiguous Externalities, and Monotonicity.

In this result Unambiguous Externalities may be replaced by the combina-
tion of Dummy and Positive Externalities, or by the combination of Dummy
and Negative Externalities.
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4 Ordinality: the Shapley-Shubik method

The stand-alone cost game associated with a cost-sharing problem remains
well defined when some agents consume several units. Shubik (1962) rec-
ommended the Shapley value of that game as a solution to the underlying
cost-sharing problem. Formally, the so-called Shapley-Shubik method ShSh

simply applies the formula

ShSh(C, x) = Sh(N,Cx)

to all problems (C, x). Interestingly, the formula is identical in the continuous
variant of the cost-sharing model.
This very simple solution is a fixed-flow method. For any demand profile

x, the corresponding flow fShSh(., x) is symmetrically spread along the edges
of the cube [0, x[. Letting Ei(x) = {z [0, x[| j N\i, zj {0, xj}},
fShShi (z, x) = (n(x) n(z,x))!(n(z,x) 1)!

n(x)!
if z, z + ei Ei(x) and fShShi (z, x) = 0

otherwise, where n(z, x) = |{j N | zj < xj}| .
The qualitative features of a commodity (such as temperature, height,

weight, viscosity, brightness, resistance to shocks) may often be measured
on di erent scales. The Ordinality property emerges when the choice of a
particular numerical scale to measure demands (or inputs) should not matter
to the eventual division of shares.
The property is easy to formulate in the continuous model. An ordinal

transformation is an increasing and continuously di erentiable bijection from
R+ onto itself. Given a demand profile x, an agent i, and an ordinal transfor-
mation i, we write x i = ( i(xi), xN\i). If C is a valid cost function, then so
is the function z 7 C i(z) = C( i(zi), zN\i). Because the problems (C, x i)
and (C i , x) are ordinally equivalent, they should receive the same solution.

Ordinality. For all C, x RN+ , i N , and all ordinal transformations i,
(C, x i) = (C i , x).

A corresponding property in the discrete model is the following: if it
happens that C is flat between wi and wi + 1, then erasing unit wi + 1
from the books should have no impact on cost shares. Formally, given a cost
function C define Cwi(z) = C(z) if zi < wi and Cwi(z) = C(z+ei) otherwise.

Ordinality. For all C, x NN , i N , and all wi xi, { iC(z) = 0
whenever zi = wi} { (x,C) = (x ei, Cwi)}
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The interpretation of Ordinality in the discrete model is slightly di erent.
When goods come in indivisible units, the property allows us to add artificial
costless “half units” without a ecting the final allocation of costs. We cannot
use an “ordinal transformation” as above to change the measurement scale of
an individual demand, because the only increasing bijection of N into itself
is the identity.
Note that for an ordinal method, the choice of the zero in the scale of each

demand does matter. When each scale is qualitative, the zero is a benchmark
lower bound of the demand: it may be chosen to represent the status quo
ex ante, as when the users of a facility share the cost of its renovation,
each user requesting an upgrade of a di erent attribute (sound-proofing, air-
conditioning system, light,...).

Theorem 3. In both the discrete and continuous models, the Shapley-Shubik
method is the only method satisfying Additivity, Dummy, Symmetry, and
Ordinality.

In particular, the Shapley-Shubik method is the only symmetric fixed-flow
method meeting Ordinality. As in Theorem 1, removing Symmetry quickly
leads to a characterization of the random-order values: they are characterized
by Additivity, Dummy, Ordinality, and the mild condition of Independence
of Zero Demands discussed in Section 5.1 below.
In Section 5.2, we give a related characterization of the Shapley-Shubik

method in the continuous model, where Ordinality is replaced by the combi-
nation of Scale Invariance (a weakening of Ordinality) and Monotonicity.

5 Merging, splitting and reshu ing: the Aumann-
Shapley method

When some agents consume several units, the stand-alone cost game (N,Cx)
associated with a cost-sharing problem (C, x) ignores a lot of the potentially
relevant information contained in the cost function C. The Aumann-Shapley
method exploits this information by constructing a game (Nx, x) where each
unit consumed by each agent is regarded as a separate player. The Shapley
value of that game determines a price for every unit of consumption. The
Aumann-Shapley method charges to agent i the sum of the prices attached
to the units she consumes.
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5.1 Discrete formulation

It will be useful to consider a variable-population version of the discrete
cost-sharing model described earlier: a cost-sharing problem is now a triple
(N,C, x), where the agent set N is any nonempty finite subset of N.
Given such a problem, we construct a cooperative game with transferable

utility among x(N) players, each player representing one unit of an individual
demand. Write N = {1, ..., n}, choose pair-wise disjoint sets N1, ..., Nn such
that |Ni| = xi for each i N , and let Nx = i NNi. For each S Nx define
x(S) = C(|S N1| , ..., |S Nn|).
The Aumann-Shapley method ASh computes the cost shares in the prob-

lem (N,C, x) according to the formula

ASh
i (N,C, x) =

P
j Ni

Shj(Nx, x) for all i N,

where we recall that Sh denotes the familiar Shapley value of for cooperative
games.
The anonymity of the Shapley value guarantees that this definition is

meaningful: the game (Nx, x) is not uniquely defined but all possible choices
are equivalent. We omit N as an argument of the method ASh whenever
this causes no confusion.

The Aumann-Shapley method admits a simple flow representation as in
(2). For any demand profile x, the corresponding flow fASh(., x) is equally
spread on all the nondecreasing paths in the rectangle [0, x[. Thus fAShi (z, x)
equals the proportion of paths from 0 to x which go through z and z + ei:
straightforward computations yield fAShi (z, x) = (z) (x z ei)/ (x) for
all i N and z [0, x ei], where (z) = z(N)!/

Q
j N zj!.

This method, however, is not a fixed-flow method. It satisfies all axioms
in Theorem 2 but Monotonicity, as shown in the following example.

Example 1. Returning to the output-sharing interpretation of our model,
consider a production function with two perfectly complementary inputs:
F (z) = g(min{z1, z2}). If x1 = x2 = a, the Aumann-Shapley output shares
are y1 = y2 =

g(a)
2
since the method is symmetric. But when x1 < a = x2,

we get y1 > g(a)/2 > y2: for instance, the output shares are (y1, y2) =
(2
3
g(1), 1

3
g(1)) when (x1, x2) = (1, 2). This violates Monotonicity. Also, the

high-input agent gets a smaller share of output, despite the symmetry of
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the production function. In contrast, the Shapley-Shubik method gives y1 =
y2 =

1
2
g(min{x1, x2}), a much more palatable division of output.

This observation notwithstanding, the Aumann-Shapley method has sev-
eral extremely appealing features. First, cost shares are proportional to de-
mands whenever all goods are perfect substitutes. This property is known
as Weak Consistency in the literature on the continuous model.

Weak Consistency. Let (N,C, x) be a cost-sharing problem such that
C(z) = c(

P
i N zi) for all z. Then i(N,C, x) = (xi/

P
j N xj)C(x) for all

i N .

Weak Consistency is intuitive from an ethical viewpoint. Perhaps more
importantly, it is necessary and su cient to rule out certain natural strate-
gic maneuvers. In a context where demands cannot easily be traced to their
actual consumers, a coalition of agents may contemplate merging into a sin-
gle large consumer whose demand is the sum of the individual demands;
dually, a single agent may split his demand between a number of “virtual”
consumers. It is well known that when all goods are perfect substitutes,
the only cost-sharing method for which such merging or splitting tactics are
never profitable is the proportional method: see for instance Moulin (2002)
or, for a more comprehensive treatment, Ju, Miyagawa, and Sakai (2005).
The idea of preventing merging or splitting maneuvers can be applied

even when not all individual demands are perfect substitutes. Suppose this
is true for a strict subset S of the goods, namely the cost function takes the
form C(z) = c(zN\S,

P
i S zi). In this case one would like to ensure that the

agents consuming the goods in S have no incentive to merge or split. The
No Merging or Splitting axiom strengthens Weak Consistency by imposing
this requirement for any subset of goods.

No Merging or Splitting. Fix N, C, x and i N, and let I be a fi-
nite subset of N such that N I = {i} . Write N 0 = (N\i) I, define
the cost function C 0 on NN

0
by C 0(z) = C(zN\i,

P
i0 I zi0) for all z NN

0
,

and let x0 NN
0
. Then {Pi0 I x

0
i0 = xi and x0j = xj for all j N\i}

{Pi0 I i0(N
0, C 0, x0) = i(N,C, x)}.

This property connects cost shares in two problems with di erent sets of
agents: N 0 obtains from N by “splitting” agent i into a set I of agents i0

whose aggregate demand equals i’s original demand. The other agents in N
and N 0 are identical, and their demands do not change. The cost function
C 0 for N 0 expresses the same technology as C: the sum of the consumptions
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by the agents i0 in I merely plays the role of agent i’s original consumption.
The condition prevents manipulations of identity: agent i in N does not gain
by splitting her consumption into smaller pieces; the agents i0 in N 0 do not
gain by merging theirs into one larger block.
The Aumann-Shapley method satisfies the axiom: when a subset S of the

goods are perfect substitutes, the total cost share paid by the agents demand-
ing those goods is

P
j i SNi

Shj(Nx, x), which is completely insensitive to
merging or splitting maneuvers within S. In fact, such maneuvers also leave
the cost shares of the agents in N\S unchanged (see, e.g., Monderer and
Neyman, 1988).
Because No Merging or Splitting compares problems with di erent sets

of agents, it is a somewhat complex condition. A related fixed-population
condition which is a little simpler to grasp is No Reshu ing.

No Reshu ing. Let (N,C, x) be a cost-sharing problem such that C(z) =
c(zN\S,

P
i S zi) for all z and some S N . For all x0, {Pi S xi =

P
i S x

0
i

and xN\S = x0N\S} {Pi S i(N,C, x) =
P

i S i(N,C, x
0)}.

This condition says that the aggregate cost share of a group of agents
consuming essentially the same good depends only on their aggregate con-
sumption. If this condition were violated, all members of S could benefit by
reshu ing individual consumptions within S and performing suitable mone-
tary transfers. It is easy to check that No Reshu ing is implied by No Merg-
ing or Splitting. The converse is not true, however, even in the presence of
Additivity and Dummy, unless we add the following mild variable-population
requirement.

Independence of Zero Demands. For all N, C, x and i, {xi = 0}
{ i(N,C, x) = 0 and N\i(N,C, x) = (N\i, CN\i, xN\i)},
where CN\i(zN\i) = C(0i, zN\i).

Theorem 4. In the discrete model, the Aumann-Shapley method is the only
cost-sharing method satisfying Additivity, Dummy, and No Merging or Split-
ting.
Alternatively, it is the only method satisfying Additivity, Dummy, No

Reshu ing, and Independence of Zero Demands.

In contrast to Theorems 1 and 3, Theorem 4 does not require Symme-
try. A consequence is that all asymmetric methods satisfying Additivity and
Dummy are vulnerable to merging or splitting maneuvers.
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5.2 Continuous formulation

We return to the fixed-population framework but assume that goods are
perfectly divisible. While the literature often casts the problem in pricing
terms —rather than sharing the total cost among agents, one seeks to price
the goods that they consume—, the two formulations are equivalent.
Viewing this continuous model as the limit of the discrete one when the

discretization grid grows finer and finer, Aumann and Shapley (1974) ob-
tained the following sleek formula: for every cost-sharing problem (C, x),
agent i’s cost share is the integral of her marginal costs along the ray to x:

ASh
i (C, x) = xi

Z 1

0
iC(tx)dt.

This simple “diagonal” formula naturally lends itself to numerous applica-
tions: from the early work of Billera, Heath, and Raanan (1978) and Samet,
Tauman, and Zang (1984) to the recent contributions of Castano-Pardo and
Garcia-Diaz (1995), Haviv (2001) or Lee (2002), they range from the pricing
of utilities such as water, phone or electricity to the allocation of highway
construction costs, and the sharing of waiting time at a congested server.
The diagonal formula also exacerbates the drawbacks of the discrete

Aumann-Shapley method. We start with two examples where it behaves
poorly, contrary to the Shapley-Shubik method.

Example 1 (continued). Consider a continuously di erentiable produc-
tion function arbitrarily close to F (z) = g(minN zi). Any user j such that
xj > minN xi receives an output share arbitrarily close to zero: virtually all
the output goes to the smallest contributors. The Shapley-Subik method
recommends equal shares.

Example 2. Consider a continuously di erentiable cost function arbitrarily
close to C(z) = c(maxN zi). Any user j such that xj < maxN xi pays a cost
share arbitrarily close to zero: all the cost is borne by the largest users. In
contrast, the Shapley-Shubik method yields the incremental shares: ranking
agents by increasing order of demands, that is, x1 x2 · · · xn, we get

i(C, x) =
iX

k=1

C(xk) C(xk 1)

n k + 1
(3)

for each i. This celebrated “runway” formula for the capacity game (derived
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by Littlechild and Owen, 1973) is the natural solution. In particular, it is
recommended by all the symmetric fixed-flow methods.

In the next examples, the Aumann-Shapley delivers a plausible propor-
tional division.

Example 3. The production function takes the form F (z) = g(
P

N izi).
Here the Aumann-Shapley output shares are proportional to the input con-
tributions measured in e ciency units: agent j receives yj = jxjP

N ixi
F (x).

The Shapley-Shubik shares are much less intuitive.

Example 4. The production function takes the form F (z) = g( Nz i
i ). The

Aumann-Shapley method allocates yj = jP
N i

F (x) to agent j, whereas the
Shapley-Shubik method simply shares output equally. In both methods the
relative output shares of any two agents are entirely insensitive to individual
input contributions.

Like its discrete counterpart, the continuous Aumann-Shapley method is
invulnerable to merging, splitting and reshu ing. The exact counterpart of
NoMerging or Splitting for pricing rules appears in Tauman (1988), who does
not use the axiom, however2. The standard axiomatization of this method
relies on the weaker axiom of Weak Consistency (asking only that cost shares
be proportional to demands when all goods are perfect substitutes) and a
weakening of Ordinality known as Scale Invariance.
A linear transformation is an increasing linear mapping from R+ onto

itself. Using the same notation as when defining Ordinality, the axiom reads
as follows.

Scale Invariance. For all C, x RN+ , i N , and all linear transformations
i, (C, x i) = (C i , x).

Theorem 5. In the continuous model, the Aumann-Shapley method is the
only method satisfying Additivity, Weak Consistency, and Scale Invariance.

Observe that Dummy does not appear in this statement.
Recall that the Aumann-Shapley method fails Monotonicity. If we re-

place Weak Consistency by Monotonicity in the above list of axioms, a new
characterization of the Shapley-Shubik method emerges.

2It is not known whether the axioms in Theorem 4 characterize the Aumann-Shapley
method in the continuous model.
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Theorem 6. In the continuous model, the Shapley-Shubik method is the only
method satisfying Additivity, Dummy, Monotonicity, Scale Invariance, and
Symmetry.

Symmetry is not needed in Theorem 5 (just like in Theorem 4); if we
remove it in Theorem 6 and add Independence of Zero Demands, a charac-
terization of the random order values obtains.
Ordinality and, to a lesser degree, Scale Invariance, allow us to deal with

division problems where the individual demands are not interpersonally com-
parable. This is a fine help in many examples, and a great asset of the full
responsibility approach. In the next section, we introduce a radically di erent
approach, relying crucially on interpersonal comparisons of demands.

6 Partial responsibility: in demands only

Most public utilities routinely cross-subsidize among users with a di erent
impact on costs. The same price is charged to deliver mail, or water, to
a rural or an urban domestic address; the universal service constraint for
telephone implies, among other things, that the connecting charge to a res-
idential customer is the same whether the house is pre-wired or not; special
transportation services are o ered to handicapped persons at the same price
as public transportation for non-handicapped persons. The underlying eth-
ical principle is that individuals are responsible for their own demand, but
not for cost asymmetries, because the latter are beyond their control. The
farmer should not pay more for his mail, because he cannot farm in town,
the resident is not responsible for the location of the water treatment facility,
the handicapped person is unable to use the regular bus but should not be
penalized for it, and so on. See Fleurbaey and Trannoy (1998) for further
discussion of cross-subsidization in the provision of services to geographically
dispersed agents.
Formally, this viewpoint requires that, irrespective of the asymmetries of

the cost function C, individual demands and cost shares be co-monotonic:
whenever i demands as much as j, i’s cost share is not smaller than j’s. Thus
individual demands must be measured on a common scale, allowing interper-
sonal comparisons. In the list of examples in Section 1, this will be true for
the exploitation of common property resources (substitutable inputs), the
buyers cooperative (substitutable demands), and in the examples of conges-
tion and queues, capacity sharing, and cost sharing on graphs. On the other
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hand, such comparisons will not be meaningful when inputs are labor and
capital (as in example 4 in Section 5.2), when inputs are idiosyncratic (as
in the producers cooperatives example), or when demands are not compara-
ble (as in Lee’s (2002) highway maintenance example where each user is a
di erent category of vehicles).
Moulin and Sprumont (2004, 2005) develop a partial responsibility theory

of cost sharing in which the central requirement is the following.

Strong Ranking. For all C, x, and i, j, {xi xj} { i(C, x) j(C, x)}.
Both the Shapley-Shubik and the Aumann-Shapley methods satisfy only

the weaker property that demands and cost shares are co-monotonic when
the cost function is symmetric. Strong Ranking says that agents who ask
more should pay more, regardless of the cost function. Thus, users are not
held responsible for the unequal contributions of their own demands to the
total cost, even if the cost function is additively separable. In particular,
Strong Ranking and Separability are at once incompatible, even for non
additive methods. For instance, if C(z) = c(z1) + 2c(z2) and x1 = x2,
the former axiom implies y1 = y2 whereas the latter requires y2 = 2y1.
A fortiori, Strong Ranking is incompatible with the Stand-Alone principle or
Unambiguous Externalities.
The simplest additive methods meeting Strong Ranking are the quasi-

proportional methods. Choose a non-decreasing real-valued “weight” func-
tion such that 0 < (1) and define

i (C, x) =
(xi)P

j N
(xj)

C(x)

for all C, x, and i.
These crude methods only use the cost data at the actual demand profile

x, ignoring any “counterfactual” information about what the cost would
have been at other levels of demands. This is why they are so important
in practice. The two most common weight functions are (xi) = xi for all
xi, giving the proportional method i(C, x) =

xiP
j N

xj
C(x), and (xi) = 1

for all xi, giving the egalitarian method i(C, x) =
1
n
C(x).

The egalitarian method is ordinal. In both the discrete and the continuous
models, there is no other method meeting Strong Ranking and Ordinality, a
very simple counterpart to Theorem 3 in the “partial responsibility” context3.

3Note that the statement does not require Additivity. The proof is elementary: given
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The proportional method meets No Merging and Splitting. In both mod-
els, there is no other method meeting Strong Ranking and No Merging and
Splitting, again a simple counterpart to Theorem 4 under “partial responsi-
bility”4.
All quasi-proportional methods are monotonic by virtue of the monotonic-

ity of the functions s and C. In fact they meet a much more demanding form
of responsiveness to shifts in individual demands. Whenever user i raises
her demand xi, the total cost share of any coalition S containing her cannot
decrease.

Strong Group Monotonicity. For all C, x, x0, any nonempty S N
and i S, {xi < x0i and xj = x0j for all j N\i} {Pj S j(C, x)P

j S j(C, x
0)}.

This axiom rules out manipulations whereby a coalition S forms, one of
its members artificially raises her demand, and side-payments are performed
within S so that all members of the coalition end up paying less. Clearly,
Strong Group Monotonicity also rules out the profitability of a coordinated
increase by several members of S followed by side-payments.
Like Strong Ranking, Strong Group Monotonicity is incompatible with

the full responsibility approach: the latter cannot avoid the kind of coalitional
maneuvers just described.
For a natural characterization of the quasi-proportional methods, consider

how a shift in a user’s demand a ects the cost shares of other users. All quasi-
proportional methods satisfy a powerful cross e ect property: a raise in an
agent’s demand always a ects other users’ shares in the same direction.

Solidarity. For all C, x, x0, and i, {xj = x0j for all j N\i} { j(C, x)

j(C, x
0) for all j N\i, or j(C, x) j(C, x

0) for all j N\i}.
Solidarity bears on all cost functions but the common direction of the

cross-e ects is left unspecified5. The axiom is a particular instance of the
widely applicable principle of solidarity (Thomson, 1999): because agents

C, x with x1 x2, we can pick 1such that x 1
1 x2, ensuring y1 = y2.

4The statement is strictly true in the discrete model. It follows at once for any C, x by
splitting each agent i into xi agents demanding one unit each. In the continuous model,
the same argument establishes that the method is proportional for every x with rational
components (xi Q). This extends to all real demands if we assume that (C, x) is
continuous in x.

5Unlike in Unambiguous Externalities, an axiom that bears no logical or ethical relation
to Solidarity.
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should bear responsibility only for their own actions, they should be treated
“similarly” when a change occurs for which none of them is responsible. A
minimal condition of “similar” treatment is that nobody benefit from such a
change if someone else su ers from it.
Solidarity is related to Strong Group Monotonicity: an additive method

meeting Solidarity and Monotonicity must satisfy Strong Group Monotonic-
ity as well.
Additivity, Strong Ranking, Solidarity, andMonotonicity essentially char-

acterize the quasi-proportional methods. The precise result makes use of two
additional conditions.

Zero Charge for Zero Demand. For all C, x, and i, {xi = 0}
{ i(C, x) = 0}.
Positive Cost for Positive Demand. For all C, x, and i, {xi > 0 and
C(x) > 0} { i(C, x) > 0}.
Theorem 7. In the discrete model and provided n 3, the quasi-proportional
methods such that (0) = 0 are the only method satisfying Additivity, Strong
Ranking, Solidarity, Monotonicity, Zero Cost for Zero Demand, and Positive
Cost for Positive Demand.

A variant of this result drops the last two conditions but uses a strict
version of Solidarity. The resulting combination of axioms characterize the
quasi-proportional methods such that (0) > 0 (for instance the egalitarian
method).
In the next section, we introduce a cost-sharing method translating the

partial responsibility viewpoint into a much less crude formula than the quasi-
proportional ones. This method uses a fair amount of counterfactual informa-
tion on costs, and shares several important features of the full responsibility
approach.

7 Limited liability: the serial methods

We introduce further normative requirements, valid in both the full and
the partial responsibility approaches to cost sharing. These properties lead
to a characterization of two important methods linking the full and partial
responsibility theories.
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7.1 Upper bounds on individual shares

Several of the axioms introduced in the previous sections, such as Unam-
biguous Externalities, Solidarity and Strong Group Monotonicity, evaluate
the direction of the cross e ects induced by a demand shift: when Donald
raises his demand, does Daisy’s cost share go up or down? Do Daisy’s and
Deborah’s shares move in the same direction? What about the sum of Donald
and Daisy’s shares?
Another important consideration is the range of such cross e ects. When

I share the cost of a facility with a number of other users about whom I know
nothing, the highest cost share I may end up paying for my own demand is
an important criterion. When the size of the various individual demands
may vary widely, guaranteeing a reasonable upper bound on an agent’s cost
share is a way of protecting her6.
In that spirit, a weak requirement is that the liability of a user, given her

demand, the cost function, and the number of other users, be finite: for all
C, i, and xi, supxN\i i(C, (xi, xN\i)) < + . Note that the Shapley-Shubik
and Aumann-Shapley methods fail this test. The same is true for any of the
quasi-proportional methods.
Next we place an explicit upper bound on the liability of each user. Recall

that eN denotes the demand profile where each agent in N demands one unit.
From the monotonicity of C, we know that C(x)

P
i N C(xie

N) for all x.
The following bounds are therefore feasible.

Universal Upper Bounds. For all C, x, and i, i(C, x) C(xie
N).

These upper bounds are plausible only when demands are comparable,
which is not always the case in the full responsibility approach. An important
variant applies only to the much smaller domain of symmetric supermodular
cost functions, but imposes tighter bounds.

Unanimity Upper Bounds. For all C, x, and i, {C symmetric and
supermodular} { i(C, x)

1
n
C(xie

N)}.
If C is symmetric and all agents other than i demand xi as well, Symmetry

imposes that everyone including i pays 1
n
C(xie

N) This charge is called the
“unanimity” cost share of agent i, hence our terminology.

6In the output-sharing context, the same concern leads to place a lower bound on
the share of every agent. The corresponding axioms do not have the same mathematical
“bite” as the upper bounds described below. Thus the results in Section 7.3 do not have
an obvious counterpart in that context.

21



7.2 Two serial formulas

We begin by defining the serial cost-sharing method for symmetric cost func-
tions only. Fix a demand profile x such that x1 x2 · · · xn, and con-
struct the related profiles xk as follows: x0 = 0, xk = (x1, x2, · · · , xk 1, xk, · · · , xk)
for k = 1, .., n. Note that xk xk+1 for all k, and xn = x. Let

ser
i (C, x) =

iX
k=1

C(xk) C(xk 1)

n k + 1
=

C(xi)

n i+ 1

i 1X
k=1

C(xk)

(n k)(n k + 1)

(4)
for all i and all symmetric C. The formula is then extended to all profiles x
by Symmetry.
The summation in (4) is quite similar to that in (3). Indeed for the

capacity cost function C(z) = c(maxN zi), we have C(xk) = c(xk) for all k,
therefore the serial methods coincide with any symmetric fixed flow method.
The same is true for the production function F (z) = g(minN zi), as F (xk) =
g(x1) for all k.

A fairly simple though not entirely trivial observation is that a method
given by (6) for symmetric cost functions, must meet the Unanimity Upper
Bound.

There are two canonical extensions of the serial formula (4) to the full
domain of cost functions: they follow respectively the partial and full respon-
sibility approaches.

7.2.1 Partial responsibility

Consider the method defined by formula (4) for every cost function C, sym-
metric or not. We call it the cross-subsidizing serial method. It is clearly
additive and satisfies Strong Ranking. Note that it also meets the Universal
Upper Bounds.

Proposition 1. In the discrete model, the cross-subsidizing serial method is
characterized by the combination of Additivity, Strong Ranking, and formula
(4) for symmetric cost functions.

Of course the cross-subsidizing serial method is defined in exactly the
same way in the continuous model, and meets the same properties. Its char-
acterization by the three properties above is a plausible conjecture.
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7.2.2 Full responsibility

Our second extension, the subsidy-free serial method, has two slightly di er-
ent definitions in the discrete and the continuous models.
In the discrete model, the natural extension of (4) is the symmetric fixed

flow method of which the flow is concentrated on the “diagonal” of NN . For
two agents, this fixed flow is depicted on Figure 1; Figure 2 shows how the
cost shares are obtained when (x1, x2) = (2, 3) by projecting the fixed flow
on [0, (2, 3)]: agent 1 pays 1

2
( 1C(0, 0) + 1C(1, 1) + 1C(0, 1) + 1C(1, 2)).

More generally, assuming without loss of generality x1 x2 · · · xn, user
i pays essentially the sum of her marginal costs along a path linking x1, x2, ...
xi by means of “diagonal” segments.
For a precise definition recall, as noted before Theorem 2, that a fixed-

flow method is entirely determined once the flow f(., keN) is defined for
all k N. Call such a flow symmetric if f( z, keN) = f(z, keN) for all
z [0, keN [ and every permutation on N. Call it diagonal if f(z, keN) 6= 0
only if |zi z(N)

n
| < 1 for all i N : the “support” of a diagonal flow to

keN is included in the union of the unit cubes [0, eN ], [eN , 2eN ], ..., [(k
1)eN , keN ]. Because there is clearly only one symmetric flow to the one-unit-
demand profile eN , it follows that there is also a unique symmetric diagonal
flow to keN : we denote it f ser(., keN). The subsystem {f ser(., keN)|k N}
completely determines a unique fixed-flow system, which we denote f ser. The
subsidy-free serial method fser is the cost-sharing method represented by
this symmetric diagonal fixed-flow system.
In the continuous model, the subsidy-free method computes an agent’s

cost share by integrating her marginal cost along the path to x obtained by
projecting the diagonal of RN+ onto [0, x]. Assuming without loss x1 x2
· · · xn and setting x0 = 0, this means

fser
i (C, x) =

iX
j=1

Z xj

xj 1

iC(x1, x2, · · · , xj 1, t, · · · , t)dt

for all i and C.
It is easy to check that the subsidy-free serial method meets Monotonicity

and the Universal Upper Bounds.

Proposition 2. In the discrete and continuous models, the subsidy-free
serial method is characterized by the combination of Additivity, Dummy,
Monotonicity, and formula (4) for symmetric cost functions.
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7.2.3 Comparing the two methods

In view of their common origin, the cross-subsidizing and subsidy-free serial
methods form a bridge between the partial and full responsibility theories
of cost sharing. In particular, the cross-subsidizing serial method meets the
following weak version of Separability.

Weak Separability. For all C and x, {C(z) = P
i N c(zi) for all z}

{ i(C, x) = c(xi) for all i}.
This means that if the cost function is not only additively separable but

also symmetric, each agent pays her own separable cost. The axiom is very
appealing from the partial responsibility viewpoint. Since the purpose of
cross-subsidization is only to correct for cost asymmetries, subsidization is
not justified when the cost function is symmetric: in such cases, the sepa-
rability principle should still apply. All quasi-proportional methods violate
Weak Separability: they arguably perform too much cross-subsidization.
Another common feature is the responsiveness of the two methods to

shifts in individual demands. Both methods fail Strong Group Monotonicity7

but both meet the following compromise between that axiom and Monotonic-
ity.

Group Monotonicity. For all C, all x, x0, and any nonempty S N,
{xi < x0i for all i S and xi = x0i for all i N\S} { i(C, x) i(C, x

0)
for at least one i S}.
A violation of this axiom leads to the possibility of coordinated strategic

inflation of demands: all agents in some group could pay a strictly smaller
individual cost share by agreeing to simultaneously inflate their demands.
Such manipulations do not require side-payments: Group Monotonicity is
therefore a compelling incentive-compatibility requirement whenever agents
can communicate easily.
The axiom has much bite in the full responsibility approach, where it elim-

inates most fixed-flow methods. In particular, the Shapley-Shubik method is
monotonic, but not group-monotonic. Let N = {1, 2, 3} and C be the cost
function:

C(z) = 1 if z (2, 0, 1) or z (1, 1, 1) or z (0, 2, 1),

7Recall that among additive methods, Strong Group Monotonicity is incompatible with
Dummy. It is also incompatible with the combination of Weak Separability and Strong
Ranking (Proposition 7 in Moulin and Sprumont, (2005)).
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0 otherwise.

Check that ShSh
1 (C, (1, 1, 1)) = ShSh

2 (C, (1, 1, 1)) = 1
3
> 1

6
= ShSh

1 (C, (2, 2, 1))
= ShSh

2 (C, (2, 2, 1)), which contravenes Group Monotonicity.

7.3 Characterizing the serial methods

The upper bounds we defined in Section 7.1 are a key to characterizing
the serial methods. Starting with the partial responsibility approach, we
note that while no quasi-proportional method guarantees finite liability (that
is, supxN\i i(C, (xi, xN\i)) < + for all C, i, and xi), there are methods
meeting Solidarity and Strong Group Monotonicity for which the Universal
Upper Bounds hold. Here is an example: for every C and x, divide C(x)
equally among all agents whose demand is largest. In view of Theorem 6, it is
not surprising that this example can be viewed as a limit of quasi-proportional
methods, where the ratios (z+1)

(z)
are arbitrarily large.

But the combination of the Upper Bounds and Weak Separability is very
powerful. For our last two results, we introduce one axiom that is a consid-
erable weakening of both the Universal and the Unanimity Upper Bounds.

Weak Upper Bounds. For all C, x, and i, {C(z) = c(z(N)) for all z and
c convex} { i(C, x) c(nxi) = C(xie

N)}.
Theorem 8. In the discrete model, the cross—subsidizing serial method is
the only method satisfying Additivity, Strong Ranking, Weak Separability,
and Weak Upper Bounds.

Turning to the full responsibility approach, we first note that many fixed-
flow methods guarantee finite liability. The Upper Bounds are much more
demanding.

Theorem 9. In the discrete model, the subsidy-free serial method is the only
method satisfying Additivity, Dummy, Monotonicity, Symmetry, and Weak
Upper Bounds.
In the continuous model, it is the only method satisfying Additivity, Dummy,

Monotonicity, Symmetry, and Universal Upper Bounds.

It is not clear whether Weak or Unanimity Upper Bounds can replace
Universal Upper Bounds in the second statement of this theorem.

We conclude with an alternative characterization based on GroupMonotonic-
ity. In the discrete model, this axiom leads to small family of methods based
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on a fixed flow concentrated “near” the diagonal. Given k N, call a flow
f(., keN) nearly diagonal if f(z, keN) 6= 0 only if |zi z(N)

n
| 1 for all i N.

A subsidy-free nearly serial method is a cost-sharing method represented by
a symmetric nearly diagonal fixed-flow system.
Figure 3 depicts a two-agent example. Each method is in fact fully char-

acterized by a sequence { r}r N\{0} in [0, 1], where r is the fraction of the
total (unit) fixed flow that goes through reN .

Theorem 10. In the discrete model, the subsidy-free nearly serial methods
are the only fixed-flow methods satisfying Symmetry and Group Monotonicity.

In view of Theorem 2, the subsidy-free nearly serial methods are charac-
terized by the combination of Additivity, Unambiguous Externalities, Sym-
metry and Group Monotonicity.
We conjecture that the same axioms characterize the subsidy-free serial

method in the continuous model.
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Theorem 4 is due to Sprumont (2005).
The large literature on the continuous Aumann-Shapley method is rooted

in Aumann and Shapley’s (1974) theory of value for nonatomic games. The
economic reinterpretation of the theory, the formulation of the Scale Invari-
ance and Weak Consistency axioms, as well as the characterization of the
diagonal formula o ered in Theorem 5, are due to Billera and Heath (1982),
Mirman and Tauman (1982), and Samet and Tauman (1982). A quite di er-
ent axiomatization is proposed in Young (1985). For further references, see
Tauman (1988) or Haimanko and Tauman (2002).
The characterization of the Shapley-Shubik method based on Monotonic-

ity and Scale Invariance,Theorem 6, is a slight variant of Theorem 1 in Fried-
mand and Moulin (1999).
Section 6. The partial responsibility approach to cost sharing is inspired

by the more general discussion of responsibility in distributive justice initi-
ated by Fleurbaey (2004). Variants of the Strong Ranking axiom have ap-
peared in a number of papers concerned with methods restricted to the case
of additively separable production functions: see Fleurbaey (1995), Bossert
and Fleurbaey (1996). Moulin and Sprumont (2004) are the first to han-
dle full-fledged externalities. Theorem 7 is in Moulin and Sprumont (2005).
Solidarity, of course, is an old idea: see Thomson (1999) for references.
Section 7. The earliest instance of an upper or lower bound in cost

sharing is the Stand Alone bound, discussed first by Shubik (1962). The
Unanimity bound is a more recent idea (Moulin, 1990). Shenker (1995, cir-
culated 1989) invented the serial formula for the case of perfect substitutes,
C(z) = c(z(N)); in this domain Moulin and Shenker (1992, 1994) o er char-
acterizations based respectively on incentive-compatibility and Weak Upper
Bounds.
The general subsidy-free formula appears in Moulin (1995) for the discrete

model, and in Friedman and Moulin (1999) for the continuous one, where the
corresponding statements in Theorem 9 are proven (with a redundant cross-
monotonicity requirement in the former). Theorem 10 is the central result
of Sprumont (2004).
The cross-subsidizing serial method is due to Sprumont (1998). Its char-

acterization in Theorem 8 is easily derived from the results in Moulin and
Sprumont (2005) (in particular Lemma A.2). The same applies to Proposi-
tions 1 and 2.
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