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Résumé 

La transplantation pulmonaire pour les patients avec une maladie pulmonaire 

en phase terminale est leur seul espoir de survie. Malheureusement, certains greffés 

du poumon rencontrent des difficultés après la transplantation du poumon, dont l'un 

est le rejet chronique du greffon pulmonaire également connu histologiquement 

comme la bronchiolite oblitérante et cliniquement comme syndrome de bronchiolite 

oblitérante. L'étiologie exacte de la BO reste mal comprise. Certaines hypothèses 

suggèrent l'implication des cellules épithéliales dans le processus de remodelage des 

voies respiratoires, conduisant à l'obstruction des voies aériennes. Un des mécanismes 

proposés est un processus de transition, connue sous le nom de transition épithéliale-

mésenchymateuse (TEM). Lors de ce processus, les cellules perdent leurs propriétés 

épithéliales, acquièrent un phénotype mésenchymateux et deviennent plus mobiles et 

envahissantes. Cette transformation leur permet de participer activement au processus 

de remodelage bronchique dans la bronchiolite oblitérante. L’induction de la TEM 

peut être due à certains facteurs tels que l'inflammation et l'apoptose. Le principal 

objectif de ce travail de maîtrise est de détecter in vivo la présence de la TEM dans 

des biopsies transbronchiques obtenues chez des greffés et de l’associer à leurs 

conditions cliniques. Le deuxième objectif est d'induire la TEM in vitro dans les 

cellules épithéliales des petites voies aériennes à l'aide de milieux conditionnés 

apoptotiques et non apoptotiques produits par les cellules endothéliales 

microvasculaires humaines du poumon. D’autre part, nous avons évalué si des 

médiateurs connus pour participer au processus de TEM tels que le facteur de 

croissance du tissu conjonctif (CTGF)et le facteur de croissance transformant bêta 
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(TGF-beta) ainsi que le perlecan sont présents dans les milieux conditionnés utilisés. 

Mots-clés: transplantation pulmonaire, rejet chronique, transition épithéliale-

mésenchymateuse, biopsies transbronchiques, apoptose. 
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Summary 

For patients with end-stage lung disease, lung transplantation is their only 

hope for survival. Unfortunately, some of the lung transplant recipients (LTRs) might 

face obstacles following lung transplantation, one of which is chronic lung transplant 

rejection also known as bronchiolitis obliterans (BO) histologically and bronchiolitis 

obliterans syndrome (BOS) clinically. The exact etiology behind BO development 

remains poorly understood. Speculations have suggested the involvement of epithelial 

cells in the airway remodeling process leading to airway obstruction. One of the 

proposed mechanisms is a transitional process, known as epithelial-mesenchymal-

transition (EMT). In this process epithelial cells lose their properties and acquire 

mesenchymal ones causing them to be more mobile and invasive which allow them to 

take part of the airway remodeling process in BO. Induction of EMT can be due to 

several factors such as inflammation, apoptosis. In our study we try to detect in vivo 

the presence of EMT in transbronchial biopsies (TBB) obtained from LTRs and 

associates it with their clinical conditions. We also try to manipulate and induce EMT 

in vitro in small airway epithelial cells (SAEC) using conditioned apoptotic (SSC4h) 

and non apoptotic (ZVAD) media produced from human microvascular endothelial 

cells (HMVEC) from lung. In addition, we worked on detecting possible mediators 

such as connective-tissue growth factor (CTGF), transforming growth factor-beta 

(TGF-β), and perlecan in produced media.         

Keywords: lung transplantation, chronic rejection, epithelial-mesenchymal-transition, 

transbronchial biopsies, and apoptosis. 
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1. Introduction: 

 

1.1. Lung transplant as a therapeutical approach 

Lung transplantation has been widely accepted as a therapeutic option for patients 

with end-stage lung disease in order to improve their survival. Up until the year of 

1989 the most common form of lung transplantation was the heart-lung transplant 

(HLT) for patients who suffered pulmonary or cardiac combined with pulmonary end 

stage disease. Afterwards, single lung transplantation (SLT) and bilateral lung 

transplantation  (BLT) started to pick up to be the most common procedures; 

however, nowadays the proportion of BLT is over passing the rate of SLT[1, 2] (see 

figure 1). In addition to previously mentioned procedures, other procedures are being 

considered as well such as split lung bilateral lobar transplants (SLBL) and living 

donor lobar lung (LDLL) transplants. According to the annual report 2010 of the 

International Society for Heart and Lung Transplant registry, the median survival for 

all adult recipients is 5.3 years, with the double lung procedure having a better 

survival rate compared to single lung procedure 6.6 years vs. 4.6 years, respectively 

(Figure 1)[2]. 
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Figure 1: Survival by procedure type for adult lung transplants performed 

between January 1994 and June 2008: 

 
 
 Kaplan-Meier survival by procedure type for adult lung transplants performed 

between January 1994 and June 2008. Conditional half-life is the time to 50% 

survival for the sub-set of recipients who were alive 1 year after transplantation. J.D 

Christie 2010. J Heart Lung Transplant. 29:1104-1118 © International Society for 

Heart and Lung Transplantation    

End-stage lung disease can be treated with lung transplant; however, types of 

lung transplant procedures vary and based depending on the type of disease. End-

stage lung diseases include: chronic obstructive pulmonary disease (COPD), cystic 

fibrosis (CF), idiopathic interstitial pneumonitis, pulmonary arterial hypertension 

(PAH), and other rare diseases. COPD is considered to be the most common 

indication for lung transplantation [2]. For this type of disorder, both SLT and BLT 

have been suggested as procedures of lung transplant [3-9]. In the United States, the 

foremost cause of end-stage lung disease is cystic fibrosis (CF); it is the third most 

common indication for lung transplantation [10, 11]. For most adults with CF, 

bilateral lung transplant (BLT) would be their best option of lung transplant 
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procedure. The heart-lung transplant is rarely considered, depending on the patient’s 

needs, and association with left heart failure [12-15]. Another alternative of lung 

transplant procedure for CF patients would be living donor lobar lung transplant 

(LDLL) [16, 17]. This type of procedure is appropriate for children and young 

patients with CF who are small in size and would attain sufficient lung function from 

having two adult donor lobes [18]. Furthermore, another end-stage lung disease is 

idiopathic interstitial pneumonitis (fibrosis) which accounts for 20 percent of lung 

transplant [2, 19]. One common form of idiopathic interstitial pneumonitis is 

idiopathic pulmonary fibrosis (IPF) which commonly requires lung transplantation 

followed by nonspecific interstitial pneumonitis (NSIP) [20-22]. For patients with 

IPF, single lung transplant was the standard procedure; however, there is an increase 

in the number of patients undergoing BLT [2, 23-27]. 
The pulmonary arterial hypertension (PAH) 

accounts for less than 5 percent of lung transplant
[2, 28]

. 
It has been noted that patients with PAH 

have the highest 30-day mortality rate following lung transplantation In PAH patients, 

SLT and BLT have been considered as lung transplant procedures, where both were 

successful but survival comparisons revealed BLT to be more favorable over SLT. 

The cause and type of end-stage lung disease vary, which influences the approach and 

procedure of lung transplantation in leading for best results of survival for patients 

with end-stage lung diseases. 

1.1.1. Factors influencing the rate of survival 

Despite the fact that lung transplantation serves as the only therapeutic way for 

patients with end-stage lung diseases, however; it has limitations that might influence 

its successful outcome. One of the influencing factors on the survival rate of lung 
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transplant is the type of lung transplant that was chosen to be performed. Most 

common types of lung transplant include: single lung transplant (SLT), and bilateral 

lung transplant (BLT). The number of SLT performed annually has remained stable, 

though; the number of BLT has increased to surpass that of the SLT (Figure 2). As 

noted before, the original lung disease is a main factor in the selection of preferred 

lung transplant type which in turn influences the survival of LTR. 

Figure 2: Number of lung transplants reported by year and procedure type: 

 

 

 

 

 

 

Number of lung transplants reported by year and procedure type. J Heart Lung 

Transplant. 2010 Oct; 29 (10): 1083-1141[29] 

 

Age of the lung transplant recipient has an influence on the survival rate as 

well. Since younger recipients have a longer survival than older ones [2, 30], the 

American Thoracic Society (ATS) has proposed international guidelines to assist in 

selecting lung transplant candidates [31]. According to the ATS guidelines the upper 

age limits are as follow: approximately 55 years for HLT, approximately 65 years for 
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SLT, and approximately 60 years for BLT. This would help in maximizing the 

chances of survival (Figure 3). 

 

Figure 3: Age distribution of adult lung transplant recipients (1/2985-6/2009): 

  

 

 

 

 

 Age distribution of adult lung transplant recipients (1/2985-6/2009). J Heart Lung 

Transplant. 2010 Oct; 29 (10): 1083-1141[29] 

 

Another key factor that influences the success of  lung transplantation is the 

involvement of transplant organizations and centers in recruiting, placing, and helping 

patients on the waiting list in getting lung transplant. The process of placement is 

based on Lung Allocation Score (LAS) in which it would help in addressing high 

waitlist mortality and earlier placement of patients on the waiting list [32-34]. The 

LAS system takes into account the urgency measure, which is defined as expected 

days lived without a transplant with an additional year on the waitlist. In addition, 

post-transplant survival measure is taken into consideration, which is defined as 

expected number of days lived during the first year post-transplant. These types of 



7 
 

measures are based and calculated using individual candidate’s clinical and 

physiological characteristics and statistical models [35]. Although the LAS system 

has been established in the year of 2005, two years following its establishment it has 

been noted that there was a decrease in the wait-list times and the mean LAS score of 

transplant recipients has increased. There was an increase in urgency for 

transplantation, and in the total number of transplanted patients as well [36]. The 

international society for heart-lung transplant registry (ISHLT) has indicated the 

distribution of lung transplant by center volume (Figure 4).  

 

Figure 4: Distribution of transplant by center volume. Lung transplants: 

January 1, 2000- June 30, 2009: 

 

 

 

 

 

 

 

Distribution of transplant by center volume. Lung transplants: January 1, 2000- June 

30, 2009. J Heart and Lung Transplant. 2010 Oct; 29 (10): 1083-1141[29] 
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1.1.2 Complications of lung transplant (LT) 

Despite the improvement in the lung transplantation procedure and survival, 

there have been reports of the occurrence of different types of complications 

following lung transplant. One major complication following lung transplant (LT) is 

primary graft dysfunction (PGD), which represents a mulitfactorial injury developing 

in the first 72 hours following lung transplantation. It has been referred to PGD as 

“ischemia-reperfusion injury”, “early graft dysfunction”, and “reimplantation edema” 

[37]. Characteristics of PGD include: sever hypoxemia, lung edema, and appearance 

of diffuse pulmonary opacities without other identifiable cause. Furthermore, diffuse 

alveolar damage serves as the typical pathologic pattern of PGD. It is worth 

mentioning that PGD is responsible for significant morbidity and mortality after lung 

transplantation, in spite of advances in organ preservation, surgical technique, and 

perioperative care [38-41].      

Acute rejection is another possible complication that can occur following a 

lung transplant.  Based on previous reports, acute cellular rejection appears less in 

both organs of the heart-lung transplantation compared to the rate of rejection in 

lungs or heart that are transplanted alone [2, 42, 43]. Furthermore, it has been noted 

that the rate of acute cellular rejection in the lung is higher compared to that in the 

heart following HLT [2, 42, 44, 45]. A proposed explanation of this increase is due to 

the presence of donor bronchus-associated lymphoid tissue (BALT), increase in the 

immunogenicity of the lungs, and frequent infectious insults with suppressed defense 

mechanisms [46].  
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Chronic rejection is also considered as one of the complications that might be 

faced following lung transplant. Chronic rejection of the lung is manifested 

histologically as bronchiolitis obliterans (BO), whereas grading via spirometry testing 

is known as bronchiolitis obliterans syndrome (BOS)[47] (will be discussed further in 

1.2. Chronic Lung Transplant Rejection). 

Infection, whether it is viral or bacterial, is considered as a possible 

complication following lung transplant as well. For instance, infection with 

cytomegalovirus (CMV) has been suggested as a risk factor for BO in patients 

undergoing lung transplantation [48-50]. 

In addition to previously mentioned complications, there are complications 

that might rise and are not necessarily unique to lung transplantation but rather are 

side effects of the immunosuppressive medications or general medical problems that 

are aggravated by the posttransplantation regimen [51]. One of these complications is 

chronic renal failure that is caused by immunosuppressant such as tacrolimus or 

cyclosporine [52]. Other complications include: osteoporosis [53-55], systemic 

hypertension [56], diabetes mellitus [57], obesity, anemia, gastroesophageal reflux 

disease (GERD) [58, 59], gastroparesis [60, 61], hypercholesterolemia and 

hypertriglyceridemia, cholecystitis, diverticulitis, weakness of respiratory and limb 

muscles [62-64], and pulmonary capillaritis [65]. 

1.2. Chronic Lung Transplant Rejection  

Chronic rejection of the lung remains the major source of morbidity and 

mortality following lung transplant. The clinical syndrome of chronic rejection and 
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the infectious complications related to its treatment have been defined as major 

sources of late morbidity and mortality following lung transplant [66]. Chronic 

rejection has been classified pathologically into two types: chronic vascular rejection 

and chronic airway rejection [67]. The first type, less common to manifest, refers to a 

form of atherosclerosis developing in the pulmonary vasculature. The second type, 

which is more common and morbid, refers to presence of bronchiolitis obliterans 

(BO) histologically [68].  

1.2.1 Bronchiolitis Obliterans (BO) vs. Bronchiolitis Obliterans 

Syndrome (BOS) 

Understanding etiology and mechanism behind chronic lung transplant 

rejection have been puzzling researchers for several years due to its complexity in its 

mechanisms, diagnosis and causes of its development. As results of this confusion, a 

group of investigators from the International Society for Heart and Lung 

Transplantation has set a standardized nomenclature to help in classifying and 

diagnosing chronic rejection of lung transplant (see Table I)[47, 69]. They have also 

made a distinction between bronchiolitis obliterans (BO) and bronchiolitis obliterans 

syndrome (BOS). The earlier term refers to histological proofs of chronic rejection 

with scarring and fibrosis of the airways [70, 71]. The latter term refers to 

deterioration of graft function secondary to progressive airway disease with absence 

of histologic evidence of BO and no indication of other causes: infection, acute 

rejection, or anastomotic complications [69, 72]. 
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Table I: Original and proposed classification of BOS: 

Original classification Current proposition 

BOS 0 
FEV1 80 percent or more 

baseline 
BOS 0 

FEV1> 90 percent of baseline and 

FEF25-75> 75 percent of baseline 

  
BOS 

0-p 

FEV1 81 to 90 percent of baseline 

and/or FEF 25-75 ≤ 75 percent of 

baseline 

BOS 1 
FEV1 66 to 80 percent of 

baseline 
BOS 1 FEV1 66 to 80 percent of baseline 

BOS 2 
FEV1 51 to 65 percent of 

baseline 
BOS 2 FEV1 51 to 65 percent of baseline 

BOS 3 
FEV1 50 percent or less 

of baseline 
BOS 3 FEV1 50 percent or less of baseline 

 

BOS, bronchiolitis obliterans syndrome; FEF25–75, mid-expiratory flow rate; 

FEV1, forced expiratory volume in 1 second. Reproduced from: Estenne, M, 

Maurer, JR, Boehler, A et al. Bronchiolitis Obliterans Syndrome 2001: an update of 

the diagnostic criteria. J Heart Lung Transplant 2002; 21:297. Copyright©2006 the 

international Society for Heart and Lung Transplantation.    

 

1.2.2 Risk Factors contributing in the Development of Bronchiolitis 

Obliterans  

  Although BO is a manifestation of chronic allograft rejection, other events can 

contribute in the development of BO. Severe acute rejection has been considered as a 

risk factor for BO development. Retrospective epidemiologic analyses have 

demonstrated that occurrence of three or more episodes of acute rejection is a major 

risk factor for BO development [66, 73, 74]. Moreover, cytomegalovirus (CMV) 

infection has been described as well as a cause of BO, where retrospective analyses 

have showed that it might be a risk factor for BO in patients undergoing lung 

transplantation; however, it was not confirmed in all studies [48-50, 75]. Primary 

graft dysfunction (PGD), also known as ischemia reperfusion injury, has been 
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associated with the development of BO, where there is a correlation between the 

severity of initial PGD with the risk of BO development [76-78]. This correlation can 

be explained due to presence of oxidative damage, impairment of nitric oxide 

synthesis by pulmonary endothelial cells, or by upregulation of HLA class II antigens 

on the allograft leading to production of anti-donor antibodies [79-82]. Another factor 

that may contribute to chronic allograft rejection is gastroesophageal reflux disease 

(GERD) which appears to be common in patients following lung transplant. 

Gastroesophageal dysfunction disease is common in patients with end-stage lung 

disease prior to lung transplantation and appears to increase following transplant [59, 

83-88]. Possible mechanism underlying the risk of GERD may include injury to the 

vagus nerve and esophagus duringtransplant surgery [89]. Furthermore, type of lung 

transplant can be a key factor in the development of BO. For example, COPD patients 

whom underwent double lung transplant were more likely to be free of BO compared 

to those whom underwent single lung transplant three-years and five-years after 

transplantation [90]. Finally, autoimmunity has been a possible theory concerning the 

pathology of BO, which suggests that collagen type V epitopes resulted from 

ischemia/reperfusion injury or other type of an injury, cause damage of the epithelium 

of the allograft airway. Another key factor in the autoimmunity development of BO is 

human leukocyte antigen (HLA) mismatch. This process is characterized by 

recipient’s lymphocytes reactivity towards the donor antigen-specific class I antigens, 

which was reported by primed lymphocyte testing (PLT) in patients with BO [91, 92]. 

Production of anti-HLA class I antibodies precedes BO development, and it has been 

indicated that there is a correlation between an increase in anti-HLA antibodies with 

loss of pulmonary function [93]. Increase in HLA mismatches between graft and host, 
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more specifically mismatches at the HLA-A locus, are associated with an enhanced 

risk of BO [48, 49, 94-96]. It has been mentioned as well that BOS is, for many 

patients, a recapitulation of the original lung disease for which the transplant was 

done. Risk factors contributing in the development of BO have been summarized in 

Table II.  

Table II: Risk factors associated with the development of Bronchiolitis 

Obliterans: 

Probable Potential Hypothetical 

Acute rejection 

CMV infection (without 

pneumonitis) 

Underlying cause of lung 

disease 

Lymphocytic 

bronchitis/bronchiolitis 

Organizing pneumonia HLA-mismatching 

CMV pneumonitis 

Recurrent infection other 

than CMV 

Gastroesophageal reflux 

with aspiration 

Medication noncompliance Older donor age  

Primary graft dysfunction 

Prolonged allograft 

ischemia 

 

 

Donor antigen-specific 

reactivity 

 

 

Reproduced from: Estenne, M, Maurer, JR, Bohler, A, et al. Bronchiolitis Obliterans 

syndrome 2001: An update of thediagnostic criteria J Heart Lung Transplant 2002; 

21: 297[47] 
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1.2.3. Clinical presentation and prognosis of BO 

Symptoms that were associated during the development of BO still remain 

nonspecific, and indolent compared to those of acute rejection [97]. In Table III, the 

symptoms and signs at both early and late phase of BO are summarized. In usual 

cases, patients present a syndrome that resembles an upper respiratory tract infection. 

It remains unclear whether this presentation was based on a misinterpretation of the 

symptoms or it is further evidence of viral infection role in the etiology of BO. An 

increase in exertional dyspnea and decline in spirometry are usually noticed in 

patients. Pulmonary functioning test assists in detecting airflow obstruction. One 

possible early and sensitive indicator of airflow obstruction is forced expiratory flow 

between 25 and 75 percent of the vital capacity (FEF 25-75). This indicator appears 

to be more sensitive than decline in forced expiratory volume in 1 second (FEV1) 

[47, 98-100]. 
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Table III: Clinical presentation of bronchiolitis obliterans after lung 

transplantation: 

 Early Late 

Symptoms 

Non-productive cough; 

dyspnea on exertion 

Productive cough; dyspnea at 

rest 

Physical 

examination 

Clear chest “Pops and squeaks” 

Chest radiography Clear  Bronchiectasis, hyperinflation 

Pulmonary 

function tests 

Obstruction; most marked in 

mild flows (FEF (25-75)) 

Severe obstructive 

Sputum culture Negative Pseudomonas 

 

Reproduced from Reilly, JJ. Chronic lung transplant rejection: Bronchiolitis 

obliterans. In: UpToDate, Trulock, EP (Ed), UpToDate, Waltham, MA, 2011. 

 

During early stages of BO, physical examination and radiography help in 

excluding other potential explanation for symptoms. Some of the early BO 

characteristics include: normal physical examination, clear chest radiograph, sterile 

sputum cultures or “oral flora” growth. Once BO reaches advanced stages the 

following characteristics are demonstrated: abnormal chest examination, and end 

inspiratory pops and squeaks. In addition, brnochiectasis and hyperinflation might be 

revealed by chest radiograph and computed tomography (CT) [101, 102]. 

Bronchiectasis presents the symptom at advanced stages with chronic productive 
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cough, breathlessness, and severe airflow obstruction on pulmonary function testing 

(Table III).     

In the diagnosis of BO two approaches have been set: diagnosis by exclusion 

and definitive proof. It has been demonstrated in part 1.2.1 that histological proof 

refers to BO, whereas BOS refers to deterioration of the lung function secondary to 

an airway disease. In the histological part transbronchial biopsies (TBB) are used in 

confirming the diagnosis of BO. In one study, it has been reported a sensitivity of 17 

percent and specificity of 94.5 percent of a single set of TBB [103]. In a second 

study, it has been reported a 15 percent histologic confirmation in patients clinically 

diagnosed with BOS[98]. Furthermore, a third study where TBB were used 

demonstrated a diagnosis confirmation in 82 percent of patients who developed 

clinical BOS [74]. Finally, in a fourth study it was noted that among 77 patients who 

were diagnosed with chronic rejection 52 percent of them had decline in FEV1 [70]. 

In this study, 9 percent of patients (7 out of 77) had diagnostic biopsies without 

accompanying physiological abnormalities, whereas 39 percent of patients (30 out of 

77) revealed both positive histology and decline in spirometry. Other than the use of 

TBB and clinical data, several markers have been suggested as potential markers of 

early BOS. These markers include: neutrophil-predominant alveolitis with an 

increased levels of interleukin-12 (IL-12) in bronchoalveolar lavage fluid (BALF) 

[104-107], elevated levels of exhaled nitric oxide [108-110], evidence of air trapping 

on chest CT scan [111-114], bronchial hyperresponsiveness [115], and soluble CD 30 

levels [116]. 
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It is worth mentioning as well that bronchiolitis obliterans (BO) might also be 

idiopathic. It is characterized by a progressive airflow obstruction that leads to 

dyspnea, hypercapnia, and death. The importance and severity of BO rises due to its 

irreversible condition which limits the chances of survival in lung transplant 

recipients. According to the ISHLT registry[29], BO is considered as a leading cause 

of mortality with 25.4% in period between 1-3 years posttransplant, and 29.2% in 

period between 3-5 years posttranstplant.    

  

 1.2.4. Treatments of BO 

Various approaches have been proposed in the treatment of BO, however; 

there is no well-established protocol in treating BO. For instance, in one study it was 

demonstrated that 32 patients with BO presented spirometric stabilization after 

switching from cyclosporine to tacrolimus over 12 months of follow-up [117]. In 

another study, similar results were observed when mycophenolate mofetil was 

introduced[118]. Other data revealed photopheresis to help in stabilizing some BO 

patients [119]. A report provided by a single center demonstrated possible benefit 

from aerosolized cyclosporine usage [120]. In an open study, it was noted that 

substitution of sirolimus by azathioprine was likely to lead of BOS progression in 37 

subjects receiving either cyclosporine or tacrolimus [121]. Preliminary reports 

assessed the value of prolonged oral azithromycin therapy in a total of 34 patients 

with BOS [122-124]; demonstrating an association with significant improvements in 

FEV1 for some of the patients. In a larger observational study, 24 out of 81 patients 
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showed an improvement in FEV1 [125]. Another study evaluating the use of anti-CD 

52 antibody Alemtuzumab for BOS revealed stabilization in BOS grade, but not 

FEV1 in 7 out of 10 patients [126]. Furthermore, according to limited evidence it was 

suggested that high-dose inhaled glucocorticoids are not effective in slowing or 

preventing BOS development [127]. Finally, retransplantation has been considered as 

a treatment of BO. However, early experiences suggest that BO tends to recur in 

retransplant recipients in an accelerated fashion. 

1.3. Apoptosis  

All cells have a finite life span which is terminated by cell death that occurs 

either through passive necrotic processes or as result of an active process of 

programmed cell death, also known as “apoptosis”[128, 129]. Apoptosis is an 

important key factor in the maintenance of human embryonic development and adult 

tissue homeostasis [129]. Apoptosis is a complex and organized machinery that 

functions in eliminating damaged or unneeded cells in the body [128, 130]. 

Characteristics of cells undergoing apoptosis include: cell shrinkage, condensation, 

fragmentation of the nucleus and bubbling of the plasma membrane, known as 

“blebbing,” and chromatin condensation and nucleosomal fragmentation [131]. 

Furthermore, resulting membrane-bound apoptotic bodies get consumed by either 

neighboring cells or by macrophages. In normal event, initiation of apoptosis occurs 

as a response to developmental stimuli such as a decrease in the local concentration of 

a particular tissue morphogen or growth factor. Other stimulating factors include: 

severe stress or damage to vital cellular components, which can result from ionizing 

radiation, heat shock, toxins, cell detachment from surrounding tissue, bacterial or 
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viral infection, and/or oncogenic signaling [132, 133]. Well functioning apoptotic 

pathways are essential for tissue homeostasis where dysregulation of it has been 

implicated in multiple diseases. Increase in apoptosis exacerbates many disorders 

such as: acquired immunodeficiency syndrome (AIDS), neurodegenerative disorders 

such as Alzheimer’s disease and Huntington’s disease, cardiac ischemia, and renal 

damage [133]. On the other hand, inadequate rate of apoptosis leads to development 

of cancer and autoimmune diseases [120]. Malfunction of apoptosis is a hallmark in 

cancer and essential in cancer development and tumor cell survival[134]. This 

suggests that targeting and manipulating apoptosis can serve as a therapeutic 

approach in treating cancer and other disorders [133]. 

Regulation of apoptosis is done via two main pathways: the intrinsic pathway, 

and the extrinsic pathway, both of which are anticancer therapeutic targets [135-137]. 

As the name implies, the intrinsic pathway is initiated from within the cell. This 

usually occurs as a response to cellular signaling due to DNA damage, defective cell 

cycle, detachment from the extracellular matrix (ECM), hypoxia, loss of cell survival 

factors, or other types of severe cell stress. Moreover, this pathway involves release 

of pro-apoptotic proteins that work on activating cysteine-aspartic protease (caspase) 

enzymes. Activation of the caspase process ultimately triggers apoptosis [135, 138-

140]. The intrinsic apoptotic pathway hinges on the balance of activity between pro-

apoptotic and anti-apoptotic members of the Bcl-2 superfamily of proteins which 

work on regulating the permeability of the mitochondrial membrane. Some of the 

pro-apoptotic proteins include: BIK, BAD, and BIM; and anti-apoptotic include: Bcl-

2, Bcl-XL, and BCLW [138]. 
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The extrinsic pathway starts outside the cell at the activation of specific pro-

apoptotic receptors on the cell surface. This activation occurs by binding of specific 

molecules known as pro-apoptotic ligands which include: CD95L/Fas ligand (FasL), 

and Apo2 ligand/tumor necrosis factor (TNF)-related apoptosis-inducing ligand 

(Apo2L/TRAIL), where these ligands bind to their cognate receptors CD95/Fas; and 

death receptor 4(DR4) and death receptor 5 (DR5), respectively [132, 135, 137, 141]. 

Unlike the intrinsic pathway, the extrinsic pathway triggers apoptosis independently 

of p53 protein (tumor suppressor protein 53) [142, 143]. Binding of the ligand to its 

receptor induces receptor clustering and recruitment of the adaptor protein Fas-

associated death domain (FADD) and the initiator caspases 8 or 10 as procaspases 

forming a death-inducing signaling complex (DISC) [144-147]. The DISC formation 

results in bringing the procaspase molecules into close proximity to one another, 

leading them to be auto-catalytically processed and released into the cytoplasm where 

they activate effector caspases 3, 6, and/or 7; and thus, stimulating the intrinsic 

pathway [136, 148, 149]. The dimerization of caspase 8 is a key factor in its 

activation, and clustering of the receptors with associated DISC molecules enhance its 

activation [149]. Once DISC gets activated, the extrinsic pathway follows and adopts 

same machinery as the intrinsic pathway. Furthermore, it has been known that 

extrinsic pathway activation through binding of CD95L/FasL to CD95/Fas can result 

in two apoptotic programs, termed type I and type II. In the former type, cells are able 

to overcome the need for mitochondrial amplification of the death signal in CD95-

mediated process by producing sufficient amounts of caspase 8 at the DISC which 

results in direct cleavage and activation of effector caspases and executes cell death 

[150]. Therefore, in type I cells bypass the mitochondrial involvement in CD95-
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mediated apoptosis, expression of Bcl-2 or Bcl-XL has no inhibitory effect on their 

apoptotic program. On the other hand, in type II cells active caspase 8 is produced at 

a minimal amount at the DISC and requires the mitochondrial amplification of the 

CD95 signal [150]. Amplification of this signal might be through the pro-apoptotic 

BH3 domain, which only contains the Bcl-2 family member, Bid [150]. Bid gets 

cleaved by caspase 8 resulting in its translocation to the mitochondria where it 

initiates the release of mitochondrial factors, leading to increase in cell death. Since 

type II cells depend on the apoptotic function of mitochondria, expression of Bcl-

2/Bcl-XL confers protection from apoptosis mediated by CD95 [150]. Differences 

between type I and type II cells remain unclear and need to be further studied and 

investigated.      

 

1.3.1. Apoptosis and Fibrosis/Tissue Remodelling  

Apoptosis of endothelial cells (EC) has been recognized as an early 

pathogenic event in fibrosis [151]. Increase in apoptotic EC has been associated with 

several fibrogenic disorders such as systemic sclerosis [152, 153], graft-versus-host 

disease [154, 155], and chronic rejection of solid allografts [156, 157]. The 

involvement of apoptotic EC was explained by its role in recruiting professional 

phagocytes such as macrophages [158]. As a result of apoptotic cell engulfment by 

the macrophages, transforming growth factor-beta1 (TGF-β1) gets produced [159]. 

The produced TGF-β1 stimulates myofibroblast differentiation and resistance to 

apoptosis in fibroblasts and myofibroblasts[57]. Furthermore, apoptotic endothelial 

cells have been suggested to have a direct impact in fibrogenesis by producing 
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paracrine mediators, such as TGF-β, connective tissue growth factor (CTGF), and 

perlecan (will be discussed in 1.4.4) that have been suggested to stimulate 

differentiation and resistance to apoptosis in fibroblasts [160, 161].  

In the event of an injury, the process of wound healing is activated, such as 

endothelial damage; fibroblasts accumulate at the site of injury and differentiate into 

myofibroblasts, a fibroblast type characterized by presence of stress fiber and alpha-

smooth-muscle actin (α-SMA)[162]. Normally, myofibroblasts undergo apoptosis 

once the healing process is terminated. Fibrosis follows the same pattern of wound 

healing; however, myofibroblasts develop resistance towards apoptosis which 

prevents their clearance, leads to accumulation of myofibroblasts and tissue 

contraction, which results in deformation and loss of function [163, 164]. Alteration 

in apoptosis’ rate, whether it is in epithelial or endothelial cells, is a feature that has 

been implicated in several lung pathogenesis such as idiopathic pulmonary fibrosis 

(IPF) [165], acute respiratory distress syndrome (ARDS) [166], and bronchiolitis 

obliterans organizing pneumonia [167]. 

 

1.3.2 Apoptosis and Bronchiolitis Obliterans 

In lung transplantation, the implication of apoptosis was investigated in 

ischemia-reperfusion injury which was associated with endothelial apoptosis [168-

171] and in transbronchial biopsies obtained from patients undergoing acute or 

chronic lung allograft rejections have been associated with epithelial and 

macrophages apoptosis[172-174]. In BO after lung transplantation, it has been 
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mentioned that the main target of rejection is the bronchial epithelium [175], where 

apoptosis is suggested as the mode of cell death. Apoptotic cells and their role in 

allograft rejection and development of BO are still under investigation [176]. 

 

Previous studies demonstrated the importance of airway epithelial cells (AEC) 

as immunologic targets during the process of acute or chronic lung allograft rejection 

[177-179]. Activated epithelial cells result in production of various growth factors 

including: epidermal growth factor (EGF) [180], heparin binding EGF (HB-EGF) 

[179],  basic fibroblast growth factor (bFGF) [179], granulocyte-monocyte colony-

stimulating factor (GM-CSF) [181], insulin-like growth actor1 (IGF-1) [182], 

platelet-derived growth factor (PDGF), and TGF-β [179]. Studies have noted the 

involvement of these growth factors in inducing proliferation of fibroblasts and 

smooth muscle cells indicating their potential role in fibrogenic activity in vivo [182-

189]. In addition, studies have reported elevated levels of PDGF, TGF-β, and IGF-1 

during the development of BOS after lung transplantation [190-198]. However, 

cellular sources and stimuli for fibrogenic growth factor production during the 

process of BOS development remain unknown. Studies have reported development of 

anti-HLA class I antibodies as a predisposing factor in BOS development after lung 

transplantation [93]. In addition, the association of anti-HLA class I antibodies has 

been linked with the development of transplant atherosclerosis and graft loss after 

kidney and heart allograft transplantation [199, 200]. Since binding of anti-HLA 

induce proliferation and apoptosis of AEC, binding of anti-major histocompatibility 

complex (MHC) has been associated with apoptotic cell death of activated human T 
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and B lymphocytes [201, 202], and of cardiovascular origin cells such as endothelial 

cells, smooth muscle cells, fibroblasts and monocytes [203]. The contribution of 

apoptosis has been noted in acute and chronic rejection of heart, lung, kidney, and 

liver allograft [172, 204-206]. Furthermore, studies have revealed increased levels of 

AEC apoptosis in lung allografts of patients with BOS [173]. In experimental lung 

transplantation (LT), an association between ischemic-reperfusion and endothelial 

cells was noted [169-171]. In one of our recent studies [207], we demonstrate the 

involvement of airway endothelial and epithelial apoptosis in the pathogenesis of BO, 

where the triggering factor of apoptosis initiation needs to be further investigated in 

order to help and improve the outcome of lung transplantation. 

 

 

 

1.4 Epithelial-Mesenchymal-Transition (EMT) 

The mystery behind the origin of mesenchymal cells that participate in tissue 

repair and pathological processes, tissue fibrosis, tumor invasiveness, and metastasis, 

is poorly understood. An important providing source that has been proposed for the 

generation of mesenchymal cells is epithelial-mesenchymal-transition (EMT). This 

process is defined as a transdifferentiating process where it allows an intact polarized 

epithelial cell, which has specific interaction with the basement membrane via its cell 

surface, to undergo multiple biochemical changes that enable it to assume properties 

of mesenchymal cells. The properties of mesenchymal cells include: enhanced 
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migratory capacity, invasiveness, elevated resistance to apoptosis, and increase the 

production of extracellular matrix (ECM) components [208]. Once the EMT process 

has been completed, it signals degradation of the underlying basement membrane, the 

newly formed mesenchymal cell migrates away from its original epithelial layer. 

Initiation and activation of the EMT process takes an orchestrated manner where 

number of complex molecular processes are involved in it. Such an organized process 

involves ordered steps: activation of transcription factors, expression of specific cell-

surface proteins, reorganization and expression of cytoskelatal proteins, production of 

ECM-degrading enzymes, and changes in the expression of specific microRNAs. The 

involved factors can be used as biomarkers to help in assisting the passage of a cell 

through an EMT (Figure 5) [209].  
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Figure 5: Epithelial-Mesenchymal-Transition:   

An EMT involves a functional transition of polarized epithelial cells into mobile and 

ECM component–secreting mesenchymal cells. The epithelial and mesenchymal cell 

markers commonly used by EMT researchers are listed. Colocalization of these two 

sets of distinct markers defines an intermediate phenotype of EMT, indicating cells 

that have passed only partly through an EMT. Detection of cells expressing both sets 

of markers makes it impossible to identify all mesenchymal cells that originate from 

the epithelia via EMT, as many mesenchymal cells likely shed all epithelial markers 

once a transition is completed. For this reason, most studies in mice use irreversible 

epithelial cell–lineage tagging to address the full range of EMT-induced changes. ZO-

1, zona occludens 1; MUC1, mucin 1, cell surface associated; miR200, microRNA 

200; SIP1, survival of motor neuron protein interacting protein 1; FOXC2, forkhead 

box C[209]. Kalluri, R. and R. A. Weinberg (2009). "The basics of epithelial-

mesenchymal transition." J Clin Invest 119(6): 1420-1428 

 

Based on previous studies done on developmental biology, during 

embryogenesis and organ development, certain epithelial cells appear to be plastic 

and thus able to move back and forth between the epithelial and mesenchymal states 

via the processes of EMT and MET (mesenchymal-epithelial-transition) [210]. This 

suggests that occurrence of such transdifferentiation allows conversion of epithelial 

cells to mesenchymal derivatives is needed during embryo development and 

adulthood. Activation of EMT has been also associated with tissue repair and 
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pathological stresses. This leads to recognizing EMT as a key player in dispersing 

cells in embryos, forming mesenchymal cells in injured tissues, and initiating the 

invasive and metastatic behavior of epithelial cancers (R. Kalluri) [209]. 

 

The epithelial-mesenchymal-transition (EMT) has been classified into three 

distinct biological classes leading to different functional consequences. The first class 

of EMTs, type I (Figure 6), represents the process that is associated with 

implantation, embryo formation, and organ development which leads to an organized 

generation of diverse cell types that share common mesenchymal phenotypes [211]. 

This class of EMTs is neither involved in fibrosis nor induces an invasive type which 

spreads out via the circulation system. In addition, the produced mesenchymal cells 

can switch back to epithelial cells through MET, leading to generation of secondary 

epithelial cells. 
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Figure 6: Different types of Epithelial-Mesenchymal-Transition: 

 

(A) Type 1 EMT is associated with implantation and embryonic gastrulation and 

gives rise to the mesoderm and endoderm and to mobile neural crest cells. The 

primitive epithelium, specifically the epiblast, gives rise to primary mesenchyme via 

an EMT. This primary mesenchyme can be re-induced to form secondary epithelia by 

a MET. It is speculated that such secondary epithelia may further differentiate to form 

other types of epithelial tissues and undergo subsequent EMT to generate the cells of 

connective tissue, including astrocytes, adipocytes, chondrocytes, osteoblasts, and 

muscle cells. (B) EMTs are re-engaged in the context of inflammation and fibrosis 

and represent the type 2 EMTs. Unlike the type 1 EMT, the type 2 EMT is expressed 

over extended periods of time and can eventually destroy an affected organ if the 

primary inflammatory insult is not removed or attenuated. (C) Finally, the secondary 

epithelia associated with many organs can transform into cancer cells that later 

undergo the EMTs that enable invasion and metastasis, thereby representing type 3 

EMTs.[209]
 
Kalluri, R. and R. A. Weinberg (2009). "The basics of epithelial-

mesenchymal transition." J Clin Invest 119(6): 1420-1428. 

 

The second class of EMTs, type II (Figure 6), represents EMTs that are 

associated with wound healing, tissue generation and organ fibrosis. In this type of 

EMTs, the process starts out as a normal “repair” process that needs to generate 
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fibroblasts and other coupled cells in order to help in reconstructing the damaged area 

following an insult or inflammation. However, in contrast to type I EMTs, type II 

EMTs are activated as a response to inflammation and cease once the inflammation is 

attenuated, this is noted in wound healing and tissue repair. In the case of fibrosis, 

type II EMTs continue on as a response to ongoing inflammation, which leads to 

destruction of organs. In other words, tissue fibrosis is an unabated form of wound 

healing process due to persistent inflammation. The third class of EMTs (Figure 6) 

represents EMTs that occur in neoplastic cells that have already undergone through 

genetic and epigenetic changes that result in clonal outgrowth and localized tumors. 

These outcomes are due to alterations of oncogenes and tumor suppressor genes, thus 

the result is different from those of the other two types of EMTs.      

.      

 1.4.1 Implication of Epithelial-Mesenchymal-Transition in the pathologies 

of fibrosis 

Since our work explore the implication of EMT in the formation and 

development of bronchiolitis obliterans (BO), we will be focusing on type II of EMTs 

which is associated with tissue regeneration and organ fibrosis. The organ fibrosis is 

triggered by inflammatory cells and resident fibroblasts that function to release a 

variety of inflammatory signals and extracellular matrix (ECM) components that 

include collagens, laminins, elastin, and tenacins [209]. The type II EMTs which 

leads to organ fibrosis has been associated with fibrosis occurring in kidney, liver, 

lung and intestine [212-215]. Such an association was proved by studies done on 
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transgenic mice that bear germ-line reporter genes whose expression was driven by 

specific promoters. Follow up of the expression of these reporters provided evidence 

for the involvement of epithelial cells as key promoter and generator of fibroblasts in 

organ fibrosis, via EMT [216-218]. Several biomarkers, such as fibroblast-specific 

protein 1(FSP-1), α-SMA and collagen I, are generated by the EMT process which 

leads to fibrosis of several organs [9, 10, 219]. In addition to previously mentioned 

biomarkers, other markers such as discodin domain receptor tyrosine kinase 2 

(DDR2), vimentin, and desmin have been studied in identifying the epithelial cells of 

kidney, liver, lung and intestine that are mid-way through EMT associated with 

inflammation. What was noted is that cells at this stage not only show epithelial-

specific morphology and molecular markers such as cytokeratin and E-cadherin, but 

also express mesenchymal markers FSP-1 and α-SMA. Possible explanation of such 

behavior is that these cells are likely to be at an intermediate phase of EMT, where 

epithelial markers are still expressed but mesenchymal ones are being acquired as 

well. This behavior serves as an early indication or prediction of epithelium being 

exposed to an inflammatory stress. Once these cells “leave their epithelial layer, 

negotiate their way through the underlying basement membrane, and accumulate in 

the interstitium of the tissue, they shed all of their epithelial markers and gain 

fibroblastic ones”[220]. 

 1.4.2 Implication of Epithelial-Mesenchymal-Transition in lung  

As mentioned before, EMT has been proposed as a possible contributor in the 

fibrosis of kidney, liver, and intestine [5-8]. This had lead to propose the possible 

involvement of EMT in the pathogenesis of lung fibrosis. The exact role of EMT as a 
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response to an injury and pathogenesis of fibrosis in the adult lung remains to be 

further studied. Evidence has suggested participation of EMT as a major source of 

pathogenic mesenchymal cells, such as myofibroblasts, that lead to the development 

of pulmonary fibrosis. EMT was identified in both the alveolar epithelium and airway 

epithelium. Alveolar epithelial cells have been proposed as a key pathogenic 

intermediary of idiopathic pulmonary fibrosis (IPF) [221-223]. The importance of 

alveolar epithelial cells rises due to its regulatory functions that involve: production 

and response to profibrotic mediators, regulation of fibroblasts’ functions and 

differentiation through release of mediators, and modification of cell morphology and 

gene expression in response to injury [224-232]. Alveolar epithelial cells in IPF 

demonstrate the following features: morphological abnormality, pneumocytes 

hyperplasticity, and reactivity of elongated cells overlying the fibroblastic foci, which 

is presumed to be the site of active fibrogenesis [221, 233-235]. In addition, 

expression patterns of cytokeratin have been altered [236], and apoptosis of alveolar 

epithelial cells adjacent to fibroblastic foci has increased [237-239]. Upon activation 

of the alveolar epithelial cells in IPF synthesis of several procoagulant factors [229], 

and fibrogenic cytokines, such as PDGF [224], TGF-β [226-228], TNF-α [240], 

endothelin-1 [225], and CTGF [232] get produced which allows for a bidirectional 

signaling between alveolar epithelial cells and fibroblasts. The alveolar epithelial 

cells also stimulate production of matrix metalloproteinases (MMPs), which suggests 

contribution of alveolar epithelial cells in the extracellular matrix remodeling [241, 

242].  
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 Studies done on lung explants of transplanted mice models revealed that lung 

fibrosis can be initiated with epithelial injury and irregular repair mechanisms even in 

the absence of inflammation, and the presence of an intact epithelial layer has 

suppressed fibroblast proliferation and matrix deposition [243, 244]. Further 

confirmation was done by in vivo studies which provide evidence of the importance 

of EMT in fibrosis. These studies have used Cre-LOX system with β-galactosidase 

(β-gal) tagging, alveolar type II epithelium (AT2) has shown an expression of 

vimentin and undergo EMT when exposed to overexpression of TGF-β1 [215]. It has 

been noted that vimentin-positive cells within injured lungs were all β-gal positive, 

which suggests epithelial cells to be a reservoir of mesenchymal cells. Further reports 

done on AEC obtained from mice fibrotic lung overexressing insulin-like growth 

factor- binding protein-5 (IGFBP-5) coexpresses the expression of epithelial markers 

and α-SMA, suggesting EMT [245]. Airway epithelium has been investigated as 

potential contributor of intrapulmonary fibroblasts and myofibroblasts as a response 

to injury. Fibrotic obstruction of small and large airways is a key pathologic 

contributor in a variety of disorders, such as asthma [246], and obliterative 

bronchiolitis [247]. For instance, asthma is characterized with airway remodeling that 

can cause the disease and occur independently of inflammation [248, 249]. In recent 

studies, it has been suggested that abnormal epithelial-mesenchymal response to 

environmental challenges has a major role in the pathology of airways and physiology 

of asthma [250]. An increase in the deposition of collagen, fibronectin, and other 

ECM proteins was observed in asthma, which leads to subepithelial fibrosis and 

airway hyeperresponsiveness [251]. Possible explanation of the production of these 
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proteins is due to the presence of fibroblasts and myofibroblasts, where the number of 

these cells showed a correlation with the magnitude of subepithelial thickness [252].  

 

 1.4.3 Epithelial-Mesenchymal-Transition and Bronchiolitis Obliterans 

Since understanding the pathogenesis of airway remodeling is needed for 

therapeutic development. One of the unresolved and poorly understood airway 

disorders is bronchiolitis obliterans (BO). BO is defined pathologically as airway 

response to chronic allograft rejection, and physiologically as bronchiolitis obliterans 

syndrome (BOS). This disorder is characterized by being an irreversible process 

which leads the patient to direct morbidity and mortality [47, 253]. Etiology behind 

BO is still poorly understood and still under constant investigation, but it is suggested 

to be a result of epithelial response upon an injury by an immunological or non-

immunological events [254]. As mentioned earlier, remodeling and fibrotic 

obstruction of the small airways are key pathological factors in BO [34, 35]. Not only 

the precise mechanism of BO remains mysterious, but also the origin of fibroblasts 

responsible for airway fibrosis is unknown and serves as an important role in 

knowing the basic mechanisms. Up to the present date, only one study of its kind, 

Ward et al.[255], has suggested a link between lung transplant recipients (LTRs) and 

EMT. In this study it has been noted that airway epithelial cells obtained from stable 

LTRs have exhibited features of EMT. They were able to detect positive staining of 

fibroblast specific protein-1 (FSP-1), a marker of mesenchymal phenotype, in 15% of 

the sampled epithelium sampled. In addition, stimulation of obtained epithelium with 
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TGF-β caused cells to become more motile and penetrate collagen-coated filters. 

What is important of these results is the fact that these changes were noted prior to the 

development of detectable clinical deterioration of lung function. Therefore, this 

study suggests early detection and intervention of EMT in the LTRs airways can help 

in reducing airway remodeling and its severity. However, prevalence and mechanism 

of EMT in airway fibrosis and potential inhibition of it are being further investigated.         

  

1.4.4 Mediators produced during apoptosis and Epithelial-Mesenchymal-

Transition 

Apoptosis, defined as programmed cell death, has been shown to contribute in 

human acute and chronic rejection of the human heart [22], lung [23], kidney [24], 

and liver [25]. The exact mechanism remains ambiguous to researchers. Upon 

completion of repair mechanism, apoptotic cells signal for phagocytes, such as 

macrophages, to assure engulfment of these cells [156, 158]. This results in 

production of mediators that work on activating other pathways. One of these 

mediators is transforming growth factor-beta (TGF-β) [159]. 

 Transforming growth factor-beta is a critical cytokine because of its 

multifunctional actions that regulate tissue morphogenesis and differentiation by 

having direct influence on cell proliferation, differentiation, apoptosis, and ECM 

production [256]. In addition, TGF-β is a key inducer of EMT in development, 

carcinogenesis, and fibrosis with different isoforms and functions [257]. EMTs of 

different epithelial cells including renal proximal tubular, lens, and alveolar epithelial 
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cells are modulated by TGF-β [258-262], see figure 3 for TGF-β mechanism). In the 

tissue fibrosis TGF-β has been implicated as “master switch” in many tissues 

including lung [263]. In regard to fibrosis, upregulation of TGF-β in lungs of patients 

with idiopathic pulmonary fibrosis (IPF) has been observed, and expression of active 

TGF-β in lungs of rats induced a dramatic fibrotic response, whereas inability to 

respond to TGF-β provides protection from bleomycin-induced fibrosis [264]. In 

addition, TGF-β is a key inducer of EMT in development, carcinogenesis, and 

fibrosis with different isoforms and functions [257]. EMTs of different epithelial cells 

including renal proximal tubular, lens, and alveolar epithelial cells are modulated by 

TGF-β [258-261, 265], (see Figure 7 for TGF-β mechanism). Mentioned previously, 

studies have demonstrated the involvement of TGF-β in vivo (see 1.4.2) in inducing 

EMT in animal models. Therefore, these indications prove the involvement and 

importance of TGF-β in inducing EMT both in vivo and in vitro which lead to fibrosis 

of the lung.       
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Figure 7: Mechanisms of Transforming growth factor-beta1 in inducing 

Epithelial-Mesenchymal-Transition: 

 

EMT can be induced by a wide array of stimuli and cytokines, TGF-is considered to be 

a “master switch” of the process. The majority of TGF-β is present in the extracellular 

milieu in a latent form, kept inactive by the latency-associated peptide (LAP), and bound 

by the latent TGF binding protein (LTBP) (1). Upon release by LTBP, LAP-associated 

TGF is either freed through proteolysis by a variety of enzymes (e.g., plasmin) or is 

stabilized by membrane-bound integrins (e.g., v) and directly presented to TGF 

receptors (2). TGF- dimers then associate with the type II TGF- receptor that in turn 

associates with the type I TGF- receptor (e.g., ALK-5) in a heterodimer (3). The 

receptor heterodimer becomes activated and initiates a variety of signaling pathways, 

resulting in both transcriptional and nongenomic signaling. Both Smad-mediated (Smad2 

and Smad3) (4) and non-Smad-mediated (5) pathways are involved. Smad-mediated 

pathways result in activation of TGF--induced target genes (e.g., -smooth muscle 

actin, collagen, plasminogen activator inhibitor-1, connective tissue growth factor, and 

others) as well as inhibition of epithelial genes (e.g., E-cadherin) (6), through 

activation/induction of and coassociation with a variety of transcription factors (including 

Snail1, Snail2, Notch, and others) and subsequent binding to Smad-binding elements. 

Smad-mediated signaling can also activate nongenomic signaling molecules, such as ILK 

(7), which leads to Akt and GSK3B activation and -catenin nuclear translocation, 

contributing to EMT. Non-Smad-mediated pathways are numerous but include PI3K/Akt, 

RhoA, PAR6, and MAPK activation, leading to a host of cellular changes, including 

tight/adherens junction disassembly, cytoskeletal rearrangements, E-cadherin 

downregulation, -catenin nuclear translocation, and EMT (5). Finally, non-Smad-

mediated signaling pathways can interact with Smad-mediated genomic signaling 

through modulation and activation of transcription factors (e.g., through MAPK) 

(8).[265] 
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Apoptotic cells, such as apoptotic endothelial cells, produce mediators that are 

apoptosis pathway-dependent and can activate the EMT process. Connective tissue 

growth factor (CTGF) was identified as one mediators produced by apoptotic 

endothelial cells. Dr. Hebert and her team were able to identify CTGF as a protein 

with fibrogenic activity in medium conditioned by apoptotic endothelial cells (EC) 

using mass spectrometry and confirming their finding by Western blotting [151]. In 

their work, they were able to demonstrate that CTGF production occurs through a 

caspase-3-dependent pathway.  Furthermore, they have indicated that the production 

or release of CTGF is independent of the apoptotic stimulus, and is specifically 

regulated at the execution phase of apoptosis. CTGF, a 37-kDa cysteine-rich peptide, 

is a member of the CCN family of matricellular proteins [266]. The N-terminal of this 

peptide promotes myofibroblast differentiation and collagen synthesis, whereas the C-

terminal of it is implicated in proliferation and adhesion [267]. It has been noted 

previously that CTGF potentiates interactions between low levels of TGF-β1 and its 

cognate receptor [268]. “We consider the possibility of TGF-β1-dependent signaling 

in this fibrogenic loop, even in the absence of elevated amounts of TGF-β1. Blockage 

of TGF-β signaling with a pan-TGF-β-neutralizing antibody did not prevent 

myofibroblast differentiation induced by either SSC (conditioned apoptotic medium) 

or recombinant CTGF [151]. Studies have identified CTGF as a fibrotic marker in 

chronic renal and heart allograft rejection, diseases that are associated with sustained 

endothelial injury [269, 270]. Blockage of CTGF expression by using siRNAs (small 

interfering RNAs) showed to prevent fibrosis in a model of chronic renal allograft 

rejection [271]. These data prove the fact of recognizing CTGF as a key fibrotic 
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mediator in several fibrotic diseases. Pathways involved in the production of CTGF 

should be further investigated to provide a clear picture of its involvement.       

 

In addition to CTGF production, apoptotic endothelial cells have been 

proposed to produce other bioactive mediators. The team of Dr. Hebert worked on 

fractionating the conditioned apoptotic medium (SSC4h), which yielded one bioactive 

fraction with a size of ~23 kDa and identical to the C-terminal domain V of perlecan. 

Perlecan is a 467 kDa proteoglycan composed of five distinct domains [272-274]. 

The most important element of perlecan is the C-terminal domain of perlecan 

(domain V), that contains an anchoring site for chondroitin sulfate and three laminin-

type G modules separated by four EGF-like modules [275]. In their work they state 

that bioactive fraction of perlecan produced from conditioned apoptotic medium 

included only the C-terminal part. Furthermore, other fractions obtained from the 

apoptotic medium that were higher than 50kDa showed no bioactivity on vascular 

smooth muscle cells (VSMC), suggesting that native perlecan is not implicated in the 

bioactivity imposed by the conditioned apoptotic medium. They further suggest that 

during apoptosis some proteolytic enzymes are activated which results in liberating 

the bioactive fragment of perlecan (Figure 8).  
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Figure 8: Release of perlecan during endothelial cells apoptosis: 

 

Apoptosis of EC triggers the release of soluble mediators, which include a C-terminal 

fragment of perlecan. This, in turn, activates PI3K in fibroblasts leading to resistance to 

apoptosis, sequentially regulated by modulation of Bim-EL and Bcl-xL protein levels, 

and to myofibroblast differentiation. However, chronic production of these mediators 
could lead to fibrosis [160] 

 Consistent with their results, they have demonstrated that the native form of 

perlecan was not able to inhibit apoptosis of VSMC, however, synthetic peptide 

containing the EGF-motif (present in domain V of perlecan) and chondroitin 4-sulfate 

(CS) did inhibit apoptosis of VSMC. Also, both the synthetic peptide and CS were 

able to induce sustained phosphorylation of ERK1/2and increase in Bcl-xl protein 

levels in VSMC. Hence, these results suggest that motifs of domain V of perlecan 

show anti-apoptotic activity in VSMC which results in proliferation and accumulation 

of fibroblasts and myofibroblasts, thus leads to development of fibrosis.             

 

It is worth mentioning that previously mentioned fibrogenic factors and 

mediators produced at the event of apoptosis are responsible in activating pathways 

and cascades that lead to fibrosis. Some of these mediators work on initiating 

fibroblast formation, overexpressing already existing fibroblasts, or cause apoptotic 

resistance in them, all of which participate in the fibrosis and rejection of an organ. 
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Having a clear understating of the mechanisms in which these mediators participate in 

EMT, might help in solving the mystery behind organ rejection.      

 

 1.4.5. Signaling pathways involved in the Epithelial-Mesenchymal-

Transition process 

We have discussed previously possible mediators and fibrogenic factors that 

contribute in the EMT process. Here, we will discuss possible signaling pathways that 

have been involved or suggested to be implicated in EMT.  Although treatment with 

TGF-β alone can induce EMT in certain types of cultured epithelial cells, other types 

seem to be resistant or moderately sensitive to TGF-β induced EMT [276]. Therefore 

it has been shown that TGF-β needs to cooperate with other signaling pathways, such 

as Wnt [277, 278], Hedgehog [279], oncogenic Ras/receptor tyrosine kinases [280-

283], and Notch [284, 285], in order to induce complete EMT [257, 286, 287]. It has 

been noted that all of these pathways have been involved in stem cell 

renewal/proliferation [288, 289]. Three signaling pathways have been proposed to be 

involved in EMT: TGF-β/SMAD signaling, Wnt signaling, and Ras signaling.  

It has been widely accepted that TGF-β has an essential role in inducing EMT 

during stages of embryogenesis, and in carcinoma progression and its invasive states 

[75, 76, 290]. The binding of TGF-β results in a complex formation of type I and type 

II receptors, the consequence of phosphorylation and activation of downstream 

effectors of the Smad family [291, 292]. More specifically, Smad2 and Smad3(R-

Smad) get phosphorylated and bind with cytoplasmic Smad4 (co-Smad) to be 
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translocated to the nucleus. Translocation of the Smad complex regulates target genes 

through interaction with specific binding motifs in gene regulatory regions [293]. 

Smad signaling is an essential factor in TGF-β-induced EMT [294]. Studies have 

shown that epithelial renal tubular deficient in Smad3 failed to undergo EMT, and 

keratinocytes derived from Smad3
-/-

 mice show reduction in the migration in response 

to TGF-β [295, 296]. Similar to Smad3, Smad4 is also essential for TGF-β-induced 

EMT. Studies, where Smad4 was blocked using RNA-interference, show preservation 

of E-cadherin expression after treatment with TGF-β [297-301], suppression of 

fibrotic type I collagen synthesis in vitro, and decrease in bone marrow metastasis in 

vivo.
 
Furthermore, it has been noted that Smad4 is implicated in promoting tumor cell 

invasion in advanced pancreatic tumors [302]. These results suggest that the 

transcription factors Smad3 and Smad4 are important in TGF-β induced EMT (see 

Figure 9 for more details).  

The second signaling pathway that is implicated in inducing EMT is the Wnt 

signaling pathway. This pathway is responsible in regulating stem-cell renewal and is 

implicated in inducing EMT in cancer. Unusual Wnt signaling through 

overexpression of Wnt ligands or silencing of Wnt inhibitors has been reported in 

different types of human cancer such as colon, breast, melanoma and prostate 

carcinomas, all of which were linked to EMT [303-308]. 
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Figure 9: Transcriptional crosstalk between TGF-β, Wnt and Ras signaling 

pathways in EMT: 

 

TGF-β binding to its receptor results in phosphorylation and nuclear translocation of Smad 

transcription factors, which achieve target gene specificity through interaction with 

transcriptional cofactors. EMT promoting transcription factors including epithelial repressors 

(EpR), such as Snail, Zeb and Twist, and mesenchymal activators (MeA), such as β-catenin 
(β-cat), AP-1, Foxc2, TCF and Sp1 interact with Smads, which results in the formation of 

EMT promoting Smad complexes (EPSC). These complexes drive EMT by repressing 

epithelial genes, such as E-cadherin, or activating mesenchymal genes, such as vimentin. 
Signals from Wnt and/or Ras pathways promote activation of Snail, Zeb, β-catenin and other 

EMT promoting transcription factors that can partner and form EPSC with Smads. Thus, the 

formation of EPSC represents a point of convergence between TGF-β, Wnt and Ras 
pathways. GSK-3β is a nodal protein, which negatively regulates stability of Snail and β-

catenin. Activation of Wnt and Ras/PI3K/AKT pathways leads to inhibition of GSK-3β and 

thereby stabilization of Snail and β-catenin. TGF-β and Ras/Raf/ER K pathways also regulate 

EMT promoting transcription factors[309] 

 

 

 



43 
 

Finally, Ras signaling (figure 9) has been also proposed as a pathway involved 

in EMT. Activation of the Ras signaling cascades results from a stimulation of 

receptor tyrosine kinase (RTK) by a growth factor, such as epidermal growth factor 

(EGF) and fibroblast growth factor (FGF), which causes activation of PI3Kinase and 

Raf/ERK/MAPKinase pathways which regulate cell migration, proliferation, survival 

and cell cycle processes [310]. Ras signaling has been shown to cooperate with TGF-

β in inducing EMT but exact mechanisms where this cooperation takes place remains 

poorly understood[311-313]. One of the transcriptional targets of Ras signaling is the 

high-mobility group A protein 2 (HMGA2) [314], which is induced by TGF-β and 

directly regulates expression of Twist and Snail, which are transcription factors that 

promote EMT [315, 316]. It was noted that Ras signaling is important in inducing 

EMT by the secreted interleukin-like EMT inducer (ILEI) [317]. The signaling of 

MAPK is essential for the acquisition of the EMT phenotype, the PI3Kinase signaling 

is required for the scattering phenotype. It was noted that inhibition of ERK-MAPK 

pathway restores the expression of E-cadherin in cells with moderate levels of Ras 

signaling [318].  

 

1.4.6 Transcription factors involved in the Epithelial-Mesenchymal-

Transition process 

As mentioned before the EMT process involves both transcriptional 

inactivation of epithelial genes and activation of the mesenchymal ones. Some 

transcription factors in certain types of cells have the capability of inducing the whole 
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process of EMT by functioning both as repressors of epithelial genes and activators of 

mesenchymal genes. Other transcription factors are more specific in their genes 

targets, epithelial or mesenchymal genes [309]. Classification of transcription factors 

will be based on their transcriptional function, thus, two classes are suggested: 

1.transcriptional repression of epithelial genes which involves the following 

transcription factors: Snail, Zeb, basic Helix-loop-Helix (bHLH) proteins family; and 

2. transcriptional activation of mesenchymal genes which involves the transcription 

factors β-catenin, NFκB, activator protein-1 (AP-1) and Sp1.  

One of the noted hallmarks of EMT is loss of E-cadherin expression. Studies 

done on E-cadherin, demonstrated that repression of E-cadherin expression during an 

EMT event is a consequence of a specific inhibitor binding to E-boxes sequences 

containing the core 5’-CACCTG-3’ motif within the E-cadherin promoter[319, 320]. 

One of the transcription factors that was identified to repress E-cadherin by direct 

binding to the E-boxes is Snail.  Studies have suggested Snail to be an “early switch” 

in activating EMT program, where it can induce EMT and overexpress the expression 

of other repressors [321, 322]. These findings were supported by data which shows 

Snail to be rapidly and transiently upregulated at the transcriptional level when EMT 

process is induced by TGF-β in namru mammary gland epithelial cells (NMuMG 

cells) [323]. This upregulation of Snail as response to TGF-β stimulation is mediated 

by interaction between Smads and HMGA2 [316]. Activation of the Ras signaling by 

growth factors cooperates with TGF-β to induce expression of Snail[324, 325]. At the 

post-translational level, Snail activity is regulated by glyocogen synthase kinase-3 

beta (GSK-3β), a major Wnt signaling target, which works on phosphorylating Snail1 
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and leads to its nuclear export and degradation [326]. Evidence has shown that Wnt 

signaling has a direct influence in inducing the expression of Snail1 [327, 328]. 

Therefore, all these data support the idea of cooperation between TGF-β, Wnt and 

Ras to induce, activate and stabilize Snail during EMT.              

Members of the bHLH family which includes: Twist, E47/TCF3 and 

TCF4/E2-2 function on inducing EMT as well as repressing the expression of E-

cadherin [329, 330]. In breast epithelial cells Twist was shown to bind and repress the 

E-cadherin promoter [331]. However, Twist can act in inducing EMT through a 

mechanism that is different from Snail and Zeb proteins which does not involve direct 

binding of Twist to the E-cadherin promoter [332]. Twist presents metastatic 

properties to breast tumor cells and stem-like properties in epithelial cells [333, 334]. 

Furthermore, Twist1 and Twist 2 show a capacity for blocking oncogene-induced 

senescence by inhibiting p53-andRb-dependent pathways, and collaborate with Ras in 

inducing EMT [335]. Upregulation of Twist by TGF-β and PI3K pathways was noted 

in palate development [336]. In mammary epithelial cells, Twist is induced by 

Fibulin-5 during TGF-β induced EMT [337]. It has been noted that Twist was 

upregulated in mammary epithelial cells by Wnt signaling [338].  
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1.5 Hypothesis and rationale  

In our study we hypothesize that ischemia-reperfusion injury, CMV infection, 

or other stressful events in the lung cause the endothelial cell to go through apoptosis, 

this results in proteolysis of the extracellular matrix and release of fibrogenic 

mediators. The released products, such as CTGF and perlecan for instance, stimulate 

the epithelial cells to go through transdifferential state where the process of epithelial-

mesenchymal-transition is activated. This activation causes translocation of 

transcription factors (TF), such as Twist and Snail. The translocated TF work by 

repressing the expression of epithelial markers (E-cadherin and cytokeratin), and 

activating the expression of mesenchymal markers (CollagenI, α-SMA, and 

vimentin). This leads to formation of fibroblasts-like cells that will accumulate, resist 

apoptosis and cause obliteration of the airway and eventually leading to the 

development of BO in lung transplant recipients (see Figure 10).  

 

 

 

 

 

 

 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Proposed study hypothesis: Apoptotic endothelial cells cause release of 

fibrogenic mediators that lead to EMT activation causing formation of fibroblasts-like 

cells and leading to development of BO. 
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Chapter 2: 

 

 

 

 

 

 

 

 

 

Epithelial- Mesenchymal- Transition in Lung Transplant Recipients: 

-Role in Bronchiolitis obliterans syndrome 
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Context of the study and contributing authors 

For patients with end-stage lung diseases, lung transplantation is their only 

therapeutic option for them to survive basic activities. Chronic lung transplant 

rejection is considered one of the major challenges that lung transplant recipients 

(LTRs) have to face and overcome for the sake of their survival. The clinical 

definition of chronic lung transplant rejection refers to deterioration of the graft 

secondary to progressive airway disease with no other cause, also known as 

Bronchiolitis Obliterans Syndrome (BOS). Bronchiolitis Obliterans (BO) is referred 

to histological proof of fibrosis and tissue scarring that leads to airway remodelling in 

LTRs. Epithelial-Mesenchymal-Transition (EMT) is a process where epithelial cells 

go through transdifferentiation causing loss of epithelial properties and gain of 

mesenchymal ones. The EMT leads to fibrosis, and thus to the development of BO. 

The activation and induction of EMT is thought to be due to an activation of 

transcription factors (TF) that function primarily on repressing the expression of the 

E-cadherin gene and activating mesenchymal ones such as Vimentin. One of these 

transcription factors is Twist.   

This chapter will go through the implications of epithelial-mesenchymal-

transition in LTRs. Transbronchial biopsies (TBB) were studied retrospectively from 

LTRs. Immunohistochemistry (IHC) analyses were done on the obtained biopsies to 

verify the change in the expression level of both epithelial and mesenchymal markers, 

and indicate the occurrence of EMT in LTRs.           
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Dr Celine Bergeron is the principle contributor in the research hypothesis. She 

has also contributed in developing and expanding the ideas of this project. In 

addition, she has supervised the whole project and contributed to the final draft of the 

manuscript. Dr Charles Poirier is the director of the lung transplant program and head 

of the pulmonology department at the CHUM. He has helped in facilitating our access 

to the collected biopsies of lung transplant recipients at Notre-Dame Hospital part of 

the CHUM group. Mrs. Sawsan Al-Mot has a major contribution in the 

immunohistochemistry part which includes: procedure designing, optimization, and 

final analysis and scoring. Mr. Stanislaw Ptaszynski has contributed in measuring the 

percentage of collagen deposition of Van Giesen stainings. He also assisted in the 

statistical analysis of results.    Finally, this project was funded by the CRCHUM fund 

to Dr Celine Bergeron, and Areej Al Rabea is the recipient of Jean et Terry Lavoie-

Dionne award 2010.   
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Abstract 

Background: Chronic lung transplant rejection, also known as Bronchiolitis 

Obliterans (BO), has been puzzling researchers for several years due to its complexity 

and implication in long term mortality in Lung Transplant Recipients (LTRs). 

Epithelial- Mesenchymal- Transition (EMT) is a proposed mechanism which 

participates in the pathogenesis of BO. In the EMT process, epithelial cells go 

through phenotypic transition to become mesenchymal cells and participate in  airway 

remodelling through excessive production of fibroblast and myofibroblasts cells. 

Twist, a transcription factor (TF), is an initiator of the EMT mechanism, where it 

represses the expression of epithelial markers, and activates mesenchymal ones. Aim: 

To study and investigate in situ the presence of EMT in the small airways of LTRs. 

Methods: Immunohistochemical (IHC) staining and analysis were done on 

transbronchial biopsies (TBB) that were obtained retrospectively from LTRs who did 

or did not develop BO. Antibodies specific for E-cadherin, Vimentin, and Twist have 

been used in the analysis, where E-cadherin is an epithelial marker, Vimentin is a 

mesenchymal marker, and Twist is a transcription factor that is responsible in the 

induction of EMT. Furthermore, H&E, and Van Gieson staining were performed. All 

biopsy analyses were correlated with collected clinical data of the recruited patients. 

Results: Longitudinal data of IHC stainings done on transbronchial biopsies (TBB) 

taken on an average period of one year post lung transplant have demonstrated a 

decrease in the expression of E-cadherin in BO group with a mean intensity 

expression of 1.95 compared to the stable group that has a mean intensity expression 

of  2.82, and p = 0.02. Stainings of TBB also demonstrated an increase in the 
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expression of Vimentin in the BO group compared to the stable one with a mean 

intensity expression of 2.60 vs. 0.85, respectively, and p = 0.00004. The expression of 

Twist was also high in the BO group compared to the stable one with mean intensity 

expression of 3.1 vs. 2.0, respectively, and p = 0.0023. Correlations between EMT 

marker expressions revealed the following: -0.3448 between E-cadherin and 

Vimentin p = 0.366, -0.2248 between E-cadherin and Twist p = 0.180, and 0.2123 

between Vimentin and Twist p = 0.213. Correlations between EMT markers 

expression and FEV1 loss were: -0.5558 with E-cadherin, 0.2663 with Vimentin, and 

0.5770 with Twist whereas correlation with FEF25-75 loss were: -0.4027 with E-

cadherin, 0.2476 with Vimentin, and 0.2042 with Twist. Conclusion: We 

demonstrate for the first time the occurrence of EMT in the small airways of LTRs. 

The occurrence is characterized by loss of epithelial marker expression, such as E-

cadherin, and gain of mesenchymal marker expression, such as Vimentin. Induction 

of this process might be triggered by an increase in the expression level of Twist 

causing an induction of the EMT process. Our results suggest that EMT might play an 

important role in the initiation and formation of bronchiolitis obliterans.  

 

 

Used abbreviations: BO: Bronchiolitis Obliterans, LTRs: Lung Transplant 

Recipients, EMT: Epithelial-Mesenchymal-Transition, TF: Transcription Factor, 

IHC: Immunohistochemistry, TBB: Transbronchial Biopsies.  
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Introduction  

Lung transplant is the only therapeutic approach for patients with end-stage 

lung diseases. End-stage lung diseases include: Chronic Obstructive Pulmonary 

Disease (COPD), Cystic Fibrosis (CF), Idiopathic Pulmonary Fibrosis (IPF), and 

emphysema due to alpha-1 antitrypsin deficiency [2], along with other rare diseases. 

However, according to the Twenty-Sixth report of the International Society for Heart 

and Lung Transplantation, it states that the overall survival half-life is only 5.7 years. 

It is worth mentioning that long term survival of lung transplant is the worst 

compared to other solid organs due to the development of chronic lung transplant 

rejection. The chronic lung transplant rejection has two distinct definitions: 

Bronchiolitis Obliterans (BO), and Bronchiolitis Obliterans Syndrome (BOS). The 

definition of BOS refers to a clinical diagnosis indicating  “graft deterioration 

secondary to progressive obstructive airway disease for which there is no other cause” 

[69, 71]. BOS classification is based on the percentage loss of FEV1 and FEF25-75, 

where an early BOS stage will demonstrate a stable FEV1 but a decline in FEF25-75 

appears to be more sensitive in the detection of BOS [47]. In addition, the new and 

updated classification of BOS has a new category, called potential BOS, in an attempt 

to identify these patients at earlier stages.  On the other hand histological definition of 

BO refers to proof of fibrosis presence, tissue scarring, and airway remodelling. 

Furthermore, airway remodelling, which leads to obstruction, is a result of activated 

fibroblast responses causing excessive deposition of extracellular matrix (ECM).  

An aberrant repair process of the lung epithelium in response to repeated 

and/or sustained injury is the leading proposed concept explaining the fibro-
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obliterative process observed in BO. The sources of injury in the transplanted lung are 

many, including ischemia, acute rejection, gastroesophageal reflux disease (GERD) 

and infections whether they are  viral, bacterial or fungal  [208, 339]. One (or more) 

of the above mentioned stimuli may lead to an aberrant repair process and ultimately 

contribute to the development of BO.  Evidence from animal studies on airway 

obliteration, suggest that epithelial injury and failure to re-establish an intact 

epithelium might be a key factor in the pathogenesis [219]. Epithelial cells are well 

known for their adaptive responses toward stimuli that can range from repair, to 

necrosis and apoptosis. New evidence suggests an important role of epithelial-

mesenchymal-transition (EMT) in the repairing process of the injured lung [215].  

The EMT response is characterized by the loss of epithelial markers, such as 

cytokeratin and E-cadherin, and the acquirement of mesenchymal markers such as α-

smooth muscle actin (α-SMA), collagen, fibronectin and Vimentin. Subsequently, 

EMT is also defined by increase in synthesis of other, non-structural proteins, such as 

matrix metalloproteinases (MMPs) which play an important role in the turnover and 

remodelling of the ECM [214]. Furthermore, during EMT there is a translocation of 

several transcription factors into the nucleus, namely Twist. This basic helix-loop-

helix transcription factor has been reported to be involved, not only in lung fibrosis 

[340], but also in renal fibrosis [341], embryogenesis and carcinogenesis [342]. Once 

Twist is overly expressed during a stress, it functions by repressing the expression of 

E-cadherin proteins, and expressing mesenchymal ones such as Vimentin. These 

changes in protein expression lead to a sequential response by which epithelial cells 

become less adherent due to loss of E-cadherin-dependent contacts, and acquire the 
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phenotypic and functional features of fibroblasts and myofibroblasts, such as motility 

and ECM protein secretion.  In a typical context this response would contribute to 

normal tissue repair, but chronic inflammation and repeated injury can overwhelm the 

global repair machinery and thereby contribute to fibrosis. Indeed, the EMT 

mechanism has been implicated in various fibrotic diseases of the kidney [219], lung 

[215], and liver [214].  Previous studies [343] have suggested that epithelial cells 

obtained from lung transplant recipients undergoing EMT cause release of MMPs and 

deposition of the ECM when targeted by a stimulus causing airway remodelling and 

thus leading to the development of BO. They have also worked on detecting the 

change in EMT marker expression in obtained sequential sections from LTRs and 

normal lung patients. Other group has demonstrated an increase in the expression of 

mesenchymal proteins by large airway bronchial epithelial cells in patients with BOS 

following lung transplantation [344]. One group [345] has also worked on TBB 

analysis in order to understand the cause of airway remodelling which is implicated in 

BOS. In their work they propose thickening of the reticular basement membrane 

(Rbm) as an informative parameter in detecting the development of BOS. The same 

group [345] have demonstrated that there is no correlation between inflammatory cell 

counts and the Rbm thickening. Also they demonstrated that there is no correlation 

between Rbm thickening and lung function. It is worth mentioning that very limited 

studies have considered the EMT to have a possible association with the development 

of BO.   

In our study, we propose that expression of Twist as a response to stimuli 

found in the transplanted lung or in genetically predisposed LTRs, leads to repression 
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or decrease in the expression of E-cadherin, and increase in the expression of 

Vimentin. This inverse side of expression of both epithelial and mesenchymal 

markers leads to accumulation of fibroblasts and myofibroblasts, and thus results in 

airway remodelling which causes development of BO. To test our proposed 

hypothesis we have performed our study on transbronchial biopsies (TBB) that were 

obtained retrospectively from lung transplant recipients (LTRs) and tried to detect 

EMT presence and correlate their level of expression of EMT markers with collected 

data of recruited patients.      

 

Methods 

Study subjects  

In this study we based our recruitment of subjects on lung transplant recipients 

(LTRs) that went through transplantation at Notre-Dame Hospital part of the 

University of Montreal Hospital Centre (CHUM). All recruited LTRs agreed to 

participate in the study either through a specific consent forms to access their past 

TBBs, or through the tissue bank consent form. Both consent forms have been 

approved by the local ethic committee. Based on patients’ data that were obtained 

from the transplant database, the patients were divided into two groups: a stable group 

and a second group that eventually developed BOS (based on ISHLT classification of 

BOS). Paraffin embedded transbronchial biopsies (TBB) of the recruited patients 

were collected, along with their demographic data that was summarized in table 1. 

Each paraffin block contains multiple TBB ranging from 4 to 8 biopsies. The study 
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was conducted on lung transplant recipients (LTRs) with a total population of 19 

patients, where 9 were stable and 10 developed BOS. Since each patient might have 

one or more blocks from TBB, the total number of TBB was 37 blocks for both 

groups where the stable group has 17 TBB blocks and the BOS group has 20 TBB 

blocks.  

 

Histochemistry stainings of the transbronchial biopsies (TBB)  

 The TBB blocks (n=19 patients total of 37 blocks) were processed by the 

pathology department at Hotel-Dieu Hospital part of the CHUM. Processing of TTB 

included Van Gieson staining to assess in measuring total collagen deposition. Van 

Gieson (VG) staining was used to assist in measuring the thickness of collagen 

deposition in TBB. Measurements of collagen deposition were done using Image-Pro 

Analyzer provided by Olympus. Positive staining of VG reveal a dark pink color in 

the tissue of TTB, this color is selected for the entire slide to give total collagen 

deposition divided by total area x100 to give percentage of collagen deposition. 

 

Immunohistochemisty (IHC) staining 

We have performed immunohistochemistry staining to help in detecting the 

expression level of E-cadherin, Vimentin, and Twist in small airway epithelial cells 

on the obtained paraffin blocks of TBB. A modified immunoperoxidase method of 

immunohistochemistry was performed. Mouse monoclonal E-cadherin antibody 
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(Abcam, Canada) and rabbit polyclonal Twist (Abcam, Canada) stainings were done 

using heavy method antigen retrieval with ethylenediamine-tetraacetic acid (EDTA) 

buffer. Mouse monoclonal Vimentin antibody (Sigma, Canada) was done using a 

light method of antigen retrieval with Tris buffer. The compound 3,3’-

Diaminobenzidine (DAB) was used in the IHC staining as a revealing method.  

 

Immunohistochemistry scoring and statistical analysis      

The area of positive bronchial epithelial staining was scored on a level of 0 to 

4, where 0 = no expression, 1= low, 2= intermediate, 3= high, 4= very high. As one 

paraffin block contains multiple biopsies, the score represent the mean of biopsies 

observed in one block. The scoring of the positive area was done by two different, 

blinded readers to avoid bias in the scoring. The differences in the expression of EMT 

markers in stable and BO groups were analysed for each marker, and were assessed 

by a two-tailed Student-t-test. P value of ≤ 0.05 was considered statistically 

significant. Correlations (r =) were calculated between: measured expression of each 

marker, time of biopsies and EMT markers expression in both groups, percentage loss 

of FEV1 and expression of EMT markers (E-cadherin, Vimentin, and Twist), and 

percentage loss of FEF25-75 and EMT markers expression.  
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Statistical analysis 

Collected data of the recruited patients that were analyzed in the statistical 

analysis included: percentage loss of forced expiratory volume in 1 second (FEV1), 

mid-expiratory flow rate (FEF 25-27), change in the expression of EMT markers, and 

percentage of collagen deposition. Differences in EMT marker expression in both 

groups were quantified for each marker and averaging their positive stainings. Results 

were presented as mean (with standard error of the mean, (SEM)).  The significance 

difference between groups was assessed using paired two-tailed student’s test (t-test) 

using Microsoft Excel. Differences with p value of ≤ 0.05 were considered 

significant. In addition, correlations between EMT markers expression, percentage 

loss of FEV1, percentage loss of FEF25-75, and percentage collagen deposition were 

assessed using Spearman test (r =) of correlation was assessed.   

 

Results 

Analysis of demographic data 

Our demographic data of recruited patients (presented in Table IV) included a 

total number of 19 LTRs, where 9 were stable and 10 developed BOS. A total of 37 

TBB biopsies were studied: 20 in the stable group, and 17 in BOS. Both groups were 

comparable in gender, age, transplant type, original disease, BOS grade, %FEV1 loss, 

and %FEF loss. From the demographic data it is noted that median age at transplant is 

50 for BOS whereas the median in the stable group is 40. Original diseases which 

lead to lung transplantation included: Bronchiectasies, COPD, CF, and IPF, both 
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groups had the same original disease except for bronchiectasies which was not seen in 

the stable group. The BOS demonstrated a high percentage loss of both FEV1 and 

FEF 25-75 with medians of 40%, and 77%, respectively. The stable group 

demonstrated a low percentage loss (compared to BOS) of both FEV1 and FEF 25-75 

with medians of 6%, and 27%, respectively.   

 

Detection of Epithelial-Mesenchymal-Transition Expression 

Staining of transbronchial biopsies (TBB) by immunohistochemistry 

procedure has assisted in detecting epithelial that were positive in expressing EMT 

marker: E-cadherin, Vimentin, and Twist. The expression of EMT markers was 

detected and analysed in both groups (Stable, and BOS). E-cadherin, an epithelial 

marker was highly expressed in the stable group where it had a mean intensity score 

of 2.82 compared to the BOS group with a mean intensity of 1.95 and a p value of 

0.0195(see Figure 11). The signal was detected in the intact epithelium of TBB. 

Longitudinal analysis of E-cadherin expression demonstrates a significant decrease in 

the expression of E-cadherin at early stages following lung transplantation in the BOS 

group compared to the stable one (see Figure 12).  

One the other hand, expression of Vimentin, a mesenchymal marker, was 

higher in the BO group with a mean intensity of 2.60 compared to that of the stable 

group which had a mean intensity of 0.85 and a p value of 0.00004 (see Figure 13). 

Positive staining of Vimentin was checked in the intact epithelium of TBB. 

Longitudinal data of Vimentin expression demonstrates a significant increase in the 
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expression of vimentin at early stages following lung transplantation in the BOS 

group compared to the stable one (see Figure 14). 

 

Twist was highly expressed in the BO group with a mean intensity of 3.1 

compared to the stable group which had a mean intensity of 2.0 and a p vale of 

0.0023 (see Figure 15). Positive staining of Twist was checked in the intact 

epithelium and nuclei of epithelial cells of obtained TBB. Longitudinal data for Twist 

expression demonstrates a significant increase in the expression of Twist in the BOS 

group compared to the stable one (see Figure 16), also nuclear staining in the 

epithelium was detected as well.  

 

Statistical analysis of gathered information 

 A negative correlation was revealed between the epithelial marker E-cadherin 

and the mesenchymal marker Vimentin (r = - 0.3448 and p = 0.0366) and the EMT 

transcription factor Twist (r = -0.2284 and p = 0.180). As expected, a positive 

correlation was noted between Vimentin and Twist (r = 0.2123 and p = 0.214). 

Results regarding correlations between EMT markers and decline in FEV1% revealed 

the following: r = -0.5558 with E-cadherin and p = 0.014, r = 0.2663 with Vimentin 

and p = 0.271, and r = 0.5770 with Twist and p = 0.815.  Correlations between the 

EMT markers and decline in FEF25-75% revealed the following: r = -0.4027 with E-

cadherin and p = 0.087, r = 0.2476 with Vimentin and p = 0.307, and r = 0.2042 with 

Twist and p = 0.402. E-cadherin did not demonstrate correlation with total collagen 
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deposition. However, a positive correlation was observed between collagen and 

Vimentin and twist. Correlations with percentage deposition of collagen revealed the 

following: r = -0.0133 with E-cadherin, r = 0.1383 with Vimentin, r = 0.3077 with 

Twist, r = 0.0738 with FEV1 loss, and r = 0.2712 with FEF25-75% loss.   

 

Discussion  

Etiology behind the development of Bronchiolitis Obliterans in lung 

transplant recipients remains a mystery for researchers, and needs to be further 

investigated. Several hypotheses have been proposed to help in understating the 

reason behind it. From the previous definition of Bronchiolitis Obliterans which states 

histological presence of fibrosis, tissue scarring and airway remodelling, airway 

remodelling must be detected in patients who do actually develop BO. First, we have 

noticed that the level of E-cadherin expression in the stable group was higher than the 

BOS group, indicating that epithelial cells in TBB patients who developed BOS 

demonstrate loss in the epithelial properties. Second, in the BOS group we noticed a 

high expression level of the mesenchymal marker Vimentin compared to the stable 

one, thus, indicating that the epithelial cells in the BOS group gained mesenchymal 

properties due to a mechanism that was only activated in the BOS group. The points 

in which the markers start changing vary from 1-12 months depending on whether the 

EMT process gets activated or not.  

Furthermore, when we found that the level of Twist expression was higher in 

the BOS group compared to the stable one. Twist is a transcription factor that 
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functions in repressing the expression of E-cadherin, and inducing the expression of 

mesenchymal markers such as Vimentin, therefore, it leads to activation of the EMT 

mechanism. The longitudinal analysis of the EMT markers suggest that Twist is early 

expressed, closely followed by an increase in Vimentin expression and finally the E-

cadherin suppression appeared. Due to the fact that Twist was highly and early (as 

one month post transplantation) expressed in the BO group, suggests its implication 

in initiating EMT leading to BOS. These data support work done by others [343] 

where they have demonstrated a significant decrease of E-cadherin expression and 

increase of Vimentin expression in epithelium of explanted lung from patients with 

BOS compared to stable patients. However, we were able to demonstrate a significant 

increase in the expression of Twist which might have a link in the activation of EMT, 

where in the previously mentioned study they did not consider checking for 

transcription factor expression. In addition, our work studies change in the expression 

of EMT markers in the epithelial of small airways, whereas their work studies EMT 

expression in the airways.   

The correlations suggest a strong connection between the expression of EMT 

markers and Twist where an increase in the expression of Twist is associated with an 

increased expression of Vimentin and a decreased expression of E-cadherin. These 

results emphasize on the role Twist plays in repressing the expression of E-cadherin, 

and activating the expression of Vimentin. A higher decline in either FEV1% or 

FEF25-75% is negatively correlated with the expression of E-cadherin, suggesting 

that low E-cadherin expression is associated to a grester decline in lung function. On 

the other hand, the decline in FEV1% and FEF25-75% correlated positively with the 
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expression of Vimentin. This suggests a possible impact of EMT formation on the 

clinical outcomes of LTRs. This is also supported by correlations between collagen 

deposition and EMT markers, FEV1% loss, and FEF25-75% loss. The increase in 

collagen deposition has a positive correlation with both Vimentin and Twist, which 

suggests that activation of the EMT pathway might be responsible for increasing the 

production of collagen through proteolysis of the ECM. Excessive collagen 

deposition is a feature of BOS in LTRs. One group has suggested Rbm thickening to 

be implicated in airway remodelling due to inflammation [345], which leads to the 

development of BOS. However, they demonstrated no correlations of Rbm with 

inflammation or with lung function. In our study, we were able to demonstrate 

correlations of induced EMT markers with collagen deposition, FEV1 % loss, and 

with FEF25-75 % loss. This emphasizes on EMT participation of ECM proteolysis 

and airway remodelling.   

 

Conclusion 

To conclude, we have found that changes in the expression level of EMT 

markers in the small airways can be detected at early stages and can be an indicator 

(or an alarm bell) for the development of BOS in lung transplant recipients. Several 

proposals were given to explain airway remodelling, a hallmark in BO development. 

In our study we were able to demonstrate that one possible way of remodelling is 

through a mechanism where epithelial cells loss their properties and gain 

mesenchymal ones, a process known as epithelial-mesenchymal-transtion. Several 
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stimuli can trigger the induction of this process, by translocating transcription factors 

that function primarily in inducing this process; one of these transcription factors is 

Twist. Translocation of this transcription factor induces EMT, causing remodelling of 

the airways, and thus leads to the development of BO in the recipients of lung 

transplant. Furthermore, association of clinical data with bench work reveals strong 

associations between EMT formation and decline in lung function. Our study proves 

the involvement of EMT in the pathogenesis of BO in small airways of lung 

transplant recipients.             

 

Acknowledgment: 

We thank the pathology department in their assistance in obtaining 

transbronchial biopsies, and Van Gieson (VG) staining on obtained biopsies.  

 

 

 

 

 

 

 

 



67 
 

Table IV: Demographic Data of Recruited patients: 

 

  
Gender 

Age (at 

transplant) 

Transplant 

type 

Original 

disease 

BOS 

grade 

% of 

FEV loss 

% of FEF 

25-75 loss 

BOS 

M 53 Double Bronchiectasies BOS 2 35.00 80.16 

M 52 Double Bronchiectasies BOS 3 58.62 84.88 

M 56 Double COPD BOS 0-p 15.03 43.72 

M 54 Single COPD BOS 2 36.72 59.65 

M 55 Single COPD BOS 3 77.06 86.22 

F 36 Double CF BOS 2 44.22 77.60 

F 40 Double CF BOS 3 75.06 89.33 

M 47 Double CF BOS 0-p 11.81 31.49 

M 30 Double CF BOS 0-p 16.77 52.46 

F 47 Double IPF BOS 2 47.19 75.41 

 
Median 

(range) 
50 (30-56)    

40 

(11.81-

77.06) 

77 (31.49-

89.33) 

Stable 

M 56 Double IPF  0.79 12.65 

M 51 Double COPD  5.67 22.85 

F 44 Single COPD  15.57 15.77 

F 33 Double CF  29.27 31.86 

M 26 Double CF BOS 0-p 12.23 26.84 

M 40 Double CF BOS 0-p 6.17 33.56 

M 35 Double CF BOS 1 25.63 63.33 

F 23 Double CF BOS 0-p 1.53 46.26 

M 48 Double CF  4.45 6.35 

  

 

Median 

(range) 
40 (23-56)    

6 (0.79-

29.27) 

27 (6.35-

63.33) 
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Figure 11: Immunohistochemistry staining of E-cadherin in TBB:  

A) E-cadherin Expression in Stable group: 

 

   

                            20X                                               40X 

 

B) E-cadherin Expression in BOS group 

   

                              20X                                               40X 

 

 

Immunohistochemistry images of E-cadherin for A) stable at 20X and 40X, B) and 

BOS groups at 20X and 40X 
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Figure 12: Quantification of E-cadherin signal in the epithelium of 

small airways in TBB: 

A) Expression Intensity of E-cadherin in TBB  

 

 

B) Longitudinal E-cadherin Expression Intensity in TBB  

 

A) Level of E-cadherin expression in both stable and BO groups with means of 

2.82 and 1.95, respectively and p=0.020. Add the SEM in graph. B) Longitudinal 

representation of E-cadherin expression in the epithelial with time after lung 

transplantation.    
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Figure 13: Immunohistochemistry staining of Vimentin in TBB: 

A) Vimentin Expression in Stable group: 

 

   

                             20X                                                40X 

 

B) Vimentin Expression in BO group 

   

                       20X                                                          40X 

 

 

Immunohistochemistry images of Vimentin for A) stable at 20X and 40X, B) and 

BOS groups at 20X and 40X 
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Figure 14: Quantification of Vimentin signal in the epithelium of 

small airways in TBB:  

 

A) Expression Intensity of Vimentin in TBB  

 

 

B) Longitudinal Vimentin Expression Intensity in TBB  

 

A) Level of Vimentin expression in both stable and BO groups with means of 

0.85 and 2.60, respectively and p=0.00004. B) Longitudinal representation of 

Vimentin expression in the epithelial with time after lung transplantation.    
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Figure 15: Immunohistochemistry staining of Twist in TBB: 

 

A) Twist Expression in Stable group: 

         

                         20X                                                        40X 

 

 

B) Twist Expression in BO group 

      

                            20X                                                          40X 

 

 

Immunohistochemistry images of Twist for A) stable at 20X and 40X, B) and BOS 

groups at 20X and 40X 
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Figure 16: Quantification of Twist signal in the epithelium of small 

airways in TBB:  

A) Expression Intensity of Twist in TBB  

 

 

B) Longitudinal Twist Expression Intensity in TBB  

 

A) Level of Twist expression in both stable and BO groups with means of 2.0 and 

3.1, respectively and p=0.0023. B) Longitudinal representation of Twist 

expression in the epithelial with time after lung transplantation.    

 



74 
 

Figure 17: Van Gieson Stainings of obtained TBB:  

 

A) Van Gieson staining in Stable group: 

 

   

                   In Stable                                                    In BO  

Van Gieson staining in obtained transbronchial biopsies (TBB). Black arrows 

indicate the staining for collagen in biopsies.  
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Context of the study and contributing authors 

Lung transplant is the only therapeutic option for unfortunate patients with 

end-stage lung diseases. For lung transplant recipients (LTRs), chronic rejection is a 

major obstacle for their long term survival. Chronic lung transplant rejection is 

defined clinically as deterioration of the graft secondary to progressive airway disease 

with no other cause, also known as Bronchiolitis Obliterans Syndrome (BOS). 

Bronchiolitis Obliterans (BO) is referred to histological proof of fibrosis and tissue 

scarring that leads to airway remodelling in LTRs. Programmed cell death or 

apoptosis is usually activated to maintain homeostasis and balance following a 

stimulus or a stress. Deregulated apoptosis causes imbalance of produced mediators, 

where these mediators can cause induction of Epithelial-Mesenchymal-Transition 

(EMT). This process is a transdifferentiating process where epithelial cells lose their 

epithelial properties and gain mesenchymal ones. The induction of EMT is thought to 

be due to an activation of transcription factors (TF) such as Snail and Twist. 

Activated TFs function primarily on repressing the expression of epithelial markers 

such as E-cadherin, and inducing the expression of mesenchymal markers such as 

collagen, alpha smooth muscle actin (-SMA), and Vimentin. Studies have shown 

EMT to be implicated in the pathogenesis of several fibrotic disorders, and suggested 

EMT to be possibly implicated in airway remodeling which leads to the development 

of BO. 

This chapter will go through the involvement of mediators produced by 

apoptotic endothelial cells in inducing epithelial-mesenchymal-transition in vitro. 

Apoptotic (SSC4h) and non-apoptotic (SSC4h-ZVAD) media were conditioned and 



79 
 

produced from Human MicroVascular Endothelial Cells from Lungs (HMVEC). 

Released mediators in both produced media were detected by using Enzyme-linked 

immunosorbent assay (ELISA) to help in detecting level of connective tissue growth 

factor (CTGF) and transforming growth factor-beta (TGF-β). Immunobloting assay 

was done as well to detect Perlecan in produced media. Detection of gene level 

expression was done using quantitive- polymerase chain reaction (Q-PCR) to check 

for the expression of EMT markers (E-cadherin, Collagen, and alpha-smooth muscle 

actin (α-SMA)). Finally, detection of protein expression of EMT markers was done 

using immunofluorescence.    

Dr Celine Bergeron is the principle contributor to the research hypothesis. She 

has also contributed in developing and expanding the ideas of this project. In 

addition, she has supervised the whole project and contributed to the final draft of the 

manuscript. Dr. Marie-Josee Hebert is Holder of the Shire Chair in Nephrology and 

Renal Transplantation and Regeneration  

at the Université de Montréal. Dr. Hebert and her team were generous in providing 

guidance, instructions, and products to help in setting the bases of this project, 

especially in the area of apoptotic endothelial cells. Mr. Stanislaw Ptaszynski is a 

research assistant at Dr. Celine Bergeron’s lab, who had a major contribution in this 

project and helped in PCR procedures and final analysis. Finally, this project was 

funded by the CRCHUM fund to Dr Celine Bergeron, and Areej AL Rabea is a 

recipient for the Jean et Terry Dionne Award 2010.      
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Abstract   

Background: For several years researchers have been puzzled by the complexity of 

chronic lung transplant rejection, also known as bronchiolitis obliterans (BO), due to 

its implications in long term morbidity and mortality in Lung Transplant Recipients 

(LTRs). Endothelial cells going through apoptosis, as result of a stimulus or stress, 

lead to imbalanced production of mediators in several fibrotic disorders. Studies have 

demonstrated that production of such mediators is a key player in inducing and 

activating the process of Epithelial-Mesenchymal-Transition (EMT). In this process, 

epithelial cells lose their properties and gain mesenchymal ones, therefore, becoming 

more mobile and invasive. Translocation of transcription factors (TF), such as Twist 

and Snail, is suggested to participate in the EMT process by repressing the expression 

of epithelial markers such as E-cadherin, and inducing the expression of 

mesenchymal markers such as Collagen and alpha-smooth muscle actin (α-SMA). 

Aim: Study and investigate in vitro mediators produced by apoptotic endothelial cells, 

and detect mRNA and protein expression of EMT markers in the small airway 

epithelial cells (SAEC). Methods: Apoptotic (SSC4h) and non-apoptotic (SSC4h-

ZVAD) media were produced from Human Microvascular Endothelial Cells 

(HMVEC). ELISA was used to detect and measure released mediators such as 

connective tissue growth factor (CTGF) and transforming growth factor-beta (TGF-

β), in conditioned media. On the other hand, immunoblotting was used to detect 

perlecan in both media. Small Airway Epithelial Cells (SAEC) were stimulated with 

the following conditions: RPMI, 10 ng/ml TGF-β, 20 ng/ml CTGF, SSC4h, SSC4h 

+neutralizing anti-CTGF (SSC4h+Ab-CTGF), and SSC4h-ZVAD. The extracted 
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mRNA was followed by reverse transcription and Quantitive-polymerase chain 

reaction (Q-PCR) to detect the level of mRNA expression of E-cadherin (an epithelial 

marker), Collagen IA1 and α-SMA (mesenchymal markers). SAEC stimulated for 48 

hours were then used for immunofluorescence procedure to detect the level of protein 

expression, where antibodies specific for epithelial markers (Cytokeratin and E-

cadherin), mesenchymal markers (Collagen I, α-SMA, and Vimentin), and for 

transcription factors (Twist and Snail) were used to assist in detecting the protein 

level. Results: CTGF-ELISA done on conditioned media revealed a high level of 

CTGF in SSC4h compared to SSC4h-ZVAD, 62.70vs.15.63 pg/ml, respectively. 

However, TGF-beta-ELISA done on conditioned media has failed in detecting TGF-

beta in both media. Immunoblotting against Perlecan on extracted proteins from both 

media showed low or no presence of Perlecan, a 23kDa fragment, in proteins 

extracted from SSC4h-ZVAD medium, but was highly visible in proteins extracted 

from SCC4h with 9 fold increase of density unit compared to SSC4h-ZVAD. 

Therefore Perlecan is produced by endothelial cells that go through apoptosis. Results 

of mRNA expression of stimulated SAEC revealed the following: decrease of E-

cadherin expression in SAEC stimulated with SSC4h compared to cells stimulated 

with both SSC+Ab and SSC4h-ZVAD, increase in the expression of collagen IA1 in 

cells stimulated with TGF-β, CTGF, SSC4h, and SSC4h+Ab-CTGF compared to the 

baseline (RPMI), and SSC4h-ZVAD. Finally, an increase in the expression of -

SMA was detected in SAEC stimulated with TGF-β, CTGF, SSC4h, SSC4+Ab-

CTGF compared to the baseline (RPMI), and SSC4h-ZVAD. Immunofluorescence 

procedures of SAEC stimulated with SSC4h revealed the following: decrease in the 

intensity/area of the epithelial markers E-cadherin and cytokeratin; increase in the 
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intensity/area of mesenchymal markers collagen, SMA, and Vimentin; and increase in 

the intensity/area of both Snail and Twist. Conclusion: Our results demonstrate that 

apoptosis of lung endothelial cells produced mediators that work and stimulate the 

initiation of the EMT process in SAEC. Activation of such a process causing airway 

remodeling can initiate the development of bronchiolitis obliterans in LTRs.    

 

 

Used abbreviations: BO: Bronchilitis Obliterans, LTRs: Lung Transplant Recipients, 

EMT: epithelial-mesenchymal-transition, HMVEC-L: Human Microvascular 

Endothelial Cells-Lungs, SACE: Small Airway Epithelial Cells, TF: transcription 

factor, TGF-β: transforming growth factor-beta, CTGF: connective tissue growth 

factor, SSC4h: conditioned apoptotic medium 4hrs, and SSC4h-ZVAD: conditioned 

non-apoptotic medium.     
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Introduction  

Lung transplant is considered to be the only therapeutic option for patients 

with end-stage lung diseases. Despite the acceptable 1-year survival rate of 73%, the 

5-year survival rate still remains poor at 45% [2].Even with the enhancements that 

have been done to increase the success of lung transplantation, patients may have to 

face several obstacles in order to survive post lung transplant. One of the major 

hurdles is chronic lung transplant rejection which is defined histologically as 

bronchiolitis obliterans (BO), and clinically as bronchiolitis obliterans syndrome 

(BOS) through diagnosis and grading via spirometry [47]. In the 2010 report of the 

registry of the International Society for Heart and Lung transplantation, it is stated 

that development of BO remains one of the major risk factors post lung transplant 

with percentage of 36.9 and 54.1 within 5-year and 10-year post lung transplant, 

respectively [2]. Bronchiolitis obliterans remains as one of the major causes of long 

term morbidity and mortality in lung transplant recipients (LTRs). 

 

Epithelial-Mesenchymal-Transition (EMT) is a transdifferentiation process, 

where the epithelial cells go through morphological changes that lead them to lose 

their epithelial properties and gain mesenchymal ones. The acquired properties allow 

for production of metalloproteinases (MMPs) and deposition of extracellular matrix 

(ECM)[208]. One study has suggested that thickening of the reticular basement 

membrane by collagen deposition might be a possible explanation for airway 

remodeling in LTRs. [345]. This group has demonstrated the existence of Rbm 
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thickening with median time post-transplant of 6 months, suggesting that change in 

the ECM, collagen deposition, and thickening of Rbm might be an informative 

parameter in detecting airway remodeling. The importance of EMT rises due to its 

implication in several pathologies such as chronic inflammation, fibrosis, and the 

development of cancer [208, 280, 346, 347], where it functions mainly in generating 

mesencymal cells that participate in the pathogenesis of a disease. According to other 

studies, the EMT process has been implicated in fibrotic diseases of the kidney [219], 

lung [215], and liver [214].  

 

Studies on fibrosis have noted apoptosis of endothelial cells (ECs) as an early 

pathogenic event. Fibrogenic disorders such as systemic sclerosis [152, 153]
 
, graft 

versus-host disease [154, 155],
 
 and chronic rejection of kidney allograft [156, 157]

  
, 

have been associated with deregulated and increased apoptotic EC. Some studies 

indicate that apoptotic EC favors recruitment of professional phagocytes [155, 157], 

which results in inducing the production of transforming growth factor-beta1 (TGF-

β1) [158] . In previous studies it has been mentioned that the C-terminal fragment of 

perlecan (LG3), that resulted from translocation of cathepsin L from apoptotic EC, 

induces Bcl-xl upregulation and resistance to apoptosis in fibroblasts, mesenchymal 

stem cells and smooth muscle cell, all of which are crucial in tissue or vascular 

remodeling and repair [156, 159-161, 275, 348].     
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The EMT process involves two major steps: inactivation or repression of the 

epithelial genes and activation of the mesenchymal ones. Both steps are regulated by 

transcription factors (TF) that work on either repressing epithelial genes, or activating 

mesenchymal genes, some TF can function in both directions. The hallmark of EMT 

is loss of E-cadherin expression as consequence of an inhibitor binding at the E-box 

sequences of the E-cadherin promoter [319, 349] One of TF that work on repressing 

E-cadherin by binding to its promoter is Snail (Snail1), which is capable of direct 

binding to the E-boxes of E-cadherin’s promoter [320, 350, 351]. Another 

transcriptional repressor of the E-cadherin expression is Twist, a member of the basic 

helix-loop-helix (bHLH) family [321, 329]. Studies have suggested that Twist might 

work on repressing E-cadherin through a different mechanism that does not 

necessarily involve direct binding of Twist to the E-caderin promoter [330] .       

 

In our study, we hypothesized that stress or stimulus causes apoptosis of 

endothelial cells, and leads to production of paracrine mediators. We aimed to 

characterize mediators released by apoptotic EC, where these released mediators 

work on translocating TF such as Snail and Twist, therefore, inducing the EMT 

process. Activation of EMT leads to fibrosis, tissue scarring, and possibly airway 

remodeling which might be a possible contributor in the development of bronchiolitis 

obliterans in the recipients of lung transplantation.   
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Methods 

Cell culture 

Human Lung MicroVascular Endothelial Cells (HMVEC-L), and Human 

Small Airway Epithelial Cells (SAEC) were obtained from Clonetics Lonza. 

HMVEC-Ls were used at passages 4-7, seeded on gelatinized dishes throughout the 

procedure to ensure good attachment of the cells, and grown in EBM-2 medium 

(Clonetics Lonza, Canada). On the other hand SAECs were used at passages 2-10, 

and grown in SABM medium (Clonetics Lonza, Canada). Both media come with their 

supplementing products. Three different lots (n=3) of HMVEC were used in the 

production of media, whereas four different lots (n=4) of SAEC were used for 

stimulation.  

Screening for apoptosis in HMVEC-Ls with fluorescence microscopy 

Procedures for identifying the apoptotic HMVEC-L were kindly provided by 

Dr. Marie-Josée Hebert and her team. In this part of the experiment, fluorescence 

microscopy was done on unfixed adherent endothelial cells that were stained with 

Hoechst 33342 (2´-(4-Ethoxyphenyl)-5-(4-methyl-1-piperazinyl)-2, 5´-bi-1H-

benzimidazole (HT)) (Invitrogen, Canada) and propidium iodide (PI) (Invitrogen, 

Canada). In summary, endothelial cells were seeded on a 24-well polycarbonate 

culture plates. Once the endothelial cells have reached confluence, they were divided 

into three groups: no pre-incubation, pre-incubation with Dimethyl sulfoxide (DMSO, 

Sigma, Canada) only, and pre-incubation with DMSO+ ZVAD-FMK (R&D, 

Canada), a pan caspase inhibitor that prevents endothelial apoptosis. The time of 
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incubation was 2 hours. Afterwards, all three groups of cells were washed with PBS 

and then were serum-starved for 4 hours with serum free medium RPMI (Invitrogen, 

Canada).  HT was added for a final concentration of 1 μg/ml for 10 min at 37°C with 

5% CO2/95% air, cells were then washed with 1x PBS. PI was added with a final 

concentration of 5μg/ml prior to fluorescence microscopy analysis. Percentage of 

normal, apoptotic, and necrotic endothelial cells were estimated by an investigator 

blinded to the experimental conditions. 

Viable cells are characterized by normal nuclear and cytoplasmic morphology 

and should show blue staining. Apoptotic cells are characterized by cell shrinkage, 

nuclear condensation, and preservation of plasma membrane integrity. When the 

chromatin are condensed it has enhanced HT fluorescence staining (bright blue 

staining), integrity of the cell membrane prevents PI staining. Characteristics of late 

apoptosis (also known as secondary necrosis) are similar to the ones of apoptosis, in 

addition to PI staining due to loss of cell membrane integrity. Finally, primary 

necrosis show characteristics of increase in the cell size, absence of chromatin 

condensation, and cell membrane disruption.    

 

Production of conditioned apoptotic (SSC4h) and non-apoptotic media (SSC4h-

ZVAD) 

In order to produce enough amounts of both apoptotic and non-apoptotic 

media used as a negative control, HMVEC were seeded on a gelatinized T75. Once 

the endothelial cells have reached confluence they were either pre-incubated with 

DMSO, DMSO+ZVAD-FMK or not. For the production apoptotic medium, 
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endothelial cells did not need to be pre-incubated and were stimulated with serum-

free medium (RPMI) from 4 to 24 hours at 37°C with 5% CO2/95% air, to produced 

the serum starved conditioned medium SSC. On the other hand, production of non-

apoptotic medium was done by pre-incubating the endothelial cells with 100μM of 

dissolved ZVAD-FMK in DMSO at 37°C with 5% CO2/95% air. Afterwards, cells 

were washed with 1x PBS and then stimulated with serum-free medium (RPMI) from 

4 to 24 hours at 37°C with 5% CO2/95% air, to produce the non-apoptotic 

conditioned SSC-ZVAD medium. Time-course serum starvation demonstrated that 

the optimal period for producing both media was 4 hours, leading to production of 

SSC4h and SSC4h-ZVAD, for apoptotic and non-apoptotic media, respectively. At 

the concentration used, DMSO was not found to induce cell toxicity. Staining using 

HT and PI were used to calculate percentage of apoptosis and necrosis. The 

percentage of apoptosis vs. necrosis in SS4h, SSC4h+DMSO, and SSC4h-ZVAD was 

as follow: 7.4% vs. 0.36%, 4.34% vs. 2.69%, and 1.76% vs. 0.07%, respectively. The 

harvested media were then stored at -20°C for further experimental procedures. 

 

Detection of CTGF and TGF-beta levels in produced media 

The media were analyzed by Enzyme-Linked Immunosorbent Assay (ELISA) 

specific for human connective tissue growth factor (CTGF) and transforming growth 

factor-beta (TGF-β), where ELISA kits were obtained from Peprotech (Canada), and 

R&D (Canada), for detecting CTGF, and TGF-beta, respectively. Procedure on the 

usage of ELISA was provided by manufacturers.  
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Immunoblotting 

Proteins were extracted from both SSC4h and SSC4h-ZVAD media. In order 

to compare the level of protein expression, 700μl from each medium was obtained. 

Afterwards, sodium deoxycholate 2% was added to each sample with 1:100 dilution 

for 30 min on ice, TCA was added for an overnight incubation, centrifuged at 1400 

r.p.m for 10 min, washed with cold acetone and solubilized in Laemmli sample 

buffer, followed by western blotting against perlecan. The antibody for western 

blotting is rabbit-polyclonal α-Perlecan (Santa Cruz, USA) with a dilution of 1:250 in 

TBS-5% milk, at 4°C overnight. Prior to blotting with desired antibody, membranes 

were stained with Ponceau S Red as a way of protein detection. 

 

Stimulation of Small Airway Epithelial Cells (SAECs) 

Epithelial cells were cultured on 6-well plates and 8-chambers lab-teks, for 

RNA extraction and immunofluorescence procedures, respectively. Once SAEC 

seeded on 6-well plates reached confluence, each well was stimulated for 24 hours, 

for RNA extraction, by one of the following conditions: RPMI, hrTGF-β, hrCTGF, 

SSC4h, SSC4h +Ab-CTGF, and SSC4h-ZVAD. Where RPMI is serum-free medium, 

hrTGF-β is human recombinant transforming growth factor beta, hrCTGF is human 

recombinant connective tissue growth factor, SSC4h is conditioned apoptotic 

medium, SSC4h+Ab-CTGF is conditioned apoptotic medium with human CTGF 

neutralizing antibody (ProSci, Canada), and SSC4h-ZVAD is conditioned non-
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apoptotic medium. The negative controls were: SSC4h+Ab-CTGF and SSC4h-

ZVAD, whereas the positive controls were: TGF-β and CTGF, all were used in order 

to assess and compare the biological effects of conditioned SSC4h. Epithelial cells 

cultured on 8 chamber lab-teks were also stimulated by previously mentioned 

conditions, where each lab-tek was stimulated by one condition of the mentioned 

conditions for 48 hours to be used in immunofluorescence analysis.    

 

RNA Extraction/ Reverse Transcription-Polymerase Reaction (RT-PCR)/ 

Quantitative-PCR (Q-PCR) 

RNA extraction of SAEC was done using RNeasy mini kit from Qiagen and 

procedure was provided by manufacturer. According to the manufacturer, extraction 

of RNA using RNeasy technology is done based on the selective binding of silica-

based membrane and the use of microspin speed. Furthermore, ethanol is used as well 

in the procedure to help in ensuring proper binding conditions of RNA to the RNeasy 

mini spin column. Resulted high-quality RNA is then eluted in RNAse-free water.  

Following RNA purification, reverse transcription-polymerase chain reaction 

(RT-PCR) was performed to obtain complementary DNA (cDNA). In this procedure, 

synthesis of cDNA from a single-stranded RNA was done using a DNA polymerase 

reverse transcriptase (SuperScriptII, Invitrogen, Canada).  
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The amplified cDNA was then used in real-time-PCR, also known as 

Quantitive-PCR (Q-PCR). This procedure was done using RotorGene program 

“Three Step with Melt”. The process starts out by activating the enzyme with 10 min 

hold at 95°C. Then the amplification process is done in three steps:  Step 1: Hold at 

95°C for 10 min, and  0 sec;  Step 2: hold at 59°C for 15 sec;  Step 3: hold at  72°C 

for 20 sec, with a total of 40 cycles. The sequences of used primers provided by 

Invitrogen are as follow: CollagenIA1-Forward: CTGGAAGAGTGGAGAGTACTG, 

Collagen IA1-Reverse: ATGTACCAGTTCTTCTGGGC, E-cadherin-Forward: 

GCTGGAGATTAATCCGGACA, E-cadherin-Reverse: 

ACCTGAGGCTTTGGATTCCT, GAPDH-Forward: 

CTCTCTGCTCCTCCTGTTCGAC,GAPDH-Reverse: 

TGAGCGATGTGGCTCGGCT, α-SMA-Forward: GCTGTTTTCCCATCCATTGT, 

α-SMA-Reverse: TTGTGATGATGCCATGTTCT.    

 

Immunofluorescence  

Immunofluorescence procedure was used in order to detect the protein 

expression level of epithelial and mesenchymal markers; as well as the protein level 

of transcription factors. In this procedure, stimulated lab-teks (mentioned previously) 

were blocked with 5% BSA in PBS for 1hr, and then incubated for 1hr with primary 

antibodies against the following human antigens: mouse-monoclonal α-SMA (Sigma, 

Canada), mouse-monoclonal Collagen I (Sigma, Canada), mouse-monoclonal 

Cytokeratin (ZYMED laboratories, Canada), mouse-monoclonal E-cadherin (Abcam, 
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Canada), rabbit-polyclonal Snail (Abcam, Canada), rabbit-polyconal Twist (Abcam, 

Canada), and mouse-monoclonal Vimentin (Sigma, Canada). Following incubation 

with primary antibodies, the lab-teks were then incubated for 45 min with either goat 

anti-mouse, or goat anti-rabbit antibodies that are marked with Alexa 488 (Invitrogen, 

Canada). Images of immunofluorescence were captured by Olympus fluorescence 

microscope and then analyzed by Image-Pro Analyzer provided by Olympus to help 

in obtaining needed measurements for further analysis. For each stimulation a 

duplicate of captured images were obtained for all lots (for n = 3) of used SAEC. 

Fluorescent intensity associated with immunoreactivity was determined in all 

stimulated cells was determined by calculating average raw pixel intensity in captured 

area of staining.  For each captured image a mean of intensity and mean of area were 

obtained from Image-Pro Analyzer statistical analysis. Obtained mean intensity was 

divided by obtained mean area to give a score of mean Intensity/Area.  A mean score 

of intensity/area of duplicate images obtained for each type of stimulation were 

calculated and used in the final calculation of mean intensity/score for all three lots.  

Statistical analysis 

Calculated data for: CTGF concentration, Perlecan intensity expression, 

mRNA expression of EMT markers, proteins fluorescence intensity of EMT markers 

were all expressed a mean (with standard error of the mean SEM)). The significance 

difference between groups was assessed using paired two-tailed student’s test (t-test) 

using Microsoft Excel. Differences with p value of ≤ 0.05 were considered significant 

(represented by the symbol *).   
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Results 

Produced Mediators by Apoptotic Endothelial Cells 

Human lung apoptotic endothelial cells (SSC4h) produce a high level of 

CTGF when compared to non apoptotic media (SSC4h-ZVAD), 62.70pg/ml vs.15.63 

pg/ml (Figure 18A). Surprisingly, TGF-b was not detected in both media (data not 

shown). Results obtained from immunoblotting against perlecan done on proteins 

extracted from both media reported an elevated signal of perlecan in SSC4h that was 

9 folds higher than SSC4h-ZVAD (Figure 18B). This indicates that the pathway of 

apoptosis is a critical factor in the production of CTGF and perlecan as apoptotic 

mediators.       

 

Expression Level of Epithelial-Mesenchymal-Transition Genes  

Analysis of RNA expression from stimulated SAEC using Q-PCR helps in 

understanding the level of expression for epithelial (E-cadherin) and mesenchymal 

(collagenIA1 and -SMA) markers. Figure 19 represents the level of E-cadherin 

expression in stimulated SAEC. Although the expression of E-cadherin in cells 

stimulated with SSC4h (1.36 fold of expression) was not lower than the RPMI 

baseline expression. However; it has been noted that the expression of E-cadherin in 

cells stimulated with SSC4h was slightly lower than cells stimulated with TGF- 

(1.53 fold), CTGF (1.45 fold), SSC4h+Ab-CTGF (1.61 fold), and SSC4-ZVAD (1.56 

fold). Figure 20 represents the level of collagenI expression in stimulated SAEC. It 

has been noted a high expression level of collagenI in cells stimulated with TGF-
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 fold), CTGF (1.87 fold), SSC4h (1.78 fold), and SSC4+Ab-CTGF (2.08) 

compared to those stimulated with RPMI (1.00) and SSC4h-ZVAD (0.89). The 

expression level of collagenI was significant in cells stimulated with baseline RPMI 

and SSC4-ZVAD when compared to TGF- with p≤0.05 (represented by * in the 

Figure). Figure 21 is a representation of the gene expression of alpha-smooth muscle 

actin (-SMA), where a pattern of expression similar to collagen IA1 was noted in 

stimulated SAEC. Stimulated SAEC demonstrated increase in the expression of -

SMA in cells stimulated with TGF- (1.24 fold), CTGF (1.97 fold), SSC4h (1.94 

fold), SSC4h+Ab-CTGF (1.86) compared to those stimulated with RPMI and SSC4h-

ZVAD (0.40 fold).   

 

Expression Level of Epithelial-Mesenchymal-Transition Proteins   

 Immunofluorescene staining using antibodies specific to epithelial and 

mesenchymal markers and transcription factors has helped in detecting the level of 

protein expression. Analysis of the captured fluorescence images helped in 

determining the level of intensity of each marker per captured area, where the level of 

protein expression is presented by intensity/area. Figures 22A and 22B represent the 

expression of epithelial markers, E-cadherin and cytokeratin, in stimulated SAEC. It 

was noted that the intensity/area score in cells stimulated with SSC4h demonstrated a 

decrease in the expression of epithelial markers, with a score of intensity/area of 

18.27 in cytokeratin and 343.33 in E-cadherin, compared to the intensity of the 

baseline (RPMI) which had an intensity/area of 46.08 in cytokeratin and 378.07 in E-



96 
 

cadherin. Cells stimulated with SSC4h-ZVAD had a high expression of the epithelial 

marker E-cadherin with an intensity/area of 377.97 compared to those stimulated with 

SSC4h. The level of epithelial markers expression in cells stimulated with TGF-b, 

CTGF, SSC4h+Ab-CTGF demonstrate similar results to those stimulated with 

SSC4h. Figures 23A and 23B represent the immunofluorescence results of the 

mesenchymal markers collagen, a-SMA, and Vimentin in stimulated SAEC. These 

data demonstrate a high level of expression of the mesenchymal markers in cells 

stimulated with SSC4h compared to those stimulated with RPMI and ZVAD with 

intensity levels of with collagen having an intensity of 217.69 intensity/area, -SMA 

of 115.99 intensity/area, and  Vimentin of 174.19 intensity/area. Figures 24A and 24B 

represent the level of expression for the transcription factors Snail and Twist, where 

Snail has an expression level of 94.92 intensity/area in cells stimulated with SSC4h 

compared to RPMI which had an expression of 62.59 intensity/area. Twist had an 

expression level of 54.58 intensity/area in cells stimulated with SSC4h compared to 

RPMI which had an expression of 30.89 intensity/area.    

 

Discussion  

 

Etiologies behind the development of chronic lung transplant rejection, or 

bronchiolitis obliterans (BO), remain poorly understood due to the involvement of 

several, complex and fine pathways in it. Studies suggested that a hallmark of BO 

development is the destruction of the epithelial which lead to luminal obliteration 
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[175, 179, 332, 352].  One mechanism where epithelial cells go through 

morphological changes is Epithelial-Mesenchymal-Transition (EMT), a 

transdifferential process, in which the epithelial cells lose their epithelial properties 

and gain mesenchymal ones. The acquired properties allow for production of 

metalloproteinases (MMPs) and deposition of extracellular matrix (ECM)[346]. EMT 

has been implicated in the pathogenesis of chronic inflammation, fibrosis, and the 

development of cancer [2, 208, 280, 346].
 
 

Studies done on fibrogenic disorders such as systemic sclerosis [152, 214], 

graft versus-host disease [153, 154], and chronic rejection of kidney allograft [155, 

156], suggest apoptosis of endothelial cells (EC) as a key initiator of disorder. It is 

favorable that apoptotic endothelial cells work on producing and releasing mediators 

through a complex and fine pathway, such as proteolysis of the extracellular matrix 

(ECM). In the study done by Hebert and her team [348], it is suggested that 

generation of bioactive mediators by apoptotic cells is done through an “energy-

efficient” ECM proteolysis. Since the ECM is a good reservoir of growth factors and 

cryptic bioactive factors [353-355] to maintain cell survival. In their previous work 

[348], one bioactive mediator produced by apoptotic EC is a C-terminal fragment of 

the domain V of perlecan, which is suggested to be released through activation of a 

caspase-dependent pathway [356].   

In our study we were able to induce apoptosis in lung HMVEC as well as 

inhibit apoptosis through pre-incubation with ZVAD-FMK, which is a caspase 

inhibitor. Analysis on conditioned apoptotic (SSC4h) and non-apoptotic (SSC4h-

ZVAD) media suggest that only the apoptotic medium was capable of producing 
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mediators such as CTGF and perlecan as a consequence of apoptosis, possibly 

through proteolysis of the ECM. These mediators were not or barely detected in 

SSC4h-ZVAD, this indicates that inhibition of apoptosis in HMVEC prevents 

proteolysis of ECM, thus inhibits the production of major mediators. Furthermore, 

TGF- was not detected in both media which suggests that apoptosis of EC does not 

produce TGF- in the mix of both conditioned media. Detection of CTGF and 

perlecan supports that work done by others [151], who were able to produce CTGF 

and perlecan through conditioning apoptotic endothelial media. Also, they were not 

able to detect TGF-β in their conditioned media which also supports our results of 

failing to detect TGF- in our media.     

 Since the EMT process involves repression of the epithelial genes and 

activation of the mesenchymal ones, studying the level of genes expression of 

stimulated cells with SSC4h is an essential step in detecting the occurrence of the 

EMT process. This process is critically regulated by transcription factors, such as 

Twist and Snail, which function in an organized matter by binding to the E-cadherin 

promoter [320, 349], repressing its expression, and activating the expression of 

mesenchymal markers. Although the mRNA expression of E-cadherin in small 

airway epithelial cells stimulated with SSC4h was slightly higher but not statistically 

different to the baseline expression. A similar pattern was observed for all the 

conditions with the exception of TGF-beta showing a significant increase in E-

cadherin mRNA expression (1,53X). We propose that 24 hours stimulation is not 

enough to induce a significant change in E-cadherin mRNA expression.  
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A significant increase in the mRNA expression of collagenIA1 was observed 

in SAEC stimulated with SSC4h (1.78 fold), as well as in the positive controls TGF-

(8.17 -CTGF (2.08) when compared to the 

negative controls such as baseline RPMI (1.00) and SSC4h-ZVAD (0.89). This 

suggests that mediators in SSC4h work on inducing the mRNA expression of 

collagenIA1 in a similar manner to CTGF and to a lesser extent when compared to 

TGF-b. Total inhibition of CTGF in SSC4h (SSC4h+Ab-CTGF) did induce the 

mRNA expression of collagenIA1 as well which suggests involvement of other 

mediators in the apoptotic mix that work on inducing the EMT markers. In addition, 

these results suggest that mediators produced by SSC4h conditioned medium play a 

crucial role in activating the expression of mesenchymal markers, and inhibition of 

apoptosis, which results in inhibiting the production of these mediators, might prevent 

induction of EMT. The mRNA expression of -SMA in stimulated SAEC 

demonstrated similar pattern of expression to those of collagenIA1. An increase in the 

mRNA expression of -SMA was observed in SAEC stimulated with SSC4h (1.94 

fold) similar to the positive control CTGF (1.97 fold) and higher that the other 

positive control TGF- (1.24 fold) when compared to baseline expression. The 

increased expression with the SSC4h was not inhibited by neutralization of CTGF. 

No stimulation of the expression was detected with the negative control non apoptotic 

media.  

 

We completed our mRNA expression analysis by microscopic analysis of 

stimulated SAEC. We first noted that the morphology of SAEC did change when 
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stimulated for 48 hours with conditioned apoptotic medium where SAEC take a 

fibroblastic appearance as noted by the elongation of cells and ramification formation. 

We noted that protein expression of epithelial markers, E-cadherin and Cytokeratin, 

was low in SAEC stimulated with SSC4h compared to those stimulated with RPMI, 

SSC4h+Ab-CTGF, and SSC4h-ZVAD. TGF-beta did not succeed to decrease the 

epithelial markers. On the other hand, the expression of mesenchymal markers, such 

as collagen, -SMA, and Vimentin demonstrate a high level of protein expression 

when compared to those stimulated RPMI, SSC4h+Ab-CTGF, and SSC4h-ZVAD. 

Increase in the expression of Twist and Snail was noted in SAEC stimulated with 

SSC4h when compared to baseline RPMI, and in SAEC stimulated with SSC4h+Ab-

CTGF, and SSC4h-ZVAD.  At the protein level, the neutralization of CTGF in the 

conditioned apoptotic media succeeds to inhibit the EMT effect of SSC4h. 

Furthermore, SAEC stimulated with TGF- and CTGF demonstrate similar reaction 

to that of SAEC stimulated with SSC4h where decrease in epithelial markers and 

increase in the mesenchymal ones are observed as results of the stimulation. This 

suggests involvement of released mediators by apoptotic endothelial cells to be 

responsible in inducing EMT, and inhibition of their release might prevent fibrosis.      

 Our results support others work [343] where they have worked on inducing 

EMT in epithelial cells obtained from lung transplant recipients. In their studies, they 

have stimulated EMT using TNF-α and TGF-β, and checked their effect in driving the 

fibrosis process and deposition of ECM. They were able to detect decrease in the 

expression of E-cadherin an epithelial marker, and note an increase in the expression 

of Vimentin and α-SMA in patients who developed BOS compared to the controls 
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and stable LTRs. In their studies they also confirm the implication of EMT as a 

mechanism driving the development of BO.  This confirms our results where released 

mediators through ECM proteolysis have direct consequences in inducing EMT and 

thus causes airway remodeling which leads to BO development. .  

Furthermore, SAEC stimulated with TGF- and CTGF demonstrate similar 

reaction to that of SAEC stimulated with SSC4h where decrease in epithelial markers 

and increase in the mesenchymal ones are observed as results of the stimulation.     

 

Conclusion 

 Stimulation of apoptotic mediators of lung EC in activating EMT might help 

in having a better understanding of the involvement of EMT in several pathologies. It 

might also help in revealing possible connection between EMT and airway 

remodeling which is a key feature in lung diseases such as BO. Early detection of 

apoptotic EC might help in treating the disorder at an early stage which leads to 

higher chances of survival.      
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Figure 18: Mediators produced in apoptotic (SSC4h) and non-

apoptotic media (SSC4h-ZVAD): 

A) Level of connective tissue growth factor (CTGF) in produced media: 

  

 

B) Perlecan detection in produced media:   

               

Figure 18: A) ELISA detection shows a high CTGF level in SSC4h (62.70pg/ml) 

compared to SSC4h-ZVAD (15.63 pg/ml).  Mean ± SEM, n=3. B) Immunoblotting 

against Perlecan shows an expression of 9 folds higher in SSC4h medium (~23kDa 

highlighted with black rectangular) compared to SSC4h-ZVAD medium. Mean ± 

SEM, n=2.  

~23 

kDa 

SSC4h     SSC4h-ZVAD 
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Figure 19: Level of E-cadherin Expression in stimulated Small 

Airway Epithelial Cells (SAEC): 

 

 

Figure 19: Level of E-cadherin mRNA expression of stimulated SAEC for 24hrs 

with: RPMI, apoptotic medium SSC4h, 10ng/ml TGF-β, 20 ng/ml CTGF, apoptotic 

medium SSC4h + neutralizing anti-CTGF, and non-apoptotic medium SSC4h-ZVAD. 

Mean ± SEM, paired t-test n=4, (*) statistically significant p ≤ 0.05.  

 

 

 

 

 

 

 

 



104 
 

Figure 20: Level of Collagen IA1expression in stimulated Small 

Airway Epithelial Cells (SAEC): 

 

 

 

Figure 20: Level of CollagenIA1 mRNA expression of stimulated SAEC for 24hrs 

with: RPMI, apoptotic medium SSC4h, 10 ng/ml TGF-, 20 ng/ml CTGF, apoptotic 

medium SSC4h + neutralizing anti-CTGF, and non-apoptotic medium SSC4h-ZVAD. 

Mean ± SEM, paired t-test n=4, (*) statistically significant p ≤ 0.05. 
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Figure 21: Level of alpha Smooth Muscle Actin (α-SMA) expression 

in stimulated Small Airway Epithelial Cells (SAEC): 

 

 

Figure 21: Level of alpha Smooth Muscle Actin (α-SMA) mRNA expression of 

stimulated SAEC for 24hrs with: RPMI, apoptotic medium SSC4h, 10 ng/ml TGF-β, 

20 ng/ml CTGF, apoptotic medium SSC4h + neutralizing anti-CTGF, and non-

apoptotic medium SSC4h-ZVAD. Mean ± SEM, paired t-test n=4, (*) statistically 

significant p ≤ 0.05. 
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Figure 22: Immunofluorescence of Epithelial markers: 

A)  
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B) Fluorescence intensity of epithelial markers: 

 

 

 

Figure 22: A) Protein level expression was done using immunofluorscence on non-

stimulated (SABM) and stimulated SAEC for 48hrs with: RPMI, apoptotic medium 

SSC4h, 10 ng/ml TGF-β, 20 ng/ml CTGF, apoptotic medium SSC4h + neutralizing 

anti-CTGF, and non-apoptotic medium SSC4h-ZVAD, n=3. Primary antibodies 

specific for epithelial markers (E-cadherin and Cytokeratin) were used. B) 

Representation of fluorescence signaling by Intensity/ Area.   
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Figure 23: Immunofluorescence of Mesenchymal markers: 

A) 
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B) Fluorescence intensity of mesenchymal markers: 
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Figure 23: A) Protein level expression was done using immunofluorscence on non-

stimulated (SABM) and stimulated SAEC for 48hrs with: RPMI, apoptotic medium 

SSC4h, 10 ng/ml TGF-β, 20 ng/ml CTGF, apoptotic medium SSC4h + neutralizing 

anti-CTGF, and non-apoptotic medium SSC4h-ZVAD, n=3. Primary antibodies 

specific for mesenchymal markers (Collagen, α-SMA, and Vimentin) were used. B) 

Representation of fluorescence signaling by Intensity/ Area.  
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Figure 24: Immunofluorscence of Transcription Factors: 
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B) Fluorescence intensity of transcription factors: 

 

 

 

 

Figure 24: A) ) Protein level expression was done using immunofluorscence on non-

stimulated (SABM) and stimulated SAEC for 48hrs with: RPMI, apoptotic medium 

SSC4h, 10 ng/ml TGF-β, 20 ng/ml CTGF, apoptotic medium SSC4h + neutralizing 

anti-CTGF, and non-apoptotic medium SSC4h-ZVAD, n=3. Primary antibodies 

specific for transcription factors (Twist and Snail) were used. B) Representation of 

fluorescence signaling by Intensity/ Area.  
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In the present study, we propose that injured endothelial cells, due to ischemia-

reperfusion or other stimulus, lead to proteolysis of the extracellular matrix (ECM) 

and production of cryptic fibrogenic factors in which they work on inducing and 

activating remodeling and fibrotic processes. One of these processes is epithelial-

mesenchymal-transition (EMT). There are different types of EMT, where this study 

focuses on the second type (type II in figure6) which is usually involved in tissue 

generation and wound healing. The activation of this type of EMT has been 

implicated in the fibrogenesis of several disorders [209, 210, 212-215]. In addition, 

the altered EMT process works on producing and generating excessive mesenchymal 

cells in an uncontrolled mater that participates in airway remodeling. This has 

allowed proposing EMT as a possible key factor and contributor in the progressive 

irreversible airway remodeling in bronchiolitis obliterans. Studying the EMT process 

and its implication in the current study was done in two parts. The first part involves 

detection of EMT occurrence in situ in transbronchial biopsies (TBB) obtained 

retrospectively from lung transplant recipients (LTRs) following lung transplantation. 

The second part of the study involves induction and stimulation of EMT process in 

vitro in small airway epithelial cells (SAEC) through mediators produced by 

conditioned apoptotic medium (SSC4h) from endothelial cells of the lung.   
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4.1. Epithelial-Mesenchymal-Transition in situ 

The second chapter of this study sheds light on the detection of epithelial-

mesenchymal-transition in transbronchial biopsies (TBB) obtained from lung 

transplant recipients (LTRs). Identification of EMT is proposed to be an early 

indicator or an alarming factor in the development of bronchiolitis obliterans 

syndrome (BOS) following lung transplantation (LT) by causing airway remodeling. 

Obtained results of EMT expression were also correlated with gathered clinical data, 

showing interesting correlation with decline in lung function. Other studies have also 

worked on associating bench work done on TBB with clinical data. One study [345] 

suggested airway remodeling to be resulted from thickening of reticular basement 

membrane (Rbm) as a result of inflammation in LTRs. Proposing the thickening of 

Rbm as an explanation of the airway remodeling which is seen in LTRs. 

 

4.1.1. Detection of Epithelial-Mesenchymal-Transition  

Airway epithelial cells serve at the main targets of injury, and repeated assaults 

might trigger activation of certain process. According to previous studies, epithelial-

mesenchymal-transition is considered as a defense option for epithelial cells exposed 

to chronic or repeated injury. The EMT process is characterized by loss of E-

cadherin, an epithelial marker, and gain of mesenchymal proteins, such as S100A4 

and Vimentin, which in turn leads eventually to generation of myofibroblastic 

markers, such alpha-smooth muscle actin (α-SMA) and the ED-A splice variant of 
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fibronectin (ED-A FN) [357]. Furthermore, studies have demonstrated that increase in 

the expression of Twist, a transcription factor (TF), has been involved in inducing the 

EMT process. Twist results in loss of the E-cadherin mediated cell-cell adhesion, 

activation of mesenchymal markers, and induction of cell motility, all of this 

emphasizes on the involvement of Twist in inducing the EMT process [330]. Based 

on these gathered data, we expected that induced EMT process in TBB reveals an 

increase in the expression of both Twist and Vimentin (a mesenchymal marker) and 

decrease in the expression of E-cadherin (epithelial marker).   

The demographic data of the recruited patients did not show any significant 

differences in regard of the age range, median age, and original diseases. However 

significant differences were observed, for the range of  FEV1% loss, median of  

FEV1% loss, range of FEF25-75 % loss, and median of FEF25-75% loss as it is 

directly related to the BOS diagnosis.  The recruited patients were divided into two 

groups: a stable one with 9 patients, and a BOS group with 10 patients. Total number 

of included TBB was 37 biopsies, where 17 biopsies were in the stable group, and 20 

biopsies were in the BOS ones. The obtained biopsies were then stained using 

immunohistochemistry procedure with antibodies specific for E-cadherin, Vimentin, 

and Twist to detect the expression and occurrence of EMT process in TBB.      

Loss of E-cadherin expression is noted as a hallmark of induced EMT. In the 

current study we were able to detect decrease in the expression of E-cadherin in the 

airway epithelium, where It was noted that E-cadherin was significantly more 

expressed in the stable group when compared to the BOS. We were able to detect 

change in the expression of E-cadherin as early as 1 month after LT. These results 
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indicate that the BOS group demonstrates a loss or repression of the E-cadherin 

expression compared to the stable group.  This might be an early sign of EMT 

induction and occurrence in obtained biopsies following LT. Our study might not be 

the first one in studying changes of EMT markers expression since there are other 

studies that have worked on detecting these changes for studying the development of 

asthma [358] and BOS (or BO) [343, 344]. However, we are the first to report these 

changes of EMT markers expression in the small airways or in TBB obtained from 

LTRs.    

Gain of mesenchymal markers expression, such as Vimentin, is considered as the 

following step after loss of E-cadherin expression in the EMT process. The Vimentin 

marker was significantly more expressed in epithelium and its cytoplasm in the BOS 

group compared to the stable one. We were able to note this increase of Vimentin 

expression as early as one month post LT.  These results indicating an induced 

expression of Vimentin in the BOS group supports and demonstrates gain in the 

expression of the mesenchymal marker Vimentin compared to the stable group. This 

suggests that high expression of Vimentin is a characterization of BOS and its 

development.  

According to previous studies, Twist is a transcription factor that has been 

implicated in inducing the EMT process. Expression of Twist was also checked in the 

stained biopsies for Twist. . The transcription factor Twist was significantly more 

expressed in epithelial, cilia of the epithelial cells, cytoplasm, and nuclei in the BOS 

group compared to the stable one. We were able to note this increase of Twist 

expression as early as one month post LT. High expression of Twist in the epithelial 
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and specially its expression as a nuclear staining suggesting translocation of this 

protein into the nucleus to help in inducing the EMT process. The transcription factor 

Twist functions in inducing EMT by direct binding to the promoter of E-cadherin and 

causing repression of it [331]. It has been mentioned that Twist can induce EMT 

through a mechanism that does not necessarily involve direct binding to E-cadherin 

promoter and thus it can induce mesenchymal expression without the need of 

repressing E-cadherin expression [332]. Based on these data, high expression of 

Twist is a key factor in inducing EMT process in patients who develop BOS.  Twist 

can induce EMT by repressing the expression of E-cadherin and inducing the 

expression of Vimentin as early as one month. This suggests a high expression of 

Twist might be an important indicator alarming for BOS development in LTRs.  

In addition to detection of change in the expression of EMT markers, we have 

also checked for possible correlation and association between expressed EMT 

markers relative to each other. The expression of E-cadherin marker revealed 

negative correlations with both Vimentin and Twist expressions, however; the 

expressions of both Vimentin and Twist showed a positive correlation.  This 

demonstrates that decrease in the expression of E-cadherin correlates with an increase 

in the expression of both Vimentin and Twist, whereas increase in the expression of 

Vimentin correlates with the expression of Twist. This supports suggestions of Twist 

having a critical role regarding expressed markers of EMT. Induced EMT process 

results in an excessive generation of mesenchymal cells; where these cells participate 

in airway remodeling, and lead to BOS development.    
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4.1.2. Correlations of Clinical Data with Epithelial-Mesenchymal-

Transition    

Since we suggest that EMT is involved with the airway remodeling which results 

in BO development, we proposed the possibility of EMT having a clinical impact on 

lung function of LTRs. The activated EMT not only stimulates the generation of 

mesenchymal cells, but also causes release of mediators the further stimulate 

production and proliferation of mesenchymal cell. Excessive production of 

mesenchymal cells might play an important role in narrowing the airways which 

influences the lung function. Some of the gathered information about the recruited 

patients is their lung function tests (FEV1 and FEF25-75) done on a regular basis post 

lung transplantation procedure, and their BOS grade if any. Expressions of EMT 

markers have been correlated with decline in lung function represented as FEV1% 

loss and FEF25-75% loss. The E-cadherin expression demonstrated negative 

correlations with percentage loss of FEV1 and FEF25-75, whereas both expressions 

of Vimentin and Twist were positively correlated with the percentage loss of FEV1 

and FEF25-75. This suggests that airway remodeling in LTRs caused by induced 

EMT leads to decrease in lung function and thus leads to decrease in the survival of 

patients.         

 

4.1.3. Collagen Deposition Association with Epithelial-Mesenchymal-

Transition 

The extracellular matrix (ECM) is composed of several complex 

macromolecules that include: collagen, elastin, fibronectin, tenascin, and 

proteoglycan. One of the major ECM proteins is collagen. Previous studies have 
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demonstrated positive correlation between collagen deposition and asthma, a disorder 

characterized by having airway remodeling [359, 360]. This has allowed us to 

propose a possible correlation between collagen deposition and with the expression of 

EMT markers, FEV1% loss, and FEF25-75% loss. We were able to detect appositive 

correlations between collagen deposition and the expressions of both Vimentin and 

Twist. Also positive correlations were detected with collagen deposition and 

percentage loss of bothe FEV1 and FEF25-75. However, collagen deposition 

demonstrated negative correlation with E-cadherin expression.  The positive 

correlations between collagen deposition and expressions of Vimentin and Twist 

suggest possible implication of expressed markers in the increase of collagen 

deposition. These results support the idea of ECM proteolysis and release of collagen 

during generation of mesenchymal cells from induced EMT process.  Furthermore, 

correlations between collagen deposition and loss of FEV1 and FEF25-75 suggest the 

possible impact of collagen deposition on lung function by causing narrowing and 

remodeling of the airways. Therefore, induced EMT plays a major role in the 

development of BOS.    

 4.2. Epithelial-Mesenchymal-Transition in vitro by Apoptotic Endothelial 

Cells 

 Previous studies have suggested that apoptotic endothelial cells (EC) can 

release mediators that play an important and direct role in fibrogenesis by regulating 

resistance to apoptosis and differentiation of fibroblasts [160, 161]. In the present 

study, we work on producing conditioned apoptotic (SSC4h), and non-apoptotic 

(SSC4h-ZVAD) media from Human Microvascular Endothelial cells-Lung 
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(HMVEC-L). These media were then analyzed to detect possible produced and 

released mediators in them. The media were then used in vitro to induce the EMT 

process in human small airway epithelial cells (SAEC).      

 

4.2.1. Produced Mediators from Apoptotic Endothelial Cells 

At the activation of apoptotic pathways whether it was intrinsic and/or extrinsic 

pathways, a group of intracellular cysteine enzymes named caspases are activated and 

work on destroying essential cellular proteins and eventually lead to cell death. 

During apoptosis there are two tiers of caspase activation: an initiator caspases 

(caspases 2, 8, 9, and 10) that are activated through apoptosis-signaling pathways and 

activate the effector caspases (caspases 3, 6, and 7) which, in an expanding cascade, 

carry out apoptosis [136, 148, 151].   

A group of professional phagocytes, such as macrophages [156, 158], are 

recruited by endothelial cells (EC) apoptosis. This recruitment causes macrophages to 

produce an increased amount of transforming growth factor-beta1 (TGF-β1) [159]. 

Release of such mediator has been suggested to be involved and contribute in 

fibrogenesis through causing differentiation of myofibroblast and resistance to 

apoptosis in fibroblasts/myofibroblasts [162]. However, it has been proposed the 

possibility of other mediators to contribute in the fibrogenesis process. One of these 

proposed mediators is connective tissue growth factor (CTGF) which works in a 

TGF-β1-independent manner [361, 362].    
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In this part of the study, we have worked on conditioning an apoptotic (SSC) and 

non-apoptotic (SSC-ZVAD) media from HMVEC, where serum starvation 

stimulation with 4 hours demonstrated to have an optimal percentage of apoptosis vs. 

necrosis Analysis of the harvested media using ELISA assay specific for TGF-β did 

not detect any expression of TGF-β in both media. However, when ELISA assay 

specific for CTGF was used it revealed a high concentration of CTGF in SSC4h 

compared to SSC4h-ZVAD, 62.70 pg/ml vs.15.63 pg/ml, respectively. Furthermore, 

immunoblotting against perlecan done on proteins extracted from both media 

revealed an elevated signal of perlecan in SSC4h that was 9 fold higher than the one 

in SSC4h-ZVAD. From these results several points can be drawn. One of these points 

is to prove release of cryptic fibrogenic mediators through apoptosis of endothelial 

cells. However, endothelial cells which go through apoptosis do not produce TGF-β 

as mediator. Moreover, inhibition of the caspase cascades does in fact inhibit the 

release of certain mediators that are known to be involved in fibrogenesis, such as 

CTGF and perlecan. This also suggests the possibility that prevention of apoptosis 

either through clinical trigger control or by using inhibition of caspase cascade as 

therapeutic method in targeting fibrogenic mediators might help in preventing fibrosis 

caused by apoptotic mediators. The involvement of TGF-b, CTGF, and perlecan in 

the fibrogenesis of airways remodeling have been reported in several studies done in 

studying different pulmonary disorders. However there is no study that demonstrates 

the involvement of perlecan produced from apoptotic endothelial cells as a key factor 

in airway remodeling of BOS following lung transplantation.   
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4.2.2. Change in Epithelial-Mesenchymal-Transition Gene expression 

In this part of the study, produced conditioned media were used to stimulate 

induction of EMT process in small airway epithelial cells (SAEC). In addition to the 

conditioned media (SSC4h), positive and negative control conditions were tested as 

well. Detections for mRNA expressions of the following EMT markers, E-cadherin, 

CollagenIA1, and α-SMA, were done on stimulated SAEC.  

E-cadherin is an epithelial marker and an important structural protein that 

functions in cell adhesion to ensure cells within tissue are bound together. Since the 

EMT process involves repression of E-cadherin expression, and activation of 

mesenchymal expression, therefore; E-cadherin mRNA expression should be 

identified and verified in stimulated epithelial cells that are going through EMT. It 

was noted that mRNA expression of E-cadherin in SAEC stimulated with SSC4h was 

slightly higher but not statistically different from the baseline expression. A similar 

pattern was observed for all the other conditions with the exception of TGF-β which 

revealed an increase in the expression of E-cadherin mRNA (1.53 fold). This 

demonstrates that produced mediators in SSC4h did not repress the expression of 

mRNA E-cadherin. Also, it should be noted that these stimulations were done in a 

period of 24 hours which might not be enough to repress the mRNA expression of E-

cadherin.        

 In addition to detection of mRNA expression of the epithelial marker E-

cadherin, mRNA expression of mesenchymal markers such as CollagenIA1 and α-

SMA were also measured in stimulated SAEC. An increase in the expression of 

collagenIA1 mRNA was observed in SAEC stimulated with SSC4h, as well as in the 
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positive controls TGF-β, and CTGF, when compared to the baseline, and to the 

negative control SSC4-ZVAD. SAEC that were stimulated with SSC4h+Ab-CTGF 

demonstrated an increase in the expression of mRNA CollagenIA1 similar to those 

stimulated with SSC4h. Similar pattern of α-SMA mRNA expression was observed in 

stimulated SAEC. An  increase in mRNA expression of α-SMA in SAEC stimulated 

with SSC4h, CTGF, TGF-β was observed when compared to the baseline RPMI and 

to stimulation with the non-apoptotic medium (SSC4h-ZVAD). We noted that SAEC 

stimulated with SSC4h+Ab-CTGF demonstrated an increase in the mRNA expression 

of α-SMA. These obtained data indicate and support the idea of released mediators in 

having an important role in generating mesenchymal cells. However, each mediator 

seems to enhance different mesenchymal markers, and seems to enhance 

mesenchymal expression in an independent manner from each other. In addition, 

inhibition of CTGF in SSC4h by neutralizing antibody did not inhibit the induction of 

neither collagenIA1 nor α-SMA, suggesting the involvement of other produced 

mediators in the conditioned medium that can induce the EMT process even at 

absence of CTGF activity.      

In this part of the study we have worked on inducing the EMT process in small 

airway epithelial cells (SAEC) through apoptotic endothelial cells. In addition to 

production of conditioned apoptotic endothelilal cells medium (SSC4h), a 

conditioned non-apoptotic medium was also produced through inhibting the 

activation of caspases cascade using ZVAD-FMK (a caspase cascade inhibitor). This 

part works on detecting possible mediators released by apoptotic endothelial cells and 

the impact these released mediators has in inducing the EMT process.   



130 
 

 

 

4.2.3. Change in Epithelial-Mesenchymal-Transition Proteins Expression  

 In this part we checked for the expression of EMT markers at the protein level 

using indirect imuunofluorescence microscopy and using antibodies against epithelial 

and mesenchymal markers and against transcription factors. Stimulation of SAEC 

was done using previously mentioned conditions for 48 hours to detect the level of 

protein expression. Change in the morphology of stimulated SAEC was taken into 

consideration and whether epithelial cells have preserved their morphology or had 

fibroblast-like ones. Fibroblast cells are characterized by having an elongated shape 

with branched cytoplasm surrounding an elliptical, speckled nucleus having two 

nucleoli. Fibroblasts are capable of producing collagens, glycosaminoglycans, 

reticular and elastic fibers, where glycoproteins are found in the ECM. Generation of 

fibroblasts is usually stimulated during tissue damage which induces mitosis of 

fibroblasts[363]. In contrast to epithelial cells, fibroblasts do not form a flat 

monolayer, and are not restricted by polarized attachement to a basal lamina. They 

are also capable of migration in contrast to epithelial cells. Fibroblasts are like other 

cells of connective tissue are derived from primitive mesenchyme. Therefore, 

fibroblasts express vimentin as an intermediate filament protein, which is recognized 

as a marker to distinguish mesodermal origin[363]. However, detection of vimentin a 

mesodermal marker might not necessarily be specific as epithelial cells cultured in 

vitro on adherent substratum may also express vimentin after a certain period of time 

[363].  Indeed, our some of our SAEC stimulated with SSC4h demonstrated changes 
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in their morphologic features where they more elongated shape resembling features 

more of fibroblasts than those of the epithelial cells.  

Following stimulation, SAEC were analyzed for proteins expressions of E-

cadherin, cytokertin, collagenI, α -SMA, Vimentin, Twist, and Snail. E-cadherin and 

cytokeratin are epithelial markers, whereas collagenI, α-SMA, and Vimentin are 

mesenchymal markers. Twist and Snail are transcription factors that induce the EMT 

process. We used software the helped in analyzing captured images of our 

immunofluorescence results in order to avoid individual interpretation bias where we 

have used the mean area of captured image and mean intensity of the captured area to 

obtain a mean intensity/area score for each marker. The score helps in determining 

the protein expression of each marker (total of seven markers), each stimulation (total 

of stimulating conditions) and allow for comparing how all markers get expressed 

depending on a type of stimulation, as well as how each marker expression varies 

depending on the condition of stimulation. 

The score of intensity of epithelial proteins such cytokeratin and E-cadherin 

were detected in stimulated SAEC. For cytokeratin intensity SAEC stimulated with 

SSSC4h had the lowest score of intensity compared to the rest of stimulations, even 

when it was compared to the positive controls TGF- and CTGF. For E-cadherin 

intensity score was low in SAEC stimulated with SSC4, TGF-b, CTGF, and 

SSC4h+Ab-CTGF when compared to baseline RPMI and SSC4h-ZVAD. The 

obtained results demonstrate the ability of produced mediators in repressing the 

protein expression of E-cadherin but not cytokeratin, however; stimulation with 

SSC4h was able to repress the expression of both proteins.  
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The mesenchymal protein expressions such as collagen I, α-SMA, and 

Vimentin were measured in stimulated SAEC. High protein expression of collagen I 

was seen in SAEC stimulated with SSC4h and TGF- when compared to those 

stimulated with baseline RPMI, CTGF, SSC4h+Ab-CTGF, and SSC4-ZVAD. This 

demonstrates the ability of SSC4h’s produced mediators and TGF- in inducing the 

protein expression of collagenI, and CTGF failed to induce the protein expression of 

collagenI. High protein expression of α-SMA was noted in SAEC stimulated with 

SSC4h and CTGF compared to those stimulated with baseline RPMI, TGF-, 

SSC4+Ab-CTGF,and SSC4h-ZVAD. This demonstrates the ability of SSC4h’s 

produced mediators and CTGF in inducing the protein expression of collagenI, which 

TGF-has failed  to induce. In addition, inhibition of CTGF through neutralizing its 

activity revealed decrease in the expression of -SMA suggesting CTGF to be a key 

inducer of -SMA protein expression. Furthermore, high protein expression of 

Vimentin was noted in SAEC stimulated with SSC4h, TGF-, CTGF, and 

SSC4h+Ab-CTGF, when compared to baseline RPMI and SSC4h-ZVAD. This 

reveals the implication of mediators produced by SSC4h in addition to TGF-and 

CTGF in inducing the protein expression of Vimentin. In addition, SAEC stimulated 

with SSC4h-ZVAD had a low expression of Vimentin confirming on the important 

role produced mediators have in inducing the expression of Vimentin.         

 To sum up, stimulation of SAEC with SSC4h demonstrated a high level of 

mesenchymal protein expression compared to baseline SAEC, or stimulated with 

SSC4h+Ab-CTGF, and SSC4h-ZVAD.. This indicates that mediators produced 

during apoptosis play an important role in inducing EMT process, and this can be 
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proven by stimulation done using the non-apoptotic medium (SSC4h-ZVAD) where 

release of these mediators is inhibited and thus does not induce EMT. Stimulation of 

SAEC with TGF-β and CTGF revealed similar results to those obtained in SSC4h 

stimulation, which emphasize on their role and involvement of inducing EMT and 

could be possible targets in inhibiting EMT process.    

 

 Protein expressions of transcription factors, such as Snail and Twist, have 

been detected in addition to detection of epithelial and mesenchymal markers. The 

reason behind detecting the expression of these transcription factors is because these 

transcription factors participate in inducing EMT process by repressing the expression 

of E-cadherin through direct or indirect binding to its promoter. Therefore, detection 

of transcription factors might serve as the missing piece in understanding the 

mechanism behind EMT induction. From our study, we have observed that stimulated 

SAEC with SSC4h demonstrated a high intensity of Snail and Twist expressions 

compared to SAEC that were incubated with either baseline RPMI, or SSC4h-

ZVAD.. These results prove that expression of Twist is highly enhanced by mediators 

produced by the conditioned apoptotic medium, where inhibition of their production 

in the non-apoptotic did not express Twist as much as the apoptotic medium did. 

Stimulated SAEC with TGF-β and CTGF demonstrated enhanced expression of Snail 

and Twist compared to those that were stimulated with baseline RPMI. This 

emphasizes on the role of these mediators have in expressing these transcription 

factors. 
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Chapter 5: 

 

 

 

 

Conclusion 
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In our study we were able to confirm the implication of epithelial-

mesenchymal-transition as a contributing mechanism behind the development of 

bronchiolitis obliterans syndrome. We have demonstrated the occurrence of EMT in 

situ, which was done on transbronchial biopsies (TBB) obtained from lung transplant 

recipients (LTRs), and have stimulated its induction in vitro through stimulating small 

airway epithelial cells by apoptotic lung endothelial cells.  

In the in situ part of our study, we were able to detect the change in expression 

of EMT markers, and transcription factors that are known to induce EMT. Hallmark 

of EMT initiation is a decrease in the expression of E-cadherin, an epithelial marker, 

was noted in LTRs group that developed BOS compared to the stable group of LTRs. 

However, the BOS group demonstrated a high expression of Vimentin which is a 

mesenchymal marker.  Twist, a transcription factor that is known to induce EMT by 

repressing E-cadherin and expressing mesenchymal expression, was highly expressed 

in BOS group. All this suggests EMT as a source for mesenchymal cells generation 

which is induced through transcription factors, such as Twist, in which they initiate 

the machinery by repressing epithelial expression and activating mesenchymal ones.        

In the in vitro part of our study, we were able to condition apoptotic (SSC4h) and 

non-apoptotic (SSC4h-ZVAD) media from endothelial cells and confirm release of 

fibrogenic mediators by the apoptotic medium. Released mediators from SSC4h 

included: CTGF and perlecan, where these mediators have been confirmed to be 

implicated in the fibrogenesis of several disorders. Stimulation of SAEC using SSC4h 

demonstrated at the mRNA level an increase in the expression of collagenIA1 and α-

SMA (mesenchymal markers), and no change in the expression of the epithelial 
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marker E-cadherin. In addition, stimulated SAEC with SSC4h for 48 hours 

demonstrated a decrease in protein expression levels of the epithelial markers E-

cadherin and cytokeratin; an increase in the expression of the mesenchymal markers 

collagenI, α-SMA, and Vimentin; and an increase in the expression of the 

transcription factors Snail and Twist. This proves that mediators released by apoptotic 

endothelial cells are key factors in inducing EMT and might be considered as a 

diagnostic tool or therapeutic targets in the future. 

From our study, we can confirm that induced EMT process can be associated 

with causing airway remodeling and narrowing through continuous generation of 

mesenchylmal cells. Early detection of EMT in LTRs might be an indicator of BOS 

development and might help in the treatment procedure.    
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