


Université de Montréal 
 
 
 
 
 
 

Bcl-xL regulation and function in cell cycle checkpoints and progression 
 
 
 
 
 

par 

Jianfang Wang 

 
 
 
 
 
 

Programme de Sciences biomédicales 

Faculté de Médecine 

 

 

 

 

Thèse présentée à la Faculté de Médecine  

en vue de l'obtention du grade de doctorat en 

 Sciences biomédicales 

 

 

Juin 2011 

 

 

 

© Jianfang Wang, 2011 



Université de Montréal 

Faculté de Médecine 

 

 

 

 

 

Cette thèse intitulée: 

 

Bcl-xL regulation and function in cell cycle checkpoints and progression 
 
 
 
 
 
 
 

Présentée par: 
Jianfang Wang 

 
 
 
 
 
 
 
 

a été évaluée par un jury composé des personnes suivantes: 
 
 
 
 
 

Dr Alexander Parker, président-rapporteur 
Dr Richard Bertrand, directeur de recherche 

Dr Edward Bradley, membre du jury 
Dr Moulay Alaoui-Jamali, examinateur externe 

Dr Jean Vacher, représentant du doyen de la FESP 
 

 

 



 i 

Abstract 
 
     Accumulating evidence suggest that Bcl-xL, an anti-apoptotic member of the Bcl-

2 family, also functions in cell cycle progression and cell cycle checkpoints. To further 

understand Bcl-xL regulation and function in cell cycle progression, we first expressed a 

series of single-point Bcl-xL cDNA phospho-mutants, including Thr41Ala, Ser43Ala, 

Thr47Ala, Ser49Ala, Ser56Ala, Ser62Ala and Thr115Ala in human cancer cell lines and 

investigated their impact on cell cycle progression.    

     Analysis of this series of phosphorylation mutants reveals that cells expressing 

Bcl-xL(Ser62Ala) mutant are less stable at the G2 checkpoint and enter mitosis more 

rapidly than cells expressing wild type Bcl-xL or Bcl-xL phosphorylation mutants, 

including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Dynamic 

phosphorylation and location studies on phospho-Bcl-xL(Ser62) in unperturbed, 

synchronized cells and during DNA damage-induced G2 arrest revealed that phospho-

Bcl-xL(Ser62) translocates into nucleolar structures in VP16-exposed cells during G2 

arrest. Using in vitro kinase assays, pharmacological inhibitors and specific siRNAs 

experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases 

involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures 

during the G2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes 

with CDK1(CDC2), the key cyclin-dependent kinase required for entry into mitosis. 

These data indicate that, during G2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G2 

arrest by timely trapping CDK1(CDC2) in nucleolar structures to slow mitotic entry. It 

also highlights that DNA damage affects the dynamic composition of the nucleolus, 

which now emerges as a key event in the DNA damage response. 

 In a second study, we describe that cells expressing Bcl-xL(Ser62Ala) are also more 

stable at a sustained spindle-assembly checkpoint (SAC) after exposure to taxol than cells 

expressing wild-type Bcl-xL or other mutants, an effect that appears to be independent of 

its anti-apoptotic activity. Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and 

MAPK14/SAPKp38α at prometaphase, metaphase and the anaphase boundary, while it is 

dephosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in 

centrosomes with γ-tubulin, along the mitotic spindle with dynein motor protein and in 

cytosol with SAC signaling components. In taxol-exposed cells, phospho-Bcl-xL(Ser62) 
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binds to the CDC20/MAD2/BUBR1/BUB3 complex, while Bcl-xL(Ser62Ala) does not. 

The data indicate that during SAC, Bcl-xL(Ser62) phosphorylation accelerates SAC 

resolution and cell entry into anaphase, even in the presence of unattached or misaligned 

chromosomes. Silencing Bcl-xL expression also leads nocodazole-exposed cells to 

tetraploidy and binucleation, consistent with a Bcl-xL function in SAC and genomic 

stability. 

     In the third study, the functional analysis of a Bcl-xL phosphorylation mutant 

series has revealed that cells expressing Bcl-xL(Ser49Ala) mutant are less stable at G2 

checkpoint after DNA damage and enter cytokinesis much more slowly after microtubule 

poisoning than cells expressing wild-type Bcl-xL. These effects of Bcl-xL(Ser49Ala) 

mutant seem to be distinct from Bcl-xL function in apoptosis. Bcl-xL(Ser49) 

phosphorylation is cell cycle-dependent. In synchronized cells, phospho-Bcl-xL(Ser49) 

appears during the S phase and G2, whereas it disappears rapidly in early mitosis during 

prometaphase, metaphase and early anaphase, and re-appears during telophase and 

cytokinesis. During DNA damage-induced G2 arrest, an important pool of phospho-Bcl-

xL(Ser49) accumulates in centrosomes which act as essential decision centers for 

progression from G2 to mitosis. During telophase/cytokinesis, phospho-Bcl-xL(Ser49) is 

found along microtubules and at midbody with dynein motor protein. In a series of in 

vitro kinase assays, specific small interfering RNA and pharmacological inhibition 

experiments, polo kinase 3 (PLK3) was implicated in Bcl-xL(Ser49) phosphorylation. 

These data indicate that during G2 checkpoint phospho-Bcl-xL(Ser49) is another 

downstream target of PLK3, acting to stabilize G2 arrest. Bcl-xL phosphorylation at 

Ser49 also correlates with essential PLK3 activity and function, enabling cytokinesis and 

mitotic exit.  

 

Key words: Bcl-xL, phosphorylation, cell cycle, G2 checkpoint, spindle-assembly 

checkpoint. 
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Resumé 

     Quelques évidences suggèrent que Bcl-xL, un membre anti-apoptotique de la 

famille Bcl-2, possède également des fonctions au niveau du cycle cellulaire et de ses 

points-contrôle. Pour étudier la régulation et fonction de Bcl-xL au cours du cycle 

cellulaire, nous avons généré et exprimé dans des cellules humaines une série de mutants 

de phosphorylation incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser49Ala, Ser56Ala, 

Ser62Ala et Thr115Ala. 

     L'analyse de cette série de mutants révèle que les cellules exprimant Bcl-

xL(Ser62Ala) sont moins stables au point-contrôle G2 du cycle cellulaire comparées aux 

cellules exprimant le type sauvage ou les autres mutants de phosphorylation incluant 

Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala et Thr115Ala. Les études de cinétiques de 

phosphorylation et de localisation de phospho-Bcl-xL(Ser62) dans des cellules 

synchronisées et suite à l'activation du point-contrôle en G2 médié par l'étoposide 

(VP16), nous indiquent que phospho-Bcl-xL(Ser62) migre dans les corps nucléolaires 

durant l'arrêt en G2 dans les cellules exposées au VP16. Une série d'expériences incluant 

des essais kinase in vitro, l'utilisation d'inhibiteurs pharmacologiques et d'ARN 

interférant, nous révèlent que Polo kinase 1 (PLK1) et MAPK9/JNK2 sont les protéines 

kinase impliquées dans la phosphorylation de Bcl-xL(Ser62), et pour son accumulation 

dans les corps nucléolaires pendant le point-contrôle en G2. Nos résultats indiquent que 

durant le point-contrôle en G2, phospho-Bcl-xL(Ser62) se lie et se co-localise avec 

CDK1(CDC2), le complexe cycline-kinase qui contrôle l'entrée en mitose. Nos résultats 

suggèrent que dans les corps nucléolaires, phospho-Bcl-xL(Ser62) stabilise l'arrêt en G2 

en séquestrant CDK1(CDC2) pour retarder l'entrée en mitose. Ces résultats soulignent 

également que les dommages à l'ADN influencent la composition des corps nucléolaires, 

structure nucléaire qui émerge maintenant comme une composante importante de la 

réponse aux dommages à l'ADN.  

 Dans une deuxième étude, nous décrivons que les cellules exprimant le mutant de 

phosphorylation Bcl-xL(Ser62Ala) sont également plus stables au point-contrôle de 

l'assemblage du fuseau de la chromatine (SAC) suite à une exposition au taxol, 

comparées aux cellules exprimant le type sauvage ou d'autres mutants de phosphorylation 

de Bcl-xL, incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala. Cet effet est indépendent 



 iv 

de la fonction anti-apoptotique de Bcl-xL. Bcl-xL(Ser62) est fortement phosphorylé par 

PLK1 et MAPK14/SAPKp38α à la prométaphase, la métaphase et à la frontière de 

l'anaphase, et déphosphorylé à la télophase et la cytokinèse. Phospho-Bcl-xL(Ser62) se 

trouve dans les centrosomes avec γ-tubuline, le long du fuseau mitotique avec la protéine 

moteure dynéine et dans le cytosol mitotique avec des composantes du SAC. Dans des 

cellules exposées au taxol, phospho-Bcl-xL(Ser62) se lie au complexe inhibiteur 

CDC20/MAD2/BUBR1/BUB3, alors que le mutant Bcl-xL(Ser62Ala) ne se lie pas à ce 

complexe. Ces résultats indiquent que durant le SAC, la phosphorylation de Bcl-

xL(Ser62) accélère la résolution du SAC et l'entrée des cellules en anaphase. Des 

expériences bloquant l'expression de Bcl-xL révèlent ègalement un taux très élevé de 

cellules tétraploïdes et binuclées après un traitement au nocodazole, consistant avec une 

fonction de Bcl-xL durant la mitose et dans la stabilité génomique.  

 Dans la troisième étude, l'analyse fonctionnelle de cette série de mutants de 

phosphorylation indique également que les cellules exprimant Bcl-xL(Ser49Ala) sont 

moins stables durant le point-contrôle G2 et entre en cytokinèse plus lentement dans des 

cellules exposées aux inhibiteurs de la polymérisation/dépolymérisation des tubulines, 

composantes des microtubules. Ces effets de Bcl-xL(Ser49Ala) sont indépendents de sa 

fonction anti-apoptotique. La phosphorylation de Bcl-xL(Ser49) est dynamique au cours 

du cycle cellulaire. Dans des cellules synchronisées, Bcl-xL(Ser49) est phosphorylé en 

phase S et G2, déphosphorylé à la prométaphase, la métaphase et à la frontière de 

l'anaphase, et re-phosphorylé durant la télophase et la cytokinèse. Au cours du point-

contrôle G2 induit par les dommages à l'ADN, un pool important de phospho-Bcl-

xL(Ser49) se trouve aux centrosomes, un site important pour la régulation de l'entrée en 

mitose. Durant la télophase et la cytokinèse, phospho-Bcl-xL(Ser49) se trouve le long des 

microtubules avec la protéine moteure dynéine et dans le cytosol mitotique. Finalement, 

nos résultats suggèrent que PLK3 est responsable de la phosphorylation de Bcl-

xL(Ser49), une protéine kinase impliquée pour l'entrée des cellules en mitose et pour la 

progression de la mitose jusqu'à la division cellulaire.  

 

Mots-clé: Bcl-xL, phosphorylation, cycle cellulaire, point-contrôle G2, mitose. 
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 1. Introduction 

  Over the last 15 years, close links between the cell cycle and apoptosis in cancer 

development and tumor reactions to cancer treatment have become eminently apparent 1-

6. In response to cancer chemotherapeutic drugs and radiotherapy, cells rapidly trigger the 

apoptotic program 7-9 or undergo cell cycle arrest 10-15, followed or not by premature 

senescence 16-20. The Bcl-2 family of proteins stands out among the most crucial 

regulators of apoptosis and performs a vital function in controlling whether a cell will 

live or die after cancer chemotherapy and radiotherapy 21-30. In addition, several studies 

have revealed that members of this family also interface with the cell cycle 20, 31-46 and 

DNA repair pathways 47-51, effects that are generally separable from their function in 

apoptosis. 

 Before I started my Ph.D., our laboratory reported that Bcl-xL, an anti-apoptotic 

Bcl-2 family member, in addition to counteracting BH3-only protein-mediated cell death 

signals after cancer chemotherapy, interfaces with the cell cycle checkpoint, stabilizes the 

G2 cell cycle checkpoint and favors the establishment of premature senescence in 

surviving cells after DNA topoisomerase I and II inhibitor treatments 20. We also reported 

that Bcl-xL co-localizes with cyclin-dependent kinase 1 (cell division cycle 2) 

(CDK1(CDC2)) in nucleolar structures and binds to CDK1(CDC2) during the G2 

checkpoint, whereas its overexpression stabilizes G2 arrest and premature senescence in 

surviving cells after DNA damage. Bcl-xL potently inhibits CDK1(CDC2) kinase 

activities. In in vitro kinase assays using recombinant Bcl-xL protein, this effect was 

reversed by a synthetic peptide between the 41st to 60th amino acids, a region rich in Ser- 

and Thr-phosphorylated residues within the flexible loop domain of Bcl-xL. A mutant 

deleted from the region (Bcl-xLΔP3) did not alter the anti-apoptotic function of Bcl-xL, 

but impeded its effect on CDK1(CDC2) activities and on the G2 checkpoint after DNA 

damage 20. The fact that this Bcl-xL region (Figure 1) contains several putative 

phosphorylation sites strongly suggests that Bcl-xL phosphorylation level may govern 

Bcl-xL regulation and function in cell cycle checkpoints.  
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Figure 1. Bcl-xL structure and putative phosphorylation sites within the unstructured 

flexible loop domain. Upper right inset: schematic representation of the 3D structure of 

Bcl-xL (A) and Bcl-xL bound to a BH3 ligand (B) (From Youle and Strasser 52). The 

unstructured flexible loop domain has been added to the illustration. 

 

 During my research program, we generated a series of single-point Bcl-xL cDNA 

phospho-mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser49Ala, Ser56Ala, 

Ser62Ala and Thr115Ala, and expressed them in human cancer cell lines. We designed 

experimental assays to measure the stability of etoposide (VP16)-induced G2 arrest and 

microtubule poisoning-induced spindle-assembly checkpoint (SAC) as well as the 

kinetics of cytokinesis entry and mitotic exit. We developed specific anti-phospho-Bcl-

xL antibodies directed against phospho-Bcl-xL sites of interest, phospho-Ser49 and 

phospho-Ser62. A combination of such original experiments allowed us to address the 
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roles of Bcl-xL phosphorylation events during cell cycle progression and checkpoints, 

and identify the specific protein kinases involved in Bcl-xL phosphorylation at Ser49 and 

Ser62. 

 

1.1 Cell cycle and the cyclin/CDK complexes 

 In all living organisms, from the unicellular bacterium to multicellular mammals, 

the only way that new cells can be made is by duplication of their genetic materials and 

division into 2 daughter cells. This duplication and division are known as the cell cycle 

(reviewed in 53-56). A schematic view of the cell cycle is presented in Figure 2.  

 

 

 

 

 

 

 

 

 

Figure 2. Illustration of the 4 phases of the cell cycle (From http://en.wikipedia.org/ 

wiki/File: Cell_Cycle_2.svg) 

 

 The eukaryotic cell cycle is divided into 4 phases: G1 phase (gap phase 1) 

following the M phase (M for mitosis) and before the S phase (S for DNA synthesis) in 

cycling cells or between the G0 phase (gap phase 0) and the S phase in temporarily 

quiescent cells; the G2 phase (gap phase 2) between the S phase and mitosis. G1, S, and 
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G2 together are called the interphase (I), occupying about 23 hours of a 24-hour cycle, 

with 1 hour for mitosis. In the G1 and G2 phases, cells take time to grow and, at the same 

time, monitor external and internal conditions and signals, then make decisions to either 

delay progress through G1 or allow commitment to the S phase, to either delay G2 or 

allow entry into mitosis. Chromosome duplication occurs during the S phase; in the M 

phase, chromosomes segregate and cells divide (reviewed in 53-56).  

 The cell cycle control system is like a programmed clock that triggers essential 

processes of the cell cycle in a relatively fixed amount of time. The central components 

of the cell cycle control system are members of a family of protein kinases known as 

CDKs. The most important CDK regulators are proteins known as cyclins. CDKs are 

dependent on cyclins for their activity. Without cyclins, CDKs are inactive. Cyclins 

undergo a cycle of synthesis and degradation in each cell cycle. These changes in cyclin 

protein levels result in the cyclic assembly and activation of cyclin-CDK complexes, 

which trigger cell cycle events. Cyclin expressions along the cell cycle are shown in 

Figure 3A, and the major cyclins and CDKs in eukaryotic cells are illustrated in Figure 

3B. At the G1 phase, cyclin D/CDK4 and cyclin D/CDK6 are the main cyclin-CDK 

complexes. During G1/S transition, cyclin E/CDK2 is the key regulator. During the S 

phase, cyclin A/CDK2 or cyclin A/CDK1 plays an essential role. During G2/M 

transition, cyclin B1/CDK1 controls the door to mitosis (reviewed in 53-56). In addition to 

dynamic cyclin/CDK interactions, another level of control involves key phosphorylation 

and dephosphorylation events that are explained in sections below.  

 

A)       
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B)  

 

 

 

 

 

 

 

 

Figure 3. A) Expression of human cyclins through the cell cycle. Illustration from 

http://en.wikipedia.org/wiki/File:Cyclin_Expression.svg.   

B) Major CDK/cyclin complexes during cell cycle progression. Illustration from Chin 

and D’Mello 57. 

 

1.2 Cell cycle checkpoints 

         There are 6 major regulatory transitions or checkpoints in the cell-cycle control 

system of most eukaryotic cells: G1 restriction point, G1/S checkpoint, intra-S 

checkpoint, G2/M checkpoint, metaphase-to-anaphase transition or the SAC, and the 

mitotic exit network (MEN). When the cellular and tissue environments are not favorable 

to replicate, cells delay progress through G1 and enter or stay in G0. If the cellular and 

tissue environments are favorable, cells progress through the restriction point near the 

end of G1 and initiate their division cycles 58, 59. The G1 checkpoint is a system that 

monitors DNA integrity before entering the S phase 11-13. The intra-S checkpoint 

monitors replicative stress and DNA single- and double-strand breaks whereas the G2 

checkpoint is a surveillance mechanism ensuring that proper DNA replication is achieved 

without mistakes or damage and/or production of DNA strand breaks 10, 11, 14, 15, 21, 60-64. If 

DNA damage or replication errors are produced, the G2 checkpoint provides more time 

for DNA repair before entering mitosis. The SAC checks the alignment of chromosomes 



 6 

at the equator of the spindle and senses the tension produced by attachment of 

kinetochores to microtubules; if errors occur, the SAC halts mitosis progression at 

metaphase, allowing more time to correct the mistakes 65-70. Finally, the MEN controls 

cytokinesis and mitotic exit  71-75. 

 Depending on their genetic and environmental background, cells respond to DNA 

damage specifically, either by rapidly triggering cell death, primarily by apoptosis or, to a 

much lesser extent, by necrosis or other forms of atypical cell death, or by activating cell 

cycle checkpoints which arrest cell cycle progression at different phases of the cell cycle 

(Figure 4). It is generally believed that these checkpoints allow time to repair DNA 

damage or misaligned and mis-attached chromosomes at mitosis. If repair occurs in a 

satisfactory manner, the cells can resume cell cycle progression. If DNA damage is 

persistent and/or the checkpoint is not resolved, cells could then undergo cell death or 

enter into premature senescence. Cell cycle checkpoints are essential mechanisms that 

maintain genomic integrity, preventing mutations, chromosomal translocations, 

aberrations and aneuploidy, events intimately associated with tumorigenesis 15, 76-82.  

 

 

 

 

 

 

 

 

 

Figure 4. Schematic view of cell responses to DNA damage 
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 Current anticancer drugs and radiotherapy can perturb the orderly progress of 

DNA replication and cell division 14, 15, 77.  In the laboratory, cancer chemotherapeutic 

drugs are deployed to induce cell cycle checkpoints and cell death in experimental 

models consisting of human cancer and variant, genetically-modified cell lines. DNA 

topoisomerase inhibitors, including camptothecin (a DNA topoisomerase I inhibitor) and 

VP16 (a DNA topoisomerase II inhibitor), induce DNA single- or double-strand breaks, 

leading to G2 arrest and/or apoptosis, depending on specific cellular responses and 

genetic background of the cells. Taxol and nocodazole, microtuble dynamic inhibitors, 

activate the mitotic SAC, followed or not by cell death or aberrant or avorted mitosis, 

resulting in aneuploidy, again depending on the specific cellular responses and genetic 

background of the cells. In the next sections, we will focus on molecular networks 

controlling the G2 checkpoint, the SAC and mitotic exit, within the contexts of our 

research program.  

 

1.3 Regulatory networks controlling the G2 cell cycle checkpoint  

    To control the activity of cyclin B1/CDK1(CDC2) complexes 83-85, the G2 

checkpoint is regulated by different pathways, including the classical ATM-CHK2 86-88 

and ATR-CHK1 pathways 89-93 as well as a third pathway initiated by 

MAPK14/SAPKp38α 94-99.   

 

1.3.1 Cyclin B1/CDK1(CDC2) complex 

 By the end of the S phase, cyclin B1 starts to be synthesized due to cell cycle-

regulated transcription in human cells 85, 100, 101. During G2, mammalian cyclin 

B1/CDK1(CDC2) complexes are held in an inactive state by phosphorylation of 

CDK1(CDC2) at 2 negative regulatory sites, Thr14 and Tyr15, when it is bound to its 

cyclin partner, cyclin B1 102-110. Inhibitory phosphorylation is mediated by the kinases 

WEE1 and MYT1. WEE1 is a tyrosine kinase that phosphorylates Tyr15, and MYT1 is a 
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dual-specificity kinase that can phosphorylate both sites, with a tendency toward Thr14 
103-110. CDK1(CDC2)-Tyr15-specific kinase WEE1 has been postulated to be a CHK1 

target 111. Indeed, WEE1 has been shown to be required for CHK1-mediated G2 arrest 

and retention of CDK1(CDC2)-Tyr15 phosphorylation 111.  

 For entry into mitosis, cells need to activate cyclin B1/CDK1(CDC2) complexes 

by dephosphorylating the 2 inhibitory sites. CDC25 phosphatases are responsible for 

these dephosphorylation events. Mammalian cells have 3 CDC25 protein phosphatases, 

CDC25A, B, and C, which appear to have some level of specificity for different 

cyclin/CDK complexes. Studies indicate that CDC25A regulates G1/S and G2/M 

transition, whereas CDC25B and CDC25C are involved in intra-S and G2/M regulation 
112-119. CDC25 phosphatases are responsible for triggering activation of cyclin 

B1/CDK1(CDC2) complexes by dephosphorylating the inhibitory CDK1(CDC2) sites 

Thr14 and Tyr15.  

 Entry into mitosis absolutely requires progressive accumulation of active cyclin 

B1/CDK1(CDC2) complexes in the nucleus. Cyclin B1/CDK1(CDC2) kinase activity is 

time-organized to coordinate and trigger different mitotic events, the initial activation of 

cyclin B1/CDK1(CDC2) complexes occurring about 20 to 25 minutes before nucleolar 

disassembly and nuclear envelope breakdown 120, 121. After these events, cyclin 

B1/CDK1(CDC2) rapidly reaches its maximum activity to promote mitosis 120, 121. 

 

1.3.2 ATR-CHK1 and ATM-CHK2 network pathways 

 In response to DNA damage, activation of ATM and/or ATR kinases elicits 

CHK1 and CHK2 phosphorylation and activation 86-93. In turn, CHK1 and CHK2 are 

important intermediaries of cell cycle arrest and participate in the G2 checkpoint, in part 

by mediating CDK1(CDC2) inactivation through the inhibitory phosphorylation of 

CDC25A(Ser123), CDC25C(Ser216) and CDC25B(Ser230-Ser563) 112-119. Phospho-

rylation of CDC25 phosphatases by CHK1 and CHK2 creates a binding site for 14-3-3 

proteins, which prevents CDC25 from dephosphorylating CDK1(CDC2). These 

phosphorylation events, which also impede the nuclear export of CDC25, then separate 
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CDC25 from cyclin B1/CDK1(CDC2). CDC25 phosphorylation also facilitates its 

association with SCF(β-TRCP) ubiquitin ligase complex, promoting their degradation 122-

128.  

 PLK1 is inactivated in response to DNA damage by ATM/ATR-dependent 

phosphorylation 129, 130. Because PLK1 can phosphorylate cyclin B1 to block its export 

from the nucleus, it is possible that PLK1 inactivation leaves cyclin B1 stranded in the 

cytoplasm, thus contributing to CDK1(CDC2) inactivation and G2 arrest 131-136. However, 

PLK1 also mediates G2/M transition by phosphorylation/activation and evokes CDC25B 

and C translocation at centrosomes and nuclei to locally activate cyclin B1/CDK1(CDC2)  
117, 137-139, indicating that PLK1 inhibition favors G2 arrest. Accordingly, PLK1 activation 

by Aurora A promotes checkpoint recovery and resolution after DNA damage 140-142. In 

addition, PLK1-dependent activation of the transcription factor FoxM1 at G2 provides a 

positive-feedback loop associated with mitotic regulatory expression, including cyclin A, 

cyclin B1, CDC25c and PLK1 itself 143. PLK3, another member of the Polo kinase family, 

negatively regulates CDC25C by phosphorylation on Ser216, thereby creating a binding 

site for 14-3-3 proteins, resulting in protein phosphatase sequestration in the cytoplasm, 

inhibition of CDC25C activity and G2 arrest 144, 145. 

 Although not essential for the G2 checkpoint, the tumor suppressor gene product 

p53, an ATM downstream target, could contribute to G2 arrest by regulating p21, 

GADD45, and 14-3-3 expression, which overall affects the activity of cyclin 

B1/CDK1(CDC2) 146-159. The p53-dependent activation of p21 is, however, mostly linked 

to the G1 checkpoint and it is believed to have  few effects, if any, on the G2 checkpoint 
160-170. 

 

1.3.3 The MAPK14/SAPKp38α  signaling pathway 

  The third pathway involved in the G2 checkpoint is the MAPK14/SAPKp38α-

initiated signaling pathway  94-99. Several findings suggest that, after DNA damage, 

MAPK14/SAPKp38α could mediate the phosphorylation of key target proteins at Ser 
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residues, in a manner similar to those modified by CHK1 and CHK2. Indeed, 

MAPK14/SAPKp38α activates MAPKAPK2, which is directly responsible for CDC25B 

and C phosphorylation associated with 14-3-3 protein binding in vitro and in response to 

DNA damage in mammalian cells 94-98. Thus, in addition to CHK1 and CHK2, 

MAPKAPK2 constitutes a third checkpoint kinase involved in coordinating and 

mediating the DNA damage response and G2 arrest of higher eukaryotic cells. A 

schematic representation of the molecular network involved in the G2 checkpoint is 

presented in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. A simplified schematic view of the G2/M cell cycle checkpoint 
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1.4 The spindle-assembly checkpoint  

 The SAC is a surveillance mechanism employed by cells to detect the mis-

attachment and mis-alignment of chromosomes and tension produced by chromosome 

capture at kinetochores by microtubules to prevent premature sister-chromatid separation, 

chromosome mis-segregation and aneuploidy 65-70. The SAC is also active in response to 

cancer chemotherapeutic drugs that poison microtubule dynamics, including the 

clinically-used vinca alkaloids vinblastine and vincristine, tubulin polymerization 

inhibitors, and the taxane-ring molecule taxol, a tubulin depolymerization inhibitor 65, 66, 

69. 

 

1.4.1 The anaphase promoting complex/cyclosome and CDC20  

 The anaphase-promoting complex or cyclosome (APC/C), a multiprotein E3 

ubiquitin ligase, is designed to signal the destruction of specific proteins by transferring 

multiple copies of the small protein ubiquitin, which target these proteins to proteasome-

dependent proteolysis 171. Vertebrate APC/C consists of at least 12 core subunits 

organized into 2 large domains, referred to as the "platform" and the "arc lamp", which 

are flexible relative to each other 67, 172. The original work of Hartwell and coworkers first 

isolated multiple CDC mutants of S. cerevisiae 173. Among the selection of mutants, they 

discovered that yeast harboring the CDC20 mutant arrested cell division in mitosis, and 

failed to initiate anaphase and chromosome segregation 174. Human CDC20 contains 

WD40 repeats, C box, KEN box, MAD2-interacting motif, CRY box, IR motif, and in 

vivo phosphorylation sites. WD40 domains of CDC20 have been suggested to be 

involved in substrate binding. The C box and IR motif have been implicated in binding to 

APC/C 175, 176.  

 The elaborate ubiquitin-conjugating system marks proteins for destruction. E1, as 

an ATP-dependent, ubiquitin-activating enzyme, transfers ubiquitin to ubiquitin-

conjugating enzyme E2, in a complex with E3. By means of the E3 component, E2-E3 

complex recognizes a specific degradation signal on target proteins and covalently adds a 

chain of ubiquitin at the targeted substrate. Once a substrate is marked with the 
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polyubiquitin chain, its translocates into a proteasome core system that will digest it 177-

179. In concert with E1 and E2 components, the E3 ubiquitin ligase APC/C associated 

with CDC20 is the key regulator of metaphase-to-anaphase transition, which catalyzes 

the ubiquitinylation and destruction of 2 major substrate proteins, securin and cyclin B1, 

thus promoting the onset of anaphase and mitotic exit 180-190. Indeed, at metaphase, sister-

chromatid pairs are linked together by cohesin. Securin inhibits separase, a protease 

involved in cohesin proteolysis. APC/C-CDC20 degrades securin to relieve separase 

inhibition 191. Then, active separase cleaves the SCC1 subunit of cohesin complexes and 

triggers sister-chromatid separation mediated by the action of microtubule force 67, 172. By 

promoting the degradation of cyclin B1, APC/C-CDC20 lowers CDK1(CDC2) activity, 

an essential event that resumes mitosis and triggers mitotic exit 192-194.   

 

1.4.2 MAD2- and BUBR1-bound APC/C-CDC20 inhibitory subcomplexes  

 Given the essential role of APC/C-CDC20 evoking entry into anaphase and 

initiating the segregation of chromosomes, APC/C-CDC20 is tightly regulated by the 

SAC, which negatively controls APC/C-CDC20 activity in a highly complex manner, 

mainly by regulating the ability of the limiting subunit CDC20 to activate APC/C, until 

all centromeric chromosomes have achieved bipolar kinetochore-microtubule attachment. 

SAC regulators and kinases are involved in an elaborate network that includes MPS1, 

PLK1, chromosome passenger complex (CPC) containing Aurora B, Survivin, Borealin, 

and INCEN-P as well as mitotic checkpoint complex containing MAD2, BUB1, BUB3 

and BUBR1 (reviewed in 65-70). The kinetochore localization of SAC components is a 

prerequisite for checkpoint signaling and amplification. By recruitment to kinetochores 

that are not, or improperly, captured by microtubules, SAC components are activated and 

generate "stop anaphase signals" that diffuse into the mitotic cytosol 195-201. In these 

hierarchical signaling pathways, MPS1, Aurora B, BUB1 and PLK1 lie at the top, 

whereas BUB3, BUBR1, MAD1 and MAD2 are downstream. A schematic illustration of 

the ordered cascade is illustrated in Figure 6.  
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Figure 6. Signaling network during the SAC 

 

 

 MPS1, one the first kinases to be activated when chromosomes are mis-attached 

and mis-aligned to kinetochores and microtubules, participates in CPC and Aurora B 

activation 202-207. On taxol but not nocodazole treatment, CHK1 also participates in 

Aurora B kinase activation 208, 209. The importance of Aurora B, BUB1 and PLK1 in that 

network has been highlighted in several studies. CPC containing Aurora B with BUB1 

collaborates to recruit and activate PLK1 at the unattached kinetochore 195, 198, 210-221. 

Activated PLK1 then facilitates the kinetochore localization of PICH, MAD1-MAD2, 
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BUBR1-BUB3, and CDC20 200, 222-226. In early mitosis, CDK1 and PLK1 phosphorylate 

Emi1, a pseudo-substrate that inhibits APC/C-CDC20 activity, resulting in its 

ubiquitination and degradation 227-230. PLK1 also phosphorylates and targets PICH to 

kinetochores, which is required for the kinetochore localization of MAD2 231. Other 

protein kinases, including NEK2A and TAO1, are also involved in the kinetochore 

localization of MAD2 197, 232-236.  

 Several models explain how APC/C-CDC20 is inhibited during the SAC. Studies 

by Tang et al. and Vanoosthuyse and Hardwick have indicated that 6 residues of CDC20 

are phosphorylated both in vitro and in vivo in a BUB1-dependent manner, providing a 

catalytic mechanism that negatively regulates APC/C-CDC20 activity 237, 238. 

 Dynamic subcomplexes have been shown to inhibit APC/C-CDC20 activity 

during the SAC. MAD2-CDC20 complex is one of the inhibitory forms of CDC20 

complex 239, 240. MAD2 is known to exist in 2 distinct structural conformations, termed 

"open" (O-MAD2) and "closed" (C-MAD2) 241, 242. MAD2 can stably bind MAD1, which 

recruits MAD2 to kinetochores 243, 244. A "template" model of kinetochore-dependent 

MAD2 activation, a modified version of the "2-state" model, has emerged from recent 

research on purified components of unattached chromosomes in cultured cells 245. It has 

been observed that O-MAD2 can undergo conformational change to C-MAD2 in which 

its carboxyl-terminal "seatbelt" domain encloses either MAD1 or CDC20, thereby 

converting the initial O-MAD2 form to C-MAD2 conformation 245. During SAC 

signaling, MAD2 dimerization status is also modified. Two distinct kinetic forms of 

MAD2 exist at kinetochores, one being the stably-associated MAD1-MAD2 template, 

and the other, rapidly exchanging MAD2. In these models, conformational change of 

MAD2, from O-MAD2 to C-MAD2, is required for its efficient binding to CDC20 246-252. 

 Dynamic BUBR1-bound subcomplexes, including BUBR1-BUB3-MAD2-

CDC20 and BUBR1-BUB3-CDC20, are major inhibitory subcomplexes of APC/C 196, 198, 

253-262. Several studies indicate that these BUBR1-bound subcomplexes are more stable in 

SAC-activated cells. The exact molecular mechanism by which they inhibit APC/C 

activity is, however, not completely resolved. Most studies suggest that these 

subcomplexes act as pseudo-substrates and thus interfere with the ability of APC/C-
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CDC20 to interact with its physiological substrates, primarily securin and mitotic cyclins. 

BUBR1 also contains 2 conserved KEN boxes that appear to regulate CDC20 turnover 
263, and BUBR1-bound CDC20 subcomplexes seem to favor CDC20 autoubiquitination 

and degradation 264-266. Once CDC20 is autoubiquitinated, the reduced CDC20 level 

lowers its bioavailability, which, in turn, amplifies APC/C inhibition 266. However, others 

have suggested the opposite. One consequence of CDC20 autoubiquitination is the 

dissociation of MAD2- and BUBR1-bound CDC20 inhibitory complexes, making APC/C 

available for free-bound CDC20, meaning APC/C-CDC20 activation and SAC 

resolution. Indeed, Reddy et al. showed that overexpression of UBCH10, the UBC that 

supports APC/C-catalyzed ubiquitination reactions, prevents cells from arresting at the 

SAC, even in the presence of nocodazole 265. The addition of exogenous UBCH10 

protein to extracts of nocodazole-arrested mitotic cells increases CDC20 

autoubiquitination, disrupts MAD2- and BUBR1-bound CDC20 interactions, and 

activates APC/C 265. p31-Comet is another conformation-specific MAD2-binding protein 

that plays a role in SAC inactivation and resolution 267, 268. p31-Comet attaches to MAD1-

bound MAD2, preventing active conformer generation of MAD2 as C-MAD2, and 

reducing the rate of MAD2-bound CDC20 inhibitory complexes. p31-Comet, along with 

UBCH10, stimulates the autoubiquitination of CDC20 and disassembly of MAD2-bound 

CDC20 complexes, leading to SAC inactivation and APC/C-CDC20 activation 265, 267, 268. 

Meanwhile, USP44/protectin, a deubiquitinating enzyme, deubiquitinates CDC20 and 

maintains MAD2- and BUBR1-bound CDC20 interactions, contributing to SAC 

activation and APC/C-CDC20 inhibition 269. Collectively, the activation of SAC kinases 

and components, cellular concentrations of MAD2- and BUBR1-bound CDC20 

complexes as well as the expression level of UBCH10, p31-Comet and USP44/protectin 

all contribute to the delicate balance between 2 opposing dynamic processes that regulate 

the activation status of the SAC 265, 266, 269.  These processes are illustrated in Figure 7. 
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Figure 7. Model of APC/C-CDC20 regulation at the SAC (From Yu 68). 

 

1.4.3 Dismantling the SAC 

 SAC resolution and APC/C-CDC20 activation could be initiated by the loss of 

kinetochore localization of MAD1 and MAD2, and by the dissociation of MAD2- and 

BUBR1-bound CDC20 interactions. However, besides CDC20 autoubiquitination models 

and p31-Comet effects that inhibit the MAD2 conformation change described above, the 

exact mechanisms are poorly understood. A dynein motor protein-dependent ‘stripping’ 

mechanism has been proposed, where dynamic interaction between dynein motor protein 

along microtubules removes MAD2 as well as other outer kinetochore proteins from 

attached kinetochores and transports them to spindle poles, where they are released into 
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the mitotic cytosol  270-275. More recently, another SAC silencing and resolution pathway 

dependent on PP1 activity has been identified in yeast. These studies propose that, upon 

successful chromosome bi-orientation, PP1 dephosphorylates BUBR1 at kinetochores, 

which relieves APC/C-CDC20 inhibition, promoting entry into anaphase and cytokinesis 
276-278. Even though several pathways have been identified for the dismantling of spindle 

checkpoint signaling, challenges remain to better understand which pathway is the major 

physiological mode of SAC silencing and resolution and/or whether different pathways 

could be employed by cells either alone or together, depending on SAC amplitude and/or 

length.  

 

1.5 The mitotic exit signaling network 

 The final step of mitosis is cytokinesis, which controls the decision to physically 

divide a cell into 2 daughter cells that is often termed “mitotic exit”. In most animal cells, 

cytokinesis begins in anaphase and ends shortly after telophase completion. There are 4 

distinct stages of cytokinesis: initiation of the spindle midzone and cleavage furrow, 

contraction of the contractile ring, new membrane insertion, and completion by gap 

closure between the 2 daughter cells (reviewed in 279).  

 The molecular orchestration and reorganization that occur during cytokinesis are 

far from being completely understood. Absolutely required, ubiquitin-mediated 

proteolysis controls the passage of cells through mitosis. Specific substrates are degraded 

as cells progress into, and through, mitosis, APC/C being the major ubiquitin ligase 

involved in the process. APC/C-CDC20 mediates the ubiquitination of mitotic cyclins 

leading to the rapid debit of mitotic CDK1(CDC2) activity, simultaneously targeting 

securin to lose chromosome cohesion and allowing sister-chromatid segregation to 

opposite poles of the anaphase spindle. These are the first events that contribute to 

mitosis exit 180, 280, 281. Cytokinesis requires complete degradation of cyclin B1. By 

studying human cells engineered to express non-degradable cyclin B1, researchers have 

demonstrated that cyclin B1 level affects cytokinesis 192-194. In cells expressing a non-

degradable form of cyclinB1, a spindle midzone and cleavage furrow cannot be properly 
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formed 192-194 and chromosome passenger proteins remain at kinetochores, suggesting 

that cyclin B1 degradation is also required for translocation of various components from 

the kinetochores to the central spindle midzone 282. In Drosophila embryos, high levels of 

non-degradable cyclin B1 prevent chromosome passenger proteins, including Aurora B 

kinase and its INCEN-P partner, from leaving the kinetochore and binding to the central 

spindle midzone 282. Coupled to cyclin B1 destruction, CDK1(CDC2) activity declines at 

the onset of anaphase, and a series of CDK1(CDC2) substrates are rapidly 

dephosphorylated. Exit from mitosis is a complex transition, which converts proteins 

from a phosphorylated state to a dephosphorylated state, associated with cytoskeleton and 

microtubule remodeling. Figure 8 depicts the kinetics of CDK1(CDC2) kinase activity 

during mitosis and its progressive inhibition during cytokinesis 194.  

 

 

Figure 8. Kinetics of CDK1(CDC2) activity through mitotic progression (From Wolf et 

al. 194). 
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 After APC/C-CDC20 activation, CDC20 is replaced by the CDH1 subunit, 

expanding APC/C substrate specificity 283-289. CDC20 and CDH1 confer certain substrate 

specificity to APC/C. The WD40-repeat domain of CDH1 recognizes short peptide 

motifs within APC/C substrates, of which the most common are D- and KEN-boxes 285, 

288. APC/C-CDH1 becomes active during anaphase and retains its activity during 

cytokinesis and in G1 cells. APC/C-CDH1 continues to degrade cyclin B1 290 and is 

involved in the time control of cytokinesis 291. By timely targeting of specific substrates, 

APC/C-CDH1 is required for cytoskeleton and microtubule reorganization and for the 

recruitment of proteins at the spindle midzone 291-293. In a timely, regulated manner, 

APC/C-CDH1 commands the destruction of various kinases and components of the SAC, 

including Aurora A 294-297, MPS1 298, NEK2A 299, Aurora B 300, 301, BUB1 302, 

microtubule-associated proteins, such as NuSAP 303, SKAP2 304, TPX2 305 and, at the 

very end, PLK1 306 – to resume mitotic exit.  

 Assembly of the cleavage furrow and contractile ring consisting of actin filaments 

and Myosin-II is far from being understood in mammals and involves more than 120 

proteins in yeast (reviewed in 279). In mammalian cells, PLK1 and presumably PLK3 

activity, which is also found at the spindle midzone 307,  is required for assembly of the 

cleavage furrow and contractile ring 308. With Kinesin-6, PLK1 promotes the 

accumulation of active RhoA-GTP at the cleavage furrow, by phosphorylating RhoGAP 

that recruits RhoGEF which, in turn, activates RhoA-GTP 309. In association with the 

scaffold protein anilin, RhoA-GTPase flux then contributes to Myosin-II activation at the 

contractile ring 310, 311. Myosin-II is the driving force that constricts actin filaments at the 

contractile ring 279. 

 In addition to ubiquitin ligase activity, mitotic exit requires protein phosphatases. 

In budding yeast, the MEN controls post-anaphase CDK(CDC) activity to prevent 

premature cytokinesis. CDC14 is essential for timely, organized exit from mitosis in 

yeast 312-320. In yeast, CDC14 is associated with 2 signaling networks, CDC14 early 

anaphase release (FEAR) and the MEN, that are pivotal for triggering CDK inactivation 

and localize chromosomal passenger proteins to the spindle midzone 71, 318-320. Three 

CDC14 phosphatase homologs in human cells have been identified, CDC14A, B and C, 
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but whether they have a similar function in mitotic exit is still not known 321-323. In 

addition to CDC14, phosphatases PP1 and PP2A have been shown to play roles in mitotic 

exit in Xenopus egg extracts, budding yeast and, more recently, in human cells 277, 324-329. 

Indeed, Wu et al. demonstrated that PP1 activity is required to dephosphorylate 

CDK1(CDC2) substrates to allow mitotic exit 329.  

 

1.6 Bcl-xL function in apoptosis  

 Bcl-xL 330, a Bcl-2 family member, has anti-apoptotic activities and has been 

studied extensively because of its importance in the regulation of apoptosis, during 

development, tumorigenesis and cellular responses to stress, including anticancer 

therapies 27, 28, 330-354. A phenotype of mice deficient in the Bcl-x gene manifests abnormal 

development and death of fetal erythroid progenitors and neuronal cells, with the animals 

dying around embryonic day 14 displaying severe defects in erythropoiesis and neuronal 

development 332. Bcl-xL usually resides in the cytosol, on the cytoplasmic face of the 

outer mitochondrial membrane (OMM), endoplasmic reticulum and nuclear envelope 355-

357. A schematic view of the Bcl-2 family members is presented in Figure 9. 

 

Figure 9.  The Bcl-2 family members (From Danial 358) 
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 Bcl-xL contains BH1, BH2, BH3 and BH4 domains, a COOH-terminus 

hydrophobic transmembrane domain, and an unstructured loop domain, between BH4 

and BH3. The BH1, BH2 and BH3 domains create a hydrophobic pocket where the 

amphipathic α-helice of another BH3-containing protein can bind (Figure 1) 344, 359, 360. 

The BH3 domain, particularly among BH3-only proteins, mediates interaction between 

BH3-only proteins and Bcl-xL protein, thereby promoting apoptosis 361-366. The 3-

dimensional organization of Bcl-xL identifies a 60 amino acid loop lacking a defined 

structure 359. Compared to the full-length protein, Bcl-xL loop deletion mutant displays a 

similar or, in a few studies, an enhanced ability to inhibit apoptosis and does not present 

significant alterations in its ability to bind pro-apoptotic proteins, such as Bax, or prevent 

cytochrome c release and caspase activation 20, 367, 368.  

Two classical pathways of apoptosis, intrinsic and extrinsic, converge to caspase 

activation. The extrinsic pathway is initiated by a series of death receptors upon ligand 

activation, while the intrinsic pathway is triggered by various developmental cues or 

cytotoxic insults, including viral infections, replication stress, DNA damage and growth 

factor deprivation, strictly controlled by the Bcl-2 family of proteins (reviewed in 52, 357, 

369-371). Activation and heterodimerization of the pro-apoptotic family members Bax and 

Bak are crucial for inducing permeabilization of the OMM and subsequent release of 

apoptogenic molecules, including cytochrome c, which leads, with Apaf-1 and dATP, to 

caspase-9 activation 372-383. Anti-apoptotic proteins, such as Bcl-xL and Bcl-2, bind to 

and inhibit Bax and Bak activity. BH3-only proteins are potent mediators of cell death. 

BH3-only enabler or sensitizing proteins promote apoptosis by binding to, and inhibiting, 

pro-survival molecules, such as Bcl-2, Bcl-xL and Mcl-1, whereas BH3-only activator or 

activating proteins bind to and activate multidomain pro-apoptotic Bax and Bak proteins 
363, 384. Bax insertion and oligomerization into mitochondrial membranes require 

activation by a BH3-only activating protein, events that elicit OMM permeabilization; in 

contrast, the potency of anti-apoptotic proteins, such as Bcl-xL, to trap and inhibit these 

BH3-only activating proteins, prevents membrane permeabilization 366, 385-388. A 

schematic view of these interplays is illustrated in Figure 10. 
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Figure 10.  The mode of action of Bcl-2 family members. Anti-apoptotic proteins, such 

as Bcl-2 and Bcl-xL, maintain cell survival by inhibiting constitutively-expressed pro-

apoptotic Bax and Bak proteins. Subsets of the BH3-only proteins like Bad, promote 

apoptosis by binding to and inhibiting pro-survival proteins, such as Bcl-2 and Bcl-xL, 

whereas BH3-only activator, like Bim, Bid and Puma proteins bind to and activate 

multidomain pro-apoptotic Bax and Bak proteins. (From Adams and Cory 371). 
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The unexpected pore-forming ability of Bcl-xL protein has also emerged from its 

3-dimensional structure. Structural similarities between Bcl-xL, particularly its α5- and 

α6-helices and the pore-forming domains of some toxins that act as channels, indicate 

that Bcl-2 members could also function by forming pores in intracellular organelles, 

including mitochondria (Figure 1) 340, 359, 385-388. Whether these channel activities function 

by themselves, or in association with other megachannels, such as components of 

mitochondrial permeability transition pores, or others, is still not completely elucidated 
387, 389-400. 

 

1.6.1 p53-dependent and -independent activation 

 Activation of BH3-only proteins as a consequence of replicative stress or after 

exposure to DNA-damaging and microtubule-poisoning agents has been studied 

extensively. The transcriptional activity of p53 in response to genotoxic agents 

contributes to its apoptotic activity 401. Bax itself was the first to be identified as a p53-

dependent apoptotic target 402, 403 and the BH3-only proteins Bid, Noxa and Puma were 

also described as p53-dependent target genes involved in irradiation and anticancer drug-

induced apoptosis 404-408. In addition, direct activation of multidomain pro-apoptotic 

proteins, such as Bax and Bak, by p53, and direct neutralization of multidomain anti-

apoptotic proteins, such as Bcl-2 and Bcl-xL by p53, were also reported 409-412. 

 Paradoxically, several observations have disclosed that cells lacking the ability to 

induce a cell cycle checkpoint, as a consequence of p53 disruption, could display 

hypersensitivity to DNA-damaging treatments and undergo apoptosis very rapidly, 

indicating the existence of p53-independent pathways of apoptosis 7, 9, 357, 413-424.  Indeed, 

many studies have now revealed that Bax and a multitude of BH3-only proteins, 

including Bim, Noxa, Puma, Bik and ITM2Bs, are activated in a p53-independent manner 

after DNA damage 357, 425-429. Its appears that many transcription factors activate these 

genes independently of p53, including p63, p73, E2F1 and FOXO3A  430-442. 
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1.7  Bcl-2 family members and the cell cycle  

 Recent studies have revealed links between some Bcl-2-like family members, cell 

cycle progression and cell cycle checkpoint regulation (Figure 11). First, Bcl-2 has been 

shown to slow entry from the quiescent G0 into the G1 phase of the cell cycle in multiple 

cell lineages from transgenic mice. In contrast, Bcl-2-/- knockout cells enter the S phase 

more quickly 31, 32. This effect of Bcl-2 on cell proliferation is genetically distinct from its 

function in apoptosis 31, 32. More recently, phosphorylated forms of Bcl-2 also have been 

co-localized in nuclear structures and on mitotic chromosomes, disclosing the importance 

of phosphorylation events for Bcl-2 protein location 443. Mcl-1, another Bcl-2 homologue 

known to function as an anti-apoptotic protein 444, inhibits cell cycle progression through 

the S phase of the cell cycle. The cell cycle regulatory function of Mcl-1 is partially 

mediated through its interaction with proliferating cell nuclear antigen, a cell cycle 

regulator that is crucial in DNA replication 40, 445. More recently, some have reported that 

a proteolytic fragment of Mcl-1 regulates cell proliferation via interaction with 

CDK1(CDC2) 42 and that Mcl-1 is essential in ATR-mediated CHK1 phosphorylation 45. 

Others have discerned the involvement of Bid, a BH3-only protein with pro-apoptotic 

activity, at the intra-S phase checkpoint under replicative stress and in response to DNA-

damaging agents. This function of Bid is mediated through its phosphorylation at Ser78 

and Ser61/64 by the DNA-damage signaling kinase ATM 43, 44.  

 

Figure 11. Schematic representation of the effects of Bcl-2, Mcl-1, Bid and Bcl-xL on 

cell cycle progression (From Schmitt et al. 159). 
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Microtubule inhibitors widely used in cancer chemotherapy induce mitotic arrest 

and apoptosis linked to Bcl-2, Bcl-xL and Mcl-1 phosphorylation 446-453.  Kharbanda et al. 

have reported that Bcl-xL is phosphorylated within the unstructured loop domain at 

Thr47 and on Thr115, adjacent to the α3-helix of Bcl-xL, in response to ionizing 

radiation 454. A few protein kinases have been proposed to phosphorylate Bcl-2 or Bcl-

xL, including the Ask1/Jun-N-terminal protein kinase 1 pathway, normally activated at 

G2/M transition 454-461, and PLK1 that is also involved in G2/M transition and during 

mitosis 453. The exact functions of these phosphorylation events are not yet understood. 
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2.  Rationale of the thesis 

2.1 Goal, hypothesis and specific objectives 

 A previous study in our laboratory showed that Bcl-xL stabilizes the G2 

checkpoint, an activity that resides within the flexible loop domain of Bcl-xL, a region 

that is not essential for its anti-apoptotic function 20. Our goal in this research program 

was to further understand the critical roles and molecular mechanisms by which Bcl-xL 

and its flexible loop domain interface with cell cycle progression and checkpoints. We 

hypothesize that Bcl-xL's functions in cell cycle progression and checkpoints are 

regulated by phosphorylation events within the Bcl-xL flexible loop domain that will 

influence: i) Bcl-xL location, ii) Bcl-xL protein/protein interactions with cell cycle 

checkpoint components, and iii) Bcl-xL activity in cell cycle progression and 

checkpoints. Toward this end, the 1st aim of the research program was to generate a 

series of single-point Bcl-xL cDNA phosphorylation mutants, including Thr41Ala, 

Ser43Ala, Thr47Ala, Ser49Ala, Ser56Ala, Ser62Ala and Thr115Ala, and express them in 

human cancer cell lines. The 2nd aim was to design experimental assays to measure the 

stability of DNA damage-induced G2 arrest and microtubule poisoning-induced SAC, 

and the kinetics of cytokinesis and mitotic exit, in cell lines expressing wild-type (wt) 

Bcl-xL, phosphorylation mutants and small interference RNA (siRNA) targeting Bcl-xL 

expression. The 3rd aim was to develop specific anti-phospho-Bcl-xL antibodies 

directed against phospho-Bcl-xL sites of interest. The 4th aim was to address the 

importance of these phosphorylation events for Bcl-xL location and function during cell 

cycle progression and checkpoints in wt synchronized cells or cells exposed to DNA-

damaging and microtubule-poisoning agents. The 5th aim was to identify the specific 

protein kinases involved in Bcl-xL phosphorylation at sites of interest. Finally, the 6th 

aim was to initiate studies by dissecting the molecular mechanisms behind Bcl-xL 

function during cell cycle progression and checkpoints.  
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2.2 Presentation of the appended manuscripts 

 In this thesis, I present my data in 3 manuscripts that have been submitted 

recently. The functional screening assays deployed in our studies revealed that cells 

expressing the phosphorylation mutants Bcl-xL(Ser49Ala) and Bcl-xL(Ser62Ala) behave 

differently than cells expressing wt Bcl-xL, in response to VP16, a DNA topoisomerase 

II inhibitor, and taxol, a microtubule poison, not in terms of apoptosis protection, but in 

terms of checkpoint stability and resolution. These first observations were the basis to 

further develop strategies and experimental approaches to understand the function of 

phospho-BclxL(Ser62) and (Ser49) during cell cycle progression and checkpoints. The 

first manuscript described the effect of phospho-Bcl-xL(Ser62) on the G2 checkpoint. 

The second manuscript described the effects of phospho-Bcl-xL(Ser62) during mitosis. 

Finally, in the third manuscript, the data for phospho-Bcl-xl(Ser49) at the G2 checkpoint 

and during mitosis are presented.  

 

2.3 Contribution of co-authors 

 Jianfang Wang (JW) performed more than 80-85% of all the works and 

experiments described in the 3 manuscripts. She designed, with the help of Richard 

Bertrand (RB), the experimental strategies and protocols, actively resolved technical 

problems that occured during these studies, and analysed the data. She wrote the first 

versions of the manuscripts and actively participated with RB in revision to the final 

versions. Myriam Beauchemin (MB), a technician in the laboratory, assisted JW for the 

generation and preparation of the constructs deployed in these studies, prepared and 

purified recombinant Bcl-xL protein and performed the in vitro kinase assays. MB was 

also involved in the validation of the specific phospho-antibodies produced in the course 

of these studies, and in the validation of siRNAs targeting Bcl-xL in the second 

manuscript. RB supervised the work, analysed the data with JW and MB and revised the 

manuscripts.   
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Abstract 

Accumulating evidence suggest that Bcl-xL, an anti-apoptotic member of the Bcl-2 

family, also functions in cell cycle progression and cell cycle checkpoints. Analysis of a 

series of phosphorylation mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant 

are less stable at the G2 checkpoint and enter mitosis more rapidly than cells expressing 

wild type Bcl-xL or Bcl-xL phosphorylation mutants, including Thr41Ala, Ser43Ala, 

Thr47Ala, Ser56Ala and Thr115Ala. Analysis of the dynamic phosphorylation and 

location of phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA 

damage-induced G2 arrest discloses that phospho-Bcl-xL(Ser62) translocates into 

nucleolar structures in VP16-exposed cells during G2 arrest. In a series of in vitro kinase 

assays, pharmacological inhibitors and specific siRNA experiments, we found that Polo 

kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) 

phosphorylation and accumulation into nucleolar structures during the G2 checkpoint. In 

nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with CDK1(CDC2), the key 

cyclin-dependent kinase required for entry into mitosis. These data indicate that, during 

G2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G2 arrest by timely trapping of 

CDK1(CDC2) in nucleolar structures to slow mitotic entry. It also highlights that DNA 

damage affects the dynamic composition of the nucleolus, which now emerges as a 

component of the DNA damage response. 
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Introduction 

 In mammals, development and tissue homeostasis require a carefully-orchestrated 

balance between cell proliferation, cell differentiation, cellular senescence and cell death. 

In recent years, several studies have reported that members of the Bcl-2 family, in 

addition to their central role in controlling apoptosis during development and cellular 

stress, also interface with the cell cycle, the DNA damage response, DNA repair 

pathways and premature senescence, effects that are generally distinct from their function 

in apoptosis (reviewed in (1, 2)).  

 Bcl-2 itself has been demonstrated to slow entry from the quiescent G0 to the G1 

phase of the cell cycle prior to DNA replication in multiple cell lineages and transgenic 

mice (3). In contrast, Bcl-2−/− knockout cells enter the S phase more quickly. This effect of 

Bcl-2 on cell proliferation is genetically distinct from its function in apoptosis (4). Mcl-1, 

another Bcl-2 homologue known to function as an anti-apoptotic protein inhibits cell-

cycle progression through the S phase of the cell cycle (5). More recently, others have 

reported that a proteolytic fragment of Mcl-1 regulates cell growth via interaction with 

CDK1(CDC2) (6) and that Mcl-1 plays an essential part in ATR-mediated CHK1 

phosphorylation (7). Others have discerned the involvement of Bid, a BH3-only Bcl-2 

family member with pro-apoptotic activity, at the intra-S phase checkpoint under 

replicative stress in response to DNA-damaging agents. This function of Bid is mediated 

through its phosphorylation by the DNA-damage signaling kinase ATM (8, 9).  

 Bcl-2 and/or Bcl-xL modulate the Rad51-dependent homologous recombination 

pathway as well as non-homologous end-joining and DNA damage mismatch repair 

activities, effects that are separable from their anti-apoptotic function (10-13). Bcl-xL also 

fulfills specific functions distinct from its function in apoptosis during the cell cycle (14, 

15). Indeed, we previously reported that, in addition to its mitochondrial effect, which 

delays apoptosis, Bcl-xL co-localizes in nucleolar structures and binds CDK1(CDC2) 

during the G2 cell-cycle checkpoint, and its over-expression stabilizes G2 arrest in 

surviving cells after DNA damage (15). Bcl-xL potently inhibits CDK1(CDC2) kinase 

activity, which is reversible by a synthetic peptide between the 41st to 61st amino acids 

within or near the described Thr47 and Ser62 phosphorylation sites within its flexible 
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loop domain. A mutant deleted of this region does not alter the anti-apoptotic function of 

Bcl-xL, but impedes its effect on CDK1(CDC2) activities and on G2 arrest after DNA 

damage (15).  

 To better understand the importance of the Bcl-xL flexible loop domain and 

putative phosphorylation events in regulating Bcl-xL location and function during the G2 

checkpoint, we generated a series of single-point Bcl-xL cDNA phosphorylation mutants, 

including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala, Ser62Ala and Thr115Ala. Stably-

transfected cell populations were selected in human B lymphoma Namalwa and cervical 

carcinoma HeLa cells. In this study, we provide evidence that phospho-Bcl-xL(Ser62) is 

a key component in stabilizing DNA damage-induced cell cycle arrest.  

 

Results 

Effect of Bcl-xL and various Bcl-xL phosphorylation mutants on DNA damage-

induced G2 arrest 

 To examine the G2 cell-cycle arrest function of Bcl-xL, we generated various Bcl-

xL phosphorylation mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala, 

Ser62Ala and Thr115Ala, then stably expressed them in Namalwa cells (Fig. 1A and 

Supplementary Fig. S1A).  A well-established, simple experimental procedure, referred 

to as mitotic trap assay (Fig. 1B) (16), evaluated the kinetics of G2 arrest after DNA 

damage, the kinetics of mitotic entry after G2 arrest, and the kinetics of cell death. In the 

mitotic trap assay, cells entering mitosis after G2 arrest, a direct indicator of G2 

checkpoint bypass or checkpoint recovery and adaptation, are trapped by adding 

nocadazole (0.35 µM) at 24-h intervals after VP16 treatment (10 µM/30 min in Namalwa 

cells) and monitored by flow cytometry with phospho-H3(Ser10) labeling and propidium 

iodide (PI) staining. Control Namalwa cells (Fig. 1C) or Namalwa cells stably transfected 

with empty vector (Fig. 1D) die rapidly after exposure to VP16.  In contrast, cells stably 

expressing HA-Bcl-xL and all phosphorylation mutants show strong inhibition of 

apoptosis (Fig. 1E-F and Supplementary Fig. S1E-K; green bars). More than 70% of cells 

over-expressing wt HA-Bcl-xL are arrested in G2, 24 h after VP16 treatment (Figure 1E; 
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grey bars).  However, some of them slowly escape from G2 and enter early mitosis, 48 to 

72 h after VP16 treatment (Figure 1E; red bars). The phosphorylation mutants, including 

HA-Bcl-xL(Thr41Ala), (Ser43Ala), (Thr47Ala), (Ser56Ala) and (Thr115Ala), present a 

similar phenotype compared to wt HA-Bcl-xL, protecting cells from apoptosis and 

allowing G2 arrest, with some cells escaping G2 arrest 48 and 72 h post-VP16 treatment 

(Supplementary Fig. S1F-K).  Strikingly, cells expressing the phosphorylation mutant 

HA-Bcl-xL(Ser62Ala) enter mitosis much more rapidly (Fig. 1F), revealing that Ser62 is 

important for Bcl-xL function at G2 arrest. In addition, expression of HA-Bcl-

xL(Ser62Ala) has an effect similar to HA-Bcl-xL in protecting cells from apoptosis (Fig. 

1E-F). Together, these observations suggest that Bcl-xL's function in cell cycle arrest is 

distinct from its function in apoptosis, with Ser62 as a key player. 

 

HA-Bcl-xL(Ser62) phosphorylation and location during DNA damage-induced G2 

arrest 

HA-Bcl-xL(Ser62) phosphorylation occurs simultaneously to phosphorylation/activation 

of key components of the DNA damage response and G2 checkpoint, including ATM, 

ATR, CHK1, CHK2, Aurora A, Polo kinase 1 (PLK1), MAPKAPK2, 

MAPK14/SAPKp38α, MAPK9/JNK2 and MAPK8 /JNK1 as well as CDK1(CDC2) 

phosphorylation/inactivation of (Fig. 2A), pointing to a temporal and functional link 

between these events. A previous study from our laboratory indicated that Bcl-xL co-

localized with CDK1(CDC2) in the nucleolus during the G2 checkpoint induced by 

camptothecin (CPT) and VP16 treatment in human cell lines (15). The nucleolus acts on 

cell-cycle progression and genomic stability by phased sequestration and the release of 

regulatory proteins, including p19/ARF, MDM2, CDC14, PP1, p53, CDK1(CDC2), 

telomerase and the DNA helicases WRN and BLM (reviewed in (17)). Indirect in cellular 

immunofluorescence microscopy was undertaken to monitor the re-distribution of wt 

HA-Bcl-xL and phosphorylation mutant HA-Bcl-xL(Ser62Ala). We observed that a pool 

of wt HA-Bcl-xL and phospho-Bcl-xL(Ser62) co-localized strongly with nucleolin, a 

marker of the nucleolus, 48 h-post VP16 exposure (Fig. 2B). In contrast, the 

phosphorylation mutant HA-Bcl-xL(Ser62Ala) showed no co-location with nucleolin 

(Fig. 2C). Total phospho-Bcl-xL(Ser62) in Namalwa cells, expressing the 
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phosphorylation mutant HA-Bcl-xL(Ser62Ala), was also considerably reduced. The 

percentage of wt HA-Bcl-xL and phosphorylation mutant HA-Bcl-xL(Ser62Ala) that co-

localized with nucleolin in Namalwa cells was quantified by image analysis (Fig. 2D). 

The percentages of total phospho-Bcl-xL(Ser62), including endogenous Bcl-xL and HA-

tagged expressed protein, are illustrated in Fig. 2E. Altogether, these results indicate that 

Ser62 is required for Bcl-xL translocation to nucleoli 48 h-post VP16 treatment, and that 

accumulation of phospho-Bcl-xL(Ser62) into nucleoli coincides with the stabilization of 

G2 arrest. The specificity of phospho-Bcl-xL(Ser62) antibodies is depicted in 

Supplementary Fig. S2. 

 

Endogenous Bcl-xL(Ser62) phosphorylation and location in unperturbed, 

synchronized cells and during DNA damage-induced G2 arrest 

 Because the above observations were made in HA-Bcl-xL-transfected and over-

expressed cells, we next explored the role of endogenous Bcl-xL in the cell cycle. We 

performed these experiments in human wt HeLa cells. Indeed, wt HeLa cells are less 

prone to apoptosis after VP16 treatment, and undergo G2 arrest, with some cells escaping 

G2 arrest 48 and 72 h-post VP16 treatment (Fig. 3A, left panel). Bcl-xL(Ser62) 

phosphorylation is also seen in wt HeLa cells exposed to VP16 and accumulates in 

enriched nuclear fractions (Fig. 3B).  In addition, HA-Bcl-xL transfection and over-

expression in HeLa cells stabilizes G2 arrest (Fig. 3A, right panel). When wt HeLa cells 

are synchronized by double thymidine block and released upon progression from S to G2, 

endogenous Bcl-xL is progressively modified with accumulation of Ser62 

phosphorylation (Fig. 3C). Phospho-Bcl-xL(Ser62) is found in cytosolic and nuclear 

extracts, with progressive accrual in nuclear extracts in late S and G2 (Fig. 3C), 

indicating that Bcl-xL phosphorylation on Ser62 occurs during normal cell cycle 

progression. We next investigated the subcellular location of endogenous phospho-Bcl-

xL(Ser62) in wt HeLa cells by indirect immunofluorescence staining, in asynchronized 

control and VP16-exposed cells and,  synchronized, untreated G2 cells (Fig. 3D-F). In wt 

HeLa cells exposed to VP16, phospho-Bcl-xL(Ser62) accumulated in nucleoli 24- and 48 

h-post VP16 exposure. Accumulation in nucleoli was more marked after VP16 treatment 

in comparison to synchronized, untreated G2 cells (Fig. 3D).  Phospho-Bcl-xL(Ser62) 
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was also found in Cajal bodies with coilin, a specific Cajal body marker, but the location 

remained unchanged under the conditions tested (Fig. 3E).  Finally, phospho-Bcl-

xL(Ser62) did not locate in centrosomes (Fig. 3F). Taken together, these results indicate 

that endogenous Bcl-xL is phosphorylated on Ser62 during normal cell cycle progression 

and that phospho-Bcl-xL(Ser62) accumulates much more strongly in nucleoli during 

DNA damage-induced G2 checkpoint in wt HeLa cells. 

 

PLK1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) 

phosphorylation and accumulation in nucleoli during DNA damage-induced G2 

arrest 

 Various protein kinases have been postulated to phosphorylate Bcl-xL on Ser62 

under various experimental conditions including those driving activation of the mitotic 

spindle-assembly checkpoint (18-22). No study has yet documented Bcl-xL phosphorylation 

on Ser62 at the G2 checkpoint. Based on an in silico consensus site prediction search 

(Supplementary Table S5), and on known protein kinases activated during the DNA 

damage response and G2 checkpoint (Fig. 2A), we first tested a panel of protein kinases 

by in vitro kinase assays with recombinant human Bcl-xL protein as substrate. Among all 

the kinases tested, PLK1, MAPK9/JNK2, GSK3α, GSK3β, MAPK8/JNK1, MAPKAPK2 

and MAPK14/SAPKp38α were positive and able to phosphorylate recombinant Bcl-xL 

protein on Ser62 in in vitro kinase assays (Fig. 4A). The origin of the kinases, kinase 

assay description and enzyme-specific activities with control substrates are indicated in 

Supplementary Table S3 and Supplementary Fig. S3. Then, with specific 

pharmacological inhibitors and VP16-exposed cells, we observed that PLK, JNK and 

GSK3 inhibitors prevented Bcl-xL phosphorylation on Ser62 (Fig. 4B) in VP16-exposed 

cells. Deploying a series of specific siRNAs (Fig. 4C, and see supplementary Table S4 

and supplemenatry Fig. S4 for additional information and controls), western blotting of 

enriched nuclear extracts revealed that the most important kinases involved in Bcl-

xL(Ser62) phosphorylation in G2-arrested VP16-treated HeLa cells were PLK1, 

MAPK8/JNK1, MAPK9/JNK2 and, to a much lesser extent, GSK3β  (Fig. 4D).  Finally, 

to confirm these results and to monitor the effect of silencing the kinases on phospho-



 35 

Bcl-xL(Ser62) accumulation in nucleoli in VP16-exposed cells, indirect in cellular 

immunofluorescence microscopy was undertaken and quantified (Fig. 4E). The data 

indicate that PLK1 and MAPK9/JNK2 are major protein kinases associated with 

progressive phospho-Bcl-xL(Ser62) accumulation in nucleolar structures in VP16-

exposed cells.  

 

Phospho-Bcl-xL(Ser62) meets CDK1(CDC2) in nucleolar structures during DNA 

damage-induced G2 arrest 

  In a series of reciprocal co-immunoprecipitation experiments, we previously 

showed that nuclear Bcl-xL binds to CDK1(CDC2) during the G2 checkpoint (15). Here, 

we repeated these experiments on enriched nuclear and enriched nucleolar extracts. In 

nuclear extracts, we observed that a pool of Bcl-xL protein co-immunoprecipitating with 

CDK1(CDC2) is phosphorylated on Ser62. The phosphorylation mutant Bcl-

xL(Ser62Ala) in nuclear extracts also co-immunoprecipitated with CDK1(CDC2), but to 

an apparently lesser extent (Fig. 5A). When co-immunoprecipitation experiments were 

performed on nucleolar extracts (Fig. 5B), we noted that phospho-Bcl-xL(Ser62) co-

immunoprecipitated with CDK1(CDC2), while the phosphorylation mutant Bcl-

xL(Ser62Ala) was not present in nucleolar fractions. Reciprocal co-immunoprecipitation 

was also undertaken (Fig. 5B). CDK1(CDC2) protein co-localized with nucleolin in 

VP16-exposed cells (Fig. 5C) as well as with phospho-Bcl-xL(Ser62) in nucleolar 

structures (Fig. 5D). Together, the data suggest that during G2 checkpoint, Bcl-xL 

phosphorylation on Ser62 promotes Bcl-xL translocation to nucleoli where it will meet an 

important pool of CDK1(CDC2), contributing to its trapping in nucleolar structures to 

timely avoid entry into mitosis (Fig. 5E).   

  

Discussion 

 Our study reveals Bcl-xL(Ser62) phosphorylation during the normal cell cycle and 

in DNA-damage-induced G2 arrest, and PLK1 and MAPK9/JNK2 are major protein 
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kinases responsible for Bcl-xL(Ser62) phosphorylation and progressive accumulation in 

nucleolar structures during the stabilization of DNA damage-induced G2 arrest. This 

function of phospho-Bcl-xL(Ser62) was clearly separable from Bcl-xL's known purpose 

in apoptosis, as the Bcl-xL(Ser62Ala) phosphorylation mutant retained its anti-apoptotic 

effect but lacked the G2-arrest stabilization function. This original role of phospho-Bcl-

xL(Ser62) is associated with its translocation into the nucleolus after DNA damage, 

where it will meet CDK1(CDC2). The dynamic complex processes that occur in the 

nucleolus are emerging. Besides their traditional function in ribosome biogenesis, 

nucleolar structures are now appearing as key centers that either provide local 

concentration of activities essential for nuclear and cellular processes, or exclude and 

timely trap nuclear factors that would otherwise interfere with proper nuclear and cellular 

functions (17). Indeed, the nucleolus acts on cell-cycle progression and genomic stability 

by phased sequestration and the release of regulatory proteins, including p19/ARF, 

MDM2, CDC14, PP1, p53, telomerase and the DNA helicases WRN and BLM (17). 

CDK1(CDC2) as well as Bcl-xL or Bcl-2 have also been reported previously in nucleolar 

structures (15, 23, 24). In the nucleolus, phospho-Bcl-xL(Ser62) binds to and co-localizes 

with CDK1(CDC2) in G2-arrested cells, indicating that its contributes to the temporal 

trapping of CDK1(CDC2), avoiding unwanted mitosis in the presence of DNA damage. It 

could also suggest that Bcl-xL(Ser62) protects nucleolar structures during DNA damage-

induced G2 arrest to avoid rapid nucleolar disassembly associated with mitosis onset. 

Phospho-Bcl-xL(Ser62) was also located in Cajal bodies. Although not investigated 

further in this study, Cajal bodies are known to encompass dynamic trafficking and 

fusion with nucleolar structures (17, 25). In the near future, it will certainly be of interest to 

further examine Cajal bodies/nucleoli interaction during the G2 checkpoint.  

  Entry into mitosis absolutely requires progressive accumulation of active cyclin 

B1/CDK1 (CDC2) complexes in the nucleus. Indeed, recent observations indicate that 

different levels of cyclin B1/CDK1(CDC2) kinase activity are timely organized to 

coordinate and trigger different mitotic events, the initial activation of cyclin 

B1/CDK1(CDC2) complexes occuring about 20 to 25 min before nucleolar disassembly 

and nuclear envelope breakdown (26). When cyclin B1/CDK1(CDC2) activity reaches a 

specific threshold, it triggers both nucleolar disassembly and nuclear envelope 
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breakdown. After these events, cyclin B1/CDK1(CDC2) rapidly reaches maximum 

activity to resume mitosis (26). Our data suggest that Bcl-xL(Ser62) phosphorylation is 

associated with its translocation to the nucleolus. In the nucleolus, phospho-Bcl-xL(Ser62) 

will meet CDK1(CDC2) during G2 checkpoint, playing a role in stabilizing G2 arrest by 

timely trapping of CDK1(CDC2) into nucleolar structures to avoid or slow down 

unwanted mitotic entry.  

 PLK1 activity is regulated both in time and space, and its many functions have 

been linked to cell entry into mitosis, centrosomes and microtubule-organizing centres, 

mitotic exit and cytokinesis (reviewed in (27)). Relatively little is known about its function 

during the S and G2 phases of the cell cycle. However, it has been reported recently that 

PLK1 accumulates in the nucleus during S and G2 phases revealing that PLK1 also has 

key functions during the S and G2 phases of the cell cycle (28). Among them, it has been 

shown that PLK1 interacts with many chromatin-bound components including those of 

the replicative helicase, Mcm complexes, suggesting a possible role during replication 

and/or in monitoring replicative stress (29). PLK1 also binds to and phosphorylates DNA 

topoisomerase IIα, promoting its activity (28). Our observation that PLK1 is one of the 

key protein kinases associated with Bcl-xL(Ser62) phosphorylation during the G2 

checkpoint illustrates additional functional roles for PLK1 along the cell cycle.  

 At G2/M transition, high PLK1 activation is promoted by BORA and Aurora A 
(30), and facilitates CDK1(CDC2)-cyclinB1 activation by promoting WEE1 

downregulation and regulating CDC25 phosphatase activities (31). PLK1 is an important 

target of the DNA damage response enabling cell-cycle arrest. In response to DNA 

damage, PLK1 ubiquitination, degradation and inactivation have been reported via a 

CDC14B/Cdh1 pathway. PLK1 also promotes checkpoint recovery after DNA damage 

(reviewed in (27)). However, mitotic entry in an unperturbed cell cycle can occur in the 

absence of PLK1, and PLK1 does not appear to act in an amplification loop with cyclin 

B1/CDK1 (CDC2) to trigger the early mitotic events (26).     

 Activation of various MAPK pathways during G2 and mitosis has also been 

documented. MAPK14/SAPKp38α directly activates MAPKAPK2, which is responsible 

for CDC25B/C phosphorylation and 14-3-3 protein binding in vitro in response to DNA 



 38 

damage in mammalian cells (32). Thus, MAPKAPK2, in addition to CHK1 and CHK2, is 

involved in coordinating the DNA damage response of higher eukaryotic cells. 

MAPK8/JNK1 and MAPK9/JNK2 are also strongly expressed during the G2 and early 

M-phase, accumulating in the nucleus during G2, and play a role in proper mitosis (33). 

Inhibition or silencing of MAPK9/JNK2 only did not block entry of cells into mitosis but 

resulted in polyploidy, indicating that MAPK9/JNK2 also functions in maintaining 

genomic stability (34).  The MAPK9/JNK2 effect on Bcl-xL(Ser62) phosphorylation 

resulting in G2 checkpoint stabilization is consistent with a MAPK9/JNK2 - phospho-

Bcl-xL(Ser62) function in genomic stability.   

 Phospho-Bcl-xL(Ser62) during the normal cell cycle and DNA damage-induced 

G2 checkpoint has not yet been documented.  Phospho-Bcl-xL(Ser62) has been detected 

previously in cells treated with microtubule inhibitors, including nocodazole, paclitaxel, 

vinblastine and vincristine. Mitotic arrest induced by these compounds is associated with 

Bcl-2, Bcl-xL and Mcl-1 phosphorylation. Other studies have revealed that Bcl-2 and 

Mcl-1 phosphorylation is also tightly coupled with normal mitotic events (35, 36). Bcl-2 

phosphorylation multi-sites (Ser70, Ser87, Thr69) are located within the unstructured 

loop domain of the protein, a region generally not essential for its anti-apoptotic function. 

Multiple kinases have been proposed to phosphorylate Bcl-2 and/or Bcl-xL at Ser62 in 

microtubule inhibitor-exposed cells, but most studies have suggested that JNK, normally 

activated at G2/M, is the kinase responsible for Bcl-2 and Bcl-xL phosphorylation (19-22, 

37, 38).  

 In summary, our study reveals Bcl-xL(Ser62) phosphorylation during the normal 

cell cycle and in DNA damage-induced G2 arrest and, PLK1 and MAPK9/JNK2 are 

major kinases responsible for Bcl-xL(Ser62) phosphorylation and progressive 

accumulation in nucleolar structures during stabilization of DNA damage-induced G2 

arrest.  It highlights that DNA damage also affects the dynamic composition of a 

subnuclear domain, the nucleolus, which now emerges as an important piece of the DNA 

damage cell response. 
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Materials and methods 

Cell culture, cDNA construction and transfection. 

 Human Namalwa and HeLa cell lines were obtained from the American Type Culture 

Collection and grown at 37°C under 5% CO2 in RPMI-1640 medium and DMEM 

medium supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/ml 

penicillin and 100 µg/ml streptomycin, respectively. The phosphorylation mutant pCEP4-

HA-Bcl-xL and pCDNA3.1-HA-Bcl-xL vectors were generated by triple polymerase 

chain reactions (PCR) (15). All primers and details are provided in Supplementary Table 

S1. Transfected cells were grown under hygromycin B1 (pCEP4 vectors) or neomycin 

(pCDNA3.1 vectors) selection to obtain stable cell population prior to performing the 

experiments.  

 

Mitotic trap assay and cell synchronisation 

Mitotic trap assay has been described by Andreassen et al (16). Briefly cells entering 

mitosis after G2 arrest were trapped by adding nocadazole (0.35 µM) at 24-h intervals 

after VP16 treatment. At the indicated times, the kinetics of G2 arrest, mitotic entry and 

cell death were monitored in Coulter EpicsXL flow cytometers with phospho-H3(Ser10) 

labeling and PI staining. HeLa cells were synchronized by double-thymidine block (2 

mM) and release. 

 

Protein extraction, subcellular fractionation, immunoblotting and co-

immunoprecipitation 

To prepare total protein extracts, the cells were extracted with lysis buffer containing 20 

mM Hepes(KOH), pH 7.4, 120 mM NaCl, 1% Triton X-100, 2 mM 

phenylmethylsulfonyl fluoride (PMSF), a cocktail of protease inhibitors (CompleteTM, 

Roche Applied Science) and a cocktail of phosphatase inhibitors (PhosStopTM Roche 

Applied Science). Cytosolic and nuclear extracts were prepared with NE-PER Nuclear 
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and Cytoplasmic extraction reagents according to the manufacturer's protocol 

(ThermoScientific, Rockford IL). Nucleolar fractions were obtained from enriched nuclei 

according to a procedure adapted from published protocols (39). Briefly, purified nuclei 

were re-suspended in 3 ml of 0.34 M sucrose containing 0.5 mM MgCl2 and PhosStopTM, 

and then sonicated on ice for 6 x 6-s bursts with 10-s intervals between each burst, with a 

XL-2000 Microson (Misonix Inc., Farmingdale NY) at power setting 5. Nucleoli were 

then purified by layering the sonicated solution on a 3-ml 0.88M sucrose cushion 

containing 0.5 mM MgCl2 followed by centrifugation at 2,000 x g for 20 min. Nucleoli 

pellets were re-suspended in lysis buffer containing 20 mM Hepes(KOH), pH 7.4, 120 

mM NaCl, 1% Triton X-100, 0.5% deoxycholate, 2 mM PMSF, a cocktail of protease 

and phosphatase inhibitors, incubated on ice for 30-min with insoluble materials 

discarded after centrifugation (10,000 x g; 20 min). For immunoprecipitation, samples 

were first pre-cleaned with a protein A- and G-Sepharose mixture and, after 

centrifugation, antibodies at 10 µg/ml concentration were incubated at 4°C for 4 h. All 

antibodies used in this study are listed in Supplementary Table S2.  

 

Protein kinase assays and protein kinase chemical inhibitors 

The kinases and kinase assays are described in Supplementary Table S3. Enzyme 

activities were tested on control substrates, and velocities were expressed as 

nmole/min/mg (data in Supplementary Fig. S3). Recombinant human Bcl-xL(ΔTM) 

protein was produced and purified, as described previously (15).  The protein kinase 

chemical inhibitors deployed in this study are listed in Supplementary Table S3.  

 

siRNA-mediated protein kinase inhibition 

HeLa cells were transfected with DharmaFECT-1 transfection reagent (ThermoScientific) 

according to the manufacturer’s instructions, with 100 nM of either control siRNA or 

siRNA targeting different kinases (Supplementary Table S4). The cells were treated 10 h-

post transfection with VP16 (10 µM) for 16 h, then washed twice with PBS, followed by 



 41 

their incubation in drug-free medium for an additional 20 h prior to protein extraction and 

SDS-PAGE. 

 

Immunofluorescence microscopy 

Namalwa cells were spread by cytocentrifugation on glass slides and HeLa cells were 

seeded and grown directly on coverslips. Both cell types were fixed in methanol at -20°C 

for 30 min and rapidly immersed into ice-cold acetone for a few seconds. The slides were 

allowed to dry at room temperature and rehydrated in PBS. Nonspecific binding sites 

were blocked in PBS containing 5% FBS (blocking solution), then the slides were 

incubated sequentially with specific primary antibody (10 µg/ml in blocking solution), 

specific labeled-secondary antibody (10 µg/ml in blocking solution) followed by DAPI 

staining, also performed in blocking solution. All antibodies are listed in Supplementary 

Table S2. Images were generated with a Leica Microsystem mounted on a Leica 

DM6000B microscope and Leica DFC480 camera hooked up to a MacInctosh computer. 

All images were quantified with Clemex Vision software (Version 3.0.036, Clemex, 

Longueuil, QC, Canada), as described previously (40). 

 

Supplementary information:  Supplementary information for this article are available at 

the journal WEB site.   
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Figure 1 Effect of Bcl-xL and Bcl-xL(Ser62Ala) phosphorylation mutant on DNA 

damage-induced G2 arrest. (A) Expression level of HA-Bcl-xL and Bcl-xL(Ser62Ala) 

phosphorylation mutant in stably-transfected Namalwa cell populations. β-actin 

expression is shown as control. (B) Schematic view of the mitotic trap assay; VP16 was 

administered at 10 µM for 30 min; nocodazole treatments (0.35 µM) at the indicated 

intervals trapped cells entering mitosis.  (C-F) Kinetics of G2 arrest (grey bars), mitotic 

slippage (red bars) and cell death (green bars) in wt Namalwa cells and Namalwa cells 

expressing HA-Bcl-xL and Bcl-xL(Ser62Ala) phosphorylation mutant. Bars represent the 

means ± s.e.m. of n independent experiments. Data with additional HA-Bcl-xL 

phosphorylation mutants are in Supplementary Fig. S1. 
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Figure 2 
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Figure 2  HA-Bcl-xL(Ser62) phosphorylation and location during DNA damage-

induced G2 arrest. (A) Expression and phosphorylation kinetics of HA-Bcl-xL and key 

components of DNA damage responses after VP16 treatment (10 µM for 30 min).  (B)  

Co-location kinetics of HA-Bcl-xL and phospho-Bcl-xL(Ser62) with nucleolin in 

Namalwa cells expressing HA-Bcl-xL exposed to VP16 (10 µM for 30 min).  (C) Co-

location kinetics of HA-Bcl-xL(Ser62Ala) and phospho-Bcl-xL(Ser62) with nucleolin in 

Namalwa cells expressing the phosphorylation mutant HA-Bcl-xL(Ser62Ala) exposed to 

VP16 (10 µM for 30 min). (D) Percentage of HA-Bcl-xL and (E) phospho-Bcl-xL(Ser62) 

located in nucleoli in Namalwa cells expressing HA-Bcl-xL and HA-Bcl-xL(Ser62Ala) 

mutant exposed to VP16 (10 µM for 30 min). Bars represent the means ± s.e.m. from 

micrographs obtained in n independent experiments. 
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Figure 3 
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Figure 3  Endogenous Bcl-xL(Ser62) phosphorylation and location in unperturbed 

synchronized cells and during DNA damage-induced G2 arrest. (A) wt HeLa cells and 

HeLa cells expressing HA-Bcl-xL were exposed to VP16 (10 µM,  16 h), and the kinetics 

of G2 arrest (grey bars), mitotic slippage (black bars) and cell death (white bars) were 

monitored by mitotic trap assay. Bars represent the means ± s.e.m. of 6 independent 

experiments. (B) Expression kinetics of endogenous Bcl-xL and phospho-Bcl-xL(Ser62) 

in wt Hela cells exposed to VP16 (10 µM,  16 h). Total protein extracts and proteins 

obtained from cytosolic and nuclear extracts are shown. Western blots are representative 

of 3 independent experiments.   (C) Kinetics of expression of endogenous Bcl-xL and 

phospho-Bcl-xL(Ser62) in synchronized wt Hela cells after double-thymidine block 

release. Expression levels in cytosolic and nuclear extracts are represented. β-actin and 

nucleolin expression is presented as control. Phase distributions analyzed by flow 

cytometry with phospho-H3(Ser10) labeling and PI staining are indicated. Western blots 

are representative of 2 independent experiments.  (D) Co-location kinetics of endogenous 

phospho-Bcl-xL(Ser62) with nucleolin (nucleolus marker), (E) coilin (Cajal body 

marker) and (F) γ-tubulin (centrosome marker) in wt Hela cells exposed to VP16 (10 µM, 

16 h). Percentage of phospho-Bcl-xL(Ser62) in nucleoli, Cajal bodies and centrosomes 

during VP16-induced G2 checkpoint and during normal G2 phase of the cell cycle in 

synchronized wt Hela cells (sG2) are indicated in the right panels. Bars represent the 

means ± s.e.m. from 12 micrographs obtained in 4 independent experiments. 
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Figure 4 PLK1 and MAPK9/JNK2 are major protein kinases involved in Bcl-

xL(Ser62) phosphorylation and accumulation in nucleoli during DNA damage-induced 

G2 arrest. (A) In vitro kinase assays of a panel of purified and active protein kinases with 

recombinant human Bcl-xL(ΔTM) protein as substrate. All enzyme activities were tested 

on control substrates (Supplemental Figure 2 ). Western blots are representative of 4 

independent experiments.  (B) Effects of specific protein kinase inhibitors on Bcl-xL 

phosphorylation on Ser62 in Namalwa cells exposed to VP16. Cells were first exposed to 

VP16 (10 µM, 30 min) and, 12 h-post treatment, kinase inhibitors were added for an 

additional 12 h: MAPKAPK2 inhibitor (KKALNRQLGVAA, 10 µM); PLK inhibitor 

(BI2536,  0.1 µM), p38 inhibitor (SB203580, 2.0 µM), JNK inhibitor (SP600125, 5.0 

µM), GSK3 inhibitor (SB216763, 10 µM). Western blots are representative of 4 

independent experiments. (C) Effects of specific siRNAs on silencing PLK1, 

MAPK8/JNK1, MAPK9/JNK2, MAPKAPK2, MAPK14/SAPKp38α, GSK3α and 

GSK3β expression in wt Hela cells. Schematic view of these experiments (C-E) is 

showed. Additional controls are illustrated in Supplementary Fig. S4. (D) Effects of 

silencing PLK1, MAPK8/JNK1, MAPK9/JNK2, MAPKAP2, MAPK14/SAPKp38α, 

GSK3α and GSK3β expression in wt HeLa cells on the phosphorylation level of 

endogenous Bcl-xL(Ser62) after VP16 treatment. Representative western blotting of 

nuclear extracts of 3 independent experiments. (E) Co-location of endogenous phospho-

Bcl-xL(Ser62) with nucleolin (nucleolus marker) in wt Hela cells exposed to VP16 where 

various protein kinases are silenced. Quantitation of micrographs is shown in the right 

panels. Green bars are total phospho-Bcl-xL(Ser62) staining in cells; red bars are total 

nucleoli staining in cells; orange bars are the phospho-Bcl-xL(ser62)/nucleoli staining 

ratio.  Data are presented relative to wt HeLa cells exposed to VP16, and symbols are: (-) 

cells treated with siRNA control and VP16,  (+) cells treated with specific siRNA 

targeting the given protein kinase and VP16. Bars represent the means ± s.e.m. from 20 

micrographs obtained in 3 independent experiments. 
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Figure 5 Phospho-Bcl-xL(Ser62) meets CDK1(CDC2) in nucleolar structures 

during DNA damage-induced G2 arrest. (A) Co-immunoprecipitation of HA-Bcl-xL, 

HA-Bcl-xL(Ser62Ala) and phospho-HA-Bcl-xL(Ser62) with CDK1(CDC2) from 

enriched nuclear extracts obtained from Namalwa cells expressing HA-Bcl-xL or HA-

Bcl-xL(Ser62Ala) mutant exposed to VP16 (10 µM for 30 min). IgG represents co-

immunoprecipitation experiments with control immunoglobulins and ( - ) indicates a 

nuclear extract obtained from Namalwa cells expressing HA-Bcl-xL 48 h-post VP16 

treatment loaded as a western blot control. Representative of 2 independent experiments. 

(B) Reciprocal co-immunoprecipitation of HA-Bcl-xL, HA-Bcl-xL(Ser62Ala) and 

phospho-Bcl-xL(Ser62) with CDK1(CDC2) from enriched nucleolar extracts purified 

from Namalwa cells expressing HA-Bcl-xL and HA-Bcl-xL(Ser62Ala) mutant exposed 

to VP16 (10 µM for 30 min). IgG, CDK and HA represent co-immunoprecipitation 

experiments with control immunoglobulins, CDK1(CDC2) and HA-epitope tag 

antibodies, respectively. ( - ) indicates nucleolar extracts obtained from Namalwa cells 

expressing HA-Bcl-xL before and after VP16 treatment loaded as western blot controls. 

(C) Co-location of CDK1(CDC2) with nucleolin and (D) CDK1(CDC2) with phospho-

Bcl-xL(Ser62) 36 h after the beginning of VP16 treatment (10 µM,  16 h) in wt HeLa 

cells. Micrographs are representative of 2 independent experiments. (E) Schematic view 

of a proposed model. 
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Supplementary Figure S1 Effect of Bcl-xL and various Bcl-xL phosphorylation 

mutants on DNA damage-induced G2 arrest. (A) Expression level of HA-Bcl-xL and 

various phosphorylation mutants in stably-transfected Namalwa cell populations. β-actin 

expression is shown as control. (B) Schematic view of the mitotic trap assay; VP16 was 

administered at 10 µM for 30 min; nocodazole treatments (0.35 µM) at the indicated 

intervals trapped cells entering mitosis.  (C-K) Kinetics of G2 arrest (grey bars), mitotic 

slippage (red bars) and cell death (green bars) in Namalwa cells expressing HA-Bcl-xL 

and various phosphorylation mutants. Bars represent the means ± s.e.m. of n independent 

experiments. 
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Supplemental Figure S2 



 58 

 

Supplementary Figure S2 Specificity of the phospho-Bcl-xL(ser62) antibodies.  (A) 

Expression of phospho-HA-Bcl-xL(Ser62) in Namalwa cells expressing expressing HA-

Bcl-xL and HA-Bcl-xL(Ser62Ala) mutant exposed to VP16 (10 µM for 30 min). HA-

Bcl-xL expression is shown as control. (B) Staining of phospho-Bcl-xL(Ser62) in wt 

HeLa cells exposed to control siRNA or siRNA targeting the expression of Bcl-xL. 

Nucleolin staining and Western blottings are shown as control.  
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Supplementary Figure S3  In vitro kinase assays. (A) Enzyme activities were 

tested on control substrates with recombinant purified kinases. Velocities are expressed 

as nmole/min/mg. Two independent experiments are shown. (B) Cdk1(cdc2) enzyme 

activities tested on histone H1 control substrate with cdk1(cdc2) kinase purified by 

immunoprecipitation. Two independent immunoprecipitation assays are shown. (C) In 

vitro kinase essay with [32P]-γATP and recombinant Bcl-xL as substrate. Autoradiography 

and Coomassie staining are shown. 
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Supplementary Figure S4 Specificity of the SiRNAs. (A) Effects of silencing 

MAPK8/JNK1 and MAPK9/JNK2 with different targeted sequences on the expression of   

PLK1, MAPK8/JNK1, MAPK9/JNK2, GSK3α and GSK3β expression in wt HeLa cells 

(HeLa control) and HeLa cells exposed to VP16 (+VP16). CRKL or β−actin expression 

is shown as control. (B) Effects of silencing PLK1, GSK3α and GSK3β on the 

expression of PLK1, MAPK8/JNK1, MAPK9/JNK2, GSK3α and GSK3β expression in 

wt HeLa cells (HeLa control) and HeLa cells exposed to VP16 (+VP16). β−actin 

expression is shown as control. (C) Effects of silencing PLK1 on the expression of 

PLK1 and PLK3 in wt HeLa cells (HeLa control) and HeLa cells exposed to VP16 

(+VP16). β−actin expression is shown as control. (D) Effects of silencing PLK1, 

MAPK8/JNK1 and MAPK9/JNK2, on the expression of PLK1, MAPK8/JNK1 and 

MAPK9/JNK2 in nuclear extracts obtained from HeLa cells exposed to VP16 (+VP16). 

Nucleolin expression is shown as control. 
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Supplemental TABLE S1    cDNA constructs 
 
 
HA-Bcl-xL (T41A)  
5'-end oligonucleotide (+) with Nhe1 + START ATG codon:  5'- gctagcccacc atg ggc cgc atc ttt ta 
3'-end oligonucleotide (-) with STOP TGA codon:   5'- ctcgag tca ttt ccg act gaa gag tga 
Overlapping oligonucleotide (+) containing T41A substitution:  5'- gcc cca gaa ggg gct gaa tcg gag atg 
Overlapping oligonucleotide (-) containing T41A substitution:  5- cat ctc cga ttc agc ccc ttc tgg ggc 
(from wt HA-Bcl-xL as template / subcloned Nhe1/ Xho1 in Cep4 vector) 
  
 
HA-Bcl-xL (S43A) 
5'-end oligonucleotide (+) with Nhe1 + START ATG codon:  5'- gctagcccacc atg ggc cgc atc ttt ta  
3'-end oligonucleotide (-) with STOP TGA codon and XhoI:  5'- ctcgag tca tttc cga ctg aag agt ga 
Overlapping oligonucleotide (+) containing S43A substitution:  5'-gaa ggg act gaa gcg gag atg gag acc 
Overlapping oligonucleotide (-) containing S43A substitution:  5'-ggt ctc cat ctc cgc ttc agt ccc ttc 
(from wt HA-Bcl-xL as template / subcloned Nhe1/ Xho1 in Cep4 vector) 
 
 
HA-Bcl-xL (T47A) 
5'-end oligonucleotide (+) with Not1 + START ATG codon:  5'- gcggccgc atg tct cag agc aac cgg ga  
3'-end oligonucleotide (-) with STOP TGA codon and XhoI:  5'- ctcgag tca tttc cga ctg aag agt ga 
Overlapping oligonucleotide (+) containing T47A substitution:  5'-tcg gag atg gag gcc ccc agt gcc atc  
Overlapping oligonucleotide (-) containing T47A substitution:  5'-gat ggc act ggg ggc ctc cat ctc cga  
(from wt Bcl-xL as templat / subcloned Not1/ XhoI  in Cep4-HA vector) 
 
 
HA-Bcl-xL (S56A) 
5'-end oligonucleotide (+) with Not1 + START ATG codon:  5'- gcggccgcatg tct cag agc aac cgg gag 
3'-end oligonucleotide (-) with STOP TGA codon and XhoI:  5'- ctcgag tca tttc cga ctg aag agt ga 
Overlapping oligonucleotide (+) containing S56A substitution:  5'- aat ggc aac cca gcc tgg cac ctg gca 
Overlapping oligonucleotide (-) containing S56A substitution:  5'- tgc cag gtg cca ggc tgg gtt gcc att 
(from wt Bcl-xL as template / subcloned Not1/ XhoI  in Cep4-HA vector) 
 
 
HA-Bcl-xL (S62A) 
5'-end oligonulcleotide (+) with Not1 + START ATG codon:  5'- gcggccgcatg tct cag agc aac cgg gag 
3'-end oligonucleotide (-) with STOP TGA codon and XhoI:  5'- ctcgag tca ttt ccg act gaa gag tga 
Overlapping oligonucleotide (+) containing S62A substitution:  5- cac ctg gca gac gcc ccc gcg gtg aat 
Overlapping oligonucleotide (-) containing S62A substitution:  5- att cac cgc ggg ggc gtc tgc cag gtg  
(from wt Bcl-xL as template / subcloned Not1/ XhoI  in Cep4-HA vector) 
 
 
HA-Bcl-xL (T115A) 
5'-end oligonulcleotide (+) with Not1 + START ATG codon:  5'- gcggccgcatg tct cag agc aac cgg gag 
3'-end oligonucleotide (-) with STOP TGA codon and XhoI:  5'- ctcgag tca ttt ccg act gaa gag tga 
Overlapping oligonucleotide (+) containing T115A substitution:  5- cag ctc cac atc gcc cca ggg aca gca 
Overlapping oligonucleotide (-) containing T115A substitution:  5- tgc tgt ccc tgg ggc gat gtg gag ctg 
(from wt Bcl-xL as template / subcloned Not1/ XhoI  in Cep4-HA vector) 
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Supplemental TABLE S1 cDNA constructs. The phosphorylation mutant pCEP4-HA-

Bcl-xL and pCDNA3.1-HA-Bcl-xL vectors were generated by triple polymerase chain 

reactions (PCR) with wt pCEP4-HA-Bcl-xL vector as DNA template. The first fragments 

were amplified by Vent polymerase, with specific adapter primers containing restriction 

site sequences at the ATG start codon and anti-sense junction primers corresponding to 

the flanking sequences at each mutation site, as listed in Table S1. The second fragments 

were amplified by Vent polymerase, with sense junction primers corresponding to 

flanking sequences at each mutation site and adapter anti-sense primers containing 

restriction site sequences at the TGA stop codon. The 2 amplified fragments were gel-

purified, heat-denaturated, and slowly annealed on ice. After elongation by Taq 

polymerase for 10 min, the third PCR, with specific adapter primers containing sequences 

at the ATG start codon and TGA stop codon, was amplified. The amplified fragment was 

first cloned in pCR2.1Topo vector (Invitrogen Corporation), sequenced, and then sub-

cloned in the eukaryotic expression vectors pCEP4 and pCDNA3.1 (Invitrogen 

Corporation). For some constructs, the HA-tag sequences were not amplified by PCR; 

these amplified fragments were than sub-cloned in-frame into the pCEP4-HA vector. All 

primers are listed in Supplemental Table 1. Purified constructs were transfected in 

Namalwa cells by electroporation at 0.27 kV (Gene Pulser, BioRad, Hercules, CA) and in 

HeLa cells by Lipofectamine2000 transfection according to the manufacturer's protocol 

(Invitrogen Corporation). 
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Supplemental TABLE S2 

ANTIBODIES   ID   Species   Source 
Cyclin B1   clone GNS-1  mouse mAb  BD Biosciences 
Phospho-cdc2 Thr161  # 9114   rabbit pAb  Cell Signaling 
Phospho-cdc2 Tyr15  # 4539   rabbit pAb  Cell Signaling 
Cdc2/CDK1   # PC25   rabbit pAb  Calbiochem 
Cdc2/CDK1   clone 1/cdk1  mouse mAb  BD Biosciences 
ATM    clone D2E2  rabbit mAb  Cell Signaling 
Phospho ATM Ser1981  clone 10H11.E12  mouse mAb  Cell Signaling 
ATR    # 2790   rabbit pAb  Cell Signaling 
Phospho ATR Ser428  # 2853   rabbit pAb  Cell Signaling 
Chk1    # 2345   rabbit pAb  Cell Signaling 
Phospho Chk1 Ser317  # 2344   rabbit pAb  Cell Signaling 
Chk2    # 2662   rabbit pAb  Cell Signaling 
Phospho Chk2 Thr68  # 2661   rabbit pAb  Cell Signaling 
Plk1     clone 208G4  rabbit mAb  Cell Signaling 
Phospho Plk1 Thr210  clone K50483  mouse mAb  BD Biosciences  
Plk3    clone B37-2  mouse mAb  BD Biosciences 
Aurora A   clone 1G4  rabbit mAb  Cell Signaling 
Phospho Aurora A Thr288 clone C39D8  rabbit mAb  Cell Signaling 
MAPKAPK2   # 3042   rabbit pAB  Cell Signaling 
Phospho-MAPKAPK2 Thr334 clone 27B7  rabbit mAb  Cell Signaling 
p38α / MAPK14   clone L53F8  mouse mAb  Cell Signaling 
Phospho p38α Thr180/Tyr182 clone 28B10  mouse mAb  Cell Signaling 
JNK1/MAPK8   clone G151-333  mouse mAb  BD Biosciences 
JNK2/MAPK9   # 4672   rabbit pAb  Cell Signaling 
Phospho JNK Thr183/Tyr185 # 9251   rabbit pAb  Cell Signaling 
GSK3α    # 9338   rabbit pAb  Cell Signaling 
GSK3β    clone 27C10  rabbit mAb  Cell Signaling 
Bcl-xL    clone 2H12  mouse mAb  BD Biosciences 
Phospho-BclxL Ser62  custom   rabbit pAb  GenScript 
Phospho-BclxL Ser62  # 4428G   rabbit pAb  InVitrogen 
HA tag    clone 12CA5  mouse mAb  Roche Applied  
HA tag    # A00168  goat pAb  GenScript 
Coilin    Ab11822  mouse mAb  Abcam 
Nucleolin   clone 4E2  mouse mAb  GeneTex 
Actin    clone 4C40  mouse mAb  Sigma 
Phospho H3 (ser10) Alexa 488 # 9708   rabbit pAb  Cell Signaling 
Anti-Mouse IgG Alexa 488 # A11001  goat pAb  InVitroGen 
Anti-Rabbit IgG Alexa 488 # A11008  goat pAb  InVitroGen 
Anti-Mouse IgG Alexa 594 # A11005  goat pAb  InVitroGen 
Anti-Rabbit IgG Alexa 594 # A11012  goat pAb  InVitroGen 
Anti-Mouse IgG HP-linked # NA931V  sheep pAb  GE Healthcare 
Anti-Rabbit IgG HP-linked # NA934V  donkey pAb  GE Healthcare 
Normal Rabbit IgG  # sc-2027  rabbit IgG  Santa Cruz  
Normal Mouse IgG  # sc-2025  mouse IgG  Santa Cruz  
ProteinG Plus/ProteinA Agarose # IP05   ------------  Calbiochem 
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Supplemental TABLE S3 

Recombinant Enzyme Source  Control Substrate     Source             Buffer 
CHK1   Sigma-Aldrich  RXRX(L/A)S((R/F)  Cell Signaling A 
CHK2   Sigma-Aldrich  AMRLERQDSIFYPK  AnaSpec         A 
p38α /MAPK14  Cell Signaling ATF-2 (19-96)   Cell Signaling B 
JNK1/MAPK8  Cell Signaling         c-Jun (1-89)   Cell Signaling B+ 
JNK2/MAPK9  Cell Sciences  c-Jun (1-89)   Cell Signaling A 
MAPKAPK2  Cell Signaling KKKLNRTLSVA   AnaSpec  A+ 
PLK1   Cell Signaling RISDELMDATFADQEAK  AnaSpec  A 
PLK3   Cell Signaling RISDELMDATFADQEAK  AnaSpec  A 
Aurora A   Cell Signaling RRSLLE    Cell Signaling A 
Aurora B   Cell Signaling LRRLSLGLRRLSLGLR 
     RLSLGLRRLSLG    AnaSpec  A 
NEK2   Cell Signaling RFRRSRRMI   AnaSpec  A 
GSK3α   Cell Signaling RRAAEELDSRAGSPQL  AnaSpec  A 
GSK3β   Sigma-Aldrich GPHRSTPESRAAV  AnaSpec  A+ 
Immunoprecipitated Enzyme 
CDC2/CDK1  Namalwa cells  Histone H1    Sigma-Aldrich B+ 
 
Buffer A (5x): 25 mM MOPS pH 7.2 
  25 mM MgCl2 
  12.5 mM β-glycerol-2-phosphate 
  0.5 mM Na3VO4 
  5 mm EGTA 
  2 mM EDTA 
  0.25 mM dithiothreitol 
  500 µΜ ATP* 
  * 0.05 µCi/µl [32P]-γATP  
Buffer A+ (5x): buffer A  + 50 µg/ ml BSA 
 
Buffer B (5x): 125 mM TRIS pH 7.2   
  
  50 mM MgCl2    
  25 mM β-glycerol-2-phosphate 
  0.5 mM Na3VO4 
  10 mM dithiothreitol 
  500 µΜ ATP* 
  * 0.05 µCi/µl [32P]-γATP  
Buffer B+ (5x): buffer B + 50 µg/ ml BSA 
 
Target   INHIBITOR   Source   Concentration 
p38    SB 203580   Calbiochem     2 µM 
JNK   SP 600125   Sigma-Aldrich     5 µM 
MAPKAPK2  H-KKALNRQLGVAA-OH Calbiochem   10 µM 
PLK   BI 2536    Axon MedChem   0.1 µM  
Aurora    ZM 447439   Tocris BioScience  0.1 µM 
GSK3   SB 216763   Sigma-Aldrich    10 µM 
 
Supplemental Table S3.  Listing of the protein kinase assays and protein kinase 
inhibitors. Source, control substrates and reaction buffers are indicated.  
 

 Supplemental Table S3 
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Supplemental TABLE  S4 
 
 
Target   siRNA Target sequence    Source 
 
PLK 1    (1) 5' -AGAUUGUGCCUAAGUCUCU-3'  Mol Biol Cell 15:5623, 2004   
 
MAPK8/JNK1   (1) 5'-GCCCAGUAAUAUAGUAGUA-3'  Cell Cycle 7: 533, 2008  
    (2) 5'-GGCAUGGGCUACAAGGAAA-3'  Cell Cycle 7: 533, 2008  
 
MAPK9/JNK2   (1) 5'-AGCCAACUGUGAGGAAUUA-3'  Cell Cycle 7: 533, 2008  
     (2) 5'-UCGUGAACUUGUCCUCUUA-3'  Cell Cycle 7: 533, 2008   
 
MAPK14/ p38α        (1)         5'-GGAAUUCAAUGAUGUGUAU-3'  On-Target plus sequence /Dharmacon  
    (2) 5'-UCUCCGAGGUCUAAAGUAU-3'  On-Target plus sequence/ Dharmacon  
    (3) 5'-GUAAUCUAGCUGUGAAUGA-3'  On-Target plus sequence /Dharmacon 
      (4) 5'-GUCCAUCAUUCAUGCGAAA-3'  On-Target plus sequence /Dharmacon 
  
MAPKAPK2           (1)       5'-CGAAUGGGCCAGUAUGAAU-3'  On-Target plus sequence /Dharmacon 
    (2) 5'-GUUAUACACCGUACUAUGU-3'  On-Target plus sequence /Dharmacon 
    (3) 5'-GGCAUCAACGGCAAAGUUU-3'  On-Target plus sequence /Dharmacon 
      (4) 5'-CCACCAGCCACAACUCUUU-3'  On-Target plus sequence /Dharmacom  
 
GSK3α    (1) 5'-CAUCAAAGUGAUUGGCAAU-3'  SMART POOL /Dharmacon  
    (2) 5'-AGUUGACCAUCCCUAUCCU-3'  SMART POOL //Dharmacon 
    (3)  5'-CUGAUUACACCUCAUCCAU-3'  SMART POOL /Dharmacon  
      (4) 5'-UUCUCAUCCCUCCUCACUU-3'  SMART POOL /Dharmacom  
 
GSK3β    (1) 5'-GAUCAUUUGGUGUGGUAUA-3'  SMART POOL  /Dharmacon 
    (2) 5'-GCUAGAUCACUGUAACAUA'-3  SMART POOL /Dharmacon   
    (3) 5'-GUUCCGAAGUUUAGCCUAU-3'  SMART POOL /Dharmacon    
    (4) 5'-GCACCAGAGUUGAUCUUUG-3'  SMART POOL /Dharmacon 
 
 
NON-TARGETING        SMART POOL / Dharmacom  
  
 
 
 
 
  
    
Supplemental Table S4. Listing of the SiRNA targeted sequence deployed in this 
study. 
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Supplemental TABLE S5 

 
Bcl-xL    W-H-L-A-D-(pS62)-P-A-V-N 
 
 
Protein Kinase   Consensus motif 
 
CHK1    Φ-X-β-X-X-(pS/T) 
CHK2    R/F-R/Φ-L/I-L/R-R-X-X-(pS/T)-F/I-F/I/R  
Aurora A   R/K/N-R-X-(pS/T)- Φ 
MAPK8/JNK1   (pS/T)-P 
MAPK9/JNK2   (pS/T)-P 
MAPK14/SAPKp38α  (pS/T)-P 
Cdk1(cdc2)   (pS/T)-P-X-K/R 
GSK3    (pS/T)-X-X-X-S 
PLK-1    D/EX(pS/T)-Φ-X-D/E 
Nek-2    R/K-X-X-A/I-(pS/T)-R/K 
MAPKAPK2   Φ-X-R-X-X-(pS/T)- Φ 
 
 
Supplemental Table S5. These protein kinases were identified as putative protein 
kinase involved with Bcl-xL(Ser62) phosphorylation by in silico consensus site prediction 
search using either GPS2.0, NetPhosK, NetworKIN, or PhosphoELM softwares. 
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Abstract  

 

 Analysis of a series of phosphorylation mutants reveals that cells expressing Bcl-

xL(Ser62Ala) are more stable at a sustained spindle-assembly checkpoint (SAC) after 

exposure to taxol than cells expressing wild-type Bcl-xL or other phosphorylation 

mutants, an effect that appears to be independent of its anti-apoptotic activity. Bcl-

xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at 

prometaphase, metaphase and the anaphase boundary, while it is dephosphorylated at 

telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-

tubulin, along the mitotic spindle with dynein motor protein and in cytosol with SAC 

signaling components.  In taxol-exposed cells, phospho-Bcl-xL(Ser62) binds to the 

CDC20/MAD2/BUBR1/BUB3 complex, while Bcl-xL(Ser62Ala) does not. These data 

indicate that during SAC, Bcl-xL(Ser62) phosphorylation accelerates SAC resolution and 

cell entry into anaphase, even in the presence of unattached or misaligned chromosomes. 

Silencing Bcl-xL expression also leads nocodazole-exposed cells to tetraploidy and 

binucleation, consistent with a Bcl-xL function in SAC and genomic stability. 
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Introduction 

 Mitosis involves proper alignment and accurate segregation of sister chromatids 

into two daughter cells to ensure precise inheritance of the genome. Failure of the process 

can lead to cell death or genetic instability, aneuploidy and diseases, including cancer 

(reviewed in (1-3)). After DNA replication and centrosome duplication, entry into mitosis 

absolutely requires progressive accumulation of active cyclin B1/CDK1 complexes in the 

nucleus that will initiate chromosome condensation, nuclear envelope breakdown, 

disassembly of the nuclear lamina and many forms of nuclear bodies, including Cajal 

bodies and nucleoli (4-7). Centrosomes become separated by the end of prophase, and, 

during prometaphase, highly dynamic mitotic microtubules form a bipolar spindle to 

which chromosomes must be bi-oriented and perfectly aligned by the end of metaphase.  

The spindle-assembly checkpoint (SAC) is the safety program that ensures the fidelity of 

chromosome bi-orientation and alignment, controlling entry into anaphase. It is 

constitutively active until proper microtubule attachment to and tension on kinetochores 

and individual sister chromatids at centromeric chromosomes (reviewed in (1-3)). 

Functionally, the SAC negatively regulates the ability of the limiting subunit CDC20 to 

activate the anaphase-promoting complex or cyclosome (APC/C), as APC/CCDC20, a large 

multiprotein E3 ubiquitin ligase consisting of at least 11 core subunits, that targets key 

mitotic substrates, including cyclin B and securin, provoking entry into anaphase and 

mitosis conclusion (8, 9).  

 The ability of CDC20 to activate APC/C, evoking entry into anaphase, is tightly 

regulated by several mechanisms, until all centromeric chromosomes have achieved 

bipolar kinetochore-microtubule attachment. During prometaphase/metaphase, when 

CDC20 is concentrated at kinetochores, the established view is that various mitotic 

checkpoint proteins, including BUB1, BUBR1, BUB3, MAD1 and MAD2, bind to 

kinetochores that lack attachment/tension, and generate a "stop anaphase signal" that 

diffuses into the mitotic cytosol (1-3, 8-11). This "stop anaphase signal" consists of a 

BUB3/BUBR1/MAD2 complex which diffuses into the mitotic cytosol, binds to CDC20 

and inhibits APC/C (12-19).  Direct phosphorylation of CDC20 by BUB1 and cyclin 

B1/CDK1 has also been reported, providing a direct catalytic mechanism that prevents 

CDC20 binding to APC/C during the SAC (20-22).   
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 In recent years, several studies have reported that members of the Bcl-2 family, in 

addition to their central role in controlling apoptosis during development and cellular 

stress, also play a part in the cell cycle and DNA repair pathways, effects that are 

generally distinct from their function in apoptosis and that influence genomic stability 

(reviewed in (23, 24)). Bcl-xL phosphorylation at Ser62 has been detected previously in a 

variety of cell lines treated with microtubule inhibitors, including nocodazole, paclitaxel, 

vinblastine, vincristine, colchicine and pironetin (25-33), but the exact function of Bcl-

xL(Ser62) phosphorylation during mitosis remains elusive. Bcl-xL(Ser62) is located 

within the unstructured loop domain of the protein, a region generally not essential for its 

anti-apoptotic function (34-36). However, studies have indicated that a deletion mutant of the 

loop domain displays an enhanced ability to inhibit apoptosis with no significant 

alterations in its ability to bind pro-apoptotic Bax (34). Some have suggested that Bcl-xL 

phosphorylation maintains its anti-apoptotic function (30), while others have reported that 

phosphorylation causes Bcl-xL to release bound Bax and promote apoptosis (31).  No 

study has investigated other possible Bcl-xL functions acting directly on mitosis 

regulation and progression. 

 To better understand the importance of Bcl-xL phosphorylation events within its 

flexible loop domain in regulating Bcl-xL location and function during mitosis, we 

generated a series of single-point Bcl-xL cDNA phosphorylation mutants, including 

Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala, Ser62Ala and Thr115Ala and selected stably-

transfected human cell populations. We also investigated Bcl-xL phosphorylation and 

location kinetics during mitosis and deployed siRNAs targeting Bcl-xL expression.  In 

this study, we provide evidence that phospho-Bcl-xL(Ser62) is a key component of 

mitosis progression at the SAC, which appears to be separate from its anti-apoptotic 

function.  

 

Results 

Effect of Bcl-xL and various Bcl-xL phosphorylation mutants on SAC stability and 

mitosis progression 

To examine the mitotic functions of Bcl-xL, we first generated various HA-tagged 

Bcl-xL phosphorylation mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala, 
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Ser62Ala and Thr115Ala, then stably expressed them in Namalwa cells (Figure 1A and 

Supplemental Figure S1A). Simple experimental monitoring by flow cytometry with 

phospho-H3(Ser10) labeling and propidium iodide (PI) staining were used to evaluate the 

kinetics of early mitotic entry and stability (N4 DNA content, phospho-H3(Ser10)-

positive), mitotic exit (N4 DNA content, phospho-H3(Ser10)-negative), G1 entry (N2 

DNA content, phospho-H3(Ser10)-negative), and the kinetics of cell death (sub-G1 DNA 

content) in taxol-exposed cells. Control Namalwa cells (Figure 1B) or Namalwa cells 

stably transfected with empty vector (Figure 1C) died rapidly after taxol treatment (green 

bars).  In contrast, cells stably expressing HA-Bcl-xL and HA-Bcl-xL(Ser62Ala) mutant 

showed similar strong inhibition of apoptosis (Figure 1D-E; green bars). Up to 80% of 

cells over-expressing wild type (wt) HA-Bcl-xL and HA-Bcl-xL(Ser62Ala) mutants 

accumulated in early mitosis (N4 DNA/phospho-H3(Ser10)-positive; red bars) from 12- 

to 24-h taxol exposure. Interestingly, HA-Bcl-xL-expressing cells started to lose the 

phospho-H3(Ser10) marker by 36 h, whereas HA-Bcl-xL(Ser62Ala) mutant cells were 

still stable in early mitosis by 36 h (N4 DNA/phospho-H3(Ser10)-positive; red bars), 

gradually losing the phospho-H3(Ser10) marker only at 48 to 60 h after taxol treatment. 

The phosphorylation mutants, including HA-Bcl-xL(Thr41Ala), (Ser43Ala), (Thr47Ala), 

(Ser56Ala) and (Thr115Ala), did not present a phenotype similar to HA-Bcl-

xL(Ser62Ala) (Supplemental Figure S1B-I), revealing the specificity of the HA-Bcl-

xL(Ser62Ala) effect on mitosis regulation and progression.  Co-commitly, 

phosphorylation of HA-Bcl-xL(Ser62) appeared rapidly in taxol-exposed cells in parallel 

with phospho-histone H3(Ser10), but not on HA-Bcl-xL(Ser62Ala) mutant (Figure 1F). 

Together, these results indicated that Bcl-xL(Ser62) phosphorylation occurred at a SAC 

in taxol-exposed cells. Phospho-Bcl-xL(Ser62) also appeared to accelerate SAC 

resolution and cell entry into anaphase. Indeed, failure of this phosphorylation in cells 

expressing the HA-Bcl-xL(Ser62Ala) mutant maintained taxol-exposed cells at the SAC 

for a longer time period with no striking difference in apoptosis level. 
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Endogenous Bcl-xL(Ser62) phosphorylation and location in synchronized cells and 

in taxol-sustained SAC in wt HeLa cells 

Because the above observations were made in HA-Bcl-xL-transfected and over-

expressed cells, we next monitored and explored the role of endogenous phospho-Bcl-

xL(Ser62) during mitosis. First, wt HeLa cells were synchronized by double thymidine 

block and released upon progression to G2. The cells were then treated with nocodazole 

(0.35 µM, 4-h), and prometaphase/metaphase cells were collected by mitotic shake-off. A 

portion of these cells was released from nocodazole and by growth in the presence of 

MG-132 (25 µM), a proteasome inhibitor that prevents cyclinB1 and securin destruction, 

to obtain a cell population at the anaphase boundary. A second set was also released from 

nocodazole and by growth in the presence of blebbistatin (10 µM), a selective non-

muscle contractile motor myosin II inhibitor that prevents furrow ingression, to attain a 

cell population at telophase/cytokinesis. A schematic view of these experiments appears 

in Figure 2A. Western blotting disclosed that Bcl-xL was highly phosphorylated on Ser62 

at prometaphase, metaphase and the anaphase boundary, while it was rapidly 

dephosphorylated at telophase/cytokinesis (Figure 2A). Bcl-xL level remained stable 

along mitosis, and cyclinB1 and phospho-H3(Ser10) expression was also shown to be a 

specific early mitotic phase marker (Figure 2A). We next looked for the location of 

phospho-Bcl-xL(Ser62) in unperturbed, synchronized wt HeLa cells. In these 

experiments, wt HeLa cells were synchronized by double thymidine block and release 

upon progression to G2 and entry into mitosis. The cells were collected at 30-min 

intervals from 9 to 12 h after double thymidine block and release to acquire mitotic cells 

at all steps of mitosis. Phospho-Bcl-xL(Ser62) did not co-localize with kinetochore 

structural proteins, including CENPA and HEC1, the microtubule plus-end tracking-

associated protein CLIP170, but localized in centrosomes with γ-tubulin, in mitotic 

cytosol with the SAC signaling kinase PLK1, and in cytosol as well as along the 

microtubule spindle with the motor protein dynein (Figure 2B). Controls with Bcl-xL 

antibodies are illustrated in Supplemental Figure S2.  Similar observations were made in 

taxol-exposed wt HeLa cells. More than 50 to 60% of wt HeLa cells harbored N4 DNA 

content and phospho-H3(Ser10) positivity 24-h post-taxol exposure (Figure 3A) with 
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Bcl-xL phosphorylation on Ser62 (Figure 3B). The cells gradually lost Bcl-xL(Ser62) 

phosphorylation with the early mitotic and SAC phospho-H3(Ser10) marker.  In these 

cells 24 h post-taxol treatment, phospho-Bcl-xL(Ser62) had a similar location compared 

to the normal mitosis step at prometaphase and metaphase, with no co-location with 

kinetochore structural proteins, including CENPA and HEC1, and co-location in 

centrosomes with γ-tubulin, in mitotic cytosol with SAC signaling components, including 

PLK1, BUBR1 and MAD2, and the motor protein dynein (Figure 3C). A summary of 

microscopy analysis is presented in Tables 1A and 1B. 

 

The importance of Bcl-xL in SAC resolution and cell fate 

Because the above observations reveal a role of Bcl-xL in SAC and mitosis 

progression, we hypothesized that silencing Bcl-xL expression would have an impact on 

SAC stability and resolution. To perform these experiments, we used nocodazole which 

has less toxicity than taxol in wt HeLa cells. Two types of experiments were conducted. 

First, we monitored SAC resolution/adaptation under continuous nocodazole treatment in 

cells transfected with control siRNAs or siRNAs targetting Bcl-xL expression. A 

schematic illustration of these experiments appears in the upper left panel of Figure 4A, 

with Bcl-xL expression shown in the upper right panel (Figure 4A). When Bcl-xL 

expression was suppressed, the cells lost phospho-H3(Ser10) labeling more rapidly than 

cells expressing Bcl-xL (Figure 4A, red bars). Moreover, these cells did not enter into G1 

(Figure 4A, blue bars) and remained with N4 DNA content (Figure 4A, grey bars), 

indicating tetraploidy. Second, we monitored SAC resolution/recovery under conditions 

where cells were released from nocodazole treatment, and in cells transfected with 

control siRNA or siRNA targeting Bcl-xL expression. A schematic view of these 

experiments is shown in the upper left panel of Figure 4B, with Bcl-xL expression 

illustrated in the upper right panel (Figure 4B). When Bcl-xL expression was suppressed, 

the cells rapidly lost phospho-H3(Ser10) labeling compared to cells expressing Bcl-xL 

(Figure 4A, red bars). In addition, these cells did not enter into G1 as fast as cells 

expressing Bcl-xL (Figure 4B, blue bars), and more cells retained N4 DNA content 

(Figure 4B, grey bars) or died (Figure 4B, green bars). Finally, further observation of 
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tetraploid cells under the microscope revealed that they were binucleated (Figure 4C). 

 

PLK1 and MAPK14/SAPKp38α are major protein kinases involved in Bcl-

xL(Ser62) phosphorylation during mitosis 

Based on an in silico consensus site prediction search and on known protein 

kinases activated during mitosis, we first tested a panel of protein kinases by in vitro 

kinase assays with recombinant human Bcl-xL protein as substrate (Figure 5A). Among 

all the kinases tested, PLK1, MAPK8/JNK1, MAPK9/JNK2, MAPKAP2, 

MAPK14/SAPKp38α, GSK3α and GSK3β were positive and able to phosphorylate 

recombinant Bcl-xL protein on Ser62 in in vitro kinase assays (Figure 5A), while CHK1, 

PLK3, AuroraB, MPS1, CDK1(CDC2), BUB1, BUB3 and BUBR1 failed to 

phosphorylate recombinant Bcl-xL protein on Ser62 (Figure 5A). Enzyme-specific 

activities with control substrates are indicated in Supplemental Figure S3, and details of 

the kinase assays are given in Supplemental Table S1A. Then, with specific 

pharmacological inhibitors and nocodazole-exposed cells, we observed that PLK and 

MAPK14/SAPKp38α inhibitors prevented Bcl-xL phosphorylation on Ser62 in 

nocodazole-exposed cells (Figure 5B). A schematic illustration of these experiments, and 

Bcl-xL and phospho-H3(Ser10) expression appear in Figure 5B.  Deploying a series of 

specific siRNAs, Western blotting of cell extracts from cells collected by mitotic shake-

off revealed again that the most important kinases involved in Bcl-xL(Ser62) 

phosphorylation of wt HeLa cells were PLK1 and MAPK14/SAPKp38α (Figure 5C). 

These experiments and the expression level of phospho-Bcl-xL(Ser62), Bcl-xL, phospho-

H3(Ser10), PLK1, MAPK14/SAPKp38α, , MAPKAP2, MAPK8/JNK1, MAPK9/JNK2 

and β-actin are schematically illustrated in Figure 5C. Additional controls and siRNA 

experiments are reported in Supplemental Figure S4, with details in Supplemental Table 

S1B. The data indicate that PLK1 and MAPK14/SAPKp38α are major protein kinases 

associated with Bcl-xL(Ser62) phosphorylation during mitosis.  
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Interaction between phospho-Bcl-xL(Ser62) and the CDC20/MAD2/BUBR1/BUB3 

complex 

During SAC, a "stop anaphase signal" consisting of MAD2, BUBR1 and BUB3 

complex bound to CDC20 in mitotic cytosol negatively controls APC/C activity. In co-

immunoprecipitation experiments performed in transfected Namalwa cells, we observed 

that HA-Bcl-xL protein co-immunoprecipitated with MAD2, BUBR1, BUB3 and 

CDC20, but not BUB1, in unperturbed and taxol-exposed cells (24 h), while HA-Bcl-

xL(Ser62Ala) mutant was only bound to MAD2 and, to a much lesser extent, BUB3 

(Figure 6A). These interactions were lost as the cells gradually progressed into the later 

stage of mitosis 48 h post-taxol exposure (Figure 1D, red bars). A series of reciprocal co-

immunoprecipitations confirmed that MAD2, BUBR1 and CDC20 interact with phospho-

HA-Bcl-xL(Ser62) (Figure 6B). CDC27 (APC-3), a subunit of APC, did not co-

immunoprecipitate in these experiments. 

 

Discussion  

 Our study indicates that during SAC, PLK1 and MAPK14/p38α mediated Bcl-

xL(Ser62) phosphorylation, binding it to the inhibitory CDC20/MAD2/BUBR1/BUB3 

complex in a way that accelerates SAC resolution and leading cells to enter anaphase 

more rapidly, even in the presence of unattached or misaligned chromosomes. Silencing 

Bcl-xL expression also leads nocodazole-exposed cells to tetraploidy and binucleation, 

consistent with Bcl-xL function in genomic stability. Phospho-Bcl-xL(Ser62) also 

localizes in centrosomes with γ-tubulin and along the microtubule spindle with dynein 

motor protein, but its functions at these locations were not further addressed in this study. 

Importantly, phospho-Bcl-xL(Ser62) function in mitosis appears to be separable from 

Bcl-xL’s known role in apoptosis, as Bcl-xL(Ser62Ala) phosphorylation mutant keeps its 

anti-apoptotic effect but clearly shows different behavior during SAC resolution and 

mitotic progression. Figure 6C provides a schematic view of the proposed model. 

 Bcl-xL phosphorylation has been detected previously in mitotic cells treated with 

microtubule inhibitors and binders, including nocodazole, paclitaxel, vinblastine, 

vincristine, colchicine and pironetin, and a few protein kinases have been proposed to 

phosphorylate Bcl-xL at Ser62 in microtubule inhibitor-exposed cells. Most studies have 
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suggested that JNK, normally activated at G2/M, is the kinase responsible for Bcl-2 and 

Bcl-xL phosphorylation (25-33, 37). Unlike other studies which investigated single protein 

kinases, in this work we simultaneously probed more than 14 protein kinases in a 

combination of assays, including in vitro kinase assays, pharmacological inhibitors and 

siRNAs. Most importantly, siRNA analysis was performed in a highly-enriched mitotic 

cell population collected by mitotic shake-off, to eliminate and avoid contamination or 

unwanted effects of these protein kinases in the G2 cell population. Our systemic 

approach may explain difference between our study and others (25-33, 37). In our 

experiment, two major protein kinases, PLK1 and MAPK14/SAPKp38α, involved in Bcl-

xL(Ser62) phosphorylation during mitosis, have been identified.  PLK1 activity is known 

to be highly regulated in both time and space, and has key functions for cell entry into 

mitosis, SAC regulation, mitotic exit and cytokinesis (reviewed in (38, 39)). 

MAPK14/SAPKp38α  is another major protein kinase activated during mitosis (40), that 

plays key roles during SAC, at metaphase/anaphase transition (40-47). 

 The current model of SAC regulation, supported by many studies indicates that 

unattached kinetochores generate the formation of a "stop anaphase signal" containing the 

proteins MAD2, BUBR1 and BUB3 that diffuse into mitotic cytosol and sequester 

CDC20 to interfere with APC/C activity (1-3, 8-19). However, subsequent entry into 

anaphase required SAC resolution and APC/C activation by a mechanism that remains 

poorly understood. SAC resolution or mitotic slippage in the presence of unattached or 

misaligned chromosomes has often been observed with microtubule poisons (48-54), and 

SAC silencing or resolution at least required ubiquitination, deubiquitination and 

proteolysis (55-59).  Several findings in our study support a role of Bcl-xL in SAC 

resolution, even in the presence of unattached or misaligned chromosomes. First, cells 

overexpressing wt Bcl-xL or the phosphorylation mutant Bcl-xL(Ser62Ala) show 

differences in phospho-H3(Ser10) dephosphorylation kinetics while retaining N4 DNA 

content, a measure of SAC resolution in taxol-exposed cells. Second, phospho-Bcl-

xL(Ser62) phosphorylation and de-phosphorylation kinetics correlate with SAC/On and 

SAC/Off kinetics. Third, phospho-Bcl-xL(Ser62) binds to the CDC20/MAD2/BUBR1/ 

BUB3 inhibitory complex, while Bcl-xL(Ser62Ala) does not. Finally, silencing Bcl-xL 

expression also accelerates SAC resolution.  Our data do not exclude that, in addition to 
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Bcl-xL phosphorylation on Ser62, other events may also occur to regulate Bcl-xL 

function during mitosis. The formation of SAC inhibitory complex consisting of 

CDC20/MAD2/BUBR1/BUB3 is highly dynamic, and several intermediates have been 

resolved in a reconstituted cell-free system (19). In the near future, it will be of interest to 

use the reconstituted cell-free system with recombinant Bcl-xL protein and the 

combination of phosphorylation mutant and phosphorylation mimetic recombinant Bcl-

xL proteins to resolve their actions on the formation, stability and diassembly of the 

CDC20/MAD2/BUBR1/BUB3 inhibitory complex.  

 These data indicate that during SAC, Bcl-xL(Ser62) phosphorylation accelerates 

SAC resolution and cell entry into anaphase, even in the presence of unattached or 

misaligned chromosomes. Such Bcl-xL action will raise the occurrence of tetraploidy and 

binucleation, with a direct consequence on genomic stability. The association between 

anti-apoptotic Bcl-2 or Bcl-xL and genomic stability has previously been suggested in the 

context of DNA damage and DNA repair. Indeed, they have been shown to influence 

nucleotide excision repair (60), base excision repair (61), DNA mismatch repair (62), the 

Rad51-dependent homologous recombination pathway (63, 64), gene conversion (65) and the 

non-homologous end-joining pathway (66), providing significant effects on genomic 

stability. Bcl-xL also showed specific functions during the G2 checkpoint mediated by 

DNA damage, effects that are independent of its anti-apoptotic role, but which influence 

genomic stability  (36). Similarly, mice bearing a Bcl-xL transgene incur malignant 

conversion of benign tumors (67). To the best of our knowledge, this is the first 

observation to reveal that phospho-Bcl-xL(Ser62) is associated with genomic stability, 

influencing tetraploidy and binucleation as a consequence of its direct function on SAC 

resolution and mitosis progression. Our finding is in harmony with those observations of 

others which reveal that dysfunctional SAC has a dramatic effect on aneuploidy and 

tumorigenesis in mice (68).  

 

Materials and methods 

Cell culture, cDNA construction and cell analysis 
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  Human Namalwa and HeLa cell lines were obtained from the American Type 

Culture Collection and grown at 37°C under 5% CO2 in RPMI-1640 medium and DMEM 

supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/ml penicillin 

and 100 µg/ml streptomycin, respectively. The phosphorylation mutant pCEP4-HA-Bcl-

xL and pCDNA3.1-HA-Bcl-xL vector were generated by triple polymerase chain 

reactions. All primers and details are provided in Supplemental Table S1C. Transfected 

cells were grown under hygromycin B1 (pCEP4 vectors) or neomycin (pCDNA3.1 

vectors) selection to attain a stable cell population prior to performing the experiments. 

The kinetics of mitotic entry, cell cycle phase distribution and cell death were monitored 

in Coulter EpicsXL flow cytometers with phospho-H3(Ser10) labeling and PI staining.  

HeLa cells were synchronized by double-thymidine block (2 mM) and release. 

 

Protein extraction and immunoblotting  

To prepare total protein extracts, cells were extracted with lysis buffer containing 

20 mM Hepes(KOH), pH 7.4, 120 mM NaCl, 1% Triton X-100, 2 mM 

phenylmethylsulfonyl fluoride, a cocktail of protease inhibitors (CompleteTM, Roche 

Applied Science) and a cocktail of phosphatase inhibitors (PhosStopTM Roche Applied 

Science). For immunoprecipitation, the samples were first pre-cleaned with a protein A- 

and G-Sepharose mixture and, after centrifugation, antibodies at 10 µg/ml concentration 

were incubated at 4°C for 4 h. All antibodies used in this study are listed in Supplemental 

Table S1D.  

 

Immunofluorescence microscopy 

HeLa cells were seeded and grown directly on coverslips. The cells were fixed in 

methanol at -20°C for 30 min and rapidly immersed in ice-cold acetone for a few 

seconds. The slides were allowed to dry at room temperature and rehydrated in PBS. 

Nonspecific binding sites were blocked in PBS containing 5% FBS (blocking solution); 

then, the slides were incubated sequentially with specific primary antibody (10 µg/ml in 

blocking solution), specific labeled secondary antibody (10 µg/ml in blocking solution), 

followed by DAPI staining, also performed in blocking solution. All antibodies are listed 

in Supplemental Table S1E. Images were generated with a Leica Microsystem mounted 
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on a Leica DM6000B microscope and Leica DFC480 camera hooked up to a Macintosh 

computer. 

 

Protein kinase assays and protein kinase chemical inhibitors 

The kinases and kinase assays are described in Supplemental Table S1A. Enzyme 

activities were tested on control substrates, and velocities were expressed as 

nmole/min/mg (data in Supplemental Figure S3). Recombinant human Bcl-xL(ΔTM) 

protein was produced and purified, as described previously (36).  The protein kinase 

chemical inhibitors deployed in this study are listed in Supplemental Table S1A.  

 

siRNA-mediated protein kinase inhibition 

HeLa cells were transfected with DharmaFECT-1 transfection reagent 

(ThermoScientific) according to the manufacturer’s instructions, with 100 nM of either 

control siRNA or siRNA targeting different kinases (Supplemental Table S1C). The cells 

were treated 48 h post-transfection with taxol (0.1 µm) or nocodazole (0.35 µm), as 

indicated prior to protein extraction and SDS-PAGE. 

 

Online supplemental materials: Supplemental materials for this article, including 

supplemental figures and tables, are available at the Journal website.   

 

Disclosure of conflicts of interest 

The authors declare no potential conflicts of interest. 

 

Acknowledgements 

This work was funded by grant MOP-97913 from the Canadian Institutes of Health 

Research to R.B. J.W. received scholarships from the China Scholarship Council 

(Beijing, China), the Faculté des études supérieures (Université de Montréal, Canada) and 

the Fondation de l'Institut du cancer de Montréal (Canada).  

 

Abbreviations list: 

APC/C, anaphase-promoting complex/cyclosome; Bcl, B cell leukemia/lymphoma 



 82 

protein; BUB, budding uninhibited by benzimidazole protein; CDC, cell division cycle 

protein; CDK, cyclin-dependent kinase; CENPA, centromere protein A; CHK1, 

checkpoint kinase 1; CLIP170, cytoplasmic linker protein 170; GSK3, glycogen synthase 

kinase 3; HEC1; highly expressed in cancer protein 1; H3, histone 3; JNK, Jun N-

terminal kinase; MAD, mitotic arrest deficient protein; MAPK, mitogen-activated protein 

kinase; MAPKAPK2, mitogen-activated protein kinase-activated protein kinase 2; MPS1, 

monopolar spindle 1 kinase; PLK, polo kinase; SAC, spindle-assembly checkpoint; 

SAPK, stress-activated protein kinase; siRNA, silencing RNA; wt, wild type.  

 

References 

1. Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. 
Nature Rev Mol Cell Biol 2007; 8: 379-93. 

2. Sullivan M, Morgan DO. Finishing mitosis, one step at a time. Nat Rev Mol Cell 
Biol 2007; 8: 894-903. 

3. Bolanos-Garcia VM, Blundell TL. BUB1 and BUBR1: multifaceted kinases of the 
cell cycle. Trends Biochem Sci 2011; 36:141-150 

4. Lohka MJ, Hayes MK, Maller JL. Purification of maturation-promoting factor, an 
intracellular regulator of early mitotic events. Proc Natl Acad Sci USA 1988; 85: 
3009-13. 

5. Labbe JC, Picard A, Peaucellier G, Cavadore JC, Nurse P, Doree M. Purification 
of MPF from starfish: identification as the H1 histone kinase p34cdc2 and a 
possible mechanism for its periodic activation. Cell 1989; 57: 253-63. 

6. Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Maller JL. Cyclin is a 
component of maturation-promoting factor from Xenopus. Cell 1990; 60: 487-94. 

7. Gavet O, Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to 
mitosis. Dev Cell 2010; 18: 533-43. 

8. Taylor SS, Scott MI, Holland AJ. The spindle checkpoint: a quality control 
mechanism which ensures accurate chromosome segregation. Chromosome Res 
2004; 12: 599-616. 

9. Baker DJ, Dawlaty MM, Galardy P, van Deursen JM. Mitotic regulation of the 
anaphase-promoting complex. Cell Mol Life Sci 2007; 64: 589-600. 

10. Chan GK, Liu ST, Yen TJ. Kinetochore structure and function. Trends Cell Biol 
2005; 15: 589-98. 

11. Cheeseman IM, Desai A. Molecular architecture of the kinetochore-microtubule 
interface. Nature Rev Mol Cell Biol 2008; 9: 33-46. 



 83 

12. Fang G, Yu H, Kirschner MW. The checkpoint protein MAD2 and the mitotic 
regulator CDC20 form a ternary complex with the anaphase-promoting complex 
to control anaphase initiation. Genes Dev 1998; 12: 1871-83. 

13. Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells 
is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 
2001; 154: 925-36. 

14. Tang Z, Bharadwaj R, Li B, Yu H. Mad2-independent inhibition of APCCdc20 by 
the mitotic checkpoint protein BubR1. Dev Cell 2001; 1: 227-37. 

15. Fang G. Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit 
anaphase-promoting complex. Mol Biol Cell 2002; 13: 755-66. 

16. Dai W, Wang Q, Liu T, et al. Slippage of mitotic arrest and enhanced tumor 
development in mice with BubR1 haploinsufficiency. Cancer Res 2004; 64: 440-
5. 

17. Sudakin V, Yen TJ. Purification of the mitotic checkpoint complex, an inhibitor 
of the APC/C from HeLa cells. Methods Mol Biol 2004; 281: 199-212. 

18. Peters JM. The anaphase promoting complex/cyclosome: a machine designed to 
destroy. Nat Rev Mol Cell Biol 2006; 7: 644-56. 

19. Kulukian A, Han JS, Cleveland DW. Unattached kinetochores catalyze production 
of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 
binding. Dev Cell 2009; 16: 105-17. 

20. D'Angiolella V, Mari C, Nocera D, Rametti L, Grieco D. The spindle checkpoint 
requires cyclin-dependent kinase activity. Genes Dev 2003; 17: 2520-5. 

21. Chung E, Chen RH. Phosphorylation of Cdc20 is required for its inhibition by the 
spindle checkpoint. Nat Cell Biol 2003; 5: 748-53. 

22. Tang Z, Shu H, Oncel D, Chen S, Yu H. Phosphorylation of Cdc20 by Bub1 
provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint. 
Mol Cell 2004; 16: 387-97. 

23. Schmitt E, Paquet C, Beauchemin M, Bertrand R. DNA-damage response network 
at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J 
Zhejiang Univ Sci B 2007; 8: 377-97. 

24. Danial NN, Gimenez-Cassina A, Tondera D. Homeostatic functions of Bcl-2 
proteins beyond apoptosis. Adv Exp Med Biol 2010; 687: 1-32. 

25. Poruchynsky MS, Wang EE, Rudin CM, Blagosklonny MV, Fojo T. Bcl-X(L) is 
phosphorylated in malignant cells following microtubule disruption. Cancer Res 
1998; 58: 3331-8. 

26. Fang GF, Chang BS, Kim CN, Perkins C, Thompson CB, Bhalla KN. Loop 
domain is necessary for taxol-induced mobility shift and phosphorylation of Bcl-2 
as well as for inhibiting taxol-induced cytosolic accumulation of cytochrome c 
and apoptosis. Cancer Res 1998; 58: 3202-8. 

27. Johnson AL, Bridgham JT, Jensen T. Bcl-x(Long) protein expression and 
phosphorylation in granulosa cells. Endocrinology 1999; 140: 4521-9. 



 84 

28. Fan M, Du C, Stone AA, Gilbert KM, Chambers TC. Modulation of mitogen-
activated protein kinases and phosphorylation of Bcl-2 by vinblastine represent 
persistent forms of normal fluctuations at G2-M. Cancer Res 2000; 60: 6403-7. 

29. Basu A, Haldar S. Identification of a novel Bcl-xL phosphorylation site regulating 
the sensitivity of taxol- or 2-methoxyestradiol-induced apoptosis. FEBS Lett 
2003; 538: 41-7. 

30. Du L, Lyle CS, Chambers TC. Characterization of vinblastine-induced Bcl-xL 
and Bcl-2 phosphorylation: evidence for a novel protein kinase and a coordinated 
phosphorylation/dephosphorylation cycle associated with apoptosis induction. 
Oncogene 2005; 24: 107-17. 

31. Upreti M, Galitovskaya EN, Chu R, et al. Identification of the major 
phosphorylation site in Bcl-xL induced by microtubule inhibitors and analysis of 
its functional significance. J Biol Chem 2008; 283: 35517-25. 

32. Tamura Y, Simizu S, Muroi M, et al. Polo-like kinase 1 phosphorylates and 
regulates Bcl-x(L) during pironetin-induced apoptosis. Oncogene 2009; 28: 107-
16. 

33. Terrano DT, Upreti M, Chambers TC. Cyclin-dependent kinase 1-mediated Bcl-
xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and 
apoptosis. Mol Cell Biol 2010; 30: 640-56. 

34. Chang BS, Minn AJ, Muchmore SW, Fesik SW, Thompson CB. Identification of 
a novel regulatory domain in Bcl-X(L) and Bcl-2. EMBO J 1997; 16: 968-77. 

35. Burri SH, Kim CN, Fang GF, et al. 'Loop' domain deletional mutant of Bcl-xL is 
as effective as p29Bcl-xL in inhibiting radiation-induced cytosolic accumulation 
of cytochrome C (cyt c), caspase-3 activity, and apoptosis. Int J Radiat Oncol Biol 
Phys 1999; 43: 423-30. 

36. Schmitt E, Beauchemin M, Bertrand R. Nuclear co-localization and interaction 
between Bcl-xL and Cdk1(cdc2) during G2/M cell cycle checkpoint. Oncogene 
2007; 26: 5851-65. 

37. Fan M, Goodwin M, Vu T, Brantley-Finley C, Gaarde WA, Chambers TC. 
Vinblastine-induced phosphorylation of Bcl-2 and Bcl-XL is mediated by JNK 
and occurs in parallel with inactivation of the Raf-1/MEK/ERK cascade. J Biol 
Chem 2000; 275: 29980-5. 

38. Takaki T, Trenz K, Costanzo V, Petronczki M. Polo-like kinase 1 reaches beyond 
mitosis-cytokinesis, DNA damage response, and development. Curr Opin Cell 
Biol 2008; 20: 650-60. 

39. Archambault V, Glover DM. Polo-like kinases: conservation and divergence in 
their functions and regulation. Nat Rev Mol Cell Biol 2009; 10: 265-75. 

40. Takenaka K, Moriguchi T, Nishida E. Activation of the protein kinase p38 in the 
spindle assembly checkpoint and mitotic arrest. Science 1998; 280: 599-602. 

41. Kurata S. Selective activation of p38 MAPK cascade and mitotic arrest caused by 
low level oxidative stress. J Biol Chem 2000; 275: 23413-6. 



 85 

42. Chao JI, Yang JL. Opposite roles of ERK and p38 mitogen-activated protein 
kinases in cadmium-induced genotoxicity and mitotic arrest. Chem Res Toxicol 
2001; 14: 1193-202. 

43. Campos CB, Bedard PA, Linden R. Activation of p38 mitogen-activated protein 
kinase during normal mitosis in the developing retina. Neuroscience 2002; 112: 
583-91. 

44. Fan L, Yang X, Du J, Marshall M, Blanchard K, Ye X. A novel role of p38 alpha 
MAPK in mitotic progression independent of its kinase activity. Cell Cycle 2005; 
4: 1616-24. 

45. Cha H, Wang X, Li H, Fornace AJ, Jr. A functional role for p38 MAPK in 
modulating mitotic transit in the absence of stress. J Biol Chem 2007; 282: 22984-
92. 

46. Yen AH, Yang JL. Cdc20 proteolysis requires p38 MAPK signaling and Cdh1-
independent APC/C ubiquitination during spindle assembly checkpoint activation 
by cadmium. J Cell Physiol 2010; 223: 327-34. 

47. Yuan J, Xu BZ, Qi ST, et al. MAPK-activated protein kinase 2 is required for 
mouse meiotic spindle assembly and kinetochore-microtubule attachment. PLoS 
ONE 2010; 5: e11247. 

48. Ikui AE, Yang CP, Matsumoto T, Horwitz SB. Low concentrations of taxol cause 
mitotic delay followed by premature dissociation of p55CDC from Mad2 and 
BubR1 and abrogation of the spindle checkpoint, leading to aneuploidy. Cell 
Cycle 2005; 4: 1385-8. 

49. Brito DA, Rieder CL. Mitotic checkpoint slippage in humans occurs via cyclin B 
destruction in the presence of an active checkpoint. Curr Biol 2006; 16: 1194-200. 

50. Gascoigne KE, Taylor SS. Cancer cells display profound intra- and interline 
variation following prolonged exposure to antimitotic drugs. Cancer Cell 2008; 
14: 111-22. 

51. Orth JD, Tang Y, Shi J, et al. Quantitative live imaging of cancer and normal cells 
treated with Kinesin-5 inhibitors indicates significant differences in phenotypic 
responses and cell fate. Mol Cancer Ther 2008; 7: 3480-9. 

52. Bekier ME, Fischbach R, Lee J, Taylor WR. Length of mitotic arrest induced by 
microtubule-stabilizing drugs determines cell death after mitotic exit. Mol Cancer 
Ther 2009; 8: 1646-54. 

53. Yang Z, Kenny AE, Brito DA, Rieder CL. Cells satisfy the mitotic checkpoint in 
Taxol, and do so faster in concentrations that stabilize syntelic attachments. J Cell 
Biol 2009; 186: 675-84. 

54. Huang HC, Shi J, Orth JD, Mitchison TJ. Evidence that mitotic exit is a better 
cancer therapeutic target than spindle assembly. Cancer Cell 2009; 16: 347-58. 

55. Reddy SK, Rape M, Margansky WA, Kirschner MW. Ubiquitination by the 
anaphase-promoting complex drives spindle checkpoint inactivation. Nature 2007; 
446: 921-5. 



 86 

56. Stegmeier F, Rape M, Draviam VM, et al. Anaphase initiation is regulated by 
antagonistic ubiquitination and deubiquitination activities. Nature 2007; 446: 876-
81. 

57. Nilsson J, Yekezare M, Minshull J, Pines J. The APC/C maintains the spindle 
assembly checkpoint by targeting Cdc20 for destruction. Nat Cell Biol 2008; 10: 
1411-20. 

58. Visconti R, Palazzo L, Grieco D. Requirement for proteolysis in spindle assembly 
checkpoint silencing. Cell Cycle 2010; 9: 564-9. 

59. Zeng X, Sigoillot F, Gaur S, et al. Pharmacologic inhibition of the anaphase-
promoting complex induces a spindle checkpoint-dependent mitotic arrest in the 
absence of spindle damage. Cancer Cell 2010; 18: 382-95. 

60. Liu YF, Naumovski L, Hanawalt P. Nucleotide excision repair capacity is 
attenuated in human promyelocytic Hl60 cells that overexpress Bcl-2. Cancer Res 
1997; 57: 1650-3. 

61. Kuo ML, Shiah SG, Wang CJ, Chuang SE. Suppression of apoptosis by Bcl-2 to 
enhance benzene metabolites-induced oxidative DNA damage and mutagenesis: a 
possible mechanism of carcinogenesis. Mol Pharmacol 1999; 55: 894-901. 

62. Youn CK, Cho HJ, Kim SH, et al. Bcl-2 expression suppresses mismatch repair 
activity through inhibition of E2F transcriptional activity. Nat Cell Biol 2005; 7: 
137-47. 

63. Saintigny Y, Dumay A, Lambert S, Lopez BS. A novel role for the Bcl-2 protein 
family: specific suppression of the RAD51 recombination pathway. EMBO J 
2001; 20: 2596-607. 

64. Dumay A, Laulier C, Bertrand P, et al. Bax and Bid, two proapoptotic Bcl-2 
family members, inhibit homologous recombination, independently of apoptosis 
regulation. Oncogene 2006; 25: 3196-205. 

65. Wiese C, Pierce AJ, Gauny SS, Jasin M, Kronenberg A. Gene conversion is 
strongly induced in human cells by double-strand breaks and is modulated by the 
expression of Bcl-x(L). Cancer Res 2002; 62: 1279-83. 

66. Wang Q, Gao F, May WS, Zhang Y, Flagg T, Deng X. Bcl-2 negatively regulates 
DNA double-strand-break repair through a nonhomologous end-joining pathway. 
Mol Cell 2008; 29: 488-98. 

67. Pena JC, Rudin CM, Thompson CB. A Bcl-x(L) transgene promotes malignant 
conversion of chemically initiated skin papillomas. Cancer Res 1998; 58: 2111-6. 

68. Li M, Fang X, Wei Z, York JP, Zhang P. Loss of spindle assembly checkpoint-
mediated inhibition of Cdc20 promotes tumorigenesis in mice. J Cell Biol 2009; 
185: 983-94. 



 87 

 
 
 
 

TABLE 1A   Phase distribution versus labeling (number of cells) in synchronized  
  human wt HeLa cells  collected from 9 to 12 h after double thymidine  
  block-release 

 

P-Bcl-xL(S62) PROMETAPHASE METAPHASE ANAPHASE TELOPHASE CYOKINESIS TOTAL 
+ CENPA 17/22  (-) 17/17  (-) 11/11  (-) 10/10  (-) 16/16  (-) 76 

+ PLK1 45/45  (+) 46/46  (+) 21/21 (+) 12/19 (-) 14/14 (-) 145 
+ γ-Tubulin 21/21  (+) 19/19  (+) 15/15  (+) 08/10 (-) 15/15  (-) 80 
+ Clip-170 36/36  (-) 30/30  (-) 23/23  (-) 10/14  (-) 09/13  (-) 116 

+ Dynein 24/24  (+) 20/20  (+) 10/10  (+) 07/10  (-) 14/14 (-) 78 
+ HEC1  36/36  (-) 26/26  (-) 11/11  (-) 9/9  (-) 17/17  (-) 99 

              
Bcl-xL PROMETAPHASE METAPHASE ANAPHASE TELOPHASE CYOKINESIS TOTAL  

+ CENPA 32/32 (-) 19/19  (-) 10/10  (-) 09/09  (-) 12/12  (-) 82 
+ PLK1 55/55  (+) 28/29  (+) 21/21  (+) 08/12  (+) 14/14  (-) 131 

+ γ-Tubulin 28/28  (+) 22/22  (+) 11/11  (+) 12/12  (+) 14/18  (+) 91 
+ Clip-170 27/27  (-) 12/20  (-) 10/19  (-) 10/16  (-) 10/13  (-) 95 

+ Dynein 36/36  (+) 23/23 (+) 11/11  (+) 08/08  (+) 08/08  (+) 86 
+ HEC1  27/27  (-) 22/22 (-) 12/12 (-) 11/11  (-) 13/13  (-) 85 

              
TOTAL 389 293 175 140 167 1,164 

 
 
 
 
 
TABLE 1B   Phase distribution versus labeling (number of cells) in human wt HeLa  
  cells collected after taxol treatment (0.1 µm, 24 h) 
 
 

  Bcl-xL P-Bcl-xL(S62) TOTAL 
+  CENPA  94/94   (-) 91/102 (-) 196 

+HEC1 171/171 (-) 90/98  (-) 269 
+ Dynein  30/30   (+) 24/24  (+) 54 

+ γ-Tubulin  84/90   (+) 85/92  (+) 182 
+ PLK1 143/143 (+) 81/81  (+) 224 

+ BubRI  50/55  (+) 58/61  (+) 116 
+ MAD2 40/46 (+) 32/41 (+) 87 

       
TOTAL 629 499 1128 
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Figure 1 Effect of Bcl-xL and Bcl-xL(Ser62Ala) phosphorylation mutant on the 

stability of the SAC. (A) Expression level of HA-Bcl-xL and Bcl-xL(Ser62Ala) 

phosphorylation mutant in stably-transfected Namalwa cell populations. β-actin 

expression is shown as control. (B-E) Kinetics of G2/M cells (PI staining; grey bars), 

early mitotic cells (phospho-H3(Ser10) staining; red bars), dead cells (PI staining; green 

bars) and G1 cells (PI staining; blue bars) in wt Namalwa cells and Namalwa cells 

expressing empty vector, HA-Bcl-xL and HA-Bcl-xL(Ser62Ala) phosphorylation mutant 

during taxol treatment (0.1 µM). Bars represent the means ± s.e.m. of n independent 

experiments. (F) Expression and phosphorylation kinetics of HA-Bcl-xL(Ser62) and 

phospho-histone H3(Ser10) after taxol treatment (0.1 µM) in Namalwa cells expressing 

HA-Bcl-xL and Bcl-xL(Ser62Ala) phosphorylation mutant. Data on additional HA-Bcl-

xL phosphorylation mutants are reported in Supplemental Figure S1A-I, and additional 

controls for the specificity of phospho-Bcl-xL(Ser62) Ab are shown in Supplemental 

Figure S1J-K. 
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Figure 2  Bcl-xL(Ser62) phosphorylation and location in synchronized wt HeLa 

cells at mitosis. (A) Expression kinetics of Bcl-xL, phospho-Bcl-xL(Ser62), cyclin B1 

and phospho-H3(Ser10) in wt HeLa cells obtained at different steps of mitosis.  A 

schematic view of these experiments is illustrated on top. (B) Co-location of phospho-

Bcl-xL(Ser62) with CENPA, HEC1, CLIP170, PLK1, γ-tubulin and dynein motor protein 

at different steps of mitosis. Micrographs with Bcl-xL Ab labeling are shown in 

Supplemental Figure S2. Representative of a total of 1,164 mitotic cells (3 experiments). 

Summary in Table 1A. 
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Figure 3 Bcl-xL(Ser62) phosphorylation and location in taxol-exposed wt HeLa 

cells. (A) Kinetics of G2/M cells (PI staining; grey bars), early mitotic cells (phospho-

H3(Ser10) labeling; red bars), dead cells (PI staining; green bars) and G1 cells (PI 

staining; blue bars) of wt HeLa cells during taxol treatment. Bars represent the means ± 

s.e.m. of n independent experiments. (B) Expression kinetics of Bcl-xL, phospho-Bcl-

xL(Ser62) and phospho-H3(Ser10), in wt HeLa cells exposed to taxol. (C) Co-location of 

phospho-Bcl-xL(Ser62) with CENPA, HEC1, dynein motor protein, γ-tubulin, PLK1, 

BubR1 and Mad2 in wt HeLa cells exposed to taxol (0.1 µM; 24 h). Representative of a 

total of 1,128 cells (3 experiments). Summary in Table 1B. 
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Figure 4 
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Figure 4  Effect of silencing Bcl-xL expression on the stability and resolution of the 

SAC. wt HeLa cells were transfected with control siRNAs or siRNAs targeting Bcl-xL 48 

h prior to (A) continuous nocodazole treatment (SAC resolution/adaptation experiments), 

and (B) 24-h nocodazole treatment, followed by drug release (SAC resolution/recovery 

experiments). Schematic views of these experiments appear in the upper left panels, and 

Bcl-xL expression kinetics are reported in the upper right panels (A and B). β-actin 

expression is shown as control. The lower panels (A and B) present the kinetics of G2/M 

cells (PI staining; grey bars), early mitotic cells (phospho-H3(Ser10) labeling; red bars), 

dead cells (PI staining; green bars) and G1 cells (PI staining; blue bars) of HeLa cells 

transfected with control siRNAs or siRNAs targeting Bcl-xL, at the indicated times after 

nododazole treatment (0.35 µM). Bars represent the means ± s.e.m. of 4 independent 

experiments. (C) Light microscopy of HeLa cells 36 h post-nocodazole treatment.  
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Figure 5 PLK1 and MAPK14/SAPKp38α are major protein kinases involved in 

Bcl-xL(Ser62) phosphorylation at mitosis. (A) In vitro assays of a panel of purified and 

active protein kinases with recombinant human Bcl-xL(ΔTM) protein as substrate. All 

enzyme activities were tested on control substrates (Supplemental Figure S3). Western 

blots are representative of 2 independent experiments.  (B) Effects of specific protein 

kinase inhibitors on Bcl-xL phosphorylation on Ser62 in Namalwa cells exposed to taxol. 

The cells were first exposed to nocodazole (0.35 µM) and, 16 h post-treatment, kinase 

inhibitors were added for an additional 8 h: GSK3 inhibitor (SB216763, 10 µM); 

MAPKAPK2 inhibitor (KKALNRQLGVAA, 10 µM); SAPK/p38 inhibitor (SB203580, 

2.0 µM), JNK inhibitor (SP600125, 5.0 µM); PLK inhibitor (BI2536, 0.1 µM). Western 

blots representative of 3 independent experiments with either taxol or nocodazole. (C) 

Effects of specific siRNAs targeting PLK1, MAPKAPK2, MAPK14/SAPKp38α, 

MAPK8/JNK1 and MAPK9/JNK2 expression on Bcl-xL(Ser62) phosphorylation in 

nocodazole-exposed HeLa cells. A schematic view of these experiments is presented. 

Representative Western blotting of 3 independent experiments. *Nocodazole treatment 

was avoided in these cells.  
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Figure 6 Phospho-Bcl-xL(Ser62) interacts with SAC components. (A) Co-

immunoprecipitation of HA-Bcl-xL and HA-Bcl-xL(Ser62Ala) mutant protein with 

Mad2, Cdc20, BubR1, and Bub3 but not Bub1 in taxol-exposed (0.1 µM) Namalwa cells 

expressing either HA-Bcl-xL or HA-Bcl-xL(Ser62Ala) mutant protein. (B) Reciprocal 

co-immunoprecipitation of HA-Bcl-xL and phospho-Bcl-xL(Ser62) with Mad2, Cdc20, 

and BubR1, but not Cdc27 (APC-3) in taxol-exposed Namalwa cells (0.1 µM, 24 h). IgG 

represents co-immunoprecipitation experiments with control immunoglobulins. Extract 

means a mitotic protein extract obtained from Namalwa cells expressing HA-Bcl-xL after 

taxol treatment (0.1 µM, 24 h).  Representative of 4 independent experiments. (C) 

Schematic view of a proposed model. 
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Supplemental Figure S1 Effect of Bcl-xL and various phosphorylation mutants on 

the stability of the SAC. (A) Expression level of HA-Bcl-xL, HA-Bcl-xL(Th41Ala), Bcl-

xL(Ser43Ala), HA-Bcl-xL(Th47Ala), Bcl-xL(Ser56Ala), Bcl-xL(Ser62Ala) and HA-Bcl-

xL(Th115Ala) phosphorylation mutants in stably-transfected Namalwa cell populations. 

β-actin expression is shown as control. (B-I) Kinetics of G2/M cells (PI staining; grey 

bars), early mitotic cells (phospho-H3(Ser10) staining; red bars), dead cells (PI staining; 

green bars) and G1 cells (PI staining; blue bars) in wt Namalwa cells and Namalwa cells 

expressing HA-Bcl-xL, HA-Bcl-xL(Th41Ala), Bcl-xL(Ser43Ala), HA-Bcl-xL(Th47Ala), 

Bcl-xL(Ser56Ala), Bcl-xL(Ser62Ala) and HA-Bcl-xL(Th115Ala) phosphorylation 

mutants during taxol treatment (0.1 µM). Bars represent the means ± s.e.m. of n 

independent experiments. (J-K) Specificity of phospho-Bcl-xL(ser62) antibodies.  (J) 

Phospho-HA-Bcl-xL(Ser62) in Namalwa cells expressing HA-Bcl-xL and HA-Bcl-

xL(Ser62Ala) mutant exposed to VP16 (10 µM for 30 min). HA-Bcl-xL expression is 

shown as control. (K) Staining of phospho-Bcl-xL(Ser62) in wt HeLa cells exposed to 

control siRNA or siRNA targeting Bcl-xL expression. Western blottings are shown as 

control.  
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Supplemental Figure S2  Bcl-xL location in synchronized wt HeLa cells at mitosis. 

Co-location of Bcl-xL with CENPA, HEC1, CLIP170, PLK1, γ-tubulin and dynein motor 

protein at different steps of mitosis. Micrographs with phospho-Bcl-xL(Ser62) Ab 

labeling are shown in Figure 2. Representative of a total of 1,164 mitotic cells (3 

experiments). Summary in Table 1A. 
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Supplemental Figure S3 
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Supplemental Figure S3 In vitro kinase assays. (A) Enzyme activities were tested on 

control substrates with recombinant purified kinases. Velocities are expressed as 

nmole/min/mg. 2 independent experiments are reported. (B) BubR1, Bub1, Bub3 and 

Cdk1(cdc2) enzyme activities tested on histone H1 and myelin basic protein control 

substrates with kinases purified by immunoprecipitation. 2 independent 

immunoprecipitation assays are reported. (C) In vitro kinase assays with [32P]-γATP and 

recombinant Bcl-xL as substrates. Autoradiography and Coomassie staining are shown. 
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Supplemental Figure S4 Effects of specific siRNAs targeting CHK1, MPS1, Mad2, 

BubR1 and Bub1 expression on Bcl-xL(Ser62) phosphorylation in nocodazole-exposed 

HeLa cells. Silencing efficiency was monitored by Western blottings with corresponding 

antibodies.  Representative Western blottings of 2 to 3 independent experiments.  

Note: HeLa cells treated with siRNA targeting MPS1 fail to enter into mitosis (phospho-

H3(ser10) negative).  
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Supplemental TABLE S1-A 

Recombinant Enzyme Source  Control Substrate  Source           Buffer 
CHK1   Sigma-Aldrich  RXRX(L/A)S((R/F) Cell Signaling         A 
MAPK14/SAPK p38α  Cell Signaling ATF-2 (19-96)  Cell Signaling  B 
MAPK8/ JNK1  Cell Signaling        c-Jun (1-89)  Cell Signaling  B+ 
MAPK9/ JNK2  Cell Sciences  c-Jun (1-89)  Cell Signaling  A 
MAPKAPK2  Cell Signaling KKKLNRTLSVA  AnaSpec   A+ 
PLK1   Cell Signaling RISDELMDATFADQEAK AnaSpec   A 
PLK3   Cell Signaling RISDELMDATFADQEAK AnaSpec   A 
Aurora A   Cell Signaling RRSLLE    Cell Signaling  A 
Aurora B   Cell Signaling LRRLSLGLRRLSLGLRRL 
     SLGLRRLSLG     AnaSpec   A 
NEK2   Cell Signaling RFRRSRRMI  AnaSpec   A 
GSK3α   Cell Signaling RRAAEELDSRAGSPQL AnaSpec   A 
GSK3β   Sigma-Aldrich GPHRSTPESRAAV AnaSpec   A+ 
Mps1   Cell Signaling Myelin basic protein  Sigma-Aldrich  B 
Immunprecipitated Enzyme 
CDC2/CDK1  Namalwa cells Histone H1/ MBP   Sigma-Aldrich  B+ 
Bub1   Namalwa cells Histone H1/MBP  Sigma-Aldrich  B+ 
BubR1   Namalwa cells Histone H1/MBP  Sigma-Aldrich  B+ 
Bub3   Namalwa cells Histone H1/ MBP   Sigma-Aldrich  B+ 
 
Buffer A (5x): 25 mM MOPS pH 7.2 
  25 mM MgCl2 
  12.5 mM β-glycerol-2-phosphate 
  0.5 mM Na3VO4 
  5 mm EGTA 
  2 mM EDTA 
  0.25 mM dithiothreitol 
  500 µΜ ATP* 
  * 0.05 µCi/µl [32P]-γATP 
Buffer A+ (5x): buffer A  + 50 µg/ ml BSA 
 
Buffer B (5x): 125 mM TRIS pH 7.2    
  50 mM MgCl2    
  25 mM β-glycerol-2-phosphate 
  0.5 mM Na3VO4 
  10 mM dithiothreitol 
  500 µΜ ATP* 
  * 0.05 µCi/µl [32P]-γATP  
Buffer B+ (5x): buffer B + 50 µg/ ml BSA 
 
Target   INHIBITOR   Source   Concentration 
   
SAPKp38α   SB 203580   Calbiochem     2 µM 
JNK   SP 600125   Sigma-Aldrich     5 µM 
MAPKAPK2  H-KKALNRQLGVAA-OH  Calbiochem   10 µM 
PLK   BI 2536    Axon MedChem   0.1 µM  
Aurora    ZM 447439   Tocris BioScience   0.1 µM 
GSK3   SB 216763   Sigma-Aldrich    10 µM 

 
Supplemental Table S1-A. Listing of the protein kinase assays and protein kinase 
inhibitors. Source, control substrates and reaction buffers are indicated. 
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 Supplemental TABLE  S1-B 
 
 
 
Target   siRNA Target sequence   REFERENCE    
 
Bcl-xL    (2) 5'-GAAAUGACCAGACACUGAC-3'  On-Target plus sequence/ Dharmacom  
    (4)  5'-UUAGUGAUGUGGAAGAGAA-3'  On-Target plus sequence/ Dharmacom  
 
PLK 1    (1) 5' -AGAUUGUGCCUAAGUCUCU-3'  Mol Biol Cell 15:5623, 2004   
 
CHK1    (1) 5'-UCGUGAGCGUUUGUUGAAC-3'  J Biol Chem 278:14806, 2004   
 
Aurora A      (1) 5'-GGCAACCAGTGTACCTCAT-3'  Nature 455:119, 2008   
 
Aurora B      (1) 5'-AACGCGGCACUUCACAAUUGA-3'   Nat Cell Biol 7:93, 2004  
    (2) 5'-GGAAAGAAGGGAUCCCUAA-3'  Mol Biol Cell 17:2547, 2006 
 
Bub1    (1) 5'-GAGUGAUCACGAUUUCUAA-3'  J Cell Biol 185:5841, 2004  
    (2) 5'-GCCUGCCAACCCCUGGGAA-3'   J Cell Biol 178;283, 2007  
 
BubR1    (1) 5'-AACGGGCAUUUGAAUAUGAA-3'   Nat Cell Biol 7:93, 2004 
 
Mad2    (1) 5'-GGAAGAGUCGGGACCACAG-3'  Nat Cell Biol 7:93, 2004  
    (2) 5'-AAGUGGUGAGGUCCUGGAAAG-3'  Mol Cancer Res 7:371, 2009  
 
Mps1    (1) 5'-GACAGAUGAUUCAGUUGUA-3'  Cell 132:233, 2008   
 
MAPK8/ JNK1   (1) 5'-GCCCAGUAAUAUAGUAGUA-3'  Cell Cycle 7: 533, 2008  
    (2) 5'-GGCAUGGGCUACAAGGAAA-3'  Cell Cycle 7: 533, 2008  
 
MAPK9/ JNK2   (1) 5'-AGCCAACUGUGAGGAAUUA-3'  Cell Cycle 7: 533, 2008   
    (2) 5'-UCGUGAACUUGUCCUCUUA-3'  Cell Cycle 7: 533, 2008  
 
MAPK14 / p38α       (1)         5'-GGAAUUCAAUGAUGUGUAU-3'  On-Target plus sequence/ Dharmacom  
    (2) 5'-UCUCCGAGGUCUAAAGUAU-3'  On-Target plus sequence/ Dharmacom  
    (3) 5'-GUAAUCUAGCUGUGAAUGA-3'  On-Target plus sequence/ Dharmacom  
    (4) 5'-GUCCAUCAUUCAUGCGAAA-3'  On-Target plus sequence/ Dharmacom  
 
MAPKAPK2           (1)       5'-CGAAUGGGCCAGUAUGAAU-3'  On-Target plus sequence/ Dharmacom  
    (2) 5'-GUUAUACACCGUACUAUGU-3'  On-Target plus sequence/ Dharmacom  
    (3) 5'-GGCAUCAACGGCAAAGUUU-3'  On-Target plus sequence/ Dharmacom 
    (4) 5'-CCACCAGCCACAACUCUUU-3'  On-Target plus sequence/ Dharmacom 
 
GSK3α    (1) 5'-CAUCAAAGUGAUUGGCAAU-3'  SMART POOL/ Dharmacom   
    (2) 5'-AGUUGACCAUCCCUAUCCU-3'  SMART POOL / Dharmacom  
    (3)  5'-CUGAUUACACCUCAUCCAU-3'  SMART POOL / Dharmacom   
    (4) 5'-UUCUCAUCCCUCCUCACUU-3'  SMART POOL/ Dharmacom   
  
GSK3β    (1) 5'-GAUCAUUUGGUGUGGUAUA-3'  SMART POOL / Dharmacom   
    (2) 5'-GCUAGAUCACUGUAACAUA'-3  SMART POOL / Dharmacom 
    (3) 5'-GUUCCGAAGUUUAGCCUAU-3'  SMART POOL / Dharmacom  
    (4) 5'-GCACCAGAGUUGAUCUUUG-3'  SMART POOL / Dharmacom 
 
 
NON-TARGETING        SMART POOL / Dharmacom  
 
Supplemental Table S1-B.  Listing of the siRNA targeted sequences deployed in this 
study. 
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Supplemental TABLE S1-C    Oligonucleotides for cDNA constructs 

 
HA-Bcl-xL (T41A)  
5'-end oligonucleotide (+) with Nhe1 + START ATG codon:  5'- gctagcccaccatgggccgcatctttta 
3'-end oligonucleotide (-) with STOP TGA codon:   5'- ctcgagtcatttccgactgaagagtga 
oligonucleotide (+) containing T41A substitution:   5'- gccccagaaggggctgaatcggagatg 
oligonucleotide (-) containing T41A substitution:   5- catctccgattcagccccttctggggc 
(from wt HA-Bcl-xL as template / subcloned Nhe1/ Xho1 in Cep4 vector) 
  
HA-Bcl-xL (S43A) 
5'-end oligonucleotide (+) with Nhe1 + START ATG codon:  5'- gctagcccaccatgggccgcatctttta  
3'-end oligonucleotide (-) with STOP TGA codon and XhoI:  5'- ctcgagtcatttcgactgaagagtga 
Overlapping oligonucleotide (+) containing S43A substitution: 5'-gaagggactgaagcggagatgagacc 
Overlapping oligonucleotide (-) containing S43A substitution: 5'-ggtctccatctccgcttcagtcccttc 
(from wt HA-Bcl-xL as template / subcloned Nhe1/ Xho1 in Cep4 vector) 
 
HA-Bcl-xL (T47A) 
5'-end oligonucleotide (+) with Not1 + START ATG codon:  5'- gcggccgcatgtctcagagcaaccgggag 
3'-end oligonucleotide (-) with STOP TGA codon and XhoI:  5'- ctcgagtcatttccgactgaagagtga 
Overlapping oligonucleotide (+) containing T47A substitution: 5'-tcggagatggaggcccccagtgccatc  
Overlapping oligonucleotide (-) containing T47A substitution: 5'-gatggcactgggggcctccatctccga  
(from wt Bcl-xL as templat / subcloned Not1/ XhoI  in Cep4-HA vector) 
 
HA-Bcl-xL (S56A) 
5'-end oligonucleotide (+) with Not1 + START ATG codon:  5'- gcggccgcatgtctcagagcaaccgg gag 
3'-end oligonucleotide (-) with STOP TGA codon and XhoI:  5'- ctcgagtcatttccgactgaagagtga 
Overlapping oligonucleotide (+) containing S56A substitution: 5'- aatggcaacccagcctggcacctggca 
Overlapping oligonucleotide (-) containing S56A substitution: 5'- tgccaggtgccaggctgggttgccatt 
(from wt Bcl-xL as template / subcloned Not1/ XhoI  in Cep4-HA vector) 
 
HA-Bcl-xL (S62A) 
5'-end oligonulcleotide (+) with Not1 + START ATG codon:  5'- gcggccgcatgtctcagagcaaccgggag 
3'-end oligonucleotide (-) with STOP TGA codon and XhoI:  5'- ctcgagtcatttccgactgaagagtga 
Overlapping oligonucleotide (+) containing S62A substitution: 5'- cacctggcagacgcccccgcggtgaat 
Overlapping oligonucleotide (-) containing S62A substitution: 5- attcaccgcgggggcgtctgccaggtg  
(from wt Bcl-xL as template / subcloned Not1/ XhoI  in Cep4-HA vector) 
 
HA-Bcl-xL (T115A) 
5'-end oligonulcleotide (+) with Not1 + START ATG codon:  5'- gcggccgcatgtctcagagcaaccgggag 
3'-end oligonucleotide (-) with STOP TGA codon and XhoI:  5'- ctcgagtcatttccgactgaagagtga 
Overlapping oligonucleotide (+) containing T115A substitution: 5- cagctccacatcgccccagggacagca 
Overlapping oligonucleotide (-) containing T115A substitution: 5- tgctgtccctggggcgatgtggagctg 
(from wt Bcl-xL as template / subcloned Not1/ XhoI  in Cep4-HA vector) 
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Supplemental TABLE S1-C cDNA constructs. The phosphorylation mutant pCEP4-

HA-Bcl-xL and pCDNA3.1-HA-Bcl-xL vectors were generated by triple polymerase 

chain reactions (PCR) with wt pCEP4-HA-Bcl-xL vector as DNA template. The first 

fragments were amplified by Vent polymerase, with specific adapter primers containing 

restriction site sequences at the ATG start codon and anti-sense junction primers 

corresponding to the flanking sequences at each mutation site, as listed in Table S1. The 

second fragments were amplified by Vent polymerase, with sense junction primers 

corresponding to flanking sequences at each mutation site and adapter anti-sense primers 

containing restriction site sequences at the TGA stop codon. The 2 amplified fragments 

were gel-purified, heat-denaturated, and slowly annealed on ice. After elongation by Taq 

polymerase for 10 min, the third PCR, with specific adapter primers containing sequences 

at the ATG start codon and TGA stop codon, was amplified. The amplified fragment was 

first cloned in pCR2.1Topo vector (Invitrogen Corporation), sequenced, and then sub-

cloned in the eukaryotic expression vectors pCEP4 and pCDNA3.1 (Invitrogen 

Corporation). For some constructs, the HA-tag sequences were not amplified by PCR; 

these amplified fragments were than sub-cloned in-frame into the pCEP4-HA vector. All 

primers are listed in Supplemental Table 1. Purified constructs were transfected in 

Namalwa cells by electroporation at 0.27 kV (Gene Pulser, BioRad, Hercules, CA) and in 

HeLa cells by Lipofectamine2000 transfection according to the manufacturer's protocol 

(Invitrogen Corporation). 
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Supplemental TABLE S1-D 
ANTIBODIES   ID   Species   Source 
Cyclin B1   clone GNS-1  mouse mAb  BD Biosciences 
Cdc2/CDK1   # PC25   rabbit pAb  Calbiochem 
Cdc2/CDK1   clone 1/cdk1  mouse mAb  BD Biosciences 
Plk1     clone 208G4  rabbit mAb  Cell Signaling 
Plk3    clone B37-2  mouse mAb  BD Biosciences 
Aurora A   clone 1G4  rabbit mAb  Cell Signaling 
Aurora B   # 3094   rabbit mAb  Cell Signaling  
MAPKAPK2   # 3042   rabbit pAB  Cell Signaling 
MAPK14/SAPK p38α   clone L53F8  mouse mAb  Cell Signaling 
MAPK8/ JNK1   clone G151-333  mouse mAb  BD Biosciences 
MAPK9/ JNK2   # 4672   rabbit pAb  Cell Signaling 
GSK3α    # 9338   rabbit pAb  Cell Signaling 
GSK3β    clone 27C10  rabbit mAb  Cell Signaling 
MPS1/TKK   # 3255   rabbit pAb  Cell Signaling 
MPS1/TKK   clone BC032858  mouse mAb  Abcam 
Bub1    clone 14H5  mouse mAb  Upstate/ Millipore 
BubR1    # A300-386A  rabbit pAb  Bethyl  
BubR1    # 4116   rabbit pAb  Cell Signaling 
BubR1    clone9/BubR1  mouse mAb  BD Transduction  
Bub3    clone31/Bub3  mouse mAb  BD Transduction  
Bub3    # 3049   rabbit pAb  Cell Signaling 
Mad2    # A300-300A  rabbit pAb  Bethyl Lab 
Mad2    clone 48/Mad2  mouse mAb  BD Transduction  
cdc20    clone 41/p55cdc  mouse mAb  BD Transduction  
cdc20    # A301-179A  rabbit pAb  Bethyl Lab 
cdc20    # A301-180A  rabbit pAb  Bethyl  Lab 
CENP-A   # 07-574  rabbit pAb  Upstate/Millipore 
CENP-A   clone 3-19  mouse mAb  Assay Designs 
Dynein    clone 74.1  mouse mAb  Millipore 
HEC1    clone 9G3  mouse mAb  Abcam 
EB1    clone 5/ EB1  mouse mAb  BD Transduction  
Clip-170   custom   from Niels Galjart,  Rotterdam 
Bcl-xL    clone 2H12  mouse mAb  BD Biosciences 
Phospho-BclxL Ser62  custom   rabbit pAb  GenScript 
HA tag    clone 12CA5  mouse mAb  Roche Applied Sci 
HA tag    # A00168  goat pAb  GenScript 
γ-tubulin   clone GTU88  mouse mAb  Abcam 
α-tubulin   clone DM1A  mouse mAb  Sigma-Aldrich  
β-tubulin   clone DM1B  mouse mAb  Calbiochem  
β-Actin    clone 4C40  mouse mAb  Sigma 
Phospho H3(ser10)  # 06-570  rabbit pAb  Upstate/Millipore 
Phospho H3 ser10 Alexa 488 # 9708   rabbit pAb  Cell Signaling 
Anti-Mouse IgG Alexa 488 # A11001  goat pAb  InVitroGen 
Anti-Rabbit IgG Alexa 488 # A11008  goat pAb  InVitroGen 
Anti-Mouse IgG Alexa 594 # A11005  goat pAb  InVitroGen 
Anti-Rabbit IgG Alexa 594 #A11012  goat pAb  InVitroGen 
Anti-Mouse IgG HP-linked # NA931V  sheep pAb  GE Healthcare 
Anti-Rabbit IgG HP-linked # NA934V  donkey pAb  GE Healthcare 
Normal Rabbit IgG  # sc-2027  rabbit IgG  Santa Cruz Biotech 
Normal Mouse IgG  # sc-2025  mouse IgG  Santa Cruz Biotech 
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Abstract 

Functional analysis of a Bcl-xL phosphorylation mutant series has revealed that cells 

expressing Bcl-xL(Ser49Ala) mutant are less stable at G2 checkpoint after DNA damage 

and enter cytokinesis more slowly after microtubule poisoning than cells expressing wild-

type Bcl-xL. These effects of Bcl-xL(Ser49Ala) mutant seem to be separable from Bcl-

xL function in apoptosis. Bcl-xL(Ser49) phosphorylation is cell cycle-dependent. In 

synchronized cells, phospho-Bcl-xL(Ser49) appears during the S phase and G2, whereas 

it disappears rapidly in early mitosis during prometaphase, metaphase and early 

anaphase, and re-appears during telophase and cytokinesis. During DNA damage-induced 

G2 arrest, an important pool of phospho-Bcl-xL(Ser49) accumulates in centrosomes 

which act as essential decision centers for progression from G2 to mitosis. During 

telophase/cytokinesis, phospho-Bcl-xL(Ser49) is found with dynein motor protein. In a 

series of in vitro kinase assays, specific small interfering RNA and pharmacological 

inhibition experiments, polo kinase 3 (PLK3) was implicated in Bcl-xL(Ser49) 

phosphorylation. These data indicate that, during G2 checkpoint, phospho-Bcl-xL(Ser49) 

is another downstream target of PLK3, acting to stabilize G2 arrest. Bcl-xL 

phosphorylation at Ser49 also correlates with essential PLK3 activity and function, 

enabling cytokinesis and mitotic exit.  
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Introduction 

 

Bcl-xL (Bcl-2-related gene x, long isoform), a Bcl-2 (B cell leukemia/lymphoma 

protein-2) family member, is well-characterized for its function in apoptosis 1. Regulation 

of outer mitochondrial membrane permeabilization is the major way in which Bcl-xL 

protein exerts its anti-apoptosis regulatory and survival effect, which means preserving 

mitochondrial membrane integrity, mitochondrial transmembrane potential as well as 

ATP production, and preventing the release of apoptogenic factors in cytosol (reviewed 

in 2-4). Elucidation of Bcl-xL’s 3-dimensional structure has provided a first structural 

model in which α-helices located in BH1 (a Bcl-2 homology domain), BH2 and BH3 

domains create an elongated hydrophobic pocket domain where a BH3 amphipathic α-

helix of another Bcl-2-like protein can bind 5-7. Bcl-xL binds to pro-apoptotic family 

members through protein-protein interactions, forming a complex dynamic network of 

hetero-oligomers, depending on the cellular environment, stress condition and their 

subcellular localization 8-13. Heterodimerization between pro- and anti-apoptotic 

molecules controls cell fate, indicating that the relative concentration of one faction 

versus the other greatly influences the susceptibility of cells to death signals (reviewed in 
14, 15). BH3-only proteins are potent mediators of cell death. A subset, referred to as BH3-

only enabler or sensitizing proteins, promotes apoptosis by binding to and inhibiting pro-

survival molecules, such as Bcl-2, Bcl-xL and Mcl-1, whereas BH3-only activator or 

activating proteins bind to and activate multidomain pro-apoptotic Bax and Bak proteins 
10, 16. Bax insertion and oligomerization into membranes require activation, i.e. structural 

reorganization by a BH3-only activating protein, events that lead to outer mitochondrial 

membrane permeabilization; in contrast, the ability of anti-apoptotic proteins, such as 

Bcl-xL, to trap and inhibit these BH3-only activating proteins, prevents membrane 

permeabilization 17-20.   

The unexpected pore-forming ability of Bcl-xL protein has emerged from 

unfolding of its 3-dimensional structure. Structural similarities between Bcl-xL, 

particularly its α5- and α6-helices and the pore-forming domains of some bacterial toxins 

that act as channels for either ions or proteins, suggest that Bcl-2 members could function 
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by constituting pores in intracellular organelles, including mitochondria 5, 17-21. Whether 

these channel activities function by themselves, or in association with other 

megachannels, such as components of mitochondrial permeability transition pores, or 

others, is still not completely elucidated 3, 4, 19, 22-31. 

 Several studies have revealed that, in addition to their key role in controlling 

apoptosis, some Bcl-2 family members interface with the cell cycle, DNA damage 

responses and repair pathways, functions that are distinct from their role in apoptosis 

(reviewed in 32, 33). Indeed, Bcl-xL and/or Bcl-2 modulate the homologous recombination 

pathway as well as non-homologous end-joining and DNA damage mismatch repair 

activities, effects that are separable from their anti-apoptotic task 34-37. Bcl-xL also fulfills 

functions during the cell cycle 38-40. Bcl-xL phosphorylation at Ser62, within the 

unstructured loop domain of the protein, has been detected most often in cells treated 

with microtubule poisons, including nocodazole, paclitaxel, vinblastine, vincristine, 

colchicine and pironetin 41-49, and coupled, more recently, with specific G2 and mitotic 

events (Wang et al., 2011; manuscripts submitted). Similarly, Bcl-xL phosphorylation at 

Thr47 and Thr115 has been documented in response to genotoxic stress induced by 

ionizing radiation 50. 

 To search for potentially important phosphorylation site(s) regulating Bcl-xL's 

function during the cell cycle, we generated and monitored the effects of a series of 

single-point Bcl-xL phosphorylation mutants within its unstructured loop domain, a 

region generally not essential for its anti-apoptotic function 42, 51, 52. Taking a variety of 

experimental approaches with stably-transfected human cell populations and non-

transfected wild-type (wt) cells, we now provide evidence that Bcl-xL(Ser49) 

phosphorylation is a key element regulating Bcl-xL's functions at the G2 cell cycle 

checkpoint and entry into cytokinesis, influencing mitotic exit.  
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Results 

Effect of HA-Bcl-xL and HA-Bcl-xL(Ser49Ala) phosphorylation mutant on G2 

checkpoint stability and mitosis progression 

 First, human B lymphoma Namalwa cells were transfected with expression 

vectors encoding wt HA-Bcl-xL and HA-Bcl-xL(Ser49Ala) mutant, and stably-

transfected cell populations were selected. The protein expression levels are illustrated in 

Fig 1A (top right panel). A well-established experimental procedure, referred to as 

mitotic trap assay 53, evaluated the kinetics of G2 arrest after DNA damage, the kinetics 

of mitotic entry after G2 arrest, and the kinetics of cell death. In this assay, cells entering 

mitosis after G2 arrest are trapped by adding nocodazole (0.35 µM) at 24-h intervals after 

etoposide (VP16) treatment (10 µM/30 min in Namalwa cells) and monitored by flow 

cytometry with phospho-H3(Ser10) labeling as well as propidium iodide (PI) staining 

(Fig. 1A; top left panel). Control Namalwa cells or Namalwa cells stably transfected with 

empty vector die rapidly after exposure to VP16 (Fig 1A; green bars). In contrast, cell 

populations stably expressing wt HA-Bcl-xL and the phosphorylation mutant HA-Bcl-

xL(Ser49Ala) show strong inhibition of apoptosis (Fig. 1A; green bars). More than 70% 

of cells over-expressing wt HA-Bcl-xL are arrested in G2, 24 h after VP16 treatment (Fig 

1A, grey bars), while some cells slowly escape from G2 and enter early mitosis, 36 to 72 

h after VP16 (Fig. 1A; red bars). In contrast, cells expressing the phosphorylation mutant 

HA-Bcl-xL(Ser49Ala) enter mitosis much more rapidly, 36 to 72 h after VP16 (Fig. 1A; 

red bars), revealing that Ser49 is essential for Bcl-xL's function in G2 arrest. These 

observations also suggest that Bcl-xL's role in G2 arrest is distinct from its function in 

apoptosis. 

Similar experimental monitoring by flow cytometry with phospho-H3(Ser10) 

labeling and PI staining was undertaken to evaluate the kinetics of early mitotic entry and 

stability of the spindle-assembly checkpoint (N4 DNA content, phospho-H3(Ser10)-

positive), mitosis progression into cytokinesis (N4 DNA content, phospho-H3(Ser10)-

negative, after taxol treatment), G1 entry (N2 DNA content, phospho-H3(Ser10)-

negative), and cell death kinetics (sub-G1 DNA content) in taxol-exposed cells (Fig. 1B). 

Both Namalwa cells and Namalwa cells stably transfected with empty vector die rapidly 
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after taxol treatment, while cells stably expressing wt HA-Bcl-xL and the 

phosphorylation mutant HA-Bcl-xL(Ser49Ala) show strong inhibition of apoptosis (Fig. 

1B; green bars). Up to 80-85% of cells over-expressing wt HA-Bcl-xL and HA-Bcl-

xL(Ser49Ala) mutants accumulate in early mitosis (Fig. 1B; red bars) from 12- to 24-h 

taxol exposure. Interestingly, HA-Bcl-xL-expressing cells gradually start to lose the 

phospho-H3(Ser10) marker by 36 h, whereas most HA-Bcl-xL(Ser49Ala) mutant cells 

are still stable in early mitosis at 36 h, slowly losing the phospho-H3(Ser10) marker only 

at 48 to 60 h after taxol treatment (Fig. 1B; red bars). These results indicate that Bcl-

xL(Ser49) is required for spindle-assembly checkpoint resolution and/or entry into 

cytokinesis. Again, this effect of Bcl-xL(Ser49Ala) on mitosis progression in taxol-

exposed cells appears separable from its anti-apoptotic function.   

 

Bcl-xL(Ser49) phosphorylation and location during DNA damage-induced G2 arrest 

and in unpertubed, synchronized wt Hela cells 

 First, antibodies were produced to monitor Bcl-xL(Ser49) phosphorylation. The 

specificity of phospho-Bcl-xL(Ser49) antibodies is depicted in Supplementary Figure S1-

A. Experiments were then performed in human non-transfected wt HeLa cells, which 

undergo G2 arrest after VP16 treatment (10 µm; 16 h), with some cells escaping G2 

arrest 48 to 72 h post-VP16 treatment (Fig. 2A, right panel). Bcl-xL(Ser49) 

phosphorylation is observed in wt HeLa cells exposed to VP16 (Fig. 2A, left panel). 

When wt HeLa cells are synchronized by double thymidine block and released upon 

progression from S to G2, Bcl-xL is progressively phosphorylated on Ser49 (Fig. 2B, left 

panel), suggesting that Bcl-xL(Ser49) phosphorylation also occurs during normal cell 

cycle progression. Cell cycle phase distribution during these experiments is indicated in 

Fig. 2B, right panel. We next investigated the subcellular location of phospho-Bcl-

xL(Ser49) in wt HeLa cells by indirect immunofluorescence staining, in synchronized G2 

control and VP16-induced G2 arrest (Fig. 2C). In HeLa cells exposed to VP16, a pool of 

phospho-Bcl-xL(Ser49) accumulated in centrosomes with γ-tubulin 24 and 48 h post-

VP16 exposure (Fig. 2C). In contrast, no significant accumulation of phospho-Bcl-

xL(Ser49) in centrosomes was detected in synchronized, untreated G2 cells (Fig. 2C).  
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Phospho-Bcl-xL(Ser49) was not found in nuclear structures with colin, a specific Cajal 

body marker, and nucleolin, a specific nucleolus marker (Fig. 2C). Taken together, these 

results suggest that Bcl-xL is phosphorylated on Ser49 during normal cell cycle 

progression and that phospho-Bcl-xL(Ser49) accumulates much more strongly in 

centrosomes during DNA damage-induced G2 checkpoint in HeLa cells.  

 

Bcl-xL(Ser49) phosphorylation and location during mitosis progression  

We next monitored phospho-Bcl-xL(Ser49) during mitosis. First, wt HeLa cells 

were synchronized by double thymidine block and released upon progression to G2. They 

were then treated with nocodazole (0.35 µM, 4 h), and prometaphase/metaphase cells 

were collected by mitotic shake-off. A portion of these cells was released from 

nocodazole and growth in the presence of MG-132 (25 µM), a proteasome inhibitor that 

prevents cyclinB1 and securin destruction, to obtain a cell population at the anaphase 

boundary. A second set was also released from nocodazole and by growth in the presence 

of blebbistatin (10 µM), a selective non-muscle contractile motor myosin II inhibitor that 

averts furrow ingression, to attain a cell population at telophase/cytokinesis. A schematic 

view of these experiments appears in Fig. 3A (top panel). Western blotting revealed that 

Bcl-xL is timely dephosphorylated at Ser49 at prometaphase, metaphase and the 

anaphase boundary, while it is rapidly phosphorylated at telophase/cytokinesis (Fig. 3A). 

Total Bcl-xL level remained stable along mitosis. Interestingly, the Bcl-xL(Ser49) 

phosphorylation pattern was exactly opposite that of Bcl-xL(Ser62) (Fig. 3A), indicating 

differential function.  CyclinB1 and phospho-H3(Ser10) expression is shown as a specific 

early mitotic phase marker (Fig. 3A). The location of phospho-Bcl-xL(Ser49) in 

telophase/cytokinesis was then investigated. In these experiments, HeLa cells were 

synchronized by double thymidine block and release upon progression to G2 and entry 

into mitosis. They were collected at 30-min intervals from 9 to 12 h after double 

thymidine block and release to acquire mitotic cells at all steps of mitosis. In 

telophase/cytokinesis, phospho-Bcl-xL(Ser49) co-localizes strongly with the microtubule 

associated dynein motor protein (Fig. 3B). Phospho-Bcl-xL(Ser49) does not localize in 

centrosomes with γ-tubulin in telophase/cytokinesis (Fig. 3B). A summary of microscopy 
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analysis is presented in Supplemental Table S1. 

 

Polo kinase 3 (PLK3) is involved in Bcl-xL(Ser49) phosphorylation  

 To identify the putative protein kinase involved in Bcl-xL(Ser49) 

phosphorylation, a panel of protein kinases was first tested in in vitro kinase assays with 

recombinant human Bcl-xL protein as substrate. Among all the kinases tested, PLK3 was 

the only one able to phosphorylate recombinant Bcl-xL protein on Ser49 in in vitro 

kinase assays (Fig. 4A). Enzyme-specific activities with control substrates were carried 

on (not show) . The specificity of Ser49 phosphorylation by PLK3 was validated by mass 

spectrometry (Supplemental Figure S1-B). PLK3 participation in Bcl-xl(Ser49) 

phosphorylation during DNA damage-induced G2 arrest was validated by using 2 

specific small interfering RNAs (siRNAs) targeting PLK3 mRNA. A schematic 

illustration of these experiments appears in Fig. 4B.   

With siRNAs targeting PLK3 mRNA, several attempts were made to confirm its 

involvement in Bcl-xL(Ser49) phosphorylation at telophase/cytokinesis (data not 

reported). Interfering with PLK3 expression does not allow cells to enter cytokinesis, an 

effect reported previously 54-57. Trying to circumvent it, we adopted a protocol similar to 

that described in Fig. 3, where synchronized cells at G2 are first allowed to accumulate at 

metaphase with nocodazole, then released in the presence of blebbistatin to enrich the cell 

population at telophase/cytokinesis. A fraction of the cells were released from nocodazole 

by blebbistatin and BI-2536, a PLK inhibitor. The experiments are illustrated 

schematically in Fig. 4B. Inhibiting PLK activities in these cells prevented Bcl-xL(Ser49) 

phosphorylation. However, they failed to enter telophase/cytokinesis as cyclin B1 and 

phospho-H3(Ser10) expression remained significantly high. Together, these experiments 

confirmed that cytokinesis requires PLK3 activity. Quenching its expression with 

siRNAs or suppressing its activity in a timely manner in synchronized cells after 

nocodazole release causes cytokinesis defects, which also correlate with failure to 

phosphorylate Bcl-xL(Ser49).  
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Discussion 

 This study reveals a new phosphorylation site within Bcl-xL – Bcl-xL(Ser49) – 

that undergoes dynamic phosphorylation/dephosphorylation events during cell cycle 

progression. Phospho-Bcl-xL(Ser49) is essential in at least 2 key events of the cell cycle, 

G2 checkpoint and progression to telophase/cytokinesis during mitosis. A pool of 

phospho-Bcl-xL(Ser49) strongly localizes at centrosomes with γ-tubulin during the G2 

checkpoint induced by DNA damage and with the microtubule associated dynein motor 

protein during telophase/cytokinesis. PLK3, which has known essential functions during 

cell cycle progression, is a key kinase involved in Bcl-xL(Ser49) phosphorylation. 

Importantly, phospho-Bcl-xL(Ser49) functions during G2 checkpoint and, in mitosis, it 

appears to be separable from Bcl-xL’s known role in apoptosis, as Bcl-xL(Ser49Ala) 

phosphorylation mutant retains its anti-apoptotic effect but clearly shows different cell 

cycle behavior in DNA damage-induced G2 arrest and taxol-mediated mitotic actions.  

 Bcl-xL phosphorylation at Ser62 is well-documented and generally associated 

with microtubule poisoning 41-49. Phospho-Bcl-xL(Ser62) functions have remained 

elusive until recently. We have recently observed that it undergoes differential location 

during G2 and spindle-assembly checkpoints (Wang et al., 2011; manuscripts submitted). 

A pool of phospho-Bcl-xL(Ser 62) is located in Cajal bodies in interphase and a pool  

accumulates with CDK1(CDC2) in nucleoli during G2 checkpoint, whereas its interacts 

with the inhibitory CDC20/MAD2/BUBR1/BUB3 complex during spindle-assembly 

checkpoints (Wang et al., 2011; manuscripts submitted). Interestingly, in this study, we 

noted a differential pattern of expression and location for phospho-Bcl-xL(Ser49) 

compared to phospho-Bcl-xL(Ser62). Phospho-Bcl-xL(Ser49) accumulates in 

centrosomes during G2 checkpoint, is rapidly dephosphorylated at early mitotic phases 

and is re-phosphorylated during telophase/cytokinesis. These dynamic changes of 

location and phosphorylation/dephosphorylation events strongly indicate differential 

functions. Although the exact molecular mechanisms were not fully addressed here, 

functional changes in cell cycle progression and cell behavior in response to VP16 and 

taxol treatment are documented, with cells expressing the Bcl-xL(Ser49Ala) 

phosphorylation mutant.  
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 PLK3 activity and function have been reviewed recently 58.  Observed in 

centrosomes and nucleoli during interphase 56, 59, PLK3 is found at spindle poles and 

midbody during cytokinesis 55, 56. PLK3 activity increases rapidly after DNA damage in 

an ATM-dependent manner, and is involved in G2 arrest by phosphorylating and 

inhibiting CDC25C phosphatase 60-63. Its exact functions during mitosis remain unclear, 

but overexpression of PLK3's polo box domain, but not the kinase domain, causes mitotic 

arrest and cytokinesis defects 54-56. Similarly, cells harbouring PLK3 knockdown by small 

hairpin RNA presented incomplete cytokinesis, which produced multinucleated cells 57. 

PLK3 strongly phosphorylated Bcl-xL(Ser49) in in vitro kinase assays. RNA interference 

experiments conducted during G2 arrest confirmed that PLK3 is the key enzyme in Bcl-

xL(Ser49) phosphorylation. During cytokinesis, our results are strongly indicative of 

PLK3’s involvement, having demonstrated correlations between PLK3 expression and 

activity, failure to enter cytokinesis and to phosphorylate Bcl-xL at Ser49. The functional 

outcome of phospho-Bcl-xL(Ser49) on the stability of G2 checkpoint and kinetics of 

cytokinesis also correlates with PLK3 functions during G2 arrest and cytokinesis, 

suggesting that Bcl-xL is a downstream target of PLK3 and part of the network mediating 

PLK3’s effect. 

 In summary, our data disclose a yet uncharacterized phosphorylation site within 

Bcl-xL. Bcl-xL(Ser49) is phosphorylated during normal cell cycle progression and 

checkpoints. Interfering with Bcl-xL(Ser49) phosphorylation destabilizes DNA damage-

induced G2 arrest and slows entry into cytokinesis, but has no effect on the kinetics of 

VP16- and taxol-induced apoptosis. Our data also indicate that PLK3 is involved in Bcl-

xL(Ser49) phosphorylation at G2 checkpoint and cytokinesis. Additional work is 

underway to dissect the molecular mechanisms of phospho-Bcl-xL(Ser49) action. 
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Materials and methods 

Cell culture, cDNA construction and cell analysis 

  Human Namalwa and HeLa cell lines were obtained from the American Type 

Culture Collection and grown at 37°C under 5% CO2 in RPMI-1640 medium and DMEM 

supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 U/ml penicillin 

and 100 µg/ml streptomycin, respectively. The phosphorylation mutant pCEP4-HA-Bcl-

xL(Ser49Ala) was generated by triple polymerase chain reactions (PCR) with wt pCEP4-

HA-Bcl-xL vector as DNA template. Briefly, the first fragments were amplified by Vent 

polymerase, with specific adapter primers containing restriction site sequences at the 

ATG start codon and anti-sense junction primers circumscribing the mutated codon with 

flanking sequences. The second fragments were amplified by Vent polymerase, with 

sense junction primers containing the mutated codon, with flanking sequences and 

adapter anti-sense primers comprising restriction site sequences at the TGA stop codon. 

The 2 amplified fragments were gel-purified, heat-denaturated, and slowly annealed on 

ice. After elongation by Taq polymerase for 10 min, a third PCR, with specific adapter 

primers containing sequences at the ATG start codon and TGA stop codon, was 

amplified. The amplified fragment was first cloned in pCR2.1Topo vector (Invitrogen 

Corporation), sequenced, and then sub-cloned in the eukaryotic expression vector pCEP4 

(Invitrogen Corporation). Purified constructs were transfected in Namalwa cells by 

electroporation at 0.27 kV (Gene Pulser, BioRad, Hercules, CA), and cells were grown 

under hygromycin B1 selection to attain a stable cell population prior to performing the 

experiments. The kinetics of mitotic entry, cell cycle phase distribution and cell death 

were monitored in Coulter EpicsXL flow cytometers with phospho-H3(Ser10) labeling 

and PI staining.  HeLa cells were synchronized by double-thymidine block (2 mM) and 

release. 

 

Protein extraction and immunoblotting  

To prepare protein extracts, cells were lysed in buffer containing 20 mM 

Hepes(KOH), pH 7.4, 120 mM NaCl, 1% Triton X-100, 2 mM phenylmethylsulfonyl 
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fluoride, a cocktail of protease inhibitors (CompleteTM, Roche Applied Science) and a 

cocktail of phosphatase inhibitors (PhosStopTM, Roche Applied Science). The antibodies 

tested in this study are listed in Supplemental Table S2. Bcl-xL(Ser49) antibodies were 

prepared and purified by GeneScript, using the phosphopeptide-KLH conjugate 

CTESEMETP(pS)AING as immunogen. The affinity and specificity of the preparations 

were first analyzed with ELISA, deploying coated phosphopeptide and non-

phosphopeptide as antigens.   

 

Immunofluorescence microscopy 

HeLa cells, seeded and grown directly on coverslips, were fixed in methanol at -

20°C for 30 min and rapidly immersed in ice-cold acetone for a few seconds. The slides 

were allowed to dry at room temperature and rehydrated in PBS. Nonspecific binding 

sites were blocked in PBS containing 5% FBS (blocking solution); then, the slides were 

incubated sequentially with specific primary antibody (10 µg/ml in blocking solution), 

specific labeled secondary antibody (10 µg/ml in blocking solution), followed by DAPI 

staining, also performed in blocking solution. Images were generated with a Leica 

Microsystem mounted on a Leica DM6000B microscope and Leica DFC480 camera 

hooked up to a Macintosh computer. 

 

Protein kinase assays and protein kinase chemical inhibitors 

The kinases and kinase assays are described in Supplemental Table S3. Enzyme 

activities were tested on control substrates, and velocities were expressed as 

nmole/min/mg (data not showed). Recombinant human Bcl-xL(ΔTM) protein was 

produced and purified, as described previously 40. BI-2536 was obtained from Axon 

MedChem Corp. 
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siRNA-mediated protein kinase inhibition 

HeLa cells were transfected with DharmaFECT-1 transfection reagent 

(ThermoScientific) according to the manufacturer’s instructions, with 100 nM of either 

control siRNA (non-targeting Smart Pool) or siRNA #3 and #4 targeting PLK3 mRNA 

obtained from Dharmacon,ThermoScientific.  

 

Online supplemental materials: Supplemental materials for this article, including 

supplemental figures and tables, are available on the journal website.   
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Figure 1 Effect of Bcl-xL and Bcl-xL(Ser49Ala) phosphorylation mutant on G2 

checkpoint resolution and entry into cytokinesis. A) G2 checkpoint experiments are 

illustrated schematically in the top left panel. The expression levels of HA-Bcl-xL, HA-

Bcl-xL(Ser49Ala) phosphorylation mutant and β-actin in stably-transfected Namalwa cell 

populations are shown in the top right panel. Kinetics of G2 cells (N4 DNA content, 

phospho-H3(Ser10)-negative; grey bars), early mitotic cells (N4 DNA content, phospho-

H3(Ser10)-positive) and dead cells (sub-G1 cells; green bars) in wt Namalwa cells and 

Namalwa cells expressing empty vector, HA-Bcl-xL and HA-Bcl-xL(Ser49Ala) 

phosphorylation mutant after VP16 treatment. Bars represent the means ± s.e.m. of n 

independent experiments. B) Taxol experiments are illustrated schematically in the top 

left. Kinetics of early mitotic cells (N4 DNA content, phospho-H3(Ser10)-positive), late 

mitotic cells (or G2 at time 0) (N4 DNA content, phospho-H3(Ser10)-negative), dead 

cells (sub-G1 cells; green bars) and G1 cells (N2 DNA content; blue bars) in wt Namalwa 

cells and Namalwa cells expressing empty vector, HA-Bcl-xL and HA-Bcl-xL(Ser49Ala) 

phosphorylation mutant during taxol treatment (0.1 µM). Bars represent the means ± 

s.e.m. of n independent experiments.  
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Figure 2 Bcl-xL(Ser49) phosphorylation and location during DNA damage-induced G2 

arrest and in unpertubed, synchronized wt Hela cells at interphase. A) Expression kinetics 

of phospho-Bcl-xL(Ser49), Bcl-xL and β-actin in wt HeLa cells treated with VP16. These 

experiments are illustrated schematically at the top. Kinetics of G2 cells (N4 DNA 

content, phospho-H3(Ser10)-negative; grey bars), early mitotic cells (N4 DNA content, 

phospho-H3(Ser10)-positive; red bars) and dead cells (sub-G1 cells; green bars) in wt 

HeLa cells treated with VP16 appear on the right histogram. Bars represent the means ± 

s.e.m. of n independent experiments. B) Expression kinetics of phospho-Bcl-xL(Ser49), 

Bcl-xL and β-actin in synchronized HeLa cells after double-thymidine block release. Cell 

cycle phase distribution during these experiments is illustrated in the right histogram. C) 

Co-location of phospho-Bcl-xL(Ser49) with colin (Cajal body markers), nucleolin 

(nucleolus marker) and γ-tubulin (centrosome marker) in synchronized G2 cells and 

during VP16-induced DNA damage and G2 arrest. The percentages of phospho-Bcl-

xL(Ser49) in nucleoli, Cajal bodies and centrosomes during VP16-induced G2 

checkpoint and during normal G2 phase of the cell cycle in synchronized wt Hela cells 

(sG2) are indicated in the right histogram. Bars represent the means ± s.e.m. from 

micrographs obtained in 4 independent experiments. 
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Figure 3 
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Figure 3 Bcl-xL(Ser49) phosphorylation and location during mitosis progression. A) 

Expression kinetics of phospho-Bcl-xL(Ser49), phospho-Bcl-xL(Ser62), Bcl-xL, 

phospho-H3(Ser10) and cyclin B1 in wt HeLa cells obtained at different steps of mitosis. 

The design of these experiments is illustrated at the top. B) Co-location of phospho-Bcl-

xL(Ser49) only with dynein motor protein in telophase/cytokinesis. Representative of a 

total of 624 cells obtained from 3 experiments. Details in Supplemental Table S1. 
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Figure 4 
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Figure 4 PLK3 is involved in Bcl-xL(Ser49) phosphorylation. A) In vitro assays of a 

panel of purified and active protein kinases with recombinant human Bcl-xL(ΔTM) 

protein as substrate. All enzyme activities were tested on control substrates in 

Supplemental Figure S2, and validation by mass spectrometry appears in Supplemental 

Figure S3. Western blots are representative of 3 independent experiments. B) Effects of 2 

specific siRNAs targeting PLK3 mRNA on the expression kinetics of phospho-Bcl-

xL(Ser49), Bcl-xL and PLK3 in wt HeLa cells exposed to VP16. The design of these 

experiments is presented on the left. C) Effects of a PLK inhibitor (BI-2536, 0.1 µm) on 

phospho-Bcl-xL(Ser49), Bcl-xL, PLK1 and PLK3 expression in synchronized wt HeLa 

cells released from nocodazole in the presence of blebbistatin to obtain enriched 

telophase/cytokinesis. The design of these experiments is presented at the top. Western 

blots are representative of 2 independent experiments. 
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Supplementary Figure S1  

A) Specificity of the phospho-Bcl-xL(ser49) antibodies.  Expression of phospho-HA-Bcl-

xL(Ser49) in Namalwa cells expressing expressing wt HA-Bcl-xL and HA-Bcl-

xL(Ser49Ala) mutant exposed to VP16 (10 µM for 30 min). HA-Bcl-xL expression is 

shown as control. In the right panels, antibodies were first incubated with excess 

phophorylated peptide (CTESEMETP(pS)AING) prior to Western blotting.  

 

B) Tandem mass spectra of phospho(Ser49) analysed using Mascot (Matrix Science, 

London, UK; version Mascot). Mascot was searched with a fragment ion mass tolerance 

of 0.50 Da and a parent ion tolerance of 2.0 Da. Scaffold (version Scaffold_3_00_02, 

Proteome Software Inc., Portland, OR) was used to validate MS/MS based peptide and 

protein identifications. Peptide identifications were accepted if they could be established 

at greater than 95.0% probability. Validation of phosphate positions were conducted 

using Ascore. On that spectrum, Ascore score is of 42.65 
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SUPPLEMENTAL TABLE S1   Phase distribution versus labeling (number of cells) 

  in synchronized human wt HeLa cells collected from 9 to 12 h after double 

  thymidine block-release 

 

 

Phospho-
Bcl-xL 

(S49) PROMETAPHASE METAPHASE ANAPHASE TELOPHASE CYOKINESIS TOTAL 
+  CENPA 28/28  (-) 12/12  (-) 10/10  (-) 12/12  (-) 18/18  (-) 80 

+ PLK1 41/41  (-) 32/32  (-) 30/30  (-) 25/31  (-) 23/23  (-) 157 
+ γ-Tubulin 20/28  (-) 23/23  (-) 13/13  (-) 10/16  (-) 12/15  (-) 95 
+ Clip-170 30/30  (-) 22/22  (-) 19/19  (-) 10/14  (-) 18/21  (-) 106 

+ Dynein 35/35 (-) 21/21 (-) 11/11 (-) 10/10 (+) 08/11  (+) 88 
+ HEC1 36/36  (-) 25/25 (-) 09/09  (-) 09/13  (-) 12/15  (-) 98 
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Supplemental TABLE S2 
 

ANTIBODIES   ID   Species   Source 
Cdc2/CDK1   # PC25   rabbit pAb  Calbiochem 
Cdc2/CDK1   clone 1/cdk1  mouse mAb  BD Biosciences 
Plk1     clone 208G4  rabbit mAb  Cell Signaling 
Plk3    clone B37-2  mouse mAb  BD Biosciences 
Aurora A   clone 1G4  rabbit mAb  Cell Signaling 
Aurora B   # 3094   rabbit mAb  Cell Signaling  
MAPKAPK2   # 3042   rabbit pAB  Cell Signaling 
MAPK14/SAPK p38α   clone L53F8  mouse mAb  Cell Signaling 
MAPK8/ JNK1   clone G151-333  mouse mAb  BD Biosciences 
MAPK9/ JNK2   # 4672   rabbit pAb  Cell Signaling 
MPS1/TKK   # 3255   rabbit pAb  Cell Signaling 
MPS1/TKK   clone BC032858  mouse mAb  Abcam 
Bub1    clone 14H5  mouse mAb  Upstate/ Millipore 
BubR1    # A300-386A  rabbit pAb  Bethyl  
BubR1    # 4116   rabbit pAb  Cell Signaling 
BubR1    clone9/BubR1  mouse mAb  BD Transduction  
Bub3    clone31/Bub3  mouse mAb  BD Transduction  
Bub3    # 3049   rabbit pAb  Cell Signaling 
Mad2    # A300-300A  rabbit pAb  Bethyl Lab 
Mad2    clone 48/Mad2  mouse mAb  BD Transduction  
cdc20    clone 41/p55cdc  mouse mAb  BD Transduction  
cdc20    # A301-179A  rabbit pAb  Bethyl Lab 
cdc20    # A301-180A  rabbit pAb  Bethyl  Lab 
CENP-A   # 07-574  rabbit pAb  Upstate/Millipore 
CENP-A   clone 3-19  mouse mAb  Assay Designs 
Dynein    clone 74.1  mouse mAb  Millipore 
HEC1    clone 9G3  mouse mAb  Abcam 
EB1    clone 5/ EB1  mouse mAb  BD Transduction  
Clip-170   custom   from Niels Galjart,  Rotterdam 
Bcl-xL    clone 2H12  mouse mAb  BD Biosciences 
Phospho-BclxL Ser49  custom   rabbit pAb  GenScript 
HA tag    clone 12CA5  mouse mAb  Roche Applied Sci 
HA tag    # A00168  goat pAb  GenScript 
γ-tubulin   clone GTU88  mouse mAb  Abcam 
α-tubulin   clone DM1A  mouse mAb  Sigma-Aldrich  
β-tubulin   clone DM1B  mouse mAb  Calbiochem  
β-Actin    clone 4C40  mouse mAb  Sigma 
Phospho H3(ser10)  # 06-570  rabbit pAb  Upstate/Millipore 
Phospho H3 ser10 Alexa 488 # 9708   rabbit pAb  Cell Signaling 
Anti-Mouse IgG Alexa 488 # A11001  goat pAb  InVitroGen 
Anti-Rabbit IgG Alexa 488 # A11008  goat pAb  InVitroGen 
Anti-Mouse IgG Alexa 594 # A11005  goat pAb  InVitroGen 
Anti-Rabbit IgG Alexa 594 #A11012  goat pAb  InVitroGen 
Anti-Mouse IgG HP-linked # NA931V  sheep pAb  GE Healthcare 
Anti-Rabbit IgG HP-linked # NA934V  donkey pAb  GE Healthcare 
Normal Rabbit IgG  # sc-2027  rabbit IgG  Santa Cruz Biotech 
Normal Mouse IgG  # sc-2025  mouse IgG  Santa Cruz Biotech 

 
Supplemental Table S2 
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Supplemental TABLE S3 

Recombinant Enzyme Source  Control Substrate  Source           Buffer 
CHK1   Sigma-Aldrich  RXRX(L/A)S((R/F) Cell Signaling         A 
MAPK14/SAPK p38α  Cell Signaling ATF-2 (19-96)  Cell Signaling  B 
MAPK8/ JNK1  Cell Signaling        c-Jun (1-89)  Cell Signaling  B+ 
MAPK9/ JNK2  Cell Sciences  c-Jun (1-89)  Cell Signaling  A 
MAPKAPK2  Cell Signaling KKKLNRTLSVA  AnaSpec   A+ 
PLK1   Cell Signaling RISDELMDATFADQEAK AnaSpec   A 
PLK3   Cell Signaling RISDELMDATFADQEAK AnaSpec   A 
Aurora A   Cell Signaling RRSLLE    Cell Signaling  A 
Aurora B   Cell Signaling LRRLSLGLRRLSLGLRRL 
     SLGLRRLSLG     AnaSpec   A 
NEK2   Cell Signaling RFRRSRRMI  AnaSpec   A 
GSK3α   Cell Signaling RRAAEELDSRAGSPQL AnaSpec   A 
GSK3β   Sigma-Aldrich GPHRSTPESRAAV AnaSpec   A+ 
Mps1   Cell Signaling Myelin basic protein  Sigma-Aldrich  B 
Immunprecipitated Enzyme 
CDC2/CDK1  Namalwa cells Histone H1/ MBP   Sigma-Aldrich  B+ 
Bub1   Namalwa cells Histone H1/MBP  Sigma-Aldrich  B+ 
BubR1   Namalwa cells Histone H1/MBP  Sigma-Aldrich  B+ 
Bub3   Namalwa cells Histone H1/ MBP   Sigma-Aldrich  B+ 
 
Buffer A (5x): 25 mM MOPS pH 7.2 
  25 mM MgCl2 
  12.5 mM β-glycerol-2-phosphate 
  0.5 mM Na3VO4 
  5 mm EGTA 
  2 mM EDTA 
  0.25 mM dithiothreitol 
  500 µΜ ATP* 
  * 0.05 µCi/µl [32P]-γATP 
Buffer A+ (5x): buffer A  + 50 µg/ ml BSA 
 
Buffer B (5x): 125 mM TRIS pH 7.2    
  50 mM MgCl2    
  25 mM β-glycerol-2-phosphate 
  0.5 mM Na3VO4 
  10 mM dithiothreitol 
  500 µΜ ATP* 
  * 0.05 µCi/µl [32P]-γATP  
Buffer B+ (5x): buffer B + 50 µg/ ml BSA 
 
 
 
Supplemental Table S3. Listing of the protein kinase assays  
 

 

 

Supplemental Table S3 
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6. Discussion 

  In these studies, we investigated the functional importance of phosphorylation 

events within Bcl-xL’s unstructured flexible loop domain during G2 and the SAC as well 

as for cytokinesis and mitotic exit in a series of Bcl-xL phosphorylation mutants, 

including Thr41Ala, Ser43Ala, Thr47Ala, Ser49Ala, Ser56Ala, Ser62Ala and Thr115Ala. 

Our results demonstrate that Bcl-xL Ser49 and Ser62 undergo differential 

phosphorylation/dephosphorylation events during cell cycle progression, in association 

with the G2 checkpoint, the SAC, cytokinesis and mitotic exit. 

  

6.1 Bcl-xL and its unstructured flexible loop domain  

 The unstructured Bcl-xL loop domain, which has various flexible and unstable 

conformations in space, first emerged from Bcl-xL’s 3-dimensional structure 359. Then, 

sequence homology alignment revealed that among all Bcl-2 family members, only Bcl-2 

and Bcl-xL contain such a flexible loop domain 367. It was postulated to be the target for 

post-translational modifications that would affect Bcl-xL function 367. Studies with Bcl-xL 

loop domain deletion mutants indicated that this protein domain was not essential for the 

anti-apoptotic function of Bcl-xL against irradiation- and DNA topoisomerase I and II 

inhibitor-induced OMM permeabilization, cytochrome c release, caspase activation and 

apoptosis 20, 367, 368. Liu et al. reported that the flexible loop domain was somehow 

involved in Bcl-xL’s binding to Bim, and changed shape upon Bcl-xL-Bim interaction 462. 

They also suggested that the engagement of Bim makes the Bcl-xL flexible loop domain 

more susceptible to proteolysis 462. Other studies indicated that Bcl-xL(Ser62), located 

within the flexible loop domain, undergoes phosphorylation when cells are exposed to 

microtubule poisons 449, 451-453, 461, 463-466, a post-translational modification that 

paradoxically has been claimed to maintain or impair the anti-apoptotic effect of Bcl-xL 
452, 465. No experiments have yet directly addressed the effect of Bcl-xL(Ser62) 

phosphorylation on cell cycle progression and checkpoints. We are the first to uncover 

Bcl-xL(Ser49) phosphorylation. Indeed, our investigations of Bcl-xL(Ser49) represent the 

first observation that Bcl-xL undergoes cell cycle-dependent phosphorylation on Ser49.  
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 Among all the phosphorylation mutants deployed in these studies, only Bcl-xL 

Ser49Ala and Ser62Ala showed phenotypic functional effects on the stability of the G2 

checkpoint and the SAC and on the kinetics of cytokinesis and mitotic exit. With flow 

cytometry assays, we designed experimental protocols to screen the effects conferred by 

these mutants, monitoring the stability of VP16-induced G2 arrest and microtubule 

poisoning-induced SAC as well as the kinetics of cytokinesis and mitotic exit. 

Simultaneously, these screening assays also monitored the kinetics of cell death. They let 

us distinguish between the cell death and cell cycle functional effects of Bcl-xL 

phosphorylation mutants, and clearly revealed that the cell cycle effects of the Bcl-xL 

phosphorylation mutants Ser49Ala and Ser62Ala are separable from Bcl-xL's function in 

cell death. In synchronized and untreated cells and in drug-exposed cells, Bcl-xL is 

phosphorylated on Ser62 and Ser49 at various phases of the cell cycle, at diverse locations 

in cells, and binds differently to cell checkpoint components, indicating dissimilar 

functions of Bcl-xL Ser62 and Ser49 phosphorylation/dephosphorylation events during 

cell cycle progression and checkpoints.  

 Together, our studies reveal that the unstructured flexible loop domain, that is only 

present in Bcl-xL and Bcl-2 among all Bcl-2 family members 367, has an unique role in 

regulating Bcl-xL's functions on cell cycle progression and checkpoints. Bcl-xL post-

translational modifications within its unstructured flexible loop domain, as postulated in 

1997 by Chang at al. 367, are part of the complex signaling networks that control cell cycle 

progression and checkpoints. Our studies shed some light on the unstructured flexible loop 

domain mystery. 

 

6.2 Bcl-xL phosphorylation and the cell cycle 

6.2.1 Bcl-xL and the MAPK family 

 A few studies have mentioned the relationship between Bcl-xL and JNKs, 

normally activated at G2/M, in taxol-induced Bcl-xL phosphorylation at Ser62 and 

apoptosis 451, 460, whereas Kharbanda et al. suggested that JNKs were associated with Bcl-

xL Thr47 and Thr115 phosphorylation in response to ionizing radiation 454. These 
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investigations were conducted with pharmacological inhibitors but without RNA 

interference. In our studies, we deployed 3 different approaches, including in vitro kinase 

assays, pharmacological inhibitors and siRNA to dissect which kinases are involved in 

Bcl-xL(Ser62) phosphorylation during the G2 checkpoint and the SAC. Our experiments 

implicated both MAPK8/JNK1 and MAPK9/JNK2 in Bcl-xL(Ser62) phosphorylation 

during the G2 checkpoint, but only MAPK9/JNK2 activity was associated with the 

nucleolar localization of phospho-Bcl-xL(Ser62) during the G2 checkpoint. None of them 

was linked with Bcl-xL phosphorylation at the SAC. MAPK8/JNK1 and MAPK9/JNK2 

are known to be strongly expressed during G2, accumulating in the nucleus, and playing 

a role in proper mitosis entry 467-469.  

 During the SAC, we observed that MAPK14/SAPKp38α phosphorylates Bcl-

xL(Ser62). Our experiments were conducted on highly-enriched mitotic cell populations 

collected by mitotic shake-off, to eliminate and avoid contamination or unwanted effects 

of protein kinases involved in the G2 cell population. The importance of 

MAPK14/SAPKp38α during mitosis and the SAC has been well documented in previous 

studies 99, 470-477. Interestingly, Yen and Yang reported that MAPK14/SAPKp38α signals 

CDC20 ubiquitination and proteolysis during the SAC and that it is also necessary for the 

formation of MAD2-bound CDC20 complex 475. As we discerned that phospho-Bcl-

xL(Ser62) binds to the BUBR1-MAD2-BUB3-CDC20- inhibitory complex, we are 

tempted to suggest that, in addition to the MAPK14/SAPKp38α effect on MAD-2-bound 

complex 475, MAPK14/SAPKp38α also influences the dynamics of BUBR1-bound 

complexes via Bcl-xL(Ser62) phosphorylation. MAPK14/SAPKp38α activity, through its 

direct activation of MAPKAPK2, is also required for proper spindle assembly at 

metaphase 476. Consistently, MAPK14/SAPKp38α activity is involved in the timely, 

stable attachment of kinetochores to spindle microtubules, but not in mitotic process 

fidelity 477. It is also suggested that MAPK14/SAPKp38α promotes checkpoint 

satisfaction; in the absence of MAPK14/SAPKp38α activity, the duration of mitosis is 

prolonged by about 40% in non-transformed human RPE-1, 80% in PtK2, and 25% in 

mouse cells 477. This is a similar effect that we noted in cells expressing the 

phosphorylation mutant Bcl-xL(Ser62Ala), with prolonged duration of the SAC. 

Together, MAPK14/SAPKp38α activity was associated with checkpoint satisfaction 477 
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and, in our studies, Bcl-xL(Ser62) phosphorylation was also linked with checkpoint 

satisfaction, facilitating metaphase-to-anaphase transition. MAPK14/SAPKp38α and 

phospho-Bcl-xL(Ser62) appear to work in the same direction for SAC resolution. 

   

6.2.2 Bcl-xL and the polo kinase family 

 PLK1, a serine/threonine protein kinase highly regulated in time and space, is 

involved in multiple key events during G2/M transition and mitosis, playing roles in  

centrosome maturation, spindle assembly, chromosome segregation, cytokinesis and 

mitotic exit (reviewed in 136, 478). Recently, in a series of in vitro experiments, Tamura et 

al. postulated that PLK1 could phosphorylate Bcl-xL at least on 13 residues, including 

Ser23, Ser28, Thr35, Ser43, Ser49, Ser56, Thr69, Ser72, Ser74, Thr109, Ser122 and 

Thr190, but not Ser62 453. They also suggested that Bcl-xL(Ser62) was phosphorylated 

after pironetin treatment by a JNK-related kinase, but not PLK1 453. This contradicts the 

results of our studies. In our experiments, we found that silencing PLK1 reduced the level 

of phospho-Bcl-xL(Ser62) at the G2 checkpoint induced by DNA damage, and in the 

early phase of mitosis, the latter investigation being performed on highly-enriched mitotic 

cells collected by mitotic shake-off without drug treatment. Because silencing PLK1 

resulted mostly in cells arrested in G2, the mitotic shake-off protocol was essential to 

collect cells in early mitosis. Proper control included the monitoring of phospho-histone 

H3(Ser10) in these samples. In the experiments by Tamura et al., in cells treated with 

pironetin and siRNA targeting PLK1, no control of mitotic cells was included, suggesting 

that their preparations could be contaminated by a high level of G2 cells. Indeed, we did 

observe that both MAPK8/JNK1 and MAPK9/JNK2 were involved in Bcl-xL(Ser62) 

phosphorylation during DNA damage-induced G2 arrest. We did not monitor the effect 

of PLK1 on Bcl-xL(ser62) during normal synchronized and unperturbed cell cycle 

progression at G2.  It is possible that PLK1-mediated phosphorylation of Bcl-xL during 

G2 only occurs during DNA damage.  

 The functions of PLK3, a PLK family member, are much less known (reviewed in 
479). In the interphase, PLK3 has been observed in centrosomes and nucleoli 307, 480. 

During mitosis, it is found at spindle poles and midbody during cytokinesis 307, 481. PLK3 

activity increases rapidly after DNA damage in an ATM-dependent manner, and is 
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involved in G2 arrest by phosphorylating and inhibiting CDC25C phosphatase 145, 482-484. 

Overexpression of PLK3's polo box domain-only, which acts as a dominant negative 

form of PLK3, causes mitotic arrest and cytokinesis defects 307, 481, 485. Similarly, cells 

treated with siRNA targeting PLK3 presented incomplete cytokinesis and produced 

multinucleated cells 486. In our in vitro kinase screening, PLK3 was the only protein 

kinase that strongly phosphorylated Bcl-xL in Ser49, experiments that were confirmed by 

mass spectrometry. siRNA targeting, during G2 arrest, confirmed that PLK3 is the key 

enzyme in Bcl-xL(Ser49) phosphorylation. This is in agreement with the known function 

of PLK3 as a negative regulator of G2/M transition, participating in the G2 checkpoint, 

by phosphorylating and inhibiting CDC25C phosphatase 145. During cytokinesis, our 

results are not only correlative but also strongly indicative of PLK3’s involvement, 

having demonstrated correlations between PLK3 expression and activity, failure to enter 

cytokinesis and to phosphorylate Bcl-xL at Ser49. Our study is the first to reveal that Bcl-

xL is phosphorylated on Ser49 during cell cycle progression and cytokinesis. 

 

 

6.2.3 Bcl-xL and CDK1(CDC2) kinase 

 Several contradictions arose between what we observed and a recent publication 

on Bcl-xL and CDK1(CDC2) 466. The authors reported that cyclin B1/CDK1(CDC2) 

kinase is responsible for mitotic arrest-induced Bcl-xL/Bcl-2 phosphorylation. They used 

protein purification and mass spectrometry to identify the major vinblastine-induced 

phosphorylation site in Bcl-xL as Ser62, in the flexible loop domain between BH3 and 

BH4 domains. Then, they showed that vinblastine-induced Bcl-xL/Bcl-2 phosphorylation 

was inhibited in the presence of a CDK1(CDC2) inhibitor. With in vitro kinase assay, 

they also determined that recombinant CDK1(CDC2) could phosphorylate Bcl-

xL(Ser62). In our in vitro kinase assays, active cyclin/CDK1(CDC2) obtained by 

immunoprecipitation was unable to phosphorylate Bcl-xL at Ser62, while active on other 

natural substrates, either histone H1 or basic myelin protein. In their experiments, 

Terrano et al. performed in vitro kinase assays for 5 hours 466. In our studies, in vitro 

kinase assays were run for 30 minutes, a standard protocol employed regularly by 

investigators that probably reflects enzyme kinetics more adequately. Indeed, in cells, 
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cyclin B1/CDK1(CDC2) kinase activity is organized timely, its initial activation 

occurring only 20 to 25 minutes before mitosis onset 120, 121. It is possible that Terrano et 

al. might have detected "star activity" or unspecific activity of their recombinant enzyme 

by conducting their kinase assays for 5 hours. Highly-sensitive controls with radioactive 
32P-ATP as phosphate donor were also deployed in our assays, and other kinases, 

including MAPK8/JNK1, MAPK9/JNK2 and PLK1, exerted a strong effect on Bcl-xL 

phosphorylation within the 30-minute assays, demonstrating much stronger affinity. A 

second conflict is that we routinely encountered recombinant Bcl-xL inhibition of cyclin 

B1/CDK1(CDC2) activity in vitro with 30-minute kinase assays 20. In their experiments 

with CDK1(CDC2) inhibitor, no controls were added to indicate that the cells were 

actually in mitosis. Given the importance of CDK1(CDC2) for G2-to-mitosis transition, 

their cells were probably in G2. We believe that our experiments were conducted with 

more appropriate controls. 

 

 

6.3 Phospho-Bcl-xL(Ser62) and (Ser49) location 

 

6.3.1 Phospho-Bcl-xL(Ser49) and (Ser62) and centrosomes 

 Centrosomes play fundamental roles in organizing the interphase cytoskeleton and 

bipolar mitotic spindle. More recently, centrosomes were revealed as important 

organization centers that integrate cell cycle arrest and DNA repair signaling networks in 

response to genotoxic stress 487. We found that a pool of phospho-Bcl-xL(Ser49) co-

localizes with γ-tubulin at centrosomes after DNA damage in G2-arrested cells. In 

contrast, a pool of phospho-Bcl-xL(Ser62) segregates to centrosomes in early mitosis. 

Although not further exploited in our studies, these observations indicate a function of 

phospho-Bcl-xL(Ser49) and (Ser62) in centrosomes. One important aspect of centrosome 

biology is the control of cyclin B1/CDK1(CDC2) activity for entry into mitosis. Indeed, 

centrosomal activation of cyclin B1/CDCk1(CDC2) precedes its translocation to the 

nucleus, where the accumulation of active cyclin B1/CDK1(CDC2) complexes drives 

cells into mitosis 137. The phosphatase CDC25B activates cyclin B1/CDK1(CDC2) 

complexes at centrosomes, and regulates centrosomal microtubule nucleation at G2/M 
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transition 488-490. Consistent with these observations, Aurora A and PLK1 have also been 

localized at centrosomes 491, 492. In the late G2 phase, Aurora A, first activated at 

centrosomes, is required for initial recruitment and activation of cyclin B1/CDK1(CDC2) 

at centrosomes, and entry into mitosis 492. CHK1 has also been found to prevent the 

premature initiation of mitosis by inhibiting centrosome-associated cyclin 

B1/CDK1(CDC2) through CDC25B phosphatase at centrosomes 118, 493. 

 

6.3.2 Phospho-Bcl-xL(Ser62) and nucleoli  

 The nucleolus, a central hub, coordinates the stress response. Although it was 

primarily associated with ribosome biogenesis, the nucleolus has now been shown to be 

multifunctional and also regulates cell-cycle progression as well as stress signaling, 

including DNA damage responses 494. The nucleolus acts primarily by phased 

sequestration and the release of regulatory proteins, including the tumor suppressor p53, 

p19/ARF and Mdm2 proteins, CDC14 and PP1 phosphatases, DNA telomerase and the 

DNA helicases Wagner and Bloom 495. CDK1(CDC2) as well as Bcl-xL and Bcl-2 have 

also been reported previously in nucleolar structures 20, 443, 496. Phospho-Bcl-xL(Ser62) 

expression dramatically increases in nucleoli during the G2 checkpoint induced by DNA 

damage, whereas that of the Bcl-xL(Ser62Ala) mutant protein does not. Phospho-Bcl-

xL(Ser62) co-locates and binds to CDK1(CDC2) in nucleoli. These results indicate that 

phospho-Bcl-xL(Ser62) could timely trap CDK1(CDC2) in nucleoli, thereby preventing 

the release and activation of a CDK1(CDC2) pool during G2 arrest.  

 

6.3.3 Phospho-Bcl-xL(Ser62) and Cajal bodies 

 First identified in human neurons in 1903 by the Spanish neuro-cytologist 

Santiago Ramon, Cajal bodies have since been described in many other organisms and 

cell types 497. They are primarily involved in distinct cellular pathways, including small 

ribonucleoprotein biogenesis as well as histone mRNA processing 498. In addition, Cajal 

bodies are linked to the regulation of cell-cycle progression, and their number and 

composition vary throughout the cell cycle, disappearing, like other interphasic nuclear 

structures, at early mitosis with nuclear membranes 499. They are also intimately linked 

with the nucleolus, and encompass dynamic trafficking and fusion with nucleolar 
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structures, although the regulation of these processes are not yet understood 495, 499, 500. 

Phospho-Bcl-xL(Ser62) has been observed in Cajal bodies in interphasic cells in our 

studies, and further experiments, including fluorescence time-lapse microscopy imaging 

in living cells, will be required to further investigate the dynamic relationship and 

trafficking, if any, between thems and nucleoli during the G2 checkpoint.  

 

 6.3.4 Phospho-Bcl-xL(Ser49) and (Ser62) and microtubules 

 Dynein motor protein plays key roles at almost every step in mitotic spindle 

assembly and function, providing outward force to separate spindle poles during 

anaphase and cytokinesis 271, 272, 275, 501-510. Both phospho-Bcl-xL(Ser49) and Ser(62) 

timely co-localize with dynein at different steps of mitosis. Given the large amount of 

dynein proteins along the spindle, it is unclear if any functional mechanisms couple 

phospho-Bcl-xL(Ser49) and Ser(62) with dynein motor activity. Additional experiments 

are required with other microtubule and spindle markers to dissect these interactions. 

Interestingly, the BH3-only protein Bim is well-known to interact with the dynein light 

chain LC8 and is thereby sequestered in microtubule-associated dynein motor complexes 

in cells 511-513. Bim function at this location is clearly unknown. Considering the high 

affinity between Bcl-xL and Bim and the observations reported by Liu et al. that the 

flexible loop domain is somehow involved in Bcl-xL’s binding to Bim 462, it would be of 

interest to further characterize Bcl-xL-Bim interaction at the level of dynein motor 

protein complexes during mitosis. It would be the first demonstration of an interaction 

between 2 Bcl-2 family members, anti- and pro-apoptotic proteins, with functions 

uncoupled from apoptosis.  

 

6.4 Bcl-xL, cell survival and genomic stability 

 By default, anti-apoptotic proteins, such as Bcl-2 and Bcl-xL, maintain cell 

survival and normal cell homeostasis by inhibiting constitutively-expressed pro-apoptotic 

Bax and Bak proteins 332, 514-518. Mice deficient in the Bcl-x gene manifests abnormal 

development and death of fetal erythroid progenitors and neuronal cells, with the animals 

dying around embryonic day 14 displaying severe defects in development 332. In response 

to cancer radiotherapeutic and chemotherapeutic agents, anti-apoptotic protein like Bcl-
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xL stands out among the most crucial regulators of apoptosis and promotes drug 

resistance and treatment failure 21-30.  During development and in response to various 

cellular stresses, eukaryotic cells must also inhibit anti-apoptotic proteins and activate 

pro-apoptotic proteins to eliminate unwanted cells and undergo apoptosis. This is 

achieved by BH3-only proteins. Subsets of these proteins, BH3-only enabler or 

sensitizing proteins, promote apoptosis by binding to and inhibiting pro-survival proteins, 

such as Bcl-2 and Bcl-xL, whereas BH3-only activator or activating proteins bind to and 

activate multidomain pro-apoptotic Bax and Bak proteins 363, 384. The process eliminates 

unwanted and damaged cells and maintains genomic stability.  

 Apoptosis is a barrier to cancer development and, as a whole biological system, acts 

with tumor suppressive activities 78, 82. However, dysregulation of apoptosis by means of 

anti-apoptotic protein overexpression showed oncogenic properties. Indeed, the Bcl-2 

gene itself was first identified at the chromosomal breakpoint of t(14:18)-bearing B cell 

lymphomas, and found to act as a new class of oncogenes that function to prevent 

apoptosis and sustain cell survival instead of promoting cellular proliferation, and that 

synergize with classical oncogenes for tumor development 519-527. More recent 

observations, that Bcl-2 and/or Bcl-xL modulate the Rad51-dependent homologous 

recombination pathway as well as non-homologous end-joining and DNA damage 

mismatch repair activities 48-51, are consistent with tumor suppressive activities.  

 Our studies show that Bcl-xL plays a role during the G2 checkpoint and the SAC, 

functions that appear independent of Bcl-xL known function on apoptosis. By stabilizing 

the G2 checkpoint after DNA damage, Bcl-xL could either allow more times for DNA 

repair and promote cell survival, or facilitate the establishment of premature senescence. 

These effects of Bcl-xL could have dramatic consequences on cell responses to 

radiotherapy and chemotherapy. During mitosis, by facilitating the progression of 

mitosis, acceleration of SAC resolution and mitotic exit, Bcl-xL could increase genomic 

instability in presence of unattached kinetochores. In addition, we also reported that 

silencing Bcl-xL expression leads nocodazole-exposed cells to tetraploidy and 

binucleation. These observations are consistent with the tumor suppressive activity of 

Bcl-xL, to maintain genomic stability. Our work is also "in line" with modern cell 

biology studies indicating, more and more, that gene expression is only the beginning. 
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Post-translation modifications, location and protein-protein interactions govern the 

various cellular functions of a given protein.  Additional works will be required to clearly 

evaluate the consequences of Bcl-xL expression, phosphorylation and location on cell 

cycle progression and checkpoints, particularly in cell responses to radiotherapy and 

chemotherapy. 
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7. Conclusion 

 

 Our studies uncovered novel Bcl-xL functions during cell cycle progression and 

checkpoints. Major findings are summarized in Figure 12. 

Figure 12. Schematic illustration of major findings in these studies 

 

 

7.1 Major findings  

 The 1st appended manuscript reports that Bcl-xL undergoes Ser62 

phosphorylation during the normal cell cycle and in DNA-damage-induced G2 arrest. 

PLK1 and MAPK9/JNK2 are responsible for Bcl-xL(Ser62) phosphorylation and 

progressive accumulation in nucleolar structures during the stabilization of DNA 

damage-induced G2 arrest. This function of phospho-Bcl-xL(Ser62) was clearly 

separable from Bcl-xL's known purpose in apoptosis, as the Bcl-xL(Ser62Ala) 

phosphorylation mutant retained its anti-apoptotic effect but lacked the G2-arrest 
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stabilization function. Phosphorylation of Bcl-xL(Ser62) is associated with its 

translocation into the nucleolus after DNA damage, where it will meet CDK1(CDC2). It 

is suggested that phospho-Bcl-xL(Ser62) participates in the G2 checkpoint by trapping 

CDK1(CDC2) in nucleolar structures. 

 The 2nd appended manuscript indicates that during the SAC, PLK1 and 

MAPK14/p38α mediate Bcl-xL(Ser62) phosphorylation, binding it to the inhibitory 

CDC20/MAD2/BUBR1/BUB3 complex in a way that accelerates SAC resolution. 

Silencing Bcl-xL expression also leads nocodazole-exposed cells to tetraploidy and 

binucleation, consistent with Bcl-xL function in genomic stability. Phospho-Bcl-

xL(Ser62) also localizes in centrosomes with γ-tubulin and along the microtubule spindle 

with dynein motor protein, but its functions at these locations were not further addressed 

in this study. Again, phospho-Bcl-xL(Ser62) function in mitosis appears to be separable 

from Bcl-xL’s known role in apoptosis. 

 The 3rd appended manuscript discloses a yet uncharacterized phosphorylation site 

within Bcl-xL. Bcl-xL(Ser49) is phosphorylated during normal cell cycle progression and 

checkpoints. Interfering with Bcl-xL(Ser49) phosphorylation destabilizes DNA damage-

induced G2 arrest and slows entry into cytokinesis, but has no effect on the kinetics of 

VP16- and taxol-induced apoptosis. Our data indicate that PLK3 is involved in Bcl-

xL(Ser49) phosphorylation at the G2 checkpoint and cytokinesis.  

 

7.2 Future directions 

 These studies yield many future directions to further understand the role and 

functional importance of phospho-Bcl-xL(Ser49) and (Ser62) during cell cycle 

progression. Dynamic protein location and interaction with components of cell cycle 

checkpoints and microtubules during mitosis will be addressed by time-lapse 

fluorescence microscopy imaging in living cells and with Forster resonance energy 

transfer monitoring 385. To achieve this goal, wt Bcl-xL, Bcl-xL(Ser49Ala), Bcl-

xL(Ser49Asp), Bcl-xL(Ser62Ala), Bcl-xL(Ser62Asp) and the dual mutants Bcl-

xL(Ser49Ala/Ser62Ala) and Bcl-xL(Ser49Asp/Ser62Asp) will be generated in a 

lentivirus expression system coupled with a fluorescence tag and expressed in cells. First, 

we will monitor their dynamic movement and location in synchronized cells and cells 
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exposed to DNA-damaging agents and microtubule poisons. To confirm interactions with 

CDK1(CDC2), BUBRI-MAD2-BUB3-CDC20 complex and dynein motor protein 

complex, these will be expressed with another fluorescent tag, and co-localization 

monitored by time-lapse fluorescence microscopy in living cells and with Forster 

resonance energy transfer, again in synchronized cells and cells exposed to DNA-

damaging agents and microtubule poisons 385. 

 To further dissect Bcl-xL interaction with BUBR1-bound complexes, we will 

deploy a cell-free system recently described by Kulukian et al. to study the kinetics of 

formation of these complexes 262. Briefly, in this cell-free system, kinetochore-mediated 

SAC signaling is reconstructed by adding sequentially, one by one, purified components 

of the SAC and then measuring the ubiquitin-ligase activity of APC/C-CDC20 on 

purified cyclin B1. By incorporating recombinant wt Bcl-xL, Bcl-xL(Ser49Ala), Bcl-

xL(Ser49Asp), Bcl-xL(Ser62Ala), Bcl-xL(Ser62Asp) and the dual mutants Bcl-

xL(Ser49Ala/Ser62Ala) and Bcl-xL(Ser49Asp/Ser62Asp) to this system, we will 

hopefully dissect the molecular interactions between Bcl-xL with MAD2- and BUBR1-

bound complexes and their effects on APC/C-CDC20 activity. 

 Two approaches will be taken to further investigate the involvement of wt Bcl-xL 

and various mutants in genomic stability: BJ normal foreskin fibroblast cells, and C. 

elegans, an in vivo model 528. BJ normal foreskin fibroblast cells have a reported normal 

diploid karyotype at population doubling 61 but an abnormal karyotype at population 

doubling 82 529. We will infect these cells with our constructs coding for wt Bcl-xL as 

well as all mutants and, in parallel, silence the expression of endogenous Bcl-xL protein 

to eliminate background. To do so, we will deploy a targeted sequence located in the 3'-

end of the non-coding region of Bcl-xL mRNA, as described in the second manuscript. 

Infection will be evoked around doubling time 40. Then, at 5 doubling time intervals, we 

will analyze cell karyotypes. Our hypothesis is that cells expressing Bcl-xL(Ser62Ala) 

and (Ser49Ala) mutants  will rapidly show abnormal karyotypes. 

 In C. elegans, we will use Ced 9 mutant animals and re-introduce wt Bcl-xL as 

well as all Bcl-xL mutants. We expect that all Bcl-xL constructs will reverse the Ced 9 

mutant phenotypes as all Bcl-xL constructs, including the mutants, should retain their 

anti-apoptotic function. However, it is expected that the Bcl-xL(Ser62Ala) and 
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(Ser49Ala) mutants might confer some genomic instability in C. elegans. In the long-

term, mice models could be developed as well.  

 Finally, postulating that Bcl-xL Ser49 and Ser62 are important for genomic 

stability, an in silico search could be performed to investigate if any sequencing already 

done on clinical tumor specimens could be informative for the presence of mutations 

within these residues. Alternately and/or in parallel, high-throughput sequencing of Bcl-

xL could be undertaken on tumor tissue banks already existing in Canada. These 

investigations will indicate if Bcl-xL Ser49 and Ser62 mutations occur in human tumors 

and, eventually, correlation with treatment outcome could be addressed.  
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