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Abstract

Pérez-Castrillo and Wettstein (2002) propose a multi-bidding mechanism
to determine a winner from a set of possible projects. The winning project is
implemented and its surplus is shared among the agents. In the multi-bidding
mechanism each agent announces a vector of bids, one for each possible project,
that are constrained to sum up to zero. In addition, each agent chooses a
favorite a object which is used as a tie-breaker if several projects receive the
same highest aggregate bid. Since more desirable projects receive larger bids, it
is natural to consider the multi-bidding mechanism without the announcement
of favorite projects. We show that the merits of the multi-bidding mechanism
appear not to be robust to this natural simplification. Specifically, a Nash
equilibrium exists if and only if there are at least two individually optimal
projects and all individually optimal projects are efficient.
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I. Introduction

In many situations a group of agents has to choose a winner from a set of possible
projects. The winning project is then implemented and the surplus is shared among
the agents. Examples include the location of noxious facilities, the selection of a
candidate or the siting of a major sports event. In a recent paper, Pérez-Castrillo
and Wettstein (2002) propose the multi-bidding mechanism to resolve such issues
(with possibly conflicting interests). The multi-bidding mechanism determines which
project will be developed and how the agents will share the surplus from its develop-
ment. The mechanism is described as follows: each agent announces a vector of bids,
one for each possible project, that are constrained to sum up to zero. In addition
each agent chooses a favorite project. The project with the highest aggregate bid is
chosen as the winner. In case of a tie, the winning project is randomly chosen among
those with highest aggregate bid and that are ranked first by at least one agent. Two
merits of the multi-bidding mechanism are (i) Nash equilibria always exist and (ii) in
any Nash equilibrium an efficient project is carried out.

In real life (and in most auctions) usually agents place bids on projects without
selecting a favorite project. When a naive or real-world planner is interested in
applying the multi-bidding mechanism he will wonder why an agent needs to announce
a favorite project in addition to his bids. Since the project with the highest aggregate
bid is developed and more desirable projects receive larger bids, it seems natural
that an agent’s bids reveal his favorite project. In other words isn’t the project on
which an agent places his maximal bid his favorite project? The real-world planner
considers to ask agents to submit bids only and interprets an agent’s favorite project
to be one with a maximal bid. Does this natural simplification affect the merits of
the multi-bidding mechanism?

We demonstrate how crucial it is that agents also indicate separately one of their
most favored projects. In the simpler mechanism, in which only bids are submitted,

a Nash equilibrium exists if and only if any project, which some individual views



optimal, is efficient and there are at least two individually optimal projects. Further-
more, if a Nash equilibrium exists, then all merits of the multi-bidding mechanism
carry over to the natural multi-bidding mechanism.

We proceed as follows. In Section II we introduce the environment and the nat-
ural multi-bidding mechanism. In Section III we give necessary and sufficient con-
ditions for the existence of Nash equilibria in the natural multi-bidding mechanism.
In Section IV we discuss our findings for environments having positive or negative

externalities.
II. The Natural Multi-Bidding Mechanism

We consider a set of agents N = {1,...,n} and a set of possible projects K =
{1,...,k}. The utility of agent ¢ if project ¢ is carried out is given by vfI € R.
The efficient projects are the projects which maximize the sum of the utilities of the
agents. We denote by E the set of efficient projects, i.e.

E={¢e K| ZvéZZv;forallpEK}.

ieN iEN
The multi-bidding mechanism of Pérez-Castrillo and Wettstein (2002) determines the
project which will be developed and how the agents share the surplus from its de-
velopment. The mechanism is described as follows: each agent i announces k bids,
one for each possible project, that are constrained to sum up to zero. In addition ¢
chooses a favorite project. The object with the highest aggregate bid is chosen as the
winner. In case there is a tie, the winning project is randomly chosen among those
with highest aggregate bid and which are favored by at least one agent. According
to Pérez-Castrillo and Wettstein (2002, p. 1578) the multi-bidding mechanism “in-
troduces a measure of relative worth whereby more desirable projects receive larger
bids”.

This motivates the following natural simplification of the multi-bidding mecha-

nism. Each agent ¢ submits k£ bids only, which sum up to zero, and does not select a



favorite project. The projects for which he submits a highest bid are interpreted to
be his favored ones. The natural multi-bidding mechanism is described as follows:

Each agent ¢ € N places on each project ¢ in K a bid bf] € R. A strategy for i is
a profile of bids 0" = (b})4ex such that Y, b, = 0. A strategy profile b = (b')icn
specifies for each agent a strategy. Given b, let B, = > .. bf] denote the aggregate bid
for project q. Let Q(b) = {q € K| B, > B, for all p € K} denote the set of projects
with the highest aggregate bid at b. Let M(b') = {¢ € K |b, > b}, for all p € K}
denote the projects on which agent i places his maximal bids. Let M (b) = U;en M (b;)
denote the projects on which some agent places a maximal bid. If Q(b) N A/ (b) is non-
empty, then the winning project is chosen randomly from the members of Q(b)NM (b).
Otherwise it is randomly chosen from Q(b).!

If the natural multi-bidding mechanism chooses project ¢, then ¢ is developed and
any agent ¢ receives the payment %Bq—bfl. Agent i’s (net) payoff is then vé+%Bq—bz.2

It is easy to check that the necessary conditions for a set of strategies to be a
Nash equilibrium (NE) in the multi-bidding mechanism carry over to the natural

multi-bidding mechanism.

Lemma 1 (Lemma 5, Pérez-Castrillo and Wettstein, 2002) If b constitutes a

NE of the natural multi-bidding mechanism, then the following three properties hold:
(a) The aggregate bid for every project is zero, i.e. for all ¢ € K, B, = 0.

(b) An agent’s payoff is mazimal if an efficient project is chosen and it is the same

Jor all efficient projects, i.e. for all p,q € E, v, — b, = v, — b.

(¢) Any project on which some agent puts a mazimal bid is efficient, i.e. M(b) C E.

'In the multi-bidding mechanism each agent is allowed to name exactly one favorite project. When
an agent puts the same maximal bid on several projects, in the natural multi-bidding mechanism
alternatively the planner may choose randomly a favorite project from those. This would not change

the analysis.
2 Any sharing rule other than the equal sharing rule would generate the same results.
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II1I. The Equilibrium Outcomes of the Natural Multi-Bidding Mechanism

It will turn out that the individually optimal projects play the important role for
deciding whether a NE of the natural multi-bidding mechanism exists or not. For each
agent i we denote by O; = {q € K |v} > v} for all p € K} the projects that achieve
highest utility for him. These are the projects that agent i views to be optimal. Let
O = U;en0O; denote the individually optimal projects.

Lemma 2 If b is a NE of the natural multi-bidding mechanism, then (i) the set of
individually optimal projects coincides with the set of projects on which some agent
places a mazimal bid, i.e. O = M(b), and (ii) there are at least two individually

optimal projects.

PROOF: (i) First we show that the set of individually optimal projects is included
in the set of projects on which some agent places a maximal bid. Suppose not. Then
there is some agent i such that O;\M(b) # 0. Let ¢ € O;\M(b). Then v} > v} for
all p € K. By (a) of Lemma 1 the winning project is randomly chosen from M (b).
Because ¢ is not a project on which agent ¢ puts a maximal bid, there is p € M (b)
such that b; > bf]. Combining the two inequalities we obtain v; — bfl > v; — b;. Since
by (b) and (c) of Lemma 1, M (b) C E and agent i’s payoff is the same for all projects
belonging to M (b), agent 7 can gain by slightly increasing his bid for ¢ and reducing
the bids for all other projects.

Second we show that any project on which some agent places a maximal bid is
necessarily individually optimal. Suppose O # M (b). We already know O C M (b).
Let ¢ € M(b)\O. Then for all i € N there is p(i) € O such that v,; > v,. By
(b) and (c) of Lemma 1 any agent i’s payoff is the same for all projects belonging to
M (b). Thus, for any agent i we have v}, — b, = v, — b;. Therefore, for all i € N,
b;,(i) > by. In other words there is no agent who puts a maximal bid on ¢. This is a
contradiction to ¢ € M (b).

(ii) Suppose there is one individually optimal project only. Let O = {q}. Then
by (i), {¢} = M(b) and for all i € N we have b’ > b}, for all p # ¢. But then the

>



aggregate bid on ¢ is uniquely maximal, i.e. B, > B, for all p # ¢. This contradicts
(a) of Lemma 1. O

Using the proof of Lemma 5 in Pérez-Castrillo and Wettstein (2002) it is easy to
verify that the properties of Lemma 1 and Lemma 2 provide a full characterization

of all NE of the natural multi-bidding mechanism.

Lemma 3 Let b be a set of strategies. Then b constitutes a NE of the natural multi-
bidding mechanism if and only if (a), (b) and (c) of Lemma 1 and the following
property hold:

(d) There are at least two individually optimal projects and the set of individually
optimal projects coincides with the set of projects with maximal bids, i.e. |O| > 2

and M(b) = O.

Now we are ready to answer the question whether the merits of the multi-bidding
mechanism are affected when interpreting an agent’s favorite projects to be the ones
with his maximal bids. When there are at least two individually optimal projects and
any individually optimal project is efficient, then all merits of the multi-bidding mech-
anism carry over to the natural multi-bidding mechanism. If one of the two conditions

is not met, then no equilibrium exists in the natural multi-bidding mechanism.

Theorem 1 If there are at least two individually optimal projects and any individu-
ally optimal project is efficient, then the natural multi-bidding mechanism implements

in NE the set of utility vectors
4 . 1 .
{(ul, LLu™) €RY Zu’ = ZU; where ¢ € E and u' > ka;} . (D)
iEN ieN geK
Otherwise there exists no NE of the natural multi-bidding mechanism.

PROOF: 1If |O| > 2 and O C E, then the proof follows along the lines of Pérez-
Castrillo and Wettstein (2002, Appendix): First we show that both the set of Nash



equilibria and the set of equilibrium outcomes is convex. Let b and b be NE. Then from
(b) of Lemma 1 and (d) of Lemma 3 we have for any agent i, O; = M(b') = M (b?).
But then for all A € [0,1], O; = M (Ab* + (1 — \)b'). Since b and b are both NE, they
satisfy the properties of (a), (b), and (c¢) of Lemma 1 and (d) of Lemma 3. Now it is
straightforward that the strategy profile (Ab 4 (1 — \)b%);cn satisfies the properties of
Lemma 1 and Lemma 3. Hence, by Lemma 3, (Ab® + (1 — \)b?);c is a NE. Therefore,
both the set of Nash equilibria and the set of equilibrium outcomes is convex.
Second we construct for each agent j the “extremal equilibrium point” where

any agent ¢ other than j receives as payoff £ vl = v'. For all ¢ € K, let

€K
by = 30" — 2, vy and by = v; — v for all i # j. The bidding strategies b' of
any agent 7 # j puts his maximal bids on his optimal projects, i.e. M(b*) = O;. Note
that for agent j we have for all ¢ € O; and all p € K\O;, vg > vg. Because project ¢
is efficient, it follows that V¢ —3_, vfl > UIJ; (where V¢ denotes the maximum total
value by developing an efficient project). Then
—Zv; >UZ—V‘3 E’Uz—ZU;Z—Z’UZ.
i#j ieN i#j

Therefore, agent j’s bid on ¢ is greater than his bid on p, i.e. b} > b/. Because
any individually optimal project is efficient, the strategies b satisfy properties (c) of
Lemma 1 and (d) of Lemma 3. Now it is easy to verify that b also satisfies (a) and (b)
of Lemma 13 and thus, by Lemma 3, b is a NE. Because Theorem 1 of Pérez-Castrillo
and Wettstein (2002) remains unchanged for the natural multi-bidding mechanism,
the set of equilibrium outcomes is convex, and any extremal point of the set (1) is
supported by a Nash equilibrium, we obtain the first part of Theorem 1.

If there is one individually optimal project only or at least one individually optimal

project is not efficient, then (c¢) of Lemma 1 and (d) of Lemma 3 cannot be satisfied

3Note that (b) of Lemma, 1 is satisfied because any agent i # j receives the payoff v’ independently
of which project is implemented and agent j receives for any project the difference between the total
surplus of it and the previous payoffs. Thus, agent j’s payoff is maximal for an efficient project and

it is the same for all efficient projects.



simultaneously. Thus, by Lemma 3, no NE exists. [J
IV. Discussion

We discuss our findings when each project is associated with one agent.* When
siting a major sports event the project imposes positive externalities on its associated
agent. Then v! is typically a positive number and vé is a negative number if ¢ # i.
Therefore, in environments with positive externalities all projects are individually
optimal and by Theorem 1 a NE exists only in the rare case when all projects are
efficient. If the real-world planner adapts the natural multi-bidding mechanism, then
all merits disappear.

When siting a noxious facility the project imposes negative externalities on its
associated agent. Then v! is a negative number and v; is a positive number if ¢ # 1.
For example, suppose that a country has decided to build a nuclear plant. Then
each region’s utility increases with distance (the further the plant is located away, the
better) and both the individually optimal regions and the efficient regions are located
along the border of the country. If there is no agglomeration around the border, then
a NE may exist.

Theorem 1 puts severe restrictions on the existence of NE in the natural multi-
bidding mechanism. In particular when one project is unambiguously efficient, then
no equilibrium exists. The intuition is that if there are at least two individually op-
timal projects, then they need to be efficient and one can ensure that both projects
receive zero in aggregate while any agent puts his maximal bid on one of the individ-
ually optimal projects (counter balanced by negative bids on the other individually
optimal project(s)).

Our result also explains why in real life under complete information often no

agreement is reached by bids and compensations (even if there is exactly one efficient

4This environment is equivalent to the case where one (indivisible) object is sold through an
auction to one of the agents and an agent’s payoff depends on the identity of the agent who gets the

object (see, for instance, Jehiel, Moldovanu, and Stacchetti (1999)).



project).’ Submitting single or multiple bids does not solve the problem. The crucial
feature of the multi-bidding mechanism is that each agent is allowed to name any
project in addition to his bids, i.e. an agent may name a project on which he placed

one of his minimal bids.®
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