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RESUME

Au cours de la derniere décennie, plusieurs articles on étudié les effets
macroéconomiques que pouvaient entrainer des ajustements importants et intermittents
de variables de décision microéconomiques telles que les prix, les investissements, la
consommation de biens durables ou I'emploi, un comportement qui peut se justifier par la
présence de coudes dans les fonctions de colts d'ajustement. Dans ces modeles, les
agents observent continuellement le niveau optimal de leur variable de décision. Dans le
présent article, nous développons un modeéle similaire mais ou justement les agents
n'observent pas continuellement ce niveau optimal car [information arrive par
intermittence comme dans le cas des publications de statistiques économiques ou des
annonces de dividendes. Nous trouvons dabord la régle optimale de décision
individuelle, qui dépend a la fois du temps et de I'état de la nature. Nous développons
ensuite un cadre d’agrégation afin d’étudier les implications macroéconomiques de ces
regles optimales de décision individuelle. Une caractéristique distinctive de notre modele
est qu’un grand nombre d’agents tendent a agir en méme temps, et ce, d’autant plus que
I'incertitude est importante. L’effet moyen d’'un choc agrégé est en relation inverse avec
I'amplitude du choc et l'incertitude agrégée. Nous montrons que ces effets sont nettement
différents des effets obtenus avec des modeéles a colts d’ajustement avec information
compléte.

Mots clés : effets macroéconomiques d’information intermittente, codlts d’ajustement,
regles de décision optimales avec colts d'ajustement

ABSTRACT

In the last decade, the potential macroeconomic effects of intermittent large
adjustments in microeconomic decision variables such as prices, investment, consumption
of durables or employment — a behavior which may be justified by the presence of kinked
adjustment costs — have been studied in models where economic agents continuously
observe the optimal level of their decision variable. In this paper, we develop a simple
model which introduces infrequent information in a kinked adjustment cost model by
assuming that agents do not observe continuously the frictionless optimal level of the
control variable. Periodic releases of macroeconomic statistics or dividend
announcements are examples of such infrequent information arrivals. We first solve for
the optimal individual decision rule, that is found to be both state and time dependent. We
then develop an aggregation framework to study the macroeconomic implications of such
optimal individual decision rules. Our model has the distinct characteristic that a vast
number of agents tend to act together, and more so when uncertainty is large. The
average effect of an aggregate shock is inversely related to its size and to aggregate
uncertainty. We show that these results differ substantially from the ones obtained with full
information adjustment cost models.

Key words : macroeconomic effects of infrequent information, adjustment costs, state
dependent and time dependent rules



1 Introduction

In the last decade, the macroeconomic literature paid considerable attention
to the potential aggregate effects of intermittent large adjustments in micro-
economic decision variables such as prices (Caplin and Spulber, 1987, Caplin
and Leahy, 1991, Caballero and Engel, 1993 and 1992), investment (Caballero
and Engel, 1994), inventories (Caplin, 1985), consumption of durables (Ca-
ballero, 1993) or employment (Caballero, Engel and Haltiwanger, 1994). A
distinctive feature of this literature is that explicit aggregation of individ-
ual rules is undertaken, resulting in rich dynamic patterns for the aggregate
variables which are in sharp contrast with the inertial behavior at the mi-
croeconomic level. In these adjustment cost models, economic agents always
observes the frictionless optimal level of the control variable and infrequent
adjustments may be justified by optimal behavior in the presence of kinked
adjustment costs (Bertola and Caballero, 1990)!.

In this paper we develop a simple model which introduces imperfect infor-
mation in a kinked adjustment cost model by assuming that agents do not
observe continuously the frictionless optimal value of the control variable.
This infrequent flow of information can be considered either as exogenous
or endogenous to the agent’s decision. Examples of exogenous flows are in-
termittent information arrivals: macroeconomic statistics such as inflation,
level of employment or GNP are published periodically, dividends of firms are
announced only at certain dates, markets close regularly on weekdays and
holidays. In all these cases, agents do not observe continuously the variable of
interest. Such an intermittent information arrival has the interesting implica-
tion that a large number of agents receive the same information at the same
time, creating the conditions for a potential mass reaction. Indeed, increased
volatility of financial markets around dividend announcements and macroeco-
nomic data releases have been documented in numerous articles?. Infrequent
information could also result from the optimal decision of the agent to gather
information in the presence of information collection costs. This endogenous

"When the adjustment cost function has a kink at the point of no-adjustment, it is best
for the agent not to adjust for small changes of the frictionless optimal level. Adjustment is
triggered when the discrepancy between the control variable and its optimal level becomes
large enough.

2See Cornell (1978), for dividend announcements and Harvey and Huang (1991,1992),
Ederington and Lee (1993), for macroeconomic data releases.



infrequent gathering would not necessarily coordinate agents’ reactions and
will have different macroeconomic implications. In this paper, we focus our
attention on the first source of infrequent information, i.e. the exogenous
arrival of macroeconomic information for all agents at the same time.

Our model has the distinct characteristic that a vast number of agents
tend to act together, and more so when uncertainty is large®. We show that
lump-sum adjustment costs interact with infrequent information to generate
effects of aggregate shocks on macroeconomic variables that differ substan-
tially from the ones obtained with continuous information adjustment cost
models. First, the relative effect of cumulative aggregate shocks decreases
sharply with the size of the shock. Second, the relative average effect of
these shocks decreases when aggregate uncertainty increases. Other results
are more similar in both models. When idiosyncratic uncertainty increases,
the average effect decreases, while an increase in the adjustment cost raises
the average effect.

In order to perform the comparisons above, we solve the microeconomic
problem of finding the optimal policy in the presence of both lump-sum ad-
justment costs and infrequent information about the value of the frictionless
optimal level of the control variable. To make the conditions which determine
the optimal policy as simple as possible while keeping the main insights of
the model, we assume that the stochastic process of the frictionless optimal
value of the control variable has no drift. We find that the optimal rule is
for agents to adjust or not depending on the state at times of information
arrivals.* Therefore, it is both state and time dependent. Such a rule was
conjectured by Blanchard and Fischer (1989, p. 413) as the rule that could
result from a combination of infrequent information about the state variable
and adjustment costs. The difference with our model is that they justify
the infrequent gathering of information by the existence of costs of collecting

30ther authors have explained these mass reactions by different information extraction
mechanisms. Banerjee (1992) proposes a model where individuals tend to act simultane-
ously, even when their private information would not bring by itself such coordination.
Caplin and Leahy (1994) provide a rationale for market collapses or crashes based on a
discontinuous evolution of public information, which results from difficulties in aggregating
private information.

“The presence of a large drift will make it optimal for agents to adjust between infor-
mation collections. The conditions determining the optimal policy in the presence of a
drift are quite complex.



information.

The optimal rule in this case is characterized by a single parameter s,
which determines the inaction range (—s,s) for the discrepancy between
the frictionless optimal value of the control variable and its actual value, at
times of information arrival. We show that the inaction barriers are much
tighter than in the continuous information model. When the adjustment
cost is sufficiently low, the barriers are quite insensitive to the uncertainty
governing the stochastic process assumed for the optimal level of the control
variable. On the other hand, an increase in the adjustment cost brings about
a relatively larger increase in the barriers when information is infrequent than
when it is continuous.

Ball and Mankiw (1994) also explore the consequences of a price rule
that is both time and state dependent. The agents adjust without paying a
menu cost at even periods. Adjustments at odd periods will be made only
if the benefit of doing so is greater than the menu cost. The frictionless
optimal price is always known. They focus mainly on the effect of the drift
in the frictionless optimal price process on output dynamics. In our model,
we assume the drift to be zero and adjustment costs are always present.
Our main goal is to illustrate the interaction between adjustment costs and
infrequent information.

The rest of the paper is organized as follows. In Section 2, we derive
the optimal rule in the presence of both lump-sum adjustment costs and
infrequent observation of the optimal level of the control variable. Section 3
evaluates the aggregate effect of macroeconomic shocks through the optimal
adjustment of microeconomic units. Concluding remarks are presented in
Section 4.

2 The Optimal Rule

In this section, we set up the optimization problem of the agents confronted
with infrequent information and adjustment costs, derive the optimal decision
rule, and investigate the implications of this rule for various configurations
of adjustment costs and uncertainty and in relation with the continuous
information case.



2.1 Assumptions and formulation of the optimization
problem

An agent faces the problem of setting optimally the level of a control variable
x, be it price, employment or investment for a firm, or consumption of some
durable good for a household, in the presence of two types of costs: a lump-
sum adjustment cost, k, when resetting, and an instantaneous flow cost when
its control variable drifts away from a frictionless optimal level, z*. For sim-
plicity, we will assume a quadratic form (x —x*)? for the latter cost®. Time is
discounted by a constant instantaneous discount rate p. We depart from the
previous literature by assuming that information about the optimal level z*
arrives at discrete time intervals®. Although the agent does not observe x*
between two successive information arrivals, he can form probabilistic assess-
ments about the value of x* given his information, which consists of the past
observations of x* at the discrete information times. We assume, again for
simplicity, that z* is a driftless Brownian motion with diffusion parameter o,
le.:

dx} = odw, (1)

where w is a Wiener process.’

The distribution of z}, conditional on past observations of z* at the dis-
crete information times, depends only on the last observation x, where u is
the time of the last information arrival. The distribution of z} conditioned
on the knowledge of =}, for u < ¢ | is normal with zero mean and variance
a?(t — u).

Given initial values for the control variable and the frictionless optimal
level, the agent minimizes the expected present value of both the adjustment
cost and the flow cost of deviating from the frictionless optimal level of the
control variable. The expected value, at the time of the last information

5Quadratic flow costs could be justified as a second-order approximation to the loss in
profit or utility caused by a non-optimal level of the control variable.

6An excellent exposition of optimal control problems under adjustment costs when the
frictionless optimal value of the control variable is always known is found in Dixit (1993).

"The assumption of an exogenous process for z* is unrealistic in many settings, but the
difficulty of modeling z* with an endogenous component as well as the specificity of this
modeling to the particular setting considered prevented us from pursuing such a strategy.
We believe that the main insights derived from the model will remain even if the z* process
is partly endogenous.



arrival u, of the flow cost at time t is E,(z; — z})? and can be decomposed
as follows:

Ey(z — a::)Q = (x, — Eual:f)2 + By () — EUQT:)Q

The second term represents the irreducible cost of not being informed
about the optimal value of the frictionless optimal value x;. If there were
no adjustment costs, the agent will minimize the expected quadratic flow
costs by setting z; equal to E,z;. Since x* is driftless, it is a martingale,
and F,x; = z}, the value of the optimal variable when the last information
arrived. Therefore, even in the absence of adjustment costs, there will be no
adjustment between information arrivals®.

From the structure of the problem and from the Markovian nature of the
stochastic process for z*, it is clear that, given a discrepancy z, — z} at the
time of information arrival u, the value of the minimized cost starting at u
will be identical to the value at w4+ n (n being an integer) if the discrepancy
is the same at that time. The discrepancy x — z* is therefore a sufficient
state variable for the value function at times of information arrival. Since
there will never be an adjustment between information arrivals, it suffices to
consider the value function just at times following information arrivals.

2.2 Solving the Optimization Problem

It is never worthwhile to correct small deviations from the optimal level
of the control variable because adjustment costs are lump-sum. Also, as
the adjustment costs incurred depend neither on the state before adjusting
nor on the size of the adjustment, the agent always adjusts to the same
level of discrepancy (z — z*), which is zero in the case of a driftless process.
Given the quadratic nature of the flow costs incurred by departing from
the frictionless optimal value, the discrepancies which trigger an upward
adjustment and a downward adjustment are symmetric around zero. Thus,

8When there are adjustment costs, if an adjustment takes place at the time of an in-
formation arrival, then it is obvious that there will be no adjustments before the next
information arrival. It is not as obvious, although it is fortunately true, that when there
is not adjustment when information arrives, there will be no adjustments before the next
information arrival either. Thus, the assumption of no drift simplifies the problem enor-
mously. When there is a drift, it is necessary to determine whether to adjust and the size
of adjustments at all times.



the optimal control policy is not to adjust between information arrival times,
and to reset discrepancy to zero just after information arrival if its absolute
level is greater or equal to a given value, which we call s. This rule is clearly
time and state dependent. The value of s is what remains to be determined.

We can determine it by solving a discrete time stochastic dynamic pro-
gramming problem®, where at each time of information arrival, the agent
decides either to pay the adjustment cost and to adjust the discrepancy to
zero, and consequently x to z*, or to wait until the next period of information
arrival. Without loss of generality, we set the length of the interval between
information arrivals to one. Formally,

V(y) =min{B(y) + e PE,V(y — ¢),k + B(0) + e E,V(—¢)} (2)

where the function B represents the expected discounted cost of departing
from the frictionless optimal level of the control variable between now and
the time of the next information arrival and ¢ is the shock to the frictionless
optimal process between t and ¢ 4+ 1, which is a normal variable with zero
mean and variance 02. The expression for B, derived in Appendix A, is:

2(1—e~ o2e— o2(l—e~
B(y) = £ _ e | e

Equation 2 is valid for every y. The right-hand side can be viewed as a
transformation T of the function V. The right V is found when T'(V) = V.
Because T’ is a contraction mapping, 7™ (V) tends to V' as n becomes large.
Therefore, V' can be found by guessing an initial value for V' and interating
until convergence. After the value function is found, the optimal policy can
be evaluated.

Since the second argument of the min function does not depend on y and,
it can be stablished that, the first argument, and the value function itself,
is increasing in |y|, there exists a cutoff discrepancy s such that, below it, it
is optimal not to adjust and, above it, adjustment is optimal. The level s is
therefore the discrepancy that makes the agent indifferent between adjusting
or not adjusting:

9A nice introduction to discrete time stochastic dynamic programming is Sargent
(1987), chapters 1 and 2.



B(s)+e PEV(s—¢)=k+ B(0)+e PEV(—¢)

When the discrepancy is zero, it is clearly optimal not to adjust, and
the right hand side of the equation is equal to V(0) + k. As s is the point
that makes the agent indifferent between adjusting or not adjusting, the left
hand-side is equal to the value function evaluated at s. Thus, the condition
above can be restated as a value matching condition, which is a familiar one
in the problem of optimal control with full information.

V(s) = V(0) + k (3)

This condition must be satisfied both at s and at —s, since the value func-
tion is symmetric. Then, once the value function is obtained, this equation
can be used to determine s.

Note that with infrequent information, the value matching condition plays
a different role than in the full information resetting problems. In the latter,
the value matching condition is a condition of consistency which is always
satisfied by the value function at the resetting and trigger points, even if these
points are not optimal. In our problem, it is truly an optimality condition in
the sense that it is only satisfied if an optimal s is chosen. In other words, if
we chose a non-optimal resetting point and calculated the value function for
this resetting policy, there would be a discontinuity in the value function at
such chosen resetting point.

2.3 Numerical Results

Table 1 reports the optimal rule parameter s found numerically!® for different
diffusion parameters of the frictionless optimal control process. For purposes
of comparison, we also report the parameter value for the optimal rule when
the agent has continuous information about the optimal value of the control
variable. The optimal rule in this case is also symmetric and two-sided!!, but

0The value function is computed numerically using a picewise linear approximation
along a grid with a large number of points. We start with some initial value for this set
of points and iterate until convergence. Once the value function is obtained, the s value
is found by using condition (3).

1 To compute the optimal s for the continuous information case, we use the formula in
Bonomo (1992) for the two-sided optimal rule.

7



adjustment occurs whenever the absolute value of the discrepancy is equal
to the barrier.

The first pattern to notice is that the infrequent information bands are
much narrower than the continuous information ones. Since the cost of de-
parting from the optimal level of the control variable is a convex function of
the discrepancy, infrequent monitoring has to be compensated with a stricter
control when monitoring occurs.

The second pattern is that the size of the bands is much less sensitive to
the variability of the frictionless optimal process in the infrequent information
case. To build one’s intuition, let us first note that changing the size of the
band entails a trade-off. An increase in the size of the band, ceteris paribus,
increases the costs of being away from the frictionless optimal level of the
control variable but reduces the adjustment costs.

When information arrives continuously, the size of the band increases with
the diffusion parameter because maintaining the size constant will imply a
substantial increase in adjustment costs, while not changing much the costs
of being away from the optimal level. The unavoidable increase in costs
is minimized when the size of the band becomes wider and both costs are
increased.

When there are infrequent information arrivals, something different hap-
pens. For a higher value of the diffusion parameter, if the size of the band
is kept the same, there is a higher probability that the absolute value of
the discrepancy reaches a higher level at times of no information. So, the
expected costs of being away from the optimal level of the control variable
increase substantially due to the convexity of the flow costs, even with the
same barriers. This differs from the perfect information case where only ad-
justment costs increase when the barriers are kept constant. Therefore, in
the infrequent information case, there is less need to rebalance the increase in
costs through an increase in the barrier size since both types of costs increase
when the uncertainty increases and the barriers are kept constant.

A third pattern emerges from the table: the infrequent information bar-
riers tend to respond less to the change in the diffusion parameter when this
parameter is relatively large or when the adjustment costs are small.

To understand this result, notice that the difference between the two cases
accentuates when the adjustments in the continuous case tend to occur at
intervals that are small compared to the interval between information ar-
rivals. Adjustments tend to occur more often in the continuous case when



the adjustment cost is smaller or when the variance is larger. Therefore, it
is in those cases that the infrequent information barriers are less responsive
to changes in the diffusion parameter. As illustrated in Table 1, for a high
adjustment cost, the barriers become less responsive to changes in the un-
certainty parameter when the it gets larger. For a small adjustment cost,
the optimal barriers stay practically constant for all values of the diffusion
parameter.'?

Finally, it can be seen in the table that the size of the band seems to be
relatively more sensitive to the adjustment cost in the infrequent informa-
tion case. The optimal band size should equalize the adjustment cost to the
benefit of adjusting now rather than continuing with discrepancy s. In the
infrequent information case, this benefit is less sensitive to s, since adjust-
ments are only partially state-dependent. A more substantial increase in s
is therefore necessary in order to make the benefit of adjusting from s now
(and then following the optimal policy) equal to a higher adjustment cost
level.

3 Aggregate Effects of Macroeconomic Shocks

In this section we discuss the aggregate implications of the optimal micro-
economic rules we derived in the previous section based on both infrequent
information and kinked adjustment costs. We calculate the relative effects of
cumulative aggregate shocks between times of information arrival and aver-
age them according to their relative likelihood. We then compare our model
with models where only one kind of imperfection is present: a full informa-
tion adjustment cost model and an infrequent information model with no
adjustment costs.

3.1 Average Effect of Shocks in the Model with Ad-
justment Costs and Infrequent Information
In this subsection we first develop expressions for the effect of cumulative

aggregate shocks of different sizes and for the average of these effects in the
model with adjustment costs and infrequent information. For expositional

12We say ”practically” because when calculated with a higher level of precision, it can
be noticed that the barriers move, albeit very little.



clarity, we start by assuming that there are no idiosyncratic shocks, to sub-
sequently extend our formulas to include them. The effects depend on the
initial distribution of deviations. We will assume that this distribution is
the ergodic one, for which we develop the appropriate expression in the next
subsection. Finally, we report and analyze the results.

3.1.1 Analytical expression for the average effect of shocks

We follow Bertola and Caballero (1990) in defining the macroeconomic vari-
able as the negative of the average deviation of the control variable from
its frictionless optimal level, where the average is taken over all agents. This
deviation is also referred to as the disequilibrium level of the control variable.
If the control variable is price, if the aggregate component of the frictionless
optimal price is the nominal quantity of money and if output depends posi-
tively on the amount of real money, our defined macroeconomic variable will
be an increasing function of the level of output, as in most money effects
applications of the literature on state-dependent rules.

Let y be our macroeconomic variable and consider the variation of ¥ in
one period. During that period, aggregate shocks and idiosyncratic shocks to
individual frictionless optimal levels of the control variable accumulate, but
no adjustment is made until the information is received. Then, adjustment
is made or not, depending on the level of disequilibrium revealed. In this
section we explore the effect of aggregate shocks when both the information
about the aggregate shock and the information about the idiosyncratic shock
are released simultaneously to all agents.

The change in y in one period is given by:

Ay = [(Ax})di — [(Az;)di
= [(w + e;)di — [(Awx;)di 4
= w — pu By |Az;| + paFy | Az

where e; is the accumulated idiosyncratic shock of agent 7 in one period,
w the accumulated aggregate shock in one period, p, the fraction of upward
adjustments, py the fraction of downward adjustments, F,, |Az;| the average
size of the upward adjustments and Fy|Ax;| the average size of downward
adjustments . We are assuming that agents differ only by the level of dise-
quilibium and the idiosyncratic shocks they receive. We also assume that the
number of individual agents is very large and that the idiosyncratic shocks

10



have zero mean. As a consequence, the average among agents of idiosyn-
cratic shocks is zero. The fraction of agents who adjust upwards is formed
by agents that realize after information arrives that the frictionless optimal
level of their control variable exceeds the actual level by more than s. Thus,
each agent adjusts its control variable by at least s. A similar reasoning
applies to the fraction of agents which adjusts downwards.

Effects of cumulative aggregate shocks with no idiosyncratic uncer-
tainty To know the effect of a cumulative aggregate shock w it is necessary
to know both the fraction and the average size of upward and downward ad-
justments, which depend only on the distribution of the initial disequilibrium
when there are no idiosyncratic shocks.

Whenever there is a positive accumulated aggregate shock, w > 0, some
units will adjust upwards if their discrepancy after the shock exceeds s, while
others will not adjust because their discrepancy will remain within barriers.
The size of the upward adjustment for each unit is always equal to the ab-
solute value of the final disequilibrium, that is |z —w| = —(2z — w). This
is represented in Figure 1. The effect is totally symmetric in the case of a
negative aggregate shock. Thus, we have the following expression for the
effect of a positive aggregate shock:

Ay |w>0] =w— F(—s+w) [ —EUdF(z)

-5 Fi(-stw)
=w— [N —(2 —w)dFy(2)
It is useful to express the effect as a ratio to the shock. Then:
(A Jw> 0] =1+ [ (£ —1)dF(2) )
=[1 - E(—s+w)]+ [T 2dF(2)

The first expression between brackets is the proportion of units that do
not adjust multiplied by the relative effect which would occur if they were the
only units, that is one. The integral represents the average effect which would
take place if the units which adjust were the only units, multiplied by their
proportion. Thus the total relative effect is a weighted average between the
full effect and the effect generated by the units that adjust. If F} is symmetric
the latter effect is always negative. As w increases from zero, the proportion
of units that do not adjust decreases. Although the proportion of agents
that do adjust increases, the average size of their adjustment decreases as a

11



proportion to the shock size!®. A small shock only triggers adjustments from
units with large disequilibrium, so the size of adjustment is relatively large
compared to the shock. Larger shocks will trigger adjustment from units with
relatively small disequilibrium, so the average relative size of adjustments is
reduced, although the proportion of units that adjust is increased. The
prevalent effect when we increase w is unclear. We know however what
happens for the extreme values of w.

A close to zero aggregate shock will have full effect since almost no unit
will adjust. This can be shown by taking the limit as w goes to zero of
expression (5). On the other hand, a shock larger than 2s will have no effect
if the initial distribution of price deviations is symmetric, since all units
adjust with the average size of adjustments equal to w (since by symmetry
the average initial disequilibrium is zero). Analytically, the term between
square brackets in (5) and the integral term become zero.

Observe that expression (5) is continuous in w if F} is continuous. As
we will see in the next section on the ergodic distribution, F; tends to be
discontinuous in zero. However, this cannot cause a discontinuity in the
effect since dF}; is multiplying z in the integral and F} jumps when z is equal
to zero. So the effect should decrease from one to zero when w increases from
zero to 2s'4.

If the shock is negative the relative effect is the same, as long as the
distribution of deviations is symmetric.

We should observe that the cumulative effects of aggregate shocks with
no idiosyncratic uncertainty in our framework is analogous to the effect of an
instantaneous large aggregate shock in a model with continuous information.
However, in the latter framework, the optimal rule is generated under the
assumption that the path of the frictionless optimal level of the control vari-
able is continuous. So a large instantaneous shock violates the assumptions
of the model.

Effects of cumulative aggregate shocks when idiosyncratic uncer-
tainty is present The existence of idiosyncratic shocks increases the fre-

3 The reason is that the size of each unit’s adjustment is equal to the size of the disequi-
librium after the shock, and the latter is composed by the sum of the initial disequilibrium,
z, with the shock.

For general F there is no guarantee however that it is strictly decreasing in the size of
the shock.

12



quency of both positive and negative adjustments at times of information
arrival. Without further assumptions, we cannot tell if it will magnify or
dampen the effect of aggregate shocks. If the distribution of price deviations
is decreasing in the absolute size of the deviations, then the idiosyncratic un-
certainty tends to attenuate the effect of aggregate shocks. This is because
a positive aggregate shock, for example, tends to simultaneously make the
left side of the distribution of price deviations thicker while leaving the right
side empty. Then the added idiosyncratic shocks cause many more upward
adjustments than dowward adjustments. As a result, the effect of a positive
shock is dampened. Obviously, a symmetric version of the same mechanism
works for negative shocks too.

In Appendix B we first derive an analytical expression for the average
relative effect of a cumulative aggregate shock of a given size:

st <1-2 [ | ] - (=)

—w+s
- [ ] are)

where F is the ergodic (average) distribution of price deviations (see the
subsection below). Then these effects are averaged according to the likelihood
of each shock size to yield an expression for the average relative effect of an
unspecified aggregate shock:

sl -1 [ e[| ] - (=)o

—00 —8 —w-+s
Z—w—§

(e ) () de,

T4

dF(z)} dw

— 00

3.1.2 The ergodic distribution of deviations

Although there is no invariant distribution of deviations in the presence of
aggregate shocks, the average distribution coincides with the ergodic distri-
bution, i.e. the distribution that would remain invariant if all units only
had idiosyncratic shocks. The ergodic distribution for this class of rule has
an atom at zero, since many units adjust their discrepancy simultaneously
to zero at the time information arrives. The conditions that determine the
ergodic distribution are given in Appendix C.

13



Despite the fact that aggregate shocks occur continuously and are always
small in magnitude, adjustments are large, infrequent and have a large degree
of simultaneity. Simultaneity results from the infrequent release of informa-
tion about aggregate shocks, which makes the magnitude of news relatively
large, even though innovations are small and occur continuously.

3.1.3 Results

Figure 2 shows the ergodic distribution corresponding to two different values
of the diffusion parameter. We observe that the higher the diffusion para-
meter, the flatter the density curve and the higher the probability associated
with the atom at zero. This is consistent with the fact that a higher vari-
ance triggers more adjustments at times of information arrival, giving more
weight to the atom. Additionally, as there is more movement in the deviation
between adjustment times, the density gets flatter. These results tell us that
the higher the aggregate uncertainty, the greater the simultaneity of actions.
Intuitively, with higher uncertainty, information arrivals bring about more
news more often. A large piece of news, that is a large cumulative aggregate
shock since the last information arrival, triggers simultaneous adjustments
from a large number of agents.

Since the ergodic distributions are symmetric and decreasing in the ab-
solute size of the price deviation, we can rely on the analysis of theeffect of
cumulative aggregate shocks developed in section 3.1.1. Figure 3 shows that
the relative effect of a shock is decreasing with the absolute size of the shock,
as anticipated in the previous description about the effect of aggregate shocks.
Table 2 shows the average effect of a shock for different total variances of
shocks and different decompositions of this total variance between aggregate
and idiosyncratic variances of shocks. The average effect decreases when we
keep aggregate uncertainty constant and increase idiosyncratic uncertainty,
as anticipated in section 3.1.1. When we keep idiosyncratic variance constant
and increase aggregate variance, the average effect is also reduced!®. This
result follows solely from the higher likelihood of large shocks, which have
a lower relative effect, since the aggregate uncertainty does not affect the
impact of any specific aggregate shock. When we keep total uncertainty con-

15Tt should be noted that the effect is not reduced as much as one might have expected,
but one has to realize that the band increases as the total uncertainty increases, thereby
lowering the effect.
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stant but increase the relative weight of the idiosyncratic shocks, the effect
is reduced indicating that the influence of idiosyncratic uncertainty on each
specific shock is prevalent over the way the shocks are averaged. Finally, we
observe that the size of adjustment costs has a very important influence on
the results. This is because the size of the bands is very sensitive to adjust-
ment costs. A reduction in adjustment costs reduces the size of the band
substantially, decreasing the proportion of units that do not adjust and, as
a consequence, the relative effect of an aggregate shock.

3.2 Comparison with other models

In this section we compare the features of aggregate effects in the model with
infrequent information and lump-sum adjustment costs to the ones obtained
in models where only one kind of imperfection is present.

3.2.1 Adjustment cost with full information

A lot of work has been done on the aggregate effects of shocks in adjust-
ment cost models with full information, as referred to in the introduction.
Caballero and Engel (1992) develop a method to quantify the average effect
of aggregate shocks and apply it to assess output effects. However, their
method measures instantaneous effects, and our objective is to compare ag-
gregate effects in both infrequent information and full information models

16 The convenient time horizon we choose is

during the same time horizon
the time between information arrivals.

We want to evaluate the effect generated by cumulative aggregate shocks
of different sizes. First, it should be noticed that two cumulative aggregate
shocks of the same size may have different effects even if the initial distrib-
ution of price deviations is the same. This is due to the hysteresis built in
the models: the path of aggregate shocks matter, not just their cumulative
sum. Given this feature, to obtain a unique measure of the relative effect of

a cumulative aggregate shock of a given size, we have to average the effect

6The relative instantaneous average effect of an aggregate shock in a full information
adjustment cost model with idiosyncratic uncertainty is always one. This follows because
the ergodic distribution has density zero at the trigger points. The instantaneous effect in
the infrequent information model is also one.
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of each shock of a given size with different components by the relative likeli-
hood of its components. We therefore discretize the time and state space and
perform Monte Carlo simulations of aggregate shocks, drawing paths accord-
ing to their likelihood following the methodology in Bertola and Caballero
(1990), and calculate the relative aggregate effect for each path. We then
classify the cumulative shock sizes in small intervals and average the effects
of cumulative shocks in each class, in order to obtain a representative average
effect for each category of shock size. We also calculate a global average of
all simulations.

In Figure 4 we graph our simulations according to each class of size shock.
We notice that, in contrast with the infrequent information case in Figure
3, the relative effect of shocks tends to stay constant, except for shocks that
are very small. Average results are shown in Table 2. Average effects tend
to be of similar magnitude but do not always go in the same direction. A
higher aggregate uncertainty, all other parameters being kept constant, tends
to increase the average effect, contrary to what we found in the infrequent
information model.

3.2.2 Infrequent information with no adjustment costs

Caballero (1989) has worked out a model with no adjustment costs where
part of the information relevant to each firm arrives at infrequent intervals,
either through the payment of an information gathering cost or by observing
the action of another firm which just paid its information gathering cost.
There are some aggregate effects that come from sluggish adjustment to
innovations in the frictionless optimal level of the control variable due to
infrequent information. However, these effects do not last more than the
time interval between information collections.

A nested simple version of our model with no adjustment cost would
entail full adjustment every period of information arrival. Any shock will
have full effect until the time of information arrival, when the effect will be
eliminated by the full adjustment of all units. Therefore, if we use the same
time interval we used above to measure the effect of a cumulative aggregate
shock in the models with adjustment costs, we find no aggregate effect.
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4 Final Comments and Extensions

The need to put information gathering costs and adjustment costs together
to yield optimal rules that are both time and state dependent has long been
recognized by researchers in the macroeconomic literature (see, for example,
Blanchard and Fischer (1989), p.413 and Caballero (1989), p.29). This paper
makes an important step forward in this direction by assuming infrequent
information about the optimal control variable and lump-sum adjustment
costs, and deriving resulting optimal rules that are both time and state de-
pendent. From this point it does not seem difficult to endogenize information
arrival by introducing costs of information collection. However, as argued in
the introduction, infrequent exogenous information arrival is realistic per se
in various contexts. A more difficult task is to generalize the current model
to stochastic processes that are not martingales: then there may be adjust-
ments between intervals of information collection, and inertia bands in this
interval should depend on the remaining time before the next information
arrival. Also, the same difliculties would appear if we extended the model to
allow part of the stochastic component to be continuously observed.

In the aggregation of our simple rules we used a specific assumption: all
agents receive information at the same time. This assumption, although
extreme, captures a realistic feature of the economic world: some important
information such as the release of macroeconomic statistics, tends to reach a
lot of economic agents at the same time. Using this assumption, we arrived
at the result that a higher aggregate uncertainty increases the simultaneity
of agents’ actions. Other distinctive results are that the effect of cumulative
aggregate shocks tends to decrease with the absolute size of the aggregate
shock, and that the larger the aggregate uncertainty, the lower the average
effect of shocks. We also find implications which are shared with models
of adjustment cost with full information: a higher idiosyncratic uncertainty
and a lower adjustment cost both tend to reduce the effect of an aggregate
shock. The aggregation part could be extended to include heterogeneity
in information arrival times and information externality among agents, as
in Caballero (1989). However, given the differences between information
structures that are appropriate for various areas of macroeconomics where
adjustment costs apply, we leave these extensions for specific applications of
the model.
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Appendix A

The function B represents the expected discounted cost of departing from
the frictionless optimal level of the control variable between now and the time
of the next information arrival. It is derived as follows

B(y) = E (fo e P (ey, — 774,)%d )

= I, (f e P (y+o(wy, — wt))de)

= Jo e B (y + 0w —wp) dz

= Jo € 7 (¥* + 0*By(wiy. —w,)?) dz
= [y e Pyldz + [y e Po’zdz

y2(1—e ”) oer | d*(1—e"?)
= — + >
p p p

In the second equality, we decompose the discrepancy in ¢ 4 2 into the
sum of the discrepancy in ¢, which is ¢, and the change in x* between ¢ and
t + z. The third equality results from applying Fubini’s theorem, while the
two next ones use respectively the conditional independence of increments of
the Wiener process and the formula for their variance. The last equality is
obtained by calculating the integrals, the second one with an integration by
parts.

Appendix B

We develop below analytical expressions to quantify the effects of cumu-
lative aggregate shocks in the presence of aggregate uncertainty.

Our general formula (4) in the text tells us that to evaluate the effect of a
cumulative aggregate shock w, it is necessary to know both the fraction and
the average size of upward and downward adjustments. Both depend on the
initial distribution of agents’ deviations and on the cumulative idiosyncratic
shock which affected the optimal level of the control variable for each agent.
Since realizations of the idiosyncratic shocks across the economy are generally
unknown, we evaluate the average effect of a known aggregate shock w, by
averaging over all possible realizations of the e; shocks weighted by their
likelihood. As a first step, suppose that all agents have the same initial
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discrepancy z. Then the effect of an aggregate shock w will be:

ElAy|w, z] =w— (1 - (%)) / —(z—w—¢) U‘<1§(<l))dei
Z—w—s§ 2wk e Z "
+& (Z*;iifs) / (Z —w — el)%dez

The term between parentheses multiplying the first integral is the proba-
bility that a discrepancy of level z, after accounting for the known aggregate
shock w and the normally distributed idiosyncratic shocks, becomes smaller
than —s, triggering an upward adjustment. Thus, the first integral is the ex-
pected size of the upward adjustment, conditioned on the occurence of such
an adjustment. The second integral and the term that multiplies it apply to
downward adjustments and have similar interpretations.

The initial discrepancies of the units at ¢, rather than being concentrated
on a specific value of z, are distributed according to some distribution Fj.
Assuming that there are many units at each position z, such that the fre-
quency of idiosyncratic shocks for all units at a given position can be well
approximated by its probability distribution, we can average the effect of an
aggregate shock, as calculated above for a given z, according to the distrib-
ution F; of the z's. Then,

Blay | w,F) = w- | Lj (Y e [ e aric)
Zs Le—w+s Yoo

Next, we express the effect as a ratio, dividing the above expression by
w, resulting in:
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Now we take the expectation with respect to w, yielding:

BlS ] =1- 7 T 9() {/ L 7 — () ol dei

B 7700 —8 —w+s
/ (=) 2 )de; dFt(z)}dw

The expression above evaluates the average effect of a shock for a given
initial distribution of deviations. Finally, taking expectations with respect
to the distribution of deviations (and using Fubini’s theorem), we arrive at:

el -1- [ e[| | - (=) uen

—8 —w-+s

() () de,

T4

dF(z)} dw

— 00

where F'is the ergodic (average) distribution of deviations.

Appendix C

In this appendix we derive the equations which determine the ergodic
distribution.

Let fi(.) be the density function for price deviations different from zero
at time t, immediately after information arrival and adjustments are made.
Let P,(0) be the fraction of units with price deviation zero at time t, after
the adjustments are made. Let v; be the total cumulative shock to the
frictionless optimal level of the control variable of unit 7 during the period
of time without information. So, v; = w + ¢; and v; is normally distributed
with zero mean and variance 02 = ¢ + o2

It is clear that fi11(2) =0 for 2 < —sor z > s. For —s < z < s, and

2 #0, fiyq is given by:

—<

)= [ 7 ez (3) ave oo ()

—z—8 g

22



The fraction of units at zero in ¢ + 1 relates to the distribution in ¢ in the
following way:

Fin® = [t [ (F52) -0 (55)

g

dz + F,(0)¢(0)

For the distribution to be well defined it has to satisfy for all ¢:
P0)+ [ fi(z)dz=1
Making Py = F; and f;y; = [ in the conditions above determines the
ergodic distribution. Notice that any two of the three conditions above imply

that the third one is satisfied. Only two conditions are therefore necessary
to determine the ergodic distribution.
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Figure 1 - Effect of a Positive Aggregate Shock w (with
no idiosyncratic uncertainty)
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L sig=0.15 i
L o sig=0.20 i
i B sig=0.20 i
A sig=0.15
! ! ! ! !
-0.15 —0.10 —0.05 —0.00 0.05 0.10

0.15



Average Effect / Shock

0.6

0.5

0.4

0.3

0.2

0.0

Figure 3 — Average Effect of Shocks Per Size of Shock

s=0.050,50=0.043,5i=0.025,k=0.010,5=0.0810

-0.106

-0.12

—0.08 —0.04 0.00 0.04 0.08
Size of Shock

0.12

0.10



Average Effect / Shock

0.8 1.0

0.6

0.4

-0.6 -0.4 -0.2 -0.0

-0.8

Figure 4 — Average Effect of Shocks Per Size of Shock

s=0.100,50=0.043,5i=0.090,k=0.010,5=0.1570

—-0.3

-0.7

—0.7 —0.0 0.1
Size of Shock

0.2

0.3



