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RÉSUMÉ

Avec les avancements de la technologie de l’information, les données temporelles éco-

nomiques et financières sont de plus en plus disponibles. Par contre, si les techniques

standard de l’analyse des séries temporelles sont utilisées, une grande quantité d’infor-

mation est accompagnée du problème de dimensionnalité. Puisque la majorité des séries

d’intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l’ana-

lyse factorielle 1. Cette technique est de plus en plus populaire en sciences économiques

depuis les années 90.

Étant donnée la disponibilité des données et des avancements computationnels, plu-

sieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs

structurels dans un environnement riche en données ? Est-ce que l’information conte-

nue dans un grand ensemble d’indicateurs économiques peut aider à mieux identifier

les chocs de politique monétaire, à l’égard des problèmes rencontrés dans les applica-

tions utilisant des modèles standards ? Peut-on identifier les chocs financiers et mesurer

leurs effets sur l’économie réelle ? Peut-on améliorer la méthode factorielle existante et

y incorporer une autre technique de réduction de dimension comme l’analyse VARMA ?

Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques

et aide au niveau de l’analyse par fonctions de réponse impulsionnelles ? Finalement,

est-ce qu’on peut appliquer l’analyse factorielle au niveau des paramètres aléatoires ?

Par exemple, est-ce qu’il existe seulement un petit nombre de sources de l’instabilité

temporelle des coefficients dans les modèles macroéconomiques empiriques ?

Ma thèse, en utilisant l’analyse factorielle structurelle et la modélisation VARMA,

répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les

effets des chocs monétaire et financier dans un environnement riche en données. Le

troisième article propose une nouvelle méthode en combinant les modèles à facteurs

et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les

effets des chocs de crédit au Canada. La contribution du dernier chapitre est d’imposer

1. Ici, l’analyse factorielle comprend les modèles à facteurs et à composantes principales. D’autres
techniques de reduction de dimension basées sur shrinkage ne sont pas discutées.
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la structure à facteurs sur les paramètres variant dans le temps et de montrer qu’il existe

un petit nombre de sources de cette instabilité.

Le premier article analyse la transmission de la politique monétaire au Canada en

utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études

antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite

à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un

grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons

que l’information contenue dans les facteurs est importante pour bien identifier la trans-

mission de la politique monétaire et elle aide à corriger les anomalies empiriques stan-

dards. Finalement, le cadre d’analyse FAVAR permet d’obtenir les fonctions de réponse

impulsionnelles pour tous les indicateurs dans l’ensemble de données, produisant ainsi

l’analyse la plus complète à ce jour des effets de la politique monétaire au Canada.

Motivée par la dernière crise économique, la recherche sur le rôle du secteur finan-

cier a repris de l’importance. Dans le deuxième article nous examinons les effets et la

propagation des chocs de crédit sur l’économie réelle en utilisant un grand ensemble

d’indicateurs économiques et financiers dans le cadre d’un modèle à facteurs structurel.

Nous trouvons qu’un choc de crédit augmente immédiatement les diffusions de crédit

(credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs

ont un effet important sur des mesures d’activité réelle, indices de prix, indicateurs avan-

cés et financiers. Contrairement aux autres études, notre procédure d’identification du

choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et

macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre

l’estimation de ceux-ci.

Dans le troisième article nous étudions la relation entre les représentations VARMA

et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe

de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de

constater qu’en général les séries multivariées et facteurs associés ne peuvent simultané-

ment suivre un processus VAR d’ordre fini. Nous montrons que le processus dynamique

des facteurs, extraits comme combinaison linéaire des variables observées, est en gé-

néral un VARMA et non pas un VAR comme c’est supposé ailleurs dans la littérature.
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Deuxièmement, nous montrons que même si les facteurs suivent un VAR d’ordre fini,

cela implique une représentation VARMA pour les séries observées. Alors, nous pro-

posons le cadre d’analyse FAVARMA combinant ces deux méthodes de réduction du

nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en uti-

lisant des données américaines et canadiennes de Boivin, Giannoni et Stevanović (2010,

2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir

les importants agrégats macroéconomiques relativement aux modèles standards. Finale-

ment, nous estimons les effets de choc monétaire en utilisant les données et le schéma

d’identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1)

avec six facteurs donne les résultats cohérents et précis des effets et de la transmission

monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l’étude ul-

térieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats

semblables avec seulement 84 paramètres du processus dynamique des facteurs.

L’objectif du quatrième article est d’identifier et mesurer les effets des chocs de crédit

au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA

structurel. Dans le cadre théorique de l’accélérateur financier développé par Bernanke,

Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les

credit spreads. D’un côté, nous trouvons qu’une augmentation non-anticipée de la prime

de financement extérieur aux États-Unis génère une récession significative et persistante

au Canada, accompagnée d’une hausse immédiate des credit spreads et taux d’intérêt

canadiens. La composante commune semble capturer les dimensions importantes des

fluctuations cycliques de l’économie canadienne. L’analyse par décomposition de la va-

riance révèle que ce choc de crédit a un effet important sur différents secteurs d’activité

réelle, indices de prix, indicateurs avancés et credit spreads. De l’autre côté, une hausse

inattendue de la prime canadienne de financement extérieur ne cause pas d’effet signi-

ficatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont

essentiellement causés par les conditions globales, approximées ici par le marché améri-

cain. Finalement, étant donnée la procédure d’identification des chocs structurels, nous

trouvons des facteurs interprétables économiquement.

Le comportement des agents et de l’environnement économiques peut varier à travers
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le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) in-

duisant de l’instabilité des paramètres dans les modèles en forme réduite. Les modèles à

paramètres variant dans le temps (TVP) standards supposent traditionnellement les pro-

cessus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons

que le nombre de sources de variabilité temporelle des coefficients est probablement très

petit, et nous produisons la première évidence empirique connue dans les modèles ma-

croéconomiques empiriques. L’approche Factor-TVP, proposée dans Stevanovic (2010),

est appliquée dans le cadre d’un modèle VAR standard avec coefficients aléatoires (TVP-

VAR). Nous trouvons qu’un seul facteur explique la majorité de la variabilité des coef-

ficients VAR, tandis que les paramètres de la volatilité des chocs varient d’une façon

indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La

même analyse est faite avec les données incluant la récente crise financière. La procé-

dure suggère maintenant deux facteurs et le comportement des coefficients présente un

changement important depuis 2007. Finalement, la méthode est appliquée à un modèle

TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l’insta-

bilité temporelle dans presque 700 coefficients.

Mots clés: Analyse factorielle, modèle VARMA, prévision, fonctions de réponse

impulsionnelles, analyse structurelle, modèle à paramètres variant dans le temps.



ABSTRACT

As information technology improves, the availability of economic and finance time

series grows in terms of both time and cross-section sizes. However, a large amount of

information can lead to the curse of dimensionality problem when standard time series

tools are used. Since most of these series are highly correlated, at least within some

categories, their co-variability pattern and informational content can be approximated

by a smaller number of (constructed) variables. A popular way to address this issue is

the factor analysis 2. This framework has received a lot of attention since late 90’s and is

known today as the large dimensional approximate factor analysis.

Given the availability of data and computational improvements, a number of empir-

ical and theoretical questions arises. What are the effects and transmission of structural

shocks in a data-rich environment? Does the information from a large number of eco-

nomic indicators help in properly identifying the monetary policy shocks with respect

to a number of empirical puzzles found using traditional small-scale models? Motivated

by the recent financial turmoil, can we identify the financial market shocks and mea-

sure their effect on real economy? Can we improve the existing method and incorporate

another reduction dimension approach such as the VARMA modeling? Does it help in

forecasting macroeconomic aggregates and impulse response analysis? Finally, can we

apply the same factor analysis reasoning to the time varying parameters? Is there only

a small number of common sources of time instability in the coefficients of empirical

macroeconomic models?

This thesis concentrates on the structural factor analysis and VARMA modeling and

answers these questions through five articles. The first two articles study the effects of

monetary policy and credit shocks in a data-rich environment. The third article proposes

a new framework that combines the factor analysis and VARMA modeling, while the

fourth article applies this method to measure the effects of credit shocks in Canada. The

contribution of the final chapter is to impose the factor structure on the time varying

2. Here, the factor analysis understands both factor and principal components models. Other dimen-
sion reduction techniques widely used are shrinkage models, but are not discussed in this work.
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parameters in popular macroeconomic models, and show that there are few sources of

this time instability.

The first article analyzes the monetary transmission mechanism in Canada using a

factor-augmented vector autoregression (FAVAR) model. For small open economies

like Canada, uncovering the transmission mechanism of monetary policy using VARs

has proven to be an especially challenging task. Such studies on Canadian data have

often documented the presence of anomalies such as a price, exchange rate, delayed

overshooting and uncovered interest rate parity puzzles. We estimate a FAVAR model

using large sets of monthly and quarterly macroeconomic time series. We find that the

information summarized by the factors is important to properly identify the monetary

transmission mechanism and contributes to mitigate the puzzles mentioned above, sug-

gesting that more information does help. Finally, the FAVAR framework allows us to

check impulse responses for all series in the informational data set, and thus provides

the most comprehensive picture to date of the effect of Canadian monetary policy.

As the recent financial crisis and the ensuing global economic have illustrated, the

financial sector plays an important role in generating and propagating shocks to the real

economy. Financial variables thus contain information that can predict future economic

conditions. In this paper we examine the dynamic effects and the propagation of credit

shocks using a large data set of U.S. economic and financial indicators in a structural fac-

tor model. Identified credit shocks, interpreted as unexpected deteriorations of the credit

market conditions, immediately increase credit spreads, decrease rates on Treasury secu-

rities and cause large and persistent downturns in the activity of many economic sectors.

Such shocks are found to have important effects on real activity measures, aggregate

prices, leading indicators and credit spreads. In contrast to other recent papers, our struc-

tural shock identification procedure does not require any timing restrictions between the

financial and macroeconomic factors, and yields an interpretation of the estimated fac-

tors without relying on a constructed measure of credit market conditions from a large

set of individual bond prices and financial series.

In third article, we study the relationship between VARMA and factor representations

of a vector stochastic process, and propose a new class of factor-augmented VARMA



ix

(FAVARMA) models. We start by observing that in general multivariate series and as-

sociated factors do not both follow a finite order VAR process. Indeed, we show that

when the factors are obtained as linear combinations of observable series, their dy-

namic process is generally a VARMA and not a finite-order VAR as usually assumed

in the literature. Second, we show that even if the factors follow a finite-order VAR

process, this implies a VARMA representation for the observable series. As result, we

propose the FAVARMA framework that combines two parsimonious methods to repre-

sent the dynamic interactions between a large number of time series: factor analysis and

VARMA modeling. We apply our approach in two pseudo-out-of-sample forecasting

exercises using large U.S. and Canadian monthly panels taken from Boivin, Giannoni

and Stevanović (2010, 2009) respectively. The results show that VARMA factors help

in predicting several key macroeconomic aggregates relative to standard factor forecast-

ing models. Finally, we estimate the effect of monetary policy using the data and the

identification scheme as in Bernanke, Boivin and Eliasz (2005). We find that impulse

responses from a parsimonious 6-factor FAVARMA(2,1) model give an accurate and

comprehensive picture of the effect and the transmission of monetary policy in U.S.. To

get similar responses from a standard FAVAR model, Akaike information criterion esti-

mates the lag order of 14. Hence, only 84 coefficients governing the factors dynamics

need to be estimated in the FAVARMA framework, compared to FAVAR model with 510

VAR parameters.

In fourth article we are interested in identifying and measuring the effects of credit

shocks in Canada in a data-rich environment. In order to incorporate information from a

large number of economic and financial indicators, we use the structural factor-augmented

VARMA model. In the theoretical framework of the financial accelerator, we approxi-

mate the external finance premium by credit spreads. On one hand, we find that an unan-

ticipated increase in US external finance premium generates a significant and persistent

economic slowdown in Canada; the Canadian external finance premium rises immedi-

ately while interest rates and credit measures decline. From the variance decomposition

analysis, we observe that the credit shock has an important effect on several real activity

measures, price indicators, leading indicators, and credit spreads. On the other hand, an
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unexpected increase in Canadian external finance premium shows no significant effect

in Canada. Indeed, our results suggest that the effects of credit shocks in Canada are

essentially caused by the unexpected changes in foreign credit market conditions. Fi-

nally, given the identification procedure, we find that our structural factors do have an

economic interpretation.

The behavior of economic agents and environment may vary over time (monetary

policy strategy shifts, stochastic volatility) implying parameters’ instability in reduced-

form models. Standard time varying parameter (TVP) models usually assume inde-

pendent stochastic processes for all TVPs. In the final article, I show that the number

of underlying sources of parameters’ time variation is likely to be small, and provide

empirical evidence on factor structure among TVPs of popular macroeconomic mod-

els. To test for the presence of, and estimate low dimension sources of time variation

in parameters, I apply the factor time varying parameter (Factor-TVP) model, proposed

by Stevanovic (2010), to a standard monetary TVP-VAR model. I find that one fac-

tor explains most of the variability in VAR coefficients, while the stochastic volatility

parameters vary in the idiosyncratic way. The common factor is highly and positively

correlated to the unemployment rate. To incorporate the recent financial crisis, the same

exercise is conducted with data updated to 2010Q3. The VAR parameters present an

important change after 2007, and the procedure suggests two factors. When applied to

a large-dimensional structural factor model, I find that four dynamic factors govern the

time instability in almost 700 coefficients.

Keywords: Factor analysis, VARMA model, forecasting, impulse responses,

structural analysis, time varying parameter model.
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INTRODUCTION GÉNÉRALE

Cette thèse est composée de cinq essais et s’inscrit dans le cadre des modèles à fac-

teurs avec applications en macroéconomie. Les contributions empiriques sont : caracté-

riser la transmission de la politique monétaire au Canada en corrigeant pour la plupart

des anomalies répertoriées dans la littérature antérieure, identifier et quantifier, parmi les

premiers, les chocs de crédit et leurs effets sur les économies américaine et canadienne,

et produire la première évidence empirique sur la structure à facteurs des coefficients

aléatoires dans les modèles macroéconomiques. Du point de vue théorique, une nouvelle

classe de modèles est proposée et leur importance a été justifiée au niveau de la prévi-

sion des agrégats macroéconomique et de l’analyse structurelle utilisant les fonctions de

réponse impulsionnelles.

Le premier article analyse la transmission de la politique monétaire au Canada en

utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études

précédentes utilisant les modèles VAR structurels ont documenté plusieurs anomalies

(price, exchange rate, delayed overshooting et uncovered interest rate parity puzzles),

et les essaies de les corriger n’ont pas connu de grands succès. Puisque l’une des expli-

cations des difficultés est le manque d’information dans les petits modèles empiriques,

l’approche FAVAR est très attrayante car elle permet d’incorporer un très grand ensemble

de données tout en ayant un modèle parcimonieux.

Le modèle est estimé avec un panel non balancé contenant 435 indicateurs écono-

miques et financiers mensuels et trimestriels. Nous trouvons que l’information contenue

dans les facteurs est importante pour bien identifier la transmission de la politique moné-

taire dans les fréquences mensuelle et trimestrielle, et elle aide à corriger les anomalies

empiriques présentes dans les modèles VAR. Finalement, le cadre d’analyse FAVAR

permet d’obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans

l’ensemble de données, produisant ainsi l’analyse la plus complète à ce jour des effets

de la politique monétaire au Canada.

L’objectif du deuxième article est d’examiner les effets et la propagation des chocs

de crédit sur l’économie réelle en utilisant un grand ensemble d’indicateurs économiques
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et financiers dans le cadre d’un modèle à facteurs structurel. Contrairement aux études

précédentes, nous utilisons une procédure d’identification des chocs structurels moins

restrictive avec pour but de laisser les réponses des taux d’intérêt et des indicateurs

avancés complétement déterminées par les données. Le modèle est estimé en utilisant

187 indicateurs économiques et financiers américains.

Nous trouvons qu’un choc de crédit augmente immédiatement les credit spreads et

cause une récession significative et persistante accompagnée d’une baisse considérable

des niveaux des prix. De plus, les taux d’intérêt baissent significativement à l’impact

ainsi que les indicateurs avancés tels que l’indice de marché immobilier, le sentiment des

consommateurs, etc. Ces chocs ont un effet important sur des mesures d’activité réelle,

indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre

procédure d’identification du choc structurel ne requiert pas de restrictions temporelles

entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation

des facteurs sans restreindre l’estimation de ceux-ci.

Dans le troisième article nous étudions la relation entre les représentations VARMA

et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe

de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de

constater qu’en général les séries multivariées et facteurs associés ne peuvent simultané-

ment suivre un processus VAR d’ordre fini. Nous montrons que le processus dynamique

des facteurs extraits comme combinaison linéaire des variables observées est en géné-

ral un VARMA et non pas un VAR comme c’est supposé ailleurs dans la littérature.

Deuxièmement, nous montrons que même si les facteurs suivent un VAR d’ordre fini,

cela implique une représentation VARMA pour les séries observées. Alors, nous pro-

posons le cadre d’analyse FAVARMA combinant ces deux méthodes de réduction de

dimension.

Le modèle est appliquée dans deux exercices de prévision en utilisant des données

américaines et canadiennes de Boivin, Giannoni et Stevanović (2010, 2009) respective-

ment. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants

agrégats macroéconomiques relativement aux modèles standards. Finalement, nous esti-

mons les effets de choc monétaire en utilisant les données et le schéma d’identification
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de Bernanke, Boivin et Eliasz (2005). Notre modèle parcimonieux FAVARMA(2,1) avec

six facteurs donne les résultats cohérents et précis des effets et de la transmission moné-

taire aux États-Unis. Contrairement au modèle FAVAR employé dans l’étude ultérieure

où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables

avec seulement 84 paramètres du processus dynamique des facteurs.

L’objectif du quatrième article est d’identifier et mesurer les effets des chocs de crédit

au Canada dans un environnement riche en données. Dans le but d’incorporer l’informa-

tion d’un grand ensemble d’indicateurs économiques et financiers, nous utilisons le mo-

dèle FAVARMA structurel. Dans le cadre théorique de l’accélérateur financier développé

par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement ex-

térieur par les (credit spreads). Le modèle est estimé en utilisant les données mises à jour

de Boivin, Giannoni et Stevanovic (2009).

D’un côté, nous trouvons qu’une augmentation non-anticipée de la prime de finan-

cement extérieur aux États-Unis génère une récession significative et persistante au Ca-

nada, accompagnée d’une hausse immédiate des credit spreads canadiens. La compo-

sante commune semble capturer les dimensions importantes des fluctuations cycliques

de l’économie canadienne. L’analyse par décomposition de la variance révèle que ce

choc de crédit a un effet important sur différents secteurs d’activité réelle, indices de

prix, indicateurs avancés et credit spreads. De l’autre côté, une hausse inattendue de la

prime canadienne de financement extérieur ne cause pas d’effet significatif au Canada.

Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés

par les conditions globales, approximées ici par le marché américain. Finalement, étant

donnée la procédure d’identification des chocs structurels, nous trouvons des facteurs

interprétables économiquement.

Finalement, le dernier article innove en imposant une structure à facteurs au niveau

des coefficients aléatoires d’un modèle empirique. Il est bien connu que le comporte-

ment des agents et de l’environnement économiques peut varier à travers le temps (ex.

changements de stratégies de la politique monétaire, volatilité de chocs) induisant de

l’instabilité des paramètres dans les modèles en forme réduite. Les modèles à para-

mètres variant dans le temps (TVP) standards supposent traditionnellement les processus
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stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le

nombre de sources de variabilité temporelle des coefficients est probablement très petit,

et nous produisons la première évidence empirique connue dans les modèles macroéco-

nomiques empiriques.

L’approche Factor-TVP est appliquée dans le cadre d’un modèle TVP-VAR stan-

dard. Nous trouvons qu’un seul facteur explique la majorité de la variabilité des coef-

ficients VAR, tandis que les paramètres de la volatilité des chocs varient d’une façon

indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La

même analyse est faite avec les données incluant la récente crise financière. La procé-

dure suggère maintenant deux facteurs et le comportement des coefficients présente un

changement important depuis 2007. Finalement, la méthode est appliquée à un modèle

TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l’insta-

bilité temporelle dans presque 700 coefficients.
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CHAPTER 1

MONETARY TRANSMISSION IN A SMALL OPEN ECONOMY: MORE

DATA, FEWER PUZZLES

1.1 Introduction

Conclusions about the role that monetary policy plays in the economy and how it

should be conducted in practice depend crucially on the way monetary policy affects

the economy. This is why a large empirical literature has attempted to measure the

transmission of monetary policy.

A standard approach to uncover the transmission of monetary policy is to use struc-

tural vector autoregression (VAR). This method is particularly appealing since it does not

require to specify complete model of the economy. It consists of imposing the minimum

amount of restrictions needed to identify an exogenous source of variation in monetary

policy, in a system of equations capturing the relevant macroeconomic dynamics, that

is otherwise left unrestricted. Structural VAR methodology has been largely applied in

both assessing the empirical fit of structural models and in policy applications. Some key

examples of early and successful implementation on US data are Bernanke and Blinder

(1992), Sims (1992), and Bernanke and Mihov (1998). Even if the identification strategy

has been a source of disagreement (see Christiano, Eichenbaum and Evans (2000) for a

survey), this simple method is still largely used, and delivers some useful information

about the effects and the transmission of monetary policy shocks on economy.

However, for small open economies like Canada, uncovering the transmission mech-

anism of monetary policy through this type of approach has proven to be an especially

challenging task. In particular, initial VAR analysis on Canadian data have often doc-

umented the presence of anomalies such as price, exchange rate, delayed overshooting

and uncovered interest rate parity puzzles.

In Grilli and Roubini (1996) the authors used standard structural VAR model to eval-

uate the effects of monetary policy shocks in two-country systems (the non-U.S. G-7
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countries relative to the U.S.). Their results show strong evidence of several puzzles for

most of non-U.S. countries. To solve some of these anomalies the authors replaced the

short-term interest rate by the differential between short- and long-term interest rates in

order to capture agents’ inflation expectations. The same anomalies are reported and re-

solved in Kim and Roubini (2000) who used a structural VAR setup with non-recursive

contemporaneous restrictions where the monetary policy shocks are identified by model-

ing the monetary authority reaction function and the structure of the economy. Another

alternative to simple recursive identification structure is to use some long-run proposi-

tions of economic theory. For instance, Fung and Kasumovich (1998) estimate cointe-

grated VAR models for G-6 countries and then identify monetary shocks by imposing

the long-term money neutrality (a permanent change in the nominal stock of money has a

proportionate effect on the price level with no long-run effect on real economic activity).

In Cushman and Zha (1997) authors argue that puzzles found when estimating the effect

of monetary policy shocks in small open countries are due to inappropriate identification

schemes of monetary policy in such economies. Using Canada as benchmark case, they

estimate a standard VAR model that contains two types of variables, domestic (CAN)

and foreign (US), and impose block exogeneity condition on the latter. The monetary

policy shock is identified by supposing that monetary authority observe immediately the

exchange rate, interest rates, stock of money and world commodity price level. Using

this nonrecursive identification they obtain impulse responses that are consistent with

standard theory and highlight the exchange rate as a transmission mechanism. Finally,

Bhuiyan and Lucas (2007) consider an alternative resolution of these puzzles based on

an explicit account of inflation expectations. They first estimate ex-ante real interest

rate and inflationary expectations by decomposing the nominal interest rate, and then

include these into a fully recursive VAR model to evaluate the effects of monetary policy

shocks. Their findings suggest more broadly, that the anomalies reported above might

be the result of omitted information from small-scale VARs.

Hence, it is particularly interesting to see if a more systematic use of the relevant

information available could yield a more coherent and accurate picture of the effect of

monetary policy in a small open economy. In this paper, we use a factor augmented
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vector autoregression (FAVAR) approach to assess the effect and transmission mecha-

nism of monetary policy shocks on economic activity in Canada 1. Given that a common

potential explanation of all difficulties reported above is the lack of information in small-

scale VAR models, the FAVAR approach is appealing in a priori since it incorporates a

huge amount of information in a parsimonious way. Moreover, the application to U.S.

data by Bernanke, Boivin and Eliasz (2005) was a success story.

In our implementation, we estimate the FAVAR model using an unbalanced data

set of 348 monthly and 87 quarterly macroeconomic Canadian time series. We find

that the information summarized by the factors is important to properly identify the

monetary transmission mechanism in both monthly and quarterly frequencies. Overall,

our benchmark FAVAR specification, that includes only the monetary policy instrument

as observed factor, leads to broadly plausible estimates of the effects of monetary policy

shocks on many macroeconomic variables of interest and contributes to mitigate puzzles

mentioned above. Indeed, all price indexes decline after an unexpected increase in short

rate while the exchange rates appreciate on impact.

When comparing to standard small open economy VAR model results, we find that

adding information through factors into this VAR corrects for price and exchange rate

puzzles, and for inconsistent response of industrial production with respect to long-run

money neutrality. Also, the maximum response of exchange rates is on impact which

corrects for delayed overshooting puzzle. Finally, we find no evidence of the uncov-

ered interest rate parity, meaning that there is no systematic carry trade conditional on a

domestic monetary policy shock that rises the domestic interest rate.

Relative to existing literature discussed above, our approach is able to uncover rea-

sonably the monetary policy transmission in a small open economy without searching to

include agents’ expectations measures or other theoretical concepts proxies, and using

the simplest recursive identification scheme. Moreover, the FAVAR framework allows

us to check impulse responses for all series in the informational data set, and thus pro-

vide, to our knowledge, the most comprehensive picture to date of the effect of Canadian

1. In independent research projects, Mumtaz and Surico (2009), and Forni and Gambetti (2010),
obtain similar results for some of the puzzles that we study in this paper.
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monetary policy.

The rest of the paper is organized as follows. The FAVAR methodology is detailed

in the following section. In Section 3 we explain our application by presenting data and

the strategy to identify the monetary policy shocks. The main results are presented and

discussed in Section 4, and we conclude in Section 5.

1.2 FAVAR: Motivation, Methodology and Estimation

1.2.1 Motivation

Since Bernanke and Blinder (1992) and Sims (1992), the structural analysis applied

macroeconomics employs vector autoregressive (VAR) models to identify and measure

the effects of different shocks on macroeconomic variables of interest. Typically, cen-

tral banks are interested in the behavior of macroeconomic aggregates after a monetary

policy shock, and their analysts use widely structural VARs in order to identify the inno-

vation. Several criticisms of the VAR approach are worth of noting. The most important

is that it uses only a small number of variables to conserve degrees of freedom. This

small number of variables is unlikely to span the information sets used by actual central

banks that follow a large number of data series. Then, the lack of information leads

to three big potential problems. First, the identification of shock can be contaminated

which leads to several "puzzles" observed in the literature. Grilli and Rubini (1996)

paper offers a nice overview of puzzles found in several papers:

– The price puzzle. When monetary policy shocks are identified with innovations

in interest rates, the output and money supply responses are correct as a contrac-

tionary increase in interest rate is associated with a fall in the money supply and the

level of economic activity. However, the response of the price level is a persistent

increase rather than a decrease.

– The Exchange rate puzzle. While a positive innovation in interest rates in the US

is associated with an impact appreciation of the US dollar relative to the other G-7

countries, such monetary contractions in other G-7 countries are often associated

with an impact depreciation of their currency value relative to the US dollar.
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– The forward discount bias puzzle If uncovered interest parity holds, a positive in-

novation in domestic interest rates relative to a foreign ones should be associated

with a persistent depreciation of the domestic currency after the impact apprecia-

tion, as the positive interest rate differential leads to an expected depreciation of

the currency. However, the data show that a positive interest differential is associ-

ated with a persistent appreciation of the domestic currency for periods up to two

years after the initial monetary policy shock.

Further problem implied by lack of information in small-scale VAR models is the

omitted variable problem. If important variables are not included in the system (corre-

lated with regressors in the model) this leads to biased estimates of VAR coefficients

which is likely to produce biased impulse responses worthless for structural analysis.

The typical example in the literature is the omission of commodity prices in structural

VAR analysis attempting to measure monetary policy in U.S. (see Sims (1992) for ex-

planation).

The second problem in small-scale VAR model is that the choice of a specific data

series to represent a general economic concept is arbitrary. Moreover, measurement er-

rors, aggregation and revisions pose additional problems for linking theoretical concepts

to specific data series. Finally, even if the two previous problems do not occur, i.e. a

small scale VAR is well defined and the shock is well identified, we can produce im-

pulse responses only for variables included in the VAR.

On the other side, a factor-augmented VAR, which will be discussed deeply in the

next section, is a way to introduce additional information and then overcome the previ-

ous discussion. It uses a simply dimension reduction with principal components analysis,

which permits to resume a big part of information contained in a huge panel, into small

number of factors. In the case of the monetary policy studies where the monetary policy

instruments is an interest rate, Bernanke, Boivin and Eliasz (2005) show that including

only 3 factors correct the price puzzle while keeping a low-dimensional estimated VAR

and the easiest identification scheme. Finally, we can compute the impulse response

functions for any variable in the informational panel which can be very important if the

central bank is interested for example into the behavior of several price indices instead
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in a total consumer price index only.

1.2.2 Methodology

We apply the Factor Augmented Vector Autoregressive (FAVAR) approach as in

Bernanke, Boivin and Eliasz (2005), or BBE for the rest of the paper. Consider a T ×M

matrix of observable economic series Y , where T is the time size (number of periods)

and M is the cross-sectional size (number of series). In the standard VAR (and struc-

tural VAR) models used in monetary literature, Y include several variables assumed to

drive the dynamics of the economy and the transmission of monetary policy shocks. The

usual candidates are some measures of economic activity (GDP, industrial production,

employment, unemployment rate, etc.), an indicator of price level (usually CPI), and

a policy instrument (e.g. Federal Funds Rate (FFR) in US, Overnight rate in Canada,

Monetary base, etc.). In the traditional (S)VAR approach, Y is modeled alone assuming

that all relevant information is contained in several lagged values of Y . However, ad-

ditional information available in other economic series may be relevant to the dynamic

relationships assumed in VAR model, and this lack of information can lead to some

unanticipated implications from the estimated model as pointed out in the previous sec-

tion.

If this additional information can be summarized by a T × K unobserved factors

matrix F , where K is relatively small, we can augment the standard VAR model by

adding the factors. As illustrated by an example in BBE, the factors can be seen as

proxies for the economic activity, price pressures, credit conditions or other theoretical

concepts that are difficult to identify by one or two variables.

Suppose that the joint dynamics of (Ft ,Yt) can be represented by the following equa-

tion:
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where Φ(L) is the usual lag polynomial of finite order p, and ν t is the error term with

mean zero and covariance matrix Q. It is easy to see that (1.1) becomes a standard

VAR in Yt if the matrix Φ(L) is diagonal, i.e. if all terms in φ f y(L) and φ y f (L) are zero

(implying that there is no direct Granger causal relation between Ft and Yt). Otherwise,

the system (1.1) is defined as a factor augmented vector autoregression (FAVAR).

It is important to notice that since FAVAR nests VAR representation in Yt , estimating

the former allows us to evaluate the marginal contribution of factors by comparing the

results with existing VAR analysis. If the best approximation (in reduced form) of the

true DGP (data generated process) is a FAVAR, then omitting Ft from (1.1) and esti-

mating the VAR model will lead to biased estimates of the VAR coefficients. Thus, the

structural interpretations of the impulse responses are worthless.

If the factors Ft were observed, equation (1.1) would be a standard VAR model and

we would use existing structural VAR techniques to estimate the model and identify

structural shocks. Unfortunately, Ft are unobservable and we have to learn something

about them from the relevant and available economic time series. Suppose that we have

a panel of observable and informative economic series contained in a N × 1 vector Xt .

The number of series, N, can be arbitrary large relatively to the time series size T , but

assumed to be much larger than the number of factors in Ft , K, and observed variables in

Yt , M. Then, we need to assume a relation between our observable series and the factors

that we need to estimate. The relation is given in the following observation equation:

Xt = Λ f Ft +ΛyYt +ut (1.2)
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where Xt is an (Nx1) vector of informative time series, Λ f is an (NxK) matrix of factor

loadings, Λy is an (NxM) matrix of loadings relating the observable factors in Yt to Xt ,

and ut is the (Nx1) vector of error terms. The errors are of mean zero and can display a

small amount of cross-correlation. Note that (1.2) states that both Ft and Yt explain the

dynamics of Xt . Thus, if we condition the statement on Yt , we can interpret Xt as noisy

measures of the underlying unobserved factors Ft .

Hence, defining Ft = [F ′
t Y ′

t ]
′ and Λ = [Λ f Λy] the FAVAR model can be repre-

sented in an approximate static factor model form:

Xt = ΛFt +ut (1.3)

Ft = Φ(L)Ft−1 + et (1.4)

where approximate stands for allowing some weak cross-section and time dependence

among idiosyncratic components in et , and where Ft contains both observed and un-

observed factors. Note that considering a static version, i.e. (1.2) doesn’t contain any

lagged values of Ft or Yt , is not a big constraint since dynamic factor model can always

be written in a static form.

1.2.3 Estimation

Recall from the previous section that the estimation of the model in (1.1) would be

trivial if the factors were observable. Since this is not the case, we have to estimate them

from Xt .

The unknown coefficients in (1.3)-(1.4) can be estimated by Gaussian maximum

likelihood (or by Quasi ML) using the Kalman filter, see Engle and Watson (1981),

Stock and Watson (1989), Sargent (1989). This method is computationally burdensome

when N is very large, but also the misspecification becomes very likely. 2

Instead of the likelihood-based approach, we use the two-step Principal Component

2. However, there are some recent improvements: Kalman filter speedup by Jungbacker and Koopman
(2008), using principal components as very good starting values then a single pass of the Kalman filter by
Giannone, Reichlin, and Sala (2004), and principal components for starting values then use EM algorithm
to convergence by Doz, Giannone, and Reichlin (2006).
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Analysis (PCA) estimation method. 3 It is a non-parametric way to uncover the common

space spanned by the factors of Xt , denoted by C(Ft ,Yt). In the first step, the equation

(1.2) is considered. The space spanned by the factors is estimated by the first K+M

principal components of Xt , and is denoted by Ĉ(Ft ,Yt). One should note that estimating

factors in this way is not the most efficient method since we do not exploit the fact that

Yt is observed. However, Stock and Watson (2002a) show that if N is large and the

number of principal components is at least as large as the true number of factors, the

principal components consistently recover the space spanned by both Ft and Yt . In that

case, we need to identify the part of Ĉ(Ft ,Yt) that is not spanned by Yt in order to obtain

the estimate of Ft , F̂t . This task depends on identification imposed in the second step

where the equation (1.2) is estimated by standard methods since unobserved factors are

replaced by F̂t . In the second step, the factors’ dynamic process is approximated by

standard finite order VAR.

The principal components approach is easy to implement and do not require very

strong distributional assumptions. However, since the unobserved factors are estimated

and then included as regressors in FAVAR model, the two-step approach suffers from

the "generated regressors" problem. In order to get the accurate statistical inference on

the impulse response functions, we use a bootstrap procedure proposed by Kilian (1998)

that accounts for the uncertainty in the factor estimation.

1.3 Application

The purpose of this paper is to study the dynamic effects of monetary policy shocks

on a variety of economic variables in Canada. We previously pointed out some problems

with (S)VAR models and we discuss in this section how FAVAR model can deal with

some of them.

Since the FAVAR approach consists of adding to a standard VAR K common com-

ponents from a large number of relevant economic variables, it should deal with the lack

of information problem in traditional (S)VAR literature. Moreover, we showed above

3. See Stock and Watson (2002a), and Bai and Ng (2006) for theoretical results concerning the PCA
estimator.
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that the system (1.1)-(1.2) nests the VAR specification. Then, it is possible to discuss

directly if the marginal information brought by estimated factors is relevant or not. An-

other problem that FAVAR approach can avoid is to assume that theoretical concepts

such as real economic activity or price pressure are observed. Also, this approach allows

us to study the dynamic responses to monetary policy shock of all variables in Xt , not

only in Yt . Finally, Forni et al. (2009) argues that while non-fundamentalness is generic

of small scale model, they cannot arise in a large dimensional dynamic factor models 4.

This is of primary importance since the objective is to identify a relatively new structural

shock in empirical macroeconomics.

Let us state now the FAVAR and VAR models that will be used to assess the effect of

monetary policy shocks in Canada. The benchmark model is a FAVAR where Yt contains

only one variable, the monetary policy instrument, and Ft contains K unobserved factors.

The official monetary policy instrument of the Bank of Canada is the overnight rate.

Since this variable is available only from 1975M1, and our application uses data from

1969M1, we take the 3-month Treasury Bill (T-bill) as a proxy 5. In order to discuss the

additional information brought by the factors, we will compare a standard VAR model,

where Y contains Industrial production (IP), Consumer price index (CPI), T-Bill and

CAN/US Exchange rate (FX-CAN/US), with FAVAR models where Y is augmented by

a number of estimated factors.

1.3.1 Data

We estimate the system (1.1)-(1.2) with Canadian data used in Gosselin and Tkacz

(2001) and updated with some variables from Galbraith and Tkacz (2007). There are 348

monthly series starting from 1969M1 and ending on 2008M6, and 87 quarterly series

covering 1969Q1-2008Q2 time period. These series are initially transformed to induce

stationarity. The description of the variables in the data set and their transformation is

given in Appendix. To use the two-step approach, we need a balanced panel. Then,

4. If the shocks in the VAR model are fundamental, then the dynamic effects implied by the moving
average representation can have a meaningful interpretation, i.e. the structural shocks can be recovered
from current and past values of observable series.

5. Since 1975 the correlation coefficient between the two series is 0.97
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if we wish to use all available information, we have to mix both monthly and quarterly

panels. Hence, we need to replace missing values when transforming the quarterly series

to monthly indicators. Moreover, several monthly series contain missing values. To face

these irregularities and obtain a balanced data set, we apply the EM algorithm proposed

by Stock and Watson (2002b) 6.

Before discussing the estimation results, we need to specify the identification restric-

tions in the two-step approach, and how the monetary policy instrument is imposed as

an observable factor.

1.3.2 Identification in the two-step approach

Different sets of identification restrictions must be imposed before estimating the

system (1.1)-(1.2). The first consists of normalization restrictions on the observation

equation (1.2) because of the fundamental indeterminacy of this model. Suppose that

Λ̂ and F̂t are a solution to the estimation problem. However, this solution is not unique

since we could define Λ̃ = Λ̂H and F̃t = H−1F̂t , where H is a K×K nonsingular matrix,

which could also satisfy equation (1.2). Then, observing Xt is not enough to distinguish

between these two solutions, and a normalization is necessary. We use the standard

normalization in the principal components approach, that is, we take C
′
C/T = I, where

C = [C(F1,Y1), ...,C(FT ,YT )]. Then, Ĉ =
√

T Ẑ, where Ẑ are the eigenvectors correspond-

ing to the K largest eigenvalues of XX
′
, sorted in descending order.

The second identification issue is to identify the structural shocks in equation (1.1).

As in most VAR model applications in the monetary policy literature, we adopt a recur-

sive structure where the monetary policy instrument is ordered last in Yt (all the factors

6. The choice of data to include in Xt is not obvious. Theoretically, more data (and that means
larger time size, T ↑, and more series, N ↑) is better because the estimators in two-step approach are
asymptotically consistent and the asymptotic theory here has two dimensions, T and N. But in practice,
T is maximized with data availability constraint while augmenting N (and adding relevant information)
means more of the same type data (e.g. CPI category has dozens of subcategories). Boivin and Ng (2006)
provide examples where adding more data has perverse effects in forecast exercise. The idea is that while
the two-step estimators are consistent even in presence of weak cross-correlation between the errors in
(1.3), adding many data of the same type in the finite sample context could increase the amount of cross-
correlations in the error term and alter the performance of the PCA estimator. However, the pre-screening
proposed by Boivin and Ng (2003) is largely ad hoc, and the cost from using all series, if any, is marginal
in practice.



17

entering (1.1) respond with a lag to a monetary policy shock). In that case, we don’t

need to identify the factors separately, but only the space spanned by the latent factors,

Ft .

Recall that in the first step, relying on the fact that when N is large, the principal

components estimated from Xt , Ĉ(Ft ,Yt), consistently recover K+M independent, but

arbitrary, linear combinations of Ft and Yt . Since Yt is not explicitly imposed as a factor

in the first step, any of the linear combinations underlying Ĉ(Ft ,Yt) could involve the

monetary policy instrument, which is always ordered last in Yt . Then, it would not be

valid to simply estimate a VAR in estimated factors from entire data set and Yt , and use

the recursive policy shock identification framework. In that case, we need to remove the

direct dependance of Ĉ(Ft ,Yt) on Yt , where Yt is T-bill. If linear combinations of Ft and

Yt were known, this would involve subtracting Yt times the associated coefficient from

each of the elements of Ĉ(Ft ,Yt).

Since these are unknown, to impose Yt as a factor in the first step we use the iterative

principal components approach as in Boivin and Giannoni (2007). Starting from an

initial estimate of Ft , F0
t :

1. Regress Xt on F0
t and Yt , to obtain λ̂

0
t

2. Compute X̃0
t = Xt − λ̂

0
t Yt

3. Estimate F1
t as the first K-1 principal components from X̃0

t

4. Back to 1.

Contrary to BBE’s strategy, it does not rely on any temporal assumption between

the observed factors and the informational panel. Hence it can be used for any set of

observed factors without imposing any further assumptions. We adopt this approach in

our exercise with setting the number of iterations at 15 7.

1.4 Results

One interesting feature of the FAVAR approach is that we can produce impulse re-

sponses for all observable series (in both informational panel and observed factors).

7. In our robustness analysis exercises the convergence is always attained after 10 to 15 iterations.
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Hence, we can explore the reaction of the economy to a structural shock on a much

broader set of dimensions than in the case of small-scale VAR models. Given our mixed-

frequencies approach, we can also conduct the exercise at both monthly and quarterly

frequencies.

1.4.1 Effects of a monetary policy shock

Here, we discuss results using mixed-frequencies monthly panel where the bench-

mark model contains 8 unobserved factors and one observed factor, T-Bill. Figure 1.1

contains impulse response for some economic indicators of interest to a monetary policy

shock 8. We can see that a positive shock on the T-Bill implies a persistent economic

slowdown. The production indicators go down progressively, and price indexes present

a very persistent decreasing reaction. The leading economic indicators such as housing

index, new orders and retail trade, and money aggregates decline significatively. Overall,

these results seem to provide a consistent measure of the effect of monetary policy in a

small open economy.

The impulse responses of several exchange rates are presented in Figure 1.2. We can

see that Canadian dollar appreciates in most of the cases, and especially with respect to

the US dollar, meaning that there is no evidence of exchange rate puzzle. Moreover, the

maximum response is on the impact, so the delayed overshooting puzzle is corrected too.

The impulse responses of interest rates are presented in Figure I.1. They jump initially

above the steady state and eventually go down.

Since we have constructed a mixed-frequencies monthly panel, we can produce

monthly impulse responses of economic indicators observed only at quarterly frequency.

In Figure I.2, in Appendix, we plot impulse responses of some of these constructed

monthly indicators. We can see a significative decline in GDP components. Moreover,

it is interesting to see if there are some differences in the response to monetary policy

shock across different regions in Canada. To do so we grouped some available series of

interest in fours regions: Atlantic, Center, Prairie and BC. In Figure I.3 we plot their re-

sponses in deviation to the response of corresponding national variable. We can see that

8. In all Figures the 90 percent confidence intervals are obtained using 5000 bootstrap replications.
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Atlantic, Center and BC regions present quite similar pattern while the Prairie provinces

seem to diverge from the other provinces.

The Table I.II in Appendix presents variance decomposition and R2 results. The

first column reports the contribution of the monetary policy shock to the variance of

the forecast error at four year horizon, and the second column contains the R2 of the

common components for 80 variables of interest. As in BBE paper, we find that the

monetary policy shock has a small effect on most of the variables, except for interest rates

and money supply. Looking at the R2 results we conclude that the common component

explains an important fraction of variability in observable series, meaning that extracted

factors do capture important dimensions of the business cycle movements.

1.4.2 Uncovered interest rate parity puzzle

The UIRP puzzle has been a very challenging task in the standard VAR framework.

Including the information through factors seems to help in resolving this issue. We

construct a measure of the forward discount premium following Scholl and Uhlig (2005).

Let ik and i∗k be domestic and foreign interest rates impulse responses at horizon k. Define

s0 and sk as impulse responses of the log of the exchange rate at the impact and at horizon

k respectively. The UIRP measure (or the forward discount premium) is calculated as:

UIRP = (ik − i∗k)+(sk − s0).

In Figure 1.3, we plot the impulse response function for the UIRP between Canada

and US, calculated for 3-month Treasury bills. Surprisingly, conditional on the domestic

monetary policy shock, there is no carry trade on the impact. However, the confidence

intervals are quite large. After a year, the response is close to zero.

In Figure 1.4, we plot the impulse responses of the same measure but after the US

monetary policy shock. It is identified recursively by including the US 3-month T-bill

first in the VAR ordering. In that case, the UIRP measure is significatively different from

zero on impact. However, we do not interpret this as a violation of the uncovered interest

parity hypothesis since the US monetary policy shock is understood as proxy for a global
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shock, that both monetary authorities respond.

We also tried to identify properly the US monetary policy shock by placing the US

interest rate last in the factors’ VAR. The idea is that the Canadian central bank does not

respond immediately, in a month, to a shock in the US, since the comity meeting do not

occur each month. The impulse response of UIRP is plotted in Figure 1.5. We can see

that there is no evidence of violation of the uncovered interest parity hypothesis.

Finally, we identified a credit shock following Boivin, Giannoni and Stevanovic

(2010). The result is presented in Figure 1.6. We can see that the forward discount

premium deviates largely from its steady state value for more than a year, but with very

imprecise confidence intervals.

1.4.3 Comparison to SVAR

To see how incorporating more information contained in factors affects standard

VAR model results we compare impulse responses from our benchmark model to im-

pulse responses of the VAR model containing [US−Rt , CPIt , IPt , Rt FX−CAN/USt ],

where US−Rt stands for the US 3-month Treasury bill, and augmented by 1, 3, and 5

factors. The results are presented in Figure 1.6. We can see that in case of standard VAR

(VAR + K=0 in the legend), there is an evidence of price, exchange rate, delayed over-

shooting and UIRP puzzles. The price level stays above its steady state value for more

than a year, while the Canadian dollar depreciates on impact and its maximum response

arrives several months after the shock. Finally, the last plot in the Figure 1.7 shows that

SVAR implies a systematic carry trade. The UIRP responses are created from impulse

responses of interest rates and exchange rates 9.

When we start adding factors, some the puzzles are reduced in magnitude. For the

response of price index and industrial production adding one factor suffices to produce

more reasonable responses. In case of exchange rates, only the benchmark model cor-

rects the puzzles. There is no exchange nor delayed overshooting puzzles, and there is

no evidence of the UIRP puzzle.

9. See Scholl and Uhlig (2005)
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1.4.4 Monthly estimates of quarterly observed series

An interesting byproducts of our approach are the monthly indicators obtained from

quarterly observed series when constructing mixed-frequencies monthly balanced panel.

Many important macroeconomic aggregates, such as GDP and its components, are ob-

served only at quarterly frequency and it can be of interest to have an idea about these

indicators in monthly domain or to have an estimate of current economic conditions be-

fore statistical agencies make them available usually several months later. This problem

is also known as nowcasting and there is growing literature that uses several economet-

ric techniques to estimate current economic conditions (see Aruoba, Diebold, and Scotti

(2009)).

In our case we construct mixed-frequencies monthly panel by applying the EM algo-

rithm where the number of static factors used when replacing missing values is estimated

at each iteration by the second information criteria (in log) in Bai and Ng (2002). In Fig-

ure 1.8 we present the standardized monthly estimates of some variables and in Figure

1.9 we plot the monthly estimate of the level of GDP and Consumption. We can see that

our simple method gives plausible monthly estimates of quarterly observed variables.

1.5 Conclusion

The objective of this paper was to see if more information can help in assessing

the monetary transmission mechanism in a small open economy. To do so, we used

a factor augmented vector autoregression (FAVAR) approach to estimate the effects of

monetary policy shocks on economic activity in Canada. We found that the information

summarized by the factors that have been extracted as principal components from a large

data set is important to properly identify the monetary transmission mechanism in both

monthly and quarterly frequencies. Overall, our approach gave plausible estimates of the

effects of monetary policy shocks on many macroeconomic variables of interest, and, in

particular, contributed to mitigate puzzles reported in the literature.

We found that adding information through factors into this VAR corrects for price

and exchange rate puzzles, and for inconsistent response of industrial production with
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respect to long-run money neutrality. Also, the maximum response of exchange rates is

on impact which corrects for delayed overshooting puzzle. Finally, our results showed no

evidence of the uncovered interest rate parity, meaning that there is no systematic carry

trade conditional on a domestic monetary policy shock that rises the domestic interest

rate.

Hence, relative to existing literature discussed above, we found that our approach is

able to uncover reasonably the monetary policy transmission in a small open economy

without searching to include agents’ expectations proxies or other theoretical concepts

proxies, and still using the simplest recursive identification scheme. Finally, the FAVAR

framework allowed us to check impulse responses for all series in the informational data

set, and thus provided, to our knowledge, the most comprehensive picture to date of the

effect of Canadian monetary policy.
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Figure 1.1: Impulse responses of some monthly indicators to national monetary policy
shock
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Figure 1.2: Impulse responses of exchange rates to national monetary policy shock
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CHAPTER 2

DYNAMIC EFFECT OF CREDIT SHOCKS IN A DATA-RICH

ENVIRONMENT

2.1 Introduction

The recent financial crisis caused the most important global economic downturn

since the Great Depression. It renewed interest in properly understanding the connection

between the real economy and the financial sector. This is important for various reasons.

First, by their forward-looking nature, asset prices and credit spreads –i.e., the difference

between corporate bond yields and yields on same-maturity Treasury securities –should

be useful in predicting fluctuations of economic activity, at least in theory (see Philippon,

2008). Studies, among others, by Stock and Watson (1989), Gertler and Lown (1999),

and more recently by Mueller (2007), have found that credit spreads do have significant

forecasting power in predicting economic growth. Instead of relying on the usual credit

spreads measures, a recent paper by Gilchrist, Yankov and Zakrajšek (2009), henceforth

GYZ, re-examines this evidence using a set of new measures of credit market tightness.

Second, understanding the joint dynamics of the real economy and financial sector

could lead to more timely – and hopefully more pre-emptive – policy response. The

strong tightening in US credit conditions in 2007 and 2008 and the subsequent contrac-

tion in economic activity suggests that credit conditions may have significant effects on

the economy. This calls for a comprehensive understanding of the quantitative effects

of credit shocks on US economic variables and requires an empirical framework that is

sufficiently rich to capture the information necessary to account for this joint dynamics.

In this paper, we re-examine the evidence about the propagation mechanism of credit

shocks on economic activity and other key macroeconomic variables. We characterize

the dynamic effects of credit shocks using a structural factor model estimated with large

panels of U.S. monthly and quarterly data. With contrast to structural VAR model, the

factor model permits to consider large amount of information potentially observed by
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agents, is not subject to non fundamentalness and does not pertain to the choice of a

specific data series to represent a general economic concept, which may be arbitrary.

Our empirical model is estimated in two steps. First, in order to recover the space

spanned by structural shocks (including shocks to credit spreads), we estimate factors

as principal components from standardized data panels. Such factors are supposed to

capture all aggregate fluctuations in economic and financial series. All economic and

financial indicators can respond contemporaneously to movements in those factors, as

well as to a series-specific (idiosyncratic) component. Then, a finite-order VAR approx-

imation of the factors dynamics is estimated. The identification of structural shocks is

achieved by imposing restrictions on the impact matrix of the structural shocks on a few

observable variables, as proposed by Stock and Watson (2005). This allows us to impose

as few restrictions as needed in order to identify shocks to credit conditions.

The closest analysis to ours is GYZ. However, in order to determine credit shocks,

GYZ impose potentially strong identifying assumptions. In particular, they assume that

no macroeconomic variable, including measures of economic activity, prices or inter-

est rates can respond contemporaneously to credit shocks. This assumption may be

restrictive, e.g., if changes in credit spreads affect contemporaneously overall financial

conditions, including interest rates. It may potentially attribute an overly strong effect

of credit spreads on economic variables by preventing a possible contemporaneous drop

in the level of interest rate on riskless securities, which might mitigate the effect of a

credit tightening. In addition, GYZ assume that the factors summarizing macroeco-

nomic indicators are contemporaneously uncorrelated with the factors summarizing all

credit spreads, regardless of the source of disturbances. To the extent that such assump-

tions are violated, their results might be contaminated. In our identification schemes,

these assumptions are relaxed.

Our results show that an unexpected increase in credit spreads causes a significant

contemporaneous drop in yields of Treasury securities at various maturities and has a

significant effect in the contemporaneous month on other variables such as consumer

expectations, commodity prices, capacity utilization, hours worked, housing starts, etc.

This unexpected increase in the external finance premium generates also a significant and
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persistent economic slowdown, in months following the shock, as in GYZ and Mueller

(2007). The responses generated by our identifying procedure yield a very realistic

picture of the effect of credit shocks on the economy, and provide valuable information

about the transmission mechanism of these shocks. In addition, we find that the extracted

factors capture an important dimension of the business cycle movements. Furthermore,

we find that credit shocks have quantitatively important effects on several indicators of

real activity and prices, leading indicators, and credit spreads, as they explain a sub-

stantial fraction of the variability of these series. Finally, a further advantage of our

identification procedure is that it yields a rotation matrix that can be used to recover

structural factors. The latter structural factors maintain the same informational content

as the initially extracted factors but they have an interesting economic interpretation.

Our empirical analysis considers a battery of specifications. The findings just de-

scribed are robust to different data frequencies and identification schemes. The first

FAVAR model we consider is estimated using a monthly balanced panel. We impose a

recursive assumption to identify structural shocks. The responses of key macroeconomic

series to credit shocks are found to be qualitatively similar to those from a small-scale

VAR model. However credit shocks are found to generate substantially larger economic

fluctuations in the FAVAR model than in the small-scale VAR. This suggests that the

VAR may be misspecified and does not properly capture of the source or propagation

of key structural shocks. In addition, the factor model gives a more complete and com-

prehensive picture of the effects of credit shocks since the impulse responses and the

variance decomposition of all variables can be obtained. We mentioned above that our

approach produces interpretable factors. Indeed, the first structural factor accounts for

almost all variation in prices that is explained by the common component. The second

factor is important for the unemployment rate, M1, capacity utilization, consumer ex-

pectations and credit spreads. The third rotated factor explains well financial indicators

and exchange rates, while the fourth factor explains real activity measures, housing starts

and new orders.

In a second specification, we consider a mixed-frequencies monthly panel and a re-

cursive identification scheme where we explicitly distinguish between the monetary pol-
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icy and credit shocks, though the Federal funds rate (the instrument of policy) is allowed

to respond on impact to credit shocks. The results are similar to the previous specifica-

tion. In this specification, interest rates fall significantly on impact, in response to credit

shocks. Again, we obtain interpretable factors. The first factor is important for price

series, and the second explains well the variability in unemployment rate, money base

measures, credit spread and capacity utilization. The third factor seems to be important

for consumption series, GDP and investment. The fourth factor contributes mainly in

explaining the variations in commodity price index and salaries, and the fifth factor is

related to industrial production, employment and new orders.

Lastly, we consider a quarterly balanced panel and identify the structural shocks us-

ing sign restrictions. Again, the dynamic effects of the credit shock are quite similar

to those observed in previous specifications. The first factor is important for price se-

ries, the Federal funds rate and treasury bills yields, and the second explains mostly

the real activity measures such as GDP, industrial production, employment, salaries and

consumption, and housing starts, new orders and consumer credit. The third and fourth

factors seem to be important for monetary measures and exchange rate. Finally, the fifth

factor is related to unemployment rate (together with the third factor), capacity utiliza-

tion rate, and average unemployment duration.

In the rest of the paper, we lay out some theory on the link between credit shocks and

economic variables. Section 3 presents the structural factor model and discusses various

estimation and identification issues. The main results are presented in Section 4. In

Section 5, we compare the results to those obtained from structural VAR anal. Section 6

concludes. The Appendix contains the impulse response results after a monetary policy

shock and the description of data sets.

2.2 Some Theory

In this section we briefly discuss various mechanisms that connect financial and eco-

nomic variables, and channels through which shocks on the credit market could affect

economic activity.
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Financial frictions are crucial when linking the credit market conditions to economic

activity. In their presence, the composition of the borrowers’ net worth becomes impor-

tant due to the incentive problems faced by the lenders (see Bernanke and Gertler (1995),

and Bernanke, Gertler and Gilchrist (1999)): a borrower with a low net worth relative to

the amount borrowed has a higher incentive to default. Given that agency problem, the

lender demands a higher premium to provide external funds, which raises the external fi-

nance premium. Therefore, economic downturns and associated declines in asset values

tend to produce an increase in the external finance premium for borrowers holding these

assets in their portfolio. The higher external finance premium, in turn, leads to cuts in

investments, and hence in production, employment, and thus in overall economic activ-

ity, which induces asset prices to fall further, and so on. This is essentially the so-called

financial accelerator mechanism.

Several other transmission channels, focusing on the credit supply, have also been in-

troduced in the literature. The narrow credit channel focuses on the health of the financial

intermediaries and their agency problems in raising funds. The capital channel can trans-

mit credit conditions to the economic activity, if banks’ capital is affected. In that case,

banks must reduce the supply of loans, resulting in a higher external finance premium.

In summary, Bernanke and Gertler (1995) identify two channels through which a shock

to the external finance premium can affect the real activity:

1. Balance sheet channel, according to which a deterioration of a firm’s net worth

result in an increase of its external finance premium, and thus causes a reduction

in investment, employment, production, and prices. This can be broadly seen as

affecting the demand of credit.

2. Bank lending channel, according to which a deterioration of the financial interme-

diaries’ external finance premium constrains the supply of loans and hence causes

a reduction in economic activity.

More recently, credit risks and their effect on economic conditions have been mod-

eled in general equilibrium frameworks. For instance, Gilchrist, Ortiz and Zakrajšek

(2009) augment the medium-size DSGE model of Smets and Wouters (2007) with the
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financial accelerator mechanism linking conditions on the credit market to the real econ-

omy through the external finance premium (i.e., Bernanke, Gertler and Gilchrist (1999)).

They also introduce two financial shocks: a financial disturbance shock that affects di-

rectly the external finance premium, and a net worth shock affecting the balance sheet

of a firm. The first shock is presented as a credit supply shock that Christiano, Motto

and Rostagno (2009) interpret as an increase in the agency costs due to a higher vari-

ance of idiosyncratic shocks affecting the firms’ profitability. The second shock can be

viewed as a credit demand shock, whose effect depends on the degree of financial market

frictions. After estimating the structural model using US data covering the 1973-2008

period, Gilchrist, Ortiz and Zakrajšek (2009) find that both financial shocks cause an in-

crease in the external finance premium which, through the financial accelerator, implies

a persistent slowdown in economic activity and in investment.

2.3 Econometric Framework in Data-Rich Environment

The usual way to attempt to identify structural shocks is through VAR analysis. How-

ever, the small-scale VAR model presents several issues. Due to the small amount of

information in the model, relative to the information set potentially observed by agents,

the VAR can easily suffer from an omitted variable problem that can affect the estimated

impulse responses or the variance decomposition. Related to that, Forni et al. (2009) ar-

gues that while non-fundamentalness is generic of small scale models, they cannot arise

in a large dimensional dynamic factor models 1. In addition, potential problem pertains

to the choice of a specific data series to represent a general economic concept, which

may be arbitrary. Moreover, measurement errors, aggregation and revisions present ad-

ditional problems when linking theoretical concepts to specific data series. Finally, even

if the previous problems do not occur, we can produce impulse responses only for the

variables included in the VAR.

One way to address all these issues is to take advantage of information contained in

1. If the shocks in the VAR model are fundamental, then the dynamic effects implied by the moving
average representation can have a meaningful interpretation, i.e. the structural shocks can be recovered
from current and past values of observable series.
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large panel data sets using dynamic factor analysis, and in particular a factor-augmented

VAR (FAVAR) model. The importance of large data sets and factor analysis is well docu-

mented in both forecasting macroeconomic aggregates and structural analysis. Bernanke,

Boivin and Eliasz (2005) and Boivin, Giannoni and Stevanović (2009), have shown that

incorporating information through a small number of factors corrects for various empir-

ical puzzles when estimating the effects of monetary policy shocks.

The model that we consider takes the form 2

Xt = ΛFt +ut (2.1)

Ft = Φ(L)Ft−1 + et (2.2)

where Xt contains N economic and financial indicators, Ft represents K unobserved fac-

tors (N >> K), Λ is N ×K matrix of factor loadings, ut are idiosyncratic components of

Xt uncorrelated with Ft and the factor innovations et . This model is an approximate factor

model, as we allow for some limited cross-section correlation among the idiosyncratic

components in (2.1). 3

2.3.1 Estimation

The unknown coefficients in (2.1)–(2.2) could in principle be estimated by Gaussian

maximum likelihood using the Kalman filter (or by Quasi ML), as shown in Engle and

Watson (1981), Stock and Watson (1989), Sargent (1989). This method is however

computationally burdensome and likely leads to misspecification when N is very large. 4

2. It is worth noting that the static factor model considered here is not very restrictive since an under-
lying dynamic factor model can be written in static form (see Stock and Watson, 2005).

3. We assume that only a small number of largest eigenvalues of the covariance matrix of common
components may diverge when the number of series tends to infinity, while the remaining eigenvalues as
well as the eigenvalues of the covariance matrix of specific components are bounded. See Bai and Ng
(2008) for an overview of the modern factor analysis literature, and the distinction between exact and
approximate factor models.

4. Recently, significant improvements have nonetheless been proposed to this approach. For instance
the Kalman filter speedup by Jungbacker and Koopman (2008), using principal components for starting
values and then a single pass of the Kalman filter by Giannone, Reichlin, and Sala (2004), and principal
components for starting values then use EM algorithm to convergence by Doz, Giannone, and Reichlin
(2006).



36

We adopt instead an alternative estimation approach based on a two-step principal

components procedure, where factors are approximated in the first step, and the dynamic

process of factors is estimated in the second step. We rely on the result that factors can be

approximated by a Principal Components Analysis (PCA) estimator. Stock and Watson

(2002a) prove consistency of such an estimator in an approximate factor model when

both cross-section and time sizes, N, and T , go to infinity, and without restrictions on

N/T . Moreover, they justify using F̂t as regressor without adjustment. Bai and Ng

(2006) improve these results by showing that PCA estimators are
√

T consistent and

asymptotically normal if
√

T/N → 0. Inference should take into account the effect of

generated regressors, except when T/N goes to zero.

The principal components approach is easy to implement and does not require very

strong distributional assumptions. Recently, simulation exercises showed that likelihood-

based and two-step procedures perform quite similarly in approximating the space spanned

by latent factors (see, Doz, Giannone and Reichlin, 2006). Moreover, Bernanke, Boivin

and Eliasz (2005) estimated their model using both two-step principal components and

single-step Bayesian likelihood methods, and obtained essentially the same results. For

these reasons, we consider the PCA approach. However, since the unobserved factors are

estimated and then included as regressors in FAVAR model, and given that the number

of series in our application is small, relative to the number of time periods, the two-step

approach suffers from the “generated regressors” problem. To get the accurate statistical

inference on the impulse response functions that accounts for uncertainty associated to

factors estimation, we use the bootstrap procedure proposed by Kilian (1998).

2.3.2 Identification of structural shocks

To identify the structural shocks, we employ the contemporaneous timing restrictions

procedure proposed in Stock and Watson (2005). After inverting the VAR process of

factors in (2.2), assuming stationarity, and plugging it in (2.1), we obtain the moving-

average representation of Xt :

Xt = B(L)et +ut , (2.3)
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where B(L)≡ Λ[I −Φ(L)L]−1. We assume that the number of static factors, K, is equal

to the number of dynamic factors and that the factor innovations et are linear combina-

tions of structural shocks ε t

ε t = Het , (2.4)

where H is a nonsingular square matrix and E[ε tε
′
t ] = I. Using (2.4) to replace et in (2.3)

gives the structural moving-average representation of Xt :

Xt = B⋆(L)ε t +ut , (2.5)

where B⋆(L)≡ B(L)H−1 = Λ[I−Φ(L)L]−1H−1. To identify the structural shocks ε t , we

impose contemporaneous timing restrictions on the impact matrix in (2.5). Specifically,

we assume that certain structural shocks do not affect the first few indicators in Xt within

the period, so that the impact matrix takes the form

B⋆
0 ≡ B⋆ (0) =



























x 0 · · · 0

x x
. . . 0

x x
. . . 0

x x · · · x
...

...
...

...

x x · · · x



























where x stands for unrestricted elements in the above matrix. It is important to note that

our identifying assumptions are imposed on the effects of structural shocks on particular

indicators in our data set. They do not require latent factors not to respond contempora-

neously to structural shocks.

To estimate the matrix H, we proceed as in Stock and Watson (2005), noting that

B⋆
0:Kε t = B0:Ket implies B∗

0:KB∗′
0:K = B0:KΣeB′

0:K, where B0:K contains the first K rows of

B0 ≡ B(0) = Λ, B⋆
0:K = B0:KH−1, and Σe is the covariance matrix of et . Since B⋆

0:K is a

K ×K lower triangular matrix, then we must have B∗
0:K = Chol(B0:KΣeB′

0:K). It follows
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that H =
(

B∗
0:K

)−1
B0:K, or

H = [Chol(B0:KΣeB′
0:K)]

−1B0:K. (2.6)

To estimate H, we just replace B0:K and Σe with their estimates in (2.6).

The impulse responses to structural shocks in ε t are obtained using (2.5). This iden-

tification procedure is similar to the standard recursive identification in VAR models,

except that the series-specific term ut is absent in VARs. By imposing K(K − 1)/2 re-

strictions, we just-identify the K structural shocks.

Importantly, the dynamics of the factors is left unconstrained, and identified struc-

tural shocks are allowed to have contemporaneous effects on the factors driving our panel

of indicators. The identifying restrictions are only imposed on the contemporaneous re-

sponse of a few of the economic indicators’ response within the period. This contrasts

with GYZ who assume that credit shocks do not have a contemporaneous effect on any

of the economic factors and indicators, including interest rates. Furthermore, contrary to

other identification strategies that have been adopted in FAVAR analysis, we do not need

to impose any observed factor nor do we rely on the interpretation of a particular latent

factor to characterize the responses of economic indicators to structural shocks. 5

2.3.3 Data and specifications

In our application, we use three different specifications of the FAVAR involving dif-

ferent identifying restrictions and also an increasingly large number of economic and fi-

nancial indicators. The time span for all panels starts in 1959M01 and ends in 2009M06.

All series are initially transformed to induce stationarity. The description of series and

their transformation is presented in the Appendix.

Common proxies of the external finance premium of borrowing firms are the credit

5. In Bernanke, Boivin and Eliasz (2005) and Boivin, Giannoni and Stevanović (2009), the authors
impose a short-term interest rate as an observed factor, and the monetary policy shock is identified VAR
equation pertaining to the interest rate. In contrast, GYZ estimate two sets of factors: those explaining a
panel of economic activity indicators and those related to credit spreads, interpreted as “financial factors”.
The credit shock is identified as a shock on the structural error of the first “financial factor”.
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spreads for non-financial institutions. Our benchmark measure will be the 10-year B-

spread (i.e., the difference between BAA bond yields and Treasury bond yields), al-

though we considered as alternatives the 10-year A-spread and the 1-year B-spread.

Table 2.I and Figure 2.1 summarize these measures.

Series description Time span

FYAAAC BOND YIELD: MOODY’S AAA CORPORATE 1959M01-2008M12

FYBAAC BOND YIELD: MOODY’S BAA CORPORATE 1959M01-2008M12

FYGT1 INTEREST RATE: U.S.TREAS CONST MATURITIES,1-Y. 1959M01-2008M12

FYGT10 INTEREST RATE: U.S.TREAS CONST MATURITIES,10-Y. 1959M01-2008M12

FYFF INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) 1959M01-2008M12

Credit spreads

10Y B-spread FYBAAC-FYGT10 1959M01-2008M12

10Y A-spread FYBAAA-FYGT10 1959M01-2008M12

1Y B-spread FYBAAC-FYGT1 1959M01-2008M12

Table 2.I: Proxies for the external finance premium

Figure 2.1: Measures of the external finance premium

In our first specification, we consider a monthly balanced panel containing 124
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monthly U.S. economic and financial series. This is an updated version of the data set in

Bernanke, Boivin and Eliasz (2005). We impose a recursive structure on the following

first four economic indicators: [CPI, UR, FFR, B-spread]. This assumption implies that

the consumer price index (CPI), the unemployment rate (UR) and the Federal Funds rate

(FFR) are the only indicators that do not respond immediately to a surprise increase of

the B-spread (we use 10-year B-spread), which is interpreted as the credit shock. This

identification scheme is related to the identification strategy in GYZ in sense that the

shock is seen as an unexpected increase of the external finance premium. However, it

is important to remark that all indicators other than the CPI, UR and FFR may respond

contemporaneously to the credit shock. In particular, we do not impose all measures of

economic activity, prices and interest rates to respond only with lag to the credit shock.

Furthermore, the shock in our approach is a disturbance to the last element of the vector

ε t , and not to the B-spread directly. The impulse response of the B-spread is determined

by its factor loading and the corresponding element in the rotation matrix H.

The second specification augments the monthly panel above with 58 important quar-

terly U.S. macroeconomic series, to yield a mixed-frequencies monthly panel of 182

indicators, over the same period. 6. The goal is to use the informational content from

quarterly indicators to better approximate the space spanned by structural shocks, and

to achieve a more reliable identification of these shocks. The recursive structure also

differs from the previous specification. We assume a recursive structure in the follow-

ing indicators [PCE, UR, C, I, FFR], where the credit shock and the monetary policy

shock are ordered fourth and fifth in ε t . This particular identification scheme implies

that the Personal Consumption Expenditure Price Index (PCE), the unemployment rate

(UR) and real Consumption (C) do not respond immediately to both credit and monetary

policy shocks. To identify the credit shock, we impose that Investment (I) can respond

immediately to the credit shock, while it does not react to the monetary policy contem-

poraneously. Finally, we let the Federal Funds Rate (FFR) respond immediately to the

credit shock. Note that a measure of the external finance premium is not required to

6. The mixed-frequencies panel is obtained using an EM algorithm as in Stock and Watson (2002b),
and Boivin, Giannoni and Stevanović, (2009)



41

enter in this recursive structure. The impact responses of credit spreads are determined

only by their factor loadings and the rotation matrix H.

Finally, we consider a balanced quarterly panel containing 220 quarterly U.S. series

for the same period, 7 and identify the credit shock using a sign restrictions strategy. To

obtain the initial orthogonalized innovations we start from the recursive structure on the

indicators [PCE, GDP, C, I, FFR]

Xt ≃ B⋆(L)ε t .

Then, we generate an orthogonal matrix Q, using a QR decomposition, such that

Xt ≃ B̃⋆(L)ε̃ t ,

where B̃⋆(L) ≡ B⋆(L)Q and ε̃ t ≡ Q′ε t . The sign restrictions are imposed on the impact

matrix B̃⋆(0):

∂ (PCEt)

∂ (εCS
t )

≤ 0,
∂ (GDPt)

∂ (εCS
t )

≤ 0,
∂ (Ct)

∂ (εCS
t )

≤ 0,
∂ (It)

∂ (εCS
t )

<
∂ (Ct)

∂ (εCS
t )

.

Hence, we impose that the impact response of PCE inflation, and of the growth rates of

real GDP, consumption and investment to a positive credit shock are non positive. The

last restriction imposes that investment (nonresidential) responds more negatively than

consumption.

2.4 Results

In this section, we present the main empirical results from our three main FAVAR

specifications. We could in principle plot the impulse responses of all variables contained

in the informational panel Xt but we will focus on a subset of economic and financial

indicators of interest. In all cases, the impulse to the component of ε t corresponding to

the credit shock is of size 1. The lag order in VAR dynamics in (2.3) is set to 3. Finally,

7. This last data set is an updated version of the data set used by Boivin and Giannoni (2006).
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the 90% confidence intervals are computed using 5000 bootstrap replications.

2.4.1 FAVAR 1 and monthly balanced panel

We estimate the first specification of the FAVAR using the monthly balanced panel

and impose the recursive identification scheme is [CPI, UR, FFR, B-spread], implying

that we extract four static factors from Xt . Figure 2.2 plots the impulse responses to the

credit shock. On impact, the B-spread rises by 19.2 basis points relative to initial value,

i.e., its standard deviation. This unexpected increase in the external finance premium

generates a significant and very persistent economic downturn through the transmission

channels discussed above. For example, economic activity indicators such as industrial

production (IP) falls a bit on impact and then by as much as 2% within the first 12

months, employment falls by around 0.7% over the first year, but remains significantly

below the initial level for 4 years, and hours worked and capacity utilization also fall.

Real personal consumption also falls significantly and persistently along with consumer

credit. Aggregate price indices and wages also decline significantly. The price indica-

tors, such CPI, core CPI, and PPI, show a very persistent decline. The labor market

indicators, unemployment rate and average unemployment duration, rise significantly

for more than 3 years, while employment and wages decline. The leading indicators,

such consumer expectations, new orders, housing starts, and commodity prices, react

negatively on impact. Finally, the interest rates decline, except for the Federal funds

rate which is constrained to remain unchanged on impact, and the monetary aggregates

increase progressively.

The impulse responses in Figure 2.2 are broadly similar to the results reported in

GYZ, except that in our approach several key economic and financial indicators do re-

spond immediately to an unexpected increase in the external finance premium. Nonethe-

less, the fact that the overall picture at longer horizons remains similar to that of GYZ

suggests that their restrictive identifying assumptions do not distort their findings about

medium and long-run responses to credit shocks.

Table 2.II shows the importance of credit shocks in explaining economic fluctuations

during our 1959-2009 sample. The first column reports the contribution of the credit
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Figure 2.2: Dynamic responses of monthly variables to credit shock

shock to the variance of the forecast error at 48-month horizon, and the second column

contains the R2 of the common component. Surprisingly, the credit shock has important

effects on several variables: it explains more than 50% of the forecast error variance

of industrial production, consumer credit, capacity utilization rate, labor market series,

some leading indicators and credit spreads. Looking at the R2 statistics, we see that

the common component explains a sizeable fraction of the variability in these variables,

especially for industrial production, prices, financial indicators, average unemployment

duration, capacity utilization and consumer expectations. This means that factors do

capture important dimensions of the business cycle movements.
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Variables Variance R2

decomposition
Industrial production 0.5289 0.7140
CPI: total 0.0591 0.7966
CPI: core 0.1223 0.6123
T-Bill: 3-month 0.1509 0.8839
T-Bond: 5-year 0.1144 0.9132
Unemployment rate 0.2615 0.7089
M1 0.1418 0.0919
M2 0.0308 0.1149
Consumer credit 0.6492 0.1778
Exchange rate: average 0.0326 0.0530
Commodity price index 0.3135 0.5214
PPI: finished goods 0.0424 0.5949
Capacity utilization rate 0.7469 0.7476
Real Pers. Cons. 0.2360 0.1401
Real Pers. Cons.: services 0.2343 0.1283
Avg. unemployment duration 0.4248 0.7597
Employment 0.5946 0.2879
Avg weekly hours 0.4948 0.3819
Avg hourly earnings 0.3949 0.2164
Housing starts 0.6002 0.4676
New orders 0.4452 0.2473
S&P’s CCS: dividend yield 0.1605 0.7529
Consumer expectations 0.3188 0.5338
FFR 0.1347 0.8957
B-spread: 10y 0.7727 0.6574

Table 2.II: Variance decomposition and R2 in FAVAR-1

2.4.1.1 Interpretation of factors

Another interesting feature of our identification approach is that it allows us to obtain

the rotation matrix H that can be used to interpret estimated factors. Recall from Section

2.3.2, that structural shocks are linear combination of residuals, ε t = Het . Using this

hypothesis, we can rewrite the system (2.1)-(2.2) in its structural form

Xt = Λ⋆F⋆
t +ut (2.7)

F⋆
t = Φ⋆(L)F⋆

t−1 + ε t (2.8)

where F⋆
t = HFt , Λ⋆ = ΛH−1, and Φ⋆(L) = HΦ(L)H−1. Hence, given the estimates of

Ft and H, we can obtain the estimate of structural factors: F̂⋆
t = ĤF̂t .
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In appendix, table II.II presents correlation coefficients between the estimated factors

Ft , F⋆
t , and the variables used in the recursive identification scheme. The factors are plot-

ted in Figure II.1. Table II.IV reports the marginal contribution of each factor to the total

R2. From columns associated to the elements of Ft in Tables II.II and II.IV, we see that

any interpretation in terms of the economic indicators is arbitrary. This is not surprising

since the factors are identified up to a rotation, picked by the PCA estimator. The picture

changes when we look at columns associated to the elements of the rotated estimated

factors. The results, in last four columns of Table II.II, show that F⋆
1,t is highly correlated

with the CPI growth rate, F⋆
2,t with the unemployment rate, F⋆

3,t with the Federal funds

rate and F⋆
4,t with the credit spread. Figure II.1 reveals that the rotation by Ĥ makes the

estimated factors very close to observed indicators used in the recursive identification

scheme. However, to have a more reliable idea about the informational content of each

rotated factor, we compare its marginal contributions to the total R2. According to re-

sults in Table II.IV, the first rotated factor accounts for almost all variations in prices,

that is explained by the common component. The second factor is important for unem-

ployment rate, M1, capacity utilization rate, consumer expectations, and credit spread.

The third rotated factor explains well financial indicators and exchange rate, while the

fourth factor is related to real activity measures, housing starts, and new orders.

2.4.2 FAVAR 2 and mixed-frequencies panel

While the previous specification used information from a large data set to character-

ize the effects of credit shocks, our identification assumed in particular that the Federal

funds rate would not respond contemporaneously to credit shocks. To assess the ro-

bustness of our results, we now present results from our second specification, where we

use the mixed-frequencies monthly panel and impose a recursive identification based on

the following ordering [PCE, UR, C, I, FFR], where the credit shock and the monetary

policy shock are ordered fourth and fifth in ε t .

The impulse responses are presented in Figure 2.3. The impact response of B-spread

is around 0.2. As in the previous specification, this unexpected increase of the external

finance premium generates a significative and persistent economic slowdown. The price
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indexes decline largely and significantly. Industrial production and consumption present

a significant downturn for about 18 months after the shock. On the labor market, there

are significant positive reactions of unemployment rate and average unemployment du-

ration (and the response of the latter is more persistent), while employment and salaries

indicators decline. The leading indicators of economic activity, housing starts, new or-

ders, and consumer expectations, react negatively and significantly on impact. Since the

impact response of the Federal funds rate is not restricted in this specification, interest

rates respond negatively and significantly on impact.

In Figure 2.4, we present impulse responses of some monthly indicators constructed

from the quarterly observed variables. These are GDP components and two price in-

dexes. We can see that GDP and PCE deflators decline in persistent and significative

way, while the responses of other variables are quite imprecise. However, we remark

that after a positive impact response, most of them decline progressively.

Table 2.III contains variance decomposition and R2 results, as in Table 2.II. The con-

clusion is slightly different when compared to the previous specification. According to

results in the first column of Table 2.III, the credit shock has a sizeable effect on prices,

financial indicators including FFR, capacity utilization rate and consumer credit, but a

smaller effect on real economic activity measures than it was the case with the monthly

balanced panel. The results from the second column suggest that the common compo-

nent explains approximately the same amount of variability in data as in the previous

specification.

2.4.2.1 Interpretation of factors

As in the previous specification, we can check how the rotation matrix change the

correlation structure between the estimated factors and the economic indicators used in

the recursive identification scheme. The Tables II.VI and II.VIII, in appendix, contain

correlation coefficients and marginal R2, and Figure II.2 plots the principal components,

rotated factors, and the corresponding series. Again, there is no obvious interpretation on

correlation structure between principal components and five variables. When we rotate

them by matrix Ĥ, we can easily link the first factor to PCE index, the second to unem-
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Figure 2.3: Dynamic responses of monthly variables to credit shock

ployment rate and the fifth to short rate. However, the interpretation of third and fourth

factors is arbitrary. According to marginal R2 results in Table II.VIII, the first factor

is important for price series, the second for unemployment rate, money base measures,

credit spread and capacity utilization. The third factor is related to consumption series,

GDP and investment, while the fourth element of F∗
t contributes mainly in explaining

variations in commodity price index and salaries. Finally, the fifth factor is important for

industrial production, employment and new orders.

2.4.3 FAVAR 3 and quarterly balanced panel

In the final specification, we use a quarterly balanced panel and the sign restrictions

framework to identify the credit shock. The results are obtained by simulating 10,000

orthogonal matrices. Among them, 924 have been retained, i.e. they respected the sign
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Figure 2.4: Dynamic responses of constructed monthly indicators to credit shock

restrictions. The impulse responses using the median orthogonal matrix are presented in

Figure 2.5, and all retained impulse responses are plotted in Figure 2.6. According to

results in Figure 2.5, the dynamic effects of the credit shock are similar to what we have

observed in previous specifications. There is a sizeable economic downturn: production,

employment, consumer credit, and prices decline, while unemployment rate and average

unemployment duration rise. The interest rates, housing starts, new orders, and capacity

utilization rate react negatively on impact, while credit spreads respond positively as ex-

pected. However, compared to previous monthly applications, the effects of credit shock

seem to be less persistent. The results in Figure 2.6 show a huge dispersion in impulse

responses satisfying sign restrictions. Therefore, the confidence intervals containing all

these responses will also contain zero for most of variables and horizons.

In Table 2.IV we present variance decomposition and R2 results. Contrary to two

monthly applications, here the credit shock has a smaller effect on most of the variables.

It explains between 20 and 30 percent of forecast error in NAPM production index, FFR,

and some leading indicators, but has a small effect on prices and monetary measures.

The R2 results suggest that the extracted factors explain an important fraction of the
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variability in these series.

2.4.3.1 Interpretation of factors

For the seek of space, we just summarize the findings without reporting the figures

and tables. As in previous specifications, there is no obvious interpretation on correlation

structure between principal components and five variables. When we rotate them by

matrix Ĥ, the first factor becomes linked to PCE index, the second to GDP and the fifth

to short rate. However, the interpretation of the third and fourth factors is arbitrary.

According to R2 results, the first factor is important for price series, FFR and treasury

bills, and the second explains mostly the real activity measures such as GDP, industrial

production, employment, salaries and consumption, and housing starts, new orders and

consumer credit. The third and fourth factors seem to be related to monetary measures

and exchange rate. Finally, the fifth factor is important for unemployment rate (together

with the third factor), capacity utilization rate and average unemployment duration.

2.4.4 Further robustness analysis: Additional FAVAR specifications

In our robustness analysis, we tried two other FAVAR specifications and identifica-

tion scheme that have been used in the literature: as in Boivin, Bernanke and Eliasz

(2005) and in Boivin, Giannoni and Stevanović (2009). A particularity of these is that

observable factors are imposed in transition equation along with latent factors:

Xt = ΛFFt +ΛYYt +ut (2.9)




Ft

Yt



 = Φ(L)





Ft−1

Yt−1



+ et (2.10)

where Ft contains K latent factors and Yt has M observable series. Then, when using

two-step estimation procedure, the issue is to separate the space spanned by observable

and unobservable factors.

In Bernanke, Boivin and Eliasz (2005), the authors split the sample in two parts:

series that do not respond immediately to a shock on Federal Funds Rate (FFR, the
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Figure 2.5: Median IRFs of quarterly selected variables to credit shock

observable factor), and the rest of data set that is not restricted. The K + M factors

extracted from the entire sample Xt are first regressed on Yt , and on K factors extracted

from the subset of Xt supposed not be contemporaneously linked to unobservable factors.

The latter are then obtained as residual of dependent variables and Yt .

In Boivin, Giannoni and Stevanović (2009), the authors estimate the latent factors

through an iterative application of the principal components estimator. Starting from an

initial estimate of Ft , F0
t :

1. Regress Xt on F0
t and Yt , to obtain λ̂

0
t

2. Compute X̃0
t = Xt − λ̂

0
t Yt

3. Estimate F1
t as the first K-1 principal components from X̃0

t

4. Back to 1.
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Figure 2.6: All IRFs satisfying sign restrictions

The main advantage of this procedure is that it does not rely on any temporal assump-

tion between the observed factors and the informational panel. Hence it can be used for

any set of observed factors without imposing any further assumptions. The identification

of structural shocks is achieved by imposing a recursive structure on the VAR residuals

in (2.10).

In our context, Yt contains a proxy of the external finance premium and may contain

other observable series. For each estimation procedure, we tried several specifications:

– Yt contains only one of the credit spreads,

– Yt contains a credit spread and the FFR (by splitting appropriately the data set in

case of BBE estimation) and different orderings in Yt ,

– different numbers of latent factors in Ft .

Overall, the results are very similar to what we have presented here. There is a
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significative and persistent economic downturn, and depending on the identification pro-

cedure, the interest rates and leading indicators respond immediately to a credit shock.

Together with results from Gilchrist, Yankov and Zakrajsek (2009), this provides a strong

empirical evidence on the real effects of financial disturbances on economic activity.

2.5 Comparison with structural VAR model

In this section we compare our FAVAR results to impulse responses obtained from a

standard structural VAR model. Our benchmark VAR model, similar to Mueller (2007),

contains the series [πt ,URt ,Rt ,10yBSt ] where πt is the inflation rate calculated as the first

difference in the log of the consumer price index (CPI), URt is the unemployment rate,

Rt is the Federal funds rate and 10yBSt is the 10-year B-spread. We identify the credit

shock by imposing a recursive identification. This implies that inflation, unemployment

and the Federal funds rate cannot respond in the same month to an unexpected increase

in the credit spread, while the latter is allowed to respond contemporaneously to all other

variables included in the VAR.

Figure 2.7 shows the effects of an unexpected 100-basis points increase in the 10-

year B-spread. It generates a significant and persistent economic downturn, a fall in the

price level, and a persistent reduction in the Fed funds rate.

While the benchmark specification may be restrictive, we check the validity of our

results by studying several alternative orderings. For the alternative models we use other

credit spreads: 1yBSt (1-year B-spread) and 10yASt (10-year A-spread). In appendix,

Table II.IX lists all models, and Figure II.3 compares the responses implied by alterna-

tive models to the benchmark. We can conclude that the results are robust to different

empirical measures of the external finance premium and to ordering between monetary

policy and credit shocks.

While Figures 2.7–II.3 show the response of the economy to credit shocks, they do

not allow us to determine how important credit shocks are in generating economic fluc-

tuations. Table II.X in appendix reports the contribution of credit shocks to the total

variance of key macroeconomic series, resulting from a variance decomposition. The
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Figure 2.7: Benchmark model, 100 basic points shock to credit spread

credit shocks contribute only little to fluctuations in the CPI (less than 6% at most), a

little more to unemployment (around 20% at most) and explain up to 16% of the fore-

casting error in the Federal funds rate, but are very important for credit spreads.

One interesting finding is that impulse responses to credit shocks from our FAVAR

specifications are qualitatively broadly in line with those obtained based on a VAR, at

least for the indicators included in the VAR. This suggests that after controlling for past

inflation, unemployment and Federal funds rates, shocks to credit market can be well

captured by the innovation in the credit spread 10yBSt . This contrasts with the findings

of Bernanke, Boivin and Eliasz (2005) or Boivin, Giannoni, Stevanovic (2009) who ob-

tain substantial differences between VAR and FAVAR responses of many variables to

monetary policy shocks. However, even though the impulse responses to credit shocks

appear similar in the VAR and in the FAVAR, obtaining a correct gauge of the quanti-

tative effect of credit shocks in explaining aggregate fluctuations requires also that the

transmission mechanism of all shocks, including monetary shocks, be well specified.

Given that relevant information is likely omitted in small-scale VARs, at least to explain

the response of monetary shocks (see, Bernanke, Boivin and Eliasz, 2005), calculations
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based on the variance decomposition of variables in the FAVAR are likely to be more

reliable. These results suggest that credit shocks are indeed much more important in

explaining economic fluctuations than was obtained based on a VAR.

2.6 Conclusion

In this paper, we re-examined the evidence on the propagation mechanism of credit

shocks to economic activity. The analysis was done in data-rich environment using a

structural factor model. The structural shocks were identified by imposing a minimal

number of restrictions on the matrix specifying the impact response of several economic

indicators to structural shocks.

The results show that an unexpected increase in the external finance premium gen-

erates a significant and persistent economic slowdown. Since we did not impose timing

restrictions on forward-looking variables, these leading indicators respond, strongly and

significantly on impact. This gives a more realistic picture of the effect of credit shocks

on economy, and provides valuable information about the transmission mechanism of

these shocks. According to R2 results, the common components explain an important

fraction of variability in observable variables. Hence, the factors capture a sizeable di-

mension of the business cycle movements.

From the variance decomposition analysis, we observe that credit shocks have im-

portant effects on several real activity measures, price indicators, leading indicators, and

credit spreads. Moreover, a by-product of our identification approach is a rotation matrix

that can be used to recover structural factors that have an interesting economic interpre-

tation. Finally, the results obtained are largely robust to different data frequencies and

identification schemes.
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Variables Variance R2

decomposition
Industrial production 0.2929 0.7313
CPI: total 0.5139 0.6263
CPI: core 0.5656 0.6211
T-Bill: 3-month 0.6723 0.8640
T-Bond: 5-year 0.6611 0.8948
Unemployment rate 0.1915 0.6946
M1 0.1601 0.1090
M2 0.1899 0.0323
Consumer credit 0.4470 0.1893
Exchange rate: average 0.0941 0.0270
Commodity price index 0.7903 0.4731
PPI: finished goods 0.5114 0.3077
Capacity utilization rate 0.7220 0.7405
Real Pers. Cons. 0.0559 0.3819
Real Pers. Cons.: services 0.1930 0.1086
Avg. unemployment duration 0.3727 0.6242
Employment 0.3980 0.3037
Avg weekly hours 0.2261 0.3015
Avg hourly earnings 0.4290 0.3364
Housing starts 0.4582 0.4329
New orders 0.2519 0.2500
S&P’s CCS: dividend yield 0.5861 0.6147
Consumer expectations 0.1652 0.5088
FFR 0.6016 0.8802
B-spread: 10y 0.7096 0.6416
Real GDP 0.0737 0.9338
Real GDP: goods 0.0890 0.8860
Real GDP: services 0.0518 0.8769
Employees compensation 0.0641 0.8812
Gov. consumption 0.1032 0.6009
Investment 0.0926 0.8599
Invst.: nonresidential 0.0714 0.9012
GDP deflator 0.1940 0.6547
PCE deflator 0.1302 0.7935

Table 2.III: Variance decomposition and R2 in FAVAR-2



56

Variables Variance R2

decomposition
NAPM Production index 0.2175 0.7841
Industrial production 0.1611 0.5992
CPI: total 0.0136 0.9387
CPI: core 0.0149 0.8644
T-Bill: 3-month 0.2098 0.8817
T-Bond: 5-year 0.1504 0.8786
Unemployment rate 0.1093 0.6689
M1 0.0699 0.3082
M2 0.0746 0.2859
Consumer credit 0.1182 0.3148
Exchange rate: average 0.1609 0.2084
Commodity price index 0.0395 0.6728
PPI: finished goods 0.0163 0.8151
Capacity utilization rate 0.1402 0.8069
Real Pers. Cons. 0.1514 0.6304
Real Pers. Cons.: services 0.0841 0.5347
Avg. unemployment duration 0.1239 0.5748
Employment 0.1288 0.6847
Avg weekly hours 0.3115 0.4829
Avg hourly earnings 0.0682 0.2523
Housing starts 0.2278 0.5628
New orders 0.2526 0.7960
S&P’s CCS: dividend yield 0.3802 0.1922
Consumer expectations 0.0752 0.6804
FFR 0.2270 0.9006
B-spread: 10y 0.1045 0.6476
Real GDP 0.1895 0.6872
Real GDP: goods 0.1782 0.4800
Real GDP: services 0.0514 0.2914
Employees compensation 0.1295 0.7626
Gov. consumption 0.1692 0.0108
Investment 0.0908 0.4821
Invst.: nonresidential 0.0968 0.3160
GDP deflator 0.0152 0.8620
PCE deflator 0.0072 0.9589

Table 2.IV: Variance decomposition and R2 in FAVAR-3



CHAPTER 3

FACTOR-AUGMENTED VARMA MODELS: IDENTIFICATION,

ESTIMATION, FORECASTING AND IMPULSE RESPONSES

3.1 Introduction

As information technology improves, the availability of economic and finance time

series grows in terms of both time and cross-section size. However, a large amount of

information can lead to the curse of dimensionality problem when standard time series

tools are used. Since most of these series are highly correlated, at least within some

categories, their co-variability pattern and informational content can be approximated

by a smaller number of variables. A popular way to address this issue is to use factor

analysis. This framework has received a lot of attention since late 90’s and is known

today as “the large dimensional approximate factor analysis”. 1 It is an extension of the

classical factor model that allows for limited cross-section and time correlations among

the idiosyncratic components.

While factor models were introduced in finance and macroeconomics by Chamber-

lain and Rothschild (1983), Sargent and Sims (1977), and Geweke (1977), the litera-

ture on the large dimensional factor models started with Stock and Watson (2002a), and

Forni et al. (2000). Further theoretical advances were established, among others, by

Bai (2003), Bai and Ng (2002), and Forni et al. (2004, 2005). These models were used

in forecasting macroeconomic aggregates (Banarjee, Masten and Massimilano (2006),

Stock and Watson (2002b), Forni et al. (2005)), in the structural macroeconomic analy-

sis (Bernanke, Boivin and Eliasz (2005), and Favero, Marcellino and Neglia (2005)), in

nowcasting or economic monitoring (Aruoba, Diebold and Scotti (2008), and Giannone,

Reichlin and Small (2008)), in the weak instrument literature (Bai and Ng (2008), and

Kapetanious and Marcellino (2008)), and in the estimation of dynamic stochastic general

equilibrium models (Boivin and Giannoni (2006)).

1. The “large dimensional”stands for both time and cross-section size asymptotic.
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Vector autoregressive moving average (VARMA) class of models is another way to

obtain a parsimonious representation of a vector stochastic process. The VARMA mod-

els are very useful in forecasting since they can resume the dynamic relations between

the time series while keeping the number of parameters low. Lütkepohl (1987) provides

a number of examples where the VARMA model produces the best forecasts, in terms of

the mean squared error (MSE), relative to the vector autoregressive (VAR) specification.

Moreover, the VARMA structure emerges as the reduced form representation of struc-

tural models in macroeconomics. For instance, the linear solution of a standard dynamic

stochastic general equilibrium model generally implies a VARMA representation on the

observable endogenous variables (see Ravenna (2006)).

In this paper, we study the relationship between VARMA and factor representations

of a vector stochastic process, and propose a new class of factor-augmented VARMA

models. We start by observing that in general multivariate series and associated factors

do not both follow a finite order VAR process. First, we show that when the factors are

obtained as linear combinations of observable series, their dynamic process is generally

a VARMA and not a finite-order VAR as usually assumed in the literature. 2 Second,

we demonstrate that even if the latent factors are generated from a finite order VAR

process, this implies a VARMA representation for the observable series. Hence, an

important advantage of our approach is to combine two parsimonious ways to summarize

the dynamic interactions between a huge number of time series: dynamic factor model

and VARMA process. 3 Finally, and contrary to VAR process, VARMA class of models

is closed under marginalization. This represents an advantage if the number of factors is

2. The importance of the factor process specification depends on the technique used to estimate the
factor model and on the research goal. In the two-step method developed by Stock and Watson (2002a),
the factor process does not matter for the approximation of factors. This could be an issue if we use a
likelihood-based technique that relies on the completely specified process. Moreover, if we use the factor
model to forecast time series, having a reliable and parsimonious approximation of the factor dynamic
process is important. Boivin and Ng (2005) compare projection-based models (as in Stock and Watson
(2002b)), and those based on the factor structure where the common component is forecasted either using
the VAR process or in a nonparametric way (as in Forni et al. (2000)). They conclude that the projection-
based method, that uses principal component estimates, generally works best.

3. Chen and Zadrozny (2009) consider weighted-covariance factor decomposition method to reduce
the VARMA process of observable series into a smaller VARMA model containing important variables
and significant factors.
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underestimated. 4

Once we have argued that the FAVARMA model is a theoretically consistent speci-

fication, the objective of this paper is to see if VARMA factors can help in forecasting

time series. To do so, we compare the forecasting performance (in terms of MSE relative

to benchmark AR(p) model) of four FAVARMA specifications to projection-based mod-

els, and those based on the factor structure where the factor dynamics are approximated

by a finite order VAR. Moreover, we consider the univariate ARMA model to see how

it compares to factor-based models. We perform two pseudo-out-of-sample forecasting

exercises using a balanced U.S. monthly panel and a balanced Canadian monthly panel

taken from Boivin, Giannoni, and Stevanović (2010, 2009) respectively.

The results show that VARMA factors help in predicting several key U.S. and Cana-

dian macroeconomic aggregates, relative to standard factor models, and across different

forecasting horizons. We find important gains, up to 42% of reduction in MSE, when

forecasting the growth rate of industrial production and employment, inflation and short-

term interest rate. In particular, the VARMA-factor specifications generally outperform

the VAR-factor forecasting models, and this is especially the case for two moving aver-

age representations. We also perform Monte Carlo simulations in which VARMA factors

help a lot especially in small sample cases.

Finally, we perform a structural factor analysis exercise. We estimate the effect of

monetary policy shock using the data and the identification scheme as in Bernanke,

Boivin and Eliasz (2005). We find that impulse responses from a parsimonious 6-factor

FAVARMA(2,1) model give an accurate and comprehensive picture of the effect and

the transmission of monetary policy in U.S.. To get similar responses from a standard

FAVAR model, Akaike information criterion estimates the lag order of 14. Hence, 84

coefficients governing the factors dynamics need to be estimated in FAVARMA frame-

work, while FAVAR model implies estimating 510 VAR parameters.

In the next section, we recall some important results on linear transformations of

vector stochastic processes and present four identified VARMA forms. In Section 3, we

4. If the vector of true factors satisfies a VAR model, the subvectors do not typically satisfy VAR
models, but VARMA models.
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study the link between VARMA and factor representations. The FAVARMA model is

proposed in the Section 4. The estimation of factor models and VARMA processes is

discussed in Section 5. Forecasting models that we use in simulations and empirical ap-

plications are presented in the Section 6. Monte Carlo simulation is discussed in Section

7, while Sections 8 and 9 contain results on two empirical applications, U.S. and Cana-

dian data respectively. The structural analysis is performed in Section 10. The Appendix

contains proofs of theorems, Monte Carlo simulation results, and data description.

3.2 Framework

In this section, we summarize a number of important findings on linear transforma-

tions of vector stochastic processes, and then we present four identified VARMA forms

that we will use in the forecasting applications.

3.2.1 Linear transformations of vector stochastic processes

Exploring the features of transformed processes is important since the data are ob-

tained by temporal and spatial aggregations, and/or transformed by linear filtering tech-

niques before being used to estimate models and evaluate theories. In macroeconomics,

researchers model the dynamic interactions by specifying a multivariate stochastic pro-

cess on a small number of economic indicators. Hence, they work on the marginalized

processes that can be seen as linear transformations of the original process of economic

time series. Finally, if we are interested in dimension-reduction methods such as the

principal component model, we end up with variables constructed as linear transforma-

tions of the observable series. Early contributions on these issues include Zellner and

Palm (1974), Rose (1977), Wei (1978), Abraham (1982), and Lütkepohl (1984), among

others.

The most important result concerns linear transformations of a zero mean N-dimensional,

stationary, nondeterministic stochastic process. Let Xt be such that

Xt =
∞

∑
i=0

Φiut−i = Φ(L)ut , Φ0 = IK, (3.1)
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where ut is a white noise with E(Xt) = 0, E(utu
′
t) = Σu, E(XtX

′
t ) = ΣX , E(XtX

′
t+h) =

ΓX(h), and det(Φ(z)) 6= 0 for |z| < 1. We consider the following linear transformation

of Xt ,

Ft =CXt , (3.2)

where C is a (K ×N) matrix of rank K that is fixed over time. Then, given the nature of

the process of Xt , we have:

1. Ft is also stationary, nondeterministic and has zero mean. Thus, it has an MA

representation

Ft =
∞

∑
i=0

Ψivt−i = Ψ(L)vt , Ψ0 = IK, (3.3)

where vt is K-dimensional white noise with E(vtv
′
t) = Σv.

2. If Σu is nonsingular and C is of full rank M, then det(Ψ(z)) 6= 0 for |z|< 1.

This result considers a very general case where Xt is a vector stochastic process with an

MA representation. If it is invertible, the cases of finite or infinite VAR processes are

covered.

In practice, only a finite number of parameters can be estimated. Suppose an N-

dimensional finite order MA(q) process,

Xt = ut +M1ut−1 + . . .+Mqut−q = M(L)ut (3.4)

with det(M(z)) 6= 0 for |z|< 1 and nonsingular white noise noise covariance matrix Σu.

Let C be a (K ×N) matrix of full rank K. Then, it can be shown that Ft = CXt has an

invertible MA(q*) representation

Ft = vt +N1vt−1 + . . .+N∗
q vt−q∗ = N(L)vt (3.5)

with det(N(z)) 6= 0 for |z|< 1 where vt is a K-dimensional white noise with nonsingular

matrix Σv, the Ni are (K ×K) coefficient matrices and q∗ ≤ q.

Some conditions in previous results can be relaxed. The nonsingularity of the co-

variance matrix Σu and the full rank of C are not necessary so there may be exact linear



62

dependencies among components of Xt and Ft (see Lütkepohl (1984)). Another remark

concerns q∗. It is easy to construct examples where q∗< q by properly choosing C and

M(L).

Using previous results it can be shown that the VARMA class of models is closed

with respect to linear transformations. Let Xt be an N-dimensional, stable, invertible

VARMA(p,q) process

Φ(L)Xt = Θ(L)ut , (3.6)

and let C be a (K×N) matrix of rank K<N. Then, as stated in Corollary 11.1.2 in Lütke-

pohl (2005), Ft =CXt has a VARMA(p∗,q∗) representation with p∗ ≤ (N−K+1)p, and

q∗ ≤ (N−K)p+q. Hence, a linear transformation of a finite order VARMA process still

has a finite order VARMA representation but with possibly higher autoregressive and

moving average orders.

When modeling economic time series, the most used specification is the finite order

VAR. Therefore, it is important to notice that this class of models is not closed with

respect to linear transformations reducing the dimension of the original process. It fol-

lows from the previous result that such transformation will typically have a VARMA

representation.

3.2.2 Identified VARMA processes

The identification problem arises since the VARMA representation of Xt is not unique.

There are several ways to identify the process in (3.6). In the following, we state four

unique VARMA representations: the well known final equation form and three represen-

tations proposed in Dufour and Pelletier (2008).

Definition 1. (Final AR equation form (FAR)) The VARMA representation in (3.6) is

said to be in final AR equation form if Φ(L) = φ(L)IN , where φ(L) = 1− φ 1L− ·· ·−
φ pLp is a scalar polynomial with φ p 6= 0.

Definition 2. (Final MA equation form (FMA)) The VARMA representation in (3.6) is

said to be in final MA equation form if Θ(L) = θ(L)IN , where θ(L) = 1− θ 1L− ·· ·−
θ qLq is a scalar polynomial with θ q 6= 0.
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Definition 3. (Diagonal MA equation form (DMA)) The VARMA representation in

(3.6) is said to be in diagonal MA equation form if Θ(L) = diag[θ ii(L)] = IN −Θ1L−
·· ·−ΘqLq where θ ii(L) = 1−θ ii,1L−·· ·−θ ii,qi

Lqi , θ ii,qi
6= 0, and q = max1≤i≤N(qi).

Definition 4. (Diagonal AR equation form (DAR)) The VARMA representation in (3.6)

is said to be in diagonal AR equation form if Φ(L) = diag[φ ii(L)] = IN −Φ1L− ·· · −
ΦpLp where φ ii(L) = 1−φ ii,1L−·· ·−φ ii,pi

Lpi , φ ii,pi
6= 0, and p = max1≤i≤N(pi).

An interesting fact from the results on linear aggregations of VARMA processes is

that the aggregated process Ft can always have an identified VARMA representation in

the final AR equation form. But this representation may not be attractive for several rea-

sons. First, it is quite far from the usual VAR model by excluding lagged values of other

variables in each equation. Moreover, AR coefficients are the same in all equations that

will require a polynomial of very high order. Second, the interaction between different

variables is modeled through the MA part of the model, and may be very complex in

structural analysis.

Hence, an interesting representation is the diagonal MA form. It is easy to specify,

contrary to the echelon form, since we do not need to deal with rules for the orders of the

off-diagonal elements in AR and MA operators. From the point of view of practitioners,

it is very appealing since adding lags of uit to the ith equation is a natural extension

of the VAR model. It also has the advantage of putting the simple structure on MA

polynomials, the part which complicates the estimation, rather than the AR part as in the

final AR equation form.

3.3 VARMA and factor representations

In this section, we study the link between VARMA and factor representations of a

vector stochastic process Xt , and the dynamic process of factors. In Theorem 1, we

postulate a factor model for Xt where factors follow a finite-order VAR process. We show

that finite-order VAR factors induce a finite-order VARMA process for the observable

series.
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Theorem 1. Suppose Xt has the following factor structure:

Xt = ΛFt +ut (3.7)

Ft = Φ(L)Ft−1 +at (3.8)

where Xt is an N×1 vector of time series, Λ is an N ×K matrix of factor loadings,

Ft is a K×1 vector of factors, ut and at are uncorrelated white noises with covariance

matrices Σu and Σa, and Φ(z) = [Φ1z− . . .−Φpzp]. Then, Xt has a VARMA(p∗,p∗)

representation

A(L)Xt = B(L)et (3.9)

where p∗ ≤ p.

This result can be extended to a case where factors have VARMA representation. It

is not surprising that the induced process for Xt is again a finite-order VARMA, but with

possibly a different MA order that in the previous case. This finding is summarized in

Theorem 2.

Theorem 2. If Ft follows a VARMA(p,q) process

Ft = Φ(L)Ft−1 +at −Θ(L)at−1 (3.10)

where Θ(z) = [Θ1z− . . .−Θqzq], then Xt has VARMA(p∗,q∗) representation

A(L)Xt = B(L)et (3.11)

where p∗ ≤ p and q∗ ≤ max(p,q).

It is worth noting that if the VARMA representation of Xt is invertible, it has a VAR(∞)

representation that in practice can be approximated by a finite order VAR.

The next question is what are the implications of the process of Xt on the factors

representation? In other words, what are the implications of the underlying structure of
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Xt on the representation of latent factors when the latter are calculated as linear transfor-

mations of Xt? The results are summarized in Theorem 3.

Theorem 3. Suppose factors are computed as linear combinations of elements of Xt that

has a factor representation as in (3.7). Then the following results hold:

(i) if Xt has a VARMA(p,q) representation as in (3.6), then Ft has VARMA(p∗,q∗) rep-

resentation with p∗ ≤ N p and q∗ ≤ q + (N − 1)p (or p∗ ≤ (N − K + 1)p and

q∗ ≤ q+(N −K)p);

(ii) if Xt has a VAR(p) representation, then Ft has VARMA(p∗,q∗) representation with

p∗ ≤ N p and q∗ ≤ (N −1)p;

(iii) if Xt has an MA representation as in (3.1) or (3.4), then Ft has an MA or MA(q∗)

representation with q ≤ q∗.

As in the Section 3.2, the invertibility characteristics of Xt still hold for Ft if Σu is nonsin-

gular, and C is of full rank K. The invertibility condition is important in practice. If Xt is

invertible (and stable if VARMA or VAR) and if Ft inherits these characteristics, then it

has the infinite VAR representation that in practice can be approximated by a finite order

VAR.

To resume this section, we recall the arguments in favor of the VARMA modeling of

factor process.

(i) Whenever the joint process of series in Xt is VAR or VARMA, if the factors are

calculated as principal components they follow a VARMA process. Since most

of the series in Xt are usually linearly transformed before estimation (seasonal ad-

justments, temporal and contemporaneous aggregations), the transformed process

from which the factors are extracted is likely to have a VARMA representation.

Moreover, we showed in Theorems 1 and 2 that VAR(MA)-factor structure on Xt

implies a VARMA representation for the marginal process of Xt .

(ii) VARMA representations are more parsimonious and could produce more rel-

evant statistical inference. As it was found in Dufour and Pelletier (2008) the

introduction of the MA operator allows for a reduction of the required AR order

so we can get more precise estimates. Moreover, in terms of the forecasting power,
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VARMA models present theoretical advantages over the VAR representation (see

Lütkepohl (1987)).

(iii) Note that imposing a VARMA process on factors can be viewed from two per-

spectives. First, if one uses the factor analysis as a dimension-reduction method,

then the implications of the underlying process of Xt on Ft should be considered.

From Theorem 3 we see that VARMA is a natural process for factors. Second, if

we suppose that the true representation of the world is a factor representation, i.e.

there is a small number of structural shocks that generate observable series, consid-

ering a VARMA process on factors instead of a finite order VAR is an interesting

generalization motivated by the usual arguments of parsimony, and invertibility

and marginalization issues. Moreover, if we underestimate the number of factors,

even if Ft has a finite order VAR representation, the subvector of Ft is likely to

follow a VARMA process.

We have considered the factor model in its static form without loss of generality, since

it is always possible to write the dynamic factor model in the static form. This more

general case is studied in the following section where we introduce the dynamic factor

model with VARMA process for factors.

3.4 Factor-augmented VARMA models

We showed that the observable VARMA process generally induces a VARMA rep-

resentation for factors, and not a finite-order VAR process usually assumed in the liter-

ature. Following these results, we propose the factor-augmented VARMA (FAVARMA)

model. Using the notation as in Stock and Watson (2005), the dynamic factor model

(DFM) where factors have a finite order VARMA(p f ,q f ) representation can be written

as
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Xit = λ̃ i(L) ft +uit , i = 1, . . . ,N, t = 1, . . . ,T (3.12)

uit = δ i(L)ui,t−1 +ν it (3.13)

ft = Γ(L) ft−1 +Θ(L)η t (3.14)

where λ̃ i(L) is a lag polynomial, δ i(L) is a px,i-degree lag polynomial, Γ(L) = [Γ1L+

. . .+Γp f
Lp f ], Θ(L) = [I−Θ1L− . . .−Θq f

Lq f ], and ν it is an N-dimensional white noise

uncorrelated with q-dimensional white noise process η t . We see that the standard VAR-

factors case is obtained if Θ(L) = I.

The exact (or classical) DFM is obtained if the following assumption is satisfied:

E(uitu js) = 0 ∀i, j, t,s, i 6= j.

If we allow for some limited cross-section correlations among the idiosyncratic com-

ponents (such that there exists a small number of largest eigenvalues of the covariance

matrix of common components that diverge when the number of series tends to infinity,

while the remaining eigenvalues as well as the eigenvalues of the covariance matrix of

specific components are bounded), we obtain the approximate DFM. 5

Subtracting δ i(L)uit−1 from both sides of (3.12) gives the DFM with serially uncorre-

lated idiosyncratic errors:

Xit = λ i(L) ft +δ i(L)Xit−1 +ν it , (3.15)

where λ i(L) = (1−δ i(L)L)λ̃ i(L).

Then, we can rewrite the DFM in the following form:

5. See Bai and Ng (2008) for an overview of the modern factor analysis literature, and distinction
between exact and approximate factor models.
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Xt = λ (L) ft +D(L)Xt−1 +ν t (3.16)

ft = Γ(L) ft−1 +Θ(L)η t (3.17)

where

λ (L) =









λ 1 (L)
...

λ n (L)









,D(L) =









δ 1 (L) · · · 0
...

. . .
...

0 · · · δ n (L)









,ν t =









ν1t

...

νnt









.

To obtain the static version of the previous factor model suppose that λ̃ (L) has finite

degree p-1, and let Ft = [ f ′t f ′t−1 . . . f ′t−p+1]
′. Let the dimension of Ft be K, where

q ≤ K ≤ qp. Then,

Xt = ΛFt +ut (3.18)

ut = D(L)ut−1 +ν t (3.19)

Ft = Φ(L)Ft−1 +GΘ(L)η t (3.20)

where Λ is a N ×K matrix where the ith row consists of coefficients of λ̃ i(L), Φ(L)

contains coefficients of Γ(L) and zeros, and G is K × q matrix that loads (structural)

shocks η t to static factors (consists of 1’s and 0’s).

Again, if Θ(L) = I we obtain the static factor model that was used to forecast time

series (Stock and Watson (2002b, 2008), Boivin and Ng (2005)), and to study the impact

of monetary policy shocks in factor-augmented VAR (FAVAR) model (Bernanke, Boivin

and Eliasz (2005), Boivin, Giannoni and Stevanović (2009)).
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3.5 Estimation

Several estimation methods of factor models and VARMA processes (separately)

have been proposed in the literature. One possibility is to estimate the system (3.12)-

(3.14) (or in its static form (3.18)-(3.20)) simultaneously after making distributional as-

sumptions on the error terms. This method is already computationally difficult when

factors have a simple VAR structure. 6 Hence, adding the MA part to factor process

should not help, since estimating the VARMA model is usually not easy. 7

Instead of the likelihood-based approach, we use the two-step Principal Component

Analysis (PCA) estimation method (see Stock and Watson (2002a), and Bai and Ng

(2006) for theoretical results concerning the PCA estimator). In the first step, F̂t are

computed as K principal components of Xt . In the second step, we estimate the VARMA

representation (3.20) using F̂t .

The number of factors can be estimated using different procedures proposed by

Amengual and Watson (2007), Bai and Ng (2002, 2007), Onatski (2009a), and Hallin

and Liska (2007). In our forecasting exercises we estimate the number of factors using

Bayesian information criterion as in Stock and Watson (2002b), while the number of

factors in the structural FAVARMA model is the same as in Bernanke, Boivin and Eliasz

(2005).

The standard estimation methods for VARMA models are maximum likelihood and

nonlinear least squares. Unfortunately, these methods require nonlinear optimization,

that may not be feasible when the number of parameters is relatively large. In this paper,

we will use the GLS method proposed in Dufour and Pelletier (2008) that generalize the

regression-based estimation method introduced by Hannan and Rissanen (1982). The

6. The unknown coefficients in (3.12)-(3.14) (or in its static form (3.18)-(3.20)) can be estimated by
Gaussian maximum likelihood using the Kalman filter (or by Quasi ML), see Engle and Watson (1981),
Stock and Watson (1989), Sargent (1989). This method is computationally burdensome when N is very
large, but also the misspecification becomes very likely. However, there are some recent improvements:
Kalman filter speedup by Jungbacker and Koopman (2008), using principal components as starting values
then a single pass of the Kalman filter by Giannone, Reichlin, and Sala (2004), and principal components
for starting values then use EM algorithm to convergence by Doz, Giannone, and Reichlin (2006).

7. However, it would be interesting to see if considering VARMA processes can help in the approxi-
mation of the true factors, and this is a part of the ongoing research project.
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method is described below.

Consider a K-dimensional zero mean process Yt generated by the VARMA(p,q) model:

A(L)Yt = B(L)Ut (3.21)

where A(L) = IK −A1L−·· ·−ApLp, B(L) = IK −B1L−·· ·−BqLq, and Ut is a sequence

of uncorrelated random variables. Assume det[A(z)] 6= 0 for |z| ≤ 1 and det[B(z)] 6= 0

for |z| ≤ 1 so the process Yt is stable and invertible. Split the whole vector of VARMA

parameters, γ , in two parts γ1 (the parameters for the AR part) and γ2 (MA part): γ =

[γ1 γ2]
′. For VARMA in diagonal MA equation form, we have

γ1 = [a1•,1, . . . ,a1•,p, . . . ,aK•,1, . . . ,aK•,p], (3.22)

γ2 = [b11,1, . . . ,b11,q1 , . . . ,bKK,1, . . . ,bKK,qK
]. (3.23)

The estimation method involves three steps.

Step 1. Estimate a VAR(nT ) to approximate the VARMA(p,q) and recuperate the resid-

uals defined as:

Ût = Yt −
nT

∑
l=1

Π̂
nT

l Yt−l, T > 2KnT . (3.24)

Step 2. With the residuals from step 1, compute an estimate of the covariance matrix of

Ut , Σ̂U = 1
T ∑

T
t=nt+1ÛtÛ

′
t , and estimate by GLS the following multivariate regression,

A(L)Yt = [B(L)− IK]Ût + et ,

to get estimates Ã(L) and B̃(L). The estimator is

γ̂ = [
T

∑
t=l

Ẑ′
t−1Σ̂−1

U Ẑt−1]
−1[

T

∑
t=l

Ẑ′
t−1Σ̂−1

U Yt ] (3.25)

with l = nT +max(p,q)+1. Setting
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Yt−1(p) =
[

y1,t−1, . . . ,yK,t−1, . . . ,y1,t−p, . . . ,yK,t−p

]

,

Ût−1 =
[

û1,t−1, . . . , ûK,t−1, . . . , û1,t−q, . . . , ûK,t−q

]

,

ûk,t−1 =
[

ûk,t−1, . . . , ûk,t−qk

]

,

the matrix Ẑt−1 is:

Ẑt−1 =









Yt−1(p) · · · 0 û1,t−1 · · · 0
...

. . .
...

...
. . .

...

0 · · · Yt−1(p) 0 · · · ûK,t−1









.

Step 3. Using the second step estimates, form new residuals

Ũt = Yt −
p

∑
i=1

ÃiYt−i +
q

∑
j=1

B̃ jŨt− j

initiating with Ũt = 0, t ≤ max(p,q), and define

Xt =
q

∑
j=1

B̃ jXt− j +Yt ,

Wt =
q

∑
j=1

B̃ jWt− j +Ũt ,

initiating with Xt = Wt = 0 for t ≤ max(p,q). Compute a new estimate of ΣU , Σ̂U =

1
T ∑

T
t=max(p,q)+1ŨtŨ

′
t . Then, regress by GLS Ũt +Xt −Wt on Ṽt−1 with

Ṽt =
q

∑
j=1

B̃ jṼt− j + Z̃t

where Z̃t is just like Ẑt from step 2 except it is computed with Ũt instead of Ût to obtain

regression coefficient Âi and B̂ j:

γ̂ =

[

T

∑
t=max(p,q)+1

Ṽ ′
t−1Σ̃−1

U Ṽt−1

]−1[
T

∑
t=max(p,q)+1

Ṽ ′
t−1Σ̃−1

U

[

Ũt +Xt −Wt

]

]

. (3.26)
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The consistency and asymptotic normality of above estimators are derived in DP (2008).

In previous steps the orders of the AR and MA operators were supposed known. In

practice they are usually estimated by statistical methods or suggested by theory. Dufour

and Pelletier (2008) propose an information criterion to be applied in the second step of

estimation procedure above. For all pi ≤ P and qi ≤ Q compute

log(detΣ̃U)+dim(γ)
(logT )1+δ

T
, δ > 0. (3.27)

Choose p̂i and q̂i as the set which minimizes the information criteria (3.27). The proper-

ties of estimators p̂i and q̂i are given in the paper.

3.6 Applications in macroeconomics

In macroeconomics, the factor models have been used in several purposes: forecast-

ing (and nowcasting) of macroeconomic aggregates, structural analysis where shocks

with meaningful economic interpretation have been identified, testing the implications

of DFM structure and estimation of structural macroeconomic models. In this section,

we consider a forecasting exercise to see if allowing for VARMA dynamics in estimated

factors can help in forecasting some macroeconomic indicators of interest.

3.6.1 Forecasting time series

Consider a simplified version of the static model (3.18)-(3.20)) assuming that Ft is

scalar

Xit = λ iFt +uit (3.28)

uit = δ iuit−1 +ν it (3.29)

Ft = φFt−1 +η t −θη t−1 (3.30)

Then, after replacing for two last equations and rearranging, we get the forecast of XT+1

based on the informational set at T
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XiT+1|T = δ iXiT +λ i(φ −δ i)FT −λ iθηT . (3.31)

We can summarize several implications of (3.31). As discussed in Boivin and Ng

(2005), in the standard factor model where idiosyncratic components and factors follow

autoregressive processes, if λ i 6= 0, i.e. factor structure with respect to variable i exists,

and φ 6= δ i, meaning that the common and specific components do not have the same

dynamics, considering Ft to predict Xit , should perform better than the AR forecast in

terms of MSE.

Allowing for the MA part in the dynamic process of the common component gen-

eralizes this finding. Suppose again λ i 6= 0. If the MA coefficients are not zero, θ 6= 0,

ignoring the moving average structure will produce higher forecast errors even if φ = δ i.

It is important to note that the forecasting performance is affected by the choice

of the estimation method to get factors, and by the choice of the forecasting equation.

Boivin and Ng (2005) address these issues by considering static and dynamic factors

approximations with three types of forecasting equations: unrestricted (where XiT+h is

forecasted using XiT , FT and their lags), direct (where dynamic process of factors is

estimated and then used to first forecast FT+h and then to get XiT+h), and nonparametric

(no parametric assumptions are made about the dynamics of factors nor their relations

to observables). Their simulation results show that the unrestricted forecast equation

using static factors generally does best in terms of the relative MSE to the autoregressive

alternative. Moreover, it seems that these findings are mainly caused by the choice of

the forecasting equation.

In our approach, allowing for the MA structure should help in forecasting Xit if the

process of factors is well approximated. If coefficients in [I −Θ(L)]−1 vanish slowly,

or in more extreme case if the VARMA representation is not invertible, estimating a

parsimonious VARMA process should outperform a long VAR approximation. However,

in practice, due to estimation error, it will be not surprising to see that simpler method

perform better.
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3.6.2 Forecasting models

A popular way to evaluate the predicting power of a model is to conduct a pseudo-

out-of-sample forecasting exercise. Here, we compare our FAVARMA approach to sev-

eral standard factor-based forecasting models used in the literature. The forecasting

equations are divided into two categories: those that do not consider the dynamic pro-

cess of factors (called “Unrestricted”in Boivin and Ng (2005) and “Diffusion index”, or

“DI”and “DI-AR”, in Stock and Watson (2002b)), and those that first predict common

and specific components separately, from their estimated dynamic processes, and then

form the forecast using the estimated observation equation. Moreover, in the latter we

distinguish between sequential and direct techniques to obtain forecasts.

In this exercise, we estimate factors as principal components of Xt . Hence, only the

second type of forecasting equations can be affected by allowing for VARMA factors.

We compare the results for four identified VARMA forms labeled “Diag MA”, “Diag

AR”, “Final MA”and “Final AR”.

Before presenting simulation and empirical results, we summarize more formally the

factor-based forecasting equations:

– First type:

Xi,T+h|T = αh +
m

∑
j=1

β h
i jFT− j+1 +

p

∑
j=1

ρh
i jXi,T− j+1

- Unrestricted: m ≥ 1, p ≥ 0

- DI: m = 1, p = 0

- DI-AR: m = 1

– Second type:

Xi,T+h|T = λ ′
iFT+h|T +ui,T+h|T

where ui,T+h|T is forecasted sequentially or directly using AR(p) process while

the factor dynamics is approximated by VAR(p) (giving Sequential and Direct

forecasts as in Boivin and Ng (2005)) or by one of four identified VARMA forms

in sequential way

- Sequential: FT+h|T = Φ̂(L)FT+h−1|T
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- Direct: FT+h|T = Φ̂h(L)FT

- VARMA: FT+h|T = Φ̂(L)FT+h−1|T + Θ̂(L)ηT+h−1|T where VARMA contains

four different models (Diag MA, Diag AR, Final MA, Final AR) defined by

corresponding lag polynomials Φ(L) and Θ(L).

The benchmark forecasting model used to compare previous equations is the stan-

dard AR(p). 8 However, given the factor structure for observable series, the finite order

autoregressive process is only an approximation of the process of Xit . After the Theorem

3.1, we have that the marginal process for each element of Xt is possibly an ARMA.

Hence, if the MA part for a particular series of interest is very important and close to

non-invertibility region, we need a very long autoregressive model to approximate the

true process, and this can affect the forecasting performance. For that reason, we also

include the ARMA model as an alternative to see if it outperforms the autoregressive

specification, and how does it perform relative to factor-based models.

3.7 Monte Carlo simulations

To illustrate the performance of our approach, we run several Monte Carlo sim-

ulation exercises where we compare forecasting performance of second type models:

FAVARMA (in four identified forms) to FAVAR models. The data are simulated using

the static factor model with MA(1) dynamics for factors, and the idiosyncratic compo-

nent is simulated as in Boivin and Ng (2005) and Onatski (2009b):

Xit = λ iFt +uit (3.32)

Ft = η t −Bη t−1 (3.33)

where i = 1, . . . ,N, t = 1, . . . ,T , η t ∼ N(0,1), and the generating process of uit will be

specified in each simulation exercise.

We present two different simulation exercises. In the first series of simulations, we

vary the time and cross-section dimensions, the nature of the idiosyncratic component,

8. The same benchmark model was used in Stock and Watson (2002b) and Boivin and Ng (2005).
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and the importance of the MA component in factor dynamics. In the second exercise,

we fix the time and cross-section dimensions to 100 each, simulate the idiosyncratic

component as in Boivin and Ng (2005), and vary the number of factors. The main

simulation results are presented in the Appendix.

3.7.1 Simulation exercise 1

– Time dimension: T ∈ {50,100,600}.

– Cross-section dimension: N = {50,100,130}.

– Number of factors: K ∈ {2,4}
– Idiosyncratic component dynamics:

uit = ρNui−1,t +ξ it

ξ it = ρT ξ i,t−1 + ε it

ε it ∼ N(0,1)

where the cross-section dependance (CSD) is controlled by parameter ρN ∈{0.1,0.5,0.9},

and the time dependance (TD) is controlled by parameter ρT ∈ {0.1,0.9}.

– VARMA orders: estimated as in Dufour and Pelletier (2008).

– AR order for idiosyncratic component: 1.

– Case 1:

- K = 2

B =





0.5 0

0 0.3





- VAR order: 6.

– Case 2:

- K = 4

B =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1














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- VAR order: 4.

The results from this simulation exercise are presented in Tables III.I and III.III (Ap-

pendix) for Cases 1 and 2 respectively. The numbers represent MSE of four FAVARMA

identified forms over the MSE of FAVAR Direct or Iterative forecasting models.

In Case 1 and for situations where the time dimension is small, i.e. T=50, the

FAVARMA models outperform FAVAR Direct model, especially at long horizons. The

huge improvement at horizons 24 and 36 is due to the small sample size. When compared

to FAVAR Iterative model, the FAVARMA forms still produce better forecasts in terms of

MSE, but the improvement is less important relative to the multi-step-ahead forecasting

VAR-based model. However, we can see that MA forms outperform FAVAR Iterative

model up to 20% at short and long horizons. When the time size increases, T=100 and

T=600, the improvement of VARMA-based models is moderate, but they still produce

better forecasts, especially at longer horizons when compared to Direct VAR model, and

at shorter horizons when compared to Iterative VAR model. The results are similar in

Case 2, except that FAVARMA models outperform VAR factor model in most of the

specification.

Another interesting result is that FAVARMA models seem to perform better in situ-

ations of weaker factor structure, that is in cases where the cross-section size is smaller

(N=50 compared to N=100, and for a fixed nature of idiosyncratic component correla-

tion structure). Finally, when time and cross-section sizes are comparable to what we

have in data (T=600, N=130), the FAVARMA models perform better in Case 2 than in

Case 1, due to very persistent MA part in factor dynamics in Case 2.

3.7.2 Simulation exercise 2

– Time dimension: T = 100.

– Cross-section dimension: N = 100.

– Number of factors: K ∈ {3,4,6}
– Idiosyncratic component dynamics: uit = κν it , ν it ∼ N(0,σ2

ν i
) such that the com-

mon component explains a fraction ϑ of the variance of Xt . Following Boivin

and Ng (2005), ϑ is set to 0.5 while for the first series in panel Xt , the one that is
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forecasted, we have var(λ 1Ft)/var(X1t) = 0.75.

– MA coefficients matrices:

– K = 3

B =









0.2350 0 0

0 0.2317 0

0 0 0.5776









– K = 4

B =















0.3365 0 0 0

0 0.2420 0 0

0 0 0.0610 0

0 0 0 0.4735















– K = 6

B =



























0.1558 0 0 0 0 0

0 0.4827 0 0 0 0

0 0 0.4525 0 0 0

0 0 0 0.5320 0 0

0 0 0 0 0.6604 0

0 0 0 0 0 0.2763



























– VAR order: 4.

– VARMA orders: estimated as in Dufour and Pelletier (2008).

– AR order for idiosyncratic component: 1.

The results from this simulation exercise are presented in Table III.V. We conclude

that FAVARMA models performance improves with the number of factors which is a

consequence of parsimony principle. Moreover, in comparison with Direct FAVAR fore-

casting model, the VARMA based models are better especially at long horizons, except

for short horizons in the case of 6-factors model.
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3.8 Application to U.S. macroeconomic panel data

We conduct the same out-of-sample forecasting exercise for two different sets of real

data. In the first exercise, we use a balanced monthly panel from Boivin, Giannoni and

Stevanović (2010) (essentially an upgraded version of the data used in Stock and Watson

(2002b)). It contains 128 monthly U.S. economic and financial indicators observed from

1959 to 2008. The second application deals with a Canadian balanced monthly panel

from Boivin, Giannoni and Stevanović (2009) containing 332 series observed from 1981

to 2008. The series are initially transformed to induce stationarity.

3.8.1 Main results

The Relative MSE (relative to the benchmark AR(p) model) results are presented

in Table 3.I. The pseudo-out-of-sample evaluation period is 1988M01-2008M12. In the

forecasting models Unrestricted, DI, and DI-AR, the number of factors, their number

of lags and the number of lags of Xit are estimated using the Bayesian information cri-

teria, and these can vary over the whole evaluation period. In the case of second-type

forecasting models, the number of factors is fixed to 4.

We can see from the Table 3.I that allowing for VARMA factors in the second-type

forecasting equations improves the forecasts of some key macroeconomic indicators

across several horizons. In the case of Industrial production, diffusion index model

performs the best for very short horizon of one month, while diagonal MA and final

MA VARMA forms outperform other methods for horizons 2, 4 and 6 months. Finally,

the ARMA model produces the smallest RMSE for the long-term forecasts. In the case

of Civilian labour force, three identified VARMA forms outperform all other standard

factor-based models for short and mid-term horizons while ARMA still produce the

smallest RMSE in long-term forecasting, except for 2 and 4 years horizons where Direct

and Unrestricted models produce the best results.

On the nominal side, diffusion index model produces the best forecasts of CPI at

horizon 1, the model where factors dynamics are modeled in final AR VARMA form

works the best for horizons 2, 4 and 6. For the long-term forecasts, VARMA-based
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Industrial production: total
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR ARMA

1 0.8706 0.8457 0.8958 0.9443 0.9443 0.8971 0.9019 0.9132 0.8985 0.9700
2 1.0490 0.9938 1.0106 1.0157 1.0665 0.9074 0.9202 0.9112 0.9123 1.0026
4 1.1934 1.0411 1.0527 1.0711 1.2214 0.8947 0.9906 0.8970 0.9481 0.9710
6 1.1496 1.0238 1.0245 1.1743 1.3528 0.9248 1.0494 0.9202 0.9847 0.9918

12 1.2486 1.0445 1.0389 1.0933 1.3682 1.0008 1.2215 1.0075 1.0371 0.9713
18 1.0507 1.0048 1.0207 1.0662 1.2508 1.0511 1.5098 1.0615 1.1206 0.9910
24 1.0393 1.0628 1.0748 1.0128 1.0863 0.9858 1.7920 0.9959 1.1061 0.9604
36 1.0092 1.0906 1.1437 1.2364 1.0421 0.9855 3.0304 0.9883 1.1795 0.9826
48 1.0147 1.1110 1.1212 1.1063 1.0355 0.9921 5.5321 0.9922 1.1681 0.9856

Civilian labor force: employed. total
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR ARMA

1 0.8264 0.8832 0.8451 0.8202 0.8202 0.8004 0.8075 0.8027 0.8008 1.0496
2 0.9407 0.9391 0.9381 0.9477 0.9591 0.8931 0.8805 0.8961 0.8852 1.0422
4 0.9766 0.9739 0.9937 1.0204 1.0551 0.9213 0.8997 0.9200 0.8991 0.9993
6 1.0776 1.0799 1.0937 1.0714 1.1550 0.9667 0.9526 0.9636 0.9455 1.0032

12 1.0741 1.0742 1.0722 1.0137 1.1654 0.9718 0.9912 0.9704 0.9558 0.9507
18 1.0471 1.0488 1.0472 0.9735 1.1391 1.0073 1.1386 1.0096 1.0391 0.9721
24 1.0237 1.0580 1.0268 0.9641 1.1002 1.0154 1.2806 1.0177 1.0856 0.9893
36 0.9573 0.9099 0.9703 0.9507 0.9477 0.9070 1.5452 0.9043 1.0098 0.8957
48 0.9227 0.9236 0.9250 0.9576 0.9989 0.9652 2.4022 0.9624 1.0482 0.9550

Consumer price index: all items
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR ARMA

1 0.8806 0.8700 0.8700 0.9228 0.9228 0.9144 0.9432 0.8856 0.9072 1.0143
2 0.9866 0.9942 0.9942 0.9612 0.9730 0.9309 0.9427 0.9274 0.9170 0.9856
4 1.0656 1.0732 1.0732 1.0398 1.0170 1.0007 1.0665 0.9895 0.9792 1.0129
6 1.1343 1.1334 1.1334 1.0349 1.0101 0.9946 1.0752 0.9939 0.9928 1.0364

12 1.1173 1.1279 1.1279 1.0821 0.9513 0.9572 1.1958 0.9553 1.0408 1.0297
18 1.0311 1.0379 1.0379 1.0430 0.9654 0.8894 1.1021 0.8909 0.9673 0.9391
24 0.9644 1.0712 1.0712 0.9510 0.9980 0.8819 1.1851 0.8791 0.9713 0.8805
36 0.7645 0.7627 0.7627 0.9870 0.9470 0.8329 1.4591 0.8385 0.9126 0.8619
48 0.8663 0.8488 0.8488 0.9361 0.9536 0.8292 2.2640 0.8335 0.8864 0.8511

Federal funds rate
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR ARMA

1 0.8375 7.9025 1.1331 2.5170 2.5170 1.7198 3.1430 1.6070 2.1519 0.9304
2 0.5932 2.3977 0.8468 1.2457 1.3039 1.0068 2.0381 0.9462 1.3972 0.8919
4 0.5156 1.0252 0.6709 0.7663 0.8053 0.7065 1.5720 0.6562 0.9504 0.9087
6 0.5576 0.7488 0.6719 0.7309 0.6908 0.6189 1.4871 0.5742 0.8662 0.9433

12 0.5888 0.5916 0.6790 0.6416 0.6479 0.5757 1.5622 0.5325 0.8013 1.0424
18 0.6245 0.6387 0.6407 0.6404 0.6792 0.5591 1.8109 0.5141 0.7447 0.8674
24 0.5747 0.6950 0.6169 0.6505 0.6864 0.5449 2.0802 0.5106 0.6765 0.7937
36 0.5795 0.5411 0.3621 0.7218 0.7389 0.5420 3.0782 0.5312 0.6158 0.7088
48 0.4743 0.5066 0.5829 0.8742 0.7607 0.5065 4.6229 0.5088 0.5114 0.6457

Table 3.I: RMSE relative to Direct AR(p) forecasts

models perform the best for horizons 18, 24 and 48 months, while Sequential and Diffu-

sion index models dominate for horizons 12 and 48.

Finally, the Unrestricted model is clearly the best suited to forecast the Federal funds

rate at short and mid-term horizons while VARMA-based model in Final MA form per-

forms very well for horizons 12, 18 and 24 months.

We previously showed that the factor structure implies that each observable series

has an ARMA representation. Hence, forecasting an observable series, for which factor

structure holds, using a factor-based equation or an appropriated ARMA model should

give the same forecasts in theory. However, in practice, there are estimation uncertainty

and model misspecification that can make theoretically the same models produce com-

pletely different forecasts. In Table 3.II we present mean squared errors of all factor-

based models predictions relative to ARMA forecasts. The results in bold characters
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represent cases where ARMA model outperform the factor-based alternative in terms of

MSE.

The results in Table 3.II suggest several interesting points. In case of Industrial

production, all factor-based models do better than ARMA at short term horizon of one

month. For longer horizons, ARMA does much better than Unrestricted and Sequen-

tial models, and its performance improve with horizons, while the improvement is more

moderate with respect to DI, DI-AR and Direct models. Compared to FAVARMA fore-

casts, ARMA model does better only after horizon 12. For Employment, the conclusion

is quite similar relative to FAVARMA, while the first-type models perform better than

ARMA for horizons 1, 2, 4, and 48.

In case of Consumer price index, again all factor-based models perform better at

horizon 1 but ARMA seems to be a better choice for the most of horizons relatively to the

first-type models. Moreover, we can find a FAVARMA representation that outperforms

ARMA model at all horizons. Finally, the picture is quite different in case of Federal

funds rate where the Unrestricted forecasts outperform ARMA model completely and

the latter beats all other factor-based models at short horizons of one and two months

only.

Overall, based on these results we can say that ARMA model is a very good alter-

native for standard factor-based models in forecasting key macroeconomic indicators,

especially for long-term horizons in case of the real activity variables. This is not sur-

prising since ARMA model are very parsimonious. However, it is outperformed in the

most of cases by our FAVARMA specifications.

We just discussed the forecasting performance of all alternative models and con-

cluded that the second-type forecasting models with VARMA structure perform gener-

ally the best in this particular exercise. But it is also of interest to see more directly

how approximating the factor process by a VARMA representation compares to fore-

casting model where the factor process is assumed to be a finite order VAR. In Table

3.III we present MSE values of VARMA-based forecasting models relative to Direct

and Sequential second-type model. The numbers in bold character present cases where

VARMA-based model performs better that the VAR alternative.
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Industrial production: total
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR

1 0.8975 0.8719 0.9235 0.9735 0.9735 0.9248 0.9298 0.9414 0.9263
2 1.0463 0.9912 1.0080 1.0131 1.0637 0.9050 0.9178 0.9088 0.9099
4 1.2290 1.0722 1.0841 1.1031 1.2579 0.9214 1.0202 0.9238 0.9764
6 1.1591 1.0323 1.0330 1.1840 1.3640 0.9324 1.0581 0.9278 0.9928

12 1.2855 1.0754 1.0696 1.1256 1.4086 1.0304 1.2576 1.0373 1.0677
18 1.0602 1.0139 1.0300 1.0759 1.2622 1.0606 1.5235 1.0711 1.1308
24 1.0822 1.1066 1.1191 1.0546 1.1311 1.0264 1.8659 1.0370 1.1517
36 1.0271 1.1099 1.1640 1.2583 1.0606 1.0030 3.0841 1.0058 1.2004
48 1.0295 1.1272 1.1376 1.1225 1.0506 1.0066 5.6129 1.0067 1.1852

Civilian labor force: employed. total
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR

1 0.7873 0.8415 0.8052 0.7814 0.7814 0.7626 0.7693 0.7648 0.7630
2 0.9026 0.9011 0.9001 0.9093 0.9203 0.8569 0.8448 0.8598 0.8494
4 0.9773 0.9746 0.9944 1.0211 1.0558 0.9219 0.9003 0.9206 0.8997
6 1.0742 1.0765 1.0902 1.0680 1.1513 0.9636 0.9496 0.9605 0.9425

12 1.1298 1.1299 1.1278 1.0663 1.2258 1.0222 1.0426 1.0207 1.0054
18 1.0772 1.0789 1.0773 1.0014 1.1718 1.0362 1.1713 1.0386 1.0689
24 1.0348 1.0694 1.0379 0.9745 1.1121 1.0264 1.2945 1.0287 1.0973
36 1.0688 1.0159 1.0833 1.0614 1.0581 1.0126 1.7251 1.0096 1.1274
48 0.9662 0.9671 0.9686 1.0027 1.0460 1.0107 2.5154 1.0077 1.0976

Consumer price index: all items
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR

1 0.8682 0.8577 0.8577 0.9098 0.9098 0.9015 0.9299 0.8731 0.8944
2 1.0010 1.0087 1.0087 0.9752 0.9872 0.9445 0.9565 0.9409 0.9304
4 1.0520 1.0595 1.0595 1.0266 1.0040 0.9880 1.0529 0.9769 0.9667
6 1.0945 1.0936 1.0936 0.9986 0.9746 0.9597 1.0374 0.9590 0.9579

12 1.0851 1.0954 1.0954 1.0509 0.9239 0.9296 1.1613 0.9277 1.0108
18 1.0980 1.1052 1.1052 1.1106 1.0280 0.9471 1.1736 0.9487 1.0300
24 1.0953 1.2166 1.2166 1.0801 1.1334 1.0016 1.3459 0.9984 1.1031
36 0.8870 0.8849 0.8849 1.1451 1.0987 0.9664 1.6929 0.9729 1.0588
48 1.0179 0.9973 0.9973 1.0999 1.1204 0.9743 2.6601 0.9793 1.0415

Federal funds rate
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR

1 0.9002 8.4937 1.2179 2.7053 2.7053 1.8485 3.3781 1.7272 2.3129
2 0.6651 2.6883 0.9494 1.3967 1.4619 1.1288 2.2851 1.0609 1.5665
4 0.5674 1.1282 0.7383 0.8433 0.8862 0.7775 1.7299 0.7221 1.0459
6 0.5911 0.7938 0.7123 0.7748 0.7323 0.6561 1.5765 0.6087 0.9183

12 0.5649 0.5675 0.6514 0.6155 0.6215 0.5523 1.4987 0.5108 0.7687
18 0.7200 0.7363 0.7386 0.7383 0.7830 0.6446 2.0877 0.5927 0.8585
24 0.7241 0.8756 0.7772 0.8196 0.8648 0.6865 2.6209 0.6433 0.8523
36 0.8176 0.7634 0.5109 1.0183 1.0425 0.7647 4.3428 0.7494 0.8688
48 0.7346 0.7846 0.9027 1.3539 1.1781 0.7844 7.1595 0.7880 0.7920

Table 3.II: RMSE relative to ARMA(p,q) forecasts

Most of the results in Table 3.III are in bold character meaning that FAVARMA mod-

els outperform the standard FAVAR specification for the most of horizons and identified

VARMA forms. This is especially the case for Industrial production where all VARMA

forms produce smaller MSE than VAR-based forecasts and the improvements seem to be

more important with mid-term horizons and relative to Direct model. At best, VARMA-

factor model improves the forecasting accuracy for 32% at horizon 12. In the case of

Civilian labor force, considering VARMA helps in predicting, but the gain is less impor-

tant and VAR-based model with multi-step forecasts perform even better for long-term

horizons, while the iterative VAR-based model is outperformed by FAVARMA models

in MA forms.

On the nominal side, the FAVARMA models in both MA forms seem to perform

better than the VAR-based alternatives in predicting CPI, and this improvement rises
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Industrial production: total
VARMA/Direct VARMA/Sequential

Horizon Diag MA Diag AR Final MA Final AR Diag MA Diag AR Final MA Final AR
1 0.9500 0.9551 0.9671 0.9515 0.9500 0.9551 0.9671 0.9515
2 0.8934 0.9060 0.8971 0.8982 0.8508 0.8628 0.8544 0.8554
4 0.8353 0.9248 0.8375 0.8852 0.7325 0.8110 0.7344 0.7762
6 0.7875 0.8936 0.7836 0.8385 0.6836 0.7757 0.6802 0.7279

12 0.9154 1.1173 0.9215 0.9486 0.7315 0.8928 0.7364 0.7580
18 0.9858 1.4161 0.9956 1.0510 0.8403 1.2071 0.8487 0.8959
24 0.9733 1.7694 0.9833 1.0921 0.9075 1.6496 0.9168 1.0182
36 0.7971 2.4510 0.7993 0.9540 0.9457 2.9080 0.9484 1.1318
48 0.8968 5.0005 0.8969 1.0559 0.9581 5.3424 0.9582 1.1281

Civilian labor force: employed. total
VARMA/Direct VARMA/Sequential

Horizon Diag MA Diag AR Final MA Final AR Diag MA Diag AR Final MA Final AR
1 0.9759 0.9845 0.9787 0.9763 0.9759 0.9845 0.9787 0.9763
2 0.9424 0.9291 0.9456 0.9341 0.9312 0.9180 0.9343 0.9229
4 0.9029 0.8817 0.9016 0.8811 0.8732 0.8527 0.8720 0.8521
6 0.9023 0.8891 0.8994 0.8825 0.8370 0.8248 0.8343 0.8186

12 0.9587 0.9778 0.9573 0.9429 0.8339 0.8505 0.8327 0.8201
18 1.0347 1.1696 1.0371 1.0674 0.8843 0.9996 0.8863 0.9122
24 1.0532 1.3283 1.0556 1.1260 0.9229 1.1640 0.9250 0.9867
36 0.9540 1.6253 0.9512 1.0622 0.9571 1.6305 0.9542 1.0655
48 1.0079 2.5086 1.0050 1.0946 0.9663 2.4048 0.9635 1.0494

Consumer price index: all items
VARMA/Direct VARMA/Sequential

Horizon Diag MA Diag AR Final MA Final AR Diag MA Diag AR Final MA Final AR
1 0.9909 1.0221 0.9597 0.9831 0.9909 1.0221 0.9597 0.9831
2 0.9685 0.9808 0.9648 0.9540 0.9567 0.9689 0.9531 0.9424
4 0.9624 1.0257 0.9516 0.9417 0.9840 1.0487 0.9730 0.9628
6 0.9611 1.0389 0.9604 0.9593 0.9847 1.0644 0.9840 0.9829

12 0.8846 1.1051 0.8828 0.9618 1.0062 1.2570 1.0042 1.0941
18 0.8527 1.0567 0.8542 0.9274 0.9213 1.1416 0.9228 1.0020
24 0.9273 1.2462 0.9244 1.0213 0.8837 1.1875 0.8809 0.9732
36 0.8439 1.4783 0.8495 0.9246 0.8795 1.5408 0.8854 0.9637
48 0.8858 2.4185 0.8904 0.9469 0.8695 2.3742 0.8741 0.9295

Federal funds rate
VARMA/Direct VARMA/Sequential

Horizon Diag MA Diag AR Final MA Final AR Diag MA Diag AR Final MA Final AR
1 0.6833 1.2487 0.6385 0.8549 0.6833 1.2487 0.6385 0.8549
2 0.8082 1.6361 0.7596 1.1216 0.7721 1.5631 0.7257 1.0716
4 0.9220 2.0514 0.8563 1.2402 0.8773 1.9521 0.8149 1.1802
6 0.8468 2.0346 0.7856 1.1851 0.8959 2.1527 0.8312 1.2539

12 0.8973 2.4349 0.8300 1.2489 0.8886 2.4112 0.8219 1.2368
18 0.8730 2.8278 0.8028 1.1629 0.8232 2.6662 0.7569 1.0964
24 0.8377 3.1978 0.7849 1.0400 0.7939 3.0306 0.7439 0.9856
36 0.7509 4.2646 0.7359 0.8531 0.7335 4.1659 0.7189 0.8334
48 0.5794 5.2881 0.5820 0.5850 0.6658 6.0772 0.6689 0.6723

Table 3.III: MSE of VARMA-based models relative to VAR-based forecasting factor
model

with forecast horizons, and attains the maximum of 15%. Finally, the same VARMA

forms perform quite well relatively to both Direct and Sequential models in case of

Federal Funds Rate, and again the gain rises with forecast horizon attaining 42% at

horizon 48.

Over all evaluation periods and forecasting horizons the estimated VARMA autore-

gressive and moving average orders were low: 1 and [1,1,1,1] for DMA form, [1,2,1,1]

and 1 for DAR form, 1 and 2 for FMA form, and [2−4] and 1 for FAR form. The esti-

mated VAR order was in most occasions estimated to 2. In our robustness analysis we

fixed VAR order to 4, 6 and 12, but the results have not changed substantially.
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3.8.2 Number of factors in second-type forecasting models

Note that the previous results are obtained by fixing the number of factors in the

second-type forecasting equations at 4 for all evaluation periods. In contrast, the number

of factors can vary over time, and is estimated in the first-type forecasting equations.

There exists a list of criteria to estimate the number of static factors but their success in

practice is mitigated.

Another way to vary the number of factors in forecasting equations of the second type

is to set it equal to one of the estimates in the first-type models, but the question remains:

to which one? Generally, the estimated number of factors included in “Unrestricted

”model is smaller than in “DI ”since in the former the information contained in lags of

the dependent variable is important enough to force the information criterion to pick a

smaller number of factors.

In the robustness analysis we did the same forecasting exercise as in the previous

section but where the number of factors in second-type models was the same as in one of

the first-type models. The overall forecasting performance results from these exercises

produce quite similar picture to the one in Tables 3.I and 3.III. This is not surprising with

respect to VARMA-based models since the VARMA representations are closed under the

marginalization.

3.9 Application to a small open economy: Canada

In the application with U.S. data, we had a situation where the time size of the infor-

mational panel is much bigger than the cross-section size, i.e. 600 time periods versus

128 series. Using Canadian data set from Boivin, Giannoni and Stevanović (2009) we

perform the same pseudo-out-of-sample forecasting exercise as in the previous section.

In this data set, there are 332 economic indicators measured from 1981 to 2008, which

gives a time size of 334. The evaluation period is 1998-2008. All series were initially

transformed to induce stationarity.

From the results in Table 3.IV we obtain quite similar conclusions as in the case of

US data set, that is, VARMA-based forecasting models perform better for the most of
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Employment
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR ARMA

1 1.0221 1.0165 1.0920 0.9854 0.9854 0.9410 0.9854 0.9601 1.0362 1.0151
2 0.9874 0.9751 0.9457 0.9998 0.9920 0.9059 0.9920 0.9236 1.0597 1.0092
4 1.0604 1.0865 1.1204 0.9783 0.9399 0.9298 0.9399 0.9221 1.0503 1.0060
6 1.1928 1.1408 1.1667 1.1130 0.9760 0.9641 0.9760 0.9286 1.0615 1.0011

12 0.9822 1.1197 1.2073 1.0402 0.9914 1.0194 0.9914 0.9938 1.0889 1.0760
18 1.2135 1.5923 1.6208 1.3230 0.9792 1.0282 1.0740 0.9845 1.1923 1.1054
24 1.3133 1.9476 1.9595 1.1989 0.9803 1.0290 1.0022 0.9819 1.1401 1.0937
36 1.7336 2.1289 2.2198 1.5687 0.9201 0.9395 0.9441 0.9190 1.0639 1.0442
48 1.7698 1.5115 1.2833 1.7333 0.9788 0.9734 0.9905 0.9608 1.0926 1.0829

Consumer price index: all items
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR ARMA

1 0.8779 0.8501 0.8567 0.9146 0.9146 0.8563 0.9130 0.8647 0.9512 0.8811
2 0.9028 0.8720 0.8790 0.9946 0.9804 0.8895 0.9804 0.9040 0.9798 0.9226
4 0.9139 0.9082 0.9000 0.9737 0.9328 0.8826 0.9328 0.8816 0.9430 0.9069
6 0.8800 0.8701 0.8811 0.9307 0.8853 0.8403 0.8853 0.8399 0.8900 0.9062

12 0.9921 1.0585 1.0140 1.0178 0.9845 0.9318 0.9845 0.9070 1.0255 1.0207
18 1.0114 1.0143 1.0083 1.0362 1.0138 1.0504 1.0847 1.0130 1.0368 1.1184
24 0.9810 1.0563 1.0743 0.9671 0.9460 0.9655 0.9938 0.9508 1.0340 1.0804
36 0.9844 1.1165 1.1126 1.0140 1.0179 1.0325 1.0309 1.0160 1.1187 1.1287
48 0.9919 1.3307 1.3174 1.0908 1.0550 1.0415 1.0318 1.0554 1.1554 1.1832

Producer price index: all manufacturing
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR ARMA

1 1.0079 1.0035 1.0094 1.0097 1.0097 0.9985 1.0070 1.0175 1.0443 0.9931
2 1.0088 0.9732 0.9835 1.0317 1.0077 0.9852 1.0077 0.9874 1.0499 0.9729
4 0.9841 1.0255 1.0280 1.0115 0.9810 0.9986 0.9810 0.9852 1.0483 0.9803
6 0.9759 1.0083 1.0103 0.9885 0.9701 0.9830 0.9701 0.9781 0.9958 0.9580

12 1.0246 1.0274 1.0294 1.0183 1.0142 0.9916 1.0142 0.9942 0.9973 1.0123
18 0.9740 0.9998 1.0026 0.9905 0.9828 0.9789 0.9837 0.9815 0.9894 0.9842
24 0.9927 1.0204 1.0230 1.0159 1.0027 0.9956 1.0018 0.9981 0.9984 1.0040
36 1.0363 1.0763 1.0947 0.9850 0.9831 0.9790 0.9814 0.9804 0.9755 0.9842
48 0.9890 1.0761 1.0632 0.9927 1.0108 1.0032 1.0050 1.0110 0.9969 1.0143

Table 3.IV: RMSE relative to Direct AR(p) forecasts

the horizons. In particular, VARMA factors produce the best forecasts of Employment

at all horizons except for 12, 18 and 24 months ahead. It is interesting to note that

MA forms perform better than AR forms. In the case of CPI, Diffusion index model

does the best at short-term horizons of 1 and 2 months, at 18-month horizon and for the

long-term forecasts of 3 and 4 years. FAVARMA in Final MA form outperforms other

alternatives at horizons 4, 6, 12 and 24 months. Finally, the ARMA model produces the

best predictions of PPI at short horizons of 1, 2, 4 and 6 months, while FAVARMA in

Diagonal MA and Final AR forms does the best for horizons 12 and 36 respectively. As

in the previous section, we want to see how the ARMA model compares to factor-based

models in terms of MSE. The Table 3.V contains mean squared errors of all factor-based

models predictions relative to ARMA forecasts. Bold characters represent the cases

where ARMA model produces smaller MSE than the alternative. From the first part

of Table 3.V, we see that ARMA model outperforms all three first-type factor-based

models, except for the 2-month horizon. On the other side, three FAVARMA forms

and Sequential VAR factors model do better than ARMA for all horizons, while the

univariate model beats the Final AR form. In case of CPI, ARMA model does better at
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shorter horizons with respect to VARMA factors in both AR forms, and relative to both

Direct and Sequential VAR factor specifications. However, it is outperformed by other

factor-based models at most of the horizons. Finally, ARMA model seems to perform

quite well in case of PPI. It does better than first-type models and Direct VAR-factor

model at almost all horizons, while it outperforms other models at short-term horizons.

Finally, in Table 3.VI we redo the same exercise as in Table 3.III, but for Canadian

application. The numbers in bold character represent cases where a VARMA-factor form

produces smaller MSE than a VAR-factor alternative. As in the case of US data, we

find that the FAVARMA models generally outperform the VAR-based factor forecasting

models. This is especially the case for two MA forms that seem to be the best choices.

3.10 Structural analysis

In recent empirical macroeconomic literature the structural factor analysis has be-

come very popular and using hundreds of observable economic indicators seems to over-

come several problems in standard structural VAR literature. Essentially, bringing more

information, and hence, spanning the space spanned by structural shocks, while keep-

ing the model parsimonious, corrects for omitted variables problem and measurement

issues. 9 Finally, Forni et al. (2009) shows that non-fundamentalness (case when the

space spanned by structural shocks cannot be recovered by current and past observ-

ables), which is a likely feature of small-scale models, cannot arise in large dimensional

dynamic factor framework.

In this section, we reconsider the empirical application from Bernanke, Boivin and

Eliasz (2005). We use exactly the same stationary data, the same method to extract fac-

tors (by principal components) and the same way to impose the observed factor (Federal

9. As pointed out in Bernanke, Boivin and Eliasz (2005), the small-scale VAR model presents three
issues. Due to small amount of information in the model relative to the information set potentially observed
by agents, it easily suffers from omitted variable problem that can alter the impulse response analysis. The
second problem in small-scale VAR model is that the choice of a specific data series to represent a general
economic concept is arbitrary. Moreover, measurement errors, aggregation and revisions pose additional
problems for linking theoretical concepts to specific data series. Even if the two previous problems do
not occur, i.e. a small scale VAR is well defined and the shock is well identified, we can produce impulse
responses only for variables included in the VAR.
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Employment
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR

1 1.0069 1.0014 1.0758 0.9707 0.9707 0.9270 0.9707 0.9458 1.0208
2 0.9784 0.9662 0.9371 0.9907 0.9830 0.8976 0.9830 0.9152 1.0500
4 1.0541 1.0800 1.1137 0.9725 0.9343 0.9243 0.9343 0.9166 1.0440
6 1.1915 1.1395 1.1654 1.1118 0.9749 0.9630 0.9749 0.9276 1.0603

12 0.9128 1.0406 1.1220 0.9667 0.9214 0.9474 0.9214 0.9236 1.0120
18 1.0978 1.4405 1.4663 1.1969 0.8858 0.9302 0.9716 0.8906 1.0786
24 1.2008 1.7807 1.7916 1.0962 0.8963 0.9408 0.9163 0.8978 1.0424
36 1.6602 2.0388 2.1258 1.5023 0.8812 0.8997 0.9041 0.8801 1.0189
48 1.6343 1.3958 1.1851 1.6006 0.9039 0.8989 0.9147 0.8872 1.0090

Consumer price index: all items
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR

1 0.9964 0.9648 0.9723 1.0380 1.0380 0.9719 1.0362 0.9814 1.0796
2 0.9785 0.9452 0.9527 1.0780 1.0626 0.9641 1.0626 0.9798 1.0620
4 1.0077 1.0014 0.9924 1.0737 1.0286 0.9732 1.0286 0.9721 1.0398
6 0.9711 0.9602 0.9723 1.0270 0.9769 0.9273 0.9769 0.9268 0.9821

12 0.9720 1.0370 0.9934 0.9972 0.9645 0.9129 0.9645 0.8886 1.0047
18 0.9043 0.9069 0.9016 0.9265 0.9065 0.9392 0.9699 0.9058 0.9270
24 0.9080 0.9777 0.9944 0.8951 0.8756 0.8937 0.9198 0.8800 0.9571
36 0.8722 0.9892 0.9857 0.8984 0.9018 0.9148 0.9134 0.9002 0.9911
48 0.8383 1.1247 1.1134 0.9219 0.8916 0.8802 0.8720 0.8920 0.9765

Producer price index: all manufacturing
Horizon Unrestricted DI DI AR Direct Sequential Diag MA Diag AR Final MA Final AR

1 1.0149 1.0105 1.0164 1.0167 1.0167 1.0054 1.0140 1.0246 1.0516
2 1.0369 1.0003 1.0109 1.0604 1.0358 1.0126 1.0358 1.0149 1.0791
4 1.0039 1.0461 1.0487 1.0318 1.0007 1.0187 1.0007 1.0050 1.0694
6 1.0187 1.0525 1.0546 1.0318 1.0126 1.0261 1.0126 1.0210 1.0395

12 1.0122 1.0149 1.0169 1.0059 1.0019 0.9796 1.0019 0.9821 0.9852
18 0.9896 1.0159 1.0187 1.0064 0.9986 0.9946 0.9995 0.9973 1.0053
24 0.9887 1.0163 1.0189 1.0119 0.9987 0.9916 0.9978 0.9941 0.9944
36 1.0529 1.0936 1.1123 1.0008 0.9989 0.9947 0.9972 0.9961 0.9912
48 0.9751 1.0609 1.0482 0.9787 0.9965 0.9891 0.9908 0.9967 0.9828

Table 3.V: RMSE relative to ARMA(p,q) forecasts

Employment
VARMA/Direct VARMA/Sequential

Horizon Diag MA Diag AR Final MA Final AR Diag MA Diag AR Final MA Final AR
1 0.9500 0.9551 0.9671 0.9515 0.9500 0.9551 0.9671 0.9515
2 0.8934 0.9060 0.8971 0.8982 0.8508 0.8628 0.8544 0.8554
4 0.8353 0.9248 0.8375 0.8852 0.7325 0.8110 0.7344 0.7762
6 0.7875 0.8936 0.7836 0.8385 0.6836 0.7757 0.6802 0.7279

12 0.9154 1.1173 0.9215 0.9486 0.7315 0.8928 0.7364 0.7580
18 0.9858 1.4161 0.9956 1.0510 0.8403 1.2071 0.8487 0.8959
24 0.9733 1.7694 0.9833 1.0921 0.9075 1.6496 0.9168 1.0182
36 0.7971 2.4510 0.7993 0.9540 0.9457 2.9080 0.9484 1.1318
48 0.8968 5.0005 0.8969 1.0559 0.9581 5.3424 0.9582 1.1281

Consumer price index: all items
VARMA/Direct VARMA/Sequential

Horizon Diag MA Diag AR Final MA Final AR Diag MA Diag AR Final MA Final AR
1 0.9759 0.9845 0.9787 0.9763 0.9759 0.9845 0.9787 0.9763
2 0.9424 0.9291 0.9456 0.9341 0.9312 0.9180 0.9343 0.9229
4 0.9029 0.8817 0.9016 0.8811 0.8732 0.8527 0.8720 0.8521
6 0.9023 0.8891 0.8994 0.8825 0.8370 0.8248 0.8343 0.8186

12 0.9587 0.9778 0.9573 0.9429 0.8339 0.8505 0.8327 0.8201
18 1.0347 1.1696 1.0371 1.0674 0.8843 0.9996 0.8863 0.9122
24 1.0532 1.3283 1.0556 1.1260 0.9229 1.1640 0.9250 0.9867
36 0.9540 1.6253 0.9512 1.0622 0.9571 1.6305 0.9542 1.0655
48 1.0079 2.5086 1.0050 1.0946 0.9663 2.4048 0.9635 1.0494

Producer price index: all manufacturing
VARMA/Direct VARMA/Sequential

Horizon Diag MA Diag AR Final MA Final AR Diag MA Diag AR Final MA Final AR
1 0.9909 1.0221 0.9597 0.9831 0.9909 1.0221 0.9597 0.9831
2 0.9685 0.9808 0.9648 0.9540 0.9567 0.9689 0.9531 0.9424
4 0.9624 1.0257 0.9516 0.9417 0.9840 1.0487 0.9730 0.9628
6 0.9611 1.0389 0.9604 0.9593 0.9847 1.0644 0.9840 0.9829

12 0.8846 1.1051 0.8828 0.9618 1.0062 1.2570 1.0042 1.0941
18 0.8527 1.0567 0.8542 0.9274 0.9213 1.1416 0.9228 1.0020
24 0.9273 1.2462 0.9244 1.0213 0.8837 1.1875 0.8809 0.9732
36 0.8439 1.4783 0.8495 0.9246 0.8795 1.5408 0.8854 0.9637
48 0.8858 2.4185 0.8904 0.9469 0.8695 2.3742 0.8741 0.9295

Table 3.VI: MSE of VARMA-based models relative to VAR-based forecasting factor
model

Funds Rate). The difference is that we allow VARMA dynamics on static factors instead

of imposing a finite order VAR representation. The monetary policy shock is identi-
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fied from Cholesky decomposition of the residual covariance matrix in factor transition

equation, meaning that the observed factor was ordered last. We considered all four

identified VARMA forms, but retained only the diagonal MA representation (see dis-

cussion in section 3.2.2). The number of latent factors is five, and we fitted a VARMA

(2.1) (these orders were estimated using the information criterion in Dufour and Pelletier

(2008)). In Figure 3.1 we present the impulse responses of some economic indicators of

interest estimated from model with VAR factors (FAVAR) and model with VARMA fac-

tors in DMA form (FAVARMA-DMA). The FAVAR impulse responses were computed

for several VAR orders (Akaike information criterion estimate is 14). We can see that,

for many series, FAVAR impulse responses tend to FAVARMA impulse responses with

increasing the VAR lag order. This result implies that one needs to estimate a very long

VAR to get similar response from a more parsimonious VARMA model. Hence, in the

case of FAVARMA, only 84 VARMA parameters must be estimated compared to 510

VAR coefficients using FAVAR model with lag order 14.

In Figure 3.2 we present the same FAVARMA-DMA impulse responses but with

the 90% confidence intervals computed using 5000 bootstrap replications. As expected

from theory, a positive monetary policy shock generates a significant and very persis-

tent economic downturn. A remark on the bootstrap must be made. The approximation

of the true factor process could be important when choosing the parametric bootstrap

procedure to obtain statistical inference on objects of interest. 10 Following Yamamoto

(2009) suggestion, we resample factors transition equation to get the bootstrap factors.

These are then used to obtain bootstrap information panel by resampling from the ob-

servation equation residuals. Finally, new factors are extracted, their VARMA process

is estimated and impulse responses are computed. Hence, having a good approxima-

tion of the true factor process can be very important in order to get the right bootstrap

procedure. If the finite VAR approximation is far away from the truth, and if the finite

VARMA representation does much better, allowing for MA part will provide more reli-

able inference. Moreover, in practice the number of estimated parameters is important,

10. Another possibility is to use a nonparametric block bootstrap procedure by resampling time-size
blocks and keeping the cross-section dimension fixed. Nevertheless, the choice of the size of the time
block and the way to induce stationary series seem to be important variables
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Figure 3.1: Comparison between FAVAR and FAVARMA-DMA impulse responses

and if a long VAR is needed, considering a more parsimonious representation, such as

VARMA, should help.

3.11 Conclusion

In this paper, we studied the relationship between VARMA and factor representa-

tions of a vector stochastic process and proposed the FAVARMA model. We started by

observing that in general multivariate series and associated factors do not both follow

a finite order VAR process. When the factors are obtained as linear combinations of

observable series, their dynamic process is generally a VARMA and not a finite-order

VAR. Also, we showed that even if the factors follow a finite-order VAR process, this
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Figure 3.2: FAVARMA-DMA impulse responses to monetary policy shock

implies a VARMA representation for the observable series. As result, we proposed the

FAVARMA framework that combines two parsimonious methods to represent the dy-

namic interactions between a large number of time series: factor analysis and VARMA

modeling.

In order to illustrate the performance of our model we performed a series of Monte

Carlo simulations and found that VARMA specifications help a lot especially in small

sample cases where the best improvement occurred at longer horizons, but also in cases

where the sample sizes were comparable to our empirical exercise.

We applied our approach in two pseudo-out-of-sample forecasting exercises using

large U.S. and Canadian monthly panels taken from Boivin, Giannoni and Stevanović

(2009, 2008) respectively. The results showed that VARMA factors help in predicting
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several key macroeconomic aggregates relative to standard factor forecasting models. In

particular, we found that the FAVARMA models generally outperform the VAR-factor

forecasting models, and this is especially the case for two MA VARMA-factor specifi-

cations that seem to be the best choices.

Finally, we estimated the effect of monetary policy using the data and the identifica-

tion scheme as in Bernanke, Boivin and Eliasz (2005). We found that impulse responses

from a parsimonious VARMA (2.1) factor model give an accurate and comprehensive

picture of the effect and the transmission of monetary policy in U.S.. To get similar

responses from a standard FAVAR model, Akaike information criterion estimates the

lag order of 14. Hence, only 84 coefficients governing the factors dynamics need to

be estimated in the FAVARMA framework, compared to FAVAR model with 510 VAR

parameters.



CHAPTER 4

CREDIT SHOCKS TRANSMISSION IN A SMALL OPEN ECONOMY: A

FACTOR-AUGMENTED VARMA APPROACH

4.1 Introduction

The current economic downturn suggests that there is information in the financial

sector which has not been integrated into our understanding of macroeconomics. Stud-

ies, among others, by Stock and Watson (1989), Estrella and Hadrouvelis (1991), Gertler

and Lown (1999), Diebold et al. (2006), Mueller (2007), and Gilchrist, Yankov, and Za-

krajsek (2009) have shown that there is predictive content in financial series. The results

in Forni et al. (2003) show that financial variables are important when forecasting in-

flation rates but do not help in predicting industrial production, which is also confirmed

in Espinoza et al. (2009). Moreover, the non-neoclassical channels of monetary pol-

icy transmission mechanisms which are related to credit markets are theoretically and

empirically under-documented. We propose to empirically measure the impact of credit

shocks in Canada within this theoretical framework.

Due to the complexity of credit markets, we doubt that their informational content

can be synthesized in as few variables as a vector autoregressive (VAR) model allows us.

In order to incorporate information from a large number of economic and financial indi-

cators, we will use the structural factor analysis approach proposed by Bernanke, Boivin,

and Eliasz (2005), Marcellino and Kapetainous (2005), and Stock and Watson (2005),

among others. In particular, we will use the factor-augmented VARMA (FAVARMA)

model proposed by Dufour and Stevanovic (2010). This is a theoretically coherent model

with an approach that combines two dimension reduction techniques: factor analysis and

VARMA modeling. The identification of structural shocks is achieved by imposing a re-

cursive structure on the impact matrix of the structural MA representation of observable

variables.

Similar studies have been done for the US economy by Boivin, Giannoni, and Ste-
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vanovic (2010) (BGS hereafter) and Gilchrist, Yankov, and Zakrajsek (2009). Both stud-

ies find that credit shocks have wide effects on the economy that are consistent with a

significant economic slowdown. Safei and Cameron (2003) and Atta-Mensah and Dib

(2008) have studied the dynamics of the Canadian credit market, the former according

to a structural VAR approach, the latter according to a DSGE approach. The conclusions

drawn by Safei and Cameron (2003) show a lack of robustness, suggesting that there is

information missing in their structural VAR models. As in BGS, the present exercise will

correct this problem using a large data set. The results of Atta-Mensah and Dib (2008)

are more coherent with dynamic stochastic general equilibrium (DSGE) literature de-

scribing credit market models, except that they consider Canada as a closed economy.

Our methodology will allow us to include more information about the global financial

market and to simulate shocks from outside of Canada, which will be important in our

following discussion.

Our results show that an unexpected increase in the external finance premium on

global financial markets, approximated by the US credit spread, generates a significant

and persistent economic slowdown in Canada. Canadian credit spreads rise immedi-

ately, while interest rates and credit measures decline. Contrary to existing work on the

Canadian economy, we find that price indexes fall persistently. Since we do not impose

timing restrictions on forward-looking variables, these leading indicators respond nega-

tively on impact, as expected. This gives a more realistic picture of the effect of credit

shocks on the economy and provides information about the transmission mechanism of

these shocks. According to R2 results, the common component captures an important

dimension of the business cycle movements. From the variance decomposition analysis,

we observe that the credit shock has an important effect on several real activity measures

including price indicators, leading indicators, and credit spreads.

Another piece of important empirical evidence concerns the identification of national

financial shocks. Previous studies have treated Canada as a closed economy when iden-

tifying a credit shock and have found some real effects. Our results suggest that there is

no significant effect of domestic shocks in Canada. Indeed, the effects of credit shocks

in Canada are essentially caused by the unexpected changes in foreign credit market
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conditions.

Finally, a by-product of our identification approach is a rotation matrix that can be

used to recover the structural factors. These rotation matrices still have the same in-

formational content, but their interpretation, in terms of the correlation structure, can

change. Indeed, we find that the rotated principal components do have an economic

interpretation.

In the rest of the paper, we first present the theoretical framework in which credit

shocks can occur. Then, we present our econometric framework in a data-rich environ-

ment and discuss the estimation and identification issues. The main results are presented

in Section 5, followed by a conclusion. The Appendix contains some additional results,

the explanation of the bootstrap procedure, and the data description.

4.2 Theoretical framework

In this section we briefly discuss how the financial and economic sides are connected

and through which channel(s) shocks on the credit market could affect economic activ-

ity. Financial frictions are crucial when linking the credit market conditions to economic

activity. In a framework of incomplete information, the Modigliani-Miller theorem does

not apply, implying that a firm’s value is affected by its capital structure. After aggre-

gation, if credit markets determine capital structure in the economy we should observe

informational frictions determining the firm’s value. Frictions can arise from both supply

and demand.

On the supply side, usually interpreted as the bank lending channel, Bernanke (1993)

observes that banks and other financial intermediaries are able to fund projects which are

complex to evaluate, using funds from investors that have only partial information about

these projects. If banks resolve asymmetric information problems in the credit market,

they can be considered credit creators and their health becomes an important macroe-

conomic parameter. However, because of the democratization of credit in the 1980s,

informational frictions on the supply side seem to be less present. Dynan, Elmendorf,

and Sichel (2006) provide empirical evidence that households’ expenses are less sensi-
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tive to their income, encouraging us to look for other kinds of frictions.

On the demand side, which links to the balance sheet channel, BGG introduce the

idea of a financial accelerator working through the interaction of two measures. First

is the external finance premium, defined as the difference between the external cost of

capital and the internal opportunity cost of capital. Second is the net worth of potential

borrowers used to measure collateral that firms are able to offer to obtain credit. The

idea of the financial accelerator is an inverse relation between these two measures. If

the net worth of a firm falls, the collateral value that firms will be able to present to

banks will also fall. Similarly, the firm’s contribution to capital will also decline. In

consequence, the bank will possess relatively more parts of the firm, creating an agency

cost to solve the divergence between both parts. This agency cost will raise the external

finance premium, i.e. the firm’s capital cost. Then the financial accelerator mechanism

works as follows: a fall in net worth (due to financial crisis, for example) raises the

acquisition capital cost, pushing firms to invest a sub-optimal quantity of capital and

creating a persistent effect from the original crisis.

Building on Bernanke, Gertler and Gilchrist (1999) (BGG hereafter), Gilchrist, Or-

tiz, and Zakrajsek (2009) aim to quantify the role of financial frictions in the business

cycle fluctuations. They augment a standard DSGE model with the financial accelerator

mechanism that links the conditions on the credit market to the real economy through

the external finance premium. Two financial shocks are introduced: financial distur-

bance shock, which affects external finance premium, and net worth shock affecting the

balance sheet of a firm. The first shock is presented as a credit supply shock, which

Christiano, Motto and Rostagno (2009) interpret as an increase in the agency costs due

to a higher variance of idiosyncratic shocks affecting the firm’s profitability. The second

shock can be viewed as a credit demand shock. Its effect will depend on the degree of

financial market frictions. After estimating the structural model, authors find that both

financial shocks cause an increase in external finance premium that, through the financial

accelerator, implies a slowdown in economic activity. Finally, Bloom (2009) provides a

framework to analyze the impact of uncertainty shocks. He finds that increased volatility

generates short, but sharp, recessions an recoveries.
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4.3 Econometric framework in data-rich environment

As information technology improves, the availability of economic and finance time

series grows in terms of both time and cross-section size. However, a large amount of

information can lead to the curse of dimensionality problem when standard time series

tools are used. Since most of these series are highly correlated, at least within some

categories, their co-variability pattern and informational content can be approximated

by a smaller number of variables. A popular way to address this issue is to use factor

analysis. The structural factor model approach will here be used to identify a structural

shock and its effects on economy.

Previous studies have used standard VAR techniques with recursive identification

schemes to identify credit shocks. However, as pointed out in Bernanke, Boivin and

Eliasz (2005), the small-scale VAR model presents three issues. First, due to the small

amount of information in the model, relative to the information set potentially observed

by agents, VAR suffers from an omitted variable problem which can alter the impulse

response analysis. The second problem in small-scale VAR model is that the choice of

a specific data series to represent a general economic concept is arbitrary. Moreover,

measurement errors, aggregations, and revisions present additional problems when link-

ing theoretical concepts to specific data series. Even if the previous problems do not

occur, we can only produce impulse responses for the variables included in the VAR.

Finally, Forni et al. (2009) argues that while non-fundamentalness is generic of a small

scale model, it cannot arise in a large dimensional dynamic factor models 1. This is of

primary importance since the objective is to identify a relatively new structural shock in

empirical macroeconomics.

One way to address all of these issues is to take advantage of information contained

in large panel data sets using dynamic factor analysis and the factor-augmented VAR

(FAVAR) model in particular. The importance of large data sets and factor analysis is

well documented in both forecasting macroeconomic aggregates and structural analysis.

1. If the shocks in the VAR model are fundamental, then the dynamic effects implied by the moving
average representation can have a meaningful interpretation, i.e. the structural shocks can be recovered
from current and past values of observable series.
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Boivin, Giannoni and Stevanovic (2009) has recently shown that incorporating informa-

tion through a small number of factors corrects for several empirical puzzles when esti-

mating the effect of monetary policy shocks in a small open economy. However, Dufour

and Stevanovic (2010) argue that in general, multivariate series and associated factors do

not both follow a finite order VAR process. Hence, they propose the FAVARMA frame-

work that combines two parsimonious methods to represent the dynamic interactions

between a large number of time series: factor analysis and VARMA modeling.

4.3.1 Factor-augmented VARMA model

Using the notation as in Dufour and Stevanovic (2010), the dynamic factor model

(DFM) where factors have a finite order VARMA(p f ,q f ) representation can be written

as

Xit = λ̃ i(L) ft +uit , i = 1, . . . ,N, t = 1, . . . ,T (4.1)

uit = δ i(L)ui,t−1 +ν it (4.2)

ft = Γ(L) ft−1 +Θ(L)η t (4.3)

where λ̃ i(L) is a lag polynomial, δ i(L) is a px,i-degree lag polynomial, Γ(L) = [Γ1L+

. . .+Γp f
Lp f ], Θ(L) = [I−Θ1L− . . .−Θq f

Lq f ], and ν it is an N-dimensional white noise

uncorrelated with q-dimensional white noise process η t . The equation (4.1) relates ob-

servable variable Xit to q (latent) factors, ft , and to its idiosyncratic component, uit . The

element λ̃ i(L) ft is called the common component. We also allow for some limited cross-

section correlations among the idiosyncratic components 2.

Subtracting δ i(L)uit−1 from both sides of (4.1) gives the DFM with serially uncorrelated

2. Such that there exists a small number of largest eigenvalues of the covariance matrix of common
components that diverge when the number of series tends to infinity, while the remaining eigenvalues
as well as the eigenvalues of the covariance matrix of specific components are bounded. See Bai and
Ng (2008) for an overview of the modern factor analysis literature, and distinction between exact and
approximate factor models.
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idiosyncratic errors:

Xit = λ i(L) ft +δ i(L)Xit−1 +ν it , (4.4)

where λ i(L) = (1−δ i(L)L)λ̃ i(L).

Then, we can rewrite the DFM in the following form:

Xt = λ (L) ft +D(L)Xt−1 +ν t (4.5)

ft = Γ(L) ft−1 +Θ(L)η t (4.6)

where

λ (L) =









λ 1 (L)
...

λ n (L)









,D(L) =









δ 1 (L) · · · 0
...

. . .
...

0 · · · δ n (L)









,ν t =









ν1t

...

νnt









.

To obtain the static version of the previous factor model suppose that λ̃ (L) has finite

degree p-1, and let Ft = [ f ′t f ′t−1 . . . f ′t−p+1]
′. Let the dimension of Ft be K, where

q ≤ K ≤ qp. Then,

Xt = ΛFt +ut (4.7)

ut = D(L)ut−1 +ν t (4.8)

Ft = Φ(L)Ft−1 +GΘ(L)η t (4.9)

where Λ is a N ×K matrix where the ith row consists of coefficients of λ̃ i(L), Φ(L)

contains coefficients of Γ(L) and zeros, and G is K × q matrix that loads (structural)

shocks η t to static factors (consists of 1’s and 0’s). Note that if Θ(L) = I, we obtain the

factor-augmented VAR (FAVAR) model.

Finally, since the VARMA models are not identified in general, we will impose the
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diagonal moving average representation that is presented in following definition.

Definition 1. (Diagonal MA equation form) Suppose N-dimensional stochastic process

Xt has the following VARMA representation:

Φ(L)Xt = Θ(L)ut

This VARMA representation is said to be in diagonal MA equation form if Θ(L) =

diag[θ ii(L)] = IN −Θ1L−·· ·−ΘqLq where θ ii(L) = 1−θ ii,1L−·· ·−θ ii,qi
Lqi , θ ii,qi

6= 0,

and q = max1≤i≤N(qi).

From the point of view of practitioners, this form is very appealing since adding lags

of uit to the ith equation is a natural extension of the VAR model. It also has the advan-

tage of putting the simple structure on MA polynomials, the part which complicates the

estimation.

4.3.2 Estimation

We will work with the static version (4.7-4.9). Also, we assume the same number of

dynamic and static factors, G = I, and no autocorrelations in idiosyncratic component,

D(L) = 0, which gives the following simplified model:

Xt = ΛFt +ν t (4.10)

Ft = Φ(L)Ft−1 +Θ(L)η t (4.11)

To estimate this model, we use the two-step Principal Component Analysis (PCA)

estimation method (see Stock and Watson (2002a), and Bai and Ng (2006) for theoretical

results concerning the PCA estimator). In the first step, F̂t are computed as K principal

components of Xt . In the second step, we estimate the VARMA representation (4.11)

using F̂t .

The standard estimation methods for VARMA models are maximum likelihood and

nonlinear least squares. Unfortunately, these methods require nonlinear optimization,
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which may not be feasible when the number of parameters is relatively large. In this

paper, we will use the GLS method proposed in Dufour and Pelletier (2008).

Since the unobserved factors are estimated and then included as regressors in the

FAVARMA model, the two-step approach suffers from the “generated regressors”problem.

To get an accurate statistical inference on the impulse response functions that accounts

for uncertainty associated to factors estimation, we use a bootstrap procedure suggested

by Yamamoto (2009) and implemented in Dufour and Stevanovic (2010). The details

about the bootstrap procedure are presented in the Appendix.

4.3.3 Identification of structural shocks

To identify the structural shocks, we adapt the contemporaneous timing restrictions

procedure proposed in Stock and Watson (2005) to the FAVARMA framework. After

inverting the VARMA process of factors in (4.11), assuming stationarity, and plugging

it in (4.10), we obtain the MA representation of Xt :

Xt = Λ[I −Φ(L)L]−1Θ(L)η t +ut

= B(L)η t +ut . (4.12)

We assume that the number of static factors, K, is equal to the number of dynamic factors

and that structural shocks ε t are linear combinations of residuals in (4.11)

ε t = Hη t , (4.13)

where H is a nonsingular square matrix and E[ε tε
′
t ] = I. Replacing (4.13) in (4.12) gives

the structural MA form of Xt :

Xt = Λ[I −Φ(L)L]−1Θ(L)H−1ε t +ut

= B⋆(L)ε t +ut . (4.14)
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To achieve the identification of shocks in ε t , the contemporaneous timing restrictions are

imposed on the impact matrix in (4.14)

B⋆
0 ≡ B⋆ (0) =



























x 0 · · · 0

x x
. . . 0

x x
. . . 0

x x · · · x
...

...
...

...

x x · · · x



























.

Let B⋆
0:K = B0:KH−1 be a K ×K lower triangular matrix, where B0:K contains first K

rows of B0. Then, H is obtained as

H = [Chol(B0:KΣeB′
0:K)]

−1ΛK, (4.15)

where Ση is covariance matrix of η t and ΛK is K ×K matrix of first K rows of Λ. To

estimate H, we just plug the estimates of B0:K , Σe and ΛK . Hence, the impulse responses

to any shock in ε t are obtained using (4.14). This identification procedure is similar to

the standard recursive identification in VARMA models. To just-identify the K structural

shocks, we need to impose K(K − 1)/2 restrictions. Imposing them in a recursive way

makes estimation of the rotation matrix H easy. Also, it should be noted that the number

of static factors must be equal to the number of series used in recursive identification.

Moreover, contrary to other identification strategies in FAVAR literature, we do not need

to impose any observed factor or rely on the interpretation of a particular latent factor.

4.4 Data

The majority of our data comes from Dufour and Stevanovic (2010). It contains

332 monthly StatCan series that synthesize real and financial Canadian activity. Also

included are variables describing a small open economy: exchange rates and global

financial information. The time span is from January 1986 to November 2009.
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Credit spreads measuring credit market conditions are also included as additional

series. A credit spread is defined by the difference between the actuarial rate of a firm

bond and the actuarial rate of a risk-free product (typically a treasury bond). We have

built American credit spreads using Moody’s bond index as described in BGS. Canadian

credit spreads has been built using a Canadian Dex bond index rated AA. Table 4.I

synthesizes information about the credit spread for Canada and the US.

Because our results are very similar from one spread to another, we have selected

a Canadian 10 Year A Spread and an American 10 Year B spread. The two series are

plotted in Figure 4.1.

4.5 Results

The goal of this paper is to measure the dynamic effects of credit shocks on eco-

nomic activity in Canada. Since we are looking at a small open economy it is important

to control for global influence on financial markets when identifying the credit shock

effects. In previous studies, authors have considered Canada to be a closed economy,

but our empirical evidence suggests this could be misleading. Indeed, our results show

that the effect of credit shock is essentially driven by global financial conditions and

by US credit markets in particular. Given the fact that the US represents around 80%

of foreign trade in Canada, we approximate the world financial conditions with the US

proxies. Hence, we use the US 10-year credit spread (USspread10y) in the recursive

identification scheme. On the other hand, we take the Canadian 10-year credit spread

(CANspread10y) as a proxy to identify the national credit shock. In all specifications

the lag order tests suggest a VARMA(2,1) process for extracted factors.

4.5.1 Global credit shock

To identify the global credit shock, we impose the following recursive scheme such

that B⋆
0:K is lower triangular:

[USspread10y, CPI, UR, MS, R, FX ]
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Series label Description
SCM2AST(RY) Bond Yeld: DEX Capital Overall AA Short Term (% per Annum)
SCM2AMT(RY) Bond Yeld: DEX Capital Overall AA Mid Term (% per Annum)
SCM2ALG(RY) Bond Yeld: DEX Capital Overall AA Long Term (% per Annum)

v122531 Interest Rateă: T-bills 3 Months (% per Annum)
v122499 Interest Rateă:Gov. of Can.marketable Bond, 1-3 years (% per Annum)
v122501 Interest Rateă:Gov. of Can. marketable Bond, over 10 years (% per Annum)
FYAAAC Bond Yeld: MoodyŠs AAA Corporate (% per Annum)
FYBAAC Bond Yeld: MoodyŠs BAA Corporate (% per Annum)
FYGT1.M Rate: U.S. Treasury Const. Maturities, 1-Year (% Per Annum, NSA)

FYGT10.M Rate: U.S. Treasury Const. Maturities, 10-Year (% Per Annum, NSA)
Canadian credit spreads

3 Months A Spread SCM2AST(RY) - v122531
1 Year A Spread SCM2AMT(RY) - v122499

10 Year A Spread SCM2ALT(RY) - v122501
US credit spreads

10 Year B Spread FYBAAC - FYGT10.M
10 Year A Spread FYBAAC - FYGT10.M
1 Year B Spread FYBAAC - FYGT1.M

Table 4.I: Credit spreads

where CPI is the Consumer Price Index: all items, UR is the Unemployment Rate, MS is

the Money Base, R is the 3-month Treasury Bill and FX stands for the Can/US Exchange

Rate.

The credit shock is the first element in ε t . This identification scheme implies that

Canadian CPI, UR, MS, R and FX can respond immediately to a credit shock in the US.

In other words, the contemporaneous response to a credit shock of all 349 variables is

completely unrestricted.

The impulse responses for some variables of interest are presented in Figure 4.2. A

one-standard deviation credit shock immediately raises the US credit spread for 0.4 ba-

sic point, while the effect is two times smaller on the Canadian spread. This unexpected

increase in the global external finance premium generates a significant and persistent

economic downturn. We see that economic activity indicators such as production, em-

ployment, hours, prices and wages decline significantly. Production measures in partic-

ular go down for more than a year. Employment is also negatively affected, especially

in the construction sector 3. All consumer price indexes show approximately the same

3. We have looked at all of the employment series responses and find that the magnitude responses
vary across sectors. For sake of space, we will not report the impulse responses on all of the series in our
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Figure 4.1: Credit spreads used in identification of structural shocks

pattern of a gradual and highly persistent slowdown, but most are non-significative. On

the other hand, the industrial and commodities price indexes respond in a statistically

significant way and stay a long time under their steady-state value. This result is dif-

ferent from what Atta-Mensah and Dib (2008), and Safaei and Cameron (2003) report

where prices rise in response to a credit shock.

The effects on financial markets are even more striking. Treasury bills and gov-

ernment market bonds respond negatively and the effect is significant and persistent.

Business and consumer credit measures decline. Leading indicators such as new orders,

building permits and housing also start responding negatively on impact.

Our econometric framework allows the possibility of measuring the effects of struc-

tural shocks across different economic activity sectors, as well as across geographical

regions. This is important in the case of Canada because of its huge territory and small

data set but they are available on demand.
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Figure 4.2: Impulse of some variables of interest to one standard deviation global credit
shock

overall population density. Thus, it is interesting to see how the credit shocks propagate

across different regions. The results are presented in Figure IV.1 in the Appendix. It

seems that in general, the Atlantic provinces demonstrate the most inconsistent behavior

with respect to the rest of Canada.

It is worth noting that the impulse responses in Figure 4.2 present similar pattern to

effects of credit shocks on the US economy reported in BGS and Gilchrist, Yankov and

Zakrajsek (2009).

The variance decomposition results are presented in Table 4.II. The second column

reports the contribution of the credit shock to the variance of the forecast error at 48-

month horizon. According to these results, and contrary to the literature on monetary
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policy shocks identified in structural VAR framework, the global credit shock has an

important effect on several variables: credit spreads, interest rates, industrial price in-

dexes, credit measures, production and employment. This surprising evidence of the

importance of credit shocks is also documented in BGS.

Finally, since we are using a factor model, the natural question is how well the ex-

tracted factors explain the variability in observable series. Looking at the R2 results in

the third column in Table 4.II, we see that the common component explains a sizeable

fraction of the variability in these variables 4. This means that factors do capture impor-

tant dimensions of business cycle movements.

4.5.2 Canadian credit shock

In previous section we showed that a global credit shock has significant and meaning-

ful effects on Canadian economy. Now, we will see if a national credit shock, identified

using a Canadian external finance premium measure produces any effect. The recursive

scheme is the following:

[USspread10y, CPI, UR, MS, R, FX , CANspread10y].

The credit shock is identified as the last element of ε t . This identification is similar to

what has been done in structural VAR frameworks and in FAVAR frameworks with the

US data: activity and price measures do not respond immediately to a credit shock, nor

to interest rates or money supply. We also add the exchange rate, considered exogenous

to the credit shock 5. Contrary to other studies we control for the US credit markets by

including the US credit spread, but the results do not change if we exclude it.

The impulse responses are presented in Figure 4.3. Overall, the national credit shock

doesn’t seem to produce any significant effect on economy. In particular, the standard

deviation of the credit shock in this identification scheme is more than 8 times smaller

than in the case of the global credit shock.

4. One should not forget that only 6 factors were extracted from a data set containing 349 time series
presenting different correlation patterns.

5. Other ordering have been tried and results were very similar.
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Variables Variance R2 Marginal contribution to R2 Ft

decomposition F∗
1 F∗

2 F∗
3 F∗

4 F∗
5 F∗

6
US Credit Spread 10y 0.8813 0.4631 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CAN Credit Spread 10y 0.6293 0.5019 0.7730 0.0003 0.0430 0.0209 0.0518 0.1109
T-Bill 3m 0.3947 0.9603 0.3505 0.0281 0.0399 0.5797 0.0016 0.0001
T-Bill 6m 0.4076 0.9685 0.3739 0.0254 0.0396 0.5592 0.0015 0.0005
Gov. Market Bond 1-3y 0.4231 0.9779 0.4052 0.0206 0.0837 0.4841 0.0022 0.0041
Gov. Market Bond 3-5y 0.4088 0.9717 0.4093 0.0183 0.1279 0.4347 0.0026 0.0072
CPI: all items 0.0214 0.9121 0.0313 0.9687 0.0000 0.0000 0.0000 0.0000
Housing price index 0.0520 0.4149 0.0263 0.8049 0.0428 0.0826 0.0066 0.0367
Industrial price index 0.5029 0.4942 0.3727 0.1894 0.0127 0.1834 0.0008 0.2410
Commodity price index 0.5197 0.3525 0.2383 0.2580 0.0523 0.2489 0.0442 0.1583
New orders 0.7074 0.2874 0.5524 0.0012 0.0143 0.2315 0.0696 0.1310
Business credit 0.3425 0.4045 0.4472 0.0000 0.3007 0.0944 0.0302 0.1277
Residential mortgage credit 0.1982 0.6025 0.1181 0.0310 0.1648 0.3405 0.3373 0.0083
Consumer credit 0.4595 0.3332 0.0935 0.0025 0.7411 0.0382 0.0350 0.0896
Building permits 0.1688 0.1184 0.0469 0.0381 0.0053 0.2183 0.2942 0.3971
Housing index 0.1149 0.8045 0.0640 0.0009 0.6939 0.0211 0.2177 0.0024
Indust. Prod.: manufact. 0.5726 0.6352 0.3971 0.0002 0.0451 0.3325 0.0784 0.1467
Indust. Prod.: services 0.6779 0.3501 0.3738 0.1041 0.0278 0.3205 0.0686 0.1052
Business sector: services 0.6749 0.3793 0.3894 0.1336 0.0061 0.3317 0.0516 0.0876
TSE 300 0.6659 0.1972 0.3591 0.0773 0.0210 0.3141 0.2109 0.0176
Employment 0.5691 0.5161 0.3528 0.0081 0.2223 0.1725 0.0013 0.2430
Unemployment rate 0.0840 0.8403 0.0465 0.0049 0.9486 0.0000 0.0000 0.0000
FX Can/US 0.0201 0.7872 0.0092 0.0084 0.0091 0.1638 0.5601 0.2495
Imports: US 0.4857 0.3276 0.3150 0.0142 0.0704 0.2515 0.2310 0.1179
Exports: US 0.7741 0.4445 0.5063 0.0082 0.0284 0.3419 0.1125 0.0028

Table 4.II: Explanatory power of global credit shock and common component

4.5.3 Discussion

The previous results suggest that all effects on Canadian economy are caused by a

global (or the US) credit shock. Hence, modeling Canada as a closed economy when

identifying and measuring the effects of credit shocks can be misleading in sense that if

any effects are found, these are not caused by a national but a global shock.

To understand better this phenomena, we tried another recursive scheme:

[CANspread10y, CPI, UR, MS, R, FX ].

Here, the Canadian credit spread is taken to be exogenous to price, activity, money,

interest rate and exchange rate measures. Our a priori idea is that the Canadian credit
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Figure 4.3: Impulse of some variables of interest to one standard deviation Canadian
credit shock

spread is Granger caused by the US spread such that this identification scheme would

produce similar results to the first one.

In Figure 4.4 we present the results from these two identification schemes. Over-

all, they are very similar, except that when using the Canadian spread the effects are

slightly more important for some variables. This suggests that the same shock can be

identified using either Canadian or US external finance premium measures. Moreover,

the structural factors from the two models are highly correlated (correlation coefficients

are higher than 0.9 in absolute value).

Finally, we tested the Granger causality between the two credit spreads. The results

are reported in Table 4.III. According to p-values, we strongly reject the hypothesis that
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Figure 4.4: Comparison of impulse responses to a credit shock identified by US and
Canadian credit spreads

the US credit spread does not cause the Canadian credit spread and posit that there is no

evidence to reject the hypothesis that the Canadian credit spread does not Granger cause

the US spread. Hence, these results confirm our intuition and suggest that the effects

of credit shocks in Canada are essentially caused by the unexpected changes in foreign

credit market conditions.
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H0 F-stat P-value
US Spread does not Granger cause Can Spread 11.3519 0.0001
Can Spread does not Granger cause US Spread 1.0326 0.3574

Table 4.III: Testing Granger causality between US and Canadian credit spreads

4.5.4 Interpretation of factors

As it was pointed out in BGS, the procedure to identify the structural shocks can

produce interpretable factors 6. Remember that structural shocks are linear combination

of residuals, ε t = Hη t . Using this hypothesis, we can rewrite the system (4.10)-(4.11)

in its structural form

Xt = Λ⋆F⋆
t +ut

F⋆
t = Φ⋆(L)F⋆

t−1 +Θ⋆(L)ε t

where F⋆
t = HFt , Λ⋆ = ΛH−1, Φ⋆(L) = HΦ(L)H−1, and Θ⋆(L) = HΘ(L)H−1. Hence,

given the estimates of Ft and H, we can obtain the estimate of structural factors: F̂⋆
t =

ĤF̂t . The last six columns in Table 4.II contain the marginal contribution of each struc-

tural factor to the total R2. We can see that the first structural factors explain mostly

the two credit spreads. The second is very important for consumer price indexes and

housing prices, while the third contributes completely in explaining the unemployment

rate. Finally, the fourth factor is important for monetary measures (not reported in the

table) and interest rates, while the last two factors do not seem to be interpretable.

4.6 Conclusion

In this paper we measured the impact of a credit shock in Canada in a data-rich

environment. To incorporate information from a large number of economic and finan-

cial indicators, we used a factor-augmented VARMA (FAVARMA) model proposed by

6. Note however that factors are identified up to a rotation. Hence, any orthogonal rotation matrix will
give the same common component even though the interpretation of each factor in terms of correlation
can change.
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Dufour and Stevanovic (2010). The structural shocks are identified by imposing a re-

cursive structure on the impact matrix of the structural MA representation of observable

variables.

We found that an unexpected increase in the external finance premium on global

financial markets, approximated by the US credit spread, generates a significant and

persistent economic slowdown in Canada. Canadian credit spreads rise immediately,

while interest rates and credit measures decline. According to R2 results, the common

component captures an important dimension of business cycle movements. From the

variance decomposition analysis, we observed that the credit shock has an important

effect on several economic and financial measures.

Another important result is related to the identification of national financial shocks.

Previous studies have treated Canada as a closed economy when identifying a credit

shock and have found some real effects. Our results suggested however that there is no

significant effect of domestic shocks in Canada. Indeed, the effects of credit shocks in

Canada are fundamentally caused by the unexpected changes in foreign credit market

conditions.

Finally, given the identification approach, we found interpretable structural factors.



CHAPTER 5

COMMON SOURCES OF PARAMETER INSTABILITY IN

MACROECONOMIC MODELS: A FACTOR-TVP APPROACH

5.1 Introduction

It is likely that the behavior of economic agents and environment vary over time (e.g.

monetary policy authority changes its strategy, shocks hitting economy become more or

less volatile) such that some structural relations are not constant any more. This implies

time instability in potentially all parameters in reduced-form representations of struc-

tural models. For instance, Fernandez-Villaverde and Rubio-Ramirez (2008) find that

some structural parameters in dynamic stochastic general equilibrium (DSGE) models

are time-varying. Using empirical univariate and bivariate autoregressive models, Stock

and Watson (1996) find widespread instability in a large number of U.S. macroeconomic

series. In addition, several studies investigated the causes of the Great Moderation:

"good luck" (volatility of shocks simply dropped) or "good policy" (monetary author-

ity more effective). 1 Mainly, some structural changes were assumed or tested, such as

shifts in monetary policy rule parameters and/or time changes in volatility of shocks (see

Boivin (2005), and Stock and Watson (2002, 2003), among others).

On one side, the time-varying parameter VAR models (TVP-VAR hereafter) were

used by Boivin and Giannoni (2006), Primiceri (2005) and Sims and Zha (2006) to

investigate the time instability of policy functions. Otherwise, a number of studies using

DSGE models were conducted by letting some of the structural parameters be time-

varying and/or imposing stochastic volatility (see e.g. Justiniano and Primiceri (2008),

Fernandez-Villaverde et al. (2010) and Ravenna (2010)). Finally, Inoue and Rossi (2009)

used a sequential testing procedure to find which structural parameters in both VAR and

DSGE models are time-varying.

All the studies using reduced-form models assumed the same number of sources of

1. The Great Moderation is an empirical finding that volatility of output and prices in most of devel-
oped countries has declined since mid ’80
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time variations as the number of time-varying parameters. Moreover, due to the com-

putational difficulty, independent stochastic processes are imposed for all coefficients. 2

However, it is likely that this time variability presents communalities. The intuition is

that only a small number of structural relationships vary over time, inducing instabil-

ity in all coefficients of reduced-form models, where the correlation structure between

TVPs is mainly explained by the common component.

In this paper, I provide new evidence that the number of common sources of param-

eters’ time variation in widely used empirical macroeconomic models is very small. I

first show that parameters’ instability in the structural model is likely to imply time vari-

ation in all (or at least a subset of) coefficients in the reduced-form model. Following

Stevanovic (2010), I show how the factor representation of time-varying parameters is

obtained, and present the factor time varying parameter model (Factor-TVP) that takes

into account the factor structure of the coefficients. The main advantages of the model in

the context of this paper are: the correlation structure between the TVPs is unrestricted,

and only a small number of states must be filtered. The approach is applied to a standard

3-variable VAR model from Primiceri (2005), and to a factor-augmented VAR (FAVAR)

model from Boivin, Giannoni and Stevanovic (2010).

The first objective is to detect the presence of the factor structure, and test its dimen-

sionality in time-varying VAR coefficients, keeping the volatility of shocks constant.

Performing the two-step recursive and likelihood-based procedures, I find that a small

number of common shocks explain the instability in VAR coefficients. Then, the Factor-

TVP model with one latent component is estimated by maximum likelihood. The un-

derlying factor is very persistent, which is in line with the strong collinearity in TVPs

found after the first stage estimation in the two-step likelihood procedure (see discussion

in Stevanovic (2010)). Moreover, it is highly correlated with the unemployment rate,

and moderately related to inflation and interest rate.

When applied to TVP-VAR model with stochastic volatility from Primiceri (2005),

the variability in VAR coefficients is mostly explained by only one factor, while the

2. Primiceri (2005) relaxes this hypothesis by letting some VAR time-varying coefficients have corre-
lated error terms.
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stochastic volatility part is explained by two additional factors. In particular, when the

structural version of the VAR model is obtained by the Choleski decomposition of the

residuals time-varying covariance matrix, I find that the contemporaneous relations co-

efficients are explained by the second factor, while the variances of structural shocks

load on the third factor.

These results have an important implication for the standard counterfactual analy-

sis. They suggest that parameters in all VAR equations (even in its structural version),

together with the stochastic volatility coefficients, vary with a small number of com-

mon factors. Suppose one of these factors represents the change in the monetary policy

strategy. Then, doing a counterfactual analysis by replacing only the coefficients in the

interest rate VAR equation is inappropriate, since the instability in other VAR parame-

ters, including the volatility of shocks, is also caused by the same factor.

I redo the same exercise for the data updated to 2010Q3. The idea of using the

Factor-TVP model is to capture common breaks, and the recent financial crisis is a good

example of such an episode. Indeed, the tests suggest one more factor, and their inter-

pretation is changed. The estimated TVPs present an important behavioral change after

2007, indicating the presence of a structural break. The correlation structure between

factors and observable variables is such that the first factor is highly positively corre-

lated to the inflation rate, and moderately related to the interest and unemployment rates.

The second factor presents a similar pattern, but with correlation coefficients around 0.3.

Contrary to pre-crisis data, a majority of TVPs load heavily on factors. In particular, the

inflation equation coefficients seem to be time-varying with the two factors, and this is

also the case for about half of parameters in other VAR equations.

To complete the empirical exercise, the time-varying FAVAR model is estimated

by two-step recursive procedure. I find that four dynamic factors explain most of the

covariability between almost 700 TVPs. Again, the stochastic volatility coefficients’

instability seems to have different common factors than the regression parameters.

Finally, I simulate the data from a simple New Keynesian model with one time-

varying parameter: interest rate target in the standard Taylor rule. The two-step proce-

dures indicate the true factor structure on TVPs of the VAR representation of the simu-
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lated data. Simultaneous ML estimation gives the factor that is very correlated with the

true common shock, and suggest that most of the time-varying coefficients load on that

factor.

In the rest of the paper, I provide examples of common sources of parameters’ insta-

bility in macroeconomic models. The Section 3 shows how the factor representation of

time-varying parameters process is obtained, and the Section 4 presents the Factor-TVP

model. The identification and estimation issues are discussed. The main results are pre-

sented in Section 5, Section 6 shows that the method can recover the low-dimensional in-

stability in data simulated from a dynamic stochastic general equilibrium (DSGE) model,

and Section 7 concludes.

5.2 Examples of reduced-rank parameters instability

In following, I show a simple example where the low number of common sources of

parameter instability is a plausible hypothesis. The intuition is that only a small number

of structural relationships vary over time, which implies that possibly all the coefficients

in reduced-form models are unstable.

Suppose the following simultaneous equation problem. The structural form is

qt = apt +b+ut (5.1)

st = α pt +βxt + vt (5.2)

with




ut

vt



= N









0

0



 ,





σ2
u σuv

σuv σ2
v







 . (5.3)

where (5.1) and (5.2) are demand and supply equations respectively, and xt is an exoge-

nous variable that helps in identifying the shifts in supply curve. Imposing the equilib-

rium condition qt = st and solving for pt , we obtain the reduced form

pt = π11 +π12xt + ε t (5.4)
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qt = π21 +π22xt +η t (5.5)

with




ε t

η t



= N
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where ε t =
vt−ut

a−α , η t = −avt−αut

a−α , π11 = − b
a−α , π12 = b

a−α , π21 = − αb
a−α , π22 = aβ

a−α ,

σ2
ε =

(σ2
v−2σuv+σ2

u)
(a−α)2 , σ2

η =
(ασ2

u−2αaσuv+aσ2
v)

(a−α)2 , and σ εη =
(ασ2

u−(α+a)σuv+aσ2
v)

(a−α)2 . Then, if

for example α presents stochastic time variation, it will appear in all parameters of the

reduced form.

5.3 Factor representation of time-varying parameters’ process

Following Stevanovic (2010), I show how to obtain the factor representation of time-

varying parameters’ process.

5.3.1 Linear approximation

Let α t be a q-dimensional vector of time varying parameters in the structural model,

which dynamic process is characterized by some distribution G. Let β t be a k-dimensional

vector of (potentially all) time varying reduced-form coefficients such that

β t = F(α t ;γ) (5.7)

where γ is a vector of m constant coefficients, and F is some functional form that relies

reduced-form parameters to structural parameters.

In general, β t is a nonlinear function of structural parameters. If the number of

TVPs in the structural model is less than the number of coefficients in β t , i.e. q < k,

then rank(Σ) = q, Σ = V(β t). Suppose that function F in (5.7) is twice continuously

differentiable, then by Taylor’s theorem

β t = L(β t)+ error (5.8)
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where L(β t) is the linear approximation of β t around ᾱ:

L(β t) = F(ᾱ;γ)+F′(ᾱ;γ)(α t − ᾱ).

Define µ = F(ᾱ;γ), λ = F′(ᾱ;γ), ft = (α t − ᾱ) and et as the approximation error, so

we have the following factor structure:

β t −µ = λ ft + et (5.9)

If β t is demeaned, then µ = 0 and we obtain the usual factor model:

β t = λ ft + et

with ft ∼ Ḡ, where Ḡ is the distribution of (α t − ᾱ), and with dispersion matrices

D(et) = Ψ and D( ft) = Φ and

D(β t) = λΦλ ′+Ψ

with Ψ diagonal and at least q2 identifying restrictions.

5.3.2 Dimension reduction

Another way to motivate the factor representation of time-varying parameters is the

dimension reduction argument. Since the standard estimation methods are computation-

ally cumbersome when the number of TVPs is large, it may be of practical interest to

reduce the dimensionality problem by imposing the factor structure. As in standard ap-

plications of principal component analysis, the idea is to approximate a large number of

TVPs by few factors.

Suppose we wish to replace the N-dimensional r.v. β t with its K, K < N, linear

functions without much loss of information. How are the best K linear function to be

chosen? It can be restated as a nonlinear least square problem

β it = (B′
1β t)δ i1 + . . .+(B′

Kβ t)δ iK + eit , i = 1, . . . ,N, t = 1, . . . ,T.
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Rao (1973) shows that B′β t should be chosen as first K principal components of β t .

Hence, the last equation in matrix form and defining A = δ , and F = B′β , we get the

factor representation:

β = AF + e.

5.4 Econometric framework

In this section I present the linear factor time varying model (Factor-TVP) proposed by

Stevanovic (2010).

5.4.1 Factor-TVP model

The simplest example to illustrate the method is the linear TVP regression:

yt = x′tβ t +wt (5.10)

where yt is a scalar, xt is a k × 1 vector of explanatory variables, β t contains k time

varying parameters and wt is a homoscedastic white noise with V(wt) = R. A more

general case where wt has a time varying variance is treated in Stevanovic (2010).

There are many ways to specify the time variation of β t : discrete or stochastic breaks,

stochastic continuous processes (random walk and ARIMA). In standard applications of

TVP models in macroeconomics, β t is usually modeled either as a Markov switching

process, which includes discrete break as special case, or as a collection of univariate

AR(1) processes, which embodies the random walk if the autoregressive coefficient is

fixed to unity. Here, we concentrate only on continuous stochastic processes of β t .
3

However, as I discussed in previous sections, it is likely that only a small number of

common sources has generated the time variability in parameters in (5.10). In that case,

the link between β t and its underlying factors may be approximated as a linear factor

model:

3. Nyblom(1989) pointed out that both discrete break and random walk models are martingale pro-
cesses and are special cases of β t = β t−1 +ω t , with E(ω t) = 0. Moreover, the continuous TVP model is
then an approximation of the discrete break model.
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β t = λ ft + et (5.11)

ft = ρ ft−1 + vt (5.12)

where ft is a (q× 1) vector of latent factors, λ is a (k × q) matrix of factor loadings,

ρ is such that ft is stationary of martingale, et and vt are white noise processes with

E(ete
′
t) = M and E(vtv

′
t) = Q. Finally, it is assumed that wt , et and vt are uncorrelated.

Note that the error term in (5.11) can be omitted if one is convinced that the time-varying

coefficients β t are exactly linear combinations of ft . To summarize, the Factor-TVP

model is given by the following expressions:

yt = x′tβ t +wt (5.13)

β t = λβ t−1 + et (5.14)

ft+1 = ρ ft + vt+1 (5.15)

Being able to estimate the model without restrictions on the correlation structure be-

tween the TVPs is very important in macroeconomic applications. In recent empirical

literature many researchers studied the causes of the Great Moderation using the coun-

terfactual exercises or TVP-VAR model. 4 If the monetary policy rule has changed over

time, such that some parameters in Taylor rule are time-varying, this change is likely to

affect the parameters in all equations in the VAR representation of data and cause het-

eroscedastic errors. Hence, restricting the correlation structure between the time-varying

parameters within and across equations, or doing counterfactual exercises by changing

parameters values in a particular equation, may be misleading.

4. See among others Stock and Watson (2003), Primiceri (2005), Boivin and Giannoni (2006), Benati
and Surico (2009).
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5.4.2 Identification

As written above, the Factor-TVP model is not identified. Suppose that λ̂ and f̂t are a

solution to the estimation problem. However, this solution is not unique since we could

define λ̂ = λ̃H and f̃t = H−1 f̂t , where H is a q× q nonsingular matrix, which could

also satisfy the model’s equations. Then, observing yt and xt is not enough to distinguish

between these two solutions, and a normalization is necessary.

There are several ways to achieve identification in the factor model. Recall that

we have to impose q2 restrictions. In principal component analysis, this is done by

rotating factors such they are orthogonal and with unit variance. This gives q(q+ 1)/2

restrictions. The remaining restrictions are obtained by assuming that λ ′λ is diagonal.

Mathematically, factors and loadings are calculated such that

∑ ft f ′t /T = Iq, λ ′λ/k = ∆

where ∆ is a k× k diagonal matrix.

However, this does not remove the indeterminacy associated to rotation, orthogonal

transformation or sign changes of ft . The main criticism to this normalization is that

the factors are not interpretable. If the objective is to estimate the space spanned by

factors, and then use this information to improve forecasting of observable series or to

help in identifying structural shocks by bringing more information in the model, this

normalization is enough. But, as pointed out in Yalcin and Amemiya (2001), if one is

interested in causal use of factor analysis, this parametrization is problematic.

Another parametrization of (5.14) is the errors-in-variable representation. The iden-

tification is achieved by imposing a (q×q) identity matrix on q rows of λ :

λ̃ =





I

λ



 .
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This is equivalent to re-write (5.15) as

β 1,t = ft + e1,t

β 2,t = λ ft + e2,t

which implies that ft is measured with error by q elements of β 1,t .

The main advantage of the errors-in-variable representation is that only q2 loadings

are restricted while the factors distribution is left unrestricted. This can be of interest

if the research goal is to study the causal relation between factors and time-varying

parameters. For example, if one wants to learn where the instability in VAR parameters

is coming from, it is important to not restrict the factors distribution. However, the

major problem with this parametrization is that one must arbitrary chose q time-varying

parameters that represent factors measured with error.

5.4.3 Estimation

The strength of the Factor-TVP model is that instead of filtering and tracking k+n(n+

1)/2 states, we only need to filter q states, and q is generally much less than k+ n(n+

1)/2. Moreover, much less covariance coefficients must be estimated. Consider an

n-dimensional TVP-VAR(1) model. If no factor structure is imposed one must filter

n+ n(n+ 1)/2 states, but also estimate the same number of TVP variances. This is

the most enthusiastic case in which all coefficients are modeled as random walks with

diagonal covariance matrices. If one is interested in more flexible, and probably more

realistic case, the number of parameters to estimate will explode.

On the other hand, imposing a factor structure allows for any type of correlation

the TVPs, while keeping the dimensionality of the estimation problem relatively low.

The number of TVP covariance elements to be estimated is at most q(q+ 1)/2 and the

number of factor loadings is at most (n+n(n+1)/2)q in case of orthogonal factors and

(n+n(n+1)/2)q−q2 if errors-in-variable representation.

In Stevanovic (2010), three alternative estimation procedures are proposed. The first,

and the simplest, is to estimate (5.13)-(5.15) by a recursive (or rolling-window) proce-
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dure in two-steps 5:

Step 1: Estimate TVPs by recursive least squares with fixed or expanding window.

Step 2: Do factor analysis on estimated TVPs.

The second estimation method consists also of two steps. In the first step, the TVPs

are estimated within the standard TVP framework without imposing the factor structure,

and then the factor model is fitted on estimated TVPs. According to simulation results

in Stevanovic (2010), this method provides accurate estimates of the number of common

shocks, and of the factors’ dynamic process, but is naturally less efficient than the first

method since the true restrictions are not imposed.

Finally, if the model is well specified, completely characterizing the system (5.13)-

(5.15) in a parametric world, and then use a likelihood-based method to simultaneously

estimate the system, is the best option. In addition to elements of β t , it is possible

to estimate the stochastic volatility so the covariance matrix of residuals in (5.13) is

heteroscedastic. If no stochastic volatility, and if the number of parameters is not to

large, the model can be estimated by ML where the likelihood is calculated using the

Kalman filter. Otherwise, Bayesian methods are needed.

5.4.3.1 Note on factor analysis in two-step methods

The factor analysis in two-step methods consists of checking for:

– Factorability

A necessary condition for factorability of a data set is the presence of correlation

between the variables. An arbitrary criterion is to have several correlation coeffi-

cients of at least 0.5 in absolute value.

– Linearity

As I discussed previously, the mapping from latent time varying parameters to

5. On one hand, the recursive methods may be inefficient if the true restrictions are not explicitly
imposed and the estimates may contain lot of sampling error, but they are more robust to misspecification.
Moreover, the results in Stock and Watson (1994) suggest that time varying models have limited success in
exploiting this instability to improve upon fixed-parameter or recursive autoregressive forecasts. Finally,
Edlund and Søgaards (1993) find that recursive methods are useful to model business cycles in the context
of time-varying parameters. Also, they are computationally easy to apply contrary to the simultaneous
likelihood methods.
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coefficients in estimable models is generally nonlinear. It is then important to

check for the linearity between data and factors. Usually, this is done by looking

at scatter plots between observed variables, but when the number of series is large,

it is practically impossible to keep the track of nonlinearity. Instead, I produce

scatter plots of TVPs and the estimated linear factors, and I plot the linear fit.

– Testing for number of factors

The most difficult part in the factor analysis is to test for the number of factors. It is

sometimes driven by theory and the type of application (e.g. tests of intelligence),

but in exploratory exercises as in this paper, one must use a battery of different tests

and some arbitrary criteria to decide on the number of factors. I will use scree tests,

i.e. plot eigenvalues of covariance matrix of data, trace test, see the percentage of

variance explained by factors, Bai and Ng (2007) tests for the number of dynamic

factors and Horn (1965) parallel tests. 6 As pointed out in Velicer at al. (2000),

the scree test is good as adjunct method since this is not a statistical procedure and

the trace test is not recommended since it is not robust to presence of irrelevant

components. 7 The parallel test, that is in fact a simulation based Monte Carlo

test, is one of the most recommended but it is computationally difficult if there is

a large number of TVPs. The MAP test (Velicer (1976) and Velicer et al. (2000))

is also a widely used test in psychometric applications of factor analysis, but it

tends to overestimate the number of factors (especially in simulations where lot of

sampling error is present). Finally, likelihood ratio tests are known to overestimate

the number of factors. Note that either of these tests is not robust to nonlinear

relationships between measures and factors. 8

– Estimation I will estimate factor model with principal components analysis (PCA)

and with maximum likelihood. In former case, the estimator is consistent for

6. Given the sample size and sampling error when TVPs are estimated, I don’t report results from Bai
and Ng (2002) for number of static factors since these performed quite bad in simulation, see Stevanovic
(2010).

7. In simulations, adding irrelevant series to a data set constructed from factor model will decrease
arbitrary the trace ratio. This is important here since we do not know a priori how many parameters are
time varying due to common shocks.

8. In simulations, when the data are generated from factor model with a polynomial relationship, these
test overestimate the number of factors.
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large number of periods and variables, and for the presence of a limited amount

of cross-correlations between the error elements in observation equation. Using

MLE method, I assume an exact factor model on the estimated TVPs.

5.5 Empirical evidence on common sources of parameters instability

Here, I produce new empirical evidence that there exist low-dimension common

sources of parameters instability in various reduced-form models widely used in macroe-

conomics. A 3-variable TVP-VAR model from Primiceri (2005) is estimated using the

three methods discussed above. I only consider time variation in VAR coefficients, while

the covariances of residuals are assumed constant. The case with stochastic volatil-

ity is studied below. According to results from two-step procedures, it seems that the

stochastic volatility is governed by trivial additional factors (idiosyncratic variations). In

addition, I estimate the factor-augmented VAR (FAVAR) model from Boivin, Giannoni

and Stevanovic (2010) with time-varying parameters and stochastic volatilities including

factor loadings, factors VAR coefficients and covariances of idiosyncratic and common

shocks. Given the large number of TVPs, almost 700, the model is estimated by the

recursive procedure only.

5.5.1 VAR model

The VAR model contains the annual growth rate of GDP price index, unemployment

rate and 3-month Treasury bill. The data are quarterly and span 1953Q1-2006Q4 period.

The lag order is fixed at 2, so the total number of time-varying parameters is 27 (3

constants, 18 VAR coefficients plus 6 covariances). Following notation in Primiceri

(2005), the model is

yt = ct +B1,tyt−1 +B2,tyt−2 +A−1
0,t Σtε t , (5.16)

where A−1
0,t is lower triangular with unit diagonal, and Σt is diagonal. Let xt = In ⊗

[1,y′t−1,y
′
t−2], β t = [c′t vec(B′

1,t) vec(B′
2,t)]

′, and Pt =A−1
0,t Σt . 9 Then, the model (5.16)

9. Let dt be diagonal matrix containing diagonal elements of Pt . Then, A−1
0,t = Ptd

−1
t and Σt = dt .
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can be written as in (5.10) with Rt = PtP
′
t . Let α t be a vector of lower triangular random

elements in A−1
0,t , and σ t contains diagonal elements of Σt . The Factor-TVP representa-

tion is

yt = x′tβ t +Ptε t (5.17)








β t

α t

logσ t









= λ ft + et (5.18)

ft = ρ ft−1 + vt (5.19)

5.5.1.1 Two-step recursive method

As a starting point, I estimate the time varying parameters and the underlying com-

mon sources of instability using the two-step recursive least squares procedure discussed

above. Even if this method is not the most efficient, and may suggest time instability in

case of constant parameters, the simulation evidence in Stevanovic (2010) shows that it

is capable to detect the low-dimension feature of variability in TVPs. Due to sampling

errors, it tends to suggest more factors than the actual number, but it gives a good initial

sight and provides starting points for the likelihood-based method. In the first step, I

estimate TVPs by recursive OLS where the initial window is fixed to 10 years. 10

A condition for factorability is that θ t presents enough correlation. In this exercise,

more than 58% of unique elements in the correlation matrix of θ t are higher than 0.5,

showing that the correlation structure is strong enough to lead to a factor structure. The

scree and trace tests are presented in Figure 5.1. The scree test, suggests there is at least

1 factor, but statistical tests might pick up to 4 factors. Moreover, the Kaiser criterion

suggests the number of eigenvalues larger than 1 as an estimate of the number of factors.

The cumulative product of eigenvalues is also very informative and indicates a small

number of factors. 11 Finally, the trace ratio shows that 2 factors explain almost 80% of

10. Different rolling windows sizes have been tried, and the results do not vary a lot. Here, I present
only results from expanding window approach since it appears to be the most robust.

11. If the factor structure is true, than all the eigenvalues after the number of factors should be close to
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the variability in data.

Table 5.I presents results from the statistical tests for the number of factors. The MAP

tests suggests 4 factors, while the Parallel tests estimate 3 and 4 latent components. 12

The Bai-Ng tests suggest 1 to 5 dynamic factors. Note that I do not report results from

Bai and Ng (2002) tests for number of static factors because these need a large cross-

section size to be accurate. In this exercise, as long as the economy is well approximated

by 3 macroeconomic series in VAR(2), the cross-section size is fixed and is very small

compared to number of periods.

The next step is to see if the linear approximation of the factor representation of time

varying parameters is reliable. The Figures 5.2 and 5.3 present scatter plots between

elements of θ̂ t and two factors estimated assuming linear relation. Overall, the linear

hypothesis seems plausible, but adding a polynomial structure would capture some non-

linearities. Finally, Figure 5.4 presents the marginal contribution of each factors to the

total R2. The first seven elements of θ t correspond to inflation equation, the second seven

to unemployment equation, and the final coefficients are from the interest rate equation.

According to these results, the coefficients of the interest rate equation are all explained

by the first factor. The same factor is important for some parameters in two other VAR

equations, together with the second and third common component. The fourth factor

has a marginal effect. Remark that θ t contains reduced-form coefficients, so any struc-

tural interpretation is impossible. However, it is interesting that monetary policy rule

coefficients are so related to the first factor.

Overall, these results suggest that there are few common sources of parameter in-

stability. However, given the sampling uncertainty involved in recursive procedure, it is

recommended to estimate the time varying parameters by an adaptive TVP model and

zero, and hence, the cumulative product should go to zero. Because of the sampling uncertainty, taking
products might be more reliable than looking at eigenvalues only.

12. The first specification of MAP test works with squared correlation coefficients and the second with
power 4. The first two specifications correspond to PCA & Random data generation and PCA & Raw data
permutation, while the last two correspond to PAF/Common factor analysis with random data or raw data
permutation. The latter and the MAP test tend to overestimate the number of factors in structures with
weaker correlation structure. The PCA specifications of Parallel test consider also the variability of the
scores. The last two parallel test specification use adjusted correlation matrices which tends to indicate
more factors than warranted (see Buja and Eyuboglu (1992)).



127

2 4 6 8
0

0.5

1

1.5

Scree test

2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Cumulative product of eigenvalues

2 4 6 8
0

2

4

6

8

10

Cumulative ratio of eigenvalues

2 4 6 8
0

0.2

0.4

0.6

0.8

Trace

Figure 5.1: Scree and trace tests for VAR model TVPs estimated by recursive OLS

Test 2-step recursive OLS 2-step likelihood
MAP 4 4 8 9

Parallel 3 3 4 4 2 2 4 4
Bai-Ng 1 3 5 1 1 1

2 4 5 1 1 1

Table 5.I: Estimation of the number of factors in VAR time-varying coefficients

then apply the factor analysis to get a more accurate estimation of the number of factors.

5.5.1.2 Two-step likelihood method

In this section, the TVP-VAR model in (5.16) is estimated using Bayesian methods as

in Primiceri (2005), and all time-varying parameters are again collected in θ t . Then, I

apply the same factor analysis as in the previous section.

The factorability is much more stronger than in the case of recursive OLS. The Fig-

ure 5.5 shows scree and trace tests from which 1 factor seems to explain a great part of

variability in data. Also, the percentage of correlation coefficients between elements of

θ̂ t greater than 0.9 is more around 80!. According to simulation results in Stevanovic

(2010), such strong correlation structure among TVPs is likely to occur when the under-
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Figure 5.2: Scatter plots for factor 1 and VAR model TVPs estimated by recursive OLS

lying factor structure is strong, and when the factors are very persistent. On testing for

number of factors, Parallel and Bai and Ng tests estimate 1 or 2 factors, while the MAP

tests surprisingly suggest 11 factors.

On the linearity issue, the scatter plots of θ t and first factor in Figure 5.6 suggest

that linear approximation is very accurate for all time varying parameters. In Figure 5.7,

the linear relation between TVPs and the second factor is less evident. In particular, the

second factor is very important for b1,11 and their relation could be better approximated

by a polynomial equation.

Hence, these tests suggest a linear factor model on θ t with 1 or 2 factors. I estimate

the exact 2-factor model on θ t and Figure 5.8 shows elements of θ t and fitted values.

Given the strong correlation structure among TVPs, it is not surprising that the common
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Figure 5.3: Scatter plots for factor 2 and VAR model TVPs estimated by recursive OLS

component reproduce them almost exactly. To get more insight about the factor structure

within the time varying VAR coefficients, the Figure 5.9 presents marginal contributions

of subsequent factors to the total R2. First, the 2 factors explain everything in TVPs.

Second, contrary to the previous recursive procedure, it is not obvious that the first factor

is mostly related to the interest rate equation. The conclusion is quite different in case of

stochastic volatility and it is discussed below.

Overall, this exercise shows strong empirical evidence on low-dimension sources of

parameters instability in standard monetary VAR model. In particular, it suggests that

the VAR coefficients variability is due mostly to one underlying factors. The next step

is to take into account this information explicitly and estimate the Factor-TVP model in

one step.
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Figure 5.4: Marginal contributions of factors to total R2 on VAR model TVPs estimated
by recursive OLS

5.5.1.3 Simultaneous likelihood method

The maximum likelihood estimation of the Factor-TVP VAR model without stochas-

tic volatility is performed in this section. The Kalman filter is used to calculate the

likelihood. I do not assume exact linear relationship between TVPs and factors, so the

factor equation (5.18) contains the error term with a diagonal covariance matrix. 13 The

estimated θ t are plotted in Figure 5.10.

13. Even though the maximum likelihood estimation of time-varying parameters models is difficult,
the method is still feasible and produces accurate results for small systems. In Stevanovic (2010), this
method seems to work well in the context of multivariate linear regression even with 5 dependant and
7 independent variables. However, the next step in this project is to construct the Bayesian estimation
procedure that is more suitable given the presence of local maxima and the difficulty of ML to estimate
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Figure 5.5: Scree and trace tests for TVPs of VAR estimated by two-step likelihood
method

The Table 5.II summarizes the results of interest. According to likelihood ratios

between 1-, 2- and 3-factor models, not reported here, the 1-factor specification seems

to be preferred. Also, the estimation with more that one factor is very instable and the

algorithm tends to find different local maxima. The underlying factor is very persistent,

ρ̂ close to unity, which is in line with the strong collinearity in θ t found after the first

stage estimation in two-step likelihood procedure (see discussion in Stevanovic (2010)).

The underlying component is highly correlated with the unemployment rate, and

moderately related to inflation and interest rates. The first part of Figure 5.11 plots

the VAR series and the estimated factor. To get a more reliable picture, the series are

standardized because the factor is much less volatile then the observable series. Finally,

the second part of the Figure 5.11 shows the factor loadings. Note that the errors-in-

variable identification is imposed such that first (q × q) part of λ is identity matrix.

Several coefficients across all three VAR equations load on the common factor. However,

a majority of TVPs does not have large loading values, so they seem to be either constant

or varying in idiosyncratic ways.

the covariances.
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Figure 5.6: Scatter plots for factor 1 and TVPs of VAR estimated by two-step likelihood
method

5.5.1.4 TVP-VAR with stochastic volatility

I applied the two-step methods to the TVP-VAR with stochastic volatility as in Prim-

iceri (2005). Compared to the previous case where the volatility was supposed constant,

the tests suggest generally the same number of factors. In case of the two-step recursive

procedure, the first factor still remains important especially for the interest rate equation

coefficients, while the second explains mostly the stochastic volatility part. The picture

is clearer after the two-step likelihood estimation. Figure 5.12 present the marginal con-

tribution of factors to the total R2 of TVPs and stochastic volatility parameters. Elements

22 to 24 corresponds to coefficients in the contemporaneous relations matrix A−1
0 , and

last three elements are the variances of structural shocks. An interesting result is that
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Figure 5.7: Scatter plots for factor 1 and VAR model TVPs estimated by two-step likeli-
hood method

the VAR coefficients load to the first factor, the elements of A−1
0 to the second factor,

while the structural shocks volatilities are related to the third factor. However, since

factor analysis tools suggest a one-factor model, it is likely that the stochastic volatility

parameters are either constant or vary in idiosyncratic way.

5.5.1.5 Evidence using post-crisis data

In the previous exercise I used the data up to end of 2006. Remember that the objec-

tive of this paper is to establish the empirical evidence on common sources of parame-

ters’ instability, following the idea that a small number of structural breaks occur. The

recent financial crisis is an example of such a structural change in the economic behav-
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Figure 5.8: Common component and VAR model TVPs estimated by two-step likelihood
method

ior, and considering the most recent data may help in identifying the common shocks. In

this section, I redo the same exercise but with data updated to 2010Q3.

After applying the two-step recursive procedure, the estimated number of common

shocks is generally equal to 2. However, the marginal contribution of factors to the total

R2 has changed, as depicted in Figure 5.13. With the pre-crisis data, the first factor

was mostly related to interest rate equation, while using (post-)crisis data produces a

picture where the first factor is also important for the unemployment rate equation, and

the second factor is mostly related to inflation and unemployment rate equations. The

two-step likelihood method produces similar results.

Finally, the simultaneous maximum likelihood method is performed. The suggested
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Figure 5.9: Marginal contribution to total R2 of TVPs of VAR estimated by two-step
likelihood method

model contains 2 factors. The time-varying VAR coefficients are plotted in Figure 5.14.

For many parameters there is an important change after 2007, indicating the presence of

a structural break. The first panel of the Figure 5.15 plots the VAR series and the two

factors. The correlation structure is such that the first factor is highly correlated with

inflation (0.84), presents a sizeable comovement with interest rate (0.43) and a smaller

negative correlation with unemployment rate (-0.27). The second factor shows similar

sign pattern but with all correlation being around 0.3. The second part of the Figure

15 presents the factor loadings. Now, contrary to pre-crisis data, a majority of TVPs

load heavily on factors. In particular, all inflation equation coefficient seem to be time-

varying with the two factors, and this is also the case for about half of the parameters in
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Figure 5.10: Time-varying parameters from ML estimation of Factor-TVP VAR

other VAR equations.

5.5.2 FAVAR model

Since Bernanke, Boivin and Eliasz (2005) there is a growing literature using the

large dimensional factor model to measure the effects of structural shocks in economy.

This class of models is of a particular interest here because the number of parameters

is very large. Stock and Watson (2007) perform a forecasting exercise using a large

dimensional dynamic factor model with time varying factor loadings, time varying au-

toregressive processes for idiosyncratic components and TVP-VAR for latent factors.

The results suggest instability in all these parameters. However, given the huge num-
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Log-likelihood -233.52
ρ̂ 0.9996

corr(y,f) π 0.2430
ur 0.8419
r 0.3914

Table 5.II: Summary of ML estimation of Factor-TVP VAR model

ber of TVPs in this empirical application, it is plausible that the underlying variability of

these coefficients is of a lower rank. I use the data from Boivin, Giannoni and Stevanovic

(2010), and estimate their factor model by recursive procedure. The model is

Xt = ΛtFt +ut

Ft = Bt (L)Ft−1 + et

Var(ut) = Ψt , Var(et) = Ωt

where Xt is N×1, Ft is K×1, B(L) is of order p, Ψt is diagonal. The number of TVPs is

N ×K +N +K2 × p+0.5× (K × (K +1)). In their application, N = 124, K = 4, p = 4,

which gives 694 TVPs. These are stacked in vector θ t :

θ t = [vec(Λt)
′ diag(Ψt)

′ vec(Bt(L))
′ vec(tril(Ωt))

′],

where vec operator stacks columns of a matrix, diag vectorize the diagonal elements of

a matrix, and tril operator takes only the lower triangular part of a matrix, including its

diagonal elements.

If one is interested to estimate this model by a likelihood method where the likelihood is

obtained with Kalman filter, even if latent factors were known, there are still 694 states

to track. Moreover, it is hard to find intuition and rationalize the existence of 694 distinct

sources of instability.

On the other side, if the factor structure is imposed on θ t

θ t = ACt +η t ,

with Ct containing q << 694 elements, there are only q states to filter. Here, I estimate
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Figure 5.11: Factor loadings from ML estimation of Factor-TVP VAR

the TVP-FAVAR model by the recursive two-step procedure with expanding window:

the factors are extracted in step 1, then their VAR process is estimated in the second

step. Then, I apply the same factor analysis as in the case of TVP-VAR model to the

estimated TVPs in θ̂ t .

For the seek of space, I will just summarize the results without showing figures and

tables. The scree and trace tests suggest some weaker factor structure than in the VAR

case. The MAP and Parallel tests estimate 5 to 10 factors, and the Bai and Ng tests

suggest 2 to 4 common shocks. Hence, 4 factors seems to be satisfactory, but one must

keep in mind that θ̂ t contains 694 elements to approximate. As in the VAR case, I find

that few factors explain mostly the variations in factor loadings and VAR coefficients, Λt

and vec(Bt(L)), but less in stochastic volatilities.
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Figure 5.12: Marginal contribution to total R2 of TVPs and SVs of VAR estimated by
two-step likelihood method

When compared to data, the factors have strong predictive power (R2 between 0.7

and 0.8) for Treasury bonds, especially at long-term maturities, corporate bond yields,

some stock market indicators and the personal saving rate. They are also related, with

R2 between 0.4 and 0.7, to many labor market indicators (employment, unemployment

rate, hours, earnings) and some price indicators.
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Figure 5.13: Marginal contributions of factors to total R2 on VAR model TVPs estimated
by recursive OLS with post-crisis data

5.6 Evidence from simulated data

In this section, I simulate data from a simple New Keynesian model with log-CRRA

preferences. 14 The common source of time instability in parameters of the VAR repre-

sentation of the model is a shock on the interest rate target in monetary policy Taylor

rule:

14. A series of simulation experiments is conducted using the same model with different drifting coef-
ficients and stochastic volatility, and using a simpler 3-variable forward looking model as in Benati and
Surico (2009). The conclusions are similar.
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Figure 5.14: Time-varying parameters from ML estimation of Factor-TVP VAR with
post-crisis data

Rt

R⋆
t

= (
πt

βR⋆
t

)γ exp(σet) (5.20)

logR⋆
t = (1−ρ)0.01+ρ logR⋆

t−1 −σ⋆e⋆t (5.21)

Note that the AR(1) process for the time varying target is very persistent, ρ =

0.99999, and the variance of its shock is small, σ⋆ = 0.01. Once the data are simu-

lated, I apply the Factor-TVP model to a VAR representation of output gap, inflation and

interest rate. 15 The two-step procedure suggest that there exists a factor structure on

15. The VAR representation of all endogenous variables is impossible to estimate since the variables are
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Figure 5.15: Factor loadings from ML estimation of Factor-TVP VAR with post-crisis
data

VAR coefficients. The MAP, Parallel and Bai-Ng tests estimate between 1 and 4 factors.

The marginal contribution of the first factor is very important for all VAR time varying

coefficients, especially for inflation and interest rate equations.

The simultaneous maximum likelihood method suggests one factor model. The esti-

mated common component is highly persistent, actually a random walk, and the major-

ity of factor loadings are close to one. Interesting, the correlation between the estimated

factor and the true time-varying inflation target is close to one. Moreover, the estimated

factor is highly correlated with simulated output gap and inflation rate.

practically collinear. Another problem is the existence of a VAR representation of a subset of endogenous
variables. It is likely that their stochastic representation is actually a VARMA model, but I suppose that it
can approximated by a finite order VAR.
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5.7 Conclusion

The objective of this paper was to detect the presence of the factor structure, and test

its dimensionality, in popular empirical time-varying parameters macroeconomic mod-

els. I first showed that structural instability in macroeconomic models is likely to imply

time variation in all (or at least a subset of) parameters in reduced-form or estimable

models. I discussed how the factor representation of time-varying parameters is ob-

tained, and presented the Factor-TVP that takes into account the factor structure of the

parameters. The approach was applied to a standard 3-variable VAR model from Prim-

iceri (2005), and to a factor-augmented VAR (FAVAR) model from Boivin, Giannoni

and Stevanovic (2010).

Overall, I found that parameters’ instability in these macroeconomic models is caused

by a very few number of common factors. In TVP-VAR application, the underlying fac-

tor is very persistent and highly correlated with the unemployment rate, and moderately

related to inflation and interest rates. When applied to TVP-VAR model with stochastic

volatility, I found that time-variability in VAR coefficients is mostly explained by only

one factor, while the stochastic volatility part is explained by two additional factors. In

particular, when the structural model is obtained by the Choleski decomposition of the

residuals time-varying covariance matrix, the contemporaneous relations matrix parame-

ters were mainly explained by the second factor, while the variances of structural shocks

were related to the third factor.

To incorporate the recent financial crisis and to see if there have been common struc-

tural breaks, the same exercise was conducted with the sample updated to 2010Q3.

For two-step procedures, the data suggested one more factor, and their interpretation

is changed. The estimated TVPs presented an important change after 2007, indicating

the presence of a structural break. Contrary to pre-crisis data, a majority of TVPs load

heavily on factors. In particular, all inflation equation coefficients were time-varying

with the two factors, and this was also the case for about half of parameters in other

VAR equations.

To complete the empirical exercise, the time-varying FAVAR model was estimated
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by two-step recursive procedure, and 4 dynamic factors were found to govern the dynam-

ics in almost 700 time-varying parameters. Again, the stochastic volatility coefficients

instability had different common factors than the regression coefficients.

Finally, I simulated the data from a simple New Keynesian model with time-varying

interest rate target in the standard Taylor rule. The two-step procedures found the true

factor structure on TVP-VAR representation of the simulated data. Simultaneous ML

estimated a factor that is very correlated with the true common shock, and suggested

that most of time-varying coefficients load on the factor.



CONCLUSION GÉNÉRALE

Cette thèse consiste de cinq essais ayant pour but d’approfondir la compréhension

des mécanismes de transmission des chocs structurels vers l’économie réelle et amélio-

rer la prévision des agrégats macroéconomique. La thèse s’inscrit dans cadre d’analyse

factorielle en présence d’un grand nombre de données. Les contributions sont d’ordres

empirique et théorique. Premièrement, nous avons caractérisé la transmission de la poli-

tique monétaire au Canada en corrigeant pour la plupart des anomalies répertoriées dans

la littérature précédente. Deuxièmement, nous avons identifié et quantifié, parmi les pre-

miers, les chocs de crédit et leurs effets sur les économies américaine et canadienne. En-

fin, nous avons produit la première évidence empirique sur la structure à facteurs dans

les paramètres variant dans le temps dans les modèles macroéconomiques. De point de

vue théorique, nous avons proposé une nouvelle classe de modèles combinant l’analyse

factorielle et modélisation VARMA et leur importance a été justifiée au niveau de la pré-

vision des agrégats macroéconomique et de l’analyse structurelle utilisant les fonctions

de réponse impulsionnelles.

Le premier article avait pour but d’analyser la transmission de la politique monétaire

au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR).

Le modèle FAVAR a été estimé en utilisant un panel non balance de 348 indicateurs

économiques mensuels et 87 séries trimestrielles. Nous avons trouvé que l’information

contenue dans les facteurs est importante pour bien identifier la transmission de la poli-

tique monétaire et qu’elle aide a corriger les anomalies empiriques standard. Enfin, grâce

à la possibilité d’obtenir les fonctions de réponse impulsionnelles pour tous les indica-

teurs dans l’ensemble de données, nous avons produit l’analyse la plus complète à ce

jour des effets de la politique monétaire au Canada.

Dans le deuxième article nous avons examiné les effets et la propagation des chocs de

crédit sur l’économie réelle dans le cadre d’un modèle à facteurs structurel. Nous avons

trouvé qu’un choc de crédit augmente immédiatement les credit spreads, diminue les

bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures

d’activité réelle, indices de prix, indicateurs avancés et financiers.
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La contribution théorique est apportée dans le troisième article où nous avons étu-

dié la relation entre les représentations VARMA et factorielle des processus vectoriels

stochastiques. Comme résultat, nous avons proposé une nouvelle classe de modèles

VARMA augmentés par facteurs (FAVARMA). Le modèle a été appliqué dans deux

exercices de prévision et les résultats ont montré que la partie VARMA aide à mieux

prévoir les importants agrégats macroéconomiques relativement aux modèles standards.

Finalement, nous avons estimé les effets de choc monétaire en utilisant les données et le

schéma d’identification de Bernanke, Boivin et Eliasz (2005). Notre modèle a donné les

résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis.

L’objectif du quatrième article était d’identifier et mesurer les effets des chocs de

crédit au Canada dans un environnement riche en données en utilisant le modèle FA-

VARMA structurel. D’un côté, nous avons trouvé qu’une augmentation inattendue de

la prime de financement extérieur aux États-Unis génère une récession significative et

persistante au Canada, accompagnée d’une hausse immédiate des credit spreads et taux

d’intérêt canadiens. De l’autre côté, une hausse inattendue de la prime canadienne de fi-

nancement extérieur ne cause pas d’effet significatif au Canada. Nous avons montré que

les effets des chocs de crédit au Canada sont essentiellement causés par les conditions

globales, approximées ici par le marché américain.

Finalement, en utilisant l’approche Factor-TVP, dans le cinquième article nous avons

montré que le nombre de sources de l’instabilité temporelle des coefficients est très petit.

En particulier, nous avons trouvé qu’un seul facteur explique la majorité de la variabilité

des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d’une

façon indépendante. La même analyse est faite avec les données incluant la récente crise

financière. La procédure suggère maintenant deux facteurs et le comportement des coef-

ficients présente un changement important depuis 2007. Finalement, la méthode est ap-

pliquée à un modèle FAVAR avec paramètres instables. Nous avons trouvé que seulement

5 facteurs dynamiques gouvernent l’instabilité temporelle dans presque 700 coefficients.
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[38] Dufour, J-M., and D. Stevanović (2010), “Factor-augmented VARMA models:

identification, estimation, forecasting and impulse responses,” manuscript, Univer-

sité de Montréal.

[39] Dynan, K., Elmendorf, D. W., and D. E. Sichel (2006), “Can Financial Innovation

Help to Explain the Reduced Volatility of Economic Activity?,” Journal of Mone-

tary Economics, 53, p. 123.

[40] Edlund, P.O., and H.T. Søgaard (1993), “Fixed versus Time-Varying Transfer Func-

tions for Modeling Business Cycles,” Journal of Forecasting 12, 345-364.

[41] Engle, R.F. and M.W. Watson (1981), “A one-factor multivariate time series

model of metropolitan wage rates,” Journal of the American Statistical Associa-

tion, 76:774-781.



151

[42] Espinoza, R.A., F. Fornari, and M.J. Lombardi (2009), “The role of financial vari-

ables in predicting economic activity,”ECB working paper 1108.

[43] Estrella, A. and G.A. Hardouvelis (1991), “The term structure as a predictor of real

economic activity,”Journal of Finance 46(2), 555Ű76.
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[93] Stevanović, D. (2010), “Factor Time Varying Parameters Model,” mimeo, Univer-

sité de Montréal.

[94] Stock, J.H., and M.W. Watson (1989), “New indexes of coincident and leading

economic indicators,” NBER Macroeconomics Annual, 351-393.



156

[95] Stock, J.H., and M.W. Watson (1996), “Evidence on Structural Instability in

Macroeconomic Time Series Relations,” Journal of Business and Economic Statis-

tics 14:1, 11Ű30.
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Appendix I

I.1 Appendix to Chapter 1

I.1.1 Additional results with mixed-frequencies monthly data
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I.1.2 Monetary policy shock with mixed-frequencies quarterly data

The frequency in which series are observed can be important in such structural ex-

ercise. Since the identification of structural shocks relies on timing restrictions, here

contemporaneous ones, these can be more or less realistic across different frequencies.

In following, we present impulse responses functions obtained after a positive monetary
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policy shock in a FAVAR model fitted to mixed-frequencies quarterly data. The bench-

mark model is composed of eight unobserved factors and one observed factor, T-Bill.

The number of lags is set at two and we use the same identification procedure as in the

case of monthly panel.

The results for some indicators of interest are presented in Figure I.4. We can see that

the responses at quarterly frequency are quite similar to those obtained using monthly

panel: slowdown for most of production and price indicators, credit measures and lead-

ing indicators. Also, there is no presence of price nor exchange rate puzzles. The impulse

response functions of other variables are presented in Appendix. Overall, the effects of

monetary policy shock in quarterly frequency are very similar to those in monthly fre-

quency.

According to variance decomposition and R2 results, not reported here, the monetary

policy shock does not have a huge effect on most of the variables, except on interest

rates and money supply, but the common component explains an important fraction of

variability in observable series.
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Figure I.4: Impulse responses of some quarterly indicators to identified monetary policy

shock

I.1.3 EM Algorithm

When we want to expand the cross-sectional size of the informational panel, i.e.

increase N, it is almost sure that we will face some data irregularities causing unbalanced
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panels. There can be occasionally missing observations, some important data series that

start later than the rest of panel, or mixed frequency data. In order to estimate factors

by principal component, we need to construct a balanced panel. We present the EM

estimation proposed in Stock and Watson (2002b). Consider the least square estimators

of Λ and Ft from a generalized factor representation (1) using a balanced panel. The

objective function is

V (F,Λ) =
N

∑
i=1

T

∑
t=1

(Xit −λ
′
iFt)

2 (I.1)

which can be minimized by the usual eigenvalue calculations. When the panel is unbal-

anced, least square estimators of Ft can be calculated using an indicator Iit equal to 1 if

Xit is available and 0 otherwise

V ∗(F,Λ) =
N

∑
i=1

T

∑
t=1

Iit(Xit −λ
′
iFt)

2 (I.2)

which requires the following iterative method to be minimized.

Let Λ̂ and F̂ denote estimates of Λ and F from the previous iteration, and let

Q(X∗, F̂ , Λ̂,F,Λ) = EF̂ ,Λ̂[V (F,Λ)|X∗] (I.3)

where X∗ denotes the full set of observed data and the RHS of (I.3) is the expected value

of the complete data log-likelihood V (F,Λ), evaluated using the conditional density of

X |X∗ evaluated at F̂ and Λ̂. The estimates of F and Λ minimize (I.3).

Developing the equation (I.3) gives

Q(X∗, F̂ , Λ̂,F,Λ) = ∑
i

∑
t

EF̂ ,Λ̂(X
2
it |X∗)+(λ

′
iFt)

2 −2X̂it(λ
′
iFt) (I.4)

where X̂it = EF̂ ,Λ̂(Xit |X∗). Since the first term on the RHS of (I.4) does not depend on

factors and loadings, we can replace it by ∑i ∑t X̂2
it , implying that at iteration j, F̂ and

Λ̂ minimize V̂ (F,Λ) = ∑i=1 ∑t=1(X̂it −λ
′
iFt)

2. Then, it reduces to the standard principal

component eigenvalue calculation where the missing data are replaced by their expecta-

tion conditional on the observed data and using the parameter values from the previous
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iteration. One way to obtain starting values for F̂ and ˆLambda is to estimate them from

a subset that constitutes a balanced panel.

The main problem is to calculate X̂it depending on the nature of missing value (oc-

casional missing value, mixed frequency, etc.). Let X i = (Xi1, ...,XiT )
′
, and let X∗

i be

the vector of observations on the ith variable. Suppose that X∗
i = AiX i for some known

matrix Ai. Then, E(X i|X∗) = E(X i|X∗
i ) = Fλ i+A

′
i(AiA

′
i)
−(X∗

i −AiFλ i), where (AiA
′
i)
−

is the generalized inverse. Now, we present five particular cases to calculate X̂it .

A. Missing Observations. The easiest and most current case is when some observa-

tions on Xit are missing. At the iteration j, X̂it = Xit if Xit observed and X̂it = λ̂
′

iF̂t oth-

erwise. The estimate of is then updated by computing the eigenvectors corresponding to

the largest r eigenvalues of N−1 ∑i X̂ iX̂ i, where X̂ i = (X̂i1, ..., X̂iT )
′
, and Λ̂ is updated by

the OLS regression of X̂ onto this updated estimate of F .

B. Mixed Monthly and Quarterly Data - I(0) Stock Variables. If the quarterly ob-

served series is the point-in-time level of a variable at the end of the quarter, stock vari-

able, is integrated of order zero, then it is handled as in case A, i.e. it is treated as a

monthly series with missing observations in the first and second months of the quarter.

C. Mixed Monthly and Quarterly Data - I(0) Flow Variable. A quarterly flow variable

is the average (sum) of unobserved monthly values. If this series is I(0), the unobserved

monthly series, Xit , is measured only as the time aggregate X
q
it = (1/3)(Xi,t−2 +Xi,t−1 +

Xit) for t = 3,6,9, ..., and X
q
it is missing for all other values of t. In this case estimation

proceeds as in case A except that X̂it = λ̂
′

iF̂t + êit , where êit = X
q
it − λ̂

′

i(F̂τ−2 + F̂τ−1 +

F̂τ)/3, where τ = 3 when t = 1,2,3,, τ = 6, when t = 4,5,6,, and so forth.

D. Mixed Monthly and Quarterly Data - I(1) Stock Variables. Let X1
it denote the

quarterly first difference stock variable, assumed to be measured in the third month

of every quarter, and Xit denote the monthly first difference of the variable. Then,

X
q
it = (Xi,t−2 +Xi,t−1 +Xit) for t = 3,6,9, ..., and X

q
it is missing for all other values of

t. In this case estimation proceeds as in case A but with X̂it = λ̂
′

iF̂t +(1/3)êit , where

êit =X
q
it − λ̂

′

i(F̂τ−2+ F̂τ−1+ F̂τ)/3, where τ = 3 when t = 1,2,3,, τ = 6, when t = 4,5,6,,

and so forth.

E. Mixed Monthly and Quarterly Data - I(1) Flow Variables. Once again, let X
q
it be



xxx

the quarterly first difference assumed observed at the end of every quarter. The vector

of observations is then X∗
i = (X

q
i3,X

q
i6, ...,X

q
iτ), where τ denotes the month of the last

quarterly observation. If the underlying quarterly data are averages of monthly series,

and if the monthly first differences are denoted by Xit , then X
q
it = (1/3)(Xi,t +2Xi,t−1 +

3Xi,t−2+2Xi,t−3+Xi,t−4) for t = 3,6,9, (which defines implicitly the rows of Ai). Then,

the estimate of X i is given by X̂ i = Fλ i +A
′
i(AiA

′
i)
−1(X∗

i −AiFλ i).

I.1.4 Data Sets

Format contains series number; StatCan number; transformation code; series description

and time span. The transformation codes are: 1 - no transformation; 2 - first difference;

4 - logarithm; 5 - first difference of logarithm.

MONTHLY SERIES

Table 326-0020 Consumer Price Index Canada, Provinces

1 v41690973 5 All-items (2002=100) 1969-01-01 to 2008-05-01

2 v41690974 5 Food (2002=100) 1969-01-01 to 2008-05-01

3 v41690993 5 Dairy products (2002=100) 1969-01-01 to 2008-05-01

4 v41691046 5 Food purchased from restaurants (2002=100) 1969-01-01 to 2008-05-01

5 v41691051 5 Rented accommodation (2002=100) 1969-01-01 to 2008-05-01

6 v41691055 5 Owned accommodation (2002=100) 1969-01-01 to 2008-05-01

7 v41691065 5 Natural gas (2002=100) 1969-01-01 to 2008-05-01

8 v41691066 5 Fuel oil and other fuels (2002=100) 1969-01-01 to 2008-05-01

9 v41691108 5 Clothing and footwear (2002=100) 1969-01-01 to 2008-05-01

10 v41691129 5 Private transportation (2002=100) 1969-01-01 to 2008-05-01

11 v41691153 5 Health and personal care (2002=100) 1969-01-01 to 2008-05-01

12 v41691170 5 Recreation, education and reading (2002=100) 1969-01-01 to 2008-05-01

13 v41692942 5 All-items excluding eight of the most volatile components (Bank of Canada definition) (2002=100) 1969-01-01 to 2008-05-01

14 v41691232 5 All-items excluding food (2002=100) 1969-01-01 to 2008-05-01

15 v41691233 5 All-items excluding food and energy (2002=100) 1969-01-01 to 2008-05-01

16 v41691238 5 All-items excluding energy (2002=100) 1971-01-01 to 2008-05-01

17 v41691237 5 Food and energy (2002=100) 1971-01-01 to 2008-05-01

18 v41691239 5 Energy (2002=100) 1969-01-01 to 2008-05-01

19 v41691219 5 Housing (1986 definition) (2002=100) 1969-01-01 to 2008-05-01

20 v41691222 5 Goods (2002=100) 1969-01-01 to 2008-05-01

21 v41691223 5 Durable goods (2002=100) 1969-01-01 to 2008-05-01

22 v41691225 5 Non-durable goods (2002=100) 1969-01-01 to 2008-05-01

23 v41691229 5 Goods excluding food purchased from stores and energy (2002=100) 1969-01-01 to 2008-05-01

24 v41691230 5 Services (2002=100) 1969-01-01 to 2008-05-01

25 v41691231 5 Services excluding shelter services (2002=100) 1969-01-01 to 2008-05-01

26 v41691244 5 Newfoundland and Labrador; All-items (2002=100) 1978-09-01 to 2008-05-01

27 v41691369 5 Newfoundland and Labrador; All-items excluding food and energy (2002=100) 1978-09-01 to 2008-05-01

28 v41691363 5 Newfoundland and Labrador; Goods (2002=100) 1978-09-01 to 2008-05-01

29 v41691367 5 Newfoundland and Labrador; Services (2002=100) 1978-09-01 to 2008-05-01

30 v41691379 5 Prince Edward Island; All-items (2002=100) 1978-09-01 to 2008-05-01

31 v41691503 5 Prince Edward Island; All-items excluding food and energy (2002=100) 1978-09-01 to 2008-05-01

32 v41691497 5 Prince Edward Island; Goods (2002=100) 1978-09-01 to 2008-05-01

33 v41691501 5 Prince Edward Island; Services (2002=100) 1978-09-01 to 2008-05-01
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34 v41691513 5 Nova Scotia; All-items (2002=100) 1978-09-01 to 2008-05-01

35 v41691638 5 Nova Scotia; All-items excluding food and energy (2002=100) 1978-09-01 to 2008-05-01

36 v41691632 5 Nova Scotia; Goods (2002=100) 1978-09-01 to 2008-05-01

37 v41691636 5 Nova Scotia; Services (2002=100) 1978-09-01 to 2008-05-01

38 v41691648 5 New Brunswick; All-items (2002=100) 1978-09-01 to 2008-05-01

39 v41691773 5 New Brunswick; All-items excluding food and energy (2002=100) 1978-09-01 to 2008-05-01

40 v41691767 5 New Brunswick; Goods (2002=100) 1978-09-01 to 2008-05-01

41 v41691771 5 New Brunswick; Services (2002=100) 1978-09-01 to 2008-05-01

42 v41691783 5 Quebec; All-items (2002=100) 1978-09-01 to 2008-05-01

43 v41691909 5 Quebec; All-items excluding food and energy (2002=100) 1978-09-01 to 2008-05-01

44 v41691903 5 Quebec; Goods (2002=100) 1978-09-01 to 2008-05-01

45 v41691907 5 Quebec; Services (2002=100) 1978-09-01 to 2008-05-01

46 v41691919 5 Ontario; All-items (2002=100) 1978-09-01 to 2008-05-01

47 v41692045 5 Ontario; All-items excluding food and energy (2002=100) 1978-09-01 to 2008-05-01

48 v41692039 5 Ontario; Goods (2002=100) 1978-09-01 to 2008-05-01

49 v41692043 5 Ontario; Services (2002=100) 1978-09-01 to 2008-05-01

50 v41692055 5 Manitoba; All-items (2002=100) 1978-09-01 to 2008-05-01

51 v41692181 5 Manitoba; All-items excluding food and energy (2002=100) 1978-09-01 to 2008-05-01

52 v41692175 5 Manitoba; Goods (2002=100) 1978-09-01 to 2008-05-01

53 v41692179 5 Manitoba; Services (2002=100) 1978-09-01 to 2008-05-01

54 v41692191 5 Saskatchewan; All-items (2002=100) 1978-09-01 to 2008-05-01

55 v41692317 5 Saskatchewan; All-items excluding food and energy (2002=100) 1978-09-01 to 2008-05-01

56 v41692311 5 Saskatchewan; Goods (2002=100) 1978-09-01 to 2008-05-01

57 v41692315 5 Saskatchewan; Services (2002=100) 1978-09-01 to 2008-05-01

58 v41692327 5 Alberta; All-items (2002=100) 1978-09-01 to 2008-05-01

59 v41692452 5 Alberta; All-items excluding food and energy (2002=100) 1978-09-01 to 2008-05-01

60 v41692446 5 Alberta; Goods (2002=100) 1978-09-01 to 2008-05-01

61 v41692450 5 Alberta; Services (2002=100) 1978-09-01 to 2008-05-01

62 v41692462 5 British Columbia; All-items (2002=100) 1978-09-01 to 2008-05-01

63 v41692588 5 British Columbia; All-items excluding food and energy (2002=100) 1978-09-01 to 2008-05-01

64 v41692582 5 British Columbia; Goods (2002=100) 1978-09-01 to 2008-05-01

65 v41692586 5 British Columbia; Services (2002=100) 1978-09-01 to 2008-05-01

Table 026-0001 Building permits, residential values and number of units

66 v14098 1 Canada; Total dwellings (number of units) [D848383] 1969-01-01 to 2008-05-01

67 v41651 1 Canada; Total dwellings (dollars - thousands) [D845521] 1969-01-01 to 2008-05-01

68 v13824 1 Newfoundland and Labrador; Total dwellings (number of units) [D847651] 1969-01-01 to 2008-05-01

69 v41560 1 Newfoundland and Labrador; Total dwellings (dollars - thousands) [D845363] 1969-01-01 to 2008-05-01

70 v13859 1 Prince Edward Island; Total dwellings (number of units) [D847658] 1969-01-01 to 2008-05-01

71 v41595 1 Prince Edward Island; Total dwellings (dollars - thousands) [D845370] 1969-01-01 to 2008-05-01

72 v13866 1 Nova Scotia; Total dwellings (number of units) [D847665] 1969-01-01 to 2008-05-01

73 v41602 1 Nova Scotia; Total dwellings (dollars - thousands) [D845377] 1969-01-01 to 2008-05-01

74 v13873 1 New Brunswick; Total dwellings (number of units) [D847672] 1969-01-01 to 2008-05-01

75 v41609 1 New Brunswick; Total dwellings (dollars - thousands) [D845384] 1969-01-01 to 2008-05-01

76 v13880 1 Quebec; Total dwellings (number of units) [D847679] 1969-01-01 to 2008-05-01

77 v41616 1 Quebec; Total dwellings (dollars - thousands) [D845391] 1969-01-01 to 2008-05-01

78 v13887 1 Ontario; Total dwellings (number of units) [D847686] 1969-01-01 to 2008-05-01

79 v41623 1 Ontario; Total dwellings (dollars - thousands) [D845398] 1969-01-01 to 2008-05-01

80 v13894 1 Manitoba; Total dwellings (number of units) [D847693] 1969-01-01 to 2008-05-01

81 v41630 1 Manitoba; Total dwellings (dollars - thousands) [D845405] 1969-01-01 to 2008-05-01

82 v13901 1 Saskatchewan; Total dwellings (number of units) [D847700] 1969-01-01 to 2008-05-01

83 v41637 1 Saskatchewan; Total dwellings (dollars - thousands) [D845412] 1969-01-01 to 2008-05-01

84 v13908 1 Alberta; Total dwellings (number of units) [D847707] 1969-01-01 to 2008-05-01

85 v41644 1 Alberta; Total dwellings (dollars - thousands) [D845419] 1969-01-01 to 2008-05-01

86 v13831 1 British Columbia; Total dwellings (number of units) [D847714] 1969-01-01 to 2008-05-01

87 v41567 1 British Columbia; Total dwellings (dollars - thousands) [D845426] 1969-01-01 to 2008-05-01

Table 027-0002 CMHC, housing starts, under constr and completions, SA

88 v730040 1 Canada; Total units (units - thousands) [J9001] 1969-01-01 to 2008-05-01

89 v729972 1 Newfoundland and Labrador; Total units (units - thousands) [J7002] 1969-01-01 to 2008-05-01

90 v729973 1 Prince Edward Island; Total units (units - thousands) [J7003] 1969-01-01 to 2008-05-01

91 v729974 1 Nova Scotia; Total units (units - thousands) [J7004] 1969-01-01 to 2008-05-01

92 v729975 1 New Brunswick; Total units (units - thousands) [J7005] 1969-01-01 to 2008-05-01
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93 v729976 1 Quebec; Total units (units - thousands) [J7006] 1969-01-01 to 2008-05-01

94 v729981 1 Ontario; Total units (units - thousands) [J7008] 1969-01-01 to 2008-05-01

95 v729987 1 Manitoba; Total units (units - thousands) [J7011] 1969-01-01 to 2008-05-01

96 v729988 1 Saskatchewan; Total units (units - thousands) [J7012] 1969-01-01 to 2008-05-01

97 v729989 1 Alberta; Total units (units - thousands) [J7013] 1969-01-01 to 2008-05-01

98 v729990 1 British Columbia; Total units (units - thousands) [J7014] 1969-01-01 to 2008-05-01

Table 377-0003 Business leading indicators for Canada

99 v7677 1 Average work week, manufacturing; Smoothed (hours) [D100042] 1969-01-01 to 2008-05-01

100 v7680 1 Housing index; Smoothed (index, 1992=100) [D100043] 1969-01-01 to 2008-05-01

101 v7681 5 United States composite leading index; Smoothed (index, 1992=100) [D100044] 1969-01-01 to 2008-04-01

102 v7682 5 Money supply; Smoothed (dollars, 1992 - millions) [D100045] 1969-01-01 to 2008-05-01

103 v7683 5 New orders, durable goods; Smoothed (dollars, 1992 - millions) [D100046] 1969-01-01 to 2008-03-01

104 v7684 5 Retail trade, furniture and appliances; Smoothed (dollars, 1992 - millions) [D100047] 1969-01-01 to 2008-03-01

105 v7686 1 Shipment to inventory ratio, finished products; Smoothed (ratio) [D100049] 1969-01-01 to 2008-03-01

106 v7678 5 Stock price index, TSE 300; Smoothed (index, 1975=1000) [D100050] 1969-01-01 to 2008-05-01

107 v7679 5 Business and personal services employment; Smoothed (persons - thousands) [D100051] 1969-01-01 to 2008-05-01

108 v7688 5 Composite index of 10 indicators; Smoothed (index, 1992=100) [D100053] 1969-01-01 to 2008-05-01

Table 379-0027 GDP at basic prices, by NAICS, Canada, SA, 2002 constant prices

109 v41881478 5 All industries [T001] (dollars - millions) 1981-01-01 to 2008-04-01

110 v41881480 5 Business sector, goods [T003] (dollars - millions) 1981-01-01 to 2008-04-01

111 v41881481 5 Business sector, services [T004] (dollars - millions) 1981-01-01 to 2008-04-01

112 v41881482 5 Non-business sector industries [T005] (dollars - millions) 1981-01-01 to 2008-04-01

113 v41881485 5 Goods-producing industries [T008] (dollars - millions) 1981-01-01 to 2008-04-01

114 v41881486 5 Service-producing industries [T009] (dollars - millions) 1981-01-01 to 2008-04-01

115 v41881487 5 Industrial production [T010] (dollars - millions) 1981-01-01 to 2008-04-01

116 v41881488 5 Non-durable manufacturing industries [T011] (dollars - millions) 1981-01-01 to 2008-04-01

117 v41881489 5 Durable manufacturing industries [T012] (dollars - millions) 1981-01-01 to 2008-04-01

118 v41881494 5 Agriculture, forestry, fishing and hunting [11] (dollars - millions) 1981-01-01 to 2008-04-01

119 v41881501 5 Mining and oil and gas extraction [21] (dollars - millions) 1981-01-01 to 2008-04-01

120 v41881524 5 Residential building construction [230A] (dollars - millions) 1981-01-01 to 2008-04-01

121 v41881525 5 Non-residential building construction [230B] (dollars - millions) 1981-01-01 to 2008-04-01

122 v41881527 5 Manufacturing [31-33] (dollars - millions) 1981-01-01 to 2008-04-01

123 v41881555 5 Wood product manufacturing [321] (dollars - millions) 1981-01-01 to 2008-04-01

124 v41881564 5 Paper manufacturing [322] (dollars - millions) 1981-01-01 to 2008-04-01

125 v41881602 5 Rubber product manufacturing [3262] (dollars - millions) 1981-01-01 to 2008-04-01

126 v41881606 5 Non-metallic mineral product manufacturing [327] (dollars - millions) 1981-01-01 to 2008-04-01

127 v41881637 5 Machinery manufacturing [333] (dollars - millions) 1981-01-01 to 2008-04-01

128 v41881654 5 Electrical equipment, appliance and component manufacturing [335] (dollars - millions) 1981-01-01 to 2008-04-01

129 v41881662 5 Transportation equipment manufacturing [336] (dollars - millions) 1981-01-01 to 2008-04-01

130 v41881663 5 Motor vehicle manufacturing [3361] (dollars - millions) 1981-01-01 to 2008-04-01

131 v41881674 5 Aerospace product and parts manufacturing [3364] (dollars - millions) 1981-01-01 to 2008-04-01

132 v41881675 5 Railroad rolling stock manufacturing [3365] (dollars - millions) 1981-01-01 to 2008-04-01

133 v41881688 5 Wholesale trade [41] (dollars - millions) 1981-01-01 to 2008-04-01

134 v41881689 5 Retail trade [44-45] (dollars - millions) 1981-01-01 to 2008-04-01

135 v41881690 5 Transportation and warehousing [48-49] (dollars - millions) 1981-01-01 to 2008-04-01

136 v41881699 5 Pipeline transportation [486] (dollars - millions) 1981-01-01 to 2008-04-01

137 v41881724 5 Finance, insurance, realăestate, rental and leasing and management of companies and

enterprises [5A] (dollars - millions) 1981-01-01 to 2008-04-01

138 v41881756 5 Educational services [61] (dollars - millions) 1981-01-01 to 2008-04-01

139 v41881759 5 Health care and social assistance [62] (dollars - millions) 1981-01-01 to 2008-04-01

140 v41881776 5 Federal government public administration [911] (dollars - millions) 1981-01-01 to 2008-04-01

141 v41881777 5 Defence services [9111] (dollars - millions) 1981-01-01 to 2008-04-01

142 v41881779 5 Provincial and territorial public administration [912] (dollars - millions) 1981-01-01 to 2008-04-01

143 v41881780 5 Local, municipal and regional public administration [913] (dollars - millions) 1981-01-01 to 2008-04-01

Tables 329-00(46,38,39) Industrial price indexes, 1997=100

144 v1575728 5 Transformer equipment (index, 1997=100) [P5648] 1969-01-01 to 2008-05-01

145 v1575754 5 Electric motors and generators (index, 1997=100) [P5674] 1969-01-01 to 2008-05-01

146 v1575886 5 Diesel fuel (index, 1997=100) [P5806] 1969-01-01 to 2008-04-01

147 v1575925 5 Light fuel oil (index, 1997=100) [P5845] 1969-01-01 to 2008-04-01

148 v1575903 5 Heavy fuel oil (index, 1997=100) [P5823] 1969-01-01 to 2008-04-01

149 v1575934 5 Lubricating oils and greases (index, 1997=100) [P5854] 1969-01-01 to 2008-04-01
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150 v1575958 5 Asphalt mixtures and emulsions (index, 1997=100) [P5878] 1969-01-01 to 2008-04-01

151 v1575457 5 Industrial trucks, tractors and parts (index, 1997=100) [P5329] 1971-01-01 to 2008-05-01

152 v1575493 5 Parts, air conditioning and refrigeration equipment (index, 1997=100) [P5365] 1969-01-01 to 2008-05-01

153 v1575511 5 Food products industrial machinery and equipment (index, 1997=100) [P5383] 1971-01-01 to 2008-05-01

154 v1575557 5 Trucks, chassis, tractors, commercial (index, 1997=100) [P5429] 1969-01-01 to 2008-05-01

155 v1575610 5 Motor vehicle engine parts (index, 1997=100) [P5482] 1969-01-01 to 2008-05-01

156 v3860051 5 Motor vehicle brakes (index, 1997=100) [P5512] 1969-01-01 to 2008-05-01

157 v3822562 5 All manufacturing (index, 1997=100) [P6253] 1969-01-01 to 2008-05-01

158 v3825177 5 Total excluding food and beverage manufacturing (index, 1997=100) [P6491] 1969-01-01 to 2008-05-01

159 v3825178 5 Food and beverage manufacturing [311, 3121] (index, 1997=100) [P6492] 1969-01-01 to 2008-05-01

160 v3825179 5 Food and beverage manufacturing excluding alcoholic beverages (index, 1997=100) [P6493] 1969-01-01 to 2008-05-01

161 v3825180 5 Non-food (including alcoholic beverages) manufacturing (index, 1997=100) [P6494] 1969-01-01 to 2008-05-01

162 v3825181 5 Basic manufacturing industries [321, 322, 327, 331] (index, 1997=100) [P6495] 1978-07-01 to 2008-05-01

163 v3825183 5 Primary metal manufacturing excluding precious metals (index, 1997=100) [P6497] 1971-01-01 to 2008-05-01

164 v1574377 5 Total, all commodities (index, 1997=100) [P4000] 1969-01-01 to 2008-05-01

Table 176-0001 Commodity price index, US$ (index, 82-90=100)

165 v36382 1 Total, all commodities (index, 82-90=100) [B3300] 1972-01-01 to 2008-06-01

166 v36383 1 Total excluding energy (index, 82-90=100) [B3301] 1972-01-01 to 2008-06-01

167 v36384 1 Energy (index, 82-90=100) [B3302] 1972-01-01 to 2008-06-01

168 v36385 1 Food (index, 82-90=100) [B3303] 1972-01-01 to 2008-06-01

169 v36386 1 Industrial materials (index, 82-90=100) [B3304] 1972-01-01 to 2008-06-01

Tables 176-00(46,47), 184-0002 Stock market statistics

170 v37412 5 Toronto Stock Exchange, value of shares traded (dollars - millions) [B4213] 1969-01-01 to 2008-03-01

171 v37413 5 Toronto Stock Exchange, volume of shares traded (shares - millions) [B4214] 1969-01-01 to 2008-03-01

172 v37414 5 United States common stocks, Dow-Jones industrials, high (index) [B4218] 1969-01-01 to 2008-05-01

173 v37415 5 United States common stocks, Dow-Jones industrials, low (index) [B4219] 1969-01-01 to 2008-05-01

174 v37416 5 United States common stocks, Dow-Jones industrials, close (index) [B4220] 1969-01-01 to 2008-05-01

175 v37419 5 New York Stock Exchange, customers’ debit balances (dollars - millions) [B4223] 1969-01-01 to 2008-01-01

176 v37420 5 New York Stock Exchange, customers’ free credit balance (dollars - millions) [B4224] 1969-01-01 to 2008-01-01

177 v122620 5 Standard and Poor’s/Toronto Stock Exchange Composite Index, close (index, 1975=1000) [B4237] 1969-01-01 to 2008-05-01

178 v122628 1 Toronto Stock Exchange, stock dividend yields (composite), closing quotations (percent) [B4245] 1969-01-01 to 2008-05-01

179 v122629 1 Toronto Stock Exchange, price earnings ratio, closing quotations (ratio) [B4246] 1969-01-01 to 2008-05-01

180 v6384 5 Total volume; Value of shares traded (dollars - millions) [D4560] 1969-01-01 to 2008-06-01

181 v6385 5 Industrials; Value of shares traded (dollars - millions) [D4558] 1969-01-01 to 2008-06-01

182 v6386 5 Mining and oils; Value of shares traded (dollars - millions) [D4559] 1969-01-01 to 2008-06-01

Table 176-0064 Foreign exchange rates

183 v37426 4 United States dollar, noon spot rate, average (dollars) [B3400] 1969-01-01 to 2008-06-01

184 v37437 4 United States dollar, 90-day forward noon rate (dollars) [B3401] 1969-01-01 to 2008-06-01

185 v37452 4 Danish krone, noon spot rate, average (dollars) [B3403] 1969-01-01 to 2008-06-01

186 v37456 4 Japanese yen, noon spot rate, average (dollars) [B3407] 1969-01-01 to 2008-06-01

187 v37427 4 Norwegian krone, noon spot rate, average (dollars) [B3409] 1969-01-01 to 2008-06-01

188 v37428 4 Swedish krona, noon spot rate, average (dollars) [B3410] 1969-01-01 to 2008-06-01

189 v37429 4 Swiss franc, noon spot rate, average (dollars) [B3411] 1969-01-01 to 2008-06-01

190 v37430 4 United Kingdom pound sterling, noon spot rate, average (dollars) [B3412] 1969-01-01 to 2008-06-01

191 v37431 4 United Kingdom pound sterling, 90-day forward noon rate (dollars) [B3413] 1969-01-01 to 2008-06-01

192 v37432 4 United States dollar, closing spot rate (dollars) [B3414] 1969-01-01 to 2008-06-01

193 v37433 4 United States dollar, highest spot rate (dollars) [B3415] 1969-01-01 to 2008-06-01

194 v37434 4 United States dollar, lowest spot rate (dollars) [B3416] 1969-01-01 to 2008-06-01

195 v37435 4 United States dollar, 90-day forward closing rate (dollars) [B3417] 1969-01-01 to 2008-06-01

196 v41498903 4 Canadian dollar effective exchange rate index (CERI) (1992=100) (dollars) 1981-01-01 to 2008-06-01

Table 176-0043 Interest rates

197 v122550 1 Bank rate, last Tuesday or last Thursday (percent) [B14079] 1969-01-01 to 2008-06-01

198 v122530 1 Bank rate (percent) [B14006] 1969-01-01 to 2008-06-01

199 v122495 1 Chartered bank administered interest rates - prime business (percent) [B14020] 1969-01-01 to 2008-06-01

200 v122505 1 Forward premium or discount (-), United States dollar in Canada: 3 month (percent) [B14034] 1969-01-01 to 2008-06-01

201 v122509 1 Prime corporate paper rate: 1 month (percent) [B14039] 1969-01-01 to 2008-06-01

202 v122556 1 Prime corporate paper rate: 2 month (percent) [B14084] 1969-01-01 to 2008-06-01

203 v122491 1 Prime corporate paper rate: 3 month (percent) [B14017] 1969-01-01 to 2008-06-01

204 v122504 1 Bankers’ acceptances: 1 month (percent) [B14033] 1969-01-01 to 2008-06-01

205 v122558 1 Government of Canada marketable bonds, average yield: 1-3 year (percent) [B14009] 1969-01-01 to 2008-06-01

206 v122485 1 Government of Canada marketable bonds, average yield: 3-5 year (percent) [B14010] 1969-01-01 to 2008-06-01
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207 v122486 1 Government of Canada marketable bonds, average yield: 5-10 year (percent) [B14011] 1969-01-01 to 2008-06-01

208 v122487 1 Government of Canada marketable bonds, average yield: over 10 years (percent) [B14013] 1969-01-01 to 2008-06-01

209 v122515 1 Chartered bank - 5 year personal fixed term (percent) [B14045] 1969-01-01 to 2008-06-01

210 v122493 1 Chartered bank - non-chequable savings deposits (percent) [B14019] 1969-01-01 to 2008-06-01

211 v122541 1 Treasury bill auction - average yields: 3 month (percent) [B14007] 1969-01-01 to 2008-06-01

212 v122484 1 Treasury bill auction - average yields: 3 month, average at values (percent) [B14001] 1969-01-01 to 2008-06-01

213 v122552 1 Treasury bill auction - average yields: 6 month (percent) [B14008] 1969-01-01 to 2008-06-01

214 v122554 1 Treasury bills: 2 month (percent) [B14082] 1969-01-01 to 2008-06-01

215 v122531 1 Treasury bills: 3 month (percent) [B14060] 1969-01-01 to 2008-06-01

216 v122499 1 Government of Canada marketable bonds, average yield, average of Wednesdays: 1-3 year (percent) 1969-01-01 to 2008-06-01

217 v122500 1 Government of Canada marketable bonds, average yield, average of Wednesdays: 3-5 year (percent) 1969-01-01 to 2008-06-01

218 v122502 1 Government of Canada marketable bonds, average yield, average of Wednesdays: 5-10 year (percent) 1969-01-01 to 2008-06-01

219 v122501 1 Government of Canada marketable bonds, average yield, average of Wednesdays: +10 years (percent) 1969-01-01 to 2008-06-01

220 v122497 1 Average residential mortgage lending rate: 5 year (percent) [B14024] 1969-01-01 to 2008-06-01

221 v122506 1 Chartered bank - chequable personal savings deposit rate (percent) [B14035] 1969-01-01 to 2008-06-01

222 v122507 1 Covered differential: Canada-United States 3 month Treasury bills (percent) [B14036] 1972-10-01 to 2008-06-01

223 v122508 1 Covered differential: Canada-United States 3 month short-term paper (percent) [B14038] 1971-04-01 to 2008-06-01

224 v122510 1 First coupon of Canada Savings Bonds (percent) [B14040] 1969-01-01 to 2008-06-01

Table 176-0051 Canada’s official international reserves

225 v122396 5 Total, Canada’s official international reserves (dollars - millions) [B3800] 1969-01-01 to 2008-06-01

226 v122397 5 Convertible foreign currencies, United States dollars (dollars - millions) [B3801] 1969-01-01 to 2008-06-01

227 v122398 5 Convertible foreign currencies, other than United States (dollars - millions) [B3802] 1969-01-01 to 2008-06-01

228 v122399 5 Gold (dollars - millions) [B3803] 1969-01-01 to 2008-06-01

229 v122401 5 Reserve position in the International Monetary Fund (IMF) (dollars - millions) [B3805] 1969-01-01 to 2008-06-01

Table 176-0032 Credit measures

230 v36414 5 Total business and household credit; Seasonally adjusted (dollars - millions) [B165] 1969-01-01 to 2008-04-01

231 v36415 5 Household credit; Seasonally adjusted (dollars - millions) [B166] 1969-01-01 to 2008-04-01

232 v36416 5 Residential mortgage credit; Seasonally adjusted (dollars - millions) [B167] 1969-01-01 to 2008-04-01

233 v36417 5 Consumer credit; Seasonally adjusted (dollars - millions) [B168] 1969-01-01 to 2008-04-01

234 v36418 5 Business credit; Seasonally adjusted (dollars - millions) [B169] 1969-01-01 to 2008-05-01

235 v36419 5 Other business credit; Seasonally adjusted (dollars - millions) [B170] 1969-01-01 to 2008-05-01

236 v36420 5 Short-term business credit; Seasonally adjusted (dollars - millions) [B171] 1969-01-01 to 2008-05-01

Table 176-0025 Monetary aggregates

237 v37148 5 Currency outside banks (dollars - millions) [B1604] 1969-01-01 to 2008-05-01

238 v37153 5 Canadian dollar assets, total loans (dollars - millions) [B1605] 1969-01-01 to 2008-05-01

239 v37154 5 General loans (including grain dealers and installment finance companies) (dollars - millions) 1969-01-01 to 2008-05-01

240 v37107 5 Total, major assets (dollars - millions) [B1611] 1969-01-01 to 2008-05-01

241 v37111 5 Canadian dollar assets, liquid assets (dollars - millions) [B1615] 1969-01-01 to 2008-05-01

242 v37112 5 Canadian dollar assets, less liquid assets (dollars - millions) [B1616] 1969-01-01 to 2008-05-01

243 v37119 5 Total personal loans, average of Wednesdays (dollars - millions) [B1622] 1969-01-01 to 2008-05-01

244 v37120 5 Business loans, average of Wednesdays (dollars - millions) [B1623] 1969-01-01 to 2008-05-01

245 v41552793 5 Currency outside banks and chartered bank deposits, held by general public

(including private sector float) (dollars - millions) 1969-01-01 to 2008-05-01

246 v41552795 5 M1B (gross) (currency outside banks, chartered bank chequable deposits,

less inter-bank chequable deposits) (dollars - millions) 1969-01-01 to 2008-05-01

247 v41552796 5 M2 (gross) (currency outside banks, chartered bank demand and notice deposits, chartered bank

personal term deposits, adjustments to M2 (gross) (continuity adjustments and inter-bank demand

and notice deposits)) (dollars - millions) 1969-01-01 to 2008-05-01

248 v41552797 5 Currency outside banks and chartered bank deposits (including private sector float)

(dollars - millions) 1969-01-01 to 2008-05-01

249 v37130 5 Residential mortgages (dollars - millions) [B1632] 1969-01-01 to 2008-05-01

250 v41552798 5 M2+ (gross) (dollars - millions) 1969-01-01 to 2008-04-01

251 v37135 5 Chartered bank deposits, personal, term (dollars - millions) [B1637] 1969-01-01 to 2008-05-01

252 v37138 5 Total, deposits at trust and mortgage loan companies (dollars - millions) [B1639] 1969-01-01 to 2008-04-01

253 v37139 5 Total, deposits at credit unions and caisses populaires (dollars - millions) [B1640] 1969-01-01 to 2008-05-01

254 v37140 5 Bankers’ acceptances (dollars - millions) [B1641] 1969-01-01 to 2008-05-01

255 v37145 5 Monetary base (notes and coin in circulation, chartered bank and other Canadian Payments

Association members’ deposits with the Bank of Canada) (dollars - millions) [B1646] 1969-01-01 to 2008-05-01

256 v37146 5 Monetary base (notes and coin in circulation, chartered bank and other Canadian Payments

Association members’ deposits with the Bank of Canada) (excluding required reserves)

(dollars - millions) [B1647] 1969-01-01 to 2008-05-01
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257 v37147 5 Canada Savings Bonds and other retail instruments (dollars - millions) [B1648] 1969-01-01 to 2008-06-01

258 v41552801 5 M2++ (gross), Canada Savings Bonds, non-money market mutual funds) (dollars - millions) 1969-01-01 to 2008-04-01

259 v37152 5 M1++ (gross) (dollars - millions) [B1652] 1969-01-01 to 2008-05-01

Table 282-0087 LFS, SA, Canada and provinces

260 v2062811 5 Canada; Employment; Both sexes; 15 years and over; (persons - thousands) 1976-01-01 to 2008-05-01

261 v2062815 1 Canada; Unemployment rate; Both sexes; 15 years and over; (rate) 1976-01-01 to 2008-05-01

262 v2063000 5 Newfoundland and Labrador; Employment; Both sexes; 15 years and over; (persons - thousands) 1976-01-01 to 2008-05-01

263 v2063004 1 Newfoundland and Labrador; Unemployment rate; Both sexes; 15 years and over; (rate) 1976-01-01 to 2008-05-01

264 v2063189 5 Prince Edward Island; Employment; Both sexes; 15 years and over; (persons - thousands) 1976-01-01 to 2008-05-01

265 v2063193 1 Prince Edward Island; Unemployment rate; Both sexes; 15 years and over; (rate) 1976-01-01 to 2008-05-01

266 v2063378 5 Nova Scotia; Employment; Both sexes; 15 years and over; (persons - thousands) 1976-01-01 to 2008-05-01

267 v2063382 1 Nova Scotia; Unemployment rate; Both sexes; 15 years and over; (rate) 1976-01-01 to 2008-05-01

268 v2063567 5 New Brunswick; Employment; Both sexes; 15 years and over; (persons - thousands) 1976-01-01 to 2008-05-01

269 v2063571 1 New Brunswick; Unemployment rate; Both sexes; 15 years and over; (rate) 1976-01-01 to 2008-05-01

270 v2063756 5 Quebec; Employment; Both sexes; 15 years and over; (persons - thousands) 1976-01-01 to 2008-05-01

271 v2063760 1 Quebec; Unemployment rate; Both sexes; 15 years and over; (rate) 1976-01-01 to 2008-05-01

272 v2063945 5 Ontario; Employment; Both sexes; 15 years and over; (persons - thousands) 1976-01-01 to 2008-05-01

273 v2063949 1 Ontario; Unemployment rate; Both sexes; 15 years and over; (rate) 1976-01-01 to 2008-05-01

274 v2064134 5 Manitoba; Employment; Both sexes; 15 years and over; (persons - thousands) 1976-01-01 to 2008-05-01

275 v2064138 1 Manitoba; Unemployment rate; Both sexes; 15 years and over; (rate) 1976-01-01 to 2008-05-01

276 v2064323 5 Saskatchewan; Employment; Both sexes; 15 years and over; (persons - thousands) 1976-01-01 to 2008-05-01

277 v2064327 1 Saskatchewan; Unemployment rate; Both sexes; 15 years and over; (rate) 1976-01-01 to 2008-05-01

278 v2064512 5 Alberta; Employment; Both sexes; 15 years and over; (persons - thousands) 1976-01-01 to 2008-05-01

279 v2064516 1 Alberta; Unemployment rate; Both sexes; 15 years and over; (rate) 1976-01-01 to 2008-05-01

280 v2064701 5 British Columbia; Employment; Both sexes; 15 years and over; (persons - thousands) 1976-01-01 to 2008-05-01

281 v2064705 1 British Columbia; Unemployment rate; Both sexes; 15 years and over; (rate) 1976-01-01 to 2008-05-01

Table 282-0088 Employment by industry, SA

282 v2057603 5 Total employed, all industries; (persons - thousands) 1976-01-01 to 2008-05-01

283 v2057604 5 Goods-producing sector; (persons - thousands) 1976-01-01 to 2008-05-01

284 v2057605 5 Agriculture [1100-1129, 1151-1152]; (persons - thousands) 1976-01-01 to 2008-05-01

285 v2057606 5 Forestry, fishing, mining, oil and gas [1131-1133, 1141-1142, 1153]; (persons - thousands) 1976-01-01 to 2008-05-01

286 v2057607 5 Utilities [2211-2213]; (persons - thousands) 1976-01-01 to 2008-05-01

287 v2057608 5 Construction [2361-2389]; (persons - thousands) 1976-01-01 to 2008-05-01

288 v2057609 5 Manufacturing [3211-3219, 3271-3279, 3311-3399, 3111-3169, 3221-3262]; (persons - thousands) 1976-01-01 to 2008-05-01

289 v2057610 5 Services-producing sector; Seasonally adjusted (persons - thousands) 1976-01-01 to 2008-05-01

290 v2057611 5 Trade [4111-4191, 4411-4543]; Seasonally adjusted (persons - thousands) 1976-01-01 to 2008-05-01

291 v2057612 5 Transportation and warehousing [4811-4931]; Seasonally adjusted (persons - thousands) 1976-01-01 to 2008-05-01

292 v2057613 5 Finance, insurance, real estate and leasing [5211-5269, 5311-5331]; (persons - thousands) 1976-01-01 to 2008-05-01

293 v2057614 5 Professional, scientific and technical services [5411-5419]; (persons - thousands) 1976-01-01 to 2008-05-01

294 v2057615 5 Business, building and other support services [5511-5629]; (persons - thousands) 1976-01-01 to 2008-05-01

295 v2057616 5 Educational services [6111-6117]; (persons - thousands) 1976-01-01 to 2008-05-01

296 v2057617 5 Health care and social assistance [6211-6244]; (persons - thousands) 1976-01-01 to 2008-05-01

297 v2057618 5 Information, culture and recreation [5111-5191, 7111-7139]; (persons - thousands) 1976-01-01 to 2008-05-01

298 v2057619 5 Accommodation and food services [7211-7224]; (persons - thousands) 1976-01-01 to 2008-05-01

299 v2057620 5 Other services [8111-8141]; (persons - thousands) 1976-01-01 to 2008-05-01

300 v2057621 5 Public administration [9110-9191]; (persons - thousands) 1976-01-01 to 2008-05-01

Tables 228-00(01,41) Merchandise imports and exports Canada, SA

301 v183474 5 Imports, United States, including Puerto Rico and Virgin Islands (dollars - millions) 1971-01-01 to 2008-04-01

302 v183475 5 Imports, United Kingdom (dollars - millions) [D398059] 1971-01-01 to 2008-04-01

303 v183476 5 Imports, Other European Economic Community (dollars - millions) [D398060] 1971-01-01 to 2008-04-01

304 v183477 5 Imports, Japan (dollars - millions) [D398061] 1971-01-01 to 2008-04-01

305 v191559 5 Exports, United States, including Puerto Rico and Virgin Islands (dollars - millions) 1971-01-01 to 2008-04-01

306 v191560 5 Exports, United Kingdom (dollars - millions) [D399519] 1971-01-01 to 2008-04-01

307 v191561 5 Exports, Other European Economic Community (dollars - millions) [D399520] 1971-01-01 to 2008-04-01

308 v191562 5 Exports, Japan (dollars - millions) [D399521] 1971-01-01 to 2008-04-01

309 v21386488 5 Imports, total of all merchandise (dollars - millions) 1971-01-01 to 2008-04-01

310 v21386489 5 Imports, Sector 1 Agricultural and fishing products (dollars - millions) 1971-01-01 to 2008-04-01

311 v21386492 5 Imports, Sector 2 Energy products (dollars - millions) 1971-01-01 to 2008-04-01

312 v21386495 5 Imports, Sector 3 Forestry products (dollars - millions) 1971-01-01 to 2008-04-01

313 v21386496 5 Imports, Sector 4 Industrial goods and materials (dollars - millions) 1971-01-01 to 2008-04-01

314 v21386500 5 Imports, Sector 5 Machinery and equipment (dollars - millions) 1971-01-01 to 2008-04-01
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315 v21386505 5 Imports, Sector 6 Automotive products (dollars - millions) 1971-01-01 to 2008-04-01

316 v21386509 5 Imports, Sector 7 Other consumer goods (dollars - millions) 1971-01-01 to 2008-04-01

317 v21386512 5 Imports, Sector 8 Special transactions trade (dollars - millions) 1971-01-01 to 2008-04-01

318 v21386514 5 Exports, total of all merchandise (dollars - millions) 1971-01-01 to 2008-04-01

319 v21386515 5 Exports, Sector 1 Agricultural and fishing products (dollars - millions) 1971-01-01 to 2008-04-01

320 v21386518 5 Exports, Sector 2 Energy products (dollars - millions) 1971-01-01 to 2008-04-01

321 v21386522 5 Exports, Sector 3 Forestry products (dollars - millions) 1971-01-01 to 2008-04-01

322 v21386526 5 Exports, Sector 4 Industrial goods and materials (dollars - millions) 1971-01-01 to 2008-04-01

323 v21386531 5 Exports, Sector 5 Machinery and equipment (dollars - millions) 1971-01-01 to 2008-04-01

324 v21386535 5 Exports, Sector 6 Automotive products (dollars - millions) 1971-01-01 to 2008-04-01

325 v21386539 5 Exports, Sector 7 Other consumer goods (dollars - millions) 1971-01-01 to 2008-04-01

326 v21386540 5 Exports, Sector 8 Special transactions trade (dollars - millions) 1971-01-01 to 2008-04-01

Regional series

327 5 CPI Atlantic 1978-09-01 to 2008-05-01

328 5 CPI Center 1978-09-01 to 2008-05-01

329 5 CPI Prairies 1978-09-01 to 2008-05-01

330 5 Employment Atlantic 1976-01-01 to 2008-05-01

331 5 Employment Center 1976-01-01 to 2008-05-01

332 5 Employment Prairies 1976-01-01 to 2008-05-01

333 1 Unemployment Atlantic 1976-01-01 to 2008-05-01

334 1 Unemployment Center 1976-01-01 to 2008-05-01

335 1 Unemployment Prairies 1976-01-01 to 2008-05-01

336 1 Building permits Atlantic 1969-01-01 to 2008-05-01

337 1 Building permits Center 1969-01-01 to 2008-05-01

338 1 Building permits Prairies 1969-01-01 to 2008-05-01

339 v729971 1 Housing starts Atlantic 1969-01-01 to 2008-05-01

340 1 Housing starts Center 1969-01-01 to 2008-05-01

341 v729986 1 Housing starts Prairies 1969-01-01 to 2008-05-01

Table 026-0008: Building permits, values by activity sector, SA; Canada;

342 v4667 5 Total residential and non-residential (dollars - thousands) [D2677] 1969-01-01 to 2008-05-01

343 v4668 5 Residential (dollars - thousands) [D2681] 1969-01-01 to 2008-05-01

344 v4669 5 Non-residential (dollars - thousands) [D4898] 1969-01-01 to 2008-05-01

345 v4670 5 Industrial (dollars - thousands) [D2678] 1969-01-01 to 2008-05-01

346 v4671 5 Commercial (dollars - thousands) [D2679] 1969-01-01 to 2008-05-01

347 v4672 5 Institutional and governmental (dollars - thousands) [D2680] 1969-01-01 to 2008-05-01

348 5 Nominal Spot oil price: West Texas Intermediate 1969-01-01 to 2008-05-01

QUARTERLY VARIABLES

Table 380-0001: Gross Domestic Product, income-based; Canada; SAAR;

349 v498077 5 F Corporation profits before taxes (dollars - millions) [D14806] 1969Q1 to 2008Q1

350 v498079 5 F Interest and miscellaneous investment income (dollars - millions) [D14808] 1969Q1 to 2008Q1

351 v498081 5 F Net income of non-farm unincorporated business, including rent (dollars - millions) 1969Q1 to 2008Q1

352 v498082 1 F Inventory valuation adjustment (dollars - millions) [D14811] 1969Q1 to 2008Q1

353 v1992216 5 F Taxes less subsidies, on factors of production (dollars - millions) [D100100] 1969Q1 to 2008Q1

354 v1997473 5 F Taxes less subsidies, on products (dollars - millions) [D100102] 1969Q1 to 2008Q1

Table 380-0004: Sector accounts, persons and unincorporated businesses; Canada; SAAR;

355 v498166 5 F Wages, salaries and supplementary labour income (dollars - millions) [D14896] 1969Q1 to 2008Q1

356 v498170 5 F Unincorporated business net income (dollars - millions) [D14897] 1969Q1 to 2008Q1

357 v498171 5 F Interest, dividends and miscellaneous investment receipts (dollars - millions) [D14898] 1969Q1 to 2008Q1

358 v498172 5 F Current transfers from government (dollars - millions) [D14899] 1969Q1 to 2008Q1

359 v498176 5 F Current transfers from corporations (dollars - millions) [D14903] 1969Q1 to 2008Q1

360 v498179 5 F Personal expenditure on goods and services (dollars - millions) [D14906] 1969Q1 to 2008Q1

361 v498180 5 F Current transfers to government (dollars - millions) [D14907] 1969Q1 to 2008Q1

362 v498184 5 F Current transfers to corporations (dollars - millions) [D14911] 1969Q1 to 2008Q1

363 v498185 5 F Current transfers to non-residents (dollars - millions) [D14912] 1969Q1 to 2008Q1

364 v498164 5 F Saving (dollars - millions) [D14913] 1969Q1 to 2008Q1

365 v498186 5 F Disposable income (dollars - millions) [D14914] 1969Q1 to 2008Q1

366 v498187 1 F Saving rate (percent) [D14915] 1969Q1 to 2008Q1

367 v498199 2 F Net financial investment (dollars - millions) [D14939] 1969Q1 to 2008Q1

Table 380-0002: Gross Domestic Product, expenditure-based; Canada; Chained (2002) dollars; SAAR;

368 v1992067 5 F Gross Domestic Product (GDP) at market prices (dollars - millions) [D100126] 1969Q1 to 2008Q1
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369 v1992044 5 F Personal expenditure on consumer goods and services (dollars - millions) [D100103] 1969Q1 to 2008Q1

370 v1992045 5 F Personal expenditure on durable goods (dollars - millions) [D100104] 1969Q1 to 2008Q1

371 v1992046 5 F Personal expenditure on semi-durable goods (dollars - millions) [D100105] 1969Q1 to 2008Q1

372 v1992047 5 F Personal expenditure on non-durable goods (dollars - millions) [D100106] 1969Q1 to 2008Q1

373 v1992048 5 F Personal expenditure on services (dollars - millions) [D100107] 1969Q1 to 2008Q1

374 v1992049 5 F Government current expenditure on goods and services (dollars - millions) [D100108] 1969Q1 to 2008Q1

375 v1992050 5 F Government gross fixed capital formation (dollars - millions) [D100109] 1969Q1 to 2008Q1

376 v1992052 5 F Business gross fixed capital formation (dollars - millions) [D100111] 1969Q1 to 2008Q1

377 v1992053 5 F Residential structures (dollars - millions) [D100112] 1969Q1 to 2008Q1

378 v1992054 5 F Non-residential structures and equipment (dollars - millions) [D100113] 1969Q1 to 2008Q1

379 v1992055 5 F Non-residential structures (dollars - millions) [D100114] 1969Q1 to 2008Q1

380 v1992056 5 F Machinery and equipment (dollars - millions) [D100115] 1969Q1 to 2008Q1

381 v1992057 5 F Business investment in inventories (dollars - millions) [D100116] 1969Q1 to 2008Q1

382 v1992058 5 F Business investment in non-farm inventories (dollars - millions) [D100117] 1969Q1 to 2008Q1

383 v1992059 5 F Business investment in farm inventories (dollars - millions) [D100118] 1969Q1 to 2008Q1

384 v1992060 5 F Exports of goods and services (dollars - millions) [D100119] 1969Q1 to 2008Q1

385 v1992061 5 F Exports of goods (dollars - millions) [D100120] 1969Q1 to 2008Q1

386 v1992062 5 F Exports of services (dollars - millions) [D100121] 1969Q1 to 2008Q1

387 v1992063 5 F Deduct: imports of goods and services (dollars - millions) [D100122] 1969Q1 to 2008Q1

388 v1992064 5 F Imports of goods (dollars - millions) [D100123] 1969Q1 to 2008Q1

389 v1992065 5 F Imports of services (dollars - millions) [D100124] 1969Q1 to 2008Q1

390 v1992068 5 F Final domestic demand (dollars - millions) [D100127] 1969Q1 to 2008Q1

Table 380-0003: Gross omestic Product indexes; Canada; Implicit price indexes 2002=100;

391 v1997756 5 F Gross Domestic Product (GDP) at market prices (2002=100) [D100465] 1969Q1 to 2008Q1

392 v1997738 5 F Personal expenditure on consumer goods and services (2002=100) [D100447] 1969Q1 to 2008Q1

393 v1997739 5 F Personal expenditure on durable goods (2002=100) [D100448] 1969Q1 to 2008Q1

394 v1997740 5 F Personal expenditure on semi-durable goods (2002=100) [D100449] 1969Q1 to 2008Q1

395 v1997741 5 F Personal expenditure on non-durable goods (2002=100) [D100450] 1969Q1 to 2008Q1

396 v1997742 5 F Personal expenditure on services (2002=100) [D100451] 1969Q1 to 2008Q1

397 v1997743 5 F Government current expenditure on goods and services (2002=100) [D100452] 1969Q1 to 2008Q1

398 v1997744 5 F Government gross fixed capital formation (2002=100) [D100453] 1969Q1 to 2008Q1

399 v1997745 5 F Business gross fixed capital formation (2002=100) [D100454] 1969Q1 to 2008Q1

400 v1997746 5 F Residential structures (2002=100) [D100455] 1969Q1 to 2008Q1

401 v1997747 5 F Non-residential structures and equipment (2002=100) [D100456] 1969Q1 to 2008Q1

402 v1997748 5 F Non-residential structures (2002=100) [D100457] 1969Q1 to 2008Q1

403 v1997749 5 F Machinery and equipment (2002=100) [D100458] 1969Q1 to 2008Q1

404 v1997750 5 F Exports of goods and services (2002=100) [D100459] 1969Q1 to 2008Q1

405 v1997751 5 F Exports of goods (2002=100) [D100460] 1969Q1 to 2008Q1

406 v1997752 5 F Exports of services (2002=100) [D100461] 1969Q1 to 2008Q1

407 v1997753 5 F Imports of goods and services (2002=100) [D100462] 1969Q1 to 2008Q1

408 v1997754 5 F Imports of goods (2002=100) [D100463] 1969Q1 to 2008Q1

409 v1997755 5 F Imports of services (2002=100) [D100464] 1969Q1 to 2008Q1

410 v1997757 5 F Final domestic demand (2002=100) [D100466] 1969Q1 to 2008Q1

Table 380-0031: Saving, investment and net lending; Canada; SAAR;

411 v498490 5 F Persons and unincorporated businesses; Saving (dollars - millions) [D15234] 1969Q1 to 2008Q1

412 v498495 5 F Persons and unincorporated businesses; Capital consumption allowances (dollars - millions) 1969Q1 to 2008Q1

413 v498499 2 F Persons and unincorporated businesses; Net capital transfers (dollars - millions) [D15243] 1969Q1 to 2008Q1

414 v498504 5 F Persons and unincorporated businesses; Investment in fixed capital and inventories

(dollars - millions) [D15248] 1969Q1 to 2008Q1

415 v498508 5 F Persons and unincorporated businesses; Acquisition of existing assets (dollars - millions) 1969Q1 to 2008Q1

416 v498512 2 F Persons and unincorporated businesses; Net lending (dollars - millions) [D15256] 1969Q1 to 2008Q1

417 v498518 2 F Persons and unincorporated businesses; Net financial investment (dollars - millions) 1969Q1 to 2008Q1

418 v498491 2 F Corporations and government business enterprises; Saving (dollars - millions) [D15235] 1969Q1 to 2008Q1

419 v498496 5 F Corporations and government business enterprises; Capital consumption allowances

(dollars - millions) [D15240] 1969Q1 to 2008Q1

420 v498500 5 F Corporations and government business enterprises; Net capital transfers

(dollars - millions) [D15244] 1969Q1 to 2008Q1

421 v498505 5 F Corporations and government business enterprises; Investment in fixed capital and inventories

(dollars - millions) [D15249] 1969Q1 to 2008Q1

422 v498509 2 F Corporations and government business enterprises; Acquisition of existing assets

(dollars - millions) [D15253] 1969Q1 to 2008Q1
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423 v498513 2 F Corporations and government business enterprises; Net lending (dollars - millions) [D15257] 1969Q1 to 2008Q1

424 v498519 2 F Corporations and government business enterprises; Net financial investment

(dollars - millions) [D15263] 1969Q1 to 2008Q1

425 v498492 2 F Government; Saving (dollars - millions) [D15236] 1969Q1 to 2008Q1

426 v498497 5 F Government; Capital consumption allowances (dollars - millions) [D15241] 1969Q1 to 2008Q1

427 v498501 2 F Government; Net capital transfers (dollars - millions) [D15245] 1969Q1 to 2008Q1

428 v498506 5 F Government; Investment in fixed capital and inventories (dollars - millions) [D15250] 1969Q1 to 2008Q1

429 v498510 2 F Government; Acquisition of existing assets (dollars - millions) [D15254] 1969Q1 to 2008Q1

430 v498514 2 F Government; Net lending (dollars - millions) [D15258] 1969Q1 to 2008Q1

431 v498520 2 F Government; Net financial investment (dollars - millions) [D15264] 1969Q1 to 2008Q1

432 v498493 2 F Non-residents; Saving (dollars - millions) [D15237] 1969Q1 to 2008Q1

433 v498502 2 F Non-residents; Net capital transfers (dollars - millions) [D15246] 1969Q1 to 2008Q1

434 v498515 2 F Non-residents; Net lending (dollars - millions) [D15259] 1969Q1 to 2008Q1

435 v498521 2 F Non-residents; Net financial investment (dollars - millions) [D15265] 1969Q1 to 2008Q1
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Variables Variance R2

decomposition
CPI 0.0074 0.8317
Core CPI 0.0338 0.6732
Service-Producing Industries 0.0137 0.5308
Industrial Production 0.0166 0.8238
Durable Manufact. Industries 0.0195 0.8232
IPI Manufact 0.0318 0.6622
IPI All Commodities 0.0483 0.4418
TSE 300 Index 0.1016 0.1695
Busin&Pers Services Empl 0.1298 0.1309
Housing index 0.0415 0.8438
New Orders: durables 0.0765 0.1977
Retal trade. furn&appliance 0.1060 0.2017
Money supply 0.3347 0.4782
Shipment/Inventory: finished products 0.0614 0.8325
Gross M2 0.0552 0.4896
Resid Mortgage Credit 0.0284 0.7301
Consumer Credit 0.1098 0.5231
Business Credit 0.0481 0.6070
Short Business Credit 0.0570 0.5251
Imports 0.0105 0.5394
Exports 0.0127 0.5509
Employment CAN 0.0632 0.8432
Unemployment CAN 0.1004 0.8923
Average work week 0.1555 0.4915
1-3year GOV MARKET BONDS 0.3461 0.9679
3-5year GOV MARKET BONDS 0.3004 0.9509
5-10year GOV MARKET BONDS 0.2708 0.9373
10+year GOV MARKET BONDS 0.2335 0.9221
Prime Corporate paper rate-1 month 0.3854 0.9823
Prime Corporate paper rate-3 month 0.3843 0.9854
Prime Corporate paper rate-6 month 0.3794 0.9862
Treasury bill: 6 month 0.3882 0.9960
Forward prem or disc US$ in Can: 3m 0.3486 0.3822
Covered differential: Canada-US 3m T-bill 0.1919 0.5533
Covered differential: Canada-US 3m short-term paper 0.0705 0.6333
Avrg residential mortg lend rate 0.3112 0.9253
FX Can/US: noon 0.0891 0.7566
FX Can/US: 90 days forw noon 0.0800 0.7534
FX Can/UK: noon 0.0990 0.4174
FX Can/UK: 90 days forw 0.0905 0.4113
FX Can/Jap: noon 0.0147 0.8502
FX Can/Dan: noon 0.1018 0.5707
FX Can/Swiss: noon 0.0057 0.8529
FX Can/US: closing 90 days forw 0.0910 0.7547
FX Can/Norw: noon 0.0466 0.5015
FX Can/Swe: noon 0.0391 0.5873
All industries 0.0160 0.8537
Business sector: goods 0.0188 0.8347
Business sector: services 0.0152 0.5392
Mining. oil and gas extraction 0.0095 0.1952
Manufacturing 0.0178 0.8758
Finance. insurance. real estate. rental 0.0274 0.1645
Residential build. constr. 0.0405 0.1440
Motor vehicle manuf. 0.0090 0.3591
Building permits CAN 0.0097 0.7936
Housing starts CAN 0.0283 0.7124
CPI Atlantic 0.0059 0.8665
CPI Center 0.0064 0.8331
CPI Prairie 0.0074 0.8048
Employment Atlantic 0.0548 0.2969
Employment Center 0.0616 0.7305
Employment Prairie 0.0925 0.3255
Unemployment Atlantic 0.1131 0.8483
Unemployment Center 0.0887 0.7649
Unemployment Prairie 0.1001 0.8979
Building Permits Atlantic 0.0145 0.6473
Building Permits Center 0.0064 0.7090
Building Permits Prairie 0.0309 0.5858
Housing Starts Atlantic 0.0178 0.5284
Housing Starts Center 0.0217 0.6312
Housing Starts Prairie 0.0754 0.4594
GDP at market prices 0.1229 0.4073
Consumption of G&S 0.0753 0.3978
Consumption of durable goods 0.0929 0.3021
Business gross fixed capital formation 0.0954 0.5971
Residential structures 0.1074 0.3675
Business investment in inventories 0.0444 0.4407
Wages salaries and supp labour inc. 0.0351 0.7553
Saving 0.0156 0.6493
Saving rate 0.0753 0.9023
Corporation profits bf tx; 0.06746 0.4985
Treasury bill 3 month 0.39842 1.0000

Table I.II: Variance decomposition and R2 with monthly panel



Appendix II

II.1 Appendix to Chapter 2

II.1.1 Results on interpretation of factors

Correlation[indexF, Ft ] Correlation[indexF, F∗
t ]

F1,t F2,t F3,t F4,t F∗
1,t F∗

2,t F∗
3,t F∗

4,t

CPI 0.3267 -0.6760 -0.1618 -0.4547 0.8925 0.2935 0.4822 0.1220

UR 0.5263 0.0171 0.6392 0.1518 -0.0135 0.7906 -0.1070 0.7752

FFR 0.5716 -0.7482 0.0659 0.0700 0.7282 0.6328 0.7091 0.4062

Bspread 0.5499 0.4749 0.3355 -0.1302 -0.1529 0.4996 -0.4542 0.7073

Table II.II: Correlation between factors and variables in recursive identification in

FAVAR-1
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F1 F2 F3 F4 F∗
1 F∗

2 F∗
3 F∗

4

Industrial production 0.5537 0.1393 0.3043 0.0027 0.0136 0.0021 0.0000 0.9843

CPI: total 0.1340 0.5736 0.0329 0.2596 1.0000 0.0000 0.0000 0.0000

CPI: core 0.3179 0.6793 0.0009 0.0019 0.7368 0.1014 0.1616 0.0002

T-Bill: 3-month 0.3261 0.6428 0.0199 0.0113 0.5425 0.2291 0.2237 0.0047

T-Bond: 5-year 0.3626 0.4730 0.1467 0.0177 0.3648 0.4720 0.1459 0.0174

Unemployment rate 0.3907 0.0004 0.5764 0.0325 0.0003 0.9997 0.0000 0.0000

M1 0.2693 0.0420 0.3895 0.2993 0.1275 0.8016 0.0629 0.0080

M2 0.0795 0.0307 0.0756 0.8142 0.0748 0.2914 0.6311 0.0027

Consumer credit 0.6387 0.3348 0.0265 0.0000 0.0136 0.1490 0.0205 0.8169

Exchange rate: average 0.0642 0.0611 0.0711 0.8036 0.0506 0.2640 0.6754 0.0100

Commodity price index 0.0764 0.6462 0.1310 0.1464 0.5902 0.2710 0.0131 0.1257

PPI: finished goods 0.0389 0.3666 0.0654 0.5291 0.8982 0.0396 0.0622 0.0000

Capacity utilization rate 0.3695 0.3580 0.2661 0.0064 0.0803 0.5850 0.1764 0.1583

Real Pers. Cons. 0.4418 0.0015 0.2662 0.2905 0.3390 0.0040 0.0729 0.5841

Real Pers. Cons.: services 0.4361 0.0482 0.0405 0.4752 0.2144 0.0218 0.3180 0.4457

Avg. unemployment duration 0.0001 0.3352 0.5322 0.1326 0.1462 0.2488 0.5861 0.0189

Employment 0.4915 0.3344 0.1669 0.0072 0.0227 0.0233 0.0002 0.9538

Avg weekly hours 0.7537 0.0007 0.0002 0.2454 0.0022 0.3885 0.2424 0.3669

Avg hourly earnings 0.0412 0.8748 0.0153 0.0688 0.4509 0.0052 0.4909 0.0529

Housing starts 0.6263 0.2254 0.0565 0.0918 0.0328 0.1410 0.0319 0.7943

New orders 0.4368 0.0528 0.4952 0.0153 0.0667 0.0181 0.0018 0.9133

S&P’s CCS: dividend yield 0.3327 0.4663 0.0134 0.1875 0.2368 0.2710 0.4921 0.0000

Consumer expectations 0.8944 0.0287 0.0011 0.0758 0.3703 0.3290 0.0053 0.2955

FFR 0.3647 0.6250 0.0048 0.0055 0.5921 0.1936 0.2143 0.0000

B-spread: 10y 0.4600 0.3430 0.1712 0.0258 0.0355 0.5156 0.2008 0.2481

Table II.IV: Marginal contribution to R2 in FAVAR-1
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Correlation[indexF, Ft ] Correlation[indexF, F∗
t ]

F1,t F2,t F3,t F4,t F5,t F∗
1,t F∗

2,t F∗
3,t F∗

4,t F∗
5,t

PCE 0.1779 0.6894 0.0721 -0.5272 0.0581 0.8908 0.1351 -0.1274 -0.2687 0.3597

UR -0.2369 0.3634 -0.3249 0.1541 -0.6141 0.0764 0.8319 -0.7171 0.4242 0.7006

C 0.5141 -0.0801 -0.1664 0.2536 -0.1385 -0.1319 0.0245 0.2848 0.0138 -0.0909

I 0.8099 0.2131 -0.3898 -0.0815 -0.0043 0.3431 0.0235 0.3874 0.0303 -0.0247

FFR -0.1066 0.8734 0.2714 0.1528 -0.0947 0.5801 0.4356 -0.4304 -0.3412 0.7672

Table II.VI: Correlation between factors and variables in recursive identification in

FAVAR-2

F1 F2 F3 F4 F5 F∗
1 F∗

2 F∗
3 F∗

4 F∗
5

Industrial production 0.3722 0.0372 0.1777 0.0975 0.3153 0.0240 0.0065 0.2188 0.1865 0.5643

CPI: total 0.0019 0.8011 0.1551 0.0012 0.0407 0.5887 0.0000 0.0070 0.1881 0.2162

CPI: core 0.0137 0.8546 0.1270 0.0047 0.0000 0.4625 0.0628 0.0262 0.2417 0.2069

T-Bill: 3-month 0.0071 0.8433 0.0911 0.0280 0.0304 0.3695 0.1699 0.0041 0.2804 0.1760

T-Bond: 5-year 0.0136 0.7499 0.0329 0.0360 0.1676 0.2731 0.3988 0.0006 0.2403 0.0873

Unemployment rate 0.0808 0.1901 0.1519 0.0342 0.5429 0.0084 0.9916 0.0000 0.0000 0.0000

M1 0.4904 0.0005 0.0042 0.0638 0.4412 0.1032 0.6443 0.2062 0.0343 0.0119

M2 0.1950 0.1857 0.0166 0.1620 0.4407 0.0007 0.6933 0.0465 0.2443 0.0152

Consumer credit 0.6791 0.0094 0.2864 0.0001 0.0251 0.0165 0.1472 0.4326 0.2972 0.1066

Exchange rate: average 0.1637 0.5082 0.1929 0.0611 0.0741 0.5264 0.2092 0.2073 0.0552 0.0019

Commodity price index 0.1450 0.1382 0.5949 0.0053 0.1166 0.2416 0.3128 0.0106 0.4062 0.0289

PPI: finished goods 0.0461 0.6329 0.1662 0.0145 0.1404 0.4157 0.0349 0.0071 0.1940 0.3482

Capacity utilization rate 0.2122 0.0021 0.5721 0.0077 0.2059 0.0396 0.6694 0.0237 0.2672 0.0002

Real Pers. Cons. 0.6921 0.0168 0.0725 0.1684 0.0502 0.0456 0.0053 0.9491 0.0000 0.0000

Real Pers. Cons.: services 0.6349 0.0930 0.0724 0.1551 0.0446 0.0912 0.0437 0.6569 0.1824 0.0257

Avg. unemployment duration 0.0096 0.1435 0.3114 0.0006 0.5350 0.1527 0.4265 0.0208 0.1243 0.2756

Employment 0.2846 0.0028 0.3902 0.1257 0.1967 0.0881 0.0342 0.1034 0.3363 0.4380

Avg weekly hours 0.4182 0.3666 0.1319 0.0833 0.0000 0.0195 0.3945 0.1837 0.0237 0.3786

Avg hourly earnings 0.0824 0.1672 0.6705 0.0768 0.0030 0.0249 0.0003 0.1320 0.7736 0.0691

Housing starts 0.4286 0.0492 0.4255 0.0095 0.0872 0.0025 0.1180 0.2226 0.3908 0.2660

New orders 0.1761 0.0866 0.1372 0.0409 0.5592 0.0019 0.0159 0.1318 0.2023 0.6481

S&P’s CCS: dividend yield 0.0224 0.8496 0.0616 0.0398 0.0266 0.3305 0.2061 0.0111 0.2369 0.2154

Consumer expectations 0.2517 0.6571 0.0866 0.0046 0.0000 0.2148 0.3383 0.1360 0.0149 0.2960

FFR 0.0129 0.8667 0.0837 0.0265 0.0102 0.3823 0.1405 0.0103 0.2457 0.2212

B-spread: 10y 0.2776 0.0103 0.5795 0.0045 0.1281 0.0229 0.6147 0.0549 0.3035 0.0041

Real GDP 0.7243 0.0239 0.1817 0.0681 0.0021 0.0107 0.0000 0.8954 0.0467 0.0472

Real GDP: goods 0.7311 0.0512 0.2146 0.0009 0.0023 0.0865 0.0004 0.8019 0.0988 0.0123

Real GDP: services 0.0688 0.0943 0.1299 0.7069 0.0000 0.5760 0.0009 0.0092 0.2823 0.1316

Employees compensation 0.7016 0.0010 0.0412 0.2528 0.0035 0.0141 0.0073 0.8944 0.0012 0.0830

Gov. consumption 0.4116 0.0900 0.2948 0.1792 0.0244 0.3330 0.0075 0.3325 0.3254 0.0015

Investment 0.7627 0.0528 0.1767 0.0077 0.0000 0.1369 0.0010 0.7723 0.0899 0.0000

Invst.: nonresidential 0.7003 0.0234 0.0801 0.1824 0.0137 0.0003 0.0049 0.8734 0.0032 0.1182

GDP deflator 0.0141 0.6406 0.1146 0.2304 0.0002 0.8248 0.0046 0.0982 0.0688 0.0036

PCE deflator 0.0399 0.5990 0.0065 0.3503 0.0043 1.0000 0.0000 0.0000 0.0000 0.0000

Table II.VIII: Marginal contribution to R2 in FAVAR-2
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Figure II.1: Principal components, rotated factors and variables used in recursive identi-

fication with monthly balanced panel
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Figure II.2: Principal components, rotated factors and variables used in recursive identi-

fication with monthly mixed-frequencies data

II.1.2 Results from structural VAR analysis

Models Wald causaility ordering

Benchmark [πt , URt , Rt , 10yBSt]

Model 1 [πt , URt , 10yBSt , Rt]

Model 2 [πt , URt , Rt , 1yBSt]

Model 3 [πt , URt , Rt , 10yASt]

Table II.IX: VAR models used to study effects and identification of financial shock
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Variables Benchmark Model 1 Model 2 Model 3

CPI 0.0467 0.0569 0.0227 0.0322

Unemployment rate 0.1945 0.1694 0.0477 0.0933

FFR 0.1055 0.1572 0.0882 0.0778

B-spread: 10y 0.9156 0.8968

B-spread: 1y 0.6069

A-spread: 10y 0.9437

Table II.X: Variance decomposition: contribution of the credit shock in SVAR models
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Figure II.3: Benchmark model vs models 1-3, 100 basic points shock to credit spread

II.1.3 Dynamic effects of the monetary policy shock

Here, we present the effects of the monetary policy using the same identification scheme

as above, and using the monthly balanced panel and the mixed-frequencies monthly

panel. In the first specification the monetary policy shock is ordered third, and in the

second specification it is the last element of the vector of identified structural shocks.
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Figure II.4: Dynamic responses of monthly variables to monetary policy shock
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Figure II.5: Dynamic responses of monthly variables to monetary policy shock using

mixed-frequencies data
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Figure II.6: Dynamic responses of constructed monthly indicators to monetary policy

shock using mixed-frequencies data
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II.1.4 Data Sets

No. Series Code T-Code Series Description

Real output and income

1 IPS10 5 INDUSTRIAL PRODUCTION INDEX - TOTAL INDEX

2 IPS11 5 INDUSTRIAL PRODUCTION INDEX - PRODUCTS, TOTAL

3 IPS12 5 INDUSTRIAL PRODUCTION INDEX - CONSUMER GOODS

4 IPS13 5 INDUSTRIAL PRODUCTION INDEX - DURABLE CONSUMER GOODS

5 IPS14 5 INDUSTRIAL PRODUCTION INDEX - AUTOMOTIVE PRODUCTS

6 IPS18 5 INDUSTRIAL PRODUCTION INDEX - NONDURABLE CONSUMER GOODS

7 IPS25 5 INDUSTRIAL PRODUCTION INDEX - BUSINESS EQUIPMENT

8 IPS29 5 INDUSTRIAL PRODUCTION INDEX - DEFENSE AND SPACE EQUIPMENT

9 IPS299 5 INDUSTRIAL PRODUCTION INDEX - FINAL PRODUCTS

10 IPS306 5 INDUSTRIAL PRODUCTION INDEX - FUELS

11 IPS32 5 INDUSTRIAL PRODUCTION INDEX - MATERIALS

12 IPS34 5 INDUSTRIAL PRODUCTION INDEX - DURABLE GOODS MATERIALS

13 IPS38 5 INDUSTRIAL PRODUCTION INDEX - NONDURABLE GOODS MATERIALS

14 IPS43 5 INDUSTRIAL PRODUCTION INDEX - MANUFACTURING (SIC)

15 PMP 1 NAPM PRODUCTION INDEX (PERCENT)

16 PMI 1 PURCHASING MANAGERS’ INDEX (SA)

17 UTL11 1 CAPACITY UTILIZATION - MANUFACTURING (SIC)

18 YPR 5 PERS INCOME CH 2000 $,SA-US

19 YPDR 5 DISP PERS INCOME,BILLIONS OF CH (2000) $,SAAR-US

20 YP@V00C 5 PERS INCOME LESS TRSF PMT CH 2000 $,SA-US

21 SAVPER 2 PERS SAVING,BILLIONS OF $,SAAR-US

22 SAVPRATE 1 PERS SAVING AS PERCENTAGE OF DISP PERS INCOME,PERCENT,SAAR-US

Employment and hours

23 LHEL 5 INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA)

24 LHELX 4 EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF

25 LHEM 5 CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,SA)

26 LHNAG 5 CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,SA)

27 LHTUR 1 UNEMPLOYMENT RATE: (

28 LHU14 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA)

29 LHU15 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA)

30 LHU26 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA)

31 LHU27 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA)

32 LHU5 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA)

33 LHU680 1 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)

34 LHUEM 5 CIVILIAN LABOR FORCE: UNEMPLOYED, TOTAL (THOUS.,SA)

35 AHPCON 5 AVG HR EARNINGS OF PROD WKRS: CONSTRUCTION ($,SA)

36 AHPMF 5 AVG HR EARNINGS OF PROD WKRS: MANUFACTURING ($,SA)

37 PMEMP 1 NAPM EMPLOYMENT INDEX (PERCENT)

38 CES002 5 EMPLOYEES ON NONFARM PAYROLLS - TOTAL PRIVATE

39 CES003 5 EMPLOYEES ON NONFARM PAYROLLS - GOODS-PRODUCING

40 CES004 5 EMPLOYEES ON NONFARM PAYROLLS - NATURAL RESOURCES AND MINING

41 CES011 5 EMPLOYEES ON NONFARM PAYROLLS - CONSTRUCTION

42 CES015 5 EMPLOYEES ON NONFARM PAYROLLS - MANUFACTURING

43 CES017 5 EMPLOYEES ON NONFARM PAYROLLS - DURABLE GOODS

44 CES033 5 EMPLOYEES ON NONFARM PAYROLLS - NONDURABLE GOODS

45 CES046 5 EMPLOYEES ON NONFARM PAYROLLS - SERVICE-PROVIDING

46 CES048 5 EMPLOYEES ON NONFARM PAYROLLS - TRADE, TRANSPORTATION, AND UTILITIES

47 CES049 5 EMPLOYEES ON NONFARM PAYROLLS - WHOLESALE TRADE

48 CES053 5 EMPLOYEES ON NONFARM PAYROLLS - RETAIL TRADE

49 CES088 5 EMPLOYEES ON NONFARM PAYROLLS - FINANCIAL ACTIVITIES

50 CES140 5 EMPLOYEES ON NONFARM PAYROLLS - GOVERNMENT

51 CES151 1 AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE

NONFARM PAYROLLS - GOODS-PRODUCING

52 CES153 1 AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE

NONFARM PAYROLLS - CONSTRUCTION

53 CES154 1 AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE

NONFARM PAYROLLS - MANUFACTURING
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54 CES155 1 AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE

NONFARM PAYROLLS - MANUFACTURING OVERTIME HOURS

55 CES156 1 AVERAGE WEEKLY HOURS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE

NONFARM PAYROLLS - DURABLE GOODS

56 CES275 5 AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE

NONFARM PAYROLLS - GOODS-PRODUCING

57 CES277 5 AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE

NONFARM PAYROLLS - CONSTRUCTION

58 CES278 5 AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY WORKERS ON PRIVATE

NONFARM PAYROLLS - MANUFACTURING

Real Consumption

59 JQCR 5 REAL PERSONAL CONS EXP QUANTITY INDEX (200=100), SAAR

60 JQCNR 5 REAL PERSONAL CONS EXP-NONDURABLE GOODS QUANTITY INDEX (200=100), SAAR

61 JQCDR 5 REAL PERSONAL CONS EXP-DURABLE GOODS QUANTITY INDEX (200=100), SAAR

62 JQCSVR 5 REAL PERSONAL CONS EXP-SERVICES QUANTITY INDEX (200=100), SAAR

Real inventories and orders

63 MOCMQ 5 NEW ORDERS (NET) - CONSUMER GOODS & MATERIALS, 1996 DOLLARS (BCI)

64 MSONDQ 5 NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1996 DOLLARS (BCI)

65 PMDEL 1 NAPM VENDOR DELIVERIES INDEX (PERCENT)

66 PMNO 1 NAPM NEW ORDERS INDEX (PERCENT)

67 PMNV 1 NAPM INVENTORIES INDEX (PERCENT)

Housing starts

68 HUSTSZ 4 HOUSING STARTS: TOTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR)

69 HSFR 4 HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,SA

70 HSMW 4 HOUSING STARTS:MIDWEST(THOUS.U.)S.A.

71 HSNE 4 HOUSING STARTS:NORTHEAST (THOUS.U.)S.A.

72 HSSOU 4 HOUSING STARTS:SOUTH (THOUS.U.)S.A.

73 HSWST 4 HOUSING STARTS:WEST (THOUS.U.)S.A.

Exchange rates

74 EXRCAN 5 FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$)

75 EXRUK 5 FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)

76 EXRUS 5 UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.)

Price indexes

77 PMCP 1 NAPM COMMODITY PRICES INDEX (PERCENT)

78 PW561 5 PRODUCER PRICE INDEX: CRUDE PETROLEUM (82=100,NSA)

79 PWCMSA 5 PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,SA)

80 PWFCSA 5 PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,SA)

81 PWFSA 5 PRODUCER PRICE INDEX: FINISHED GOODS (82=100,SA)

82 PWIMSA 5 PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,SA)

83 PUNEW 5 CPI-U: ALL ITEMS (82-84=100,SA)

84 PUS 5 CPI-U: SERVICES (82-84=100,SA)

85 PUXF 5 CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA)

86 PUXHS 5 CPI-U: ALL ITEMS LESS SHELTER (82-84=100,SA)

87 PUXM 5 CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA)

88 PUXX 5 CPI-U: ALL ITEMS LESS FOOD AND ENERGY (82-84=100,SA)

89 PUC 5 CPI-U: COMMODITIES (82-84=100,SA)

90 PUCD 5 CPI-U: DURABLES (82-84=100,SA)

91 PU83 5 CPI-U: APPAREL & UPKEEP (82-84=100,SA)

92 PU84 5 CPI-U: TRANSPORTATION (82-84=100,SA)

93 PU85 5 CPI-U: MEDICAL CARE (82-84=100,SA)

Stock prices

94 FSDJ 5 COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE

95 FSDXP 1 S&P’S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM)

96 FSPCOM 5 S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)

97 FSPIN 5 S&P’S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10)

98 FSPXE 1 S&P’S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA)

Money and credit quantity aggregates

99 FM1 5 MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK’ABLE DEP)(BIL$,SA)

100 FM2 5 MONEY STOCK:M2(M1+O’NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BIL$,

101 CCINRV 5 CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19)

Miscellaneous
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102 UOMO83 1 COMPOSITE INDEXES LEADING INDEX COMPONENT INDEX OF CONSUMER EXPECTATIONS

UNITS: 1966.1=100 NSA, CONFBOARD AND U.MICH.

Interest rates and bonds

103 FYGM3 1 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA)

104 FYGM6 1 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA)

105 FYGT1 1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA)

106 FYGT10 1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA)

107 FYGT20 1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,20-YR.(% PER ANN,NSA)

108 FYGT3 1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,3-YR.(% PER ANN,NSA)

109 FYGT5 1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA)

110 FYPR 1 PRIME RATE CHG BY BANKS ON SHORT-TERM BUSINESS LOANS(% PER ANN,NSA)

111 FYAAAC 1 BOND YIELD: MOODY’S AAA CORPORATE (% PER ANNUM)

112 FYAAAM 1 BOND YIELD: MOODY’S AAA MUNICIPAL (% PER ANNUM)

113 FYAC 1 BOND YIELD: MOODY’S A CORPORATE (% PER ANNUM,NSA)

114 FYAVG 1 BOND YIELD: MOODY’S AVERAGE CORPORATE (% PER ANNUM)

115 FYBAAC 1 BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM)

116 SFYGM3 1 FYGM3-FYFF

117 SFYGM6 1 FYGM6-FYFF

118 SFYGT1 1 FYGT1-FYFF

119 SFYGT5 1 FYGT5-FYFF

120 SFYGT10 1 FYGT10-FYFF

121 SFYAAAC 1 FYAAAC-FYFF

122 SFYBAAC 1 FYBAAC-FYFF

123 FYFF 1 INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA)

124 Bspread10Y 1 FYBAAC-FYGT10

Quarterly indicators

125 GDPRC@US.Q 5 NIA REAL GROSS DOMESTIC PRODUCT (CHAINED-2000), SA - U.S.

126 GDPGDR.Q 5 REAL GDP-GDS,BILLIONS OF CH (2000) $,SAAR-US

127 GDPSVR.Q 5 REAL GDP-SVC,BILLIONS OF CH (2000) $,SAAR-US

128 GDPSR.Q 5 REAL GDP-STRUC,BILLIONS OF CH (2000) $,SAAR-US

129 WS@US.Q 5* NIA NOMINAL TOTAL COMPENSATION OF EMPLOYEES, SA - U.S.

130 CR.Q 5 REAL PCE,BILLIONS OF CH (2000) $,SAAR-US

131 JQCDR.Q 5 REAL PCE-DUR,QTY INDEX (2000=100),SA,SA-US

132 UJQCDMVR.Q 5 REAL PCE-DUR-MV&PARTS,QTY INDEX (2000=100),SA,SA-US

133 JQCDFHER.Q 5 REAL PCE-DUR-FURN&HH EQUIP,QTY INDEX (2000=100),SA,SA-US

134 JQCDOR.Q 5 REAL PCE-DUR-OTH,QTY INDEX (2000=100),SA,SA-US

135 JQCNR.Q 5 REAL PCE-NDUR,QTY INDEX (2000=100),SA,SA-US

136 JQCNFR.Q 5 REAL PCE-NDUR-FOOD,QTY INDEX (2000=100),SA,SA-US

137 JQCNCSR.Q 5 REAL PCE-NDUR-CLO&SHOES,QTY INDEX (2000=100),SA,SA-US

138 JQCNER.Q 5 REAL PCE-NDUR-GASOLINE FUEL OIL&OTH ENERGY GDS,QTY INDEX (2000=100),SA,SA-US

139 JQCNEGAOR.Q 5 REAL PCE-NDUR-GASOLINE FUEL OIL&OTH ENERGY GDS-GASOLINE&OIL,QTY INDEX (2000=100),SAAR-US

140 JQCNEFACR.Q 5 REAL PCE-NDUR-GASOLINE FUEL OIL&OTH ENERGY GDS-FUEL OIL&COAL,QTY INDEX (2000=100),SAAR-US

141 JQCNOR.Q 5 REAL PCE-NDUR-OTH,QTY INDEX (2000=100),SA,SA-US

142 JQCSVR.Q 5 REAL PCE-SVC,QTY INDEX (2000=100),SA,SA-US

143 JQCSVHSR.Q 5 REAL PCE-SVC-HOUSING,QTY INDEX (2000=100),SA,SA-US

144 JQCSVHOPR.Q 5 REAL PCE-SVC-HH OPS,QTY INDEX (2000=100),SA,SA-US

145 JQCSVHOPEAGR.Q 5 REAL PCE-SVC-HH OPS-ELEC&GAS,QTY INDEX (2000=100),SA,SA-US

146 JQCSVHOPOR.Q 5 REAL PCE-SVC-OTH HH OPS,QTY INDEX (2000=100),SA,SA-US

147 JQCSVTSR.Q 5 REAL PCE-SVC-TRNSPRT,QTY INDEX (2000=100),SA,SA-US

148 JQCSVMR.Q 5 REAL PCE-SVC-MEDICAL CARE,QTY INDEX (2000=100),SA,SA-US

149 JQCSVRECR.Q 5 REAL PCE-SVC-RECR,QTY INDEX (2000=100),SA,SA-US

150 JQCSVOR.Q 5 REAL PCE-SVC-OTH,QTY INDEX (2000=100),SA,SA-US

151 JQCENERGYR.Q 5 REAL PCE-ENERGY GDS&SVC,QTY INDEX (2000=100),SAAR-US

152 JQCXFAER.Q 5 REAL PCE EX FOOD&ENERGY,QTY INDEX (2000=100),SAAR-US

153 CGRC@US.Q 5 NIA REAL GOVERNMENT CONSUMPTION EXPENDITURE & GROSS INVESTMENT (CHAINED-2000), SA - U.S.

154 I.Q 5* GROSS PRIV DOM INVEST,BILLIONS OF $,SAAR-US

155 IF.Q 5* GROSS PRIV DOM INVEST-FIXED,BILLIONS OF $,SAAR-US

156 IFNRE.Q 5* GROSS PRIV DOM INVEST-FIXED NONRES,BILLIONS OF $,SAAR-US

157 IFNRES.Q 5* GROSS PRIV DOM INVEST-FIXED NONRES-STRUC,BILLIONS OF $,SAAR-US

158 IFNRESC.Q 5* PRIV FIXED INVEST-NONRES-STRUC-COML&HEALTH CARE,BILLIONS OF $,SAAR-US

159 IFNRESMFG.Q 5* PRIV FIXED INVEST-NONRES-STRUC-MFG,BILLIONS OF $,SAAR-US
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160 IFREE.Q 5* PRIV FIXED INVEST-EQUIP,BILLIONS OF $,SAAR-US

161 IFRESPEMF.Q 5* PRIV FIXED INVEST-RES-STRUC-MFAM,BILLIONS OF $,SAAR-US

162 IFRESPESF.Q 5* PRIV FIXED INVEST-RES-STRUC-1 FAM,BILLIONS OF $,SAAR-US

163 IFRESPE.Q 5* PRIV FIXED INVEST-RES-STRUC-PERMANENT SITE,BILLIONS OF $,SAAR-US

164 IFRES.Q 5* PRIV FIXED INVEST-RES-STRUC,BILLIONS OF $,SAAR-US

165 IFRE.Q 5* GROSS PRIV DOM INVEST-FIXED RES,BILLIONS OF $,SAAR-US

166 IFNREEO.Q 5* GROSS PRIV DOM INVEST-FIXED-NONRES-EQUIP&SW-OTH,BILLIONS OF $,SAAR-US

167 IFNREET.Q 5* GROSS PRIV DOM INVEST-FIXED-NONRES-EQUIP&SW-TRNSPRT,BILLIONS OF $,SAAR-US

168 IFNREEIND.Q 5* GROSS PRIV DOM INVEST-FIXED-NONRES-EQUIP&SW-IND,BILLIONS OF $,SAAR-US

169 IFNREEIPO.Q 5* GROSS PRIV DOM INVEST-FIXED-NONRES-EQUIP&SW-INFO PROC&SW-OTH,BILLIONS OF $,SAAR-US

170 IFNREEIPCS.Q 5* GROSS PRIV DOM INVEST-FIXED-NONRES-EQUIP&SW-SW,BILLIONS OF $,SAAR-US

171 IFNREEIPCC.Q 5* GROSS PRIV DOM INVEST-FIXED-NONRES-EQUIP&SW-COMP&PERI,BILLIONS OF $,SAAR-US

172 IFNREEIP.Q 5* GROSS PRIV DOM INVEST-FIXED-NONRES-EQUIP&SW-INFO PROC,BILLIONS OF $,SAAR-US

173 IFNREE.Q 5* GROSS PRIV DOM INVEST-FIXED NONRES-EQUIP#&SW,BILLIONS OF $,SAAR-US

174 IFNRESO.Q 5* PRIV FIXED INVEST-NONRES-OTH STRUC,BILLIONS OF $,SAAR-US

175 IFNRESMI.Q 5* PRIV FIXED INVEST-NONRES-STRUC-MINING EXPLORATION,SHAFTS,&WELLS,BILLIONS OF $,SAAR-US

176 IFNRESP.Q 5* PRIV FIXED INVEST-NONRES-STRUC-POWER&COMM,BILLIONS OF $,SAAR-US

177 II.Q 1 GROSS PRIV DOM INVEST-CH IN PRIV INVENT,BILLIONS OF $,SAAR-US

178 IIF.Q 1 GROSS PRIV DOM INVEST-CH IN PRIV INVENT-FARM,BILLIONS OF $,SAAR-US

179 M.Q 5 IMPORTS OF GDS&SVC,BILLIONS OF $,SAAR-US

180 X.Q 5 EXPORTS OF GDS&SVC,BILLIONS OF $,SAAR-US

181 PGDP@US.Q 5 NIA PRICE DEFLATOR - GROSS DOMESTIC PRODUCT, SA - U.S.

182 PCP@US.Q 5 NIA PRICE DEFLATOR - PRIVATE CONSUMPTION EXPENDITURE, SA - U.S.



Appendix III

III.1 Appendix to Chapter 3

III.1.1 Proofs

Proof of Theorem 1 Premultiply (3.7) by (Λ′Λ)−1Λ′, assuming that (Λ′Λ) is nonsin-

gular, and go back one period to get

Ft−1 = (Λ′Λ)−1Λ′Xt−1 − (Λ′Λ)−1Λ′ut−1.

Then, replacing for Ft−1 in (3.8) yields

Ft = Φ(L)(Λ′Λ)−1Λ′Xt−1 +at −Φ(L)(Λ′Λ)−1Λ′ut−1.

Finally, replace for Ft in (3.7) to obtain

Xt = ΛΦ(L)(Λ′Λ)−1Λ′Xt−1 +ut −ΛΦ(L)(Λ′Λ)−1Λ′ut−1 +Λat .

Defining A(L) = [I − ΛΦ(L)(Λ′Λ)−1Λ′L], B(L) = [(I − ΛΦ(L)(Λ′Λ)−1Λ′L) Λ] and

et = [ut at ]
′, we obtain (3.9). This is a VARMA(p,p) process since ut and at are two

uncorrelated white noises.

Another way to see that VAR factors induce VARMA structure on observable series

is to consider the DFM in VAR form as in Stock and Watson (2005). Consider the model

in (3.18)-(3.20), and assume that Θ(L) = I. The VAR(p̄) on [Xt Ft ]
′ is





Xt

Ft



=





D(L) ΛΦ(L)

0 Φ(L)









Xt−1

Ft−1



+





ν t +ΛGη t

Gη t





where p̄ = max(p,max(px,i)), i = 1, . . . ,N. Hence, using results from Section 2 it can

be shown that the marginal process of Xt is VARMA(p∗,q∗) with p∗ ≤ (N −K + 1) p̄,
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q∗ ≤ (N −K)p̄.

Proof of Theorem 2 To obtain (3.11), we follow the same steps as in the previous

proof except that we use (3.10) instead of (3.8), which yields

Xt = ΛΦ(L)(Λ′Λ)−1Λ′Xt−1 +ut −ΛΦ(L)(Λ′Λ)−1Λ′ut−1 +Λat −ΛΘ(L)at−1.

Defining A(L) and et as above, and B(L)= [(I−ΛΦ(L)(Λ′Λ)−1Λ′L) Λ(I−Θ(L)L)] we

obtain the result. The VAR part is still of order p, while the MA part is of order max(p,q)

since the autocovariances of ν t ≡ ut −ΛΦ(L)(Λ′Λ)−1Λ′ut−1 +Λat −ΛΘ(L)at−1 go to

zero for h > max(p,q).

Proof of Theorem 3 We have that K-dimensional process Ft is a linear transformation

of Xt , i.e. Ft =CXt where C is K×N. Then we obtain the results using Propositions from

Section 2.

For (i) when Xt follows VARMA(p,q) process as in (3.6), then by Corollaries 11.1.1 and

11.1.2 in Lütkepohl (2005), Ft =CXt has VARMA(p∗,q∗) representation with appropri-

ate bounds for AR and MA orders.

For (ii), if Xt follows VAR(p) process, then by observing this as a special case in Corol-

laries 11.1.1 and 11.1.2 in Lütkepohl (2005), Ft =CXt follows VARMA(p∗,q∗) process.

Finally for (iii), if Xt has an MA representation as in (3.1) or (3.4), then by Proposition

4.1 or 4.2 in Lütkepohl (1987) the K-dimensional process Ft =CXt has an MA or MA(q∗)

representation.

III.1.2 Simulation results
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RELATIVE MSE (TO VAR(4) DIRECT) RESULTS FOR VARMA-BASED FORECASTING MODELS
K=3 K=4 K=6

Horizon Diag MA Diag AR Final MA Final AR Diag MA Diag AR Final MA Final AR Diag MA Diag AR Final MA Final AR
1 0.9638 0.9643 0.9285 0.9330 0.9194 0.9182 0.8866 0.8927 0.7282 0.6615 0.6905 0.6907
2 0.9085 0.9174 0.9076 0.9133 0.8792 0.8901 0.8805 0.8866 0.8261 0.8615 0.8244 0.8385
4 0.8971 0.8966 0.8965 0.8961 0.8764 0.8775 0.8764 0.8769 0.8030 0.8030 0.8010 0.8072
6 0.9038 0.9037 0.9035 0.9036 0.8548 0.8549 0.8548 0.8549 0.9182 0.9180 0.9182 0.9204
12 0.8808 0.8807 0.8807 0.8807 0.8416 0.8418 0.8418 0.8418 0.7983 0.7997 0.7983 0.7983
18 0.8831 0.8831 0.8831 0.8831 0.8455 0.8454 0.8454 0.8454 0.9393 0.9383 0.9393 0.9393
24 0.8757 0.8756 0.8756 0.8756 0.8425 0.8425 0.8425 0.8425 0.7287 0.7286 0.7287 0.7287
36 0.8344 0.8343 0.8343 0.8343 0.7930 0.7932 0.7932 0.7932 0.5466 0.5466 0.5466 0.5466

RELATIVE MSE (TO VAR(4) ITERATIVE) RESULTS FOR VARMA-BASED FORECASTING MODELS
K=3 K=4 K=6

Horizon Diag MA Diag AR Final MA Final AR Diag MA Diag AR Final MA Final AR Diag MA Diag AR Final MA Final AR
1 0.9638 0.9643 0.9285 0.9330 0.9194 0.9182 0.8866 0.8927 0.7282 0.6615 0.6905 0.6907
2 0.9197 0.9288 0.9188 0.9246 0.9092 0.9205 0.9106 0.9168 0.9296 0.9695 0.9277 0.9435
4 0.9685 0.9680 0.9679 0.9675 0.9562 0.9574 0.9562 0.9568 0.9406 0.9406 0.9383 0.9456
6 0.9927 0.9926 0.9925 0.9926 0.9851 0.9852 0.9850 0.9852 0.9467 0.9466 0.9467 0.9490
12 1.0001 1.0000 1.0000 1.0001 1.0002 1.0005 1.0005 1.0005 0.9803 0.9820 0.9803 0.9802
18 0.9997 0.9996 0.9996 0.9996 1.0038 1.0037 1.0037 1.0037 0.9957 0.9947 0.9957 0.9957
24 1.0009 1.0008 1.0008 1.0008 1.0010 1.0009 1.0009 1.0009 0.9978 0.9977 0.9978 0.9978
36 0.9998 0.9997 0.9997 0.9997 0.9993 0.9995 0.9995 0.9995 0.9986 0.9986 0.9986 0.9986

Table III.V: Results from simulation exercise 2



Appendix IV

IV.1 Appendix to Chapter 4

IV.1.1 Additional results
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Figure IV.1: Regional impulse responses to a credit shock in deviation with respect to

national response

– Atlantic provinces: Newfoundland and Labrador, Prince Edward Island, Nova

Scotia and New Brunswick

– Center: Québec and Ontario

– Prairies: Manitoba, Saskatchewan and Alberta

– BC: British Columbia
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IV.1.2 Bootstrap procedure

Since there is still no strong theoretical studies that shows the optimal way to produce

statistical inference about impulse responses in structural large-dimensional factor mod-

els, we explain in details our parametric bootstrap procedure. The goal is to obtain con-

fidence bands for impulse responses to structural shocks in representation (4.10-4.11)

with assumption (4.13).

– Step 1

Shuffle time dimension of residuals in (4.11) and resample static factors using

estimates of VARMA coefficients:

F̃t = Φ̂(L)F̃t−1 + Θ̂η̃ t

– Step 2

Shuffle time dimension of residuals in (4.10), and resample observable series using

new factors obtained from the previous step and the estimated loadings:

X̃t = Λ̂F̃t + ũt

– Step 3

Estimate FAVARMA model on X̃t , identify structural shock and produce impulse

responses.

As it was pointed out in Dufour and Stevanovic (2010), having a good approximation of

the true factor process can be very important in order to get the right bootstrap procedure.

If the finite VAR approximation is far away from the truth, and if the finite VARMA

representation does much better, allowing for MA part should provide a more reliable

inference.


