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Aumann-Shapley pricing: A reconsideration of the discrete case

Yves Sprumont*

June 19, 2004

Abstract. We reconsider the following cost-sharing problem: agent
i = 1,...,n demands a quantity x; of good 4; the corresponding total cost
C(z1, ..., z,) must be shared among the n agents. The Aumann-Shapley prices
(p1, ..., pn) are given by the Shapley value of the game where each unit of each
good is regarded as a distinct player. The Aumann-Shapley cost-sharing method
assigns the cost share p;x; to agent 1.

When goods come in indivisible units, we show that this method is charac-
terized by the two standard axioms of Additivity and Dummy, and the property
of No Merging or Splitting: agents never find it profitable to split or merge their
demands.

JEL classification numbers: C71, D63.

Keywords: cost sharing, Aumann-Shapley pricing, merging, splitting.

1. Introduction
Aumann-Shapley pricing is a method for solving cost-sharing problems in which
agents demand arbitrary quantities of possibly different goods: given that each agent
i in a finite set N = {1,...,n} requests a quantity x; of good i, we wish to split the
cost C'(x) of producing the demand profile x using no other information than the cost
function C.

The simplest case occurs when goods are indivisible and each agent demands
no more than one unit, that is, x belongs to {0, 1}N. All the relevant information
is then captured in the corresponding “stand-alone cost cooperative game” (N,T")
where the cost associated with a coalition S is just the cost of meeting the demands
of its members: in straightforward notation, I'(S) = C(zs,0n\s). The allocation
recommended by the Aumann-Shapley method in this case is just the Shapley value
of that game.

The stand-alone cost game (N, I') remains perfectly well defined when some agents
demand several units. In fact, Shubik (1962) recommended the Shapley value of that
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game as a solution to the underlying cost-sharing problem (N, z, C'). This very simple
solution, known as the Shapley-Shubik method, possesses attractive properties: see
Moulin (1995) and Sprumont (2000) for a discussion and various axiomatizations.
In general, however, the stand-alone cost game ignores much of the rich information
contained in the cost function C. The Aumann-Shapley method exploits this infor-
mation by constructing a game (N,,I',) where each unit demanded by each agent
is regarded as a separate player: the player set is N, = U;enN;, where each of the
disjoint sets IV; contains x; elements, and the cost associated with a coalition S is
L.(8) = C(|SNMN|,....,[SNN,|). The Shapley value of that game determines a
price for every unit of demand. The Aumann-Shapley method charges to agent i the
sum of the prices attached to the units she demands.

The large literature on Aumann-Shapley pricing, rooted in Aumann and Shapley’s
(1974) theory of value for nonatomic games, focuses on the case of perfectly divisible
goods: demands are real numbers. In that context, the Aumann-Shapley cost shares
obtain as the limit of the cost shares in the discrete model as goods become more
and more divisible. Under suitable differentiability assumptions, one can show that
an agent pays the integral of her marginal costs along the ray to x: this is the so-
called diagonal formula. A survey of the literature up to the mid-eighties is offered in
Tauman (1988). More recent studies extend the theory to the non-differentiable case
(see Mertens (1988) and the survey by Haimanko and Tauman (2002)) and propose
asymmetric variants (see McLean and Sharkey (1998)).

Applications of the Aumann-Shapley pricing theory are numerous: from the early
work of Billera, Heath, and Raanan (1978) and Samet, Tauman, and Zang (1984) to
the recent contributions of Castano-Pardo and A. Garcia-Diaz (1995), Haviv (2001) or
Lee (2002), they range from the pricing of utilities such as water, phone or electricity
to the allocation of highway construction costs, and the sharing of waiting time at a
congested server.

More directly connected to the present paper are the axiomatizations of the diag-
onal formula offered by Billera and Heath (1982), Mirman and Tauman (1982), and
Samet and Taumag, (1982). Note that when all goods are perfectly substitutable,
that is, C(2) = ¢( ,cn 2) for some function ¢, cost shares are proportional to de-
mands: we say that the method satisfies the Proportionality axiom'. It turns out
that the continuous Aumann-Shapley cost-sharing method is the only method satisfy-
ing Proportionality, Additivity (asking that cost shares depend additively on the cost
function), and Scale Invariance (requiring that the scales used to measure demands be
irrelevant). A quite different axiomatization based on a powerful cost monotonicity

! This property is not stated as an explicit axiom in the papers cited above. Rather, it is implicitely
assumed by restricting attention to pricing methods, under which an agent’s cost share is necessarily
the product of her demand by a per unit price.
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condition is due to Young (1985).

Somewhat surprisingly, the discrete version of the Aumann-Shapley cost-sharing
method never received a proper axiomatic defense. Calvo and Santos (2000) propose
an interesting characterization based on Myerson’s (1980) idea of “balanced contri-
butions”. Under the very mild restriction that agents demanding nothing pay zero,
Calvo and Santos’ version of the balanced contributions condition suffices to charac-
terize the Aumann-Shapley method. Their characterization is therefore best seen as
an alternative definition of the method rather than a decomposition of it into distinct
elementary axioms: see Section 4 for a discussion.

Our axiomatization builds on the following three observations.

1) Scale Invariance has no counterpart in the discrete context. When goods come
in indivisible units, there is no issue of measurement because there is no meaningful
rescaling operation: the only increasing bijection from the set of nonnegative integers
into itself is the identity. Yet, Scale Invariance is crucial for the classical charac-
terization. Proportionality and Additivity do not characterize the Azrmann-Shapley
method: just consider the plain proportional formula charging (z;/ .y 2;)C(z) to
agent ¢ for every cost function C.

2) The existing axiomatizations of the Aumann-Shapley method do not rely on
the Dummy axiom, a key element in Shapley’s (1953) characterization of the value.
In the cost-sharing context with no fixed cost, Dummy requires that if the total cost
does not vary with agent ¢’s demand, that agent should pay nothing. The axiom has
bite: for instance, it rules out the plain proportional method. Yet, Proportionality,
Additivity, and Dummy are not enough to characterize the Aumann-Shapley method.
This is easily seen with just two agents: apply the Aumann-Shapley method whenever
x1 # wp but split the balance beyond stand-alone costs equally if z1 = x,. The
difficulty is clear: none of the three axioms connects cost-sharing problems with
different demand profiles.

3) Proportionality is usually motivated by the following incentive considerations:
if the principle were violated, some agents would find it profitable to either merge
and pretend to be a single large demander, or split and act as a collection of smaller
demanders. It is well known that when all goods are perfect substitutes, the only
cost-sharing method immune to such merging or splitting tactics is the proportional
method: see for instance Moulin (2002) or, for a more comprehensive treatment, Ju,
Miyagawa, and Sakai (2003).

The idea of preventing merging or splitting maneuvers, however, is meaningful
beyond the case where all demands are perfectly substitutable. Suppose that a pos-
sibly strict subset of t|135> goods, S, are perfect substitutes: the cost function takes the
form C(z) = c¢(zn\s, ;eq%)- In this case one would like to ensure that the agents
demanding the goods in S have no incentive to merge or split. Our No Merging
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or Splitting axiom imposes this requirement for any subset of goods: it is is thus a
strengthening of Proportionality.

We will show that Additivity, Dummy, and No Merging or Splitting characterize
the Aumann-Shapley method in the discrete context. Section 2 defines our version
of the cost-sharing model and the Aumann-Shapley method, Section 3 presents the
axioms, Section 4 states and discusses our theorem, and Section 5 concludes. The
Appendix contains a proof of the theorem.

2. Aumann-Shapley pricing in the discrete context

We consider a variable-population version of the discrete cost-sharing model offered
in Moulin (1995) and van den Nouweland et al. (1995) and further studied by
Wang (1999), Sprumont (2000), Moulin and Vohra (2003), and Moulin and Sprumont
(2003). Let N denote the set of nonnegative integers and N the set of nonempty finite
subsets of N. A demand profile is a pair (N, z), where N € N is the set of agents
and x € N¥ is the list of their demands. We denote by D the set of all demand
profiles. For each N € N, we denote by C(NN) the set of cost functions for N : this
is the set of all nondecreasing mappings C' : NV — R, such that C(0) = 0. A
(cost-sharing) problem is a list (N, z,C), where (N,z) € D and C' € C(N). The set
of all problems is denoted P. A (cost-sharing) method is a mapping ¢ which assigns
to each (N, z,C) " a vector of cost shares o(N,z,C) € RY satisfying the budget
balance condition ,_y ¢;(IV,z,C) = C(x). Note that cost shares are required to be
nonnegative.

Let P(0) = {(N,x,C) € P | z € {0,1}}. Every problem (N,z,C) € P(0) is
identified with a unique cooperative game (N,I") defined by I'(S) = C(zg,0ns) for
each S C N, where x5 € N° denotes the restriction of = to S.We denote the Shapley
value of that game by (N, T') or, with a slight abuse of notation, ©°*(N, x, C). The
mapping ¢°" is defined on P(0); the Aumann-Shapley cost-sharing method extends
it to P as follows.

Definition. Let (N,z,C) € P, write N = {1,....,n}, let Ni,..., N, be pair-wise
disjoint sets such that |N;| = z; for each i € N and let N, = U;enNN;. For each
S C N, define IT',(S) = C(|S N Ny, ..., |S N N,|). The Aumann-Shapley method 5"
computes the cost shares in the problem (NN, z, C') according to the formula

P
MM N,z C) = gp}gh(NmFm) for all 7 € N.

JEN;

The anonymity of the Shapley value guarantees that this definition is meaningful:
the game (N,,T',) is not uniquely defined but all possible choices are equivalent.
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3. Three axioms
This section presents our three axioms for cost-sharing methods. The first two, Ad-
ditivity and Dummy, are standard. The third property, No Merging or Splitting,
formalizes an argument often (informally) invoked in defense of the Aumann-Shapley
method. While similar requirements have been defined in related models, our formu-
lation in the cost-sharing context is new, and its implications have not been studied.

Additivity. For all (N, z) € D and C,C" € C(N), ¢(N,C + C',x) = ¢(N,C,z) +
©(N,C" x).

This standard property with no apparent ethical content is very convenient. It
guarantees that when a production process can be decomposed into a list of indepen-
dent sub-processes, applying the method to the aggregate cost function is equivalent
to applying it to each sub-process and summing up the resulting cost shares. This
facilitates computation in practice; it also makes it pointless for the agents to argue
about the proper level of application of the method: an additive method is insensitive
to the details of implementation.

The next property uses the following notation. For each N € N, C' € C(N),
i € N, and z € NV let 9,C(z) = C(z +¢') — C(z), where €' is the unit vector e} = 1,
es = 0 for j € N\i. Note that we write 4 instead of {i} when convenient. Define
C)(N) = {C € C(N) | 9;C(z) = 0 for all z € NV} : this is the set of cost functions
for N where agent 7 is a “dummy”. The axiom below is the natural extension of

Shapley’s (1953) dummy axiom to our model.
Dummy. For all (N,z) € D,i € N, and C € CO(N), ¢;(N,z,C) = 0.

Additivity and Dummy circumscribe a well understood class of methods: a useful
characterization is provided by Moulin and Vohra (2003) and recalled in Step 1 of
the proof of our theorem. We emphasize that this class is very rich. On P(0),
the subset of problems corresponding to standard cooperative game theory, the two
axioms are very powerful: in particular, adding Shapley’s (1953) symmetry axiom is
enough to pin down the Shapley value. By contrast, on the large domain of all cost-
sharing problems, P, Additivity and Dummy are satisfied by a variety of interesting
symmetric cost-sharing methods different from the Aumann-Shapley method. The
Shapley-Shubik method described in Section 1 and the serial method described in
Moulin (1995) are just two examples.

We turn now to the condition playing the central role in this paper.
No Merging or Splitting. Let (N,z,C) € P,i € N,and I € N be seeh that
NNI={i}. Write N' = (N\i) U I, deﬁligC’ € C(N') by C'(2) = Clznis  pep 20)
for aghz € N and let 2/ € NV'. Then { per T = x; and 2 = x; for all j € N\i}
= { el @iO(va xla Cl) - @i(N7 xz, C)}
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This property connects cost shares in two problems with different sets of agents:
N’ obtains from N by “splitting” agent ¢ into a set I of agents i’ whose aggregate
demand equals i’s original demand. The other agents in N and N’ are identical,
and their demands do not change. The cost function C’ for N’ expresses the same
technology as C: the sum of the consumptions by the agents ¢’ in I merely plays the
role of agent i’s original consumption.

The condition prevents manipulations of identity: agent ¢ in N does not gain by
splitting her demand into smaller pieces; the agents i’ in N’ do not gain by merging
theirs into one larger block. Note that we require ¢ € I : No Merging or Splitting
does not explicitly rule out more radical manipulations of identity whereby an agent
is replaced with a completely disjoint set of demanders.

Variants of the No Merging or Splitting condition have been studied before, no-
tably in the simpler model of rationing (or bankruptcy), where a given amount must
be split among a set of agents holding claims on it. Early contributions include
O’Neill (1982), Moulin (1987), and Chun (1988). For a recent treatment containing
references and generalizations, see Ju, Miyagawa, and Sakai (2003).

4. An axiomatization
We are now ready to state and discuss our main result.

Theorem. The Aumann-Shapley method is the only cost-sharing method satisfying
Additivity, Dummy, and No Merging or Splitting.

One feature of the proof proposed in the Appendix may be of independent interest.
No Merging or Splitting implies a Weak Symmetry property stating that renaming
exactly one agent does not affect her own cost share. Step 4 of the proof shows that on
the subset of problems corresponding to standard cooperative games with a variable
population -namely, P(0)- Additivity, Dummy and Weak Symmetry characterize the
Shapley value. Thus, the full force of Shapley’s (1953) symmetry condition is not
needed to pin down the value when the set of agents is allowed to change.

We make three further comments.

1) The axioms in the above theorem are independent. No Merging or Splitting
is obviously needed: the (rich) class defined by Additivity and Dummy, described in
Step 1 of the proof, contains, for pstance, the Shapley-Shubik method. The propor-
tional method ¢}(N,z,C) = (z;/  ;cy ;)C(x) whenever x # 0 (and p(N,z,C) =0
when x = 0) shows that Dummy is not redundant. To see that Additivity cannot
be dropped, consider the method p(N,x, C) = ¢?(N, z,C') whenever C' is strictly in-
creasing (that is, C(z) < C(#') if 2 < 2'), and ¢(N, z,C) = p**(N, z, C') otherwise.

2) Because No Merging or Splitting compares problems with different sets of
agents, it is a somewhat complex condition. We propose a variant of our theorem
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based on a fixed-population condition which is a little simpler to grasp than No
Merging or Splittings Given N € N and S C N, define CL(N) = {C € C(N) |
Je: C(2) = c(zn\s, eg%)}- This is the set of cost functions in C(IV) for which the
demands from the agents in S are perfect substitutes: these agents demand essentially
the same good.

Ne Demangd, Reshuffling. For all N € A5 z,2" € I\ S C@A, and C € CL(N),
{ iesti= jesriandzms = $§v\s} = { sV, 2, 0) = gp(N. 2", C)}.

This condition says that the aggregate cost share of a group of agents demanding
essentially the same good depends only on their aggregate demand. If this condition
were violated, all members of S could benefit by reshuffling individual demands within
S and performing suitable side-transfers. The idea was proposed by Moulin (1987) in
the bankruptcy model. It is easy to check that No Demand Reshuffling is implied by
No Merging or Splitting. Assume the pygnises of the former, choose an agent s € 5,
and define c € C((N\S)Us) by c(gm\s, e52) = C(2) forall z € NV, Appying No
Merging or Splitting twice, pge get ;g 9V, 2, C) = 0, (N\S)Us, (Tns,  jes i),
C) = @s((N\S) Us, (‘,LJN\S7 ieSZEg)? C) = es Spi(N7 xl70)'

The following example shows that Additivity, Dummy, and No Demand Reshuf-
fling are not quite enough to pin down the Aumann-Shapley method. Let

1

1({1,2:3},e12%,.0) = 2(010(0) + GO + O,
1

22({1,2.3},e023,.C) = 2(,0(0) +0C(e™) + 0,0(1)),
1

e3({1,2,3},e023,0) = 2(0:C(0) + 8:0(eM) + 2002

forall C' € C({1,2,3}) and let (N, x,C) = p**(N, z, O) for every other cost-sharing
problem (N, z, (). Additivity and Dummy are clearly met. To show that ¢ satisfies
No Demand Reshuffling, observe that this axiom connects the cost shares for two
problems (N, z,C), (N',2’,C") only when the setsggf agents are the same (N = N')
and the total demands are the same ( ,.y2; = .z ;). Since ¢ coincides with
05" except when N = {1,2,3} and z = (1, 1, 1), and since 5" satisfies No Demand
Reshuffling, it is sufficient to check ¢, ({1,2,3},(1,1,1),C) + v,({1,2,3},(1,1,1),C)
= 017"({1,2,3},(2,0,1),C) + ¢3°"({1,2,3},(2,0,1),0) for all C € C}; 5 ({1,2,3}),
and two similar conditions obtained by replacing {1,2} with {1,3} and {2,3}. Using
budget balance, this amounts to ¢5({1,2,3},(1,1,1),C) = p39"({1,2,3},(2,0,1),0)
for all C € C%l,z}({l, 2,3}), and similar conditions for agents 1 and 2. These three
conditions are readily verified.

The method in this example satisfies the basic axiom of Zero Charge for Zero
Demand: for all (N,z,C) € P and i € N, {z; = 0} = {¢;(N,z,C) = 0}. But
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removing those who demand zero from the set of agents affects the cost shares of the
others. For instance, consider the cost function C' € C({1,2,3,4}) given by C'(z) =0
whenever z; = 2z, = 0, C(z) = 1 otherwise. Then ¢({1,2,3,4},(1,1,1,0),C) =
(3,2,0,0) # ¢({1,2,3},(1,1,1),Ci103;) = (3,%.0). Our next axiom rules out this
problematic feature. For any N € N and C € C(N), we define Cs € C(S) by
05(25) = C(Zs, ON\S) for all z € NV,

Independence of Zero Demands. For all (N, z C') € Pandi € N, {z; =0} =
{@:(N,z,C) =0 and SON\i(NJ?aC) = W(N\iail?N\i7CN\i)}-

This very natural variable-population condition is well known: see for instance
Moulin and Shenker (1994) or Sprumont (1998). It is clearly met by the Aumann-
Shapley method and delivers the following corollary to our theorem.

Corollary. The Aumann-Shapley method is the only cost-sharing method satisfying
Additivity, Dummy, Independence of Zero Demands, and No Demand Reshuffling.

Proof. It suffices to show that No Demand Reshuffling and Independence of Zero
Demands together imply No Merging or Splitting. Let (N,z,C),i, I, N',C’, and 2’
satisfy the premises of No Merging or Splitting. Note that ¢’ € C}(N'). Define
i € NV by vj = xj for all j € N and zp = 0 for all i’ € g5 Apply successively
Demand Reshuffling and Independence of Zero Demands: ., @o(N', 2/, C") =
aef (N, 2", C") = p;(N,2,C).¥

3) As mentioned in the Introduction, Calvo and Santos (2000) offer an alternative
characterization of the discrete Aumann-Shapley method. The key property they
use states that for any pair of positive demanders i, j, the increase in i’s per unit
cost share generated by a one-unit increase in j’s demand is equal to the increase
in j’s per unit cost share generated by a one-unit increase in ¢’s demand. Writing
Ni(z) ={i € N | z; > 0}, the formal condition reads as follows.

Balanced Contributions. For all (N,z,C) € P and all i,j € N4 (z),

1 1

L

(gpi(N,:z:,C’)—goi(N,:c—ej,C’)) = (@j(vivC)_on(vi_eivc))' (1)

i

Calvo and Santos prove that the Aumann-Shapley method is the only cost-sharing
method satisfying Balanced Contributions and Zero Charge for Zero Demand.

To see why this is true, fix (V,z,C) € P and i € N4(x). Since N and C' are fixed
throughout the argument, we omit them in our notation; we also write /N4 instead of
N4 (x). Multiplying both sides of (1) by z; and summing up,

P P

jEN\i 55—1(%(96) —eilr—e)) = jEN. \»(903‘(5”) — oz — e')).
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Adding ¢;(z) on both l@'gdes, using budget balance and Zero Charge for Zero Demand,
and writing z(N+) =y, ©;, we get
M) @) 7 Tpe o) =€)~ Ole — &) + e — )

L JEN+\i Ti

or, after rearranging,
_ i P j
#ie) = (O =~ Clo =N+ —isalr =) &)
By Zero Charge for Zero Demand, ¢(0) = 0. Since the recursive formula (2) holds for
every i € Ny, it fully determines a unique cost-sharing method . As 4" satisfies
Balanced Contributions, ¢ = 45",

Thus, Balanced Contributions -essentially alone- amounts to a recursive definition
of the Aumann-Shapley cost-sharing method. It is a complex requirement composed
of several ideas that are not easily disentangled. Our axiomatization offers the advan-
tage of a genuine decomposition of the Aumann-Shapley method into a set of more
elementary, jointly characteristic, axioms.

5. Conclusion

Under Additivity, strengthening the Proportionality axiom and reintroducing the fa-
miliar Dummy condition yields a characterization of the discrete Aumann-Shapley
cost-sharing method. The exercise in this paper was motivated by the observation
that Scale Invariance, a crucial ingredient in the classical axiomatizations, is mean-
ingless in the discrete context. But our combination of axioms may be of independent
interest: do they characterize the Aumann-Shapley method in the standard model
where demands are real numbers?

6. Appendix
Proof of the theorem. It is clear that ¢4%" satisfies Additivity, Dummy, and No
Merging or Splitting. Conversely, let ¢ be a cost-sharing method satisfying these
axioms.

Step 1: ¢ admits a flow representation

Given N € N and z € N¥, we write vector inequalities <, <, < and define
0,z ={zeNV |0< 2<z}and [0,z = {2 e NV | 0 < z < z}. A flow to z
is a mapping f(N,z,.) : [0,2[— RY satisfying the convention that fi(N,z,z) = 0
whenever z; = z;, and the so-called flow conservation constraints

P
fl(N,.Q?,O) = 1,
(=4 P |
fi(N,x,2) = fi(N,z,z —¢') for all z €]0, x],

iEN 1€EN+(2)
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where N4 (z) ={i € N | z; > 0}.

Building on Wang (1999), Moulin and Vohra (2003) prove that a cost-sharing
method ¢ satisfies Additivity and Dummy if and only if, for all N € A/ and x € NV,
there is a flow f(V,z,.) to x such that

o(N,,C) =+ f(N.2,2)0,C() 3)

z€[0,x[

for all i € N and C' € C(N). For each N and =z, the flow f(V,z,.) associated with
@(N,x,.) is unique; we call f the flow representation of ¢. An immediate corollary
to Moulin and Vohra’s result is that Additivity and Dummy imply Zero Charge for
Zero Demand. From now on, we denote by f the flow representation of our method
©.

Step 2: The flow representation of the Aumann-Shapley method.

Since the Aumann-Shapley method 45" satisfies Additivity and Dummy, it too
admits a flow representation: we denote it by f4%". By definition, the Aumann-
Shapley method applies the Shapley value to the game where each unit demanded by
every agent in NV constitutes a separate player and computes an agent’s cost share by
summing up the coordinates of the Shapley value which correspond to the units he
demands. This amounts to taking the uniform average of the so-called incremental
cost-share vectors generated by all possible orderings of all units demanded by all
agents. Straightforward computations show that the corresponding flow representa-
tion is

a(z)alz — z —ét)

fASM(N, 2, 2) = for all (N,z) € D,i € N, and z € [0,2 — €],

a(z)

Q : : :
where a(2) = ( jen#)!/  jen 7! See, for instance, Moulin (1995) or Moulin and
Sprumont (2003). As observed in Sprumont and Wang (1998), the defining feature of

this formula is that thedow at z is split in proportiorbto the sizes of the “remaining
demands”: fi(N,z,2)/ ey [i(N,2,2) = (vi — 21)/  jen(x5 — 25) for alli € N,

Step 3: ¢ is weakly symmetric.

If 7 : N — N is a bijection, N € N, y € RY, and C € C(N), write 7N = {7 (i) |
i € N}. For any z € RY, define 72 € RN by (72).) = 2z for all i € N. Finally,
define 7C' : N™V — R, by 7C(7z) = C(z) for all 2 € NV : note that 7C' € C(nN).
We claim that ¢ satisfies the following property.

Weak Symmetry. Let (N,z,C) € P,i € N, and let 7 : N — N be a bijection. If
there exists some i € N such that 7(j) = j for all j € N\i, then ¢ (7N, 7z, 7C) =
%(Na xz, C)
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This condition says that renaming an agent should not affect her cost share. A
priori, it does not rule out the possibility that the cost shares of the others might be
affected by that renaming.

Weak Symmetry is a consequence of No Merging or Splitting. To see why, let
(N,z,C), i, and 7 satisfy the premises of Weak Symmetry. The case 7(i) = i being
trivial, assume 7 (i) # i. Let N’ = NU7 (i), define C" € C(N') by C'(2) = C(zn\, 2+
Zr@)), and define 2’ € NN by Trwy =0, 2 =x; forall j € N.

Let I = {i,m(i)}. Note that N' = (N\i) U I and x} + 27,y = ;. Applying No
Merging or Splitting to (NN, z,C') and agent i gives

SOZ(N7 Z, C) = Soz'(va ZE/7 C/) + spw(i)(va ZE/7 Cl)

Next, observe that N' = (7 N\7(i))UI, C'(2) = 7C(zni, 2it2xa)), and z3+27 oy =
(72)r@). Applying No Merging or Splitting to (7N, 7z, 7C') and agent 7 (i) gives

@w(i)(ﬂNa mz,mC) = %(vaﬂﬂla O/) + SOW(i)(N/»UU/, O/)-

Hence, ¢;(N,z,C) = @ (7N, 72, 7C), as claimed.

Step 4: ¢ extends the Shapley value.
For any N € N and any nonempty K C N, define the so-called unanimity game
(N,Tg) by I'x(T) =1if K C T, and 0 otherwise. We claim that

0 (N,Tx) =1/kifi € K, and 0 if i € N\K, (4)

where k = |K].

The proof differs from the usual argument based on the full symmetry axiom: it
relies crucially on the assumption that the set of agents, IV, is allowed to change?. Fix
N € N and a nonempty K C N. If k = 1, the claim follows directly from Dummy.
From now on, assume k > 2. Let M € N be such that K C M, (N\K)NM = &,
and |M| = 2k — 1.3 Define M(k) = {S C M | |S| = k} and write u(k) = |[M(k)].

By Dummy and budget balance,

i ©,(N\K)US, I's) =1 for all S € M(k). (5)

i€S

2If N were fixed, Weak Symmetry would be vacuous because no bijection from N to N renaming
exactly one member of NV leaves N unchanged. In this case, Additivity, Dummy, and Weak Symmetry
would not yield the Shapley value, as the method defined for the fixed population N = {1,2,3} in
the example in comment 2, Section 4, illustrates.

3Observe that this construction is possible for each N because the set of potential agents, N, is
infinite. In fact, the claim in Step 4 would be false if the set of potential agents were finite.
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Define M(k —1) = {5 C M | |S'| = k — 1}. Since S’ € M(k — 1) if and only if
M\S" € M(k), we have |IM(k — 1)| = |[M(k)| = (k). For any 5" € M(k — 1), Weak
Symmetry ensures that there exists a number y(.S”) such that

©;(N\K)U S Ui, Tg;) = y(S") for all i € M\S".
We may therefore rewrite (5) as follows.

i y(S\i) =1 for all S € M(k). (6)
ics
This is a system of (k) linear equations in the p(k) variables y(S’), S" € M(k —1).
Clearly, y(S") = 1/k for all S” is a solution. If it is the only solution, then for all i € K,
choosing S" = K\i yields ¢;(N, T'x) = ¢;(N\K) U (K\i) Ui), I'ixviyui) = y(K\i) =
1/k, and we are done.
To prove that (6) has a unique solution, it suffices to show that the (k) equations
are linearly independent. Rewrite the system as

u® -y =1forall S € M(k),

where y = (y(5")) € RME=D and 45 € RME-D is defined by v¥(S") = 1if S’ C S, and
0 for all other S’ € M(k—1). We claim that {u® | S € M(k)} is a basis of RM*—D Tt
is enough to show that any vector in the canonical basis {5 | S’ € M(k—1)} (where
¢S (T) = 1if T = S and 0 otherwise) is a linear combination of the vectors u®. Fix
S"e M(k—1).Foreachr =0,1,...,k—1, define M,.(k) ={S € M(k) | |SNS'| =r}.
One checks that —

6So:"Pl(—l) T Hk-r—-1)! P S

r=0 k..(r+1) SEM. ()

Y

proving our claim. We have shown (4).
Because the unanimity games (N,['x) form a basis of P(0), Additivity implies
that (N, T) = *"(N,T) for all (N,T') € P(0).

Step 5: ¢ is the Aumann-Shapley method.

We begin with the observation that since ¢ satisfies Weak Symmetry, its flow
representation f is weakly symmetric: for any (N,z) € D, i € N, and any bijection
7 : N — N such that 7(j) = j for all j € N\,

fray(mN,mx,m2) = f;(N,x,2) for all z € [0, z[. (7)

For a proof, fix N, z, i, and 7 as required, and z € [0, z[. Consider a cost function
C such that 0;C(7) equals 1 if 2/ = z and 0 otherwise. By (3) and Weak Symmetry,
filN,z,2) = 0;(N,2,C) = ¢, y(tN, 72, 7C) = fruy(mN, 72, 72), as claimed.
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The rest of the proof shows that f = f49". For any k = 0,1,2, ..., let D(k) =
{(N,z) e D||{i € N |x; > 1} < k}. This is the set of demand profiles where no
more than k agents demand several units. By Step 4, f(N,z) = fA5%(N,x) for all
(N,z) € D(0). We now fix k£ > 0, make the induction hypothesis

f(M,z) = fA5"(M, x) for all (M, z) € D(k), (8)
and prove that
f(N,z) = fA"(N,x) for all (N, z) € D(k+1). (9)
(a) First we show that
fi(N,z) = "N, z) for all (N,z) € D(k+ 1) and i € N such that ; > 1. (10)

Fix (N,z) € D(k + 1). By the induction hypothesis (8), we may assume that
(N,z) € D(k + 1)\D(k) : exactly k + 1 agents demand several units. Consider an
arbitrary agent i € N such that z; > 1 and an arbitrary C' € C(N). Let I € N be a
set of cardinality |I| = gp disjoint from N\i, and containing ¢. Let N’ = (N\i) U I.
Define C'(z) = C(zn\i, jeg20) for all z € N and define 2/ € NV by 2/, = 1 for
all #/ € I and z; = z; for all j € N\i. Apply successively No Merging or Splitting,
the induction hypothesis (8), and the definition of the Aumann-Shapley method to
obtain

F)
@i(Naxa C) = Spio(Nl>x,70,)
1=
= AW, 0
el

= "N, z,0).

Since this holds for any cost function C' € C(N), it follows that f;(N,z) = fA5"(N, z),
as desired.
(b) Next we show that

f(N,z,0) = fA5"(N, 2,0) for all (N,z) € D(k + 1). (11)

Again, let (N, z) € D(k+1) and assume without loss that (N, z) € D(k+1)\D(k).
Suppose furthermore that x; > 0 for all « € N. This assumption is for notational
convenience: if it is not met, the argument below carries over provided that N is
replaced with N(z), the set of positive demanders.

Let K = {ie N|2z; =1} and k = |K|. If & = 1, our claim follows directly
from (10) and budget balance. Assume now k > 2. Choose M and define M(k)
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and M(k — 1) as in Step 4. For all § € M(k) define 2(9 € RW\KIUS 1y 55 — 4.
for i € N\K and xz(-s) = 1 for i € S. Thus, in particular, 2(¥) = z. By (10), flow
conservation, and the definition of the Aumann-Shapley flow representation f4" in
Step 2,

= P K
FVE)US, 4@, 0)= 1= © S (\K)US, 2, 0) = 1)
ieS ieEN\K P z(N)
for all S € M(k), where we use the notation z(T) = ,_; ;. Thanks to the weak
symmetry of f (see (7)), we can rewrite this system

P L z(K)
y(S\i) =
" )
for all S € M(k), where y(S') = f;(N\K)U (S Ui), 2(°D_0) for all $' € M(k—1)
and all i € M\S'. The same argument as in Step 4 shows that the equations in this

system are linearly independent, so that the solution y(S’) = %ig; = ﬁ for all S
is unique. Therefore
1
(N —uy(K) = —— — fASh( )y

for all i € K, which together with (10) proves (11).

(c) We prove (9). Let (N,z) € D(k + 1)\D(k) and assume withet loss that
x; >0foralli € N.Forl =0,1,...,2(N) =1, let Z(I) = {z € [0,2]| ,cyz = I}
By (11), f(N,x,2) = fA"(N, z, 2) for all z € Z(0). Proceeding by induction on I, fix
{ > 0 and assume that

f(N,z,2) = fA"(N,z,2) for all 2 € Z(1). (12)

We now fix z € Z(I + 1) and show that f(N,z,z) = fA"(N,z,2). Set K =
{i€ N|z;=1and z; =0}, k = |K|. By the flow conservation constraints, (12) and
(10),

P . P
filN,z,2) = filN,z,z —¢') — fi(N,z, 2)
1eK 1€N4 (2) 1EN\K
P , P
= fiASh<N7x7z_€Z)_ fiASh(Naxwz)’
1EN+(2) 1EN\K

Because [ is weakly symmetric, mimicking the argument in (b) gives

1 P P
fi(N,(L',Z) =7 szSh(Naxaz_el> - szSh(Nax7Z>
k 1EN+(2) 1EN\K
for all i € K. By definition of 45", this means that f;(N,z,2) = fA9*(N,z,2) for
all i € K and therefore, recalling (10), f(N,z,2) = fA9(N, z, 2), as desired. ¥
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