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RESUME

Cette these est composée de trois essais en économie forestiere. Les deux premiers
s’intéressent a la fixation de la redevance optimale a laquelle fait face le propriétaire
d’une ressource forestiere dans un contexte d’information asymétrique. Le troisieme
analyse I’impact a long terme du recyclage sur la surface de terre affectée a la forét.

La gestion des ressources forestieres implique souvent la délégation des droits de
coupe par le propriétaire forestier a une entreprise exploitante. Cette délégation prend
la forme d’un contrat de concession par lequel le propriétaire forestier octroie les droits
d’exploitation aux compagnies forestieres, en contrepartie d’une redevance (transfert
monétaire). L’octroie des droits d’exploitation s’effectue généralement sous plusieurs
modes, dont les plus répandus sont les appels d’offres publics et les contrats de gré a
gré, ou le propriétaire forestier et la firme exploitante spécifient entre autres la redevance
dans les clauses d’exploitation de la forét. Pour déterminer le mécanisme optimal (choix
de la firme, age de coupe et redevance), le propriétaire forestier a idéalement besoin
de connaitre les colits de coupe et de reboisement. Or en réalité, les firmes sont mieux
informées sur leurs colits que le propriétaire forestier. Dans ce contexte d’information
asymétrique, le mécanisme optimal doit donc prendre en considération des contraintes
informationnelles. Les deux premiers essais caractérisent, sous ces conditions, I’age de
coupe optimal (la rotation optimale) et la redevance optimale.

Le premier essai examine le contrat optimal quand le propriétaire forestier cede les
droits de coupes a une firme par un accord de gré a gré ou par une procédure d’appel
d’offre public au second prix. L’analyse du probleme est menée premicrement dans un
contexte statique, dans le sens que les colits de coupe sont parfaitement corrélés dans le
temps, puis dans un contexte dynamique, ou les cofits sont indépendants dans le temps.
[’examen en statique et en dynamique montre que la rotation optimale va satisfaire une
version modifiée de la regle de Faustmann qui prévaudrait en information symétrique.
Cette modification est nécessaire afin d’inciter la firme a révéler ses vrais cofits. Dans
le cas statique, il en résulte que la rotation optimale est plus élevée en information asy-

métrique qu’en situation de pleine information. Nous montrons également comment le
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seuil maximal de colit de coupe peut étre endogénéisé, afin de permettre au propriétaire
d’accroitre son profit espéré en s’assurant que les foréts non profitables ne seront pas
exploitées. Nous comparons ensuite la redevance optimale en information asymétrique
et symétrique. Les redevances foresticres dans un arrangement de gré a gré étant géné-
ralement, en pratique, une fonction linéaire du volume de bois, nous dérivons le contrat
optimal en imposant une telle forme de redevance et nous caractérisons la perte en terme
de profit espéré qui résulte de 1’utilisation de ce type de contrat plutdt que du contrat
non linéaire plus général. Finalement, toujours dans le contexte statique, nous montrons
a travers un mécanisme optimal d’enchere au second prix qu’en introduisant ainsi la
compétition entre les firmes le propriétaire forestier augmente son profit espéré.

Les résultats obtenus dans le contexte dynamique different pour la plupart de ceux
obtenus dans le cas statique. Nous montrons que le contrat optimal prévoit alors que
chaque type de firme, incluant celle ayant le cofit le plus élevé, obtient une rente stric-
tement positive, laquelle augmente dans le temps. Ceci est nécessaire pour obtenir la
révélation a moindre cofit a la période courante du véritable type de la firme. Comme
implication, la rotation optimale s’accroit aussi dans le temps. Finalement, nous mon-
trons qu’il y a distorsion en asymétrique d’information par rapport a I’optimum de pleine
information méme pour le coft le plus bas (la réalisation la plus favorable).

La concurrence introduite dans le premier essai sous forme d’enchere au second
prix suppose que chaque firme connait exactement son propre cofit de coupe. Dans le
deuxieéme essai nous relachons cette hypothese. En réalité, ni le propriétaire forestier ni
les firmes ne connaissent avec précision les colits de coupe. Chaque firme observe de
maniere privée un signal sur son cofit. Par exemple chaque firme est autorisée a visiter
un lot pour avoir une estimation (signal) de son cofit de coupe. Cependant cette éva-
luation est approximative. Ainsi, le colit de chaque firme va dépendre des estimations
(signaux) d’autres firmes participantes. Nous sommes en présence d’un mécanisme a
valeurs interdépendantes. Dans ce contexte, la valeur d’une allocation dépend des si-
gnaux de toutes les firmes. Le mécanisme optimal (attribution des droits d’exploitation,
redevance et age de coupe) est exploré. Nous déterminons les conditions sous lesquelles

le mécanisme optimal peut étre implémenté par une enchere au second prix et dérivons



la rotation optimale et le prix de réserve dans le contexte de ce type d’enchere.

Le troisieme essai de la these analyse I’impact a long terme du recyclage sur la sur-
face de terre affectée a la forét. L'un des principaux arguments qui milite en faveur du
recours au recyclage est que cela entrainerait une réduction de la coupe de bois, épar-
gnant ainsi des arbres. L’ objectif est donc d’aboutir a un nombre d’arbres plus important
qu’en I’absence de recyclage. L'idée d’accroitre le stock d’arbre tient au fait que les
foréts génerent des externalités : elles créent un flux de services récréatifs, freinent 1’éro-
sion des sols et des rives des cours d’eau et absorbent du dioxyde de carbone présent
dans I’atmosphere. Etant donné la présence d’externalités, I’équilibre des marchés résul-
terait en un nombre d’arbre insuffisant, justifiant donc la mise en oeuvre de politiques
visant a I’accroitre. Le but de ce troisieme essai est de voir dans quelle mesure la promo-
tion du recyclage est un instrument approprié pour atteindre un tel objectif. En d’autres
mots, comment le recyclage affecte-t-il a long terme la surface de terre en forét et I’age
de coupe ? Nous étudions cette question en spécifiant un modele dynamique d’allocation
d’un terrain donné, par un propriétaire forestier privé, entre la forét et une utilisation
alternative du terrain, comme 1’agriculture. Une fois les arbres coupés, il décide d’une
nouvelle allocation du terrain. I le fait indéfiniment comme dans le cadre du modele de
Faustmann. Le bois coupé est transformé en produit final qui est en partie recyclé comme
substitut du bois original. Ainsi, les outputs passés affectent le prix courant. Nous mon-
trons que, paradoxalement, un accroissement du taux de recyclage réduira a long terme
la surface forestiere et donc diminuera le nombre d’arbres plantés. Par contre 1’age de
coupe optimal va s’accroitre. L’effet net sur le volume de bois offert sur le marché est
ambigu. Le principal message cependant est qu’a long terme le recyclage va résulter en
une surface en forét plus petite et non plus grande. Donc, si le but est d’accroitre la sur-
face en forét, il pourrait étre préférable de faire appel a d’autres types d’instruments de
politique que celui d’encourager le recyclage.

Mots clés: Regle de Faustmann, Rotation optimale, Asymétrie d’information,
Sélection adverse, Redevance, Valeur interdépendante, Encheére, Contrats de gré a

gré, Recyclage, Allocation du terrain, Utilisation alternative, Contrats récursifs.



ABSTRACT

This thesis consists of three essays. The first two deal with the design of optimal
royalty contracts for forestry exploitation under asymmetric information. The third exa-
mines the impact of recycling on the long-run forestry.

The management of forest resources often involves the delegation of the harvesting
operation by the forest owner to a harvesting firm. This delegation takes the form of a
concession contract in which the forest owner leases logging rights to companies spe-
cialized in planting and harvesting, in return for preestablished royalty payments. The
royalty (monetary transfers) can be set through different methods. For example, the fo-
rest owner can organize an auction among firms. Another way is to negotiate directly
with a single firm the terms of the exploitation of the forest and hence the monetary
transfers. To set the royalty schedule, the forest owner ideally needs to know the firms’
costs, namely the harvesting and planting costs. In practice however firms are better in-
formed about their costs than the forest owner. Under this asymmetry of information,
the optimal royalty must therefore take into account informational constraints. The first
two essays characterize the optimal royalty and the optimal rotation period under those
conditions.

The first essay analyzes the optimal contract under the assumption that the harvesting
cost of each firm is perfectly known to itself but not to the forest owner. The problem is
examined both in a static context, where the costs are perfectly correlated over time, and
in a dynamic context where the costs are intertemporally independent. It is shown that
both in the static and in the dynamic cases, the optimal rotation will satisfy a modified
version of the Faustmann rule which holds under symmetric information, the modifica-
tion being necessary in order to induce cost revelation on the part of the harvesting firm.
As a result, looking first at the static case, the optimal rotation period will be longer
in the asymmetric information case than in the symmetric information case. It is also
shown how the cut-off cost can be endogenized, thus increasing the owner’s expected
profit by making sure that unprofitable forests are not exploited. Finally the comparison

i1s made of the royalty in the symmetric and asymmetric information cases. Because fo-
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rest contracts are in practice typically linear in the volume harvested, the optimal royalty
is derived under the constraint that it is a linear function of the volume harvested and the
loss in expected welfare from using a linear contract instead of the theoretically more
general nonlinear contract is characterized. Finally, still in the static context, it is shown
that the forest owner could raise its expected profit by allowing competition among firms
through public auctions. It is shown in the dynamic context that, unlike in the static case,
all firms, including the highest-cost type, get a strictly positive rent. It is also shown that
the firm’s rent rises over time. This is necessary in order to get revelation at a lower cost
in the current period. Therefore, the optimal rotation increases over time as well. The
optimal contract under asymmetry of information also has the effect of distorting the
lowest-cost firm in this case.

In the second essay, the assumption that the harvesting cost of each firm is perfectly
known to itself is dropped. Indeed, in practice neither the forest owner nor the firms
know the costs perfectly. Each firm only observes a signal of its cost. For example each
firm may be allowed to survey a tract of forest to obtain an estimate (signal) of its cut-
ting cost. Given that its observation is imperfect, a firm’s cost will therefore depend on
estimations (signals) by the other firms as well, which are private information. This se-
cond essay then raises the problem of auction design with firms whose values (costs) are
interdependent. In this context, the value of an allocation will depend on the signals of
all of the participating firms. The optimal contract is characterized and the conditions
under which the optimal mechanism can be implemented by a second price auction are
explored. The optimal rotation and the reservation price are derived under this auction
mechanism.

The third essay studies the effect of recycling on the land area devoted to forestry
in the long run. Interest in recycling of forest products has grown in recent years, one
of the goals being to conserve trees or possibly increase their number to compensate for
positive externalities generated by the forest and neglected by the market. This paper
explores the issue as to whether recycling is an appropriate measure to attain such a
goal. We do this by considering the problem of the private owner of an area of land,

who, acting as a price taker, decides how to allocate his land over time between forestry
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and some other use, and at what age to harvest the forest area chosen. Once the forest
is cut, he makes a new land allocation decision and replants. He does so indefinitely,
in a Faustmann-like framework. The wood from the harvest is transformed into a final
product which is partly recycled into a substitute for the virgin wood, so that past output
affects the current price. We show that in such a context, increasing the rate of recycling
will result in less area being devoted to forestry. It will also have the effect of increasing
the harvest age of the forest, as long as the planting cost is positive. The net effect on the
flow of virgin wood being harvested to supply the market will as a result be ambiguous.
An important point however is that recycling will result in less trees in the long run, not
more. It would therefore be best to resort to other means if the goal is to conserve the
area devoted to forestry.

Keywords : Faustmann rule, Optimal forest rotation, Dynamic contracts, Me-
chanism design, Auction, Adverse selection, Recycling, Land allocation, Alternative

uses.
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INTRODUCTION GENERALE

L’une des questions traditionnelles dans la gestion des ressources forestiere est 1’age
de coupe optimal des arbres. L’ingénieur forestier Faustmann (1849) a répondu a cette
question en définissant 1’age de coupe optimal comme celui qui maximise la valeur pré-
sente d’une séquence infinie de récoltes. Il montre qu’en I’absence d’incertitude et de
variation des prix, I’age de coupe optimal doit étre choisi de telle sorte que la valeur de
la croissance courante soit égale au colit d’option des arbres debout plus le cotit d’option
du terrain. Cette regle d’arbitrage inter-temporelle est connue sous le nom de regle de
Faustmann.

Dans la détermination de 1’4ge de coupe optimal, Faustmann suppose implicitement
que le propriétaire forestier est I’exploitant de la ressource. En réalité, le propriétaire
forestier octroie le plus souvent les droits d’exploitation a des compagnies forestieres,
en contrepartie d’une redevance. Les deux premiers chapitres de cette these déterminent
la redevance optimale que doit fixer le propriétaire forestier dans un contexte d’informa-
tion asymétrique. Le troisieme chapitre analyse dans le cadre du modele de Faustmann
I’impact a long terme du recyclage sur le stock d’arbre en forét.

Dans la plupart des pays, 1’octroie des droits d’exploitation s’effectue généralement
sous plusieurs modes, dont les plus répandus sont les appels d’offres publics et les
contrats de gré a gré, ou le propriétaire forestier et la firme exploitante spécifient entre
autres la redevance dans les clauses d’exploitation de la forét. Par exemple, dans le cas
du Canada la majeure partie des foréts est du domaine public (approximativement 94%
des foréts commerciales sont détenues par les gouvernements provinciaux et le gouver-
nement fédérale) et est enticrement récoltée par des compagnies forestieres privées, dans
le cadre de contrats de concession ou par des encheres. Aux USA et en Grande Bretagne,
les encheres forestieres sont fréquemment utilisées, tandis que certains pays comme la
Norvege, la Suede, la Finlande ou I’ Allemagne optent plutdt pour des contrats de gré
a gré, sous forme de négociation directe entre le propriétaire forestier et la compagnie
exploitante.

Dans les deux cas, pour déterminer le mécanisme optimal (choix de la firme, age de



coupe et redevance) le propriétaire forestier a idéalement besoin de connaitre les cofits
de coupe et de reboisement des firmes. Si les cofits de coupe et de reboisement étaient
parfaitement connus a la fois des firmes et du propriétaire forestier et que le prix uni-
taire par volume de bois était constant et connu de tous, alors, dans un contrat de gré
a gré, la redevance optimale sera fixée de telle sorte que la rotation optimale vérifie
la régle de Faustmann. Dans le cas d’une concurrence entre les firmes, le propriétaire
forestier va céder les droits de coupe a la firme ayant le colt le plus bas et fixera la rede-
vance optimale de maniere a ce que 1’age de coupe vérifie aussi la regle de Faustmann.
En réalité les firmes sont mieux informées sur leurs cofits que le propriétaire forestier.
Dans ce contexte d’information asymétrique, le mécanisme optimal doit donc prendre
en considération les contraintes informationnelles. Les deux premiers chapitres caracté-
risent, sous ces conditions, le mécanisme optimal.

Le premier chapitre examine le contrat optimal principalement dans le cas d’un ac-
cord de gré a gré, bien que la compétition soit introduite plus tard sous forme d’un
appel d’offre public au second prix. Il s’agit dans ce chapitre de caractériser la rotation
optimale et la redevance optimale sous sélection adverse, de les comparer a celles qui
prévaudraient en pleine information, et enfin d’analyser leurs évolutions dans le temps.
Dans le cas d’un contrat de gré a gré, le probleme soulevé s’insere dans un cadre plus
général, notamment celui du probleme du "principal-agent" avec sélection adverse. La
firme (I’agent) est mieux informée sur son coiit de coupe que le propriétaire forestier (le
principal).

Plusieurs articles et livres modernes ont traité du probleme général de sélection ad-
verse (voir par exemple Green et Laffont (1979), Baron et Myerson (1982), et Townsend
(1979)), et quelques auteurs ont appliqué la théorie du principal-agent aux ressources
naturelles. Par exemple, Gaudet, Lasserre, et Long (1995) ont analysé la redevance op-
timale dans le cas d’une ressource non renouvelable lorsque I’agent a qui I’exploitation
est déléguée 2 une information privée sur les cofits d’extraction. A ma connaissance la
sélection adverse n’a pas encore eu d’application en économie forestiere dans le cadre
du modele de Faustmann.

Dans ce chapitre, I’analyse du probleme est menée suivant deux grands axes. Dans



une premiere partie, nous supposons que les cofits de coupe sont parfaitement corrélés
dans le temps. Ceci fait que le probleme peut a toute fin pratique étre considéré comme
un probleme statique, dans la mesure ou le propriétaire forestier propose alors le méme
contrat a chaque rotation. Nous supposons que celui-ci s’engage a appliquer le méme
contrat indéfiniment pour les récoltes futures, sans possibilité de renégociation. Nous
montrons qu’en situation d’information asymétrique le contrat optimal prévoit que les
firmes conservent une rente strictement positive, sauf pour la firme ayant le colt le plus
élevé. Ceci a pour résultat que la rotation optimale est plus longue en information asy-
métrique qu’en information symétrique, sauf pour la firme ayant le codt le plus bas, et
qu’elle satisfait une version modifiée de la régle de Faustmann. Nous montrons égale-
ment qu’il peut étre possible pour le propriétaire d’accroitre son profit espéré en fixant
un seuil de participation maximal qui exclut les firmes ayant des cofits trop élevés pour
qu’il soit rentable de permettre 1’exploitation. Finalement, les redevances étant souvent
en pratique exprimées comme une fonction linéaire du volume du bois, nous utilisons les
parametres de la littérature empirique sur les encheres afin d’approximer le gain espéré
pour migrer d’un contrat linéaire a un contrat non linéaire beaucoup plus général. La
concurrence entre les firmes est introduite a la Section 3 du chapitre, ou il est supposé
qu’au lieu d’un contrat de gré a gré le propriétaire forestier procede par un appel d’offre
au second prix. Dans ce contexte, il est montré que procéder ainsi améliore que le profit
espéré du propriétaire forestier.

Dans une deuxieme partie de ce chapitre, nous analysons le contrat optimal dans le
cadre d’un accord de gré a gré en supposant maintenant une absence de corrélation inter-
temporelle entre les colits de coupe. Il s’agit alors d’un probléme proprement dynamique
a horizon infini qui peut étre résolu dans le cadre de 1’approche récursive introduite par
Green (1987). Certains résultats different de ceux obtenus dans le cadre statique de la
premiere partie. Nous montrons que le contrat optimal prévoit alors que chaque type de
firme, incluant celle ayant le cofit le plus élevé, obtient une rente strictement positive.
Cette rente augmente dans le temps. Ceci est nécessaire pour obtenir la révélation a
moindre colt a la période courante du véritable type de la firme. Il vient alors que la

rotation optimale augmente aussi dans le temps. Finalement nous établissons qu’il y a



distorsion en situation d’asymétrique d’information par rapport a I’optimum de pleine
information méme pour le cot le plus bas (la réalisation la plus favorable).

Le deuxieme chapitre de la these détermine le mécanisme optimal quand plusieurs
firmes sont en concurrence pour acquérir les droits d’exploitation de la forét et que leurs
cofits sont interdépendants. Alors que la concurrence introduite au Chapitre 1 sous forme
d’enchere au second prix a été faite sous 1’hypotheése que chaque firme connait parfaite-
ment son propre colit de coupe, dans ce deuxieme chapitre nous relachons cette hypo-
these. En réalité, ni le propriétaire forestier ni les firmes ne connaissent avec précision
les cofits de coupe. Chaque firme observe seulement en privé un signal sur son coft. Par
exemple, chaque firme est autorisée a visiter un lot pour avoir une estimation (signal)
de son colit de coupe. Cependant, cette évaluation est approximative. Ainsi, le colit de
chaque firme va dépendre des estimations (signaux) de ses concurrents. Nous sommes
ainsi en présence d’un mécanisme a valeurs interdépendantes. Dans cette situation, la va-
leur d’une allocation dépend des signaux de toutes les firmes participantes. Ce chapitre
a pour but de caractériser le mécanisme optimal dans un tel contexte et de déterminer
sous quelles conditions le mécanisme optimal peut étre implémenté par un appel d’offre
au second prix.

De nombreux travaux ont contribué a développer une littérature abondante li€ée aux
mécanismes a valeurs interdépendantes. McAfee et al. (1989) ont montré que lorsque
les signaux sont corrélés, le vendeur peut extraire la totalité du surplus des acheteurs.
Toutefois lorsque les signaux sont indépendants, Branco (1996) a montré qu’il n’est
pas possible d’extraire entierement le surplus des acheteurs. Dans le méme ordre d’idée
que Branco, nous considérons le cas ou les signaux sont indépendants. La littérature sur
les mécanismes considere en générale une regle d’attribution et un transfert monétaire.
Dans notre modele, les transferts monétaires sont effectués périodiquement a chaque ro-
tation sous forme de redevances. Le propriétaire forestier doit déterminer a la fois les
redevances et la rotation. Par conséquent la définition de notre mécanisme se démarque
légerement de la littérature et consiste en une regle d’attribution des droits d’exploita-
tion, une regle de détermination de la rotation et une regle de détermination des rede-

vances. Une autre caractéristique intéressante du mécanisme optimal présenté dans ce



chapitre est qu’il nous sert de scénario de référence pour I’implémenter par les encheres
traditionnelles. En particulier, dans la Section 3 nous nous intéressons aux conditions
sous lesquelles un appel d’offre au second prix avec prix de réserve est optimal. L’ appel
d’offre au second prix a été choisi pour des raisons de simplifications. Toutefois Riley et
Samuelson (1981) ont établi que pour un choix approprié du prix de réserve, les encheres
standards sont équivalentes.

Le troisieme chapitre de la these analyse I'impact a long terme du recyclage sur la
surface de terre affectée a la forét. En effet, I’'un des principaux arguments qui milite en
faveur du recours au recyclage du papier est que cela entrainera une diminution de la
coupe de bois, épargnant ainsi des arbres. Le but visé est donc d’aboutir a une superficie
de terre affectée a la forét plus élevée qu’en 1’absence de recyclage. Ceci peut se justifier
par le fait que les foréts génerent des externalités positives. Par exemple, elles créent
un flux de services récréatifs, freinent 1’érosion des sols et des rives des cours d’eau et
absorbent du dioxyde de carbone présent dans I’atmosphére. Etant donné la présence
d’externalités, 1’équilibre des marchés résulterait en trop peu de terre forestiere, justi-
fiant donc la mise en oeuvre de politiques visant a I’accroitre. L’ objectif de ce troisieme
chapitre est de voir dans quelle mesure la promotion du recyclage est un instrument
approprié pour atteindre un tel objectif.

L’ étude de cette question se fera en spécifiant un modele dynamique simple d’alloca-
tion par un propriétaire privé d’un terrain donné entre la forét et une utilisation alternative
du terrain, comme 1’agriculture. Le modele prend en compte le fait que le bois coupé est
transformé en produit final qui est en partie recyclé comme substitut du bois original. A
chaque date de plantation, le propriétaire forestier choisit d’une part la surface de terrain
forestier et d’autre part 1’age de coupe des arbres. On examinera donc I’impact a long
terme du recyclage a la fois sur la surface forestiere et sur I’age de coupe optimal des
arbres.

On trouve dans la littérature un certain nombre d’articles traitant du probleme d’allo-
cation du terrain entre des utilisations compétitives. Par exemple, Ehui, Hertel, et Prectel
(1990) utilisent un modele dynamique a deux secteurs pour étudier, dans un pays en

développement, 1’allocation optimale du terrain entre 1’agriculture et la forét. Le méme



modele a aussi été utilisé par Ehui et Hertel (1989) pour estimer 1’état stationnaire opti-
mal du stock de forét en Cote d’Ivoire. Hartwick, Long et Tian (2001) ont utilisé¢ un mo-
dele dynamique pour analyser la déforestation dans une petite économie avec une large
dotation forestiere et une faible dotation en agriculture et faisant face aux prix interna-
tionaux a la fois pour les produits forestiers et agricoles. Tous ces articles supposent que
les produits forestiers sont totalement consommés dans un seul usage et par conséquent
excluent le recyclage. De plus, aucun de ces articles n’utilisent la regle de Faustmann
dans la détermination de la surface forestiere et de 1’age de coupe optimal ; dans cer-
tains cas, ils traitent la forét comme une ressource non renouvelable. La méme critique
est aussi valable pour Darby (1973), qui, dans une courte note, argumente qu’en rédui-
sant la demande de bois une augmentation du recyclage va diminuer le nombre d’arbres
a planter. Dans une certaine mesure, nous formalisons rigoureusement 1’argument de
Darby en situant notre travail dans le cadre du modele de Faustmann et en prenant en
compte a la fois I'effet dans le temps sur la rotation et sur la surface de terrain allouée
a la forét. Nous montrons que, paradoxalement, un accroissement du taux de recyclage
va a long terme réduire la surface forestiere et donc diminuer le nombre d’arbre a plan-
ter, non 1’augmenter. Ceci aura pour effet d’accroitre 1’age de coupe optimal, en autant
que le colit de reboisement soit strictement positif. Cependant 1’effet net sur le volume
de bois offert sur le marché demeure ambigu. Le principal message cependant est qu’a
long terme le recyclage va résulter en une surface en forét plus petite et non plus grande.
Donc, si le but est d’accroitre la surface en forét, il pourrait étre préférable de faire appel

a d’autres types d’instruments de politique que celui d’encourager le recyclage.



CHAPITRE 1

OPTIMAL FORESTRY CONTRACTS UNDER ASYMMETRY OF
INFORMATION

1.1 Introduction

The management of forest resources often involves the delegation of the harvesting
operation by the forest owner to a harvesting firm. This delegation takes the form of a
concession contract in which the forest owner leases logging rights to companies spe-
cialized in planting and harvesting, in return for preestablished royalty payments. For
example, forest land in Canada, which is largely public (approximately 94 percent of the
commercial forests are owned by the provincial and federal governments)m is harvested
entirely by private forest firms, through lease agreements with the provincial or federal
governments.ﬂ The question then arises : What is the optimal royalty contract from the
point of view of the forest owner ?

Such a contract should induce the best time to harvest a tree or stand of trees, deter-
mining hence the optimal rotation period. If the growth function is known and if price,
planting and harvesting costs are constant and known by both the forest owner and the
exploiting firm, the answer is straightforward. The Faustmann rule (Faustmann, 1849)
dictates that if the forest owner wishes to maximize the value of the forest land (land ow-
ner’s benefit) from planting and harvesting, the royalty schedule must induce the firm to
harvest when the increase in the net value of the standing forest over a unit time interval
(rotation period) is equal to the interest on the value of the stand plus the interest on the
value of the forest land.

To set such a royalty schedule, the forest owner ideally needs to know the firm’s

1. Source : Natural Resources Canada (www.canadaforests.nrcan.gc.ca).

2. The forest owner can also delegate the exploitation of the forest to a harvesting firm through public
auctions. This method is frequently use in several forest countries like US, Great Britain... Auction has
the advantage that it creates competition among firms competing for a contract. Nevertheless, standing
timber auctions are unusual in other countries, such as Norway, Finland, Germany or Sweden : there are
negotiations between landowner and forest company (Toivonen, 1997).



costs, namely the harvesting and planting costs. In practice however, the exact costs are
known only to the harvesting firm, although the owner may be aware of their distribu-
tion. This information asymmetry creates a situation where adverse selection may occur
and the optimal royalty must therefore take into account informational constraints. What
will be the optimal rotation period and optimal royalty under adverse selection, com-
pared to that which would prevail under full information ? How will it vary over time ?
The problem constitutes an application of the well known principal-agent problem with
adverse selection.

Adverse selection issues are now well known, and appear in many papers and in mo-
dern textbooks (see for example Green and Laffont (1979), Baron and Myerson (1982),
and Townsend (1979)).@ A few authors have applied principal-agent theory to natural
resource problems. Gaudet, Lasserre, and Long (1995) study optimal nonrenewable re-
source royalty contracts when the extracting agent has private information on the costs.
In the context of forestry, Bowers (2003) puts into a principal-agent framework the pro-
blem a forest owner faces when choosing policy instruments for sustainability in the
privately operated forest industry. Many other studies have focused on the impact of va-
rious forest taxes on the optimal rotation using the Faustmann or the Hartman model,
but with no adverse selection involvedﬂ Koskela and Ollikainen (2001) study the im-
pact of harvesting, property and profit taxes on the rotation period in the Hartman model.
In a recent paper Alvarez and Koskela (2007) use both single and ongoing rotations to
analyze the effect of different forest taxes on the privately optimal rotation under uncer-
tainty. To the best of my knowledge the tree cutting problem under private information
on the planting or the harvesting cost and adverse selection has not yet been studied.

To fix ideas the owner of the forest can be thought of throughout as the government.
However, it will be obvious that the analysis applies just as well in the case of a private

owner who wishes to delegate the management of his forest.

3. Useful surveys of various aspects of mechanism design with incomplete information are contained
in Baron and Besanko (winter 1984), Baron (1989), Laffont and Tirole (1988), Besanko and Sappington
(1987) and Caillaud, Guesnerie and Tirole (1988).

4. In the Hartman model (see Hartman (1976)), landowners take into account amenity services provi-
ded by forest stands as well as net revenues.



In a first part of the paper, I will assume that the harvesting costs of the exploiting
firms are perfectly correlated over time. The problem then becomes static, in the sense
that the optimal contract is the same for each rotation. In this context, one can explicitly
derive the optimal solutions. In a second part of the paper, I will analyze the optimal
contract in the absence of this assumption. Then the infinite horizon forest problem cou-
pled with the uncertainty about future costs leads to a truly dynamic problem, which can
be solved using a dynamic programming approach introduced by Green (1987).E]

The paper is organized as follows. Section [I.2] presents the characterization of the
optimal contract in the static case. I first derive the optimal royalty and the optimal ro-
tation period in both symmetric and asymmetric information cases. I also discuss the
modification to the Faustmann rule under asymmetric information. Thereafter, I consi-
der the case where a cutoff policy that excludes all firms with costs higher than a critical
level is optimal. I also characterize the optimal royalty in both symmetric and asym-
metric information cases. I end that section by discussing the gain in moving from a
suboptimal linear contract to the optimal nonlinear contract. Section [[.3|discusses in the
static context the auction mechanism as an alternative to royalty payment. Section [I.4]
solves for the optimal contract in the dynamic context. I first present the model. After
that, I characterize the incentive compatibility mechanisms and provide a recursive for-
mulation of the problem. I end that section by deriving the solutions in both symmetric
and asymmetric information cases and discuss the modification to the Faustmann rule
as well as the main features of the optimal contract in both symmetric and asymmetric

information cases. I end with some concluding remarks in Section

1.2 Static contracts

In this section I model the problem of determining the optimal royalty when the
firm’s harvesting cost structure is not known by the forest owner and the firms costs are
perfectly correlated over time. As a result of this last assumption, the problem can be

dealt with as a static problem.

5. There is now an extensive literature dealing with this subject, see, Thomas and Worrall (1990),
Atkeson and Lucas (1992), and Spear and Srivastava (1979).
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Let X (T) represent the timber growth function, where T represents the age of the
trees. It will be assumed strictly concave and twice differentiable, with X (0) = O.ﬁ Sup-
pose that when it is harvested, a stand of trees of age T yields a net profit in present value
given by :

(p—6)X(T)e ™" —D

where p is the given market price of wood, the parameter D represents the total cost of

planting a unit of land, r is the discount rate and 0 is the unit cost of harvesting.

1.2.1 The model

The forest owner can observe the time when the stand of trees is harvested but it
cannot verify the cost incurred by the firm. Therefore it cannot base its royalty schedule
on the true harvesting cost of the firm. We must expect that the firm would, if asked for
a report, lie about its true cost function whenever it is advantageous to do so.

Denote the firm’s cost at period k by 6. The firm knows 0. The forest owner
does not know 6, but the cumulative distribution of 8y, F(8y), defined on [6%, 6],
is common knowledge. To this distribution function is associated the density function
£(6;) > 0, assumed differentiable on [6%, 677]. Knowledge of this probability distribu-
tion is shared by both the forest owner and the firm. I will assume a monotone hazard

rate, which means that

h(6x) =

is increasing in .

Consider a sequence of times #| < f, < t3... such that at each #; a tree is cut and a
new tree is planted. Then 7; = t; — ;| represents the age of the tree at date 7 . Let #
be the initial date of planting. The forest owner’s problem is to set a royalty schedule
Ry = R(Ty) that maximizes expected social welfare. I assume in the remainder of our
analysis that royalties are levied at harvesting time.

Using the Faustmann framework (see Faustmann, 1849), we may write the forest

6. Hence X(T) will attain a maximum for some unique value of T, not necessarily finite.
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owner’s objective function as :

~+o0
W =Y R ") 4 qv
k=1
where .
V = { [(p — Gk)X(tk — l‘kfl) — Rk]eir(tkitkfl) — D} eir(rk*lit())
k=1

is the firm’s surplus. The exogenously given price p, the discount rate r and the cost of
planting D are assumed to be known to both the government and the firm. I adopt the
standard assumption that 0 < o < 1 : a dollar in the government revenue is valued more
highly than a dollar that remains as profits in the hands of the firm. As already stated,
for the purpose of this section, I will assume that the firm’s costs are perfectly correlated
over time (0 = 0 V k) and that the government commits itself for the current and future
periods.

I model the problem as a direct revelation game. Hence the government chooses an
incentive mechanism, in the form of a pair (R(8),7;(8)), that is optimal given the opti-
mal response 0, of the firm, where 8 denotes the value of its cost parameter as reported
by the firm. Given that mechanism, the firm then chooses its optimal response, in the
form of a @, the value of which will depend on 0, the true value of its parameter. Ac-
cording to the revelation principle, I can restrict attention to mechanisms in response to
which the firm will find it optimal to reveal the true value of its cost parameter : me-
chanisms such that & = 8. Knowing T;(0), and R;(8), I can obtain R (7), by inverting
0 = 0(T}). In order to be feasible, an incentive scheme must also leave the firm with
sufficient surplus to cover its opportunity cost. Otherwise it would rationally choose not
to participate.

Because costs remain constant over time, the rotation will be the same, sothat 7, =T,

Ry =R Vk. Then :
e (p—0)X(T)—e ""R(6)—D
l—e'T ’

(1.1)

and
_R(0)e T e T (p—0)X(T)—e '"TR(6)—D

1— e—rT 1— e—rT
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The social welfare can also be viewed as the present value to the government of all future

rotations.

1.2.2 The symmetric information case

Before going on to solve for the optimal royalty scheme under asymmetry of infor-
mation, I first derive properties of the royalty schedule which would maximize social
welfare in the case where the government shares the firm’s information about its cost
structure. This symmetric information scenario is a useful benchmark, since it yields a

first-best solution. The government then wishes to maximize

Re—rT

W= 1—e T

+aV

subject to V(0) > 0, where V(0) is given by . Clearly, since 0 < a < 1, the solution
requires that we set V = 0.

In symmetric information, the government will extract the entire producer’s surplus.
Hence the solution consists in choosing 7' to maximize

e T(p—0)X(T)-D
1—e 1T

and then set R(6) so as to collect that maximized value as royalties. This yields the

standard Faustman formula :
(p—0)X'(Ts) = r(p— 0)X(Ty) + rW, (Ts). (1.2)

The subscript s refers to the solution under symmetric information case. A forest stand
will be harvested when the rate of change of its value with respect to time is equal to the
interest on the value of the stand plus interest on the value of the forest land. Determining

T; in (1.2), the royalty rule can be specified as follows :

R(6) = (p—6)X(T;) — De'™. (1.3)
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1.2.3 The asymmetric information case

Let us now consider the situation where the true value of 6 is known only to the
firm. I begin by characterizing the class of incentive compatible mechanisms ; that is
mechanisms in response to which the firm will choose to reveal its true cost.

Let ¢(0,0) be the surplus of the firm if it reports & when the true cost takes the

value 0. The government asks the firm that reports 6 to harvest at 7(0) and to pay the

government the total royalty R(6).

Hence

¢(é’ 9) _ e*rT(G)(P— O)X(T(é» ieirT(e)R(é) T

1— e—rT(B)

(p—0)X(T(8)) —R(8) — De’"(®)
eT(0) _ 1 :

For the firm to respond truthfully, it is necessary that, for all 8 € [0, 6],
$,(0,0)=0 for6=0 (1.4)

and

$,,(0,0) <0 for6=86. (1.5)

I will drop the argument and use the notation 7 = T'(0); R = R(6) where there is no risk

of confusion. Condition (I.4)) implies that the incentive scheme must satisfy

dT dT dR
{r-opm g - e - E e -1

—rerTZ,—g (p—0)X(T)-R—¢"D} =0. (1.6)

In addition, since by condition (1.4) ¢(8,8) = 0 for all 6 € [#%, 8], one has

$1,(0,0)+¢,(0,0) =0 VO c [0~ 067
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It follows that condition (I.5]) is equivalent to

012(0,6) = So {-X(T)T ~1)+rTX(T))
. %{—X”H%}ZO’ (1.7)

Conditions (1.6) and are local conditions. However, given the linearity of the cost
function in 0, they are sufficient for global incentive compatibility to hold (See for
example Baron (1989) for the method of proof.).

Note next that if we let V(0) = ¢(0, 6), then, by the envelope theorem, I must have

v _
de

62(0,6) = ——7— <0. (1.8)

Therefore V(6) is a non increasing function of 6 : an incentive compatible mechanism
must not leave low cost firms with a smaller surplus than high cost firms. Another way
of seeing this is to integrate (1.8)), which gives :

X(T(7

QH
V(6) :v(ef’)+/9 erm—)>)ldr. (1.9)

As it can be seen, V(8) > V(6% for 6 < 6. Conditions and are local condi-
tions. They must hold in a neighborhood of = 6.

Finally, it is assumed that the firm can decide to opt out in response to the announced
incentive scheme. This means that the combined royalty and harvesting time must satisfy

a participation constraint, given by :
V(0)>0 V6 c [0~ 0M]. (1.10)

This set of constraints simply requires that the incentive scheme guarantee each firm a
nonnegative surplus. Since V() is a non increasing function of 6 by (1.8)), constraints

(I.10) can be replaced by the single constraint

v(ef)>o. (1.11)
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The government’s problem can now be stated as choosing {(R(8),T(8)) | 6 € [6L, 67]}
to maximize expected welfare, given by :

EW =

’ [M +av(0)] £(6)d6 (1.12)

oL 1—e7T(6)
subject to (L.6), (L.7), (L.8), (L.I0) or (L.IT) and
R(6) = (p—0)X(T(8)) —De'T®) —v(0)( 7O —1). (1.13)

This can be treated as an optimal control problem, with 7'(6) the control variable and

V(6) the state variable. By substituting (1.13)) into (1.12)), we obtain :

EW = —(1-a)V(8)| £(8)d6.

0" 1 (p—0)X(T(6)) — De'T®)
eL erT(O) _1

This gives the government’s objective as the expected value of the sum of the royalty
receipts and the producers’ surplus (the first term), minus that part of producers’ surplus
which carries no weight in its objective (the second term).

To solve the problem I will ignore the incentive compatibility constraint (I.7)), and

then verify that the optimal solution satisfies it. The Hamiltonian for this optimal control

problem is
_ _ erT(G)
H(V’T’“"”:{(p e —(1—a>v<e>}f<e>—u<e>—jf§f;§9_’>l,
(1.14)

where (1(0) is the costate variable corresponding to equation (1.8)). Necessary conditions

for optimality are given by :

du  JH

a0~ ov e
av oH

- - = 1.1
do au (110
H

oH - _ 0 ( for an interior solution). (1.17)

aT
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The terminal conditions require that :

u(k)y=0 (1.18)
V(e u(e) =o. (1.19)
Equation (I.13) yields
WO _ (1 - s6).

Hence the costate variable 1 (0) satisfies 1(6) = (1 — a)F(0)+cte. The terminal condi-
tion (I.18)), implies that cte = 0 and then

u(0) = (1-a)F (o).

The terminal condition (1.19) requires that V(6%)u(6) = 0. Since u(67) =1—a >0,
this implies that V(%) = 0.

Substituting for 1 (60) into (1.14) and differentiating the Hamiltonian with respect to
the control variable, the solution of equation must satisfy :

[p—6—(1-)h(0)X'(T.) = r[p—06—(1—a)h(6)X(T,)

+ r ) -b (1.20)

where the subscript a refers to the solution under asymmetry of information. The term
(1 — t)h(0) may be interpreted as the marginal cost of dealing with the informational
asymmetry resulting from the firm’s private information (the marginal information rents)
and p— 0 — (1 — a)h(6) represents the net price of a cubic meter of wood in asymmetric
information. I will assume that p — 6 — (1 — at)h(6) > 0 for all 6.

To verify that satisfies the incentive compatibility constraint (I.7), rewrite it

as:
X(T,) rD
1 —e*’Ta] T l—e T

[p—0—(1—a)h(0)][-X"(T,)+r (1.21)
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The right hand side of (1.21) being positive and p — 6 — (1 — t)h(6) > 0, therefore :

X(Ta)

/
—X (Ta)‘i‘rm

> 0. (1.22)

To determine the sign of %‘, rewrite the first-order condition 1} as:

[p—6—(1—a)h(6)X(Tu)e”"" —D

X'(T,) — rX(T)] =r [p— 06— (1—0)h(0)](1—e 'Ta)

Totally differentiating this expression yields :

D(1+(1— )l (8))
[p—6—(1—a)h(6)]?(1—e ")

X"(T,) —rX'(T,)|dT, = —r de. (1.23)

Because X'(T,) must be positive, the left-hand side of (1.23) is negative. So is the right-

hand side, since /'(6) > 0. Therefore ‘fl](;” > 0 and T}, satisfies the incentive compatibility

constraint (1.7).

The maximized Hamiltonian being linear in the state variable V, it follows from

Arrow’s sufficiency theorem (Kamien and Schwartz, 1981) that the solution to the ne-
cessary conditions (I.15)) to (I.19) is a solution to the optimization problem (1.12).
1.2.4 The modified Faustmann rule

We can rewrite (1.20) as :
[p—0—(1—a)h(0)X(T.) =r[p— 60— (1-)h(0)]X(Ta) +7Z(6),  (1.24)
where H*(0) = H(V(0),T,(0),1(0),0) is the maximized hamiltonian and

Z(6) = 6) +(1—a)V(6)
[p— 60— (1—)h(6)]X(T,) — De'™

= T (1.25)
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represents the value of the forest land to the forest owner adjusted for the information
constraints. In auctions terms, this if often called the virtual surplus (Myerson 1981).

Equation defines the optimal rotation period under asymmetric information.
This is the usual Faustmann Rule, modified in order to take into account the information
constraints. Hence a forest stand will be harvested when the rate of change of its value
with respect to age is equal to the interest on the value of the stand plus interest on
the value of the forest land for all future rotation. It should be noted that the net price
and the value of the forest land are properly corrected for the cost of the informational
constraints. Since 4(6%) = 0, the usual Faustmann rule is unmodified for the lowest-cost
firm.

The value of the expected welfare at the optimum is given by

c_ [ THO)
EW _/GL [f(e) +(1—a)V(8)| f(8)as. (1.26)

Let us now analyze the impact of asymmetric information on the optimal rotation

period.

Proposition 1. The optimal rotation period in the asymmetric information case is longer
than that in the symmetric information case, except for the lowest cost firm, for which the
rotation period remains unchanged. In other words, T,(0) > Ty(0) for all 6 € (6~, 6]
and T,(8%) = T,(6%).

Proof. Let

X(T)

1o = —X'"(TY(1—e T 4+rX(T)>0. (1.27)

g(T)=(1—e")[-X"(T)+r

g(T)=(1—eT)[-X"(T)+rX'(T)] > 0.
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Hence g(T') is strictly increasing in 7. I can rewrite (1.21) and (1.2)) as :

(p—0)g(Ty) =rD
(p—6—(1—a)h(0))g(T,) = rD.

This implies that

(p—0)8(Tu) = (p—0)g(Ty) + (1 — a)h(0)g(Ts).

Notice that since #(6%) =0, T,(8%) = T,(8%). For 6 € (6%, 6"],h(8) > 0and g(T,) > 0,
hence (1 — o¢)h(0)g(T,) > 0. Therefore :

(p—0)g(Ta) > (p—0)g(Ts) = 8(Ta) > g(Ts).

Since g(T') is strictly increasing in 7', then 7, > T.

This situation is illustrated in Figure The intuition behind this proposition is

Figure 1.1 — Optimal rotations

Rotation

oL
4 gH

as follows : under asymmetric information, the optimal contract must give sufficiently
high rent to low contractors. The principal induces some distortion in efficiency in an

attempt to improve its share of the remaining rent. This distortion takes the form of
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longer rotations, except for the must efficient type.

1.2.5 The optimal cutoff cost

In the previous subsection we have seen that under asymmetric information the
net price and the value of the forest land need to be corrected for the informational
constraints. The information constraints are increasing in 6, the firm’s harvesting cost
parameter, and a high value of the harvesting cost can yield a negative virtual surplus to
the forest owner. In order to avoid a negative virtual surplus, the forest owner will want
to determine a critical value of the cost, which we may call the “cutoff cost”, such that
all types above this value are excluded from exploiting the forest.lZ]I show in the next
section that the cutoff cost is the analogous of the optimal reserve price in auctions.

To make sure that unprofitable forests are not exploited, the government should the-
refore endogenize the highest cost of the firm. Hence the government wants to find an
optimal value 6 € (0%, 6] that maximizes the expected social welfare. We can then re-
place 67 by 0 in the optimal control problem and determine its optimal value by

solving the following problem :

(p—6)X(T(6)) —De™®)
erT(G) -1

max EW = ;{ —(1—a)V(0)}f(6)d6 (1.28)

T(6),v(e),o

subject to (1.6), (I.7), (1.§), and

v(e) > 0 (1.29)
6 < 67 (1.30)
V(er) free . (1.31)

A similar argument to that above establishes that the condition that determines the

optimal value of 7(0) is the same as in the preceding problem, given by (1.20). The

7. The concept of excluding undesirable types of agent is in itself not new. Baron and Myerson (1982)
allow the principal to opt out an inefficient monopolist. Moorthy (1984) showed that the supplier can
increase it profit by excluding a certain types in designing product line.
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terminal value V(0) satisfies V(8) = 0. The optimal value of 6 is determined by the

following transversality conditions :

(0—6"H(V(6),T(6),u(6),6) = 0 (1.32)
6 < o° (1.33)

If & < 6 then H(V(8),T(H),1(8),8) =0 and
(p—6—(1—a)h(8))X(T(8)) —De'T® = 0. (1.34)

Hence we can state the following proposition, which gives necessary and sufficient
conditions for existence and uniqueness of an optimal interior value of 8, denoted by
0.

Proposition 2. There exists a unique 0 € (8F,0M) such that H*(8}) = 0 if and only if
H*(6%) <0.

Proof. Suppose that H*(6") < 0. Differentiating the virtual surplus Z(6), given by
((1.25))), and using the envelope theorem, we get :

dz(6) _  (1+(1—0)h'(0))X(Ta)

de e'la — 1

Hence Z(0) is strictly decreasing in 6. In addition Z(6%) > 0 and Z(6") = H* (") < 0.
By the intermediate value theorem, there exist 6% € (6%, ) such that Z(6}) = 0. Given
that V(6) =0, then H*(60},) = 0. Because Z(0) is strictly decreasing in 6, 0, is unique.

Let us now assume that there exists a 8% € (6%, 67) such that H*(8}) = 0. It fol-
lows that Z(0%) = 0 and H*(0}) = 0. Since Z(0) is strictly decreasing in 6, Z(67) =
H*(67) < 0.1

Figure|1.2{summarizes the problem that the government is facing. The welfare when
the cut-off cost 87 is imposed is given by EW* = A| — A,. The government can increase

this welfare by excluding types that belong to the interval (0%, 67] and the welfare
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becomes EW* = A;. The gain in welfare is A,, as compared to imposing 6 so that no

type is excluded.

Figure 1.2 — Optimal cutoff cost
Z(0)1(6)

64 g . pH
Ay

We can interpret 07, as the limiting quality of commercially viable forest in asym-
metric information. Let T* = T,(0}) and substitute (p — 6% — (1 — &)k(0"))X(T}") into
(1.20). We then see that the optimal rotation period 7 satisfies :

—X(TH +rX(T)) =0. (1.35)

The optimal rotation period 7,* for the firm with cost parameter 6, is independent of 6,
and satisfies the Wicksell rule for a single rotation : 7, = T,, where T, is the Wicksell

rotation.ﬂHaVing determined 7, and substituting into 1b I can implicitly find 6, by

8. The Wicksell rule is an arbitrage condition that determines the best time to harvest a piece of land
when its has no alternative uses. It states that a forest stand shall be cut when its relative value growth
equals the rate of interest. The Wicksell rule is a particular case of the Fautsmann rule when the value of
land is zero.
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solving the equation :
(p—0:—(1—a)h(6:)X(T,) —De'™ = 0. (1.36)

Let us denote the equivalent of 67 in the symmetric information case by 0. We can
find 6} by setting W;*(0;) = 0. The resulting rotation period would then the satisfies

Wicksell rule. Hence we have :

De'Tw
X(Ty)

0" — p— (1.37)
It follows that 0 — 07 = (1 — a)h(6}) > 0. The difference between 0; and 6, is equal

to the marginal cost of information at 8. In the remaining of our analysis, I will assume,

for purposes of discussion, that 8*=6%.

1.2.6 Interpreting the optimal cutoff cost

I will focus here on the interesting case where the optimal cutoff cost satisfies,
0 < 6™, indicating that the interval [@%, 8] can be divided into two regions : a region
[6F, 6] in which the firm produces (a commercially viable forest) and a region (0%, 6]
in which the firm does not participate and earns zero profit. This means that V(6) =0
for 8 > 6. Since V(0)) =0, and V(0) is strictly decreasing in 6, then V(8) > 0 for
ol <0 <@

By endogenizing the highest cost the government also discourages the firm from
falsely reporting a high cost. Indeed, if a firm with 8 < 6% was to report & > 67, it
would not participate and would have zero profit instead of V(6) > 0. In doing this, the
government raises its expected profits and induces the firm to report truthfully its cost
parameter.

Using (1.34), comparative statics results on the limited quality of commercial forest
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0;, are :
207
5D < 0 (1.38)
207
S0 > 0 (1.39)
aea < 0. (1.40)
or

Expression indicates that as the cost of planting decreases, the commercially
viable forest interval increases. Expression (1.39)) indicates that the greater is the weight
the government places on the firm’s profits, the greater is the commercially viable forest
interval. In the limit, when « is equal to one, the government will find it optimal to let all
the firms participate, because by doing this the firms will use the available information
to maximize their profits and this will yield the same solution as in the symmetric in-
formation case. Finally, expression (I.40) indicates that when the interest rate increases,

the commercially viable forest interval decreases.

1.2.7 Impact of the endogenous cutoff cost

To determine the effect of the optimal cutoff cost on the profit of the firm, let V*(0)
denote the profit of the firm when 67, < 6" occurs. If 0, < 6, the optimal profit of the
cutoff firm is lower than in the situation where the cutoff cost is set exogenously to 6.

This profit is given by :

91‘1

X (Ta(7))

T 1 ldr.

) :V(G)—/e

The difference V*(0) — V(0) in the profit of the firm is independent of 6. Since the

profit of the firm equals the rent it earns on its private information, setting the cutoff cost

endogenously reduces this rent. The optimal royalty satisfies :

R*(0) =R(0) +(V*(8) —V(8))(e —1).
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As we can see, it is higher than when 67 is imposed as the cutoff cost. The difference

R*(0) — R(0) in the royalty of the government is strictly increasing in 6.

1.2.8 Implementing the optimal royalty

The determination of the royalty rule is given by the expression

*

% X(Ta(r))

_ o _ rT,(0) _ ( rT,(0) AlLalt))
R(8) = (p— O)X (1,(68)) — De™®) — (¢l#) 1y [ D))

dr. (1.41)

We can also express the royalty as a function of the optimal rotation period by inverting
0 =0(T) in and substituting into (1.41). The optimal royalty under asymmetric
information can be expected to be nondecreasing in the optimal rotation period, while
the royalty in symmetric information can be expected to be nonincreasing. The intuition
is the following : since the information rent V(6) depends on the royalty, the govern-
ment can reduce this rent by increasing the optimal rotation period, so as to remove the
incentive to the firm to exaggerate its cost.

Now let us compare royalties in symmetric information with those in asymmetric

information.

Proposition 3. There exist 07 € (6%,0%) such that Ry(0") = R,(0") and Ry(6) >
R,(0) forany 0* < 6 < 6.

Proof. See the Appendix. 1

Figure[I.3]depicts the optimal royalties in both the symmetric (solid line) and asym-
metric information (dotted line) cases and illustrates the result of Proposition 3] It should
be noted that although a firm with cost parameter 8" pays the same royalty under both
asymmetric and symmetric information, it earns a positive profit in the asymmetric in-
formation case, but a zero profit in the symmetric information case. This is due to the
fact that the optimal rotation period is higher in the asymmetric information case than in
the symmetric information case.

In practice it is often more practical to express royalties as a function of the volume

of wood. Let x = X(7'(0)) be the volume of timber when the forest is cut at time 7'(0).
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Figure 1.3 — Optimal royalties
Royalty

gL é+ : o Cost

The royalties can be expressed as a function of this volume by inverting 6 (x). Hence,

R,(x) isdefined for x¢€ [x'x)] x=X(T,(0)), 6 ¢c[06F, 6]

Ry(x) isdefined for xe[xf,x,] x=X(Ty(0)), 6 €6l 67
where 3 = X (T;(81)) = X(Ty(61)), 2, = X (Ty(8)). xs = X(T,(6})). Since T(8}) >
T4(6}) and X () is strictly increasing, then x, > x;. If x is known, the cost can be found
by inverting X(T). It follows that 8; = T,”'(X~!(x)) and 8, = T, !(X~!(x)), which
implies that 75(0,) = T,(0,). Thus, I can state the following proposition.

Proposition 4. There exist x € (x*,x;) such that Ry(¥) = R,(X) and Ry(x) > R,(x) for

any A <x<=i
Proof. See the Appendix. 1

This proposition is illustrated in Figure [I.4] As can be seen, the royalty function in
the symmetric information case is not defined beyond x;, since it is not profitable for
the firm nor the government to harvest in excess of the volume x;. In the asymmetric

information case, however, the firm will have a higher profit and will therefore want to
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wait longer to harvest. This explains why x, > x;. Figures [I.3]and [I.4] also show that in
order to reduce the informational rent left to the exploiting firm in the case of adverse
selection, the forest owner sets a higher royalty than in the situation of full information

for a high cost (beyond 67) or a high volume of wood harvested (beyond ).

Figure 1.4 — Optimal royalties as a function of the volume of wood

Royalty

L Volume
x ZTq

1.2.9 Uniform contracts

Typically forest contracts are in practice set as a linear function of the volume harves-
ted, independently of the cutting cost.ﬂ In this section I analyze the optimal policy with
incomplete information when the forest owner constrains itself to choose such a uniform
contract. This kind of contract is suboptimal, in the sense that it cannot do better than a

more general optimal nonlinear contract derived above. I will characterize the loss to a

9. Various aspects of linear pricing in forestry are contained in Paarsh (1993), and Stgrdal (2004).
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forest owner who uses a uniform contract instead of the nonlinear one and illustrate it
using simulation results.

The problem of determining the loss resulting from the application of a second-best
policy is not new. In a related procurement environment, Bower (1993) showed, using
simulation results, that a simple single contract often can contain a large fraction of the
surplus secured by a full menu. Rogerson (2003) proposed a very simple FPCR contract
(Fixed Price Cost Reimbursement) and showed that it can capture at least 75 percent
of the gains that contains the optimal complex menu of the standard principal-agent
model. Sheriff (2009) used empirical results to calibrate a second-best land conservation
mechanism and evaluate its cost relative to other alternatives. I will follow Sheriff and
use some parameter values from published empirical studies to perform my simulations.

For a uniform contract, the forest owner sets a royalty of b per unit of volume of
timber harvested, independent of types. The firm chooses a rotation period 7 and pays
the total royalty R(T') = bX (T) to the forest owner. One can then rewrite the firm’s profit
and the welfare function respectively as :

e T(p—0-b)X(T)-D
—rT

V(T,b,0) =

1—e

and
e "ThX(T)

TV (1.42)

W(T,b,0) =

Thus the firm’s objective function is independent the distribution of the harvesting cost
and is of the same form as in the absence of private information, except for the fact that
net price now accounts for the royalty rate, in addition to the harvesting cost. Given that
objective function, the firm’s optimal rotation will be given by the following version of

the Faustmann rule :
(p—106 —b)X’(T) =r(p—0—0b)X(T)+rV(T(b,0),b,0).

I will assume that the cutoff cost, denoted by 8 is endogenous. Hence the government

knows that the optimal rotation period at 8 would yield zero profit and determines a
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royalty b that maximizes expected social welfare given those constraints. Given that
b is the same regardless of types, the welfare maximization problem then consists of

choosing b and 0 to maximize :

bX (T (b,0))e "T(6:9)

9
/OL e+ aV(T(6,0),b,0) | £(0)d0 (1.43)

subject to
(p—0-b)X(T) = r(p—0—b)X(T)+rV(T(b,0),b,0) (1.44)
V(T (b,0),b,0) > 0 with equality if 6 < 67 (1.45)
6 < o~ (1.46)

The characterization of this suboptimal mechanism is given in the Appendix.

To illustrate the gains from moving from the linear to the nonlinear contract I borrow
parameters from the empirical study on timber auction presented by Paarsh (1997). He
assumed that the harvesting cost follows a Weibull distribution and estimated the para-
meters of that distribution to be 61 = 0.3686 and 8, = 3.323. I also use that distribution,
with the same parameters. The market price he uses is p = 46.89, the average price for
timber sales from 1984 to 1987. The planting cost is D = 3891.87. I borrow the growth
function from Payandeh (1973), who estimated it to be X(T) = 5680.7 — 266607 ~°
for pine. I truncate the distribution to [67, 8] to ensure that they are well defined. I use
two ranges of harvesting cost : [#F, 7] = [7.18,23.68], and [0, 0] = [12.13,18.73].
The left side of the table is performed with r=0.03 and the right side is performed with
r = 0.02. The results are given in the following table, where the optimal cutoff cost under

a uniform contract is denoted by 6.

Tableau 1.I — Gain in moving from the uniform contract to the nonlinear contract

[7.18,23.68] [12.13,18.73] | [7.18,23.68] [12.13,18.73]
Gain (%) 0.20 0.87 0.42 1.73
o 20.51 18.73 21.77 18.73
0 20.59 18.73 20.60 18.73
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The table shows that the gain in moving from a uniform contract to a nonlinear
contract decreases with the length of the interval [8%, %] and with the interest rate. As
can seen, the uniform contract captures between 98.27 and 99.8 percent of rent captu-
red by the nonlinear contract. It would appear that the gain in moving from a uniform

contract to a nonlinear one is small.

1.3 Forest auctions

The previous sections consider a bilateral contract between a forest owner and a
harvesting firm. In this section, I introduce a competition between firms and analyse the
optimal contract using a standard auction, namely the second price auction. I determine
how a forest owner can lease the right of a forest to N competing firms. Let 6',i =
1,2...,N be the cost of firm i. Suppose that each 6’ is drawn independently from the
same distribution with the cumulative distribution function F(-) and the density function
f() on the interval [8%,6%]. Moreover F(-) is common knowledge. I will focus on
symmetric equilibria with increasing bids.

A second price auction is defined by a rotation period 7 (b) and a reserve price R > 0
where b = (b")i:h,,,7N is a bid vector. Let us assume that the payment will be made
every time the trees are cut and this time is determined by the rotation period T'(b). The
bid of firm i depends on its cost 8 according to a decreasing function y, where 7 is
the symmetric equilibrium strategy so that b = y(8"). Without loss of generality, let us
assume that the firm considering an alternative bidding strategy is firm 1. Suppose that
firm 1 bids b' = y(z) and view firm 1 as choosing z when its type is 6'. Firm 1 will win if
and only if it submits the highest bid which is greater than the reserve price R. This means
if and only if Vi = 2,...,N, b' > max{y(6'),R}, which implies that z < min; 4 8/ = y.
It must pay the second highest bid y(y) or the reserve price R if y(y) < R . The revenue

of firm 1 when it wins is

(p—0")X(T(6,2))e~ 70" _p

1 _
w(®',2) = ] —e—1T(0'2)
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Let R=y(9);if z < 6, the expected payment of firm 1 is given by

o)
E[y()1(z < 8)|2] = / YO)£()dy +¥(8)[1 — Fy(8)] (1.47)

where Fy(z) = 1 — (1 — F(z))V~!. The expected profit of firm 1 when it chooses to enter

the auction can be expressed as

00,9 = w0 (1~ BE) - [ AW O -RE). (149
¥(-) is the equilibrium bidding strategy only if firm 1 chooses z = 6! and bids y(0").

Therefore, the following first-order condition must be satisfied

1
we .9 _, (1.49)

which means that,

wa(01,2)(1 = Fy(2)) —w(8',2) f3(2) +¥(2) fy(z) =0 at z = 6!

where wy(+) = agg). The equilibrium bidding strategy is then obtained as
1-F(6!
y(0") = w(o',0") —=BE ), 91,0,
5(67)

As shown in the Appendix, the forest owner’s optimization can be reduced to

max EW, (1.50)
(9 ),VL(8),6
1
—N/ (0',7(6) ~ (1 - )T h(8))(1 ~ 5 (01) (60"
— a)VL(8)F(5)

subject to V.1 (§) >0, § < 67 and y(-) is nonincreasing in 8, where the subscript sa

refers to a second price auction. Clearly V. (§) = 0. The optimal rotation period function
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Tl

sa

(0') satisfies

[p— 8" —(1—0)h(8")X'(T;,) = (1.51)
[p—6"—(1—a)h(6")X(T))e "B —D

rlp— 0" = (1— k(0 )X (TL) +r S

It follows from (1.51) that T,}, = T,,, and hence T} = T, for all i = 1,...,N. Recall that
T, is the optimal rotation period under bilateral contract. Finally, by assuming that § <
6", I obtain that the optimal reserve price satisfies (p — & — (1 — a)h(8))X (T,,(8)) —
De'T+(%) = 0 which is the same equation that determined 87, hence § = 7. In short, the
solution to the optimization problem shows that the optimal rotation period function is
the same as in the bilateral contract case, and the optimal reserve price is equal to the
cutoff cost.

Now let us compute the gain or loss in expected welfare from having an auction.
Denote the expected welfare in a second price auction by EW,, and in a bilateral contract

by EW. Then :
1) 1)
EWs, —EW :N/GL(I —F,(0))Z(0)f(6)d0 —EW = /GLZ(O)f(O)dG (1.52)

where Z(-) follows from (1.25). Recalling that F,(8) = 1 — (1 —F(6))"~! and integra-
ting (I.52)) by part, one obtains that

81+ (1—a)k(6)

N—1
o L= (=F(O)YIF(6)d6 >o. (1.53)

EW,, —EW =

Equation (1.53) shows that the second price auction yields a higher expected welfare
compared to the case of a bilateral contract. This result can be summarized by the follo-

wing proposition

Proposition 5. With N competing firms whose types are drawn independently from the
same distribution, (i) an optimal second price auction awards the contract to the firm
with the lowest cost. (ii)The optimal rotation period function of the winning firm is the

same as in the bilateral contract case as well as the reservation price. (iii) The optimal
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auction yields a higher expected welfare than in the case of a bilateral contract.

Proposition [5| deserves some comments. The fact that the optimal rotation function
under the second price auction is the same as that obtained under the bilateral contract
means that in the case of an auction the optimal rotation period is independent of the
number of firms. The optimal auction can be viewed as a two step process. The first step
consists of selecting the winning firm, which is the lowest cost firm; the second step
is to propose a bilateral contract. In this case, the winning firm knows that if its cost is
above the cutoff cost it will not participate, which means that the cutoff cost is equal to
the reserve price. Finally, when the number of firms increases, the profit of the winner
decreases, leading to a higher value for the forest owner :

0;
Vea(6) — V*(0) :/9 %Fy(r)dr< 0.

1.4 Dynamic contracts

In the previous sections I have assumed that the costs are perfectly correlated over
time and that the government is committed to present and future harvests. Under the as-
sumption of perfect correlation cost, the principal cannot credibly commit to the contract.
Indeed, after one rotation the principal knows the cost and has an incentive to switch to
the symmetric information in order to capture all of the firm’s rents. In this section I will
depart from this assumption.

Let us assume that there is no intertemporal correlation between harvesting cost :
the 8'sy, k = 1,2, ..., 00, are not correlated over time. Recall that under asymmetric infor-
mation the firm observes the realization of 0 at the planting date #;_; or period k£ — 1
and the principal does not. Let 6% = (81,05, ...,0;) € O where ® = [6%, 6] denote a
k period history of costs. Because the costs 6 are not correlated over time, each firm
is assumed to privately observe its history of costs. But the forest owner’s only sources
of information about this history are the reports provided by the firm itself. Define a
reporting strategy / to be a sequence of functions {/;}; | with /iy : ®* — @, and re-

fer to H as the set of all reporting strategies. The truthful reporting strategy is deno-
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ted by h* = {h;}7_, where for all z, 8%, hf(6%) = 6;. Recall that the harvesting time
o OF - R, the age of the tree at date #; (rotation period) 7} : ek — R and the forest
owner’s royalty Ry : ® — R are random variables.

The timing of events is as follows. Period k — 1 begins after history 6%~ € @1
has taken place and the sequence of reports /#*~! (9"_1) has been submitted to the forest
owner. The firm observes its period k — 1 harvesting cost 6 and reports its realization to
the forest owner according to the strategy hk(Gk). The forest owner allows the firm to cut
the tree at age Ti(h*) and in return the firm pays a royalty Ry (). Given a sequence of
strategies T = {Ti(h*)}7_, and R = {R(h*)}3_,, the expected profit to the firm at time

fx—1 given a history #*~! is given by :

Vi1 (T, R, h; 1) (1.54)

=E i ﬂ:s(T,R;hs>e_"(ts(hs)—tk71(hk71))
s=k—1

— [ [ (TR ) e V(TR B )] £(6)
©
and the expected welfare of the principal is given by :

Wi 1(T R, h;hE1) (1.55)

=k Z Royt (B )e B0 e (T, Ry )| ) ~tia (D)

_/ )e ) L (T, Ry + e W (T, R, h")] f£(6:)d8;

where T (T, R; 5 1) = (p — 00X (Ti(h¥))e M) — D — Ry (h¥)e (M) is the current
profit of the firm at time #;_1, Vi (T, R, h; /*=1) and W_; (T, R, h; /*~!) represent res-
pectively the continuation profit of the firm and the continuation expected welfare of the
principal at date ¢ after history #* occurred. Let V(T,R,h) and W(T,R,h) be respecti-
vely the expected profit of the firm and the principal’s expected welfare at the initial date
fo.

By the revelation principle I can, without loss of generality, restrict the forest owner’s

choice of mechanism to those that induce the firms to be truthful. Thus I require the
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allocation (7, R) to satisfy the incentive-compatibility condition :
V(T,R,h*) >V (T,R,h) VheH. (1.56)

In other words, truth-telling weakly dominates any other reporting strategy. The alloca-

tion (T,R) is temporarily incentive-compatible if ¥ k, i*, 6and 6’ :

e (T, R, (HF",0)) + Oy (T R b (1, 0)) (1.57)
> me 1 (TR (WE1,07)) + e B0y (7 R b (141, 67)).

The preceding constraints imply that after each history of harvesting costs, a firm is
better off truthfully reporting its costs, rather than lying and being truthful thereafter. If
the allocation (7', R) is incentive-compatible then it is temporarily incentive-compatible.
According to Green (1987) an allocation which is temporarily incentive-compatible and

that satisfies the following transversality condition (I.58)) is incentive-compatible

lim supe " (4(8)=10)y, <T,R,h | 9") —0 (1.58)
ke gk
Condition (1.58)) simply means that starting the problem in the remote future will have
negligible consequences for current decisions. I assume that the transversality condition
(1.58) is fulfilled.
Finally I require a contract (7, R) to be self-enforcing, which implies that the conti-

nuation profits of firms must satisfy the following participation constraints :
Vet (T, R, h; i*" 1) >0 Wk, BF L. (1.59)

This definition assumes that the firm does not commit to the contract : at each period
k — 1 it could abandon the contract if it is advantageous to do so.

An optimal contract is an allocation (7,R) such that (7,R) maximizes W (T,R,h)
subject to the participation constraints and the temporary incentive compatibility

conditions (1.57)
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1.4.1 The recursive formulation

This subsection provides a recursive formulation for the problem described above.
Let V(W) =Vi_(T,R,h; ¥~V and W (W= 1) = Wi (T, R, h; FF=1). Let 7 = {V (¥~ 1)}
and . = {W (hk~1)}. Where these values are computed at the optimal contract. For each
v € ¥, consider solving the following problem : maximize the forest owner’s time f
(period 0) expected profit subject to the firm getting a minimum profit v ; let S(v) denote
the expected profit to the forest owner in the solution to this problem ; let 6 be the cost
of the firm at time #(; let T'(v,0) and R(v,0) be respectively the optimal rotation and
the optimal royalty at time 7 ; let U(v, 0) be the profit promised to the firm at time 7,
(period 1). This means that if v = V (h*~1), then S(v) = W (h*~1), T(v,0) = T (h*~1,9),
R(v,0) =R(K1,0),and U(v,0) =V (h*~1,0) = V,(T,R,h; (K*1,0)). At period 1, ha-
ving received the report 6, the forest owner has to give the firm profit U(v,6). Then
T(U(v,0),0"), R(U(+,0),0"), and U(U(v,0),0') are respectively the optimal rotation,
the optimal royalty and promised future profit in period 1, where 8’ is the firm’s cost in
that period. This argument is repeated indefinitely.

The argument above implies that the forest owner’s problem is to find four functions :
U:7Vx0—=Y SV -7 T:7 x0— R+ R:7x0®—=R

SO as to maximize

S) = [ 1R0,0)e77 0 4 o(p— 0)X(T(1, )+
—D—R(v,0)e "0 4 e T0:O) 51 (v,0))} £(6)d6 (1.60)

subject to

—D—R(v,0)e”"T0:0) L o= TO)y (1, 0)]£(0)d6 = v (1.61)
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(p—0)X(T(v,0))e T _ D _R(v,0)e " TM0) 4 ¢ T0:0) (4, 9)

> (p—0)X(T(v,0')e " T0:8) _D —R(v,0")e T "¢)
+e Ty (1,0, ¥,6,0 (1.62)

Uv,6) > 0. (1.63)

Equations (1.60), (1.61), (1.62)), and (1.63) follow respectively which (1.53)), (1.54),

(L.57), and (1.59). Equation (I.61) states that v is the expected profit of the firm, (I.62)
says that (T,R) is incentive compatible, and (1.63)) is the participation constraints of

the firm, which says that the firm will accept the contract if and only if the next period
promised profit is non-negative.

Finally, S(v) must be nonincreasing, for otherwise the forest owner could be better
off by offering more to the firm. As shown by Spear and Srivastava (1987), the value
function S(v) is concave. Notice that, given the participation constraints, the lower level
of ¥ is 0. The upper level of #* denoted by v can be taken to be the point where the firm

pays zero royalty and gets the same profit at each period. Hence v is given by

_ —rT _
L (p—EBDX(T)e T D
T 1—e'T

hence ¥ = [0, 7].

1.4.2 Characterization of the optimal contract

In this subsection, I analyze the properties of a differentiable solution to the prece-
ding problem. Assume that the forest is profitable, which means that the forest owner
can achieve a positive benefit by promising a zero profit to the firm. This is equivalent to
S(0) > 0.
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1.4.2.1 The symmetric information case

Let us first analyze the results when there is no private information. From (I.61)) I

have that

eH
/  R(10)e 7 £(6)d6
0
GH
= [ [(p—0)X(T(%,6))e™ ") —D 4 T (1,0) —v] £(6)d0.
0
Substituting this into (I.60), the problem of the forest owner under symmetric informa-

tion is to maximize

S(v) = ;H{(p —0)X(T(v,0))e” T8 _D+ (1—a)e Ty (y,6)

—(1—a)v+eT0O5(U(v,0))}£(6)d0  (1.64)

subject to the participation constraints (I.63)).
If we attach Lagrange multipliers (v, 8)e~"7(") £(8) to expression (1.63)), we then
get the following first-order conditions for 7', U and U :

(p—O)X'(T) — rX(T)] = r{(1 — &) + (v, 0)]U (v,0) +rS(U (% 0))  (1.65)

l—o+u(v0)+SU»86))=0 (1.66)
H(v,6)U(r,0) =0; 1(v,0) >0; U(v,6) 0.  (1.67)

By the envelope theorem,
Sv)=—(1-a). (1.68)

Equation (|1.68)) shows that the value function is linear in v, which means that, S(v) =
—(1 — a)v+S(0). Recall that S(0) > 0. Substitute for this into (1.66) and into (1.63). It
follows that u(v,0) = 0, so that (1.67) is satisfied for all U(v,0) > 0 and the equation
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determining the optimal rotation period becomes :m
(p—0)X'(Ty) = r(p— 0)X(T;) +rS(0). (1.69)

Equation (1.69) simply states that the optimal rotation period satisfies the Faustmann
rule. The term S(0) represents the expected value of the forest land or the value of bare
land under symmetric information. Since S(+) is non increasing, this is the highest value
of bare land that the forest owner can get for subsequent rotations. Equation (I.69) also
tells us that the optimal rotation period depends only on the cost parameter. Since the
optimal rotation does not depend on v, it is constant over time. Finally the net transfer
(Rs—Us) (v, 0) is given by :
oH
/9 (R~ U)(10)e ) £(6)do
oH

= [, [(p=0)X(T,(6))e™ ™) D]/ (6)do —v. (1.70)

Differentiating (1.70) with respect to v, I obtain, f:LH We*’mg)f(e)de =—1

which implies that (R; — Us) (v, 0) = —ve'’(®) 1 K, where K is a constant. Substituting
this into (1.70), gives

—Ele T

thus
1—Ele™"5)

RS(V, 6) - US(V7 9) = _veﬂ}(ﬂ) +S(O) E[e_rTv]

(1.71)

The forest owner can promise any future profit U(v,0) € [0, 7] to the firm. By doing so,
he imposes a royalty payment in order to get the highest expected profit. This royalty
satisfies (1.71]). From this equation it can be seen that the optimal royalty varies over

time. The preceding results prove the following proposition :

Proposition 6. Under symmetric information , the optimal rotation period is invariant

over time and satisfies the Faustmann rule. The forest owner can achieve the same goal

10. Recall that the subscript s refers to the solution under symmetric information.
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by promising any future profit U(v,0) € [0,V] to the firm. Finally, the optimal royalty
varies over time and is given by ([I.71).

The intuition behind those results is as follows. For simplicity let assume that the
objective of the forest owner is revenue maximization (o = 0). For a given v, consi-
der an optimal contract {T,R,U}. It is possible for the forest owner to increase U
and R by the same amount d, leaving the net transfer unchanged so that the contract
{T,(R+d),(U +d)} satisfies the promise-keeping condition and the participation
constraints. Since the value function is linear (S(U +d) = —(U +d) +S(0) =S(U) — d)
this implies that the contract {7, (R+d), (U +d)} is also optimal.E

Differentiating yields

dT,  X'(T,) —rX(Ty) rS(0)

30~ X)) (=R~

It follows from ((1.71)) that the net transfer Ry — U; is decreasing in v and increasing in
G.I can therefore state the following proposition :

Proposition 7. Unlike in the static case, in the dynamic context, the optimal rotation
period decreases with the firm’s cost parameter. The net transfer also decreases with the

Jfirm’s cost parameter, but its evolution over time is ambiguous.

1.4.2.2 The asymmetric information case

In this subsection I analyze the optimal contract when the true value of the harvesting
cost is known only to the firm. I will first characterize the class of incentive compatible

mechanism, that is mechanism which induce the firm to reveal its cost truthfully. I show

11. Notice that S(v) = [&' [Re™"T +S(U)e"T1£(6)d0 = [ [(R+d)e™T + (S(U) —d)e~"T]£(6)d.
12. The evolution of R over time will be ambiguous, because v and U cannot be compared.
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in the Appendix how this class of mechanisms can be characterized by :

IT(v,0) I(R—U)(v,0)

(p=0)[X'(T(3,0)) — rX (T (v, 0))) 0= = S5 M2 (R U) (,0)(1.72)
—8T8(29) IX'(T(v,0)) — rX (T (v,6))] < 0(1.73)
I9(v,0)

gY\nY) _ _ —rT(v,0)
50 X(T(v,0))e (1.74)

Having characterized the incentive compatible mechanisms, the forest owner’s pro-

blem can now be stated as choosing {(T'(v,0),U(v,8),R(v,0))|(v,0) € ¥ x [6L, 67}
to maximize (1.60) subject to (1.61),(I.72)), (1.73), (1.74), and (1.63). A simple way to

solve this problem is to transform the objective function into functions of 7" and U, by

direct substitution. From (1.74)), and using integration by part I get

’ 0(v,0)£(0)d6 = (v,0) + ; X(T(v,60))e T F(6)d6.

eL

Substituting this into (1.60) and (1.61]) the objective function and the promise-keeping

condition become respectively

S6) =, {(p—0—(1—a)h(0)X(T(v,0))e T8 _p (1.75)

+(1—a)e " TCOU(1,0) + e TS (v,0)) £(0)dO — (1 — ) (v, 67)

and
eH
o(v,61) + /9 X(T(1,0))e 700 £(8)d6 = . (1.76)

The forest owner’s problem can then be rewritten as that of choosing @(v,87) and
{(T(v,0),U(v,0))|(v,0) € ¥ x [6~,69]} to maximize (1.75) subject to the promise-
keeping condition (1.76)), the incentive compatibility constraint and the participa-
tion constraints (1.63). I will first ignore the incentive compatibility condition and
I will show later that the optimal contract satisfies it.

Let A(v) be the Lagrange multiplier associated to and w(v,0)e"T0:9) £(9)
the Lagrange multiplier associated to . For simplicity I will use T = T'(v,0) and
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U = U (v, 0) where there is no risk of confusion. The Lagrangian can be written as :

LU A = [, p-0+(06)- (- amOX(T)e T

D+ (1—a+u(0))e"TU
+e " TS(U)Y£(8)dO + (A(v) — (1 —a))p(v,0%) — A (v)v.

Differentiating .#" with respect to T', U, u gives the following necessary conditions :

[p—0+(A(v) — (1 —a))h(0)][X'(T)—rX(T)]=r(1—a)U+rS(U)  (1.77)
l—o+u(0)+SU)=0 (1.78)
p(v,0)U =0; u(v,0) =0, U >0.  (1.79)

By the envelope condition,
S'(v)=—A(v). (1.80)
In order to determine the optimal contract, let us first show that
0<A(v)<l—a.

Since S(-) is non increasing in v, it follows from that A(v) > 0. Now, if A >
1 — a, equation implies @(v,07) < v. Given that . is linear in ¢(v,0") and
A(v) — (1— @) > 0, optimality requires that we set ¢ (v, 87) = v. Considering that ¢ (v, 8)
is decreasing in 6, this condition implies that V6 € [6%,07] ¢(v,0) > @(v,0%) = v.
Integrating this, it follows that |, :LH ©(v,0)f(0)d6 > v which is a contradiction. Finally
if A(v) =1 — o. The preceding system of equations gives the same solution as under
symmetric information. So the mechanism is not incentive compatible in the sense that
the incentive compatibility condition is not satisfied. Hence I have shown that
Av)<l—a.

Since A(v) < 1—a and p(v,0) > 0, it follows from (1.78) and (1.80) that S'(v) >
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§'(U). This condition, combined with the assumption that S(-) and U(-) are differen-
tiable, implies that S(-) is strictly concave in ¥/, or as worst, S(-) is strictly concave
in an interval. For simplicity, let us assume that S(-) is strictly concave in #. With
§'(v) > §'(U), T obtain by the concavity of S(-) that v < U (v, 0). Given that v > 0, then
U(v,0) > 0 and it follows that

0<v<U®0). (1.81)

This is an important result. First it states that an efficient contract must require
the promised future profit to rise (v < U(v, 0)). The economic intuition behind the re-
sult seems to be that the forest owner can obtain truthful revelation at a lower cost
by promising a higher profit to the firm at the next rotation. Secondly the fact that
v > 0,U(v,0) > 0 simply means that at each period all firm types earn a strictly po-
sitive rent. This result contrast with that obtained in the static case, where the highest
cost firm earned zero profit. Notice that in the static case the firm incurs the same cost
forever. However, in a dynamic context, a higher-cost type will be of a lower-cost type
with positive probability in some future period and will take advantage of it. The fore-

going discussion implies the following proposition.

Proposition 8. Under asymmetric information, the firm’s promised expected profit rises.
Unlike in the static setup, all firm types including the highest cost one enjoy strictly

positive rent.

I can now determine the optimal rotation period. It follows from that u(v,0) =
0. Substituting this into (1.78), it follows that S(U(v,0)) = —(1 — &)U (v, 0) + A where
A is a constant. Plugging this into (1.77), the equation determining the optimal rotation
period becomes :E

[p—6—(S'(v)+ (1= a))h(O)X'(Ta) = r[p— 6 — (S'(v) + (1 — @))h(0)]X (To) + rA
(1.82)
To verify that the incentive compatibility condition (I.73) is satisfied, differentiate (1.82)

13. Recall that the subscript a refers to the solution under asymmetric information.
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and use to get :

v "(v — / / ) —r ; 2

Thus the condition (1.73)) indeed holds.

1.4.3 The modified Faustmann rule

Equation defines the optimal rotation period under asymmetric information.
This equation deserves some comments. First, the expression (S'(v) + (1 — c))h(0) re-
presents the marginal information rent in the dynamic context. Unlike in the static setup,
the marginal information rent includes a new term S’(v)A(0) . By promising an additio-
nal unit of profit to the firm, the forest owner can lower the cost of the informational
constraints in the current period by S'(v)A(0). The constant A is positive and it repre-
sents the future expected profit of the forest owner (expected welfare) or the value of
bare land under asymmetric information. Notice that if A is negative, the forest owner
would get out of forestry and devote the land to its "highest use".

Equation (I.82)) is the Faustmann rule modified in order to take into account the
cost of information. It is different from the standard Faustmann rule under symmetric
information given in equation (I.69) in two aspects. The first is the net price which is
corrected for the cost of informational constraints and the second is that A, the value of
bare land under asymmetric information, is lower than S(0), the value of bare land under
symmetric information. This is because, under asymmetric information, the forest owner
has to pay in order to obtain revelation. This implies that unlike in the static case, the
lowest cost firm chooses a different rotation under asymmetric information than under
symmetric information. The reason is that a firm of type 8% in the current period has a
positive probability of being a higher cost type in future periods.

Differentiating (1.82), it follows that :
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IT,(v,0)  (S(W)+(1—a)H (0)[X(T,) — rX(T,)]

20 X7(T,) — rX'(T)] <0 (1.83)
T, (v,0) _ S"(vh(6)X'(T.) — rX(T,)]

v B (X"(T,) —rX'(T,)) > 0. (1.54)

Equation (1.83) shows that at each period k, the optimal rotation decreases with the

firm’s cost parameter. It follows from (1.84) that % > 0 when 6 € (6%,6"]. Since

U(v,0) > v, this implies that T (U (v,0),0) > T (v, 0), which means that for a given value

of the cost, the rotation at period k + 1 is longer than the rotation at period k. Hence :

Proposition 9. Under asymmetric information, (i) for any given period, the optimal ro-
tation period decreases with the cost parameter; (ii) the optimal rotation period strictly

increases over time, except for the lowest cost firm, for which the rotation is constant.

Now let us compare optimal rotations in the symmetric information and asymme-
tric information cases. It follows immediately from and that for all v,
T,(6%) < T,(v,0%). Since Ty and T, are continuous functions of @, this implies that for all
v, T,(6%) < T,(v,0%) in the neighborhood of @~. In other words, for any given period &,
the optimal rotation in the asymmetric information case is longer near the lower bound
of the cost parameter.

In order to provide a complete comparison of optimal rotations and optimal royalties
in [87, 6], we have to compute the value functions under symmetric information as well

as under asymmetric information. This can only be done by using numerical methods.

1.5 Conclusion

I have characterized the optimal royalty contracts in the forestry when the harvesting
firm has private information on its harvesting cost. Given the informational constraints
that arise from this situation, it has been shown that both in the static and in the dynamic
contexts the optimal rotation must satisfy a modified version of the usual Faustmann rule

which holds under symmetric information. This modification is necessary in order to
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induce cost revelation on the part of the harvesting firm. As a result, in the static context,
the optimal rotation period will be longer in the asymmetric information case than in the
symmetric information case. It was also shown how the cutoff cost can be endogenized,
thus increasing the owner’s expected profit by making sure that unprofitable forests are
not exploited. Also in the static context, it was shown that the forest owner could increase
its expected profit by allowing competition among firms through public auctions.

In the dynamic context, I find that unlike in the static case all firms, including the
highest-cost type, get a rent associated with the continuation part of the rotation choice
under asymmetry information. It was also shown that the firm’s rent rises over time. This
is necessary in order to get revelation at a lower cost in the current period. Therefore the
optimal rotation increases over time as well. The optimal contract under asymmetry of
information also has the effect of imposing a distortion on the rotation of the lowest-cost
firm. This contrasts with the result in the static case, where the lowest-cost firm remains
efficient under asymmetric information.

It would be desirable to characterize the optimal contract within a dynamic context
when the forest owner uses auctions as alternative royalty payment and to compare it
with the mechanism derived above. This raises an inherent difficulty due to the fact that
the value functions can only be obtained through numerical methods. It is left for future
work. It could also be interesting to consider the effect of asymmetry of information on

other parameters, such as the replanting cost.



CHAPITRE 2

OPTIMAL FORESTRY CONTRACTS WITH INTERDEPENDENT VALUES

2.1 Introduction

In many countries, governments and private landowners delegate the exploitation
of their forests to firms specialized in planting and harvesting operations. The decisions
regarding the firm that will exploit the land and the monetary transfers that occur between
the firms and the owner can be reached through many different means. The owner can
organize an auction among competing firms for example. The owner may also select
one of the firms randomly or through subjective criteria and negotiate directly with the
selected firm the terms of the exploitation. The following question then arises : What is
the optimal allocation mechanism from the point of view of the forest owner ?

The answer to this question should induce the best time to harvest the forest, determi-
ning hence the optimal rotation period. If the growth function is known and if the price,
the planting and harvesting costs are constant and known by the forest owner and the
firms together, then the answer is straightforward. The forest owner will sell the right to
harvest the forest to the low cost contractor and the optimal rotation period will satisfy
the well known Faustmann rule (Faustmann, 1849). This means that if the forest owner
wishes to maximize the present value of the forest through planting and harvesting ope-
rations, the optimal contract must induce the selected firm to cut down the forest when
the increase in the net value of the standing forest over a unit time interval (rotation per-
iod) is equal to the interest on the value of the stand plus the interest on the value of the
forest land.

In practice however neither the forest owner nor the firms fully know the costs. Each
firm only observes a signal of its cost. For example each firm may be allowed to cruise
a tract of forest and obtain an estimate (signal) of its cost. Given that its observation
is incomplete, a firm’s cost will therefore depend on estimations (signals) by the other

firms as well which are private information. We are then facing the problem of auction
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design with firms that have interdependent values. In this setting, the value of an allo-
cation will depend on the private signals of the other firms. The purpose of this paper
is to characterize the optimal mechanism in this context and determine conditions under
which the optimal mechanism can be implemented by a second price auction. The op-
timal mechanism presented in this paper induces a rule for the optimal rotation period
that is a modified version of the Faustmann rule. Indeed we find that the selected firm
will cut down the forest when the increase in the net virtual value of the standing forest
over a unit rotation period is equal to the interest on the net virtual value of the stand
plus the interest on the virtual value of the forest land. The virtual values of the stand
and of the land are corrections of the same values in order to account for the asymmetry
of information between the owner and the firms.

Optimal mechanism design has received a lot of attention since the seminal paper
of Myerson (1981) who designed an optimal selling mechanism for one unit of an in-
divisible good. Since then many authors have studied optimal mechanisms in a more
general context of interdependent values, with one or many units of an indivisible good.
In this context bidders receive private signals which may be correlated (see Crémer and
McLean (1985, 1988), and McAfee et al. (1989)) or independent (see Branco, (1996)),
and which jointly determine the valuations of all bidders. In the case of correlated signals
McAfee et al. (1989) showed that the seller can extract almost all of the full surplus of
the buyers, in the sense that the surplus left to the buyers can be as low as desired. In
the case of independent signals however, Branco (1996) showed that it is not possible to
fully extract the surplus of buyers.

Following Branco (1996) we consider the case of independent signals. Hence our
optimal mechanism is inefficient. Moreover the literature considers mechanisms that
consists of an assignment rule and a payment rule. In our set up the payments have to
be made periodically in the form of royalties, at each rotation period. The owner of the
land must determine both the royalties and the rotation period. Thus our definition of a
mechanism design slightly departs from the literature and consists of an assignment rule,
a rule for the determination of the rotation period and a rule for the determination of the

royalties at each rotation.
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An interesting feature of the optimal mechanism is that it provides a benchmark for
the comparison of standard auctions. In particular in Section 3 we are interested in situa-
tions under which a second price auction with reservation price is optimal. The choice of
this auction format is guided by analytical tractability. Moreover Riley and Samuelson
(1981) indicate that the standard auctions format are equivalent for appropriate reserva-
tion prices.

This is not the first paper to characterize the optimal contract in the presence of
asymmetry of information the using Faustmann framework. Indeed Tatoutchoup (2010)
analyzed the optimal contract in forestry in the case where the firm has private infor-
mation about its cost. But it is assumed in that paper that each firm knows perfectly its
harvesting cost. In the present paper, the firms only observe signals about these costs.
In this setting, the value of an allocation will also depend on the private signals of the
other firms ; hence costs are interdependent. Finally, to the best of our knowledge, in the
literature on resource economics, standing timber auctions are most often studied in the
case independent private value (see Elyakime et al., (1994) or Li and Perrigne, (2003)),
contrary to what is assumed in this paper.

We will assume that the forest contracts are signed into perpetuity. Hence we will
analyze the case where the harvesting costs are perfectly correlated over time, and we
will assume that the owner cannot renegotiate the contract.

The paper is organized as follows. In Section[2.2] we first describe the problem and
the model and then solve it by determining an optimal contract. We finally discuss the
resulting modified Faustmann rule. Section discusses the conditions under which
the optimal mechanism can be implemented by a second price sealed-bid auction with

reservation price. Some concluding remarks are provided in Section [2.4]

2.2 Characterization of the optimal mechanism

In this section we model the problem of determining how a forest owner will allocate
the right to harvest the forest among N competing harvesting firms. The firms cannot

perfectly observe their costs and the harvesting cost structure of the firms are unknown



50

to the forest owner. Let X(7') be the timber growth function, where T represents the
age of a tree, and assume that it is twice differentiable, strictly increasing and concave.
Suppose that when it is cut down, a stand of trees of age 7" yields a net profit in present
value given by :

(p—C)X(T)e T —K.

Where p is the given market price of wood, the parameter K represents the total cost of
planting a unit of land, r is the discount rate and C denotes the cutting cost per unit of

wood.

2.2.1 The model

Each firm i € {1,...,N} privately observes a signal (or type) 6; that is drawn from
[8;,0,] according to a continuous density function f;(8;) > 0, independently of the other

firms’ signals. We will assume a monotone hazard rate, that is :

F(6;)

hi(8) = fi(6:)

is increasing in 60,

where F;(60;) is the cumulative distribution function associated to the density function
fi(0;). The knowledge of the probability distribution is shared by all the agents (forest
owner and firms).

The harvesting cost C;(6) of firm i depends on the signals received by all the firms

(6 =(01,...,0x)). Let us assume that J,C;(0) = ag,-(g?) > 0 and 9;C;(0) = &g‘g?) >0,

J # i. This means that the costs functions are differentiable and non decreasing with
respect to any firm’s signal. In particular the cost of a firm is increasing in its own signal.
We will also assume that the cost functions satisfy the single crossing condition, that

1S :
aC;(0) < aCj(0)
20; =~ 00;

Condition (2.1)) states that, keeping all others signals fixed, the cost of firm i is increasing

for all i and j # i and for all 6, 2.1

at least as quick as the cost of any other firm, when firm i’s own signal is increasing. So

the two costs cross at most once.
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We will further assume that the costs incurred by a firm are perfectly correlated over
time. So at each rotation k, the cost of the firm i is the same, C;(0).

By the revelation principle we may restrict our attention to revelation mechanisms.
In such mechanisms, the owner requires each firm to reveal its private signal and, on the
basis of the information collected, he chooses the winning firm, the rotation periods (the
cutting ages of the trees) and the payments of each firm at each rotation period. Formally
a revelation mechanism is a triplet of functions (¢,7,R) defined on x{.\; | 0,,0,] = O,
where g(6) = (¢:(6))\L,. T(6) = (T;(6))\L, and R(0) = (Ri(6)),,.
For any i and every vector 0, T;(6) € R™ denotes the cutting age of the trees, ¢;(0) €
[0, 1] denotes the probability that firm i receives the right to harvest the forest land and
Ri(0) € R denotes the payment that firm i must make to the forest owner when it harvests
the tree.ﬂ Consequently, the sum of the probabilities, Zﬁvz 14i(6), must never exceed
unity.

Throughout the paper, 6_; denotes the vector (01,...,0_;,0;,1,...,0y). Firm i's ex-
pected profit over infinite cycles of rotations 7;(6) given that it reports its type to be é\,

and that all firms j # i truthfully reveal their types is given by :

~ ~

¢;(0:,0;) = Eg_,[7:(6:,0;,0_;)],

1

where
. . . Ri(0;,6_;)e"Ti(0:0-)
7i(0i,0;,0_;) = 0(6;,0;,0_;)qi(6;,6 ;) — i 11_ e—lZTf(@,B_,-)
and
~ CC(ONX(T(0:.0_) e 10,00 _ g
0:(6,0,0_;) — (p—Ci(0))X(Ti(6i,6i))e .

1 — o—Ti(6:,6_;)

1. A priori we allow this payment to be negative. This corresponds to a situation where a firm is
subsidized in order to harvest the land for its own profit.
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2.2.2 Characterization of the incentive compatibility constraints

Since the signals are observed privately the firms may have the incentive to misreport
their types in order to reduce their payments. To avoid this possibility the forest owner
may want to design a mechanism that induces the truthful participation of the firms,
i.e. an incentive compatible mechanism. A mechanism (¢, T, R) is (Bayesian) incentive
compatible if the expected profit of any firm is maximized when it reports its true signal,

given that the other firms do the same. Formally :
for all i=1,..., N, ¢,;(6,,6;) > (Pi(é\z} 0;) Vé\i, 0;c [Qi;gi]- 2.2)

We are now going to break this condition into two. This will prove useful in the

determination of the optimal mechanism. Equation (2.2)) implies that

00,0, > 9;(6,,6,) V6,0
(pl(9i761) Z (pi(b\i76i> +(Pi(/9\i76 ) (p (/6\ /é) v/éhei
1(0,0) > ,(6:,0,)+Eo_[(0:(6,0:,0 ;) — 0,(6;,6,,0 1))qi(8;,0:)](2.3)
It is convenient to define V;(0;) = ¢,(0;,0;), @; = M ,and W, = %(w.
Then by the envelope theorem, we must have
dV;
1g, = 929i(01,0:) = Eg_,[020i(6;,0:,0-1)qi(6:,61)]. 24)
Since
diCi(6)X(T:(0))
h0i(0;,0;,0_;) = — e 1 O

we may conclude that % < 0. Therefore V;(6;) is a non increasing function of 6.

We can rewrite V;(0;) as :
— 0;
Vi(6;) = Vi(8;) — /0 " Eg_[020i(7.7.0_)qi(z,0_1)]d. 2.5)

Using this last expression of the envelope theorem (i.e. equation [2.5)), incentive compa-
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tibility (2.2)) implies that :

0;
Eei/& —32a),~(’L',T,9,,~)q,-(’C,G,i)d’v

~

> Eg [(0:(0;,6;,0_;)— w;(6:,0,,6_,))qi(6:,0_1)]. (2.6)

Reciprocally, equation (2.6) and the envelope theorem (2.5) imply equation (2.3)), which
is equivalent to the incentive compatibility constraints (2.2)). Therefore incentive compa-

tible mechanisms can be characterized by the following lemma :

Lemma 10. (¢, T,R) is incentive compatible if and only if conditions and (2.6) are
satisfied.

Finally we assume that firms’ participation is voluntary. They can decide to opt out
in response to the announced incentive scheme. We will normalize the outside options
of the firms to zero. This means that the revelation mechanism (g, T, R) must satisfy the

individual rationality constraints, given by :
for all i=1,..., N, V;(6;) >0 V0, €[6,,0)]. 2.7

Since V;(0;) is a non increasing function of 6;, by the envelope theorem (2.5)), the
constraints (2.7)) can be replaced by the constraints

Vi(6;) >0, foralli=1,...,N. (2.8)

The forest owner’s objective function is the expected social welfare given by :

Ri(G)e*rTi(G)

N
EW :EZ[—I — =T

i=1

+o;mi(0;,0;,0_;)]. (2.9)

Th . _ ©N : - Ri(ﬂ)e_rri(e) . ) ' N .
e social welfare W =Y ;' | W; where W; = e T o;mi(6;,0;,0_;) is the weigh-

ted sum of the owner’s revenue and firms’ surplus.E] We adopt the standard assumption

2. To simplify the problem, we assume that the country is a price taker in the world market so that
domestic production of resource good does not give rise to consumer’s surplus.
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that 0 < o; < 1 : a dollar in the owner revenue is valued more highly than a dollar that
remains as profits in the hands of a ﬁrm. The social welfare can also be viewed as the
present value to the owner of all future rotations. From the definition of 7;(6;,0;,0_;),
it follows that L;gf) = 0,(0;,6:,0_,)qi(6:,0,0_;) — 7:(6;,6;,0_;). Substituting

this into (2.9), we may therefore rewrite EW as :

N N
EY 0(6:,0;,0 )qi(6:,6;,0 ;) —EY (1—0a;)7mi(6;,6:,6 ). (2.10)
i=1 i=1

Using the law of iterated expectations we can write

E

”MZ

(1 o)m(91.01.0-) = Z/ (1— )Vi(6:)£:(6:)d6
i=1

Now substituting for V;(0;) from (2.5) and using integration by parts, we verify that :

/06;(1 —a;)Vi(0,)£:(0,)d6; = Vi(6;) — /eeiEei[azwi(@i, 0;,0_i)qi(6;,0_;)]F;(0;)d0;.

Substituting this into (2.10) and rearranging we can therefore rewrite the owner’s objec-

tive function as :

N
EW = EZg, (6,T;(6 )— ) (1—a;)Vi(6y), (2.11)
i=1 i=1

where

[p—Ci(0) — (1 — a;)9,Ci(0)h:i(0,)|X (ti)e ™" — K

1 —e "

gi(97ti) =

The owner’s problem is to choose the functions {7;(0),q:(0),Vi(6,)}Y, in order to

maximize the expected welfare given by

8, oy [N N N _
=/, /9 [;&(977}(9))6]:’(9)] [Hﬁ(9i)] dGN---del_;(l_ai)Vi(ei)
2.12)

subject to (2.5), (2.6), and (2.8§).

3. This is the standard interpretation of «;, as presented by Baron (1989).
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We will now construct a direct mechanism (g, 7, R) that maximizes the expected wel-
fare (2.12)) subject to the constraints (2.5)),(2.6) and (2.8). Consequently this mechanism

will be optimal for the forest owner. To construct this mechanism, let us define :

g7(0) =maxg;(0,t;) Vi, V0.
;>0

l

We show in the Appendix that g7 (-) satisfies the following condition :

dgr () 9g;(6)

*(0) = 2%(0) = . (2.13)
8 (0)=g;(0) 90, 20, #J
Let us define the optimal rotation period as follows :
T (0) € argma())(gi(e,ti). (2.14)
1>

To complete the mechanism, we define the probability assignment and the royalty res-

pectively as :

1 if g7 (0) > max{0,max;,;g3(0)}

(2.15)
0 if g7 (0) <max{0,max;;g}(0)}

q;(0) =

and

R (6)e ")

g
= 0i(00.60,0_)4i(8)— [ 020} (7,7,0)gi(r.0_)dz.  (216)

l1—e

This implies that the profit is given by

g
7 (6:,0:,0_;) — / Dot (7,7,0_1)q: (1,0_;)dt
0;

The following Proposition shows that the mechanism (¢*, 7%, R*) defined previously

is optimal.

Proposition 11. The mechanism (¢*, T*,R*) maximizes the expected welfare among in-
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centive compatible and individually rational mechanisms.
To show this we will need the results of Lemma.

Lemma 12.

(i) T;*(.,0-;) is increasing Vi, VO _;.

(ii) gf (8%,6_;) > max{O,max#,-gj(O?, 0_i)}

=V0; <0 (6,0 > max{0, max ;g5(0:,0_;)}.
(iii) —hw!(.,0;,0_;)g}(.,0_;) is non increasing in
Ai(0-i) ={0;:g;(0) # max{0,max;.;g5(0)}}.

The proof of the Lemma is provided in the Appendix. Part (i) means that the cutting
age of trees is increasing with a firm’s own signal. Part (ii) is rather technical and is used
to prove part (iii). Part (iii) means that the expected marginal revenue of a firm with
respect to its own signal is non increasing (almost surely). It is used to prove that the

mechanism (¢*, T*,R*) is incentive compatible.

Proof. (of Proposition [I1)
First we need to show that the mechanism (¢*, 7™, R*) is incentive compatible and indi-
vidually rational. In other words we will show that it satisfies the equations (2.5)), (2.6)
and (2.8).

By construction V;(8;) = ¢(6;,8;) = 0 so individual rationality constraint (2.8) is
satisfied. The envelope condition is also satisfied by construction. The incentive
compatibility constraint follows from part (iii) of Lemma (12)). Indeed if 51‘ > 0;
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then

0;
Eo., [ [-0:0i(r.7.0-)q;(z,0-)}d

~

0;
— Eo. [ [-0:0](.7,0-)gi (5.0 1s 0 (D)ld7

~

0;,7, G—i)q;'k (/9\1'7 G—i) IAi(Bi) (T)dT

v

0;
Eei/ —826()?<(
0;

0;

= o, [ ~a(
0;

= Ep [(0;(6,6;,0_;)—m;(6;,60;,0_;))q;(6:0_)].

~

0,,7,0_1)q; (6:,0_;)dt

Finally we need to show that the mechanism (¢*, 7", R*) is optimal, i.e. it maximizes
the expected welfare (2.12) among all incentive compatible and individually rational

mechanisms. We have V;(6;) = 0 for individually rational mechanisms that are incentive

compatible. Moreover by equation (2.14),

M=

gi(eaTi(e))qi(e)avq’T‘

=

5i(6.77(0))g7(6) >

1 1

1

~

Therefore W (q¢*,T*,R*) > W(q,T,R) for any mechanism (g, 7, R) that is incentive com-

patible and individual rational. 1

2.2.3 Discussion and Interpretation

The value g7 (0,1;) can be thought of as the (virtual) surplus of the forest owner when
firm i is allowed to harvest the forest under an infinite cycle of rotation ¢#;. In the equation
the optimal rotation is chosen so as to maximize the virtual surplus. Thus the
value g/ (6;) represents the optimal (virtual) surplus (hereafter virtual surplus or simply
surplus) of the forest owner when he allows the firm i to harvest the forest. We can also
interpret g7(6;) as the value of the forest land, under imperfect information, when the
forest is exploited by the firm i.

Equation (2.15) implies that the right to harvest the forest is eventually allocated
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to the firm with the highest virtual value provided its virtual value is positive. Observe
that the forest owner can deny all firms the right to harvest the forest, and thus leave it
unexploited, if the value of the forest land (the virtual surplus) is negative regardless of
the firm that would exploit the land. Efficiency would require that it be exploited and that
it be exploited by the agent that values the land the most (i.e. has the lowest harvesting
cost). This means that in such a case the optimal mechanism is inefficient, first because
the forest is not exploited and second because it is not exploited by the lowest cost firm.

Equation (2.22)) implies that the payment of a firm that is not allowed to exploit the
land is zero (i.e. g} (6) = 0 implies that R} (0) = 0). Moreover the profit of firms whose
cost are lower than the market price are positive. So the owner is unable to extract the full
surplus of the firms due to the asymmetry of information. Instead he must pay the firms
an informational rent to provide them with incentives to reveal their private information.
We can show that

X(T;)

g (0) = Wi(6) — (1 - ) 9Ci(0)hi(6:) 7— 77

So the gap between W; and g7 (i.e. (1 — ;)d;Ci(0)hi(6;) X(7) ) captures the amount of

1—e T

the informational rent. These remarks on equations (2.15)) and (2.22)) are in tune with the

literature on mechanism design (see Myerson (1981) and Branco (1996)).

It is also important to discuss the relationship between our result and the case of
perfect information. In the case of perfect information, where the forest owner perfectly
observes the cost of each firm, the firm with the lowest cost will receive the right to
harvest the forest. The forest owner will set the payment in order to extract the entire
surplus of the selected firm. Therefore the optimal rotation period of the firm will satisfy

the Faustmann rule given by :
(p—Ci(0))X'(T;) = r(p — Ci(6))X (T7) + rWi(8). (2.17)

Our result allows us to derive a similar relationship in the case where the signals are

i(O)X (1) —KeT , where y;(0) = p—Ci(0) —

private. Indeed, g;(6,7;) may be rewritten as e
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(1 — a;)diCi(0)hi(6;). For interior solutions, it can be shown that 7;*(0) satisfies the
equation :

v,(0)A(T7*(8)) — rK =0, (2.18)

1

where A(t;) = —X'(;)(1 — e~ ") + rX(t;). The proof is provided in the proof of Lemma
[12] (see equation (II.2))).

Let us rewrite equation (2.18) as
[p = Ci(0)X(T:) = rlp — Ci(0)IX(T}) +r¢ (6), (2.19)
where

Ci(8) = Ci(0) + (1 — ;) 9,Ci(8)hi(8;).

Equation defines implicitly the optimal rotation period of the selected firm
under imperfect information. C;(6) is often called the virtual costs of firm i. It is the cost
of firm i augmented by the informational rent per unit of wood. Put simply, under the
optimal mechanism the owner views it as firm i’s cost and he views g; as the value of
the land if it is exploited by firm i. In that perspective equation is the analogous of
the Faustmann rule described in equation (2.17). The difference between the two rules
lies on the informational rent. In equation (2.19) we use virtual costs instead of true cost
as is the case in equation (2.17). Note that for the lowest type, the usual Faustmann rule
1s unmodified. The term p — C’,-(B) represents the net price of the winning firm corrected
by the informational rent per unit of wood.

It is important to note that, when the owner allocates the right to harvest to one firm
the net price is necessarily positive. Otherwise this will imply that the highest virtual
surplus is negative and then the forest owner will deny all firms the right to harvest
the forest. The modified Faustmann rule can be stated as follows : the selected firm is
induced to cut down the forest when the increase in the net virtual value of the standing
forest over a unit time interval is equal to the interest on the net virtual value of the stand

plus the interest on the virtual value of the forest land.
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2.3 Implementation as a second price auction

This section studies the implementation of the optimal auction in the form of a stan-
dard auction, namely the second price auction. We give sufficient conditions for the
optimality of a second price auction.

In standard auctions, participants are usually treated equally in terms of the payment
and allocation rules. We will thus consider second price auctions in the context of a
symmetric model. Therefore we make the following assumptions :

(1) The cost functions are symmetric :

Vi, VO, Ci(0)=C(6;,6_;), where the function C’s last (n — 1) arguments are
permutable.

(i1) The firms’ signals are identically distributed (f; = f, Vi) and all signals 0; are
drawn from the same interval [6, 8]. Moreover, o; = q.

Note that the symmetry of the cost functions implies the symmetry of functions g ;
g’ =G(0;,0_;), Gis permutable in the last arguments. We define 6; (6 _;), the maximum

winning signal of firm i given the other firms’ signals, as :
6;(6-i) = min[6; (6;),6;;(6 )],
where

67(6-1) = sup{6;<(0,6]:G(6:,6-,) >0},
07:(0_;) = sup{0,€[0,0]:G(0,,60_;)>G(6;,0_))}.

Hence the optimal mechanism can be rewritten as
T (0) € argma())(gi(O,t,-) (2.20)
ti>
1 if 0; < 07(6_))

q;(0) = , (2.21)
0 otherwise
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67 (6-:)
% = ;(60,,6,,0.)q;(0)~ [ 9nwi(z.7.0.)dx. (2.22)
* 7rTi*(9)
where R; = R"l(e)fw is the actualized payment.
T

Equation (2.22)) follows from equation (2.13)) and from the fact that G is decreasing
in its first argument. This new expression of the optimal mechanism allows us to write

the expected welfare as :
N
Z wi(6:,0,,0 ;) + (1—a)h(68;)wi(6;,0,0 i)]1(g,<0:(5 .))-

A second price auction is defined by a rotation function 7 : R¥ — R and a reservation
price function r: RN=! 5 R,

Given a bid vector b = (b,-)i:LwN, firm i wins if its bid exceeds the other firm’s bid
as well as the reservation price, i.e. if b; > b;,Vj # i and b; > r(b_;). The winning firm
pays the minimum between the second lowest bid and the reservation price r(b_;).

Observe that we consider a general class of second price auctions where the reser-
vation price depends on the other participants’ bids. The payment will have to be made
every time the trees are cut and this period is determined by the rotation 7' (b). To proceed

we introduce the following functions :

V(Z77:7y) = E[Wi(Z,ei,O,i)l(Z<9;~k(9 )’6*( ,i):y79i:7:)]

1 0 9y
6) = v(6,,6;6; ——/ 6:.6;, dy.
’}/( ) V( ) f@?‘(@,i)(ei) 0; az< )’)fe ()y

The following proposition shows how to determine a second price auction that is optimal.

Proposition 13. I y is decreasing and if 67 (6 ;) <min;0; Vi, then the second price
auction defined by T (b) = T*(y~ 1 (b)), v~ ' (r(b)) = 0} (y "' (b_;)), is optimal.

Proof. Step 1 : yis a symmetric equilibrium under the second price auction.

Assume firm i bids y(z) when its type is 6; and all other firms bid y(0;), j # i. Firm i’s
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expected utility is
U(0i,2) = E{[wi(z,0:,0 i) —y(6(6))[1(z < 8(6 ;) | 0:},
. where §(0_;) = min(6; (6 _;),min;; 6;) = 6;(6_;), by assumption. Therefore
U(6i,2) = E{[wi(z,6;,0-;) — ¥(6; (6-:))|1(z < 67 (6-)) | 6:}.
Using the previous definition of v we obtain

U(6i,z) = E{[v(z,60:,6;(60-:))—7(6;(6-:))1(z < 6;(6)) | 6}

_ / " (12, 00.3) — 70)) for0_y )y

and

du(6;, 09
%:/Z 8_§(Z;9i,)’)f93‘(9_,~)()’)dy_[V(Zaeiaz)_7<Z)]f9,-*(9_,«)(z)- (2.23)

Setting (2.23)) equal to zero, the first-order condition implies that :

1 0 9y
0;) =v(0;,0,,0; ——/ = (0:,0i,y) for0_)(y)dy.
100 =16.0,0) ~ 5L [ 5010. 3o 10

Step 2 : The welfare under the second price auction is equivalent to the optimal welfare.
We have EW =Y EW;, where EW; = aEU(6;,0;) + EQR}(60) and

EU(G,‘, 91‘) = E{W,’(@i, 9,‘, 9,,')1(91‘ < 9?(9,,‘))} — E%T(G)

Therefore EW; = (o« — 1)EU(0;,0;) + E{w(6,,0,,6_;)1(0; < 07(6_;)) | 6;}. Using

integration by part, we obtain :

EW, = — (1 — OC)U,‘(G,E) —|—E{[w,~(9,~, 9,’, 9_,')

(1) [ il 0 DFII(6; < 07(0-) | 0,
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By definition,
Ui(0,0) = E{[wi(6,0:,0;) — v(6] (6-:))]1(6; < 67(6)) | 6; = 6}.
But 1(6 < 0;(6_;)) = 0 and hence U;(0,8) = 0. Therefore

EW;

E(0i(0,0,,0-)+ (1—c0) [ i, 0 )F()a]1(0; < 07(0-) 07

_ /;f(ei)dei{/e_‘w,-(ei,e,-, 6_)1(6; < 07(6_1))fo 0,
+ (1= a)h(0)E[dwi(8,,0,,0)1(8; < 6;(6_))) | 8]
E{[W,’(Qi, 0;, 9_,') + (1 — Ot)h(e,')azwi(ei, 0;, 9_,')]1(91' < 9?(9_,'))}

EW;

1

and EW = Y EW; = EW*. §

2.4 Conclusion

We have determined an optimal forestry contract when firms’ harvesting costs are
unknown to the forest owner and to the firms themselves, in a context where each firm
observes privately a signal about its harvesting cost. We shown that the forest owner will
allocate the right to harvest the forest to the firm with the highest (virtual) value of the
forest land when it is nonnegative. Given the informational constraint, we have shown
that the optimal rotation of the winning firm must satisfy a modified version of the usual
Faustmann rule which holds under full information. This modification is necessary in
order to induce the revelation of their true cost signals by all participating firms. We also
determined conditions under which the optimal mechanism can be implemented by a
second price auction.

These results have been obtained under the assumptions that the harvesting costs
of firms are perfectly correlated over time and that the owner cannot renegotiate the
contract. The optimal harvesting age is then the same for each rotation, a fact which

considerably simplifies the problem. Those are not totally unrealistic assumptions in
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many situations. However characterizing the solution for the optimal contract in the ab-
sence of those assumptions remains a desirable goal. The problem is then complicated
by the necessity of considering variable rotation length. It is left for future work to study

this more complex case.



CHAPITRE 3

THE IMPACT OF RECYCLING ON THE LONG-RUN FORESTRY

3.1 Introduction

In recent years, it has become fashionable to promote recycling of forest products,
in particular paper. The main argument in favor of encouraging recycling is that it saves
trees, the implicit objective therefore being to end up with more trees than in the absence
of recycling. The reason for wanting to do this is that the forest generates externalities :
it procures direct amenities, it protects against soil erosion and it serves as a carbon sink.
To the extent that positive externalities are involved, the market equilibrium will result in
an insufficient area being devoted to foresty, which may justify policies meant to increase
it. The purpose of this paper is to consider to what extent the promotion of recycling is
an appropriate means of attaining such a goal.

To do this, we specify a simple dynamic model of land allocation by a private owner
between forestry activities and alternative uses, such as agriculture. The model takes
into account that the product of the forest can be partly recycled and it allows for two
decision variables on the part of the land owner, namely the area of land allocated to
forestry at any time and the age at which the forest is cut and replanted. This enables us
to examine how recycling affects both the long-run equilibrium quantity of forest land
and the long-run cutting age of the forest.

The question of the allocation of land between competing uses is of course, in itself,
not new. For instance, in the recent literature involving use of land for forestry, Barbier
and Burgess (1997) propose an intertemporal model to analyze the optimal conversion
of land from timber to agriculture and use it to estimate the demand relationship for
converted land. McConnell (1989) and Lopez, Shah and Altobello (1994) examine the
optimal allocation of land between agricultural land, park and public land and urban land
in the United States, using a static model. Ehui, Hertel, and Preckel (1990) use a two-

sector dynamic model to study the optimal allocation of land between agriculture and
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forestry in a developing country. This model was also used by Ehui and Hertel (1989)
to estimate the optimal steady-state forest stock in Ivory Coast. Hartwick, Long and
Tian (2001) use a two-sector dynamic model to analyze land clearing in a small open
economy with a large endowment in forestry and a small endowment in agriculture, and
facing given world prices for both agricultural and forest products. All of those papers
treat the output of the forest as being totally consumed in a single usage and consequently
exclude recycling.

Furthermore, whereas the original Faustmann rule (Faustmann, 1849), which is the
basic intertemporal arbitrage rule for determining the optimal forest rotation, takes the
land area planted in forest as given, all of those papers ignore the optimal rotation ques-
tion and consider only the land allocation decision, in some cases treating the forest as a
nonrenewable resource. None of them makes use of the Faustmann rule to determine the
optimal harvest age and replanting decisions. The same is true of Darby (1973), who, in
a short note, makes a stylized argument to the effect that recycling paper, by reducing
the demand for wood, will result in less trees being planted. In a sense, this paper for-
malizes Darby’s argument, by explicitly setting it into the optimal forest rotation model
a la Faustmann and taking into account the effect on both the rotation over time and the
area devoted to forestry.

We show that increasing the rate of recycling reduces the equilibrium area of land
allocated to forestry in steady state and hence results in less trees being planted. On the
other hand, as long as the planting cost is positive, it leads to an increase in the harvest
age of those trees. As a consequence, the effect of increasing the recycling rate on the
equilibrium volume of virgin wood being supplied to the market is ambiguous, being
more likely to be negative the smaller is the planting cost.

The next section serves to describe the model. In Section we solve it and derive
the comparative static results of varying the recycling rate on the steady-state equili-

brium. We end with a few concluding remarks in Section [3.4]
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3.2 The model

Consider a piece of land of fixed area A, to be allocated by its owner between fores-
try and some alternative use, say agriculture. Once the forest is cut, a new allocation is
determined and the area devoted to forest is immediately planted. This process is repea-
ted indefinitely. Let i denote the ith such rotation. Then the forest cut at date #; will have
been planted at date 7,1, which is the harvest date of the previous rotation. The cutting
age for rotation i will therefore be T; =t; — ;.

Let X(7T;) denote the volume of wood per unit of area devoted to forestry obtained
at age T;. The growth function X (7;) is assumed to be an increasing and strictly concave
function of 7;. If areas f;_; and a;_; were assigned respectively to forestry and to agri-
culture at planting date #;_1, then the total volume of wood harvested at date #; will be
h; = fi—1X(T;). Since the total land area will be devoted either to forestry or agriculture,
we will have :

fic1+ai_1=A, i=1,... 00 3.1

Any use of the forest other than for the production of wood is neglected by this
representative land owner. Once harvested, the wood is transformed into some recyclable
final product, say paper. The final product can be equally well produced from virgin
wood or from the recycled product.m We will assume that this is the only use for the
wood being harvested.

Now let S(#;) denote the total quantity of input available for transformation into final
product at date ¢. If a fraction 0 of the stock of input available at date ¢;_; is recycled, we
will have :

S(ti) :f,‘_lX(Ti)—l—6S(ti_1), i=1,..,00 (3.2)

with S(zp) = So, the given stock available at the initial planting date fy. For simplicity,
it will be assumed that one unit of this input can be transformed into one unit of the

final product. If we let p;, denote the price of this input, then the inverse demand can be

1. That virgin wood and the recycled product are perfect substitutes is a simplifying assumption. As-
suming otherwise does not yield any additional insight towards the issue addressed in this paper.
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written :

p. =P(S.), with P(S,)>0 P/(S,)<0 and Stliian(Sti) =0. (3.3)
Note that since virgin wood and the recycled product are perfect substitutes, p;, is also
the price of wood.

The factors determining the fraction that is recycled are exogenous to the land owner.
One element that will obviously affect the rate of recycling is the cost faced by the
recycling industry. But the recycling cost will only affect the allocation of land by the
land owner through its effect on the rate of recycling. To the extent that the fraction
recycled can be assumed a decreasing function of the cost of recycling, the effect of a
decrease (increase) in that cost will go in the same direction as an increase (decrease)
in the recycling rate 6. Thus the only parameter that in the end matters for the market
allocation of land to forestry is the rate of recycling. We will concentrate our sensitivity
analysis in the next section to this parameter, but the reader may want to keep in mind
that it will itself be affected by a number of factors, including recycling cost and possibly
public policies favoring recycling.

Let ¢ > 0 denote the cutting cost per unit of wood and k > 0 denote the planting cost
per unit of area planted. It will be assumed that P(0) > c, so that it is profitable to exploit
the forest to begin with. The present value at #;_; of the net benefits from rotation i if an

area f;_p is planted and it is cut at age 7; will be :

(T, fi1:8(1) = [P(S(1) = el fima X (T)e ™" — kfi,

where r is the discount rate. The semi-colon (;) in front of S(#;) is meant to reflect the
fact that the representative land owner will, as a price taker, neglect the effect of his
individual decisions on S(#;).

If an area f;_; is devoted to forestry, then an area a;_| = A — f;_ is devoted to
agriculture. Let g(a;_1) represent the instantaneous net benefit function from agriculture,

with g’(a;—1) > 0 and g”(a;—1) < 0. The present value at #; | of the net benefits from
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agriculture over the same interval of time 7; will be :

ti

Ha(n,ail)):/ elai )TV — g(ai—1>(1_e_r7;)‘

tioq r

The value at t;,_; of the net discounted benefits from total land use over the interval 7; is

therefore :
m; =T}, fic1,ai-1;8(t;)) = p(T;, fic1:8(6)) + o (T ai-1). (3.4)

3.3 The equilibrium land allocation and harvesting age

The representative land owner’s decision problem at #(, acting as a price taker, is to

choose the sequence {7;, fi_1,a;—1};-; so as to maximize :

oo

V(So) = Y TN(T;, fio1,ai—158(t;))e " i-1710) (3.5)

i=1

subject to (3.1) and to f;_1 >0, a;—1 >0, i=1,...,00. We will hereafter consider only
interior solutions for f;_; and a;_1, so that the nonnegativity constraints can be ignored.
Substituting for g;—; from (3.I)) into (3.5), the problem can then be reformulated as

choosing the sequence {7}, fi—1 };-, to maximize :

[}

V() = ZH(bei—bA—ﬁ_l;S(ti))e_r(lifl_’O)
i=1
= TI(T}, fo.A— fo:S(0)) + Y IUT: i, A — fim3S()e "5 (3.6)
i=2

where we have used the fact that#;,_| — 79 = Zi._ !

Flijori> 1.
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The first-order necessary conditions for interior solutions will be given by :

aV(So) Jan, dm

- 2 _ 27 ) 3.7
dfo dfo  dag G-
V(o) _ e TIAT Om _ % —0. i=2.... o (3.8)
dfi-1 dfi-1 dai—y ’ n '
3‘3(50) _ %—r - nke*rZ.’E;%Tj
Ti om &
— % _ re*}"T] T + i 7-C+ .efrZ]{;} 7}+k
— i
oT, =
on
= 8_T11 —re "V (S(1)) =0 (3.9)
a‘;(So) _ 987Ti€—r2;11Tj —r Y me 5T
Ti i k=i+1
_ AT 0T LY e R T
oT; )

_yyi-lg, [ Om;
_ erzj—llTJ{a—y;f—re’TfV(S(t,-))}:0, i=2,...,00, (3.10)
i

where the partial derivatives of 7; are obtained from (3.4). After substituting for these,

we find that conditions (3.7) to (3.10) will be satisfied if and only if, foralli=1,... 00

A fi)
- r

P(S(t) — X (T)e "~k (1-¢T) (3.11)

[P(S(t:)) —cl i1 X'(T) +g(A— fi1) = r{[P(S(1;)) — ] fi1 X(T3) } + 1V (S(1)). (3.12)

The left-hand side of is the net marginal benefit of allocating land to forestry,
while the right-hand side is the net marginal benefit of allocating land to agriculture. The
condition simply says that the net benefit from the marginal unit of land must be the
same in the two allocations.

Condition (3.12)) says that the net benefit from delaying the cutting age marginally,
which is given by the increment in the volume of wood resulting from forest growth
valued at its net price plus the net benefit from agriculture obtained on area a; | during

that marginal delay in cutting the forest, must be equal to the interest on the net benefit
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foregone from not harvesting the forest immediately, plus the interest foregone from
delaying all future rotations.

Consider now a steady state, such that T; = T,_; =T, f; = fi_1 = f and S(t;) =
S(ti—1) = S. We then find that, for all i :

PS)~IfX (e~ kf | glA~f)

1—e T ro

V(S(t) =

from which it follows that (3.11)) and (3.12)) become :

F(f,T,S)=[P(S) —c|]X(T)e " —k— g/(A—_f)(l —e )y =0 (3.13)

r

(P(S) — )X (T) —k

GUf.T.8) = [P(S) = eX'(T) - =22

=0. (3.14)

The steady-state stock of input S available for transformation into the final product is
given by :
S=fX(T)/(1-9). (3.15)

Condition (3.13)) says that, given the harvesting age, the area devoted to forestry
must be such as to equate the net marginal benefit between the two possible uses of the
land. Condition says that, given the area devoted to forestry, the harvesting age
must be chosen so as to satisfy the Faustmann rule (Faustmann, 1849). Conditions (3.13)
and (3.14), together with (3.13)), determine the steady-state equilibrium area devoted to
forestry, f, and harvesting age, 7.

Notice that an interior solution for f is possible only if P(S) — ¢ > 0. For if P(S) —c¢ <
0, then F(f,T,S) < 0 and no land would be devoted to forestry (f = 0). Notice also that,
if P(S) —c¢ > 0, it follows from (3.13) and (3.14) that X'(T') > 0. It also follows from

(3.14) that

, rX(T) B —rk
X T = e ) —0) =

We show in the Appendix that a steady state defined by (3.13) and (3.14) will be




72

locally stable if and only if

A =FfGT—|—$ [GTF_gX(T)—{-FfGSfX/(T)] >0, (3.16)
where[Z
Fp = ”(Ar_f)( e ) <0 (3.17)
Gr = [P(S)—c]X"(T)—-rX'(T)] <0 (3.18)
Fs = P(S)X(T)e ™" <0 (3.19)
rX(T —rkP'(S
G5 = PO X)X or| = g g 20 O

To see the impact of the rate of recycling on the long-run equilibrium land allocation
and harvesting age, differentiate totally (3.13) and (3.14) taking into account (3.15)), to
get:

d 1 T
% = N {( JX( ))2F5GT} <0
dT 1 (T)

Therefore, increasing the rate of recycling (from any admissible level, including 6 =
0) results unambiguously in less land being allocated to forestry in the long run and
hence less trees. At the same time, the long run harvest age of those trees will either
increase or stay the same. This means that the overall effect on h# = fX(T), the volume

of virgin wood being supplied to the market, will be ambiguous. This effect is given by

T iy
1 fX(T)

N 5 [GrFsX(T)+ FyGsfX'(T)] .

2. The second-order conditions for a maximum require Fy <0, Gr <0 and FyGr > 0, which are all
satisfied given (3.17) to (3.20). Notice that Gy = 0 and Fr = [P(S) — c|[X"(T) — rX(T)]e™"" — g'(A —
f)e~"T =0 when (3.13) and (3.14) are satisfied.
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The sign of this expression is indeterminate. It will depend on whether the longer growth
allowed before harvesting compensates for the smaller area devoted to the forest. One
of the important parameters is k, the planting cost. Since Gy is increasing in k, so is
the marginal effect of § on the harvest age T. The reason is that letting the trees grow
is a way for the owner to delay the replanting cost. In particular, if the planting cost is
zero, changing the recycling rate has no effect on the harvest age and the net effect on
the volume of virgin wood supplied to the market is negative. The same holds for small
planting costs. But if the planting cost is sufficiently large, increasing the recycling rate

can result in a greater volume of virgin wood being produced.

3.4 Concluding remarks

One result that clearly comes out of our analysis is that increasing the rate of recy-
cling will result in less, not more, land being allocated to forestry in the long run. If the
only goal is to end up with more trees in order to compensate for external benefits that are
neglected by the market, it would seem that to encourage recycling is not an appropriate
measure. Measures aimed directly at the land allocation decision are more appropriate,
whether they be incentive mechanisms, such as taxes or subsidies, or regulation aimed
at maintaining the forest area or increasing it. There may of course be other reasons to
pursue a recycling policy, but from the strict standpoint of protecting the forest area it is

likely to have the reverse effect in the long run.



CONCLUSION

Cette these a utilisé le cadre d’analyse du modele inter-temporelle de Faustmann
pour proposer des solutions optimales a quelques problemes liés a la gestion des res-
sources forestieres. Les deux premiers chapitres de la these ont établi et caractérisé les
mécanismes optimaux d’octroie des droits d’exploitation d’une ressource forestiere aux
potentielles firmes exploitantes quand celles-ci sont mieux informées de leurs cofits de
coupe que le propriétaire forestier. Le troisieme chapitre a montré qu’une augmentation
du taux de recyclage va réduire a long terme la surface foresticre.

Le premier chapitre a analysé la redevance optimale et la rotation optimale quand le
propriétaire forestier cede les droits de coupe a une firme qui I’exploitera par un accord
de gré a gré. 1l a ét€ montré a la fois dans un cadre statique (les colits de coupe sont par-
faitement corrélés dans le temps) et un cadre dynamique (indépendance inter-temporelle
des cofits de coupe) que la rotation optimale va satisfaire une version modifiée de la regle
de Faustmann qui prévaudrait en pleine information. Cette modification est nécessaire
afin d’inciter la firme exploitante a révéler ses vrais colits. Dans le contexte statique,
il en résulte que la rotation optimale est plus longue en information asymétrique qu’en
situation de pleine information. Nous avons montré également comment le seuil maxi-
mal de colt de coupe peut €tre endogénéisé, afin de permettre au propriétaire forestier
d’accroitre son profit espéré en s’assurant que les foréts non profitables ne seront pas
exploitées. Nous avons déterminé et comparé les redevances optimales a la fois en in-
formation asymétrique et symétrique. Les redevances forestieres étant généralement, en
pratique, une fonction linéaire du volume de bois, le contrat (sous optimal) est dérivé en
imposant une telle forme de redevance. Nous avons caractérise le gain en terme de profit
espéré qui résulterait de I’utilisation du contrat non linéaire plus général plutdt que ce
type de contrat. Finalement toujours dans le contexte statique, nous avons établi a travers
un mécanisme optimal d’enchere au second prix qu’en créant ainsi la concurrence entre
les firmes, le propriétaire forestier augmente son profit espéré. Dans le cas dynamique,
certains des résultats obtenus contrastent avec ceux obtenus dans le contexte statique.

Nous avons montré que chaque type de firme, incluant celle ayant le coft le plus élevé,
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conserve alors une rente strictement positive. Ceci s’explique par le fait qu’étant donné
I’absence de corrélation inter-temporelle entre les cofits, un exploitant dont le cofit est
élevé a la période courante peut se retrouver, avec une probabilité strictement positive,
avec des colts bas lors des rotations futures. Nous avons aussi montré que cette rente
augmente dans le temps. Ceci est nécessaire afin d’obtenir 2 moindre cofit a la période
courante la révélation du véritable cofit de la firme. Il vient alors que la rotation opti-
male s’accroit aussi dans le temps. Finalement nous avons montré qu’il y a distorsion en
asymétrique d’information par rapport a I’optimum de pleine information pour le colit le
plus bas.

Dans le deuxieme chapitre de la these, nous avons déterminé le contrat optimal
lorsque les colits de coupe ne sont connus ni par le propriétaire forestier, ni par les
firmes elles méme. Cependant chaque firme observe un signal privé sur son colit. Nous
avons établi que le propriétaire forestier attribuera les droits d’exploitation de la forét a la
firme dont la valeur virtuelle du terrain (valeur du terrain corrigé pour la rente informa-
tionnelle) est la plus élevée, en autant que celle-ci demeure positive. Nous avons montré
que la rotation optimale de la firme gagnante satisfait, comme précédemment, une ver-
sion modifiée de la régle de Faustmann. Cette modification a pour but d’inciter toutes
les firmes participantes a révéler la vérité sur leurs cotts. Enfin, nous avons déterminé
sous quelles conditions le contrat optimal peut €tre mis en application par une enchere
optimale au second prix. Les résultats de ce chapitre ont été obtenus sous I’hypothese
que le contrat est signé a perpétuité et que les cofits de coupe sont parfaitement corrélés
dans le temps. Bien que cela ne soit pas totalement irréaliste dans beaucoup de situation,
il n’en demeure pas moins que la détermination du contrat optimal en 1’absence de ces
hypotheses est un objectif souhaitable. Ce probleme est rendu trés complexe, de par la
nécessité de considérer des rotations variables ainsi que la décision de désigner a chaque
rotation la firme gagnante. Ceci est une recherche en cours.

Le troisieme chapitre de la these s’est penché sur I’impact a long terme du recyclage
sur la surface de terre en forét. Il ressort clairement de notre analyse qu’une augmentation
du taux de recyclage va entrainer a long terme une diminution de la surface foresticre

et non une augmentation comme on s’y attend généralement. Si le but ultime du recy-



76

clage est d’accroitre le stock d’arbre afin de compenser les externalités négligées par
I’équilibre des marchés, il semble qu’encourager le recyclage ne soit pas 1’instrument
approprié pour I’atteindre. Des mesures axées directement sur 1’allocation du terrain se-
ront beaucoup plus appropriées, ou encore des mesures incitatives telles que les taxes,
les subventions et d’autres mesures de régulation visant a2 maintenir la surface foresticre
ou I’accroitre. Il se peut qu’il existe d’autres raisons pour poursuivre une politique de
recyclage, mais du seul point de vue de protéger la surface forestiere, ceci semble avoir

I’effet inverse.
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Annexe I

Appendix to Chapter 1

I.1 Proof of Proposition 3]

Proof. Let

(0) = Ry(0)e ™ = (p—0)X(T;(6))e” ™ —D,
a(6) = Ra(6)e ™9 = (p—0)X(Tu(6))e ) D — (1 - ")V, (6)

2l

and let m(T) = X(T)e~"T, where T satisfies the first-order condition or for
the optimal rotation in the symmetric or the asymmetric information cases. It follows
that m'(T) = [X'(T) — rX(T)]e~"T > 0. Hence m(T) is strictly increasing in T. Since
T,(0%) = T,(8%), it follows that Ry(0F) — R,(0%) = (1 — e~"Ta(6"))y,(8%) > 0. Further-
more, we have Ry(0) — R,(0}) = (p — 07)[m(T5(60})) — m(T,(6}))]. Therefore, since
Ty(0}) < T,(67) and m(T) is strictly increasing in T, it is the case that R;(8) —R,(6}) <
0.

Using the intermediate value theorem, we conclude that there exists a 6 € (6,6%)
such that Ry(0) = Ru(8) and hence Ry(8)e"75(®) = R,(8)e~"T4(®)_ Therefore :

)—Ts(é)) <0

v
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|
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| —
[
Q
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D>

and

Using again the intermediate value theorem, we conclude that there exists 81 € (6%, 0)

such that R;(8™) = R,(6™") and hence R;(8) > R,(6) forany 8- < 8 < 6T, g
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1.2 Proof of Proposition 4

Proof. For simplicity, denote : 6, = 0,(x) and 65 = 0(x). Then

Ra(x) = (p—84)x—De'Ta®) _(Tal®) _1)y(g,)
Ry(x) = (p—0;)x—De' 0,

Since Ty(6y) = T,(0,), I can write :
Ry(x) = Ra(x) = (84 — 05)x + (%) — 1)V (8,). (L)
For x = x%, 6,(x%) = 0,(x) = 6, and from I have :
Ry(xF) — Ra(:2) = (/B0 — 1)y (6L) > 0.
For x = x;, O5(x;) = 0% and 0,(x;) = 6, , where 8, < 0%. It follows from that :
Ry(x) = Ra(xs) = (Ba — 63w+ (%) —1)V(8),

where

By 1| j—ga — XM 0, and therefore :

T ela—1 =

d*v.  X'(T,) (T —1) —re'aX(T,) dT, =0
d92 - (€rT“ _ 1)2 dea '

X(Ta)

Hence P

is a strictly decreasing function of 8. This implies that

Therefore R;(x;) — Ra(x5) < 0. Using the intermediate value theorem, we can conclude

that there exists a & € (xf, &) such that Ry(¥) = R,(%) and Ry(x) > R,(x) for any xl <
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x<Xx.1

I.3 Characterization of the optimal linear contract

Proposition 14. Let the subscript u refer to the solution under a uniform contract and
denote by 0% the optimal value of 6. The optimal policy under a uniform contract can
then be summarized by :

Case 1: 0" =0

Delw

. HY __ * _ o pH
if Vu(07)=0 then b*=p—6 X—(TW)

if Vu(0%)>0 then, b* solves

"o e Tig(T) | . X(TH)e "t
/GL [a_bm] (b*—(1—0)h(0))f(0)d6 — (1 — a)W =0 (1.2)
and T, solves
(p—b"—0)g(T,) =rD (L3)
where g(T) is as defined in expression and T,, is the Wicksell rotation.
Case2: 0 < 01
0} solves
p—0i—(1—-o)h(ONX(T,)e ™™ —-D
(p= 0= (1= 4B, (7 o)+
0. [9T e "Tug(T,)
— > (b*— (1 —t)h(6 0)do =0 1.4
o |G ] @ - a - wmense) 4
and b* satisfies
De'v
b*=p—06,— . (1.5)
PRTX(@,)

Proof. The solution to the problem (1.43)-(1.46) has as a necessary condition for the
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determination of b :

bX(T(6))e"T®) _ 48 /é dw
0

PRy F®O)p+ | = 1(8)d6 =0. (L6)

Differentiating (T.42)) and using (1.44) to eliminate superfluous terms we find that :

dw _  eTg(T) IT (1_a)X(T)e_’T
db  (1—eT)20b 1—e T

Integration by part gives

/: XD o g XT@)T o /9 e 8ll) OT - )40,

L 1—erT

Equation (1.44) implies that g—g = ‘3—2. We also have that

oT _ 8(T)
b (p—6—b)g(T)

and

bX(T(6))eT®)  (p—8)X(T(6))e"T®) —D—V(T(8),b,6)

1— efrT(é) 1— efrT(é)

Therefore condition (.6) becomes :

(p—0)X(T(8))e"T® —_D—V(T(6),b,0) . - db X(T(8))e "7
=" 1O gy~ ==y £

0 efrT
+/9L [%%} (b—(1—a)h(8))f(6)d6 =O0. (L7)

If 0% = 67, then % =0, T(0) =T, and we have the first part of the proposition. If
0 < 0", then V(T(8),b,0) =0, T(8) = T, and the second part of the proposition

follows. &
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I.4 Characterization of the expected welfare

The equilibrium being symmetric, it is sufficient to consider the expected payment

of firm 1, which, from (I.47), is given by
| 1)
Ra(6') = [ YOU0)dy+Y(8)[1-F(6))
Using equation (I.48)), I can therefore write the expected profit of firm 1 as
Via(0') =U(6',8") =w(8',0")(1-F,(8")) —Rsa(6"). (1.8)

The preceding equation implies that

avys(e') ow'(e' 6"
de! 00!

X(Tl (9))e—rT1(6)

(1=F(61) = ~(1 = K(0) =~ 255

Hence V. is nonincreasing in 6!, so that firm 1’s individual rationality constraint is
satisfied for all 6" if it is satisfied at 8! = §. The contribution of firm 1 to the expected
welfare is W! = Rl + aV,,. Substituting R!, from , ITget W =w(T'(6),0")(1 -
Fy(08')) — (1 —a)V,(8). Finally, the forest owner’s optimization problem is, for all i =

I,...,N:
N . . .
Z J(1=F(0") — (1 —a)Vi,(6)]
T()7Vs ( i=1
subject to .
Vi, (6') _ i X(T7(6))e ()
W__(l_F%e )) 1—€7rTi(9) )

(a) y(.) is nonincreasing in 6’ (b) Vi(8) >0, (c)8 < 0¥

As proved in Laffont and Tirole (1987), at the optimum, 77(8) is a function of 6’ only,

i=1,...,N. The optimization can then be simplified to :

ma oW = N [ [0l 7@h) - (1- @)X heh) (- 50 (0o

P8
—N(1—a)V,(8)F(8)
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subject to V.1 (8) > 0, § < 6 and y(-) is nonincreasing in 6.
I.5 Characterization of incentive compatible mechanisms.

In this appendix I characterize for the dynamic case the class of incentive compa-
tible mechanisms when functions are differentiable. This class of incentive compatible

mechanism satisfies conditions (1.62)). Let
0(1,0,0") = (p—0)X(T(1,0)e"T"®) _D_R(v,0")e " T00) 4 o~ T 17 (y, 9)

be the profit of the firm as expected today if it reports 8’ when the true cost parameter is

6. The firm will respond truthfully if and only if
6 = argmax ¢(v,0,0’)
9/

for which the folowing conditions are necessary :

2
—0 and (i) a—‘f;
0'=0 a6

o

70 <0

0'=0

@)

9%

82(p ! _ .
m‘e/:e + 307 d0’ = 0 and it follows from

/:0

Differentiating totally (i) gives

(11) that : (111) m

> 0.
0'=6
Conditions (1), (i11) and the envelope theorem together characterize the class of in-

centive compatible mechanism. This can be summarized by :

IT(v0) JR-U)(1.0)

(p—0) [X’(T(v,@))—rX(T(v,G))] 30 = 30 —r(R=U)(v,0)
aT(v,0) .,
55 (X'(T(v,6)) —rX(T(v,0))] <0
ap(v,0)

TVY\LY) —rT(v,0)
70 X(T(v,0))e
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where

0(v,0) = (p—6)X(T(v,0))e T8 _D—_R(1,0)eT00) L e~ TM:O (1, §)

= max¢(v,0,0’).
9/



Annexe I1
Appendix to Chapter 2

IL.1 Proof of condition (2.13)

We have that g7 (0) = g;(0,1) = W’(G)Xn(iﬂ where y;(0) = p—Ci(0) — (1 —

e —1
0;)9;Ci(0)hi(0;) and ;" satisfies
v, (0)A(t) —rK =0. (IL.1)

Recall that A (1;) = —X'(;)(1 — e~ ") + rX (1;). Using (IL.1) we can rewrite g (6) as

X'(t7) = rX (5})

gi(e):K A(li*) :S(ti)
where S(1) = KW
Hence
oy X)) =X (O]A () — AT()[X' (1) — rX ()]
S'(r)= 0L .
For all ¢ satisfying , §'(r) < 0. Then g (6) = g5(6) is equivalent to (1) = S(t]).

Since s(+) is strictly decreasing it follows that 1 = t;?. By the envelope theorem we get :

20— aci0) S (- (0)96(0) + (1 - (01 (0))
9g5(0) X(t7)
8191' N _aiCj(e)ﬁ.

If g7 (0) = g7(0) then ¢ = ¢} and, given that 9,C;(6) > J,C;(0), it follows from the
preceding equations that
Igi(6) _ 98;(6)
20, 20,
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I1.2 Proof of Lemma (12

Part (i) : We can rewrite g;(0,t;) as w, where y;(0) = p—Ci(0) — (1 —

erti_l

;)9;Ci(0)h;(0;). For interior solutions, 7;*(0) satisfies the equation
VA(O)A(T; (6)) — 1K =0, (11.2)
where A(t;) = —X'(¢;)(1 —e™ ") —l—rX(t,-).Assume 0" > 6!. Then
wi(67,0-)A(T;(67,6-)) = y;(61,6_)A(T;(6},6—)) = rK >0

and

dy,(0)
00;

= —(1 + (1 — (X,’)h;(ei))aici(e) — (1 — a,-)hi(e,-)8l~,-C,-(6) < 0.

Hence v,(.,0_;) is decreasing in 6;, which implies that y,(6",6_;) < y,(6},6_;) and
therefore A (T*(67,0_;)) > A(T;*(6!,0_;)). Observe that 1'(1;) = (1 —e ") [~ X" (t;) +
rX'(t;)] > 0 because X is increasing and strictly concave. Thus A is increasing and we
may conclude that 7;*(6%,6 ;) > T*(6%,0_;).

Part (ii) : The proof follows from the application of the following Lemma (15| to the
function g7 (.,0-;) — g5(., 0-i).

Lemma 15. If v is differentiable in [0,0] and satisfies v(6) = 0 =V (0) < 0, then
V(6" >0=v(0)>0V0 < 6"

The proof of Lemma [[5]is provided in Appendix [IT.

Indeed g7 (0%,6_;) > max{O,max#,-g;‘f(Gf’,in)} means that g*(6%,0_;) > 0 and
g0 6_;)— g’}(@f’, 0_;) > 0 for i # j. Using condition (2.13)) and Lemma , we de-
duce that g7 (8;,6_;) —g(6:,0—;) >0 V6, < 6", and since y;(.,0_;) is decreasing in

0; we also deduce that g;(.,#;) is decreasing in 6;. Therefore g7 (., 0_;) is non increasing

as the maximum of decreasing functions, thus g(6%,6_;) > 0.

1. 2ed0a0) _ Yl K 95i04) _ ) implies that w;(0)A(1;) — rK = 0.

dt; (e”i—l)z > 9
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Part (iii) : Fix 0} > 0} € Ai(6_,). If g (67,0 ;) < max{0,max . g(6},6_;)} then
g (61,6_;)=0and —d,w!(6!,6,,0_;)q;(0",0_,)=0<—d,0:(6!,6,,0_1)q;(6',6_)).
Now suppose that g¥(0%,6_;) > max{0, max 4 g (6%,6_,)} . Then Part (ii) implies that

g (0" 6> maX{O,maX#ig;‘.(Gf‘, 0_)}, VO;< 0", Furthermore :

g (0,6_)>0 = .06 _)X(T(6:,0_;)) > Ke'T (9:6-)
= y,(0;,6_;)>0.

It follows from 1i that : ?L(Ti*(/e\i, 0_;)) > 0. Using the mean value theorem we may

write the following equalities :

0,07 (67,6:,0_1)g; (6},0;) — 07 (6},6:,6 )q; (6},6,)
= azw;k(efla eia e—i) - azw;k(ef7 9i7 e—i)

0 N
= £[82wi (9,‘, 6i7 G*i)] ‘é,:@;’ (elh o ef)a 910 € (657 91h>

i
AT (67,60_)e T (0100
(ery}*(e§l79,,-) _ 1)2

2357}*(91-0,9,,')8,‘6}(9> > 0.

I1.3 Proof of Lemma[13

Assume that 8 < 8° < 8" < 8, v(6°) < 0 and v(8") > 0. We can assume without
loss that v(6°) = 0. Indeed, if v(6°) < O then, since v(6") > 0, the intermediate value
theorem implies that there exists 8% € (8,6") such that v(6°) = 0. Let 6! = Sup{6
[6°,0"]:v(68) = 0}. Because v is continuous we have v(8') = 0 and therefore v/(6') < 0.
This means that v is locally decreasing around 6! : there exists 62 € (8',6") : v(6?) <
0 =v(0"). Again the intermediate value theorem implies that v(63) = 0 for some 6° €

(62,8"). This contradicts the fact that 8! is the supremum since 6° > 6.



Annexe 111
Appendix to Chapter 3

III.1 Existence and stability of a steady state

Conditions and yield f;_1(S(¢;)) and T;(S(#;)), the solution for the fo-
rest owner’s decisions for f;_; and T; as a function of S(#;), from which we may write
hi(S(t;)) = fi—1(S(#;))X (T;(S(¢;))), the solution for the total volume of wood harvested
as a function of S(¢;). Equation therefore becomes :

S(ti) = hi(S(t:)) + 85(ti-1).-
In steady state, S(#;) = S(¢;—1) = S and hence :
h(S) = (1-9)S.

The function A(S) takes a positive value at § = 0. This follows directly from (3.13)),
considering that P(0) > c. It also goes to zero as S goes to infinity. This last property
holds because, in view of , as S increases it will eventually reach a value S such
that P(S) = ¢ and beyond which P(S) — ¢ < 0, with the result that F(f,T,S) < 0 in
(3.13). The value of f could then not be interior and must be zero : no land would be
allocated to forestry by the land owner and hence & = fX(T) = 0. The function A(S)
being continuous and the right-hand side of the equation being a monotone increasing

function of S that goes through the origin, it follows that there exists at least one steady

state. Such a steady state will be locally stable if and only if, in its neighborhood,

B GTF5X(T) + fFstxl(T)

H(S) =
(5) e

<1-96,
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or, since FrGr > 0 (see (]317[) and @),

1
A =F;Gr+ -5 [GTFSX(T) —{-FfGSfX/(T)] > 0.

Note that //(S) was obtained by applying Cramer’s rule to the system (3.13)-(3.14).
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