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Abstract

In practice we often face the problem of assigning indivisible objects (e.g., schools, hous-
ing, jobs, offices) to agents (e.g., students, homeless, workers, professors) when monetary
compensations are not possible. We show that a rule that satisfies consistency, strategy-
proofness, and efficiency must be an efficient generalized priority rule; i.e., it must adapt
to an acyclic priority structure, except — maybe — for up to three agents in each object’s
priority ordering.
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1 Introduction

In real life we often face the problem of allocating heterogeneous indivisible objects (for instance,
schools, housing, jobs, or offices) among a group of agents (for instance, students, homeless,
workers, or professors) when monetary compensations are not possible. Agents have strict
preferences over objects and remaining unassigned. An assignment is an allocation of the objects
to the agents such that every agent receives at most one object. A rule is a systematic way of
solving these assignment problems that are classically called house allocation problems (the
implicit assumption being that each agent only needs at most one house to live in). The search
for “good” house allocation rules, i.e., rules with desirable properties, is the subject of many
recent papers.1

In most real life problems “priorities” naturally arise. For example, in school choice students
who live closer to a school and/or have siblings attending a school have higher priority to be
admitted at that school (Abdulkadiroglu and Sonmez, 2003). When apartments are allocated,
the homeless who have been waiting longer have higher priority to be assigned an apartment
(similarly for the placement of students at colleges).

Balinski and S6énmez (1999) were the first to formulate the assignment problem based on
priorities. The agents’ priorities for a certain object are captured by an ordering of the agents.
A priority structure is a profile specifying for each object a priority ordering. Given the agents’
priorities, it is natural to require that the assignment does not violate any priorities. This means
that there should be no agent who — conditional on higher priority — envies another agent (for
receiving a better object). A rule adapts to a priority structure if it always chooses an assignment
that does not violate any priorities.

It is well known, that for any profile of agents’ preferences the assignment obtained from
applying Gale and Shapley’s (1962) deferred acceptance algorithm Pareto dominates any other
assignment which does not violate any priorities. This algorithm is called the “best” rule among
the rules adapting to a priority structure. Unfortunately the best rule may not be efficient. Er-
gin (2002) shows that the “acyclicity” of the priority structure is equivalent to various properties
(efficiency, group strategy-proofness,” and consistency) of the induced best rules.

Consistency, our main property, is a condition of stability when the set of agents and re-
sources may change. To understand this property, suppose that after objects are allocated
according to a rule, some agents leave the economy with their allotments, and the remaining
agents “reassign” among themselves the remaining objects. What if the same rule is applied to
their “reassignment problem”? A rule is considered “unstable” or “inconsistent” if its reassign-
ment differs from its original assignment to the remaining agents.?

Our main result shows that a rule that satisfies consistency, strategy-proofness,* and effi-
ciency must be an efficient generalized priority rule; ¢.e., it is efficient and adapts to an acyclic

!See for instance, Abdulkadiroglu and Sénmez (1998, 1999), Bogomolnaia and Moulin (2001), Chambers (2004),
Ehlers (2002), Ehlers and Klaus (2003a,b), Ehlers, Klaus, and Papai (2002), Ergin (2000), Kesten (2003a,b),
Papai (2000), and Svensson (1999).

2By group strategy-proofness no group of agents can profit by joint misrepresentation of their preferences such
that all members of the group weakly gain and at least one member of the group strictly gains.

3Ergin (2000) studies consistency for the house allocation problem in various combinations with efficiency,
converse consistency, neutrality, and anonymity. Here, converse consistency pertains to the opposite operation
of consistency; see Thomson (2004). By neutrality, the names of the objects do not matter. By anonymity, the
names of the agents do not matter.

“No agent can manipulate the allocation to his/her advantage by lying about his/her preferences.



priority structure, except — maybe — for up to three agents in each object’s priority ordering.
Therefore, our properties imply that the assignment of objects must be based on an acyclic gen-
eralized priority structure and the rule chooses the same allocations as the associated deferred
acceptance algorithm.

We proceed as follows. In Section 2 we introduce the model and the main properties. Sec-
tion 3 we devote to (generalized) priority rules, two examples, and the main result. We conclude
in Section 4 with a brief discussion of our results and a comparison to Ehlers and Klaus (2003b).
The proof of the main result is given in the Appendix.

2 House Allocation

Let P denote the set of potential agents. We assume that P is finite and contains at least four
agents.” Let P denote the set of all subsets of P containing at least two agents. Let K denote
the set of potential real objects. The set K can be finite or infinite. Not receiving any real
object is called “receiving the null object.” The null object, denoted by 0, does not belong to
K and is available in any economy. Let H denote the set of all finite subsets of K.

Each agent ¢ € P is equipped with a strict preference relation R; over all objects K U{0}. In
other words, R; is a linear order over K U {0}. Given z,y € K U{0}, z P; y means that agent i
strictly prefers z to y under R;. Let R denote the set of all linear orders over K U {0}. Given
N C P, let RY denote the set of all (preference) profiles R = (R;)ien such that for all i € N,
R; € R. An economy (or house allocation problem) consists of a set of agents, their preferences,
and a finite set of real objects which have to be allocated among them. Formally, an economy
is a triple (N, R, H) where N € P, R € R", and H € H. We suppress the set of agents and
write (R, H) instead of (N, R, H). Let £V denote the set of all economies with the set of agents
equal to V.

When allocating objects each agent receives one object. The null object is the only object
which can be assigned to several agents. Formally, given a set of agents N, an allocation is a
list @ = (a;);en such that for all i € N, a; € K U {0}, and none of the real objects in K is
assigned to more than one agent. Note that not all real objects in K have to be assigned. An
(allocation) rule is a function that assigns an allocation to every economy. Formally, a rule ¢
chooses for all N € P and all economies (R, H) € £V an allocation (R, H) such that for all
i€ N, pi(R,H) € HU{0}. Given i € N, we call ¢;(R, H) the allotment of agent i at ¢(R, H).

Next, we introduce our main properties for rules.
First, the rule chooses only (Pareto) efficient allocations.

Efficiency: For all N € P and all (R, H) € £V, there is no allocation a = (a;);en such that for
alli € N, a; € HU{0} and a; R; pi(R), and for some j € N, a; Pj ¢;(R, H).

Given N € P, R€ RV, and M C N, let Rys denote the profile (R;);car. It is the restriction
of profile R to the subset of agents M. We also use the notation R_; = Ry\(;}. For example,
(R;, R_;) denotes the profile obtained from R by replacing R; by R;.

Second, no agent ever benefits from misrepresenting his/her preference relation.

®Example 2 considers |P| = 3 and clarifies why our main result has no bite in this case. Our results remain
unchanged if P is infinite.



Strategy-Proofness: For all N € P, all (R,H) € £V, alli € N, and all R; € R, ¢;(R, H) R;
ei((Ri, R-i), H).

Our last property is a stability condition. Consistency® requires that if some agents leave an
economy with their allotments, then the rule should allocate the remaining objects among the
agents who did not leave in the same way as in the original economy.

Consistency: For all N, M € P such that M C N, all (R,H) € £V, and all i € M,

@i(R, H) = ¢; (Rar, H\(Ujen\m{@j(R, H)})) -

In Ehlers and Klaus (2003b) an alternative consistency condition, reallocation-consistency,
is discussed. In difference to consistency, it is assumed that if some agents leave an economy
with their allotments, then the rule should assign the objects in the same way to these agents
for the economy where only the agents that left and their previous allotments are present.

Reallocation-Consistency: For all N,M € P such that M C N, all (R, H) € £V, and all
i€ M,
ei(R, H) = ¢; (Rv, Ujen{p; (R, H)}) -

The difference between the two consistency properties is as follows. When defining consis-
tency, we define the so-called reduced economy for consistent rules to equal the set of agents that
were left behind and all objects not consumed by the agents that were leaving. Hence, in such
a reduced economy there may be some unassigned objects in addition to the remaining agents’
allotments — an incidence that cannot occur in a reduced economy for reallocation-consistent
rules where agents can only reallocate their allotments among themselves. A priori, no logical
relation exists between consistency and reallocation-consistency. However, in combination with
strategy-proofness and efficiency, it follows from Ehlers and Klaus (2003b, Theorem 1) that
reallocation-consistency implies consistency, but not vice versa; see our discussion in Section 4.

3 Generalized Priority Rules

We now introduce the idea that rules may adapt to priorities. In many situations “priorities”
naturally arise. For example, when offices are assigned to the members of a department, seniority
may matter; when apartments are assigned to graduate students, students who have been waiting
longer should come first; and for jobs, a candidate with higher qualification may be ranked above
lower qualified applicants.

We follow the notation and terminology introduced by Ergin (2002), who studies efficient
house allocation on the basis of priorities.

Given z € K, let =, denote a linear order over P. We call =, a priority ordering for
object x. A priority structure is a profile = = (>,)zcx specifying for each object a priority
ordering. Given N € P, i € N, R € R", z € K, and a priority structure >, an allocation a
violates the priority of i for x if there exists j € N such that a; =z, i >, j, and = P; a; (i.e.,
i has higher priority for object z than j but j receives z and 7 envies j). A rule ¢ adapts to a
priority structure - if for all N € P and all (R, H) € EV, (R, H) does not violate the priority
of any agent for any object.

SFor a recent overview see Thomson (2004).



We say that ¢ is a priority rule if there exists a priority structure > such that ¢ adapts to >.

Using a result from Balinski and Sénmez (1999, Theorem 2) it follows that an efficient priority
rule ¢ must be a so-called best rule; i.e., for each economy (R, H) € N, (R, H) is obtained from
applying the well-known deferred acceptance algorithm (Gale and Shapley, 1962) to the two-sided
matching problem where the agents’ preferences are given by R and the “objects’ preferences”
are given by the priority structure > (see also Ergin, 2002, Proposition 1). Ergin’s (2002,
Theorem 1) main result essentially states that for best rules, efficiency, group strategy-proofness,
consistency, and the acyclicity of the priority structure are all equivalent.

While Ergin (2002) focuses on the class of rules that adapt to an exogenously given priority
structure, we consider the general class of all rules. We show that if a rule satisfies consistency,
strategy-proofness, and efficiency, then there must exist a priority structure that it “almost”
adapts to. In order to formalize this “almost” adaptation, we introduce generalized priority
rules next.

Let x € K. We call a binary relation >, a generalized priority ordering if

(i) > is transitive and antisymmetric and
(ii) there exists a set Q* C P such that |Q*| < 3 and

(a) the restriction of >, to the agents in P\Q”, denoted >|p\ =, is complete (all agents in P
except for the agents in QF can be completely ranked according to priority order =) and

(b) for all 1 € P\Q* and all j € Q%, i >4 j (agents in P\Q® are ranked above agents in Q%).

Note that any priority ordering is a generalized priority ordering since it satisfies the above
definition for Q* = (). Also, a generalized priority ordering that satisfies the above definition
with |Q*| =1 is in fact a priority ordering.

A generalized priority structure is a profile = = (>,),ex specifying for each object a gener-
alized priority ordering. We say that ¢ is a generalized priority rule if there exists a generalized
priority structure > such that ¢ adapts to =; i.e., it adapts to all priorities that are specified
in the generalized priority ordering, except possibly for priorities concerning an object z and
agents in Q*.

Theorem 1. If a rule satisfies consistency, strategy-proofness, and efficiency, then it is an
efficient generalized priority rule.

In order to be more specific about the structure of efficient generalized priority rules, we use
Ergin’s (2002, Theorem 1) result that a priority rule is efficient if and only if the underlying
priority structure is acyclic.

Let > be a generalized priority structure. We say that > has a cycle if there exist z,y € K
and 7,7,k € P such that ¢ >, j >, k >, 7. A generalized priority structure is acyclic if it has
no cycles. We can now rephrase Theorem 1.

Corollary 1. If a rule satisfies consistency, strategy-proofness, and efficiency, then it adapts
to an acyclic generalized priority structure >.



Efficient priority rules satisfy all the axioms in Theorem 1. In the following example, we
demonstrate that the class of efficient generalized priority rules is strictly larger than the class
of efficient priority rules. In order to do so, we need some notation.

Let > be a priority structure and ¢ be a priority rule adapting to >=. Then we call ¢ a serial
dictatorship if there exists an ordering >, over P such that for all z € K, >, = >.. We denote
by ¢~ the serial dictatorship with ordering =,. It is easily checked that a serial dictatorship
satisfies consistency, strategy-proofness, and efficiency.

Example 1 shows that not only efficient priority rules satisfy the properties of Theorem 1.

Example 1. Let >! and =2 be the following orderings over P:

|P| =1 |P|—1=!-..x13x12x11;

|P| =2 |P|—1=2-.-=23%21%22

The orderings =! and =2 only differ in their last two entries. We define the following, “almost
serial dictatorship:” Agents start choosing their objects according to their names, the agent
with the highest number starts and chooses his/her favorite object, then the agents with the
next higher number chooses his/her favorite object among the remaining objects, etc., until only
agents 1 and 2 are left over. Now, the number of remaining objects determines who is allowed

to choose next. For all N € P and all (R, H) € £V,

(i) if \H\(UieN\{LQ}{gof’l‘(R, H)Y)| < 1, then (R, H) = ¢~+(R,H) (if one or none object
are left for agents 1 and 2, then agent 2 may choose among the remaining objects before
agent 1); and

(ii) if |H\(UZ~6N\{1,2}{50;£(R, H)})| > 1, then ¢(R, H) = ¢=*(R, H) (if more than one object
is left for agents 1 and 2, then agent 1 may choose among the remaining objects before
agent 2).

Because serial dictatorships are efficient, the rule ¢ is efficient. Since agents 1 and 2 cannot
change the ordering by stating other preferences and ~! and >2 only differ in their last two
entries, the rule ¢ is strategy-proof. To show consistency let N € P, (R,H) € £V, and j € N.
It suffices to show that for all i € N\{j},

pi(R_j, H\{pj(R,H)}) = ¢i(R, H). (1)

If i € N\{L2}, then ¢ (R,H) = ¢ "(RH) and ¢ (R_;,H\[g;(R,H)}) =
go?f(R,j,H\{goj(R, H)}). So, the fact that ¢ is a serial dictatorship for all agents except
agents 1 and 2 implies (1).
Consider 7 € {1,2} and denote {1,2} = {i,k}. 1If either j = k or £ ¢ N, then
1 2 . . 1
(P;*(R—j,H\{;Pj(R, H)}) = (P?*(R—DH\{QD]'(R’ H)})l Slnce2 either (R, H) = (,0>*(R,H) or
»(R, H) = ¢™*(R, H), the consistency property of ¢~ * or ¢~ = implies (1).

Finally, comsider ¢ € {1,2} and j € N\{1,2}. For all ¢+ €
N\{1,2}, ¢ (Rj,H\{¢;"(R,H)}) = @ (RH) and iR H) =
@} (R, H). Thus,  (H\{soj (R, DD\ (Ui {0 (Rg, E\{@] (R, DY) =

1 1
* *

(B\{e " (R (Uiem o 2 19] " (R DY) = H\ (Uiew 1.y {9 (R H)Y) -
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Then either (i) holds for (R, H) and (R_j;, H\{cp?i (R,H)}) (<,0->1 is used for both problems)

or (ii) holds for (R, H) and (R_j, H\{* (R, H)}) (" is used for both problems). Hence, the
consistency property of (p*i or cp*z implies (1). Finally note that ¢ is a generalized priority rule
where for all z € K, =, = =L N =2 and for all z € K, Q% = {1,2}. <

Remark 1. Tn Example 1 the choice of =! or =2 could be defined in a more complex manner
without violating the axioms of Theorem 1. We could choose >. whenever a certain object z is
available after the other agents (except agents 1 and 2) have received their allotments and when
z is not available, then we pick =2. On the other hand, we can easily define efficient generalized
priority rules that do not satisfy the axioms of Theorem 1; for instance if the choice between
=1 and =2 depends on the preferences of agent 1 (possible violations of strategy-proofness) or
if the choice between >! and =2 depends on the presence of certain agents (possible violations
of consistency). Because it is intuitively clear, what the degrees of freedom in difference to the
class of priority rules is, but since, at the same time, it is very tedious and technical to give
a full characterization, we did not try to formulate Theorem 1 as a full characterization. The
important point is that any rule satisfying the axioms of Theorem 1 is “almost” a priority rule. <

Remark 2. Theorem 1 and Example 1 show that consistency, strategy-proofness and efficiency
characterize “almost” efficient priority rules. These axioms only allow more flexibility at the
bottom of the priority orderings—up to three agents for each object’s generalized priority ordering.
A similar feature has been observed in the paper by Bogomolnaia, Deb and Ehlers (2004). They
show on the domain of weak preference relations that non-bossiness,” strategy-proofness, and
efficiency “almost” characterize serial dictatorships. Those axioms only allow more flexibility
for the first two agents of the serial order. <

In Example 1 the set of agents for which priorities are unspecified is equal to {1,2} =
Uzex@®. Next, we construct an efficient, strategy-proof, and consistent rule for P = {1, 2,3}
and K = {a, b} that does not adapt to any priority structure. Extending the example to |P| > 3,
as explained after the example, yields an example where the set of agents for which priorities
are unspecified is equal to {1,2,3} = Uyexg Q*.

Example 2. Let P ={1,2,3} and K = {a,b}. The rule ¢ is defined as follows:

For N = {i,j,k} such that |N| = 3 define ¢”* as the serial dictatorship ¢~ where i >4 j =4 k
and ¢ =y 7 > k.

e If IN| =3, H = {a,b}, and R € R" such that

PR, H) = a and @}32(R, H) = b, then ¢(R, H) = ¢'3%(R, H),
— oP%(R,H) = a and ¢}*2(R, H) = 0, then ¢(R, H) = ¢?'3(R, H),
V1B (R,H) = b and p3?*(R, H) = a, then ¢(R, H) = ¢'?3(R, H),
— oi2(R,H) = b and ¢}**(R,H) = 0, then ¢(R, H) = ©3'?(R, H).

o If H={a}and R € R", then ¢(R, H) = ¢'*(R, H).
e If H ={b}, and R € RN, then @(R, H) = p*?(R, H).

"No agent can influence another agent’s final allotment without changing his/her final consumption.



For N = {1,2} let =12 denote the priority structure 2 =021 and 1 >([112] 2.

o If N ={1,2}, H = {a,b}, and R € RV, then ¢(R, H) = """ (R, H).

For N = {1,3} let ~[!3 denote the priority structure 1 >L13] 3 and 3 *1[;13] 1.

o If N ={1,3}, H = {a,b}, and R € RY, then ¢(R, H) = o~ (R, H).

For N = {2,3} let ~[23/ denote the priority structure 2 =231 3 and 3 *1[)23] 2.

o If N ={2,3}, H = {a,b}, and R € RY, then @(R, H) = """ (R, H).

e If [N| =3, H = {a,b}, and R € R" is such that the null object is the most preferred
object under Ry, then @(R, H) = (0,05 (Rya5y, H), 05" (Rpn5y, H))-

Since all rules used to define @ are priority rules, ¢ is efficient. The proof that @ satisfies
strategy-proofness and consistency is straightforward, but tedious and is available from the
authors upon request. <

Example 2 demonstrates that at the bottom of each generalized priority ordering there may
be a set of three agents which are not related to each other, i.e., Q¢ = Q* = {1,2,3}. Thus,
the upper bound 3 for the cardinality of " cannot be lowered in the definition of a generalized
priority ordering »,. Furthermore, Example 2 can be easily adapted to any number of agents.
Just let all other agents choose according to a serial dictatorship before agents {1,2,3} and use
then the rule of Example 2 to allocate objects to {1,2,3}, depending on which objects are left
behind by the agents N\{1,2, 3}.

4 Conclusion

By our main result, Theorem 1, any rule that satisfies consistency, strategy-proofness, and effi-
ciency equals an efficient generalized priority rule. As argued in Remark 1, we “almost” provide
a characterization of consistent, strategy-proof, and efficient rules. Ehlers and Klaus (2003b,
Theorem 1) show that a rule satisfies reallocation-consistency, strategy-proofness, and efficiency
if and only if it equals an efficient priority rule. Since the set of efficient priority rules is a strict
subset of the set of efficient generalized priority rules, reallocation-consistency — in combina-
tion with strategy-proofness and efficiency — turns out to be a more demanding property than
consistency. Hence, using the weaker (and more standard) condition of consistency here, yields
a larger class of rules, but not a fully characterized set of rules. This is also the reason why
Theorem 1 requires arguments that are different from Ehlers and Klaus (2003b).

In real life agents may be indifferent between several objects because, for instance, they do
not have enough information to distinguish any two of them. Unfortunately, our result (and
Theorem 1 of Ergin, 2002) is not robust when allowing for indifferences. The reason is as follows.
It is easy to see that any strategy-proof and consistent rule satisfies non-bossiness. Then, on the
domain of weak preferences any rule of Theorem 1 satisfies strategy-proofness, non-bossiness,
and efficiency. By Bogomolnaia, Deb and Ehlers (2004, Theorem 4) such a rule is “almost”
a serial dictatorship. Therefore, on the domain of weak preferences, any rule that satisfies
consistency, strategy-proofness, and efficiency must be “almost” a serial dictatorship.



Ehlers and Klaus (2003b) consider the richer model of house allocation with quotas, i.e.,
possibly multiple copies of objects may be available. We could adjust our model accordingly
without affecting the results, but chose for the clarity and notational simplicity of the classical
house allocation model.

Appendix

To prove Theorem 1 let ¢ be a rule satisfying consistency, strategy-proofness, and efficiency.

For each object we construct a generalized priority ordering. Given = € K, let R} € R
denote a preference relation such that for all y € K\{z}, z P*0 Py, i.e., z is the unique object
that is preferred to the null object at R}. Then

iy j & for all H € H such that z € H, ¢;((R,Rj),H) = z.

The difficulty of the proof is to show that >, is complete whenever necessary in the definition
of a generalized priority ordering. Example 1 proves that there may exist agents 4, j such that
neither ¢ >, j nor j >, 1.

Lemma 1. Let x € K and N = {1,2,3,4} C P. If p;(R%;, {z}) = =, then 1 =, 2, 1 >, 3, and
1>y 4.

Proof. Let
p1(Ry, {z}) = . (2)
In order to prove 1 =, 2, 1 =, 3, and 1 =, 4, we show that for all H € H such that z € H,
p1(RY, H) = .
Let y € K\{z}. We first show that
p1(Ry, {z,y}) = = (3)

The proof involves many different profiles, which we depict as explained after the two first
profiles we introduce now. Without loss of generality, we assume

, R Ry Ry Ry
(B, {z,y}) : T T T (4)
Yoy

R' RY Ry Ry
(R5, {z,y}) : N
y

We only specify the ranking of the objects which are preferred to the null object. In (4), the
set of objects is {z,y} and the rule ¢ allocates z to agent 1 and y to agent 2. Furthermore, we
denote the profile in (4) by R*. In (4) agent 1 has to receive 2 because otherwise we obtain a
contradiction from (2) and consistency (the agent who receives y in (4) can leave the economy
in (2) and (4)). Then by efficiency, one of the agents 2, 3, or 4 receives y. Without loss of
generality, we suppose that agent 2 receives y. Similar arguments yield ¢1(R?, {z,y}) = =.

and

(5)

From now on we assume that (3) is not true, i.e., o1 (R%, {z,y}) # .



Step 1: If o1 (R}, {z,y}) # =, then

R, R R: R®
(R®, {z,y}) : ‘ T oz (6)

Because ¢1(RY,{z,y}) # x, strategy-proofness implies that in the above economy agent 1
cannot receive x. Then by efficiency, 1 (RS, {z,y}) = y. We have to show that neither agent 2
nor agent 3 receives = at (RS, {z,y}). Suppose

R, R R RY
(RT {z,y}): = T (7)

Then consistency and strategy-proofness imply

R, Ry
(R® {z,y}): = (8)
Yy

Using consistency and strategy-proofness in (4) yields that agent 1 receives z in the economy
(8), a contradiction. Hence, pq(RS, {z,y}) # .
Suppose
R, RS R R}
(R Az} = T (9)

Then consistency and strategy-proofness imply

R Rj
(R {z,y}): = (10)
Y

Using consistency and strategy-proofness in (5) yields that agent 1 receives z in the economy
(8), a contradiction. Hence, @3(RS, {z,y}) # z. Since agents 1, 2, and 3 do not receive z in the
economy (6), efficiency implies that 4 receives z in the economy (6). <

Step 2: We finish the proof by showing that in the economy (R, {z,y}) € £{234} any efficient
allocation yields a contradiction to our previous deductions. Let

Ry R3 Ry
R A{z,y}): = =y (11)
Yy Yy z

We distinguish three cases.

Case 1: p4(R", {z,y}) = v.
Then @o(R'",{z,y}) = 0 or @3(R",{z,y}) = 0. If p(R", {z,y}) = 0, then
w3(R"M, {z,y}) = = and by consistency and strategy-proofness, 902(R3{’2,4},{y}) = 0 and

(P4(R?{/274}7 {y}) =Y.
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Applying consistency to (4) yields <p2(R‘{12,4},{y}) =y and <,04(R‘{*2’4}, {y}) = 0. Thus, by
strategy-proofness, QQ(R:’{JQ ne {y}) =y and <,04(R‘1{’2 e {y}) =0, a contradiction.

If p3(RY, {z,y}) = 0, then we obtain a contradiction by applying consistency for agents 3
and 4 to the economies (R'!, {z,y}) and (R%, {z,y}) (in (5)). Hence, Case 1 cannot occur.

Case 2: p4(RY, {z,y}) = =.

Then @9 (R, {z,y}) = y or p3(RY, {z,y}) = y. If po(R",{z,y}) = y, then agents 2 and
4 gain from exchanging their objects, a contradiction to efficiency. If p3(R,{z,y}) = y, then
agents 3 and 4 gain from exchanging their objects, a contradiction to efficiency. Hence, Case 2
cannot occur.

Case 3: p4(R", {z,y}) = 0.

Thena by eﬁcjenc}’a QOQ(RHa {-’L',y}) = or @3(R117 {xay}) =uz If (PQ(RHa {x,y}) =z, then
by consistency and strategy-proofness, cpg(R‘fQA}, {z}) =z and <p4(Rf274}, {z}) =0.

Applying consistency to (6) yields gog(Rf{”M}, {z}) =0 and 904(Rf2,4}, {z}) = z, a contradic-
tion.

If p3(R'", {r,y}) = z, then we obtain a contradiction by applying consistency for agents 3
and 4 to the economies (R'!, {z,y}) and (RS, {z,y}) (in (6)). Hence, Case 3 cannot occur.

We have shown that ¢1(R%, {z,y}) = z. Finally, in order to prove that for all H € #
such that z € H, ¢1(R%, H) = z, we repeat the previous arguments by adding another object
z € H\{z,y} and considering similar preference profiles where y is an undesirable object, etc. O

Next, we show that >, is a generalized priority ordering.

Lemma 2. For all x € K, =, is transitive and antisymmetric; i.e., >, satisfies condition (i)
in the definition of a generalized priority ordering.

Proof. Antisymmetry follows from the definition of »,.

Let 1,2,3 € P. Suppose 1 =, 2 and 2 >, 3. Let H € H be such that x € H. In order
to prove 1 >, 3, we need to show that ¢;((Ry, R%), H) = z. Consider R* = (R}, R}, RY). By
efficiency, for some | € {1,2,3}, ¢, (R*, H) = x.

If | = 2, then by consistency, ¢1((R7,R5),H) = 0 and p2((RY, R3), H) = z, which contra-
dicts 1 >, 2 and the definition of >,.

If [ = 3, then by consistency, ¢2((R3. R%),H) = 0 and ¢3((R%, R}), H) = z, which contra-
dicts 2 >, 3 and the definition of >,.

Thus, [ = 1. By consistency, ¢1((R7, R%), H) = z and ¢3((R7, Rj), H) = 0. Hence, by the
definition of =, 1 >4 3. O

In order to determine the set of agents Q for >,, we define the following ordering:

i e ei(R; 1, {z}) = 2.

!
x

Note that by efficiency we either have ¢ =, j or j =/ 4, but not both. Thus, >
The proof that >! is transitive is similar to the proof of Lemma 2.

Let Q* C P denote the set of the three bottom ranked agents under >/, i.e., for all i € P\Q*
and all j € Q%, i »! j and |Q*| = 3.

is complete.

Lemma 3. For all x € K, =, satisfies condition (ii) in the definition of a generalized priority
ordering.
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Proof. Let Q% ={l,m,q}.

Let ¢, € P\Q®. Then by completeness of >, 7 »=" j or j >/ i. Suppose i >/, j. By the
definition of Q%, 7 =/, [ and i >/, m. Thus, by consistency, ‘P%’(R?i,j,l,m}v {z}) = . By Lemma 1
(with 4 = 1 and {i,7,l,m} = {1,2,3,4}), i =, j. Hence, =, p\- is complete and >, satisfies
(a) in (ii).

Let 4 € P\Q®. Then by definition of *! and consistency, (pi(R:{E’i,l,m,qP{m}) = z. By
Lemma 1 (with 4 = 1 and {4,5,l,m} = {1,2,3,4}), % =5 I, i =5 m, and 7 >, ¢q. Hence, =,
satisfies (b) in (ii). O

Let > = (>4)zek- Then, = is a generalized priority structure.
Lemma 4. The rule ¢ adapts to the generalized priority structure >.

Proof. Let N € P and (R,H) € EN. Suppose that there exist + € H and i € N such that
(R, H) violates the priority of i for . Then for some j € N, ¢;j(R,H) = =, i >, j, and
z P; p;(R,H). Let R € RY be such that (i) for all [ € N\{4} and all y € K\{y/(R, H)},
(R, H) Ry 0 P,y and (ii) for all y € K\{z}, z P, 0 P, y.

Let [ € N\{i}. By strategy-proofness, p;((R;,R_;),H) = ¢;(R,H). Thus, by consis-
tency, o((R;, R_;),H) = (R, H). Applying the same arguments repeatedly we obtain that
¢((Ri, R—i), H) = (R, H). _Let {{ = H\(UZEN\{i,j}{(Pl((Riv‘}?—i)v_H)})'

By consistency, ¢;((R;, R;), H) = ¢;(R, H) and ¢;((R;, R;), H) = x. By strategy-proofness
and z P; p;(R, H), 90,-(1_%{,»7]-},1_{) = 0 and goj(}_%{i7j},l_{) = z. Thus, by strategy-proofness,

goi(Rg{”ij},H) = 0 and goj(Rf{“i j},H) = 2. By i =, j and the definition of >, we have for all
ze H e€H, go,-(}_%{i’j}, H') = . Since z € H, the previous two facts constitute a contradiction. OJ

By Lemma 4, ¢ is an efficient generalized priority rule. The proof of Theorem 1 is now
complete.
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