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ABSTRACT

Due to their underlying assumptions, the standard concepts of risk aversion
and preference for the present are generally defined separately and represented
by scalar measures, and this implies many shortcomings. More specifically, if
measured by a scalar, the risk aversion remains unchanged, whatever type of risk
is considered. Consequently, the main purpose of this paper is to provide a more
complete analysis of aversions, which clearly emphasizes the multidimensionality
of risk aversion and the necessity for the measures of risk aversion and preference
for the present to be defined jointly.

This will be done by considering a general framework allowing not only to
address these important issues, but also to discuss other basic concepts such as
the certainty direction and the preference for liquidity. Our model also allows
to analyze income shocks in two different settings, that is, when the individual
can financially adjust himself and when he cannot. These two settings lead to the
definition of various generalized aversions and to how they are linked together. Our
main findings are that these generalized aversion measures are multidimensional
and invariant with respect to monotonic transformations of the utility function.
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1. Introduction

The seminal work of Arrow (1965) and Pratt (1964) has stimulated an important
litterature on risk aversion.! The underlying assumptions of their definition imply
shortcomings that are now well-known. First, the definition has been derived in a
static context, which does not take into consideration the concept of psychological
preference for the present over the future (also called time impatience). In other
words, their static context doesn’t allow for time and risk aversions to be defined
jointly. Second, the definition relies on the expected utility hypothesis, which
implies that the measure is only invariant with respect to linear transformations of
the (expected) utility function. Moreover, an indirect utility function is more often
used, which also means that the measure is not invariant with respect to a change
in the monetary unit. Third, it is a local measure derived in the neighborhood of
certainty, which is often represented by a vector e of unitary components. Fourth,
the considered shocks are different. In their framework, wealth can involve two
components : income and porfolio value. However, shocks are never decomposed
into income shock and porfolio reallocation, since only “aggregated” or wealth
shocks are considered. As a result, the risk aversion measure is a scalar, the
measure being absolute or relative depending on the additive or multiplicative
nature of the shocks (lotteries).

On the other hand, the definition of preference for the present® also relies
on restrictive assumptions, which imply shortcomings. First, it is derived in a
certainty setting : whereas it uses utility functions allowing for intertemporal
analysis, all the uncertainty is resolved in the future by assuming that the
individual consumes the same commodity, whatever state is realized. Second, it
assumes temporal separability of the utility function, for instance, u (cp,c1) =
u(co) + 6u(cy), where co and c¢; represent present and future consumption,
respectively. However, for ¢ to be interpreted as the preference for the present,

1 Yaari (1969), Diamond and Stiglitz (1974), Kihlstrom and Mirman (1974), Duncan (1977),
Ross (1981), Karni (1983), and Machina (1987) are important references on this subject.

2 The origin of this concept can be found in the pioneer work of Fisher (1930) and Allais (1947).
Their work has also stimulated a litterature parallel to that on risk aversion. For example,
the explanation of the positivity of the interest rate in Malinvaud (1972) completes their
own explanation.



usually measured by the marginal rate of substitution between present and
future consumption, a third assumption has still to be made, that is, the
stationary-growth-path assumption (co = ¢; in the above two-period example).
If the future consisted of many dates, the latter assumption would be expressed
in a more complicated way, still meaning, however, a sort of “temporal certainty”.
Fourth, it assumes that a single commodity is consumed in each period, and
any kind of shocks can be considered. As a result, the measure of preference
for the present is a scalar, which should not be the case if many commodities
were considered, due to substitution effects. Indeed, even in a simple two-period
setting, involving two commodities in each period, the concept of preference for
the present itself becomes rather difficult to define.

Because of their underlying assumptions, the classical concepts of risk aversion
and preference for the present are usually defined separately and represented
by scalar measures. A natural way to analyse together uncertainty and time
effects is to extend the von Neumann-Morgenstern utility function accordingly.
This approach, which amounts to considering two-parameter settings, neglects,
however, two of the four behavioral cases that are possible in such a setting.
It predicts that individuals are either time and risk averse or time and risk
lovers, but never in a mixed situation. Consequently, more complex utility
functions are needed to solve this puzzle.®> The latter was first recognized in
Epstein and Zin (1989), who propose a recursive utility function involving a
supplementary parameter. They also abandon the separability with respect
to time and uncertainty, and this is done, in their paper, by introducing an
aggregator. From our point of view, their solution is not completely satisfactory,
since it yields a measure of risk aversion that is still a scalar, which means that
the risk aversion remains unchanged, whatever type of risk is considered. Our
feeling is that an individual could, for example, both dislike financial risks and
love risky sports.

The main purpose of this paper is to provide a more complete analysis of
aversions, which clearly emphasizes the multidimensionality of risk aversion and
the necessity for the measures of risk aversion and preference for the present to
be defined jointly. This will be done by considering a general framework that
allows not only to address these important issues, but also to discuss other basic
3

Other puzzles or paradoxes have also been raised, whose solutions can be found in related
litteratures on state-dependent or non-expected utility functions. More references on these
functions are given in subsection 2.1.



concepts such as the preference for liquidity and the certainty direction. Our
model also allows to analyse shocks in two different settings, that is, when the
individual can financially adjust himself, and when he cannot. These analysis
lead to the definition of various generalized aversions and to how they are linked
together, more specifically, how they can be deduced from each other. Our
main findings are that these generalized aversion measures are multidimensional
and invariant with respect to monotonic transformations of the utility function.
Moreover, the generalized risk aversion is linked to the Arrow-Pratt measure. The
multidimensionality feature appears especially important, since it stresses the fact
that a unique risk aversion cannot account for different types of risks.

The consumer’s problem is presented in Section 2. In a two-period economy,
the second period falling into S states, a consumption unit maximizes a
general utility function (defined up to an increasing monotonic transformation)
that depends directly on L commodities and indirectly on N < S financial
assets. Commodity demands, asset demands and desirabilities of incomes
(virtual Arrow prices) exist and are continuously differentiable (Proposition 1).
The virtual Arrow prices will be transformed into bona fide subjective Arrow
prices (or marginal willingnesses to pay for contingent elementary assets) in
Section 3, which is devoted to the indirect utility function. At this point, the
“demand system” involves commodity demands, tradable asset demands and
subjective or individual Arrow prices.

In Section 4, we focus on the third part of the demand system, namely the
system of subjective Arrow prices. When expanding it, it is soon realized that a
consumption theory extended to financial assets necessarily contains a generalized
theory of aversions. Our general purpose, in this section, is to make explicit such
a theory. To do so, we have to break up this general purpose into more specific
purposes, each one having its own interest. We first define and characterize a
disutility-premium function (Proposition 5). The latter premium will be called
residual, meaning that the individual can use financial markets to adjust himself to
an income shock. However, this financial adjustment is not necessarily complete,
if the asset structure is incomplete.

An alternative setting will also be considered : the individual still faces an
income shock, but is no more able to adjust financially. This can be the case,
for example, if he is endowed with an illiquid portfolio. This setting will first be
used to define and characterize the corresponding disutility premium, to be called
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fundamental (Proposition 6). We will then introduce an appropriate normalization
(for the subjective forward Arrow prices and the subjective discount factor) in
order to completely disentangle time and uncertainty. As a result, the fundamental
disutility premium will be decomposed into an impatience and a risk premium
(Proposition 8). This two-component decomposition has a natural counterpart in
terms of aversion : the fundamental joint time-risk aversion will be decomposed
into an aversion to impatience and a risk aversion (Proposition 10). These two
decompositions require that the certainty direction be redefined. The definition
that we propose for the subjective certainty direction (or subjective certainty
space) appears as a natural extension of the standard definition. However, while
the latter has no interpretation in real terms (since it is not invariant under a
change in the value of the numeraire of the different states), the former is locally
invariant.

The difference between the fundamental and the residual disutility premiums
appears as a liquidity premium. It is defined and characterize (Proposition 11)
by using a natural extension of the Dreéze-Modigliani decomposition (1972).
Accordingly, the measure of the fundamental joint time-risk aversion can be
decomposed into a measure of residual aversion and a measure of aversion to
illiquidity (Proposition 11). If financial markets are complete, an income shock
has no residual effect (the individual can adjust himself by using the S tradable
assets), and the fundamental joint time-risk aversion reduces to an aversion to
illiquidity. Finally, we refine the two-component decomposition of Dréze and
Modigliani into a three-component decomposition. As a result, the measure of the
fundamental joint time-risk aversion is decomposed into i) a measure of aversion to
impatience, ii) a measure of residual (risk) aversion, and iii) a measure of aversion
to the illiquidity of risky assets. This three-component decomposition supposes
the existence of a sure asset (reallocation), which, in general, cannot be reduced
to the standard certainty direction.

Most of the proofs are gathered in the appendices.

2. The model

2.1. Basic concepts

The model involves two periods, 0 and 1. At period 0, there is uncertainty as to
the state of nature s, s =1, ---, S, that will occur at date 1. All uncertainty is

4



resolved in period 1. The consumer has to choose his present commodity vector
zo and establish a plan (or strategy) regarding his future one for each possible

state, denoted z15, s = 1,---, S. xg has Ly > 1 components, x5, has L, > 1
components, s = 1,---, S. The corresponding price vectors are denoted py and
p1s, s = 1,---, S, respectively. The corresponding (scalar) incomes are denoted
Wo and Wy, s = 1,---, S, respectively. Prices and incomes are expressed in

relevant money units (po and Wy are expressed in a money unit specific to period 0,
p1s and Wy are expressed in a money unit specific to period 1 and state s). This
convention corresponds to financial practice, respects available data and, as we
shall see in the sequel, is reconcilable with the traditional framework of price
theory where intertemporal prices and incomes are expressed in a same account
unit (the present one, say).

The consumer can transfer revenue between periods and states by selecting a
portfolio of financial assets. We shall suppose the existence of N assets. They
are traded in the first period where the corresponding vector of asset prices is
denoted qp; they pay off in the second period where the vector of asset values
(pay-offs) in the state s is denoted ¢15. A portfolio is denoted y.

The budget constraints are* :

PoTo + qpy = Wo in period 0, (2.1)

PLeT1s — @1y = Wy in period 1 and state s,s =1,---,S . (2.2)

Assuming that the consumer’s preferences are representable by a utility
function U, his optimization problem is :

max U(xo,T11," - ,T15) (2.3)
X0,---,218,Y

subject to (2.1) and (2.2).

Matrix notation will be used in the sequel.

4 The symbol ° (prime) is used to denote transposition.



r = [xh, )y, ..., ¥hg| is the L - dimensional vector of commodity quantities where
L=Lo+) L
S

Dbo

P= P11

Pis

is the L x (S + 1) - dimensional matrix of commodity prices;

Q=1[p —qu -+ —aqs]isthe N x (S+1)- dimensional matrix of asset
prices and pay-offs;

W= [Wq, Wy, -+, Wyg] is the (S + 1) - dimensional vector of incomes.

With the help of this notation the previous consumer’s problem can be written :

max,, U(zx)

subject to  Pr+Qy=w } ' (2.4)

In order to distinguish between present and future variables (a usual
distinction), it is also convenient to consider the following partition :

| %o ;o p/ 0 I q/ | Wo
SHES IS EARE M

The individual decision problem is then

MaXgg,0;,y U(T0, T1)
subject to PoTo + qoY = Wo : (2.5)
Pl — Qly =wW,

Remark 1 : a) The consumer’s problem considered here encompasses the usual
framework where the utility function would be written as :

U(zo, 1, -+, 115) = ulwo) + 0Bu(z1s)

= u(xo) + 5Z7Tsu(acls) , (2.6)



where 7, is a subjective probability and 6 a psychological discount factor.
However, such a specification seems very restrictive since additive separability
is assumed not only between periods, but also across states.  Moreover,
state-dependency of the utility function is obtained in an ad hoc way via the
probability 7,. Consequently, in spite of its computational advantages, the
functional form (2.6) inherited from the von Neumann-Morgenstern tradition has
been challenged in order to eradicate its paradoxical implications [see, for instance,
Allais (1953) and Ellsberg (1961)] while keeping the computational burden as low
as possible.

b) Early examples of the utility function which do not satisfy the
von Neumann-Morgenstern tradition can be found in Machina (1987). More recent
ones (or more appropriate to our purposes) are :

U(z) = ) mau(wo,71s) 2.7)
U(z) = u(z0)+6Y mous (1) (2.8)

U(x) = ul(zo)+ 62 Z ¢ (215, T10) TsTs (2.9)

(2.1
U(z) = u(zg)+dv(x,m) . (2.12)

The specification (2.7), which is not necessarily time-separable, was used by
Dreéze and Modigliani (1972). The specification (2.8), where the elementary
utilities uy are state-dependent, was for instance considered by Cook and Graham
(1977). The “quadratic” form (2.9) was axiomatized by Chew, Epstein and Segal
(1991). The specification (2.10) was axiomatized by Gilboa and Schmeidler (1989)
and used in finance by Dow and Werlang (1992). In this form, the probability
7 is not exactly known, allowing for “ambiguity” (Knightian uncertainty) [see
Epstein (1999), Epstein and Schneider (2001, 2002), Epstein and Zhang (2001),
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and Machina (2001)]. The specification (2.11) extends (2.8) by introducing
a risk correction that accounts for the uncertainty of utility levels w(xys).
The specification (2.12) was proposed by Samuelson (1960), used by Machina
(1995, 2000), and axiomatized by Machina and Schmeidler (1992, 1995). This
specification generalizes all the other ones except (2.7).

2.2. Assumptions

The consumer’s problem will be studied under the following assumptions :

A.1 The utility function U is defined on the consumption set X C RE. This
set is open, convex, bounded below and non-empty. The utility function
is twice continuously differentiable. The gradient U, is strictly positive
(strong monotonicity); the Hessian matrix U,,o is such that the quadratic
form ('U,nC is strictly negative whenever ¢ # 0 and ('U, = 0 (strong
quasi-concavity).

Assumption A.1 concerns the individual’s characteristics and is standard
in economic theory since Debreu (1972) [see, for instance, Balasko (1988),
Mas-Colell (1985), Mas-Colell et al. (1995)]. The consumption set is not
necessarily the strictly positive orthant of R, since a negative component of x
can be a quantity of labor. Furthermore, the general form of the utility function
is general enough to admit, in particular, state dependency of the utility of
consumption.

A.2 The budgetary constraints are known to the consumer.

In Assumption A.2, it is implicitly assumed that prices and incomes are exogenous
data imposed on the consumer. This is not surprising for pg, qo and Wp, but
amounts to imposing a specific (though usual) assumption on p;, ¢; and w;. Even
in this case the possible values of these variables should not be seen as determined
by the state of nature (war does not suffice to explain the formation of war prices).
On the one hand the space of the possible prices and incomes cannot be spanned
from the (small and discrete) space of states; on the other hand, the possible
states of the world are given a priori, once and for all, while the considered prices
and incomes are in principle endogenous at the aggregate level. This point is
important because usual financial approaches identify states and price evolutions
[see, for instance, the option pricing model of Black and Scholes (1973)] and,
by doing so, are led into error on the degree of market incompleteness.

8



A.3 In the budgetary constraints, P, () and W are such that :

a) Po, P11, ,P1s are strictly positive;

)
b) rank Q1 = N < S;
¢) Qy # 0 for any y:
)

d) XN{z| Pz + Qy=w} #0 for at least a y.

Assumption A.3 concerns the budget constraints faced by the individual. Under
these constraints a portfolio does not necessarily belong to the positive orthant
of RV : a negative component of y may indicate a bank borrowing as well as a
short sale transaction. Assumption A.3a implies, in particular, that the Jacobian
matrix of the S+ 1 budget constraints has rank S+1. Assumption A.3b eliminates
redundant assets ; if N = S, the asset structure is complete ; if N < S, the asset
structure is incomplete, and this incompleteness has dimension S—N. Asset prices
are arbitrage-free by A.3c (without this assumption the consumer’s wealth could
increase indefinitely). Assumption A.3d is the survival condition.

From a mathematical viewpoint, financial assets can be conceived as a way to
reduce the number of constraints faced by the consumer. Indeed, since ()1 has
rank NV, it is always possible to choose N out of S+1 constraints in order to express
y in terms of revenues and expenditures, and to substitute these expressions
in the residual constraints : we then have S — N + 1 independent constraints.
If N =0, S+1 constraints are effective. If N = S, the future constraints of (2.5)
can be written as y = [Q}]7t[P{x1—w;1] which, in turn, can be substituted in the
present constraints ; thus one has

Poo + ap[Q1] T Plwy = Wi + g5[Q1] "twy

and this unique effective constraint is, up to the notation, the constraint considered
in the standard case of consumption theory. If, moreover, Q7 = Ig the financial
assets reduce to the elementary contingent assets of Arrow (1953). Since the asset
structure is complete, standard results apply.

Since there are actually S— N +1 constraints the budget set is a linear manifold
of dimension L — S + N — 1 in RE. Under Assumption A.3, it intersects the
consumption set X'. Let 2% be a point in this intersection and 24 < = be another
point in X : the consumption plans that are simultaneously preferred to 24 and

9



less expensive than z? give a non-empty and compact subset of X'. Maximizing
U(z) on this set leads to a solution which is unique from strong monotonicity and
strong quasi-concavity assumptions.

2.3. First-order conditions and demand systems

Under the previous assumptions, the consumer’s problem may be solved with the
help of the Lagrangean :

L(z,y; \) =U(z) = N[P'z + Q'y — W] ,

where X' = [Ao, A11, -+, A15] is a vector of Lagrange multipliers. This vector exists
and is unique. The first-order conditions are necessary and sufficient. They are
written :

U, — PN = 0
QA = 0§, (2.13)
—Pr—-Qy+w = 0

when the whole structure is considered;

Uo = Xopo, Urs = Misprs, s=1,---,8
Aogo = D, Asq1s : (2.14)
PoTo + QoY = Wo, P1,T1s — Gy = Wi, s=1,---,S

when time and uncertainty are explicited.

The conditions U, — P\ = 0 are internal to the considered period x state.
For instance, the conditions Uy = Agpo imply that marginal rates of substitution
are equal to relative prices within period 0, but do not give rise to any link
across periods or states. Those links are established by the N conditions QA = 0.

A
If N =5 and Q; = Ig, one has )\—1 = o and the links are complete. If N < S,

both intertemporal and contingent gubstitution among commodities are imperfect.
If N = 0, no such substitution is allowed, but the Lagrange multipliers are still
defined and can be used to study the desirability of transfers over time and across
states. Finally, since A.3c implies that the consumer’s wealth cannot be increased
indefinitely, the conditions 'y = wW—P’'z express, under A.3, the fact that,
for a utility-maximizing consumer, some kind of hedging is a necessity. Deeper
interpretations are possible if some relevant tools are first developed.

10



Proposition 1 : Let us set p = [ph, Py, .-, Pis] 5 ¢ = lah, =1, -, —dis] - Under
Assumptions A.1, A.2 and A.3, there exist solutions of the consumer optimization
problem :

a) © = x(p,q,W) (commodity demands),
b) vy = y(p,q,W) (asset demands),

c) A= A(p,q,w) (desirabilities of incomes),

that are continuously differentiable. [ |

Proof : See Appendix A.

As already mentioned, if the asset structure is complete (N = S), the S + 1
budgetary constraints faced by the consumer reduce to a unique constraint. As a
result, commodity demands x, asset demands y and the desirabilities of incomes A
will depend on (p, ¢, W) in a specific way. In particular, the desirabilities of future
incomes can be written as A1 (-) = Ao (-) Q1 *qo, since Q; is invertible.

The desirabilities of income are not independent of a monotonic transformation
of the utility function &. In the next section, we shall transform them into
subjective Arrow prices.

3. Subjective Arrow prices and indirect utility function

Since demand functions are already known to exist, an indirect utility function
can be defined by the relation :

v(p, ¢, W) =U [z(p, ¢, W)] , (3.1)

where U [z(p, q,w)] is the maximal value of the Lagrangean L = U(x) — N'[P'x +
Q'y— wJ. By the envelope theorem, the partial derivatives of (3.1) can be
computed with the help of this Lagrangean. For instance, one has :

ov
(9_W = (p7 q, W) ) (32)

=
owo” " owy,’

(present) marginal utility of present income. The multiplier A5 is the (present)

or equivalently \g = s =1,---,5. The multiplier \g is the

11



marginal utility of future income in state s. These desirabilities will be converted
into subjective Arrow prices in subsection 3.1. These Arrow prices will be utilized
to reinterpret our first-order conditions in subsection 3.2 and to characterize the
dual first-order conditions in subsection 3.3.

3.1. Arrow prices

A ratio of marginal utilities is a price. The ratio M = M

Ao ov / OWog
of present money a consumer is willing to pay for an additional unit of future
revenue in state s. Such a (present) marginal willingness to pay, or subjective
Arrow price of an elementary contingent asset, will be denoted fi;,. Before being

actualized, this value (price) is denoted p;, so that one has fi;, = Bu,, with the

is the amount

s )\15

normalization Zle t1, = 1. Consequently, 5 = is a subjective discount

1 A
where 7 is the nominal rate of interest, and p;, = 1s
1+7r Zs )\13

is a subjective forward Arrow price. As py, > 0 and )y, = 1, pg, can also be
interpreted as an Arrow risk-neutral subjective probability. Note that p;, does
exist whatever the number of assets (N = 0 is admissible).

factor often written

3.2. Arrow prices and first-order conditions

We now reconsider the interpretation of the first order conditions (2.14) of the
consumer’s problem. With the previous interpretations in mind, Uy/Ag = po is
an equality between a marginal willingness to pay and an (official) price. So is
Uis/M\1s = p1s- In each case the marginal willingness to pay is expressed in the
specific unit of account of the corresponding price. Let us now consider the present
marginal willingness to pay Us /Ao expressed in the present account unit. We have
Uis/ Mo = (M1s/Xo0) P1s = [lg4P1s- 1t can be compared to p15 because the latter has
been converted (via fi;4) into a subjective Arrow-Debreu price. In the same way,
the condition ) Aisq1s = Aogo can be written ) fi3,q1s = B, H1,01s = Qo,
and expresses that, from the consumer’s viewpoint, his own marginal valuation of
assets is equal to their given prices.

12



Proposition 2 : The asset prices, at date 0, can be written as a mathematical

1
1—+r Zs H1s91s

defines a subjective probability measure on the set of states,

expectation of discounted future cash-flows : g0 = 8>, p,q15 =

where p,, =

§ :5 )\ls
1 E )\ S . . . .

and where § = = =T gy subjective discount factor. ¥

1+7r /\0

Remark 2 : The probability measure and the discount factor are a priori
subjective, but can become “objective” according to the set of exchangeable assets.
For instance, if this set contains an Arrow security associated with state s, its price
is By, = [ig- Similarly, if there is a zero-coupon (q1s = 1, Vs), its price at date
0is B = ), fi1,- In the general case Bu,, = fiy, is the subjective price of an
Arrow security, g = (fq1,- - , fl1) @ risk-neutral subjective probability measure
and [ a subjective valuation of a zero-coupon [See Harrison and Kreps (1979),
Duffie (1992)].

Let us consider the no-arbitrage condition. The Assumption Q'y & 0 is
equivalent to the existence of a (S + 1) — dimensional vector a > 0 such that
Qa = 0 [by Stiemke’s lemma, see Mangasarian (1969)°]. The relation Qo = 0
is usually linked to Farkas’ lemma and thus written g9 = Q1 (a1/ap). In this
case, a1/ap is a non-negative-S-dimensional vector (but not necessarily strictly
positive). When the asset structure is incomplete, such a vector a;y/cg is not
necessarily unique : there exists a positive cone of dimension S— N (the dimension
of incompleteness) of such vectors [Ross (1978), Breeden and Litzenberger (1978),
Varian (1987)]. The vector fi; = A1/Xo is an element of the previous cone. When
the asset structure is complete, the vector o /ag becomes unique and fi, is equal to
this unique oy /. As a result, a vector ay /g is often seen as a vector of shadow
prices associated with elementary contingent assets and consistent with the prices
of traded assets. The first-order conditions QA = 0 and the positivity of the
A1s/ Ao = iy, express the no-arbitrage condition. As already seen in Proposition 1,
by solving his optimization problem, the individual chooses a vector of shadow
prices among the multiplicity of shadow prices of elementary contingent assets,
and the chosen vector depends on his preferences, his income and the set of given
prices.

5  Mangasarian, chap. 2, p. 32.
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Remark 3 : Suppose the consumer’s problem is solved sequentially. After

solving for x and A\ (first step), the second step of the optimization consists of

Mazx v(p,w—Q"y), where v is an indirect utility function. This specific objective
Y

function is typical of the characteristic approach [Becker (1965), Lancaster (1966)
and Rosen (1974)]. To each financial asset is naturally associated a column
of @ and such a column (whose components are initial cost and possible future
pay-offs) can be seen as a vector of characteristics. @'y is then the vector of
total amounts of characteristics. Therefore, it should not be surprising that, while
solving the consumer’s problem, one obtains naturally these characteristic shadow
(or hedonic) prices (as seen in Proposition 2).

3.3. Arrow prices and the indirect utility function

The Lagrangean L = U(z) — N'[P'z + Q'y— W] can also be written L = U(x) —
Ao (zgpo + ¥'go — Wo) — >, A1s (21,015 — ¥'1s — Was). By applying the envelope
theorem, we get the partial derivatives of v(p, ¢, w) with respect to p,q and w :

ov ov
— =)\ —— = — 1,71, =1, -, S, 3.3
dpo 0 O L8 (33)

ov ov
— ==\ s :_)\57 8:17 Tty Sa 3.4
o oY 3(—6113) 1sY ( )

0 0
- ! = )\157 s = ]-7 ) S ; (35)

a., — 0
aWo ’ ans

where any term of these equalities should be seen as a function.

Now, suppose the consumer is facing shocks dp, dq, dw. At first order, the
impact on his utility level is :

dv = Xoldwo — zhdpo — y/dgo] + Y Aus[dwi, — 24 dp, + 3/ dass] |

S

= [dwo — zhdpo — y'dgo] + Y iy [dWi, — 2h,dprs + y'dgi] . (3.6)

S

dv
Ao

In the above decomposition, each bracket represents a real variation of income
within a given period and state.
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Proposition 3 : The first-order variations of utility (or standard of living) dv
are linked to the real variations of incomes by the formulas :

dv -
3 = [dWo — ahdpo — y'dac] + D ngldwa, — ah dpy, + y'day]

S

= [dWo — zpdpo — y'dgo] + B g, [dWi, — 24 dp1s + y'dgus)
= [dwo — zdpo — y'dqo] + BE,, [dwy — 2idpy + y'dg1]

where E,, denotes the expectation with respect to the probability distribution
Heg, S8 =1,..., 5. ¥

In other words, after aggregating the various shocks dp,dq,dw into spot
variations of real incomes, one can go on, even if the asset structure is incomplete,
and aggregate over time and across states. When doing so, subjective Arrow
prices are used. The final result is that utility variations are proportional to
intertemporal real variations of wealth. This last concept contains a present and
a future. The future real wealth is locally seen as a mathematical expectation
where the probabilities utilized are the consumer’s risk-neutral probabilities.

Remark 4 : Let us consider equation (3.6) when dp = 0,dw= 0. One has
dv = XY [>_ i dq1s — dqo|, where the expression between brackets is a vector
S

of subjective excess return changes. The consumer summarizes in a simple
N-dimensional index the N(S + 1) financial price variations.

Proposition 4 : Roy identities are given by :

v/ dpo ~ 0v/0pss

Zo _av/gwoaxls__av/awlswgzl '757
B ov/0qp  Ow/O(—q)
VS Taujawe — avjowy, STl

Remark 4 explains the rather peculiar look of the financial components y of
the Roy identities.
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4. Premiums and aversions

Arrow prices fi;; = A15/Ao have been defined and linked to the indirect utility
function in the previous section. In this section, the local structure of Arrow
prices will be used to define premiums and aversion measures. In subsection 4.1,
we will study the local structure of Arrow prices (with the help of an Antonelli
matrix) which, in turn, will be used to define a disutility premium. The latter
will be seen as a residual premium which means that, while facing a shock, the
consumer uses the financial markets to adjust himself. An alternative setting
will be considered in subsection 4.2 : the individual still faces a shock, but is
no more able to adjust financially. In such a context, the resulting premium
and risk aversion will be called fundamental. In subsection 4.3, we show how
residual and fundamental premiums are linked together via the Dréze-Modigliani
decomposition. For convenience, only income shocks will be considered. This is
consistent with the bulk of the literature and, in particular, it is the natural
context of the Dréze-Modigliani decomposition.

4.1. The local structure of Arrow prices and the disutility premium

We start from Proposition 3. Let us set :

i=AX = [}} =1, Bpag, - Bpas] -
Hq

Under this convention, and when commodity and asset prices are kept constant,
the first-order variation of utility is linked to the variation of incomes by the
relation :

dv

— =p/dw b (4.1)

Ao
Both sides of the relation are invariant under a monotonic transformation of
the utility function. The expansion of the indirect utility function can also be

considered at order two :

1
Av=dv+=d’v+o (||dW||2) . (say)

2
Then by differentiating (4.1), one has :
d? d\
20 0w = dwidji, . (4.2)
Ao Ao

6 If income shocks dw were coupled with commodity and asset price shocks dp and dg,

relation (4.1) would be replaced by Proposition 3.
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We shall study : a) the decomposition of dji; into substitution and wealth
effects, b) the decomposition of d?v, c¢) the corresponding formation of a
disutility-premium formula, and d) an example which illustrates the Antonelli
matrix.

a) The local structure of Arrow prices

The local structure of Arrow prices is studied by examining the coefficients
of dji,. Their main characteristics are summarized in the lemma below.

Lemma 1 : i) We get :

aljl /:'L/
(9Wo
where Aj; is an Antonelli matrix which measures the effects on Arrow prices of a
compensated income shock :

dﬁl = Andwy + dw ,

_ | O I T/ P I ONOW' [ — i,
A= {awll]ﬁodwzo_ L{)W'l (9Woul = [ L] Ao I
- v /owow’ [ —i/
= [~y IS]/)\—o[ Iljl} ;

ii) Ajp; is a symmetric matrix which is independent of a monotonic transformation
of the utility function, negative semi-definite, with rank S — N (the dimension of
incompleteness), and ker Aj; = range Q. ¥

Proof : See Appendix B.

An Antonelli matrix is analogous to a Slutsky matrix : the latter characterizes
variations in commodity demands following compensated price shocks while
the former characterizes variations in the (corresponding) prices following
compensated quantity shocks. Both matrices can be used to characterize
substitution and complementarity [see, for instance, Samuelson (1950) and his
survey (1974)]. By analogy, Aj; is called an Antonelli matrix since it also
characterizes variations in the subjective prices. The matrix Aj;;, however,
measures variations in the subjective prices of the implied (or virtual) Arrow
assets following a compensated income shock’, and the assets can be tradable
7

Recall that Plx; = W1 + Qly can reduce to Plxy = Wj + y. Therefore, incomes can be
seen as Arrow assets.
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or not. The decomposition of dfi; (given by Lemma 1) involves substitution
and wealth effects, and the Antonelli matrix Aj;; is used to characterize the
substitution-complementarity among (virtual) assets. Concerning the rank of Aj;,
the intuition is easier to get if one first considers the case where the asset structure
is complete. In such a case, the N = S tradable assets are Arrow assets and

Arrow prices are exogenous or fixed variables, which implies that [g—vﬁvll} = 0.

Consequently, the rank of Aj;; reduces to zero. When the asset structure is
incomplete N < S, the existence of N tradable assets amounts to having N
fixed combinations of the S Arrow prices fi;, which, in turn, reduces the rank of

A]_]_ to S — N.
b) The decomposition of d?v

Lemma 2 : We get :

0o

/ 2
2% (i)

d v = Ao dWlA]_]_dW]_ -+ 2dWl gﬂl ' dw +

Proof : see Appendix C.

The decomposition of d?v involves a substitution effect \q (dwolAlldwl) =
[dzv]ﬂodwzo and a wealth effect, the latter being of degree two. It is important
to note that neither d?v nor d?v/)\e is invariant with respect to increasing
transformation of the utility function. However, the relation of Lemma 2 can
also be written as :

d?v  OXo/OW [
)\_U _ % (i dw)® = dw) Ay dw + 2dw°1§ﬂ/1’dw , (4.3)
0 0 Wo

where both sides satisfy the invariance property.

We deduce :
dv 1 [d?v 8/\0/8W0 - 2 8~ -

(4.4)
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Our next purpose is to show that such a relation defines a premium and still
a welfare criterion.

c) The disutility premium

Let v (W°) be the value of the indirect utility function at some point w°, and
v (W) its value after the income shock dw=w—w?° (prices are deleted to signal
their constancy). Then, there exists a twice continuously differentiable function
p such that
0 0 0
U(W) :U[(WO_P(W>W )7Wl)] ) (45)

everywhere on the domain of v. In this relation, v and —p are monotonic
transformations of each other. Therefore, p may be seen as a disutility function.
The value —p (W, W°) is expressed in present money. In the language of welfare
measures, it is analogous to an equivalent variation. Its opposite, p (W, WO) ,1s a
premium.

Let us differentiate (4.5). This gives :

dv = —Xo[Wo—p(-),wi]dp,
0o

v = do[Wg—p (), Wi] dp+ 5 (W —p (). wi] (dp)” .
0

At the reference point WP, p (W% w®) = 0. The previous relations become :

dv
—dp = ¥
4 o )
it - Lo Dol e
Ao Ao

where g = A\g (Wg, Wg) =X (WO) .
This yields :

1 dv 1 [d? A
—dp——dzp:—v—i—— v 9X/OWo

ev o dw)?
5 2| N EAw)T

which is exactly the left-hand side of (4.4). Finally, the Taylor expansion of
p may be written Ap = dp + 3d%p + o (HdWHZ) At the reference point WP,
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Ap = p(wW,w% — p(Wo W% = p(w,w® . So, we have [by using (4.1) and
Lemma 2] :

(7 dw)*| = o (|ldw]}?)

—p = dv 1 {dzv B 8)\0/(9W0

X 2| A o

9 1
_ (1 + dwia—v’f/t) fildw + Sdwy Andwy — o ([dwlf) . (4.6)

The assertion concerning relation (4.4), that is, it defines a premium and is still
a welfare criterion, is proved since p is both a disutility function and a premium.
Moreover, remark that p is also independent of a monotonic transformation of the
utility function, as is the left-hand side of (4.4). From now on, we shall refer to p
as a disutility premium.

Proposition 5 : The welfare effect of an income shock dw=w-w° may be
measured with the help of a disutility-premium function p characterized by the
relation v (W) = v [w3 — p (W, W®) ;W9 . At the reference point WP, this function
is such that

0 1
—p = (1 + dwola—:vlo) W dw + idWOlAlldwl -0 (Hdwuz) 7

where Aj; is an Antonelli matrix. Locally, the disutility premium involves both
substitution and wealth effects; at first order, —dp = [i’dw and the welfare effect

is a wealth variation; at the second order, however, —%dzp = %dwt]lAlldwl +
dwig—aé i'dw and the welfare effect involves both substitution and wealth effects.

¥

Corollary 1 : If financial markets are complete (N = S) , Arrow prices fi; coincide
with market prices in the sense that fi; = Q7 qo : there are no substitution effects

Aj; = 0, and a wealth variation has no effect on (individual) Arrow prices g—vﬁ\é = 0.
Therefore, the disutility premium reduces to the first-order wealth effect :

p=dp+o(|dw|?) = —idw + o (||dw|?) . (4.7)

¥

In the general case, if i'dw= 0, the first-order term (that is, the wealth effect
of the shock) is not reduced to zero and is still the dominant term of the Taylor’s
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expansion of p, even if the shock also involves a reallocation over time and across
states. Consequently, the interesting case to be studied is when ji’dw= 0.

The condition ji'dw = 0 also means dp = 0 and f\l—g = 0, that is,
first-order compensation. As fi'dw= Y _p, [dWq + Bdw1], it also means that
the mathematical expectation of wealth changes vanishes. In such a case, the
shock ”only” involves a reallocation over time and across states, the case we shall
focus on from now on.

Corollary 2 : If there is first-order compensation (fi'dw = 0), the disutility
premium is equivalent to :

1
p = —§dWUlA11dW1 4+ o0 (HdWHZ)

1. . ONOW

1. o
- —§dw°ldu1+o(Hdez):—§dw o dw + o (||dw|[?)

= () = - o (aw?) (49

¥

The formulas of Proposition 5 and Corollary 2 take into account the consumer’s
adjustments (to dw) in commodities and assets. In a financial economy, the
consumer adjusts himself by making income transfers which, in turn, are made
possible through portfolio selection. Facing an S-dimensional income shock,
he uses the N-tradable assets to ajust himself and to satisfy the new budget
constraints. This is why the previous disutility premium is necessarily a residual
premium, meaning that it takes into account financial adjustment. The extent of
this residual effect depends on the number and characteristics of financial assets,
in particular, through the rank S — N of the Antonelli matrix A;;. We shall have
a closer look at this residual effect in subsection 4.3.

d) Example

We now provide a simple example to illustrate graphically the effect
measured by the Antonelli matrix. More specifically, we consider the consumer’s
optimization problem when the future period consists of only one state (S = 1)
and when no tradable asset exists (N = 0). The optimization problem is

21



max U (xg, T11)
0,711

subject to poxrg = Wo P1.
P117T11 = W11

The solution is straightforward, given by xg =Wy, 11 =W;1, where,
for simplicity, we have assumed pg = p1; = 1. Moreover, if solved by means of
the Lagrangean : L (xo, Z11, Ao, A11) = U (20, 11) — Ao [To — Wo] — A11 [£11 — W],

problem P1 allows to define the Arrow price ji,; = )‘/\—101 = %LL{{//%?;, and since S = 1,
we have Zs A1s = A1 which implies = % = )‘/\—ﬁ = [i17- In such a case,

the Antonelli matrix has rank S — N = 1, consists of only one coefficient and is
given by :

Ofiy Opys  Opy - .
Apn = [ = — ——=[iy; or, equivalently,
anl dwo+1i11dw11=0 anl aWO H
Ay = { 98 } _ o _ 98
1 8W11 dWo+Bdwi11=0 8W11 8WQ ‘

Note that problem P1 is equivalent to

max U (zog, T11)
0,211 _

subject to xg + 6 (Wo,Wll) r1 = Wp + ﬁ (Wo,Wll) Wi =W,

where W is the consumer’s present wealth.

Let us consider given values of incomes. The solution of P1 is represented by
point A on Figure 1, where [ (Wq, Wyy) = ﬁA,_ say, is the slope of the tangent

of the indifference curve U (g, 711) = U4 and W is the zg-intercept of the same
tangent line.

Let us then consider an income shock (dwp,dw;;). The new solution,
represented by point B, is xg” = Wy +dWy, xﬁ = W11 +dWji1, and involves a change
in both the optimal value of # and in the present wealth. These new values are
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3 (Wo + dWo, W1y, dwy; ) = 37, say, and W-HdW= (Wp + dWp) + 37 (W11 + dw1y)
respectively. The wealth variation dw has two components :

. aﬁA 86A
dw = dw Adw L _dw
¢ o+g 11+(8Wo 0+8W11

2

dW11> Wy ,

1 N

A
where —gev — 9BWo.wn) (\go,wll)_ The first one refers to the variation when [ is unchanged
0 'Wo

(a parallel movement of the tangent line ¢ + f21; =W) while the second one is
due to the change in f.

=

W, + W,

Figure 1: The effect measured by the Antonelli matrix

In order to obtain the effect measured by the Antonelli matrix, we need to
identify a third point, that is, what the consumer would choose if the income
shock were compensated. Let (z§,2{}) = (w0 + dWo, 211 + dW11) (represented by
point C) be such a candidate. It should satisfy the two following conditions :
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1) dWyq should compensate for dW; so as to leave the present wealth w unchanged,
that is dWo + 3 (Wo, W11 ) dW; = 0; and 2) 8¢ = (W + dWo, W13 + dWs;) should
be equal to 82 = 3 (Wo + dWo, W11 + dwig) . It is easily checked that point C is
located on the tangent line zg + 5421, = W and is such that dW is equal to the
second component of dw.

Note that in this particular example giWAO = 0. Therefore, the compensated and
the non compensated income shock both involve the same effect on the slope (.

0 0
5 } = —6, and the effect of the
OW11 Wo+Bdwa1=0 owq;
Antonelli matrix corresponds to the change of slope from point A to point C.

More precisely, we get Ay = [

This example also provides the intuition of why, in our model, the indirect
utility function is not quasi-convex in W as usual, but quasi-concave in Ww.
Indeed, we have : v (po, p11,Wo,W11) = v (1,1,Wp,W11) = u(Wp,Wiy), and
consequently, the indirect utility function behaves (roughly speaking) like a direct
utility function.

In the next subsection, we define a fundamental disutility premium as
well, when the individual does not use the financial markets to adjust himself.
In subsection 4.3, we see how residual and fundamental premiums are tied together
via the Dréze-Modigliani decomposition.

4.2. The fundamental premium and the fundamental risk aversion

In order to define and characterize the fundamental disutility premium at w®
(and, ultimately, a corresponding measure of fundamental risk aversion), one
considers the following set-up. The consumer still faces the income shock dw at
the same reference point W°, but is not able to adjust financially or, equivalently,
is endowed with an illiquid portfolio. This setting will first be used to study the
fundamental disutility premium. We then introduce a new normalization (for y
and ) in order to completely disentangle time and uncertainty. This will allow
us to decompose the fundamental disutility premium into an impatience and a
risk premium. The latter decomposition has a natural counterpart in terms of
aversion : the fundamental joint time-risk aversion will be decomposed into an
aversion to impatience and a risk aversion.
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a) The fundamental premium

As in the case with financial adjustment, the income shock is locally analyzed
around the optimal portfolio y* (the selection of which is made without any
restriction). For instance, the income shock could here be analyzed by using
the indirect utility function v (W) = v (W — Q'y) where § = y* (see Section 3,
Remark 3). Compared with the case with financial adjustment, the Arrow prices
take the same initial (optimal) values, but their changes are, in principle, different.

Let df3, dfi, dfi, and A1, denote, respectively, the discount factor variation, the
Arrow prices variations, the forward Arrow prices variations, and the Antonelli
matrix corresponding to this case. Let also p denote the new disutility premium.
If N were interpreted as the number of liquid assets, the analysis of the income
shock in the present case amounts to rewriting Proposition 5 in the particular case
where N vanishes locally. This leads to the proposition below :

Proposition 6 : If there is first-order compensation (f'dw = 0), the welfare
effect of an income shock dw = w — w® without financial adjustment may be
measured with a disutility premium p as follows :
— 1 ' A 2
—p = §dW1A11dW1 — 0 (H dw || )
1 085\/ 8W0

1 =z
= §dwold,ul—o(||dw||2) = Sdw =5 dw — o (||dw|[)
0
_ 1d%% 2 _Aﬁ 2
= 2 — o ([law|%) = o —o(llaw|) , (4.9)

where Aj; has rank S.

Proof : The rank of A;; can be deduced from the rank of the matrix Aj;
(see Lemma 1) when N = 0. ¥

From now on, we shall refer to p as the fundamental disutility premium,
meaning that it does not take into account financial adjustment. The aim of
the next subsection is to decompose the fundamental disutility premium into an
impatience and a risk premium.
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b) Impatience and risk premiums

Before going into the details of the decomposition, we first give the intuition
of how it will be done. Let us consider the S-dimensional vector of future
incomes and interpret it as a portfolio composed of S contingent Arrow assets
Wi, s = 1,..., S. In this framework, fi;w; represents the present price (at date 0)
of this portfolio. Its price admits different components which refer to the cost of
intertemporal transfers, the cost of insurance, and a cost for cross-effects. If we
used the normalized Arrow prices pu;, and the discount factor 3, the choice of the
normalization (through the choice of ) will obviously affect the decomposition of
the portfolio price since fi;, = By, and 1wy = Bujwi. The number of admissible
normalizations is infinite. Until now, we have used the canonical normalization
of the literature. It allows to interpret p;, as an Arrow risk-neutral subjective
probability. The different results of subsection 4.1 were established from the
Arrow prices fiy,. They are therefore independent of the chosen normalization
for the discount factor § and the p, = & R As mentioned above, this will not be
the case for the decomposition of the portfolio value. We would like to restrict our
choice to a set of normalizations that completely disentangle time and uncertainty.
In such a case, the portfolio price would be made-up of only two components,
that is, a temporal and an insurance component. The normalization used so far
does not allow for such a “strict” decomposition. Let us now introduce the new
normalization.

A guch that

Let us define # and p; = %

BAo
L
paBapy =1, (4.10)
where By = — A (WP) is a positive definite matrix. We deduce
M
P = o= a2 (4.11)
(/\1311)\1)
N Bi) Y
g = & ' (4.12)
Ao
From the normalization restriction (4.10) and fi;, = [u,, we deduce the
differential restrictions :
dfiy = dPpy + djy 3 (4.13)
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The conditions above can be interpreted in the following way. The Arrow price
variations dji, can be decomposed as the sum of dfy, and dji;3. When dw varies,

dBuy, dpy 3, d/il generate vector spaces B!, B!, E, respectively. They are such
that
E=E"+E",

and E! and E'! are orthogonal for the scalar product Bi;. Indeed,
By Bufdpy =0,
by relation (4.14). This can be summarized in the following lemma :

Lemma 3 : Decomposition of the space of price variations. The

S-dimensional vector space E spanned by the Arrow prices variations dji,; is the
direct sum of the one-dimensional vector subspace E! spanned by the vector
of normalized Arrow prices y; and the (S — 1)-dimensional vector subspace E!f
spanned by the normalized Arrow price variations dfi;. The subspaces E! and
E™! are orthogonal for the scalar product Bi;. The projector 7 on ET along E'!
is denoted by :

T = pypy By -

¥

We can also introduce a dual decomposition in the space of income shocks.
Indeed, under first-order compensation, A;;dw; = dji;. Since Ajq is invertible,

one also has dw; = f_ll—lldﬁl = —Blld/il. Using (4.13), we get :
dW]_ = —BlldB,ul — Bllﬁdﬁl . (415)

Moreover, the orthogonal projector T satisfies : By, T = T"B1,. We deduce

T'dw; = —T'BudBu, — T Bufdj,
= —BuTdBu, — BuTBdp,
= —BudBu,,

since T'3dfi, = 0 and T'dBu, = dBu, by the definition of T', and therefore :
(I — T,) dw, = _Bllﬁdﬂl .
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Note also that By 1" = (T" ) Bﬂf , which means that 7" is an orthogonal projector
for the scalar product Bﬂl = —Aq.

In relation (4.15), —Byy = Al is a Slutsky matrix (deleted of its first
line and column). dw; can be decomposed into dw; = dwl + dwi! where
dw!l = —BlldB,ul and dW{I = —Bllﬁdﬂl are intertemporal and across state
reallocations, respectively. Thus, —Bjjj; may be interpreted as intertemporal
substitution effects and —Bj13 as substitution effects across states.

The results can be summarized in the following lemma :

Lemma 4 : Decomposition of the space of income reallocations. The
S-dimensional vector space W = A{'E spanned by the income reallocations dw;
is the direct sum of the one-dimensional subspace W! = A;{ ET of intertemporal
reallocations and the (S — 1)-dimensional subspace W = A} E of across state
reallocations. The subspaces WY, WI are orthogonal for the scalar product
—Ay1 = Bt The orthogonal projector on W' along WI is T". ¥

The interpretations of Lemmas 3 and 4 are easier to get if, once again, one
interprets W as a portfolio of contingent Arrow assets and dw; as its reallocation.
First, the duality between the two vector spaces, ' and W, becomes more
apparent. The space of Arrow prices variations is the dual space of the space
of Arrow portfolio reallocations. Second, starting with an Arrow portfolio wy,

_ /!
if Arrow prices change, the portfolio value becomes (/11 + d/]l) Wi. If there is a

_ /
reallocation of the Arrow portfolio, the readjustment value is </]1 + dﬁl) dw;.

Using the orthogonality condition (4.14), it is easily checked that the readjustment
value can be written as :

f— 4 _
</11 + dﬁl) dwi = (8 + dB) dwypuy + Sdwydiy

where (8 -+ dB) dwip, is the cost of intertemporal transfers (saving or credit)
and Bdwidfi, is the cost of insurance. As already mentioned, the decomposition
involves two components only, due to the selected normalization. Third, if one
considers a reallocation of the Arrow portfolio such that dw; = dw! (also named
intertemporal reallocations), Lemmas 3 and 4 imply the following equivalent
statements (see Appendix D) :
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i) the insurance price associated with an intertemporal portfolio reallocation
is equal to zero (dw/dp, = 0);

ii) the implied modification of Arrow prices reduced to a readjustment of the

discount factor (dﬁl = dglil) ;

iii) the intertemporal portfolio reallocation implies no change in the forward
Arrow prices (dp, = 0).

Finally, we can interpret the space W' (respectively, the direction Biifi)
as a subjective certainty space (respectively, subjective certainty direction), as
shown by considering the special Arrow-Pratt framework. This framework mainly
assumes :

i) a Von Neumann Morgenstern (VNM) utility function u (xg) + 63msu (xs)
[see (2.6)],

ii) which is strictly concave, and

iii) an adjustment in a neighborhood of a standard certainty point : w; + Q17
proportional to e = (1,...,1)" .8

In the Arrow-Pratt framework, By, = ﬁ (the S-dimensional vector whose

components are all equal to ﬁ) Moreover, the projector 7" on W along W/ is

equal to T" = Byipq ) = en’ where 7 is the S-dimensional vector of probabilities
involved in the VNM utility function (see Appendix D). T"dw; = (Ewsdwls) e
S

measures the expected income shock whereas [I — T"] dw; provides the demeaned
shock, that is the risky components of the shock. Thus, in the general framework,
B 11 is the natural extension of the standard certainty direction e, whereas
T'dw; = dwi is a sure reallocation and [I — T"] dw; = dwi! the risky reallocation.

8 In fact, the Arrow-Pratt framework assumes more specific assumptions. The additional

assumptions will become explicit in Appendix E, where a complete example is presented.
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Proposition 7 : In the Arrow-Pratt framework, the space W/ is spanned by
the vector e with unitary components. An income reallocation dw; is decomposed
into its expected value and its demeaned value. In the general case, the space W/
will be called the sure reallocation space. ¥

In the literature, e is considered as the standard certainty direction. It is
not invariant under a change of the value of the numeraire in the different states
and, therefore, it has no interpretation in real terms. At the opposite, its natural
extension Biij, is locally invariant. Some confusion could be possible owing to
the proportionality between B, and e in the Arrow-Pratt framework.

An alternative rationale can be given for interpreting W’ as the subjective
certainty or sure reallocation space. Let us consider the reallocation dw! =
T'dw, = —Blldﬁul. It is easily checked that dW{ is the optimal dw; an
individual would choose to minimize the disutility premium (loss) given by
p= —%dw’lf_llldwl, when pjdw; = —% with dwg being exogenous.” As a result,
the reallocation dw! (respectively, the direction Biju,) appears as the best or
preferred reallocation (respectively, best or preferred direction) in the uncertain
world considered.!® Finally, note that —Biiu; has already been interpreted
as a vector of intertemporal substitution effects. Both interpretations, that is
subjective certainty direction and intertemporal substitution effects, are thus
equivalent.

The decomposition of the income reallocations space and the orthogonality
condition (dW{), Apdwil = 0 will now be used to obtain a decomposition of the
fundamental disutility premium.

9 The corresponding auxiliary problem can be written as :

1 - dw
min £ = —§dW01A11dW1 + v [uoldwl + 70] ,

where v is a Lagrange multiplier.

10 This interpretation is analogous to that of the least risky portfolio in the standard

mean-variance framework without risk-free asset.
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Proposition 8 : Decomposition of the fundamental disutility premium.
Under the assumptions of Proposition 6, the fundamental disutility premium p
decomposes into an impatience and a risk premium. More formally,

p=p"+p"+o(lldw]?)

where p! = —% (dW{),f_llldW{ which depends on the sure reallocation dw! is an
impatience premium, and p'’ = —3 (dwi’ )/ Ay1dwif which depends on the risky
reallocation dw!? is a risk premium. ¥

¢) Impatience and risk aversions

The fundamental disutility premium leads naturally to a measure of aversion
which, for obvious reasons, will be called the “fundamental joint time-risk
aversion”.

The decomposition of the fundamental disutility premium leads to a similar
decomposition of the “fundamental joint time-risk aversion” into an aversion
to impatience and a risk aversion, and this is what we intend to show.
Before doing so, it shall be helpful to reconsider the risk premium of Proposition 8
and its formulation in the Arrow-Pratt framework.

In our model, the Arrow-Pratt framework leads to :

i) 7(W— Q') =7 (Wo —go§, W1 + Q17) = u(Wo — goF) + 8Xmsu (Wi + ¢1,7)
which implies

o0v B ou _
Ao = e (Wo — qof) = e (Wo — o) = ug , say,
O %% Q% , .,
_ e — (Wp — ) = —— Wn — ) =
W, 8W(2)( 0 — qo¥) &C(z)( 0 — QoY) = Ug , say,
ov ou
My = Wi, + ¢,.7) = 6msm— (Was + ¢,.5), s=1,...5,
1 8wls( 1s +q1y) = om 89018( 15+ Q.Y), 8
gi;é (Wo — q09)
_ 0
o\ B .
ow' ’
0
2 _
i 675333—%: (Wls + QEsy) |
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ii) all derivatives of © with respect to future incomes are taken at a certainty
point : Wy + Q47 proportional to e = (1,...,1)", say (a,...,a)". This implies

g,’}/—lls = 8‘3% (a) = 67rsgwi§‘ (a) = émsu” (a), s =1,..., S, so that one can write
S 1s 1s
’LLOO
< 0
orjow" )
)\Q - 511.00((1) N ’
0 —ugo—ﬂ'

where 7 is the diagonal matrix diag .

Proposition 9 : In the Arrow-Pratt framework, the risk premium reduces to :

1T 1 / A / 1 u” (a) / n 4 /
pl = idwl [ —T) [-Au] [I - Tdw, = —5(5 - dw [I — we'| 7 [I — er'] dwy
0
1 v (a)u (a)
= —50— @ ul T, » (4.16)

where aﬁWl =Y s (dwys — Eﬁalwl)2 is the variance of the income shock dw;
(see Appendix E). ¥

The right-hand side of (4.16) coincides up to the scalar u'(a) /ug
with the Arrow-Pratt risk premium.  This is basically why the matrix
[[ —T] [—Aw] [I — T'] will appear as a generalized measure of risk aversion. The
scalar u' (a) /ug is also a discount factor.

The orthogonality condition (dW{)’AlldW{I = 0 also yields the next
proposition.

Proposition 10 : Decomposition of the fundamental joint time-risk
aversion. Under the assumptions of Proposition 6, the fundamental joint
time-risk aversion decomposes into an aversion to impatience and a risk aversion.
More formally,

[—Au| =T [-Au] T+ [I = T) [-Au] I - T,

where [—An} can be interpreted as a joint time-risk aversion, T’ [—All} T’ as an
aversion to impatience and [I — T'| [~Ay] [I — T"] as a risk aversion. Moreover,
each of these fundamental aversion measures is an invariant measure. [ |
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Besides their invariance, the main feature of the generalized aversion measures
is their multidimensionality. While the invariance should be clear from what has
been said up to now, the multidimensionality requires some explanation.

Let us consider the risk premium
1 _
ﬁll = idWUl [I — T] [_All} [[ — T’] dwy .

In this relation, [I — T flll [I —T")dw, = Bdjiy, since Agy [I —T'|dw, = Bdji,
and Ay [[ —T'] = [I —T| A1 [I — T"] by the orthogonality condition. We deduce

o = _%dwiﬁd/jl = %dwol (I —T)| [—14_111} [[ —T"dwy ,
pro= =38 Z dWasdfi, = 3 Z ; (—og) dwadwy, , - (4.17)

where [(—all)] = [I —=T][-Au][I - T], s, 0 = 1,...,S. We shall come back to

SO

the interpretation of the coefficients (—a!l) in a moment.

Let us set 1
pi = —5Pdwdiny, , s =1,..,S (4.18)

where p!! is the risk premium specific to state s, meaning that it is associated
with the specific shock dws,, a change in the quantity of the s-elementary Arrow
asset. In fact, while Bdwidi, is the cost of insurance in the readjustment value
of a reallocation of the Arrow portfolio [see subsection 4.2b)], fdw1dfi;, can be
seen as the cost of insurance in the readjustment value of a specific component

2p¢!

(asset) of this portfolio. Moreover, if we write —fdf,, = 7=, —

of this specific premium.

dpiy, is the rate

Let us now come to the interpretation of the coefficients all. We first note
from relation (4.17) that

—Bdfi, =Y (—all)dwy, , s=1,..5. (4.19)
Now, let us suppose dwy, = 0 for o # s and set p!f = —2a!! (dwy,)? . This yields
2—11
Pss S = —all
(dWls)
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where (—ag ) is a direct elementary coefficient of risk aversion, which, apart from

being elementary, is very similar to what we get in the usual case (the general
coefficient of absolute risk aversion is twice the risk premium per unit of variance).
By (4.19) and (4.18) the specific risk premium can also be written

1 1
ol = §dW13 Z (—a”) dwy, — 3 ol (4.20)

g g
whose summation over s, s = 1, ..., S, gives the risk premium p'’.

Whereas —a!l is a direct elementary coefficient, —all (o # s) is a cross

elementary coefficient. These cross elementary aversions represent aversions to
cross elementary risks that sum up with the direct elementary risk to give the
specific risk. As can be seen from (4.20), the same rationale applies to elementary
and specific premiums.

It is noteworthy that, in the Arrow-Pratt case, the general (aggregated)
aversion measure is, in fact, the summation of specific aversion measures. Indeed,
in this case, one has :

u/l (a)

1) [=Ay] [[ - T'] = [I — e {—57% , } T—er] |

Ug

and the standard Arrow-Pratt coefficient is the trace of the matrix of specific risk

aversions | —87 %@ —ruo(a)
v T | -

Let us now turn to the impatience aversion and consider the impatience
premium

pl = %dwolT [~ Au] T'dw; .

In this relation, T'Ay;T'dw; = dBp, since A T'dw; = dBpu, and AT = TALT
by definition of the orthogonal projector T'. We deduce

ﬁl = —%dWidBlLLl = %dWUlT [_All} T,dW]_ ,
. 1 _ 1
- -3 Z AWdBpy, = 5 Z XU: (—al,) dwidwy, | (4.21)

where [(—al))] = T [-Au] T' , s,0 = 1,..,S. The interpretation of these

SO

coefficients can be obtained in a very similar way to that used to interpret (—all) .
While —al, is a direct elementary coefficient of impatience aversion, —a!, (o # s)

is the corresponding cross elementary coefficient.
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4.3. The residual risk aversion and the liquidity premium

The fundamental disutility premium p of Proposition 6 and the residual disutility
premium p of Corollary 2 are tied together in this subsection. Their difference p—p
will appear as a liquidity premium. Accordingly, the fundamental Antonelli matrix
— A4, of Proposition 6 and the residual Antonelli matrix —A; of Corollary 2
(respectively, the fundamental and the residual joint time-risk aversion measures)
are also linked together in this subsection. Their difference Aqq — Aqp will appear
as a measure of aversion to illiquidity. The main tool to show these links is
the Dreze-Modigliani decomposition and its invariant generalization. Therefore,
we shall first recall the Dréze-Modigliani decomposition and give its reformulation
in our setting. The latter will be used for the computation of the liquidity
premium p — p. A generalization of the Dréze-Modigliani decomposition together
with the assumption that their exists an tradable risk-free asset will then be
used to decompose the fundamental joint time-risk aversion into an aversion to
impatience, a residual aversion and a financial aversion.

a) Liquidity premium and aversion to illiquidity

The results of subsections 4.2 and 4.3 are naturally linked together by the
indirect utility function v (see Section 3, Remark 3). After optimizing v (W — Q'y)
with respect to y, we have :

v (W) = 5 (W= Q'y (W) . (4.22)
By differentiating this relation with respect to w, we have :
o - B
A=A— a\‘qij/\:/\ (since QA = 0) ,
where A (W) = 2% (w) and A (w) = g—v'”_v (W —Q'y(w)) are the desirabilities

of incomes when the income variation is analyzed with and without financial
adjustments respectively. A second differentiation gives :

oN O\ Oy
ow’  ow’ {I -Q awl:| : (4.23)
Since Q% = 0, we get by premultiplying (4.23) by g—g\jQ :
oy ON Oy [ 0N 18y  Ox,, dy
8WQ8W/ - 8W |:Q8W/ :| 8W/ - ale awl ) (424)
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due to the symmetry of the second term. Substituting into the relation (4.23) and
rearranging terms give the Dréze-Modigliani decomposition.

Lemma 5 : Dréze-Modigliani decomposition. The variations of the
desur%blhtles of incomes when financial adjustments are taken into account
8’\/ M. are the sum of i) the variations of the desirabilities of incomes when

. . X/ OW® . .
ﬁnanc:lal adjustments are not taken into account f\ow and ii) a corrective term

0
g_yw |:Q8>\/8W Q,i| BWO :

_8)\/8W’ B _85\/8W’ oy Q@X/@W’Q, oy
Ao Ao ow Ao ow'’
where the corrective term is invariant under a monotonic transformation of the
utility function. [

The decomposition of Lemma 5 is very similar to the formula derived by
Dréze and Modigliani. The latter, however, was obtained in a rather different
context. Their formula is not multidimensional and refers to a specific state of
the world. It is used for comparing a situation where there exists a nominal sure
asset (risk-free asset) with a situation where there exist N tradable assets. Finally,
their corrective term measures “twice the expected value of perfect information
per unit of variance (...) for infinitesimal risks” [see Dréze and Modigliani (1972),
p. 314]. As mentioned above, Lemma 5 will now be used to link together the
fundamental and the residual disutility premiums.

By premultiplying and postmultiplying the Dréze-Modigliani equation by dw’
and dw, and by using Corollary 2, Proposition 6 and the fact that A\g = A\, we get
the following proposition.

Proposition 11 : If the income shock is compensated (f'dw = 0),
i) the liquidity premium is :
d>v  d?v
=5 (%5 -

where Cp = %{)‘ — ;Ty 17 is a matrix of compensated income effects and Ky, =

At A 1
(T: _ T:) = WO Cowi > 0

Qa’\/ 8WOQ’] [QlflllQﬂ_ is a symmetric negative definite matrix with

rank N which characterizes substitution and complementarity among assets;
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ii) the fundamental joint time-risk aversion A1 can be decomposed into a
residual aversion Aj; and a corrective term C% K. {2102 which measures the aversion
to illiquidity :

—Ay = —Ap — CK, Co > — Ay

¥

where > denotes the usual ordering on symmetric matrices. Following a
compensated income shock, the disutility premium (which measures the welfare
loss) will be greater when financial adjustments are not possible, and this welfare
effect is a second order effect. In other words, the fundamental disutility premium
p will, in general, be greater than the residual disutility premium p due to portfolio
reallocations. In a similar way, the fundamental aversion [—14_111] will, in general,
be greater than the residual aversion [—Ajy;|, since the individual is naturally
more averse to a compensated income shock when his portfolio is illiquid than
when financial adjustments are possible. Finally, note that if financial markets are
complete, there is no residual effect. When facing an S-dimensional compensated
income shock, the individual can adjust himself by using the S-tradable assets
(there is no lack of substitution among assets). As a result, there is no residual
disutility premium (p = —%dw’lAlldwl = O), the fundamental disutility premium
is a liquidity premium, and the fundamental joint time-risk aversion is an aversion
to illiquidity.

b) Residual risk aversion and aversion to illiquidity of risky assets

The fundamental joint time-risk aversion can be decomposed into an
aversion to impatience and a risk aversion (see Proposition 10), and it can
also be decomposed into a residual aversion and an aversion to illiquidity
(see Proposition 11). We are now looking for a three-component decomposition,
that is, an aversion to impatience, a residual aversion and an aversion to the
illiquidity of risky assets. For this purpose, we shall “mix” both decompositions
of Propositions 10 and 11 as follows. These propositions obviously lead to the
relation

[—Au] =T [-Au|T'+ [I - T)[-Au][[ - T'| - [[ - T| C3K5 Co [ = T']

which, in turn, gives the decomposition we are looking for, provided the following
condition is satisfied :

[ = T) [~ Au] [[ = T') = [~ Au] . (4.25)
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Thus, we get :

Proposition 12 : Under condition (4.25), the fundamental joint time-risk
aversion [—All] can be decomposed as :

[~ An] =T [~Au] T'+ [~ Au] + [ = T)Cy [~ Ka| T Co [T - T] ,

where each component of the decomposition is a symmetric positive semi-definite
matrix, respectively with rank 1, S — N and N — 1. In the decomposition,
T [—14_111] T’ can be interpreted as a measure of aversion to impatience, [—Aj;]
as a measure of residual (risk) aversion, and [I — T]Ch [~ K] " Co[I — T'] as a
measure of aversion to the illiquidity of risky assets. [ |

Once again, if financial markets are complete, there is no residual effect.
Consequently, the fundamental risk aversion [[ —T][—Ay] [l —T] is just an
aversion to the illiquidity of risky assets, which implies that the fundamental joint
time-risk aversion decomposes into an aversion to impatience and an aversion to
the illiquidity of risky assets.

We now turn to the condition (4.25) required to obtain the decomposition of
Proposition 12. The meaning of this condition becomes more explicit in the next
proposition.

Proposition 13 : The condition [I — T|[—An][I —T'] = [—Aj1] is satisfied if
and only if a sure asset (in real terms) can be built as a portfolio of existing assets,
meaning that it belongs to the set of tradable assets. [ |
Proof : One has : [I — T] [_All] [I — T/] = [_All] < T [_All] =0 <

[—AU]T = 0 & [—Ap|Tdw; = 0 & [—Ayn]dwl = 0 & dw!l = Q) dy, since
A11Q} = 0 (see Lemma 1). Therefore, dw! which is a sure reallocation belongs to
the set of tradable assets (see Proposition 7). |

Is this a natural condition? This assumption, in some sense, replaces the
assumption made by Tobin (1958) on the existence of a zero-coupon bond
(often seen as a risk-free asset). The role of this assumption is most easily
understood by looking at the opposite situation. Suppose a sure asset or
reallocation (also defined as a best or preferred reallocation in the uncertain
world considered) is not tradable. In order to make intertemporal transfers, the
individual would try to get as close as possible to the subjective certainty direction,
but this could only be done by using risky assets.
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5. Conclusion

Most of the literature on consumption behaviors and portfolio management relies
on preferences that are representable by separable von Neumann-Morgenstern
utility functions. Such is also the case of the standard measures of risk aversion and
preference for the present. Due to their underlying assumptions, these measures
are generally defined separately and represented by using scalars. The purpose
of this paper was to provide a general framework allowing to emphasize the
multidimensionality of the risk aversion measure and to show the necessity for
risk and time aversions to be defined jointly. Our analysis naturally led to the
discussion of other important concepts, such as the preference for liquidity and
the certainty. It is important to stress again that all of these concepts depend
on the considered individual. Moreover, the different decomposition formulas we
derived and the corresponding aversion measures can be utilized in different ways.

In a standard framework for analysing individual behaviors, those formulas
and measures should allow to match each individual with different parameters
that measure risk aversion, different types of illiquidity and preference for the
present. The individuals could thus be compared by using these quantities, which,
in turn, should lead to segmentations of the population into homogeneous classes
with respect to those criteria. The resulting segmentations could then be used
to offer made-to-measure financial products for the various categories, and to set
prices more or less high, depending on the importance of the underlying demands.

This classification of individuals and of their corresponding needs is also
important for market analysis. The asset pricing equilibrium models should take
account of these more detailled measures of individual heterogeneity. As a result,
one should get a finer market segmentation with respect to the usual specifications,
which, in turn, should imply different analysis of the multiplier effects of shocks,
and of their transmissions to the several markets.
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Appendix A

Proof of Proposition 1

The first-order conditions of the consumer optimization problem [(see (2.7)]
define the following function

U, — P
F(a,b) = —QA )
Pz —-Qy+w

where a = (p,q,W), b = (z,y,)). An optimum is a point (a°, 8°) such that
F (a® b°) = 0. If the Jacobian matrix

Up 0 =P
= 0 0 —-Q
P -Q 0

has full rank, Proposition 1 follows by the implicit function theorem.

Lemma A : Fj has full rank at (a°, ©°).

Proof : Assume the contrary : there exists a vector (¢, ¢b, ¢3)" # 0 such that
8) @) Uswt = 3 P/, b) ¢4 Q' = 0,¢) ¢ P+¢% Q@ = 0. Then ¢y P ¢ = 0 and,
by the first-order conditions ¢} P\ = ¢; U, = 0. So, one has simultaneously
) Upp &y = 0 and ¢7 U, = 0, which contradicts the strong quasi-concavity
assumption unless ¢; = 0. But ¢; = 0 implies ¢3 = 0 [since, in a), P’ has rank
S+ 1] and ¢, = 0 [since, in ¢), @ has rank N]. One has (¢], ¢5, ¢3) = 0, hence
a contradiction. ¥
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Appendix B

Proof of Lemma 1

1) Decomposition of dji;

Since ji, = i—;, the income effects (on Arrow prices) can be written as :

N OXo/OW!
opy AR
ow [~ Is] OA1/OW0
Ao
. ON/ oW’
= a1 (B.1)
0
Let us postmultiply (B.1) by [ gl] and rearrange terms. This yields
Oy Oty o
=A — B.2
ow, 1+ w1 (B.2)

~0
where Ay = [—f1; Ig] 8)‘/ ow’ [ I’;l} is an Antonelli matrix. Postmultiplying (B.2)

by dw; and adding 8\‘,;2 dWo to both sides of the equality, one obtains :

dji, = g"l dw = Ay dw, + g’“‘ 10 i dw . (B.3)
i) Properties of the Antonelli matrix
a) Ajp is symmetric
Consider Ay;; = [y Ig] 8)‘/ ow’ [ Is 0] The symmetry of Aj; follows from

the symmetry of the matrix O\/ 8W Indeed since A\ = Jv/Ow is continuously
differentiable (see Proposition 1), one has O\/OW = 0%v/OwWOW’ where the
Hessian matrix is symmetric.

b) Aj; is negative semi-definite :
~0
Lemma B.1 : 1) Ay = C;%Cy, where C) = [83_90%} (4]
2) U.Cy = 0.
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Proof : 1) Proposition 1 provides solutions of the consumer optimization problem
r=z(p,q,W),y = y(p,q,Ww) and A = X(p,q, W), which are continuously
differentiable functions. By substituting these functions in the first-order
conditions of the consumer optimization problem, and by using the implicit
function theorem, we get the following identities

U, (p,q,W) = PX(p,q,W)
—QA(p,q;W) = 0 . (B.4)
Pl (p,q, W)+ Qy(p,q,W) = W

By differentiating (B.4) with respect to W, we obtain

0. (2D
Uy 3VQ\E,0 = P Gy
ox
o _ . (B.5)
3] lé)
P/_a\zo + Q/avzo = s+

Premultiplying the first relation of (B.5) by g—ﬁ leads to

o, or O\
ow " ow — ow'

since (9z' /OW) P (ON/OW') = [Ige1 — (3y' /OW)] ON/OW' = OX/OW'. Then by

(B.6)

premultiplying and postmultiplying (B.6) respectively by [—f; Is] and _IM 1
S
and by dividing the same relation by Ao, one has :
u:r:r
O} 2220y = Ay (B.7)
Ao

2) By premultiplying the third relation of (B.5) by X', onehas : NP’ (9z/ow’) = X,
or equivalently, U.0z/0w’ = X. We then postmultiply the latter relation by

Y
[ H } and get

UC =0, (B.8)
~7
since)\'{_’ul}:Q ¥
Is

The negative semi-definiteness of Aj; follows from Lemma B.1 and the strong
quasi-concavity of the utility function (see Assumption A.1). By premultiplying
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and postmultiplying (B.7) respectively by dw’ and dw;, and by postmultyplying
(B.8) by dwy, one has : dW’lC’iu)“ng Ci1dw; = dw)A;;dw; and, simultaneously,
U.C1dw; = 0. Thus, by the strong quasi-concavity of the utility function,
dW,lAlldwl < 0 whenever C1dw, 7é 0.

c) ker A;; = range Q)
Lemma B.2 : ker C; = range ().

Proof : Postmultiplying the first relation of (B.5) by Q' yields Uy,o (0x/0W') Q' =0
which can also be written as

Up0C1Q7 =0, (B.9)

~/

since [ —I,u ! } | = —@Q'. Let us set ( = C1Q}¢, where ¢ is an N-dimensional
S

arbitrary vector. Relation (B.9) implies ('U,»¢ = 0 for any vector ¢ while
relation (B.8) implies U.( = 0 for any vector ¢. But this is impossible (again
from the strong quasi-concavity assumption) unless ( = 0 for any ¢, and this
implies that C1Q; = 0, or equivalently, @1C] = 0. It remains to show that the
kernel of C; is spanned by the range of ();. Suppose the converse. There exists
a S x N-dimensional matrix Q) with rank @} = N > N such that C1Q} = 0.

_~, ~
Postmultiplying the third relation of (B.5) by [ H1 } @}, one has

Is
~ _~, ~
o= | e (B.10)
_ !
where C7 = [ 38—\,50 %r{ } { IM ! } . The relation (B.10) can also be written as
s

[ aca-| A an

but involves a contradiction since its left-hand side has rank smaller or equal to NV
while the right-hand side has rank strictly greater than N. Therefore, C'; has rank
S — N and ker C; = range )}. ¥

Consequently, ker Aj; = range ()] (and rank A;; = S — N) by using the first
property of Lemma B.1 and Lemma B.2. ¥
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Appendix C

Proof of Lemma 2

By (B.1) and the symmetry of O\/OW’, one has :

By ) ONowe Do /W
M I = [= o] 2222
aWQ [ M1 S] )\O [ H1 S] AO 3 and
8/] 8)\0 oW, 8)\0 8W0~

dw’la—wt - #dwl - <70,/1dw1 , where

fgpdwy = ji'dw — dwyg. This gives :

dAo 0 8/]1 8)\0/(9W0 -~
— = da dw . 1
Ao Wl@wo * Ao praw (C )

The result follows by substituting (C.1) and (B.3) into (4.2), and rearranging
terms.
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Appendix D

Implications of Lemmas 3 and 4

i) If dw; = dwi, then dw!dfi; = (T"dw,) dfi; = dw}Tdfi; = 0 by definition
of T. Thus, the insurance price (dwjdp,) associated with an intertemporal
portfolio reallocation (dW{) is equal to zero.

i) Since dfi; = Andwy, if dw; = dwl, we deduce diyy = Apdwi =
Ay (—BudBuy) = AunAp'dBuy, = dBpy. Thus, if dw; = dwi, the implied
modification of Arrow prices reduces to a readjustment of the discount factor

<d/31 = dBMl) :

iii) Since dji, = dBu, + Bdfi, and dji, = By, when dwy = dw!, we deduce
Bdp, = dp; = 0. Thus, the intertemporal portfolio reallocation implies no change
in the forward Arrow prices (dp, = 0).
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Appendix E

The Arrow-Pratt framework without financial adjustment

i) The consumer optimization problem

For simplicity, let us assume that the individual consumes only one commodity
in each period x state. His preferences are represented by a VNM utility function

U (0,211, -, T15) = u (z0) + OXsmsu (T15) -
The consumer’s problem can be solved by means of the Lagrangean :
L (.CIZ', )\) =u ($0)+6ES7TSU (xls)_)\o (pOxO + Q()g - WO)_ZS)\].S (plsxls - Cﬁsg - Wls) )

where 7 is the illiquid portfolio of the consumer. The first-order conditions are :

ou ou
— (xg) — A = 0, T1s) — Msps =0, s=1,...,5,
70 (w0) — Aopo e (715) — M1sP1

poTo+ oY = Wo, DPisTis — g0 =Wis, s=1,..,5,

which yield the following solution :

Wo — qé)g T1. — Wi + qisg
- )

o = ——, 1s s=1,..,5,
Po D1s
1 Ou [(Wo— q,y 0 Ou [ Wiy T
o - L ( 0 qoy)’ e T ( 1 +q15y)’ s=1,..5.
Do 8'I'O Do D1s 81’13 DPis

The indirect utility function is given by

v(p,W = Q) = ul(Wo — qo) /po] + 0Xemeu [(Was + ¢1,8) /p1s] -

It is noteworthy that if the direct utility function is VNM, the indirect utility
function is, in general, period X state separable, but not necessarily VNM.!! To
get a VNM indirect utility function, one should also assume pg = p11 = ... = p1s,
which is implicitly done in the standard Arrow-Pratt framework. For convenience,

1 One could write : © (p,W — Q"y) = 7o (-) + 6Xs7sTs (+), with v # ¥1 # ... # Ts.
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we shall here assume py = p11 = ... = p1g = 1, and write the indirect utility
function as follows :

(W — Q') = u(Wo— ) +6 ) meu (Wi, +q1.9) - (E.1)

s

i) The certainty direction

Let us first consider the derivatives of the indirect utility function (E.1) and
introduce some notation :

ov ou
Ao = Wy — ¢hY) = — (W — qhY) = uq E.2
0 OWo (Wo — qo%) D70 (Wo — qo¥) = g , (E.2)
8/_\0 8277 , _ 82u , _ ]
aWO aw(z) ( 0 QOy) ax(z) ( 0 QOy) Ug ,
ov ou
s = Wi, + ¢1.7) = 0me—— (W15 + ¢4.7) , =1,...,5,
1 w1, (W15 + q1,7) n X (Wis +q1,9), 8
O 52 , 52
== Wi, J) = Ome—> (W1s + ¢1.7) , =1,..,5.
ans awis ( 1 + qlsy) Q0 837%5 ( 1 + qlsy) S
We deduce
< < 8u ! =
8)\0/8W0 s 8)\0/(9W15 3_33(2) (WO - QOy) 0
85\/8W/ e E c. . ' e T .
85\15/8W0 R 85\15/8W15 0 Omg 512%1; (Wls + q’lsgj)
N N / 6ﬂ1ﬂ(wn+q0 z?) 6mg 5% (WlS"'qO ?7)
12 — 12 — ﬂ m — dx11 11 Jz1g 1s
and 7 = (1,75) = (142 35) {1’ T (wodbn) T s (wo )

In the Arrow-Pratt framework, all derivatives with respect to future incomes
are taken at a certainty point : Wy + ¢}y proportional to e = (1,...,1)", say

(a,...,a)’ . The derivatives can thus be written : Ay = ﬁ (a) = omy 82"1‘3 (a) =
o’ (a), s = 1,...,8 and \] = éu' (a) 7'; g\%s = 8‘3\2’%’3 (a) = (5%% (a) =

omsu” (a), s =1,...,5 and g_VXV%{ = 6u” (a) 71, where 7 is the diagonal matrix diag 7.

In this case, the matrix OA/OW’ and the vector ji are respectively written :

- 85\0/8W0 0 u{)’ 0
OX/OW' — ] _ E.3
jow 0 aAl/awg] [ 0 su (a)fr] (B
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and i = [1,74] = |1
na p [7Ml] ) u6 ) ’ u6 U6

St (@) Smsu! (a)]' _ {LMW]' . (E4)

The certainty direction is defined as Bll,ul where By, = —fll_ll. Let us derive
the expression of the Antonelli matrix A;; and then find its inverse. By using the
notation introduced in (E.2) and (E.3), one has

- ) ONJOW' | —[i
Ay = [— I
11 [~y Is] " [ Is
W, b (a)
g E'
) [ fig + ” T (E.5)
ou" (a) . ~

where b = [6u” (a) 7]~ Y uffiy. From (E.6), it is easily checked that the inverse of
—Ajq satisfies

_ _ o [=6u"(a) 17t
~Af = By =[Is+ by {#W]
Up
/i -1 ~ 77
_ { 5ul(a)ﬁ} {[S_ u15,~]
Up L4V

(recall that Aj; and — A are symmetric matrices), which implies

_ —6u’ (a) ] 1
B = | ——F—=n7 —
11 { ul W] H17 Vi,

(E.7)

We then use the normalization restriction

_ —u’ (a) ] 1
1B =1eu |——=n
H1D11pq H1 { uh W} H17 Vi,

-1
to deduce (1 + V' fiy) = pj [ﬂ?(—a)ﬁ] py. Substituting the latter relation in (E.7)

and using the notation introduced in (E.4) yields the certainty direction

[(=6u" (a) Ju
pa [(=6u” (a)

(-
0) 7AT] _ Ty €
o)

Bllﬂl = —— .
] M1 pAT l,Ul €'y

Ju
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Moreover, the projector 7" = Bijjuqpt; can be written as

!/

_ e
Bupapy = o b = e’ (E-8)
1

iii) Proof of Proposition 9
The formula of the fundamental risk premium p’’ is easily derived from the

expressions of the matrix A;; and of the projector T [given respectively by (E.5)
and (E.8)] :

pt = %dw’l [ —T)[-Au] I — T dw,
= Sdwi [I = T [ (ug/ug) infiy — (8u” (a) /up) 7] [1 — T"] dw,
= 5dwi [I = T] [ (6u" (a) /ug) #] [ — T"]dwy (since Ty = fiy)

(—8u" (a) /up) i,

(—8u" (a) /u' (a)) (v (a) /up) T, -

NN RN =N -
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