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Résumé 

La fertilisation chez les plantes dépend de la livraison des cellules 

spermatiques contenues dans le pollen à l’ovule. Au contact du stigmate, le grain de 

pollen s’hydrate et forme une protubérance, le tube pollinique, chargé de livrer les 

noyaux spermatiques à l’ovule. Le tube pollinique est une cellule à croissance rapide, 

anisotrope et non autotrophe; ainsi tout au long de  sa croissance à travers l’apoplaste 

du tissu pistillaire, le tube pollinique puise ses sources de carbohydrates et de 

minéraux du pistil. Ces éléments servent à la synthèse des constituants de la paroi qui 

seront acheminés par des vésicules de sécrétion jusqu’à l’apex du tube. Ce dernier 

doit aussi résister à des pressions mécaniques pour maintenir sa forme cylindrique et 

doit répondre à différents signaux directionnels pour pouvoir atteindre l’ovule. Mon 

projet de doctorat était de comprendre le rôle du cytosquelette dans la croissance 

anisotrope du tube pollinique et d’identifier les éléments responsables de sa 

croissance et de son guidage. Le cytosquelette du tube pollinique est composé des 

microfilaments d’actine et des microtubules. Pour assurer une bonne croissance des 

tubes polliniques in vitro, les carbohydrates et les éléments de croissance doivent être 

ajoutés au milieu à des concentrations bien spécifiques. J’ai donc optimisé les 

conditions de croissance du pollen d’Arabidopsis thaliana et de Camellia japonica 

qui ont été utilisés avec le pollen de Lilium longiflorum comme modèles pour mes 

expériences. J’ai développé une méthode rapide et efficace de fixation et de 

marquage du tube pollinique basée sur la technologie des microondes. J’ai aussi 

utilisé des outils pharmacologiques, mécaniques et moléculaires couplés à différentes 

techniques de microscopie pour comprendre le rôle du cytosquelette d’actine lors de 

la croissance et le tropisme du tube pollinique. J’ai trouvé que le cytosquelette 

d’actine et plus précisément l’anneau d’actine localisé dans la partie sub-apicale du 

tube est fortement impliqué dans la croissance et le maintien de l’architecture du tube 

à travers le contrôle de la livraison des vésicules de sécrétion. J’ai construit une 

chambre galvanotropique qui peut être montée sur un microscope inversé et qui sert à 
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envoyer des signaux tropistiques bien précis à des tubes polliniques en croissance. 

J’ai trouvé que les filaments d’actine sont impliqués dans la capacité du tube 

pollinique à changer de direction. Ce comportement tropistique dépend de la 

concentration du calcium dans le milieu de croissance et du flux de calcium à travers 

des canaux calciques. Le gradient de calcium établi dans le tube pollinique affecte 

l’activité de certaines protéines qui se lient à l’actine et dont le rôle est la 

réorganisation des filaments d’actine. Parmi ces protéines, il y a celles de 

dépolymérisation de l’actine (ADF) dont deux spécifiquement exprimées dans le 

gamétophyte mâle d’Arabidopsis (ADF7 et ADF10).  Par marquage avec des 

proteins fluorescents,  j’ai trouvé que l’ADF7 et l’ADF10 ont des expressions 

différentielles pendant la microsporogenèse et la germination et croissance du tube 

pollinique et qu’elles partagent entre elles des rôles importants durant ces différents 

stades. 

Mots-clés : Actine, Arabidopsis thaliana, ADF, calcium, Camellia japonica. 

cytosquelette, Lilium longiflorum, pollen, tropisme, tube pollinique. 
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Abstract 

Fertilization in plants depends on the delivery of the sperm cells in the pollen 

grain through the pollen tube to the ovule. The pollen tube is a highly anisotropic, 

fast growing cellular protuberance. Because the pollen tube is non autotrophic, it 

requires a steady supply of carbohydrates and minerals supplied by the pistil to 

sustain its growth. These elements serve for the synthesis of cell wall material, 

delivered to the site of cell wall assembly in secretory vesicles that are transported 

along the actin cytoskeleton and deposited at the growing apex of the tube. The tube 

has to resist external deformation forces in order to maintain its cylindrical shape and 

to respond to various directional signals in order to reach its target. My objectives 

were to identify the role of the cytoskeleton in the anisotropic growth of the pollen 

tube and to determine how the tube responds to directional cues. The cytoskeleton in 

the pollen tube consists of microfilaments and microtubules, both forming long 

filamentous elements. For in vitro growing pollen tubes, carbohydrates and growth 

minerals have to be added to the growth medium in specific amounts order to sustain 

pollen tube growth. I optimized the growth conditions of Arabidopsis thaliana and 

Camellia japonica pollen tubes which, in addition to pollen from Lilium longiflorum, 

were used as model species for my experiments. I developed a microwave based, fast 

and efficient fixation and labelling protocol for pollen tubes. I used pharmacological, 

mechanical, molecular and microscopical tools to study the role of the cytoskeleton 

in pollen tube growth and tropism. I found that the actin cytoskeleton, and more 

specifically the subapical actin fringe, plays an important role in the regulation of 

pollen tube growth and architecture through the controlled delivery of secretory 

vesicles to the growing apex. I constructed a galvanotropic chamber that can be 

mounted on an inverted microscope to induce controlled tropic triggers. I found that 

the actin cytoskeleton is also involved in the ability of the pollen tube to change its 

direction. This tropic behaviour was shown to be dependent on the concentration of 

calcium ions in the growth medium and calcium influx through calcium channels. 
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The cytosolic calcium gradient in the pollen tube regulates the activity of various 

actin binding proteins that are responsible for remodelling the actin cytoskeleton. 

Among these proteins are two Arabidopsis gametophyte-specific actin 

depolymerizing factors (ADFs) that I tagged with two intrinsically fluorescent 

proteins. I found that ADF7 and ADF10 are differentially expressed during 

microsporogenesis and pollen tube germination and growth and that they likely 

divide important functions between them. 

Keywords: Actin, actin depolymerizing factor, Arabidopsis thaliana, calcium, 

Camellia japonica, cytoskeleton, Lilium longiflorum, pollen, pollen tube, tropism. 
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...You have been told also that life is darkness, and in your weariness you echo what was 

said by the weary. 

And I say that life is indeed darkness save when there is urge, 

And all urge is blind save when there is knowledge, 

And all knowledge is vain save when there is work, 

And all work is empty save when there is love; 

And when you work with love you bind yourself to yourself, and to one another, and to 

God. 

...Work is love made visible. 

And if you cannot work with love but only with distaste, it is better that you should leave 

your work and sit at the gate of the temple and take alms of those who work with joy. 

For if you bake bread with indifference, you bake a bitter bread that feeds but half 

man's hunger. 

And if you grudge the crushing of the grapes, your grudge distils a poison in the wine. 

And if you sing though as angels, and love not the singing, you muffle man's ears to the 

voices of the day and the voices of the night. 

The Prophet 

Gibran Kahlil Gibran 
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1 Introduction 

1.1 Pollen in history 

Pollen, the microscopic dust produced by flowers and carried by wind and 

bees in the spring, is nothing else but the carrier of the plant male gametes. The role 

of the pollen is to transfer the male gametes to their female counterparts for the 

fertilization that will produce new plant generations. The importance of pollen has 

been known for long time. In his travels through Babylonia, Herodotus (ca. 484- ca. 

425 BC) describes how the Babylonians treated their date palm trees in order to bear 

fruits. He writes that the contact between the male and female fruits will allow the 

"insect" living in the male fruit to enter the female fruit in order for the latter to 

mature (Lacarrière, 1981). Even though he confused the pollination type of figs that 

are native to Greece and require an insect for pollination and fruit set with that of 

date palms that just require pollen transfer by wind from the male to the female 

flower, Herodotus provides information concerning the early knowledge about pollen 

and pollination. Clearly the concept has been known for several centuries before 

Jesus Christ. In fact, several stone reliefs dating from the ninth to the seventh century 

BC are present in the palace of Ashurnasirpal II (ninth century BC) in Nineveh on 

the eastern side of the Tigris River that display the manual pollination performed by 

shaking the male flowers of date palm trees (Porter, 1993). 

However, because of their small size, it was not until the seventeenth century 

and the development of the microscope that pollen grains could be morphologically 

described. The Englishman Nehemiah Grew and the Italian Marcello Malpighi were 

the pioneers in this field and they left morphological descriptions of several pollen 

species. Giovanni Batista Amici, an Italian astronomer, botanist and microscopist, is 

known to be the first to describe pollen germination on a stigma of Portulaca in 

1822, although Robert Brown (Brown, 1833) claims that Ferdinand Lucas Bauer 

describes pollen tube germination and entry into the style before Amici. The 
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"Brownian motion" was first observed and described by Brown himself in 1828 

when he talked about the inherent movement of granules in the pollen of Clarkia. 

The function of the pollen tube in the reproduction process remained a 

mystery until the mid of the nineteenth century when Jacob Matthias Schleiden 

posited that the pollen tube carrying the embryonal globule enters the embryo sac 

where it forms the embryo. However, Wilhelm Hofmeister demonstrated in 1849 that 

the ovum present inside the embryo sac forms the embryo thus overturning the 

theory of Schleiden (Hofmeister, 1962) and opening the new era of recognizing the 

specific functions of the male and female gametophytes in plants. 

1.2 Importance of pollen 

The flowers with their wonderful beauty and adorable smell have one reason 

for being so majestic: ensuring the efficient transfer of the pollen grain between 

individuals of the same species. Flowers evolved and developed these traits in order 

to attract pollinators like birds, bats, insects and other arthropods. These pollinators 

ensure the conservation of the species through the transfer of the male genetic 

material contained in the pollen grain to the female counterpart allowing fertilization 

and seed and fruit set. The importance of pollen in agronomy and horticulture as the 

carrier of the generative nuclei is therefore obvious. However, pollen has also gained 

an important role in other scientific fields because the biochemical composition and 

architectural characteristics of the pollen grain exine (the outer cell wall) makes this 

structure very resistant to chemical, biological and mechanical deterioration (Scott, 

1994). This property is exploited in archaeological and geological research due to the 

presence of fossil pollen. Because of its extraordinary resistance, pollen is often the 

only remnant of past vegetation. Because of species-specific geometrical variations 

in its outer structure, a feature that is maintained during petrification, plant species 

can be identified purely based on the morphology of its pollen (Figure 1.1). 

Therefore, fossil pollen provides precious information about plant survival and 
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colonization (Petit et al., 2002; Tollefsrud et al., 2008) and past climatic changes 

(Webb and Bryson, 1972). It allows retracing species evolution and origin including 

extant species (Muller, 1981; Gaillard et al., 2008; Schaefer et al., 2009) and it 

provides plenty of other biologically relevant information including plant-pollinator 

coevolution (Hu et al., 2008). Freshly shed pollen on the other hand is a very 

convenient tool for forensic investigations since it readily and unnoticeably attaches 

to clothes and objects and reveals the location at which these objects must have been, 

based on the species composition. This scientific field is known as forensic 

palynology (Bryant and Mildenhall, 1998). Due to its abundance in honey, pollen has 

been used to verify the quality and authenticity of commercial honey, a science 

known as melissopalynology. The health issues caused by some pollen species have 

made pollen also an interesting topic for medical research (Ciprandi et al., 1995; 

Ciprandi et al., 1997; Jutel et al., 2005). 

 

Figure 1.1: Scanning electron micrographs of (A) Arabidopsis, (B) Camellia, (C) 
Taraxacum, (D) hibiscus, (E) poppy, (F) pear, (G) apple and (H) lily pollen grains. 
Bars = 10 µm in A, C,  E, F, G, H and 50 µm in B, D. 

Pollen comes in different shapes and sizes (Figure 1.1). The smallest pollen 

grains belong to the family of Boraginaceae and are about 2 µm in diameter whereas 

the biggest are those of Cymbopetalum odoratissimum (Annonaceae) which can 
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measure up to 350 µm (Walker, 1971). In some marine species the pollen is coiled in 

the anther and once released it can measure up to 5 mm (Ducker et al., 1978). 

 

1.3 Pollination 

The male plant gametophytes form in the anther where a sporocyte undergoes 

meiosis and gives rise to microspores that develop into mature pollen grains (Twell 

et al., 1998; McCormick, 2004). The last steps in pollen maturity are characterized 

by water loss and when the pollen is highly dehydrated when shed. This increases the 

pollen's ability to survive during its travel. Upon pollination, and if favourable 

conditions are available, the pollen hydrates and produces a tube that grows through 

the stylar tissue and reaches the ovary (Figure 1.2). Passing the placenta, the pollen 

tube reaches the ovule through the micropyle and delivers the sperm cells for double 

fertilization to happen (Lord and Russell, 2002). This delivery process of the sperm 

cells through the cellular tunnel formed by the pollen tube is known as siphonogamy, 

contrary to systems in which the motile sperm moves on its own.  
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Figure 1.2: Arabidopsis thaliana pistil scanning electron micrograph with false 
colors and a schematic representation of the pollen tube on the left with a close up 
image of the exposed ovules on the right. 

The attachment of the pollen grain to the stigma, its germination and the 

penetration of the pollen tube through the stigmatic, stylar and ovarian tissues to 

finally reach the embryo sac require recognition and communication between the 

pollen tube and the pistil in order for the former to be well guided along its trajectory 

(Cheung, 1996; Cheung and Wu, 2001; Geitmann and Palanivelu, 2007; Dresselhaus 

and Márton, 2009). Recognition starts when the pollen lands on the stigma. Stigmas 

can be either dry, as in the Brassicaceae, or wet as in the Solanaceae (Dafni and 

Maués, 1998). In the case of dry stigmas, hydration is the critical step. Certain lipid 

compounds play a role in this process (Preuss et al., 1993) and might generate a 

water gradient along which the tube is guided into the stigma (Wolters-Arts et al., 

1998). In the Brassicaceae, the initial hydration is controlled by S-locus specific 

glycoproteins that are implicated in sporophytic self incompatibility (Trick and 

Flavell, 1989; Takayama et al., 2000). In species with wet stigmas, hydration is 
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considered to be a passive process sustained by the readily available stigma exudates 

(Swanson et al., 2004). Once the pollen germinates, the pollen tube grows by 

penetrating the papilla cell walls in dry stigmas or through the intercellular spaces of 

the wet stigmas assisted by cell wall loosening enzymes (Cosgrove et al., 1997; 

Nieuwland et al., 2005). The passage of the pollen tube through the stigma is 

important for the tube to be able to accomplish fertilization since its capacity to target 

a receptive ovule is increased by a process called capacitation (Palanivelu and 

Preuss, 2006). Depending on the species, following invasion of the stigma, pollen 

tubes either grow along a hollow style or have to make their way through the 

intercellular matrix of the transmitting tissue filling a solid style. The intercellular 

matrix is rich in sugars, glycoproteins, amino acids, and other elements that play a 

role in pollen tube growth and guidance through interactions at the pollen tube 

surface or within its cytoplasm after being taken up (Cheung, 1996; Cheung and Wu, 

1999; Lord, 2003; Sanchez et al., 2004; Geitmann and Palanivelu, 2007; Hiscock and 

Allen, 2008). During pollen tube growth through the style, different guidance 

mechanisms are known to act. In the case of lily which is characterized by a hollow 

style, a gradient of chemocyanin, a small pistillar protein, guides pollen tube growth 

(Kim et al., 2003). Recently, a calcium gradient was found to be established in the 

style after pollination (Ge et al., 2009) which might direct pollen tube growth. In the 

case of gametophytic self incompatibility, pollen rejection and therefore death is 

executed in general in the style (poppy being an exception since it does not have a 

style) in an S-RNase based process (McClure and Franklin-Tong, 2006). When the 

pollen tube reaches the bottom-end of the style and enters the ovary, it enters the 

sphere of influence of the female gametophytes located within the ovules. Female 

gametophyte guidance is based on the production of attractant or repellant substances 

that help the tube reach an unfertilized embryo sac and deliver the sperm cells 

(Higashiyama et al., 2003; Tung et al., 2005; Higashiyama and Hamamura, 2008; 

Dresselhaus and Márton, 2009; Qin et al., 2009; Higashiyama, 2010; Márton and 

Dresselhaus, 2010). Our understanding of the communication between male and 
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female gametophytes is poor, but it has been found that the central cell produces 

transcriptional regulators that affect pollen tube guidance in Arabidopsis (Chen et al., 

2007). In maize, the egg apparatus (composed of the egg cell and the two synergids) 

produces an attractant protein (EA1) that passes through the micropyle to attract the 

pollen tube (Márton et al., 2005). The synergids of Torenia fournieri produce a 

protein called LURE that has an important role in pollen tube attraction (Okuda et 

al., 2009). In addition to the proteic signals, the synergids are believed to extrude 

calcium into their extracellular medium thus creating a calcium gradient that will 

attract the pollen tube to the embryo sac (Chaubal and Reger, 1990; Higashiyama et 

al., 2003). Once in the embryo sac, the pollen tube contacts one of the synergids and 

ruptures in a process regulated by calcium (Schiøtt et al., 2004; Higashiyama and 

Hamamura, 2008; Dresselhaus and Márton, 2009). 

During its passage through the pistillar tissue, the pollen tube has to produce 

an invasive force that will allow it to elongate within the transmitting tissue and to 

resist external mechanical compression forces against which it needs to maintain its 

tubular shape. The driving force for this growth process is generated by a 

combination of the turgor pressure and a continuous supply of new cell wall material 

deposited at the growing apex. Elongation only takes place at the tip of the cell, 

contrary to most other plant cells in which growth is characterized as diffuse. Pollen 

tubes share this growth principle with root hairs, fungal hyphae and to a certain 

extent with animal nerve axons. 

Due to its rapid, one-dimensional type of growth, the ease of in vitro culture 

and the panoply of signaling mechanisms involved, the pollen tube is being used as a 

model system by numerous researchers around the globe. Its cellular structures are 

being thoroughly investigated using optical, fluorescence and electron microscopy. 

Its mechanical parameters are being quantified. Knock out mutants and transgenic 

lines are being generated for different target genes involved in all aspects of pollen 

tube growth and finally physical and mathematical models describing pollen tube 
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growth are being applied to help understand and quantify the biological data 

generated. 

 

1.4 Pollen tube growth 

The pollen tube is a cellular protuberance formed by the pollen grain, and is 

characterized by a rapid and unidirectional growth. Pollen tubes grow at very rapid 

rates that can reach up to 2.75 cm/h in the case of Colchicum autumnale which 

represents 9000 times the diameter of the pollen grain each hour (Schleiden, 1849). 

Lilium longiflorum, a species commonly used in pollen studies, has a pollen tube that 

grows at 2 mm/h in vivo (van der Woude and Morré, 1968), while tobacco pollen 

grows at 1.7 mm/h (Sanchez et al., 2004). It should be mentioned that pollen tube 

growth in vitro is much slower than that of pollen growing in the style of the flower. 

For instance, Lilium longiflorum pollen tube growth in vitro is about 0.5 mm/h (data 

from our lab). Since the pollen tube is not autotrophic due to the lack of chloroplasts, 

it requires a continuous supply of carbohydrates to sustain the ongoing assembly of 

cell wall and to maintain the osmotic potential. When pollen tubes are grown in vitro, 

carbohydrates, usually in the form of sucrose, should be added to the medium in 

addition to several important microelements including boron, calcium, magnesium, 

nitrogen and sulfur (Brewbaker and Kwack, 1963). 

Pollen tube growth is sustained by a continuous and efficient supply of new 

cell wall material contained in secretory vesicles and deposited at the growing apex 

through exocytosis (Franklin-Tong, 1999; Bove et al., 2008; Zonia and Munnik, 

2008) (Figure 1.3). Organelle transport in pollen tubes occurs on both actin filaments 

and microtubules (Lovy-Wheeler et al., 2007; Romagnoli et al., 2007). However, 

inhibition of the microtubules using oryzalin does not affect cytoplasmic streaming 

(Cai et al., 2005), whereas interference with actin functioning through cytochalasin 

or latrunculin B rapidly arrests both pollen tube growth and cytoplasmic streaming 
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(Gibbon et al., 1999; Vidali and Hepler, 2001). Actin-myosin driven motion is, 

therefore, the principal mechanism that drives and guides the movement of 

organelles and vesicles. A myosin extracted from lily pollen has been shown to 

belong to class XI myosins (Yokota and Shimmen, 1994). Treatment with 2,3-

butanedione monoxine (BDM) which inhibits myosin ATPases by stabilizing the 

myosin–ADP–Pi complex (Palmieri et al., 2007) revealed a concentration dependent 

effect on germination and elongation of Picea abies pollen tubes with the threshold 

concentration being 10 mM (Anderhag et al., 2000). In Chara corallina and in lily 

pollen tubes, BDM reversibly inhibited the cytoplasmic streaming (Tominaga et al., 

2000; Funaki et al., 2004) indicating that this process is highly dependent on energy 

supply through ATP. 

 

Figure 1.3: Schematic representation of the cytoarchitecture characterising the 
different zones of the pollen tube. Dashed arrows indicate motion patterns of vesicle 
flow. 

The anisotropic and radially symmetric mode of growth (which is shared with 

root hairs, fungal hyphae and neurons), has made the pollen tube a model system to 

study different aspects of cell growth. It has also made pollen tube extremely 

interesting from a mechanical and modeling point of view. Therefore, research on 
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pollen tube extends the studies to interdisciplinary field combining biological with 

physical and mathematical sciences. By modeling pollen tube growth and the 

panoply of biological phenomena occurring inside the cell and validating the models 

by biological data, mathematicians and physicists are improving our knowledge 

about different aspects of cellular growth and development. 

1.5 Pollen tube cytoarchitecture 

Pollen grains are either bicellular (70% of the species) or tricellular 

(Brewbaker, 1967). Pollen of the former type consists of a vegetative cell and a 

generative cell, whereas in the latter the generative cell has already divided into the 

two sperm cells during pollen maturation. In bicellular pollen this division only takes 

place during pollen tube growth. The sperm cells move within the cytoplasm of the 

pollen tube over distances of up to 30 cm from the grain to the ovule. Whereas 

during animal development, cellular migration is a common phenomenon, plant cells 

are in general unable to move away from their location of origin. The sperm cell 

migration through the pollen tube represents, therefore, a quite exceptional situation 

in the plant kingdom. 

The pollen tube cell wall is composed of an inner callose layer and an outer 

pecto-cellulosic layer (Heslop-Harrison et al., 1987; Steer and Steer, 1989). Callose 

and cellulose are load bearing materials (Parre and Geitmann, 2005; Aouar et al., 

2010). Callose is absent at the tip of the pollen tube and is deposited as a secondary 

layer in the maturing part of the tube (Heslop-Harrison et al., 1987; Parre and 

Geitmann, 2005). The abundance of cellulose is very low in the cell wall of the 

pollen tube which is quite atypical for a plant primary cell wall (Schlüpmann et al., 

1994; Aouar et al., 2010). The tip of the pollen tube cell wall is almost exclusively 

composed of pectin (Ferguson et al., 1998; Holdaway-Clarke and Hepler, 2003). 

While both callose and cellulose are produced by plasma membrane-located 

synthases activated in the maturing portion of the tube, the pectic layer is assembled 
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through exocytosis at the very tip. Secretory vesicles transport pectic 

polysaccharides, composed of homogalacturonan that has been methyl-esterified in 

the Golgi, to the growing zone of the pollen tube. This methyl-esterified pectin is a 

soft material (Parre and Geitmann, 2005). After their insertion into the apical cell 

wall pectins are gradually de-esterified by pectin methyl-esterases. The action of 

these enzymes converts the methoxyl groups of the galacturonan into carboxyl 

groups which can be readily cross linked by calcium ions, thus increasing the 

stiffness of the pectins present at the subapical region of the pollen tube. The 

presence of esterified pectins at the tip of the pollen tube creates a spatially confined 

location of lower mechanical stability that yields under the effect of the growth 

driving force, the turgor pressure. As a result, the tube elongates in one direction only 

forming a perfect cylinder (Geitmann and Steer, 2006; Geitmann and Dumais, 2009; 

Fayant et al., 2010). 

The number of vesicles transported to the apical zone exceeds the number 

that is needed to provide the amount of building material necessary to sustain pollen 

tube growth (Bove et al., 2008). At the growth rates observed in vitro, the supply of 

vesicles is, therefore, not the factor limiting the speed of growth (Bove et al., 2008). 

Remarkably, the number of vesicles required to deliver cell wall material is higher 

than that necessary to form the expanding plasma membrane, so excess membrane in 

the apical region of the pollen tube must be removed by endocytosis (Picton and 

Steer, 1983; Derksen et al., 1995; Bove et al., 2008). The vesicles formed by 

endocytosis and the excess secretory vesicles that are recycled back at the tip of the 

pollen tube form what is known as the inverted cone of vesicles (Lancelle and 

Hepler, 1992; Parton et al., 2001; Bove et al., 2008). The apical zone of the pollen 

tube containing the vesicles is also known as the clear zone because little or no other 

larger organelles are located here and in brightfield microscopy this zone appears 

rather smooth compared to the distal region of the cell (Cresti et al., 1977; Heslop-

Harrison and Heslop-Harrison, 1990). The apical cytoplasm of the pollen tube is 

devoid of actin filaments. The vesicular movement in these region is therefore 
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slower, but still measurable, and probably based on diffusion and/or convective 

motion (Kroeger et al., 2009). 

The cytoplasm in the subapex contains a dense mesh of actin filaments (Kost 

et al., 1998; Geitmann and Emons, 2000; Lovy-Wheeler et al., 2005) known as the 

actin fringe. This region is also rich in mitochondria, dictyosomes and endoplasmic 

reticulum. In the shank region of the pollen tube where long cables of actin filaments 

and microtubule are oriented parallel to the axis of gowth (Figure 1.3), a high 

concentration of dictyosomes, endoplasmic reticulum and vacuoles are present in 

addition to the vegetative nucleus and the generative cell (Mascarenhas, 1993; 

Åström et al., 1995; de Graaf et al., 2005; Lovy-Wheeler et al., 2007). The non-

uniform distribution of cytoplasmic components in the pollen tube clearly reflects the 

polar activity of the cell which focuses all growth activity to a single site, the tip. 

A detailed analysis using STICS (spatio-temporal image correlation 

spectroscopy) and FRAP (fluorescence recovery after photobleaching) described the 

spatial patterns by which vesicles reach the apex through the cell cortex, and are 

recycled backwards through the center of the tube (Bove et al., 2008). The high 

temporal resolution microscopic study revealed that an annular region of exocytosis 

spatially coincides exactly with the proximal end of the actin fringe. This suggests an 

important role for the actin fringe in orienting the direction of pollen tube growth by 

way of targeting vesicles to spatially confined regions at the cellular surface. 

1.6 Pollen tube tropism 

For fertilization to happen, the pollen tube has to find its way through the 

stigma, style, and ovary, to reach the micropyle and deliver the sperm cells 

(Geitmann and Palanivelu, 2007). To find its target, the embryo sac, it has to respond 

to external signals, change direction when required, and exhibit tropic behaviour 

(Cheung and Wu, 2001). Genetic and physiological studies have shown that the pistil 

(Cheung et al., 1995; Palanivelu et al., 2003) and the female gametophyte 



13 

 

 

(Higashiyama et al., 2003; Tung et al., 2005; Palanivelu and Preuss, 2006; 

Higashiyama and Hamamura, 2008; Okuda et al., 2009; Márton and Dresselhaus, 

2010) produce directional signals that help the pollen tube reach its target. It is not 

yet clear how the pollen tube perceives these signals and how the intracellular 

signalling pathways eventually lead to a change in growth direction. Molecules such 

as receptor kinases and cell membrane-associated small G proteins, along with 

variations in ion fluxes, are candidates for pollen effectors of the reorientation 

reaction (Hepler et al., 2001). Nitric oxide has been also shown to affect pollen tube 

guidance in lily and Arabidopsis probably by affecting calcium influx to the pollen 

tube (Prado et al., 2004; Prado et al., 2008). 

Although we have an increasingly detailed understanding of the molecular 

players that are involved in determining cellular polarity in the pollen tube, in order 

to understand how the rapidly growing tube changes growth direction in response to 

an external signal it is important to also look at the mechanics determining the 

unidirectional growth behavior. The greatest rate of surface expansion at the tip of 

the tube is ensured by the precisely targeted delivery of soft cell wall material to this 

spot. A shift in the growth direction must thus be achieved through vesicle delivery 

towards a region that is located off the central axis of the tube. The mechanism that 

spatially controls this delivery process should therefore be at the center of attention 

when trying to understand the mechanism of the tropic growth response. 

Vesicle delivery relies on the myosin mediated propulsion of these cellular 

organelles along actin filaments. Both the myosin-regulated motion as well as the 

dynamics of the guiding actin-array are therefore potential regulators of the spatial 

targeting. Plant myosins are activated by calmodulin binding and inactivated by 

Ca2+-induced calmodulin dissociation (Vidali and Hepler, 2001). This mechanism 

might be crucial in the final step of vesicle delivery - the detachment of the vesicle 

from the actin cytoskeleton in the vicinity of the apical plasma membrane. Given that 

the cytoplasmic calcium concentration is elevated at the region of exocytosis, an 
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important regulatory function of this ion might be to allow vesicles to be released 

from the actin rails into the actin filament free apical region or directly onto the 

plasma membrane. 

To decipher the causal relationships between actin dynamics, vesicle motion 

and directional growth control, it is useful to be able to trigger changes in growth 

direction in pollen tubes growing in vitro. In vitro experiments achieving a 

redirection of growth have elegantly been done by exposing the tubes to chemical 

signals (Higashiyama and Hamamura, 2008). However, to successfully achieve 

redirection using a precisely timed external signal, in vitro growing pollen tubes were 

exposed to electrical fields. The reorientation was postulated to be mediated by ion 

fluxes in the medium (Malhó et al., 1992). The amplitude of the observed response 

depends on the calcium concentration in the medium (Nakamura et al., 1991). The 

importance of ion fluxes in determining growth direction was further emphasized by 

the finding that the release of injected caged calcium on one side of the pollen tube 

cytoplasm caused a redirection of the pollen tube growth towards the triggered 

location (Malhó and Trewavas, 1996). While ion fluxes are undisputedly crucial for 

pollen tube growth and orientation, it is important to note that by themselves, ions 

cannot act directly on the direction of cellular growth. Their effect is mediated by 

structural features such as the cytoskeleton and the synthesis and delivery of new cell 

wall material. 

 

1.7 The cytoskeleton in the pollen tube  

While many studies have been done on the animal cell cytoskeleton and its 

role in cellular extension, motility, and architecture (Pollard and Borisy, 2003; 

Pollard and Cooper, 2009), little is known about the mechanical role of the 

cytoskeletal elements in the control of plant cellular architecture. Focus has hitherto 

been on the implication of microtubules in anisotropic cell wall expansion (Baskin, 
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2005; Bisgrove, 2008). The reason for this scarcity of information on cytoskeletal 

mechanics in plants is that the relationship between turgor pressure and cell wall has 

been considered to be the dominant player determining plant cell growth in general 

and pollen tube tip growth in particular (Geitmann and Steer, 2006). Therefore, while 

the role of the cytoskeleton in vesicle and organelle transport within the pollen tube 

cytoplasm is well defined (Lovy-Wheeler et al., 2007), its implication in the 

mechanics of the tip growth process is poorly understood. 

The pollen tube cytoskeleton has two main components, the microtubules 

composed of tubulin dimers and the microfilaments composed of actin monomers 

(Geitmann and Emons, 2000; Wasteneys and Galway, 2003). Microtubules do not 

seem to be directly involved in pollen tube tip growth, since inhibition of their 

polymerization does not prevent pollen tube elongation (Gossot and Geitmann, 

2007). However, a pollen specific α-tubulin has been shown to be responsible for 

pollen tube growth through the oriented deposition of cell wall material at the apex of 

gymnosperm and Arabidopsis pollen tubes (Yu et al., 2009). Actin on the other hand 

is crucial as revealed by inhibitors that interfere with actin polymerization and 

consequently pollen tube growth (Vidali and Hepler, 2001). It has been shown that 

microfilaments play a role in the capacity of pollen tubes to invade a mechanical 

obstacle and to elongate in stiffened media (Gossot and Geitmann, 2007). Actin 

filaments in the pollen tube are oriented longitudinally, parallel to the growth axis 

and they form a fringe of fine filaments in the subapex of the tube (Geitmann and 

Emons, 2000; Lovy-Wheeler et al., 2005) (Figure 1.2). This fringe coincides with a 

cytoplasmic alkaline region (Feijó et al., 1999) and was suggested to be formed and 

maintained by the combination of the severing activity of ADF (actin depolymerizing 

factor) under high pH conditions and the bundling activity of villin (Cardenas et al., 

2008). The actin filaments are polarized in the pollen tube, with the barbed ends 

pointing towards the apex at the periphery of the cell and away from the apex at the 

center (Lenartowska and Michalska, 2008). Since myosins move from the pointed 

(minus) to the barbed (plus) ends on actin, this bidirectional filament polarity 
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imposes vesicle and organelle movement to be oriented forward in the periphery of 

the tube and backward in its center (Figure 1.3).  

Many proteins are able to bind to the cytoskeletal arrays and either modify 

their length or stability or form links with other proteins that are responsible for 

organelle movement or membrane attachment. The majority of these proteins are 

tissue specific and/or cargo specific. These include the actin binding proteins (ABPs) 

and the microtubule associated proteins (MAPs). These proteins interact with 

regulatory kinases, phosphatases, and phosphoinositides. They also bind and release 

nucleoside phosphates, Ca2+, and other ions (Wasteneys and Galway, 2003). ABPs 

are responsible for the organization of the cytoskeleton in response to various 

internal and external signals. These signal-induced cytoskeletal changes may 

subsequently lead to altered cell functioning, behavior or structure. Among the best 

characterized ABPs in plants are profilins (Vidali and Hepler, 1997; Gibbon, 2001; 

Vidali and Hepler, 2001). Profilins are uniformly distributed in the cytoplasm of the 

pollen tube and they are responsible for sequestering most of the G-actin. They 

therefore have a buffering function that reduces the formation of spontaneous 

filaments. The actin-sequestering effect of profilins is optimal at elevated calcium 

concentrations since the ability of profilin-Ca2+ATP-actin to attach to actin filaments 

ends is reduced (Kovar et al., 2000). Since the calcium concentration at the pollen 

tube tip is high, profilin action might be responsible for the absence of prominent 

actin bundles in this region.  

Arp2/3 is a profilin binding complex expressed in pollen tubes. It has an actin 

polymerization and branching activity. However, this mechanism has not been yet 

observed in pollen tubes (Cheung and Wu, 2008). Another group of proteins that 

interact with profilins in a yeast two-hybrid system are the formins (Banno and Chua 

2000). This latter group is believed to be the main controller of actin polymerization 

in plant cells (Wasteneys and Yang, 2004; Michelot et al., 2005). Actin 

depolymerizing factor (ADF) is a pH sensitive ABP (Carlier et al., 1997).  It uses 
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ATP hydrolysis in actin assembly to enhance filament dynamics (Gungabissoon et 

al., 1998) by facilitating the loss of subunits from the pointed ends. Therefore, it 

creates a high rate of treadmilling (Bamburg, 1999) which is important for pollen 

tube growth (Chen et al., 2002; Chen et al., 2003). When moderately expressed in 

tobacco pollen tubes, GFP-labelled NtADF1 targets the actin fringe and the long 

cables in the shank of the tubes, while its overexpression causes a reduction in the 

number of actin cables and an inhibition of pollen tube growth (Chen et al., 2002). 

The fact that its activity is enhanced by alkaline conditions may explain the high 

actin filament dynamics in the actin fringe zone. ADF phosphorylation (and therefore 

inactivation) is carried out on a conserved serine residue by a Ca2+-dependent protein 

kinase, whose activity is probably dependent on the (plant Rho GTPase) ROP 

GTPase signaling system (Chen et al., 2003; Wasteneys and Galway, 2003).  Villin 

is a factor responsible for bundling actin filaments in pollen tubes, and may also play 

a key role in determining the direction of cytoplasmic streaming (Tominaga et al., 

2000). It is a Ca2+ dependant ABP and may participate in F-actin fragmentation and 

nucleation in the apex of the pollen tube (Vidali et al., 1999). 

Members of the family of Rho-related GTPases (ROP GTPases) play an 

important role in polarized tip growth due to their impact on actin dynamics (Smith 

and Oppenheimer, 2005). ABPs are the downstream targets of the ROP GTPase. 

Inhibition of ROP function by injecting antibodies in the cytoplasm results in a 

growth arrest of the pollen tube and a downregulation of the Ca2+ gradient (Lin and 

Yang, 1997) while the overexpression of these GTPases causes excess F-actin 

polymerization. This demonstrates the importance of these proteins in actin filament 

organization and F-actin assembly as well as in Ca2+ influx. In fact, F-actin assembly 

and Ca2+ influx have been shown to be separate functions of ROP that are mediated 

by different RIC (ROP-interacting CRIB domain) effector proteins (Gu et al., 2005) 

and whose overexpression in tobacco pollen tubes causes a swelling and therefore a 

loss of polarity at the pollen tube apex (Klahre and Kost, 2006). By mediating the 

external signal to the actin cytoskeleton through ADF, ROP GTPases are believed to 
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contribute to the fine regulation of actin dynamics allowing growth and reorientation 

of the pollen tube (Chen et al., 2003).  

While the role of the actin cytoskeleton in vesicle and organelle transport 

within the pollen tube cytoplasm is well defined (Lovy-Wheeler et al., 2007; Bove et 

al., 2008), its implication in the mechanics of the tip growth process is poorly 

understood. The inhibition of pollen tube elongation using agents that block actin 

polymerization such as profilin, DNAse I, cytochalasin D and latrunculin B is 

achieved at concentrations lower than those needed to block cytoplasmic streaming 

(Geitmann and Emons, 2000; Vidali and Hepler, 2001). This shows that actin 

polymerization is intimately connected with the mechanical process of pollen tube 

elongation. This is further corroborated by the finding that microfilaments play a role 

in the capacity of pollen tubes to invade a mechanical obstacle and to elongate in 

stiffened media (Gossot and Geitmann, 2007). 

1.8 Calcium plays key roles during different aspects of 

pollen tube growth 

The configuration of the actin cytoskeleton, the dynamics of its remodeling 

through polymerization, cross-linking, and bundling are controlled by the 

cytoplasmic Ca2+ and H+ concentrations through activation and inactivation of actin 

binding proteins. Ca2+ also plays a role in exocytosis and vesicle-membrane fusion at 

the apex of the pollen tube (Battey et al., 1999; Camacho and Malhó, 2003; Coelho 

and Malhó, 2006). A supply of Ca2+ in the growth medium is, therefore, 

indispensable for pollen germination and pollen tube growth (Brewbaker and Kwack, 

1963; Picton and Steer, 1983; Pierson et al., 1994; Li et al., 1999; Chebli and 

Geitmann, 2007). For normal pollen tube growth to happen, the in vitro growth 

medium needs to be supplemented with a calcium concentration that is situated 

within a certain range (Brewbaker and Kwack, 1963; Picton and Steer, 1983; 

Holdaway-Clarke and Hepler, 2003). This optimal concentration varies between 
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species (Steer and Steer, 1989). Reflecting the polarized distribution of growth 

activity and actin configuration in this cell, the cytoplasmic Ca2+ concentration 

displays a steep, tip high gradient (Feijó et al., 1995; Pierson et al., 1996) (Figure 

1.4), disruption of which causes the arrest of pollen tube growth (Pierson et al., 

1994). The connection between the actin cytoskeleton and calcium is a two-way 

control mechanism, however, since actin microfilaments were shown to play an 

important role in the regulation of plasma membrane located Ca2+ channels and thus 

the Ca2+ influx into the cell (Wang et al., 2004; Cardenas et al., 2008). The direct 

link between Ca2+ influx and resulting cytosolic gradient on the one hand and pollen 

tube growth rate on the other is demonstrated by the fact that both are temporally and 

spatially correlated. Oscillatory changes in the growth rate are accompanied by 

temporal changes in Ca2+ flux and steepness of the gradient (Messerli and Robinson, 

1997; Messerli et al., 2000). Artificial displacement of the cytoplasmic calcium 

gradient to one side of the growing pollen tube apex induces the tube to change 

direction (Malhó and Trewavas, 1996). Whether this is due to a remodeling of the 

apical actin cytoskeleton or to a direct effect on the location of exocytosis is 

unknown. A calcium sensitive vibrating electrode has been used to reveal calcium 

influx into the pollen tube (Kühtreiber and Jaffe, 1990; Pierson et al., 1994). Calcium 

channels have been proposed to be present in both pollen tubes (Holdaway-Clarke 

and Hepler, 2003; Qu et al., 2007) and pollen grains (Dutta and Robinson, 2004; 

Shang et al., 2005). In the tube they are active at the apex (Pierson et al., 1994; 

Pierson et al., 1996) thus being responsible for calcium influx into the cell. 
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Figure 1.4: Schematic representation of calcium distribution in lily pollen tube 
adapted from (Pierson et al., 1996). A tip to base calcium gradient is established after 
calcium influx (arrows) with the highest concentration being at the tip of the pollen 
tube. These concentrations may vary between species. 

The tip-focused gradient of cytosolic calcium and the polymerization of tip-

localized F-actin are two processes controlling vesicle delivery. They might also be 

involved in pollen tube polarity (Fu et al., 2001; Higashiyama et al., 2003). External 

calcium gradients are believed to affect pollen tube tropism in vivo because of their 

presence along the transmitting tissue of the flower (Ge et al., 2009). A better 

understanding of the connection between the calcium gradient in the cell and the 

pollen tube reorientation through the actin cytoskeleton reorganization will allow us 

to explain how the pollen tube is able to perceive the directional signals and change 

its direction of growth. 

1.9 Objectives 

The main focus of my PhD project was to elucidate the function of the 

cytoskeleton in the highly active anisotropic growth process of pollen tubes. The role 

of actin filaments in the control of pollen tube shape, growth, and direction were 

studied. Pollen from three plant species served as model systems for my project: 

Arabidopsis thaliana (Arabidopsis), Camellia japonica (Camellia) and Lilium 

longiflorum (lily). The reason for using Arabidopsis is the ease of plant cultivation, 

the production of flowers in a short period of time (4 weeks under appropriate 

conditions), and most importantly, the ready access to sequence data and the ease of 

transformation and production of transgenic lines. Pollen tubes from Camellia on the 
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other hand, are much larger than those of Arabidopsis, and their growth behavior 

under in vitro conditions is more reproducible, faster and straighter. Therefore, 

mechanical experiments were based on cells from this species. Lily has a well 

studied and characterized actin cytoskeleton and therefore served as my reference for 

any comparative study at this level. In addition to this, lily pollen can be relatively 

easily transformed by particle bombardment. 

The pollen tube is an ideal experimental system to study the role of the actin 

cytoskeleton in plant cell growth in general and in the targeting of secretory vesicles 

to an expanding cellular surface in particular. My project focuses on the following 

objectives 

1- Characterization of the role of the actin cytoskeleton in 

a. the elongation by tip growth, 

b. the maintenance of the tubular shape, and 

c. the tropic behaviour of the growing tube. 

2- Determination of the role of calcium ions in the regulation of these 

processes. 

3- Identification of pollen-specific members of the ADF-family, key actin 

binding proteins during gametogenesis, germination and elongation of the 

pollen tube. 

Necessary prerequisites for these objectives were the following three items that led to 

a series of preliminary studies: 

A- Optimization of in vitro growth conditions for Arabidopsis and Camellia 

pollen. 

B- Optimization of labeling conditions for visualization of the actin 

cytoskeleton in pollen tubes. 

C-  Optimization of microwave assisted protocols for faster and more 

efficient chemical fixation and labeling. 



22 

 

 

 
 

2 Optimization of conditions for germination of cold 

stored Arabidopsis thaliana pollen 

One of the rare weak points of the model plant Arabidopsis is the technical 

problem associated with the germination of its male gametophyte and the generation 

of the pollen tube in vitro. It is generally agreed upon that existing protocols are 

highly unsatisfactory as they do not allow the generation of reproducible percentages 

of germination, even within a single batch of pollen. Together with my colleague 

Youssef Chebli we undertook a systematic study to optimize the growth conditions 

for different experimental approaches. We optimized the germination conditions for 

Arabidopsis pollen that had been freeze stored. The most important differences with 

previously published Arabidopsis pollen growth media (Boavida and McCormick, 

2007) are the fact that we used cold-stored pollen (vs. freshly harvested) that was 

bulk collected (vs. collection from selected, recently opened flowers), and that we 

determined ideal long-term storage conditions and times. Our optimized protocol 

differed significantly from that by Boavida and McCormick (Boavida and 

McCormick, 2007). We also describe how the conditions can be optimized for 

different experimental setups. In our manuscript we suggest how to optimally use 

these methods for different practical experiments ranging from morphological 

observations of pollen tubes in optical and electron microscopy to their bulk use for 

molecular and biochemical analyses or for experimental setups for which a specific 

medium stiffness is critical. Contrary to the Boavida and McCormick protocol, our 

optimized medium allows germination of Arabidopsis pollen at a temperature of 4°C, 

a very important requirement for observation of pollen germination in an 

environmental scanning electron microscope. 
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Our manuscript with the title "Optimization of conditions for germination of 

cold stored Arabidopsis thaliana pollen" was published in 2009 in Plant Cell Reports 

volume 28, number 3, pages 347 - 357. 

Optimization of Conditions for Germination of Cold Stored Arabidopsis thaliana 

Pollen 

 
Firas Bou Daher*, Youssef Chebli*, Anja Geitmann 
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Abstract 
One of the rare weak points of the model plant Arabidopsis is the technical problem 

associated with the germination of its male gametophyte and the generation of the 

pollen tube in vitro. Arabidopsis pollen being tricellular has a notoriously low in 

vitro germination compared to species with bicellular pollen. This drawback strongly 

affects the reproducibility of experiments based on this cellular system. Together 

with the fact that pollen collection from this species is tedious, these are obstacles for 

the standard use of Arabidopsis pollen for experiments that require high numbers of 

pollen tubes and for which the percentage of germination under control conditions 

need to be highly reproducible. The possibility of freeze storing pollen after bulk 

collection is a potential way to solve these problems but necessitates methods that 

ensure continued viability and reproducible capacity to germinate. Our objective was 

the optimization of germination conditions for Arabidopsis pollen that had been 

freeze stored. We optimized the concentrations of various media components 

conventionally used for in vitro pollen germination. We found that in general 4 mM 

calcium, 1.62 mM boric acid, 1 mM potassium, 1 mM magnesium, 18% sucrose at 

pH 7 and a temperature of 22.5°C are required for optimal pollen germination. 

However, different experimental setups may deviate in their requirements from this 

general protocol. We suggest how to optimally use these optimized methods for 

different practical experiments ranging from morphological observations of pollen 

tubes in optical and electron microscopy to their bulk use for molecular and 

biochemical analyses or for experimental setups for which a specific medium 

stiffness is critical. 

 

Key Words 

Arabidopsis thaliana - in vitro cell culture - pollen germination - pollen tube  
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2.1 Introduction 

In the last two decades, Arabidopsis thaliana has evolved as an extremely 

useful organism for studying a wide range of issues in plant biology. This species 

gained even more importance and became the main tool for plant cellular and 

molecular biology studies after the publication of "The Arabidopsis Genome 

Initiative" (The Arabidopsis Genome Initiative, 2000). It is therefore astonishing that 

since that date, less than 5% of the PubMed-listed publications on research 

performed on the male gametophyte of flowering plants have used Arabidopsis 

pollen. Pollen is a widely used cellular system that on one hand is studied to better 

understand the reproduction process in flowering plants, and on the other hand is 

used to investigate the principles governing plant cell growth in general. The latter is 

due to the fact that the pollen tube, a cellular protrusion formed from the pollen 

grain, elongates extremely rapidly with the purpose of delivering the sperm cells to 

the ovule. Very conveniently for the researcher, pollen germination and the 

generation of the pollen tube can be achieved in vitro, thus offering an excellent 

opportunity to observe the processes associated with plant cell growth, cell wall 

synthesis and intracellular transport in a single cell system. 

While microscopic observations are often carried out on few individual cells, 

other experimental approaches require large amounts of material. Myosin extraction 

from lily pollen tubes (Yokota and Shimmen, 1994), RNA isolation for 

transcriptional profiling and gene expression in pollen grains and pollen tubes 

(Guyon et al., 2000; Becker et al., 2003), and vesicle isolation for biochemical and 

ultrastructural characterization from germinated lily pollen (van der Woude et al., 

1971) and require large amounts of pollen as a starting material. From the need for 

substantial amounts of Arabidopsis pollen material implicated in this type of 

experiment ensued the necessity to optimize a method for long term storage that 

would allow pooling pollen from several harvests. 
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The principal problem associated with large quantity pollen harvest in 

Arabidopsis is the minute size of its flower (1 mm), the resulting low number of 

pollen grains per flower, as well as the small size of the individual pollen grain. A 

comparison to other plant species illustrates this point. To obtain the same amount of 

pollen in weight collected from a single flower of Camellia, pollen from 

approximately 115 000 plants of Arabidopsis needs to be harvested, or, in other 

words, that of more than one million flowers. To automate bulk pollen collection of 

Arabidopsis, Johnson-Brousseau and McCormick (2004) developed a method using a 

modified vacuum cleaner equipped with three different meshes that has proven to be 

very useful. Nevertheless, harvesting the mounts of material necessary for 

biochemical experiments remains time-consuming. 

Not only is pollen harvest from Arabidopsis comparably tedious, 

experimentation on germinating pollen is rendered challenging by the fact that in 

vitro germination is notoriously irreproducible in this species. It is generally agreed 

upon that existing protocols are highly unsatisfactory as they do not allow the 

generation of reproducible percentages of germination, even within a single batch of 

pollen. One reason for this may be that Arabidopsis pollen is tricellular for which in 

vitro percentages of germination is reduced compared to bicellular species 

(Brewbaker and Kwack, 1963; Taylor and Hepler, 1997). Moreover, the 6 stamens of 

the Arabidopsis flower form two distinct groups which mature at different times 

(Smyth et al., 1990), causing a difference in the degree of maturity between the two 

types of pollen harvested from a single flower (Johnson-Brousseau and McCormick, 

2004). It was also reported that mature pollen grains undergo autolysis in 

Arabidopsis thaliana after anthesis favoring autopolination (Yamamoto et al., 2003). 

This may be an additional factor responsible for the low germination rate in vitro. 

The need for significant amounts of material associated with certain 

experimental strategies could be met easier if pollen could be stored without the 

significant loss of viability or germination capacity. The pollen of many plant species 
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can be dried on silica gel and stored at -20°C or -80°C to maintain its ability to 

germinate after several years. Hitherto, this method did not seem to be very 

successful for Arabidopsis pollen. Here we investigated the effect of cold storage on 

pollen germination and we optimized several parameters of the growth conditions to 

allow for optimal percentage germination of frozen stored pollen. 

Various Arabidopsis pollen germination media have been proposed in the 

literature (Sanders et al., 1999; Fan et al., 2001; Boavida and McCormick, 2007), 

their principal ingredients comprise calcium, boric acid, magnesium, potassium and 

sucrose, components that are generally found in pollen germination media at varying 

concentrations. In addition to these elements, the pH of the medium and the growth 

temperature are two major factors affecting percentage germination and growth 

(Boavida and McCormick, 2007; Chebli and Geitmann, 2007).  

Here we describe protocols for germination of frozen stored Arabidopsis 

thaliana pollen grains that contain optimized concentrations of these ingredients. In 

addition, we provide standardized methods for pollen germination and growth in 

different experimental setups including liquid and solid medium, low and high 

quantity approaches. These methods are useful for different kinds of studies ranging 

from morphological observations in electron or optical microscopy (cell wall and 

cytoskeleton labeling, live observation of vesicle trafficking, monitoring of ion 

gradients) to the bulk use for molecular and biochemical analyses. 

2.2 Materials and methods 

2.2.1 Arabidopsis thaliana growth and pollen harvest 

Arabidopsis thaliana ecotype Columbia 0 plants were grown in trays in a 

glasshouse at 22°C day temperature and 20°C night temperature, 50% humidity 

under 16h daylight and 300 µE m–2 s–1 light intensity. Approximately 150 seeds 

(prepared by mixing 50 mg of seeds in 40 mL of 0.1% agar in water to avoid seed 
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clumps) were sown per plate. The mixture was then uniformly dribbled on the soil 

surface. Plants were irrigated each day and fertilized every second day with Plant-

Prod® 20-20-20 fertilizer at 200 ppm. Pollen was collected every day from the time 

flowers bloomed using a modified vacuum cleaner as described by Johnson-

Brousseau and McCormick (Johnson-Brousseau and McCormick, 2004). Briefly, 

using plumbing fittings, three different sized Lab Pak® nylon meshes (80, 35 and 

5µm) were fixed in sequence on a plastic pipe which was then related to a 700 W 

Shark® vacuum cleaner. Pollen was collected by passing the modified plastic pipe 

over the Arabidopsis flowers with gentle shaking. 

2.2.2 Storage of pollen grains 

Pollen was removed from the 35 and the 5 µm nylon meshes and used 

directly or stored in 1.5 ml microfuge tubes. Unless noted otherwise, pollen was 

dried on silica gel for 2 hours at room temperature prior to cold storage at either -

20°C or at -80°C.  

2.2.3 Pollen grain rehydration 

Pollen was rehydrated before each experiment. For this purpose, after 

removal from the freezer, pollen was placed in a humid chamber for 30 minutes at 

room temperature. Care was taken not to let the grains get in direct contact with 

liquid water. 

2.2.4 Germination media 

For all experiments, unless specified elsewhere, two different versions of the 

growth medium were used for pollen germination; a liquid version and a solid 

version containing 0.5% agar (SIGMA A1296). Unless specified otherwise, the 

germination medium contained 18% sucrose, 0.01% (1.62 mM) boric acid, 1 mM 

CaCl2, 1 mM Ca(NO3)2, 1 mM MgSO4, and 1 mM KCl with a pH adjusted to 7. For 

solid medium preparation, agar was added to the mix and heated to dissolve.  



29 

 

 

For comparison, the following media tested were used with a modified 

concentration of sucrose (18% instead of the concentration originally published): 

Brewbaker and Kwack (BK) medium (Brewbaker and Kwack, 1963), Lily pollen 

germination medium (Parre and Geitmann, 2005). The media that were used exactly 

as published had originally been developed by the following groups: Wu and 

coworkers (Fan et al., 2001), Yang and coworkers (Sanders et al., 1999), and 

McCormick and coworkers (Boavida and McCormick, 2007). 

2.2.5 Experimental setups 

2.2.5.1 Pollen germination on a drop of liquid medium 

200 µL liquid growth medium was placed on a microscope slide forming a 

dome shaped drop. Hydrated pollen grains were sprinkled on top of the drop using a 

fine brush. The slides were placed in a humid chamber to avoid dehydration of the 

medium. 

2.2.5.2 Pollen germination in liquid medium in Erlenmeyer flasks 

3 mL liquid growth medium were put in a 25 mL Erlenmeyer flask. Hydrated 

pollen grains were mixed with the medium by vigorous shaking to avoid clump 

formation. Two or three whole Arabidopsis flowers were added to the medium unless 

specified otherwise. The Erlenmeyer flasks were covered with a Parafilm® layer 

containing small holes and placed on a shaker at 70 rpm. 

2.2.5.3 Pollen germination on solid surface 

Hot agar containing medium was poured onto a microscope slide to form a 

layer with a thickness of about 0.5 mm and left to cool. Hydrated pollen was then 

sprinkled on the surface using a fine brush. The slides were placed in a humid 

chamber. 
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2.2.5.4 Pollen germination in solid medium 

Solid medium was prepared as described above and left to cool to 42°C. 

Hydrated pollen grains were rapidly mixed with the medium by vigorous stirring. 

The medium was then poured onto a microscope slide to form a layer with a 

thickness of about 0.5 mm and placed in a humid chamber. 

Unless specified otherwise, subsequent incubations were carried out at 

22.5°C. Temperature control was ensured by placing the samples in a Sanyo® MIR-

153 incubator. Images were taken at 2, 4 and 6 hours after the beginning of 

incubation. 

2.2.6 Viability test 

Pollen grain viability was assessed using fluorescein diacetate (FDA) which 

was dissolved in acetone at 10 mg.mL-1 and stored at -20°C. Prior to each 

experiment, FDA was diluted in a 10% sucrose solution to a final concentration of 

0.2 mg.mL-1. Hydrated pollen was dipped in 250 µL of the FDA solution on a glass 

slide and kept in the dark for 5 minutes. Observations were made with a Zeiss 

Imager-Z1® microscope with excitation light at 470 nm and a 515-565 nm band pass 

emission filter. Only viable pollen grains emit a fluorescence signal under these 

conditions. 

2.2.7 Microscopy  

Samples were observed either with a Zeiss Imager-Z1 microscope equipped 

with a Zeiss AxioCam MRm Rev.2 camera and AxioVision Release 4.5 software or 

with a Nikon Eclipse TE2000-U inverted microscope equipped with a Roper fx 

cooled CCD (charged coupled device) camera and ImagePro (Media Cybernetics, 

Carlsbad, CA) software. 
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2.2.8 Determination of the germination, growth rate and pollen tube 

length 

For each experiment, at least ten images per sample were taken at random 

positions and the percentage of germination was quantified. Pollen grains were 

considered germinated when the pollen tube length was greater than the diameter of 

the pollen grain (Tuinstra and Wedel, 2000). To determine pollen tube length, at least 

fifty tubes were measured for each experiment. 

2.3 Results and Discussion 

2.3.1 Influence of storage conditions on pollen grain viability 

Tests using FDA that fluoresces under UV in living cells (Schnurer and 

Rosswall, 1982) revealed a decrease in pollen viability with duration of cold storage. 

While 80% viability was observed for fresh pollen or pollen stored at -20°C for 24h 

only, this percentage decreased to 12% for pollen stored for 10 months with the most 

significant drop occurring at approximately 6 months (Figure 2.1). Storage 

temperature (-20°C versus -80°C) did not affect pollen viability differently. At both 

temperatures viability was around 60% for pollen grains stored for 2 to 5 months 

(Figure 2.2). To ensure satisfactory germination of cold stored pollen, we therefore 

suggest using up frozen stored Arabidopsis pollen within a 5 month period. 

2.3.2 Effect of storage conditions on germination 

In order to be able to pool pollen from different harvests for analyses 

requiring significant amounts of material, the optimization of storage conditions is 

pivotal. Generally, drying pollen before freeze storing is advantageous and therefore 

we tested different times for drying of Arabidopsis over silica gel. Drying for 24h 

reduced the percentage of germination of the pollen before freezing by 

approximately 20%, whereas pollen dried for 2h had the same percentage of 
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germination as fresh, non-dried pollen. We therefore used the 2h drying period for all 

subsequent pollen batches. 

We then examined the effect of prolonged freeze storage at -20°C on 

germination. Our data reveal that during the first 5 months of freeze storage the 

percentage of germination does not decrease significantly compared to fresh pollen. 

However, after this time the percentage of germination decreased to be below 10% 

by the time pollen had been in storage for 10 months or longer. These data are 

consistent with the decrease in pollen viability observed for the same period of time 

(Figure 2.2). 

In contrast to pollen viability, storage temperature strongly affected pollen 

germination. The percentage of germination of pollen stored at -80°C for four 

months was 11% while that of pollen of the same age stored at -20°C was 40%. The 

latter is therefore clearly a preferable temperature for storing Arabidopsis pollen - 

contrary to other species such as lily whose germination activity is conserved very 

well at the lower temperature. Even though the percentage of germination was lower 

for pollen stored at -80°C, we observed that this percentage was maintained for 

periods exceeding one year. This loss of the ability to germinate may in part be due 

to lysosomal degradation of the cytoplasmic components that is characteristic for 

Arabidopsis thaliana pollen grains (Yamamoto et al., 2003). 

2.3.3 Optimization of medium composition for the germination of 

frozen stored pollen in various experimental setups 

In different experimental setups pollen is exposed to different conditions, 

such as availability of oxygen, that might influence its requirement for the individual 

elements present in the germination medium. We therefore optimized the 

concentrations for four different experimental setups: 

1. Liquid drop: pollen is mixed with liquid medium forming a drop of 180 µl 

placed on a microscope slide. 
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2. Bulk germination in liquid (Erlenmeyer): pollen is mixed with 3 ml liquid 

medium in an Erlenmeyer flask. 

3. On solid surface: pollen is sprinkled onto the surface of an agar-stiffened 

layer of medium. 

4. Within solid medium: pollen is mixed into an agar-stiffened medium prior to 

gelation. 

We used a concentration series for each of the components in the liquid 

germination medium and assessed the percentage of germination at 2, 4, and 6 hours 

after incubation for each of the experimental setups. While different pollen batches 

were used for different experiments (thus resulting in different percentages of 

germination for the control samples), pollen with identical storage durations were 

used for all the samples of an individual series of experiments. Table 2.1 summarizes 

the optimized concentrations. In the following we discuss some of the results in more 

detail. 

2.3.3.1 Calcium 

The presence of Ca2+ in the growth medium is known to be required for in 

vitro pollen germination and tip growth of most plant species (Brewbaker and 

Kwack, 1963; Picton and Steer, 1983; Sanders et al., 1999; Chebli and Geitmann, 

2007). It plays a role in cell wall formation and rigidity, directs vesicle trafficking, 

controls actin dynamics (Chebli and Geitmann, 2007) and was also found to affect 

the period and amplitude of growth rate oscillations (Geitmann and Cresti, 1998; 

Holdaway-Clarke and Hepler, 2003). Normal pollen tube growth can only take place 

in the presence of a calcium concentration that is situated within a certain range 

(Brewbaker and Kwack, 1963; Picton and Steer, 1983; Holdaway-Clarke et al., 

2003) that varies between species (Steer and Steer, 1989). Within this range, pollen 

tube tip extension rates are relatively insensitive to small changes in the calcium 
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concentration (Picton and Steer, 1983), whereas outside of this range, growth is 

severely hampered. 

We used different calcium concentrations, 0 mM, 2 mM, 4 mM and 10 mM. 

These are the total concentrations of calcium in the medium resulting from the 

equimolar addition of two different sources of calcium: calcium chloride and calcium 

nitrate. We found that growth in liquid medium (setups 1 and 2) was optimal at 4 

mM Ca2+ and could not be enhanced further by higher concentrations, whereas 

growth in solid medium was augmented by 10 mM calcium compared to 4 mM 

(Figure 2.3). Pollen tubes growing on the surface of solid medium (setup 3) required 

only 2 mM of calcium for optimal germination that was not enhanced or inhibited by 

higher concentrations up to 10 mM (Figure 2.4). In all three cases the optimal 

percentage of germination was approximately 40%. The difference in calcium 

requirement between the experimental setups might be due to oxygen availability 

affecting the metabolism of the pollen tube since oxygen is more readily available for 

pollen growing on the surface of a solid medium than in liquid or in solid medium. 

In all three experimental setups we observed the presence of germinated 

pollen in the control samples devoid of added calcium. Percentages of germination in 

these "calcium-free" samples were up to 22% on the surface of solid medium. The 

addition of EGTA (ethylene glycol tetraacetic acid) at a concentration of 0.1 and 0.2 

mM to quench any contamination with calcium did not reduce the percentage of 

germination (data not shown). Similar observations were made for Tradescantia 

virginia pollen upon Ca2+ quenching with EGTA (Picton and Steer, 1983). This may 

be explained with the presence of a stock of calcium already present in or on the 

surface of the pollen grains. 

Since the two sources of calcium in the medium contained chloride and 

nitrate (CaCl2 and Ca(NO3)2), changing the calcium concentration also changed Cl- 

and NO3
- concentrations. To ensure that the observed effects were only related to 

variations in the calcium concentration and not to the alterations in chloride and/or 
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nitrate content, we increased the concentrations of these two ions to match those in 

the 10 mM Ca2+ sample using hydrochloric acid and nitric acid. Results showed that 

there were no significant differences between the controls (pollen tubes germinating 

without addition of Cl- and NO3
-) and the respective media containing the increased 

amounts of chloride and nitrate ions (Figure 2.4). From this we conclude that the 

effect observed under different calcium concentrations was only due to the variations 

in the concentration of calcium ions. 

2.3.3.2 Boron 

In the pollen tube, boron is involved in cell wall formation and protein 

assembly into membranes and cell wall (Blevins and Lukaszewski, 1998). Through 

its effect on H+-ATPase activity, boron affects pollen germination, tube growth 

(Feijó et al., 1995; Wang et al., 2003) and oscillation behavior (Holdaway-Clarke et 

al., 2003). 100 ppm boric acid was found to be essential for pollen germination 

(Brewbaker and Kwack, 1963). In Picea meyeri, boron deficiency decreases pollen 

germination and affects callose and non-esterified pectin accumulation on the cell 

wall (Wang et al., 2003). 

Five different concentrations of boric acid (0 mM, 0.49 mM, 1.17 mM, 1.62 

mM and 3.24 mM) were used. Germination of pollen growing on the surface of solid 

medium (setup 3) was the highest for 1.62 mM of boron whereas higher 

concentrations were inhibitory (Figure 2.5A). In liquid media (setups 1 and 2) the 

highest percentage of germination was obtained for concentrations as low as 0.49 

mM (Figure 2.5B). Similar results were observed in Picea meyeri where 0.01% boric 

acid (1.62 mM) yielded optimal germination and higher concentrations were 

detrimental for pollen tube germination (Wang et al., 2003). One possible reason for 

why higher boron concentrations are required for optimal germination when using a 

solidified medium is that the boron may be sequestered by the agar molecules 

(residues of algal cell walls). 
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2.3.3.3 Potassium 

Many pollen species such as lily and Solanum require potassium for optimal 

in vitro germination, perhaps due to its possible involvement in the initiation of the 

osmotic water influx required for pollen germination (Fan et al., 2001). The effect of 

potassium on growth was proposed to be in the maximization of the association of 

the calcium ions to the cell wall (Brewbaker and Kwack, 1963). In Arabidopsis, a 

potassium channel has been shown to be present in pollen protoplast membrane (Fan 

et al., 2001) and its mutation reduces the growth of pollen tubes (Mouline et al., 

2002). Therefore, we investigated whether or not varying the concentration of 

potassium in the medium influences pollen germination in Arabidopsis. 

Different concentrations ranging between 0 mM and 10 mM of potassium 

chloride were tested. Results showed that in liquid growth medium (setups 1 and 2), 

potassium concentrations of 1 mM or higher increased the percentage of germination 

by more than 30% whereas this increase was more than 60% in solid medium (setups 

3 and 4). No inhibitory effect was observed for higher concentrations of potassium 

(Figure 2.6). 

2.3.3.4 Sucrose 

Since the pollen tube does not perform photosynthesis, a carbon source is 

required for energy supply and carbohydrate skeleton formation. Therefore, sucrose 

is generally added to pollen germination media, but the optimal concentration varies 

greatly between species. For instance, optimal Papaver pollen growth in vitro occurs 

at 5% sucrose, Camellia at 8%, Lilium and Solanum at 10% (unpublished data). 

While it was previously observed that sucrose concentrations higher than 15% 

reduced or prevented Arabidopsis pollen germination (Boavida and McCormick, 

2007), we tested concentrations of sucrose ranging from 0 to 25%. For our optimized 

medium, 18% sucrose yielded the highest percentage germination (50%) regardless 

of the stiffness of the medium (Figure 2.7). This percentage was significantly 
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reduced when sucrose concentration was outside the optimal range of 15 to 20%. In 

addition to lowering the percentage germination, higher sucrose concentrations 

reduced pollen tube elongation (Figure 2.8). The requirement for relatively high 

sucrose concentration for Arabidopsis pollen when compared to other species might 

be related to the fact that this species has a dry stigma (Elleman et al., 1992; Zinkl 

and Preuss, 2000) thus providing an environment with high osmolarity. Arabidopsis 

culture medium with 18% sucrose might provide the environment that is closest to 

the situation in planta. 

2.3.3.5 pH 

Medium pH is a critical condition for in vitro pollen tube growth. For Lilium, 

Solanum and Camellia pollen tubes, the optimum pH is situated between 5 and 6. 

Lower or higher pH values drastically reduce the percentage of germination and are 

unable to sustain pollen tube growth (Chebli and Geitmann, 2007). To optimize the 

pH for Arabidopsis, we tested different values: 5, 6, 6.8, 7 and 8. Adjustment of the 

pH was made immediately prior to each experiment. For solid media, pH was 

adjusted prior to the addition of agar. In solid medium the optimum pH for pollen 

germination was 7. When pollen was grown at a slightly different pH (6.8), the 

percentage of germination was reduced by 40% when quantified after 6 hours of 

growth (Figure 2.9A). 

However, interestingly, we observed that in a solid medium (setup 4) with a 

slightly acidic pH, pollen grains were able to germinate faster than in a medium with 

pH 7. After four hours of germination the percentage of germination reached a high 

value that at this point of time was higher than in medium with pH 7 (Figure 2.9A). 

In liquid medium (setup 1) we noticed that the pH variation did not have a 

dramatic effect on the percentage of germination achieved after 6h. However, the 

pollen germinated fastest at pH 6.8 as seen by the greater percentages of germination 

at 2h in these samples (Figure 2.9B). Therefore, in experiments focusing on shorter 
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time periods after germination, a slight acidification of the liquid medium would be 

advantageous to obtain optimal percentage of germination. On the other hand, total 

germination as quantified after 6h is not significantly higher at pH 6.8 then pH 7. 

In our experiments, we noticed a decrease by 0.4 pH units after 6 hours of 

growth in liquid medium. This acidification of the medium may affect pollen 

germination with time. This is consistent with earlier reports that with time, growing 

pollen tubes tend to acidify the medium with time eventually resulting in growth 

arrest (Tupý and Říhová, 1984). An acidification of 0.1 units was also observed in a 

control liquid sample without any pollen. This decrease in the pH might be due to the 

metabolism of microorganisms, present in the medium, on the glassware and in 

higher amounts on the pollen itself. It may also be due to the metabolism of the 

pollen and pollen tubes where a high degree of ions exchange happens between intra- 

and extracellular compartments. The use of Tris buffer (5 and 10 mM) reduced the 

percentage of germination (not shown), which is why we did not pursue further 

experimentation with buffers. 

2.3.3.6 Temperature 

Pollen germination shows a temperature dependent behavior. A controlled 

temperature was proven to be important for optimal germination and pollen growth 

in Arabidopsis thaliana (Boavida and McCormick, 2007). Since various 

experimental strategies may require incubation temperatures other than room 

temperature, we tested a temperature range from 4 to 42°C. Best germination for 

pollen tubes growing on solid medium was obtained for temperatures ranging from 

22 to 25°C (Figure 2.10). The same was observed for pollen grown in liquid medium 

in Erlenmeyer flasks, whereas the optimal temperature for pollen in a liquid drops 

was 30°C (Table 1). A similarly surprising optimal germination temperature was 

observed by Boavida et al. (2007) who describe that 28°C increases germination in 

the Colombia ecotype. 
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Approximately 5% of the pollen grains were able to germinate at 4°C in 

liquid medium and these tubes displayed normal morphology (Figure 2.11) with a 

mean length of 110 µm after 24 h of growth. We tested this condition since it would 

allow image acquisition of living pollen tubes in the environmental scanning electron 

microscope as image quality decreases with increasing temperature. 

2.3.3.7 Comparison with other media 

To demonstrate the difference between our optimized medium and other 

media that had been developed for pollen germination of various species, we 

compared them side by side. Using pollen that had been cold-stored for 3 months, 

our optimized medium yielded significantly higher percentages of germination than 

the Lily pollen medium (Parre and Geitmann, 2005), the BK medium (Brewbaker 

and Kwack, 1963) and several Arabidopsis media (Sanders et al., 1999; Fan et al., 

2001; Boavida and McCormick, 2007) (Figure 2.12A). The tube length of those 

grains that had succeeded in germinating was significantly longer in our medium 

than that in the other media (Figure 2.12B). Furthermore, our medium resulted in 

pollen tubes without apparent morphological disorders, whereas in our hands pollen 

tubes grown on the Boavida and McCormick medium (2007) were frequently 

aberrant with apical swellings. One of the reasons why our medium appeared 

superior to the others might be that it had been optimized for bulk collected, cold 

stored pollen while the others were optimized for freshly collected pollen and/or for 

pollen from the most recently opened flowers of the Arabidopsis plant.  

2.3.4 Conclusions 

Given the importance of Arabidopsis thaliana as a model system, the 

optimization of the conditions for bulk storage and germination of frozen stored 

pollen should contribute to the increased use of this species in pollen research. 

Furthermore, we provided optimized conditions for different experimental setups that 

either use large amounts of pollen or require specific conditions such as low 
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temperatures or medium stiffness. Our optimized Arabidopsis pollen growth medium 

is composed of 18% sucrose, 1 mM potassium chloride, 1.62 mM boric acid, 1 mM 

magnesium sulphate, 2 mM calcium chloride and 2 mM calcium nitrate, at a pH of 7 

with an incubation temperature of 22.5°C. For pollen grown in solid medium, twice 

the amount of calcium is ideal. For pollen grown in a liquid drop, the optimum 

growth temperature is 30°C (Table 1).  

The two main advantages of these methods of Arabidopsis pollen germination 

are the high reproducibility compared to other media described in the literature and 

the possibility of using large amounts of pollen that has been collected and stored 

frozen. Therefore, the availability of flowering Arabidopsis plants at the time of the 

experiment is not a limiting factor. Whenever a batch of flowers is mature, all its 

pollen can be collected and stored for experiments to be carried out at a later time. 

The bulk pollen germination makes our methods useful for a variety of 

experiments requiring large amount of nucleic acid, proteins, or organelles to be 

extracted from Arabidopsis pollen tubes. The wide range of germination conditions 

make them appropriate for other experiments where low germination temperatures 

are required (environmental scanning electron microscopy) or different medium 

stiffness is a limiting factor to the success of the experiments. 

2.4 Acknowledgements  

Research in the Geitmann lab is supported by grants from the Natural 

Sciences and Engineering Research Council of Canada (NSERC), the Fonds 

Québécois de la Recherche sur la Nature et les Technologies (FQRNT), and the 

Human Frontier Science Program (HFSP). 



41 

 

 

 
 

2.5 Table 

  Setup 1 Setup 2 Setup 3 Setup 4 

Temperature (oC) 30.0 22.5 22.5 22.5 

pH 7.0 7.0 7.0 7.0 

Calcium (mM) 4.0 4.0 2.0 4.0 

Boron (mM) 0.49 0.49 1.62 1.62 

Magnesium (mM) 1.0 1.0 1.0 1.0 

Potassium (mM) 1.0 1.0 1.0 1.0 

Sucrose (%) 18 18 18 18 

 

Table 2.1: Optimized conditions for in vitro Arabidopsis pollen germination in four 

different experimental setups. Setup 1: Pollen in liquid drop. Setup 2: Pollen in 

Erlenmeyer. Setup 3: Pollen on solid surface. Setup 4: Pollen within solid medium. 
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2.6 Figures 

 

Figure 2.1: Arabidopsis thaliana pollen viability test using fluorescein diacetate 

(FDA). Viable pollen fluoresces bright white under UV light. Fresh pollen (A,B) and  

pollen stored for 12 months at -20°C (C,D). Bar = 20 µm. 

 

Figure 2.2: Change of Arabidopsis pollen viability (▲) and percentage germination 

(■) with duration of cold storage. Stored pollen was kept at -20°C after 2 hours of 

dehydration following harvest. Vertical bars represent the standard deviation (n=5). 
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Figure 2.3: Effect of calcium concentration on the percentage of germination of 

Arabidopsis thaliana pollen grown in liquid drop (grey) and in solid medium (black) 

after 6 hours of growth. Vertical bars represent the standard deviation (n=5). 

 

Figure 2.4: Effect of calcium concentration on percentage germination of 

Arabidopsis thaliana pollen grown on solid medium after 6 hours of growth. In a 

parallel series (black bars), chloride and nitrate concentrations were adjusted to equal 

those in the 10 mM Ca2+ sample. Vertical bars represent the standard deviation 

(n=5). 
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Figure 2.5: Effect of boron concentration on the percentage germination of 

Arabidopsis thaliana pollen grown on solid medium (A) and in liquid medium (B) 

after 6 hours of growth. Vertical bars represent the standard deviation (n=5). 

 

Figure 2.6: Effect of potassium concentration on the percentage germination of 

Arabidopsis thaliana pollen grown in liquid drop (grey) and in solid medium (black) 

after 6 hours of growth. Vertical bars represent the standard deviation (n=5). 
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Figure 2.7: Effect of the sucrose concentration on the percentage germination of 

Arabidopsis thaliana pollen after 6 hours of growth on solid medium. Vertical bars 

represent the standard deviation (n=5). 

 

Figure 2.8: Arabidopsis pollen germination on agarose medium containing 5% (A), 

18% (B), and 25% sucrose (C). Bar = 50 µm. 
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Figure 2.9: Effect of the pH on the percentage germination of Arabidopsis thaliana 

pollen grown on solid surface (A) or in liquid medium (B) after 2 hours (light grey), 

4 hours (dark grey) and 6 hours (black) of growth. Vertical bars represent the 

standard deviation (n=5). 
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Figure 2.10: Effect of the temperature on the percentage germination of Arabidopsis 

thaliana pollen grown on solid medium. Vertical bars represent the standard 

deviation (n=5). 

 

Figure 2.11: Micrographs of Arabidopsis pollen tubes grown at 4°C for 24 hours (A) 

in liquid medium and (B) on solid medium. Bars = 10 µm 
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Figure 2.12: Arabidopsis pollen percentage of germination (A) and pollen tube length 

(B) after five hours of growth on agarose stiffened media based on our optimized 

protocol (sample A), Boavida and McCormick (2007) (sample B), Li et al. (1999) 

(sample C), Fan et al. (2001) (sample D), Brewbaker and Kwack (1963) modified 

with 18% sucrose (sample E), and lily medium (Parre and Geitmann 2005) modified 

with 18% sucrose (sample F). Bars represent the standard deviation (n=5). * Despite 

large standard deviations for pollen tube length (B), mean values of samples B 

through F are significantly different from that of sample A with p<0.05 (samples B 

and E) and p<0.01 (samples C, D, F) (two tailed student t-test). 
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3 Microwave-assisted processing of plant cells for 

optical and electron microscopy 

Together with the members of my lab Youssef Chebli, Monisha Sanyal and 

Leila Aouar, we optimized microwave (MW)-assisted sample processing for single 

plant cells for both optical and electron microscopy. Two important variables that are 

critical for MW-assisted sample preparation were optimized: wattage, correct 

adjustment of which is responsible for tissue stabilization, and exposure time, which 

is sample and treatment dependent. Furthermore, the application of a vacuum 

simultaneously to microwave processing, allows further reduction of experimentation 

time. 

This technique was applied to label actin cytoskeleton and cell wall 

components of the pollen tube. It resulted in a dramatic reduction of experimentation 

time. More importantly, structural integrity and antigenicity were not compromised 

when comparing to conventional bench-top processing methods for chemically fixed 

samples. A technical report with the title “Microwave-assisted processing of plant cells 

for optical and electron microscopy” was published in the November issue of 2008 of the 

Bulletin of the Microscopical Society of Canada, pages 15 - 19. I performed all the 

fluorescence and immunolabelling experiments. The manuscript was written in equal 

parts by Youssef Chebli and myself. 

 

Microwave Assisted Processing of Plant Cells for Optical and Electron 

Microscopy 

 

Youssef Chebli, Firas Bou Daher, Monisha Sanyal, Leila Aouar and Anja Geitmann 



50 

 

 

 

The technological development of microscope hardware has led to a 

significant breakthrough by pushing the resolution from the micro to the nano-scale 

range. During the past century high end electron, optical and atomic force 

microscopes have been developed for better ultra-structural viewing and 3D 

visualization of the specimen. Compared to these impressive hardware 

developments, progress in specimen processing techniques has been far less 

dramatic. Despite the increased use of living material in microscopy, numerous 

applications still require specimens to be fixed and bench time is a major constraint 

in any kind of sample preparation. The first and one of the most important steps in 

biological tissue processing for microscopy is fixation. Depending on the specimen, 

times for chemical fixation may range from half an hour to as much as 24 hours. The 

entire procedure required for processing biological samples for transmission electron 

microscopy (TEM) can therefore take between a few days and a week. While this 

time is necessary to completely fix, dehydrate and embed the specimen, it also allows 

unintended processes to occur such as the dissolving of membranes leading to the 

release of organelle content. This can result in the dilution of the applied solutions 

and to alterations in their pH value (Russin and Trivett, 2001) which in turn may 

generate structural artifacts. The fixation time is even more critical in case of 

immunohistochemistry where antigen preservation is crucial for successful labeling. 

Therefore, efforts to minimize fixation and processing times not only aim to reduce 

bench time but also to prevent structural impact on the tissue.  

In the 1970s, the use of microwave (MW) ovens was first introduced to 

accelerate sample processing (Mayers, 1970; Demaree and Giberson, 2001). The first 

report on MW-assisted aldehyde tissue fixation for the purpose of light microscopy 

and TEM was made in the 1980s (reviewed by (Giberson, 2001). The early MW 

ovens had no control of power or temperature and the only variable was the exposure 
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time. Currently, MW ovens are available with variable power (wattage), temperature 

control and MW transparent vacuum system.  

Because of the presence of cell walls, vacuoles, plastids and intracellular air 

space (Russin and Trivett, 2001), plant cells generally require rather prolonged 

incubation times with fixation and dehydration solutions and thus would profit 

greatly from an accelerated protocol. In the present study, we aimed at optimizing 

MW-assisted sample processing for single plant cells for both optical and electron 

microscopy. We used leaf trichomes and pollen tubes as test specimens. The former 

are cells differentiated from the leaf epidermis. They stick out from the leaf surface 

into the air space and are thus not mechanically stabilized by any surrounding tissue. 

The latter are cellular protuberances formed by germinating pollen grains upon 

contact with a receptive stigma. They function in  delivery of the two sperm cells to 

the ovary to ensure double fertilization. Pollen tubes are commonly used as a model 

for the study of anisotropic cell growth and also to understand the structural 

dynamics and material properties associated with polarized cellular expansion 

(Geitmann, 2006; Geitmann and Steer, 2006). Due to their extremely rapid growth 

and active intracellular transport processes, high quality fixation of pollen tubes is 

critical for the preservation of cellular ultrastructure and polarity. We optimized two 

important variables critical for MW-assisted sample preparation: wattage, correct 

adjustment of which is responsible for tissue stabilization, and exposure time, which 

is sample and treatment dependent (Russin and Trivett, 2001). During experiments, 

sample temperature was monitored to control the effect of heating (Demaree and 

Giberson, 2001), and vacuum was used for better infiltration of the cells with the 

fixation solution (Russin and Trivett, 2001). All experiments were carried out in a 

PELCO cold spot®.  



52 

 

 

3.1 Optical microscopy 

Due to the highly polarized mode of growth, the pollen tube cell wall has a 

characteristic spatial profile of non-uniformly distributed cell wall polysaccharides. 

The tip is composed of methyl-esterified pectins that permit, due to their plastic 

characteristics, pollen tube elongation at this location (Geitmann and Parre, 2004; 

Parre and Geitmann, 2005). On the other hand, the basal part of the tube is composed 

of non-esterified, stiffer pectins and it is further characterized by the deposition of 

cellulose and callose (Chebli and Geitmann, 2007). The latter component plays a role 

in the mechanical resistance of the cell wall against tension and compression stress in 

the cylindrical part of the cell (Parre and Geitmann, 2005). In longer pollen tubes, 

callosic plugs compartmentalize the cell allowing the older parts of the cell to 

degenerate. To sustain the active growth of the pollen tube, cell wall material is 

constantly added to the growing tip through the fusion of secretory vesicles which 

are transported to the growing zone via the highly dynamic actin cytoskeleton. 

Visualization of both cell wall components and cytoplasmic structures such as 

the cytoskeleton can be performed by combining specific labels with fluorescence 

and confocal microscopy. Due to the extremely fast growth behavior and the polar 

distribution of cytoplasmic components by selective and directed cytoplasmic 

streaming, fixation of pollen tubes needs to be rapid to capture the ultrastructure 

reality. We tested several staining and immunohistochemical procedures to assess the 

efficiency and quality of MW-assisted fixation protocols on pollen tubes. Given that 

we have extensive experience with this cell type and its characteristic labeling 

profiles we were able to judge the quality of the samples obtained with the MW-

assisted protocols comparing them to conventional chemical fixation and rapid freeze 

fixation. 
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3.2 Methodology 

In the optimized protocol all steps were carried out in a microwave operating 

at 150 W under 21inches of Hg vacuum and a controlled temperature of 26oC ± 2oC. 

3.2.1 Pectin labeling 

Pollen tubes were fixed for 40 seconds in 3% formaldehyde in phosphate 

buffer saline (PBS) solution. After 3 washes in PBS with 2% bovine serum albumine 

(BSA), they were incubated for 10 minutes in JIM5 (monoclonal antibody specific 

for pectins with low degree of methyl-esterification; Figure 3.1A) or JIM7 

(monoclonal antibody specific for pectins with high degree of methyl-esterification; 

Figure 3.1B) followed by 3 washes of 40 seconds each in a 2% BSA solution. Tubes 

were then incubated for 10 minutes in Alexa 594 anti-rat secondary antibody 

(Molecular Probes), washed 3 times and mounted on glass slides for observations. 

3.2.2 Callose labeling 

Pollen tubes were fixed in 3% formaldehyde in PIPES buffer for 40 seconds 

and washed 3 times in the same buffer. A 10 minute incubation with 0.2% aniline 

blue solution was used to label callose. Samples were then washed 4 times in PIPES 

buffer before observation (Figure 3.2). 

3.2.3 Actin labeling 

Pollen tubes were fixed for 40 seconds in a pH 9 PIPES buffer containing 3% 

formaldehyde, 0.5% glutaraldehyde and 0.05% Triton. After 3 washes with the same 

buffer, pollen tubes were incubated with rhodamine phalloidin for 10 minutes in a pH 

7 PIPES buffer, washed 5 times and then observed immediately, since actin tends to 

be unstable even when fixed (Figure 3.3). 
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3.2.4 Electron Microscopy 

3.2.4.1 Transmission electron microscopy 

Sample preparation for TEM is very critical due to the necessity to preserve 

the cellular ultrastructure. Any inappropriate handling during fixation, dehydration or 

embedding will be flagrantly expressed in the observed samples as artifacts. MW 

technology has the potential to strongly reduce sample preparation time while 

preserving tissue subcellular integrity and antigenicity. 

We optimized different conditions for microwave sample processing for 

pollen tubes. Application of a fixative consisting of 2% formaldehyde and 2.5% 

glutaraldehyde in phosphate buffer (PB) to pollen tubes growing in a 0.5% agar 

medium for 40 seconds was sufficient for a very good fixation. Post-fixation was 

performed using 2% osmium tetroxide solution following 3 washes in PB and 3 

additional washes in deionized water. Samples were then washed twice with PB 

followed by two other washes in water. Dehydration was done using an increasing 

acetone gradient ranging from 25 to 100% with the last step repeated thrice. All 

fixation, washing and dehydration steps were conducted under 150 W and 21 in of 

Hg vacuum for 40 seconds each. 

For resin infiltration we used SPURR resin in 4 steps with increasing resin 

concentration up to 100%. These steps were conducted at 300 W for 3 minutes each 

and under 21in Hg vacuum. Resin polymerization was done in a regular oven at 64oC 

overnight. This polymerization can also be carried out in a water bath at 60o, 70o and 

80oC for 10 minutes each then at 100oC for 45 minutes (Demaree and Giberson, 

2001). Ultrathin sections were cut with a Leica Ultracut and samples were observed 

with a JEOL JEM 1005 transmission electron microscope operating at 80 kV (Figure 

3.4). 
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3.2.4.2 Scanning electron microscopy 

Pollen tubes and trichomes were fixed and dehydrated using the same 

protocol as that for TEM sample preparation. Samples were then dehydrated, critical 

point dried, gold-palladium coated and observed with a JEOL JSM 35 (Figure 3.5). 

3.3 Results and Discussion 

Plant cell fixation and processing for microscopical observations are a 

challenge due to the presence of cell wall, vacuoles as well as high internal turgor 

pressure. Osmotic changes upon the addition of a chemical fixation solution easily 

causes cellular collapse or bursting, or, less dramatically but nevertheless critical, 

spatial rearrangement of cytoplasmic contents (e.g. loss of polar distribution of 

organelles). The cell wall surrounding the plasma membrane hampers effective 

penetration of the fixative. Using MW-assisted protocols we succeeded in improving 

and accelerating sample processing while preserving the cellular integrity. 

Cytochemical labeling of callose in the pollen tube cell wall reproduced the same 

characteristic profiles as those described previously using conventional chemical 

fixation. While antigenicity was enhanced in some cases (Giberson, 2001), in our 

case, we noticed that it was preserved as revealed by immunolabelling for two 

different types of pectin. The actin cytoskeleton, a very dynamic and unstable 

structure, was preserved using MW-assisted fixation and resulted in a spatial 

configuration similar to that observed after freeze fixation, the gold standard for the 

quality of fixed plant cell cytoskeleton (Lovy-Wheeler et al., 2005). In electron 

microscopy, cell structure and subcellular compartments were well preserved when 

comparing with bench top processed plant cells. This was observed when comparing 

structural integrity of the subcellular components on pictures taken using both 

methods. 

In addition to this, experimentation time was dramatically reduced using the 

MW-assisted methods (Figures 3.6 and 3.7). For optical microscopy, sample 
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preparation time reduction varied from 5 fold for cytochemical labeling to 8 fold for 

actin labeling while time reduction for TEM sample preparation was 26 fold. 

3.4 Conclusion 

The use of MW-assisted protocols resulted in a dramatic reduction of 

experimentation time. More importantly, structural integrity and antigenicity were 

not compromised when comparing to conventional bench-top processing methods for 

chemically fixed samples. Vacuum MW processing for electron microscopy of 

pollen tubes gave the same results as compared to the traditional method despite 

much shorter fixation and incubation times. 

On a more practical level, MW technology is affordable, user friendly, does 

not require specific installations and older models can be upgraded with a 

temperature control device. Furthermore, it is very flexible allowing an easy switch 

mid-protocol to the conventional bench-top method if necessitated by time 

constraints or logistics. 
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3.5 Figures 

  

Figure 3.1: Immunofluorescence label of lily pollen tubes. (A) JIM5 label of non-
esterified pectins reveals the presence of the polymer in the distal region. (B) JIM7 
label of esterified pectins is predominantly present at the apex. Pictures represent 
median pollen tube sections taken with a Zeiss LSM-510 META confocal 
microsocope. 

 

 

 

Figure 3.2: Callose rings observed with aniline blue staining in Camellia pollen 
tubes. These callose rings will develop into callose plugs. Picture represents a Z-
stack projection taken with a Zeiss Imager-Z1 microscope equipped with a Zeiss 
AxioCam MRm Rev 2 camera. 
 

A B 
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Figure 3.3: Camellia pollen tube actin cytoskeleton as visualized by rhodamin-
phalloidin label. Picture represents a Z-stack projection taken with a Zeiss Imager-Z1 
microscope equipped with a Zeiss AxioCam MRm Rev 2 camera. 

 

 

Figure 3.4: Transmission electron micrograph of a cross-section of a Camellia pollen 
tube. Picture was taken with a JEOL JEM 1005 transmission electron microscope 
operating at 80 kV. 
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Figure 3.5: Scanning electron micrograph of an Arabidopsis leaf trichome (A) and 
germinated lily pollen grains (B). Pictures were taken with a JEOL JSM 35 (A) and a 
Hitachi TM 1000 (B) 
 

 

Figure 3.6: Comparison of experimentation time between bench-top (orange) and 
microwave assisted (red) methods of sample preparation for optical microscopy. 
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Figure 3.7: Comparison of experimentation time between conventional bench-top 
and microwave assisted methods of sample preparation for transmission electron 
microscopy. Fixation (black), post-fixation (brown), dehydration (green) and resin 
infiltration (yellow). 
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4 Actin regulates pollen tube shape and growth 

4.1 Introduction 

Pollen tubes are highly anisotropic cylindrical structures produced by the 

male gametophyte of higher plants. These tubes will grow along the transmitting 

tissue of the pistil with the aim of transporting the sperm cells to the embryo sac 

where double fertilization will happen. To be able to accomplish this function, the 

pollen tube has to interact with the various types of signals that are produced by the 

pistil to guide the pollen tube to its target (Geitmann and Palanivelu, 2007; Cheung 

and Wu, 2008). 

Given the very high growth rate of the pollen tube, a considerable amount of 

cell wall material must be added in order to sustain this growth. The pollen tube has 

an apical mode of growth and addition of new material happens in a zone at the 

shoulders of the pollen tube tip (Geitmann and Dumais, 2009). Cell wall material is 

composed mainly of methyl-esterifed pectins (Parre and Geitmann, 2005) that are 

transported by secretory vesicles to an exocytosis zone located in the subapex of the 

tube (Franklin-Tong, 1999; Bove et al., 2008; Zonia and Munnik, 2008). Secretory 

vesicle transport is a highly dynamic process as can be observed when labeling 

vesicles with styril dyes. In plant cells in general and in pollen tubes in particular, 

vesicular transport occurs along arrays of the actin cytoskeleton and requires myosin 

motor proteins (DePina and Langford, 1999; Geitmann and Steer, 2006; Yokota and 

Shimmen, 2006) and is therefore energy-consuming. Class XI myosins have been 

shown to be expressed in lily pollen tubes (Yokota and Shimmen, 1994).  

The animal cytoskeleton has been extensively studied and its roles in cell 

motility and architecture are well understood. On the other hand, very little is known 
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about the role of the cytoskeleton in determining plant cell architecture in general 

and pollen tube growth in particular. The reason for this lack of knowledge is that 

turgor pressure due to water uptake and cell wall yielding are dominant mechanical 

features whose interaction governs plant cell expansion (Cosgrove, 1986; Geitmann 

and Steer, 2006; Geitmann and Ortega, 2009). The pollen tube cytoskeleton is 

composed of microtubules and actin microfilaments (Geitmann and Emons, 2000). 

Microtubules have been shown to be implicated in anisotropic plant cell expansion 

(Baskin, 2005) but they are unlikely to play an important role in pollen tube 

elongation since their depolymerization does not prevent in vitro pollen tube growth 

(Gossot and Geitmann, 2007). The actin cytoskeleton on the other hand is very 

important for organelle transport (Lovy-Wheeler et al., 2007) and pollen tube growth 

as has been shown by experiments using actin depolymerizing drugs (Gibbon et al., 

1999; Miller et al., 1999; Vidali and Hepler, 2001). Actin filaments were also found 

to be involved in the ability of the pollen tube to invade solid obstacles and to grow 

in stiff media (Gossot and Geitmann, 2007). Nevertheless, the role of this 

cytoskeletal array in the mechanics of pollen tube apical growth is poorly 

understood. The pollen tube actin cytoskeleton is composed of long actin cables in 

the shank of the pollen tube (Geitmann and Emons, 2000; Lovy-Wheeler et al., 

2005). These long filaments are polarized and point with their barbed (plus) ends 

towards the pollen tube apex at the periphery of the tube and in the opposite direction 

at the center (Lenartowska and Michalska, 2008). At the subapex of the tube, densely 

arranged actin filaments are organized in a ring shaped actin fringe (Lovy-Wheeler et 

al., 2005). This array is believed to be the site of high actin dynamics (Chen et al., 

2002). At the very apex of the pollen tube, no or very few actin filaments are present 

(Lovy-Wheeler et al., 2005; Lenartowska and Michalska, 2008). Actin dynamics in 

the growing pollen tube is regulated by several actin binding proteins whose activity 

is controlled by calcium ions and protons (Hepler et al., 2006; Yokota and Shimmen, 

2006; Ren and Xiang, 2007).  
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Despite the description of the actin fringe in several pollen tube species (Kost 

et al., 1998; Lovy-Wheeler et al., 2005), its exact function is still unknown. In the 

present chapter I visualized this structure at high spatial resolution in order to provide 

a detailed description of its three-dimensional configuration in the pollen tubes of the 

most commonly used species. Furthermore, I investigated whether the subapical actin 

fringe was involved in determining the precisely controlled cylindrical shape of the 

elongating tube. For this purpose I pharmacologically altered actin dynamics by 

enhancing bundling of actin filaments and I interfered with the myosin-mediated 

transport of secretory vesicles along actin cables. 

4.2 Materials and methods 

4.2.1 Plant material 

Pollen was collected from plants grown in the Montreal Botanical Garden. 

Camellia japonica pollen was dehydrated in gelatin capsules on anhydrous silica gel 

overnight and stored at -20°C. Camellia pollen growth medium contained 1.62 mM 

H3BO3, 2.54 mM Ca(NO3)2·4H2O, 1 mM KNO3, 0.81 mM MgSO4·7H2O, 8% 

sucrose (w/v). After collection, Lilium longiflorum pollen was packed in gelatin 

capsules, dried overnight on silica gel and stored at -80°C. Lily pollen germination 

medium contained 1 mM KNO3, 130 nM Ca(NO3)2, 160 nM H3BO3, 10 % sucrose 

(w/v), and 5 mM MES buffer adjusted to pH 5.5. Arabidopsis thaliana pollen was 

treated as described in chapter 1. Pollen was rehydrated in humid atmosphere for 30 

min prior to in vitro culture. 

4.2.2 Actin labeling 

After one hour of growth for Camellia, one hour and a half for lily and four 

hours for Arabidopsis, pollen tubes were fixed for 40 seconds in the microwave 

(PELCO cold spot® biowave 34700) set at 150 Watts in 3% formaldehyde, 0.5% 

glutaraldehyde and 0.05% Triton X-100 solution in a buffer composed of 100 mM 
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PIPES, 5 mM MgSO4 and 0.5 mM CaCl2 at pH 9. Pollen tubes were then washed 3 

times for one minute each in the same buffer then incubated overnight at 4oC in a 

rhodamine-phalloidin (Molecular Probes) in a buffer composed of 100 mM PIPES, 5 

mM MgSO4, 0.5 mM CaCl2 and 10 mM EGTA at pH 7. Next day, pollen was 

washed 5 times for one minute each in the same buffer. All washing steps were 

conducted in the microwave at 150 Watts. Pollen was then mounted on glass slides in 

a drop of citifluor (Electron Microscopy Sciences), covered with a cover slip, sealed 

and immediately observed in the fluorescence microscope. 

4.2.3 Microtubule labeling 

Pollen was fixed in PIPES and magnesium (PM) buffer (50 mM PIPES, 1 

mM EGTA, 1 mM MgCl2 at pH 6.9) with 4% formaldehyde for 45 minutes then 

washed twice (5 minutes each) in PM buffer. Pollen was then treated with 2% 

cellulysine for 6 minutes, washed twice then treated with cold ethanol for 5 minutes 

at -20°C. After 2 washes with tris buffer saline (TBS) (50 mM Tris, 150 mM NaCl at 

pH 7.5) with 2% bovine serum albumin (BSA), an anti-α-tubulin (Molecular Probes) 

mouse monoclonal antibody (diluted 1:200) was added and incubation was 

conducted overnight at 4oC. Second day and after 2 washes with TBS plus 2% BSA, 

Alexa Fluor 594 (Molecular Probes) goat anti-mouse secondary antibody (diluted 

1:100) was added and left to incubate for 2 hours at room temperature. Before 

mounting, pollen was washed 4 times in TBS plus 2% BSA. 

4.2.4 Callose and cellulose labeling 

After pollen fixation for 40 seconds in a buffer composed of 100 mM PIPES, 

5 mM MgSO4 and 0.5 mM CaCl2 at pH 9 with 3% formaldehyde and 0.5% 

glutaraldehyde in the microwave, 3 washes were done before adding few drops of 

0.2% aniline blue (for callose labeling) or 1 mg/ml calcofluor white (for cellulose 

labeling). Pollen was then incubated in the microwave under 1.5 in Hg vacuum at 
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26°C and 150 Watts. After 5 washing steps, pollen was mounted on glass slides for 

microscopic observations. 

4.2.5 Immunofluorescent labeling of pectins 

Pollen tubes were fixed in 3% formaldehyde and 0.5% glutaraldehyde in 

PIPES buffer (100 mM PIPES, 5 mM MgSO4 and 0.5 mM CaCl2 at pH 9) and 

subsequently treated with monoclonal antibodies JIM5 or JIM7 diluted 1:50 in PBS 

for (10 minutes under vacuum). After washes in buffer, the secondary antibody, goat-

anti-rat conjugated with alexa fluor 594 diluted 1:100, was applied overnight at 4°C 

in the dark. After several washes, pollen tubes were mounted and observed in a 

fluorescence microscope. 

4.2.6 Vesicle labelling 

Vesicles in living pollen tubes were labelled using the lipophilic styryl dye 

FM1-43 (Molecular probes, Invitrogen). FM1-43 was added to the pollen growth 

medium at 160 nM five minutes prior to observation. 

4.2.7 Microscopic Observations 

Fluorescence microscope observations were done using a Zeiss Axio 

Imager.Z1 equipped with a Zeiss AxioCam MRm Rev.2 camera. Z-Stacks acquired 

at 1 μM intervals were taken and image reconstruction and surface rendering were 

conducted using AxioVision Release 4.5 software. Confocal images were taken on a 

Zeiss LSM 510 META Live Duo confocal microscope equipped with a LSM 5 LIVE 

CCD detector and pictures were acquired with the LSM Image Examiner software. 

Images for the galvanotropic experiment were taken with a Nikon TE2000 

microscope equipped with a Roper fx cooled CCD camera and ImagePro software 

(Media Cybernetics, Carlsbad, CA). To improve the representation of the 3D data, I 

used surface rendering after the in silico reconstruction of z-stack images. This image 

processing technique replaces voxels by polygonal surfaces. Since this technique 
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takes into consideration the intensity of each voxel, it makes it easier to schematize a 

2D image in 3D with the possibility of rotation and tilting of the resulting images. 

4.3 Results and Discussion 

4.3.1 Optimization of actin labeling after chemical fixation 

Actin in the pollen tube can be visualized in fixed or in living pollen tubes. 

The first method uses fluorescent-labeled phalloidin, a fungal toxin that binds actin 

(Wieland et al., 1978). The second is based on the use of actin binding proteins or 

selected domains from these proteins that have been tagged with a fluorescent protein 

(Kost et al., 1998; Vidali et al., 2009). The disadvantage of using live actin 

visualization is that due to the introduction of additional actin binding proteins into 

the cytoplasm, the technique may affect pollen tube growth, alter actin conformation 

and is likely to label only a portion of the actin population in the pollen tube (Wilsen 

et al., 2006). Also, not all pollen tube species are easily transformed. To obtain a 

reproducible, high spatial resolution, 3D reconstruction image of the actin arrays in 

different pollen tube species, we therefore chose to use fixed samples. 

It is rather difficult to preserve the configuration of the actin cytoskeleton 

during fixation since actin filaments are very unstable; any changes in the subunit 

state will cause filament fragmentation. Therefore, fixation should be as quick as 

possible (Galkin et al., 2003). In recent years, the preservation of actin arrays in 

chemically fixed pollen tubes has been enhanced by using a pre-fixation step with m-

maleimidobenzoyl N-hydroxysuccinimide (MBS) ester or ethylene glycol 

bis[sulfosuccinimidylsuccinate] (sulfo-EGS). However, not surprisingly, the 

administration of these cross-linking agents prior to aldehyde fixation had the 

tendency to slightly alter the native actin arrays to appear more cross-linked 

(Geitmann and Emons, 2000). Rapid freeze fixation has so far yielded the best results 

for the conservation of the actin cytoskeleton in pollen tubes (Lovy-Wheeler et al., 

2005). In the absence of a freeze fixation facility in our hands, we optimized our 
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protocols for aldehyde-based chemical fixation using microwave-enhanced and thus 

extremely rapid incubation protocols.  

Using microwave exposure, a fixation treatment with 3% formaldehyde, 0.5% 

glutaraldehyde and 0.05% Triton X-100 in a buffer composed of 100 mM PIPES, 5 

mM MgSO4 and 0.5 mM CaCl2 at pH 9, could be shortened from 30 min on the 

bench to 40 seconds in the microwave at 150 Watts and 26°C. Each of the washing 

steps was also conducted in the microwave for 1 minute at the same conditions. 

Subsequent label with rhodamine-phalloidin revealed excellent preservation of the 

actin cytoskeleton (Figure 4.1) whose configuration was virtually identical to that of 

rapid freeze fixation preparations from other labs (Lovy-Wheeler et al., 2005). 

 

Figure 4.1: Confocal laser scanning micrographs showing phalloidin-based actin 
labelling of lily (A), Camellia (B) and Arabidopsis (C) pollen tubes after microwave-
enhanced chemical fixation. The fluorescence micrographs are maximum projections 
of the images of a z-stack and the accompanying brightfield micrographs were taken 
with DIC optics. Bars = 10 μm. 

The protocol worked equally well on pollen tubes from three species: lily, 

Camellia and Arabidopsis. In all of the pollen tubes, the very apex was devoid of 

prominent actin filaments, the collar region between apex and shank displayed an 

actin fringe and long filaments parallel to the axis of growth characterized the basal 

part of the tube (Figure 4.1). 
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Our optimized actin labeling protocol represents a significant improvement in 

the visualization of pollen tube microfilaments upon conventional chemical fixation 

protocols. It allowed us to obtain, in very short experimental time and with less labor, 

actin label in terms of image detail and definition equal to or better than what was 

observed in the literature using rapid freeze fixation (Lovy-Wheeler et al., 2005). In 

addition to this, no additional cross linkers (other than the aldehydes) were added to 

the fixative. Cross-linkers such as MBS or sulfo-EGS have the potential to alter the 

native conformation of the actin arrays by connecting two or more filaments that are 

in close proximity making them look like one filament or cable. The fact that our 

optimzed procedure avoids this cross-linking was demonstrated by the preservation 

of fine actin filaments in very close vicinity to each other that were clearly distinct. 

4.3.2 Spatial configuration of actin 

Although the general geometry of the actin arrays in the three species 

investigated here was very similar, there were small differences. Compared to lily, 

Camellia and Arabidopsis had more bundled and thicker actin cables in the shank 

region (Figure 4.1 B,C). The differences in bundling patterns that were observed in 

the three species could for example be explained by a specific activity or expression 

of actin bundling proteins such as villin (Vidali et al., 1999). In Camellia and 

Arabidopsis, villins might have a higher expression level or activity in the shank of 

the pollen tube compared to that of lily which could explain the differences in actin 

bundling patterns in these three species. Differences in villin activity could be due to 

differences in cytoplasmic calcium levels between these species since villin is a 

calcium dependent ABP (Vidali et al., 1999). 

Image processing using surface rendering revealed the 3D conformation of 

the actin cytoskeleton in lily pollen tubes (Figure 4.2). The actin fringe was 

represented as a dense group of fine actin filaments arranged principally in a 

direction parallel to the long-axis of the cell, in a ring-shaped arrangement at the 

subapex of the pollen tube (Figure 4.2B). In the surface rendering, depending on the 
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choice of threshold, the fine filaments did not necessarily appear as distinct objects 

but were often grouped. By contrast, the actin arrays located in the shank appeared as 

longer, thicker bundles that were almost evenly distributed throughout the tube 

diameter (Figure 4.2C).  In order to be able to visualize the relative distribution in 3D 

of the actin cytoskeleton and the secretory vesicles, I applied surface rendering to the 

3D reconstruction of a z-stack of confocal images of the vesicles labeled with the 

styryl dye FM1-43 (Figure 4.2D). I subsequently merged the resulting image with 

that of the actin fringe, which demonstrates that in 3D the inverted cone of vesicles 

fits exactly inside the ring formed by the actin fringe (Figure 4.2F). 
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Figure 4.2: Spatial configuration of actin arrays and vesicles in pollen tubes of lily. (A) 
Confocal laser scanning micrographs of the actin cytoskeleton labeled with rhodamine 
phalloidin. The image represents a maximum projection of the images of a z-stack taken 
at 1 µm interval. (B,C) 3D reconstruction and surface rendering of details from pollen 
tube shown in (A). (B) The structure is tilted slightly to reveal the absence of actin in the 
center of the subapical fringe. (C) Shank region of the tube. (D) 3D reconstruction and 
surface rendering image of the vesicles at the tip of the pollen tube that were labeled with 
FM1-43 shown in (E). (F) Merged image of the cone of vesicles and the actin 
cytoskeleton showing the 3D distribution of the two elements of the same tube. A-C and 
D-E are images of two different tubes. Bars = 10μm. 

In wavy pollen tubes, these bundles located in the shank of the tube had the 

tendency to follow the shortest way through the cell lumen (Figure 4.3). The fact that 

thick actin bundles follow the shortest track (Figure 4.3) may be a strategy by the cell 

to minimize energy spent on the actions of bundling and cytoplasmic streaming or a 
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mechanical resistance of the bundled actin filaments to bending. The acto-myosin 

system consumes energy and reducing the distance on which vesicle have to travel to 

reach the tip or to be transported backwards. Since villins are involved in 

cytoplasmic streaming (Tominaga et al., 2000) this can connect actin bundling to 

vesicle trafficking and energy spent in these two processes. 

 

Figure 4.3: Conformation of actin bundles in the shank of an undulating Camellia 
pollen tube labelled with rhodamine phalloidin. Bar = 10 µm. 

 

4.3.3 The dynamic behavior of the actin fringe varies with growth 

rate 

Comparison between the subapical actin fringes of the three pollen tube 

species investigated here revealed that the structure had the tendency to be shorter 

relative to the tube diameter and less dense in Camellia, and longer in Arabidopsis. 

Incidentally, Camellia has the fastest growing pollen tube under in vitro conditions 

and Arabidopsis thaliana the slowest among the three species I tested. To assess 

whether there is any correlation between the velocity of the pollen tube and the shape 

of the actin fringe, I cultured lily pollen tubes at a temperature of 15°C and compared 
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their actin fringe to that of lily pollen grown at 24°C (Figure 4.4). The colder 

temperature reduced the growth velocity in this species since the average pollen tube 

length of 317±106 µm obtained after 2h at 24°C was reduced to 221±105 µm at 

15°C. To quantify the size of the actin fringe, its length along the longitudinal axis of 

the cell and the surface area of the region occupied by the fringe on images obtained 

by maximal projection of z-stacks were measured. At 15°C, the fringe length was 

9±0.8 µm and the fringe area was 107.0±13.7 µm2 while for pollen tubes growing at 

24°C the fringe length was significantly shorter with 6.6±1.2 µm and its area reduced 

to 82.8±15.3 µm2. The differences in fringe length and area were significant 

(p<0.02). Temperature has been shown not to affect actin protein levels in the pollen 

tube (Åström et al., 1991). Therefore, the change in filament length at the level of the 

actin fringe is either due to a change in actin polymerization and treadmilling rates or 

due to differential activity level of actin bundling proteins. Several actin binding 

proteins (ABP) expressed in the pollen tube regulate actin severing, polymerization 

and bundling. Among these proteins is the actin depolymerizing factor (ADF) which 

binds to the pointed ends of the actin filaments and accelerates actin 

depolymerization at this slow growing end. In conditions where the amount of 

monomeric actin is limiting, this depolymerization enhances actin polymerization at 

the barbed or fast growing end (Carlier et al., 1997; Cooper and Schafer, 2000; 

Bamburg and Bernstein, 2008). ADF is present at the fringe zone of the pollen tube 

(Chen et al., 2002). At low concentrations, ADF is known to promote actin severing 

at the pointed end (Yeoh et al., 2002; Andrianantoandro and Pollard, 2006). This 

may be the reason why expression levels of ADF in different pollen species might 

affect severing levels and therefore induce actin polymerization by increasing the 

actin monomer pool. Actin monomers are bound to profilin (Vidali and Hepler, 1997; 

Gibbon, 2001; Vidali and Hepler, 2001; Wasteneys and Galway, 2003) which binds 

G-actin and makes it readily available for polymerization. Stability of newly formed 

filaments is increased by the bundling activity of villin (Friederich et al., 1990). The 

different growth rates observed in pollen tubes from different species might be 
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related to differences in metabolic levels and protein expression levels including 

ABP which could explain the differences in the pollen tube actin fringe length. 

 

 

Figure 4.4: Effect of growth temperature on the actin fringe of lily pollen tubes. (A) 
Pollen tube grown at 24°C and (B) 15°C. (C) and (D) show the measurements made on 
tubes A and B respectively; the yellow double headed arrow represents the length of the 
fringe (l) and the red line is the border of the area (a) occupied by the fringe. Bar = 
10µm. 

Actin filament elongation is the result of interplay between actin 

polymerization and depolymerization. Actin polymerization is promoted by formins 

while ADF/cofilins are responsible for actin depolymerization. This interplay affects 

filament length and pollen velocity. The difference in actin fringe pattern could be 

explained by different expression levels of these two protein families where 

filaments are longer in Arabidopsis due to a lower turnover, and they are the shortest 

in Camellia where the turnover maybe very high. One piece of evidence supporting 

this hypothesis is the difference in growth rate between the three species where 

Camellia has the fastest growing pollen tubes while Arabidopsis pollen tubes have 

the lowest velocity in vitro. 
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4.3.4 The actin fringe regulates pollen tube growth and shape 

It is intriguing how the pollen tube is able to strictly control its diameter and 

form a perfectly tubular shape. The actin cytoskeleton and in particular the subapical 

actin fringe are likely to be crucial in the control of the growth process as they 

deliver the secretory vesicles to precisely identified sites on the cellular surface as is 

shown by their complementary 3D locations (Figure 4.2F). In order to identify the 

role of the actin fringe in maintaining the tubular shape of the pollen tube, we used 

pharmacological agents that affect the degree of crosslinking between actin 

filaments. Ethylene glycol bis[sulfosuccinimidylsuccinate] (sulfo-EGS) is known to 

be a strong actin cross-linker (Lovy-Wheeler et al., 2005; Gossot and Geitmann, 

2007). It has been used to block the advancement of the actin fringe in poppy and lily 

pollen tubes (Gossot, unpublished data). I tested different concentrations of sulfo-

EGS on Camellia pollen tubes and monitored pollen tube velocity and tip shape. At 

500 mM sulfo-EGS, and after just few seconds of application of the drug, pollen tube 

velocity was decreased by half (from 0.2 to 0.1 µm/sec) followed by a swelling at the 

tip (Figure 4.5B). After few minutes, pollen tube recovered its original shape (Figure 

4.5D) but failed to recover its original velocity during the remaining observation 

time. 
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Figure 4.5: Time lapse series of Camellia japonica pollen tubes treated with sulfo-
EGS. (A) Before the application of the drug, (B) 1 minute after the application, (C) 6 
minutes after and (D) 15 minutes after. Bars = 10µm. 

To determine how this drug affects the actin cytoskeleton, I labeled sulfo-

EGS treated tubes with rhodamine-phalloidin. At 10 minutes of treatment with sulfo-

EGS, the pollen tube lost its specific actin conformation at the tip; the actin fringe 

was lost and the actin arrays in the swelling tip were disorganized (Figure 4.6B). 

After 20 minutes, the actin arrays seemed to assemble at the very tip of the apical 

swelling (Figure 4.6C) and subsequently these form a fringe-like structure, that 

seemed to preceed the recovery of the pollen tube growth in its original diameter in 

less than 30 minutes (Figure 4.6D). 
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Figure 4.6: Actin cytoskeleton in Camellia pollen tubes labeled with rhodamine-
phalloidin. (A) control tube. Growing pollen tubes were treated with 500 mM sulfo-
EGS (B-D) for 10 (B), 20 (C) and 30 minutes (D). Bar = 10μm. 

The reduction in pollen tube growth rate and the loss of its cylindrical shape 

associated with the loss of the actin fringe and the reassembly of the actin fringe 
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prior to resumption of pollen tube shape, indicate the importance of the role of this 

cytoskeletal structure in maintaining the integrity of the pollen tube tubular shape and 

the normal growth rate. 

4.3.5 Role of the actin-myosin mediated vesicle delivery to the tip 

From studies in our lab (Bove et al., 2008), we know that secretory vesicles are 

delivered to precisely identified locations in an annular region around the very tip of 

the pollen tube. While subsequent vesicle movement through the apical inverted 

vesicle cone is likely to be based on diffusion and/or convective flow (Kroeger et al., 

2009), the delivery to the exocytosis site is probably mediated by the interaction of 

actin and myosin. Inhibition of myosin activity by 2,3-butanedione monoxine 

(BDM), an inhibitor of myosin ATPases that acts by stabilizing the myosin–ADP–Pi 

complex (Palmieri et al., 2007; Radford and White, 2010) slows cytoplasmic 

streaming as demonstrated on Chara corallina and in lily pollen tubes (Tominaga et 

al., 2000; Funaki et al., 2004). Pollen of Picea abies treated with this agent show a 

concentration dependent reduction in germination and pollen tube elongation rates 

(Anderhag et al., 2000). In order to interfere with the vesicle delivery to growing 

zone of the pollen tube, I treated Camellia pollen tubes with different concentrations 

of BDM and assessed its effect on tube elongation, the actin cytoskeleton and cell 

wall components. 12 mM BDM was the threshold concentration between normal and 

morphologically affected growth. At this or higher concentrations of the drug, pollen 

tube growth rate was reduced and accompanied by a swelling at the tip shortly after 

application of the treatment. At concentrations above 25 mM, pollen tubes stopped 

growing and  a severe swelling followed by pollen tube tip explosion was observed. 

A balance between turgor pressure and cell wall mechanical properties governs the 

apical growth of the pollen tube (Chebli and Geitmann, 2007). The reason for 

bursting may therefore be the BDM induced reduction in the delivery of cell wall 

material to the expanding cell wall. While the apical cell wall continuously expands 
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under the effect of the turgor generated hydrostatic pressure, it thins and thus bursts, 

likely because exocytosis does not take place. 

To assess the configuration of the actin cytoskeleton following BDM 

treatment, I labeled drug treated pollen tubes with rhodamine phalloidin. After 50 

minutes of growth in control conditions, Camellia pollen tubes were treated with 12 

mM BDM and incubated for 10 more minutes after which they were immediately 

fixed and stained. The highly organized actin fringe was displaced more distally and 

appeared less organized (Figure 4.7). Remarkably, the clear zone was longer and 

extended to more than 20 μm from the tip. Facing the clear zone there were thin actin 

filaments organized in a circular shape. In the shank region of the pollen tube 

bundling of actin seemed reduced as actin was more homogeneously dispersed 

through lumen of the cell. We do not know whether this is a direct effect of the drug 

or whether this is linked to the reduced amount of trafficking on the actin bundles. 

The extension of the clear zone together with the distal position of the actin 

fringe seems to indicate the during BDM treatment, vesicles still get delivered to the 

tip, but they do not seem to get transported away from the tip, thus accumulating 

there. This might indicate that rather than affecting forward transport, interfering 

with myosin functioning reduced in particular rearward transport of vesicles. 

 

Figure 4.7: Actin cytoskeleton in a Camellia japonica pollen tube treated with 12 
mM BDM. The upper image is the fluorescent image and the lower one is a DIC 
image. Bar = 10 μm. 
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Pollen tube morphology has been shown to be controlled by the mechanical 

properties of its cell wall (Fayant et al., 2010). Since BDM caused morphological 

changes, I assessed whether incubation with the drug caused any variations in the cell 

wall composition of the pollen tube. Using histochemical and immunolabel methods 

I investigated the distribution of callose, cellulose and pectic components of the cell 

wall. 

Aniline blue treatment of Camellia pollen tubes after one hour of growth in 

the presence of 12mM BDM showed no clear difference in callose distribution 

between control and treated pollen tubes. Callose was mostly present at the base of 

the tube and decreased closer to the tip (Figure 4.8), which is typical for growing 

pollen tubes of most species (Ferguson et al., 1998). 

 

Figure 4.8: Callose staining of Camellia japonica pollen tubes with aniline blue. (A) 
control tube and (B) 12 mM BDM treated pollen tube. Images are median optical 
sections. Bar = 10 μm. 

Calcofluor white label for cellulose revealed an increased cellulose deposition 

in the normally cellulose free apical region in BDM treated tubes (Figure 4.9). In 

addition, there seemed to be a cytoplasmic region containing cellulose in the center 

of the border region separating the clear zone from the rest of the pollen tube. 

Cellulose was mostly present in the distal part of the pollen tube but less visible in 

regions closer to the tip than callose (Derksen et al., 2002). Callose and cellulose 

deposition result from the activity of membrane-localized synthases and cellulose 

synthesis is activated earlier during the longitudinal maturation of the cell wall than 

that of callose synthesis (Ferguson et al., 1998; Geitmann and Steer, 2006). 

Therefore, a reduction in growth rate may allow cellulose synthase activity to "catch 
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up" with the continuously elongating tip leading to ectopic deposition of visible 

amounts of cellulose in the apical region. 

A

B

 

Figure 4.9: Cellulose staining of Camellia japonica pollen tubes. (A) control tube 
and (B) 12 mM BDM treated pollen tubes. The arrow shows a dense subapical 
cellulose deposition. The upper images are projections of images taken at 1 µm 
interval. Bar = 10 μm. 

Immunolabeling of pectins revealed that methylesterified pectins (labeled 

with JIM7 monoclonal antibody) in BDM treated tubes showed the same labeling 

pattern as the control (Figure 4.10A,B). Label for non-esterified pectins (JIM5 

monoclonal antibody) was clearly different, however. While non-esterified pectins 

were absent at the tip of control Camellia pollen tubes, they were present at the tip of 

the BDM treated tubes (Figure 4.10C,D). 

This phenomenon can possibly be explained the behavior of the enzyme 

pectin methyl esterase (PME). During maturation of the apically deposited pectic cell 

wall, this enzyme de-esterifies pectin molecules allowing them to be cross-linked by 

Ca2+ resulting in the formation of a relatively stiff three dimensional pectate gel. 
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PME is deposited at the apex together with its target molecule and catalyses the de-

esterification in time-dependent manner. A slower growth rate might result in PME 

activity to "catch up" with the elongating apex leading to visible amounts of acidic 

pectin in this region. Alternative, and not mutually exclusive is an explanation that is 

based on the fact that the activity of different isoforms of PME is affected by the pH 

of the apoplast (Bosch and Hepler, 2005) which could be different as a result of the 

drug treatment. 

 

Figure 4.10: Effect of disruption of vesicle transport by BDM on the distribution of 
esterified (A,B) and non-esterified (C,D) pectins in the cell wall of Camellia 
japonica pollen tubes. A and C represent the controls and B and D represent the 
12 mM BDM treated pollen tubes. Upper images are median optical sections. Bars = 
10 μm. 

 

4.4 Conclusion 

The pollen tube actin cytoskeleton is strongly involved in the regulation of 

pollen tube growth and architectural integrity. The actin fringe located at the subapex 

of the pollen tube is the site of high actin dynamics. The use of cross linkers that 

block the actin fringe strongly reduced pollen tube growth and induce a swelling at 
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the tip of the tube. The tube recovered its shape preceded by a progressive 

reconstruction of the actin mesh at the subapex. Normal rates of vesicle delivery are 

crucial for a growing pollen tube. Any modification in the rate of delivery of 

secretory vesicles is likely to affect the entire machinery controlling pollen tube 

growth. After the treatment with the BDM, the actin conformation changed, the actin 

fringe shifted location and the clear zone increased in volume due to changes in the 

vesicle transport pattern.  
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5 Actin regulates pollen tube tropism through redirection of 

secretory vesicles 
I wanted to investigate the role of the actin cytoskeleton and calcium ions in 

controlling the capacity of the pollen tube to change its growth direction and hence to 

respond to an external signal. I devised an assay that allowed me to apply a 

directional signal in precisely timed and calibrated manner and to assess the detailed 

time course of events associated with the cellular response. In vitro grown pollen 

tubes were exposed to an electrical field and their response was monitored using 

brightfield and fluorescence microscopy. Different treatments that interfere with 

cytoskeleton integrity or calcium channels were also used and the responses 

monitored. 

The article was submitted to the journal Traffic 
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Abstract 

In order to accurately target the embryo sac and deliver the sperm cells, the 

pollen tube has to find an efficient path through the pistil and respond to precise 

directional cues produced by the female tissues. Although many chemical and proteic 

signals have been identified to guide pollen tube growth, the mechanism by which 

the tube changes direction in response to these signals is poorly understood. We 

designed an experimental setup using a microscope mounted galvanotropic chamber 

that allowed us to induce the redirection of in vitro pollen tube growth through a 

precisely timed and calibrated external signal. Actin depolymerization, reduced 

calcium concentration in the growth medium and inhibition of calcium channel 

activity decreased the responsiveness of the pollen tube to a tropic trigger. An 

increased calcium concentration in the medium enhanced this response and was able 

to rescue the effect of actin depolymerization. Time lapse imaging revealed that the 

motion pattern of vesicles and the dynamics of the subapical actin array undergo 

spatial reorientation prior to the onset of a tropic response. Together these results 

suggest that the precise targeting of the delivery of new wall material represents a 

key component in the growth machinery that determines directional elongation in 

pollen tubes. 

 

Key words 

Pollen tube, galvanotropism, actin, calcium, vesicle, tip growth.  
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5.1 Introduction 

Cellular differentiation often entails changes to cell shape. These shape 

changes can affect the overall aspect ratio of the cell dimensions or give rise to 

complex geometric features. The formation of cellular protrusions is an important 

example of a morphogenetic process that in numerous cell types is crucial for 

attaining full functionality. Cellular protrusions typically allow the cell to reach out 

into other areas of the organism or the surrounding environment. This activity can 

have different purposes such as making contact with other cells or tissues, 

exchanging signals, transporting material over long distances or finding sources of 

water and nutrients. In mammals, the growth of neuronal growth cones is an extreme 

example of a cellular protrusion formed with the aim of reaching distant regions of 

the organism. In plant and fungal cells, in which cellular migration is prevented by a 

relatively stiff cell wall, reaching out is the only way for cells to move. Cellular 

protuberances formed by walled cells are generally cylindrical extensions with 

approximately hemisphere-shaped ends. In fungi, hyphal extensions elongate rapidly 

and they are able to colonize the soil, plant roots or any other substance providing 

nutrients (Gow, 1994; Riquelme et al., 1998). In plants, typical cellular protuberances 

include root hairs, unicellular trichomes, and pollen tubes. Although neuronal axons, 

fungal hyphae and pollen tubes are evolutionary distant, they share a common feature 

that enables them to direct their elongation growth towards particular targets: the 

capacity to respond to directional cues and display tropic behaviour. Rapid 

redirection of cellular growth relies on a specialized growth mechanism: tip growth. 

Contrary to the diffuse expansion characterizing determinate protuberances such 

trichomes, in tip growing cells all growth activity is confined to the extreme end of 

the cell (Harold, 1997; Bachewich and Heath, 1998; Alessa and Kropf, 1999; Gomez 

and Spitzer, 1999; Baluška et al., 2000; Geitmann and Ortega, 2009). This spatially 

confined expansion allows for instant changes in growth direction upon the 

perception of vectorial signals (Geitmann, 2010). In order to execute this redirection, 
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the machinery generating the polar growth activity must be reoriented in space. 

Although we have an increasingly detailed understanding of the molecular players 

involved in the perception of directional signals in plants (Geitmann and Palanivelu, 

2007; Mortimer et al., 2008; Mortimer et al., 2009; Stewman et al., 2010), many 

questions remain on how exactly the growth machinery is redirected in walled cells.  

Cellular expansion in plant cells is driven by the internal hydrostatic pressure, 

the turgor. Turgor is generally recognized to be the motor, but not the controller of 

plant cell growth (Schopfer, 2006), even though local increases in turgor were 

purported to be able to direct cellular growth in plants (Zonia et al., 2006). However, 

since pressure is a scalar quantity and not a vector quantity it is safe to state that 

morphogenesis in walled cells is regulated by the spatial distribution and anisotropy 

of mechanical properties in the cell wall (Geitmann and Ortega, 2009; Fayant et al., 

2010; Winship et al., 2010). Spatial biomechanical gradients in the primary wall of 

individual plant cell are generated by two processes: the spatially targeted delivery of 

new, relatively softer cell wall material and the maturation and hence stiffening of 

cell material through enzymatic action causing cross-linking between cell wall 

polymers. Insertion of soft material promotes expansion; cross-linking reduces it. In 

tip growing plant cells, both processes occur in close spatial proximity with the 

delivery of soft material being focused to the pole of the cell and the annular region 

around it (Bove et al., 2008; Zonia and Munnik, 2008; Geitmann and Dumais, 2009) 

and the rigidification occurring in the transition region linking the hemisphere shaped 

apex and the cylindrical shank (Fayant et al., 2010). The targeting of both cell wall 

material and cell wall modifying enzymes to the apex of the cell is, therefore, crucial 

for tip growth. It is ensured by the long-distance transport of secretory vesicles 

towards the apical cytoplasm and the subsequent exocytosis that deposits the material 

into the existing wall. The intracellular delivery of vesicles towards the apex is 

mediated by the actin cytoskeleton thus pointing at this cytoskeletal array as a 

potential regulator of material targeting and thus controller of the growth machinery. 

However, this concept is awaiting experimental proof. 
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To investigate the mechanism of growth redirection in walled cells, we 

examined this process in pollen tubes, the cylindrical extensions formed from pollen 

grains. Efficient directional growth of the tube towards the ovule, located deep within 

the pistillar tissues, necessitates several drastic changes in growth orientation in 

response to a variety of cues that are of mechanical, chemical, proteic and physical 

nature (Geitmann and Palanivelu, 2007). Genetic and physiological studies have 

shown that both the pistil and the female gametophyte produce directional signals 

(Higashiyama et al., 2003; Tung et al., 2005; Higashiyama and Hamamura, 2008; 

Dresselhaus and Márton, 2009; Qin et al., 2009; Márton and Dresselhaus, 2010), but 

it is not clear how the pollen tube perceives these signals and how they are translated 

into changes in growth direction. Signaling pathways involving receptor kinases and 

cell membrane-associated small G proteins along with variations in ion fluxes are 

likely to be involved in the reorientation response (Muschietti et al., 1998; Hepler et 

al., 2001; Kaothien et al., 2005), but all signaling pathways must eventually effect a 

change in a mechanical structure of the cell to accomplish a change in growth 

behavior. 

In angiosperm pollen tubes, material carrying vesicles are delivered to the 

growing tip in an inverse fountain shaped, cytplasmic streaming pattern that results 

in the aggregation of vesicles in a cone-shaped region within the apical cytoplasm 

(Parton et al., 2001; Bove et al., 2008; Zonia and Munnik, 2008; Geitmann and 

Dumais, 2009). The vesicles in the center of this cone-shaped aggregation display 

movement in rearward direction and correspond either to vesicles that had failed to 

undergo exocytosis and or to those taken up by endocytosis at the pole of the cell 

(Bove et al., 2008). The delivery of vesicles towards the apex on the other hand 

occurs in the periphery of the tube, towards a region forming an annulus around the 

pole of the pollen tube tip. This annulus is thought to correspond to the region of 

highest exocytosis (Bove et al., 2008; Zonia and Munnik, 2008). It coincides with the 

front end or leading edge of the cortical actin fringe, a dense array of actin filaments 

dominating the periphery of the subapical cytoplasm in growing pollen tubes (Lovy-
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Wheeler et al., 2005). Actin filaments in the periphery of the fringe point forward 

with their barbed ends, whereas actin arrays in the central region of the cell point 

rearward (Lenartowska and Michalska, 2008) thus enabling the myosin-driven 

bidirectional motion of vesicles (Cai and Cresti, 2008; Kroeger et al., 2009). The 

cone-shaped aggregation of vesicles is known to tilt during a reorientation of pollen 

tube growth (Camacho and Malhó, 2003; Bove et al., 2008), but whether this occurs 

before or after the change in the pollen tube geometry has not been determined in 

detail. It is equally unclear whether this deviation from the radial symmetry is 

accompanied by or possibly even a result of a change in the spatial configuration of 

the actin fringe. Here we investigated at high spatial and temporal resolution how 

changes in vesicle flow pattern and spatial configuration of the subapical actin array 

are connected to effect a redirection of pollen tube growth. To analyze the time-

course and causality of events, we also assessed the role of calcium, an ion that has 

the potential to influence the turning response at several levels. It functions as a 

cross-linker of pectin molecules (Jarvis, 1984; Carpita and Gibeaut, 1993) and may 

thus be involved in determining the spatial profile of the cell wall mechanical 

properties. The ion also enters the pollen tube cytoplasm by way of tip-localized 

calcium channels (Pierson et al., 1994; Pierson et al., 1996) resulting in a tip-focused 

cytosolic calcium gradient the presence of which is required for pollen tube growth 

(Pierson et al., 1994). To reproducibly trigger a turning response in growing pollen 

tubes, we used a galvanotropic setup designed to operate in a confocal laser scanning 

microscope allowing for time lapse imaging of vesicle motion patterns and actin 

filament dynamics. 
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5.2 Results 

5.2.1 Application of an electrical field induces a reproducible, tropic 

response in Camellia japonica pollen tubes 

In planta, growing pollen tubes orient their growth direction in response to 

chemical and mechanical cues. However, chemical signals have the disadvantage of 

having to diffuse which is a difficult to control, time-dependent process. To allow us 

to switch on and off a directional trigger at precisely determined points in time and at 

exactly defined parameter settings, we used an electrical trigger, which has been 

shown to induce tropic behavior in pollen tubes (Nakamura et al., 1991; Malhó et al., 

1992). We devised a miniature electrophoresis chamber which can be mounted on an 

inverted microscope (Figure. 5.1A) to allow live observation. 

For most experiments, we used pollen from Camellia japonica, a species 

forming large pollen tubes that grow extremely straight under in vitro conditions. 

With the current switched off, Camellia japonica pollen was placed in a line parallel 

to the future electrical field (Figure. 5.1A) resulting in pollen tubes growing mostly 

perpendicular to the field (Figure. 5.1B). After 105 minutes of undisturbed growth, 

the electrical field was switched on and left on for 10 minutes. To confirm that the 

resulting reorientation of the growth direction was not arbitrary but a result of the 

electrical field, in several experiments the orientation of the field was reversed after 

10 min. In all cases, this reversed the direction of the response (Figure. 5.1C). To 

assess pollen tube response, we quantified the percentage of pollen tubes displaying a 

change in growth direction, the angle between new and old growth direction, and the 

time delay between application of the field and appearance of the first change of 

outer morphology (Figure. 5.1C). In preliminary trials, different voltages had been 

tested. 1.5 V/cm was the optimal setting at which 35% of the tubes responded by 

changing their growth direction towards the cathode. No tubes were observed to turn 

towards the anode. At higher current potentials, pollen tubes exploded and at lower 
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voltages no visual effect was observed. At 1.5 V/cm, two populations of pollen tubes 

could clearly be distinguished. One population of tubes turned with an average angle 

of 19.95±4.15 (Figure. 5.2), the other did not turn visibly within the observation 

time. Within the population displaying a turning response, the average response time 

between application of the electrical field and onset of the redirection was 209 

seconds (Figure. 5.3; n > 100). Importantly, the growth rate was not affected by the 

electric field. Neither the growth rate between trigger and onset of response nor that 

after onset of the growth redirection was statistically different from the growth rate 

before application of the field (Figure. 5.4). 

5.2.2 Modification of the calcium concentration in the growth 

medium affects the tropic response 

Calcium is taken up by pollen tubes at the growing apex (Feijó et al., 1995) 

resulting in a strong tip-focused gradient of the ion in the cytoplasm (Pierson et al., 

1994). Changing the spatial distribution of this gradient causes the pollen tube to 

change its growth direction (Malhó et al., 1992). Dissipation of the calcium gradient 

causes growth arrest (Pierson et al., 1994) confirming that calcium is a crucial 

element in the signaling pathway controlling both growth rate and growth direction. 

Therefore, we wanted to assess whether altering the calcium concentration in the 

growth medium would affect the behavior of Camellia pollen tubes upon a 

galvanotropic trigger. 

To culture Camellia japonica pollen tubes in vitro, we used a standard growth 

medium (Gossot and Geitmann, 2007) that had been optimized for this species by 

modifying the calcium concentration to be 2.54 mM (in form of calcium nitrate). 

This modified medium consistently yielded a germination percentage of 

approximately 87% and, after one hour of incubation, the Camellia pollen tubes had 

an average length of 380 μm (Figure. 5.5). To determine the range of calcium 

concentrations within which growth rate would not be affected dramatically, we 
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determined the dose-dependence of the behavior of Camellia pollen in the absence of 

an electrical field. Growth media containing half of the optimized calcium 

concentration (1.27 mM) or twice the optimal concentration (5.08 mM) caused mild 

reductions in germination percentage by about 10%, while the tube elongation was 

reduced by 14 and 19%, respectively (Figure. 5.5). This behavior is consistent with 

the postulated optimal calcium range within which the response of pollen tubes to 

concentration changes is known to be minor (Brewbaker and Kwack, 1963; Picton 

and Steer, 1983; Steer and Steer, 1989; Holdaway-Clarke and Hepler, 2003; Bou 

Daher et al., 2009). Outside of this range, Camellia pollen tube growth was affected 

dramatically, as was demonstrated by the presence of very short tubes with 

morphological aberrations in growth medium without added calcium. 

To test the effect of altered calcium concentration on the galvanotropic 

response, we compared pollen tube redirection in the optimal medium (2.54 mM 

calcium) to that in media with higher (5.08 mM) and lower (0.63 mM) calcium 

concentrations. Lowered calcium decreased the percentage of responsive pollen tubes 

to 25% and increased the response time to 268 seconds. Increased calcium on the 

other hand, did not statistically alter the percentage of responsive tubes (35%), but 

the response time was strongly reduced to 159 seconds (Figure. 5.3). In both cases, 

the average deviation angle of the responsive tubes did not differ significantly from 

that in the control treatment (Figure. 5.2). 

The cytosolic calcium gradient in the pollen tube has been shown to be 

dissipated by the application of calcium channel blockers (Malhó et al., 1995). This 

treatment also affects pollen tube growth (Malhó et al., 1994; Malhó and Trewavas, 

1996; Geitmann and Cresti, 1998). To test whether the effect of calcium on the 

galvanotropic behavior of Camellia pollen tubes was due to the activation of putative 

surface receptors or whether it necessitated the channel mediated passage of calcium 

into the cytosol we partially blocked calcium channels using lanthanum chloride (La) 

(Malhó et al., 1995; Malhó and Trewavas, 1996; Geitmann and Cresti, 1998; Qu et 
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al., 2007). Preliminary tests had shown that at a concentration of 1 µM, La only 

slightly decreased pollen tube length when assessed after one hour of incubation. In 

the presence of 1 µM La, the average deviation angle of pollen tubes upon 

application of the galvanotrigger was not different from any other treatment (Figure. 

5.2), but the percentage of responsive tubes was reduced to 21.5% (p<0.05) and the 

response time significantly increased to 273 seconds (Figure. 5.3). Doubling the 

calcium concentration in the growth medium in the presence of La was able to rescue 

the La induced reduction in response time to a value similar to that obtained with the 

control medium (219 seconds), while the percentage of responsive tubes increased 

only slightly to 24% (Figure. 5.3). 

5.2.3 Reducing the polymerization rate of actin filaments affects the 

tropic response 

The pollen tube cytoskeleton has two main components: microtubules and 

actin microfilaments (Geitmann and Emons, 2000). Microtubules do not seem to be 

directly involved in pollen tube tip growth, since inhibition of their polymerization 

does not prevent pollen tube elongation (Åström et al., 1995; Gossot and Geitmann, 

2007). However, depolymerization of the microtubule cytoskeleton results in 

straighter tubes in poppy indicating a potential role for this cytoskeletal element in 

the execution of turning events (Gossot and Geitmann, 2007). Actin on the other 

hand is crucial for pollen tube growth in general, as revealed by inhibitors that 

interfere with actin polymerization (Vidali and Hepler, 2001; Gossot and Geitmann, 

2007). This role is most likely linked to the involvement of actin in vesicle and 

organelle transport. However, elongation of pollen tubes is inhibited at much lower 

concentrations of actin drugs than those required to impede long distance organelle 

movement. Therefore, actin also seems to be more directly involved in the growth 

process, but this role remains to be defined. 
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To assess whether the pollen tube cytoskeleton is involved in the execution of 

a change of growth direction in the pollen tube, we pharmacologically disrupted 

microtubule and microfilament functioning. Latrunculin B (LatB) is a toxin isolated 

from the red sea sponge Latrunculia magnifica that sequesters G-actin leading to F-

actin depolymerization due to treadmilling (Gibbon et al., 1999). Since pollen tube 

growth is very sensitive to actin depolymerization, we needed to identify a 

concentration of LatB that would only mildly interfere with Camellia pollen tube 

elongation. For this purpose, germination percentage, tube growth (Figure. 5.6), and 

configuration of actin arrays (Figure. 5.7) were assessed after one hour incubation 

with various concentrations of the drug. Germination percentage of Camellia pollen 

was reduced by half at 5 nM LatB and higher concentrations were almost completely 

lethal (Figure. 5.6). At concentrations as low as 1 nM LatB, pollen tube length was 

moderately reduced although germination percentage was not affected (Figure. 5.6). 

Phalloidin labelling of the actin cytoskeleton revealed that 1 nM LatB treated tubes 

seemed indistinguishable from the control as the apical actin fringe and the subapical 

actin bundles were not visually affected (Figure. 5.7A,B). At higher LatB 

concentrations, the density of actin filaments in the region close to the apex was 

reduced (Figure. 5.7C,D). In the galvanotropic setup, the presence of 1nM LatB 

resulted in a significant reduction in the percentage of responsive pollen tubes 

(16.8%), and a significant increase in the response time to 272 seconds (p=<0.05) 

(Figure. 5.3). This suggests that the actin cytoskeleton is involved in the execution of 

a tropic response. 

Oryzalin, a dinitroaniline herbicide, has high affinity to tubulin monomers 

resulting in the degradation of the microtubules (Morejohn et al., 1987). Since 

inhibition of microtubules is known to fail to interfere with pollen tube growth, we 

exposed growing pollen tubes to 1 µM oryzalin, a concentration that caused complete 

disruption of microtubule arrays in Camellia pollen tubes as evidenced with 

immuno-fluorescence label (Figure. 5.8). To ascertain the specificity of the drug 

effect, we labelled the actin cytoskeleton in oryzalin-treated pollen tubes using 
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rhodamine-phalloidin. The configuration of the actin cytoskeleton was 

indistinguishable from that of control tubes (Figure. 5.9). As expected, 1 µM oryzalin 

did not alter the pollen tube growth rate in Camellia (Figure. 5.4). Using the drug in 

the galvanotropic setup revealed that neither the percentage of responsive pollen 

tubes (32%) nor the time delay between trigger and response (209 seconds) were 

different from the control treatment (Figure. 5.3). This suggests that microtubules 

have no visible effect on the galvanotropic response of the pollen tube in vitro. In 

both LatB and oryzalin treated samples, the average change in growth direction of 

responsive tubes (20) was not significantly different from that of the control 

treatment (Figure. 5.2). 

5.2.4 The effect of drug mediated scavenging of actin monomers can 

be rescued by calcium 

The polymerization of actin filaments is calcium dependent since the ion 

controls the activity of various actin binding proteins (Vidali and Hepler, 2001; Ren 

and Xiang, 2007; Chen et al., 2009). Since increasing the calcium concentration 

accelerated the tropic response and mild inhibition of actin polymerization delayed it, 

we wanted to test whether one treatment could compensate for the effect of the other. 

We assessed the galvano-response of pollen tubes grown in a medium supplemented 

with 1 nM LatB and 5.08 mM calcium. The number of tubes displaying a response 

was significantly higher than that of tubes exposed to LatB alone (Figure. 5.3) and 

the response time decreased to the same value (209 seconds) as that of the control 

without drug and normal calcium concentration (Figure. 5.3).  

5.2.5 Vesicle transport patterns change preceding pollen tube 

redirection 

Growth events in plant cells are preceded by a relaxation of the cell wall 

(Lockhart, 1965; Cosgrove, 1993; Cosgrove, 2000). This principle was shown to be 
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true in pollen tubes by temporal and spatial correlation studies which revealed that a 

reduction in cellular stiffness precedes the apical expansion of the cell wall (Zerzour 

et al., 2009). This concept is not uncontested, however, since local increases in turgor 

pressure have been proposed to be responsible for the spatially confined expansion of 

the pollen tube cell wall at the apex (Zonia et al., 2006). If turgor was able to locally 

deform the cell wall, then delivery of new cell wall material to the apex would 

simply be a compensatory mechanism to prevent cell wall failure wherever the cell 

wall expands. If spatial control of growth activity was associated with active 

manipulation of cell wall mechanics on the other hand, the delivery of new cell wall 

material would likely have the important function of controlling the local mechanical 

properties of the wall through the targeted addition of soft or fluid wall material. If 

the "local turgor" hypothesis was applicable, one would expect the secretory 

machinery to follow a reorientation in growth direction, whereas according to the 

"cell wall" hypothesis the secretory machinery should reorient prior to such a new 

direction of cell expansion. 

To distinguish between these two hypotheses, we monitored the spatial 

orientation of the cone-shaped aggregation of vesicles in the pollen tube apex 

preceding galvano-induced reorientation of the growth response. To obtain a precise 

time course of events, we labeled vesicles with FM1-43 at 15 minutes prior to the 

administration of the galvanotropic trigger. Time lapse imaging with the confocal 

laser scanning microscope revealed that switching on the electrical field did not 

visibly alter intracellular vesicle dynamics (not shown). However, during the delay 

period between application of the electric trigger and redirection of growth, the 

location and orientation of the apical inverted cone of vesicles changed. The inverted 

vesicle cone started reorienting towards the cathode prior to a visible change in outer 

cell geometry suggests that secretory vesicles were now targeted to an annular 

location that was tilted towards the cathode (Figure. 5.10A). To quantify this shift in 

the vesicle targeting we monitored the spatial profile of the fluorescence intensity in 

the periphery of the vesicle cone (Figure 5.10C,B). In a straight growing tube, the 
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cathodal and anodal sides of the pollen tube periphery had similar fluorescence 

intensity profiles that were characterized by a maximum at 2 µm meridional distance 

from the pole and a local minimum at the pole (0 µm meridional distance). At 

17.2±4.4 sec (n=5) seconds prior to the morphological deviation from radial 

symmetry, this local minimum and the two maxima began to shift resulting in the 

local minimum to being located at approximately 2 µm off the symmetry axis 

towards the cathodal side (Figure. 5.10B image 126s). Given an average tube 

diameter of 18 µm, this corresponds to a lateral shift of approximately 13° on the 

hemisphere shaped apex by the time a morphological asymmetry became visible. The 

fact that this value was lower than the final turning angle of 20° suggests that the 

tilting of the growth machinery is a gradual process that continues after the initiation 

of asymmetric cell wall expansion. 

5.2.6 Actin fringe remodeling precedes the change in pollen tube 

direction 

Since the actin cytoskeleton is responsible for vesicular transport and delivery 

to the growing apex, we wanted to assess whether the reorientation of the apical 

vesicle cone, and thus vesicle targeting, was caused by a change in the configuration 

of the actin arrays. Camellia japonica pollen tubes do not have a known gene 

expression promoter and do not express genes under the control of Lat52 (Twell et 

al., 1990) or zmC13 (Hamilton et al., 1998), two widely used, pollen tube specific 

promoters. We therefore used lily pollen tubes transiently transformed with lifeact 

(under the zmC13 promoter control) to visualize actin (Figure. 5.11). The targeting 

of vesicles towards the annular site of exocytosis (Geitmann and Dumais, 2009) is 

likely accomplished by the forward pointing ends of the actin filaments forming the 

leading edge of the subapical actin fringe (Cardenas et al., 2008). We therefore 

measured the density of actin filaments at the front end of the fringe across the 

diameter of the tube. Before application of a galvanotrigger, the fluorescence 

intensity profile across the tube was approximately symmetrical. After application of 
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the galvanotrigger, but prior to pollen tube redirection, the density of actin filaments 

became higher on the anodal side suggesting that the leading edge of polymerizing 

actin filaments had advanced further into the tip in this half of the tube (Figure 

5.11B,C). This change in actin array symmetry likely resulted in delivery of vesicles 

further towards the pole in the anodal side leading to an off-center displacement of 

the delivery of new cell wall material. 

5.3 Discussion 

Shape changes during cellular morphogenesis in plants generally occur in 

order to endow the cell with a particular functionality. In many cases, these shape 

changes alter the aspect ratio, for example by generating long fibers (high flexibility 

despite tensile resistance) or large vessel elements (efficient water transport). 

Although these shape changes are influenced by environmental conditions and 

interaction with neighboring cells, they typically do not represent spatially oriented 

responses to directional signals at the single cell level. Even during organ curvature 

following a gravitropic or light signal, the individual cells of a shoot or a root expand 

differentially but are not directed in relation to the vector of the external trigger. Only 

a few plant cell types have been identified to display growth activities that occur as 

directional responses to vectorial cues and that can thus be classified as tropic at the 

cellular level. These cell types represent excellent model systems for the 

investigation of the spatial control of plant cell growth. 

5.3.1 An electrical field induces directional growth in pollen tubes 

Electrical fields are clearly able to modulate the behavior of many cell types. 

For example cell division in human epithelial cells (Zhao et al., 1999) and growth in 

chicken neurites are affected by electrical fields (Jaffe and Poo, 1979). In addition, 

hyphae of Candida albicans (Crombie et al., 1990; Brand et al., 2007) and several 

filamentous fungi (McGillivray 1986, Gow 1994, Lever 1994) display galvanotropic 

behaviour which was shown to be dependent on the activity of calcium channels 
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(Brand 2007, Lever 1994). Earlier studies on pollen tubes successfully used electrical 

fields in the range of 0.5-2 V/cm to reorient growth (Wang et al., 1989; Nakamura et 

al., 1991; Nozue and Wada, 1993). With an optimal response at 1.5 V/cm, the 

Camellia pollen tubes tested here responded in a similar range of electrical potential 

as the pollen tubes of other plant species confirming that our conditions were 

appropriate. Despite the multitude of earlier studies, it remains poorly understood 

how the cell perceives the electrical signal. It has been proposed that as a result of 

exposure to an electrical field, ions in the growth matrix are driven by electrophoresis 

and move to form gradients to which the cell responds (Malhó et al., 1992). For a 

chemical gradient to be responsible for reorientation in our experimental setup, it 

would have to be established within the observed delay time between trigger and 

growth response, i.e. less than 2 min. Whether electrophoresis would be able to 

generate a significant chemical gradient within such a short time remains to be 

elucidated since available data on calcium gradients were obtained after much longer 

times of exposure to an electrical field (Malhó et al., 1992). 

Another hypothesis proposes that the electrical field induces electrophoretic 

displacement of ions or molecules within the cell. However, Camellia japonica 

pollen tubes in our experiments moved solely to the cathode, a behavior that would 

be inconsistent with the fact that the cell surface and most of the cellular constituents 

are negatively charged (Weisenseel et al., 1975; Bosch and Hepler, 2005) and would 

therefore rather be expected to move towards the anode. Alternatively, the 

application of the electrical field may depolarize the side of the pollen tube facing the 

cathode (Robinson, 1985), thus opening voltage gated calcium channels at this 

location, a phenomenon that has been described in yeast and filamentous fungi 

(Lever et al., 1994; Brand et al., 2007). This would increase the conductance of the 

plasma membrane for calcium ions at the cathodal side. This phenomenon has been 

observed in mouse neuroblastoma cells subjected to electrical fields between 1 and 

10 V/cm (Bedlack et al., 1992). Whatever the precise molecular mechanism, the 

electrical trigger has proven to be an excellent tool to study tropic behavior of pollen 
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tubes because it is immediate, specific, reproducible and does not affect pollen tube 

growth rate.  

5.3.2 Calcium affects pollen tube growth and tropism 

Calcium ions are required for in vitro pollen germination and elongation in 

most plant species (Brewbaker and Kwack, 1963; Picton and Steer, 1983; Li et al., 

1999; Bou Daher et al., 2009). Pollen tubes are known to follow gradients in calcium 

concentration in vitro (Mascarenhas and Machlis, 1964; Reger et al., 1992) and 

likely also in vivo (Ge et al., 2009). A tip focused, tip high Ca2+ gradient is 

established in the cytosol of the growing pollen tube (Pierson et al., 1994; Feijó et 

al., 1995) and any disruption of this gradient causes inhibition of growth. Calcium 

affects various processes involved in pollen tube growth and signalling (Trewavas 

and Malhó, 1998; Cheung and Wu, 2008; Zhou et al., 2009). Although growth in 

Camellia pollen tubes was only mildly affected by changes in the external calcium 

concentration within the tolerance range, their ability to respond to a tropic trigger 

was strongly calcium dependent. Importantly, the shortened response time observed 

at increased calcium concentration was not due to a faster growth rate because at this 

higher calcium concentration, pollen tubes actually grow slightly slower than under 

control conditions (Figure. 5.5). This means that directionality is more sensitive to 

calcium than growth rate per se. The question is how does calcium act to accomplish 

a change in growth direction? Does it act on the outside of the cell or does it enter the 

cell? Calcium has the ability to cross-link cell wall polymers. A rigidification of the 

wall on one side of the cell could putatively lead to the redirection of tip growth in 

the opposite direction. However, since calcium stiffens the wall, the bend would 

occur in the direction of the lower calcium concentration in the case of a 

concentration gradient (Steer and Steer, 1989). Since tubes bend towards the cathode, 

and a putative, electrophoresis-induced calcium gradient in the medium would be 

high at the cathode, this explanation does not seem to hold. On the other hand, the 

electrical field could cause calcium ions to leach out of the cell wall on the cathodal 
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side of the tube thus potentially causing a weakening of the cell wall at this side. 

Proof for this hypothesis would require quantification of the local calcium 

concentration in the cell wall and biomechanical tests of the effect of calcium 

concentration on cell wall mechanical properties.  

A more likely scenario is the asymmetric uptake of calcium in tubes exposed 

to an electrical field. The characteristic tip-high cytosolic calcium gradient is fed by 

calcium ions taken up through membrane located channels at the tip of the tube 

(Dutta and Robinson, 2004; Wang et al., 2004) at least some which are voltage 

activated (Shang et al., 2005; Qu et al., 2007). Certain stretch activated calcium 

channels are also known to be voltage sensitive (Guharay and Sachs, 1985; Cosgrove 

and Hedrich, 1991). Since the application of an electrical field induces membrane 

depolarization (Gross et al., 1986; Tsien et al., 1988; Tester and MacRobbie, 1990), 

the activity of these voltage-dependent calcium channels may be affected and create 

a biased calcium entry at the cathodal side as suggested for fungal hyphae (Lever et 

al., 1994) (Figure. 5.12). The negative effect of the channel blocker lanthanum on the 

rapidity and frequency of the turning response and the fact that this effect could be 

rescued by increased availability of calcium in the medium confirm that in 

reorienting Camellia pollen tubes, calcium ions exert their role within the cytoplasm. 

This is consistent with the observation that artificial displacement of the point of 

highest cytosolic calcium concentration towards the side of the growing pollen tube 

apex induces the tube to change direction (Malhó et al., 1994; Malhó et al., 1995; 

Malhó and Trewavas, 1996). which has been posited to be mediated by a control of 

vesicle fusion (Camacho and Malhó, 2003; Coelho and Malhó, 2006). 

5.3.3 The actin cytoskeleton mediates the turning response 

Our time-lapse studies suggest that the effect of the putative localized calcium 

influx is likely mediated by the actin cytoskeleton. Elevated cytosolic calcium is 

known to trigger actin fragmentation (Kohno and Shimmen, 1987; Eun and Lee, 

1997) or block polymerization (Vantard and Blanchoin, 2002). The effect of calcium 
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on actin can be direct or indirect, via the activation or deactivation of actin binding 

proteins (ABP) that in turn control the dynamics of the actin cytoskeleton (Vidali and 

Hepler, 2001; Chen et al., 2009). Actin dynamics are the product of a fine 

equilibrium between actin polymerization and depolymerization. Many of the ABP 

regulating these processes are calcium- or calcium- calmodulin-dependent. Among 

these proteins are actin depolymerizing factors (ADF) (Ressad et al., 1998; 

Smertenko et al., 1998; Vidali and Hepler, 2001), profilin, a protein able to sequester 

actin monomers (Staiger, 2000) and prevent actin polymerization (Gibbon et al., 

1998; Kovar et al., 2000; Snowman et al., 2000; Snowman et al., 2002), villin, a 

protein that bundles actin filaments (Yokota et al., 2000; Yokota et al., 2005), and 

gelsolin, an actin severing protein (Yin et al., 1990; T'Jampens et al., 1997; Huang et 

al., 2004). LatB competes with profilin for actin monomers (Gibbon et al., 1999) 

thus reducing the total amount of available G-actin resulting in a reduction of total F-

actin density in the pollen tube. Upon application of LatB at a moderate 

concentration (1 nM), pollen tube length was somewhat reduced but no structural 

changes in the appearance of the F-actin arrays were visible. However, despite the 

absence of a dramatic effect of this drug concentration on growth rate or actin 

configuration, the number of tubes responding to the galvano-stimulus was 

drastically reduced and the response delayed. This suggests that the dynamic nature 

of the actin arrays, their continuous polymerization and depolymerization, are crucial 

for the ability of the pollen tube to rapidly change direction. Confirmation for this 

concept was provided by the tilt of the leading edge of the subapical actin fringe 

prior to growth redirection. This indicates that polymerization activities of the actin 

filaments facing cathode and anode were different resulting in a faster advancement 

of the leading edge on the anodal side and a deviation from radial symmetry. The fact 

that increased calcium in the medium was able to rescue the effect of LatB 

corroborates the notion that actin dynamics controlled by actin binding proteins is 

crucial for the galvanotropic response. 
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The apparent role of actin in pollen tube tropism contrasts with findings in the 

hyphae of Neurospora crassa (Riquelme et al., 1998). In these fungal hyphae, the 

turning response depends on a functional microtubule cytoskeleton, whereas in the 

pollen tubes studied here, no effect on the tropic response was observed after 

complete depolymerization of microtubules. This confirms that there are crucial 

differences between hyphal and pollen tube growth. Despite the similarity of the 

outer morphology of these two tip growing cell types, the intracellular growth 

machineries are organized differently. Secretory vesicles in the tips of fungal hyphae 

are aggregated into a centrally located, structural feature that also comprises 

cytoskeletal elements, the Spitzenkörper, from which the vesicles are thought to 

depart towards the apical plasma-membrane (Bartnicki-Garcia, 1990). Vesicles in 

pollen tubes, on the other hand, are delivered along the periphery of the cell by the 

cortically positioned subapical actin fringe (Bove et al., 2008; Cai and Cresti, 2008; 

Cardenas et al., 2008). Microtubules in pollen tubes are known to be involved in the 

mobility of the vegetative nucleus and the sperm cells (Åström et al., 1995) as well 

as that of bigger organelles (Cai and Cresti, 2008), but their depolymerization does 

not prevent pollen tube elongation (Åström et al., 1995). Therefore, the absence of an 

effect of oryzalin on the turning response in Camellia pollen tubes was not 

surprising, since within the short experimental time used in the present setup (10 

minutes) a failure in nuclear transport was not expected to have any significant 

effect. 

In order to understand how the actin arrays function in redirecting tip growth 

in pollen tubes, it is important to recognize the fundamental differences between 

animal and plant cells. In mammalian cells, the polymerization of actin filaments is 

able to push forward the adjacent plasma membrane and thus to redirect the crawling 

movement of cells as is seen with fibroblasts (Onuma and Hui, 1988). In walled 

cells, the polymerization of cytoskeletal arrays cannot produce a force sufficiently 

high to compete with that generated by the turgor pressure (Money, 1997; Money 

and Hill, 1997). Any morphogenetic effect of a change in cytoskeletal dynamics in 
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turgid cells with walls must therefore be achieved indirectly by manipulation of cell 

wall assembly. While microtubules are able to orient plant cell expansion by 

influencing the deposition of cellulose microfibrils, actin filaments deliver new, 

pectic material to the cellular surface creating local soft spots in the wall. It is this 

delivery of soft cell wall material that enables the pollen tube to expand at the apex 

(Geitmann and Dumais, 2009; Zerzour et al., 2009). The tilting of the apical vesicle 

aggregation prior to pollen tube reorientation observed here clearly confirms that it is 

a change in the spatial targeting pattern of vesicles that leads to the change in tube 

shape and that the dynamic behavior of the actin array is responsible for this targeted 

delivery.  

5.4 Conclusion 

The timing of the tilting in the leading edge of the actin fringe and in the 

pattern of vesicle dynamics prior to a change in outer morphology clearly suggest 

that it is the cytoplasmic growth machinery that reorients to accomplish a change in 

growth direction in pollen tubes. The tilt is achieved by a differential modulation of 

actin dynamics in the two sides of the tube and this seems to be brought about by an 

increased local influx of calcium which we propose to be the result of an asymmetric 

opening of calcium channels. 

5.5 Materials and methods 

5.5.1 Plant material 

Camellia japonica pollen was collected from a plant growing in the Montreal 

Botanical Garden, dehydrated in gelatin capsules on anhydrous silica gel overnight 

and stored at -20°C. Camellia pollen growth medium contained 1.62 mM H3BO3, 

2.54 mM Ca(NO3)2·4H2O (unless mentioned otherwise), 1 mM KNO3, 0.81 mM 

MgSO4·7H2O, 8% sucrose (w/v). Lily (Lilium longiflorum) pollen was grown in lily 
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medium (LM) composed of 1mM KNO3, 1.6 mM H3BO3, 0.13 mM Ca(NO3)2, 5 mM 

MES and 8% w/v final sucrose concentration with a pH adjusted to 5.5. 

5.5.2 Actin labeling 

After one hour of growth, Camellia pollen tubes were fixed for 40 seconds in 

a freshly prepared fixative containing 3% formaldehyde, 0.5% glutaraldehyde and 

0.05% Triton X-100 solution in a buffer composed of 100 mM PIPES, 5 mM 

MgSO4, 0.5 mM CaCl2 at pH 9. Subsequently, samples were washed in the same 

buffer, 3 times for one minute each. Fixation and washing steps were accelerated by 

exposure to microwaves at 150 Watts in a PELCO cold spot® biowave 34700. Actin 

was labeled by incubating overnight at 4oC in rhodamine-phalloidin (Molecular 

Probes) diluted 30 times in a buffer composed of 100 mM PIPES, 5 mM MgSO4, 0.5 

mM CaCl2, 10 mM EGTA at pH 7. Next day, samples were washed with buffer 5 

times for one minute in the microwave at 150 Watts. Pollen was then mounted on 

glass slides in a drop of citifluor (Electron Microscopy Sciences), covered with a 

cover slip, sealed and immediately observed. 

Particle bombardment was used to visualize live actin dynamics in lily pollen 

tubes using zmC13::Lifeact-mEGFP, an actin probe that does not affect pollen tube 

growth (Vidali et al., 2009). DNA was extracted using alkaline lysis followed by 

RNAse treatment, phenol-chloroform extraction and PEG precipitation. 3 µg of DNA 

were used to coat 1.1 µm microcarrier, tungsten M-17 beads (BIORAD). 

Bombardment of pollen grains, placed on a filter paper, was carried out in an in-

house made biolistic device at an accelerating pressure of 62 psi for 50 ms under 600 

mm.Hg vacuum. Pollen was left to grow in 1 ml of 16% sucrose LM to which 200 

mL LM without sucrose were added every 10 minutes until the final sucrose 

concentration in the medium reached 8%. After 4 hours of growth, pollen was 

deposited in the galvanotropic chamber and observation was done in the confocal 

laser scanning microscope. 
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5.5.3 Microtubule labeling 

Pollen was fixed in PIPES magnesium (PM) buffer (50 mM PIPES, 1 mM 

EGTA, 1 mM MgCl2 at pH 6.9) with freshly prepared 4% formaldehyde for 45 

minutes, then washed twice (5 minutes each) in PM buffer. Fixed pollen was treated 

with 2% cellulysin (Calbiochem) for 6 minutes, washed twice and treated with cold 

methanol for 5 minutes at -20°C. After two washes with tris buffer saline (TBS) (50 

mM Tris, 150 mM NaCl at pH 7.5) with 2% bovine serum albumin (BSA), the 

samples were incubated overnight in anti-α-tubulin (Molecular Probes) mouse 

monoclonal antibody (diluted 1:200) at 4oC. After two washes with TBS buffer 

containing 2% BSA, samples were incubated with Alexa Fluor 594 (Molecular 

Probes) goat anti-mouse secondary antibody (diluted 1:100) for 2 hours at room 

temperature. Before mounting, pollen was washed four times in TBS buffer with 2% 

BSA. 

5.5.4 In vivo vesicle labeling 

Vesicles in growing pollen tubes were labelled by adding 160 nM of the 

lipophilic styryl dye FM1-43 (Molecular probes, Invitrogen) to the growth medium 

fifteen minutes prior to observation. 

5.5.5 Microscopy and statistical analysis 

Widefield fluorescence microscopy was done in a Zeiss Axio Imager.Z1 

equipped for structured illumination microscopy (Apotome) and with a Zeiss 

AxioCam MRm Rev.2 camera. Z-Stacks acquired at 1 μM intervals were used for 

image reconstruction using AxioVision Release 4.5 software. 

Confocal laser scanning micrographs were taken on a Zeiss LSM 510 META 

confocal laser scanning microscope equipped with a LSM 5 LIVE setup. Images 

were acquired with the LSM Image Examiner software. Images for the galvanotropic 

experiment used for experimental optimizations and statistical analysis were taken 
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with a Nikon TE2000 microscope equipped with a Roper fx cooled CCD camera and 

ImagePro software (Media Cybernetics, Carlsbad, CA). Images were processed and 

fluorescent profiles quantitatively analysed using ImageJ 1.41o (National Institutes 

of Health, USA, http://rsb.info.nih.gov/ij). Changes in the geometry of pollen tubes 

were detected by drawing a line following the outline of the growing pollen tube 

apex before exposure to a tropic trigger. This outline was copied onto subsequent 

images in a time series to identify the moment at which the shape of the apex 

changed asymmetrically compared to the original outline. The student t-test was used 

to determine statistic significance. 

5.5.6 Galvanotropic setup 

A miniature electrophoresis chamber was designed to be compatible with 

observation in an inverted microscope. It consists of a 3.5 cm Petri dish with a 2x1 

cm rectangular opening to which a coverslip (thickness #1) was glued using silicone. 

Each of the 1 cm sides of the chamber was connected to an electrode using a 

platinum wire (Figure. 5.1A). The electrodes were connected to a direct-current (DC) 

power supply (TEKPOWER HY1803D). Heated Camellia growth medium 

complemented with 1% agarose type VII (Sigma-Aldrich) was precooled to 40°C 

before addition of latrunculin B, oryzalin or lanthanum chloride. The medium was 

spread into a thin layer on the coverslip of the chamber and left for 5 minutes to 

solidify. Pollen was then applied in a line parallel to the electrical field inside the 

agarose layer. 
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5.7 Figures and Legends 

 

Figure 5.1: Galvanotropic setup devised to expose Camellia pollen tubes to an 
electrical field. (A) Galvanotropic chamber with pollen applied on a line (arrow) 
oriented parallel to the field. The square indicates the position of the close-up in (B). 
(B) Pollen tubes emerging from the aligned pollen grains grow mainly perpendicular 
to the line and thus to the future electrical field. (C) Pollen tube changing growth 
direction by an angle α after the application of an electrical field of 1.5 V/cm 
perpendicular to the growth direction. Arrowheads indicate the time of field 
application and minus and plus signs indicate the cathodal and anodal sides of the 
field, respectively. td1 and td2 represent the delay times between the application of the 
electrical field and the appearance of a visible change in growth direction. In this 
example, the electrical field was continuously applied and reversed upon completion 
of growth redirection to demonstrate that the tropic response is due to the presence of 
the electrical field in a particular orientation. Bars = 100 µm (B), 20 µm (C). 
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Figure 5.2: Deviation angle of Camellia pollen tubes subjected to a 1.5 V/cm DC 
electrical field under different experimental conditions. Deviation angles of tubes 
displaying a turning response varied between 12 and 35 degrees. No difference was 
observed in the mean values (horizontal lines) of the deviation angle (approximately 
20 degrees) between the eight treatments. Points represent individual pollen tubes. 

 

Figure 5.3: Percentage of tubes displaying a turning response and response times of 
Camellia pollen tubes subjected to a 1.5 V/cm electric trigger under different 
experimental conditions. Letters represent the statistical difference in the response 
time (p<0.05). 
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Figure 5.4: Velocity of Camellia pollen tubes before application of the electrical 
trigger (black), during delay time between application and deviation (grey) and after 
pollen tube deviation (white). Letters represent the statistical differences between 
treatments. No effect of the electrical field was found on pollen tube elongation 
during the three time periods within individual treatment conditions. 

 

Figure 5.5: Effect of calcium concentration in the medium on tube length (triangles) 
and germination percentage (circles) of Camellia pollen after one hour of growth. 
Optimal germination percentage is marked (full symbol). Data points represent the 
mean values of n>100 tubes and vertical bars represent standard deviations. 
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Figure 5.6: Effect of LatB on Camellia germination percentage (circles) and pollen 
tube length (triangles) at one hour of growth. Points represent mean values (n>100) 
and vertical bars represent the standard deviations. 

 

Figure 5.7: Effect of LatB on the spatial configuration of the actin arrays in Camellia 
japonica pollen tubes. Fluorescent micrographs of actin labeled with rhodamine 
phalloidin after treatment with 1 nM LatB (B), 3 nM LatB (C) and 10 nM LatB (D). 
Images represent maximum projections of Z-stacks acquired with the Apotome 
shown with their corresponding DIC micrographs. (A) Control tube. Bar = 10 μm. 
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Figure 5.8: Effect of oryzalin on the microtubule arrays in Camellia pollen tubes. 
Fluorescent micrographs represent Z-projections of images taken with the Apotome 
of pollen tubes labeled for α-tubulin, shown with their corresponding DIC images. 
(A) Control tube, (B) 1 μM oryzalin. Bars = 10 μm. 

 

Figure 5.9: Effect of oryzalin on the actin cytoskeleton in Camellia pollen tubes. 
Pollen tube labeled with rhodamine phalloidin after treatment with 1 μM oryzalin 
(B). (A) Control tube. Fluorescent micrographs represent projections of Z-images 
taken on the Apotome, shown with their corresponding DIC images. Bars = 10 μm. 
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Figure 5.10: Vesicle targeting during the tropic growth response in a Camellia pollen 
tube. (A) Vesicles labelled with FM1-43 styryl dye. False colors are used to indicate 
relative fluorescence intensity. Red stands for high, blue for lower intensity. 
Numbers indicate the time in sec after the application of the directional trigger. (B) 
Spatial profiles of the relative fluorescence intensity along the periphery of the tube 
on the anodal (light green) and cathodal (dark green) sides. x-axis shows meridional 
distance from the pole of the tube. The arrow indicates the position of the local 
minimum in fluorescence intensity. (C) Position of the line plot on the anodal (light 
green) and cathodal (dark green) side. The white arrow indicates the position of the 
local minimum in fluorescence intensity before galvano-trigger. The grey arrow 
indicates the position of the fluorescence minimum at 126 sec when outer tube 
geometry started changing. Bars = 10 µm. 
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Figure 5.11: Confocal micrographs of median optical sections of Lilium pollen tube 
expressing zmC13::Lifeact-mEGFP (top) and the corresponding fluorescence 
intensity profiles on a line plot (dashed) perpendicular to the growth axis and situated 
5µm from the tip of the tube (bottom). (A) Normally growing pollen tube, (B) the 
same tube subjected to the electric trigger and observed prior to the change in its 
geometry and (C) the same tube after the change in geometry appeared. + Anodal 
side, - cathodal side. Bar = 10µm. 
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Figure 5.12: Proposed model for cellular events during the reorientation of a pollen 
tube following a galvanotropic trigger. (A) Calcium channel activity, actin dynamics 
and cytosolic calcium concentration are symmetric in a normally growing pollen 
tube. (B) Upon application of the electrical trigger, calcium channels on the 
depolarized (cathode facing) side of the pollen tube are opened leading to the 
elevation of the cytosolic calcium concentration at this side of the tube. This in turn 
reduces actin polymerization at this side. (C) Actin filaments in the anodal side 
deliver vesicles closer towards the pole causing the exocytosis annulus (grey) to tilt 
towards the cathode. Elements are not drawn to scale. 
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6 Spatial and Temporal Expression of Actin 

Depolymerizing Factors ADF7 and ADF10 during Male 

Gametophyte Development in Arabidopsis thaliana 
To have a clear idea on how actin polymerization and dynamics in the pollen tube are regulated, 

the activities of the proteins controlling actin dynamics need to be investigated in more detail. 

One of the actin binding proteins involved in actin remodeling in the pollen tube that I 

considered to be a primary candidate is ADF. I used the fluorescent tagging of full length protein 

technique to monitor the expression and subcellular localization of ADF7 and ADF10, two 

pollen specific ADFs, during Arabidopsis thaliana male gametophye development, pollen 

germination and pollen tube growth. 

This manuscript was submitted to Plant and Cell Physiology. 
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Abstract 

The actin cytoskeleton plays a crucial role in many aspects of plant cell 

development. During male gametophyte development, the actin arrays are 

conspicuously remodeled both during pollen maturation in the anther as well as after 

pollen hydration on the receptive stigma and pollen tube elongation. Remodeling of 

actin arrays results from the highly orchestrated activities of numerous actin binding 

proteins. A key player in actin remodeling is the actin depolymerizing factor (ADF) 

which increases actin filament treadmilling rates. We prepared fluorescent protein 

fusions of two Arabidopsis pollen specific ADFs, ADF7 and ADF10. We monitored 

the expression and subcellular localization of these proteins during male 

gametophyte development, pollen germination and pollen tube growth. ADF7 and 

ADF10 were differentially expressed with the ADF7 signal appearing in the 

microspore stage and that of ADF10 only during the polarized microspore stage. 

ADF7 was associated with the vegetative nucleus during less metabolically active 

stages, but in germinating pollen grains and elongating pollen tubes, it was associated 

with the subapical actin fringe. On the other hand, ADF10 was associated with 

filamentous actin in the developing gametophyte, in particular with the arrays 

surrounding the apertures of the mature pollen grain. In the shank of elongating 

pollen tubes, ADF10 was associated with thick actin cables. We propose possible 

specific functions of these two ADFs based on their differences in expression and 

localization. 

 

Keywords 

Actin depolymerizing factor, Arabidopsis thaliana, cyan fluorescent protein, male 

gametophyte, pollen tube, yellow fluorescent protein. 
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6.1 Introduction 

The actin cytoskeleton fulfills various functions in plant cells, some of which 

differ significantly from their animal counterparts. Actin arrays are the structural 

basis for cyclosis, the rapid motion of organelles within the plant cytoplasm (Woods 

et al., 1984), they are associated with the phragmoplast, a cytoskeletal configuration 

regulating plant cytokinesis (Higaki et al., 2008), and they seem to be involved in the 

perception of mechanical stimuli such as those leading to gravitropism (Kordyum et 

al., 2009; Stanga et al., 2009). Actin filaments also play a crucial role in the 

regulation of cell shape generation and the initiation of local growth events that lead 

to the morphogenesis of the complex shapes characterizing certain plant cell types 

(Smith and Oppenheimer, 2005). Whereas in mammalian cells actin mediated 

morphogenesis is accomplished by a direct effect of the forces exerted by actin 

polymerization and contraction on the surrounding plasma membrane, the 

morphogenetic role of actin in plant cells is thought to be exerted through the 

targeting of cell wall material to defined surface domains designated for cell 

expansion (Mathur, 2006; Geitmann and Dumais, 2009). How exactly this plant 

specific mechanism operates is poorly understood, however. Therefore, although 

actin dynamics is known to be a crucial feature during plant development, its precise 

regulatory role in many of these developmental processes remains elusive. 

The spatial configuration of actin arrays and their dynamic behavior are 

largely controlled by the activity of proteins that influence actin filament 

polymerization, depolymerization, branching and bundling. Many of the proteins 

identified in mammalian cells are also known to be expressed in plant tissues with a 

varying degree of similarity in amino acid sequence and 3D structures (McCurdy et 

al., 2001; Hussey et al., 2006; Yokota and Shimmen, 2006). One of the protein 

families involved in the control of plant actin dynamics is the actin depolymerizing 

factor (ADF)/cofilin. ADF is phylogenetically conserved in plants, animals and fungi 
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(Hussey et al., 2002) and it is known to specifically bind the ADP-bound form of 

both monomeric and filamentous actin. ADF binding to filamentous actin occurs 

preferentially at the pointed ends where this interaction causes a change in the helical 

twist of the actin filament and accelerates the dissociation of actin subunits (Lopez et 

al., 1996; Carlier et al., 1997; Jiang et al., 1997; McGough et al., 1997; Hussey et al., 

1998; Bamburg, 1999; Bowman et al., 2000; Cooper and Schafer, 2000; Bamburg 

and Bernstein, 2008). Under conditions of limited actin monomer supply, the 

resulting increased availability of the monomer promotes actin filament 

polymerization at the barbed end thus accelerating treadmilling (Carlier et al., 1997; 

Michelot et al., 2007). ADF/cofilin is also capable of severing actin filaments which 

reduces filament length but simultaneously increases the number of available barbed 

ends that serve as nucleators for more polymerization activity (Hayden et al., 1993; 

Blanchoin and Pollard, 1999; Staiger and Blanchoin, 2006; Staiger et al., 2009). 

ADF/cofilin activity is concentration dependent - it promotes actin severing at low 

concentrations and induces actin nucleation and actin assembly at higher 

concentrations (Yeoh et al., 2002; Andrianantoandro and Pollard, 2006). The ability 

of ADF to depolymerize actin is also pH dependent with alkaline conditions favoring 

this process (Carlier et al., 1997; Allwood et al., 2001; Chen et al., 2002). 

ADF activity is controlled by the phosphorylation state of a serine residue 

present at the N-terminal region of the protein (Smertenko et al., 1998; Allwood et 

al., 2001; Chen et al., 2003). The phosphorylation of ADF, and therefore ADF 

activity, was found to be controlled by a calcium stimulated protein kinase present in 

plant cells (Smertenko et al., 1998). ADF can also be inactivated by 

phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP) and 

phosphatidylinositol 4,5-biphosphate (PIP2) through their binding to the actin 

binding domain of ADF (Yonezawa et al., 1990; Yonezawa et al., 1991; 

Gungabissoon et al., 1998; Kusano et al., 1999). ADF activity was also found to be 

controlled by Rop GTPases (Chen et al., 2003) a plant member of the Rho family of 
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GTP binding proteins, thus providing a downstream element through which many 

regulatory pathways are likely to act on cellular morphogenesis.  

The functional analysis of plant ADF through downregulation has been 

challenging because of the presence of numerous isoforms in the plant genome. 

While unicellular eukaryotes typically possess only one ADF gene and one ADF and 

two cofilin genes are found in most vertebrate genomes, several ADF genes exist in 

most higher plant species analyzed so far (Maciver and Hussey, 2002; Bamburg and 

Bernstein, 2008). The ADF family in Arabidopsis thaliana comprises 11 genes 

(Arabidopsis.org) that are divided into four subclasses (Mun et al., 2000; Ruzicka et 

al., 2007). A member of subclass 1, ADF2, was shown to be involved in the 

regulation of plant cell growth and differentiation, since RNAi knockdown interfered 

with plant development (Clement et al., 2009). The members of subclass 2, ADF7, 

ADF8, ADF10 and ADF11, are suspected to have roles in tip growth, a type of highly 

polarized growth activity that is regulated by the actin cytoskeleton. Transcriptomics 

and proteomics, promoter-GUS assays and immunolocalization data have shown that 

ADF8 and ADF11 are expressed in trichoblasts and root hairs (Ruzicka et al., 2007), 

whereas ADF7 and ADF10 are specifically expressed in pollen and pollen tubes 

(Becker et al., 2003; Honys and Twell, 2003; Honys and Twell, 2004; Noir et al., 

2005; Pina et al., 2005; Hruz et al., 2008; Zou et al., 2009). Because of the 

expression of multiple ADF isoforms even within individual cell types, the precise 

functions of the proteins specific to tip-growing cells remain elusive. However, 

downregulation of ADF in the tip-growing moss Physcomitrella, that only has a 

single gene coding for ADF, severely interferes with tip growth (Augustine et al., 

2008), whereas partial antisense silencing increased the actin dynamics and root hair 

elongation in Arabidopsis (Dong et al., 2001). This suggests that the regulation of 

actin dynamics through ADF activity is likely to be a crucial component of the tip 

growth process in higher plants.  
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Several functional investigations of ADF in plant cells have exploited the 

pollen tube, a tip-growing plant cell type that grows fastest and that can therefore be 

expected to have an extremely dynamic actin cytoskeleton. This cylindrical, cellular 

protuberance is formed by the pollen after contact with a receptive stigma and can 

grow at rates of up to 3 mm/h. Its purpose is to deliver of the immotile sperm cells 

from the pollen grain to the female gametophyte which is nestled deep within the 

pistillar tissues. The importance of the actin cytoskeleton for the growth process is 

readily demonstrated by drugs resulting in actin depolymerization such as 

latrunculin B or cytochalasin which halt the process immediately (Gibbon et al., 

1999; Miller et al., 1999; Vidali et al., 2001; Gossot and Geitmann, 2007). A 

principal function of actin in pollen tubes is logistic in nature. Pollen tube growth 

requires significant amounts of membrane and cell wall material to be delivered to 

the growing surface domain in order to sustain continuous elongation over distances 

as long as many centimeters (Franklin-Tong, 1999). This material is transported by 

secretory vesicles from Golgi bodies located anywhere in the cytoplasm to the small 

region on the cellular surface where it is needed, the growing tip (Bove et al., 2008; 

Zonia and Munnik, 2008). Vesicles and other organelles are therefore shuttled 

rapidly along the tube in a bidirectional movement that is largely myosin-mediated 

(Vidali and Hepler, 2001) and occurs on actin filaments oriented in opposite 

directions in the periphery and central regions of the cytoplasm (Lenartowska and 

Michalska, 2008). Close to the apex, a fine mesh of actin filaments forms a cortical 

fringe (Lovy-Wheeler et al., 2005) that colocalizes with an alkaline cytoplasmic 

region (Feijó et al., 1999). There are almost no actin filaments at the very tip of the 

pollen tube where vesicles accumulate during a transition phase between forward and 

backward movement (Kroeger et al., 2009). The guidance of vesicles to a precisely 

determined annular region around the pole of the cell is thought to be crucial for the 

generation of a perfectly cylindrical tube, since exocytosis must be under tight spatial 

control for geometrically correct morphogenesis (Cardenas et al., 2008; Geitmann 

and Dumais, 2009; Fayant et al., 2010) as well as for the control of growth direction 
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(Bou Daher and Geitmann) and invasive activity (Gossot and Geitmann, 2007). The 

crucial role of the subapical actin fringe for morphogenesis can be demonstrated 

experimentally since drug- or mutation induced alterations in the cytoskeletal 

functioning are known to cause apical swelling and hence a loss of the perfectly polar 

growth activity (Hepler et al., 2001; Cheung and Wu, 2008; Yang, 2008; Zerzour et 

al., 2009). Importantly, the subapical fringe and pollen tube elongation are more 

sensitive to actin-depolymerizing drugs than the long-distance organelle transport 

occurring in the cylindrical shank of the cell (Vidali et al., 2001).  

For the actin arrays in the rapidly growing pollen tube to maintain their well 

defined spatial configuration and to respond to external signals, their dynamics need 

to be tightly regulated. Actin filament polymerization, depolymerization, branching, 

capping and bundling must be finely tuned in order for the cell to accomplish specific 

functions. ADF is among the actin binding proteins known to operate in the subapical 

actin fringe as demonstrated on tobacco and lily pollen tubes (Chen et al., 2002; 

Lovy-Wheeler et al., 2006; Wilsen et al., 2006).  This role is clearly critical since 

overexpression of NtADF1 inhibits tobacco pollen tube growth in a concentration 

dependent manner (Chen et al., 2002; Chen et al., 2003). Similarly, the 

overexpression of a pollen specific ADF from cotton (GhADF7) decreases pollen 

viability and reduces pollen tube growth (Li et al., 2010).  

Not only pollen tube growth but also the earlier phases of male gametophyte 

development are characterized by a precisely coordinated remodeling of the actin 

cytoskeleton (Heslop-Harrison et al., 1986; Tiwari and Polito, 1988; Heslop-Harrison 

and Heslop-Harrison, 1992; Tanaka and Wakabayashi, 1992; Derksen et al., 1995; 

Taylor and Hepler, 1997; Cai et al., 2005). Without this reorganization of the 

cytoskeleton, pollen germination inevitably fails and fertilization becomes 

impossible (Gibbon et al., 1999). In order to characterize the potential roles of ADF 

in this cytoskeletal reorganization, we examined the subcellular localization of ADF7 

and ADF10 coupled to the cyan fluorescent protein (CFP) and the yellow fluorescent 
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protein (YFP), respectively, during the different stages of pollen development in 

Arabidopsis thaliana. 
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6.2 Results 

6.2.1 Expression pattern of ADF7 and ADF10 in Arabidopsis 

Transcriptomic and proteomic data have shown that in Arabidopsis, ADF7 

and ADF10 seem to be expressed specifically in pollen (Becker et al., 2003; Honys 

and Twell, 2003; Honys and Twell, 2004; Noir et al., 2005; Pina et al., 2005; 

Ruzicka et al., 2007; Hruz et al., 2008; Zou et al., 2009). ADF7 and ADF10 share 

94% similarity in their amino acid sequences using NCBI blast (Altschul et al., 

1997). ADF7 shares between 77 and 92% similarity with the other members of the 

Arabidopsis ADF family members while for ADF10 this similarity is somewhat 

lower with between 74 and 90%. ADF7 and ADF10 share more that 90% similarity 

in their amino acid sequence with the other two members of the subclass 2 ADFs, i.e. 

ADF8 and ADF11. A prediction search for possible nuclear export signals using 

NetNES 1.1 server of the Technical University of Denmark (la Cour et al., 2004) 

yielded a positive peak at amino acid 21 for both ADFs with a 0.592 score for 

ADF10 and a 0.743 score for ADF7.  

In order to visualize ADF7 and ADF10, we transformed Arabidopsis thaliana 

with chimeric ADF7 and ADF10 genes tagged with the genes for cyan fluorescent 

protein (CFP) and yellow fluorescent protein (YFP), respectively, under the control 

of their respective native promoter and terminator sequences. To test the expression 

pattern of the fusion proteins in the transformed plants, we examined CFP and YFP 

expression in roots, root hairs, stems, leaves, trichomes and all flower organs. With 

the exception of the male gametophyte, we did not observe any fluorescence above 

the background level in any of these organs. This confirms that Arabidopsis ADF7 

and ADF10, when expressed as fluorescent protein chimeras under the control of 

their own promoters, are indeed pollen specific. 
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6.2.2 ADF7 and ADF10 localization during male gametophyte 

development 

To determine the subcellular localization of ADF7 and ADF10 during the 

development of the male gametophyte, we harvested different stages of pollen from 

transformed Arabidopsis plants and observed them by confocal microscopy. The 

developmental stages were annotated based on the description of gametophyte 

morphology by Twell and coworkers (Borg et al., 2009). In order to visualize the 

nuclei, pollen grains were also stained with DAPI prior to observation. 

ADF7-CFP expression appeared for the first time during the early microspore 

stage just after tetrad separation. Prior to this stage no significant label was visible in 

the developing gametophyte (not shown). After tetrad separation, ADF7-CFP labeled 

microspores displayed diffuse fluorescence in the cytoplasm and slightly more 

intense label in the nucleus (Figure 6.1A). At this stage, ADF10-YFP expression was 

not yet visible (not shown). At the polarized microspore stage, ADF7-CFP was still 

present in the nucleus (Figure 6.1B) and ADF10-YFP started to appear in short, rod 

shaped aggregates in the cytoplasm (Figure 6.2A). Just before the bicellular stage, 

ADF7-CFP disappeared from the nucleus and diffusely labeled the cytoplasm (Figure 

6.1C), while ADF10-YFP was associated with longer filamentous structures in the 

cytoplasm (Figure 6.2B). At the bicellular stage, some ADF7-CFP accumulated 

around the vegetative nucleus and slightly denser aggregates started appearing in the 

periphery of the cytoplasm (Figure 6.1D). At this developmental stage, ADF10-YFP 

appeared to be associated with longer filamentous structures a portion of which was 

aggregated around the vegetative nucleus but most were concentrated at the 

periphery of the cell (Figure 6.2C). At the mature pollen stage, short filamentous 

elements labeled for ADF7-CFP were present around the vegetative nucleus while 

longer and more densely packed filaments dominated the periphery of the cytoplasm 

that also contained diffuse CFP fluorescence (Figure 6.1E). ADF10-YFP at this stage 

displayed a very similar localization as that in the bicellular stage with filamentous 
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structures around the vegetative nucleus and a dense mesh of filaments mostly at the 

periphery of the cytoplasm (Figure 6.2D). Just before anthesis, ADF7-CFP formed a 

dense mesh of long filaments in the periphery of the cytoplasm and diffuse 

fluorescence was present throughout the cytoplasm and in the vegetative nucleus 

(Figure 6.1F). Label intensity was higher at the apertures. Before anthesis, ADF10-

YFP on the other hand more specifically targeted filamentous structures in the 

periphery of the cytoplasm with very little diffuse label and no fluorescence in the 

nucleus (Figure 6.2E). In pollen from open flowers, ADF7-CFP labeled the 

vegetative nucleus and was present as a dense filamentous mesh in the periphery 

with high concentration at the apertures (Figure 6.1F). ADF10-YFP label assumed 

the shape of longer and thicker filaments located at the apertures and oriented 

parallel to their long axes (Figure 6.2F). Optical sections and surface rendering 

demonstrate that the label was located in the periphery of the cytoplasm (Figure 6.3) 

and it was not detectable in the central regions of the cytoplasm.  

6.2.3 ADF7 and ADF10 target the actin cytoskeleton 

To identify the filamentous structures associated to which ADF7 and ADF10 

label was observed, we labeled mature pollen expressing ADF7-CFP and ADF10-

YFP from open flowers with rhodamine phalloidin following chemical fixation 

(Figure 6.4 A,B,G,H). The spatial configuration of the filamentous structures labeled 

for the ADF and for actin were near identical. Surprisingly, the filamentous 

structures labeled for ADF7 were frequently longer than the corresponding structures 

labeled with phalloidin (Figs. 6.3G, H). A possible explanation may be that ADF7-

CFP sterically blocks potential phalloidin binding sites on the actin filaments. 

Moreover, it has been shown that ADF saturated actin filaments lose their phalloidin 

binding sites due to changes in the actin filament twist (Ressad et al., 1998; 

Bamburg, 1999).  

In order to further confirm the nature of the filamentous structures labeled 

with ADF7 and ADF10, we administered latrunculin B (LatB) to pollen grains. LatB 
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is a toxin isolated from the red sea sponge Latrunculia magnifica that sequesters G-

actin leading to F-actin depolymerization due to the ongoing disassembly at the 

minus ends of the filaments (Gibbon et al., 1999). Following LatB treatment, the 

filamentous structures labeled with phalloidin disappeared partly or entirely (Figure 

6.4E,K). Similarly, label for ADF7 and ADF10 lost its filamentous configuration 

(Figure 6.4D,J). Any remaining filamentous structures coincided with structures 

labeled by phalloidin (Figure 6.4D,E,J,K). Diffuse fluorescence of ADF7 in the 

cytoplasm was strongly enhanced as a result of the LatB treatment (Figure 6.4D). 

Interestingly, after treatment of pollen from dehiscent flowers with LatB, ADF10-

CFP was associated with the vegetative nucleus (Figure 6.4D). 

Actin arrays are typically highly dynamic. In order to assess whether the ADF 

labeled structures behaved similarly, we acquired time-lapse series of hydrated 

pollen grains from open flowers of ADF7-CFP and ADF10-YFP mutants. The 

structures labeled with CFP and YFP were highly dynamic (Supplementary videos 1, 

2), as would be consistent with the behavior of actin filaments. 

6.2.4 ADF7 and ADF10 localization in the germinating pollen and 

the pollen tube 

Pollen germination requires the delivery of secretory vesicles to the aperture 

(Cresti et al., 1977; Cresti et al., 1985) and the actin cytoskeleton is known to form 

characteristic arrays prior to and during germination (Heslop-Harrison et al., 1986; 

Tiwari and Polito, 1988; Heslop-Harrison and Heslop-Harrison, 1992; Tanaka and 

Wakabayashi, 1992; Derksen et al., 1995; Taylor and Hepler, 1997; Cai et al., 2005). 

In order to assess whether ADF7 or ADF10 are involved in the remodeling of the 

actin cytoskeleton prior to and during pollen germination, we placed mature pollen in 

germination medium for one hour before observation. When the pollen grain started 

germinating, the filamentous elements labeled by ADF7-CFP disappeared from the 

grain and appeared associated with long filamentous cables seemingly winding 
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around the tip of the newly emerging tube (Figure 6.5A). In newly developed pollen 

tubes (shorter than 60 µm), filaments labeled with ADF7-CFP were associated with 

the tip of the tube and a significant amount of diffuse label was visible in the shank 

of the cell (Figure 6.5B) and in the pollen grain. In older pollen tubes (longer than 60 

µm), ADF7-CFP targeted long filamentous cables in the subapical region of the tube 

and throughout the shank region (Figure 6.5C).  

In germinating pollen grains expressing ADF10-YFP, fluorescence was 

confined to the periphery of the emerging pollen tube (Figure 6.6A). Once the tube 

had almost attained a length that corresponded to the diameter of the grain, most of 

the label was found inside the tube and almost no label was left in the grain. The 

label was associated with longer filamentous structures that were densely packed 

(Figure 6.6B) and could be observed to form loops (Figure 6.6C). Compared to 

ADF7-CFP, the number of individual filaments labeled by ADF10-YFP seemed 

much higher and their arrangement denser (compare Figure 6.4A with 5B). As the 

tube continued to grow, the fluorescence label for ADF10-YFP became more 

concentrated in the subapex where it formed shorter filaments (Figure 6.6D). Pollen 

grains with longer tubes displayed few, thick cables that continued from the grain 

into the tube (Figure 6.6E, F). Less pronounced but clearly visible label was 

associated with the subapical fringe in longer tubes pollen tube (Figure 6.6G,H). To 

confirm the nature of the filamentous structure in the pollen tubes, ADF10-YFP 

expressing pollen tubes were fixed and labeled for actin with rhodamine phalloidin. 

The label patterns for YFP and rhodamine fluorescence were identical (Figure 6.7) 

confirming that ADF is associated with the actin cytoskeleton.  

6.3 Discussion 

Actin remodeling is of great importance in the process of plant fertilization 

since the movement of secretory vesicles, and hence cell wall assembly, in the 

growing pollen tube is based on acto-myosin transportation (DePina and Langford, 
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1999; Geitmann and Steer, 2006; Yokota and Shimmen, 2006). Actin remodeling 

occurs during male gametophyte development, pollen grain hydration and continues 

during pollen germination (Heslop-Harrison et al., 1986; Tiwari and Polito, 1988; 

Heslop-Harrison and Heslop-Harrison, 1992; Tanaka and Wakabayashi, 1992; 

Derksen et al., 1995; Taylor and Hepler, 1997; Cai et al., 2005). Actin dynamics 

relies on the activities of several ABPs including members of the ADF family, 

several of which are expressed in or specific to pollen. 

Given that that male gametophyte expresses several ADF isoforms, we 

suspected that they might have distinct functions and differ in their temporal 

expression profile or subcellular localization. We focused on ADF7 and ADF10, 

which are both specifically expressed in pollen but whose functions have not been 

characterized. We opted for a technique for the construction of chimeric genes with 

intrinsically fluorescent proteins that respects three conditions. First, our strategy 

conserved the native expression levels of the proteins by using their native promoter 

and terminator sequences. This was important since changing the expression level, 

for example by using a highly expressing promoter such as Lat52, can alter protein 

function and affect cell growth especially in highly dynamic and sensitive tip growth 

of the pollen tube. Overexpression of several genes in the pollen tube has been 

demonstrated to cause swelling, reduced growth rates, abnormal morphology and 

altered subcellular organization (Kost et al., 1999; Li et al., 1999; Fu et al., 2001; 

Chen et al., 2002; Chen et al., 2003; Gu et al., 2003; Cheung and Wu, 2004; Bosch 

and Hepler, 2005; Yoon et al., 2006; Chang et al., 2007; Frietsch et al., 2007; 

Ischebeck et al., 2008; Röckel et al., 2008; Sousa et al., 2008; Wang et al., 2008; Ye 

et al., 2009). Second, we used the entire sequence of the gene including the introns. 

Introns were shown to have an enhancement effect on gene expression (Rose, 2008), 

specifically in actin genes (McElroy et al., 1990; Jeong et al., 2009) and actin 

binding proteins (Jeong et al., 2006). Expression of Petunia ADF in Arabidopsis was 

particularly enhanced by the presence of the first intron (Mun et al., 2002; Jeong et 

al., 2007). Third, in order to conserve binding sites, functional domains and proper 
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targeting of the proteins, insertion of the fluorescent protein in these particular sites 

was avoided. The technique used here, high throughput fluorescent tagging of full 

length protein (FTFLP) (Tian et al., 2004) respected these three conditions and was 

clearly successful since pollen grains germinated and formed perfectly shaped tubes 

whose morphology was indistinguishable from that of wild type plants. Furthermore, 

the gene expression pattern was consistent with that predicted by transcriptomic, 

proteomic and protein immunolabeling data (Honys and Twell, 2003; Honys and 

Twell, 2004; Pina et al., 2005; Ruzicka et al., 2007) with exclusive expression in the 

male gametophyte and absence in all other organs. This confirms that our 

transformation strategy preserved native expression levels and developmental 

temporal and spatial expression profiles. 

Confocal laser scanning microscopy of different stages during gametophyte 

development revealed that ADF7 and ADF10 displayed different patterns of 

expression and subcellular localization. ADF7 was expressed earlier, starting from 

the microspore stage immediately after tetrad separation, whereas ADF10 was only 

visible at the polarized microspore stage. ADF7 showed nuclear localization at these 

early stages and at the late pollen grain stage. It is unclear what role ADF plays in the 

nucleus. ADF/cofilin have been shown to enter the nucleus in animal cells subjected 

to stress (Sanger et al., 1980; Nishida et al., 1987; Lida et al., 1992; Yahara et al., 

1996) and in maize root cells treated with cytochalasin D (Jiang et al., 1997). 

However, while vertebrate ADF and cofilin have a nuclear localization sequence 

which allows them to chaperone actin into the nucleus (Bamburg and Bernstein, 

2008), these sequences have not been found in plant ADFs. Nevertheless, ADF 

localization to the plant nucleus has been reported using immunolabeling (Jiang et 

al., 1997; Ruzicka et al., 2007; Augustine et al., 2008). Two explanations for the 

nuclear localization have been proposed. ADF in the nucleus may serve to protect 

actin and reduce ATP loss due to the actin dynamics. Alternatively, actin and ADF 

enter the nucleus to accomplish chromatin remodeling, to ensure structural stability 

of the nucleus, and to contribute to proper gene expression through the possible 
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effect of ADF on actin and therefore on RNA polymerase activity (Jockusch et al., 

2006).  

Our data showed that the association of ADF7 with the vegetative nucleus 

was limited to the microspore and to the polarized microspore stages. During the 

subsequent developmental stages, ADF7 was not again associated with the nucleus 

anymore, until it returned to the nucleus during late mature stages. This time course 

suggests that ADF7 is absent from the nucleus during high metabolic activity 

associated with cell division and it is present in the nucleus during stages of low 

metabolic activity such as the microspore and the late mature or dormant pollen. This 

is consistent with the notion that the nuclear localization may serve as a storage form 

of either ADF or ADF bound actin that can be recruited when cell division or pollen 

germination requires it. Unlike ADF7, ADF10 was not localized in the nucleus at any 

of the developmental stages observed here, but it entered the nucleus upon LatB 

treatment. Since our sequence search showed that both ADF7 and ADF10 possess a 

positive peak for nuclear export signals with a score of 0.743 and 0.592 respectively, 

it is possible that the ADF10 score is below the threshold for normal nuclear export 

and allows ADF10 nuclear targeting only during high stress conditions. The stress-

induced behavior of ADF10 is consistent with the notion that ADF inhibits actin 

denaturation, supporting the hypothesis that actin is packed into the nucleus to 

protect it during stress and make it available after the stress is removed (Hayden et 

al., 1993). 

ADF10 was not expressed in the Arabidopsis male gametophyte until the 

polarized microspore stage. Label for ADF10 was associated much more frequently 

with longer actin filaments than ADF7. It also displayed a denser distribution around 

the apertures (compare Figure 6.1G with Figure 6.2F). These differences suggest that 

ADF10 has a different function from ADF7 and that it might rather be involved in 

regulating actin dynamics required for the physical process of pollen tube 

germination, possibly by ensuring that the actin array correctly directs vesicles 
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towards the site of pollen tube emergence. This is consistent with the fact that 

different ADF genes expressed in the same cell type show variable expression levels 

that might be related to functional diversity (Zhang et al., 2007). 

In short pollen tubes, ADF7 seemed to be more abundant in the subapical 

region of the pollen tube tip than ADF10 indicating an important role for ADF7 in 

the initial phase of cell expansion process occurring at the apex of the emerging 

pollen tube. In pollen tubes of the same developmental stage, ADF10 was more 

concentrated on thick bundles of actin filaments in the shank of the pollen tube and 

in the grain, suggesting that ADF10 has the function to mark older filaments for 

turnover. It remains unknown where the actin monomers liberated from these distal 

filaments are used again. They would certainly be expected to be consumed at the 

pollen tube tip since the elongating tube requires a continuous advancement of the 

subapical fringe and hence substantial actin polymerization activity. However, even 

in the shank region of the tube polymerization of actin may be ongoing. An increased 

number of filaments could serve to produce thicker actin bundles which could ensure 

efficient long-distance organelle transport and continuous vesicle supply towards the 

apical zone. This is supported by the notion that acto-myosin mediated vesicular 

transport is known to happen faster on highly bundled actin filaments (Holweg, 

2007). The expression level of ADFs within a given cell might influence the 

subcellular localization and therefore modulate specific subcellular functions. 

Transient expression of NtADF1 in tobacco pollen under the control of the Lat52 

promoter was observed to cause this protein to target thicker actin cables in highly 

expressing pollen grains, whereas in grains with lower expression level label was 

associated with thinner cables (Chen et al., 2002). The preferential association of 

ADF10 with thick actin bundles in the shank of the pollen tubes might therefore be a 

consequence of its relatively high expression level compared to ADF7.  

It must be pointed out that the interpretation of ADF expression profiles and 

subcellular localization needs to be done cautiously, since the presence of ADF does 
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not necessarily mean that the protein is active. Phosphorylation is able to deactivate 

ADF (Smertenko et al., 1998; Allwood et al., 2001; Chen et al., 2003) even if it 

remains bound to actin. On the other hand, phosphoinositides are also able to 

inactivate ADF (Yonezawa et al., 1990; Yonezawa et al., 1991; Gungabissoon et al., 

1998; Kusano et al., 1999) by binding to the actin specific site of free ADF. The fact 

that diffuse cytoplasmic label was more abundant for ADF7 than ADF10 could be 

either a result of a lower affinity of ADF7 to actin, of a different steady-state-

equilibrium between bound and free ADF, or of a different control mechanism based 

on phosphoinositide binding. Other proteins could also regulate the activities of 

ADF7 and ADF10 differently. Lily ADF has for example been shown to be activated 

by actin interacting protein 1 (AIP1) (Allwood et al., 2002). Finally, although we 

qualitatively compared fluorescence intensities of ADF7-YFP and ADF10-CFP, 

direct quantitative comparison is proscribed, of course, since different lasers and 

light channels were used for image acquisition. 

Our data clearly show that ADF7 and ADF10 display different spatial 

profiles, with ADF7 showing nuclear localization during stages of lower cell activity 

whereas ADF10 appears in the nucleus only after exposure to stress. This suggests 

that ADF7 is responsible for ensuring the presence of an actin-ADF stock in the 

nucleus that can be activated when required for cell division or pollen tube 

formation, whereas ADF10 protects actin from denaturation during stress conditions. 

Although ADF7 labels actin filaments in the periphery of the pollen grain, ADF10 

showed stronger localization in the peripheral cytoplasm of the developing 

gametophyte, at the apertures, in the grain after germination and at the tip of the 

young elongating pollen tube. In elongating pollen tubes, ADF10 seemed to be more 

highly expressed than ADF7 and it was associated with older actin filaments, likely 

marking them for recycling. ADF7 on the other hand seemed to be involved in the 

rapid turnover that characterizes the subapical actin fringe and that is crucial for 

vesicle targeting to the growing surface (Kroeger et al., 2009). The dynamics of actin 

filaments in the fringe is known to be crucial for pollen tube growth since its loss 
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results in a loss of polarity and eventual growth arrest (Cardenas et al., 2005) and the 

ability of the pollen tube to redirect its growth upon application of external triggers is 

compromised (Bou Daher and Geitmann). The difference in expression profiles and 

subcellular localization between ADF7 and ADF10 are summarized in Figure 8. The 

different profiles suggest that there is a division of labor between different ADF 

isoforms in the Arabidopsis male gametophyte. Proof for this concept awaits 

experimental evidence on whether the suppression of either protein causes 

differential effects on pollen development, pollen tube elongation, and the control of 

polarized and directional growth. Similarly, it will be important to determine whether 

the individual ADF isoforms are the targets of different signaling pathways.  

6.4 Materials and methods 

6.4.1 Fluorescent tagging and native expression of ADF 

To reproduce the expression level and pattern of the target gene, the construct 

included the 5' UTR and promoter sequences (about 1000 base pairs), the coding 

region with introns, and the 3' UTR and the terminator region. To minimize further 

effects of the fluorescent tag on native subcellular localization and function of the 

chimeric protein, the location of the tag relative to the target gene was determined 

based on computer-assisted predictions of protein folding and functional domains. 

Arabidopsis plants expressing ADF7 (At4g25590) and ADF10 (At5g52360) were 

generated using the fluorescent tagging of full length protein (FTFLP) technique 

(Tian et al., 2004). Two sets of primers P1-P2 and P3-P4 were designed to amplify 

each of the target genes in two fragments. P1 and P4 contained attB1 and attB2 

recombination sites respectively in addition to gene specific sequences. P2 and P3 

contained gene specific sequences and fluorescent tag specific sequences. ADF7 was 

labeled with the cyan variant of the yellow fluorescent protein (CFP) while ADF10 

was labeled with yellow fluorescent protein (YFP). Both tags contained a glycine 

rich linker peptide at the N-terminal side and an alanine rich linker peptide at the C-



136 

 

 

terminal region to reduce the interference with the protein folding (Tian et al., 2004). 

ADF7 primer sequences: 

P1: 5’ gctcgatccacctaggctatcgctgaaacgaggaacagaaag 3’,  

P2: 5’ cacagctccacctccacctccaggccggcccactgccatccccgacgc 3’,  

P3: 5’ tgctggtgctgctgcggccgctggggccgaggacgagtgcaagctgaag 3’ and  

P4: 5’ cgtagcgagaccacaggatcctttctaatgtgcgttgtggtt 3’.  

ADF10 primer sequences:  

P1: 5’ gctcgatccacctaggctcaatctgtttgcgctttcttttatt 3’,  

P2: 5’ cacagctccacctccacctccaggccggcccaccgccatccccgacgc 3’,  

P3: 5’ tgctggtgctgctgcggccgctggggccgaggacgagtgtaagctgaag 3’ and  

P4: 5’ cgtagcgagaccacaggacgaaagtgagctattacacgagaa 3’.  

The fluorescent tag was combined to the two PCR fragments using a triple 

template PCR with a forward primer containing the attB1 site 5’ 

ggggacaagtttgtacaaaaaagcaggctgctcgatccacctaggct 3’ and a reverse primer containing 

the attB2 site 5’ ggggaccactttgtacaagaaagctgggtcgtagcgagaccacagga 3’. Individual 

PCR fragments were amplified using Phusion (Finnzymes) DNA polymerase and the 

triple template PCR was performed using ExTaq (TaKaRa) DNA polymerase. DNA 

was extracted from gel using QIAquick (Qiagen) gel extraction kit. Final PCR 

fragments were introduced into pDONR Zeo (Invitrogen) entry vector using a BP 

(Invitrogen) recombination reaction according to the industrial manual. Sequencing 

was used to verify the positive clones. The chimeric gene was introduced in pBIN-

GW (Tian et al., 2004) destination vector using LR (Invitrogen) recombination 

reaction according to the manufacturer's manual. Plasmid extraction from bacteria 

was done with QIAprep spin (Qiagen) miniprep kit. 

6.4.2 Plant material and pollen tube growth 

Arabidopsis thaliana Col-0 plants were grown in soil at 22°C-20°C day-night 

temperatures, at 60% relative humidity in growth chambers with 16h light/8h dark 
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light cycle. For pollen tube growth in vitro, pollen was collected from flowers at 

anthesis. Germination was conducted in Arabidopsis pollen tube growth medium for 

5 hours as described in (Bou Daher et al., 2009). For microspore collection at 

different stages of development, flowers were dissected under a stereomicroscope 

and only gametophytes from long anthers were mounted for observation. 

6.4.3 Actin and DNA labeling 

After five hours of growth, Arabidopsis pollen tubes were chemically fixed 

for 40 seconds in the microwave oven (PELCO Cold Spot® Biowave 34700) under 

150 Watts in 3% formaldehyde, 0.5% glutaraldehyde and 0.05% Triton X-100 

solution in a buffer composed of 100 mM PIPES, 5 mM MgSO4 and 0.5 mM CaCl2 

at pH 9. Pollen tubes were then washed 3 times for one minute each in the same 

buffer then incubated overnight at 4oC in rhodamine phalloidin (Molecular Probes) in 

a buffer composed of 100 mM PIPES, 5 mM MgSO4, 0.5 mM CaCl2 and 10 mM 

EGTA at pH 7. Next day, pollen was washed 5 times for one minute each in the same 

buffer. All washing steps were conducted in the microwave at 150 Watts. Pollen was 

then mounted on glass slides in a drop of Citifluor (Electron Microscopy Sciences), 

covered with a cover slip, sealed and immediately observed in the microscope. DNA 

was labelled by placing the gametophytes in 1 µg/ml 4'-6-diamidino-2-phenylindole 

(DAPI) solution in Arabidopsis pollen medium. For latrunculin B (LatB) treatment, 

pollen was incubated in Arabidopsis medium containing 100 nM LatB before 

fixation and actin labeling. 

6.4.4 Microscopic observations 

Arabidopsis gametophytes from lines expressing the fluorescent proteins 

were observed in a Zeiss Imager-Z1® microscope equipped for structured 

illumination microscopy (Apotome) and with a Zeiss AxioCam MRm camera. A 

filter set of BP 450-490 excitation, FT 510 beamsplitter and BP 515-565 emission 

was used. For confocal imaging, a Zeiss LSM 510 META / LSM 5 LIVE / Axiovert 
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200M system confocal microscope was used. A 488 nm argon laser was used for 

YFP and 458 nm for CFP excitation. For surface rendering and to show a view from 

inside the pollen grain, the upper half of the z-stack was used to produce a 3D 

reconstruction of half a grain using the inside 4D function of AxioVision 4.8 (Zeiss) 

software. 
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6.7 Figures 

 

Figure 6.1 : ADF7-CFP expression during different stages of the male gametophyte 
development. The first column shows maximum projections of Z-stack images 
acquired with the confocal microscope and the second column shows the 
corresponding median optical sections. The third column represents single optical 
sections of the same cells labeled with DAPI and the fourth column represents the 
corresponding brightfield images. Vegetative nuclei are indicated with an arrow. 
Scale bars = 10 µm. 
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Figure 6.2: ADF10-YFP expression during different stages of the male gametophyte 
development. The first column represents projections of Z-images taken on the 
confocal microscope. The first column shows maximum projections of Z-stack 
images acquired with the confocal microscope and the second column shows the 
corresponding median optical sections. The third column represents single optical 
sections of the same cells labeled with DAPI and the fourth column represents the 
corresponding brightfield images. Vegetative nuclei are shown with an arrow. Scale 
bars = 10 µm. 
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Figure 6.3: Surface rendering image of the pollen grain at the open flower stage 
expressing ADF10-YFP shown in Figure 2F. Only the upper half of the Z-stack has 
been used to reveal ADF localization to the peripheral region of the grain. The two 
groups of long filaments are located at the two apertures present in the half of the 
grain shown here. 
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Figure 6.4: Subcellular localization of fluorescent ADF and actin labeled with 
rhodamine-phalloidin in mature pollen from open flowers. The first column 
represents ADF label, the second column shows actin labeled with rhodamine 
phalloidin and last column is the corresponding brightfield image. (D-F, J-L) Pollen 
grains were treated with LatB prior to fixation and phalloidin label. Certain longer 
filaments labeled by ADF7 were not labeled with phalloidin (arrow). All 
fluorescence micrographs are maximum projections of Z-stacks acquired with the 
confocal microscope. Scale bars = 10 µm. 
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Figure 6.5: Localization of ADF7-CFP in germinating Arabidopsis pollen grain (A), 
in short pollen tube (B) and in long pollen tube (C). All micrographs are maximum 
projections of Z-stacks acquired with the confocal microscope. Scale bars = 10 µm. 

 

Figure 6.6: Localization of ADF10-YFP in germinating Arabidopsis pollen grain 
(A,B,C), in short pollen tube (D,F) and in long pollen tubes (E,G). (C) is a pollen 
grain with two emerging pollen tubes. (H) is a magnified and contrast-enhanced 
image of the tip of the pollen tube in (G) to show the actin fringe. All micrographs 
are maximum projections of Z-stacks acquired with the confocal microscope. Scale 
bars = 10 µm. 
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Figure 6.7: Arabidopsis pollen tube expressing ADF10-YFP (B) labeled with 
rhodamine phalloidin (A). Images are maximum projections of Z-stacks of images 
taken with the Zeiss Apotome. Scale bar = 10 µm. 
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Figure 6.8: ADF7-CFP (cyan) and ADF10-YFP (yellow) distribution in the 
developing male gametophyte, germinating pollen and elongating pollen tube of 
Arabidopsis thaliana. Elements are not drawn to scale. The dashed line indicates the 
position of one of the three apertures. For simplicity, nuclei are not shown in the 
germinated pollen. 
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6.8 Supplementary material 

Supplementary video 1 Time lapse imaging of ADF7-CFP dynamics in Arabidopsis 

thaliana hydrated pollen grain from an open flower. Images were acquired at 1 

frame/sec and are played at 7 frames/sec. 

Supplementary video 2 Time lapse imaging of ADF10-YFP dynamics in 

Arabidopsis thaliana hydrated pollen grain from an open flower. Images were 

acquired at 1 frame/sec and are played at 7 frames/sec. 

 



 

 

7 Conclusion and perspectives 

Reproduction in higher plants requires the transfer of sperm nuclei from the 

pollen grain to the ovule. Since the ovule is protected in the ovary at the base of the 

pistil, the pollen grain has to produce a protuberance, the pollen tube, that grows 

through the pistillar tissues and transports the sperm cells to the embryo sac. 

Compared to the diameter of the pollen itself, the distance traveled by the pollen tube 

is extremely long. Therefore, a huge supplement of nutrients is necessary for the non 

autotrophic pollen tube to grow. Not only is the path to the ovule long, it is also 

winding and complex, bringing the tube into contact with different cell types and 

tissues of the pistil. A finely calibrated guidance mechanism based on 

communication between the pistil and the pollen tube is, therefore, necessary for the 

latter to follow the right path and reach its target (Cheung et al., 1995; Higashiyama 

et al., 2003; Palanivelu et al., 2003; Palanivelu and Preuss, 2006; Geitmann and 

Palanivelu, 2007; Higashiyama and Hamamura, 2008; Okuda et al., 2009; Márton 

and Dresselhaus, 2010). 

The pollen tube has an anisotropic mode of growth shared with root hairs, 

fungal hyphae and to a certain extent with animal neurons. The cylindrical pollen 

tube elongates only at the apical region resulting in a unidirectional growth pattern 

(Geitmann and Dumais, 2009; Geitmann and Ortega, 2009). Because of its simple 

geometry and rapid growth, the pollen tube has emerged as a model system to study 

different aspects of polar growth. It presents several advantages over other cell types 

including the availability of pollen and simplicity of collection and storage on one 

hand and the relative ease of germination in vitro on the other hand. In an attempt to 

understand how the cytoskeleton regulates pollen tube growth, architecture and 

tropism, I used molecular, pharmacological, mechanical and microscopical 

techniques applied to three different pollen species Lilium longiflorum, Camellia 

japonica and Arabidopsis thaliana. 
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Lily pollen has been extensively used in pollen tube research. The structure of 

its cytoskeleton is very well described (Lovy-Wheeler et al., 2005). Lily pollen tube 

specific gene promoters and constructs with chimeric genes targeting the actin 

cytoskeleton and tagged with fluorescent proteins are available (Vidali et al., 2009), 

making lily pollen a useful model for comparative studies focusing on actin 

configuration and dynamics. Camellia pollen is not largely used, most probably due 

to the growth conditions of this shrub that requires a certain number of chilling hours 

per year in order to flower. Pollen of Camellia turned out to be very easy to 

germinate, and with few modifications of the standard medium used in our lab 

(Gossot and Geitmann, 2007), I was able to obtain very high germination percentages 

and pollen tube growth rates. Importantly, Camellia pollen germinates very quickly 

(20 to 30 minutes after imbibition), it grows very fast (0.2 µm/sec) thus allowing for 

short experiment time. Furthermore, compared to other species, it has a large 

diameter (approximately 18 µm), making Camellia pollen tube an excellent model to 

study the mechanical properties of the pollen tube. Arabidopsis thaliana is of 

particular interest for investigation of pollen tube biology because its genome 

sequence is known, a great number of genes have been identified and characterized 

and Arabidopsis plants are easy to handle because of their small size and short life 

cycle. The only and major disadvantage this species presents in my context is that its 

pollen is difficult to germinate and available protocols are often not reproducible. I 

optimized an Arabidopsis thaliana pollen germination and pollen tube growth 

protocol based on the use of bulk-collected, cold-stored pollen. This protocol 

produced high and reproducible rates of pollen tube germination and growth in vitro 

and opened the way for use of this promising species in my experiments. Other labs 

(e.g. Palanivelu, Tucson) have adopted our optimized protocol demonstrating its 

general usefulness. 

A crucial prerequisite for my ultrastructural studies was the availability of a 

highly reliable, reproducible protocol for the visualization of the actin cytoskeleton 

of the pollen tube. The actin cytoskeleton is highly dynamic and very sensitive to any 
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external disturbance. Its structure is easily lost with inappropriate fixation methods. 

Rapid freeze fixation is the method that has yielded the best results so far based on 

the conservation of actin arrays when labelled. Given the absence of rapid freeze 

fixation equipment in our lab, and the long experimental time required for this 

method, I developed a pollen tube fixation and actin labelling method based on 

microwave-accelerated chemical fixation. This method proved to be very efficient 

and very fast with results matching those obtained with freeze fixation. I also used 

the microwave facility to optimize labelling protocols for cell wall components of the 

pollen tube. 

The actin cytoskeleton in the pollen tube is characterized by an actin fringe 

located at the subapex of the tube (Kost et al., 1998; Geitmann and Emons, 2000; 

Lovy-Wheeler et al., 2005). This fringe is the site of high actin dynamics and 

remodelling (Chen et al., 2002) and is believed to represent a transition between 

actin filaments located at the periphery of the pollen tube and oriented with their 

barbed ends pointing to the apex, and filaments oriented in opposite direction and 

located in the center of the pollen tube (Lenartowska and Michalska, 2008). To 

further characterize the role of the actin cytoskeleton in pollen tube growth, I treated 

Camellia pollen tubes with s-EGS, a cross linker known to block polymerization of 

the actin fringe. This treatment caused a loss of the structure of the actin fringe, a 

strong reduction in pollen tube growth and a swelling at the tip. Normal cylindrical 

shape and growth could not be resumed before reestablishment of the actin fringe at 

the subapex of the pollen tube. This highlights the importance of the actin fringe in 

the pollen tube growth and architecture. This is consistent with the finding that 

overexpression of ROP, RIC3 or the application of actin stabilizing drugs in pollen 

tubes lead to the loss of the actin fringe and a swelling of the pollen tube tip (Li et 

al., 1999; Fu et al., 2001; Cardenas et al., 2005; Gu et al., 2005).  

The high sensitivity of the growth process towards the manipulation of the 

functionality of the actin fringe can be explained by the fact that the fringe is 
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responsible for the delivery of vesicles to their site of secretion, an annulus located at 

the shoulder of the pollen tube tip (Geitmann and Dumais, 2009). Whereas the 

peripheral portion of the fringe moves vesicles forward, the central portion of the 

subapical actin array is involved in carrying endocytotic vesicles rearward, away 

from the tip towards the shank. The precise spatial arrangement of the actin fringe at 

the subapex of the tube with correct actin filament polarity maintains the highly 

choreographed vesicle flow pattern (Kroeger et al., 2009). Plant cells in general and 

pollen tubes in particular grow by the deformation of the existing cell wall and the 

addition of new cell wall material. In pollen tubes, newly added cell wall material is 

mainly composed of methyl-esterified pectins which is a soft material (Parre and 

Geitmann, 2005). It is the delivery of these pectins from the Golgi bodies to the 

growing apical zone that makes the bulk of the vesicle movement (Bove et al., 2008). 

Treating pollen tubes with BDM, a myosin ATPase inhibitor that inhibits vesicle 

transport, caused a reduced growth rate in the pollen tube and a change in the 

composition of its cell wall. This confirms that a balance between expansive growth 

and cell wall deposition is crucial for correct morphogenesis during pollen tube 

growth.  

Although I provided a detailed time course of the changes in the actin 

cytoskeleton during BDM treatment and recovery, it will now be important to 

compare this with the effect of the drug on vesicle motion. This could be done by 

labeling vesicles in BDM treated tubes and monitoring their movement using high 

temporal resolution confocal laser scanning microscopy. Movement patterns could be 

analyzed using spatio-temporal image correlation spectroscopy (STICS), similar to 

studies done in regularly growing tubes (Bove et al., 2008). This will help us 

understand the exact effect of BDM on vesicle movement and to determine whether 

or not the drug preferentially affects the rearward streaming as was suggested by the 

brightfield micrographs. 
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It is important for the pollen tube to be able to change its growth direction in 

order to reach the embryo sac located deep in the ovarian tissues. While various 

directional signals are produced by the pistil and the female gametophyte to guide the 

pollen tube (Cheung, 1996; Cheung and Wu, 2001; Geitmann and Palanivelu, 2007), 

the mechanisms by which they act on the pollen tube are not well understood. 

Calcium ions are believed to be a crucial element in the signal pathway controlling 

pollen tube tropism since the release of caged calcium in one side of the pollen tube 

cytoplasm causes a growth redirection to the same side (Malhó and Trewavas, 1996). 

To understand how the pollen tube is able to redirect its growth and to determine the 

elements in the tube regulating its tropic behavior, it was necessary to have a means 

to induce pollen tube tropic growth in vitro. Electric fields were shown to induce 

tropic growth in several pollen species (Nakamura et al., 1991; Malhó et al., 1992). I 

designed a miniature galvanotropic chamber that can be mounted on an inverted 

microscope and in which pollen tubes can grow. I used this chamber to induce 

precisely timed and calibrated tropic triggers to pollen tubes and to monitor their 

effects microscopically under different experimental conditions. I found that the actin 

cytoskeleton is strongly implicated in the ability of the pollen tube to perform 

directional change. This tropic reaction is also dependent on Ca2+ in the growth 

medium and the calcium influx to the pollen, since blocking calcium channels 

reduced the capacity of the pollen tube to perform tropic growth. Calcium influx at 

the pollen tube apex creates a gradient of calcium concentration in the tube (Pierson 

et al., 1994; Feijó et al., 1995). Calcium ions affect the activity of different actin 

binding proteins located in the vicinity of the actin fringe. These proteins are 

responsible for remodeling the actin cytoskeleton. The entry of calcium to one side of 

the pollen tube after application of the electrical trigger may activate certain actin 

binding proteins located on one side of the tube and change the symmetry of the actin 

fringe as was shown when I visualized the actin fringe in a pollen tube upon 

electrically induced tropic growth. This asymmetric actin distribution is likely to 

cause vesicle delivery to be shifted to a region further into the apex on one side of the 
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pollen tube thus causing a tilt in the orientation of the zone of exocytosis. With the 

addition of soft material being repositioned asymmetrically at the apex, cell wall 

deformation is biased to one side and tropic growth results. 

The question is, how does the electrical field cause a differential influx of 

calcium? The apical region of the pollen tube plasma membrane is equipped with 

calcium channels whose activity is crucial for pollen tube growth (Reiss and Herth, 

1985; Geitmann and Cresti, 1998; Shang et al., 2005; Qu et al., 2007). Partial 

blockage of these calcium channels in Camellia pollen tubes using lanthanum 

chloride strongly affected the tropic response, but this effect could be rescued by 

additional calcium in the growth medium. At least some of the calcium channels in 

pollen tubes are voltage activated (Shang et al., 2005; Qu et al., 2007). Since the 

application of an electrical field induces membrane depolarization (Gross et al., 

1986; Tsien et al., 1988; Tester and MacRobbie, 1990), we propose that the activity 

of these voltage-gated calcium channels is affected in our system. We suggest that 

the calcium channels located on the cathode facing side of the pollen tube are 

activated by the electric field, creating a biased calcium entry at this side (Figure 

5.12B). Since elevated cytosolic calcium is known to trigger actin fragmentation 

(Eun and Lee, 1997; Eun et al., 2001) or block polymerization (Vantard and 

Blanchoin, 2002), this results in a tilting of the leading edge and, consequentially of 

the exocytosis annulus. It is noteworthy that in different pollen tube species, the 

galvanotropic growth response differed with a cathodotropic response observed in 

Vinca, Camellia, Erithrina, Tulipa and Agapanthus (Marsh and Beams, 1945; 

Nakamura et al., 1991; Malhó et al., 1994; Malhó et al., 1995) and an anodotropic 

response demonstrated in tomato, tobacco, Lycoris, Hedychinum, Eriobotyia, 

Impatiens (Wulff, 1935; Wang et al., 1989; Nakamura et al., 1991). This apparent 

contradiction could be due to the presence of different types of voltage activated 

calcium channels or voltage dependent stretch-activated calcium channels or a 

combination of all these types at the tip of pollen tubes of the different species. A 

similar explanation had been brought forward for the behavior of fungal hyphae 
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which are known to turn in different directions (Gow, 1994). Remarkably, the 

majority of Agapanthus pollen tubes were observed to grow towards the cathodal 

side when they were growing near the cathode and to the anodal side when they were 

positioned near the anode (Malhó et al., 1992). Even more puzzling, fission yeast 

Schizosaccharomyces pombe subjected to an electrical field grow perpendicular to 

the direction of the field (Minc and Chang, 2010). Further work on the nature and 

type of calcium channels present in growing pollen tubes of different species is 

warranted to clarify the mechanism of calcium entrance and specific difference in 

pollen tube responses to applied electric trigger. 

To eventually understand how actin polymerization and dynamics in the 

turning pollen tube are regulated, the activities of the proteins controlling actin 

dynamics must be investigated in more detail. One of the actin binding proteins 

involved in actin remodeling in the pollen tube that I considered to be a primary 

candidate is ADF (Chen et al., 2002; Chen et al., 2003). As a crucial step into the 

direction of a functional analysis, I prepared fluorescent protein fusions of two 

Arabidopsis pollen specific full length ADFs (ADF7 and ADF10) and monitored 

their expression during male gametophyte development. ADF7 and ADF10 were 

differentially expressed during microsporogenesis, pollen germination and pollen 

tube growth. ADF7 showed protein expression directly after the tetrad stage and 

ADF10 appeared in the polarized microspore stage. ADF7 targeted the vegetative 

nucleus in the less active developmental stages of the microspore while ADF10 

appeared only in the late polarized microspore stage. Just before germination both 

proteins are highly abundent at the pollen grain apertures suggesting that they might 

be involved in pollen tube germination through remodeling of the actin cytoskeleton. 

It would be interesting to test pollen tubes transformed with both ADF7-CFP and 

ADF10-YFP and to compare their spatial and temporal expression in the same cell. 

Understanding the activity state of ADFs in the different stages of male 

gametophyte development will shed light on the importance of these actin 
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remodeling proteins during each of the male gametophyte stages of development. 

ADF activity is regulated by Rop (plant Rho GTPases) proteins (Chen et al., 2003) 

and by the phosphorylation state of a serine residue contained at the N-terminal side 

of the protein (Smertenko et al., 1998; Allwood et al., 2001; Chen et al., 2003). This 

phosphorylation is accomplished by a calcium dependant protein kinase (Smertenko 

et al., 1998). Since Rop is known to control cell polarity in the pollen tube (Xu and 

Scheres, 2005; Yalovsky et al., 2008; Hwang et al., 2010), ADF might mediate the 

effect of Rop on pollen tube growth polarity through site specific actin remodeling in 

the actin fringe of a growing pollen tube. The fact that ADF7 was found to target the 

nucleus in less active stages of gametophyte development, on the other hand, might 

be of great physiological importance. Actin has been found in the nuclei of various 

animal cells (Bettinger et al., 2004; Jockusch et al., 2006) and was suggested to play 

a role in RNA polymerase based transcription. It would be of great interest to test the 

effect of knockdown of ADF7 on transcription and cell division during male 

gametophyte development since these stages are very well characterized (Borg et al., 

2009).  

Although the pollen tube has an extremely polarized type of growth, general 

principles for the mechanism of plant cell growth can be extrapolated from research 

on the male gametophyte. For example, the interactions between actin arrays and 

microtubules are believed to contribute to the spatial regulation of growth in both 

isotropic and diffuse growing cells (Smith and Oppenheimer, 2005; Mathur, 2006). 

In root hairs, the actin cytoskeleton configuration resembles that of the pollen tube, 

since filamentous actin is absent at the very apex, fine actin filaments characterize 

the subapex and long bundled actin filaments are present in the shank. Similar to 

pollen tubes, treatment with actin depolymerizing drugs inhibits root hair elongation 

(Miller et al., 1999; Ketelaar et al., 2003; Ketelaar and Emons, 2009). The actin 

cytoskeleton in trichomes is also organized in long filaments parallel to the growth 

axis and treatment with cytochalasin D affects trichome morphogenesis (Mathur et 

al., 1999; Szymanski et al., 1999), but after an initial phase of polar outgrowth, 
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trichome elongation proceeds by diffuse growth. Consistent with this difference, 

there is no subapical actin fringe near the tips of elongating trichomes (Mathur et al., 

1999). In the zygotes of the marine brown alga Fucus, establishment of polarity of 

the cell is associated with F-actin deposition at the protruding site (Kropf et al., 1989; 

Goodner and Quatrano, 1993; Kropf, 1997) and this process is affected by actin 

depolymerization possibly through the disruption of the cell secretory machinery 

(Fowler and Quatrano, 1997). In Arabidopsis pavement cells that are characterized 

by anisotropically protruding surface areas creating interlocking lobes similar to 

short polarized outgrowths, the site of cell expansion is associated with fine F-actin 

deposition (Fu et al., 2002). In all these cell types and in plant cells in general, 

localized expansion is due to deposition of cell wall material transported by the actin 

cytoskeleton to the growing surface region. This is very different from the growth or 

migrating mechanism in animal cells. Although the actin array of the leading edge in 

migrating fibroblasts looks superficially similar to the subapical actin fringe in pollen 

tubes, the protrusion of the forward moving cell edge is directly pushed by actin 

polymerization. The crucial difference between these animal and plant cells is the 

presence of the relatively stiff outer matrix in the latter. The extracellular matrix in 

migrating animal cells is highly pliable, whereas the deformation of the cell wall 

requires forces that are an order of magnitude larger than those that could be 

produced even by a dense actin array (Money and Hill, 1997). Local growth events in 

plant cells are therefore spatially controlled by the differences in mechanical 

properties within the surrounding cell wall which in turn are only indirectly 

influenced by the actin cytoskeleton through the targeting of new cell wall material 

(Geitmann and Ortega, 2009).  

The dynamic behavior of actin is controlled in vivo by ABPs responsible for 

actin polymerization, depolymerization, nucleation, severing, branching, bundling 

and capping. The activities of several ABPs in plants is controlled by calcium 

(Yokota and Shimmen, 2006). In the pollen tube, , Rop was shown to regulate the 

formation of the calcium gradient at the tip of the pollen tube (Li et al., 1999) and 
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was found to be strongly implicated in cell polarity (Fu et al., 2001; Molendijk et al., 

2001; Fu et al., 2002; Chen et al., 2003; Xu and Scheres, 2005; Nibau et al., 2006; 

Yalovsky et al., 2008). Monitoring cytosolic calcium and identifying Rop activity 

during tropic pollen tube growth would yield important information related to the 

flow of ions and their effect on actin dynamics and precise vesicle deposition. 

Vesicle deposition determines the soft site in the cell wall, i.e. the site whose 

mechanical properties allow yielding under turgor pressure (Mathur, 2006). This 

applies to all plant cells with heterotropic mode of growth (Geitmann and Ortega, 

2009) even though the specific molecular players or the concentrations of these 

players may vary in different cellular systems. The use of probes to localize calcium 

channels in addition to experiments applying calcium channel inhibitors showed the 

presence and the effect of these channels on plant cell growth. The nature and 

activity control of calcium channels at these anisotropically growing zones is a 

domain that warrants exploration because of the presence of a multitude of cellular 

mechanisms controlled by calcium. The exact molecular nature of these proteins 

remains to be identified through the analysis of mutants and the use of fluorescent 

fusion proteins and complementation of knockouts. Their interaction with other 

players such as the cytoskeleton will help understand the regulation of their activities 

and therefore the fascinating mechanisms affected by the calcium influx and actin 

remodeling including cell growth and cell polarity. 

The actin cytoskeleton is also involved in several signalling processes in 

plants including self incompatibility in pollination (Geitmann et al., 2000; Thomas et 

al., 2006) and gravitropism in root cells (Baluška and Hasenstein, 1997; Perbal and 

Driss-Ecole, 2003; Morita, 2010). These signalling processes are also associated with 

calcium and calcium influx (Kordyum et al., 2007; Toyota et al., 2008; Sobol and 

Kordyum, 2009). The adaptation of approaches similar to those I used in my research 

could be used to mimic specific responses of plant cells such as the self 

incompatibility response of pollen tubes or the gravitropic response of roots which 

are thought to be mediated by calcium mobilization and actin remodelling or 
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depolymerization. The galvanotropic setup could be used to force calcium influx into 

the apex of growing pollen tubes or the root tips in symmetric manner by orienting 

elongating cells to point towards the cathode. Instead of causing an asymmetric 

turning response, this would likely simply increase the amount of calcium influx 

enabling us to monitor the effect of an altered cytosolic calcium concentration on 

actin, microtubules and amyloplasts sedimentation, a phenomenon believed to be 

implicated in gravity response (Palmieri and Kiss, 2005). This setup would allow the 

assessment cellular responses under different conditions such as varying calcium 

concentrations in the medium or the presence of pharmacological agents affecting 

signalling. Transgenic lines, whether knockouts or expressing fluorescently tagged 

proteins, could also be tested and monitored live under the microscope. 
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Annex 

I provided high resolution images of the well preserved actin fringe and 

secretory vesicles in the pollen tube of lily to Jens Kroeger, PhD student co-

supervised by Dr. Geitmann, and registered at the Physics Department of McGill 

University. The quantitative spatial coordinates of the actin configuration and vesicle 

localization obtained from my images provided a crucial piece of information for his 

model that describes the vesicle dynamics in the apical region of the pollen tube. 

The manuscript was published in 2009 in Biophysical Jounal, volume 97, pp 

1822-1831. 
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Abstract 

The dynamics of cellular organelles reveals important information about their 
functioning. The spatio-temporal movement patterns of vesicles in growing pollen 
tubes are controlled by the actin cytoskeleton. Vesicle flow is crucial for 
morphogenesis in these cells as it ensures targeted delivery of cell wall 
polysaccharides. Remarkably, the target region does not contain much filamentous 
actin. We model the vesicular trafficking in this area using as boundary conditions 
the expanding cell wall and the actin array forming the apical actin fringe. The shape 
of the fringe was obtained by imposing a steady state and constant polymerization 
rate of the actin filaments. Letting vesicle flux into and out of the apical region be 
determined by the orientation of the actin microfilaments and by exocytosis was 
sufficient to generate a flux that corresponds in magnitude and orientation to that 
observed experimentally. This model explains how the cytoplasmic streaming pattern 
in the apical region of the pollen tube can be generated without the presence of actin 
microfilaments. 

Introduction 
Cells are highly compartmentalized structures and specific cellular activities are 
spatially confined to certain types of organelles. The dynamics of cellular organelles 
reveal important information about their functions and mutual interactions. One 
important role of organelle movement is the transport and delivery of material from 
the site of synthesis to the site of usance or release. This type of targeted long 
distance transport is often carried out by vesicles, which are small, membrane-bound 
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organelles. Their small size, typically between 50 and 150 nm, makes the 
quantification of their movements a challenge for optical microscopy, especially 
when they are densely packed. However, the combination of high temporal 
resolution confocal microscopy and spatio-temporal image correlation spectroscopy 
has recently demonstrated that the movement patterns of densely packed vesicles can 
be quantified in space and time (1). 

An example for dense and extremely dynamic vesicle trafficking occurs in rapidly 
growing plant cells. Expansion of cellular surface in walled cells necessitates the 
delivery of cell wall material and membrane to the site of expansion. Much of the 
required material is delivered in the form of secretory vesicles whose motion requires 
spatial and temporal coordination to ensure targeted discharge at the location of 
growth ([1], [2], [3] and [4]). In general, organelle transport is mediated by the 
cytoskeleton, and motor proteins linking the organelles with the cytoskeletal 
elements provide the propelling force. In plant cells, vesicle transport is mainly actin-
myosin driven. 

Vesicle trafficking in growing plant cells 

Among the fastest growing plant cells is the pollen tube, a cellular protuberance 
formed by a pollen grain upon contact with a receptive stigma. The function of the 
pollen is to transport the male gametes from the anther of the donor flower to the 
female gametes located in the ovule of the receptor flower. Similar to other cells with 
an invasive lifestyle such as fungal hyphae, root hairs, and neuronal growth cones 
([5], [6], [7] and [8]), pollen tubes display tip growth. In this type of growth, all 
growth activity is confined to a very small area on the cellular surface, the apex (9). 
Continuous addition of cell wall material and turgor-driven expansion of the existing 
cell wall at the apex result in the formation of a rapidly elongating, cylindrical tube. 
Because of the rapid growth rate and the spatial confinement of growth activity, 
vesicle trafficking in these cells is extremely dense and dynamic, thus making them a 
very suitable system for the study of vesicle transport. 

Mechanics of pollen tube growth 

From a mechanical point of view, pollen tube growth is defined by two 
simultaneously occurring processes—the continuous addition of cell wall material, 
and the mechanical deformation of the existing viscoplastic cell wall, driven by the 
hydrostatic turgor pressure. The spatial confinement of the growth activity to the 
apex is reflected in a polar distribution of the cytoplasmic contents (Fig. 1). The 
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apical region, i.e., the growing region of the cell, beginning with the hemispherical 
tip of the tube and reaching to a distance of approximately one tube radius behind the 
tip, is almost exclusively filled with vesicles. The absence of bigger organelles gives 
it a clear appearance in the optical microscope (Fig. 1 A), as compared to the granular 
shank of the cell that is densely packed with various types of organelles such as 
mitochondria, plastids, Golgi stacks, and endoplasmic reticulum. Labeling the 
vesicles with the lipophilic styryl dyes FM 4-64 or FM 1-43 has revealed that in 
angiosperm pollen tubes, the space they occupy in the apical region has the shape of 
an inverted cone filling the extreme apex and pointing toward the rear of the cell 
(Fig. 1, E and F ([1], [10] and [11])). This cone-shaped apical region is also 
relatively free of prominent filamentous actin cables, whereas the cylindrical distal 
portion of the cell is filled by longitudinally arranged actin arrays (Fig. 1, B and C 
(12)). 

In the transition zone between the two regions, or the subapex, these arrays become 
finer and form a fringelike configuration at the shoulder region of the apical dome 
(Fig. 1 D, and Figure 2 and Figure 3). This fringe is always in close proximity to the 
continuously advancing apex of the cell. The position of this fringe is believed to be 
controlled by signaling cascades involving the subapical cytoplasmic alkaline band 
and the cytosolic Ca2+ gradient present in the tube apex. Both regulate the rate of 
assembly of G-actin into F-actin mediated by Ca2+ and pH activated proteins. These 
ion gradients thus limit the polymerization and bundling of the actin-cytoskeleton in 
a space-dependent manner ([13], [14], [15], [16], [17] and [18]). Although generally 
the term “actin fringe” in pollen tubes denotes only the ring-shaped arrangement of 
actin filaments in the subapical cortex of the cell ([12] and [19]), for the purpose of 
our model here, we define it as the complete actin array bordering the inverted 
vesicle cone (marked in gray in Fig. 3). The role of the fringe in the control of 
cytoplasmic streaming, vesicle delivery, and actin polymerization is the subject of 
this article. It should be noted that “cytoplasmic streaming” is a term used in the 
biology community to designate the intracellular movements of organelles, which in 
the optical microscope resemble a streaming process. In reality, this process is the 
sum of individually controlled movements of organelles through the cytoplasmic 
space. Most of these movements occur along cytoskeletal arrays. The cytosol, the 
liquid surrounding the organelles, is not the cause for the organelle movements, but it 
is likely to be dragged along passively. We discuss below the role of the surrounding 
liquid. 

In the transition zone between the two regions, or the subapex, these arrays become 
finer and form a fringelike configuration at the shoulder region of the apical dome 
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(Fig. 1 D, and Figure 2 and Figure 3). This fringe is always in close proximity to the 
continuously advancing apex of the cell. The position of this fringe is believed to be 
controlled by signaling cascades involving the subapical cytoplasmic alkaline band 
and the cytosolic Ca2+ gradient present in the tube apex. Both regulate the rate of 
assembly of G-actin into F-actin mediated by Ca2+ and pH activated proteins. These 
ion gradients thus limit the polymerization and bundling of the actin-cytoskeleton in 
a space-dependent manner ([13], [14], [15], [16], [17] and [18]). Although generally 
the term “actin fringe” in pollen tubes denotes only the ring-shaped arrangement of 
actin filaments in the subapical cortex of the cell ([12] and [19]), for the purpose of 
our model here, we define it as the complete actin array bordering the inverted 
vesicle cone (marked in gray in Fig. 3). The role of the fringe in the control of 
cytoplasmic streaming, vesicle delivery, and actin polymerization is the subject of 
this article. It should be noted that “cytoplasmic streaming” is a term used in the 
biology community to designate the intracellular movements of organelles, which in 
the optical microscope resemble a streaming process. In reality, this process is the 
sum of individually controlled movements of organelles through the cytoplasmic 
space. Most of these movements occur along cytoskeletal arrays. The cytosol, the 
liquid surrounding the organelles, is not the cause for the organelle movements, but it 
is likely to be dragged along passively. We discuss below the role of the surrounding 
liquid. 

Theory 

Profile of the actin fringe 

In this section, we present a calculation of the shape of the actin fringe, based on the 
assumption that it maintains a steady profile while advancing in the y direction and 
that it satisfies the constraints of the tread-milling model ([31] and [32]) for 
microfilament polymerization. Furthermore, we assume that the fringe advances 
forward at a steady rate equal to the pollen tube growth rate. We begin by using a 
model for the actin filament aggregation ([33], [34], [35], [36], [37] and [38]) to 
calculate the polarity, or orientation Θ(x), of the microfilaments (MF) along the actin 
front, in the fringe (23). For this purpose, we fix our coordinate system such that the 
tube grows in the positive y-direction. As detailed in the Supporting Material, we 
obtain the following filament angle Θ(x) between the barbed (plus) ends of the 
filaments and the x axis 

(1)  
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As an initial condition for the actin filament aggregation model, we set the filaments 
with plus-ends pointing toward the apex at the periphery of the tube and with plus-
ends pointing away from the apex in the center of the tube. These orientations are 
consistent with the orientations measured in the center and the periphery of 
angiosperm pollen tubes (23). We can now use this variable orientation of the 
filaments along the actin front to understand the variable protrusion rate of this front 
and how it forms a stable V-shape. The elongation rate, or polymerization rate, vMF 
of a single actin microfilament, according to the treadmilling model (32), is given by 

(2)vMF=v(konG−koff), 

and depends on the local G-actin concentration G, the length per monomer v and the 
net rates kon and koff at which actin monomers polymerize at the barbed end of the 
actin microfilament. There are other proteins and factors such as branching, capping, 
and uncapping, that contribute to the polymerization of individual actin filaments and 
actin fronts pushing a membrane ([31] and [32]). In the absence of experimental 
quantification of the spatial distribution of such agents in the pollen tube, we neglect 
those factors and focus on the effect of the orientation change along the actin front 
observed in pollen tubes (23). Actin monomers are added along the orientation of the 
microfilament, described by the vector n. Consequently, the profile of the actin 
network will protrude at a rate 

(3)  

in a direction along r, that is normal to the profile (Fig. 3). The multiplicative factor 
n·r ensures that the normal growth rate is maximal when the microfilaments are at a 
right angle to the actin profile and point out of the network. The profile stays in place 
when the microfilaments are parallel to the profile and retracts when the 
microfilaments are at a right angle to the profile but point with barbed ends into the 
network. Here r is a unit vector normal to the profile and n is a unit vector giving the 
average orientation of the actin microfilaments. The dependence of the protrusion 
rate of an actin front on the filament orientation has been observed in lamellipodia 
(39). As discussed in the Supporting Material, we assume that the microfilament 
orientation along the x axis in the network is given by Eq. 1. 
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We will use this model to derive a profile y(x) for the actin network advancing at a 
steady rate equal to the growth rate of the pollen tube. Using the relation 

for the vector describing the orientation of the microfilaments 
and 

(4)  

we obtain 

(5)  

We will now use the assumption that the cytoskeleton profile advances at a constant 
rate vp in the y direction. This constant growth or advancement rate in the y direction 
can be related to the protrusion rate dr/dt in the direction normal to the profile. Using 
the angle θ between the normal vector r and the y direction, one obtains 

(6)  

This expression has been used for the calculation of the steady growth profile in the 
case of diffusion-limited dendritic crystal growth and fluid finger propagation ([28] 
and [29]). Equating the left-hand side of Eq. 6 to the right-hand side of Eq. 3 gives 

(7)  

This relation has been obtained by expressing the right-hand side of Eq. 3 as vMF|n r| 
cos , where is the angle between the normal vector and the actin microfilament 
orientation. Since both n and r have unit length, we can interpret the equation as 
follows: the profile of the actin fringe must be such that the angle between the 
normal vector and the actin microfilament orientation is equal to the angle θ between 
the normal vector and the y axis, the direction of the overall actin cytoskeleton 
growth. This condition is illustrated in Fig. 3. It is important to note that for these 
regions of low profile curvature we neglect any surface tension between the 
cytoplasm and the actin network. Using cos θ = ry = (1 + y′2)−1/2, we can express Eq. 
7 in terms of y′ and Θ(x): 
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(8)  

We obtain an ordinary differential equation for the profile of the actin fringe 

(9) which has the solution 

(10)  

Here λ = vp/vMF and m is the slope in the expression Θ(x) = mx + b. The profile 
velocity vp and the maximum filament growth rate vMF must be similar such that 
vp/vMF 1. The approximation of λ being constant on the fringe is based on the 
assumption that the concentration G of G-actin monomers, and thus vMF, is a 
constant. The profile of the actin fringe for different values of m, b in the function 
Θ(x) is shown in Fig. 2 C. By adding the left-hand side and separating the two halves 
of the profile by a distance corresponding to one-fifth of the cell radius, we obtain an 
actin fringe that recovers the funnel shape with “shoulders” observed experimentally. 
Once the profile on the actin fringe is found, the vesicle flux at the fringe is obtained 
by evaluating Eq. 14 with Eqs. (7) and (8): 

(11)  

For various values of m and b, this flux is shown in Fig. 2 D. 

Vesicle diffusion and cytoplasmic streaming 

In the pollen tube shank, the vesicles are pulled along actin filaments by motor 
proteins ([40] and [41]) and the cytosol is dragged along by this active movement of 
suspended particles. However, in the apical inverted cone, there is not much 
filamentous actin that could serve to guide actin-myosin driven vesicle movement. 
And although the vesicles clearly display Brownian dynamics in this region ([42], 
[43] and [44]), it is unknown whether the cytosol, the fluid surrounding the vesicles, 
is moving in the actin-free zone. Technical limitations have precluded quantitative 
measurements of individual vesicle dynamics in the densely packed apex hitherto. 
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Therefore, we resort to the calculation of various dimensionless numbers to 
determine whether bulk fluid movement or diffusion dominates the motion of 
vesicles in the apex. The Reynolds number is the ratio of inertial to viscous forces. 
For a mass density ρ = 103 kg/m3, a tube radius r = 6.5 μm, a velocity v = 0.45 μm/s, 
and a dynamic viscosity η = 10−3 kg/m/s (45), the Reynolds number is Re = ρvr/η = 
2.9 × 10−6. Accordingly, inertial (convective) forces are negligible ([40], [45], [46] 
and [47]), such that viscous (advection due to the surrounding fluid) and diffusive 
(vesicle collisions) forces determine the motion of vesicles. This regime is called 
Stokes flow, and in this regime the movement of the cytosol (i.e., the solvent) is 
described by the Stokes equation p = η 2v (46). The question remains whether the 
movement of the bulk fluid cytosol or the collision of vesicles dominates vesicle 
movement. The Peclet number Pe = vrv/D, where rv is the vesicle radius and D is the 
diffusion constant, gives us the ratio of the adjective (due to the surrounding fluid) to 
diffusive forces. The vesicle diffusion constant can be estimated from the evolution 
of the vesicle staining density-density correlation function (1). A broadening of the 
correlation function of 0.5 μm occurred in 0.1 s, which is consistent with a 
translational diffusion coefficient of DT = r2/4Δt  = 0.625 μm2/s (46). For a vesicle 
radius rv = 0.075 μm, the Peclet number is Pe = 0.054. Based on this number, we 
neglect the motion of the surrounding fluid and assume that the motion of vesicles in 
the apex is dominated by collision between vesicles (Brownian dynamics or 
diffusion). A mathematical analysis of the velocity field in the surrounding cytosol 
would require information on the pressure and stresses in the cytosol but also the 
proper treatment of the boundary conditions formed by the outer surfaces of the 
individual vesicles (in addition to the cell wall and the actin fringe) (46). This 
difficult problem has been addressed with the boundary integral approach ([48] and 
[49]) and the boundary element method (50), but its solution is beyond the scope of 
this article. 

In our model, the vesicle flux is constrained by the following sources and sinks: 

1. There is continuous flow of vesicles in the direction of the plus-ends of actin 
filaments in the polymer network modeled previously, resulting essentially in an 
addition of vesicles in the periphery and a removal in the center. 

2. A certain number of vesicles is absorbed by the fusion process (exocytosis) at the 
plasma membrane located in an annular region around the very tip of the tube. 

We model the vesicle flow using Fick's law j = −D V on the domain bounded above 
by the cell wall calculated in the Supporting Material and below by the fringe 
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calculated in the previous section. The average vesicle flow velocity v can be related 
to the flux j = Vv, where V is the local vesicle density. Furthermore, the requirement 
of vesicle number conservation (continuity equation) leads to the diffusion equation, 
Eq. 12. This description is justified by the observation that organelles in pollen tubes 
display Brownian motion ([42], [43] and [44]). The change in vesicle density V(x, y) 
is given by the diffusion equation 

(12)  

in the clear zone of the apex. To solve this equation, the boundary conditions must be 
specified on the cell wall and the fringe. The flux of vesicles normal to the cell wall 
r·j = r· (−D V) is given by the absorption of vesicle due to the fusion process 

(13)  

where Vol denotes the volume of one vesicle and the net deposition rate R is 
calculated in the Supporting Material (Fig. 2 B). We can estimate the average vesicle 
flux normal to the cell wall due to fusion at jR  = 0.156 s−1 μm−2 from Vol = 0.0026 
μm3 and R = 0.0244 μm/min. The net flux of vesicles normal to the actin fringe is 
generated by the addition of vesicles to the clear zone (inverted cone) from actin 
filaments with barbed ends oriented toward the tip and by vesicle recovery onto 
centrally located filaments that are oriented with the barbed ends pointing rearward: 
 
(14)j·r=−D V·r=vveV(n·r−a). 

The quantity vve denotes the maximum rate at which vesicles are delivered into the 
apical cytoplasm. We can estimate the normal vesicle flux at the actin fringe (in the 
tube center) by . Here V3D  = 62.0 μm−3 is the average 
three-dimensional vesicle density in the apical cone (1). Comparing the numbers 
reveals a difference of two orders of magnitude between the vesicle flux at the 
plasma membrane and that normal to the actin fringe. This difference explains why 
the vesicle flow pattern predicted by our model is largely controlled by the 
orientation of actin filaments. Since the orientation of the microfilaments also 
controls the normal protrusion rate of the actin cytoskeleton, the right-hand side of 
Eq. 14 is proportional to the protrusion rate of the actin cytoskeleton described by 
Eq. 3 (Fig. 2 D). The constant term a represents myosin-mediated vesicle binding 
onto a microfilament that is oriented parallel to the fringe profile. The constant a is 
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adjusted in such a way that the total number of vesicles entering the clear zone equals 
the total number of vesicles leaving the clear zone, i.e., the net flux is zero. 

Results 

A steady growth analysis (30) was used to calculate the shape of the apical cell wall 
during its viscoplastic expansion. The resulting cell wall shape, that minimizes the 
mechanical stress induced by the turgor pressure, is shown in Fig. 2 A. The material 
necessary for the steady elongation of the cell wall is supplied by vesicles. The cell 
wall thus constitutes a target (i.e., a sink) for these organelles (Fig. 2 B). 

The orientation of the barbed (plus) ends of the actin microfilaments varies 
continuously along the radial axis to adopt the observed configuration (23), which 
minimizes the mechanical stress in the actin polymer network (51). Once the steady 
shape of the advancing actin fringe is assumed, its profile is a direct consequence of 
the orientation of the actin microfilaments (Fig. 2 C). This constraint is illustrated in 
Fig. 3. The orientation of the microfilaments also determines the direction in which 
the vesicles are delivered to or removed from the apical cone and the magnitude of 
their velocity (Fig. 2 D). Addition (positive values in Fig. 2 D) occurs in the 
periphery of the cell, removal (negative values) in the center. The fringe thus 
constitutes a source and sink for the vesicles. The motion of the vesicles in the apical 
cone is modeled with the diffusion equation together with the boundary conditions 
described above, which are solved with MatLab (The MathWorks, Natick, MA). 
After an integration time of 10 s, the vesicle density reaches a steady state shown in 
Fig. 4, A and C. The average density from the simulations is rescaled to 209 μm−2. 
This average vesicle density is obtained by dividing the number of vesicles present in 
a typical lily pollen tube apex (average of 81,247 vesicles (1)) by the area of the clear 
zone (389 μm2). In the biological sample, this average density corresponds to the 
density visible on a projection of a z-stack image series. Our model indicates a clear 
density gradient from the front of the cell to the tail of the vesicle cone. This spatial 
profile of vesicle density is consistent with observations in the fluorescence 
microscope ([1] and [11]) and the transmission electron microscope (4). 

In addition to providing information on vesicle density, our model yields the relative 
speed and direction of vesicle motion at each coordinate in the vesicle cone. The 
resulting vesicle flux j (Fig. 4 B) is in excellent agreement with experimental data. 
Quantitative analysis of vesicle dynamics (1) revealed a vesicle flux with a direction 
field described by a reverse fountain pattern, qualitatively identical to the one our 
model produces. The microscopic observations showed very slow vesicle motion at 
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the immediate tip of the pollen tube whereas vesicles move rapidly in the tail region 
of the cone. Our model is consistent with this change in the vesicle motion. 

The absence of significant vesicle motion at the very tip of the cell is due to the small 
value of the vesicle fusion rate at the cell wall. Since the average vesicle fusion rate 
is directly proportional to the pollen tube growth rate, we can model the change in 
the flux pattern due to an increase in pollen tube growth rate. Fig. 4 E shows the 
vesicle motion in a rapidly growing tube. The pattern was obtained by multiplying 
the net vesicle fusion rate by 50 (R = 1.22 μm/min when averaged over the cell wall). 
Although this value of R corresponds to a tube growth rate (v = 350 μm/min) that is 
much higher than any value observed in vitro (22), the numerical simulation displays 
the observed robustness of the streaming pattern to changes in the growth rate. 

Our model, and especially the V-shape of the apical zone, relies on the fact that actin 
microfilaments are oriented with their barbed ends forward at the periphery and 
rearward in the center of the tube, a typical configuration in angiosperm pollen tubes 
(23). In gymnosperm pollen tubes, the flow direction of cytoplasmic organelles is 
reversed, forming a fountainlike streaming pattern (52). However, it is unknown 
whether this flow pattern is due to an inversion of the orientation of actin filaments 
(i.e., barbed ends toward the rear in the periphery and toward the front in the center), 
or whether a different type of myosin moves vesicles from the barbed ends of the 
actin filaments toward their pointed ends (53). To find out which of the two 
alternatives is more likely we tried to model both. First, we let vesicles move in the 
opposite direction to the actin polarity on actin filaments that are oriented and 
polymerize according to the conditions mentioned above for angiosperm pollen 
tubes. The vesicle flow now displays a fountain pattern (Fig. 4 G), but the shape of 
the vesicle cone remains identical to that of the angiosperm pollen tube. Importantly, 
a high density of vesicles is now present in the tail of the cone, whereas the density is 
low close to the plasma membrane (Fig. 4 F). 

Next, we inverted the orientation of the actin filaments. Actin arrays in the periphery 
now point forward with their barbed ends, and the central array points rearward. We 
chose 
 

(15)  

for this approach. Not only do these inverse initial conditions result in a fountainlike 
flow pattern (Fig. 4 H), they also lead to a very different shape of the apical vesicle 
population (Fig. 4 I). Instead of an inverted cone, the apical vesicle population is now 
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crescent-shaped. Inspection of available fluorescence micrographs reveals that 
vesicles in gymnosperm pollen tubes indeed accumulate in such a crescent-shaped 
conformation ([44] and [52]), whereas the configuration shown in Fig. 4 F does not 
correspond to any phenomenon found in living pollen tubes. 

Discussion 

The goal of this work was to model the dynamics of vesicles in the apical region of 
growing pollen tubes and to relate it to the polymerization of the actin arrays 
bordering the apical vesicle cone. Our data show that a viscoplastic model of the cell 
wall and a steady-state model for the actin polymerization provide adequate inlet and 
outlet boundary conditions for the diffusive motion of the vesicles. When solved 
together, these constraints lead to a vesicle flux whose magnitude and direction are in 
agreement with the vesicle motion observed experimentally ([1], [11] and [54]). The 
continuity of the vesicle motion at the apical fringe, i.e., the conservation of the total 
volume of cell wall material, was used to solve the model. 

The robustness of our model is demonstrated by its applicability to a system that 
operates quite differently, the gymnosperm pollen tube. Inversion of the actin 
filaments in our model produces exactly the streaming and vesicle distribution 
patterns that are observed experimentally ([44] and [52]). By contrast, inversion of 
the movement direction of the organelles, putatively mediated by a myosin motor 
protein operating in the opposite direction, does not produce any patterns that can be 
observed experimentally. This is consistent with the fact that no myosin molecules 
operating in unconventional direction have been identified in plants hitherto. It must 
be mentioned, however, that microtubules seem to be more important in 
gymnosperm pollen tubes, compared to their role in angiosperm counterparts (55). 
Drug-induced microtubule depolymerization inhibits elongation in gymnosperm 
pollen tubes and changes the motion patterns of organelles. However, the authors 
postulate that this effect is mediated by the microtubules' control of the actin array. 
This is corroborated by the finding that the microtubule disruption causes a reversal 
of organelle streaming in gymnosperm pollen tubes (52). This reversal from 
fountain- to inverse fountain-streaming is accompanied by a rearrangement of the 
actin array. Hence, these experiments are consistent with the results of our modeling. 
No information on the orientation of actin filaments in gymnosperm pollen tube is 
available, but our model predicts that actin arrays are oriented with their barbed ends 
toward the apex in the central cytoplasmic region, and rearward in the periphery. 
Vesicles are predicted to move toward the barbed ends of the arrays. Together these 
conditions result in the flow and distribution patterns observed experimentally. 
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In view of the simplistic assumptions of the model, the agreement with experimental 
observations is encouraging. A very important test of the vesicle diffusion picture 
would be the prediction of the vesicle flux after a disruption of the tubular shape of 
the pollen tube, e.g., through a mechanical constriction of the tube or by the 
application of an agent causing swelling of the apex without interfering with actin 
functioning. However, such tests require modeling beyond the limits of our current 
steady-state cell wall analysis. Refinements of the model should include a better 
calculation of the granular flow of the cytoplasm, a heterogeneous and polydisperse 
medium (i.e., containing components of different sizes). Furthermore, the spatial 
variation of G-actin and calcium concentrations, as well as their effects on the actin 
polymerization process, was not taken into account. Given the cytoplasmic calcium 
gradient in the clear zone of the pollen tube apex (56) and the role played by calcium 
during actin polymerization (57), calcium and G-actin concentrations should be 
considered in a future model of the polymerization process. Experimental validations 
of this model include a detailed determination of the polarization of the actin 
microfilaments in the subapical region. 
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Figures 

 
Figure 1. Cytoarchitecture of the apical region of Lilium longiflorum pollen tubes. 
(A) Brightfield micrograph revealing the difference between the smooth appearance 
of the apical cytoplasm (asterisk) and the granular texture of the shank. (B–D) 
Filamentous actin forming the apical fringe (arrowhead) revealed by label with 
rhodamine phalloidin. (B) Single optical section. (C) Projection of z-stack of the 
same tube as in panel B. (D) Surface rendering of three-dimensional z-stack 
reconstruction, tilted slightly to reveal spatial configuration of the apical actin fringe. 
(E–G) Vesicles visualized by label with FM1-43. (E) Single optical section. (F) 
Surface rendering of three-dimensional z-stack reconstruction revealing spatial 
configuration of the inverted vesicle cone. (G) Vector map of vesicle flux resulting 
from STICS analysis of a time series of confocal laser scanning micrographs. Panel 
G, details of the experiment and STICS analysis, were first published by Bove et al. 
(1) (reprinted with permission; copyright American Society of Plant Biologists). 
Fluorescence micrographs are false-colored. The images in this panel do not show 
the same tube. Bar = 10 μm. Pollen culture, fluorescent label, and image acquisition 
for all figures are detailed in the Supporting Material. 
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Figure 2. Geometry of the apical cone and vesicle delivery and absorption rates at its 
boundaries. (A) Shape of the apical cell wall during steady viscoplastic orthogonal 
growth. (B) Cell wall vesicle deposition rate necessary to sustain the steady 
viscoplastic growth. The details of their calculation are found in the Supporting 
Material. (C) Right-hand side of the actin profile given by Eq. 10. (Solid line) (m, b) 
= (−π/L, −π/2). (Dotted line) (m, b) = (−3π/2, −π/2). (Crosses) (m, b = − 5π/6L, − 
4π/6). The inset shows two symmetric halves of the actin fringe profile. The half-
circle at the tail end of the profile is due to capillary effects (Supporting Material). 
(D) Vesicle flux normal to the actin fringe given by Eq. 11. (Solid line) (m, b) = 
(−π/L, −π/2). (Dotted line) (m, b) = (−3π/2, −π/2). (Crosses) (m, b = −5π/6L, −4π/6). 
In all cases, λ = 1. The units of the x- and y axis are multiples of the pollen tube 
radius. 
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Figure 3. (Left) Schematic drawing illustrating the principal directions of vesicle 
motion (left half of the tube) and orientation of the actin filaments bordering the 
vesicle cone (open arrows in right half) in the apical region of a pollen tube. After 
delivery into the apical region on the actin filaments forming the fringe, vesicles are 
released into the apical cytoplasm in an annulus-shaped zone (vesicle delivery zone). 
Vesicles that succeed in contacting the plasma membrane undergo exocytosis. 
Vesicles that do not succeed in contacting the plasma membrane stream rearwards 
within the cone-shaped vesicle pool. Many of these vesicles are recirculated back 
into the forward stream immediately in the subapical region (not shown). Solid 
arrows indicate actin-myosin-guided vesicle movement, dashed arrows indicate 
movements that are presumably governed by diffusion. Objects are not drawn to 
scale. For clarity, except for vesicles, no other organelle or the cell wall is drawn. 
This figure is based on results by Bove et al. (1) and Zonia and Munnik (54). (Right) 
Orientation of the vectors along the actin fringe profile. The values r, n, and v are the 
vector normal to the profile, the microfilament orientation vector, and the growth 
vector of the cytoskeleton, respectively. The profile of the actin fringe is such that the 
angle between the normal vector and the actin microfilament orientation is equal to 
the angle θ between the normal vector and the growth direction, the y axis. Once the 
orientation vector n is fixed, the shape of the fringe profile can be determined. 
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Figure 4. (A) Vesicle density in the clear zone of the pollen tube. Lighter shades 
indicate low density whereas dark shades indicate high density. The units of the x- 
and y axis are multiples of the cell radius. (B) The vesicle flux in the cell apex reveals 
the reverse fountain pattern. The relative magnitude of the flux velocity is given by 
the length of the arrows. (C) (Solid line) Vesicle density as a function of the distance 
from the tip, along the axis of symmetry of the tube (the y axis). The vesicle density 
from the simulation is rescaled such that its average is 209 μm−2 (1). (Dashed line) 
Vesicle density for a rapidly growing tube. The growth rate and the net vesicle fusion 
rate at the cell wall are 50 times larger. (D) Vesicle density in a rapidly growing 
pollen tube. (E) Vesicle flux in a rapidly growing pollen tube. (F) Vesicle 
distribution for an actin orientation identical to an angiosperm pollen tube but with 
inverted vesicle delivery at the fringe due to reverse myosin activity. (G) Vesicle flux 
for an actin orientation identical to an angiosperm pollen tube but with inverted 
vesicle delivery at the fringe due to reverse myosin activity. (H) Geometry of apex 
and density of vesicle in a gymnosperm pollen tube. This geometry is obtained by 
inverting the microfilament orientation at the fringe boundaries. The MF orientation 
profile used is  (I) Vesicle flux in a gymnosperm pollen tube. For 5 
μm, R  = 1.22 μm/min. 


