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Résumé

Nous proposons des méthodes pour tester des hypothéses de non-causalité a
différents horizons, tel que défini dans Dufour et Renault (1998, Econometrica). Nous
étudions le cas des modéeles VAR en détail et nous proposons des méthodes linéaires
basées sur I'estimation d’autorégressions vectorielles a différents horizons. Méme si
les hypothéses considérées sont non linéaires, les méthodes proposées ne requiérent
que des techniques de régression linéaire de méme que la théorie distributionnelle
asymptotique gaussienne habituelle. Dans le cas des processus intégrés, nous
proposons des méthodes de régression étendue qui ne requiérent pas de théorie
asymptotique non standard. L’application du bootstrap est aussi considérée. Les
méthodes sont appliquées a un modele VAR de I'économie américaine.

Mots clés : séries chronologiques, causalité, causalité indirecte, causalité a différents
horizons, autorégression, modeéle autorégressif, autorégression
vectorielle, VAR, processus stationnaire, processus non stationnaire,
processus intégré, racine unitaire, autorégression étendue, bootstrap,
Monte Carlo, macroéconomie, monnaie, taux d’intérét, production,
inflation

Abstract

We propose methods for testing hypotheses of non-causality at various
horizons, as defined in Dufour and Renault (1998, Econometrica). We study in detail
the case of VAR models and we propose linear methods based on running vector
autoregressions at different horizons. While the hypotheses considered are nonlinear,
the proposed methods only require linear regression techniques as well as standard
Gaussian asymptotic distributional theory. Bootstrap procedures are also considered.
For the case of integrated processes, we propose extended regression methods that
avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S.

economy.

Keywords : time series, Granger causality, indirect causality, multiple horizon
causality, autoregression, autoregressive model, vector autoregression,
VAR, stationary process, nonstationary process, integrated process, unit

root, extended autoregression, bootstrap, Monte Carlo, macroeconomics,
money, interest rates, output, inflation
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1. Introduction

The concept of causality introduced by Wiener (1956) and Granger (1969) is now abasic notion for
studying dynamic relationships between time series. Theliterature on thistopic is considerable; see,
for example, the reviews of Pierce and Haugh (1977), Newbold (1982), Geweke (1984), L titkepohl
(1991) and Gouriéroux and Monfort (1997, Chapter 10). The original definition of Granger (1969),
which isused or adapted by most authors on thistopic, refersto the predictability of avariable X (),
where ¢ is an integer, from its own past, the one of another variable Y (¢) and possibly avector Z(t)
of auxiliary variables, one period ahead: more precisely, we say that Y causes X in the sense of
Granger if the observation of Y uptotimet (Y (r) : 7 < ¢) can help one to predict X (¢ + 1)
when the corresponding observations on X and Z are available (X (7), Z(7) : 7 < t); amore
formal definition will be given below.

Recently, however, L iitkepohl (1993) and Dufour and Renault (1998) have noted that, for multi-
variate models where avector of auxiliary variables 7 is used in addition to the variables of interest
X andY, itispossiblethat Y does not cause X in this sense, but can still help to predict X several
periods ahead; on this issue, see dso Sims (1980), Renault, Sekkat and Szafarz (1998) and Giles
(2002). For example, the values Y (7) up to time ¢ may help to predict X (¢ + 2), even though they
areuselessto predict X (¢+1). Thisisdueto thefact that Y may help to predict Z one period ahead,
whichin turn has an effect on X at asubsequent period. Itisclear that studying such indirect effects
can have a great interest for analyzing the relationships between time series. In particular, one can
distinguish in this way properties of “short-run (non-)causality” and “long-run (non-)causality”.

In this paper, we study the problem of testing non-causality at various horizons as defined in
Dufour and Renault (1998) for finite-order vector autoregressive (VAR) modéls. In such models,
the non-causality restriction at horizon one takes the form of relatively simple zero restrictions on
the coefficients of the VAR [see Boudjellaba, Dufour and Roy (1992) and Dufour and Renault
(1998)]. However non-causdlity restrictions at higher horizons (greater than or equa to 2) are
generally nonlinear, taking the form of zero restrictions on multilinear forms in the coefficients
of the VAR. When applying standard test statistics such as Wald-type test criteria, such forms can
easily lead to asymptotically singular covariance matrices, so that standard asymptotic theory would
not apply to such statistics. Further, calculation of the relevant covariance matrices _ which involve
the derivatives of potentially large numbers of restrictions _ can become quite awkward.

Conseguently, we propose simple tests for non-causality restrictions at various horizons [as
defined in Dufour and Renault (1998)] which can be implemented only through linear regression
methods and do not involve the use of artificial simulations[e.g., asin Litkepohl and Burda (1997)].
This will be done, in particular, by considering multiple horizon vector autoregressions [called
(p, h)-autoregressions] where the parameters of interest can be estimated by linear methods. Re-
strictions of non-causality at different horizons may then be tested through simple Wald-type (or
Fisher-type) criteria after taking into account the fact that such autoregressions involve autocorre-
lated errors [following simple moving average processes] which are orthogonal to the regressors.
The correction for the presence of autocorrelation in the errors may then be performed by using an
autocorrelation consistent [or heteroskedasti city-autocorrel ation-consistent (HAC)] covariance ma-
trix estimator. Further, we distinguish between the case where the VAR process considered is stable



(i.e., the roots of the determinant of the associated AR polynomia are all outside the unit circle)
and the one where the process may be integrated of an unknown order (although not explosive). In
the first case, the test statistics follow standard chi-square distributions while, in the second case,
they may follow nonstandard asymptotic distributions involving nuisance parameters, as already ob-
served by several authors for the case of causality tests at horizon one [see Sims, Stock and Watson
(1990), Toda and Phillips (1993, 1994), Toda and Yamamoto (1995), Dolado and L itkepohl (1996)
and Yamada and Toda (1998)]. To meet the objective of producing simple procedures that can be
implemented by least squares methods, we propose to deal with such problems by using an exten-
sion to the case of multiple horizon autoregressions of the lag extension technique suggested by
Choi (1993) for inference on univariate autoregressive models and by Toda and Yamamoto (1995)
and Dolado and L titkepohl (1996) for inference on standard VAR models. This extension will al-
low us to use standard asymptotic theory in order to test non-causality at different horizons without
making assumption on the presence of unit roots and cointegrating relations. Finally, to aleviate
the problems of finite-sample unreliability of asymptotic approximations in VAR models (on both
stationary and nonstationary series), we propose the use of bootstrap methods to implement the
proposed test statistics.

In section 2, we describe the model considered and introduce the notion of autoregression at
horizon A [or (p, h)-autoregression] which will be the basis of our method. In section 3, we study
the estimation of (p, h)-autoregressions and the asymptotic distribution of the relevant estimators
for stable VAR processes. In section 4, we study the testing of non-causality at various horizons for
stationary processes, while in section 5, we consider the case of processes that may be integrated.
In section 6, we illustrate the procedures on a monthly VAR model of the U.S. economy involv-
ing a monetary variable (nonborrowed reserves), an interest rate (federal funds rate), prices (GDP
deflator) and real GDP, over the period 1965-1996. We conclude in section 7.

2. Multiple horizon autoregressions

In this section, we develop the notion of “autoregression at horizon A" and the relevant notations.
Consider a VAR (p) process of the form:

p
W(t)=pt)+ Y mWEt—k) +a(t), t=1,...,T, (2.1)
k=1
where W (t) = (wig, war, - wmt)/ isanm x 1 random vector, x(t) isadeterministic trend, and
Ela(s)a(t)] =0, ifs=t,

=0, ifs#t, (2:2)
det(£2) #0. (2.3

The most common specification for y(¢) consists in assuming that 1(¢) is aconstant vector, i.e.
pu(t) = p, (2.4)



although other deterministic trends could also be considered.
The VAR (p) in eguation (2.1) is an autoregression at horizon 1. We can then also write for the
observation at time ¢ + h:

14 h—1
W(t+h) =P @)+ m Wt +1-k)+ Y walt+h—j), t=0,...,T—h,
k=1 7=0

where vy, = I, and h < T. The appropriate formulas for the coefficients "), (" (t) and W, are
given in Dufour and Renault (1998), namely:

h
wl(chﬂ) = Tk+h+ Zﬂh_l+1ﬁg) = 77,(321 + 7r(1h)7rk, Wgo) =1In, 7r,(€1) =mp, (2.5)
=1
h—1
Py = S P ut+n—k), v, =", vn>0. (2.6)
k=0

The ¢, matrices are the impulse response coefficients of the process, which can aso be obtained
from the formal series:

() =m(2) " =L+ Y s, w(z) =L — Y met 2.7)
k=1 k=1
Equivalently, the above equation for W (¢ 4+ k) can be written in the following way:

p
Wt+n = g™y + S WE+1-k) 7 +u® (¢ +ny
k=1
= M) +wit,p) 7™ +u® (t+n), t=0,..., T—h, (28

/!
h—1
u® (t+ h) = [ugh> (t+h), ---,ugi)(ﬂrh)} =D alt+h—j)v;.

Il
o

J

It is straightforward to see that u(") (¢ + h) has anon-singular covariance matrix.

We call (2.8) an “autoregression of order p at horizon A" or a*“(p, h)-autoregression”. In the
sequel, we will assume that the deterministic part of each autoregression is a linear function of a
finite-dimensional parameter vector, i.e.

pM(t) = v(h) D™ () (2.9)

where~(h) isam x n coefficient vector and D) (t) isan x 1 vector of deterministic regressors. If



1(t) is aconstant vector, i.e. u(t) = p, then (M (t) is simply a constant vector (which may depend
on h):
pM () = py, - (2.10)
To derive inference procedures, it will be convenient to consider a number of alternative formu-
lations of (p, h)-autoregression autoregressions.
a) Matrix (p, h)-autoregression _ First, we can put (2.8) in matrix form, which yields:

wp, (h) =W, (W) T™ + U, (h) , h=1,..., H, (2.12)

where wy, (k) and Uy, (k) are (T’ — k + 1) x m matricesand W, (k) isa (T — k + 1) x (n + mp)
matrix defined as

W (0 + h)
Wh, (k) = W(1:+ h) = [w1 (h, k}) g ooy W (h, k)] 5 (2.12)
| W(T —k+h)
W, (0)'
— B Wy (1) [ DW (Y
WP (k) - ’ Wp (t) - |: W(t, p) :| ’ (213)
| Wy (T — &)
N R ACH AR A (214
u™ (0 + h)’
u™ (1 +n)
Uy (k) = : = [t (hy k), .., up (R )], (2.15)
i uM (T —k+h)
wi(h, k) = [ug’” O+h), u @ +h), .., u™ (@ —k+ h)}/. (2.16)

We shall call the formulation (2.11) a*“(p, h)-autoregression in matrix form”.
b) Rectangular stacked (p, H)-autoregression _ To get the same regressor matrix on the right-
hand side of (2.11), we can also consider:

wy, (H) =W, (H)IIT™ + U, (H) , h=1, ..., H. (2.17)

This, however, involves losing observations. Using (2.17), we can aso stack the H systems above
asfollows: o
wy =W, (H) g+ Uy (2.18)

wherewy and Uy are (T — H + 1) x (mH ) matricesand W), (H) isan (mp) x (mH ) matrix such



that

wg = [wi(H),w(H), ..., wg(H),
Iy = [H<1>, o, .. U“”} ,
Ug = [U1(H),Us(H),...,Un(H)].
Since the elements of Uy are linear transformations of the random vectorsa (¢), t =1, ..., T,

which contain T'm random variables, it is clear that the vector vec (U,,,) will have asingular covari-
ance matrix when

Tm < (T — H)ymH = TmH — mH?,

which will bethe casewhen H > 2 and Tm > H.
c) Vec-stacked (p, H)-autoregression _ We can also write equation (2.8) as

wt+h) = [LnoW,®)]T™ +a™ (t+h)
= W) 1" +a®™ @t +n), t=0,...,T—h, (2.19)
where
(h)
1
(h)
oM = vec <H(h)> = 2 ,
o)
W, (@) 0 0
_ 0 W,(t) 0
W, (1) = o -
0 0 W, (t)
which yields the linear model
wy, = ZpII™ + 1, (2.20)
where
[ W (0+h)
W (1+ h)
wy, = . = vec [wh (h) ] ,
L W (1)
[ W, (0) In ® W, (0)/
Wy (1)/ Im @ Wy 1)/
Zh - . - . Y
L WP(T_h)/ Im@Wp(T_h),




u™ (0 + h)

u™ (1+h
ap, = ( ) = vec [Uy, (h)'] .
u® (T)
Itisalso possible to stack together the models (2.20) forh =1, ..., H :
w(H)=Z(H)IIy+u(H) (2.21)
where
w1 U1 Z1 0 0
(D) () 0 Z 0
Wy Ug 0 0 --- Zy
d) Individual (p, H)-autoregressions_ Consider finally asingle dependent variable
Wi(t+h) =W, () B (h)+u™ (t+h), t=0,...,T—H, (2.22)
forl < h < H,wherel <i < m. We can also write:
Wi (t+H) = [Ig @ W, ()] B; (H) + @ (t+ H) , t =0, ..., T — H , (2.23)
where
i (t+1) u; (t+1) B (1)
— Wi (t+2 ui (t+2) . B (2)
Wi (t+ H) = , @i (t+ H) = By =| T
Wi(t+H) u; (t + H) B; (H)
which yields the linear model . o
Wi(H)=ZuB; (H) +upy (2.29)
where
W; (0+ H) B; (1)
— Wi(l+H) | B (2)
Wi (H) = . ) ﬂz (H) = . )
W; (T) B; (H)



Iy @ W, (0) u; (0+ H)
. Ig @ W, (1)/ ;

Iy ® Wp.(T —HY U; ﬁT)

In the sequel, we shall focus on prediction equations for individual variables and the matrix (p, h)-
autoregressive form of the systemin (2.11).

3. Estimation of (p, h) autoregressions
Let us now consider each autoregression of order p at horizon h as given by (2.11):

wy, (h) =W, (h)I™ + U, (h) , h=1,..., H. (3.2)
We can estimate (3.1) by ordinary least squares (OLS), which yields the estimator:

a® = [W, (h) W, (h)] "W, (h) wn (h) = T + [W, (R W, (h) ] "W, (b)) Uy (h) ,

hence )
~ 11— — B 1 —
VELR® 1] = | 17, (0 W, ()] 7, (0 0 (1)
where
W (h) Wy (h) = T S W)Wy (1) 7Wp (h) Up (h) = Wea Wy, () ul™ (t+ n)'
t=0 t=0
Suppose now that
1 T—h
- > W ()W, (t) TL I, with det(l}) #0. (3.2)
=0 °

In particular, this will be the case if the process W (t) is second-order stationary, strictly indeter-
ministic and regular, in which case

E[W, ()W, ()] =1, vt (3.3)

Cases where the process does not satisfy these conditions are covered in section 5. Further, since

h—1
uM (t+h) =a(t+h)+ ) ta(t+h—k)
k=1



(where, by convention, any sum of the form ZZ;% with h < 2 is zero), we have:

E [Wp () u™ (¢ + h)’} —0, forh=1,2, ..,
\ {vec [Wp ) u™ (t + h)'} } = A, (h) .

If the process W (¢) is strictly stationary with i.i.d. innovations a(t) and finite fourth moments, we
can write:

EW, () ul™ (s + h)ul” (t + h) W, (8)] = Tij(p, by t — 8) = Li(p, by s — 1) (3.4)
wherel <i<m, 1< j <m,with

Ly, b, 0) = E[Wy (0wl (¢4 h)ull” (¢4 n) W, ()]

= 04j (h) E [Wp (t) Wp (t),} = 0jj (h) Fp ’ (3-5)
Lij(p, h,t —s) =0, if [t—s|>h. (3.6)

In this case,!
Ap(h) =0 (WD), oy =DM &L, 3.7)

where X (h) isnonsingular, and thus A,, (k) isaso nonsingular. The nonsingularity of X'(h) follows
from the identity

u™ (t+ h) = (Vh_1s Yp_os ooy 1, In] [a(t+ 1), a(t+2), ...,a(t+h)’]'.

Under usual regularity conditions,

T—h

= weelW, (1) u® (4 1)) 5 N [0, 4, (1) (39)

VT §

Il
o

where A, (h) is anonsingular covariance matrix which involves the variance and the autocovari-
ances of W), (t) u™ (t + h) [and possibly other parameters, if the process 1V (t) is not linear].
Then,

VTwee [0 — 170 {Im [;wm’wp(m]l} T (0 U ()]

-1 T—h
{Im ® [;Wp (h)' Wp (h)] } \/1T

!Note that (3.5) holds under the assumption of martingale difference sequence on a (t) . But to get (3.6) and allow the
use of simpler central limit theorems, we maintain the stronger assumption that the innovations a(t) arei.i.d. according
to some distribution with finite fourth moments (not necessarily Gaussian).

h
W, - vec u(h) !
> (W, () u® (¢ + ny|




L N[0, (L@ I, 1) Ay (h) (Im @ T, 1) ] - (39

T—o0

For convenience, we shall summarize the above observations in the following proposition.

Proposition 3.1 ASYMPTOTIC NORMALITY OF LS IN A (p, ) STATIONARY VAR. Under
the assumptions (2.1), (3.2), and (3.8), the asymptotic distribution of 7 vec[II") — 1] is
N[0, 2(1IM)], where S(ITM) = (I, @ I;1) Ay (h) (I, @ T, 7Y) .

4. Causality tests based on stationary (p, h)-autoregressions
Consider thei-th equation (1 < i < m) in system (2.11):
w; (h) = Wy (h) B; (h) +@; (), 1 <i<m, (4.1)

where @; (h) = w; (h, h) and @; (h) = w; (h, h), where w; (h, h) and u; (h, h) are defined in
(2.12) and (2.15). We wish to test:

Hy(h): RB;(h) =7 (4.2)

where R isaq x (n+ mp) matrix of rank ¢. In particular, if we wish to test the hypothesis that
wj; does not cause w;; at horizon h [i.e., using the notation of Dufour and Renault (1998), w; "

w; | I(j), where I(;(t) is the Hilbert space generated by the basic information set I(¢) and the
variables wy,, w < 7 < t, k # j, w being an appropriate starting time (w < —p + 1)], the
restriction would take the form:

B =0, k=1,...p, (4.3)

o)

where W,ih) = [WZ(ZZ

L . k = 1,...,p. In other words, the null hypothesis takes
the form of a set of ’éerd restrictions on the coefficients of B;(h) as defined in (2.14).
The matrix of restrictions R in this case tekes the foom R = R(j), where R(j) =
[01(7), 62(J), ..., 6p(J)]) isap x (n + mp) matrix, §x(j) isa (n + pm) x 1 vector whose
elements are all equal to zero except for a unit value a position n + (k — 1)m + j, i.e
6k(5) =0 n+(k—-1m+35),...,0n+pm,n+(k—1m+34)],k=1,...,p, with
6(i, j) = 1if i = j,and 6(i, j) = 0if i # j. Note aso that the conjunction of the hypothesis
H](’jli, h=1,...,(m—2)p+1,issufficient to obtain noncausality at all horizons [see Dufour
anéjh)RenauIt (1998, section 4)]. Non-causality up to horizon H is the conjunction of the hypothesis
H;Z, h=1,... H.

We have: o o
B (h) = B; (h) + [W, (b)Y W, ()]~ W, (h) @i (h),



hence

T—h
VE [0 = 5 00] = | g7 0 W, 0] S w0l ).
t=0

Under standard regularity conditions [see White (1999, chap. 5-6)],
VT [B;(h) = B ()] = N[0, V(5;)]

with det [V(83;)] # 0, where V(53;) can be consistently estimated:

More explicit forms for Vi (3;) will be discussed below. Note also that

1 —

Iy = ﬁl_'g]of Wy (h) Wy (R) , det (Ip) # 0.
Let
Vip (T) = Var| =W, (h) @ (h)| = =V TﬁhWt M) (t+n
D(0) = Var| T 05 0] = var | % @ul 4
T—h

= l{ E[W, (t) o™ (t + k) ul™ (£ + n) W, (8)']

+
>
Lo
S
L

3 {E[Wp )" (t+h)yul™ (¢ =7+ R)W, (t—7)]
T=1t=7+1

+E Wy (b= r)u (t =7+ h)ul” @+ W, 0)]] |
L et us assume that
‘/i (T) T::o V;:P ’ det (‘/Zp) 7é 07 (44)
where V;,, can be estimated by a computable consistent estimator V;,, (T') :
Vip (T) 25 V. (4.5)

T—o0
Then, R
VT B (h) = ()] 2 N[0, 1,V

10



sothat V(3;) = I, Vi, I}, L. Further, in this case,

We can thus state the following proposition.

Proposition 4.1 ASYMPTOTIC DISTRIBUTION OF TEST CRITERION FOR NON-CAUSALITY AT
HORIZON h IN A STATIONARY VAR. Suppose the assumptions of Proposition 3.1 hold jointly with
(4.4) — (4.5). Then, under any hypothesis of theform Hy(h) in (4.2), the asymptotic distribution of

WIHy(h)] =T [RB; (h) — ] [RVr (3R]~ [RB; () — ] (46)
is x? (¢). In particular, under the hypothesis H ](]21 of non-causality at horizon i from w;; to
wir (w; - w; | I;)), the asymptotic distribution of the corresponding statistic W[H(h)] is x* (p) .

~ !
The problem now consists in estimating V;,. Let w; (h) = [agh) (t+h):t=0,...,T— h}

be the vector of OLS residuals from the regression (4.1), g§h> (t+h) = W,(t) ag’” (t+h),and

set
T—h

1
B (1) = == S o+ m g b= 7Y =012,
t=1
If theinnovationsarei.i.d. or, more generally, if (3.6) holds, anatural estimator of V;,, which would
take into account the fact that the prediction errors u(™ (¢ + h) follow an MA(h — 1) process, is
given by:
h S h
o (W
v ) = &P ©0)+ 3[R (1) + BY (7]

=1

Under regularity conditions studied by White (1999, Section 6.3),

o (W P
V(@) =vy 0.
A problem with Vi;W) (T') isthat it is not necessarily positive-definite.
An alternative estimator which is automatically positive-semidefinite is the one suggested by
Doan and Litterman (1983), Gallant (1987) and Newey and West (1987):

m(T)—1
V@) = RPN @+ 3 krom@) R+ RV @
T=1

11



wherek (7, m) =1—[r/ (m+ 1)], Tlim m (T) = oo, and Tlim [m (T) /T1/4] = 0 . Under the
regularity conditions given by Newey and West (1987),

VAN(T) = Vi — 0.
Other estimators that could be used here includes various heteroskedasticity-autocorrelation-
consistent (HAC) estimators; see Andrews (1991), Andrews and Monahan (1992), Cribari-Neto,
Ferrari and Cordeiro (2000), Cushing and McGarvey (1999), Den Haan and Levin (1997), Hansen
(1992), Newey and McFadden (1994), Wooldridge (1989).

The cost of having a simple procedure that sidestep al the nonlinearities associated with the
non-causality hypothesis is a loss of efficiency. There are two places where we are not using all
information. The constraints on the ngh) 's are giving information on the ¢;’s and we are not using
it. We are also estimating the VAR by OLS and correcting the variance-covariance matrix instead
of doing a GL Stype estimation. These two sources of inefficiencies could potentialy be overcome
but it would lead to less user-friendly procedures.

The asymptotic distribution provided by Proposition 4.1, may not be very reliablein finite sam-
ples, especialy if we consider a VAR system with alarge number of variables and/or lags. Due to
autocorrelation, alarger horizon may also affect the size an power of the test. So an alternative to
using the asymptotic distribution chi-square of W[H,(h)], consists in using Monte Carlo test tech-
niques [see Dufour (2002)] or bootstrap methods [see, for example, Paparoditis (1996), Paparoditis
and Streitberg (1991), Kilian (1998a, 1998b)]. In view of the fact that the asymptotic distribution of
W/[Hy(h)] is nuisance-parameter-free, such methods yield asymptotically valid tests when applied
to W[Hy(h)] and typically provide a much better control of test level in finite samples. It is also
possible that using better estimates would improve size control, although thisis not clear, for impor-
tant size distortions can occur in multivariate regressions even when unbiased efficient estimators
are available [see, for example, Dufour and Khalaf (2002)].

5. Causality tests based on nonstationary (p, k)-autoregressions

In this section, we study how the tests described in the previous section can be adjusted in order to
allow for non-stationary possibly integrated processes. In particular, let us assume that

W(t) = p)+n(), (5.2)
p
p(t) = So+0it+-- 407, n(t)=> mn(t—k) +a(t), (5.2)
k=1
t=1,...,T,wheredp, o1, ..., 6, arem x 1 fixed vectors, and the process n (t) is a most I(d)

where d isan integer greater than or equal to zero. Typical valuesfor d are 0, 1 or 2. Note that these
assumptions allow for the presence (or the absence) of cointegration relationships.
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Under the above assumptions, we can also write:
p
W(t)=v0+mt+- -+t + Y mW(t—k) +a(t), t=1,...,T, (5.3)
k=1

wherevy, vy, ... , 7, a€m x 1 fixed vectors (which depend on dg, 61, ... , §g, and 1, ..., mp);
see Toda and Yamamoto (1995). Under the specification (5.3), we have:

W(t+h) =puM(t +Z7r Wt+1—k) +u™ (t+hn), t=0,...,T—h (54

where () = 7" + /Mt 4o 4y and Y M A8 arem x 1 fixed vectors. For
h = 1, thisequation isidentical with (5.3). For i > 2, the errors u'") (¢ 4 h) follow aMA(h — 1)
process as opposed to being i.i.d.. For any integer j, we have:

W(t+n) = @M@+ S 7 [WEt+1-k) - W(t+1-j)]
k=1
k#j

(Zw(h)> W(t+1—35)+u® (t+h), (5.5)

W(t+h) —Wit+1-j) = @®@)+ > 7 [WE+1-k) - W(t+1-j)]
k=1
=

p
_ (Im _ Zn,@)W(t 1 H+u®@Ern), (586
k=1
fort = 0,...,T — h. The two latter expressions can be viewed as extensions to (p, h)-

autoregressions of the representations used by Dolado and Lutkepohl (1996, pp. 372-373) for
VAR(p) processes. Further, onteking j = p + 1 in (5.6), we see that

W(t+h) —W(t—p) = p™( +ZA(h)AW(t+ 1- k)
k=1
+BWW(t - p) +u™ (t + h) (5.7)

where AW (1) = W(t) - W(t — 1), A7) = 325 7" .and B = A" — I, . Equation (5.7)
may be interpreted as an error-correction form at the horizon h Wlth base W (t — p).

13



Let us now consider the extended autoregression

b4 p+d
W(t+h) = &)+ W1k + Y W+ 1-k) +u® (t+h), (58)
k=1 k=p+1
t=d, ..., T—h.Under model (5.3), theactual values of the coefficient matriCESnggl, cee ”z(a}-?d
are equal to zero (ngr)l = ... = ;(7h+)d = 0), but we shall estimate the (p, h)-autoregressions
without imposing any restriction on 7r1(0+)1, e (h)d.

p+
Now, suppose the process 7 (t) is either I(0) or I(1), and we take d = 1 in (5.8). Then, on
replacing p by p + 1 and setting j = p in the representation (5.6), we see that

WE+h) —W(t—p—1) = u(h)(t)+i7r,(€h)[W(t+lfk)—W(tfpfl)]
~BY W(t—p—1)+u® (t+h), (5.9)

where B;’_?l = (I, Ziﬂ wk ) In the latter equation, w(h), ... (h) all affect trend-stationary
variables (in an equation where a trend is included aong with the other coefficients). Using argu-
ments similar to those of Sims et al. (1990), Park and Phillips (1989) and Dolado and L ttkepohl
(1996), it follows that the estimates of wgh), e (h) based on estimating (5.9) by ordinary least
squares (without restricting Bl(jfl ) _or, equiva ently, those obtained from (5.8) without restricting
71(7}21 _are asymptotically normal with the same asymptotic covariance matrix as the one obtained
for a stationary proc&s of the type studied in section 4.2 Consequently, the asymptotic distribution

of the statistic W] for testing the null hypothesis H ; (h) of non-causality at horizon i from w

]—/—)Z

to w; (w; - w; | I;)), based on estimating (5.8), is x*(p). When computing H(h). as defined in

]—/—?'L]

(4.3), it isimportant that only the coefficients of w§h>, cee ( ) are restricted (but not w(h) 1)

If the process 7 (¢) isintegrated up to order d, where d > 0 we can proceed smllarly and add d
extralagsto the VAR process studied. Again, the null hypothesisistested by considering the restric-
tions entailed on w(h), ceey wz(,h). Further, in view of the fact the test statistics are asymptotically
pivotal under the null hypothesis, it is straightforward to apply bootstrap methods to such statistics.
Note finally that the precision of the VAR estimates in such augmented regressions may eventually
be improved with respect to the OLS estimates considered here by applying bias corrections such
as those proposed by Kurozumi and Yamamoto (2000)]. Adapting and applying such corrections to
(p, h)-autoregressions would go beyond the scope of the present paper.

2For related results, see also Choi (1993), Toda and Yamamoto (1995), Yamamoto (1996), Yamada and Toda (1998),
and Kurozumi and Yamamoto (2000).
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Table 1. Rejection frequencies using the asymptotic distribution and the bootstrap procedure
a) i.i.d. Gaussian sequence

h= 1 2 3 4 5 6 7 8 9 10 11 12
Asymptotic
5% level 270 278 324 361 357 426 479 485 510 557 597 636

10% level 374 394 422 465 478 520 581 593 603 663 692 725

Bootstrap
5% level 55 5.7 4.7 6.5 4.0 51 55 3.9 4.7 6.1 5.2 3.8
10% level 10.0 91 101 109 9.6 106 10.2 94 95 109 103 8.9

b) VAR(16) without causality up to horizon i

Asymptotic
5% level 241 279 358 375 559 443 523 559 541 601 626 720
10% level 355 383 466 472 651 550 647 646 648 698 720 790

Bootstrap
5% level 6.0 51 3.8 6.1 4.6 4.7 4.4 45 4.3 6.3 4.9 5.8
10% level 9.8 8.8 87 104 103 9.9 8.7 74 103 111 9.3 9.7

6. Empirical illustration

In this section, we present an application of these causality tests at various horizons to macroeco-
nomic time series. The data set considered is the one used by Bernanke and Mihov (1998) in order
to study United States monetary policy. The data set considered consists of monthly observations
on nonborrowed reserves (N B R, also denoted w ), the federal fundsrate (r, w-), the GDP deflator
(P, ws) and real GDP (GDP, w,). The monthly data on GDP and GDP deflator were constructed
by state space methods from quarterly observations [see Bernanke and Mihov (1998) for more de-
tails]. The sample goes from January 1965 to December 1996 for a total of 384 observations. In
what follows, all the variables were first transformed by alogarithmic transformation.

Before performing the causality tests, we must specify the order of the VAR model. Firgt, in
order to get apparently stationary time series, all variables were transformed by taking first differ-
ences of their logarithms. In particular, for the federal funds rate, this helped to mitigate the effects
of apossible bresk in the series in the years 1979-1981.3 Starting with 30 lags, we then tested the
hypothesis of K lags versus K + 1 lags using the LR test presented in Tiao and Box (1981). This
led to a VAR(16) model. Tests of aVAR(16) against a VAR(K) for K = 17, ... , 30 also failed to
reject the VAR(16) specification, and the Al1C information criterion [see McQuarrie and Tsai (1998,
chapter 5)] isminimized as well by this choice. Calculations were performed using the Ox program
(version 3.00) working on Linux [see Doornik (1999)].

3Bernanke and Mihov (1998) performed tests for arbitrary break points, as in Andrews (1993), and did not find
significant evidence of a break point. They considered a VAR(13) with two additional variables (total bank reserves and
Dow-Jones index of spot commodity prices and they normalize both reserves by a 36-month moving average of total
reserves.)
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Vector autoregressions of order p at horizon h were estimated as described in section 4 and
the matrix Vi;N w) , required to obtain covariance matrices, were computed using formula (4.7) with
m(T)—1 = h—1.* Onlooking at the val ues of the test statistics and their corresponding p-val ues at
various horizonsit quickly becomes evident that the x?(¢q) asymptotic approximation of the statistic
W in equation (4.6) is very poor. As asimple Monte Carlo experiment, we replaced the data by
a 383 x 4 matrix of random draw from an N (0, 1), ran the same tests and looked at the rejection
frequencies over 1000 replications using the asymptotic critical value. The results are in Table 1a
We see important size distortions even for the tests at horizon 1 where there is no moving average
part.

We next illustrate that the quality of the asymptotic approximation is even worse when we move
away from ani.i.d. Gaussian setup to amore realistic case. We now take as the DGP the VAR(16)
estimated with our datain first difference but we impose that some coefficients are zero such that the
federal funds rate does not cause G D P up to horizon h and then we test the " G DP hypothesis.

The constraints of non-causality from j to ¢ up to horizon h that we impose are;

7Arijl = 0 for 1<1<p, (61)
Fag = 0 for 1<I<h 1<k<m. (6.2)

Rejection frequencies for this case are given in Table 1b.

In light of these results we computed the p-values by doing a parametric bootstrap, i.e. doing
an asymptotic Monte Carlo test based on a consistent point estimate [see Dufour (2002)]. The
procedure to test the hypothesis w; - W | I(; isthe following.

1. An unrestricted VAR(p) model is fitted for the horizon one, yielding the estimates 1M and
Qfor 1M and 2.

2. An unrestricted (p, h)-autoregression is fitted by least squares, yielding the estimate I7(") of
.

3. The test statistic )V for testing noncausdity at the horizon £ from w; to w; [H(.h) twj

j1
w; | 1] is computed. We denote by wh)

j1

(0) the test statistic based on the actual data.

4. N simulated samples from (2.8) are drawn by Monte Carlo methods, using 17" = 71" and

2 = 2 [and the hypothesisthat a(t) isGaussian]. Weimpose the constraints of non-causality,
72(;2 =0,k =1,...,p. Edstimates of the impulse response coefficients are obtained from
11 through the relations described in equation (2.5). We denote by wih (n) thetest statis-

j1
ticfor H](Z)Z based on the n-th simulated sample (1 < n < N).

“The covariance estimator used here is relatively simple and exploits the truncation property (3.6). In view of the vast
literature on HAC estimators [see Den Haan and Levin (1997) and Cushing and McGarvey (1999)], severa dternative
estimators for V;,, could have been considered (possibly allowing for alternative assumptions on the innovation distribu-
tion). It would certainly be of interest to compare the performances of alternative covariance estimators, but this would
lead to alengthy study, beyond the scope of the present paper.
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5. The simulated p- valuepN[W(h) (0)] is obtained, where

{HZIW}L ]}/(N+1),

Iz] =1ifz>0and I[z] = 0if 2 < 0.
6. The null hypotheasH( ; isrejected at level o |pr[W(0) (h)] < a.

J-i =

From looking at the results in Table 1, we see that we get a much better size control by using
this bootstrap procedure. The rejection frequencies over 1000 replications (with N = 999) are very
closeto the nominal size. Although the coefficients zz;j’sarefunctions of ther;’swedo not constrain

them in the bootstrap procedure because there is no direct mapping from w,(gh) to 7, and +p;. This

certainly produces a power loss but the procedure remains valid because the ¢ ;'sare computed with
the 71, which are consistent estimates of the true 7, both under the null and alternative hypothesis.
To illustrate that our procedure has power for detecting departure from the null hypothesis of non-
causality at agiven horizon weran the following Monte Carlo experiment. We again took aVAR(16)
fitted on our datain first differences and we imposed the constraints (6.1) - (6.2) so that there was
no causality from r to GD P up to horizon 12 (DGP under the null hypothesis). Next the value of
one coefficient previously set to zero was changed to induce causality from r to GD P at horizons
4 and higher: 73(1, 3) = 6. As 6 increases from zero to one the strength of the causality from r
to GDP ishigher. Under this setup, we could compute the power of our simulated test procedure
to reject the null hypothesis of non-causality at a given horizon. In Figure 1, the power curves are
plotted as a function of § for the various horizons. The level of the tests was controlled through the
bootstrap procedure. In this experiment we took again N = 999 and we did 1000 simulations. As
expected, the power curves are flat at around 5% for horizons one to three since the null is true for
these horizons. For horizons four and up we get the expected result that power goes up as # moves
from zero to one, and the power curves gets flatter as we increase the horizon.

Now that we have shown that our procedure does have power we present causality tests at
horizon one to 24 for every pair of variables in tables 2 and 3. For every horizon we have twelve
causality tests and we group them by pairs. When we say that a given variable cause or does not
cause another, it should be understood that we mean the growth rate of the variables. The p-values
are computed by taking N = 999. Table 4 summarize the results by presenting the significant
results at the 5% and 10% level.

The first thing to notice is that we have significant causality results at short horizons for some
pairs of variableswhilewe haveit at longer horizonsfor other pairs. Thisisan interesting illustration
of the concept of causality at horizon h of Dufour and Renault (1998).

The instrument of the central bank, the nonborrowed reserves, cause the federal funds rate at
horizon one, the prices at horizon 1, 2, 3 and 9 (10% level). It does not cause the other two variables
at any horizon and except the GDP at horizon 12 and 16 (10% level) nothing is causing it. We see
that the impact of variationsin the nonborrowed reservesisover avery short term. Another variable,
the GDP, is also causing the federal funds rates over short horizons (one to five months).
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Table 4. Summary of causality relations at various horizons for seriesin first difference

h 1 2 3 4 5 6 7 8 9 10 11 12

NBR —-» r *k

r -» NBR
NBR —-» P K,k kk kK *

P -» NBR
NBR -» GDP
GDP -» NBR *

r -» P

P —» r

r -» GDP * * * *  xkk xk kk kk kk kk
GDP -» r *k kk kk kk ok

P -» GDP
GDP -» P * * *

h 13 14 15 16 17 18 19 20 21 22 23 24

NBR —» r

r -» NBR
NBR -» P

P -» NBR
NBR -» GDP
GDP -» NBR *

'S e ad P

P - r

r = GDP | xx %k K% Kkk Kkk xk *x *
GDP —» r

P -» GDP
GDP -» P

Note The symbols x and x indicate rejection of the non-causality hypothesis at the 10% and 5%
levels respectively.

An interesting result is the causality from the federal funds rate to the GDP. Over the first few
months the funds rate does not cause GDP, but from horizon 3 (up to 20) we do find significant
causality. This result can easily be explained by, e.g. the theory of investment. Notice that we
have the following indirect causality. Nonborrowed reserves do not cause GDP directly over any
horizon, but they cause the federal funds rate which in turn causes GDP. Concerning the observation
that there are very few causality resultsfor long horizons, this may reflect the fact that, for stationary
processes, the coefficients of prediction formulas converge to zero as the forecast horizon increases.

Using theresults of Propasition 4.5in Dufour and Renault (1998), we know that for this example
the highest horizon that we have to consider is 33 since we have a VAR(16) with four time series.
Causality tests for the horizons 25 through 33 were also computed but are not reported. Some
p-values smaller or equal to 10% are scattered over horizons 30 to 33 but no discernible pattern
emerges.

We next consider extended autoregressions to illustrate the results of section 5. To cover the
possibility that the first difference of the logarithm of the four series may not be stationary, we ran
extended autoregressions on the series analyzed. Since we used a VAR(16) with non-zero mean for

21



the first difference of the seriesaVAR(17), i.e. d = 1, with anon-zero mean wasfitted. The Monte

Carlo sampleswith N = 999 are drawn in the same way as before except that the constraints on the
VAR parameters at horizon h |S7r§}z,2 =0fork=1,...,pandnotk=1,...,p+d.

Results of the extended autoregressions are presented in Table 5 (horizons 1 to 12) and 6 (hori-
zons 13 to 24). Table 7 summarize these results by presenting the significant results at the 5% and
10% level. These results are very similar to the previous ones over al the horizons and variable
every pairs. A few causdlity tests are not significant anymore (GDP — r a horizon 5, r -+ GDP
at horizons 5 and 6) and some causality relations are now significant (r - P at horizon one) but we

broadly have the same causality patterns.

7. Conclusion

In this paper, we have proposed a simple linear approach to the problem of testing non-causality
hypotheses at various horizonsin finite-order vector autoregressive models. The methods described
allow for both stationary (or trend-stationary) processes and possibly integrated processes (which
may involve unspecified cointegrating relationships), as long as an upper bound is set on the order
of integration. Further, we have shown that these can be easily implemented in the context of a
four-variable macroeconomic model of the U.S. economy.

Several issues and extensions of interest warrant further study. The methods we have proposed
were, on purpose, designed to be relatively simple to implement. This may, of course, involve ef-
ficiency losses and leave room for improvement. For example, it seems quite plausible that more
efficient tests may be obtained by testing directly the nonlinear causality conditions described in
Dufour and Renault (1998) from the parameter estimates of the VAR model. However, such proce-
dureswill involve difficult distributional problems and may not be as user-friendly asthe procedures
described here. Similarly, in nonstationary time series, information about integration order and the
cointegrating rel ationships may yield more powerful procedures, although at the cost of complexity.
These issues are the topics of on-going research.

Another limitation comes from the fact we consider VAR models with aknown finite order. We
should however note that the asymptotic distributional results established in this paper continue to
hold aslong asthe order p of the model is selected according to aconsistent order selection rule [see
Dufour, Ghysels and Hall (1994), Pétscher (1991)]. So thisis not an important restriction. Other
problems of interest would consist in deriving similar tests applicable in the context of VARMA
or VARIMA models, as well as more genera infinite-order vector autoregressive models, using
finite-order VAR approximations based on data-dependent truncation rules [such as those used by
L titkepohl and Poskitt (1996) and L itkepohl and Saikkonen (1997)]. These problems are also the
topics of on-going research.
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Table 7. Summary of causality relations at various horizons for seriesin first difference with
extended autoregressions

h 1 2 3 4 5 6 7 8 9 10 11 12

NBR -» r *

r -» NBR *
NBR —-» P *k okk kk *

P -» NBR
NBR —-» GDP
GDP -» NBR

r --» P *

P - r

r —-» GDP * * *k  kk kkx kk kk kK
GDP -» r *k kk kk Kk

P -» GDP
GDP -» P * *

h 13 14 15 16 17 18 19 20 21 22 23 24

NBR —-» r

r -» NBR
NBR -» P

P -» NBR
NBR -» GDP
GDP -» NBR *

r - P

P - r

r s GDP | %% xk  Hkx  kk  kk Kk Kk
GDP -» r

P -» GDP
GDP -» P

Note _ The symbols x and xx indicate rejection of the non-causality hypothesis at the 10% and 5%
levels respectively.
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