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ABSTRACT

Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approx-
imations, involving the use of asymptotic distributions or bootstrap techniques. After documenting
that such methods can be very misleading even with fairly large samples, especially when the num-
ber of lags or the number of equations is not small, we propose a general simulation-based technique
that allows one to control completely the level of tests in parametric VAR models. In particular, we
show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such
models, whether they are stationary or integrated. Applications to order selection and causality test-
ing are considered as special cases. The technique developed is applied to quarterly and monthly
VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the
period 1965-1996.

Key-words : Vector autoregression; VAR; exact test; Monte Carlo test; maximized Monte Carlo
test; bootstrap; Granger causality; order selection; nonstationary model; macroeconomics; money
and income; interest rate; inflation.

Journal of Economic Literature classification: C32, C12, C15, E4, ES.



RESUME

Les tests statistiques sur des modeles autorégressifs multivariés (VAR) sont habituellement basés
sur des approximations de grands échantillons, qui utilisent une loi asymptotique ou une technique
de bootstrap. Apres avoir montré que ces méthodes peuvent étre trés peu fiables, méme avec des
échantillons de taille assez grande, particulierement lorsque le nombre des retards ou le nombre
d’équations augmente, nous proposons une technique générale basée sur la simulation qui permet
de controler parfaitement le niveau des tests dans les modeles VAR paramétriques. En particulier,
nous montrons que la technique des tests de Monte Carlo maximisés [Dufour (2002)] fournit des
tests exacts pour de telles modeles, que ceux-ci soient stationnaires ou intégrés. Sélectionner 1’ordre
du modele ainsi que tester la causalité au sens de Granger sont étudiés comme problemes particuliers
dans ce cadre. La technique proposée est appliquée a des modeles VAR, trimestriels et mensuels, de
I’économie américaine, comprenant le revenu, la monnaie, un taux d’intérét et le niveau des prix,
sur la période 1965-1996.

Mots-clés: autorégression vectorielle; VAR; test exact; test de Monte Carlo; test de Monte Carlo
maximisé; bootstrap; causalité au sens de Granger; s€lection de 1’ordre; modele non-stationnaire;
macroéconomie; monnaie et revenu; taux d’intérét; inflation.

Classification du Journal of Economic Literature: C32, C12, C15, E4, ES.
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1. Introduction

Vector autoregressive (VAR) models are widely used for multivariate time series analysis, espe-
cially in econometrics; see Sims (1980), Liitkepohl (1991, 2001), Reinsel (1993), Hamilton (1994),
Hendry (1995), Gouriéroux and Monfort (1997), Dhrymes (1998) and Clements and Hendry (2002).
One reason for this popularity is that VAR models are easy to estimate and can account for rela-
tively complex dynamic phenomena. Important features and applications based on such models
include forecasting, causality analysis [in the sense of Wiener (1956) and Granger (1969)], impulse
responses, cointegration, etc.

VAR models, however, typically involve large numbers of parameters, so that the usual statis-
tical difficulties associated with dynamic models are compounded by high dimensionality. So, not
surprisingly, statistical inference (tests and confidence sets) in such models is almost universally
based on large-sample approximations. Even in static multivariate linear regression models, it is
well-known that asymptotic approximations can be very unreliable; see Dufour and Khalaf (2002).
These problems get worse in VAR models (which can be interpreted as dynamic multivariate linear
regressions), even if strong regularity assumptions (e.g., stationarity) are made: finite-sample distri-
butions of usual test statistics are complicated and depend on large numbers of unknown nuisance
parameters. Further, the presence of non-stationary variables — such as integrated processes — can
affect the asymptotic distributions and lead to further reliability problems; see, for example, Sims,
Stock and Watson (1990), Johansen (1995), Hatanaka (1996), Tanaka (1996), Dhrymes (1998),
Hansen and Johansen (1998), Maddala and Kim (1998), and McAleer and Oxley (1999). In partic-
ular, the appropriate asymptotic distribution may depend on unknown features of the process (e.g.,
the integration order or the number of cointegrating relationships). This is the case, for example, in
causality testing; see Sims et al. (1990) and Toda and Phillips (1993, 1994).

In view of alleviating the unreliability of asymptotic distributions for inference in VAR models,
bootstrap techniques [see Efron and Tibshirani (1993) and Hall (1992)] have also been proposed;
see, for example, Jeong and Maddala (1993), Li and Maddala (1996), Paparoditis (1996), Berkowitz
and Kilian (2000), Kilian and Demiroglu (1997), Kilian (1998b, 1998a), Caner and Kilian (1999),
Inoue and Kilian (20024, 2002b). Bootstrap methods can lead to spectacular improvements over
standard asymptotic approximations, but their justification remains intrinsically asymptotic. Fur-
ther, it is well known that bootstrapping can fail to provide asymptotically valid tests when the
simulated test statistic has an asymptotic distribution involving nuisance parameters, especially if
the asymptotic distribution has discontinuities with respect to the nuisance parameters; see Athreya
(1987), Basawa, Mallik, McCormick, Reeves and Taylor (1991), Sriram (1994), Andrews (2000),
Benkwitz, Liitkepohl and Neumann (2000), and Inoue and Kilian (2002a, 2003). This type of situ-
ation can easily occur in VAR models.

In this paper, we propose a finite-sample simulated-based inference technique applicable to
parametric finite-order VAR models that allows one to control completely the level of the test,
despite the presence of large numbers of nuisance parameters and without further assumptions on
the structure of the process [such as stationarity or the order of integration]. The disturbances in the
VAR model may follow any distribution that is specified up to a linear transformation [or covariance
matrix], which allows for both Gaussian and non-Gaussian distributions. The central assumption



is that the model can be simulated once a finite number of parameters have been specified. The
technique proposed is based on an extension of the old technique of Monte Carlo (MC) tests [Dwass
(1957), Barnard (1963), Birnbaum (1974)], which we call maximized Monte Carlo (MMC) tests
[Dufour (2002)]. This method involves maximizing a simulated p-value function over the nuisance
parameter space. Two main variants of this method are considered: the first one maximizes the
simulated p-value function over the full nuisance parameter space and yields provably exact tests
of general restrictions on model parameters, while the second variant considers a maximization
restricted to a consistent set estimator of the nuisance parameters. The latter can be viewed as an
approximate simplified version of the fully exact procedure (because the set over which the p-value
function is maximized can be much smaller); it provides asymptotically valid tests without the need
to establish the asymptotic distribution of the test statistic or to make further assumptions on the
structure of the process. We also consider local Monte Carlo (LMC) which can be viewed as a
degenerate version of the simplified maximized procedure, obtained by replacing the consistent set
estimator by a consistent point estimate, and may be interpreted as parametric bootstrap test. Of
course, the latter procedure is not exact in finite samples and requires stronger assumptions (to yield
asymptotically valid tests) than the consistent set MC procedure.

The method proposed is obviously computer intensive, and an important contribution of this
paper consists in showing that the proposed theoretical approach can indeed be implemented in a
high-dimensional setup, such as a VAR model. For that purpose, we focus on likelihood ratio (LR)
tests for two categories of hypotheses: (1) the order of a VAR model; (2) Granger non-causality. We
present simulation evidence on tests for Granger non-causality which document three things. First,
standard tests based on asymptotic critical values can have catastrophic size properties. Second, the
LMC approach (or bootstrapping) does provide improvements from that viewpoint, but can still al-
low for sizeable overrejection rates. Third, under the same circumstances, the MMC approach does
control level perfectly, even we only use a consistent set estimator for the nuisance parameters, and
provides good power. In other words, the maximization operated by the MMC approach yields ef-
fective corrections for possible failures of the bootstrap (both in finite samples and asymptotically).
We also apply the proposed method to causality testing in a quarterly model of the U.S. economy,
based on data previously studied in Bernanke and Mihov (1998) and Dufour, Pelletier and Renault
(2005), involving nonborrowed reserves, the federal funds rate, real gross domestic product, and the
GDP deflator.

The paper is organized as follows. Section 2 describes the model and the main test problems
that will be studied. Section 3 presents the principles of MC tests and MMC tests. In section 4,
we discuss how such procedures can be applied to LR-type test in VAR models. The results of our
simulation study are presented in section 5 and the empirical macroeconomic application in section
6. We conclude in section 7.



2. Framework

In this paper we consider a general k-dimensional finite-order vector autoregressive (VAR) process
{Y; : t € Z} of the form:

P
Yo = uty ®Yiitu, t=1...T, @1
i=1
u = Rep, t=1,...,T, (2.2)
where the vectors Y; = (Yig, ..., i)', t = —p+ 1, ..., T, are observable, p is a specified
nonnegative integer (p > 1), u = (uy, ..., pg) is an unknown k x 1 vector of intercept terms,
®; = [Dijilji=1,.. ks an unknown k x k matrix of fixed coefficient matrices (1 < i < p), R
is an unknown fixed non-singular matrix, and the conditional distribution of the vector e(T') =
vec(eq, ... , €r), given the initial values Yy, ..., Y_, 1, is completely specified. A common

special case here would consist in assuming that

e "M N0, L], t=1,...,T, (2.3)

given the initial values, so that the errors are independent and identically (i.i.d.) distributed accord-
ing to a multinormal distribution N[0, X] with ¥ = RR’. But, from the viewpoint of implementing
the procedures proposed in this paper, the assumptions (2.1) - (2.2) will be sufficient. For example,
there is no need to assume normality or even the existence of moments.

Setting

p
D(z)=Iy— Y P2', z€C, (2.4)
i=1
the model is said to be stationary if
det {®(2)} #O0forall |z] <1, (2.5)
and it is stable (non-explosive) if
det {®(z)} # 0forall |z| <1; (2.6)

stable models allow for the presence of roots on the unit circle for the equation det {® (2)} = 0.
Note, however, that stationarity (or stability) assumptions will not be needed for the validity of the
procedures proposed in this paper, and cointegrating relations may be present. The central feature
we shall exploit is the fact that the model can be easily simulated, once a finite number of parameters
is specified.

In this paper, we consider the problem of testing general hypotheses of the form

Hy: Vec(@) ey 2.7

where & = [@q, ..., Ppland I C R**P_ This covers both linear and nonlinear hypotheses on



model coefficients. In our simulations and applications, however, we shall focus on linear hypothe-
ses, more precisely:

1. hypotheses on individual coefficients:
0. _ a0 .
Ho(®;;) : Piji = D451 5 (2.8)
2. hypotheses on the order of the process:
Hy(i): ®; =0 2.9

and
Holi,pl: ®j=--- =P, =0; (2.10)

3. non-causality in the sense of Granger (1969):

Ho(Y, - Yj) : by =0, i=1,...,p, 2.11)

The distribution of most standard test statistics [such as Wald-type, LM-type or LR-type statis-
tics] for hypotheses on the coefficients of VAR models typically depends (under the null hypothesis)
on both the hypothesis tested and unknown nuisance parameters. To be more precise, if we denote
by Hj the set of data distributions £’ — or data generating processes (DGP’s) — compatible with Hy,
the null hypothesis can be written in the form

Hy:FcHy. (2.12)
Then a test of Hy has level « iff
P r[Rejecting Hy] < « for all F' € Hy (2.13)
or, equivalently,
sup Pp[Rejecting Hy| < a, (2.14)
FeHy
and the test has size « iff
sup Pp[Rejecting Hy] = (2.15)
FeHo

see Lehmann (1986, Chapter 3). If we also had
P r[Rejecting Hy| = « for all F' € Hy , (2.16)

the test would be similar. But, in complex models, this appears extremely difficult to achieve with
any reasonable procedure that depends on the data. So we will focus on designing tests that satisfy
as closely as possible the level restriction (2.13) in finite samples. So one needs a method that can
adapt readily to both these features. We will now describe such a method.



3. Monte Carlo tests

In this section, we describe in a succinct the general approach that will allow us to construct finite-
sample tests for any VAR model, such as the one described in section 2. To ensure clarity, we
describe first the basic principle underlying Monte Carlo tests by considering two basic cases: (1) the
distribution of the test statistic under the null hypothesis does not depend on nuisance parameters;
(2) the distribution of the test statistic depends on nuisance parameters. Of course, the second case
is the relevant one for inference in VAR models. To deal with it, we consider three alternative
approaches: (a) maximized Monte Carlo (MMC) tests over the full nuisance parameter case; (b)
MMC tests over a consistent set estimator of the nuisance parameters; (c) local Monte Carlo tests,
i.e. Monte Carlo tests obtained after replacing the unknown nuisance parameters by a point estimate.
To simplify exposition, we limit ourselves to the case where the test statistic has a continuous
distribution, although it is relatively easy to extend Monte Carlo test methods to situations where
the statistic follows a discrete distribution under the null hypothesis. Further details and proofs are
provided in Dufour (2002) and Dufour and Khalaf (2001).

3.1. Monte Carlo tests without nuisance parameters

Let S = S(Y1, ..., Y7) be a test statistic for testing an hypothesis Hy, with critical region of the
form:
S>c. (3.1)

We will denote by Sy the value of the test statistic based on the observed data. Suppose now that the
distribution of S under Hy does not depend on unknown nuisance parameters (and is continuous).
The test has level « if

P[So > < a (3.2)

and size « if
P[So > ] = a. (3.3)

Suppose now we can generate by simulation NV i.i.d. replications of .S under Hy,
Sty ey SN (3.4)

independently of Sp. We can then estimate the survival function

G(z) = P[S > 7] (3.5)
from the simulated samples:
A 1
Gy [z; S(N)] = NS (S; —x) (3.6)
i=1
where
S(N) = (S, ..., Sn)’, 3.7)



s(x) = 1,ifz>0,

= 0,ifz<0. (3.8)
Let us also consider )
. NGy (z) +1
=——7 3.9
Py (2) Nl (3.9)

the simulated p-value function associated with S (V) . Then, if N is chosen so that o (N + 1) is an
integer, it can be shown that, under Hy,

P[pn (So) < a] =a. (3.10)

In other words, the test which rejects Hy when p (Sp) < « has level « exactly.

3.2. Monte Carlo tests with nuisance parameters

We will now study the case where the distribution of the test statistic depends on nuisance para-
meters. In other words, we consider a model {(Z, Az, Py) : 6 € 2} where we assume that the
distribution of S is determined by Pj [i.e., 6 is the “true” parameter vector]. We wish to test the
hypothesis

Hy:6€ (. (3.11)

The critical region {S > ¢}, where c is a constant which does not depend of 6, has level « if and
only if

PQ[SZC]SO(,VQEQ(), (3.12)
or equivalently
supG[S | 0] <« (3.13)
02y
where
Gl |0)=Pyg[S>1x]. (3.14)

Suppose now that, for each 6 € {2y, we generate IV i.i.d. replications of S,
S1(0), ..., Sy (6)
and compute a simulated p-value function:

NGy[z|6]+1

D 0l = 3.15
b [z | 0] NIl (3.15)

If o (N + 1) is an integer, then, under Hy,
P[sup {pn [So | 0] : 0 € 2} <a] <a, (3.16)

which means that the critical region sup {pn [So | 0] : 6 € 20} < « has level a. This procedure
will be called a maximized Monte Carlo test. It allows one to obtain provably exact tests based on



any statistic that can be simulated once a finite number of nuisance parameters have been specified.

The simulated p-value function py [Sp | 6] is not continuous, so standard gradient based meth-
ods cannot be used to maximize it. But search methods applicable to non-differentiable functions
are applicable, e.g. simulated annealing [see Goffe, Ferrier and Rogers (1994)].

3.3. MMC tests based on consistent set estimators
Suppose now the test statistic depends on sample of size T,

S=25r, (3.17)
and we have a consistent set of estimator of § (under Hp) :

Jim P e Cr] =1. (3.18)

For example, if 9T is consistent point estimate of # and c is any positive constant, the set

Cr={0e:|0r—0|<c} (3.19)
is a consistent set estimator of 6 :
dim P[0 € Cr] = lim P[|0r — 0] <e] =1, v >0. (3.20)

Assuming that, for each § € (), we can generate N i.i.d. replications of Sp, say St1 (9), ...,
St (0) , we have, under H :

Tlim P[sup {prn[S0|0]:6 € Cr} < a] <a (3.21)
— 00
where St is the value of ST based on the observed data, and

NGy [z; St (N, 0)] +1
N+1 ’

IsTN [.73 | 9] == ST (N, 9) == [STl (9)7 ceey STN (9)}/ . (3.22)

In other words, the critical region sup {prn [Sto | 6] : 0 € Cr} < « has level a. No assumption
on the asymptotic distribution of St is needed.
An obvious alternative would consist in taking

Cr = {0r}, (3.23)
which suggests one to use a critical region of the form
pralSto | 7] < a. (3.24)

We shall call this procedure a local Monte Carlo test. Under additional regularity conditions, it is



possible to show that R
Thm P[ﬁTN[STO | GT] S Oé} S « (325)

but the conditions under which this holds are notably more restrictive than those under which (3.21)
obtains. This procedure may also interpreted as a parametric bootstrap, except for the fact that the
number of replications N is explicitly taken into account.

A good consistent restricted estimate Or is typically a reasonable starting point for computing
the MMC p-value. Since

prN [Sto | 0] < sup {prn [Sto | 0] : 0 € 20}, (3.26)
it is clear that
prv [Sto | 0] > (3.27)
implies
sup {ﬁTN [STO | 9] 10 € .Qo} > . (3.28)

A non-significant bootstrap p-value entails a non-significant MMC p-value. The MMC procedure
offers protection against failures of the bootstrap.

4. Tests in VAR models

We will now consider the problem of testing restrictions on the coefficients ¢ of model (2.1) - (2.2).
Even though various procedures, such as Wald-type, LM-type or LR-type tests, may be used, we
will concentrate here on LR tests based on statistics of the form:

LR=2[mL(5) - nL(5")] (4.1)

where L (-) is the likelihood function, 4 is the unconstrained maximum likelihood (ML) estimator
of parameter vector 6 = vec[u, ¢, R] obtained by maximizing the likelihood function over the
full feasible parameter space, and & is the constrained ML estimator. Since a specific likelihood
function must be specified, we shall focus on Gaussian LR statistics.

Under the assumption that the errors uy , t = 1, ... , T', conditional on the initial values Y_,, =
vec[Yp, ..., Y_, 1], areiid. N[0, X, the likelihood function is
T 1o
L(§)=r-— 3 In|X| — 5;%’52_1% 4.2)

where k is a constant and

p
ut:thufZ@th_i, t=1,...,T. (4.3)
=1



Then the (conditional) LR statistic for testing any hypothesis of the form Hy : vec(®) € Iy, is
LR¢ =Tn (A7) 4.4)

with R .
A} = |29|/| 27| (4.5)

where ﬁ'% and Xy are respectively the restricted and unrestricted ML estimators of the error co-
variance matrix Y. For stationary processes, under standard regularity conditions, the asymptotic
distribution of the LR statistic under the null hypothesis is chi-square with number of degrees equal
to the number of (linearly independent) constraints. This will be the case in particular for zero
coefficient restrictions (2.8), restrictions on the order process (2.10) and Granger non-causality re-
strictions (2.11).

For example, consider the problem of testing a Granger non-causality hypothesis, such as
Hy(Y; - Yj) in (2.11). Here, all the coefficients of the VAR which are not fixed by this null
hypothesis — i.e. the unknown coefficients of 1, @ or R — may appear as nuisance parameters in the
distribution of L Rs. Further, once the nuisance parameters are set, the model (2.1) - (2.2) and the
corresponding test statistics can be simulated. So we propose using Monte Carlo test procedures
adapted to the presence of nuisance parameters, in particular maximized Monte Carlo tests. This
means applying the MMC procedures described in section 3 with S(6) replaced by LR, where 6
may stand for the elements of § which are fixed by the null hypothesis.

Such procedures are obviously computer intensive and require dynamic simulations of the
process under various parameter configurations (compatible with the null hypothesis). Explosive
parameter are not necessarily excluded by the estimation procedure or the model considered. But
parameter values can lead to numerical problems (overflows), so one may wish to exclude explosive
processes. In VAR models, such restrictions may not be easy to impose. For that purpose, it is useful
to note that the roots of the determinantal equation det[® (z)] = 0 are identical with the inverses of
the eigenvalues of the matrix

B Dy o Dy D
I, 0 -~ 0 0

=0 Iy -~~~ 0 0 (4.6)
0 0 -~ Iy O

The corresponding VAR(p) process is stationary when these eigenvalues are inside the unit circle
[see Liitkepohl (1993, Chapter 2) and, for a proof, Appendix A below]. Given the availability of
efficient algorithms for computing eigenvalues, this can provide a useful way of excluding explosive
processes or limiting the degree of explosion.

The algorithm for computing the MC p-values can be described as follows:

1. choose the restricted subset of the parameter space {2y over which the maximization required
by the MMC procedure will be performed; {2y may be the whole parameter space restricted



by the null hypothesis (and, eventually, by stationarity or stability restrictions) or a consistent
restricted set estimator;

2. compute the test statistic LR(?) based on the observed data;

3. generate i.i.d. error vectors e® = [ (l)7 ce eg)], [ =1, ..., N,according to the selected
distribution — for example, 5(l) EON [0, Ip], t =1, ..., T— and construct pseudo-samples

as functions of the model parameter vector § = vec[u, @, R]:

p
YO =ue Y oy + R, t=1,..., T, 1=1,..., N; 4.7)
=1

4. compute the corresponding test statistics as LR(l)(é ), L =1, ..., N, which in turn can be
viewed as functions of & and (! ;

5. compute the simulated p-value function

NGy [z |0 +1

ol | 8 = SIS

N
1
[o]8] = 5D _s(LRVG) —2);  @48)
l:l

6. compute the LMC p-value py [LR | SOT] where 8" is the constrained estimator based on

the observed data; if P [LR(O) | 30T] > a, the LMC test is not significant at level o and it is
clear the MMC test does not reject either at level o (so the process can be stopped).

The procedure just described can be interpreted as the generation of a parametric bootstrap p-value.
Of course, to the extent that the point estimate is typically different from the “true” parameter, the
test so obtained is not exact. The MMC procedure involves maximizing the p-value function over
the nuisance parameter space, as follows:

1. compute the maximized p-value
prvie = sup {pn[LRO [ 6] : 6 € 29} (4.9)
2. reject the null hypothesis at level « if pyryo < a.

When evaluating pasarc, it is important to note that § is the only free variable; the observed test
statistic and the simulated errors e(), | = 1, ..., N, are treated as fixed. Even if the LMC test
procedure is not significant, it may still be of interest to compute psp7c to get a better idea how
strongly the null is accepted. As indicated above, the maximization yields a procedure such the
probability of rejection under the null hypothesis is not larger than the level, irrespective of the
unknown value of the nuisance parameters. In practice, a reasonable strategy would consist in

L . . 20 . . T
maximizing the p-value function by taking § = J as the starting value: even if the maximization is

10



not complete, this provides an immediate safeguard against bootstrap p-values that would be highly
sensitive to nuisance parameters. As described in section 3.3, if the region over which we maximize
is properly designed (as a consistent set estimator), this yields an asymptotically valid test even if
the parametric bootstrap test is not.

5. Simulation experiment

In this section, we present simulation evidence on the performance of three basic types of procedures
for hypothesis testing in VAR models: (1) standard tests based on asymptotic chi-square critical
values; (2) local Monte Carlo tests (or parametric bootstrap tests), based on a single consistent
restricted estimator of model nuisance parameters; (3) maximized Monte Carlo tests. In view of
allowing for VAR processes which are non-stationary (integrated) or with roots close to unit circle,
we also consider lag-augmented Wald tests proposed by Dolado and Liitkepohl (1996), Toda and
Yamamoto (1995), Yamada and Toda (1998) and Dufour et al. (2005).! The latter procedure have the
feature of leading to usual normal (or chi-square) asymptotic distributions, even when the process
is integrated, so that we can expect smaller size distortions. Below, we shall consider parametric
and nonparametric bootstrap versions of this procedure. A detailed description of the way lag-
augmented Wald tests were implemented in this study is presented in Appendix B.?

For the purpose of this experiment, we considered standard VAR(p) models with Gaussian
disturbances:

p
Y= ®Yiitu, t=1...T, 5.
=1
ut:Rst, tzl,...,T, (52)
e "MNO, L), t=1,...,T. (5.3)

The null hypothesis tested is Granger non-causality

Hy:(Ya, ..., Ys) =Y (5.4)

which is equivalent to
Hy: %y =0,i=1,....p,1=2,... k. (5.5)
Various dimensions (k = 2, ... , 6), autoregressive orders (p = 1, ... , 5), sample sizes (T =

30, 50, 100, 200, 300) and parameter structures (®) were considered. Under the null hypothesis,
the data generating processes have the following relatively simple structure:

&(L)=(1- LI (5.6)

'For related results, see also Sims et al. (1990), Park and Phillips (1989), Choi (1993), Yamamoto (1996), and
Kurozumi and Yamamoto (2000).
2We are grateful to a referee for suggesting that we study such a method in the context of our simulation.
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where ¢ is scalar which determines the degree of persistence in the series. Clearly, the process
is stationary when |p| < 1. R is a nonsingular lower triangular matrix (the values of R used in
this experiment are given in Appendix C). The nominal level of the tests is 0.05. The test statistic
considered is the LR-type statistic described in section 4. Monte Carlo tests (local and maximized)
are based on N = 99 replications for tables 1, 5 and 6, N = 999 for tables 2 - 4, while the
number of trials used for evaluating rejection frequencies is 1000.> Local Monte Carlo tests are
based on the restricted ML estimator, while the MMC tests are based on maximizing the p-value
in a box obtained of 5 units on each side on the restricted ML estimator. Some of the results of
our experiment are presented in tables 1 to 5 (rejection proportions are expressed in percentages).
In Table 1, models MO, M1, M2, M3, M4 are based respectively on the following values of the
persistence parameter: ¢ = 0.9, 0.95, 0.99, (0.95)"", (0.99)*7 . In Table 5, models M2 (panel A)
and MO (panels B, C) are the basic models used, except for modifications to ®;1; in order to evaluate
power. Namely, power is assessed by changing the values of the coefficients ®;1; , ¢ =1, ..., p, as
follows: ®@;1; = @;1;(p) # 0,1 =2, ..., k, where ®;1;(p) depends on the order p of the process:
@;1:(1) = 0.1, @;1;(2) = 0.02, and P;1;(p) = 0.01 for p = 3, 4, 5. Initial values were set equal to
zero. The simulations were all run with GAUSS.

From the results in tables 1 and 5, we see clearly that asymptotic tests based on standard chi-
square critical values can have catastrophic size properties, with rejection frequencies high as 0.97
(instead of 0.05). Using local Monte Carlo (or bootstrap) test does provide important improvements,
but overrejections can still be much higher than (for example, 0.59 rather than 0.05). Interestingly,
the lag-augmented Wald tests can also severely over-reject, even when they are implemented using
bootstrap methods (tables 2 - 4). By contrast, in Table 5, we can see that the MMC procedure
controls very well the level of the test allows and provides good power under the alternative. Indeed
it is the only method that allows one to do that.*

6. Application to a VAR model of the U.S. economy

In this section, we present an application of the techniques proposed above to test Granger causality
in a context of a VAR model involving four U.S. macroeconomic variables. The data used come
from a study of U.S. monetary policy due to Bernanke and Mihov (1998); see also Dufour et al.
(2005). This data set consists of monthly observations on nonborrowed reserves (NBR, also de-
noted M), the federal funds rate (FFR, ), real gross domestic product (GDP, i), the GDP deflator
(GDPD, P). The monthly data on GDP and GDP deflator were constructed by state space meth-
ods from quarterly observations [see Bernanke and Mihov (1998) for more details]. The sample
goes from January 1965 to December 1996. In what follows, all the variables were transformed
by a logarithmic transformation. For the purpose of the study, the data were also aggregated to get
quarterly observations (using arithmetic averages) and put in first differences so that we roughly
consider growth rates. Results based on both quarterly and monthly data are presented below. Of

3This relatively small number was used because the restricted model requires a nonlinear estimation and the
simulation-based tests are themselves computer intensive.

“We do not report power evaluations for the asymptotic and bootstrap tests, because the level of these procedures
cannot be controlled in practice.
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Table 1. Empirical levels of Granger causality tests with nominal level o = 0.05

(A) VAR(1) models with different dimensions k = 2, 3, 4, 5,6; T = 30

Model MO Model M1 Model M2
k | ASYy | LMCY' | ASYy | LMCY | Asymp | LMC
2 9.9 6.1 12.7 7.1 15.3 7.7
3 13.4 6.5 16.3 7.6 19.5 8.6
4 17.7 7.1 21.3 8.7 26.2 9.3
5 21.8 7.9 25.2 94 29.6 10.7
6 26.3 8.8 324 10.2 35.1 12.1

(B) Bivariate VAR(p) models, p = 1, 2, 3, 4, 5; T = 30

Model MO Model M3 Model M4
ASYyr | LMCY' | ASY, | LMCY | ASYy | LMCY
10.0 53 14.1 7.6 16.3 7.8
25.9 10.6 28.0 10.4 32.5 10.2
449 17.9 39.8 13.3 50.1 18.0
64.8 26.5 47.8 14.7 64.5 25.9
76.7 36.4 60.0 16.8 75.3 30.8

U W NS

(C) VAR models [(5.6) with ¢ = 0.90]

k 2 3 4 5
T | p | ASY, | LMCT" | ASY,, | LMC" | ASY, | LMC" | ASY, | LMC"
50 | 1] 79 48 106 | 59 13.1 78 16.5 72
2| 168 | 78 306 | 98 | 458 | 136 | 605 | 186
30353 | 118 | 622 | 198 | 817 | 262 | 917 | 379
41570 | 189 | 832 | 341 | 935 | 495 | 970 | 59.0
50 694 | 265 | 910 | 498 | 969 | 582 | 977 | 593
100 | 1| 72 52 9.5 59 103 | 67 105 | 49
2| 110 | 59 167 | 72 | 246 | 80 | 367 | 109
30 202 | 88 349 | 100 | 606 | 141 | 780 | 203
4| 344 | 102 | 687 | 166 | 888 | 335 | 968 | 486
5| 534 | 150 | 872 | 335 | 988 | 454 | 981 | 502
200 [ 1| 57 55 6.0 43 72 5.1 75 51
2| 89 5.7 105 6.3 144 | 74 178 | 6.0
30 117 | 59 188 | 72 | 265 | 75 | 426 | 107
41 162 | 68 306 | 88 | 544 | 115 | 739 | 182
5| 245 | 90 | 514 | 120 | 826 | 191 | 960 | 250
300 | 1| 55 44 6.5 54 6.6 46 83 6.1
2| 74 55 9.0 6.3 9.3 43 140 | 67
3| 83 48 13.1 5.7 180 | 7.3 239 | 75
41 104 | 48 170 | 52 | 283 | 58 | 497 | 98
5| 13.1 58 | 270 | 7.1 556 | 118 | 789 | 16.1

Note — ASY, stays for the asymptotic test based on the likelihood ratio statistic while LMC}" is the corresponding local
MC (parametric bootstrap) p-value. Models M0, M1, M2, M3 and M4 correspond to (5.6) with ¢ = 0.90, 0.95, 0.99,
(0.95)’“’ , (0.99)’”’ respectively. The proportions in this table as well subsequent tables are written in percentages.
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course, the monthly models involves considerably more nuisance parameters. Monte Carlo tests in
this example are based on N = 999 replications, while the MMC tests are based on maximizing the
p-value in a box obtained of 5 units on each side on the restricted ML estimator.

The first problem we face consists in specifying the order of the VAR. Using quarterly data,
we found that the MC tests reject much less often that the asymptotic procedure: LMC tests are
significant procedure at level 5% for the orders 0, 1, 2, 3, 8, 9 [plus 7 at level 10%], while the MMC
tests are significant at level 5% only for the orders 0, 1, 2, 3 [plus the orders 7, 8 and 9 at level 10%].
In view of these results and the quarterly frequency of the data, we present here results based on
a VAR(4) for Granger causality testing.’ The results on testing Granger causality are presented in
table 8.

Based on the VAR(4) model, we can identify the following significant relationships (according
to MMC tests): at level 5%,

M — r «— y 6.1)

and at level 10%
M — r «— Y
l . (6.2)
P

Interestingly, these results appear to be consistent with a monetarist interpretation of the relationship
between money and income, where money Granger causes interest rates which in turn causes (and
is caused by) income.

For monthly data, we first studied the appropriate order and found that LMC and MMC tests
are both significant at level 5% for the orders 0, 1, 2, 4, 5, 8, 14, 15 [plus the orders 7 and 11at level
10%].° This suggests choosing VAR(16) for analyzing the Granger causality structure between
these four macroeconomic variables. The results on pairwise Granger causality tests are presented
in Table 10. From these results, we identify the following significant relationships (according to
MMC tests): at level 5%,

M — r «— y
N\ (6.3)
P

and at level 10%

M — r «— y

N (6.4)
P

Note that the results provided by these different models are quite similar, except for the fact that from
the VAR(4) model the hypothesis of Granger non-causality from interest rates to prices (r - P) is
also rejected at a level 5%. It is interesting to note that money (when measured by bank reserves)
appears not to be Granger caused by the other variables of the system. Further, money does not
Granger cause income (y) directly but has an effect on the interest rate (r) which in turn Granger
causes the prices. So reserves may have an indirect effect on income [see Dufour and Renault (1998)

Detailed results on order selection tests are available in a discussion paper [Dufour and Jouini (2004)].
®Detailed results are available from the authors.
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Table 6. Power of the MMC causality tests.
VAR(1) models, T' = 30

B, MMCT"

k=2 k=3] k=4 | k=5 ] k=6
001 | 34 1.9 338 2.9 1.9
002 | 34 | 42 7.1 64 | 42

0.03 73 7.7 233 15.7 6.7
0.04 10.2 15.4 41.3 30.1 14.0
0.05 18.6 22.6 65.4 49.2 25.1
0.06 26.6 37.3 78.5 65.9 41.1
0.07 40.3 54.8 88.8 77.4 534
0.08 50.1 63.6 95.2 87.7 63.9
0.09 62.0 71.1 97.9 94.1 75.3
0.10 70.0 84.5 98.8 96.8 82.0
0.15 91.8 98.3 100 99.9 98.8
0.20 98.9 99.8 100 100 99.7

Note — These results are based on modf,l MO (¢ = 0.90). Power is obtained under alttafnatives where @1 | =di (p) #0,
1=2,...,ki=1,..., p, where ®;1;(p) depends on the order p of the process: ®;1;(1) = 0.1, ®;1:(2) = 0.02, and
®;1,(p) = 0.01 forp =3, 4, 5.

Table 7. Tests for VAR order (quarterly data)
AR(p) vs. AR(p+ 1)

p | ASY, | LMCY | MMCYF
17 [ 0.016%% | 24100 | 24.100
16 | 0.155%% | 33400 | 33.400
15 | 0.312%% | 35700 | 35.700
14 | 7.244% | 65100 | 65.100
13 | 12483 | 70100 | 70.100
12 | 22961 | 79.000 | 79.000
11| 2.205% | 29.100 | 29.100
10 | 0356 | 11.700 | 11.700
9 | 0058 | 4.800%% | 6300%
8 | 2.195%% | 4.600%% | 6.400%
7 | 4526%% | 6.200% | 7.900%
6 | 2055 | 11300 | 11.300
5 | 8226% | 24500 | 24.500
4 | 8302% | 20.100 | 20.100
3 | 0.916%%F | 2.800%% | 4.600%*
2 | 0.995%F | 2.500%*% | 4.200%%
1| 0251 | 0.500%% | 1.100%*
0 | 0.000%%* | 0.100%%* | 0.100%%*

Note — The numbers in the table are p-values in percentage. *** and ** highlight p-values not larger than 1.00% and
5.00%, respectively, while * highlights a p-values not larger than 10%.
— The quarterly data is computed using arithmetic average over successive blocks of three consecutive observations.
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Table 8. Pairwise Granger non-causality tests based on a quarterly VAR(4) model

H, ASY,, | LMCF | MMCY
M - 7 | 0495%% | 1300%% | 2.100%*
- P | 42195 | 49.600 | 49.600
-y | 61352 | 69.500 | 69.500
r - M| 88927 | 92200 | 92.200
- P | 2.108% | 3.900%* | 5300%
-y | 1671% | 2.400%% | 3.800%
P - M| 55120 | 61.000 | 61.000
- 7 | 22472 | 29.400 | 29.400
-y | 65790 | 72700 | 72.700
y » M| 33619 | 41.600 | 41.600
- | 0,021 | 0.100% | 0.200%%
- P | 25144 | 33.100 | 33.100

Note — The numbers in the table are p-values in percentage. *** and ** highlight p-values not larger than 1.00% and
5.00%, respectively, while * highlights a p-values not larger than 10%.

Table 9. Tests for VAR order (monthly data)
AR(p) vs. AR(p+ 1)

p | ASY, | LMCY | MMCYF
18 | 3353% | 16600 | 16.600
17 | 96756 | 99.200 | 99.200
16 | 7.833* | 25800 | 25.800
15 | 0.039%% | 0.500%% | 0.800%%*
14 | 0.348%0% | 2.000%% | 3.300%
13 | 30411 | 52900 | 52.900
12 | 8.084* | 20900 | 20.900
11| 2.279% | 7.400% | 8.400%
10 | 5901% | 13.800 | 13.800
9 | 5549% | 10.600 | 10.600
8 | 0.077%%% | 0.300%% | 0.400%%%
7| 1.984%F | 6400% | 7.500%
6 | 44546 | 54300 | 54300
5 | 0.000%F | 0.100%%% | 0.100%#%
4 | 1.938%F | 3700%% | 4.400%%
3| 10975 | 15200 | 15200
2| 0.000%* | 0.100%%* | 0.100%%*
1| 0.000% | 0.100%%* | 0.100%%*
0 | 0.000%%* | 0.100%* | 0.100%%*

Note — The numbers in the table are p-values in percentage. *** and ** highlight p-values not larger than 1.00% and
5.00%, respectively, while * highlights a p-values not larger than 10%.
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Table 10. Pairwise Granger non-causality tests based on a monthly VAR(16) model

H, ASY, | LMCI" | MMCY
M - 7 | 0.004%% | 0.200%% | 0.200%%
- P | 0.000%%% | 0.200%%% | 0.200%%
-y | 27100 | 12400 | 12.400
r - M| 14961 | 33500 | 33.500
- P | 1.997% | 7.900% | 8.800%
-y | 4915% | 16500 | 16.500
P -~ M| 49853 | 71.100 | 71.100
- v | 21040 | 40200 | 40.200
-y | 19954 | 43.100 | 43.100
y - M| 21543 | 43700 | 43.700
- | 00005 | 0,100 | 0.100%%
- P | 14593 | 36500 | 36.500

Note — The numbers in the table are p-values in percentage. *** and ** highlight p-values not larger than 1.00% and
5.00%, respectively, while * highlights a p-values not larger than 10%.

and Dufour et al. (2005)].

7. Conclusion

In this paper, we have proposed a general simulation-based method to produce finite-sample tests in
parametric VAR models with known lag order (or a known upper bound on the order of the process).
The method has the important feature that no other assumption is needed on the structure of the
underlying process: all that is required is the possibility of simulating the model once a finite number
of parameters have been specified. For example, the VAR process may be integrated of any order.
We also showed that the proposed method can be implemented in practice, despite the presence
of a large number of nuisance parameters. In a simulation experiment, we saw clearly that both
standard asymptotic as well as bootstrap procedures can suffer from severe size distortions, while,
under the same conditions, the MMC method controls the level of the test perfectly (as expected),
although its size could be lower than the test. To best of our knowledge, no other available procedure
has these features. We also provided an application to Granger causality testing in a four-variable
macroeconomic model of the U.S. economy.

Even though we have focused here on tests on the order of a VAR and Granger causality, the
approach proposed here can be applied in principle to any set of restrictions on the model, such
as unit root or cointegration hypotheses. In such cases, even though the unit root hypothesis (for
example) could be taken into account by an asymptotic distributional theory or a bootstrap proce-
dure, large roots in the stationary region but close to the unit-circle could still lead to large size
distortions. By construction, the MMC procedure remains valid irrespective of the structure of the
VAR. It is also important to note that the error distribution need not be normal: any assumption that
specifies completely the distribution of £(7') = vec(ey, ... , er), i.e. the disturbance distribution
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up to an unknown linear transformation (or covariance matrix) can be used. No assumption on the
existence of moments is needed, so one could consider distributions with heavy tails. One could
also introduce further free parameters in the error distribution: such parameters can be treated as
extra nuisance parameters.

The main limitations of the approach proposed here lies in the parametric setup required to
perform the MC tests and the computational cost. On the first issue, it is important to note that
parametric assumptions involve putting a bound on the maximal order of the process (which is
equivalent to assuming that the order of VAR process is “known”). In the case of testing Granger
non-causality (as well as for many hypotheses of interest), this means that the lag order is an integral
part of the null hypothesis: there is no way to “separate” Granger non-causality from an assumption
on the order of the process. Allowing for a data-based order selection would require simulating
as well the model selection procedure. Note, however, producing finite-sample inference without
putting an explicit upper bound on the order of the process is fundamentally an impossible task
[see the discussions in Sims (1971a, 1971b), Cochrane (1991), Blough (1992), Faust (1996, 1999),
Potscher (2002) and Dufour (2003)]. So, from the viewpoint of developing valid tests in finite
samples, the assumption of a “known order” is unavoidable.

If one is prepared to accept a procedure which has only an “asymptotic justification”, it is also
important to note that the proposed “exact procedures” remain asymptotically valid (in the usual
sense of pointwise asymptotic validity) under much weaker assumptions, including an “unknown”
order which may be “consistently estimated”. As long as the MC tests are performed using a dis-
tribution which is covered by the assumptions of the limiting distributional theory, the probability
of type I error will satisfy the level condition asymptotically. Of course, under usual assumptions,
such a convergence will not typically be uniform — which opens the possibility of arbitrary devi-
ations from the nominal level of the test — but this simply reflects the fact that typical regularity
assumptions are simply too weak to even allow the existence of provably valid finite-sample pro-
cedures [see Dufour (2003)]. It is worthwhile to note also that the MMC procedure automatically
adapts to possible dependence of the distribution of the test statistic upon the autoregressive coeffi-
cients.

On the second issue, it is clear that MMC tests are computer intensive. The code that we used
to perform the simulations and applications presented is certainly not optimal [given that these were
performed with GAUSS] and we are working on improving it. Given the regular improvements in
computer speeds, the importance of this type of consideration should decline in the future.
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A. Appendix: Equivalence between roots and eigenvalues of a VAR

process

By the definition,

bS]

we see that, for any z € C,

det [Ty, — Pz] = det

[ &) By By

b,1 P,

I. 0 0 0 0
0 I 0 0 0
0 0 O 0 0

L0 0 0O I, 0 |

Ik — @12 —@22’ —@32’ ce —Q5p_1z —45pz T

—Iyz I 0 0 0
0 —Ikz Ik 0 0
0 0 0 I, 0
0 0 0 —Ikz Ik

(A.1)

(A2)

Now, on multiplying by z the second block of k columns and adding it to the first block, we get

det [, — Pz] = det

[ I, — 32 820 —Byz —B3z

0 1y, 0
*IkZQ 7Ikz Ik
0 0 0
0 0 0

—ép,lz —@I)
0 0
0 0
I, 0
—Ikz Ik

z

(A3)

and, repeating this process up the p-th block (i.e., multiplying the j-th block by 2/ ~! and adding the
result to the first block, for j = 1, ..., p), we obtain:

det [Ikp — Qi)z} = det

= det

i Ik — Ele @Z’Zi —@22’ —4532

0 P 0
0 —Ikz Ik
0 0 0
0 0 0

Iy =Y @2 | =det {&(2)} .

i=1
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Since, for z # 0,

det [T, — B2] = |2 det [27 Ty, — B = (—~1)*P [2|*P det [6 — 27111, ,  (A5)
the stationarity condition
det [P (2)]=0<|z| > 1 (A.6)
is equivalent to
det [ — 2z 'y, =0 |2 > 1 (A.7)
and, setting A = 1/z, )
det [® — M) =0 [N < 1. (A.8)

This means that, to have stationarity, the eigenvalues of the matrix @ should be inside the unit circle.
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B. Appendix: Lag-augmented Wald tests for causality

We give here a brief description of the lag-augmented Wald tests considered in the simulation. In
order to test Granger non-causality, the first step consists in estimating by ordinary least squares an
unrestricted VAR(p + 1) model, rather than a VAR (p) model:

p+1
Yt:ZQ’)iYi_i—i—ut, t=1,...,T. (B.1)
i=1
Even though we know that @, = 0, this restriction is not used in order to compute the test
statistic. Second, we consider the hypothesis (5.5) which is equivalent to Hy : (Y, ..., Yx) » Y1

under the VAR (p) model (leaving @, as a free coefficient), and compute the corresponding Wald-
type test statistic [say Wéo)]. In accordance with (5.5), Hyp may be expressed as a set of zero
restrictions on the (p+ 1) k? x 1 coefficient vector ¢, = vec([®1, Py, ... , Dy, ¢p+1]/>, ie.
Hy : Cp+19p+1 = 0, where Cp1 is a full-rank p (k — 1) x (p+1) k? matrix containing only 0
and 1. The Wald statistic then has the form:

0 Y SN 1 -
W =T (Cpa1dpar) [Cra12(Bp11)Chir] " (Crirdpin) (B2)
where épﬂ = vec([@l, By, ..., Dy, sﬁpﬂ]l) and @;,i = 1,... ,p+1, are the unconstrained least

squares estimates for (B.1),” & ((%pH) is the usual asymptotic covariance estimator for 7''/2 ({bp -
¢p+1)’ namely 2(¢p+1) =21 ® Fp]_ll with

T -1
) 1 . 1
Sprr=rm Y delpt+ D (p+1) Fp+1={TY(p+1,T)Y(p+1,T)’ , (B3)
t=p+2
p+1
a(p+1)=Y—> &Yy, t=p+2,...,T, (B4)
=1

and Y; (p+1) = [V Y e ¥, 1]

Under the VAR (p) specification with H, this statistic follows a chi-square distribution asymp-
totically (with number of degrees of freedom equal to the number of restrictions) even if the process
Y; is integrated; see, for example, Toda and Yamamoto (1995) and Dolado and Liitkepohl (1996).
Of course, the finite-sample distribution of the lag-augmented Wald statistic depends on nuisance
parameters (the coefficients which are not fixed by the hypotheses). So the chi-square approxima-
tion may be quite unreliable in finite samples, and improvements (such as bootstrapping) may be
very important in this model. We consider here two ways of bootstrapping such lag-augmented
Wald tests, a “parametric” bootstrap and a “nonparametric”’ one.

In the parametric case, we first obtain consistent restricted estimates €1~5§, it =1,...,p, of

7Such estimates can easily be obtained by applying OLS to each equation.
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the VAR(p) model [i.e., (5.1) with (5.5)] along with the Cholesky factor RCT associated with the
estimated error covariance matrix. In the present case, the restricted estimates are obtained through
maximization of the Gaussian likelihood L(¢) in (4.2). These values are then used to generate

pseudo-samples Y = [Yl(l), cee Y:ﬁl)}, according to the equation
p ~ ~
YO =Ndy 4 Reel), t=1,...,7, 1=1,...,N, (B.6)
i=1

where the 59 are simulated according to the distribution

DN, L), t=1,..., T, (B.7)

From each simulated sample Y), a VAR(p + 1) model is estimated and the corresponding lag-

augmented Wald statistic Wg ) for H o is computed. The initial values are kept fixed at the realized
values from the observed sample. The corresponding simulated p-value px (Sp) then follows ac-

cording to formula (3.9) with S} = Wg), [ =0,1, ..., N. The null hypothesis is rejected when
P (So) < a.
In the nonparametric case, we start from the estimated residuals
p ~
=Y, =Y ®Y,y, t=1,...,T (B.8)
i=1
New residuals ﬂg”, cee ?.Nl,g{) are then drawn at random (with replacement) from the set
{ag, ..., 45}, a pseudo-sample is built following the equation
(1 N 1
7O =3ev" val, t=1,...7T, (B.9)
i=1

and the corresponding lag-augmented Wald statistic for Hy — say Wg ) _is computed. On repeating
this operation /N times, the bootstrap p-value and test are finally obtained as for the parametric
bootstrap.
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C. Appendix: Covariance matrix coefficients used in the simulation

In section 5, the lower triangular matrices R which determine error covariance matrices X = RR/
were defined as follows:

0.01 0.00
= [ ~0.02 0.03] , fork=2,
0.01 0.00 0.00
R=| —0.02 003 0.00 |, fork=3,

—-0.01 0.01 0.02

0.01 0.00 0.00 0.00
~0.02 0.03 0.00 0.00
R=1 001 001 002 000 | @ fork=4

—0.03 0.02 0.01 0.01

0.01  0.00 0.00 0.00 0.00
—-0.02 0.03 0.00 0.00 0.00
R=| -001 0.01 0.02 0.00 000 |, fork=0>5,
—-0.03 0.02 0.01 0.01 0.00
0.01 -0.02 0.03 -0.01 0.02

001  0.00 000 0.0 0.00 0.00
—0.02  0.03 000 0.00 0.00 0.00
—0.01 001 002 000 0.00 0.00
B=1 _003 002 001 00l 000 000 | ork=6
001 —0.02 0.03 —0.01 0.02 0.00

0.02 -0.01 -0.03 0.02 0.01 0.03
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