Département de sciences économiques

Cahier 2003-16

Short run and long run causality in time series: Inference

DUFOUR, Jean-Marie PELLETIER, Denis RENAULT, Éric

Département de sciences économiques

Université de Montréal
Faculté des arts et des sciences
C.P. 6128, succursale Centre-Ville
Montréal (Québec) H3C 3J7
Canada
http://www.sceco.umontreal.ca
SCECO-information@UMontreal.CA

Téléphone : (514) 343-6539 Télécopieur : (514) 343-7221

Ce cahier a également été publié par le Centre interuniversitaire de recherche en économie quantitative (CIREQ) sous le numéro 14-2003.

This working paper was also published by the Center for Interuniversity Research in Quantitative Economics (CIREQ), under number 14-2003.

ISSN 0709-9231

Résumé

Nous proposons des méthodes pour tester des hypothèses de non-causalité à différents horizons, tel que défini dans Dufour et Renault (1998, *Econometrica*). Nous étudions le cas des modèles VAR en détail et nous proposons des méthodes linéaires basées sur l'estimation d'autorégressions vectorielles à différents horizons. Même si les hypothèses considérées sont non linéaires, les méthodes proposées ne requièrent que des techniques de régression linéaire de même que la théorie distributionnelle asymptotique gaussienne habituelle. Dans le cas des processus intégrés, nous proposons des méthodes de régression étendue qui ne requièrent pas de théorie asymptotique non standard. L'application du bootstrap est aussi considérée. Les méthodes sont appliquées à un modèle VAR de l'économie américaine.

Mots clés : séries chronologiques, causalité, causalité indirecte, causalité à différents horizons, autorégression, modèle autorégressif, autorégression vectorielle, VAR, processus stationnaire, processus non stationnaire, processus intégré, racine unitaire, autorégression étendue, bootstrap, Monte Carlo, macroéconomie, monnaie, taux d'intérêt, production, inflation

Abstract

We propose methods for testing hypotheses of non-causality at various horizons, as defined in Dufour and Renault (1998, *Econometrica*). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S. economy.

Keywords: time series, Granger causality, indirect causality, multiple horizon causality, autoregression, autoregressive model, vector autoregression, VAR, stationary process, nonstationary process, integrated process, unit root, extended autoregression, bootstrap, Monte Carlo, macroeconomics, money, interest rates, output, inflation

Contents

Lis	et of Definitions, Propositions and Theorems	iv
۱.	Introduction	1
2.	Multiple horizon autoregressions	2
3.	Estimation of (p, h) autoregressions	7
1 .	Causality tests based on stationary (p,h) -autoregressions	9
5.	Causality tests based on nonstationary (p,h) -autoregressions	12
6.	Empirical illustration	15
7.	Conclusion	22

List of Tables

1	Rejection frequencies using the asymptotic distribution and the simulated proce-	
	dure when the true DGP is an i.i.d. Gaussian sequence	15
2	Causality tests and simulated p-values for series in first differences (of logarithm)	
	for the horizons 1 to 12	19
3	Causality tests and simulated p-values for series in first differences (of logarithm)	
	for the horizons 13 to 24	20
4	Summary of causality relations at various horizons for series in first difference	21
5	Causality tests and simulated p-values for extended autoregressions at the horizons	
	1 to 12	23
6	Causality tests and simulated p-values for extended autoregressions at the horizons	
	13 to 24	24
7	Summary of causality relations at various horizons for series in first difference with	
	extended autoregressions	25
T ict	t of Definitions, Propositions and Theorems	
LIS	tor Demintions, 1 ropositions and Theorems	
3.1	Proposition : Asymptotic normality of LS in a (p, h) stationary VAR	9
4.1	Proposition : Asymptotic distribution of test criterion for non-causality at horizon h	
	in a stationary VAR	11
	•	

1. Introduction

The concept of causality introduced by Wiener (1956) and Granger (1969) is now a basic notion for studying dynamic relationships between time series. The literature on this topic is considerable; see, for example, the reviews of Pierce and Haugh (1977), Newbold (1982), Geweke (1984), Lütkepohl (1991) and Gouriéroux and Monfort (1997, Chapter 10). The original definition of Granger (1969), which is used or adapted by most authors on this topic, refers to the predictability of a variable X(t), where t is an integer, from its own past, the one of another variable Y(t) and possibly a vector Z(t) of auxiliary variables, **one period ahead**: more precisely, we say that Y causes X in the sense of Granger if the observation of Y up to time t ($Y(\tau)$: $\tau \leq t$) can help one to predict X(t+1) when the corresponding observations on X and Z are available ($X(\tau)$, $Z(\tau)$: $\tau \leq t$); a more formal definition will be given below.

Recently, however, Lütkepohl (1993) and Dufour and Renault (1998) have noted that, for multivariate models where a vector of auxiliary variables Z is used in addition to the variables of interest X and Y, it is possible that Y does not cause X in this sense, but can still help to predict X several periods ahead; on this issue, see also Sims (1980), Renault, Sekkat and Szafarz (1998) and Giles (2002). For example, the values $Y(\tau)$ up to time t may help to predict X(t+2), even though they are useless to predict X(t+1). This is due to the fact that Y may help to predict Z one period ahead, which in turn has an effect on X at a subsequent period. It is clear that studying such indirect effects can have a great interest for analyzing the relationships between time series. In particular, one can distinguish in this way properties of "short-run (non-)causality" and "long-run (non-)causality".

In this paper, we study the problem of testing non-causality at various horizons as defined in Dufour and Renault (1998) for finite-order vector autoregressive (VAR) models. In such models, the non-causality restriction at horizon one takes the form of relatively simple zero restrictions on the coefficients of the VAR [see Boudjellaba, Dufour and Roy (1992) and Dufour and Renault (1998)]. However non-causality restrictions at higher horizons (greater than or equal to 2) are generally nonlinear, taking the form of zero restrictions on multilinear forms in the coefficients of the VAR. When applying standard test statistics such as Wald-type test criteria, such forms can easily lead to asymptotically singular covariance matrices, so that standard asymptotic theory would not apply to such statistics. Further, calculation of the relevant covariance matrices _ which involve the derivatives of potentially large numbers of restrictions _ can become quite awkward.

Consequently, we propose simple tests for non-causality restrictions at various horizons [as defined in Dufour and Renault (1998)] which can be implemented only through linear regression methods and do not involve the use of artificial simulations [e.g., as in Lütkepohl and Burda (1997)]. This will be done, in particular, by considering multiple horizon vector autoregressions [called (p,h)-autoregressions] where the parameters of interest can be estimated by linear methods. Restrictions of non-causality at different horizons may then be tested through simple Wald-type (or Fisher-type) criteria after taking into account the fact that such autoregressions involve autocorrelated errors [following simple moving average processes] which are orthogonal to the regressors. The correction for the presence of autocorrelation in the errors may then be performed by using an autocorrelation consistent [or heteroskedasticity-autocorrelation-consistent (HAC)] covariance matrix estimator. Further, we distinguish between the case where the VAR process considered is stable

(i.e., the roots of the determinant of the associated AR polynomial are all outside the unit circle) and the one where the process may be integrated of an unknown order (although not explosive). In the first case, the test statistics follow standard chi-square distributions while, in the second case, they may follow nonstandard asymptotic distributions involving nuisance parameters, as already observed by several authors for the case of causality tests at horizon one [see Sims, Stock and Watson (1990), Toda and Phillips (1993, 1994), Toda and Yamamoto (1995), Dolado and Lütkepohl (1996) and Yamada and Toda (1998)]. To meet the objective of producing simple procedures that can be implemented by least squares methods, we propose to deal with such problems by using an extension to the case of multiple horizon autoregressions of the lag extension technique suggested by Choi (1993) for inference on univariate autoregressive models and by Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996) for inference on standard VAR models. This extension will allow us to use standard asymptotic theory in order to test non-causality at different horizons without making assumption on the presence of unit roots and cointegrating relations. Finally, to alleviate the problems of finite-sample unreliability of asymptotic approximations in VAR models (on both stationary and nonstationary series), we propose the use of bootstrap methods to implement the proposed test statistics.

In section 2, we describe the model considered and introduce the notion of autoregression at horizon h [or (p,h)-autoregression] which will be the basis of our method. In section 3, we study the estimation of (p,h)-autoregressions and the asymptotic distribution of the relevant estimators for stable VAR processes. In section 4, we study the testing of non-causality at various horizons for stationary processes, while in section 5, we consider the case of processes that may be integrated. In section 6, we illustrate the procedures on a monthly VAR model of the U.S. economy involving a monetary variable (nonborrowed reserves), an interest rate (federal funds rate), prices (GDP deflator) and real GDP, over the period 1965-1996. We conclude in section 7.

2. Multiple horizon autoregressions

In this section, we develop the notion of "autoregression at horizon h" and the relevant notations. Consider a VAR (p) process of the form:

$$W(t) = \mu(t) + \sum_{k=1}^{p} \pi_k W(t-k) + a(t), \quad t = 1, \dots, T,$$
 (2.1)

where $W(t) = (w_{1t}, w_{2t}, \dots, w_{mt})'$ is an $m \times 1$ random vector, $\mu(t)$ is a deterministic trend, and

$$\mathsf{E}\left[a\left(s\right)\,a\left(t\right)'\right] = \Omega, \text{ if } s = t\,, \\ = 0, \text{ if } s \neq t\,,$$
 (2.2)

$$\det(\Omega) \neq 0. \tag{2.3}$$

The most common specification for $\mu(t)$ consists in assuming that $\mu(t)$ is a constant vector, *i.e.*

$$\mu(t) = \mu \,, \tag{2.4}$$

although other deterministic trends could also be considered.

The VAR (p) in equation (2.1) is an autoregression at horizon 1. We can then also write for the observation at time t + h:

$$W(t+h) = \mu^{(h)}(t) + \sum_{k=1}^{p} \pi_k^{(h)} W(t+1-k) + \sum_{j=0}^{h-1} \psi_j a(t+h-j), \quad t = 0, \dots, T-h,$$

where $\psi_0 = I_m$ and h < T. The appropriate formulas for the coefficients $\pi_k^{(h)}$, $\mu^{(h)}(t)$ and ψ_j are given in Dufour and Renault (1998), namely:

$$\pi_k^{(h+1)} = \pi_{k+h} + \sum_{l=1}^h \pi_{h-l+1} \pi_k^{(l)} = \pi_{k+1}^{(h)} + \pi_1^{(h)} \pi_k , \quad \pi_1^{(0)} = I_m , \quad \pi_k^{(1)} = \pi_k , \quad (2.5)$$

$$\mu^{(h)}(t) = \sum_{k=0}^{h-1} \pi_1^{(k)} \mu(t+h-k), \quad \psi_h = \pi_1^{(h)}, \ \forall h \ge 0.$$
 (2.6)

The ψ_h matrices are the impulse response coefficients of the process, which can also be obtained from the formal series:

$$\psi(z) = \pi(z)^{-1} = I_m + \sum_{k=1}^{\infty} \psi_k z^k \,, \quad \pi(z) = I_m - \sum_{k=1}^{\infty} \pi_k z^k \,. \tag{2.7}$$

Equivalently, the above equation for W(t+h) can be written in the following way:

$$W(t+h)' = \mu^{(h)}(t)' + \sum_{k=1}^{p} W(t+1-k)' \pi_k^{(h)'} + u^{(h)}(t+h)'$$
$$= \mu^{(h)}(t)' + W(t,p)' \pi^{(h)} + u^{(h)}(t+h)', t = 0, \dots, T-h, \qquad (2.8)$$

where
$$W\left(t,\,p\right)'=\left[W\left(t\right)',\,W\left(t-1\right)',\,\ldots\,,\,W\left(t-p+1\right)'\right]\,,\,\pi^{(h)}=\left[\pi_{1}^{(h)},\,\ldots\,,\,\pi_{p}^{(h)}\right]'$$
 and

$$u^{(h)}(t+h)' = \left[u_1^{(h)}(t+h), \dots, u_m^{(h)}(t+h)\right] = \sum_{j=0}^{h-1} a(t+h-j)' \psi_j'.$$

It is straightforward to see that $u^{(h)}(t+h)$ has a non-singular covariance matrix.

We call (2.8) an "autoregression of order p at horizon h" or a "(p, h)-autoregression". In the sequel, we will assume that the deterministic part of each autoregression is a linear function of a finite-dimensional parameter vector, *i.e.*

$$\mu^{(h)}(t) = \gamma(h)D^{(h)}(t) \tag{2.9}$$

where $\gamma(h)$ is a $m \times n$ coefficient vector and $D^{(h)}(t)$ is a $n \times 1$ vector of deterministic regressors. If

 $\mu(t)$ is a constant vector, i.e. $\mu(t) = \mu$, then $\mu^{(h)}(t)$ is simply a constant vector (which may depend on h):

$$\mu^{(h)}(t) = \mu_h \,. \tag{2.10}$$

To derive inference procedures, it will be convenient to consider a number of alternative formulations of (p, h)-autoregression autoregressions.

a) Matrix (p, h)-autoregression _ First, we can put (2.8) in matrix form, which yields:

$$w_h(h) = \overline{W}_n(h) \Pi^{(h)} + U_h(h), h = 1, \dots, H,$$
 (2.11)

where $w_h(k)$ and $U_h(k)$ are $(T-k+1) \times m$ matrices and $\overline{W}_p(k)$ is a $(T-k+1) \times (n+mp)$ matrix defined as

$$w_{h}(k) = \begin{bmatrix} W(0+h)' \\ W(1+h)' \\ \vdots \\ W(T-k+h)' \end{bmatrix} = [w_{1}(h,k), \dots, w_{m}(h,k)], \qquad (2.12)$$

$$\overline{W}_{p}(k) = \begin{bmatrix} W_{p}(0)' \\ W_{p}(1)' \\ \vdots \\ W_{p}(T-k)' \end{bmatrix}, \quad W_{p}(t) = \begin{bmatrix} D^{(h)}(t)' \\ W(t,p) \end{bmatrix}, \qquad (2.13)$$

$$\overline{W}_{p}(k) = \begin{bmatrix} W_{p}(0)' \\ W_{p}(1)' \\ \vdots \\ W_{p}(T-k)' \end{bmatrix}, W_{p}(t) = \begin{bmatrix} D^{(h)}(t)' \\ W(t, p) \end{bmatrix},$$
 (2.13)

$$\Pi^{(h)} = \begin{bmatrix} \gamma(h)' \\ \pi^{(h)} \end{bmatrix} = [\beta_1(h), \beta_2(h), \dots, \beta_m(h)],$$
(2.14)

$$U_{h}(k) = \begin{bmatrix} u^{(h)}(0+h)' \\ u^{(h)}(1+h)' \\ \vdots \\ u^{(h)}(T-k+h)' \end{bmatrix} = [u_{1}(h, k), \dots, u_{m}(h, k)],$$
 (2.15)

$$u_i(h, k) = \left[u_i^{(h)}(0+h), u_i^{(h)}(1+h), \dots, u_i^{(h)}(T-k+h) \right]'.$$
 (2.16)

We shall call the formulation (2.11) a "(p, h)-autoregression in matrix form".

b) Rectangular stacked (p, H)-autoregression _ To get the same regressor matrix on the righthand side of (2.11), we can also consider:

$$w_h(H) = \overline{W}_p(H) \Pi^{(h)} + U_h(H) , h = 1, ..., H.$$
 (2.17)

This, however, involves losing observations. Using (2.17), we can also stack the H systems above as follows:

$$w_H = \overline{W}_p(H) \Pi_H + U_H \tag{2.18}$$

where w_H and U_H are $(T-H+1)\times (mH)$ matrices and $W_p(H)$ is an $(mp)\times (mH)$ matrix such

that

$$w_H = [w_1(H), w_2(H), \dots, w_H(H)],$$

 $\Pi_H = [\Pi^{(1)}, \Pi^{(2)}, \dots, \Pi^{(H)}],$
 $U_H = [U_1(H), U_2(H), \dots, U_H(H)].$

Since the elements of U_H are linear transformations of the random vectors a(t), $t=1,\ldots,T$, which contain Tm random variables, it is clear that the vector $vec(U_m)$ will have a singular covariance matrix when

$$Tm < (T - H) mH = TmH - mH^2,$$

which will be the case when $H \ge 2$ and Tm > H.

c) Vec-stacked (p, H)-autoregression _ We can also write equation (2.8) as

$$w(t+h) = [I_m \otimes W_p(t)'] \bar{\Pi}^{(h)} + \bar{u}^{(h)}(t+h)$$

= $\overline{W}_p(t)' \bar{\Pi}^{(h)} + \bar{u}^{(h)}(t+h), t = 0, ..., T-h,$ (2.19)

where

$$\bar{\Pi}^{(h)} = vec\left(\Pi^{(h)}\right) = \begin{bmatrix} \beta_1^{(h)} \\ \beta_2^{(h)} \\ \vdots \\ \beta_m^{(h)} \end{bmatrix},$$

$$\overline{W}_p(t)' = \begin{bmatrix} W_p(t)' & 0 & \cdots & 0 \\ 0 & W_p(t)' & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & W_p(t)' \end{bmatrix},$$

which yields the linear model

$$\bar{w}_h = Z_h \bar{\Pi}^{(h)} + \bar{u}_h \tag{2.20}$$

where

$$\bar{w}_{h} = \begin{bmatrix} W(0+h) \\ W(1+h) \\ \vdots \\ W(T) \end{bmatrix} = vec \left[w_{h}(h)' \right],$$

$$Z_{h} = \begin{bmatrix} \overline{W}_{p}(0)' \\ \overline{W}_{p}(1)' \\ \vdots \\ \overline{W}_{p}(T-h)' \end{bmatrix} = \begin{bmatrix} I_{m} \otimes W_{p}(0)' \\ I_{m} \otimes W_{p}(1)' \\ \vdots \\ I_{m} \otimes W_{p}(T-h)' \end{bmatrix},$$

$$\bar{u}_{h} = \begin{bmatrix} u^{(h)} (0+h) \\ u^{(h)} (1+h) \\ \vdots \\ u^{(h)} (T) \end{bmatrix} = vec \left[U_{h} (h)' \right].$$

It is also possible to stack together the models (2.20) for $h=1,\ldots,\,H$:

$$\bar{w}(H) = Z(H)\bar{\Pi}_H + \bar{u}(H) \tag{2.21}$$

where

$$\bar{w}\left(H\right) = \begin{bmatrix} \bar{w}_1 \\ \bar{w}_2 \\ \vdots \\ \bar{w}_H \end{bmatrix}, \ \bar{u}\left(H\right) = \begin{bmatrix} \bar{u}_1 \\ \bar{u}_2 \\ \vdots \\ \bar{u}_H \end{bmatrix}, \ Z\left(H\right) = \begin{bmatrix} Z_1 & 0 & \cdots & 0 \\ 0 & Z_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & Z_H \end{bmatrix}.$$

d) Individual (p, H)-autoregressions _ Consider finally a single dependent variable

$$W_i(t+h) = W_p(t)' \beta_i(h) + u_i^{(h)}(t+h), t = 0, ..., T-H,$$
 (2.22)

for $1 \le h \le H$, where $1 \le i \le m$. We can also write:

$$\widetilde{W}_{i}(t+H) = \left[I_{H} \otimes W_{p}(t)'\right] \bar{\beta}_{i}(H) + \tilde{u}_{i}(t+H), \quad t = 0, \dots, T-H, \quad (2.23)$$

where

$$\widetilde{W}_{i}(t+H) = \begin{bmatrix} W_{i}(t+1) \\ W_{i}(t+2) \\ \vdots \\ W_{i}(t+H) \end{bmatrix}, \ \widetilde{u}_{i}(t+H) = \begin{bmatrix} u_{i}(t+1) \\ u_{i}(t+2) \\ \vdots \\ u_{i}(t+H) \end{bmatrix}, \ \overline{\beta}_{i}(H) = \begin{bmatrix} \beta_{i}(1) \\ \beta_{i}(2) \\ \vdots \\ \beta_{i}(H) \end{bmatrix},$$

which yields the linear model

$$\widetilde{W}_{i}(H) = \widetilde{Z}_{H} \bar{\beta}_{i}(H) + \widetilde{u}_{H}$$
(2.24)

where

$$\widetilde{W}_{i}\left(H\right) = \begin{bmatrix} \widetilde{W}_{i}\left(0+H\right) \\ \widetilde{W}_{i}\left(1+H\right) \\ \vdots \\ \widetilde{W}_{i}\left(T\right) \end{bmatrix}, \ \bar{\beta}_{i}\left(H\right) = \begin{bmatrix} \bar{\beta}_{i}\left(1\right) \\ \bar{\beta}_{i}\left(2\right) \\ \vdots \\ \bar{\beta}_{i}\left(H\right) \end{bmatrix},$$

$$\tilde{Z}_{H} = \begin{bmatrix} I_{H} \otimes W_{p} (0)' \\ I_{H} \otimes W_{p} (1)' \\ \vdots \\ I_{H} \otimes W_{p} (T - H)' \end{bmatrix}, \ \widetilde{u}_{H} = \begin{bmatrix} \widetilde{u}_{i} (0 + H) \\ \widetilde{u}_{i} (1 + H) \\ \vdots \\ \widetilde{u}_{i} (T) \end{bmatrix}.$$

In the sequel, we shall focus on prediction equations for individual variables and the matrix (p, h)-autoregressive form of the system in (2.11).

3. Estimation of (p, h) autoregressions

Let us now consider each autoregression of order p at horizon h as given by (2.11):

$$w_h(h) = \overline{W}_p(h) \Pi^{(h)} + U_h(h) , h = 1, ..., H.$$
 (3.1)

We can estimate (3.1) by ordinary least squares (OLS), which yields the estimator:

$$\hat{\Pi}^{(h)} = \left[\overline{W}_{p}(h)'\overline{W}_{p}(h)\right]^{-1}\overline{W}_{p}(h)'w_{h}(h) = \Pi^{(h)} + \left[\overline{W}_{p}(h)'\overline{W}_{p}(h)\right]^{-1}\overline{W}_{p}(h)'U_{h}(h),$$

hence

$$\sqrt{T}\left[\hat{\Pi}^{(h)} - \Pi^{(h)}\right] = \left[\frac{1}{T}\overline{W}_{p}\left(h\right)'\overline{W}_{p}\left(h\right)\right]^{-1} \frac{1}{\sqrt{T}}\overline{W}_{p}\left(h\right)'U_{h}\left(h\right)$$

where

$$\frac{1}{T}\overline{W}_{p}\left(h\right)'\overline{W}_{p}\left(h\right) = \frac{1}{T}\sum_{t=0}^{T-h}W_{p}\left(t\right)W_{p}\left(t\right)', \ \frac{1}{\sqrt{T}}\overline{W}_{p}\left(h\right)'U_{h}\left(h\right) = \frac{1}{\sqrt{T}}\sum_{t=0}^{T-h}W_{p}\left(t\right)u^{(h)}\left(t+h\right)'.$$

Suppose now that

$$\frac{1}{T} \sum_{t=0}^{T-h} W_p(t) W_p(t)' \xrightarrow{\mathbf{p}} \Gamma_p \quad \text{with} \quad \det(\Gamma_p) \neq 0.$$
 (3.2)

In particular, this will be the case if the process $W\left(t\right)$ is second-order stationary, strictly indeterministic and regular, in which case

$$\mathsf{E}\left[W_{p}\left(t\right)W_{p}\left(t\right)'\right] = \Gamma_{p}, \ \forall t. \tag{3.3}$$

Cases where the process does not satisfy these conditions are covered in section 5. Further, since

$$u^{(h)}(t+h) = a(t+h) + \sum_{k=1}^{h-1} \psi_k a(t+h-k)$$

(where, by convention, any sum of the form $\sum_{k=1}^{h-1}$ with h < 2 is zero), we have:

$$\begin{split} &\mathsf{E}\left[W_{p}\left(t\right)u^{\left(h\right)}\left(t+h\right)'\right]=0\;,\;\mathrm{for}\;h=1,\,2,\,\ldots,\\ &\mathsf{V}\left\{vec\left[W_{p}\left(t\right)u^{\left(h\right)}\left(t+h\right)'\right]\right\}=\varDelta_{p}\left(h\right)\;. \end{split}$$

If the process W(t) is strictly stationary with i.i.d. innovations a(t) and finite fourth moments, we can write:

$$\mathsf{E}[W_p(s)\,u_i^{(h)}(s+h)\,u_i^{(h)}(t+h)\,W_p(t)'] = \Gamma_{ij}(p,\,h,\,t-s) = \Gamma_{ij}(p,\,h,\,s-t) \tag{3.4}$$

where $1 \le i \le m$, $1 \le j \le m$, with

$$\Gamma_{ij}(p, h, 0) = \mathbb{E}\left[W_{p}(t) u_{i}^{(h)}(t+h) u_{j}^{(h)}(t+h) W_{p}(t)'\right]$$

$$= \sigma_{ij}(h) \mathbb{E}\left[W_{p}(t) W_{p}(t)'\right] = \sigma_{ij}(h) \Gamma_{p},$$
(3.5)

$$\Gamma_{ij}(p, h, t - s) = 0, \quad \text{if } |t - s| \ge h.$$
 (3.6)

In this case,¹

$$\Delta_{p}(h) = \left[\sigma_{ij}(h) \Gamma_{p}\right]_{i, i=1, \dots, m} = \Sigma(h) \otimes \Gamma_{p}$$
(3.7)

where $\Sigma(h)$ is nonsingular, and thus $\Delta_p(h)$ is also nonsingular. The nonsingularity of $\Sigma(h)$ follows from the identity

$$u^{(h)}(t+h) = [\psi_{h-1}, \psi_{h-2}, \dots, \psi_1, I_m] [a(t+1)', a(t+2)', \dots, a(t+h)']'.$$

Under usual regularity conditions,

$$\frac{1}{\sqrt{T}} \sum_{t=0}^{T-h} vec[W_p(t) u^{(h)}(t+h)'] \xrightarrow[T \to \infty]{\mathsf{L}} N\left[0, \bar{\Delta}_p(h)\right]$$
(3.8)

where $\bar{\Delta}_{p}(h)$ is a nonsingular covariance matrix which involves the variance and the autocovariances of $W_{p}(t)u^{(h)}(t+h)'$ [and possibly other parameters, if the process W(t) is not linear]. Then,

$$\sqrt{T} \operatorname{vec}\left[\hat{\Pi}^{(h)} - \Pi^{(h)}\right] = \left\{I_{m} \otimes \left[\frac{1}{T}\overline{W}_{p}(h)'\overline{W}_{p}(h)\right]^{-1}\right\} \operatorname{vec}\left[\frac{1}{\sqrt{T}}\overline{W}_{p}(h)'U_{h}(h)\right] \\
= \left\{I_{m} \otimes \left[\frac{1}{T}\overline{W}_{p}(h)'\overline{W}_{p}(h)\right]^{-1}\right\} \frac{1}{\sqrt{T}} \sum_{t=0}^{T-h} \operatorname{vec}\left[W_{p}(t) u^{(h)}(t+h)'\right]$$

¹Note that (3.5) holds under the assumption of martingale difference sequence on a(t). But to get (3.6) and allow the use of simpler central limit theorems, we maintain the stronger assumption that the innovations a(t) are i.i.d. according to some distribution with finite fourth moments (not necessarily Gaussian).

$$\xrightarrow[T \to \infty]{} N\left[0, \left(I_m \otimes \Gamma_p^{-1}\right) \bar{\Delta}_p\left(h\right) \left(I_m \otimes \Gamma_p^{-1}\right)\right]. \tag{3.9}$$

For convenience, we shall summarize the above observations in the following proposition.

Proposition 3.1 Asymptotic normality of LS in a (p,h) stationary VAR. Under the assumptions (2.1), (3.2), and (3.8), the asymptotic distribution of $\sqrt{T} \, vec \big[\hat{\Pi}^{(h)} - \Pi^{(h)} \big]$ is $N[0, \, \Sigma(\hat{\Pi}^{(h)})]$, where $\Sigma(\hat{\Pi}^{(h)}) = (I_m \otimes \Gamma_p^{-1}) \, \bar{\Delta}_p \, (h) \, (I_m \otimes \Gamma_p^{-1})$.

4. Causality tests based on stationary (p, h)-autoregressions

Consider the *i*-th equation $(1 \le i \le m)$ in system (2.11):

$$\overline{w}_{i}(h) = \overline{W}_{p}(h) \beta_{i}(h) + \overline{u}_{i}(h), \ 1 \le i \le m,$$

$$(4.1)$$

where $\overline{w}_i(h) = w_i(h, h)$ and $\overline{u}_i(h) = u_i(h, h)$, where $w_i(h, h)$ and $u_i(h, h)$ are defined in (2.12) and (2.15). We wish to test:

$$H_0(h): R\beta_i(h) = r \tag{4.2}$$

where R is a $q \times (n+mp)$ matrix of rank q. In particular, if we wish to test the hypothesis that w_{jt} does not cause w_{it} at horizon h [i.e., using the notation of Dufour and Renault (1998), $w_j \underset{h}{\nrightarrow} w_i \mid I_{(j)}$, where $I_{(j)}(t)$ is the Hilbert space generated by the basic information set I(t) and the variables $w_{k\tau}$, $\omega < \tau \le t$, $k \ne j$, ω being an appropriate starting time ($\omega \le -p+1$)], the restriction would take the form:

$$H_{i \to i}^{(h)} : \pi_{ijk}^{(h)} = 0, \ k = 1, \dots, p,$$
 (4.3)

where $\pi_k^{(h)} = \left[\pi_{ijk}^{(h)}\right]_{i,\ j=1,\dots,m},\ k=1,\dots,p$. In other words, the null hypothesis takes the form of a set of zero restrictions on the coefficients of $\beta_i(h)$ as defined in (2.14). The matrix of restrictions R in this case takes the form R=R(j), where $R(j)\equiv [\delta_1(j),\delta_2(j),\dots,\delta_p(j)]'$ is a $p\times(n+mp)$ matrix, $\delta_k(j)$ is a $(n+pm)\times 1$ vector whose elements are all equal to zero except for a unit value at position n+(k-1)m+j, i.e. $\delta_k(j)=[\delta(1,n+(k-1)m+j),\dots,\delta(n+pm,n+(k-1)m+j)]'$, $k=1,\dots,p$, with $\delta(i,j)=1$ if i=j, and $\delta(i,j)=0$ if $i\neq j$. Note also that the conjunction of the hypothesis $H_{j\to i}^{(h)},\ h=1,\dots,(m-2)p+1$, is sufficient to obtain noncausality at all horizons [see Dufour and Renault (1998, section 4)]. Non-causality up to horizon H is the conjunction of the hypothesis $H_{j\to i}^{(h)},\ h=1,\dots,H$.

We have:

$$\hat{\beta}_{i}(h) = \beta_{i}(h) + \left[\overline{W}_{p}(h)' \overline{W}_{p}(h) \right]^{-1} \overline{W}_{p}(h)' \overline{u}_{i}(h),$$

hence

$$\sqrt{T} \left[\hat{\beta}_i \left(h \right) - \beta_i \left(h \right) \right] = \left[\frac{1}{T} \overline{W}_p \left(h \right)' \overline{W}_p \left(h \right) \right]^{-1} \frac{1}{\sqrt{T}} \sum_{t=0}^{T-h} W_p \left(t \right) u_i^{(h)} \left(t + h \right) .$$

Under standard regularity conditions [see White (1999, chap. 5-6)],

$$\sqrt{T}\left[\hat{\beta}_{i}\left(h\right)-\beta_{i}\left(h\right)\right] \xrightarrow[T \to \infty]{L} N\left[0, V\left(\hat{\beta}_{i}\right)\right]$$

with $\det\left[\mathsf{V}(\hat{\beta}_i)\right] \neq 0$, where $\mathsf{V}(\hat{\beta}_i)$ can be consistently estimated:

$$\hat{V}_T(\hat{\beta}_i) \xrightarrow[T \to \infty]{\mathsf{p}} \mathsf{V}(\hat{\beta}_i)$$
.

More explicit forms for $\hat{V}_T(\hat{eta}_i)$ will be discussed below. Note also that

$$\Gamma_{p} = \underset{T \to \infty}{\text{plim}} \frac{1}{T} \overline{W}_{p} (h)' \overline{W}_{p} (h) , \det (\Gamma_{p}) \neq 0.$$

Let

$$\begin{split} V_{ip}\left(T\right) &= & \operatorname{Var}\left[\frac{1}{\sqrt{T}}\overline{W}_{p}\left(h\right)'\bar{u}_{i}\left(h\right)\right] = \frac{1}{T}\operatorname{Var}\left[\sum_{t=0}^{T-h}W_{p}\left(t\right)u_{i}^{(h)}\left(t+h\right)\right] \\ &= & \frac{1}{T}\Big\{\sum_{t=0}^{T-h}\operatorname{E}\!\left[W_{p}\left(t\right)u_{i}^{(h)}\left(t+h\right)u_{i}^{(h)}\left(t+h\right)W_{p}\left(t\right)'\right] \\ &+ \sum_{\tau=1}^{h-1}\sum_{t=\tau+1}^{T-h}\left[\operatorname{E}\!\left[W_{p}\left(t\right)u_{i}^{(h)}\left(t+h\right)u_{i}^{(h)}\left(t-\tau+h\right)W_{p}\left(t-\tau\right)'\right] \\ &+ \operatorname{E}\!\left[W_{p}\left(t-\tau\right)u_{i}^{(h)}\left(t-\tau+h\right)u_{i}^{(h)}\left(t+h\right)W_{p}\left(t\right)'\right]\Big]\Big\}\,. \end{split}$$

Let us assume that

$$V_{ip}(T) \xrightarrow[T \to \infty]{} V_{ip}, \det(V_{ip}) \neq 0,$$
 (4.4)

where V_{ip} can be estimated by a computable consistent estimator $\hat{V}_{ip}\left(T\right)$:

$$\hat{V}_{ip}\left(T\right) \xrightarrow[T \to \infty]{\mathbf{p}} V_{ip}. \tag{4.5}$$

Then,

$$\sqrt{T}\left[\hat{\beta}_{i}\left(h\right)-\beta_{i}\left(h\right)\right] \underset{T\rightarrow\infty}{\overset{\mathbf{p}}{\longrightarrow}} N\left[0,\, \Gamma_{p}^{-1}V_{ip}\Gamma_{p}^{-1}\right]$$

so that $V(\hat{\beta}_i) = \Gamma_p^{-1} V_{ip} \Gamma_p^{-1}$. Further, in this case,

$$\begin{split} \hat{V}_{T}\!\left(\hat{\beta}_{i}\right) &= \hat{\Gamma}_{p}^{-1} \hat{V}_{ip}\left(T\right) \hat{\Gamma}_{p}^{-1} \xrightarrow[T \to \infty]{\mathbf{p}} \mathsf{V}\!\left(\hat{\beta}_{i}\right), \\ \hat{\Gamma}_{p} &= \frac{1}{T} \sum_{t=0}^{T-h} W_{p}\left(t\right) W_{p}\left(t\right)' = \frac{1}{T} \overline{W}_{p}\left(h\right)' \overline{W}_{p}\left(h\right) \xrightarrow[T \to \infty]{\mathbf{p}} \Gamma_{p}\,. \end{split}$$

We can thus state the following proposition.

Proposition 4.1 ASYMPTOTIC DISTRIBUTION OF TEST CRITERION FOR NON-CAUSALITY AT HORIZON h IN A STATIONARY VAR. Suppose the assumptions of Proposition 3.1 hold jointly with (4.4) - (4.5). Then, under any hypothesis of the form $H_0(h)$ in (4.2), the asymptotic distribution of

$$\mathcal{W}[H_0(h)] = T \left[R \hat{\beta}_i(h) - r \right]' \left[R \hat{V}_T(\hat{\beta}_i) R' \right]^{-1} \left[R \hat{\beta}_i(h) - r \right]$$

$$\tag{4.6}$$

is $\chi^2(q)$. In particular, under the hypothesis $H_{j \to i}^{(h)}$ of non-causality at horizon h from w_{jt} to $w_{it}\left(w_j \underset{h}{\to} w_i \mid I_{(j)}\right)$, the asymptotic distribution of the corresponding statistic $\mathcal{W}[H_0(h)]$ is $\chi^2(p)$.

The problem now consists in estimating V_{ip} . Let $\hat{\bar{u}}_i(h) = \left[\hat{u}_i^{(h)}(t+h): t=0,\ldots,T-h\right]'$ be the vector of OLS residuals from the regression (4.1), $\hat{g}_i^{(h)}(t+h) = W_p(t)\hat{u}_i^{(h)}(t+h)$, and set

$$R_i^{(h)}(\tau) = \frac{1}{T-h} \sum_{t=\tau}^{T-h} \hat{g}_i^{(h)}(t+h) \,\hat{g}_i^{(h)}(t+h-\tau)', \ \tau = 0, 1, 2, \dots.$$

If the innovations are i.i.d. or, more generally, if (3.6) holds, a natural estimator of V_{ip} , which would take into account the fact that the prediction errors $u^{(h)}(t+h)$ follow an MA(h-1) process, is given by:

$$\hat{V}_{ip}^{(W)}(T) = R_i^{(h)}(0) + \sum_{\tau=1}^{h-1} \left[R_i^{(h)}(\tau) + R_i^{(h)}(\tau)' \right].$$

Under regularity conditions studied by White (1999, Section 6.3),

$$\hat{V}_{ip}^{(W)}(T) - V_{ip} \xrightarrow{\mathcal{P}} 0.$$

A problem with $\hat{V}_{ip}^{(W)}\left(T\right)$ is that it is not necessarily positive-definite.

An alternative estimator which is automatically positive-semidefinite is the one suggested by Doan and Litterman (1983), Gallant (1987) and Newey and West (1987):

$$\hat{V}_{ip}^{(NW)}(T) = R_i^{(h)}(0) + \sum_{\tau=1}^{m(T)-1} \kappa(\tau, m(T)) \left[R_i^{(h)}(\tau) + R_i^{(h)}(\tau)' \right], \tag{4.7}$$

where $\kappa\left(\tau,\,m\right)=1-\left[\tau/\left(m+1\right)\right],\ \lim_{T\to\infty}m\left(T\right)=\infty,$ and $\lim_{T\to\infty}\left[m\left(T\right)/T^{1/4}\right]=0$. Under the regularity conditions given by Newey and West (1987),

$$\hat{V}_{ip}^{(NW)}(T) - V_{ip} \underset{T \to \infty}{\longrightarrow} 0.$$

Other estimators that could be used here includes various heteroskedasticity-autocorrelation-consistent (HAC) estimators; see Andrews (1991), Andrews and Monahan (1992), Cribari-Neto, Ferrari and Cordeiro (2000), Cushing and McGarvey (1999), Den Haan and Levin (1997), Hansen (1992), Newey and McFadden (1994), Wooldridge (1989).

The cost of having a simple procedure that sidestep all the nonlinearities associated with the non-causality hypothesis is a loss of efficiency. There are two places where we are not using all information. The constraints on the $\pi_k^{(h)}$'s are giving information on the ψ_j 's and we are not using it. We are also estimating the VAR by OLS and correcting the variance-covariance matrix instead of doing a GLS-type estimation. These two sources of inefficiencies could potentially be overcome but it would lead to less user-friendly procedures.

The asymptotic distribution provided by Proposition **4.1**, may not be very reliable in finite samples, especially if we consider a VAR system with a large number of variables and/or lags. Due to autocorrelation, a larger horizon may also affect the size an power of the test. So an alternative to using the asymptotic distribution chi-square of $W[H_0(h)]$, consists in using Monte Carlo test techniques [see Dufour (2002)] or bootstrap methods [see, for example, Paparoditis (1996), Paparoditis and Streitberg (1991), Kilian (1998a, 1998b)]. In view of the fact that the asymptotic distribution of $W[H_0(h)]$ is nuisance-parameter-free, such methods yield asymptotically valid tests when applied to $W[H_0(h)]$ and typically provide a much better control of test level in finite samples. It is also possible that using better estimates would improve size control, although this is not clear, for important size distortions can occur in multivariate regressions even when unbiased efficient estimators are available [see, for example, Dufour and Khalaf (2002)].

5. Causality tests based on nonstationary (p, h)-autoregressions

In this section, we study how the tests described in the previous section can be adjusted in order to allow for non-stationary possibly integrated processes. In particular, let us assume that

$$W(t) = \mu(t) + \eta(t), \qquad (5.1)$$

$$\mu(t) = \delta_0 + \delta_1 t + \dots + \delta_q t^q, \quad \eta(t) = \sum_{k=1}^p \pi_k \eta(t-k) + a(t),$$
 (5.2)

 $t=1,\ldots,T$, where $\delta_0,\delta_1,\ldots,\delta_q$ are $m\times 1$ fixed vectors, and the process $\eta(t)$ is at most I(d) where d is an integer greater than or equal to zero. Typical values for d are 0,1 or 2. Note that these assumptions allow for the presence (or the absence) of cointegration relationships.

Under the above assumptions, we can also write:

$$W(t) = \gamma_0 + \gamma_1 t + \dots + \gamma_q t^q + \sum_{k=1}^p \pi_k W(t-k) + a(t) , \quad t = 1, \dots, T,$$
 (5.3)

where $\gamma_0, \gamma_1, \ldots, \gamma_q$ are $m \times 1$ fixed vectors (which depend on $\delta_0, \delta_1, \ldots, \delta_q$, and π_1, \ldots, π_p); see Toda and Yamamoto (1995). Under the specification (5.3), we have:

$$W(t+h) = \mu^{(h)}(t) + \sum_{k=1}^{p} \pi_k^{(h)} W(t+1-k) + u^{(h)}(t+h) , \quad t = 0, \dots, T-h.$$
 (5.4)

where $\mu^{(h)}(t) = \gamma_0^{(h)} + \gamma_1^{(h)}t + \dots + \gamma_q^{(h)}t^q$ and $\gamma_0^{(h)}, \ \gamma_1^{(h)}, \dots, \ \gamma_q^{(h)}$ are $m \times 1$ fixed vectors. For h = 1, this equation is identical with (5.3). For $h \geq 2$, the errors $u^{(h)}(t+h)$ follow a MA(h-1) process as opposed to being i.i.d. . For any integer j, we have:

$$W(t+h) = \mu^{(h)}(t) + \sum_{\substack{k=1\\k\neq j}}^{p} \pi_k^{(h)} \left[W(t+1-k) - W(t+1-j) \right] + \left(\sum_{k=1}^{p} \pi_k^{(h)} \right) W(t+1-j) + u^{(h)}(t+h) , \qquad (5.5)$$

$$W(t+h) - W(t+1-j) = \mu^{(h)}(t) + \sum_{\substack{k=1\\k\neq j}}^{p} \pi_k^{(h)} [W(t+1-k) - W(t+1-j)]$$
$$-\left(I_m - \sum_{k=1}^{p} \pi_k^{(h)}\right) W(t+1-j) + u^{(h)}(t+h) , \quad (5.6)$$

for $t=0,\ldots,T-h$. The two latter expressions can be viewed as extensions to (p,h)-autoregressions of the representations used by Dolado and Lütkepohl (1996, pp. 372-373) for VAR(p) processes. Further, on taking j=p+1 in (5.6), we see that

$$W(t+h) - W(t-p) = \mu^{(h)}(t) + \sum_{k=1}^{p} A_k^{(h)} \Delta W(t+1-k) + B_n^{(h)} W(t-p) + u^{(h)}(t+h)$$
(5.7)

where $\Delta W\left(t\right)=W(t)-W(t-1),$ $A_{k}^{(h)}=\sum_{j=1}^{k}\pi_{k}^{(h)}$, and $B_{k}^{(h)}=A_{k}^{(h)}-I_{m}$. Equation (5.7) may be interpreted as an error-correction form at the horizon h, with base W(t-p).

Let us now consider the extended autoregression

$$W(t+h) = \mu^{(h)}(t) + \sum_{k=1}^{p} \pi_k^{(h)} W(t+1-k) + \sum_{k=p+1}^{p+d} \pi_k^{(h)} W(t+1-k) + u^{(h)}(t+h) , \quad (5.8)$$

 $t=d,\ldots,T-h$. Under model (5.3), the actual values of the coefficient matrices $\pi_{p+1}^{(h)},\ldots,\pi_{p+d}^{(h)}$ are equal to zero $(\pi_{p+1}^{(h)} = \cdots = \pi_{p+d}^{(h)} = 0)$, but we shall estimate the (p,h)-autoregressions without imposing any restriction on $\pi_{p+1}^{(h)}, \ldots, \pi_{p+d}^{(h)}$. Now, suppose the process $\eta(t)$ is either I(0) or I(1), and we take d=1 in (5.8). Then, on

replacing p by p+1 and setting j=p in the representation (5.6), we see that

$$W(t+h) - W(t-p-1) = \mu^{(h)}(t) + \sum_{k=1}^{p} \pi_k^{(h)} [W(t+1-k) - W(t-p-1)] - B_{p+1}^{(h)} W(t-p-1) + u^{(h)}(t+h) , \qquad (5.9)$$

where $B_{p+1}^{(h)} = (I_m - \sum_{k=1}^{p+1} \pi_k^{(h)})$. In the latter equation, $\pi_1^{(h)}, \ldots, \pi_p^{(h)}$ all affect trend-stationary variables (in an equation where a trend is included along with the other coefficients). Using arguments similar to those of Sims et al. (1990), Park and Phillips (1989) and Dolado and Lütkepohl (1996), it follows that the estimates of $\pi_1^{(h)}, \ldots, \pi_p^{(h)}$ based on estimating (5.9) by ordinary least squares (without restricting $B_{p+1}^{(h)}$) or, equivalently, those obtained from (5.8) without restricting $\pi_{p+1}^{(h)}$ are asymptotically normal with the same asymptotic covariance matrix as the one obtained for a stationary process of the type studied in section 4.2 Consequently, the asymptotic distribution of the statistic $\mathcal{W}[H_{j \to i}^{(h)}]$ for testing the null hypothesis $H_{j \to i}^{(h)}$ of non-causality at horizon h from w_j to $w_i \left(w_j \xrightarrow[h]{} w_i \mid I_{(j)} \right)$, based on estimating (5.8), is $\chi^2(p)$. When computing $H_{j \to i}^{(h)}$ as defined in (4.3), it is important that only the coefficients of $\pi_1^{(h)}, \ldots, \pi_p^{(h)}$ are restricted (but not $\pi_{p+1}^{(h)}$).

If the process $\eta(t)$ is integrated up to order d, where $d \geq 0$, we can proceed similarly and add d extra lags to the VAR process studied. Again, the null hypothesis is tested by considering the restrictions entailed on $\pi_1^{(h)}, \ldots, \pi_p^{(h)}$. Further, in view of the fact the test statistics are asymptotically pivotal under the null hypothesis, it is straightforward to apply bootstrap methods to such statistics. Note finally that the precision of the VAR estimates in such augmented regressions may eventually be improved with respect to the OLS estimates considered here by applying bias corrections such as those proposed by Kurozumi and Yamamoto (2000)]. Adapting and applying such corrections to (p, h)-autoregressions would go beyond the scope of the present paper.

²For related results, see also Choi (1993), Toda and Yamamoto (1995), Yamamoto (1996), Yamada and Toda (1998), and Kurozumi and Yamamoto (2000).

Table 1. Rejection frequencies using the asymptotic distribution and the bootstrap procedure a) i.i.d. Gaussian sequence

h =	1	2	3	4	5	6	7	8	9	10	11	12
Asymptotic												
5% level	27.0	27.8	32.4	36.1	35.7	42.6	47.9	48.5	51.0	55.7	59.7	63.6
10% level	37.4	39.4	42.2	46.5	47.8	52.0	58.1	59.3	60.3	66.3	69.2	72.5
Bootstrap												
5% level	5.5	5.7	4.7	6.5	4.0	5.1	5.5	3.9	4.7	6.1	5.2	3.8
10% level	10.0	9.1	10.1	10.9	9.6	10.6	10.2	9.4	9.5	10.9	10.3	8.9
		b) V	/AR(10	6) with	out ca	usality	up to	horizo	on h			
Asymptotic												
5% level	24.1	27.9	35.8	37.5	55.9	44.3	52.3	55.9	54.1	60.1	62.6	72.0
10% level	35.5	38.3	46.6	47.2	65.1	55.0	64.7	64.6	64.8	69.8	72.0	79.0
Bootstrap												
5% level	6.0	5.1	3.8	6.1	4.6	4.7	4.4	4.5	4.3	6.3	4.9	5.8
10% level	9.8	8.8	8.7	10.4	10.3	9.9	8.7	7.4	10.3	11.1	9.3	9.7

6. Empirical illustration

In this section, we present an application of these causality tests at various horizons to macroeconomic time series. The data set considered is the one used by Bernanke and Mihov (1998) in order to study United States monetary policy. The data set considered consists of monthly observations on nonborrowed reserves (NBR, also denoted w_1), the federal funds rate (r, w_2) , the GDP deflator (P, w_3) and real GDP (GDP, w_4) . The monthly data on GDP and GDP deflator were constructed by state space methods from quarterly observations [see Bernanke and Mihov (1998) for more details]. The sample goes from January 1965 to December 1996 for a total of 384 observations. In what follows, all the variables were first transformed by a logarithmic transformation.

Before performing the causality tests, we must specify the order of the VAR model. First, in order to get apparently stationary time series, all variables were transformed by taking first differences of their logarithms. In particular, for the federal funds rate, this helped to mitigate the effects of a possible break in the series in the years 1979-1981.³ Starting with 30 lags, we then tested the hypothesis of K lags versus K+1 lags using the LR test presented in Tiao and Box (1981). This led to a VAR(16) model. Tests of a VAR(16) against a VAR(K) for $K=17,\ldots,30$ also failed to reject the VAR(16) specification, and the AIC information criterion [see McQuarrie and Tsai (1998, chapter 5)] is minimized as well by this choice. Calculations were performed using the Ox program (version 3.00) working on Linux [see Doornik (1999)].

³Bernanke and Mihov (1998) performed tests for arbitrary break points, as in Andrews (1993), and did not find significant evidence of a break point. They considered a VAR(13) with two additional variables (total bank reserves and Dow-Jones index of spot commodity prices and they normalize both reserves by a 36-month moving average of total reserves.)

Vector autoregressions of order p at horizon h were estimated as described in section 4 and the matrix $\hat{V}_{ip}^{(NW)}$, required to obtain covariance matrices, were computed using formula (4.7) with m(T)-1=h-1. On looking at the values of the test statistics and their corresponding p-values at various horizons it quickly becomes evident that the $\chi^2(q)$ asymptotic approximation of the statistic \mathcal{W} in equation (4.6) is very poor. As a simple Monte Carlo experiment, we replaced the data by a 383×4 matrix of random draw from an N(0,1), ran the same tests and looked at the rejection frequencies over 1000 replications using the asymptotic critical value. The results are in Table 1a. We see important size distortions even for the tests at horizon 1 where there is no moving average part.

We next illustrate that the quality of the asymptotic approximation is even worse when we move away from an i.i.d. Gaussian setup to a more realistic case. We now take as the DGP the VAR(16) estimated with our data in first difference but we impose that some coefficients are zero such that the federal funds rate does not cause GDP up to horizon h and then we test the $r \underset{h}{\Rightarrow} GDP$ hypothesis. The constraints of non-causality from h to h up to horizon h that we impose are:

$$\hat{\pi}_{iil} = 0 \quad \text{for} \quad 1 \le l \le p \,, \tag{6.1}$$

$$\hat{\pi}_{ikl} = 0 \text{ for } 1 \le l \le h, \ 1 \le k \le m.$$
 (6.2)

Rejection frequencies for this case are given in Table 1b.

In light of these results we computed the p-values by doing a parametric bootstrap, *i.e.* doing an asymptotic Monte Carlo test based on a consistent point estimate [see Dufour (2002)]. The procedure to test the hypothesis $w_j \underset{h}{\rightarrow} w_i \mid I_{(j)}$ is the following.

- 1. An unrestricted VAR(p) model is fitted for the horizon one, yielding the estimates $\hat{H}^{(1)}$ and $\hat{\Omega}$ for $\Pi^{(1)}$ and Ω .
- 2. An unrestricted (p, h)-autoregression is fitted by least squares, yielding the estimate $\hat{\Pi}^{(h)}$ of $\Pi^{(h)}$.
- 3. The test statistic \mathcal{W} for testing noncausality at the horizon h from w_j to $w_i \left[H_{j \to i}^{(h)} : w_j \xrightarrow{h} w_i \mid I_{(j)} \right]$ is computed. We denote by $\mathcal{W}_{j \to i}^{(h)}(0)$ the test statistic based on the actual data.
- 4. N simulated samples from (2.8) are drawn by Monte Carlo methods, using $\Pi^{(h)}=\hat{\Pi}^{(h)}$ and $\Omega=\hat{\Omega}$ [and the hypothesis that a(t) is Gaussian]. We impose the constraints of non-causality, $\hat{\pi}^{(h)}_{ijk}=0,\,k=1,\ldots,\,p$. Estimates of the impulse response coefficients are obtained from $\hat{\Pi}^{(1)}$ through the relations described in equation (2.5). We denote by $\mathcal{W}^{(h)}_{j\to i}(n)$ the test statistic for $H^{(h)}_{j\to i}$ based on the n-th simulated sample $(1\leq n\leq N)$.

 $^{^4}$ The covariance estimator used here is relatively simple and exploits the truncation property (3.6). In view of the vast literature on HAC estimators [see Den Haan and Levin (1997) and Cushing and McGarvey (1999)], several alternative estimators for V_{ip} could have been considered (possibly allowing for alternative assumptions on the innovation distribution). It would certainly be of interest to compare the performances of alternative covariance estimators, but this would lead to a lengthy study, beyond the scope of the present paper.

5. The simulated p-value $\hat{p}_N[\mathcal{W}_{j\to i}^{(h)}(0)]$ is obtained, where

$$\hat{p}_N[x] = \left\{ 1 + \sum_{n=1}^N I[\mathcal{W}_{j \to i}^{(h)}(n) - x] \right\} / (N+1),$$

$$I[z] = 1 \text{ if } z \ge 0 \text{ and } I[z] = 0 \text{ if } z < 0.$$

6. The null hypothesis $H_{j \to i}^{(h)}$ is rejected at level α if $\hat{p}_N[\mathcal{W}_{j \to i}^{(0)}(h)] \leq \alpha$.

From looking at the results in Table 1, we see that we get a much better size control by using this bootstrap procedure. The rejection frequencies over 1000 replications (with N=999) are very close to the nominal size. Although the coefficients ψ_i 's are functions of the π_i 's we do not constrain them in the bootstrap procedure because there is no direct mapping from $\pi_k^{(h)}$ to π_k and ψ_j . This certainly produces a power loss but the procedure remains valid because the $\hat{\psi}_i$'s are computed with the $\hat{\pi}_k$, which are consistent estimates of the true π_k both under the null and alternative hypothesis. To illustrate that our procedure has power for detecting departure from the null hypothesis of noncausality at a given horizon we ran the following Monte Carlo experiment. We again took a VAR(16) fitted on our data in first differences and we imposed the constraints (6.1) - (6.2) so that there was no causality from r to GDP up to horizon 12 (DGP under the null hypothesis). Next the value of one coefficient previously set to zero was changed to induce causality from r to GDP at horizons 4 and higher: $\pi_3(1,3) = \theta$. As θ increases from zero to one the strength of the causality from r to GDP is higher. Under this setup, we could compute the power of our simulated test procedure to reject the null hypothesis of non-causality at a given horizon. In Figure 1, the power curves are plotted as a function of θ for the various horizons. The level of the tests was controlled through the bootstrap procedure. In this experiment we took again N = 999 and we did 1000 simulations. As expected, the power curves are flat at around 5% for horizons one to three since the null is true for these horizons. For horizons four and up we get the expected result that power goes up as θ moves from zero to one, and the power curves gets flatter as we increase the horizon.

Now that we have shown that our procedure does have power we present causality tests at horizon one to 24 for every pair of variables in tables 2 and 3. For every horizon we have twelve causality tests and we group them by pairs. When we say that a given variable cause or does not cause another, it should be understood that we mean the growth rate of the variables. The p-values are computed by taking N=999. Table 4 summarize the results by presenting the significant results at the 5% and 10% level.

The first thing to notice is that we have significant causality results at short horizons for some pairs of variables while we have it at longer horizons for other pairs. This is an interesting illustration of the concept of causality at horizon h of Dufour and Renault (1998).

The instrument of the central bank, the nonborrowed reserves, cause the federal funds rate at horizon one, the prices at horizon 1, 2, 3 and 9 (10% level). It does not cause the other two variables at any horizon and except the GDP at horizon 12 and 16 (10% level) nothing is causing it. We see that the impact of variations in the nonborrowed reserves is over a very short term. Another variable, the GDP, is also causing the federal funds rates over short horizons (one to five months).

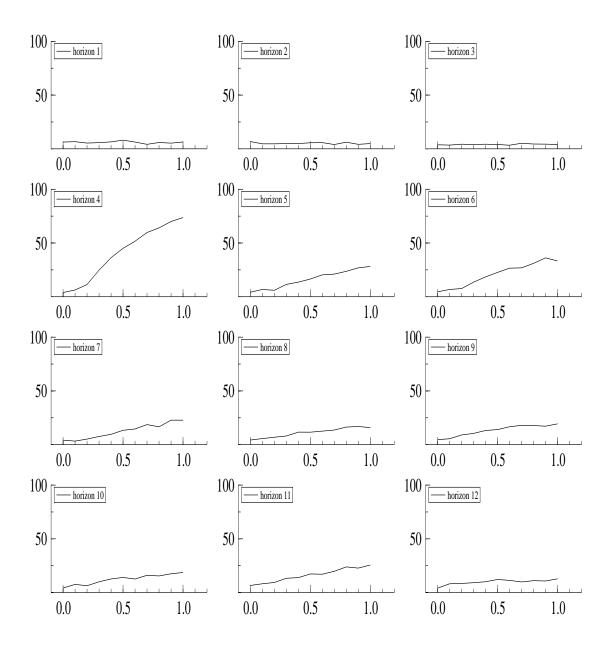


Figure 1. Power of the test at the 5% level for given horizons. The abscissa (x axis) represents the values of θ .

Table 2. Causality tests and simulated p-values for series in first differences (of logarithm) for the horizons 1 to 12. p-values are reported in parenthesis.

					7			na baren	HICOID.					
	h			2	3	4	5	9	7	8	6	10	11	12
NBR	\$	r	38.5205	26.3851	24.3672	22.5684	24.2294	27.0748	21.4347	17.2164	21.8217	18.4775	18.5379	19.6482
			(0.041)	(0.240)	(0.327)	(0.395)	(0.379)	(0.313)	(0.550)	(0.799)	(0.603)	(0.780)	(0.824)	(0.789)
r	\$	NBR	22.5390	20.8621	17.2357	17.4222	17.8944	18.6462	25.2059	40.9896	41.6882	38.1656	41.2203	36.1278
			(0.386)	(0.467)	(0.706)	(0.738)	(0.734)	(0.735)	(0.495)	(0.115)	(0.142)	(0.214)	(0.206)	(0.346)
NBR	\$	Ь	50.5547	45.2498	49.1408	33.8545	33.8943	35.3923	39.1767	40.0218	36.4089	39.0916	28.4933	26.5439
			(0.004)	(0.014)	(0.00)	(0.121)	(0.162)	(0.157)	(0.099)	(0.141)	(0.234)	(0.202)	(0.485)	(0.609)
P	†	NBR	17.0696	18.9504	16.6880	21.2381	28.7264	20.0359	18.2291	23.6704	23.3419	27.8427	30.9171	36.5159
			(0.689)	(0.601)	(0.741)	(0.550)	(0.307)	(0.664)	(0.771)	(0.596)	(0.649)	(0.492)	(0.462)	(0.357)
NBR	\$	GDP	27.8029	25.0122	25.5123	23.6799	15.0040	17.5748	16.6781	19.6643	29.9020	34.0930	32.3917	34.8183
			(0.184)	(0.302)	(0.294)	(0.393)	(0.830)	(0.757)	(0.790)	(0.746)	(0.368)	(0.300)	(0.370)	(0.357)
GDP	†	NBR	17.6338	20.6568	24.5334	18.3220	18.3123	32.8746	33.9979	39.6701	40.7356	26.3424	40.2262	53.3482
			(0.644)	(0.520)	(0.348)	(0.670)	(0.682)	(0.211)	(0.242)	(0.145)	(0.161)	(0.551)	(0.216)	(0.092)
r	\$	Ь	32.2481	32.9207	32.0362	25.0124	25.2441	25.8110	29.2553	29.6021	36.0771	43.2116	30.2530	20.8982
			(0.104)	(0.108)	(0.138)	(0.342)	(0.383)	(0.394)	(0.328)	(0.351)	(0.241)	(0.138)	(0.422)	(0.763)
P		r	22.4385	16.4455	14.3073	14.2932	14.0148	16.7138	11.5599	16.5731	13.0697	14.5759	15.0317	24.4077
			(0.413)	(0.670)	(0.790)	(0.826)	(0.844)	(0.774)	(0.951)	(0.809)	(0.936)	(0.909)	(668.0)	(0.659)
r	\$	GDP	26.3362	28.6645	35.9768	38.8680	37.6788	39.8145	64.1500	80.2396	8669.68	101.4143	105.9138	110.3551
			(0.262)	(0.159)	(0.073)	(0.059)	(0.082)	(0.070)	(0.000)	(0.002)	(0.002)	(0.002)	(0.001)	(0.003)
GDP		r	42.5327	43.0078	49.8366	41.1082	41.7945	36.0965	29.5472	25.7898	27.9807	39.6366	39.0477	40.1545
			(0.016)	(0.017)	(0.005)	(0.033)	(0.044)	(0.109)	(0.263)	(0.429)	(0.366)	(0.148)	(0.178)	(0.205)
P	†	GDP	20.6903	24.1099	27.4106	23.3585	22.9095	18.5543	20.8172	23.6942	30.5340	28.8286	24.9477	25.7552
			(0.495)	(0.322)	(0.233)	(0.423)	(0.497)	(0.713)	(0.639)	(0.555)	(0.375)	(0.414)	(0.612)	(0.629)
$GDP \rightarrow$	†	Ь	24.3368	24.4925	24.6125	22.8160	26.7900	40.0825	36.4855	49.6161	46.2574	36.3197	26.8520	24.0113
			(0.329)	(0.365)	(0.380)	(0.470)	(0.348)	(0.081)	(0.157)	(0.058)	(0.072)	(0.262)	(0.540)	(0.666)

Table 3. Causality tests and simulated p-values for series in first differences (of logarithm) for the horizons 13 to 24

Table 4. Summary of causality relations at various horizons for series in first difference

	h		1	2	3	4	5	6	7	8	9	10	11	12
\overline{NBR}	\rightarrow	r	**											
r	$\rightarrow \rightarrow$	NBR												
\overline{NBR}	\rightarrow	P	**	**	**				*					
P	\rightarrow	NBR												
NBR	\rightarrow	GDP												
GDP	$\rightarrow \rightarrow$	NBR												*
r	\rightarrow	P												
P	$\rightarrow \rightarrow$	r												
r	\rightarrow	GDP			*	*	*	*	**	**	**	**	**	**
GDP	\rightarrow	r	**	**	**	**	**							
P	\rightarrow	GDP												
GDP	\rightarrow	P						*		*	*			
	h		13	14	15	16	17	18	19	20	21	22	23	24
\overline{NBR}	\rightarrow	r												
r	$\rightarrow \rightarrow$	NBR												
\overline{NBR}	\rightarrow	P												
P	$\rightarrow \rightarrow$	NBR												
\overline{NBR}	\rightarrow	GDP												
GDP	$\rightarrow \rightarrow$	NBR				*								
r	\rightarrow	P												
P	$\rightarrow \rightarrow$	r												
\overline{r}	\rightarrow	GDP	**	**	**	**	**	**	*	*				
GDP	\rightarrow	r												
		'												
\overline{P}	<i>→</i>	\overline{GDP}												

Note _ The symbols \star and $\star\star$ indicate rejection of the non-causality hypothesis at the 10% and 5% levels respectively.

An interesting result is the causality from the federal funds rate to the GDP. Over the first few months the funds rate does not cause GDP, but from horizon 3 (up to 20) we do find significant causality. This result can easily be explained by, e.g. the theory of investment. Notice that we have the following indirect causality. Nonborrowed reserves do not cause GDP directly over any horizon, but they cause the federal funds rate which in turn causes GDP. Concerning the observation that there are very few causality results for long horizons, this may reflect the fact that, for stationary processes, the coefficients of prediction formulas converge to zero as the forecast horizon increases.

Using the results of Proposition 4.5 in Dufour and Renault (1998), we know that for this example the highest horizon that we have to consider is 33 since we have a VAR(16) with four time series. Causality tests for the horizons 25 through 33 were also computed but are not reported. Some p-values smaller or equal to 10% are scattered over horizons 30 to 33 but no discernible pattern emerges.

We next consider extended autoregressions to illustrate the results of section 5. To cover the possibility that the first difference of the logarithm of the four series may not be stationary, we ran extended autoregressions on the series analyzed. Since we used a VAR(16) with non-zero mean for

the first difference of the series a VAR(17), i.e. d=1, with a non-zero mean was fitted. The Monte Carlo samples with N=999 are drawn in the same way as before except that the constraints on the VAR parameters at horizon h is $\hat{\pi}_{jik}^{(h)}=0$ for $k=1,\ldots,p$ and not $k=1,\ldots,p+d$. Results of the extended autoregressions are presented in Table 5 (horizons 1 to 12) and 6 (horizons 1 to 12) and 5 (horizons 1 to 12).

Results of the extended autoregressions are presented in Table 5 (horizons 1 to 12) and 6 (horizons 13 to 24). Table 7 summarize these results by presenting the significant results at the 5% and 10% level. These results are very similar to the previous ones over all the horizons and variable every pairs. A few causality tests are not significant anymore $(GDP \rightarrow r)$ at horizon 5, $r \rightarrow GDP$ at horizons 5 and 6) and some causality relations are now significant $(r \rightarrow P)$ at horizon one) but we broadly have the same causality patterns.

7. Conclusion

In this paper, we have proposed a simple linear approach to the problem of testing non-causality hypotheses at various horizons in finite-order vector autoregressive models. The methods described allow for both stationary (or trend-stationary) processes and possibly integrated processes (which may involve unspecified cointegrating relationships), as long as an upper bound is set on the order of integration. Further, we have shown that these can be easily implemented in the context of a four-variable macroeconomic model of the U.S. economy.

Several issues and extensions of interest warrant further study. The methods we have proposed were, on purpose, designed to be relatively simple to implement. This may, of course, involve efficiency losses and leave room for improvement. For example, it seems quite plausible that more efficient tests may be obtained by testing directly the nonlinear causality conditions described in Dufour and Renault (1998) from the parameter estimates of the VAR model. However, such procedures will involve difficult distributional problems and may not be as user-friendly as the procedures described here. Similarly, in nonstationary time series, information about integration order and the cointegrating relationships may yield more powerful procedures, although at the cost of complexity. These issues are the topics of on-going research.

Another limitation comes from the fact we consider VAR models with a known finite order. We should however note that the asymptotic distributional results established in this paper continue to hold as long as the order p of the model is selected according to a consistent order selection rule [see Dufour, Ghysels and Hall (1994), Pötscher (1991)]. So this is not an important restriction. Other problems of interest would consist in deriving similar tests applicable in the context of VARMA or VARIMA models, as well as more general infinite-order vector autoregressive models, using finite-order VAR approximations based on data-dependent truncation rules [such as those used by Lütkepohl and Poskitt (1996) and Lütkepohl and Saikkonen (1997)]. These problems are also the topics of on-going research.

Table 5. Causality tests and simulated p-values for extended autoregressions at the horizons 1 to 12

12	19.5569	(0.795)	35.0883	(0.375)	26.9863	(0.609)	38.3349	(0.336)	36.3343	(0.348)	52.2442	(0.123)	19.9687	(0.812)	21.9949	(0.731)	138.0570	(0.001)	33.4855	(0.347)	22.6991	(0.740)	22.9934	(869.0)
11	21.2947	(0.710)	36.7802	(0.286)	28.6205	(0.498)	31.1869	(0.484)	33.7687	(0.355)	48.3004	(0.125)	30.6394	(0.420)	21.3637	(0.749)	108.0581	(0.003)	39.8618	(0.181)	26.3318	(0.558)	23.1687	(0.647)
10	19.8541	(0.716)	39.4217	(0.207)	33.8049	(0.316)	24.3763	(0.655)	33.5333	(0.333)	37.7337	(0.247)	38.2020	(0.212)	15.8589	(0.887)	107.6638	(0.001)	39.9502	(0.157)	27.2509	(0.505)	36.9912	(0.237)
6	21.9278	(609.0)	43.9928	(0.130)	35.3353	(0.259)	27.0076	(0.508)	30.7472	(0.368)	43.7835	(0.138)	43.2611	(0.111)	14.4324	(0.909)	94.9068	(0.004)	26.5876	(0.431)	29.0384	(0.427)	45.2458	(0.092)
∞	19.3805	(0.688)	44.0172	(0.075)	38.8076	(0.161)	23.1743	(0.629)	17.9592	(0.817)	40.3578	(0.163)	31.4581	(0.311)	15.2506	(0.859)	92.6009	(0.001)	27.0745	(0.369)	28.9318	(0.376)	45.2219	(0.088)
7	19.5377	(0.99.0)	39.8496	(0.129)	38.7204	(0.152)	22.7821	(0.605)	15.9036	(0.821)	37.1194	(0.167)	27.6313	(0.353)	13.4196	(0.905)	79.9402	(0.002)	30.5867	(0.250)	20.3581	(0.666)	37.6254	(0.153)
9	26.6763	(0.333)	20.2032	(9.676)	42.1714	(0.061)	18.7583	(0.730)	17.8928	(0.732)	36.1053	(0.166)	25.4747	(0.397)	15.7472	(0.830)	35.1715	(0.164)	28.1840	(0.286)	19.8483	(0.668)	38.0318	(0.110)
5	25.4508	(0.333)	19.6425	(0.673)	36.1026	(0.124)	29.7329	(0.276)	14.4893	(0.837)	29.1229	(0.269)	21.7640	(0.568)	16.2334	(0.768)	34.9901	(0.117)	30.4776	(0.209)	23.3233	(0.479)	37.5984	(0.108)
4	22.9316	(0.410)	17.3820	(0.759)	33.8112	(0.152)	26.1610	(0.339)	24.3384	(0.402)	19.1035	(0.658)	24.4449	(0.390)	15.1933	(0.790)	35.7130	(0.094)	38.0358	(0.060)	24.6507	(0.373)	19.2127	(0.639)
8	24.9365	(0.309)	16.6185	(0.747)	56.5028	(0.007)	16.3891	(0.764)	25.9561	(0.317)	20.6798	(0.537)	25.6717	(0.352)	15.2001	(0.762)	37.5271	(0.061)	44.7597	(0.019)	24.6605	(0.342)	25.5683	(0.350)
7	24.0148	(0.337)	17.7977	(0.650)	44.8472	(0.015)	17.2772	(0.704)	23.8072	(0.346)	19.4471	(0.571)	31.2909	(0.128)	15.9453	(0.704)	29.5913	(0.158)	41.9449	(0.019)	26.7148	(0.237)	24.1941	(0.358)
1	37.4523	(0.051)	25.9185	(0.281)	50.8648	(0.004)	20.7491	(0.506)	27.2102	(0.224)	16.1322	(0.746)	32.5147	(0.100)	22.7374	(0.415)	27.0435	(0.244)	41.8475	(0.032)	23.7424	(0.368)	25.1264	(0.278)
	r		NBR		Ь		NBR		GDP		NBR		Ь		r		GDP		r		GDP		Ь	
h	\$		<i>z</i>		\$		\$		\$		\$		\$		\$		\$		\$		\$		\$	
	NBR		r		NBR		P		NBR		GDP		r		Ь		r		GDP		Ь		GDP	

Table 6. Causality tests and simulated p-values for extended autoregressions at the horizons 13 to 24

				ı		ı)					
	h		13	14	15	16	17	18	19	20	21	22	23	24
NBR	1	r	19.5845	30.2847	17.4893	24.9745	21.2814	27.4800	36.9567	27.8970	59.3731	34.9153	27.3241	31.9143
			(0.814)	(0.513)	(0.901)	(0.750)	(0.858)	(0.706)	(0.537)	(0.770)	(0.236)	(0.640)	(0.832)	(0.771)
r	†	NBR	41.7360	47.8501	30.9613	29.1809	35.7654	22.9966	29.0869	29.1396	38.0675	52.5512	29.6133	25.4872
			(0.282)	(0.212)	(0.592)	(0.692)	(0.540)	(0.847)	(0.757)	(0.766)	(0.665)	(0.401)	(0.838)	(0.917)
NBR	\$	Ь	36.7787	37.7357	33.4273	35.3241	20.6330	23.6911	44.5735	55.5420	53.7340	68.0270	52.3332	47.5614
			(0.359)	(0.366)	(0.512)	(0.455)	(0.860)	(0.825)	(0.379)	(0.249)	(0.290)	(0.165)	(0.363)	(0.481)
P	\$	NBR	29.5049	39.2076	18.0831	30.6486	39.5517	34.8363	39.9608	43.6563	40.6713	44.0254	61.6914	62.9346
			(0.582)	(0.401)	(0.920)	(0.671)	(0.441)	(909.0)	(0.535)	(0.471)	(0.551)	(0.553)	(0.296)	(0.286)
NBR	\$	GDP	30.9525	22.0737	30.1165	22.7429	17.2546	22.2686	28.6752	31.8817	39.5031	53.6466	58.8413	79.0569
			(0.501)	(0.822)	(0.599)	(0.793)	(0.937)	(0.863)	(0.749)	(0.717)	(0.591)	(0.367)	(0.327)	(0.153)
GDP	†	NBR	46.4538	38.0424	64.2269	60.8792	57.5798	57.2237	42.0851	43.1683	43.4379	41.7141	39.8292	41.7123
			(0.186)	(0.347)	(0.071)	(0.125)	(0.169)	(0.205)	(0.453)	(0.491)	(0.501)	(0.568)	(0.631)	(0.632)
r		Ь	30.7883	37.3585	30.4331	35.8788	26.9960	39.2961	44.7334	46.6740	56.9680	53.1830	67.3818	61.2522
			(0.503)	(0.364)	(0.566)	(0.448)	(0.712)	(0.429)	(0.358)	(0.352)	(0.223)	(0.310)	(0.182)	(0.241)
P	\$	r	25.3085	33.1027	28.7362	33.5758	33.8991	39.3031	29.4228	14.3095	17.8588	29.9572	25.0347	29.1903
			(0.654)	(0.450)	(0.624)	(0.546)	(0.525)	(0.451)	(0.707)	(0.984)	(0.957)	(0.764)	(0.883)	(0.825)
r	\$	GDP	109.5052	84.9556	88.4433	80.9836	79.9549	75.1199	94.8986	65.5929	67.2913	71.6331	75.5123	67.4315
			(0.002)	(0.011)	(0.021)	(0.016)	(0.031)	(0.073)	(0.026)	(0.147)	(0.136)	(0.164)	(0.151)	(0.254)
GDP	\$	r	34.8185	41.4218	38.2761	28.5326	22.6116	16.7992	20.8097	31.8769	38.7083	34.4663	35.6279	20.5007
			(0.340)	(0.264)	(0.318)	(0.606)	(0.809)	(0.923)	(998.0)	(0.644)	(0.519)	(0.649)	(0.637)	(0.949)
P	\$	GDP	8.8039	8.9511	17.0182	8092.6	16.4772	19.6942	46.3240	41.7429	64.5928	60.2875	56.0315	72.2823
			(0.995)	(0.995)	(0.933)	(0.995)	(0.923)	(0.916)	(0.349)	(0.484)	(0.207)	(0.250)	(0.332)	(0.215)
GDP	†	Ь	23.8773	39.5163	34.3832	34.5734	36.8350	54.8088	54.8048	36.4102	29.4543	58.0095	58.1341	59.5283
			(0.709)	(0.331)	(0.468)	(0.488)	(0.472)	(0.212)	(0.218)	(0.557)	(0.739)	(0.254)	(0.265)	(0.286)

Table 7. Summary of causality relations at various horizons for series in first difference with extended autoregressions

	h		1	2	3	4	5	6	7	8	9	10	11	12
\overline{NBR}	\rightarrow	r	*											
r	$\rightarrow \rightarrow$	NBR								*				
\overline{NBR}	\rightarrow	P	**	**	**			*						
P	$\rightarrow \rightarrow$	NBR												
\overline{NBR}	\rightarrow	GDP												
GDP	$\rightarrow \rightarrow$	NBR												
\overline{r}	\rightarrow	P	*											
P	$\rightarrow \rightarrow$	r												
\overline{r}	\rightarrow	GDP			*	*			**	**	**	**	**	**
GDP	\rightarrow	r	**	**	**	*								
\overline{P}	\rightarrow	GDP												
GDP	$\rightarrow \rightarrow$	P								*	*			
	h		13	14	15	16	17	18	19	20	21	22	23	24
\overline{NBR}	\rightarrow	r												
r	$\rightarrow \rightarrow$	NBR												
\overline{NBR}	\rightarrow	P												
P	\rightarrow	NBR												
\overline{NBR}	\rightarrow	GDP												
GDP	\rightarrow	NBR			*									
\overline{r}	\rightarrow	P												
P	\rightarrow	r												
\overline{r}	\rightarrow	GDP	**	**	**	**	**	*	**					
GDP	$\rightarrow \rightarrow$	r												
\overline{P}	\rightarrow	GDP												
GDP	\rightarrow	P												

Note _ The symbols \star and $\star\star$ indicate rejection of the non-causality hypothesis at the 10% and 5% levels respectively.

References

- Andrews, D. W. K. (1991), 'Heteroskedasticity and autocorrelation consistent covariance matrix estimation', Econometrica 59, 817–858.
- Andrews, D. W. K. (1993), 'Tests for parameter instability and structural change with unknown change point', Econometrica 61, 821–856.
- Andrews, D. W. K. and Monahan, J. C. (1992), 'An improved heteroskedasticity and autocorrelation consistent covariance matrix estimator', *Econometrica* 60, 953–966.
- Bernanke, B. S. and Mihov, I. (1998), 'Measuring monetary policy', *The Quarterly Journal of Economics* **113**(3), 869–902.
- Boudjellaba, H., Dufour, J.-M. and Roy, R. (1992), 'Testing causality between two vectors in multivariate ARMA models', *Journal of the American Statistical Association* **87**, 1082–1090.
- Choi, I. (1993), 'Asymptotic normality of the least-squares estimates for higher order autoregressive integrated processes with some applications', *Econometric Theory* **9**, 263–282.
- Cribari-Neto, F., Ferrari, S. L. P. and Cordeiro, G. M. (2000), 'Improved heteroskedasticity-consistent covariance matrix estimators', *Biometrika* 87(4), 907–918.
- Cushing, M. J. and McGarvey, M. G. (1999), Covariance matrix estimation, *in* L. Mátyás, ed., 'Generalized Method of Moments Estimation', Cambridge University Press, Cambridge, U.K., chapter 3, pp. 63–95.
- Den Haan, W. J. and Levin, A. (1997), A practitioner's guide to robust covariance matrix estimation, *in* G. S. Maddala and C. R. Rao, eds, 'Handbook of Statistics 15: Robust Inference', North-Holland, Amsterdam, chapter 15.
- Doan, T. and Litterman, R. (1983), RATS User's Manual, VAR Econometrics, Minneapolis.
- Dolado, J. J. and Lütkepohl, H. (1996), 'Making Wald tests work for cointegrated VAR systems', *Econometric Reviews* **15**, 369–386.
- Doornik, J. A. (1999), *Object-Oriented Matrix Programming Using Ox, 3rd ed.*, Timberlake Consultants Press and Oxford, Oxford, U.K. www.nuff.ox.ac.uk/Users/Doornik.
- Dufour, J.-M. (2002), 'Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics in econometrics', *Journal of Econometrics* **forthcoming**.
- Dufour, J.-M., Ghysels, E. and Hall, A. (1994), 'Generalized predictive tests and structural change analysis in econometrics', *International Economic Review* **35**, 199–229.
- Dufour, J.-M. and Khalaf, L. (2002), 'Simulation based finite and large sample tests in multivariate regressions', *Journal of Econometrics* **111**(2), 303–322.
- Dufour, J.-M. and Renault, E. (1995), Short-run and long-run causality in time series: Inference, Technical report, Centre de recherche et développement en économique, Université de Montréal, and Institut d'Economie Industrielle, Université des Sciences Sociales de Toulouse.
- Dufour, J.-M. and Renault, E. (1998), 'Short-run and long-run causality in time series: Theory', *Econometrica* **66**, 1099–1125.
- Gallant, A. R. (1987), Nonlinear Statistical Models, John Wiley & Sons, New York.
- Geweke, J. (1984), Inference and causality in economic time series, *in Z.* Griliches and M. D. Intrilligator, eds, 'Handbook of Econometrics, Volume 2', North-Holland, Amsterdam, pp. 1102–1144.

- Giles, J. A. (2002), Time series analysis testing for two-step Granger noncausality in trivariate VAR models, in A. Ullah, A. K. Wan and A. Chaturvedi, eds, 'Handbook of Applied Econometrics and Statistical Inference', Marcel Dekker, New York, chapter 18, pp. 371–399.
- Gouriéroux, C. and Monfort, A. (1997), *Time Series and Dynamic Models*, Cambridge University Press, Cambridge, U.K.
- Granger, C. W. J. (1969), 'Investigating causal relations by econometric models and cross-spectral methods', Econometrica 37, 424–459.
- Hansen, B. E. (1992), 'Consistent covariance matrix estimation for dependent heterogeneous processes', Econometrica 60, 967–972.
- Kilian, L. (1998a), 'Confidence intervals for impulse responses under departures from normality', *Econometric Reviews* **17**(1), 1–29.
- Kilian, L. (1998b), 'Small-sample confidence intervals for impulse response functions', Review of Economics and Statistics 80, 218–230.
- Kurozumi, E. and Yamamoto, T. (2000), 'Modified lag augmented vector autoregressions', *Econometric Reviews* **19**, 207–231.
- Lütkepohl, H. (1991), Introduction to Multiple Time Series Analysis, Springer-Verlag, Berlin.
- Lütkepohl, H. (1993), Testing for causation between two variables in higher dimensional VAR models, *in* H. Schneeweiss and K. Zimmermann, eds, 'Studies in Applied Econometrics', Springer-Verlag, Heidelberg.
- Lütkepohl, H. and Burda, M. M. (1997), 'Modified Wald tests under nonregular conditions', *Journal of Econometrics* **78**, 315–332.
- Lütkepohl, H. and Poskitt, D. S. (1996), 'Testing for causation using infinite order vector autoregressive processes', *Econometric Theory* **12**, 61–87.
- Lütkepohl, H. and Saikkonen, P. (1997), 'Impulse response analysis in infinite order cointegrated vector autoregressive processes', *Journal of Econometrics* **81**, 127–157.
- McQuarrie, A. D. R. and Tsai, C.-L. (1998), *Regression and Time Series Model Selection*, World Scientific, Singapore.
- Newbold, P. (1982), Causality testing in economics, *in O. D. Anderson*, ed., 'Time Series Analysis: Theory and Practice 1', North-Holland, Amsterdam.
- Newey, W. K. and McFadden, D. (1994), Large sample estimation and hypothesis testing, *in* R. F. Engle and D. L. McFadden, eds, 'Handbook of Econometrics, Volume IV', North-Holland, Amsterdam, chapter 36, pp. 2111–2245.
- Newey, W. K. and West, K. D. (1987), 'Hypothesis testing with efficient method of moments estimators', *International Economic Review* **28**, 777–787.
- Paparoditis, E. (1996), 'Bootstrapping autoregressive and moving average parameter estimates of infinite order vector autoregressive processes', *Journal of Multivariate Analysis* **57**, 277–296.
- Paparoditis, E. and Streitberg, B. (1991), 'Order identification statistics in stationary autoregressive moving-average models: Vector autocorrelations and the bootstrap', *Journal of Time Series Analysis* **13**(5), 415–434.

- Park, J. Y. and Phillips, P. C. B. (1989), 'Statistical inference in regressions with integrated processes: Part 2', *Econometric Theory* **5**, 95–131.
- Pierce, D. A. and Haugh, L. D. (1977), 'Causality in temporal systems: Characterizations and survey', *Journal of Econometrics* 5, 265–293.
- Pötscher, B. (1991), 'Efffects of model selection on inference', Econometric Theory 7, 163–185.
- Renault, E., Sekkat, K. and Szafarz, A. (1998), 'Testing for spurious causality in exchange rates', *Journal of Empirical Finance* 5, 47–66.
- Sims, C. (1980), 'Macroeconomics and reality', *Econometrica* 48, 1–48.
- Sims, C. A., Stock, J. H. and Watson, M. W. (1990), 'Inference in linear time series models with some unit roots', *Econometrica* **58**, 113–144.
- Tiao, G. C. and Box, G. E. P. (1981), 'Modeling multiple time series with applications', Journal of the American Statistical Association 76, 802–816.
- Toda, H. Y. and Phillips, P. C. B. (1993), 'Vector autoregressions and causality', *Econometrica* **61**, 1367–1393.
- Toda, H. Y. and Phillips, P. C. B. (1994), 'Vector autoregression and causality: A theoretical overview and simulation study', *Econometric Reviews* 13, 259–285.
- Toda, H. Y. and Yamamoto, T. (1995), 'Statistical inference in vector autoregressions with possibly integrated processes', *Journal of Econometrics* **66**, 225–250.
- White, H. (1999), Asymptotic Theory for Econometricians, revised edn, Academic Press, San Diego, Florida.
- Wiener, N. (1956), The theory of prediction, *in* E. F. Beckenback, ed., 'The Theory of Prediction', McGraw-Hill, New York, chapter 8.
- Wooldridge, J. M. (1989), 'A computationally simple heteroskedasticity and serial correlation robust standard error for the linear regression model', *Economics Letters* **31**, 239–243.
- Yamada, H. and Toda, H. Y. (1998), 'Inference in possibly integrated vector autoregressive models: Some finite sample evidence', *Journal of Econometrics* **86**, 55–95.
- Yamamoto, T. (1996), 'A simple approach to the statistical inference in linear time series models which may have some unit roots', *Hitotsubashi Journal of Economics* **37**, 87–100.