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ABSTRACT

We study the problem of testing the error distribution in a multivariate linear regression (MLR)
model. The tests are functions of appropriately standardized multivariate least squares residuals
whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical
multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their
expected value under the hypothesized distribution. Special cases considered include testing mul-
tivariate normal, Student ¢, normal mixtures and stable error models. In the Gaussian case, finite-
sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we
exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution
families involving nuisance parameters, confidence sets are derived for the the nuisance parameters
and the error distribution. The procedures considered are evaluated in a small simulation experi-
ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using
monthly returns on New York Stock Exchange (NY SE) portfolios over five-year subperiods from
1926-1995.

Key-words: multivariate linear regression; goodness-of-fit; normality test; multivariate normality;
multinormality; Student ¢; normal mixture; stable distribution; specification test; diagnostics; exact
test; Monte Carlo test; bootstrap; nuisance parameter; asset pricing model; CAPM.

Journal of Economic Literature classification: C3; C12; C33; C15; G1; G12; G14.



RESUME

Dans cet article, nous proposons des tests sur laforme de la distribution des erreurs dans un modele
de régression linéaire multivarié (RLM). Les tests que nous développons sont fonction des résidus
obtenus par moindres carrés multivariés, lesquels sont standardisés de fagon a ce que leur distri-
bution soit invariante a la matrice de covariance, inconnue, des erreurs. Notre approche utilise
des mesures empiriques d’'asymeétrie et d aplatissement de la distribution des erreurs, que nous
comparons a des estimations engendrées par ssimulation de ces caractéristiques sous cette méme
hypothése distributionnelle. Les cas spécifiques que nous étudions comprennent des tests sur les er-
reurs du modéle dans le cadre des|ois normale, ¢ de Student, mélange de normales et stable. Dansle
cas gaussien, nous obtenons des versions exactes de tests d’ gjustement standards sur I’ asymétrie et
I’ apl ati ssement des erreurs dansle casmultivarié. A cettefin, nous utilisons destests de Monte Carlo
simples, doubles et multiples. Dans |es cas non-gaussiens, comme les familles de lois dépendent de
parameétres de nuisance, nous proposons des régions de confiance pour ces derniers et la distribution
des erreurs. Les procédures introduites dans cet article sont alors évaluées par une simulation de
petite taille. Finalement, les tests proposés sont appliqués a un modéle d’ évaluation d’ actifs impli-
guant un taux d’intérét sans risque observable et utilisant les rendements de portefeuilles mensuels
detitresinscrits alabourse de New York, sur des sous-périodes de cing ans allant de janvier 1926 a
décembre 1995.

M ots-clefs. modele de régression multivarié; test d’ ajustement; test de normalité; normalité multi-
variée; t de Student; mélange de lois normales; distribution stable; test de spécification; diagnostic;
test exact; test de Monte Carlo; bootstrap; parametre de nuisance; modéle d' évaluation d’ actifs
financiers, CAPM.

Classification du Journal of Economic Literature: C3; C12; C33; C15; G1; G12; G14.
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1. Introduction

Drawing inference on the parameters of multivariate linear regression (MLR) models is a basic
statistical problem. Such models, which can combine both cross-section and time series data, are
common in variousfields of statisticsand econometrics; see Rao (1973, Chapter 8), Anderson (1984,
chapters 8 and 13), Kariya (1985), Stewart (1997), Dufour and Khalaf (2002d, 2002b, 2002c), and
thereferencestherein. Important casesinclude consumer and factor demand systems, reduced forms
derived from linear simultaneous equation models, and various asset pricing models in finance. In
particular, familiar MLR-based applications in finance include market-models, such as the capital
asset pricing model (CAPM) which may be traced back to Gibbons (1982) and Fama and French
(1993, 1995). The associated empirical literature which has evolved from Gibbons' seminal work is
enormous; for reviews, the reader may consult Campbell, Lo and MacKinlay (1997) and Shanken
(1996).1

Inference procedures (such as tests and confidence sets) for MLR models tend to be heavily
influenced by the disturbance distribution and the assumptions made on the latter. Under standard
conditions, usual asymptotic distributions are often distribution-free, but it is well known that the
finite-sample reliability of large-sample approximations tends to be quite bad; see, for example,
Dufour and Khalaf (2002b, 2002d) for simulation evidence. Some finite-sample procedures have
been proposed in the statistical literature, but these are almost entirely restricted to the case where
the disturbance vectorsfollow a Gaussian distribution. Another avenue consistsin using simulation-
based tests, as described in Dufour and Khalaf (2002d). The latter approach allows one to relax
the normality assumption and provides provably exact tests in finite samples, but still requires the
formulation of a parametric model on the errors. In particular, heavy-tailed distributions that would
be important in financial modelling may easily be accommodated in this way.

This situation underscores the importance of testing disturbance normality aswell as other para-
metric distributional assumptions in the context of MLR models. Another motivation comes from
the fact that relatively specific distributional assumptions may be required by important economic
or financial hypotheses, e.g. mean-variance efficiency in the context of the CAPM model .2

In multivariate regression contexts, relatively little work has been done on testing distributional
goodness-of-fit (GF) tests compared to the univariate case. This holds even when the hypothesized
null distribution is multivariate normal; see the reviews of Mardia (1980), D’ Agostino and Stephens
(1986) and Thode (2002). Indeed, system diagnostic tests raise problems not encountered in the
analysis of univariate models. In particular, an important difficulty comes from cross-eguation
disturbance correlations. Whereas it is highly desirable to use test procedures that take account of
these correlations, the fact remains that these parameters can easily constitute (unknown) nuisance

IwWell known financial applications include: (i) portfolio efficiency tests in eg. CAPM contexts [see, for example,
Shanken (1986), MacKinlay (1987), Gibbons, Ross and Shanken (1989, GRS), Affleck-Graves and McDonald (1989),
Shanken (1990), Zhou (1991), Zhou (1993), Zhou (1995), Famaand French (1993, 1995), Stewart (1997), Velu and Zhou
(2999), Chou (2000), Groenwold and Fraser (2001) and Beaulieu, Dufour and Khalaf (2001b, 2001a)]; (ii) spanning
tests [see for example Jobson and Korkie (1982, 1989), Kan and Zhou (2001)]; and (iii) event studies tests [see Binder
(2985), Schipper and Thompson (1985)].

2For discussions of the class of return distributions compatible with the CAPM, the reader may consult Ross (1978),
Chamberlain (1983), Ingersoll (1987, Chapter 4), Nielsen (1990), Allingham (1991) and Berk (1997). Another possibility
would consist in considering stable Paretian laws; see Samuelson (1967).



parameters. The typical approach to this problem is to consider statistics whose distribution is
asymptotically free of nuisance parameters; see, for example, Mardia (1970), Richardson and Smith
(1993), Kilian and Demiroglu (2000), Fiorentini, Sentana and Calzolari (2003), and the review of
Thode (2002). Although this leads to convenient test procedures, in systems with many equations,
it is likely that the number of nuisance parameters will be quite large relative to the sample size,
S0 again asymptotic results will provide poor approximations in finite samples; see Horswell and
Looney (1992, 1993) and Holgersson and Shukur (2001).

It is worth noting that the statistical literature on GF tests has focused mainly on the location-
scale model, which may be seen as a special case of the MLR model where the regressors reduce
to avector of ones. Thisis clearly the case, for example, for the multivariate skewness and kurto-
sis coefficients suggested by Mardia (1970); e.g., see Mardia (1980, 1974), Baringhaus and Henze
(1992), Litkepohl and Theilen (1991), Horswell and Looney (1992, 1993) and Henze (1994). In-
deed, the presence of covariates considerably complicates the testing problem and related (exact
and asymptotic) distributional theory, even in univariate regressions; see Dufour, Farhat, Gardiol
and Khalaf (1998), Bontemps and Meddahi (2002) and the references therein. Furthermore, despite
the widespread recognition of such problems, our review of the statistics and econometricsliterature
has revealed that exact multivariate GF tests are unavailable, even for the Gaussian hypothesis or
the location-scale model.

In this paper, we propose ageneral exact method for GF testing in MLR models. Our results can
be summarized asfollows. First, we address the distributional complications arising from the pres-
ence of covariates and unknown error covariances. We first state some basic finite-sample results
concerning residual-based tests in general MLR models. We show that tests which use properly
standardized residuals have a null distribution that does not depend on either regression coeffi-
cients, error variances or covariances, once the error distribution is parametrically specified up to
an (unknown) linear transformation (or covariance matrix). More specifically, these tests are based
on exploiting invariance properties for two distinct families of empirically scaled residuals: (1) a
properly rescaled version of the residual matrix (using the Cholesky root of the empirical resid-
ual covariance matrix) is invariant to general triangular transformation of the error vector (across
equations); (2) the projector matrix associated with the least square residual matrix from the MLR
model is invariant to general linear transformations of the error vector. Corresponding pivotality
properties then follow from these features. Although related pivotality results have been pointed out
for the simpler Gaussian location-scale models [see Mardia (1980), Horswell and Looney (1993)
and L Utkepohl and Theilen (1991)], it does not appear those presented here have been used in the
earlier literature on inference in general MLR models.

Second, we exploit the above invariance results to derive finite-sample tests of multinormality
for the disturbances of MLR models. We consider two categories of test statistics based on empirical
multivariate skewness and kurtosis coefficients: (1) multivariate extensions of the familiar Jarque-
Beratests[Jarque and Bera (1987, henceforth JB)], obtained by combining individual residual-based
J B tests computed from individual equations [as suggested by Kilian and Demiroglu (2000) for
vector-autoregressive (VAR) models]; (2) Mardia-type statistics based on empirical skewness and
kurtosis derived from the least squares residual projector. These statistics have finite-sample null
distributions which may be very difficult to evaluate through analytical methods. However, due to



the fact that their distributions are free of nuisance parameters and easy to simulate, we can exploit
the technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963), Dufour and Kiviet (1996,
1998), Dufour and Khalaf (2001)]. This simulation-based procedure yields an exact test when the
distribution of the test statistic is pivotal under the null hypothesis: al we need is the possibility
of simulating the relevant test statistic under the null hypothesis. Due to the flexibility of the MC
test method, we define a number of new multinormality test statistics; in particular, these involve
methods for combining excess skewness and kurtosis criteria.

Thirdly, we show that the multinormality tests proposed can easily be adapted to assess other
hypothesized disturbance distributions. For that purpose, the statistics are modified in order to com-
pare empirical multivariate skewness and kurtosis measures with simul ation-based estimates of their
expected values under the hypothesized distribution (instead of theoretical _ possibly inaccurate _
expected values that may be difficult to derive). These corrections are also applicable in the Gaus-
sian case. The MC test method then works in this case as in the previous one to achieve perfect
size control, taking account of the fact that the simulated test statistics are exchangeable (due to
the presence of simulated moment estimates) rather than independent identically distributed (i.i.d.),
leading to a double MC test procedure. As long as the disturbance distribution is specified up to
an unknown linear transformation, there is no restriction on the form of the tested distribution. For
example, the latter can be heavy-tailed and may even miss moments. The fact that a distribution
does have a finite fourth moment does not preclude one to use an empirical kurtosis as a basis for
assessing its goodness-of-fit. A triple MC test method is also proposed to combine several testsinto
an omnibus GF test.

Fourth, in view of financial applications, we focus on three classes of non-normal (possibly
heavy-tailed) families: (1) multivariate Student ¢ distributions, (2) multivariate mixtures of normal
distributions, and (3) multivariate stable distributions. Our approach, however, is not restricted to
these distributions. In contrast with the normal case, the non-normal families considered involve
additional parameters, such as the degrees of freedom for the Student ¢ distribution, that may be
taken as unknown. The proposed MC non-Gaussian GF tests are exact when the null hypothesis
sets these nuisance parameters to specific values. On assembling the nuisance parameter values
which are not rejected (i.e., by “inverting” the GF tests), this yields confidence sets for the fitting
distributions. Such confidence sets may then be used as an intermediate step in the context of other
inference problems.

Fifth, we present the results of asmall simulation experiment comparing the procedures consid-
ered. These show that the available asymptotic tests are completely unreliable from the viewpoint
of size control, while the MC tests have the correct size (as expected). With respect to power, we
find that Mardia-type tests are generally preferable to JB-type tests, sometimes by a wide margin,
while the JB-type tests can perform marginally better in the case of stable distributions. This may
reflect the fact that Mardia-type statistics are more directly adapted to testing multivariate (rather
than univariate) normality.

Sixth, the tests proposed are applied to an asset pricing model with observable risk-free rates.
We consider monthly returns on New York Stock Exchange (NY SE) portfolios, which we construct
from the University of Chicago Center for Research in Security Prices (CRSP) 1926-1995 data
base. Our results reveal the following. We first find that multivariate normality is rejected for all



subperiods. This conclusion can be contrasted with earlier evidence on this issue, which is mixed:
whereasthe results of Campbell et al. (1997) and Affleck-Graves and McDonald (1989) suggest that
normality cannot be rejected, those of Richardson and Smith (1993) indicate more rejections. So
our results provide afirmer basisfor rejecting normality. Then, inversion of the GF tests for Student
t and stable error distributions reveals heavy kurtosis. In this empirical anaysis, the Mardia-type
tests appear to be much superior from the power viewpoint to those based on JB-type statistics from
individual-equations. In particular, the confidence sets based on Mardia-type statistics are much
tighter with those based on JB-type statistics. This observation is noteworthy, given the popularity
of JB-type tests in econometrics.

The paper is organized as follows. Section 2 sets the framework. In Section 3, we define
standardized residuals, discuss their invariance properties, and state our basic exact distributional
results. In Section 4, we propose our multivariate GF test procedures; the associated size and power
Monte Carlo studies are described in 5. Section 6 reports our empirical analysis. We conclude in
Section 7.

2. Framework

Let us consider a system of correlated regression equations of the form:

Y=XB+U (2.1)
whereY = [V, ..., Y,]isaT x n matrix of observations on n dependent variables, X isaT x k
full-column rank matrix, B = [By, ... , By]isak x n matrix of unknown fixed coefficients and
U=[U, ..., Uy =W, ..., Vp'isaT x n matrix of random disturbances. Following Dufour

and Khalaf (2002d), we suppose the errors have the following structure:

Vi = JW, t=1,...,T, (2.2
w = vee(Wy, ..., Wp)~F(v), (2.3

where F(v) is aknown distribution, which may depend on the parameter v, and .J satisfies one of
the two following conditions:

J isan unknown nonsingular lower triangular matrix; (2.48)
J isan unknown nonsingular matrix. (2.4b)

Some of the procedures described below will bevalid provided J isrestricted to be triangular, while
other ones only require J to be nonsingular.
Onsetting W = [W7y, ... , W], the above assumptions entail that

W =U(JY. (2.5)



In particular, this condition will be satisfied for i.i.d. normal errors. Let
r=JJy (2.6)

which gives the covariance matrix of V; when Cov(W;) = I,,. Note the assumptions (2.4a) and
(2.4a) are equivalent when W, follows a multinormal distribution (because the covariance matrix
can always be writtenin the form ) = JJ’ with J lower triangular), but this may not be the case if
W isnot Gaussian.

The least squares estimate of B is

B=(X'X)"'X'y 2.7)
and the corresponding residual matrix is
U=1[0,...,U0,] =Y -XB=MY =MU (2.8)

where M = I — X (X’X)~!X’. Note that the Gaussian (quasi) maximum likelihood estimators for
this model are B and 3> = U'U/T . It is clear from (2.5) and (2.8) that the distribution of U in
genera depends on the unknown scaling matrix .J (or on the covariance matrix X = JJ') so that
test statistics based on U/ may involve .J as a nuisance parameter. Thiswill be the case in particular
for the off-diagonal parameters which typically determine the dependence between the disturbances
in different equations.

Our empirical application focuses on the asset pricing model

rit:ai—f—bﬁMt—i—uit, t=1,...,T,+=1,...,n, (29)
wherery; = Ry — R, Fme = Rmi— RF Ry, i=1, ..., n,aereturnson n securitiesfor period
t, Ry are the returns on the market portfolio under consideration, R/ is the riskless rate of return
t=1,...,T),andu; isarandom disturbance. Clearly, thismodel isaspecia case of (2.1) where

Y =1[r, .., ], X =lur, M), ri = (rit, o, rir)’, ™ = ("1, -, 7))’

and u;; are the elements of the matrix U.

3. Multivariate standardized residuals

We now consider the problem of building residual-based test statistics whose null distribution will
not be affected by the unknown scaling matrix J. In order to do this, we shall now state two genera
invariance results ensuring that appropriately standardized residuals have distributions which do not
depend on J. Thefirst one applies under the assumption (2.4a) where J isrestricted to be triangular,
while the second one holds under the more general assumption (2.4b).
Let
W=Us,! (3.1)



where S, isthe Cholesky factor of Uv,ie S isthe (unique) upper triangular matrix such that

U'U =9-8

U0 (U/U)il = S(;l (Sjl)/'

U

Clearly, W may be interpreted as a standardized form of U . Further, W satisfies the followi ng
important property.

Theorem 3.1 INVARIANCE OF CHOLESKY STANDARDIZED MULTIVARIATE RESIDUALS. Under
(2.1) and for all error distributions compatible with (2.2) and (2.4a), the standardized residual
matrix W defined in (3.1) satisfies the identity

W:Ugf:%w; (3.2)

where W = MW and Sy;, isthe (unique) upper triangular matrix such that

WW =80, Sy, (W'W) =551 (33)
PrROOF. Using (2.5), (2.8) and (3.3), we have:
W:Uu*ﬂf%w:MUu*ﬂ%%U:MWuw;) (3.4)
and
O (O B e A (Ca (A
= (MUY = (M)
=SS

On observing that J’S(T]1 is lower triangular, this means that (J’Sgl)' is the (unique) Cholesky
factor of (W/MW )~ hence
1o—1 _ o—1
J Sf] = SW .
Substituting the latter identity in (3.4), we see that

I -1\ _ yirqo—1
W= MW (J'S;') = WS

It follows from the latter theorem that any statistic which depends on the data only through
W follows a distribution which does not involve B or .J (and is thus invariant to X7), under the
assumptions (2.1), (2.2) and (2.449).

Consider now the Mahalanobis matrix

D=0UU/T) ' (35)



on which Mardia-type tests of multinormality will be based [see Mardia (1970)]. The elements of
this matrix satisfy an even stronger invariance property given by the following theorem.

Theorem 3.2 INVARIANCE OF MAHALANOBIS RESIDUAL MATRIX. Under (2.1) and for all
error distributions compatible with (2.2) and (2.4b), the residual-based Mahalanobis matrix D
defined in (3.5) satisfies

D=TW(Ww) "W (36)
and thus follows a distribution which is completely determined by the distribution of 1 given X.
PROOF. Using theidentities U = MU and U = W .J’, we see that:

Uw'u/T)70 = TMUU'MU)'U'M = TMUJ™ Y J' (O MU UM
= TMUJ Y[ HU'MUGY ] T UM
= TMW (WMW) " WM
= TWW'W) "W

It follows from the latter theorem that any statistic which depends on the data only through D
follows a distribution which does not depend on B and J (and is thus invariant to %), under the
assumptions (2.1), (2.2) and (2.4b). It is worth noting that the latter result relates to Theorem 3.1
sinceit is easy to see that

D=TUUT)'U' =TUS." (5;") U =TWW'.
Theorems 3.1-3.2 include as special cases several known exact invariance results in the Gaussian
location-scale model; see, for example, Mardia (1970), Litkepohl and Theilen (1991) and Thode

(2002). Here we show that invariance to B and X' holds in general MLR models, and for all error
distributions (Gaussian and non-Gaussian) which satisfy assumption (2.2).

4. Skewness-kurtosis goodness-of-fit tests

In this section, we use the above results to derive goodness-of-fit (GF) tests based on multivariate
skewness and kurtosis coefficients. The proposed tests are formally valid for any parametric null
hypothesis which takes the general form (2.2). In our empirical application [see section 6], we focus
on multivariate ¢ and symmetric stable distributions, which we denotet(x) and Stb(«) respectively,
where « represents degrees of freedom and «,; the kurtosis parameter of the stable distribution. Let
usfirst consider the null hypothesis (2.2) where v = v with v known.



4.1. Basictest statistics

The GF test statistics suggested here use two popular multivariate skewness and kurtosis measures:
(i) measures based on Mahalanobis distance, and (ii) measures which aggregate individual eguation
skewness and kurtosis criteria. Specifically, we first consider extensions of the statistics

L LT
SKv = ﬁzz e (4.1)
s=1t=1
1
KUn = fzdtZta (4.2)

t=1

where the variables cZSt are the elements of the matrix D = [d;t} . These criteria were introduced
by Mardia (1970) to assess deviations from multivariate normality, in models where the regressor
matrix reduces to a vector of ones; see also Zhou (1993).2 Mardia further proposed the omnibus
normality test:

T [KUM —n(n+ 2)]2
8n(n + 2) T—00

MSK = %SKM + X*((n/6)(n+1)(n+2) +1) (4.3)

where the wmbol ~ refersto the asymptotic null distribution of the test statistic.

Second, we con5| der extensions of the aggregate skewness and kurtosiscriteriaapplied by Kilian
and Demiroglu (2000) in vector-autoregressive contexts; these criteria were originally proposed by
Jarque and Bera (1987, JB) :

SKxp = (ski, ..., skp) (ski, ..., skn), (4.4)

KUkp = (kui —3, ..., ku, —3) (kuy —3, ..., ku, —3), (4.5)
T W

sk; = 2= Wit i=1,...,n, (4.6)

(Tfl Zthl WiQt)g/Q 7
TS W
ku; = Z:ﬁ:l~”2, i=1,...,n, 4.7
(T_l D1 Wz2t>

where W;; denote the elements of the matrix 1 defined by (3.1); in other words, sk; and ku; are
the individual skewness and kurtosis measures based on the standardized residuals matrix. The
Jarque-Bera omnibus normality test studied by Kilian and Demiroglu (2000) is:

T T )
JB = ZS5Kxp + 5 KUkp _ ~ x*(2n). (4.8)

—00

3Zhou (1993) proposed simulation-based variants of these criteriato test elliptically symmetric distributions, without
however providing afinite-sample theory for their application to MLR residuals _ alimitation pointed out by Zhou (1993,
p. 1935, footnote 5) himself.



4.2. Extension to testing non-Gaussian distributions

To extend the above criteria beyond the Gaussian context, we shall modify them in three ways. First,
we propose to use these measures in excess of their expected values under (2.2). Second, we show
that for v given, our modified test statistics are pivotal under the null hypothesis which alows to
derive an exact simulation based p-value. Finally, we propose an exact combined skewness-kurtosis
test.

Our approach rests on the following invariance properties regarding residuals based skewness
and kurtosis tests, which we prove not only for (2.2), but for all error distributions compatible with
(2.2) and either (2.4a) or (2.4b).

Theorem 4.1 DISTRIBUTION OF JB-TYPE STATISTICS IN MLR. Under (2.1) and for all error
distributions compatible with (2.2) and (2.4a), the multivariate skewness and kurtosis criteria sk;
andku;, i =1, ..., n, defined in (4.6) - (4.7) are distributed, respectively, like

— 7157 w3

sk; = Zt:LQ” L di=1,...,n, (4.9)
(71 ZtT:1 Wi)3/?

_ 7157wt

ku; = Zt:lf;t , i=1,...,n, (4.10)
(71 Zthl Wi)?

where W, are the elements of the matrix I/T/S‘g/1 where W = MW and Sy, is the Cholesky factor
of W'W asdefinedin (3.3), M = I — X(X'X)~! X', and W isdefined by (2.2).

Theorem 4.2 DISTRIBUTION OF MARDIA-TYPE SKEWNESS AND KURTOSIS. Under (2.1) and
for all error distributions compatible with (2.2) and (2.4b), the multivariate skewness and kurtosis
criteria S Ky and KUy defined in (4.1) - (4.2) aredistributed, respectively, like 2 >/, S°7 d3
and L ST 42, where d;; are the elements of the matrix T W (W'W) ~'W', W = MW, M =
I - X(X'X)"'X’, and W isdefined by (2.2).

The proof of both theorems follows immediately from Theorems 3.1 - 3.2. On this basis, we
propose the following skewness-and-kurtosis based statistics to test (2.2). Let

ESKM(I/()) = ‘SKM — 571\4(1/0)| 5 (411)
EKUm(vo) = |KUm—KOwm(vo)l, (4.12)
ESKxp(ve) = (eskzl(yo), cee eskn(yo))/(eskl(yo), el eskn(yo)) , (4.13)
EKUkp(vg) = (ekul(yo), el ekun(uo))/(ekul(yo), R ekun(yo)) , (419

with
eSki(VO) = (Sk’l(V(]) - :l’bski(l/o))/o'ski(uo)a Z = 17 et n? (415)
ekui(vo) = (kui(vo) — ,ukui(l,o))/akui(yo), i1=1,...,n, (4.16)



where SK(vo) and KU (o) are simulation-based estimates of the mean of SKy; and KUy
given (2.2), fig, (1) @ 041, (1) are simulation-based estimates of the mean and the standard devi-
aion of sk;(vo) given (2.2), ku;(vo) and oy, (., are simulation-based estimates of the mean and
the standard deviation of ku;(vo) given (2.2). For presentation ease, we shall call these estimates
“reference simulated moments” (RSM). We also denote by

E = [ESKM(Z/()), EKUM(V()), ESKKD(VQ), EKUKD(Z/())]/ (4.17)

the vector whose components are the test statistics just defined.
To obtain these RSM, one may proceed as follows:

Al draw N redlizations of W following the distribution F(v¢) in (2.3), independently of the
observed data;

A2. for each draw, construct the pivotal quantities W S ' and T W (W'W) "W’ which yield,
applying theorems 4.1 - 4.2, N, realizations of the statistics under consideration;

A3. the empirical moments of the latter simulated seriesyield the desired estimates.

4.3. Nonstandard null distributions and multi-stage M C tests

Obviously, our modified test criteria have nonstandard null distributions. In fact, the exact distri-
butions are nonstandard even under normal null hypotheses. Yet these distributions are pivota (in
normal and non-normal contexts) and can be easily simulated which justifies the application of the
Monte Carlo test technique [Dufour (2002)]. This simulation-based procedure yields a bootstrap-
type exact test whenever the distribution of the underlying statistic is free of nuisance parameters
under the null hypothesis. The fact that the associated analytical distributions are complicated is not
a problem: all we need is the possibility of simulating the test statistic under the null hypothesis.
The general methodology is described in Appendix A. When applied to the above GF criteria, it can
be summarized as follows.

B1l. Weobtainthe RSM (according to A1-A3), which are generated only once, so the next stepsare
conditional on these estimates.

B2. Using the RSM and applying the definitions (4.11) - (4.14) to the sample data, we find the
observed value of £ :

EO© = [ESKY (o), EKUY (v0), ESK (v0), EKU (v0)] . (4.18)

B3. Independently of the RSM and E(®), we draw N i.i.d. redizations of W according to
F(vo) in (2.3), and for each of these draws, we compute the pivotal quantities WSVTV1 and

TW(W’W)_lW’. N ischosen so that a(N; + 1) isan integer.

10



B4. Using the same RSM as for the observed sample, the values of the statistics E.S Ky (vo),
EKU\(vo), ESKkp(vo), EKUkp(vg) are calculated from each of these MC samples; in
what follows, we will refer to these simulated values as the “basic simulated statistics’ (BSS):

EY) = [ESKEY (vy), EKUY (1), ESKY) (v0), EKU (vo)]', j=1,..., N.
Using theorems 4.1 - 4.2, it iseasy to seethat the N + 1 vectors EU)| j =0, 1, ..., N are

exchangeable under the null hypothesis.

B5. We can then compute a simulated p-value, for any one of the test statisticsin E(©)

PN[ESKm(vo)], pn[EKUNM(vo)], PN[ESKkp(vo)], pn[EKUkp(vo)]

where py[-] is defined in Appendix A for each statistic in £ [see (A.1)] and can be calculated
from the rank of the observed statistic relative to the relevant BSS. The null hypothesis is
rejected at level a by thetest ES Ky (vo) if pn[ESKwm(vo)] < «, and similarly for the other
tests. By the exchangeability of EU), j =0, 1, ..., N, and provided E follows a continuous
distribution, this procedure satisfies the size constraint, i.e.

PPN[ESKm(v)] < a] =« (4.19)
under the null hypothesis, and similarly for all the other tests.

Because the above MC test procedure involves two nested simulations (a first one to get the
reference simulated moments, and a second one to get the test statistics), we call it a double MC
test. The procedure described above allows one to obtain individual simulated p-values for each test
statistic. The problem of combining the skewness and kurtosis tests remains unanswered. To avoid
relying on Boole-Bonferroni rules, we propose the following combined test statistic, which may be
used for al null hypotheses underlying Theorem 4.2:

CSKM(Z/(]) = 1 - min {ﬁN[ESKM(Vo)L ﬁN[EKUM(I/())]} 5 (420)
CSKKD(V(]) = 1 —min {ﬁN[ESKKD(Vo)], ﬁN[EKUKD(Vo)]}. (421)

Theintuition here isto reject the null hypothesisif at least one of the individual testsis significant;
for convenience, we subtract the minimum p-value from one to obtain aright-sided test. For further
reference on these combined tests, see Dufour and Khalaf (2002a).

The M C test technique may once again be applied in order to obtain an exact combined test. This
can be done by using athree-stage MC test (or atriple MC test), which involvesthe estimation of the
p-valuefunctionspy (- | -) for individual test statistics, through a preliminary simulation experiment.
The agorithm for implementing such a procedure can be described as follows.

C1. Generate a set of reference simulated moments (according to A1-A3), the observed value of
E©) in (4.18), and the N corresponding BSS (following B1-B4).

11



C2

C3.

Cs.

C6.

Cr.

For each test statistic considered, obtain the p-value functions determined by the BSS
(generated at step Cl): pN(S(O); S), for § = ESKM(I/(]), EKUM(Z/()), ESKKD(V()),
EKUgp(vo), where the function py (S ; S) is defined in Appendix A.

Independently of the previous RSM, BSS and E(“), generate N, additional i.i.d. realizations
of W according to F(vg) in (2.3), and for each draw, compute the pivotal quantities WS‘}}

and T W(W’VT/)_IW’. N ischosen so that (N} + 1) isan integer.

. Using the RSM and the N; draws generated at steps C1 and C3, compute the corresponding

simulated statistics:

EEY = [ESKY) (vo), EKUY (v0), ESK) (vo), EKULL (vo)), 1=1,..., Ny.

Using the p-value functions py (- ; -) obtained at step C2 (and based on the BSS generated at
step C1), evaluate the simulated p-values for the observed and the N; additional simulated
statistics: pV[S] = pn(SD; S), 1 = 0,1,..., Ny, for § = ESKy(vo), EKUy(vy),
ESKkp(vo), EKUkp (o).

From the latter, compute the corresponding values of the combined test statistics:
cskl = 1—min{py[ESKY in[EKUY 1=0,1 N
M (VO) min {pN[ M (VO)]v pN[ M (VO)]} , sy Ly ooy IVT,
CSKY (o) = 1—min{pn[ESKL, (v0)], pNIEKUL, (o)}, 1=0,1,..., Ny.
Again, it is easy to see that the vectors (CSKI(VII)(V()), CSKI%))(I/())), 1=0,1,..., Ni, ae
exchangeable.

The combined test C'SKyi(vo) rejects the null hypothesis at level « if py, [CSEKm(vo)] =
PN, (CSKI(\,?); CSKw(vg)) < o, where the p-value function py, (- | -) is based on the sim-
ulated variables CSK (! (v0),1 = 0, 1,..., Ny; the rule is similar for the test based on
CSKKD(I/()).

The test with critical regions py, [CSKum(vg)] < « has level «, because the variables

CSK&?(VQ% [ =0,1,..., N, are exchangeable under the null hypothesis. The same holds
for the test with critical region py, [CSKxp(vo)] < a.

We have also studied the following modified version of the omnibus-type tests based on the sum

of the skewness and kurtosis statistics:

WD - SKn — SKw(vo) } () [ SKn — SKwm(vo)
KUM — KUM(I/()) M KUM — KUM(VQ) ’

/JxB5 = ESKKD(Z/()) + EKUKD(I/()) , (4.23)

(4.22)

where Ay (vg) isasimulation-based estimate of the covariance of S Ky and KUy, which can ob-
tained asoutlined in A1-A3; in this case, in addition to the empirical means and standard deviations
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of simulated S Ky and K Uy series, we aso obtain these empirical covariances. These statistics are
obviously less expensive to simulate than the ones based on the smallest p-values. MC p-values can
be obtained for them in away similar to the one described in B1-B5, except that the matrix Ay (vo)
now belongs to the set of moments to be estimated by simulation.

4.4. Theunknown nuisance parameter case

So far, we have treated the case where the distributional parameter v is known. To account for an
unknown v, we obtain a confidence set estimate for this parameter which “inverts’ the above GF
tests. Specifically, the confidence set corresponds to the set of v values which are not rejected by
the GF test for (2.2) where v = v for known . Thisleadsto aformal estimate for the distributions
which best fit the data. Aswewill show inthe next section, this estimate may proveto be very useful
for other testing problems regarding the regression under consideration, for it may be easily shown
that the usual test statistics for hypothesis on the regression coefficients or error terms will also
depend on v; see Beaulieu, Dufour and Khalaf (2001b, 2001a). When the confidence set for v is
empty, the distributional family (2.2) is rejected.

5. Simulation experiment

We conducted a small-scale simulation experiment to assess the performance of the GF tests. The
model consideredis (2.1) with three designs. Thefirst, denoted Design |, includesn = 12 equations
and the following regressor matrix:

X = [m:Xq)],

where X(;) isaT x 1 standard normal variate, with 7' = 60. The second, denoted Design I,
includesn = 12 equations and, in addition to the regressors of design |, dummy variable regressors
over awindow covering the 20% sample endpoints; the associated regressor matrix takes the form:

. . X
Xir=[wiXa)  Xg], Xg= { &0 }

where X1y and X 1) areT'x 1 and (T'— k1 ) x k1 standard normal variatesand ky = INT(.02xT),
with T = 60. The third design (I11), uses the same regressor matrix X; but includes n = 40
equations. In al designs, T = 60, Ny = 1000, N = N; = 999 and the number of simulationsin
each experiment is 1000. Because of location-scale invariance, all the above tests were applied to
the residuals generated as U = MW, hence there was no need to specify values for the regression
coefficients and error covariances.

We studied the following sets of hypotheses. Hy: W, ~ multivariate normal, against: (i) Wy ~
t(r), with & = 5, 10, 20, 30, 40, 50, (i) W; ~ Stb(as), with o, = 1.8, 1.85, 1.9, 1.95, 1,98, 2.0
and 5, = 0, and (iii) W; ~ multivariate mixture of normals

W ~ Miz(r,w) & Wy =nZ1+ (1 — )23 ,
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Table 1. Size of multinormality tests

Mardia-type
Design | MSK,,, | MSKyc | ESKy  EKUy  CSKy  MD
| 022 054 052 047 049 052
1 1.00 052 053 039 043  .039
1 0.00 044 034 046 040  .039
JB-type
JBasy JBuce | ESKxp EKUxp CSKkp
| .064 053 051 .050 .058
I 521 048 048 051 052
1l .056 .056 061 .054 .051

Note_ Thistable reportsthe actual rejection frequencies based on 5 percent critical values under the asymptotic and finite
distributions. Design | refers to 12 equations of 60 observations each and a regressor matrix including a constant and a
T x 1 standard normal variate. Design Il refers to 12 equations of 60 observations each but in this case the regressor
matrix contains a constant, a7 x 1 standard normal variate and a (7' — k1) x ki standard normal variate where k1 =
INT(.02xT). Designlll isthesameasDesign | but includes 40 equationsinstead of 12. ES K, EKUw, ESKkp and
EKUkp refer to the excess skewness and excess kurtosis criteria defined in (4.11) - (4.14). CSKwm and CSKkp refer
to the min-p-value combined skewness/kurtosis criteria (4.20)-(4.21). MD denotes our dependence-corrected version of
Mardia's tests (4.22). All the latter tests are MC tests with 999 replications (N = N1 = 999, No = 1000). MSKasy
and JB,, refer to original tests (4.3)-(4.8) and M SK ¢ and J By ¢ aretheir MC versions. The number of simulations
in each experiment is 1000.

where Zy, ~ N[0, I,,], Z3; ~ N[0, wl,,] and isindependent of Z;,and0 < = < 1; weusen = .5
andw = 3, 2.5, 2, 1.5. The multivariate () is generated as follows

W~ t(k) & Wy = Z1e/(Za/5)Y? (5.1)

where Z;; is multivariate normal (0, I,,) and Z; is a x?(x) variate independent from Z;,; stable
errors are drawn componentwise, applying Weron (1996). The results are reported in tables 1 to 4.

First, tables 2 - 4 reveal that available asymptatic tests are completely unreliable. Indeed, in
Design |l, Mardia's size is 1.0 and is zero in design 3; even in Design |, the asymptotic test is
undersized. The JB-typetest isalso seriously oversized in Design 11. Wethus only analyze the power
of the MC tests; we note however that the size problems we observed with Mardia's asymptotic test
tranglated into very low power, with empirical rejections not exceeding the nomina size.

In terms of power, our results over al designs presented in tables 2 - 4, can be summarized
as follows. For elliptical families, Mardia-type tests are superior to the JB-type; this observation
is important given the relevance of élipticity in asset pricing applications. The JB-type test dis-
played better power for detecting errors whose margina distributions are from the stable family.
We note that although all alternatives studied are symmetric, the skewness tests show high power.
Thisis because the null is parametric; the cut-off points of the skewness tests are thus derived under
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Table 2. Power of multinormality tests: Design |

Design | Mardia-type JB-type
1 (2 3 4 (5) (6) (M (8) 9

ESKy EKUy CSKy MD MSK | ESKkp EKUxp CSKxp JB
t(5) 1999 1.0 10 10  .999 682 825 807 819
£(10) 920 980 972 963  .939 302 403 383 .390
£(20) 542 663 636 591  .600 160 190 182 173
£(30) 320 425 407 378 373 108 117 120 113
£(40) 232 307 279 262  .266 .099 .099 008 .101
£(50) 180 232 221 187 231 074 084 083 .081
Miz(.5, 3) 1.0 1.0 10 10 1.0 768 970 961 .954
Miz(.5, 2.5) 1.0 1.0 10 10 1.0 675 891 872 873
Miz(.5, 2) 1.0 1.0 10 10 1.0 466 661 625 617
Miz(.5, 1.5) 763 889 874 851  .803 203 235 227 239
Stb(1.8) 965 971 971 97  .970 991 997 997 .998
Stb(1.85) 911 930 926 914 92 967 984 980 .983
Stb(1.90) 763 782 784 761 789 873 923 918 925
Sth(1.95) 476 488 494 474 510 626 687 678 686
Sth(1.98) 217 215 223 217 244 331 361 636 636

Note _ This table reports the actua rejection frequencies based on the 5 percent critical values under the finite-sample
distributions. Design | refersto 12 equations of 60 observations and a regressor matrix including a constant and a7’ x 1
standard normal variate. Design || refersto 12 equations of 60 observations but in this case the regressor matrix containsa
constant, a7 x 1 standard normal variateand a (7" — k1) x k1 standard normal variatewherek, = INT(.02xT'). Design
Il isthe same as Design | but includes 40 equations instead of 12. ¢ stands for the Student distribution, Mix the mixture
of normal distribution and Stb the stable distribution. Numbers in parentheses present the chosen values for the nuisance
parameters in these distributions. ESKw, EKUm ESKkp and EKUxp refer to the excess skewness and excess
kurtosis criteria defined in (4.11) - (4.14). CSKw and CSKkp refer to the min-p-value combined skewness/kurtosis
criteria (4.20)-(4.21). M D denotes our dependence-corrected version of Mardia's tests (4.22). M SK and JB refer to
origina tests (4.3)-(4.8) in their MC versions. All MC tests use 999 replications (N = Ny = 999, Ny = 1000).The
number of simulationsin each experiment is 1000.
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Table 3. Power of multinormality tests: Design Il

Design 11 Mardia-type JB-type
€] (2 ©) 4 ®) (6) (7 8 9

ESKy EKUw CSKy MD MSK | ESKxp EKUxp CSKxp JB
t(5) .993 1.0 999 997 .999 .596 .686 .686 .748
t(10) .844 .900 896 .868 .897 .250 314 293 .355
t(20) 433 516 493 447 510 .128 153 148 163
t(30) .255 324 307 .276 .325 .099 .102 095 .109
t(40) 178 237 221 .198 .240 .085 .093 .090 .098
t(50) 146 182 163 147 .200 .072 .080 .078 .087
Miz(.5, 3) 1.0 1.0 1.0 1.0 1.0 .706 901 871 .946
Miz(.5, 2.5) 1.0 1.0 1.0 1.0 1.0 .582 172 756 .856
Miz(.5, 2) .994 1.0 1.0 1.0 .999 394 .506 485 .602
Miz(.5, 1.5) .652 .783 761 .729 147 139 178 176 213
Stb(0, 1.8) 919 .932 932 .920 .936 .963 .982 984 .989
Stb(0, 1.85) .810 .842 836 .805 .851 .909 .946 939 .94
Stb(0, 1.90) .626 .658 657 .632 .674 .807 .843 836 .856
Stb(0, 1.95) 371 .378 384 .34 402 519 .584 563 .582
Stb(0, 1.98) .184 174 A73 171 .190 .269 .303 292 .299

Table 4. Power of multinormality tests: Design |11
Design 11 Mardia-type JB-type
(1) (2 ©) 4 ©) (6) (7) (8) 9

ESKy EKUy CSKy MD MSK | ESKgp EKUxkp CSKgp JB
t(5) 1.0 1.0 1.0 1.0 1.0 .584 744 735 735
t(10) .986 .987 .988 .978 .987 .238 .326 297 .326
t(20) 738 776 .763 .703 771 107 .138 118 134
t(30) 484 .536 509 447 519 .091 .100 103 107
t(40) .346 .380 365 .305 .381 .074 .083 .079 .070
t(50) 247 .281 271 .230 279 .063 .074 079 .072
Miz (.5, 3) 1.0 1.0 10 10 1.0 844 973 965 .965
Mix(.5, 2.5) 1.0 1.0 1.0 1.0 1.0 .684 .868 .856 .859
Miz(.5, 2) 1.0 1.0 10 10 1.0 401 549 530 .528
Miz(.5, 1.5) 957 .968 962 .948 961 132 162 154 151
Stbh(1.8) .958 .964 959 .943 .965 1.0 1.0 1.0 1.0
Stb(1.85) .857 .686 870 .825 .878 .999 .998 .999 1.0
Stb(1.90) .637 .643 .633 571 .663 991 994 994 994
Stb(1.95) 315 323 326 .276 343 .861 .909 989 .910
Stb(1.98) 129 129 134 115 142 515 584 562 .580
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Table 5. Portfolio definitions

Portfolio number Industry name Two-digit SIC codes
1 Petroleum 13, 29
2 Finance and real estate 60-69
3 Consumer durables 25, 30, 36, 37, 50, 55, 57
4 Basic industries 10, 12, 14, 24, 26, 28, 33
5 Food and tobacco 1,20,21,54
6 Construction 15-17, 32, 52
7 Capital goods 34, 35, 38
8 Transportation 40-42, 44, 45, 47
9 Utilities 46, 48, 49
10 Textile and trade 22, 23, 31, 51, 53, 56, 59
11 Services 72,73, 75, 80, 82, 89
12 Leisure 27,58, 70, 78, 79

Note _ This table presents portfolios according to their number and sector as well as the SIC codes included in each
portfolio using the same classification as Breeden et al. (1989).

symmetry and normal kurtosis. This problem is well known in statistic [see Horswell and Looney
(1993)] and must be emphasized, given the importance empirical practitioners attribute to the skew-
ness coefficient. We also note that our min-p-value combined Mardia test was most powerful in
many instances.

6. Empirical application

Our empirical analysisfocuses on the asset pricing model (2.9) with different distributional assump-
tions for stock market returns. We use nominal monthly returns over the period going from January
1926 to December 1995, obtained from the University of Chicago’s Center for Research in Security
Prices (CRSP).

Asin Breeden, Gibbons and Litzenberger (1989), our data include 12 portfolios of New York
Stock Exchange (NY SE) firms grouped by standard two-digit industrial classification (SIC). Table
5 provides alist of the different sectors used as well asthe SIC codesincluded in the analysis.* For
each month the industry portfolios comprise those firms for which the return, price per common
share and number of shares outstanding are recorded by CRSP. Furthermore, portfolios are value-
weighted in each month. We proxy the market return with the value-weighted NY SE returns, also
available from CRSP. The risk-free rate is proxied by the one-month Treasury Bill rate, also from
CRSP. Our results are reported in Tables 6-10.

Regarding normality tests, Table 6 revealsthe following. Although we are dealing with monthly
data, normality is definitely rejected except in the last subsample (1990-95) where the smallest p-
value is 9.1%. Furthermore, both excess skewness and excess kurtosis are evident. The MC version

“Notethat asin Breeden et al. (1989), firms with SIC code 39 (Miscellaneous manufacturing industries) are excluded
from the dataset for portfolio formation.
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Table 6. Multinormality tests

Mardia-type JB-type
Sample (1) ) ©) 4 (5 (6) M (8 9
ESKy EKUy MSK CSKy MD | ESKxp EKUxkp JB CSKxp

1927-30 .001 001 .001 001  .001 .004 006 .007  .008
1931-35 .001 001 .001 001  .001 .001 001 .001  .001
1936-40 .001 001 .001 001  .001 .005 048 020 011
1941-45 .004 002 .004 004 004 378 092 199 141
1946-50 .001 001 .001 001  .001 .003 009 .005 .004
1951-55 .001 001 .001 001  .001 .002 003 .003 .005
1956-60 024 003 .015 003 .016 700 333 603 474
1961-65 594 479 736 631 151 .037 014 .008  .029
1966-70 011 002 011 004  .005 632 559 759  .728
1971-75 .001 002 001 001  .001 554 015 .060  .029
1976-80 .001 001 .001 001  .001 013 015 012  .030
1981-85 .001 002 .001 001 .002 932 096 305 .154
1986-90 028 020 024 030  .061 .006 024 009  .007
1991-95 177 311 .917 239 408 065 425 127 091

Note _ Numbers shown are MC p-values. Columns (1), (2), (6) and (7) refer to the excess skewness and excess kurtosis
criteria defined in (4.11) - (4.14). Columns (4) and (9) refer to the min-p-value combined skewness/kurtosis criteria
(4.20)-(4.21). Columns (3) and (8) refer to MC versions of the original Mardia and JB-type tests (4.3)-(4.8). Column (5)
reports our dependence-corrected version of Mardia stests (4.22). The p-valuesin bold highlight cases where the various
testsyield conflicting decisions at the 5% level. All MC tests use 999 replications (N = Ny = 999, Ny = 1000).

of the omnibus tests (based on adding up the skewness and kurtosis criteria) and the min p-value
based combined tests seem to yield the same decision. It ishowever noteworthy that the Mardia-type
and the Kilian-Demiroglu JB-type tests yield conflicting decisions in several cases. for the 1941-
50, 1956-60, 1966-70 and 1981-85, J B and C'S Kkp are not significant, whereas our Mardia-type
tests are significant; conversely, in 1961-65, both JB and C'SKxkp are significant yet al of the
Mardia-type tests fail to reject the normal null.

These results seem to suggest that it is worthwhile to consider strategies which combine both
type of tests.®> For example, exact MC joint tests may be obtained using a criterion of the form:

CSKM/KD =1 —min {f)\(CSKM), ]/?\(CSKKD)} (61)

Indeed, the flexibility of the MC test method allows one to consider combinations that would be
hard to justify applying standard asymptotic strategies; for further references on combining non-
independent tests, see Dufour and Khalaf (2002b), Dufour, Khalaf, Bernard and Genest (2003) and
Dufour and Khalaf (2002a).

Let us now turn to the GF tests for Student ¢ and stable distributions. Tables 7 to 10 report the
test results in the form of confidence sets for the distributional parameters; these correspond to the

%In this regard, see Horswell and Looney (1992) on the cost (in terms of size) of combining normality tests.
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Table 7. Multivariate ¢ distributions:
combined-tests based confidence sets for the degrees-of-freedom parameter

@) 2 (3 4) (5 (6) (1) (8)
Sample Student ¢, 2.5% level Student ¢, 5% level
CSKy COSKxp MD — JB | CSKy CSKxp MD  JB

1927-30 3—12 1-17 2—14 1-18 3—12 2—-14 3—12 1-11
1931-35 | 3-8 2-6 3-8 1-6| 3-7 2-3 3-8 1-3
1936-40 4 —29 2—-29 4—-33 1-30 5—24 2—22 5—26 1-—-29
1941-45 >5 >2 >5 >1 6 — 40 >2 >5 >1
194650 | 4—31 2-20 5-34 1-27| 4-24 2-13 5-29 1-19
195155 | 5-34 2-14 4-39 1-13| 5-29 2-9 5-31 1-7
1956-60 >5 2—34 >5 1-34 >6 2—34 >5 1—-34
1961-65 >7 >2 >6 >1 12 — 42 >2 >7 1—-26
1966-70 >5 > 2 >4 >1 6 —42 >2 >5 >1
1971-75 4 — 28 >2 5—29 >1 5—21 >2 6 — 22 >1
1976-80 4 —17 >2 3—-19 >1 4 —16 >2 4—-18 1-141
1981-85 | 5— 33 >2  5-41 >1 | 5—26 >2  6-31 >1
1986-90 5 —41 2—30 5—41 1-38 7 —41 2—-19 6—41 1-26
1991-95 > 15 >2 >9 >1 24 — 42 >2 > 14 >1

Note _ Numbers shown are values of the degrees-of-freedom parameter « not rejected by the MC-GF tests. Columns (1),
(3), (5) and (7) pertain to our combined Mardia-type statistic (4.20)-(4.22). Columns (2), (4), (6) and (8) are based on the

combined Kilian-Demiroglu JB-type statistic (4.21)-(4.23).
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Table 8. Multivariate symmetric stable distributions:
confidence sets for the kurtosis parameter based on combined tests

) @ ©) 4)
Sample | Test level Stable distributions with 5, = 0
CSKy  CSKgp MD JB

1927-30 2.5% 1.38-196 1.1-199 128-188 .9-1.99
1931-35 2.5% 1.34-192 11-199 130-190 .9-1.99
1936-40 2.5% 1.56-198 1.1-199 146-198 .9-1.99
1941-45 2.5% 1.58 =198 1.1-199 1.66-198 .9-1.99
1946-50 2.5% 1.56-198 1.1-199 158-198 .9-1.99
1951-55 2.5% 1.56-198 1.1-199 1.64-198 .9-1.99
1956-60 2.5% 156 -198 1.1-199 1.66—-198 .9-1.99
1961-65 2.5% 1.66 -2.0 1.1-20 1.56-2.0 9-20
1966-70 2.5% 1.56 -198 1.1-199 148198 .9-1.99
1971-75 2.5% 1.56-198 11-199 154-198 .9-1.99
1976-80 2.5% 1.5-198 11-199 144-198 .9-1.99
1981-85 2.5% 156 -198 11-199 154-198 9-1.2
1986-90 2.5% 1.62—-20 11-20 1.60-2.0 9-20
1991-95 2.5% 1.7-2.0 1.1-2.0 1.70-20 9-20

1927-30 5.0% 146-192 11-199 136-184 .9-1.99
1931-35 5.0% 142-190 11-199 138-188 .9-1.99
1936-40 5.0% 1.64-198 12-199 156-198 .9-1.99
1941-45 5.0% 166 -198 12-199 158-198 .9-1.99
1946-50 5.0% 1.58-198 1.2-199 158-198 .9-1.99
1951-55 5.0% 1.64-198 11-199 156-198 .9-1.99
1956-60 5.0% 1.66 -1.98 1.2-199 158-198 .9-1.99
1961-65 5.0% 1.74 -2.0 1.2-2.0 1.66-2.0 9-20
1966-70 5.0% 166 -198 1.2-199 156-198 .9-1.99
1971-75 5.0% 1.62-198 12-199 158-198 .9-1.99
1976-80 5.0% 1.58-196 1.1-199 146-196 .9-1.99
1981-85 5.0% 1.66-198 1.2-199 158-198 .9-1.99
1986-90 5.0% 1.7-198 12-199 1.64-2.0 9-20
1991-95 5.0% 1.78 — 2.0 1.2-2.0 1.78 — 2.0 9-20

Note _ Numbers shown are values of the kurtosis parameter o not rejected by the MC GF tests. Columns (1) and (3)
pertain to our combined Mardia-type statistic (4.20)-(4.22). Columns (2) and (4) are based on the combined Kilian-
Demiroglu JB-type statistic (4.21)-(4.23).

20



Table 9. Multivariate t and stable distributions:
skewness-based confidence sets for distributional parameters

@) ¢ ©) (4)
Sample | Testlevel Student ¢ Stable (5, = 0)
ESKy  ESKkp ESKy ESKxkp

1927-30 2.5% 3-15 1-16 | 1.38—-1.98 .9-1.99
1931-35 2.5% 2-7 1—-71134-19 .9-1.99
1936-40 2.5% 4-25 1-31]146-198 .9-1.99
1941-45 2.5% 4 —42 1-42 ] 158-198 .9-1.99
1946-50 2.5% 4—26 1-181146-198 .9-1.99
1951-55 2.5% 4-37 1-13 | 1.564-1.98 .9-1.99

1956-60 2.5% 5 —42 >1(154-198 .9-1.99
1961-65 2.5% 8§ —42 >1| 1.60—-20 9-20
1966-70 2.5% 5 —42 >1(154-198 .9-1.99
1971-75 2.5% 4—-22 >1(146-198 .9-1.99
1976-80 2.5% 317 1-39]146-198 .9-1.99
1981-85 2.5% 4—-29 >1]158-198 .9-1.99
1986-90 2.5% 4—-41 1-19 ] 1.56 -1.98 .9-1.99
1991-95 2.5% > 12 >1| 1.68—-2.0 9-20
1927-30 5.0% 3-13 1-10 | 148-196 .9-1.99
1931-35 5.0% 3-7 1-61]142-194 9-1.99
1936-40 5.0% 4—-22 1-20] 1.58—-198 .9-1.99
1941-45 5.0% 5—36 >1 1.6 -198 .9-1.99

1945-50 5.0% 4—22 1-13 | 1.568§ —1.98 .9-1.99
1951-55 5.0% 5—26 1-81160-198 .9-1.99

1956-60 5.0% 6 — 42 >1(164-198 .9-1.99
1961-65 5.0% 14 — 42 >1 1.78-2.0 9-20
1966-70 5.0% 6 — 42 >1(1.60-198 .9-1.99
1971-75 5.0% 4-19 >1]160-198 .9-1.99
1976-80 5.0% 4-15 1-25]154—-198 .9-1.99
1981-85 5.0% 2—-26 >1(160-198 .9-1.99
1986-90 5.0% 5—41 1-12 | 1.66-198 .9-1.99
1991-95 5.0% > 35 >1 1.78-2.0 .9-1.99

Note _ Numbers shown are values of the distributional parameter [« and o respectively] not rejected by the MC-GF
tests. Columns (1) and (3) pertain to our extension of the Mardia-type statistic (4.11). Columns (2) and (4) are based on
our extension of aggregated individual skewness measures (4.13).
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Table 10. Multivariate ¢ and stable distributions:
kurtosis-based confidence sets for distributional parameters

©) 2 (4) ©®)
Sample | Testlevel Student ¢ Stable (3, = 0)
EKUy EKUkp EKUy EKUkp
1927-30 2.5% 3—-12 2—-28|138—-196 1.1-1.99

1931-35 2.5% 3-7 2-6| 14-192 11-1.99
1936-40 2.5% 5 —27 >21154-198 1.1-1.99
1941-45 2.5% >5 >21154-198 1.1-1.99
1946-50 2.5% 5—34 >21156-198 1.1-1.99
1951-55 2.5% 5—29 2-13 | 156-198 1.1-1.99
1956-60 2.5% >3 >21160-198 1.1-1.99
1961-65 2.5% >9 >2 | 1.56 —2.0 1.1-2.0
1966-70 2.5% >5 >21158-198 1.1-1.99
1971-75 2.5% 5—34 >21156-198 1.1-1.99
1976-80 2.5% 417 >21146-198 1.1-1.99
1981-85 2.5% 5—39 >21158-198 1.1-1.99
1986-90 2.5% 5—41 >2] 164-20 12-1.99
1991-95 2.5% > 20 >2 | 1.76 - 2.0 1.1-2.0
1927-30 5.0% 3—-11 2—-16|148-192 1.1-1.99
1931-35 5.0% 3-7 >21144-190 1.1-1.99
1936-40 5.0% 5—22 >21160-198 1.2-1.99
1941-45 5.0% 6 —39 >21158—-198 1.2-1.99

1945-50 5.0% 5 —27 2—-26|164—-198 1.2-1.99
1951-55 5.0% 5—26 2—-71164-198 1.1-1.99

1956-60 5.0% >6 >21170-198 1.2-1.99
1961-65 5.0% > 11 2-26 1.78—-2.0 12-2.0
1966-70 5.0% 6 —39 >21164-198 1.2-1.99
1971-75 5.0% 5—26 >21160-198 1.2-1.99
1976-80 5.0% 4-15 >21158-19 1.2-1.99
1981-85 5.0% 6—34 >21164—-198 1.2-1.99
1986-90 5.0% 7T—41 2—-411170-198 1.2-1.99
1991-95 5.0% > 35 >2 1.80-2.0 1.2-20

Note _ Numbers shown are values of the distributional parameter (x and o respectively) not rejected by the MC GF
tests. Columns (1) and (3) pertain to our extension of the Mardia-type statistic (4.12). Columns (2) and (4) are based on
our extension of aggregated individual kurtosis measures (4.14).
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parameters not rejected by the GF tests considered. From an empirical perspective, the most relevant
result from these tables is the following: Mardia-type confidence sets are the tightest. Specifically,
smaller values of x and o, (which signa more extreme kurtosis) are more easily rejected with
Mardia-type tests, although, in afew cases, larger values of x and a5 (which imply tails approach-
ing the normal) are more easily rejected with JB-type tests. Following our conclusions regarding
normality tests, we see that combining both type of test statistics may yield more powerful proce-
dures; thisis easily achieved in a MC tests framework. The min-p-value KD yields lower p-values
and (tighter confidence sets) than its omnibus counterpart. Thisis particularly noticeable in the sta-
ble distribution case where J B suggeststhat .9 < a; < 1 [which signals severely extreme kurtosis]
is compatible with our data, whereas al other testsreject o, < 1.8

7. Conclusion

In this paper, we have proposed a class of exact procedures for testing goodness-of-fit of the error
distribution in MLR models. The test statistics are based on multivariate skewness and kurtosis
measures computed on appropriately standardized multivariate residuals, so their null distributions
do not depend on the unknown error covariance matrix (or the regression coefficients). To deal with
the fact that the statistics may have analytically intractable null distributions, the tests are imple-
mented using simple, double and triple Monte Carlo test methods. Special cases considered include
testing multivariate normal, Student ¢, normal mixtures and stable error models. In the Gaussian
case, the procedures proposed include finite-sample versions of standard multivariate skewness and
kurtosis tests for multivariate normality, as well as new ways of combining skewness and kurtosis
measures for that purpose. For non-Gaussian distribution families involving nuisance parameters,
the problem of building confidence sets (through GF test “inversion”) for the nuisance parameters
and the error distribution was also considered.

We have also demonstrated the usefulness of the proposed GF tests with a size and power study
which suggest guidelines for empirical work. In particular, it is evident that asymptotic theory
is highly unreliable; in contrast, the MC tests are straightforward to use and achieve perfect size
control. Furthermore, whereas empirical researchersin econometrics seem to favor JB-type criteria
(perhaps because the available underlying theory alows for regressors), our MC versions of the
Mardia-type tests emerge as a better choice.

Finally, the tests proposed were applied to an asset pricing model using monthly returns on New
York Stock Exchange (NY SE) portfolios over five-year subperiods from 1926-1995. The results
confirm through exact test that multivariate normality is rejected in all subperiods. Further, on
inverting the GF tests for Student ¢ and stable error distributions, we found heavy (though non-
extreme) kurtosis. The reader may consult Beaulieu, Dufour and Khalaf (2001b, 2001a) for mean-
variance efficiency tests which exploit these results.

®0ne may argue that tests based on empirical moments are not best suited for such alternatives since the true moments
of the associated stable distributions do not exist; yet our tests as conceived somewhat circumvent this difficulty, because
the simulation-based RBM are not necessarily estimates of moments: these may be viewed as estimates of an expected
measure of central tendency and scale compatible with the hypothesized distribution.
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A. Appendix: Monte Carlotests

The Monte Carlo (MC) test procedure goes back to Dwass (1957) and Barnard (1963). Exten-
sions to the nuisance-parameter-dependent case are from Dufour (2002). Here we summarize the
underlying methodology (given a right tailed test), as it applies to the test statistics we consider
in this paper. Let us first consider the pivotal statistics case, i.e. the case where the statistic
considered, say S = S(Y, X) can be written as a pivotal function of W [in (2.2)], formaly

Sy, X)=5(W, X),whereY and X areasin (2.1), W isdefined by (2.2), and isfully specified.

1. Let S(© denote the test statistic calculated from the observed data set.

2. Generate N of replications SV, ... SOV) of the test statistic S in such a way that
SO 5@ . SN peexchangeable.
3. Given the series of simulated statistics S, ..., SOV)| compute py[S] = pn(S©; 9),
where
. _ NGp(z; 9)+1
pN(an) = N +1 ) (Al)
1 & :
Gy(z; 8) = N;s(s@ —z), (A.2)

where s(z) = 1if z > 0, and s(z) = 0if 2 < 0. In other words, py (S ; S) =
[INGN(S©; S) 4+ 1]/(N + 1) where NGn (S ; S) is the number of simulated values

which are greater than or equal to S(©. When SO, s S(V) greall distinct [an event
with probability one when the when the vector (S, (M ... S(")' has absolutely con-
tinuous distribution], Ry (S©) = N +1 — NG (S ; S) istherank of 5 in the series
SO s® . s,

4. The MC critical regionis
n(S9: 8 <o, 0O<a<l. (A.3)

If «(N + 1) isan integer, then, under the null hypothesis (provided the distribution of S is
continuous),
P[pN(S(O) ;8) <ol =a; (A.4)

see Dufour (2002).
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